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Preface

According to the original definition of mechatronics proposed by the Yasakawa Electric Company and
the definitions that have appeared since, many of the engineering products designed and manufactured
in the last 30 years integrating mechanical and electrical systems can be classified as mechatronic systems.
Yet many of the engineers and researchers responsible for those products were never formally trained in
mechatronics per se. The Mechatronics Handbook, 2nd Edition can serve as a reference resource for those
very same design engineers to help connect their everyday experience in design with the vibrant field of
mechatronics. 

The Handbook of Mechatronics was originally a single-volume reference book offering a thorough
coverage of the field of mechatronics. With the need to present new material covering the rapid changes
in technology, especially in the area of computers and software, the single-volume reference book quickly
became unwieldy. There is too much material to cover in a single book. The topical coverage in the
Mechatronics Handbook, 2nd Edition is presented here in two books covering Mechatronic Systems, Sensors,
and Actuators: Fundamentals and Modeling and Mechatronic System Control, Logic, and Data Acquisition.
These two books are intended for use in research and development departments in academia, government,
and industry, and as a reference source in university libraries. They can also be used as a resource for
scholars interested in understanding and explaining the engineering design process. 

As the historical divisions between the various branches of engineering and computer science become
less clearly defined, we may well find that the mechatronics specialty provides a roadmap for nontradi-
tional engineering students studying within the traditional structure of most engineering colleges. It is
evident that there is an expansion of mechatronics laboratories and classes in the university environment
worldwide. This fact is reflected in the list of contributors to these books, including an international
group of academicians and engineers representing 13 countries. It is hoped that the books comprising
the Mechatronics Handbook, 2nd Edition can serve the world community as the definitive reference source
in mechatronics. 
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Organization

The Mechatronics Handbook, 2nd Edition is a collection of 56 chapters covering the key elements of
mechatronics: 

a. Physical Systems Modeling 
b. Sensors and Actuators 
c. Signals and Systems 
d. Computers and Logic Systems 
e. Software and Data Acquisition

Mechatronic System Control, Logic, and Data Acquisition 
An overview of signals and system control, computers, logic systems, software, and data acquisition is
presented in this book. These are most rapidly changing areas of mechatronics. 

Key Elements of Mechatronics 

Physical system modeling

Sensors and actuators

MECHATRONICS
Signals and systems

Computers and
logic systems

Software and
data acquisition
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Section I—Mechatronic System Control 

Since there is a significant body of readily available material to the reader on the general subject of signals
and systems, there is no overriding need to repeat that material here. Instead, the goal of this book is to
present the relevant aspects of signals and systems of special importance to the study of mechatronics.
The book begins with chapters on the role of control in mechatronics and on the role of modeling in
mechatronic design. These chapters set the stage for the more fundamental discussions on signals and
systems comprising the bulk of the material in this section. Modern aspects of control design using
optimization techniques from H2 theory, adaptive and nonlinear control, neural networks, and fuzzy
systems are also included as they play an important role in modern engineering system design. The book
includes chapters on design optimization for mechatronic systems, and real-time monitoring and control.
The chapters, listed in order of appearance, are 

1. The Role of Controls in Mechatronics 
2. The Role of Modeling in Mechatronics Design 
3. Signals and Systems 

3.1 Continuous- and Discrete-Time Signals 
3.2 z Transforms and Digital Systems 
3.3 Continuous- and Discrete-Time State-Space Models 
3.4 Transfer Functions and Laplace Transforms

4. State Space Analysis and System Properties
5. Response of Dynamic Systems
6. The Root Locus Method
7. Frequency Response Methods
8. Kalman Filters as Dynamic System State Observers
9. Digital Signal Processing for Mechatronic Applications

10. Control System Design via H2 Optimization
11. Adaptive and Nonlinear Control Design
12. Neural Networks and Fuzzy Systems
13. Advanced Control of an Electrohydraulic Axis
14. Design Optimization of Mechatronic Systems
15. Motion Control
16. Real-Time Monitoring and Control
17. Micromechatronics and Microelectromechanical Motion Devices

Section II—Computers and Logic Systems 

The development of the computer, and then the microcomputer, embedded computers, and associated
information technologies and software advances, has impacted the world in a profound manner. This is
especially true in mechatronics where the integration of computers with electromechanical systems has
led to a new generation of smart products. The future is filled with promise of better and more intelligent
products resulting from continued improvements in computer technology and software engineering. In
this section, the focus is on computer hardware and associated issues of logic, communication, network-
ing, architecture, fault analysis, embedded computers, and programmable logic controllers. The chapters,
listed in order of appearance, are 

18. Introduction to Computers and Logic Systems 
19. Digital Logic Concepts and Combinational Logic Design 
20. System Interfaces 
21. Communications and Computer Networks 
22. Fault Analysis in Mechatronic Systems 
23. Logic System Design 
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24. Architecture 
25. Control with Embedded Computers and Programmable Logic Controllers 
26. Graphical System Design for Embedded Systems 
27. Field-Programmable Gate Arrays 
28. Graphical Programming for Field-Programmable Gate Arrays: Applications in Control and

Mechatronics 

Section III—Software and Data Acquisition 

Given that computers play a central role in modern mechatronics products, it is very important to
understand how data is acquired and how it makes its way into the computer for processing and logging.
The final section of this book is devoted to the issues surrounding computer software and data acquisition.
The chapters, listed in order of appearance, are 

29. Introduction to Data Acquisition
30. Measurement Techniques: Sensors and Transducers
31. A/D and D/A Conversion
32. Signal Conditioning
33. Virtual Instrumentation Systems
34. Software Design and Development
35. Data Recording and Logging

9260_FM.fm  Page ix  Saturday, October 13, 2007  2:20 PM



9260_FM.fm  Page x  Saturday, October 13, 2007  2:20 PM



Acknowledgments

I wish to express my heartfelt thanks to all the contributing authors. Taking time in otherwise busy and
hectic schedules to author the excellent chapters appearing in this book is much appreciated. 

This handbook is a result of a collaborative effort expertly managed by CRC Press. My thanks to the
editorial and production staff: 

Nora Konopka Acquisitions Editor 
Theresa Delforn Project Coordinator 
Joette Lynch Project Editor 

Thanks to my friend and collaborator Professor Richard C. Dorf for his continued support and
guidance. And finally, a special thanks to Lynda Bishop for managing the incoming and outgoing draft
manuscripts. Her organizational skills were invaluable to this project. 

9260_FM.fm  Page xi  Saturday, October 13, 2007  2:20 PM



9260_FM.fm  Page xii  Saturday, October 13, 2007  2:20 PM



Editor

Robert H. Bishop is a professor of aerospace engineering
and engineering mechanics at The University of Texas at
Austin and holds the Joe J. King Professorship. He received
his BS and MS from Texas A&M University in aerospace
engineering, and his PhD from Rice University in electrical
and computer engineering. Prior to coming to The Uni-
versity of Texas at Austin, he was a member of the technical
staff at the MIT Charles Stark Draper Laboratory.
Dr. Bishop is a specialist in the area of planetary explora-
tion with emphasis on spacecraft guidance, navigation and
control. He is a fellow of the American Institute of Aero-
nautics and Astronautics. Currently, Dr. Bishop is cur-
rently working with the NASA Johnson Space Center on
techniques for achieving precision landing on the moon

and Mars. He is an active researcher authoring and co-authoring over 100 journal and conference papers.
He was twice selected a faculty fellow at the NASA Jet Propulsion Laboratory and as a Welliver faculty
fellow by The Boeing Company. Dr. Bishop co-authors Modern Control Systems with Professor R. C. Dorf,
and he has authored two other books entitled Learning with LabView and Modern Control System Design
and Analysis Using Matlab and Simulink. He received the John Leland Atwood Award by the American
Society of Engineering Educators and the American Institute of Aeronautics and Astronautics that is
given periodically to “a leader who has made lasting and significant contributions to aerospace engineering
education.” Dr. Bishop is a member of the Academy of Distinguished Teachers at The University of Texas
at Austin. 

9260_FM.fm  Page xiii  Saturday, October 13, 2007  2:20 PM



9260_FM.fm  Page xiv  Saturday, October 13, 2007  2:20 PM



List of Contributors

Maruthi R. Akella 
Department of Aerospace 

Engineering and Engineering 
Mechanics 

The University of Texas at Austin 
Austin, Texas 

Craig Anderson 
National Instruments, Inc.
Austin, Texas 

Dragos Arotaritei 
Department of Computer 

Science and Engineering
Aalborg University 
Esbjerg, Denmark 

Brian Betts 
Data Acquisition and Signal 

Conditioning 
National Instruments, Inc.
Austin, Texas 

Tomas Brezina 
Technical University of Brno
Brno, Czech Republic 

George I. Cohn 
California State University 
Los Angeles, California 

Daniel A. Connors 
Department of Electrical and 

Computer Engineering
University of Colorado at Boulder 
Boulder, Colorado 

Kevin C. Craig 
Department of Mechanical, 

Aerospace, and Nuclear 
Engineering 

Rensselaer Polytechnic Institute 
Troy, New York 

Timothy P. Crain II 
Department of Aerospace 

Engineering and Engineering 
Mechanics 

NASA Johnson Space Center
Houston, Texas 

Raymond A. de Callafon 
Department of Mechanical and 

Aerospace Engineering
University of California, 

San Diego 
La Jolla, California 

Darcy Dement 
National Instruments, Inc.
Austin, Texas 

Santosh Devasia 
Department of Mechanical 

Engineering 
University of Washington
Seattle, Washington 

C. Nelson Dorny 
Moore School of Electrical 

Engineeering 
University of Pennsylvania
Philadelphia, Pennsylvania 

Stephen A. Dyer 
Electrical and Computer 

Engineering 
Kansas State University
Manhattan, Kansas 

Jeannie Sullivan Falcon 
National Instruments, Inc.
Austin, Texas 

Daniel R. Fay 
University of Colorado at 

Boulder
Boulder, Colorado

Gerardo Garcia 
National Instruments, Inc.
Austin, Texas 

9260_FM.fm  Page xv  Saturday, October 13, 2007  2:20 PM



Shelley Gretlein 
National Instruments, Inc.
Austin, Texas 

Margaret H. Hamilton 
Hamilton Technologies, Inc.
Tucson, Arizona 

Cecil Harrison 
University of Southern 

Mississippi 
Hattiesburg, Mississippi 

Bonnie S. Heck 
School of Electrical and 

Computer Engineering 
Georgia Institute of Technology 
Atlanta, Georgia 

Wen-Mei W. Hwu 
University of Illinois 
Urbana, Illinois 

Mohammad Ilyas 
Florida Atlantic University 
Boca Raton, Florida 

Florin Ionescu 
University of Applied Sciences
Konstanz, Germany 

Hugh Jack 
Product Design and 

Manufacturing Engineering
Grand Valley State University
Grand Rapids, Michigan 

Jeffrey A. Jalkio 
University of St. Thomas 
St. Paul, Minnesota 

Rolf Johansson 
Department of Automatic Control 
Lund Institute of Technology
Lund, Sweden 

Jayantha Katupitiya 
The University of 

New South Wales 
Sydney, New South Wales, 

Australia

Ctirad Kratochvil 
Technical University of Brno
Brno, Czech Republic 

Rahul Kulkarni 
Industrial Data Acquisition and 

Control 
National Instruments, Inc.
Austin, Texas 

Thomas R. Kurfess 
Department of Mechanical 

Engineering 
Clemson University 
Clemson, South Carolina 

Kam K. Leang 
Department of Mechanical 

Engineering 
University of Washington
Seattle, Washington 

Sergey Edward Lyshevski 
Department of Electrical 

Engineering 
Rochester Institute of 

Technology 
Rochester, New York 

Thomas N. Moore 
Department of Mechanical 

Engineering 
Queen’s University 
Kingston, Ontario, Canada 

Leila Notash 
Department of Mechanical 

Engineering 
Queen’s University 
Kingston, Ontario, Canada 

Cestmir Ondrusek 
Technical University of Brno 
Brno, Czech Republic 

Hitay Özbay 
Department of Electrical 

Engineering 
The Ohio State University 
Columbus, Ohio 

M. K. Ramasubramanian 
Department of Mechanical and 

Aerospace Engineering 
North Carolina State University 
Raleigh, North Carolina 

Armando A. Rodriguez 
Department of Electrical 

Engineering 
Arizona State University 
Tempe, Arizona 

Momoh-Jimoh Eyiomika 
Salami 

International Islamic University 
of Malaysia 

Kuala Lumpur, Malaysia 

Mario E. Salgado 
Departamento de Electrónica 
Universidad Tećnica Federico 
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1.1 Introduction

“Mechatronic design deals with the integrated and optimal design of a mechanical system and its
embedded control system.” This definition implies that the mechanical system is enhanced with electronic
components in order to achieve a better performance, a more flexible system, or just reduce the cost of
the system. In many cases the electronics are present in the form of a computer-based embedded (control)
system. This does not imply that every controlled mechanical system is a mechatronic system because
in many cases the control is just an add-on to the mechanical system in a sequential design procedure.
A real mechatronics approach requires that an optimal choice be made with respect to the realization of
the design specifications in the different domains. In control engineering the design of an optimal control
system is well understood and for linear systems standard methods exist. The optimization problem is
formulated as: given a process to be controlled, and given a performance index (cost function), find
optimal controller parameters such that the cost function is minimized. With a state feedback controller
and a quadratic cost function, solutions for the optimal controller gains can be found with standard
controller design software, such as MATLAB

1
 (Figure 1.1).

Mechatronic design on the contrary requires that not only the controller be optimized. It requires
optimization of the system as a whole. In the ideal case all the components in the system: the process
itself, the controller, as well as the sensors and actuators, should be optimized simultaneously (Figure 1.2).

In general this is not feasible. The problem is ill defined and has to be split into smaller problems that
can be optimized separately. Later on the partial solutions have to be combined and the performance of
the complete system has to be evaluated. After eventually readjusting some parts of the system this leads
to a sub-optimal solution.

Job van Amerongen
University of Twente

9260_01.fm  Page 1  Friday, October 5, 2007  10:36 AM



1-2 Mechatronic System Control, Logic, and Data Acquisition

In the initial conceptual design phase it has to be decided which problems should be solved mechan-
ically and which problems electronically. In this stage decisions about the dominant mechanical properties
have to be made, yielding a simple model that can be used for controller design. Also a rough idea about
the necessary sensors, actuators, and interfaces has to be available in this stage. When the different partial
designs are worked out in some detail, information about these designs can be used for evaluation of
the complete system and be exchanged for a more realistic and detailed design of the different parts. 

Although the word mechatronics is new, mechatronic products have been available for some time. In
fact, all electronically controlled mechanical systems are based on the idea of improving the product by
adding features realized in another domain. Good mechatronic designs are based on a real systems
approach. But mostly, control engineers are confronted with a design in which major parameters are
already fixed, often based on static or economic considerations. This prohibits optimization of the system
as a whole, even when optimal control is applied.

In the last days of gramophones, the more sophisticated designs used tacho feedback in combination
with a light turntable to achieve a constant number of revolutions. But a really new design was the
compact disc player. Instead of keeping the number of revolutions of the disc constant, it aims for a
constant speed of the head along the tracks of the disc. This means that the disc rotates slower when
tracks with a greater diameter are read. The bits read from the CD are buffered electronically in a buffer
that sends its information to the DA converter, controlled by a quartz crystal. This enables the realization
of a very constant bit rate and eliminates all audible speed fluctuations. Such a performance could never
be obtained from a pure mechanical device only, even if it were equipped with a good speed control
system. In fact, the control loop for the disc speed does not need to have very strict specifications. It
should only prevent overflow or underflow of the buffer. The high accuracy is obtained in an open loop
mode, steered by a quartz crystal (Figure 1.3).

The flexibility introduced by the combination of precision mechanics and electronic control has
allowed the development of CD-ROM players, running at speeds more than 50 times faster than the
original audio CDs. A new way of thinking was necessary to come to such a new solution. On the other

FIGURE 1.1 Optimization of the controller.

FIGURE 1.2 Optimization of the all system components simultaneously.
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The Role of Controls in Mechatronics 1-3

hand, the CD player is still a sophisticated piece of precision mechanics. No solid-state electronic memory
device can compete yet economically with the opto-mechanical storage capabilities of the CD and its
successor the DVD. But this may change rapidly. 

1.2 Key Elements of Controlled Mechatronic Systems

A mechatronic system consists by definition of a mechanical part that has to perform certain motions
and an electronic part (in many cases an embedded computer system) that adds intelligence to the system.
In the mechanical part of the system power plays a major role. This in contrast to the electronic part of
the system where information processing is the main issue. Sensors convert the mechanical motions into
electrical signals where only the information content is important or even into pure information in the
form of numbers (if necessary, through an AD converter). Power amplifiers convert signals into modulated
power. In most cases the power supply is electrical, but other sources such as hydraulic and pneumatic
power supplies are possible as well. A controlled mechanical motion system thus typically consists of a
mechanical construction, one or more actuators to generate the desired motions, and a controller that
steers the actuators based on feed-forward and sensor-based feedback control (Figure 1.4).

1.3 Integrated Modeling, Design and Control 
Implementation

1.3.1 Modeling

During the design of mechatronic systems it is important that changes in the construction and the
controller be evaluated simultaneously. Although a proper controller enables building a cheaper con-
struction, a badly designed mechanical system will never be able to give a good performance by adding
a sophisticated controller. Therefore, it is important that during an early stage of the design a proper
choice can be made with respect to the mechanical properties needed to achieve a good performance of
the controlled system. On the other hand, knowledge about the abilities of the controller to compensate
for mechanic imperfections may enable that a cheaper mechanical construction be built. This requires
that in an early stage of the design a simple model is available that reveals the performance limiting
factors of the system. Still there is a gap between modeling and simulation software used for evaluation
of mechanical constructions and software used for controller design. Mechanical engineers are used to

FIGURE 1.3 Combination of closed-loop and open-loop control in a CD player.

FIGURE 1.4 Mechatronic system.
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1-4 Mechatronic System Control, Logic, and Data Acquisition

finite element packages to examine the dynamic properties of mechanical constructions. It is only after
reduction to low-order models (modal analysis) that these models can be used for controller design. On
the other hand, typical control-engineering software does not directly support the mechatronic design
process either; in the modeling process the commonly used transfer functions and state space descriptions
often have lost the relation with the physical parameters of the mechanical construction. Tools are required
that allow modeling of mechanical systems in a way that the dominant physical parameters (like mass
and dominant stiffness) are preserved in the model and simultaneously provide an interface to the
controller design and simulation tools control engineers are used to (Coelingh;2 Coelingh et al.3).

Simulation is an important tool to evaluate the design of mechatronic systems. Most simulation pro-
grams like Simulink1 use block diagram representations and do not support physical modeling in a way
that direct tuning of the physical parameters of the mechanical construction and those of the controller
is possible as required in the design of mechatronic systems. Recently, programs that allow physical
modeling in various physical domains became available. They use an object-oriented approach that allows
hierarchical modeling and reuse of models. The order of computation is only fixed after combining the
subsystems. Examples of these programs are 20-sim,4 described by Broenink5 as CAMAS and Dymola.6

In this section the modeling and simulation program 20-sim (pronounced Twente Sim) will be used
to illustrate the simultaneous design of construction and controller in a mechatronic system. 20-sim sup-
ports object-oriented modeling. Power and signal ports to and from the outside world determine each
object7. Inside the object there can be other objects or, on the lowest level, equations. Various realizations
of an object can contain different or more detailed descriptions as long as the interface (number and
type of ports) is identical. Modeling can start by a simple interconnection of (empty) submodels. Later
they can be filled with realistic descriptions with various degrees of complexity. De Vries8 refers to this
as polymorphic modeling. Submodels can be constructed from other submodels in hierarchical structures.
Proper physical modeling is achieved by coupling the submodels by means of the flow of energy, rather
than by signals such as voltage, current, force, and speed. This way of modeling is well suited for
mechatronics system design. It will be illustrated with an example. We want to consider the design of a
simple servo system, considering the use of a voltage source, a DC motor, and a mechanical load driven
through a transmission (Figure 1.5).

The transmission is disregarded for the time being. The belt is considered as infinitely stiff and the
transformation ratio is taken care of by changing the motor constant. If a power amplifier driven by a
signal generator describes the voltage source, we can draw the iconic diagram of Figure 1.6. At this stage
the different components in this model are still empty. But all components have electrical and/or mechan-
ical “ports.” With the proper interfaces (ports) defined, the components can be connected to each other. 

FIGURE 1.5 Simple DC-servo system.

9260_01.fm  Page 4  Friday, October 5, 2007  10:36 AM



The Role of Controls in Mechatronics 1-5

In the next step we can detail the description of the DC motor. One solution could be the description
given in Figure 1.7. The motor is now described by a number of ideal physical elements, each representing
a basic physical relation. The motor has an electrical (EL) as well as a mechanical port (MECH). 

Each of the elements in this figure can be described as an element with an electrical and/or mechanical
port. The idea of ports is made more explicit in so-called bond graphs.9–12 For the electrical elements
these are the voltage difference over the element and the current through the element. For the mechanical
elements these are the torque and the (angular) velocity. The products of these conjugated variables (P = ui
or P = Tω) represent power.

If we go down a step further into the hierarchy, we arrive at the level of equations. For instance, an
electrical resistor can be described by the equation:

(1.1)

where the variables p ⋅ u and p ⋅ i indicate the conjugated variables u and i of the electrical port p. Note
that this is an equation and not an assignment statement. It could have been written equally well in the
form:

(1.2)

In a similar way the inductance can be described by the equations:

(1.3)

where ddt(p ⋅ i) denotes di/dt and int(p ⋅ u) denotes ∫u dt. In case of an R-element there is no preference
for one of the two forms. For the I-element the integral form is preferred in the simulations. 20-sim
determines the preferred causal form and derives the equations automatically.

The energy flow or power P is the product of two conjugated signals, called effort (e) and flow ( f ):

P = ef (1.4)

Examples of this expression in the mechanical and electrical domain are

P = Fv or P = Tω (1.5)

P = ui (1.6)

where F is force, v is velocity, T is torque, ω is angular velocity, u is voltage, and i is current. 

FIGURE 1.6 Iconic diagram of the simple servo system.

FIGURE 1.7 Icon of the motor expanded to ideal physical elements.
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1-6 Mechatronic System Control, Logic, and Data Acquisition

When we expand the complete Figure 1.6 we obtain Figure 1.8. When this model is processed a
message pops up that indicates that inertia 2 has a dependent state. The two inertias in this model
always have the same speed, and therefore, they are dependent. They cannot have independent initial
conditions. The message indicates that this element can only be written in derivative form:

T = J dω /dt (1.7)

There are several ways to deal with this problem.

1. The two inertias can be combined into one inertia (the program will do this automatically). A
message pops up that the dependency of the two inertias has been solved symbolically.

2. Dealing with the derivative causality by means of an implicit integration algorithm.
3. The transmission can be added, including some flexibility in the belt.

If the flexibility is negligible, solution 1 leads to the simplest model. On the other hand, the warning
raises the question whether the flexibility of the belt can be disregarded indeed. If not, the model has to
be extended with a spring element. It should be noted that this should not be done for numerical reasons
only. If the transmission were very stiff, this would result in high-frequency dynamics and lead to unnec-
essary slow simulations. On the other hand, if the flexibility is important, as it is in this system, the warning
draws the designer’s attention to the fact that the model may be oversimplified. In Figure 1.9 the trans-
mission, including a spring element, has been added. Processing of this model does not produce any
warnings.

This example illustrates how modern software can help to come up with a model that has the com-
plexity that is needed for a particular problem. Physical models, in the form of an iconic diagram, based
on connecting elements by means of power ports, may help in this modeling process. The user can select
the preferred view, whether this is a bond graph, an iconic diagram with ideal physical element, or a view
using higher lever submodels, like in Figure 1.6. In the next section it will be shown how to use this
model for the design of controllers.

1.3.2 Control System Design Methodologies

Many processes can be reasonably well controlled by means of PID controllers. This is due to the fact that
these processes can be more or less accurately described by means of a second-order model. Tuning rules,
like those of Ziegler Nichols, enable less experienced people to tune such controllers. Relatively simple

FIGURE 1.8 Complete model in the form of ideal physical elements.

FIGURE 1.9 Model extended with transmission.
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The Role of Controls in Mechatronics 1-7

models can also describe many mechatronic systems. A mechatronic system mostly consists of an actuator,
some form of transmission, and a load. A fourth-order model can properly describe such a system. The
performance-limiting factor in these systems is the resonance frequency. A combination of position and
tacho feedback (basically a PD controller) can be applied here as well. But due to the resonant poles proper
selection of the signals to be used in the feedback is essential. Efforts have been made2,3,13 to derive recipes
for tuning such systems, in addition to selecting the proper feedback signals. Computer support tools
are essential to enable less experienced designers to use these recipes (Van Amerongen, Coelingh, and
De Vries14). Coelingh2 and Coelingh et al.3 describe a structural design method for mechatronic systems.
The method starts with reducing the conceptual design to a fourth-order model that represents the
dominant properties of the system in terms of the total mass to be moved and the dominant stiffness.
This model still has physical meaningful parameters. In this model appropriate sensors are chosen, as
well as a path generator. In the conceptual design phase a simple controller is developed and mechanical
properties are changed, if necessary. Then a more detailed design phase follows where also parameter
uncertainties are taken into account.

1.3.3 Servo System Design

Here we will consider some simple aspects of the design of a servo system in order to illustrate the
advantage of the use of physical models and to illustrate the need for an integrated design approach. We
consider the model discussed before, a load driven by an electric motor, through a flexible transmission.
The iconic diagram of this model was given in Figure 1.9. In this example a current amplifier has replaced
the voltage amplifier allowing the removal of the electrical resistor and the inductance. In the step
responses of Figure 1.10 the resonance due to the flexible transmission is clearly visible. 

From the equations used for the simulation, 20-sim can automatically derive a model in a form suitable
for controller design, such as a state-space description, a transfer function, or poles and zeros. An interface
is provided to MATLAB

1
 enabling, for instance, to use MATLAB algorithms to compute the gains of

advanced controllers like an LQR (optimal state feedback) or LQG controller (with a Kalman filter for
state estimation and optimal state feedback). The diagram of the process together with an LQG controller
is given in Figure 1.11 and some responses in Figure 1.12. 

A properly designed P(I)D controller is able to perform almost similarly, especially when the amount
of noise is small. A first attempt could be to use only measurements of the load angle and load speed.

FIGURE 1.10 Open loop responses.
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1-8 Mechatronic System Control, Logic, and Data Acquisition

This attempt fails, because feedback of the load speed leads almost immediately to an unstable system
as can be seen from the root locus for variations in the gain of the velocity feedback. From the responses
of Figure 1.10, 20-sim can easily determine the transfer function between the motor current and the load
speed and plot the root locus (Figure 1.13).

Figure 1.14 clearly shows that even a small amount of velocity feedback will lead to an unstable system.
It is well known that feedback of the motor speed is a better solution. Using again the model of Figures
1.9 and 1.10 to determine the transfer from input current to motor speed yields the root locus of Figure 1.15.

Complex zeros now accompany the complex poles and because they are close together their influence
on the response will be almost negligible. The branch of the root locus on the real axis now shows the
desired behavior: moving the dominant pole to the left in the s-plane. Combining the feedback of the motor
speed with feedback of the load angle yields the PD-controller structure of Figure 1.15 and the responses
of Figure 1.16. Except for the noise there is not much difference in the responses of the system with the
Kalman filter, although the PD-controlled system is simpler. The observations made here are generally
applicable. A system with two resonant (complex) poles and no zeros, such as in Figure 1.13, is difficult
to control by means of a simple controller. If complex zeros accompany the resonant poles with an
imaginary part smaller than that of the poles, stable control is easily achieved. In the frequency domain
this is seen as an anti-resonance, followed by a resonance (type AR). On the contrary a type RA system,
where the resonance frequency is lower than the anti-resonance frequency (the imaginary part of the
poles is smaller than that of the zeros), is just as difficult to control as in the case of only resonant poles.
The existence and location of resonant zeros is completely determined by the (geometrical) location of

FIGURE 1.11 Process with Kalman filter and state feedback.

FIGURE 1.12 Response of the LQG-controlled system.
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The Role of Controls in Mechatronics 1-9

the sensors in the mechanical system. A careful choice of these sensor locations is therefore crucial for
the successful application of a controller. It should be noted that using a properly designed set-point
generator could prevent resonance, as seen in Figure 1.10. The set point generator should not excite the
resonance frequencies, for instance, by using a low pass filter with bandwidth lower than the resonance
frequencies. However, such a set-point generator does not solve the above-mentioned stability problems.

FIGURE 1.13 Root locus for velocity feedback of load axis.

FIGURE 1.14 Root locus for velocity feedback of motor axis.
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1.3.4 Design of a Mobile Robot

A typical example of the early design procedure is the conceptual design of a mobile assembly robot.
Already in a very early stage of the design conflicting demands have to be resolved. Such a robot should
be able to collect parts all around a production facility and do the assembly while driving. Because a
high accuracy is required between the gripper of the robot and the surface where the parts are located,
it is important that floor irregularities and vibration modes of the structure do not prevent proper
assembly. On the other hand the path controller, partly based on dead reckoning (i.e., measuring of the
wheel speed and orientation), requires that the wheels be very stiff. Damping of disturbances has to be
realized by another means of suspension. This has led to the concept of an upper frame and a lower
frame, connected by means of springs (Figure 1.18).  

FIGURE 1.15 Servo system with PD-controller.

FIGURE 1.16 Responses of the system of Figure 1.16.

FIGURE 1.17 Bode plots of type RA and AR systems.
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The robot can be mounted at the upper frame and should have sufficient bandwidth such that the
position error (etip = ztip − zupper frame) between the tip of the robot (ztip) and the upper frame (zupper frame)
is small enough.

The next step is to derive a simple model, in order to have some parameters for the weight distribution
and the stiffness and damping of the springs. In the model of Figure 1.22 the robot is confronted with
a bump in the floor at a speed of 1 m/s.

Based upon the payload—mainly the weight of the batteries—the total mass of the vehicle was estimated
to be 500 kg. Stiffness and damping of the wheels follow from the demands for the accuracy of the position
estimation. The mass and bandwidth of the controlled manipulator were already known from other studies,
yielding the effective stiffness and damping for the robot tip. When also initial estimates of the stiffness
and damping of the springs between the upper and lower frame are made, the only parameter to be varied
is the weight distribution between the upper frame and lower frame. By using the optimization feature of
20-sim, the optimal weight distribution can easily be found. In order to minimize the error between the
tip of the robot and the upper frame (Figure 1.19), the weight has to be placed as much as possible in the

FIGURE 1.18 Conceptual design of the mobile robot.

FIGURE 1.19 Simple model with ideal physical elements to compute the error etip.
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1-12 Mechatronic System Control, Logic, and Data Acquisition

upper frame (Figure 1.20). This example illustrates how the mechanical configuration of the system is
determined by the requirements for good path control and accurate control of the assembly task.

A next step could be to optimize the properties of the suspension between upper and lower frame.
This will further improve the error. This decision made in a very early stage of the design directed other
design decisions. After completion of the project it appeared that the different parameters of the final
construction were close to these early estimates (Figure 1.21).

1.4 Modern Examples of Mechatronic Systems in Action

A few examples have already been treated in the previous sections. In this section two more examples
will be given.

1.4.1 Rudder Roll Stabilization of Ships

Nowadays most ships use an autopilot to control the heading of the ship. A rudder is the most commonly
used actuator. Some ships, like ferries and naval ships, need also roll stabilization. This can be achieved
passively by means of two connected tanks filled with water that generate stabilizing forces that should

FIGURE 1.20 Error of the tip before and after optimization of the weight distribution between upper and lower
frame.

FIGURE 1.21 The mobile robot (MART) after completion.
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be in counter phase with the forces of the waves. In order to make the system effective for varying
frequencies of the waves, the water flow between the two tanks should be controlled. For fast ships mostly
stabilizing fins are used. These are a kind of actively controlled “wings” that generate the moments needed
to counteract the moments of the waves. The fins not only influence the roll motions but also have
influence on the heading. On the other hand, the rudder not only influences the heading but also induces
roll. In control engineering terms this leads to a multivariable system that requires a multivariable
controller design for optimum performance. In practice such a multivariable system is seldom seen and
two separate control systems are used.

Another approach is to use only one of the actuators (rudder or fins) to achieve course control and
roll reduction. Because the frequencies of the roll motions are outside the bandwidth of the course-
control system this is possible. The rudder is most suited as actuator. An additional advantage for naval
ships is that removing the fins will reduce the underwater noise of the vessel.

Redesigning the course controller in order to stabilize the roll as well, demonstrates the feasibility of
this approach, but also makes clear that the “process”—the ship—should be modified. The most impor-
tant modification is needed for the steering machine. The maximum speed of the steering machine
appears to be the limiting factor for such a system (it should increase from the commonly used values
of 3–7°/s to 20–25°/s). By means of dynamic simulations the demands for the steering machine can be
found in terms of the maximum speed of the steering machine and the maximum time constant that is
allowed for reaching this speed. This requires reengineering of the hydraulic steering machine. A step
further would be to consider also changes in the shape of the ship, in order to optimize the parameters
that determine the effectiveness of the rudder roll stabilization system.

In order to decide whether this new solution is better, it should be evaluated whether the redesigned
steering machine is less expensive than the original rudder and fin actuators. These design issues have
to be solved in a very early stage of the design. Rudder roll stabilization has been successfully applied on
naval as well as merchant marine ships.15

1.4.2 Compensation of Nonlinear Effects in a Linear Motor

Many mechanical systems suffer from nonlinear effects that limit the accuracy that can be achieved.
Friction and cogging are two examples. A (linear) feedback controller can diminish the influence of non-
linearities, but complete compensation may be difficult. For systems that perform repetitive motions, an
Iterative Learning Controller can help to further improve the performance.

16,17
 The basic idea is explained

in Figure 1.22.
When only the feedback loop is present and under the assumption that there are no disturbances, the

error signal and thus the controller signal UC will be the same for each repetitive motion. It is obvious
that the accuracy can be improved when in the next motion the controller signal from the former cycle
is used as a feed-forward signal, UF. The feedback will generate a signal that further compensates for the
remaining error by updating the feed-forward signal UF with the formula

(1.8)

FIGURE 1.22 Principle of iterative learning control.
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where L is the transfer function of the learning filter. The superscript k denotes the kth repetitive motion.
The signal UF should converge to a feed-forward signal that compensates for all repetitive errors. An
example of a situation where such errors are present is, for instance, a CD player that has to compensate
for the eccentricity of the disk.

A variation on this idea and even more straightforward is the learning feed-forward controller (LFFC)
setup of Figure 1.23. When the feed-forward signal would be perfect, the output of the controller would
be zero. This implies that this output can be used as a training signal for a neural network. An adaptive
B-spline network enables learning of complex nonlinear characteristics. Also support vector machines
have been used to implement the learning feed forward.18 The input of the B-spline network is the
time t. It is reset each time a new motion starts. This is called a time-indexed LFFC. Instead of the time,
also the reference signal and its derivatives—obtained from a path generator—could be used as index
for the network (path-indexed LFFC). The advantage of this structure is that after proper training the
LFFC can successfully be used for nonrepetitive motions as well. Velthuis has given a stability analysis
for time-indexed as well as path-indexed LFFC.19 The stability analysis is relatively easy for the time-
indexed case. For the path-indexed case it is more complex and some heuristics are required to guarantee
a stable system. The main issue is that the number of B-splines should not be too large. On the other
hand a sufficiently dense B-spline distribution is desired for an accurate approximation of the nonlinear
process. LFFC has successfully been applied to compensate for cogging in an industrial Linear Motor 

20

and for compensation of (Coulomb) friction of a linear motor used in a flight simulator.
19

 It has also
been applied to the tracking control of the mobile robot described in the section Design of a Mobile
Robot.

21
 

The application to cogging compensation of a linear motor will be described in a little bit more detail.
Such a motor is a commonly used element in assembly machines. Even with the best magnets and accurate
assembly the error could not be made smaller than 100 µ, with a PID controller in combination with
nonlearning feed-forward control. The design goal was to improve the maximally achievable accuracy
from 100 µ to less than 10 µ. Figure 1.24 shows a picture of a linear motor. 

According to the structure of Figure 1.23 the linear motor is controlled by means of a PID controller,
while a B-spline neural network is present to learn the inverse motor model, including the nonlinearity due
to cogging. Cogging occurs in DC motors with permanent magnets. It causes more or less sinusoidal shaped
forces that depend on the position of the translator with respect to the stator. If these forces really had a
sinusoidal shape, they would be easy to compensate for by means of a feed-forward compensator. However,
this would require magnets with completely similar magnetic properties and very accurate spacing of the
magnets. An alternative is to design a controller that learns the disturbance pattern and compensates it by
means of a learning feed-forward compensator. An additional advantage is that such a system can also be
used to compensate for other nonlinear effects, such as friction. This has also been demonstrated in a part
of a flight simulator (a control stick) where friction forces spoil the feeling of a realistic simulation especially
at almost zero speed. Figure 1.25 shows that learning is almost completed after six training cycles.

Learning feed-forward control is an attractive method to compensate for nonlinearities that are present
in mechatronic systems, such as cogging and friction. The use of B-spline neural networks results in fast
convergence, relatively low computational effort, and a good generalizing ability. Because of recently
obtained results with respect to the stability of such systems, robust control systems can be designed.

FIGURE 1.23 Learning feed-forward controller for repetitive motions.
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A mechatronic view on this design problem raises the question whether it is possible to use the same
techniques to build a less expensive linear motor, when maximum accuracy is not the main goal of the
design. It has been demonstrated that a motor constructed with less expensive components and less
demanding assembly specifications but with LFFC can compete well with the more expensive construc-
tion. The accuracy can typically be improved by a factor 10.

1.5 Special Requirements of Mechatronics that Differentiate 
from “Classic” Systems and Control Design

The main difference between “ordinary controller design” and mechatronic system design is that the latter
deals with the design of the system as a whole. This approach can be considered as optimization of all
components of the system simultaneously, although there are no algorithms to do this automatically. In
practice the problem is often split into smaller problems that can be optimized. After integration of all
the partial solutions a suboptimal system is achieved that can be further optimized by retuning the different
parts, taking into account the already available intermediate design of the overall system. In order to
achieve optimization of the system as a whole, it is desired that the mechanical part, where power plays a
role, and the information processing part (the controller) can be simulated and adjusted simultaneously.
This requires that mechanical parameters like masses and compliances be available in simulations of the

FIGURE 1.24 Linear motor. The magnets that cause the cogging are clearly visible.

FIGURE 1.25 Position and error signal during learning of the LFFC.
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1-16 Mechatronic System Control, Logic, and Data Acquisition

controlled system. Examples have been given of modeling and simulation with 20-sim that allows for such
an approach.

Mechatronic designers should constantly be aware of the fact that solutions can be found in different
domains. Not every mechanical deficiency can easily be solved by control. A good mechanical design
may be easier and cheaper to achieve. On the other hand, a good controller may be able to achieve the
desired performance much easier and cheaper than a complex mechanical construction. In some cases
the combination can even achieve performances that would never have been possible without a mecha-
tronic design. 

The same holds for the design of sensors. Each sensor could be fitted with a filter to remove noise
from the measurements. But if several sensors are being combined, sensor fusion in a Kalman filter
algorithm will benefit from the availability of the raw data.

Communication between all the designers involved and transparency of the design decisions in the
various domains are essential for the success of a true mechatronic design.
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If mechatronics design is more than just the combination of electronic, software, and mechanical design,
the additional feature must lie in the ability of the mechatronic designer to optimize a design solution
across these disparate fields. This requires a sufficient understanding of each of these fields to determine
which portions of an engineering problem are best solved in each of these domains given the current
state of technology. In turn, this requires the ability to model the problem and potential solutions using
techniques that are domain independent or at least permit easy comparison of solutions and tools from
different domains. 

For example, the optical inspection system shown in Figure 2.1 depends on optical components in
precise alignment, mechanical elements capable of precise motion, transducers for sensing and providing
mechanical power, electrical systems to control motion and filter sensor signals, and software for image
analysis and motion control. Only by dividing these tasks appropriately among electronics, mechanical
components, and software can the system be optimized. This requires an understanding of all the system
requirements and limitations as well as the capabilities of each component in the various domains.
Modeling of requirements and systems is crucial in determining whether a proposed solution is acceptable
as well as in documenting these determinations for future use. In this article we shall examine the varieties
of models used at different points in the design process, the diverse roles of these models and their relative
strengths and weaknesses in each of these roles, and finally the specific tradeoffs involved in choosing
dynamic models for signals and systems analysis. 

2.1 Modeling as Part of the Design Process

Models serve different purposes at different points in the design process; so to decide which modeling
tools are most effectively employed in different phases we must examine the design process itself. Many
descriptions of the design process are available that have been developed by researchers around the
world.1–3 Typically these descriptions serve to systematize the process to improve the productivity of

Jeffrey A. Jalkio
University of St. Thomas
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2-2 Mechatronic System Control, Logic, and Data Acquisition

designers or to describe techniques that provide improved product quality, lower cost, or other benefits.
However, since our purpose is to examine the modeling needs of the design process, we can consider a
simple model that distinguishes phases of the design process in terms of types of design activity rather
than a more complex model that may be preferable for other purposes. For this purpose, we can consider
a four-phase process consisting of requirements analysis, concept generation, analysis and selection, and
detailed design. In the first phase of this process the designer focuses on analysis of the problem without
considering possible solutions. In the second phase, conceptual solutions are generated with the hope
that an acceptable solution can be found from these initial concepts via combination or modification of
concepts or by variation of parameters present in one of the conceptual solutions. In the third phase,
these concepts are evaluated and a design is chosen for implementation. The fourth phase consists of
identifying design problems that need to be solved to implement the chosen concept and applying the
design process to those smaller problems. We shall consider the activities of each of these phases in detail.

2.1.1 Phase 1

The requirements analysis phase consists in obtaining a sufficient understanding of the problem to be
solved. The difficulty of this process varies with the scale of the problem, the designers’ familiarity with
the problem domain, the variability of market needs, and the presence of hidden requirements that are
poorly articulated in the initial problem statement. Depending on the nature of the design problem, the
requirements identified in this phase may be the needs of a single customer, the common needs of a
group of potential customers identified via a market survey, or societal needs identified by government
regulations. Most design problems include some combination of these as well as internal requirements
such as design guidelines and company policies. The key objective of this phase is to obtain enough detail
to know when a design has solved the problem satisfactorily. Models in this phase serve primarily as
communication and documentation tools since the primary problem in this phase is the clear commu-
nication and documentation of the criteria for design success. Examples of models that aid in this process
include specification listings, use case diagrams, sequence diagrams, and context diagrams. Many of these
modeling tools have now been standardized as parts of the Unified Modeling Language (UML), which
is becoming increasingly important as an analysis tool.

4
 

Use case diagrams model the interactions between a system and its users at a very high level of abstraction
in terms of purpose of the interaction. Figure 2.2 gives an example of a use case diagram used to document
the various operations required of a network printer. The use case diagram helps us avoid overlooking
important but rare use cases such as maintenance. It is important to note that use case diagrams do not

FIGURE 2.1 An optical inspection system for printed circuit boards. (Used by permission  CyberOptics Cor-
poration 2001, all rights reserved.)
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provide information about the nature of the transaction, but rather documents its existence. It serves as
a top level model of a system only. 

Sequence diagrams can be drawn to describe the details of individual use cases in order to clarify the inter-
actions that must occur, timing constraints, and interactions between the system and multiple elements of
the environment. Figure 2.3 shows an example of a sequence diagram for the “print” use case of Figure 2.2.

FIGURE 2.2 Use case diagram for a network printer.

FIGURE 2.3 A sequence diagram for network printer use.
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Note that the sequence diagram documents a particular instance of a particular use case. The sequence
diagram can show both the direction of information flow and timing requirements. In this regard the
sequence diagram and the traditional timing diagram serve similar purposes. 

Context diagrams do not capture timing elements but capture the types of information that flow
between the system and its environment.5 While use case diagrams focus attention on the scenarios of
system use, context diagrams focus attention on information flows that must exist to enable those
scenarios. Both serve useful and complementary purposes. Figure 2.4 shows a context diagram for an
inspection system like the example mentioned above. Notice that the context diagram summarizes
information flow shown in the various interaction diagrams for all use cases. Regulatory and safety
requirements are often in the form of limits on the interactions the system may have with aspects of its
environment. These requirements must all be captured for use in later design phases and communicated
back to the source of the requirement for verification of accuracy. The context diagram is also used as
the top level of a data flow diagram for a system if structured analysis is used.6 

Just as the context diagram ties to structured analysis techniques, object oriented analysis techniques
provides the class relationship diagram as a means of documenting the relationships between a system and
its environment and between components of a system.7 Class relationship diagrams show how a system is
composed of subsystems, how components are similar to one another, and how they differ. For example,
Figure 2.5 shows a class relationship diagram for a two-axis translation system consisting of two single axis
subsystems. This diagram documents the existence of 13 error components that must be specified in the
requirements phase. It does this by showing that the X and Y axis components are instances of a class of
single axis translation stages, that each have six error components, and that they are components of a

FIGURE 2.4 Context diagram for network printer.

FIGURE 2.5 Class diagram for linear translation stages.
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system that adds a single additional error. By documenting relationships such as composition and inher-
itance, requirements and the interdependence of requirements can be represented in a compact and
comprehensible way. 

One key aspect of the requirements definition phase is the importance of defining requirements
without specifying a preferred solution embodiment. Hence, modeling methods should be chosen to
document these requirements and their intrinsic relationships without implying a particular solution. 

2.1.2 Phase 2

In the concept generation phase, our objective is to generate multiple design concepts that might satisfy
the requirements identified in phase 1. Here we need modeling techniques that allow us to describe
possible solutions with varying levels of detail dependent on the degree of detail needed to document
the key elements of the concept. Since individual concepts generated in this phase may only satisfy some
portions of the design requirements, it is critical that modeling at this point allow for partial descriptions
of embodiments and for the easy combination of design concepts. For this reason, our models must
clearly document the portions of the requirements satisfied as well as any unspecified parameters or
additional requirements introduced in the concept. For some problems, block diagrams showing inter-
connections between components solving portions of the problem are a useful modeling tool at this
stage. Figure 2.6 shows two possible block diagrams describing a given design concept. The first specifies
a particular control algorithm, sensor, and actuator, while the second leaves these particulars unspecified
and simply describes a closed loop controller. Depending on the situation either of these may be appro-
priate descriptions. The first provides details and is closer to a complete design while the second, being
more generic, is easier to combine with other concepts to generate hybrid solutions.

Block diagrams are not the only modeling tool appropriate at this stage. For other problems, schematics
showing arrangements of components or equations or psuedocode of proposed algorithms may be
employed. As this phase continues, design concepts are often combined to form potential solutions to
the overall design problem; therefore, it is useful if the model of each concept can contain descriptions
of preconditions for its use, results, and other parameters that help a design team determine how to
combine concepts. Similarly, once potential solutions are formed by concatenating concepts, it is often
useful to clean up the final concept by combining features from different component concepts or
eliminating overlapping features that are no longer needed.

8
 This process is facilitated by modeling

techniques that allow simultaneous modeling of mechanical, thermal, electrical, and software components
and concepts. These techniques include the familiar linear graph and bond graph models.

9,10
 

FIGURE 2.6 Block diagrams at two levels of detail.
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2-6 Mechatronic System Control, Logic, and Data Acquisition

2.1.3 Phase 3

In the third phase we evaluate potential solutions in terms of the problem requirements. This phase is
eased if we have a model that allows us to compare problem requirements with design features. A
particular design methodology may include various quality criteria in addition to those set by customer
requirements and the regulatory environment, for example, the design axioms of Suh prefer designs with
minimum information content and which satisfy each requirement by independent features of the design.11 

One approach to evaluation is to attempt to find numerical criteria for all requirements and evaluate
solutions via minimization of an overall cost function (or equivalently, the maximization of an overall value
function). This approach has proven effective in certain types of problems where requirements are amen-
able to quantification (e.g., the optimal solution being the one that meets requirements with minimal weight
or economic cost). Even in these cases, it can be difficult to determine the relative importance of diverse
requirements in the formulation of the value function. For example, it may be desirable for a design to have
minimal parts cost and minimal weight. An appropriate cost function might be

where c and w are the cost and weight, respectively, and c0 and w0 are scaling factors indicating when the
two factors are of equal importance, while the exponents p, q, and n express the relative importance of
minimizing the two factors. Clearly, there are many possible choices for these parameters and many other
models that can be used. This highlights the difficulties of this method. An example of this difficulty in
a relatively simple case is determining the cost of a component being out of tolerance. Models for this
problem range from a step function of cost = 0 within tolerance and cost = C outside tolerance to Taguchi’s
quadratic cost function.12 Needless to say, the “optimal” solution found is typically dependent on the
cost function chosen. On the other hand, in some cases, the optimum found is not strongly dependent
on precise choice of cost function and a satisfactory evaluation can be made without expending excessive
effort to obtain an exact cost function. In fact, if there are relatively few design options from which to
choose, it is possible to invert this problem. Rather than finding the design that minimizes a particular
cost function, one can instead find the range of cost function parameters that result in any particular
solution being optimal. It is often easy to determine which range of parameters is most realistic.

2.1.4 Phase 4

The fourth design phase is detailed design, in which the entire process is repeated to resolve open design
details for the individual components of the resulting design. This is in keeping with the design heuristic
“allocate resources as long as the cost of not knowing exceeds the cost of finding out.”13 The process is
inherently recursive, with each high level design decision producing a simpler design problem at a lower
level of abstraction with simpler requirements. To accommodate this, we need to be able to model the
design at multiple levels of abstraction and to allow the specification of interfaces between components.
These models must allow us to define static as well as dynamic (behavioral) components of the interface.

In addition to this recursive aspect of design, there is of course iteration also possible, as dead ends
are discovered in an otherwise promising chain of design decisions and as changes in the marketplace
demand revisions of a product. To accommodate this iteration, design models should document not only
decisions made, but also reasons for those decisions. Otherwise, the reasoning must be rediscovered in
each iteration, or worse, may not be rediscovered until it is too late.

2.2 The Goals of Modeling

We have seen that models serve many purposes in mechatronics design. First, models serve to document
concepts, assumptions, and requirements and allow the communication of these concepts to others in the design
group and the various stakeholders of the design process. Second, models provide a hierarchical framework
which allows division of labor in the design process and permits concurrent work on separate components.
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Third, models can provide us with insights into the behavior of a system which might be obscured when
we attempt to see the system in its full complexity. Fourth, they allow us to grasp similarities with other
systems and use prior experience to help solve current problems. Fifth, models provide us a way of
identifying and testing our ignorance of the actual behavior of the system by identifying unknown
parameters and providing hypotheses worthy of testing. In this section, we shall consider these diverse
purposes of modeling and examine the characteristics that cause a particular modeling methodology to
be better or more poorly suited for each of these purposes.

2.2.1 Documentation and Communication

The first purpose of a model that we shall consider is documentation. We often forget that aside from
the various purposes of modeling in the design process, our models are often our best tools for commu-
nicating with our colleagues, our customers, and our successors. Every document generated in the design
process is a model of some part of the system. To the extent that we can avoid double documentation
of the same concept, we not only reduce workload and decrease time to market, but we also reduce the
likelihood of inconsistencies in our documentation. How do our models serve as documentation? Con-
sider a circuit diagram. It is not the circuit, but documentation of the circuit’s design. It is also a model
of the behavior we are seeking from the circuit. Nonidealities and component variations will cause the
actual circuit to behave differently from this model, but the model still serves its purpose. Earlier in the
design process, requirements documents also document the product, but in terms of requirements rather
than the features that satisfy them.

Design documentation is important for at least four distinct groups. The engineering team itself needs
communication among its members to ensure that effort is not wasted on elements that do not inter-
operate or that do not contribute to the overall product meeting requirements. Communication is
required between the design team and the customer to ensure that requirements are correctly understood
and implemented in the design. Management needs to understand the status of the project in terms of
outstanding risks, ongoing expenses, and tradeoffs that would affect market size. Finally, future design
teams can benefit from documentation of earlier design concepts, analyses, and decisions. This role of
documentation as a communication with future workers in the field has been recognized as a key part
of all scientific disciplines

14
 but is often overlooked by engineers focused on meeting short-term deadlines.

What characteristics of a model lead to good documentation and clear communication? Clearly, the
model must be understood by others. This requirement encourages the use of standardized modeling
techniques whenever possible. It also encourages the use of modeling techniques that are interdisciplinary
whenever feasible. When choosing models for documentation purposes, one must remember that each
model highlights certain features of the design while hiding others. For example, the sequence diagram
clearly documents communication between two objects while hiding details of how the objects generate
outgoing messages or interpret incoming ones. If multiple models of the system are used to document
the various aspects of the system, there should be some way to cross-reference items between models
(e.g., determine that timing requirements documented in a sequence diagram model are met by the
dynamics of a system described in a block diagram). Also, if the documentation is to be useful to future
designers, it should be possible to cross reference design models based on a variety of criteria including
system requirements and included components, so that future designs can benefit from current ones.
Clearly, any modeling technique that serves some other purpose in design will also serve as documen-
tation, but the model must be chosen so as to match the features one wishes to document.

2.2.2 Hierarchical Framework

Real mechatronic systems include a large number of components that interact in many ways. Our models
simplify these complex interfaces and describe products and processes in terms of simply interacting
components with well-defined interfaces and behaviors. This simplification allows us to subdivide com-
plex problems into a set of simpler problems whose solutions can be easily integrated. In complex
mechatronic systems where we must consider components that interact in several energy domains, this
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2-8 Mechatronic System Control, Logic, and Data Acquisition

simplification is essential. When we draw a block diagram of a system we are dividing the system’s
behavior into a set of defined elements with modeled behavior and a known set of interactions between
those elements, which is itself amenable to analysis. This role of modeling would lead us to select modeling
techniques that allow us to divide the model into portions that can be independently tackled by inde-
pendent engineers. For example, systems of linear differential equations may give us great insight into
the fundamental modes of a system, but give us little insight on how to divide a design problem among
members of a team. However, a block diagram, a class diagram, or a data flow diagram provides clear
interfaces between elements that allow for subdivision.

2.2.3 Insights

Regarding insights into the behavior of the system, different models provide different types of insights.
Signal flow graphs of electromechanical systems show the presence of feedback loops that stabilize or
destabilize the system. Differential equations provide insights regarding the time scales of various behaviors
and the relative importance of various factors as well as providing estimates of the validity of simplifying
assumptions. Similarly, sequence and timing diagrams can provide insight regarding the processing power
required to meet timing requirements for various use cases. In each case the model provides insights into
the problem or the characteristics of a proposed solution by bringing into focus certain aspects of the
modeled system while hiding others from view.

2.2.4 Analogies

Related to the insights a model can give us regarding the system under consideration are the insights
that a model can provide in allowing us to see similarities to other systems that we or others have
seen before. In this regard, modeling techniques that use analogies between various domains can be
useful. However, analogies must be chosen with care. Consider the common analogy between electrical
and mechanical quantities shown in the left half of Figure 2.7. In this analogy, velocity is analogous
to voltage and force is analogous to current. However, as seen in the right half of Figure 2.7, the
equations for the electrical system are unchanged in the dual system, in which current and voltage
are exchanged and the roles of inductance and resistance are exchanged with capacitance and con-
ductance, respectively. This dual system results in a different mechanical analogy, in which velocity
is analogous to current and force is analogous to voltage. Each of these analogies can prove useful in
moving design parameters from one energy domain to another, as the duality between the two
electrical models can prove useful in circuit design. With any of these analogies, it must be remembered
that real components deviate substantially from their idealized models and that the analogies do not
strictly hold. This can be both a bane and a blessing, since a design that suffers from component
nonidealities might be replaced by an analogous design from a domain with different but less detrimental
nonidealities.

FIGURE 2.7 Electrical–mechanical analogies.
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The Role of Modeling in Mechatronics Design 2-9

2.2.5 Identification of Ignorance

The final role of modeling is to help us identify our ignorance. This takes two forms. First, the construction
of the model often requires us to name parameters whose numerical value is unknown. This leads us to
estimate the possible range of such parameters or to design experiments to determine the parameter’s value.
Identifying missing details is the first step in determining them. In this way models help us identify our
ignorance of details of the problem or our proposed solution. Secondly, the predictions we make with the
help of our models are testable. The adequacy of a model to describe system behavior can be determined by
comparing actual system behavior with predictions based on that model. Differences between actual system
performance and a model’s predictions point to errors in the model that may be significant. By testing the
validity of our models we identify aspects of the real system that are inadequately reproduced in our model
or artifacts of the model that do not exist in the real system. These discrepancies may point to an inappropriate
assumption or to a fundamental misunderstanding of the physical system. In either case, the source of these
discrepancies should be understood in order to determine if our model is adequate for its intended purpose. 

2.3 Modeling of Systems and Signals

In the area of systems and signals we typically deal with the modeling of system dynamics and information
flows through the system and its environment. As can be seen from the discussion above, this is but a
small part of the modeling needed for system design. However, there are a number of decisions that must
be made in selecting a model for the behavior of a dynamic system. These include the choice between
analytic and numerical modeling, the use of distributed or lumped parameters, the approach used to
model random factors, and the choice between linear and nonlinear models. These issues are considered
in the paragraphs below.

2.3.1 Analytical versus Numerical Models

In this area both analytical and numerical tools are available to support our efforts, so we have a number
of decisions to make regarding the level of complexity of the models we choose to use for various tasks.
Analytical tools provide insights into overall system behaviors and can allow us to make comparisons
between dissimilar systems based on a similarity in their models. These analogous systems often prove
useful in the concept generation phase of design because they allow us to bring to bear solutions to
diverse problems to the solution of the problem at hand. However, as described above, these analogies
usually break down upon closer inspection. In the case of analogies in dynamics, they are typically based
on systems described by equivalent differential equations (e.g., electronic and mechanical oscillators).
However, these linear differential equations are but simplifications that ignore nonlinearities and time-
dependent behavior that may greatly affect system behavior. Therefore, when applying analogies one
must always be careful to explicitly state assumptions made in the modeling process.

Numerical tools, on the other hand, do not yield the same insights of analytical tools, but provide
other and more detailed insights into real system behavior and performance. Typically these tools become
most useful later in the design process, both for tradeoff analysis and for detailed design work. The
availability of these tools opens many doors to modeling options that have in the past been closed and
allows us to consider options that have historically been considered unwieldy. For example, numerical
solution of nonlinear differential equations allows modeling of systems that had previously been
approached only with linear approximations.

2.3.2 Partial versus Ordinary Differential Equations

One modeling choice that must be made is whether we must model the dynamics of the system using
ordinary or partial differential equations. Partial differential equations must be used whenever values of
interest vary spatially as well as temporally. For example, if we are considering the design of a robot arm,
we are free to use ordinary differential equations if we consider the arm to be rigid, partial differential
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2-10 Mechatronic System Control, Logic, and Data Acquisition

equations if we wish to describe the bending of a flexible arm in detail. However, what if we recognize a
flexibility in the arm but do not need to know the details of its motion but only the effect of its flexure
on the end effector? In this case we can make a lumped parameter model of the arm that summarizes its
dynamics in terms of end effector motion and dynamic forces on the driver and end effector. When can
this lumped parameter model be used? There are two restrictions. First, the details of the variation of
behavior over space must be uninteresting to us. If we need to know these details (e.g., to determine stress
concentration, or temperature distribution) we cannot apply the simplified model. Secondly, the partial
differential equation may not be amenable to forming a lumped form due to its complexity.

2.3.3 Stochastic versus Deterministic Models

One choice that must be made in the modeling of system behavior is how uncontrolled variability will be
represented in the model.15 The approach taken depends a great deal on the source and characteristics of
the variability. For example, the values of some system parameters may not be precisely known, but may
be constant over time. Others may vary slowly over time in unknown ways. In the first case, the sensitivity
of the system to parameter value can be determined, using a variety of both analytical and numerical
techniques. In the latter case, one must examine the speed of parameter variation to determine if the
system can be analyzed in quasi-steady state or if the dynamics of the parameter variations are coupled
with the dynamics of the system. For this purpose, it is often useful to write equations in dimensionless
form where time and scale constants indicate critical speeds for coupling.

When the variation of parameters over time must be considered or when some inputs to a system have
uncontrolled variability, we must choose whether to model the input as an arbitrary signal or a signal
with known statistical parameters. In the first case, we have just another input and can analyze the system
for sensitivity to this input. In the second case, we can characterize the system in terms of autocorrelation
or equivalent spectral measures and use optimal filtering techniques to reduce uncertainty.16 A key point
in the statistical modeling of a system is to base the model on the known variability of the process rather
than assuming additive, white, Gaussian noise at every turn.17 

2.3.4 Linear versus Nonlinear

A wealth of techniques are available for the analysis of linear time invariant systems. Unfortunately, the
world gives us nonlinear components. One advantage of modeling techniques that allow us to divide a
complex system into simpler sub-components is that we can often isolate nonlinearities as individual
elements and develop linear models for them. For small variations about a differentiable point on a
nonlinear curve, we can always find a linear model, but the value of this model might be extremely limited
depending on its accuracy over a reasonable range of input values. In the case of a discontinuous or
nondifferentiable nonlinearity, there is a greater problem. A linear model can be found only when we are
far from the discontinuity or when the discontinuity is small compared to the linear portion of the model.

However, nonlinearities also add essentially new behaviors to systems that are not possible in purely
linear systems. For this reason alone, nonlinear models are needed in certain circumstances. As an
example, for a linear system, stable oscillations are only theoretically possible for differential equations
with purely imaginary eigenvalues. Positive real parts lead to growing oscillations, while negative real
parts lead to damped oscillations. Clearly, the behavior of such a system is highly sensitive to system
parameters. Small variations will either kill the oscillation or drive the system into nonlinear regions of
operation. Furthermore, even for perfect oscillators, the amplitude of oscillations is unconstrained.
However, a nonlinear system such as the Van der Pol equation:

 

includes a damping term that increases with the magnitude of the oscillation. For oscillations small
compared to y0 the oscillations grow, while larger oscillations are damped. This and other essentially

ÿ −ω2y α 1
y
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The Role of Modeling in Mechatronics Design 2-11

nonlinear behavior cannot be modeled adequately with linear models. Although once this behavior is
recognized through the use of a nonlinear model, the resulting steady-state system (a stable oscillator)
can be modeled for many purposes using its linear (although physically unrealizable) equivalent.

When using differential equations to model a system, we must be particularly careful in our choice of
units of measure and in how we group parameters. For example, in the Van der Pol equation above, we
can choose an alternative scale for y such that y0 is 1 and a time scale such that ω is 1. In this case we have

where z = y/y0, τ = ω t, and ε = α/ω. This scaling provides a dimensionless equation as well as providing
an indication of the system’s natural time scale, the scale of y, and an indication that the size of α relative
to ω is important. In general, we find that writing equations in dimensionless form provides three
advantages. First, as mentioned above, the scaling factors provide a sense of time scale and magnitude of
various features of the system’s dynamic behavior. Second, the dimensionless parameters that result from
combining physical system parameters provide a way of characterizing the behavior of a wide range of
systems in terms of parameters that are easily mapped. Third, by putting the equation into dimensionless
form, we are able to categorize it and recognize similar equations in different domains. 
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3.1 Continuous- and Discrete-Time Signals

Momoh-Jimoh Eyiomika Salami

Signals are physical variables or quantities measured at various parts of a system, which when processed
yield the desired information. A wide variety of signals are often encountered in describing many practical
systems. Electrical signal, in form of current and voltage, is the most easily measured quantity, hence the
need to use sensors and transducers to transform other non-electrical quantity into electrical signals.
These signals must be processed by appropriate techniques if desirable results are to be obtained. Several
methods of signal representation, suitable for effective signal processing in both time and frequency
domains, are discussed in this section.

3.1.1 Signal Classification [1–4]

Signals are broadly classified as either continuous-time (CT) or discrete-time (DT) signals, and each of
these may in turn be categorized as deterministic or random signals. A deterministic signal can always
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3-2 Mechatronic System Control, Logic, and Data Acquisition

be expressed mathematically, whereas the time of occurrence or value of a random signal cannot be
predicted with certainty. A CT signal, x(t), has a specified value for every value of time, t, while a DT
signal, x(n), has specified a value only at discrete points, that is, for integer values of n. Closely related
to CT and DT signals are analog and digital signals, respectively. If the amplitude of a signal can take on
any value in a continuous range, then it is an analog signal. On the other hand, the amplitude of a digital
signal can have only finite number of values at discrete points. Examples of continuous-time, discrete-
time, digital, and random signals are shown in Figure 3.1.

Deterministic signals fall into two main categories, namely periodic and aperiodic signals. A periodic
signal has the same values at times separated by one period, T, that is, x(t) satisfies the relation, x(t) = x(t
+ T), −∞ < t < ∞. An example of a CT periodic signal is a sinusoidal waveform of the form x(t) = A sin(Ωt
+ θ), where θ is the phase in radians, Ω = 2πF is the frequency in radians per second, and F is the frequency
in hertz. It should be noted that the frequency range for the analog sinusoids is −∞ < F < ∞. A periodic DT
signal is described by x(n) = x(n + N), −∞, < n < ∞, where N represents the period. An example of this
is the sinusoidal waveform x(n) = A sin(2πrn + θ), −∞ < n < ∞, where r is the signal frequency per sample
frequency and has values in the range −  ≤ r ≤ . Samples of sinusoids having frequencies within this range
are unique and distinct. However, DT sinusoids whose frequencies are separated by an integer multiple
of 2π are identical. Examples of analog and DT sinusoids are depicted in Figure 3.2.

Any deterministic signal that is not periodic is referred to as aperiodic or nonperiodic. Damped sinusoids
and exponential decaying signals are common examples of aperiodic signals. For some applications, it may

FIGURE 3.1 Description of some classes of signals: (a) continuous-time analog, (b) sampled-data, (c) digital
signal, (d) random signal.

FIGURE 3.2 Description of periodic signals: (a) CT, (b) DT.
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be quite useful to classify the signals according to their energy or power content. The total energy over
the range t ∈(−∞, ∞) for a CT signal is given by

(3.1)

and the average power is defined as

(3.2)

Consequently, x(t) is an energy signal if and only if 0 < E < ∞, which implies that P = 0. Similarly, x(t) is
a power signal if and only if 0 < P < ∞, indicating E = ∞. A signal that fails to satisfy either definition is,
therefore, neither energy nor power signal. These definitions are also applicable to DT signals except that the
integral in Equations 3.1 and 3.2 is replaced by summation. In general, periodic signals exist for all the
time and as such have infinite energy. However, they have finite average power, hence they are power
signals. On the other hand, bounded finite-duration signals are energy signals. The classification of a signal
to finite energy, finite power, or neither is important so that appropriate and effective procedures can be
selected for its analysis.

3.1.2 Singularity Functions

Singularity functions are useful for signal modeling, that is, they serve as basis for representing complex
signals to simplify their analysis.

3.1.2.1 The Unit Impulse Function

The impulse or delta function is a mathematical model for representing physical phenomena that occurs
within very small time duration; this time duration can be assumed to be equal to zero. The unit delta
function is not a mathematical function in the usual sense; rather it is a distribution or a generalized
function. Thus, the impulse function can be described by its effect on the test function φ(t), that is,

(3.3)

provided φ(t) is continuous at t = 0. This equation shows the shifting property of the delta function. A
graphical plot of the delta function is shown in Figure 3.3a. Table 3.1 shows the operating properties of
the delta function.

3.1.2.2 The Unit Step Function

The unit step function is particularly useful for the mathematical analysis of CT signals. This is depicted
in Figure 3.3b, and is defined as

(3.4)

TABLE 3.1 Properties of the Delta Function
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The signum function is derived from the step function according to 

3.1.2.3 The Ramp Function

Integrating (3.4) yields the ramp function shown in Figure 3.3c. The unit ramp function r(t) is expressed as

(3.5)

Furthermore, integrating r(t) yields a unit parabolic signal of the form

(3.6)

This is depicted in Figure 3.3d.

3.1.3 Basic Continuous-Time Signals

Figure 3.4 shows some of the elementary signals that are often encountered in signal analysis. Some of
these signals can be derived directly from the singular functions discussed above. For example, the unit
rectangular pulse signal that extends from −τ /2 to τ/2 can be expressed as

(3.7)

and this is depicted in Figure 3.4a.

FIGURE 3.3 Description of singularity function: (a) impulse, (b) step, (c) ramp, (d) parabolic.
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The triangular function, denoted as Λ(t), is defined as

(3.8)

Using the convolution theorem, to be discussed in Section 3.1.5, it can be shown that

 

The sinc signal is defined as

 (3.9)

Both the triangular and sinc signals are shown in Figures 3.4b and 3.4c, respectively.

3.1.4 Basic Discrete-Time Signals

The unit sample sequence, denoted as δ(n), is defined as

FIGURE 3.4 Description of basic CT signal: (a) rectangular pulse, (b) triangular pulse, and (c) sin c function.
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It is also referred to as the unit impulse sequence or Kronecker delta function. The working properties
of the unit sample sequence are analogous to that of δ(t) and these are shown here:

Note that the scaling property is only applicable when both a and b/a are integers. Two other basic signals
that are useful for analysis are the unit step and unit ramp signals. The unit step sequence, u(n), is defined as

(3.10)

whereas the unit ramp signal, denoted as r(n), is given by

The above three sequences are related as follows:

Figure 3.5 illustrates the above DT sequences.

3.1.5 Analysis of Continuous-Time Signals

3.1.5.1 Basic Operations on Signals

There are some important operations that are often performed on signals so as to understand either their
characteristics or the physical phenomena generating them. The three most common operations are
shifting, time scaling, and reflection. Examples of these operations are illustrated in Figure 3.6, where
x(t) is expressed as
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3.1.5.2 The Convolution and Correlation Integrals2

Though the convolution operation is often associated with systems studies, occasionally this operation
may be needed in analyzing signals obtained from a physical system. The convolution of two CT signals
x(t) and y(t) yields z(t), where

(3.11)

Convolution is not limited to time-domain since it is also used to determine the frequency-domain
spectrum associated with the product of two time-domain signals. The cross-correlation function
between x(t) and y(t), denoted as Rxy(t), is defined as

(3.12)

Unlike the convolution there is no reflection operation here. Furthermore, the variable lag, t, is the
scanning parameter that measures the degree of similarity between these two signals. If x(t) = y(t), then
(3.12) describes the autocorrelation function. Some properties of the correlation functions are given in
Table 3.2.

Both convolution and correlation integrals are applicable to the energy as well as power signals. In the
case of power signals, the integral is taken over the period T and the result is scaled by 1/T. Correlation
analysis is important as it leads to the computation of the energy spectral density for the transient signals,
and power spectral density for both periodic and random signals.

FIGURE 3.5 Description of basic DT signal: (a) unit pulse sequence, (b) unit step sequence, (c) ramp sequence.
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3.1.6 Fourier Analysis of CT Signals

So far we have discussed only the time-domain methods of analyzing CT signals. The convolution integral
is of particular interest since this can be used to study how a signal is modified as it passes through a
system. There is need to consider the frequency-domain methods of analysis since the convolution analysis
can be laborious. Furthermore, the formulation of convolution integral is based on representing the
signals by shifted δ-functions. In many applications, it is more appropriate and desirable to choose a set
of orthogonal functions as the basic signals since this approach leads to a reduction in computational
complexity as well as providing a graphical representation of the frequency components in a given signal.

3.1.6.1 Orthogonal Basis Functions2,3

It is mathematically convenient to represent arbitrary signals as a weighted sum of orthogonal waveforms
as this leads to a very much simplified signal analysis as well as showing the fundamental similarity
between signals and vectors. Consider a set of basis function φ(t), i = 0, ±1, ±2,…. This is said to be
orthogonal over an interval (t1, t2) if

(3.13)

TABLE 3.2 Properties of the Correlation Function

Property Autocorrelation Crosscorrelation

Even/Reorder
Upper Bound , for any t

FIGURE 3.6 Basic operations on signal: (a) original signal, (b) scaling, (c) shifting, and (d) reflection.
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Signals and Systems 3-9

where (t) stands for the complex conjugate of the signal. If Ek is equal to unity for all values of k, then
the φ(t) is an orthonormal set. It is relatively easy to approximate a given signal by an appropriate set of
orthonormal functions as this leads to minimum error between the actual signal and its approximation.
Thus, a given signal x(t) with finite energy over the interval t1 < t < t2 can be expressed as

(3.14)

where

This equation is referred to as the generalized Fourier series of x(t), and the constants ck, k = 0, ±1,
±2,…, are called the Fourier series coefficients with respect to the orthogonal set {φ(t)}.

Denoting the first M terms in Equation 3.14 as (t), the resulting error function is

(3.15)

By computing the average power of this error function and setting its derivatives with respect to ck to
zero, yields an optimal set of {ck} that minimizes the error energy. Also, if (t) = x(t), then the
basis functions are said to be complete, that is, the error energy is equal to zero. When dealing with
periodic signals, the time interval (t1, t2) is equal to the period, T, of the signal. In addition, φn(t) =
exp{ jnω0} is often selected as the set of basis functions, for n = 0, ±1, ±2, …, and ω0 = 2π/T. The methods
of computing the Fourier series coefficients are subsequently discussed.

3.1.6.2 The Complex Exponential Fourier Series

Let the signal x(t) be such that x(t) = x(t + T) and that it satisfies the Dirichlet conditions:3

1. x(t) is absolutely integrable over its period, that is,

2. the number of maxima and minima of x(t) in each period is finite,
3. the number of discontinuities of x(t) in each period is finite,

then x(t) can be expanded as

(3.16)

where

(3.17)

for any arbitrary value of t1.
The coefficients ck are called the complex Fourier series coefficients for the signal x(t), which, in general,

may be complex numbers.

φ∗
k

x t( ) ckφk t( )
k= ∞–

∞

∑=

ck x t( )φ∗
k t( ) t, kd

t1

t2

∫ 0, 1, 2,…±±= =

x̂

eM t( ) x t( ) ckφ∗
k t( )

k= 0

M

∑–=

x̂
M→∞
lim

x t( ) t ∞<d
t1

t1+T

∫

x t( ) cke
jkω0 t

, ω0

k= ∞–

∞

∑ 2πf0= =

ck
1
T
--- x t( )e

jkω0 t–
dt

t1

t1+T

∫=
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3-10 Mechatronic System Control, Logic, and Data Acquisition

The Dirichlet conditions are only sufficient conditions for the existence of the Fourier series expansion.
The Fourier series expansion of signals, which does not satisfy these conditions, can still be obtained.

The complex Fourier series coefficients can be determined by either directly evaluating the integral in
(3.17) or using the method of differentiation. The latter method relies on differentiating x(t), for a certain
number of times, to produce a train of impulses. These two methods of determining ck will now be
illustrated.

Consider the periodic signal shown in Figure 3.7a, which can be expressed as

Substituting this in Equation 3.17 we have

Thus,

A graph of the magnitude and phase spectra of the complex Fourier series coefficients are shown in
Figure 3.7b for varied τ/T. 

Consider the computation of the complex Fourier series coefficients of the signal shown in Figure 3.8a
using the method of differentiation. This signal is expanded according to Equation 3.16. Differentiating this
equation twice with respect to t yields

FIGURE 3.7 Rectangular periodic signal and its Fourier series coefficients.
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which can be written as

Figure 3.8c shows the result of differentiating x(t). It is noted that if a signal is periodic, its derivatives
will also be periodic. This implies that βk is the complex Fourier series coefficient of x″(t) and can be
computed from

where

Thus,

That is,

FIGURE 3.8 Illustration of the differentiation technique for Fourier series coefficient computation.
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3-12 Mechatronic System Control, Logic, and Data Acquisition

and

This method of determining ck, where applicable, is less laborious than the direct method.

3.1.6.3 Fourier Series for Real Signals3

A real signal x(t) that satisfies the Dirichlet conditions can be expanded by the following procedure.
Recall Equation 3.17 and replace k by −k, we obtain

(3.18)

That is, the positive and negative coefficients are complex conjugates of each other for real signals.
For such signals, |ck| has even symmetry and ∠ck has odd symmetry with respect to k = 0. Denote ck =
(ak − jbk)/2, then c−k = (ak + jbk)/2, so that

Since c0 is real and defined as c0 = a0/2, then we can write

(3.19)

This relationship, which only holds for a real periodic signal x(t), is called the trigonometric Fourier
series expansion. Since

 

(3.20)

Hence

(3.21a)

(3.21b)

and

The third method of Fourier series expansion of real signals is given by

(3.22)
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Signals and Systems 3-13

where c0 is the dc component, ck and θk represent the amplitude and phase angle of the kth harmonic,
respectively. Equation 3.22 is called the harmonic form of Fourier series expansion of x(t). The parameters
ck and θk are related to ak and bk according to

3.1.6.4 Properties of the Fourier Series1,4

Knowledge of signal symmetry can simplify its complex Fourier series coefficients computation. While
many forms of symmetry can be established, the following important types of symmetry are more often
encountered in signal analysis:

• Even symmetry, x(t) = x(−t)

• Odd symmetry, x(t) = −x(t)

• Half-wave odd symmetry, x(t) = −x(t + T/2)

The effects of symmetry on the Fourier series computations are shown in Table 3.3. The other properties
on Fourier series are summarized in Table 3.4, where αk and βk are the complex Fourier series coefficients
of x(t) and y(t), respectively.

TABLE 3.3 Fourier Series Symmetry Conditions

Type of Symmetry Real Fourier Series Coefficient Complex Fourier Series Coefficients Comments

Even periodic

ck has real value

Phase of ck is 
either zero or π

Odd periodic

ck has imaginary values

Phase of ck is 
either π/2 or
−π/2

Half-wave even symmetry a2k and b2k may have
nonzero values but

a2k+1 = 0, b2k+1 = 0

c2k ≠ 0
c2k+1 = 0

Half-wave odd symmetry a2k+1 and b2k+1 may have 
nonzero values but

a2k = 0, b2k = 0

c2k = 0
c2k+1 ≠ 0

TABLE 3.4 Properties of the Fourier Series

Property Signal Description Fourier Series Coefficients, ck

Linearity ax(t) + by(t); a, b constants aαk + bβk

Multiplication x(t)y(t) αk ∗ βk

Convolution x(t) ∗ y(t) αk βk

Parseval’s theorem

Time shift x(t ± τ)

Differentiation ( j2πkf0)
nαk

Integration ( j2πkf0)
−1αk, α0 = 0
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∫=

ck j
1
2
--– bk=
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3-14 Mechatronic System Control, Logic, and Data Acquisition

3.1.7 Fourier Transform

Frequency domain method of analyzing periodic CT signals has been presented in the previous section.
A different technique, termed the Fourier transform, is used for the analysis of aperiodic signals. The
development of the Fourier transform is based on Equations 3.16 and 3.17. Substituting Equations 3.17
into 3.16 gives

(3.23)

Allowing T → ∞, then 1/T → df, kf0 → f, and Equation 3.23 becomes

(3.24a)

and

(3.24b)

3.1.8 Properties of the Fourier Transform5,6

Some of the basic properties of the Fourier transform that are often used in analysis are given in Table 3.5.
The Fourier transform pairs of the following basic signals are also useful for analysis:

 

A two-step procedure is required in order to determine the Fourier transform of a periodic signal. If
x(t) is a periodic signal with period T, then x(t) can be Fourier series expanded as

(3.25)

Applying the linearity property to this equation gives

(3.26)

as the Fourier transform of any periodic signal x(t). Equation 3.26 explains the difference between the
frequency spectrum produced by the Fourier series analysis and the amplitude spectral density produced
by the Fourier transformation. Thus, the frequency spectrum is a (discrete) display of ck versus kf0, whereas
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the amplitude spectral density gives a continuous display of the amplitude density spectrum, which in
this case is in the form of impulses, rather than just a number.

Similarly the Fourier transform of a train of impulses of the form

(3.27)

is given by

(3.28)

3.1.8.1 Energy and Power Spectral Density6

Suppose x(t) is an aperiodic signal with a Fourier transform X( f ), then its energy is given by

(3.29)

This is Parseval’s theorem and it shows that the principle of conservation of energy in the time and
frequency domains holds. The amplitude spectrum X( f ) can be expressed as

TABLE 3.5 Properties of the Fourier Transform

Property Signal Description Fourier Transform

Linearity ax  + by ; a, b constants aX  + bY

Evenness and oddness

Time shift e−j2πfτX

Time scale x

Time reversal x(−t) X∗

Duality X x

Time convolution x  ∗ y X Y

Frequency convolution x y X  ∗ Y

Modulation X

Time differentiation

Frequency differentiation tnx

Integration

Correlation Y X
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and denoting

then the total energy of the signal is given by

(3.30)

where Sxx( f ) represents the distribution of the signal energy as a function of frequency. Sxx( f ) is termed
the energy spectral density for the finite energy signal x(t).

Consider a periodic signal x(t) with an autocorrelation function

Then,

(3.31)

which equals the signal power. Following the same procedure for energy signals, we define Sxx( f ) as the
Fourier transform of Rxx(τ) so that

(3.32)

and Sxx( f ) is termed the power spectral density of the periodic signal x(t).
The need to analyze stationary random signals also arises in many practical situations. The properties

of such signals can be inferred from their correlation functions. For example the autocorrelation function,
φxx(τ) of a stationary random signal decreases and goes to zero as τ increases since the events become
uncorrelated for a large separation of time. Hence, φxx(τ) = φxx(−τ) and its Fourier transform exists.
Consequently we can write

(3.33)

where Γxx( f ) and φxx(0) represent, respectively, the power spectral density and the average power of a
random process.

3.1.9 Sampled Continuous-Time Signals

Discrete-time (DT) signals arise either naturally or by sampling continuous-time (CT) signals; however,
the latter form is more often encountered in practice. In this case, a digital signal is formed from a CT
signal through the process of analog-to-digital conversion. The first part of this process is the sampling
of the analog signal, that is, the conversion of x(t) into x(nTs), where Ts is the sampling period and its
reciprocal, Fs = 1/Ts, is the sampling frequency in samples per second. The sampling frequency must be
appropriately selected to avoid spectral distortion (aliasing), thereby ensuring that x(t) can be reconstructed
from its samples. To gain a good understanding of this procedure the sampling process is examined in the
frequency domain.

Sxx f( ) X f( ) 2=

E Sxx
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3.1.9.1 Impulse Sampling6–9

Consider an idealized impulse-sampling process shown in Figure 3.9, where x(t) is to be sampled using
the train of impulses p(t), so that

(3.34)

The main difference between xs(t) and x(nTs) is that the former is essentially a CT signal with zero values
except at the integer values of Ts, while the latter is a perfectly selected sample of x(t) as a result of impulse
sampling.

The Fourier transform of Equation 3.34 yields

(3.35)

where X( f ) is the spectrum of x(t).

FIGURE 3.9 Ideal impulse sampling process: (a) bandlimited continuous-time signal and its Fourier transform,
(b) train of impulses and its spectra, (c) sampled signal and its spectra.
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It is observed that Xs( f ) consists of a scaled and periodically repeated version of X( f ) with period Fs.
As shown in Figure 3.9c, it is obvious that when Fs − FM ≥ FM , there is no overlapping of the spectra and
the signal x(t) can be recovered completely from xs(t). However, if Fs − FM < FM the replicas of X(f )
will overlap, resulting in a distorted spectrum and as such, x(t) can no longer be recovered from its
sampled version. Consequently, in order to recover x(t) from its samples, the sampling frequency should
be such that

that is,

This is called the Nyquist sampling theorem. The minimum sampling frequency Fs = 2FM is called the
Nyquist frequency. Sampling a signal at less than the Nyquist frequency results in a spectral distortion
termed aliasing. Furthermore, sampling a signal at a frequency of at least Nyquist frequency implies that
an ideal low-pass filter (LPF) with a gain of 1/Fs and cutoff frequency Fc can be used to recover its original
spectrum, where 

Suppose we want to reconstruct x(t) from its samples. Assume that X( f ) is the spectrum of x(nTs),
with no aliasing, as shown in Figure 3.9c. Thus,

(3.36)

Note that

(3.37)

so that its inverse Fourier transform is given by

(3.38)

This is the formula for the reconstruction of x(t) from its samples. That is, x(t) is generated by
multiplying the appropriately shifted function g(t) = sinc(tFs) by the corresponding samples of x(nTs).

3.1.9.2 Practical Sampling8–10

The above discussion on sampling is based on the idealized models of periodic impulse sampling and
bandlimited interpolation. In practice, CT signals are not precisely bandlimited just as impulse signals
and ideal low-pass filters do not exist physically. Figure 3.10 represents the block diagram for the
conversion of continuous signals into their discrete forms. The continuous-time signal is prefiltered,
sampled, quantized, and finally encoded into finite-length words of, say, b bits. The prefilter, which is also
called anti-aliasing filter (AAF), is a low-pass filter that is needed to limit the input signal bandwidth to
Fs /2 prior to sampling to avoid aliasing. In practice this filter will possess non-ideal characteristics, hence
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it should be designed to provide sufficient attenuation, usually to a level undetectable by the analog-to-
digital converter (ADC) at frequencies above the Nyquist frequency.

The prefiltered signal is fed into the ADC where it will be converted to a DT signal. The ADC has an
in-built sample-and-hold circuit and it operates at the sampling rate of Fs; however, the sampling function
has a finite width as opposed to the impulse sampling discussed above. The sampling operation can be
modeled by the finite-width pulse sampler shown in Figure 3.11b, in which the sampling gate is open
for τ-out of Ts seconds and shorted to ground the remainder of the sampling interval. Here p(t) is
expressed as

which can be Fourier series expanded as

where

The Fourier transform of the sampled signal can be written as

Note that ck is not constant in this expression (as opposed to the impulse sampling) since its value
depends on the harmonic number (k) as well as the duty cycle τ /Ts . The discrete-time signal, x(nTs), is
fed into the quantizer where each sample is transformed into one of the nearest finite sets of prescribed
values, that is, (n) = Q(x(nTs)), where (n) is the quantized sample. The quantization process is shown
in Figure 3.11d for zero-order sample hold ADC, where Li denotes the quantization level and ∆ is the
quantization step. The quantization error (or noise) incurred in this process is

FIGURE 3.10 Practical sampling of continuous-time signals.
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FIGURE 3.11 Finite-width pulse sampling signals and spectra: (a) bandlimited signal and spectrum, (b) finite-
width train of pulses and its transform, (c) sampled signal and its spectra, (d) quantization process.
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From statistical considerations, the noise power is found to be ∆2/12 watts. A common measure of the
performance of the ADC is the ratio of the signal power to noise power, and this is called the signal-to-
quantization noise power, which expressed in decibels (dB) is

SQNR(dB) = 1.76 + 6.02b

3.1.9.3 Digital-to-Analog Conversion8–12

Reconstruction of the analog signal from its sampled form is closely akin to lowpass filtering of the
sampled signal. Figure 3.12 shows how an analog signal can be reconstructed by filling the gaps between
samples and holding the current value constant till the next sample is received. Consider an ideal
reconstruction filter with an impulse response function h(t), then its response is given by

Taking the Fourier transform of this equation gives

where X( f ) is the periodic spectrum of x(nTs) as shown in Figure 3.13 and h(t) = sinc(Fst). Note that
h(t) is noncausal; hence it cannot be used for real-time applications. Furthermore, since h(t) is not time-
limited, an infinite number of impulse responses must be used for interpolating between values in order
to obtain exact results. Consequently, alternative reconstruction filters such as zero-order hold (staircase),
first-order, or fractional-order holds are used in practice. However, the staircase reconstruction filter is,
by and large, the simplest and most widely used in practice. The impulse response of this filter is given

FIGURE 3.12 Digital-to-analog conversion process.

FIGURE 3.13 Frequency response of the ideal reconstruction filter.
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as ho(t) = u(t) − u(t − Ts) since it must have a duration of Ts seconds to fill the entire gap between the
samples. Thus, in effect this filter, as its name implies, generates a staircase approximation to the original
analog signal. The frequency response of the filter is

Though the output of the staircase reconstruction filter is smoother than its sampled form, see Figure
3.14a, it contains spurious high-frequency components due to the sudden jumps in the staircase levels
as different sampled values are considered. In addition, holding each of x(nTs) by Ts seconds introduces
a time shift of Ts/2 to the output signal. However, this time delay has virtually no effect on the quality
of the output signal. Figure 3.14b compares the signal spectra before and after the staircase reconstruction
filter. It is noted that the output spectrum is slightly distorted due to non-ideal characteristics of Ho( f )
and that distorted and attenuated versions of X( f ) remain centered at nonzero multiples of Fs. These
remaining spectral replicas may be removed by using an anti-imaging filter.

8,11,12
 In essence, the anti-

imaging filter smoothens out the discontinuities produced by the staircase reconstruction filter as illus-
trated in Figure 3.15.

3.1.10 Frequency Analysis of Discrete-Time Signals

The analysis of discrete-time (DT) signals in the frequency domain is very much similar to that of continuous-
time (CT) signals. As in the CT analysis, the techniques for the analysis depend on the type of signal. Analysis
of aperiodic DT signals will be considered first.

3.1.10.1 Discrete-Time Fourier Transform6–8

The decomposition of an aperiodic DT signal into its frequency components is carried out using discrete-
time Fourier transformation (DTFT). Thus, the DTFT of x(n) is given by

(3.39)

Unlike the Fourier transform of analog signal, X( f ) is periodic with period Fs; hence, the frequency
range for a DT signal is unique over the frequency interval (−Fs /2, Fs /2) or, equivalently (0, Fs). Note
that Equation 3.39 must be absolutely summable in order for X( f ) to exist, that is,

FIGURE 3.14 (a) Staircase reconstruction in frequency domain, (b) Result of staircase reconstruction in frequency
domain.
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If the spectrum of a signal exists, then we can find the signal from its spectrum through the inverse
DTFT. The inverse DTFT of X( f ) is given as

The properties of the DTFT of a DT signal are shown in Table 3.6.
For DT signals, the convolution of two sequences x(n) and y(n) is expressed as

(3.40)

while the cross-correlation function of x(n) and y(n) is given by

When x(n) = y(n), then the autocorrelation of x(n) is

FIGURE 3.15 (a) Reconstruction of analog signal. (b) effect of anti-image postfiltering.
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With the exception of the reflection operation (for the convolution), the procedures for computing
the convolution and correlation are the same. Hence, it is more computationally efficient to use the same
algorithm for evaluating both functions. To achieve this, one of the sequences is reflected (only for the
correlation analysis), followed by convolution operation, that is,

and

The energy of an aperiodic signal is computed from

Substituting the conjugated form of 3.40 into this equation gives

(3.41)

This expression relates the distribution of the energy of an aperiodic signal to frequency. The quantity
|X( f )|2 is called the energy spectral density of x(n). The DTFT of some commonly encountered signals
are shown in Table 3.7.

TABLE 3.6 Properties of DTFT

Property Signal Description Frequency Domain

Even symmetry (real signal)

Odd symmetry (real signal)

Linearity ax  + by aX  + bY

Time shifting x(n − m) e−j2π fmX
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3.1.10.2 Discrete Fourier Series6–8

Suppose x(n) is a periodic DT signal with period N, then it is possible to obtain its discrete Fourier series
(DFS) expansion in a manner analogous to the computation of the complex Fourier series for the CT
signals. The orthogonal basis function for the DFS is  = e j2πn/N so that the decomposition of x(n)
into a sum of N harmonically related complex exponentials is expressed as

(3.42)

where ck represents the discrete Fourier series coefficients. Multiplying both sides of 3.42 by , summing
over one period, and using the fact that

TABLE 3.7 DTFT of Common DT Signals
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results in

(3.43)

The DFS coefficients {ck} provide the description of x(n) in the frequency domain since ck represents
the amplitude and phase spectra associated with the kth harmonic component. Note that {ck} is a periodic
sequence with fundamental period N, that is, ck = ck+N. Hence, any N consecutive samples of the signal
or its DFS coefficients provide a complete description of the signal in the time or frequency domains.
As shown in Table 3.8, the properties of the DFS follow closely those given for the DTFT. One of the
main advantages of DFS over the DTFT is the replacement of the infinite summation in the DTFT by a
finite sum in the DFS, thus allowing the computations of DFS and inverse DFS by digital computers.

Consider a periodic DT signal with period N, then its average power is

(3.44)

Using Equation 3.42 in 3.44 gives

(3.45)

This is a Parseval’s relation for the DT periodic signals, which indicates that the average power in x(n)
is the sum of the harmonics power. Consequently, the sequence |ck|

2 is the power spectral density as this
represents the distribution of power as a function of frequency.

3.1.10.3 The Discrete Fourier Transform6,8,13

The discrete Fourier transform (DFT) is an important and extremely powerful technique for analyzing
DT signals. Contrary to the DTFT, the DFT is applicable to finite-length sequences and it produces finite-
length discrete spectra. Consequently, this transformation is amenable to digital computations and it is
suitable for use in digital hardware implementations. As a result of its practicability, DFT has become a
very useful tool for analyzing various waveforms or data that arise in many disciplines. 

The DFT is a mapping of an N sample sequence, x(n), into another N sequence X(k) in the frequency
domain, that is,

(3.46)

TABLE 3.8 Properties of the Discrete Fourier Series
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X(k) is called the kth harmonic and this exists provided all the samples of x(n) are bounded. In order to
recover x(n) from X(k) we need to perform inverse transformation. Thus, the inverse discrete Fourier
transform (IDFT) of X(k) is defined as

(3.47)

The DFT and DFS are conceptually different in the sense that the DFS is only applicable to periodic
signals whereas DFT assumes that the signal is periodic, that is, there is an inherent windowing of
nonperiodic signal if analyzed by the DFT technique. Also the scaling factor is applicable to the synthesis
equation for the DFT operation, whereas it is used in the analysis equation in the DFS analysis.

The DFT properties bear strong resemblance to those of the DFS and DTFT as shown in Table 3.9.
The following should be noted in the DFT computation: Circular shift operation can be considered

as wrapping the part of the sequence that falls outside of 0 to N − 1 to the front of the sequence, that is,
x[(−n) mod N] is equivalent to x(N − n).

As a result of the circular shift, linear convolution as given by Equation 3.40 is different from circular
convolution given in Table 3.9. Thus,

TABLE 3.9 Properties of DFT
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where x[(n − m)mod N] is the reflected and circularly translated version of x(n). However, by appropriate
selecting the value of N, both the circular and linear convolution can be the same. Thus, if signals x(n)
and y(n) are of length N1 and N2, respectively, then circular and linear convolution are the same provided
N ≥ N1 + N2 − 1.

Circular correlation can be implemented by circular convolution since the cross correlation of the two
sequences x(n) and y(n) can be expressed as

From Equations 3.46 and 3.47, it is noted that to compute the DFT coefficients would require N 2

complex multiplications and N(N − 1) complex additions. This can be a computational load if N is very
large. Fast Fourier transforms (FFTs) are different types of algorithms that have been developed to speed
up the computation of the DFT coefficients. Readers can refer to many textbooks where the development
of the various forms of the FFT algorithms has been discussed.7,8 It can be shown that the number of
computations required for the FFT algorithms can be expressed as a constant times N ∗ log2 N. Conse-
quently, there is a reduction in computation when an FFT algorithm is used for the DFT computation.

3.1.10.4 Remarks on the DFT Processing of Signals

Zero Padding6,8

The use of FFT for DFT coefficients computation imposes some constraints on the value of N, for example
N has to be a power of 2 for radix-2 FFT algorithm. Also, circular convolution is an undesirable solution
as it manifests from the IDFT of the product of the transform of two sequences. Zero-padding is a technique
for remedying the above situations, that is, the zero-padding is used either to augment the sequence
length so that either a radix-2 FFT algorithm can be used or to ensure that both the linear and circular
convolution are the same. In addition, this procedure is also used to provide a better-looking display of
the signal spectrum since the frequency spacing of the FFT samples decreases as N increases.

Error Sources8,10

The resultant spectrum of a sampled signal comprises the analog spectrum repeated at the integer multiples
of the sampling frequency. The overlapping of the analog signal spectrum with its shifted versions causes
aliasing. In practice, excessive errors due to aliasing are minimized by either increasing the sampling rate
or prefiltering the signal to remove the high-frequency spectral components. Another source of error in the
DFT processing of signals is the spectral leakage. This is caused by using a window to truncate an infinitely
long signal to obtain a finite-length data for DFT processing. It is known that windowing the samples of a
signal in the time domain transforms to convolution of sampled signal spectrum and the window spectrum
in the frequency domain. Suppose the window width does not correspond to an integer multiple of periods
of all the frequency components of a discrete-time signal, then a single frequency component will spread
(leak) into other frequency locations in the DFT of the truncated data. This phenomenon causes spectral
distortion and makes it difficult to determine whether or not two closely adjacent frequencies are present
in a signal. Spectral resolution becomes better if the window width is increased, or by choosing a window
function with low sidelobes. The picket-fence effect arises because only a finite number of frequency points
of a continuous-frequency spectrum are produced by the DFT. It is therefore possible to miss the peak of
a particular frequency component in a signal because it is located between two adjacent frequency points
in the spectrum. Since the frequency spacing ∆f = Fs /N, this problem can be alleviated by increasing N the
number of DFT points while maintaining the same sampling rate, implying having more samples in the
DFT or a employing zero-padding technique.

DFT Parameter Selection6

The sampling period, Ts, frequency resolution (spacing), ∆f, and the DFT length, N, are the three parameters
that must be specified in performing DFT signal processing. Since Fs = N∆f = 1/Ts, these parameters are
related according to ∆f = 1/NTs. If Tx  denotes the length of the sampled data, then Tx = MTs. Thus, there is

Rxy n( ) x n( )⊗N  y n( )  x n( )⊗N  y∗ n–( )mod N[ ]= =
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no spectral distortion if NŠM = Tx/Ts . Equivalently, there will be no spectral distortion if

Parameters for the DFT processing of a sampled continuous signal must be carefully selected to avoid
spectral distortion due to aliasing or data truncation. Assuming a window width of Tx seconds and that
the signal has a maximum bandwidth of B hertz, then based on the sampling theorem we would have
negligible aliasing, provided Fs = 1/Ts ≥ 2B. Spectral leakage due to sharp data truncation is avoided
provided the frequency resolution is selected to satisfy 1/∆f = T ≥ Tx. Consequently, spectral distortion
due to aliasing and spectral leakage can be avoided if the length of the DFT is selected to satisfy N =
Fs /∆f ≥ 2BTx .
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3.2 z Transforms and Digital Systems

Rolf Johansson

A digital system (or discrete-time system or sampled-data system) is a device such as a digital controller
or a digital filter or, more generally, a system intended for digital computer implementation and usually
with some periodic interaction with the environment and with a supporting methodology for analysis
and design. Of particular importance for modeling and analysis are recurrent algorithms—for example,
difference equations in input–output data—and the z transform is important for the solution of such
problems.

The z transform is being used in the analysis of linear time-invariant systems and discrete time
signals—for example, for digital control or filtering—and may be compared to the Laplace transform as
used in the analysis of continuous-time signals and systems, a useful property being that the convolution
of two time-domain signals is equivalent to multiplication of their corresponding z transforms. The z
transform is important as a means to characterize a linear time-invariant system in terms of its pole–zero
locations, its transfer function and Bode diagram, and its response to a large variety of signals. In addition,
it provides important relationships between temporal and spectral properties of signals. The z transform
generally appears in the analysis of difference equations as used in many branches of engineering and
applied mathematics.

∆f
1
T
--- 1

NTs

--------- 1
MTs

----------≤ 1
Tx

-----= = =
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3.2.1 The z Transform

The z transform of the sequence  is defined as the generating function 

(3.48)

where the variable z has the essential interpretation of a forward shift operator so that

(3.49)

The z transform is an infinite power series in the complex variable z
−1

 where {xk} constitutes a sequence
of coefficients. As the z transform is an infinite power series, it exists only for those values of z for which
this series converges and the region of convergence of X(z) is the set of z for which X(z) takes on a finite
value. A sufficient condition for existence of the z transform is convergence of the power series

(3.50)

The region of convergence for a finite-duration signal is the entire z plane except z = 0 and z = ∞. For
a one-sided infinite-duration sequence , a number r can usually be found so that the power series
converges for |z |  > r. Then, the inverse z transform can be derived as

(3.51)

where the contour of integration encloses all singularities of X(z). In practice, it is standard procedure
to use tabulated results; some standard z transform pairs are to be found in Table 3.10.

3.2.2 Digital Systems and Discretized Data

Periodic sampling of signals and subsequent computation or storing of the results requires the computer
to schedule sampling and to handle the resulting sequences of numbers. A measured variable x(t) may
be available only as periodic observations of x(t) as sampled with a time interval T (the sampling period).
The sample sequence can be represented as

(3.52)

and it is important to ascertain that the sample sequence adequately represents the original variable x(t);
see Figure 3.16. For ideal sampling it is required that the duration of each sampling be very short and
the sampled function may be represented by a sequence of infinitely short impulses δ(t) (the Dirac
impulse). Let the sampled function of time be expressed thus:

(3.53)

where

(3.54)
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1

2π i
-------- X z( )z

k−1
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∞
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∞

∑=
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and where the sampling period T is multiplied to ensure that the averages over a sampling period of the
original variable x and the sampled signal x∆, respectively, are of the same magnitude. A direct application
of the discretized variable x∆(t) in Equation 3.53 verifies that the spectrum of x∆ is related to the z
transform X(z) as

(3.55)

Obviously, the original variable x(t) and the sampled data are not identical, and thus it is necessary to
consider the distortive effects of discretization. Consider the spectrum of the sampled signal x∆(t) obtained
as the Fourier transform

(3.56)

where

(3.57)

TABLE 3.10 Properties of the z Transform

z transform  ({fk}) = F(z)
Convolution  ({fk ∗ gk}) =  ({fk}) ⋅  ({gk})

 ({ fk ⋅ gk}) =  ({fk}) ∗  ({gk})
Forward shift   ({ fk+1}) = z  ({ fk}) = zF(z)
Backward shift  ({fk−1}) =  ({fk}) = z−1F(z) 
Linearity  ({afk + bgk}) = a ({fk}) + b ({gk})
Multiplication  ({akfk}) = F(a−1z)
Final value   

Initial value

Time Domain z Transform

Impulse  {δk} = 1,  z ∈ C

Step function

Ramp function xk = k ⋅ σk  

Exponential xk = ak ⋅ σk  

Sinusoid xk = sin ωk ⋅ σk  

FIGURE 3.16 A continuous-time signal x(t) and a sampling device that produces a sample sequence {xk}.
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so that

(3.58)

Thus, the Fourier transform X∆ of the sampled variable has a periodic extension of the original spectrum
X(iω) along the frequency axis with a period equal to the sampling frequency ωs = 2π/T. There is an
important result based on this observation known as the Shannon sampling theorem, which states that
the continuous-time variable x(t) may be reconstructed from the samples  if and only if the
sampling frequency is at least twice that of the highest frequency for which X(iω) is nonzero. The original
variable x(t) may thus be recovered as

(3.59)

The formula given in Equation 3.59 is called Shannon interpolation, which is often quoted though it
is valid only for infinitely long data sequences and would require a noncausal filter to reconstruct the
continuous-time signal x(t) in real-time operation. The frequency ωn = ωs /2 = π/T is called the Nyquist
frequency and indicates the upper limit of distortion-free sampling. A nonzero spectrum beyond this limit
leads to interference between the sampling frequency and the sampled signal (aliasing); see Figure 3.17.

FIGURE 3.17 Illustration of aliasing appearing during sampling of a sinusoid x(t) = sin 2π ⋅ 0.9t at the insufficient
sampling frequency 1 Hz (sampling period T = 1) (upper graph). The sampled signal exhibits aliasing with its major
component similar to a signal x(t) = sin2π ⋅ 0.1t sampled with the same rate (lower graph).
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3.2.3 The Discrete Fourier Transform

Consider a finite length sequence  that is zero outside the interval 0 ð k ð N − 1. Evaluation of
the z transform X(z) at N equally spaced points on the unit circle z = exp(iω kT ) = exp[i(2π/NT)kT] for
k = 0, 1,…, N − 1 defines the discrete Fourier transform (DFT) of a signal x with a sampling period h and
N measurements:

(3.60)

Notice that the discrete Fourier transform  is only defined at the discrete frequency points

(3.61)

In fact, the discrete Fourier transform adapts the Fourier transform and the z transform to the practical
requirements of finite measurements. Similar properties hold for the discrete Laplace transform with z =
exp(sT), where s is the Laplace transform variable.

3.2.4 The Transfer Function

Consider the following discrete-time linear system with input sequence {uk} (stimulus) and output sequence
{yk} (response). The dependency of the output of a linear system is characterized by the convolution-
type equation and its z transform,

(3.62)

where the sequence {vk} represents some external input of errors and disturbances and with Y(z) =  {y},
U(z) =  {u}, V(z) =  {v} as output and inputs. The weighting function h(kT) = , which is zero
for negative k and for reasons of causality is sometimes called pulse response of the digital system (compare
impulse response of continuous-time systems). The pulse response and its z transform, the pulse transfer
function,

(3.63)

determine the system’s response to an input U(z); see Figure 3.18. The pulse transfer function H(z) is
obtained as the ratio

(3.64)

FIGURE 3.18 Block diagram with an assumed transfer function relationship H(z) between input U(z), disturbance
V(z), intermediate X(z), and output Y(z).

{xk}k=0
N−1

Xk DFT x kT( ){ } xl iωklT–( )exp

l= 0

N−1

∑ X e
iωkT

( )= = =

{Xk}k=0
N−1

ωk
2π
NT
-------- k, for k 0, 1,… , N 1–= =

yk hmuk−m vk+
m=0

∞

∑ hk−mum vk, k+
m=−∞

k

∑ … ,  −1, 0, 1, 2,…= = =

Y z( ) H z( )U z( ) V z( )+=

{hk}k=0
∞

H z( ) h kT( ){ } hkz
k–

k=0

∞

∑= =

H z( ) X z( )
U z( )
-----------=

U(z) X(z) Y(z)

V(z)

ΣH(z)

9260__03_pt2.fm  Page 33  Wednesday, October 10, 2007  8:21 PM



3-34 Mechatronic System Control, Logic, and Data Acquisition

and provides the frequency domain input–output relation of the system. In particular, the Bode diagram
is evaluated as |H(z)| and arg H(z) for z = exp(iω kT) and for |ω k | < ω n = π/T, that is, when H(z) is
evaluated for frequency points up to the Nyquist frequency ωn along the unit circle.

3.2.5 State-Space Systems

Alternatives to the input–output representations by means of transfer functions are the state-space
representations. Consider the following finite dimensional discrete state-space equation with a state vector

 input  and observations 

(3.65)

with the pulse transfer function

(3.66)

and the output variable

(3.67)

where possible effects of initial conditions x0 appear as the first term. Notice that the initial conditions
x0 can be viewed as the net effects of the input in the time interval (−∞, 0).

3.2.6 Digital Systems Described by Difference Equations (ARMAX Models)

An important class of nonstationary stochastic processes is one in which some deterministic response to
an external input and a stationary stochastic process are superimposed. This is relevant, for instance,
when the external input cannot be effectively described by some probabilistic distribution. A discrete-
time model can be formulated in the form of a difference equation with an external input {uk} that is
usually considered to be known:

(3.68)

Application of the z transform permits formulation of Equation 3.68 as

(3.69)

where

(3.70)

xk Rn
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.∈
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A z
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Stochastic models including the A polynomial, according to Equations 3.69 and 3.70, are known as
autoregressive (AR) models and models including the C polynomial are known as moving-average (MA)
models, whereas the B polynomial determines the effects of the external input (X). Notice that the term
moving average is here somewhat misleading, as there is no restriction that the coefficients should add
to 1 or that the coefficients are nonnegative. An alternative description is finite impulse response or all-
zero filter.

Thus, the full model of Equation 3.69 is an autoregressive moving average model with external input
(ARMAX) and its pulse transfer function H(z) = B(z−1)/A(z−1) is stable if and only if the poles—that is,
the complex numbers z1,…, zn solving the equation A(z−1) = 0—are strictly inside the unit circle, that is,
|zi| < 1. The zeros of the system—that is, the complex numbers z1,…, zn solving the equation B(z−1) =
0—may take on any value without any instability arising, although it is preferable to obtain zeros located
strictly inside the unit circle, that is, |zi| < 1 (minimum-phase zeros). By linearity {yk} can be separated
into one purely deterministic process {xk} and one purely stochastic process {vk}:

(3.71)

The type of decomposition (Equation 3.71) that separates the deterministic and stochastic processes
is known as the Wold decomposition.

3.2.7 Prediction and Reconstruction

Consider the problem of predicting the output d steps ahead when the output {yk} is generated by the
ARMA model,

(3.72)

which is driven by a zero-mean white noise {wk} with covariance �{wiwj} =  In other words,
assuming that observations {yk} are available up to the present time, how should the output d steps ahead
be predicted optimally? Assume that the polynomials A(z−1) and C(z−1) are mutually prime with no zeros
for |z | Š 1. Let the C polynomial be expanded according to the Diophantine equation,

(3.73)

which is solved by the two polynomials

(3.74)

Interpretation of z−1 as a backward shift operator and application of Equations 3.72 and 3.73 permit
the formulation

(3.75)
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Let us, by  denote linear d-step predictors of yk+d based upon the measured information available
at time k. As the zero-mean term F(z−1)wk+d of Equation 3.75 is unpredictable at time k, it is natural to
suggest the following d-step predictor:

(3.76)

The prediction error satisfies

(3.77)

Let  {⋅ | k} denote the conditional mathematical expectation relative to the measured information
available at time k. The conditional mathematical expectation and the covariance of the d-step prediction
relative to available information at time k is

(3.78)

It follows that the predictor of Equation 3.76 is unbiased and that the prediction error only depends
on future, unpredictable noise components. It is straightforward to show that the predictor of Equation
3.76 achieves the lower bound of Equation 3.78 and that the predictor of Equation 3.76 is optimal in the
sense that the prediction error variance is minimized.

Example 3.1—An Optimal Predictor for a First-Order Model

Consider for the first-order ARMA model

(3.79)

The variance of a one-step-ahead predictor  is

(3.80)

The optimal predictor satisfying the lower bound in Equation 3.80 is obtained from Equation 3.80 as

(3.81)
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which, unfortunately, is not realizable as it stands because wk is not available to measurement. Therefore,
the noise sequence {wk} has to be substituted by some function of the observed variable {yk}. A linear
predictor chosen according to Equation 3.76 is

(3.82)

3.2.8 The Kalman Filter

Consider the linear state-space model

(3.83)

where {vk} and {wk} are assumed to be independent zero-mean white-noise processes with covariances
 and , respectively. It is assumed that {yk}, but not {xk}, is available to measurement and that it is

desirable to predict {xk} from measurements of {yk}.
Introduce the state predictor,

(3.84)

The predictor of Equation 3.84 has the same dynamics matrix  as the state-space model of Equation
101.83 and, in addition, there is a correction term  with a factor Kk to be chosen. The prediction
error is

(3.85)

The prediction-error dynamics is

(3.86)

The mean prediction error is governed by the recursive equation

(3.87)

and the mean square error of the prediction error is governed by

(3.88)

If we denote

(3.89)

then Equation 3.88 is simplified to

(3.90)
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By completing squares of terms containing Kk we find

(3.91)

where only the last term depends on Kk. Minimization of Pk+1 can be done by choosing Kk such that the
positive semidefinite Kk-dependent term in Equation 3.91 disappears. Thus Pk+1 achieves its lower bound for

(3.92)

and the Kalman filter (or Kalman–Bucy filter ) takes the form

(3.93)

which is the optimal predictor in the sense that the mean square error (Equation 3.88) is minimized in
each step.

Example 3.2—Kalman Filter for a First-Order System

Consider the state-space model

(3.94)

where {vk} and {wk} are zero-mean white-noise processes with covariances  and 
respectively.

The Kalman filter takes on the form

(3.95)

The result of one such realization is shown in Figure 3.19.

Defining Terms

Autoregressive (AR) model: An autoregressive time series of order n is defined via yk = amyk−m

+ wk. The sequence {wk} is usually assumed to consist of zero-mean identically distributed stochastic
variables wk.

Autoregressive moving average (ARMA) model: An autoregressive moving average time series of order
n is defined via yk = amyk−m + cmwk−m. The sequence {wk} is usually assumed to consist
of zero-mean identically distributed stochastic variables wk.

Discrete Laplace transform: The discrete Laplace transform is a counterpart to the Laplace transform
with application to discrete signals and systems. The discrete Laplace transform is obtained from
the z transform by means of the substitution z = exp(sT), where T is the sampling period.

Pk+ 1 ΦPkΦ
T Σv ΦPkC

T
Qk

1–
CPkΦ

T–+ Kk ΦPkC
T
Qk

1––( )Qk Kk ΦPkC
T
Qk

1––( )
T

+=

Kk ΦPkC
T Σw CPkC

T+( ) 1–=

x̂k+1 k Φ x̂k k− 1 Kk ŷk yk–( )–=
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Moving average (MA) process: A moving average time series of order n is defined via yk = cmwk−m.
The sequence {wk} is usually assumed to consist of zero-mean identically distributed stochastic
variables wk.

Rational model: AR, MA, ARMA, and ARMAX are commonly referred to as rational models.
Time Series: A sequence of random variable {yk}, where k belongs to the set of positive and negative

integers.
z transform: A generating function applied to sequences of data and evaluated as a function of the

complex variable z with interpretation of frequency.
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• Proakis, J. G. and Manolakis, D. G. 1989. Introduction to Digital Signal Processing. Maxwell MacMillan
Int. Ed., New York.

Theory of time-series analysis and its application to discrete-time control is to be found in

• Åström, K. J. and Wittenmark, B. 1990. Computer-Controlled Systems, 2nd ed., Prentice-Hall,
Englewood Cliffs, NJ.

Theory of time-series analysis and methodology for determination and validation of discrete-time models
and other aspects of system identification are to be found in

• Johansson, R. 1993. System Modeling and Identification. Prentice-Hall, Englewood Cliffs, NJ.

Good sources to monitor current research are

• IEEE Transactions on Automatic Control

• IEEE Transactions on Signal Processing

Examples of easy-to-read survey articles for signal processing applications are

• Cadzow, J. A. 1990. Signal processing via least-squares error modeling. IEEE ASSP Magazine.
7:12–31, October.

• Schroeder, M. R. 1984. Linear prediction, entropy, and signal analysis. IEEE ASSP Magazine.
1:3–11, July.

3.3 Continuous- and Discrete-Time State-Space Models

Kam K. Leang, Qingze Zou, and Santosh Devasia

3.3.1 Introduction

In this section we introduce the modeling of continuous- and discrete-time systems using the state-space
approach. The state-space approach is a technique that uses a set of first order differential equations to
represent the behavior of a system in the time-domain. The state-space approach has an advantage over
frequency-domain approaches such as the transfer-function approach: it can be used to model linear,
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nonlinear, time-varying, and multivariable systems, whereas the transfer-function approach is suited to
linear time-invariant (LTI) systems [1, Chapter 3]. In addition, models expressed in first order state-
space form in the time-domain can be readily solved by a digital computer or microprocessor, which
makes this approach quite useful for the design and control of modern mechatronic systems. Further-
more, there is a wide variety of available computer software, such as MATLAB [2], that take advantage
of the state-space form for analyzing and solving design problems. Therefore, the state-space approach
can be used to investigate the behavior and facilitate in the design of both continuous- and discrete-time
systems, the fundamentals of which will be the focus of this section.

In the following, we begin with an example: the modeling of a piezoceramic actuator and use the
example throughout the section. The concept of a system state is introduced and we explain the state-
space equation for linear systems and present its solution. The topic of linearization of nonlinear systems
is briefly mentioned. The relationships between time- and frequency-domain models are discussed and
a procedure for obtaining a state-space model using experimental frequency-domain (frequency-
response) data is presented. This section closes with a discussion of discrete-time state-space modeling
and concluding remarks. Useful MATLAB commands are also included as footnotes.

3.3.2 States and the State-Space

3.3.2.1 An Example Piezoceramic Actuator

We begin by modeling a piezoceramic actuator, which is an example mechatronic (electromechanical)
system. When a voltage is applied to a piezoceramic material, its dimension changes. This change in
dimension can be used to precisely position an object or tool (such as a sensor), therefore making
piezoceramics suitable actuators for a wide variety of applications. For example, due to their ability to
achieve positioning with sub-nanometer level precision, piezoceramic actuators have become ideal for
emerging nanotechnologies. In particular, a piezo-tube actuator is used in scanning probe microscopes
(SPMs, see Figure 3.20) to precisely position a probe tip for high-precision nanofabrication, surface
modification, and the acquisition of images of atoms [3]. The probe tip can be positioned in the three
coordinate axes (x, y, and z), with each motion controlled by an independent voltage source (Vx(t), Vy(t),
and Vz(t)). Scanning of the probe is performed parallel to the sample surface along the x- and y-axis;
the z-axis movement allows motion of the probe perpendicular to the sample surface. An accurate
mathematical model of the dynamics of a piezo-tube actuator is required for the analysis and design of
SPM systems. A designer can exploit the known information of the system from its model to improve
or optimize a design for building faster and more reliable SPMs. For example, an approach that has been

FIGURE 3.20 The main components of a scanning probe microscope (SPM) used for surface analysis, which
includes the piezo-tube actuator, the probe tip, and the sample. The configuration of the probe tip and sample with
respect to the coordinate axes (x, y, and z) are shown in the magnified view.
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successfully implemented is the inversion-based control method, which finds the inputs required to
achieve exact tracking by inverting the system model [3]. This technique works best when the dynamics
of the system are well characterized and understood. In general, the analysis and design of control systems
also requires a system model. Thus for analysis and design, it is crucial to obtain an accurate mathematical
model that describes the behavior of a system. Modeling of the example piezo-tube system is considered
in the following.

Simple Model of a Piezo-Tube Actuator
We will model the dynamics of the piezo-tube actuator along the z-axis where the input is the applied
voltage Vz(t) and the output of the system is the displacement of the probe tip z(t). We begin the modeling
by simplifying the system as an isolated mass, an ideal spring, and a damper as shown in Figure 3.21a.
The entire mass of the piezo-tube is lumped into one mass element m, the internal elastic behavior of
the piezo-tube is modeled as a spring, and the structural damping in the piezo-tube is modeled as a
damper or a viscous friction element (such models are referred to as lumped models [4]). A mathematical
relationship between the applied voltage Vz(t) and the displacement of the probe tip z(t) can be obtained
using physical laws. Applying Newton’s second law (the sum of all external forces Fi acting on a body is
equal the product of its mass m and acceleration (t)) we can write the equation of motion as

(3.96)

As shown in Figure 3.21b (the free body diagram), there are three external forces acting on the piezo-
tube. First, the force exerted by the spring is assumed to be proportional to the displacement of the probe
tip, that is,

(3.97)

where k is the spring constant with SI units [N/m]. Second, the damping force is considered to be
proportional to the velocity of the probe tip (t), that is,

(3.98)

FIGURE 3.21 (a) A simple lumped model of the piezo-tube actuator modeled along the z-axis consisting of a mass,
a spring, and a damper [4]. The positive z-direction is indicated by the arrow and the “+” sign. (b) The forces acting
on the mass (free body diagram).
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where c is the viscous friction or damping coefficient with SI units [N . s/m]. Third, induced strain ε in
the piezoceramic material is proportional to the applied voltage Vz(t) [5], and by Hooke’s Law, the induced
stress σ is proportional to the induced strain ε. Hence, the induced force Fp(t) (stress σ times the cross-
sectional area) is proportional to the applied voltage Vz(t), that is,

(3.99)

where b is a constant with SI units [N/V]. Rewriting Equation 3.96 in terms of the three external forces,
the equation of motion becomes

(3.100)

which is called the mass-spring-damper model. Note that the relationship between the input voltage Vz(t)
and the displacement z(t) of the probe tip (i.e., the model of the dynamics) is a second order differential
equation. The response of the probe tip (displacement of mass m) to an applied voltage Vz(t) can be
obtained in the frequency-domain by using the Laplace transform technique [6, Chapter 2, Section 5];
however, the state-space approach can be used to obtain the solution directly in the time-domain. In the
remaining sections, the state-space approach to modeling is presented and the mass-spring-damper model
of the piezo-tube actuator will be used as an example.

3.3.3.2 States of a System

We begin by introducing the concept of a state, which is the basis for the state-space approach. In general,
a state can be defined as the following: 

The state x(t0) of a dynamic system at time t0 is a set of variables that, together with the input u(t),
for t ≥ t0, determines the behavior of the system for all t ≥ t0 [7, Chapter 2, Section 1.1].

Fundamental to this definition is the notion that the state summarizes the current configuration of a
system. Therefore, the memory of a dynamical system is preserved in the state variables at the current
time t0 (called initial condition), and the future behavior of the system is determined by the initial
condition x(t0) and the applied input u(t), for t ≥ t0. The state of a system can be written as the set 

(3.101)

where n is the number of states.* Any set of variables that satisfy the above definition can be a valid state,
hence the state is not unique [8, Chapter 2, Section 2].

Example
The state variables required to describe the mass-spring-damper system can be chosen as the position
z(t) and velocity (t) of the mass. We can write the state vector as

(3.102)

*For a discussion on the minimal set of states required to describe a system (minimal realization), see [7, Chapter 7].

Fp t( ) bVz t( )=

Fi t( )
i=1

3

∑ FS t( ) FD t( ) Fp t( )+ + kz t( )– cz· t( )– bVz t( )+ mz·· t( )== =

x t( )

x1 t( )
x2 t( )

M

xn t( )

=

z·

x t( ) x1 t( )
x2 t( )

z t( )
z· t( )

= =

9260__03_pt2.fm  Page 43  Wednesday, October 10, 2007  8:21 PM



3-44 Mechatronic System Control, Logic, and Data Acquisition

where the number of states is two (n = 2). If the position z(t) and velocity (t) of the mass are known
at time t0 , along with the applied voltage Vz(t) defined for t ≥ t0, then the future behavior of the system
(i.e., the state x(t)) can be determined by solving the differential Equation 3.100.

3.3.3.3 The Linear State-Space Equation and Its Solution

For a linear system, the evolution of the states of a system over time can be described by a set of linear
first order differential equations of the form:

(3.103)

where n is the number of states (or the order of the system) and p is the number of inputs.* Defining
the input vector as 

(3.104)

and the state vector x(t) as defined in Equation 3.101, the set of first order differential equations given
by Equation 3.103 can be rewritten in compact matrix form as [8, Chapter 2, Section 2]

(3.105)

where A(t) is an n × n matrix and B(t) is an n × p matrix. For a system defined with q outputs y(t),
which are assumed to be a linear combination of the state x(t) and input u(t), we can write the output
equation as

(3.106)

*Given a higher order differential equation, a set of first order differential equations can be obtained by a procedure
known as reduction to first order as presented in [9].
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where C(t) is a q × n matrix and D(t) is a q × p matrix. In general, the matrices A(t), B(t), C(t), and D(t)
are time varying; however, in this chapter we will only consider the time-invariant case where A, B, C,
and D are constant matrices, then Equations 3.107 and 3.108 are called the linear time-invariant (LTI)
state and output equations, respectively.*

(3.107)

(3.108)

The response of the system to an applied input can be quantified by the evolution of the system state
x(t) and the output y(t). The state-space Equation 3.107 is a set of first order differential equations in
matrix form, which can be solved in time for a given initial condition x(t0) as [8, Chapter 3]

(3.109)

Note that solution (3.109) is the sum of two terms: the first term is the effect of initial condition x(t0)
and the second is the effect of the applied input u(t) between t0 ≤ τ ≤ t.

†
 Using the output Equation 3.108

and the state solution given by (3.109), the output y(t) becomes

(3.110)

The system response y(t) to an applied input u(t) is characterized by the system matrices (A, B, C, D).
For example, the output y(t) will be bounded for any bounded input if the system is stable and the system
is stable if the real parts of all the eigenvalues of A are less than zero (strictly negative) [8, Chapter 4,
Section 4].‡

Example
For the mass-spring-damper example system, the state-space equation can be found by differentiating
the states x(t) defined in Equation 3.102 and using the equation of motion 3.100 to obtain

(3.111)

We choose the position of the mass z(t) to be the output of the system, and write the state-space and
output equation in the form given by Equations 3.107 and 3.108 as

(3.112)

(3.113)

*For a detailed discussion of the solution of linear time-varying equations, see [7, Chapter 4, Section 5].
†The MATLAB command 1sim simulates the time response of LTI models to arbitrary inputs.
‡The MATLAB command eig(A)returns the eigenvalues of the system matrix A.
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3.3.3.4 Linearization of Nonlinear Systems

A general form of the state-space equation (for nonlinear systems) is

(3.114)

(3.115)

where g and h can be nonlinear functions.* The behavior of nonlinear systems is beyond the scope of
this section; however, a detailed discussion can be found in [10]. The behavior of a nonlinear system can
be approximated by a linear model in a neighborhood of an equilibrium point. Such linearizations
can simplify the analysis and design of nonlinear systems because the tools developed for linear systems
can be applied under certain conditions [10]. Let x0 and u0 be the equilibrium point and equilibrium
input, respectively, such that [10, Chapter 1]

(3.116)

(3.117)

Consider small perturbations in the equilibrium point x(t) = x0 + (t), the input u(t) = u0(t) + (t),
and the output y(t) = y0 + (t). If the perturbation (t) is small for all t, we obtain the following by
expanding Equation 3.114 in Taylor series (neglecting higher order terms of (t) and (t)):

(3.118)

Recognizing that g(x0, x0) = 0 we obtain

(3.119)

where

(3.120)

The matrices  and  are the Jacobians evaluated at x0 and u0. Equation 3.119 is a linear state equation
and is valid for small perturbations about x0 and u0. A similar result can be obtained for the change (t)
in the output from the equilibrium value y0 as

(3.121)

where

(3.122)

*The MATLAB command ode45 can be used to obtain the numeric solution to the general nonlinear state space
equation.
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3.3.4 Relationship between State Equations and Transfer-Functions

3.3.4.1 State-Space to Transfer-Function 

The input-to-output relationship of a dynamic system in the frequency-domain is represented by a
transfer-function, which can be obtained by taking the Laplace transform of (3.107) and (3.108) with
zero initial conditions as follows [8, Chapter 3, Section 5]:

(3.123)

(3.124)

where s is the Laplace variable. Solving (3.123) for X(s) and substituting into (3.124), the ratio of the
output Y(s) to input U(s) for a single-input single-output system (SISO) can be found as 

(3.125)

where I is an n × n identity matrix. In Equation 3.125, N(s) and D(s) are referred to as the numerator
and denominator polynomial of G(s), respectively.*

Analogous to the state-space equation, the boundedness of the output response y(t) to a bounded
input u(t) is characterized by the roots of the denominator polynomial D(s), that is, the values of s for
which D(s) = 0. In particular, the output y(t) will be bounded for any bounded input, that is, system is
stable if the real parts of all the roots of D(s) are less than zero (strictly negative).

†
 Alternatively, a

convenient method to determine stability without having to find the roots of D(s) explicitly is the
Routh–Hurwitz stability criterion [6, Chapter 6].

Example
With the state-space description of the mass-spring-damper system defined in Equations 3.112 and 3.113,
the transfer-function realization using Equation 3.125 becomes

(3.126)

The input to the system is the applied voltage Vz(t) and the output is the displacement of the mass z(t).

3.3.4.2 Frequency-Response Using Transfer-Functions

Consider a linear single-input single-output (SISO) stable system with transfer-function description G(s).
When the system G(s) is excited by a sinusoidal input of the form

(3.127)

with amplitude P and frequency ω, the output response (after the transients decay) will also be a sinusoid
of the form

(3.128)

*The MATLAB command ss2tf can be used to convert a state-space realization to a transfer-function.
†The MATLAB command roots (den) can be used to find the roots of den, where den is the coefficients of D(s).
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with the same frequency ω and a phase shift φ [6, Chapter 8]. The output amplitude is the input amplitude
scaled by M, the magnitude gain. The magnitude gain M is found by taking the magnitude of G(s)
evaluated at s = jω, that is,

(3.129)

Usually, the magnitude gain M is expressed in units of decibels (dB), i.e., M [dB] = 20log M. The phase
shift φ is the angle of G(s) evaluated at s = jω, that is,

(3.130)

with units of degrees. The plot of the magnitude gain M and the phase shift φ versus the frequency ω
gives a graphical representation of the frequency-response (Bode plots) of a system.* These plots can be
obtained experimentally by measuring the magnitude gain and phase shift between the input and output
response of a system over a range of frequencies. Additionally, a system’s transfer-function can be obtained
from an experimental frequency-response data by using curve-fitting software. In Section 3.3.5, we
present this approach to determine a model for a system using experimental frequency-response data.

3.3.4.3 Transfer-Function to State-Space

In Section 3.3.4, a transfer-function model was obtained for a system in state-space form. In the following,
an approach for realizing a state-space model from a transfer-function G(s) is presented. For a realizable
transfer function G(s) of a SISO system of the form

(3.131)

the controllable canonical state-space form written in terms of the coefficients of G(s) is

(3.132)

(3.133)

where the number of states n is equal to the highest power of the denominator of G(s).† The smallest
possible dimension for realizing a system, referred to as the minimum realization, is an important factor
to consider in analysis and design.‡ Models of minimum order require less computational power in
simulation and implementation compared to higher order models. For information about other equiv-
alent canonical state-space forms, refer to [7, Chapter 4, Sections 3 and 4]. 

*The MATLAB command bode plots the magnitude gain and phase shift for a linear system.
†The MATLAB command tf2ss generates the controllable canonical form realization of a transfer function G(s).

Other useful commands include ss2tf, zp2tf, and tf2zp.
‡For a detailed discussion of minimal realizations for multi-input multi-output systems, see [7, Chapter 7].
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3.3.5 Experimental Modeling Using Frequency-Response

An approach to modeling using experimental frequency-response data is presented in this section. Using
a dynamic signal analyzer (DSA), the frequency-response of the dynamics along the x-axis for the piezo-
tube actuator was measured.* A sinusoidal input voltage Vx(t) with frequency varying between 10 Hz
and 6 kHz was generated by a DSA and applied to the scanning probe microscope (SPM) system as
shown in Figure 3.22. Using an inductive sensor, the displacement xp(t) of the piezo-tube along the x-
axis was measured and fed back to the DSA to compute the frequency-response (M and φ versus frequency
ω plots). Figure 3.23 shows the Bode plots obtained by the DSA between the applied voltage Vx(t) and
the output of the inductive sensor y(t). An estimate of the system model from the frequency-response

FIGURE 3.22 A schematic of the experimental setup used to determine the frequency-response of the piezo-tube
actuator. An inductive sensor measured the displacement of the actuator along the x-axis, and the frequency-response
data from the DSA were used to estimate the system model.

FIGURE 3.23 The experimental magnitude gain and phase versus frequency plots for the piezo-tube actuator
measured along the x-axis with superimposed model frequency-response. Solid line represents experimental data;
dashed line represents results from estimated model.

*Stanford Research Systems, model SRS785.
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data was then found with the MATLAB software.* The transfer-function between the applied input
voltage Vx(t) and the output of the inductive sensor y(t) was found to be 

(3.134)

with units of V/V. Equation 3.135 was scaled by the inductive sensor gain (30 Å /V) and the transfer-
function between the applied voltage Vx(t) and the actual displacement of the piezo-tube xp(t) is given by

(3.135)

with units of Å/V.

3.3.5.1 Time Scaling of a Transfer-Function Model

We present below an approach for rescaling time for G2(s) from seconds [s] to milliseconds [ms]. We
briefly recall the time scaling property of the Laplace transform presented in [1, Chapter 3, Section 1.4].
Let F(s) be the Laplace transform of f(t), that is,

 (3.136)

where L denotes the Laplace transform operator. Now, consider a new time scale defined as ,
where a is a constant. The Laplace transform of (at) is given by

(3.137)

Using relation (3.137), we can reduce the coefficients of G2(s) by changing the time units of both the
input signal u(t) and output signal y(t) as follows:

(3.138)

Therefore, to rescale time for G2(s) from seconds [s] to millisecond [ms], we choose 
and the new rescaled transfer (s) becomes

(3.139)

*The MATLAB command invfreqs gives real numerator and denominator coefficients of experimentally
determined frequency response data.
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Ĝ2 s( ) G2
s
a
--

 
 

a= 0.001

=

G2 1000s( )=
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Note that the time unit of the input and output signal of (s) are now in milliseconds, not seconds!
The coefficients of the numerator and denominator polynomials are smaller and this form ( (s)) is less
prone to computational errors due to round off than the form G2(s), Equation 3.135.

3.3.5.2 The State-Space Model

The state-space realization for (s) expressed in controllable canonical form (Equations 3.132 and 3.133)
is given by the following:

(3.140)

(3.141)

The time unit for Equations 3.140 and 3.141 are milliseconds [ms]. If the initial state at t0 is known,
along with the applied voltage Vx(t) defined for t ≥ t0, the future behavior of the system, that is, the state
x(t) and output y(t), can be determined from Equations 3.140 and 3.141, respectively.

3.3.6 Discrete-Time State-Space Modeling

3.3.6.1 Introduction

The study of discrete-time systems is important to the analysis and the design of modern mechatronics
systems where digital computers or small microprocessors are predominantly used to control systems.
Digital computers and microprocessors output or acquire information at discrete time instants. For
example, the input applied by a digital computer to actuate the piezo-tube changes at discrete time
instants. Similarly, the displacment of the piezo-tube can only be measured at specified time instants
using digital computers; therefore, in comparison to a continuous-time control system where the input
signals change continuously over time, the input of a discrete-time system changes once in a while. Such
discrete-time systems are studied next.

Consider a continuous-time system with continuous input u(t) and output y(t) as described by Equa-
tions 3.107 and 3.108. Let a digital computer or microprocessor be used to provide the input u[k] and
measure the output y[k] as depicted in Figure 3.24 (such systems with continuous and discrete signals are

FIGURE 3.24 A block diagram of a discrete-time system showing signals in graphic form. Note that u[k] = u( )
and y[k] = y( ), for k = 0,1,2,…, and the sampling period T is assumed to be constant.
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called sampled-data systems). The input u[k] and output y[k] of this system are discrete with u[k] =
u( ) and y[k] = y( ) for k = 0,1,2,…, where T is the constant sampling period. The discrete input
u[k] is applied to the continuous system from a digital computer or microprocessor and is held constant
during the time interval T (zero-order hold). A sampler acquires the output of the continuous system at
each time instant T yielding the discrete output y[k]. The discrete system is between the input u[k] and
the output y[k] [11, Chapter 1].* The equivalent discrete-time state-space representation of the continu-
ous-time state-space model given by Equations 3.107 and 3.108 is given by (the details of the formulation
can be found in [11, Chapter 5, Section 5]) 

(3.142)

(3.143)

where 

(3.144)

and matrices CD and DD are not changed by the sampling.
†
 This discrete model (Equations 3.142 and

3.143) is the representation of the sampled-data system shown in Figure 3.24.

3.3.6.2 Solutions to the Discrete-Time State-Space Equations

The solution to the discrete model (Equations 3.142 and 3.143) is given by

(3.145)

(3.146)

for each sampling step k. Details of the formulation can be found in [11, Chapter 5, Section 3]. The state
response x[k] to an applied input u[k] is characterized by the system matrices (AD, BD, CD, DD). In
particular, the output y[k] will be bounded for any bounded input u[k] if the system is stable. A system
in the form given by Equation 3.142 is stable if the magnitude of all the eigenvalues of AD are less than
unity, that is, lie within the unit circle center at the origin of the z-plane [11, Chapter 5, Section 6].

3.3.6.3 The z Transform and Relationship with the State-Space

The input-to-output relationship in the frequency-domain for a discrete-time system is represented by
a discrete transfer-function called the z transform, written in terms of the variable z [12, Chapter 4].
Analogous to the continuous-time case, the model of a dynamic system in discrete transfer-function
form can be useful in the design and control of systems [12, Chapter 7]. If the system model is available
in discrete transfer-function form, then a state-space realization can be found as follows. Given a discrete
system described by the following z-transform G(z):

(3.147)

*We do not discuss quantizing and quantization error. See [11, Chapter 1, Section 3] for details.
†Given a continuous-time state-space model (A, B, C, D), the MATLAB command c2d, gives the discrete time

equivalent for a specified sampling period T.
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the controllable canonical discrete state-space realization for G(z) is

(3.148)

(3.149)

The number of states n is equivalent to the highest power of the denominator of G(z). For information
about other equivalent canonical state-space forms, refer to [11, Chapter 5, Section 2].

Example
Consider the continuous-time state-space model of the piezo-tube system described by Equations 3.140
and 3.141. A digital computer with the sampling rate of 10 kHz (T = 1.0 × 10−4) is used to provide the
control input u[k] and measure its displacement along the x-axis (output y[k]). The discrete-time state-
space model with (AD, BD, CD, and DD) given by Equation 3.144 is

(3.150) 

(3.151)

The realization given by Equations 3.150 and 3.151 was found using the MATLAB command ‘c2d’.

3.3.7 Summary

We presented tools for modeling continuous- and discrete-time systems using the state-space approach
in this section. The state-space approach to modeling is a powerful technique for the analysis and design
of mechatronic and dynamic systems, and can take advantage of tools available in modern digital com-
puters and microprocessors. The discussion of the system states and the state-space was motivated by an
example piezo-tube actuator system. We considered the modeling of linear systems and a technique for
linearizing nonlinear systems was briefly introduced. The frequency-response of a system and an approach
to modeling using experimental frequency-response data was presented. Relationships between models
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expressed in the frequency- and time-domain for both continuous- and discrete-time systems was
discussed. For additional details about the concepts mentioned in this section and those not covered, it
is recommended that the reader consider the attached references for further reading.

References

1. Franklin, G. F., et al., Feedback Control of Dynamic Systems, 3rd ed., Addison-Wesley, New York, 1994.
2. Hanselman, D., and Littlefield, B., The Student Edition of Matlab, Version 5, User’s Guide, Prentice-

Hall, Upper Saddle River, NJ, 1997.
3. Croft, D., et al., Creep, hysteresis, and vibration compensation for piezoactuators: atomic force

microscopy application, ASME J. Dyn. Syst., Meas., Control, 123, 35, 2001.
4. Dorny, C. N., Understanding Dynamic Systems—Approaches to Modeling, Analysis, and Design,  Prentice-

Hall, Englewood Cliffs, NJ, 1993.
5. Locatelli, M., et al., Easy method to characterize a piezoelectric ceramic tube as a displacer, Rev. Sci.

Instrum., 59, 4, 1988.
6. Dorf, R. C., and Bishop, R. H., Modern Control Systems, 9th ed., Prentice-Hall, Upper Saddle River,

NJ, 2001.
7. Chen, T. C., Linear System Theory and Design, Oxford University Press, New York, 1999.
8. Friedland, B., Control System Design: An Introduction to State-Space Methods, McGraw-Hill,

New York, 1986.
9. Gillis, J. T., State space, in The Control Handbook, Levine, W. S., CRC Press, Salem, MA, 1996, Chap. 5.

10. Khalil, H. K., Nonlinear Systems, 2nd ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
11. Ogata, K., Discrete-Time Control Systems, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1995.
12. Franklin, G. F., et al., Digital Control of Dynamic Systems, 3rd ed., Addison-Wesley, Menlo Park, 1998. 

3.4 Transfer Functions and Laplace Transforms

C. Nelson Dorny

We perceive a system primarily through its behavior. Therefore, our mental image of a system usually
includes representative response signals. The step response, the behavior when we suddenly turn on the
system, is such a system-characterizing signal. We should view the step response as a description of the
system. The impulse response is another description of the system. For a system represented by linear
differential equations, the unit-step response is the integral of the unit-impulse response.

Let us represent time differentiation (d/dt) by the time-derivative operator, p. Then we can denote the
time derivative of a signal y by py, its second derivative by p2y, its integral with respect to time by (1/p)y,
and so on. This operator notation simplifies the expressions for differential equations. We shall use the
expression system equations to mean a set of differential equations that determines fully the behaviors of
the dependent variables that appear in those equations. We can reduce a linear set of system equations
to a single input–output system equation  by eliminating all but one dependent variable from the set.
The transfer function associated with that dependent variable is a mathematical expression that contains
all the essential information embodied in the system differential equation. 

The Laplace transformation converts signals (functions of time) to functions of a complex-frequency
variable, s = σ + jω. There is a one-to-one correspondence between a signal and its Laplace transform.
We can retrieve the time function by inverse transformation. Laplace transformation produces images
that have some properties that are more convenient than those of the original signals. In particular, time
differentiating a signal corresponds to multiplying its Laplace transform by the complex-frequency
variable s. Hence, the transformation converts linear constant-coefficient differential equations to linear
algebraic equations. Such simplifications of time-domain operations make Laplace transformation useful.
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The Laplace transformation also converts the impulse response of a system variable to the transfer
function for that variable. As a consequence, we can view the differential equation that represents a linear
system as an expression of the response of that system to an impulsive input.

3.4.1 Transfer Functions

The node displacements x1 and x2 and the compressive forces f1 and f2 within the branches of the lumped
model of Figure 3.25 are related to each other by the spring equation, the damper equation, and the
balance of forces at node 2. The spring equation is f2 = k(x1 − x2). The equation for the damper is f1 = b(px1

− px2). The balance of forces requires that f1 + f2 = mp2x2. These equations describe fully the behavior of
the system if the spring and mass are unenergized. (If the mass were moving and/or the spring were
compressed, we would have to express separately their initial energy states to describe fully the future
relations among the variables.)

Eliminate f1 and f2 from the equations to obtain the operational equation:

(3.152)

This differential equation describes fully the zero-state relation between x1 and x2. Rearrange Equation
3.152 to form the ratio 

(3.153)

We call Equation 3.152 the transfer function from x1 to x2. The transfer function focuses attention on
the mathematical operations that characterize the behavioral relationships rather than on the particular
natures of the variables. (Note that the transfer function from v1 to v2, where v1 = px1 and v2 = px2, is the
same as the transfer function given by Equation 3.153.)

In general, suppose that y1 and y2 are two variables related (in operator notation) by the linear
differential equation

(3.154)

We formally define the transfer function from y1 to y2 by

(3.155)

where the notation ZS means zero state. If y1 is an independent variable, then G(p) is the input–output
transfer function for the variable y2 and accounts fully for its behavior owing to the input signal y1. We
can determine from that transfer function the behavior of the system for any source waveform and any
initial state.

FIGURE 3.25 The lumped model of a mechanical
system.
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3.4.2 The Laplace Transformation

The one-sided Laplace transformation, �, is an integral operator that converts a signal f(t) to a complex-
valued function F(s) in the following fashion:

(3.156)

We refer to the transformed function F(s) as the Laplace transform of the signal f(t). Picture the lower
limit 0− of the integral as a specific instant prior to but infinitesimally close to t = 0. It is customary to
use a lowercase symbol ( f ) to represent a signal waveform and an uppercase symbol (F) to represent its
Laplace transform. (Although we speak here of time signals, there is nothing in Equation 3.156 that
requires f(t) to be a function of time. The transformation can be applied to functions of any quantity t.)

We shall use the Laplace transformation to transform the signals of time-invariant linear systems. The
behavior of such a system for t Š 0 depends only on the input signal for t ≥ 0 and on the prior state of
the output variable (at t = 0−). Hence, it does not matter that the Laplace transformation ignores f(t) for
t < 0−.

The process of finding the time function f(t) that corresponds to a particular Laplace transform F(s)
is called inverse Laplace transformation, and is denoted by � −1. We also call f(t) the inverse Laplace
transform of F(s). Since the one-sided Laplace transformation ignores t < 0−, F(s) contains no information
about f(t) for t < 0−. Therefore, inverse Laplace transformation cannot reconstruct f(t) for t < 0−. We
shall treat all signals as if they are defined only for t ≥ 0−. Then there is a one-to-one relation between
f(t) and F(s).

To illustrate the Laplace transformation, we find the Laplace transform of the decaying exponential,
f(t) = e−α t, t ≥ 0−. The transform is 

(3.157)

We must require σ  > −α, where σ is the real part of s, in order that the real-exponent factor converge
to zero at the upper limit. (The magnitude of the complex-exponent factor remains 1 for all t.) Therefore,
the Laplace transform of the decaying exponential is defined only for Re[s] > −α. This restriction on the
domain of F in the complex s plane is comparable to the restriction t ≥ 0− on the domain of f.

The significant features of the complex-frequency function 1/(s + α) are the existence of a single pole
and the location of that pole, s = −α [rad/s]. (The pole defines the left boundary of that region of the
complex s plane over which the transform 1/(s + α) is defined.) The significant features of the corre-
sponding time function are the fact of decay and the rate of decay, with the exponent −α [rad/s]. There
are clear parallels between the features of f(t) and F(s). We should think of the whole complex-valued
function F as representing the whole time waveform f.

As a second transformation example, let f(t) = δ(t), the unit impulse, essentially a unit-area pulse of
very short duration. It acts at t = 0, barely within the lower limit of the Laplace integral. It has value zero
at t = 0−. (Because we use 0− as the lower limit of the defining integral, it does not matter whether the
impulse straddles t = 0 or begins to rise at t = 0.) The impulse is nonzero only for , where .
Therefore, the Laplace transform is 

(3.158)
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It is not necessary to derive the Laplace transform for each signal that we use in the study of systems.
Table 3.11 gives the transforms for some signal waveforms that are common in dynamic systems.

3.4.3 Transform Properties

A number of useful properties of the Laplace transformation � are summarized in Table 3.12. According
to the derivative property, the multiplier s acts precisely like the time-derivative operator, but in the
domain of Laplace-transformed signals. When we Laplace transform the equation for an energy-storage
element such as a mass or a spring, the derivative property automatically incorporates the prior energy

Table 3.11 Laplace Transform Pairs

f(t) = � −1[F(s)],t ≥ 0− F(s) = �[ f(t)]

1. Unit impulse δ(t) 1

2. Unit step us(t)

3. tn, n = 1, 2, ...

4. e−αt

5. tne−αt, n = 1, 2, ...

6. 

7. 

8. 

9. 

Source: Dorny, C. N. 1993. Understanding Dynamic Systems, p. 412. Prentice-
Hall, Englewood Cliffs, NJ. With permission.
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state of the element—essentially the value of the variable at t = 0−. When we Laplace transform the
input–output system equation for a particular system variable, the derivative property automatically
incorporates the whole prior system state. As a consequence, we can find the solution to the system
equation without having to determine the initial conditions (at t = 0+)—a considerable simplification of
the solution process.

Since F(s) contains all information about f(t) for t ≥ 0−, it is possible to find some features of the signal
f(t) from the transform F(s) without performing an inverse Laplace transformation. Properties 7–9 of
Table 3.12 provide three of these features, namely the initial value (t → 0+), the final value (t → ∞), and
the area under the waveform. The remaining properties in the table show the effect on the transform of
various changes in the signal waveform. 

The usual approach to finding inverse transforms is to use a table of transform pairs. That table might
be stored in a software package such as CC, MATLAB, MAPLE, and so on. Table 3.11 demonstrates that
transforms of typical system signals are ratios of polynomials in s. A ratio of polynomials can be
decomposed into a sum of simple polynomial fractions—a process referred to as partial fraction expansion.
Hence, the inversion process can be accomplished by a computer program that incorporates a brief table
of transforms.

3.4.4 Transformation and Solution of a System Equation

Suppose that an independent external source applies a specific velocity pattern v1(t) to node 1 of Figure 3.25.
To obtain the input–output system equation that relates the velocity v2 of node 2 to the input signal v1,
multiply Equation 3.153 by p and substitute v1 for px1 and v2 for px2. The result is 

(3.159)

Table 3.12 Properties of the Laplace Transformation, �

1. Magnification

2. Addition

3. Derivative

4. Derivatives

5. Integral

6. Convolution

7. Initial value

8. Final value

9. Definite integral

10. Exponential decay

11. Delay

12. Time multiplication

13. Time division

14. Time scaling

Source: Dorny, C. N. 1993. Understanding Dynamic Systems, p. 413.
Prentice-Hall, Englewood Cliffs, NJ. With permission.
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The two sides of Equation 3.159 are identical functions of time. Therefore, the Laplace transforms of
the two sides of Equation 3.159 are equal. Since the Laplace transformation is linear (properties 1 and
2 of Table 3.12), and since the coefficients of the differential equation are constants, the Laplace transform
can be applied separately to the individual terms of each side. The result is

(3.160)

where the derivative properties of the Laplace transformation (properties 3 and 4 of Table 3.12) introduce the
prior values v1(0−), v2(0−), and  into the equation. According to Equation 3.160, to fully determine
the transform V2(s) of the behavior v2(t), we must specify these prior values and also V1(s). It can be shown
that specifying the three prior values is equivalent to specifying the energy states of the spring and mass.

Let us assume that the independent source applies the constant velocity v1(t) = vc beginning at t = 0.
The corresponding transform, by item 2 of Table 3.11 and property 1 of Table 3.12, is V1(s) = vc /s.
Substitute the transform V1(s) into Equation 3.160 and solve for 

(3.161)

We could find the output signal waveform v2(t) as a function of the model parameters m, k, b, the
source-signal parameter vc, and the prior state information v1(0−), v2(0−), and , but the expression
for the solution would be messy. Instead, we complete the solution process for specific numbers: m =
2 kg, b = 4 N · s/m, k = 10 N/m,  = 0 m/s2, v1(0−) = 0 m/s, v2(0−) = −1 m/s, and vc = 1 m/s. The
partial-fraction expansion of the transform and the inverse transform, both obtained by a commercial
computer program, are

(3.162)

(3.163)

We can take Laplace transforms of the system equations at any stage in their development. We can even
write the equations directly in terms of transformed variables if we wish. The process of eliminating variables
can be carried out as well in one notation as in another. For example, the operator G(p) in Equation
3.154 represents a ratio of polynomials in the time-derivative operator p. Therefore, Laplace transforming
the differential equation, Equation 3.154, introduces the prior values of various derivatives of y1 and y2.
If the prior values of all these derivatives are zero, then the Laplace-transformed equation is 

(3.164)

where the operator p in Equation 3.154 is replaced by the complex-frequency variable s in Equation 3.164.
It is appropriate, therefore, to define the transfer function directly in terms of Laplace-transformed signals:

(3.165)

where Y1(s) and Y2(s) are the Laplace transforms of the signals y1(t) and y2(t), and the notation PV = 0
means that the prior values (at t = 0−) of y1(t) and y2(t) and the various derivatives mentioned above in
connection with Equation 3.164 are set to zero. The frequency domain definition, Equation 3.165, is
equivalent to the time domain definition, Equation 3.155. 

m s
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−( )–[ ] kV1 s( )+=

v· 2 0
−( )

V2 s( ) bs k+( )vc msv· 2 0
−( ) bs v2 0

−( ) v1 0
−( )–[ ] ms

2
v2 0

−( )+ + +
s ms

2
bs k+ +( )

---------------------------------------------------------------------------------------------------------------------------------------=

v· 2(0
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V2 s( ) 1
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-- 2s 2+

s 1+( )2
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−t
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=
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3-60 Mechatronic System Control, Logic, and Data Acquisition

Suppose that the input signal y1(t) is the unit impulse δ(t). Then the response signal y2(t) is the unit-
impulse response of the system. Since the Laplace transform of the unit impulse is Y1(s) = ∆(s) = 1 by
entry 1 of Table 3.11, Equation 3.164 shows that the Laplace transform Y2(s) of the unit-impulse response
is identical to the zero-state transfer function (expressed in the transform domain). 

The transfer function for a linear system has two interpretations. Both interpretations characterize the
system. In the frequency domain, the transfer function G(s) is the multiplier that produces the
response—by multiplying the source-signal transform, as in Equation 3.164. In the time domain, we use
a representative response signal—the impulse response—to characterize the system. The transfer function
G(s) is the Laplace transform of that characteristic response.

Defining Terms 

Input: An independent variable.
Input–output system equation : A differential equation that describes the behavior of a single dependent

variable as a function of time. The dependent variable is viewed as the system output. The
independent variable(s) are the inputs. 

Output: A dependent variable.
Signal: An observable variable; a quantity that reveals the behavior of a system. 
State: The state of an nth-order linear system corresponds to the values of a dependent variable and

its first n − 1 time derivatives.
Time invariant: A system that can be represented by differential equations with constant coefficients.
Zero state: A condition in which no energy is stored or in which all variables have the value zero.
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4.1 Models: Fundamental Concepts

An essential connection between an engineer/scientist and a system relies on his/her ability to describe
the system in a way which is useful to understand and to quantify its behavior.

Any description supporting that connection is a model. In system theory, models play a fundamental
role, since they are needed to analyze, to synthesize, and to design systems of all imaginable sorts.

There is not a unique model for a given system. Firstly, the need for a model may obey different
purposes. For instance, when dealing with an electric motor, we might be interested in the electro-
mechanical energy conversion process, alternatively, we might be interested in modelling the motor either
as a thermal system, or as a mechanical system to study vibrations, the strength of the materials, and so on.

Mario E. Salgado 
Juan I. Yuz
Universidad Técnica Federico
Santa María
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4-2 Mechatronic System Control, Logic, and Data Acquisition

A second source of that nonuniqueness is the fact that models are always inaccurate, since real systems are
usually infinitely complex. One of the key decisions for an engineer when facing the task of modelling
a system is to decide which are the essential features that the model should capture, and that decision is
also closely related to the purpose of the model.

The theory supporting modelling is by itself a vast field, where first principles, signal theory, mathe-
matics and numerical tools combine in different ways to generate rich methodologies. A model is rarely
built in one go, the model building process is usually iterative, and it progresses according to the quality
of the results obtained when using the model in a particular application. Iterations may also include
changes in modelling methodology.

In this chapter we will deal with a special class of models to describe dynamic systems. Dynamic systems
are those where the system variables are interdependent not only algebraically, but also in a way where
we observe the intervention of accumulated effects and rate of change. Models for dynamic systems can
be built in the continuous time domain, in the discrete time domain, or in a continuous-discrete time
framework (for hybrid systems, involving sampled systems). We will cover the three situations.

In this quest we will put the emphasis on concepts, fundamental properties, physical interpretations,
and examples. We will include neither proofs nor intricate theoretical developments. Sometimes we will
sacrifice rigor for the sake of an easier understanding. To cover in depth the theory supporting our
presentation we refer the interested reader to the specialized literature such as [6,8,10–14].

4.2 State Variables: Basic Concepts

4.2.1 Introduction

One of the most frequently used class of models is that defined by a set of equations on a set of system
inner variables. These inner variables are known as state variables. The values they have at a specific
time instant form a set known as the system state, although we will often use the expressions state variables
and system state as synonyms.

The above definition is too vague since it would fit to any set of system variables. What is distinctive
in the set of state variables is clarified in the following definition.

A set of state variables for the given system is a set of system inner variables such that any system variable
can be computed as a function of the present state and the present and future system inputs.

In this definition we have preferred to stress the physical meaning of state variables. However, a more
abstract definition is also possible. The definition also implies that if we know the state at time t we can
then compute the energy stored in the system at that instant. The energy stored in a system depends on
some system variables (speed, voltage, current, position, temperature, pressure, etc.) and all of them, by
definition, can be computed from the system state.

The above definition suggests that one can think of the state in a more general way: the state variables
can be chosen as a function (e.g., a linear combination) of inner system variables. This generalization
builds some distance between the state and its physical interpretation. However, it has the advantage of
making the framework more general. It also makes more evident an interesting feature: the choice of
state variables is not unique.

Another important observation is that the time evolution of the state, the state trajectory itself, can
be computed from the present value of the state and the present and future inputs. Thus, the models
involved are first order differential (continuous time) or one-step recursive (discrete time) equations.

4.2.2 Basic State Space Models

If we denote by x the vector corresponding to a particular choice of state variables, the general form of
a state variable model is as follows:
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For continuous-time systems

(4.1)

(4.2)

where u(t) is the system input vector and y(t) is an output vector.

For discrete-time systems

(4.3)

(4.4)

Similarly to the continuous-time case, u[t] is the system input vector and y[t] is an output vector.
Note that throughout this chapter we will use the symbol t to denote continuous and discrete time, but

the difference will be made on using [ and ] to enclose the argument in the discrete-time case, when t ∈ �.
To obtain a first glimpse at the concepts underlying the state space approach, we consider the following

example. 

Example 4.1

In Figure 4.1, an external force f(t) is applied to a mass-spring system. The position d(t) is measured
with respect to the mass position when the spring is relaxed and no external force is applied. The mass
movement is damped by a viscous friction force proportional to the mass velocity, v(t).

From first principles we know that to be able to compute the mass position and the mass velocity we
must know the initial mass velocity, and the initial spring stretching. Thus, the state vector must have
two components, that is, x(t) = [x1(t) x2(t)]

T
, and a natural state choice is

(4.5)

(4.6)

With this choice, one can apply Newton laws to obtain

(4.7)

where D is the viscous friction proportional constant. We are now in position to write the state equations as

(4.8)

(4.9)

FIGURE 4.1 Mechanical system.

dx
dt
------ F x t( ) , u t( ), t( )=

y t( ) G x t( ), u t( ) ,  t( )=

x t 1+[ ] Fd x t[ ], u t[ ], t( )=

y t[ ] Gd x t[ ], u t[ ], t( )=

x1 t( ) d t( )=

x2 t( ) v t( ) x· 1 t( )= =

f t( ) M
dv t( )

dt
------------ Kd t( ) Dv t( )+ + M x· 2 t( ) Kx1 t( ) Dx2 t( )+ += =

x· 1 t( ) x2 t( )=

x· 2 t( ) K
M
-----– x1 t( ) D

M
-----x2 t( )–

1
M
----- f t( )+=

M

Viscous friction

d(t)

v(t)

K

f(t)

9260_04.fm  Page 3  Thursday, October 11, 2007  3:59 PM



4-4 Mechatronic System Control, Logic, and Data Acquisition

We also observe that the energy, w(t), stored in the system is given by

(4.10)

where Λ is a diagonal matrix: Λ = diag .
Finally, the nonuniqueness of the state vector can be appreciated if, instead of the choices made in

4.8, we choose a new state (t) related to x(t) by a nonsingular matrix T ∈�
2×2, that is,

(4.11)

More on this will be said in Section 4.3.3.

4.2.3 Signals and State Space Description

The state space framework can also be used to describe a wide variety of signals using a model of the form

 (4.12)

(4.13)

To illustrate the idea we consider a continuous-time signal given by

(4.14)

This signal can be interpreted as the solution for the homogeneous differential equation

(4.15)

If we now choose, as state variables, x1(t) = f(t), x2(t) = (t), and x3(t) = (t), then the state space
model for this signal is

(4.16)

In this usage of state space models, the state variables have no particular physical meaning. However,
this description is particularly useful in signal reconstruction theory and when dealing with disturbances
in control system synthesis.

4.3 State Space Description for Continuous-Time Systems

In this section the state space description for continuous-time systems is presented. The analysis is focused
on the class of linear and time invariant systems; to do that, we first show how to build a linear model
from the nonlinear Equations 4.1 and 4.2.

An additional restriction is that, at this stage, the systems under study have no pure time delays. This
feature generates an infinite dimensional state vector. However, we will see in section 4.4 that this class
of systems can be successfully dealt with using sampled data models.

w t( ) 1
2
--K d t( )( )2 1

2
--M v t( )( )2+ x t( )TΛx t( )= =
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--- , 
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2
-----
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4.3.1 Linearization

Since we will concentrate on time invariant systems, (4.1) and (4.2) can be rewritten as

(4.17)

(4.18)

We assume that the model (4.17) and (4.18) has at least one equilibrium point given by {xQ, uQ, yQ}.
This is a triad conformed by three constant vectors satisfying

(4.19)

(4.20)

Note that the equilibrium point is defined by the state derivatives equal to zero.
If we now consider a neighborhood around the equilibrium point, then we can approximate the model

(4.17) and (4.18) by a truncated Taylor’s series having the form

(4.21)

(4.22)

Equations 4.21 and 4.22 can then be written as

(4.23)

(4.24)

where

(4.25)

and

(4.26)

The linearization ideas presented above are illustrated in the following example.

Example 4.2

Consider the magnetic levitation system shown in Figure 4.2.
The metallic sphere is subject to two forces: its own weight, mg, and the attraction force generated

by the electromagnet, f(t). The electromagnet is commanded through a voltage source, e(t) > 0, ∀t.

dx
dt
------- F x t( ), u t( )( )=

y t( ) G x t( ) , u t( )( )=

0 F xQ , uQ( )=

yQ G xQ , uQ( )=
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∂ x
------- x t( ) xQ–( ) ∂F

∂ u
-------+x=xQ
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+≈
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∂ x
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∂ u
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+≈
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dt
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∆x t( ) x t( ) xQ ,–= ∆u t( ) u t( ) uQ , ∆y t( ) y t( ) yQ–=–=
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-------=x =xQ

u =uQ
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C
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∂ x
------- , D
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∂ u
-------- x =xQ

u =uQ

=x= xQ
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4-6 Mechatronic System Control, Logic, and Data Acquisition

The attraction force on the sphere, f(t), depends on the distance h(t) and the current, i(t). This relation
can be approximately described by

(4.27)

where K1 and K2 are positive constants. 
Using first principles we can write

(4.28)

(4.29)

(4.30)

We next choose as state variables: the current i(t), the sphere position h(t), and the sphere speed v(t),
that is,

(4.31)

Then, from 4.28–4.30 we can set the system description as in 4.1 yielding

(4.32)

(4.33)

(4.34)

Before one can build the linearized model, an equilibrium point has to be computed. The driving
input in this system is the source voltage e(t). Say that the equilibrium point is obtained with e(t) = EQ.

FIGURE 4.2 Magnetic levitation system.

+R
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dt
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dt
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dt
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dv t( )
dt
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dt
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m x2 t( ) K2+( )
---------------------------------x1 t( ) g–= =
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Hence, the state in equilibrium can be computed from (4.32) to (4.34), setting all the derivatives equal
to zero, that is,

(4.35)

(4.36)

(4.37)

The setting now is adequate to build the linearized model in the incremental input ∆e(t) and the
incremental state ∆x(t) = [∆x1(t) ∆x2(t) ∆x3(t)]

T
. The result is

(4.38)

(4.39)

(4.40)

If we define as the system output, the sphere position h(t), we can then compare the above equations
with (4.23) and (4.24) to obtain

(4.41)

In the sequel we will drop the prefix ∆, but the reader should bear in mind that the model above is
linear in the incremental components of the state, the inputs and the outputs around a chosen equilibrium
point.

4.3.2 Linear State Space Models

Our starting point is now the linear time invariant state space model

(4.42)

(4.43)

The solution to Equation 4.42, subject to x(to) = xo, is given by

(4.44)
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y t( ) Cx t( ) Du t( )+=

x t( ) e
A t− to( )

xo e
A t−τ( ) Bu τ( ) τ t to≥∀d
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where the transition matrix eAt satisfies

(4.45)

The interested reader can check that (4.44) satisfies (4.43). To do that he/she should use the Leibnitz’s
rule for the derivative of an integral.

With the above result, the solution for (4.43) is given by

(4.46)

4.3.2.1 System Dynamics

The state of the system has two components: the unforced component, x u(t), and the forced component,
xf(t), where

(4.47)

(4.48)

To gain insight into the state space model and its solution, consider the case when to = 0 and u(t) = 0
∀t ≥ 0, that is, the state has only the unforced part. Then

(4.49)

Further assume that A ∈ �
n and that, for simplicity, it has distinct eigenvalues λ1, λ2,…,λn with n

(linearly independent) eigenvectors v1, v2,…, vn. Then there always exists a set of constants α1, α2,…,αn

such that

(4.50)

A well-known result from linear algebra tells us that the eigenvalues of Ak are , ,…,  with
corresponding eigenvectors v1, v2,…, vn. The application of this result yields

(4.51)

This equation shows that the unforced component of the state is a linear combination of natural modes,
{ }, each of which is associated with an eigenvalue of A. Hence the matrix A determines:

• Structure of the unforced response

• Stability (or otherwise) of the system

• Speed of response

When the matrix A does not have a set of n independent eigenvectors, Jordan forms can be used (see,
e.g., [9,10]).

e
A t I
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∞
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y t( ) Ce
A t− to( )

xo C e
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to

t

∫+=

xu t( ) e
A t− to( )
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xf t( ) e A t−τ( )Bu τ( ) τd
to

t

∫=

x t( ) eA txo=

λ1
k λ2

k λn
k

e
λ ,t
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4.3.2.2 Structure of the Unforced Response

In the absence of input, the state evolves as a combination of natural modes which belong to a defined
class of functions: all those generated by exponentials with either real or complex exponents. Hence these
modes include constants, real exponentials, pure sine waves, exponentially modulated sine waves, and
some other specials functions arising from repeated eigenvalues.

To illustrate these ideas and their physical interpretation consider the system in Example 4.1. For that
system

(4.52)

Hence, the system eigenvalues are solutions to the equation

(4.53)

that is,

(4.54)

Hence, when the damping is zero (D = 0), the system eigenvalues are a couple of conjugate imaginary
numbers, and the two natural (complex) modes combine to yield a sustained oscillation with angular
frequency ωo = . This is in agreement with our physical intuition, since we expect a sustained
oscillation to appear when the system has nonzero initial conditions even if the external force, f(t), is zero.

When the system is slightly damped (D2 < 4KM), the matrix eigenvalues are conjugate complex
numbers, and the associated complex natural modes combine to yield an exponentially damped sine
wave. This also agrees with intuition, since the energy initially stored in the mass and the spring will
periodically go from the mass to the spring and vice versa but, at the end, it will completely dissipate, as
heat, in the viscous friction.

Finally if the damping is high (D2 > 4KM), the matrix eigenvalues are a couple of negative real numbers,
and the natural modes are two decaying exponentials. The heavy damping will preclude oscillations and
the initial energy will dissipate quickly.

The three different situation are illustrated in Figure 4.3. For this simulation we have used three
different values of the viscous friction constant D and

(4.55)

Note that, except when there is no friction (D = 0), the mass comes to rest asymptotically.

FIGURE 4.3 Unforced response of a mass-spring system.
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4.3.2.3 Structure of the Forced Response

When the initial state is zero, the state will exhibit only the forced component. The forced component
of the state will include natural modes and some additional forced or particular modes, which depend
on the nature of the system input u(t). In general the forcing modes in the input will also appear in the
state. However, some special cases arise when some of the forcing modes in u(t) coincide with some
system natural modes.

4.3.2.4 System Stability

Stability in linear, time-invariant systems can also be analyzed using the state matrix A. 
All systems variables can be expressed as linear functions of the state and the system input. When the

system input u(t) is a vector of bounded time functions, then the boundeness of the system variables
depends on the state to be bounded.

We then have the following result:

Theorem 4.1 Consider a system with the state description (4.42) and (4.43) where B, C, and D have
bounded elements. Then the system state (and hence the system output) is bounded for all bounded inputs
if and only if the eigenvalues of A have negative real parts.

To illustrate this theorem we again consider the magnetic levitation system from Example 4.2. For
that system the matrix A (in the linearized model) is given by

(4.56)

and its eigenvalues are the roots of det(λI − A) = 0, where

(4.57)

One can then see that the set of matrix eigenvalues includes one which is real and greater than zero.
This implies that the system is unstable. This is in agreement with physical reasoning. Indeed, at least
theoretically, we can position the sphere in equilibrium (this is described by x2Q in (4.37)). However, this
is an unstable equilibrium point, since as soon as we slightly perturb the sphere, it accelerates either towards
the ground or towards the magnet.

4.3.2.5 Speed of Response and Resonances

Even if the system is stable there are still some questions regarding other fundamental properties. 
To start with, in stable systems the real part of the eigenvalues determines the speed at which the associated

mode converges to zero. The slowest modes, the dominant modes, determine the speed at which the system
output settles at its steady state value, that is, determine the system speed of response. For example, if the system
dominant eigenvalues are λ1,2 = −σ ±  jωo , σ > 0, the combined natural modes generate an exponentially
damped sine wave y(t) = Ae−σt sin(ωot + α). We then observe that this signal decays faster for a larger σ.

A second issue, of special importance for flexible structures, is the presence of resonances, which have
associated complex eigenvalues. In physical systems, the existence of complex eigenvalues is intimately
connected to the presence of two forms of energy. The resonance describes the (poorly damped) oscil-
lation between those two forms of energy. In electric circuits those energies are the electrostatic energy
in capacitors and the electromagnetic energy in inductors. In mechanical systems we have the kinetic
energy of moving masses and the potential energy in springs. Flexible structures may have many resonant
modes. One of the main problems with resonances occurs when the input contains energy at a frequency

A

R
L
---– 0 0

0 0 1–

Rg
EQ

------ Rmg
2

K1EQ

--------------– 0

=
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State Space Analysis and System Properties 4-11

close to the resonant frequency. For example, if a system has eigenvalues λ1,2 = −0.05 ± j, that is, the
resonant frequency is 1 rad/s and, additionally, one of the input components is a sine wave of frequency
0.9 rad/s, then the system output exhibits a very large (forced) oscillation with amplitude initially growing
almost linearly and later, stabilizing to a constant value. In real situations this phenomenon may destroy
the system (recall the Tacoma bridge case).

4.3.3 State Similarity Transformation

We have already said that the choice of state variables is nonunique. Say that we have a system with input
u(t), output y(t), and two different choices of state vectors: x(t) ∈ �n with an associated 4-tuple (A, B,
C, D), and (t)  ∈ �

n with an associated 4-tuple ( ). Then there exists a nonsingular matrix
T ∈�

n×n such that

(4.58)

This leads to the following equivalences:

(4.59)

Different choices of state variables may or may not respond to different phenomenological approaches
to the system analysis. Sometimes it is just a question of mathematical simplicity, as we shall see in Section
4.6. In other occasions, the decision is made considering relative facility to measure certain system variables.
However, what is important is that, no matter which state description is chosen, certain fundamental
system characteristics do not change. They are related to the fact that the system eigenvalues are invariant
with respect to similarity transformations, since

(4.60)

(4.61)

Hence, stability, nature of the unforced response, and speed of response are invariants with respect to
similarity transformations.

Example 4.3

Consider the electric network shown in Figure 4.4
We choose the state vector x(t) = [x1(t) x2(t)]T = [iL(t) vc(t)]T. Also u(t) = vf (t). Using first principles

we have that

(4.62)

FIGURE 4.4 Electric network.
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---–
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4-12 Mechatronic System Control, Logic, and Data Acquisition

An alternative state vector is . It is straightforward to show
that

(4.63)

4.3.4 State Space and Transfer Functions

The state space description of linear time invariant systems is an alternative description to that provided
by transfer functions. Strictly speaking, the state space description has a wider scope, as we shall see in
this subsection.

For a linear time invariant system with input u(t)� �
m and output y(t)� �

p, the transfer function,
H(s)� Cp ×m, is defined by the equation

(4.64)

that is, the (i, j) element in matrix H(s) is the Laplace transformation of the response in the i th output
when a unit impulse is applied at the j th input, with zero initial conditions and with the remaining inputs
equal to zero for all 

On the other hand, if we Laplace-transform (4.42) and (4.43) with zero initial conditions, we obtain

(4.65)

(4.66)

For simplicity, and to be able to go deeper into the analysis, in the remaining part of this section we
will focus our attention on the class of scalar systems, that is, systems with a single input and a single
output (SISO systems). This means that m = p = 1, B becomes a column vector, C is a row vector, and
D = H(∞) (in real systems it usually holds that D = H(∞) = 0). For SISO systems, H(s) is a quotient of
polynomials in s, that is,

(4.67)

where Adj(o) denotes the adjoint matrix of (o).
A key issue is that the transfer function poles are eigenvalues of matrix A. However, it is not true, in

general, that the set of transfer function poles is identical to the set of matrix A eigenvalues. This can be
appreciated through the following example.

Example 4.4

Let

(4.68)

x t( ) x1 t( ) x2 t( )[ ]T= i t( ) i2 t( )[ ]T=

x t( )
1

R2

----- R2 1

0 1

T

x t( )=

    

Y s( ) H s( )U s( ), where H s( )[ ] i j

Yi s( )
Uj s( )
------------= =

t 0.≥

X s( ) sI A–( ) 1– BU s( )=

H s( ) C Adj sI A–( )B D det sI A–( )+
det sI A–( )

----------------------------------------------------------------------------=

A 2– 1

0 3–
, B 1

0.5
, C 0 1 , D 0= = = =
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Then

(4.69)

(4.70)

Therefore, the transfer function has only one pole, although matrix A has two eigenvalues. We observe
that there is a pole–zero cancellation in H(s). This phenomenon is closely connected to the question of
system properties, which is the central topic in Section 4.6.

To acquire a phenomenological feeling on this issue, consider again the magnetic levitation system in
Example 4.2. If we define the current i(t) as the system output we can immediately see that the transfer
function from the input e(t) to this output has only one pole. This contrasts with the fact that the
dimension of the state is equal to three. The explanation for this is that, in our simplified physical model,
the current i(t) is unaffected by the position and the speed of the metallic sphere (note that we have
neglected the changes in the inductance due to changes in the sphere position).

The key result is that the transfer function may not provide the same amount of information than
the state space model for the same system.

An interesting problem is to obtain a state space description from a given transfer function. The reader
must be aware that the resulting state space model does not reveal pole-zero cancellations; for that reason,
the obtained description is known as a minimal realization.

There are many methods to go from the transfer function to a state space model. We present below
one of those methods.

Consider a transfer function given by

(4.71)

We first recall that D = HT(∞). We can thus concentrate on the transfer function H(s) = HT(s) − HT(∞),
which is a strictly proper transfer function.

Consider next a variable  whose Laplace transform, V (s), satisfies

(4.72)

This implies that

(4.73)

(4.74)

(4.75)

H s( ) C sI A–( ) 1– B
1

s 2+( ) s 3+( )
-------------------------------- 0 1

s 3+ 1

0 s 2+
1

0.5
= =

0.5 s 2+( )
s 2+( ) s 3+( )

-------------------------------- 0.5
s 3+( )

---------------= =

HT s( )
Bo s( )
Ao s( )
------------ HT ∞( )+ bn−1sn−1 bn−2sn−2 … b+ 1s b0+ + +

s
n

an−1s
n−1 … a1s a0+ + + +

------------------------------------------------------------------------------ HT ∞( )+= =

v, t( ) R∈

Y s( ) b¯ −1V¯ s( )
¯ =1

n

∑=
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4-14 Mechatronic System Control, Logic, and Data Acquisition

Now choose as state variables, 

x (t) = v (t) (4.76) 

The above equations yield

(4.77)

(4.78)

Example 4.5

The transfer function of a system is given by

(4.79)

Then a minimal realization for this system is

(4.80)

(4.81)

A key result is that a system transfer function is invariant with respect to state similarity
transformations.

4.4 State Space Description for Discrete-Time 
and Sampled Data Systems

In this section we will present an overview of the state space description for discrete time systems, mainly
based on the results presented for the continuous time case. 

Discrete time models may arise from two different sources:

• From a pure discrete-time system, usually nonlinear, whose variables are defined only at specific
time instants tk. Systems like that can be found in economic systems, stochastic process theory, etc.

• From a discretization of a continuous-time system. In this case, we are only concerned with the
value of some system variables at specific time instants. These models are useful when digital
systems, such as microcontrollers, computers, PLCs, or others, interact with continuous-time real
systems such as mechanical structures, valves, tanks, analog circuits or a whole industrial process*.
These are called sampled data systems.

In both cases our analysis will be focused on the class of linear and time invariant models.

*Through digital-to-analog and analog-to-digital converters (DAC and ADC, respectively).

A
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State Space Analysis and System Properties 4-15

4.4.1 Linearization of Discrete Time-Systems

The discrete time equivalents to (4.3) and (4.4) are given by the nonlinear equations

(4.82)

(4.83)

The linearization of models for discrete time systems follows along the same lines to that for continuous
ones. Consider firstly an equilibrium point given by {xQ, uQ, yQ}:

(4.84)

(4.85)

Note that an equilibrium point is defined by a set of constant values of the state and constant values
of the input which satisfy (4.82) and (4.83). This yields a constant system output. The discrete model
can then be linearized around this equilibrium point. Defining

(4.86)

we have the state space model

(4.87)

(4.88)

where

(4.89)

4.4.2 Sampled Data Systems

As we have already said, discrete time models are frequently obtained by sampling inputs and outputs
in continuous-time systems. When a digital device is to be used to act upon a continuous-time system,
the command signals need only to be defined at specific instants, and not at all time. However, to be
able to act upon the continuous-time system, we need a continuous-time signal. This is usually built with
a zero order hold, which generates a staircase signal. Also, when we want to digitally measure a system
variable this is done at some specific time instants. This means that we must sample the output signals.
Figure 4.5 illustrates these concepts. If we assume a periodic sampling, with period ∆, we are only
interested in the signals at time k∆. In the sequel we will drop ∆ from the arguments, using u(k∆) = u[t]
for the input, y(k∆) = y[t] for the output, and x(k∆) = x[t] for the system state.

FIGURE 4.5 Schematic representation of a sampled data system.

x t 1+[ ] Fd x t[ ] , u t[ ]( )=
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4-16 Mechatronic System Control, Logic, and Data Acquisition

If we consider the continuous, time-invariant, and linear state space model defined by Equations 4.42
and 4.43, with initial state x(k0∆) = x0, we can use Equation 4.44 to calculate the next value of the state:

(4.90)

Furthermore, if a zero order hold is used, that is, u(τ) = u(k0∆) for k0∆ ≤ τ < k0∆ + ∆, we obtain

(4.91)

And, if we know the state and the input at time k0∆, the output is defined by Equation 4.43:

(4.92)

We can now conclude that given a continuous-time model with state space matrices {A, B, C, D}, and
we sample inputs and outputs every ∆ seconds then, the equivalent sampled data systems will be described
by the discrete-time state space model:

(4.93)

(4.94)

where

(4.95)

There are different methods to obtain Ad defined in (4.95), but a simple way to calculate this matrix
is to use Laplace transformation. This yields

(4.96)

Example 4.6

Consider the mechanical system of Example 4.1 on p. 4, that was described by the state space model:

(4.97)

where f(t) is the external force, and where we can choose either the mass position, x1(t), or the mass
velocity, x2(t), of the mass, as the system output.

For the purpose of a numerical illustration, we set M = 1 kg, D = 1.2 N s/m, and K = 0.32 N/m.
The matrix Ad is obtained from (4.96), applying inverse Laplace transformation

(4.98)

x k0∆ ∆+( ) e
A k0∆+∆− k0∆( )

x k0∆( ) e
A k0∆+∆−τ( )
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k0∆+∆

∫+=
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A∆x k0∆( ) e
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dηB u k0∆( )

0

∆

∫+=

y k0∆( ) Cx k0∆( ) D u k0∆( )+=

x k∆ ∆+( ) Adx k∆( ) Bdu k∆( )+=
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Ad eA∆, Bd e
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dηB , Cd
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x· 1 t( )
x· 2 t( )

0 1

K
M
-----– D

M
-----–

 
x1 t( )

x2 t( )

0

1
M
-----–

f t( )+=

Ad L 1– s 1–

0.32 s 1.2+

1–

 
 
 

t =∆
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and the Bd matrix is obtained from (4.95):

(4.99)

Note that both, Ad and Bd are functions of ∆. Thus, the sampling period, ∆, has a strong presence in
the dynamic behavior of the sampled system, as we shall observe in the following subsections.

4.4.3 Linear State Space Models

We will analyze the linear time invariant state space model

(4.100)

(4.101)

This can be a linearized discrete time model like (4.87) and (4.88), or a sampled data system like (4.93)
and (4.94) where ∆ has been dropped from the time argument.

The solution to Equations 4.100 and 4.101, subject to x[to] = xo, is given by

(4.102)

where  is the transition matrix.
The reader can check easily that (4.102) satisfies (4.100). With the above result, the solution for (4.101)

is given by

(4.103)

4.4.3.1 System Dynamics

The state of the system has two components: the unforced component, x u[t], and the forced component,
x f[t], where

(4.104)

(4.105)

To gain insight into the state space model and its solution consider the case when to = 0 and u[t] = 0,
, that is, the state has only the unforced part. Then

(4.106)
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Further assume that  and that, for simplicity, it has n distinct eigenvalues η , with n linearly
independent eigenvectors v . Then there always exists a set of n constants α  such that

(4.107)

A well known result from linear algebra tells us that the eigenvalues of  are , for , with
corresponding eigenvectors v . The application of this result yields

(4.108)

(4.109)

This equation shows that the unforced component of the state is a linear combination of natural
modes, { }, and each one is associated with an eigenvalue of Ad, which are also known as natural
frequencies of the model. Thus, we again have that the matrix Ad determines:

• Structure of the unforced response

• Stability (or otherwise) of the system

• Speed of response

4.4.3.2 Structure of the Unforced Response

In the absence of input, the state evolves as a combination of natural modes which belong to a defined
class of functions: the powers of the model eigenvalues, either real or complex. These modes are discrete
functions related to constants, real exponentials, pure sine waves, exponentially modulated sine waves,
and some other specials functions arising from repeated eigenvalues.

To illustrate these ideas and their physical interpretation consider the sampled system in Example 4.6.
If ∆ = 1, the state space matrices are

(4.110)

Hence, the system eigenvalues are solutions to the equation

(4.111)

(4.112)

that is, η1 = 0.6703, η2 = 0.4493, and the unforced response is

(4.113)

where C1and C2 depend on the initial conditions only. We can observe that, when t tends to infinity, xu[t]
decays to zero, because |η1,2| < 1. Also these eigenvalues are positive real numbers, so there is no oscillation

Ad Rn× n∈

Ad
k η ,

k
k N∈

x t[ ] α¯ η¯
t
v¯

¯ =1

n

∑=

η¯
t
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, Bd
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0.5525
= =

det ηI Ad–( ) det η 0.8913– 0.5525–

0.1768 η 0.2283– 
 
 

=

η 0.6703–( ) η 0.4493–( ) 0= =

xu t[ ] C1 0.6702( ) t
C2 0.4493( )t+=
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in the natural modes. This last observation is consistent with the parameter choice in Example 1.6, which
made the mass-spring system to be overdamped.

4.4.3.3 Structure of the Forced Response

Consider the Equation 4.102. Then, when the initial state is zero, the state will only exhibit the forced
component. However, the forced component will still include natural modes plus some additional forced
or particular modes, which depend on the nature of the system input u[t]. In general, the forcing modes
in the input will also appear in the state. However, special cases arise when a forcing mode in u[t] coincides
with a system natural mode.

4.4.3.4 System Stability

Stability in linear time-invariant systems can also be analyzed using the state matrix Ad. As we said, all
systems variables can be expressed as linear functions of the state and the system input. When the system
input u[t] is a vector of bounded time functions, then the boundedness of the system variables depends
on the state to be bounded. We then have the following result:

Theorem 4.2 Consider a system with the state description (4.100) and (4.101) where Bd, Cd, and Dd have
bounded elements. Then the system state is bounded for all bounded inputs if and only if the eigenvalues of
Ad lies inside the unit disc, that is, |η | < 1, .

4.4.3.5 Speed of Response and Resonances

We recall that the natural modes of discrete-time systems are the powers of the eigenvalues η . Since
those eigenvalues can always be described as complex quantities, we can then write the natural modes as

(4.114)

Therefore, we have that

• 0 < |η | < ∞ determines the speed at which the mode decays to zero for stable systems (|η | < 1),
or grows to infinity for unstable systems (|η | > 1)

• −π < θ  ≤ π determines the frequency of the natural mode, measured in radians

Although the natural modes of stable systems decay to zero, their nature determines the system transient
response.

To illustrate these issues the step response, with zero initial conditions, is frequently used.

Example 4.7

Consider the first order, single-input single-output discrete-time system

(4.115)

(4.116)

To obtain the step response, we can use the Equation 4.103, where xo = 0, u[t] = 1, .

(4.117)

 (4.118)

(4.119)

,∀
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1 η¯
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The output signal, y[t] = yh[t] + yp[t], is shown in Figure 4.6, for different values of the eigenvalue η .
The transient is given by yh[t] = − , and the steady state response by yp[t] = 1.

We observed in Equation 4.114 that the system eigenvalues define the damping of its transient response,
but also determine its frequency of oscillation (when the eigenvalues have a nonzero imaginary part).
The potential problem when resonant modes exist is the same problem we found in the context of
continuous-time systems, that is, the system input contains a sine wave or another kind of signal, with
energy at a frequency close to one of the natural frequencies of the system. The system output still remains
bounded, although it grows to undesirable amplitudes.

Example 4.8

Consider the discrete-time system described by the state space model

(4.120)

(4.121)

The eigenvalues of the system are obtained from Ad:

(4.122)

And the associated natural modes, present in the transient response, are

(4.123)

The natural modes are slightly damped, because |η1,2| is close to 1, and they show an oscillation of
frequency π/4.

In the plots shown in Figure 4.7 we appreciate a strongly resonant output. The upper plot corresponds
to an input u[t] = sin( t), that is, the input frequency coincides with the frequency of the natural modes.
In the lower plot the input is a square wave of frequency input signal π/12. In this case, the input third
harmonic has a frequency equal to the frequency of the natural modes.

4.4.3.6 Effect of Different Sampling Periods

We observe in Equation 4.95 that Ad and Bd depend on the choice of the sampling period ∆. This choice
determines the position of the eigenvalues of the system too. If we look at the Equation 4.96, assuming
that A has been diagonalized, we have that

(4.124)

FIGURE 4.6 Step response of the system for different eigenvalues.
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where { }are the eigenvalues of the underlying continuous-time systems. Then, these eigenval-
ues are mapped to the eigenvalues of the sampled-data system by equation:

(4.125)

In Figure 4.8 we observe the response of the sampled system of Example 4.6, choosing x1[t] as the
system output, when the initial condition is xo = [1 0]T, for different values of ∆. Observe that the
horizontal axis corresponds to t, so the real instants times are t∆.

FIGURE 4.7 Resonant effect in the system output.

FIGURE 4.8 Effect of sampling in natural modes.
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A fundamental issue regarding sampling of continuous-time signals is that the sampling period has
to be chosen small enough to capture the essential nature of the signal to be sampled. To exemplify an
ill-chosen ∆, assume that the signal f(t) = Asin(ωot) is sampled every ∆ seconds, with ∆ = 2 π/ωo,   ∈ �.
Then the resulting discrete time signal is f [t] = 0, .

4.4.3.7 Sampled Data Systems and Time Delays

We said in Section 4.3 that one cannot use continuous-time state space models to describe systems with
time delays, because they are infinite dimensional systems. It was also said there that we would be able
to tackle this problem using sampled signals. This is done using the following example.

Example 4.9

Consider the heating system sketched in Figure 4.9.
The measured temperature, y(t), of the flow depends on the power injected by the heat source. This

source is commanded by a control signal u(t). Changes in u(t) yield changes in the temperature y(t), but
with a significant time delay. The linearized system can thus be represented by the transfer function:

(4.126)

where U(s) and Y(s) are the Laplace transforms of u(t) and y(t), respectively.
We next assume that the input and output signals are sampled every ∆[s]. The time delay τ, in seconds,

is a function of the flow velocity and we can assume, for simplicity, that τ it is a multiple of the sampling
interval ∆, that is, τ  = m∆, . These delays translate in a factor z

m
 in the denominator of the Z-

transform transfer function. In other words, the delay gives rise to a set of m poles at the origin.
Furthermore, the continuous-time system eigenvalue at s = −λ becomes a discrete-time system eigenvalue
at z = e

−λ∆
 (see Equation 4.125). The resulting transfer function is

(4.127)

And this transfer function can be expressed as the discrete state space model

(4.128)

(4.129)

(4.130)

(4.131)

(4.132)

FIGURE 4.9 Heating system with time delay.
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We can then think of the states variables xm+1[t], …, x1[t] as the temperature at equally spaced points,
between the heat source and the temperature sensor.

When the time delay τ is not a multiple of the sampling period ∆, an additional pole at the origin and
an additional zero appear in the discrete transfer function. The details can be found elsewhere, for
example, in [7].

4.4.4 State Similarity Transformation

The idea of transforming the state via a similarity transformation equally applies to discrete-time systems.
The system properties also remain unchanged. 

4.4.5 State Space and Transfer Functions

For discrete-time systems the relation between state space and transfer function models is basically the
same as in the continuous-time case. As we said then, the state space description of linear time invariant
systems is an alternative description to that provided by transfer functions, although in some situations
it provides more information on the system.

For a linear discrete-time invariant system with input u[t] ∈ �
m and output y[t] ∈�

p, the transfer
function, H[z]∈ C p×m, is defined by the equation

(4.133)

that is, the (i, j) element in matrix H[z] is the Zeta transformation of the response in the i th output when
a unit Kronecker’s delta is applied at the j th input, with zero initial conditions and with the remaining
inputs equal to zero for all t ≥ 0.

On the other hand, if we apply Zeta transform to the discrete time state space model (4.100) and
(4.101), with zero initial conditions, we have

(4.134)

(4.135)

leading to

(4.136)

In the following analysis, we will focus on the class of scalar systems, that is, m = p = 1, Bd,  are
column vectors, and Dd = H[∞]. We can then see that H[z] is a quotient of polynomials in z, that is,

(4.137)

where Adj(o) denotes the adjoint matrix of (o).
We have again, paralleling the continuous-time case, that the transfer function poles are eigenvalues

of Ad. However, it is not true in general that the set of transfer function poles is identical to the set of
eigenvalues of the matrix. It is important to realize that transfer function models can hide cancellations
between poles and zeros, with the consequences described in Section 4.6.1 and Section 4.6.2.

A key result for discrete-time system is the same for continuous-time systems: the transfer function
may not provide the same amount of information than the state space model for the same system.

Y z[ ] H z[ ]U z[ ] , where H z[ ][ ]i j

Yi z[ ]
Uj z[ ]
-------------= =

X z[ ] zI Ad–( ) 1– BdU z[ ]=

Y z[ ] Cd X z[ ] DdU z[ ]+=
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One way to obtain the state space model is to use the same method proposed in Section 4.3.4 “State
Space and Transfer Functions,” applying Zeta transformation instead of Laplace transformation, and using
the fact that

(4.138)

Example 4.10

The transfer function of a system is given by

(4.139)

Then a minimal realization for this system is

(4.140)

(4.141)

In discrete-time models it also happens that the system transfer function is invariant with respect to
state similarity transformations.

4.5 State Space Models for Interconnected Systems

To build state space models for complex systems it is sometimes useful (and possible) to describe them
as the interconnection of simpler systems. That interconnection is usually a combination of three basic
interconnection structures: series, parallel, and feedback. In those three basic cases our aim is to obtain
a state space model for the composite system.

In the following analysis we will use two systems, which are defined by

(4.142)

(4.143)

(4.144)

(4.145)

4.5.1 Series Connection

The system interconnection shown in Figure 4.10 is known as a series or cascade connection. To build the
desired state space model, we first observe that y2(t) = u1(t). Also, the composite system input is u(t) = u2(t),

FIGURE 4.10 Series connection.

F z[ ] Z f t[ ]{ } zF z[ ]⇔ Z f t 1+[ ]{ }= =

H z[ ] 2z
2

z– 1+
z 0.8–( ) z 0.6–( )

----------------------------------------- 1.8z 0.04+
z

2
1.4z– 0.48+

------------------------------------ 2+= =

Ad
0 1

0.48– 1.4–
,       Bd

0

1
= =

Cd 0.04 1.8[ ],         Dd 2= =

System 1:
dx1 t( )

dt
--------------- A1x1 t( ) B1u1 t( )+=

y1 t( ) C1x1 t( ) D1u1 t( )+=

System 2:
dx2 t( )

dt
--------------- A2x2 t( ) B2u2 t( )+=

y2 t( ) C2x2 t( ) D2u2 t( )+=

x1(t )x2(t )
u1(t ) y1(t ) y(t )u(t )

u2(t ) y2(t )

9260_04.fm  Page 24  Thursday, October 11, 2007  3:59 PM



State Space Analysis and System Properties 4-25

and the composite system output is y(t) = y1(t). We thus obtain

(4.146)

(4.147)

4.5.2 Parallel Connection

The system interconnection shown in Figure 4.11 is known as a parallel connection. To obtain the desired
state space model we observe that the input is u(t) = u1(t) = u2(t) and the output for the whole system
is y(t) = y1(t) + y2(t). We obtain

(4.148)

(4.149)

4.5.3 Feedback Connection

The system interconnection shown in Figure 4.12 is known as feedback connection (with unit negative
feedback), and it corresponds to the basic structure of a control loop, where S1 is the plant and S2 is the
controller. To build the composite state space model we observe that the overall system input satisfies
the equation u(t) = u2(t) + y1(t), and the overall system output is y(t) = y1(t). Furthermore, we assume

FIGURE 4.11 Parallel connection.

FIGURE 4.12 Feedback connection.
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that the system S1 (the plant) is strictly proper, that is, D1 = 0. We then obtain

(4.150)

(4.151)

The same results apply, mutatis mutandis, to discrete-time interconnected systems. More details can be
found elsewhere, for example, in [15].

4.6 System Properties

4.6.1 Controllability, Reachability, and Stabilizability

A very important question that we must be interested in regarding control systems using state space models
is whether or not we can steer the state via the control input to certain locations in the state space. We
must remember that the states of a system frequently are internal variables like temperature, pressure,
level of tanks, or others. These are sometimes critical variables that we want to keep between specific
values.

4.6.1.1 Controllability

The issue of controllability is concerned with whether or not a given initial state x 0 can be steered to the
origin in finite time using the input u(t).

Example 4.11

If we examine the model defined in (4.152), we note that the input u(t) has no effect over the state x2(t).

(4.152)

Given an initial state [x1(0), x2(0)]T, the input u(t) can be chosen to steer x1(t) to zero, while x2(t)
remains unchanged.

Formally, we have the following definition: 

Definition 4.1 A state x o is said to controllable if there exists a finite interval [0, T] and an input {u(t),
t ∈ [0, T]} such that x(T) = 0. If all states are controllable, then the system is said to be completely
controllable.

4.6.1.2 Reachability

A related concept is that of reachability, used sometimes in discrete-time systems. It is formally defined
as follows:

Definition 4.2 A state  is said to be reachable, from the origin, if given x(0) = 0, there exists a
finite time interval [0, T] and an input {u(t), t ∈ [0, T]} such that x(T) = . If all states are reachable
the system is said to be completely reachable.

For continuous, time-invariant, linear systems, there is no distinction between complete controlla-
bility and reachability. However, the following example illustrates that there is a subtle difference in the
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discrete-time case. Consider the system and the output

(4.153)

We can see that this system is completely controllable since x[t] = 0,  and . This
implies that every initial state is controllable. However, no nonzero state is reachable.

In view of the distinction between controllability and reachability in discrete time, we will use the
term controllability in the sequel to cover the stronger of the two concepts.

Usually, in the context of linear time invariant systems, controllability and reachability are used
interchangeably.

4.6.1.3 Controllability Test

We now present a systematic way to determine the complete controllability of a system.

Theorem 4.3 Consider the linear, time-invariant, state space model where :

(4.154)

(4.155)

i) The set of all controllable states is the range space of the controllability matrix Γc[A, B] where

(4.156)

ii) The model is completely controllable if and only if Γc[A, B] has full row rank.

Example 4.12

Consider the state space model given in (4.152), with state space matrices

(4.157)

The controllability matrix for this system, is given by

(4.158)

Clearly, rank Γc[A, B] = 1, thus the system is not completely controllable.
The result above applies to continuous-time models, and it holds equally well for reachability of discrete-

time models.
Also we can see that the controllability of a system is a property that does not depend on the choice

of state variables. To see that, consider the similarity transformation defined in Section 4.4.4. Then,
observing that , we have

(4.159)

which implies that  and  have the same rank.
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The reader may wish to check that the state space models used to describe signals in Section 4.2.3 are
uncontrollable. Indeed, it is always true that any state space model where B = 0 is completely uncon-
trollable.

4.6.1.4 Loss of Controllability

Lack of controllability is sometimes a structural feature. However, in some other cases, it depends on the
numerical value of certain parameters. We illustrate this in the following example.

Example 4.13

Consider the electronic circuit shown in Figure 4.13.
We first build a state space model for the circuit. We choose, as state variables, x1(t) = iR1(t) and x2(t) =

vC3(t). Using first principles on the left half of the circuit we have that

(4.160)

This yields

(4.161)

(4.162)

And, similarly, from the right half of the circuit we obtain

(4.163)

(4.164)

The (ideal) operational amplifier ensures that v+(t) = v−(t), so we can combine the state space models
given in Equations 4.161–4.164 to obtain

(4.165)

(4.166)

FIGURE 4.13 Electronic circuit.
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The controllability matrix is then given by

(4.167)

and

(4.168)

where we can observe that the system is completely controllable if, and only if, .
This issue has a very important interpretation if we analyze it from the transfer function point of view.

Applying Laplace transform to Equations 4.161–4.164, the transfer function from vi(t) to vo(t) (recall
that V+(s) = V−(s)) is given by

(4.169)

where we can observe that the loss of complete controllability, when R1C1 = R3C3 obtained from (4.168),
means that there is a zero-pole cancellation in the transfer function, that is, the zero from the left half
of the circuit in Figure 4.13 is cancelled by the pole from the other part of the circuit. This issue will be
discussed in more detail in Section 4.6.3.

4.6.1.5 Controllability Gramian

The test of controllability gives us a yes or no answer about the controllability of a system model. However,
to conclude that a system is completely controllable says nothing about the degree of controllability. For
stable systems, we can quantify the effort to control the system state through the energy involved in the
input signal u(t) applied from t = −∞ to reach the state x(0) = x 0 at t = 0:

(4.170)

It can be shown that the minimal control energy is

(4.171)

where

(4.172)

The matrix P is called the controllability gramian, and it measures the controllability of the state
vector x(0). If this matrix is small, it means that we need a lot of energy in the control input u(t) to steer
the state vector to x 0. Indeed, we can appreciate the necessary effort for each one of the state variables,
making, for example x0 = [0,…, 0, 1, 0,…, 0]T.
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It is important to emphasize that the existence of the integral defined in (4.172) is guaranteed only if
the eigenvalues of A have negative real part, that is, the system must be stable.

Also, the controllability gramian P defined in (4.172) satisfies the Lyapunov equation

(4.173)

For discrete-time systems we have the following equations for the controllability gramian:

(4.174)

which satisfies 

(4.175)

The sum defined in (4.174) is bounded if and only if the discrete-time system is stable, that is, its
eigenvalues lie inside the unit disc.

Example 4.14

We can analyze the model of the Example 4.13, where the electronic circuit was described by the state
space models (4.165) and (4.166). If we want to appreciate the information that we can obtain from the
controllability gramian, defined in (4.172), when the model is close to losing complete controllability,
we can choose suitable values of the parameters that ensure R1C1 ≈ R3C3.

If we choose

(4.176)

the model will be described by

(4.177)

(4.178)

If we look at the relative magnitude of the elements of B, we can a priori say that the effect of the
input u(t) upon the state iR1(t) will be much weaker than its effect upon the state vC3(t). To verify this
we can compute the controllability gramian defined in (4.172), solving

(4.179)

(4.180)
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We have

(4.181)

So we can obtain the minimal control energy to steer the state x(t), from 0 in t = −∞ to x 0 in t = 0,
from Equation 4.171.

(4.182)

(4.183)

We can thus verify that the control energy to attain iR1(0) = 1 is six orders of magnitude greater than
the necessary energy to attain vC3(0) = 1.

Also, if we substitute the parameter values in Equation 4.169, we have that the transfer function is given by

(4.184)

from where we observe a zero-pole quasi cancellation.
The idea of gramian has been extended to include the unstable case; see [16]. 

4.6.1.6 Canonical Decomposition and Stabilizability

If we have a system which is not completely controllable, it can be decomposed into a controllable
subsystem and a completely uncontrollable subsystem in the following way.

Lemma 4.1 Consider a system having rank {Γc[A, B]} = k < n. Then there exists a similarity transformation
T such that ,

(4.185)

and  have the form

(4.186)

where  has dimension k and ( ) is completely controllable.

The above result tells us what states we can and what states we cannot steer to zero. To appreciate this,
we express the state and output equations in the form

(4.187)

(4.188)
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The controllable subspace of a state space model is composed of all states generated through every
possible linear combination of the states in . The stability of this subspace is determined by the location
of the eigenvalues of .

On the other hand, the uncontrollable subspace is composed of all states generated through every
possible linear combination of the states in . The stability of this subspace is determined by the location
of the eigenvalues of .

Hence, the input will have no effect over the uncontrollable subspace, so the best we can hope is that
this uncontrollable subspace is stable, since then the state in this subspace will go to the origin. In this
case the state space model is said to be stabilizable.

A key feature of the descriptions (4.187) and (4.188) arises from the fact that the transfer function is
given by

(4.189)

Equation 4.189 says that the eigenvalues of the uncontrollable subspace do not belong to the set of
poles of the system transfer function. This implies that there is a cancellation of all poles corresponding
to the roots of ( ).

4.6.1.7 Controllability Canonical Form

Lemma 4.2 Consider a completely reachable state space model for a SISO system. Then, there exists a
similarity transformation which converts the state space model into the following controllability canonical
form:

(4.190)

where λn + αn−1λ
n−1 + ⋅ ⋅ ⋅ + α1λ + α0 = det (λ I − A) is the characteristic polynomial of A.

Lemma 4.3 Consider a completely controllable state space model for a SISO system. Then, there exists a
similarity transformation which converts the state space model into the following controller canonical form:

(4.191)

where λn
 + αn−1λ

n−1
 + ⋅ ⋅ ⋅ + α1λ + α0 = det (λ I − A) is the characteristic polynomial of A.

4.6.2 Observability, Reconstructibility, and Detectability

If we consider the state space model of a system, one might conjecture that if one observes the output
over some time interval then this might tell us some information about the state. The associated model
property is called observability (or reconstructibility).
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4.6.2.1 Observability

Observability is concerned with the issue of what can be said on the state if we measure the plant output.

Example 4.15

If we look at the system defined by state space model

(4.192)

we can see that the output y(t) only is determined by x1(t), and the other state variable x2(t) has no
influence on the output. So the system is not completely observable.

A formal definition is as follows:

Definition 4.3 The state  is said to be unobservable if given x(0) = xo, and u(t) = 0 for t ≥ 0,
then y(t) = 0 for t ≥ 0, that is, we cannot see any effect of xo on the system output.

The system is said to be completely observable if there exists no nonzero initial state that it is
unobservable.

4.6.2.2 Reconstructibility

There is another concept, closely related to observability, called reconstructibility. Reconstructibility is
concerned with what can be said about x(T), having observed the past values of the output, y, for

. For linear time invariant, continuous-time systems, the distinction between observability and
reconstructibility is unnecessary. However, the following example illustrates that in discrete time, the two
concepts are different. Consider

(4.193)

(4.194)

This system is clearly reconstructible for all T ≥ 1, since we know for certain that x[T] = 0 for T ≥ 1.
However, it is completely unobservable since y[t] = 0,  irrespective of xo.

In view of the subtle difference between observability and reconstructibility, we will use the term
observability in the sequel to cover the stronger of the two concepts.

4.6.2.3 Observability Test

A test for observability of a system is established in the following theorem.

Theorem 4.4 Consider the linear, continuous, time-invariant, state space model where 

(4.195)

(4.196)

i) The set of all unobservable states is equal to the null space of the observability matrix Γo[A, C] where

(4.197)

ii) The system is completely observable if and only if Γo[A, C] has full column rank n.
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Example 4.16

Consider the following state space model:

(4.198)

The observability matrix is given by

(4.199)

Hence rank Γo[A, C] = 2, which says that the system is completely observable.

Example 4.17

If we look at the model defined in (4.192), we have

(4.200)

The observability matrix is

(4.201)

Hence rank Γo[A, C] = 1 < 2 and the system is not completely observable.
The above result also applies to discrete-time models.
The observability is a system property that does not depend on the choice of state variables. It can be

proved that the rank of the matrix defined in Equation 4.197 does not change when a similarity trans-
formation T is used (see Section 4.3.3).

4.6.2.4 Loss of Observability

Lack of observability may arise from structural system features. However, it is also possible that lack of
observability occurs when certain system parameters take some specific numerical values. This is the
same phenomenon, for controllability, we analyzed in Section 4.6.1. We expect that those parameters
will affect the complete observability of the model in a similar way. Let us look at the following example.* 

Example 4.18

Consider the electronic circuit in Figure 4.14. We can see this is the same as that in Figure 4.13 where
the left and right halves were swaped, so we can use similar equations to obtain a state space model. The
state variables have been chosen to be x1(t) = vC3(t) and x2(t) = iR1(t).

For the left half of the circuit, we have

(4.202)

(4.203)

*Which is the dual of Example 4.13.
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1 0
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0
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CA
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1 1–
, C 1 0[ ]= =

Γo A ,  C[ ] 1 0

1– 0
=
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dt

----------------- − 1
R3C3

-----------vC 3 t( ) 1
R3C3

-----------vi t( )+=

v+ t( ) vC3 t( )=
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And for the right half, we have

(4.204)

(4.205)

The operational amplifier, in voltage follower connection, ensures that v+(t) = v−(t), so we can combine
the state space models given in Equations 4.202–4.205:

(4.206)

(4.207)

The observability matrix is given by

(4.208)

To determine the complete observability, or otherwise, we need to compute the matrix determinant

(4.209)

from where we conclude that the model system is completely observable if and only if, ,
which is the same condition we obtained in Example 4.13.

Applying Laplace transform to Equations 4.204–4.203 we obtain the transfer function from Vi(s) to Vo(s):

(4.210)

FIGURE 4.14 Electronic circuit.
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The condition R1C1 = R3C3 produces the loss of complete observability, leading to a pole-zero cancel-
lation in the model transfer function, i.e., the pole from the left half of the circuit in Figure 4.14 is cancelled
by the zero from the right half. There is subtle difference between the transfer functions in (4.210) and
(4.169). The final result is the same, but the order the cancellation is different in each case. The zero-pole
cancellation is connected to the loss of complete observability and the pole-zero cancellation is connected
to the loss of complete controllability. These issues will be discussed in more detail in Section 4.6.3.

4.6.2.5 Observability Gramian

The observability test in Theorem 4.4 answers yes or no to the question about completely observability
of a model. However, sometimes we are interested in the degree of observability for a particular model.
So we can quantify the energy of the output signal y(t), when there is no input (u(t) = 0) and the state
is x(0) = x 0 at t = 0

(4.211)

It can be proved that the ouput energy is

(4.212)

where

(4.213)

The matrix Q is called observability gramian, and it measures the observability of the state vector
x(0). If this matrix is small, it means that we have a weak contribution of the initial state x 0 in the energy
of the output y(t). Indeed, we can appreciate the effect of each one of the state variables taking, for
example, x 0 = [0,…, 0, 1, 0,…, 0]

T
.

Note that the existence of the integral defined in (4.213) is guaranteed if and only if the system is
stable, i.e., if and only if the eigenvalues of A have negative real part.

Also, the observability gramian Q defined in (4.213) satisfies the Lyapunov equation

(4.214)

For stable discrete-time systems, the controllability gramian is defined by

(4.215)

which satisfies

(4.216)

Example 4.19

We will use the model of Example 4.18, described by the state space models (4.206) and (4.207), to
appreciate the utility of the observability gramian (4.213), especially when the model is close to losing
complete observability, i.e., when R1C1 ≈ R3C3.
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Assuming the same component values as in Example 4.14 for R1, R2, R3, C1, and C3 we have

(4.217)

(4.218)

If we look at the relative magnitude of the components of C matrix, we can foretell a priori that the
output vo(t) will be mainly determined by state iR1(t). To verify this we compute the observability gramian
defined in (4.172), solving

(4.219)

(4.220)

 We have

(4.221)

From there we can compute the contribution of each state to the total energy in the output. Doing
this, we verify that the state variable iR1(t) has an effect over the output greater than the effect of vC3(t),
as defined in Equation 4.212:

(4.222)

(4.223)

 The transfer function is

(4.224)

We observe that there is a pole-zero quasi-cancellation.

4.6.2.6 Duality Principle

We observe a remarkable similarity between the results in Theorem 4.3 and in Theorem 4.4, and also
for the definitions of the gramians (4.172) and (4.213). This is known as the duality principle, and it
can be formalized as follows:

Theorem 4.5 (Duality) Consider a state space model described by the 4-tuple (A, B, C, D). Then the
system is completely controllable if and only if the dual system (AT, CT, BT, DT) is completely observable.

4.6.2.7 Canonical Decomposition and Detectability

The above theorem can often be used to go from a result on controllability to one on observability and
vice versa. The dual of Lemma 4.1 is:
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Lemma 4.4 If rank {Γo[A, C]} = k < n, there exists a similarity transformation T such that with
, then  and  take the form

(4.225)

where  has dimension k and the pair  is completely observable.

This result has a relevance similar to that of the controllability property and the associated decompo-
sition. To appreciate this, we apply the dual of Lemma 4.1 to express the (transformed) state and output
equations in partitioned form as

(4.226)

(4.227)

The above description reveals why one can be in trouble when trying to control a system using only
the system output. The output has no information on the state .

The observable subspace of a model is the space composed of all states generated through every
possible linear combination of the states in . The stability of this subspace is determined by the location
of the eigenvalues of .

The unobservable subspace of a model is the space composed of all states generated through every
possible linear combination of the states in . The stability of this subspace is determined by the
location of the eigenvalues of .

If the unobservable subspace is stable we say that the system is detectable.
A key feature of the descriptions (4.226) and (4.227) arises from the fact that the transfer function is

given by

(4.228)

Equation (4.228) says that the eigenvalues of the unobservable subspace do not belong to the set of
poles of the system transfer function. This implies that there is a cancellation of all poles corresponding
to the roots of ( ).

4.6.2.8 Observability Canonical Form

There are also duals of the canonical forms given in Lemmas 4.2 and 4.3. For example, the dual of Lemma
4.3 is:

Lemma 4.5 Consider a completely observable SISO system. Then there exists a similarity transformation
that converts the model to the observer canonical form:

(4.229)

(4.230)
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4.6.3 Canonical Decomposition

Further insight into the structure of linear dynamical systems is obtained by considering those systems
which are only partially observable or controllable. These systems can be separated into completely
observable and completely controllable systems.

The two results of Lemmas 4.1 and 4.4 can be combined for those systems, which are neither completely
observable nor completely controllable. We can see it as follows.

Theorem 4.6 (Canonical Decomposition Theorem) Consider a system described in state space form.
Then, there always exists a similarity transformation T such that the transformed model for  takes
the form

(4.231)

where

i) The subsystem [ ] is both completely controllable and completely observable and has the
same transfer function as the original system (see Lemma 4.6).

ii) The subsystem

(4.232)

is completely controllable.
iii) The subsystem

(4.233)

is completely observable.

The canonical decomposition described in Theorem 4.6 leads to an important consequence for the
transfer function of the model, which will take only the completely observable and completely controllable
subspace.

Lemma 4.6 Consider the transfer function matrix H(s) given by

(4.234)

Then

(4.235)

where , and  are as in Equation 4.231. This state description is a minimal realization of the transfer
function.
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If M is any square matrix and we denote by Λ{M} the set of eigenvalues of M, then

(4.236)

where
 = eigenvalues of the system,
 = eigenvalues of the controllable and observable subsystem,
 = eigenvalues of the controllable but unobservable subsystem,
 = eigenvalues of the uncontrollable but observable subsystem,
 = eigenvalues of the uncontrollable and unobservable subsystem.

We observe that controllability for a given system depends on the structure of the input ports, that is,
where, in the system, the manipulable inputs are applied. Thus, the states of a given subsystem may be
uncontrollable for a given input, but completely controllable for another. This distinction is of funda-
mental importance in control system design since not all plant inputs can be manipulated (consider, for
example, disturbances) and, therefore, cannot be used to steer the plant to reach certain states.

Similarly, the observability property depends on which outputs are being considered. Certain states
may be unobservable from a given output, but they may be completely observable from some other
output. This also has a significant impact on output feedback control systems, since some states may not
appear in the plant output being measured and feeded back. However, they may appear in crucial internal
variables and thus be important to the control problem.

4.6.4 PBH Test

An alternative test for controllability and observability is provided by the following lemma known as
PBH test.

Lemma 4.7 Consider a state space model (A, B, C). Then
(i) The system is not completely observable if and only if there exists a nonzero vector x ∈ �n and a scalar

λ ∈ � such that

(4.237)

(ii) The system is not completely controllable if and only if there exists a nonzero vector x ∈ �n and a
scalar λ ∈ � such that

(4.238)

4.7 State Observers

4.7.1 Basic Concepts

When the state variables have to be measured for monitoring, implementing control systems, or other
purposes, there are hard technical and economical issues to face. Observers are a way to estimate the
state variables based upon a system model, measurements of the plant output y(t), and measurements
of the plant input u(t). This problem is a generalization of that of indirectly measuring a system variable
using a system model and the measurement of some other easier-to-measure variable.

4.7.2 Observer Dynamics

Assume that the system has a state space model given by (4.42) and (4.43) with D = 0 (a strictly proper
system has been assumed). Then, the general structure of a classic observer for the system state is as
shown in Figure 4.15, where the matrix J is the observer gain.

Λ A{ } Λ A co{ } Λ A22{ } Λ A33{ } Λ A44{ }∪∪∪=

Λ A{ }
Λ A co{ }
Λ A 22{ }
Λ A 33{ }
Λ A 44{ }

Ax λx, Cx 0==

xTA λxT
, xTB 0==
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Therefore, the observer equation is

(4.239)

An obvious question is: if we know an exact system model and the system input, why do we need to
feed the system output? The answer is that we need the output measurement since we do not know the
system initial state. This can be appreciated from the equation for the state estimation error,

. That equation can be obtained subtracting (4.239) from (4.42). This leads to

(4.240)

From (4.240) we observe that the estimation error will converge to zero for a nonzero initial error if
and only if all the eigenvalues of the matrix A − JC have negative real parts, that is, if the observer
polynomial E(s) = det(sI − A + JC) is strictly Hurwitz.

Discussion

• Equation (4.240) is valid only if the model is a perfect representation of the system under study.
Modelling errors will impact the observer. This will normally lead to nonzero state estimation
errors. 

• If the pair (A, C) is completely observable, then the eigenvalues of A − JC can be arbitrarily located
(in the stability region). Thus, the speed of the estimation convergence is a designer’s choice. Those
eigenvalues are known as the observer poles.

• If the pair (A, C) is detectable, then the observer will yield zero steady state error asymptotically,
although not all the eigenvalues of A − JC can be placed at will.

• If the system is not completely observable, and the unobservable subspace contains unstable
modes, then the observer will never converge.

To illustrate the observer techniques we refer to Example 4.5.

Example 4.20

Assume that we want the observer poles for the state model in Example 4.5 to be located at s = −4,
s = −6, and s = −8. We can then compute the observer gain, J, using a software such as MATLAB. This yields

(4.241)

To appreciate the observer dynamics, assume that the initial system state is x(0) = [−1 2 1]T and that
the system input is a square wave of amplitude 1, and frequency equal to 1 rad/s. The observer is initialized
with (0) = 0. Then the norm of the estimation error, || (t)||, evolves as shown in Figure 4.16. It is

FIGURE 4.15 Classic state observer.
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important to point out that, in this example, the plant is unstable. This means that the state and the
state estimation grow unbounded. However, under the assumption of perfect modelling, the estimation
error converges to zero.

To gain physical insight into the observer philosophy, we consider the following application.

Example 4.21

Figure 4.17 shows the schematics of a rotational system driven by a torque τ(t). The system power is
transmitted through a gear system built with two wheels with radii r1 and r2 and inertias I1 and I2,
respectively. The rotation of both shafts is damped by viscous friction with coefficients D1 and D2, and
a significant torsional spring in shaft 2 has also been modelled. The system load is modelled as an inertia
I3. We want to estimate the load speed ω3 based on the measurement of the speed in shaft 1, ω1.

We first need to build a state space model. To do that we choose a minimum set of system variables,
which quantify the energy stored in the system. The system has four components able to store energy:
three inertias and a spring. Nevertheless, the energy stored in I1 and I2 can be computed either from ω1

or from ω2, that is, we need only one of these speeds, since they satisfy

(4.242)

Thus, a physically oriented choice of state variables is

(4.243)

(4.244)

(4.245)

FIGURE 4.16 State estimation error.

FIGURE 4.17 Rotational system.
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From first principles we have

(4.246)

(4.247)

(4.248)

Since we have chosen ω1(t) as the measurable system variable, we finally obtain

(4.249)

(4.250)

To evaluate the observability properties of this system, numerical values for the parameters are chosen
as follows:

(4.251)

(4.252)

With these values we have that

(4.253)

We next use the test presented in Section 4.6.2. This yields

(4.254)

τ t( ) D1ω1 t( ) I1

dω1 t( )
dt
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τ t( )
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----τ1 t( ) D2ω2 t( ) I2
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---------------- K2 θ2 t( ) θ3 t( )–( )+ += =

0 K2 θ3 t( ) θ2 t( )–( ) I3

dω3 t( )
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----------------+=
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2
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-----------------------------–
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------------------------– 0
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---- 0 1–

0
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2
I2 r2

2
I1+

------------------------

0

0

B

τ t( )+=

            
    

ω1 t( ) 1 0 0[ ]
C

x t( )=
    

r1 0.25 m, r2 r3 0.50 m, D1 D2 10 Nms/rad= = = = =
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2/rad= = = =
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= =
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1.0000 0 0

1.0450– 1.2540– 0

0.4650 1.3104 1.2540

= =
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From this expression we see that Γo is a full rank matrix. Thus, the system state is completely observable
from ω1(t).

Once we have a state estimate, , an estimate,  for ω3, is obtained from

(4.255)

where (t) can be obtained from (4.239). This yields

(4.256)

4.7.3 Observers and Measurement Noise

In the theory above we have assumed that both the system input, u(t), and the system output, y(t), are
available with no errors. This assumption is usually correct with regard to u(t), since the same equipment
generating u(t) is normally used to estimate the state. However, that assumption is not usually valid with
respect to y(t), since the measurement of this variable is normally corrupted with noise. To analyze the
effect of this error, let us denote by ym(t) the noisy measurement, that is, ym(t) = y(t) + v(t), where v(t)
is the additive measurement noise. Therefore, the state estimation error satisfies

(4.257)

We then have that

(4.258)

Hence, the error is small if the transfer function (sI − A + JC)
−1J filters out the noise. Consider the

following example.

Example 4.22

A system has a state space model given by

(4.259)

Assume that we want to estimate a system variable z(t) = γ Tx(t), where γ T = [1 1]. Then, a suitable
observer-based estimate is , which is given by

(4.260)

Then, the noise term in the estimation of z(t) is zv(t), whose Laplace transform satisfies

(4.261)

x̂ t( ) ω3 t( )

ω̂3

dx̃ t( )
dt

------------- A JC–( ) x̃ t( ) Jv t( )+=

X̃ s( ) sI A JC+–( ) 1– x̃ 0( ) sI A JC+–( ) 1– JV s( )+=

A
2– 1

1 3–
, B

1

0.5
, C 1 1–[ ] , D 0= = = =

ẑ t( )

ẑ t( ) γTx̂ t( )=

Zv s( ) Hv s( )V s( ) , where Hv s( ) γT
sI A JC+–( ) 1– J= =
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We next consider two different choices for the observer polynomial E(s). They are

(4.262)

The reader can appreciate that the resulting observers will have very different speeds, the first observer
being much slower than the second one. 

With those choices we compute the observer gains, J1 and J2, and the corresponding filter functions

(4.263)

(4.264)

To compare both cases we compute and plot the frequency response of each filter. The result is shown
in Figure 4.18.

From Figure 4.18 we observe that for a high frequency noise, the slowest filter is more immune to
noise than the fast filter.

The above case exemplifies the trade-off between observer speed and noise immunity. A systematic
way to face this dilemma is to use an optimal filter theory, such as Kalman–Bucy filtering. The interested
reader is referred to [2].

4.8 State Feedback

4.8.1 Basic Concepts

When all the system states can be measured, and the system is completely reachable (in the sense explained
in Section 4.6.1), we can control the system using state feedback to achieve full command of the loop
dynamics. This idea is captured in Figure 4.19.

Figure 4.19 shows the most basic form of state feedback: the plant input has a component that is
proportional to the state (the other component is an external signal (t)).

State feedback is a very simple, almost naive idea. A careful analysis shows that this idea has some
shortcomings and potentially dangerous features, such as

• It requires as many sensors as state variables. This is not only very expensive but also, in some
cases, its implementation may become impossible. 

• Each state measurement is a source of error because of its limited accuracy.

• Each measurement introduces noise, which has deleterious effect on the control system
performance.

FIGURE 4.18 Observer filtering characteristics.
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• The correct overall performance relies on the correct functioning of a complex set of equipments.
This poses several questions regarding performance degradation and system integrity.

In spite of these weak points, state feedback is by itself a powerful concept, since it works as a basis
for more sophisticated and robust control schemes. The key reason for this is that any linear controller
can be explained as the combination of a state observer and state feedback.

4.8.2 Feedback Dynamics

Assume that the system to be controlled has a transfer function H(s) and a state space representation
given by (4.42) and (4.43), with D = 0. If the plant input is generated according to

(4.265)

then the state space representation for the complete control loop is given by

(4.266)

(4.267)

It can be shown that the relationship between (s) and Y(s) is given by

(4.268)

This shows that the state feedback loop preserves the system zeros and shifts the poles to the roots of
det (sI − A + BK).

4.8.3 Optimal State Feedback—The Optimal Regulator

Consider a linear time invariant system having a state space representation given by (4.42) and (4.43),
with D = 0, subject to the initial state x(0) = xo.

Assume that the control objective is to steer the plant from the the initial state, xo, to the smallest
possible value as soon as possible in the interval [0, tf]. We additionally require that the steering process
does not demand too much control effort. Then, the optimal regulator problem is defined as the problem
of finding an optimal control u(t) over the interval [0, tf] such that a quadratic cost function is minimized.
This cost function is chosen as

(4.269)

FIGURE 4.19 State feedback.
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where Q ∈ �n×n, Qf  ∈ �n×n are symmetric nonnegative definite matrices and R ∈ �m×m is a symmetric
positive definite matrix. The requirements on the weighting matrices are set so that the cost function
makes sense. For instance, if Q is allowed to be negative, then the optimal cost could even be negative
while the state could grow unbounded in magnitude. Also, if we allow R to have eigenvalues at the origin
(that is, R is allowed to be a nonnegative definite matrix, instead of requiring it to be a strictly positive
definite matrix) then the control u(t) could also grow unbounded (in the directions of the associated
eigenvectors) without that situation being revealed by the cost function.

A time invariant linear control law is asymptotically obtained when . Under this condition, the
optimal control law is given by

(4.270)

with

(4.271)

and where P∞ is the only nonnegative solution of the algebraic Riccati equation

(4.272)

For this solution to exist, it is necessary that certain technical conditions are satisfied (for a detailed
discussion of these issues see, for instance, [5]).

Discussion

• The solution for the LQR problem minimizes the cost function (4.269) and, when , always
stabilizes the plant.

• A key issue is how to choose the weighting matrices Q and R. A frequent choice for Q is Q = CTC.
With this choice, the magnitude of the plant output is directly introduced into the cost function.

• For a given Q, the size of R strongly influences the location of the closed loop poles. The larger
R is, the slower is the control loop.

Further reading on optimal quadratic regulators can be found in the literature. See, for example,
[1,3,4,8,9].

4.9 Observed State Feedback

4.9.1 Separation Strategy

Due to the drawbacks inherent in the measuring of the state, feedback of the estimated state can be used
instead. The resulting control system integrates an observer and a feedback mechanism for the observed
states.

The combination of a state observer and the feedback of the estimated state conform the structure
shown in Figure 4.20.

In Figure 4.20, the (matrix) transfer functions T1(s) and T2(s) can be obtained from Figure 4.15. This
yields

(4.273)

(4.274)

tf ∞→

uo
t( ) Ko

x t( )–=

Ko R−1BTP∞–=

0 Q P∞BR−1BTP∞– P∞A ATP∞+ +=

tf ∞→

T1 s( ) sI Ao JCo+–( )− 1Bo=

T2 s( ) sI Ao JCo+–( )−1J=
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4.9.2 Transfer Function Interpretation for the 
Single-Input Single-Output Case

Consider a SISO plant having transfer function

(4.275)

where Mo(s) and No(s) are polynomials in s.
First, a state feedback gain, K, is chosen to obtain a closed loop polynomial F(s), where F(s) = det (sI −

Ao + BoK). Next, an observer gain, J, is computed to obtain an observer polynomial E(s) = det (sI − Ao + JCo).
If the observer and the observed state feedback are combined, the resulting control loop can be made

equivalent (by a suitable choice of (t)) to the classical control loop shown in Figure 4.21.
In Figure 4.21 the polynomials P(s) and L(s) satisfy the Diophantine equation

(4.276)

This result says that the set of closed loop poles is the union of the set of observer poles and the set
of state feedback poles.
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5.1 System and Signal Analysis

In dynamic system design and analysis it is important to predict and understand the dynamic behavior
of the system. Examining the dynamic behavior can be done by using a mathematical model that describes
the relevant dynamic behavior of the system in which we are interested. Typically, a model is formulated
to describe either continuous or discrete time behavior of a system. The corresponding equations that
govern the model are used to predict and understand the dynamic behavior of the system.

A rigorous analysis can be done for relatively simple models of a dynamic system by actually computing
solutions to the equations of the model. Usually, this analysis is limited to linear first and second order
models. Although limited to small order models, the solutions tend to give insight in the typical responses
of a dynamic system. For more complicated, higher order and possibly nonlinear models, numerical
simulation tools provide an alternative for the dynamic system analysis.

In the following we review the analysis of linear models of discrete and continuous time dynamic
systems. The equations that describe and relate continuous and discrete time behavior are presented. For
the analysis of continuous time systems extensive use is made of the Laplace transform that converts
linear differential equations into algebraic expressions. For similar purposes, a z-transform is used for
discrete time systems.

5.1.1 Continuous Time Systems

Models that describe the linear continuous time dynamical behavior of a system are usually given in the
form of differential equations that relate an input signal u(t) to an output signal y(t). The differential
equation of a time invariant linear continuous time model has the general format

(5.1)aj
d j

dt j
------  y t( )

j= 0

na

∑ bj
d k

dt j
------  u t( )

j=0

nb

∑=

Raymond A. de Callafon
University of California
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5-2 Mechatronic System Control, Logic, and Data Acquisition

in which a linear combination is taken using the jth order time derivatives dj /dt j of a single output y(t)
and a single input u(t). In (5.1), the scalar real valued numbers aj for j = 0,…na,  ≠ 0 and bj for j =
0,…,nb,  ≠ 0, respectively, are called the denominator and numerator coefficients. The input u(t) is
distinguished from the output y(t) in (5.1) by requiring na ≥ nb. As a result, the nath derivative is the
highest derivative of the output y(t) and na is used to indicate the order of the differential equation.

An alternative representation of a model of a continuous time system can be obtained by rewriting the
nath order differential equation in (5.1) into a set of (coupled) first order differential equations. This can
be done by introducing a state variable x(t) and rewriting the higher order differential equation into

(5.2)

where A, B, C, and D are real valued matrices. The set of first order differential equations given in (5.2)
is referred to as a state space representation. The state variable x(t) is a column vector and contains na

variables, where na is the order of the differential equation.
The size of the matrices in (5.2) corresponds to the order of differential equation from which the state

space realization is derived. For generalization purposes, consider multiple inputs and outputs rearranged
in m × 1 input column vector u(t) and a p × 1 output column vector y(t). Given the na × 1 size of the
state vector, the state matrix A has size na × na, the input matrix has size na × m, the output matrix C
has size p × na, and the feedthrough matrix D has size m × p. From these size considerations it can be
observed that the state space realization in (5.2) easily generalizes the model description of multi-input
multi-output systems.

To illustrate the concepts, consider the differential equation

(5.3)

that describes the dynamical behavior of the one cart system given in Figure 5.1. The differential
Equation 5.3 is found by writing Newton’s second law for the cart mass m with position output y(t),
spring force ky(t), damper force c(d /dt)y(t), and force input u(t). Comparing with (5.1) it can be seen
that na = 2 ≥ nb = 0, making (5.3) a second order differential equation. The differential equation can be
rewritten into a state space representation (5.2) by defining the state variable

FIGURE 5.1 One cart system representing a single mass dynamical system with cart mass m, spring constant k,
and damping constant c.
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that consists the position and velocity of the mass. With this state variable (5.3) can be rewritten into

which yields a state space model similar to (5.2). In this case, the size of the state matrix A is 2 × 2, the
input matrix B is 2 × 1, the output matrix C is 1 × 2, and the feedthrough matrix D = 0 is scalar.

5.1.2 Discrete Time Systems

Discrete time models approximate and describe the sampled data behavior of a continuous time dynam-
ical system. In some applications, such as digital control, the dynamical control system is inherently
discrete time. In these situations, analysis with discrete time equivalent models in necessary.

For analysis purposes, both input u(t) and output y(t) are assumed to be sampled on a regular discrete
time interval

where ∆T indicates the sampling time. To maintain uniform notation throughout the analysis, the
sampling time ∆T is normalized to ∆T = 1 and the time dependency t is assumed to be discrete with t =
k = 0,1,2,….

Given sampled or discrete time input/output data, a linear discrete time model can be formulated in
the form of a difference equation

(5.4)

in which a linear combination is taken of positive time shifted inputs u(k) and outputs y(k). To distinguish
the differential equation from the differential Equation 5.1, different scalar real valued numbers cj for
j = 0,…,nc,  ≠ 0 and dj for j = 0,…,nd ,  ≠ 0 are used. The input u(k) is distinguished from the
output y(k) in (5.1) by requiring nc ≥ nd for causality purposes. As a result, the nc is the largest time shift
of the output y(k) and nc is used to indicate the order of the difference equation.

The simplicity with which the difference equation can be represented also allows an algebraic repre-
sentation of (5.4). Introducing the time shift operator

(5.5)

allows (5.4) to be rewritten into the algebraic expression

Following this analysis, the discrete time output y(k) can be represented by the difference model

(5.6)

d
dt
-----x t( )

0 1
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m
----– d

m
----–

x t( )
0
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m
----

u t( )+=

y t( ) 1 0 x t( ) 0u t( )+=

t k∆T,  k 0,1,2,…= =

cky k j+( )
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∑ dku k j+( )
j= 0
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qu k( ) := u k 1+( )

y k( ) cjq
j

j=0
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∑ u k( ) djq
j

j=0
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∑=

y k( ) G q( )u k( ),  with G q( )
∑ j=0

nd djq
j

∑ j=0

nc cjq
j

--------------------= =
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where the scalar real valued numbers cj for j = 0,…,nc,  ≠ 0 and dj for j = 0,…,nd ,  ≠ 0, respectively,
indicate the denominator and numerator coefficients.

Similar to the continuous time system representation, the higher order difference Equation 5.4 can
also be rewritten into a set of (coupled) first order difference equations for analysis purposes. This can
be done by introducing a state variable x(k) and rewriting the higher order difference equation into

(5.7)

where qx(k) = x(k + 1), according to (5.5). The state variable x(k) is a column vector and contains nc

variables, where nc is the order of the difference equation. The state space matrices in (5.7) are labeled
differently to distinguish them from the continuous time state space model.

5.1.3 Laplace and z Transform

An important mathematical concept for the analysis of models described by linear differential equations
such as (5.1) and (5.2) is the Laplace transform. As indicated before, the Laplace transform converts
linear differential equations into algebraic expressions. With this conversion, proper algebraic manipu-
lation can be used to recover solutions of the differential equation. In a similar manner, the z transform
is used for discrete time models described by difference equations. Although it was shown in (5.6) that
a difference equation can be written as an algebraic expression, the z transform allows complex analysis
of the discrete time models.

The Laplace transform of a signal u(t) is defined to be

(5.8)

where the integration over t eliminates the time dependency and the transform u(s) is a function of the
Laplace variable only. This is indicated in the transform u(s) where the dependency of t has been dropped,
and u(s) is a function of the (complex valued) Laplace variable s only.

The integral (5.8) exists for most commonly used signals u(t), provided certain conditions on s are
imposed. To illustrate the transform, consider a (unity) step signal

where the shape of u(t) resembles a stepwise change of an input signal. With the definition of the Laplace
transform in (5.8) the transform of the step signal becomes

(5.9)

where it is assumed that the real part of s is greater than zero so that limt→∞ e−st
 = 0.

If a signal u(k) is given at discrete time samples k = 0, 1, 2…, the integral expression of (5.8) cannot be
applied. Instead, a transform similar to the Laplace transform can be used and denoted by the z transform.
The z-transform of a discrete time signal u(k) is defined as

(5.10)
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The series (5.10) converges if it is assumed that there exist values rl and ru with rl < |z| < ru as bounds on
the magnitude of the complex variable z.

The z transform has the same role in discrete time systems that the Laplace transform has in continuous
time systems. In case of sampling, the complex variable z of the z transform is related to the complex
variables s in the Laplace transform via

z  = es∆T (5.11)

where ∆Τ  is the sampling time used for sampling. Both the Laplace and z-transform are linear operators
and satisfy

(5.12)

Using the definition in (5.8) and the linearity property in (5.12), the transform of most commonly used
functions has been precalculated and tabulated.

Of particular interest for the analysis of linear differential equations such as (5.1) and (5.2) is the
Laplace transform of a derivative:

With u(0) = 0 it can be seen that the Laplace transform of the derivative of u(t) is simply s times the
Laplace transform of u(s). This result can be extended to higher order derivatives and the result for the
nth derivative is given by

In case the signal u(t) satisfies the initial zero conditions 

 = 0 for j = 1, …, n

the formula reduces to

and the Laplace transform of an nth order derivative is simply sn times the transform u(s).
For discrete time systems the interest lies in the z-transform of a time-shifted signal. Similar to the

Laplace transform, the z transform of an n time-shifted signal can be computed and is given by
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5-6 Mechatronic System Control, Logic, and Data Acquisition

In case the discrete time signal u(k) satisfies the initial zero conditions u( j) = 0 for j = 0,…,n − 1, the
formula reduces to

and the z transform of an n time-shifted discrete time signal is simply z
n
 times the transform u(z).

5.1.4 Transfer Function Models

The results of the Laplace and z-transform can be used to reduce linear differential Equations 5.1 and
difference Equation 5.4 to the algebraic expressions. Starting with the differential equations for contin-
uous time models and assuming zero initial conditions for both the input u(t) and output signal y(t),
the Laplace transform of (5.1) yields

which can be written in transfer function format

(5.13)

In (5.13), the transfer function G(s) is the ratio of the numerator polynomial  and the denom-
inator polynomial . As indicated before, the scalar real valued numbers aj for j = 0,…,na,  ≠
0 and bj for j = 0, …,nb,  ≠ 0, respectively, are called the denominator and numerator coefficients.

Similarly for the discrete time model, assuming zero initial conditions for both the input u(k) and
output signal y(k), the z-transform of (5.4) yields

which can be written in transfer function format

(5.14)

From the transfer function representations, poles and zeros of the dynamic system can be computed for
dynamic system analysis. The poles of the system are defined as the roots of the denominator polynomial.
The zeros of the system are defined as the roots of the numerator polynomial.

The Laplace and z-transform can also be used to reduce the state space representation to a set of
algebraic expressions that consists of (coupled) first order polynomials. Assuming zero initial conditions
for the state vector x(t), application of the Laplace transform to (5.2) yields

in which the state vector x(s) can be eliminated. Solving for x(s) gives x(s) = (sI − A)
−1 

Bu(s) and the
above transform can be rewritten into a transfer function representation

(5.15)

L q
n
u k( ){ } z

n
u z( )=

y s( ) ajs
j

j=0

na

∑ u s( ) bjs
j

j=0

nb

∑=

y s( ) G s( )u s( ) , with G s( )
∑ j=0

nb bjs
j

∑ j=0

na ajs
j

-------------------= =

∑ j= 0

nb bjs
j

∑ j= 0

na ajs
j ana

bnb

y z( ) cjz
j

j=0

nc

∑ u z( ) bjz
j

j= 0

nd

∑=

y z( ) G z( )u z( ), with G z( )
∑ j=0

nc cjz
j

∑ j=0

na ajz
j

-------------------= =

sx s( ) Ax s( ) Bu s( )+=
y s( ) Cx s( ) Du s( )+=

y s( ) G s( )u s( ), with  G s( ) D C sI A–( ) 1–
B+= =

9260_05.fm  Page 6  Wednesday, October 10, 2007  8:34 PM



Response of Dynamic Systems 5-7

Under mild technical conditions involving controllability and observability of the state space model, the
transfer function representations in (5.13) and (5.15) are similar in case the state space model in (5.2)
is derived from the differential Equation 5.1 and vice versa.

5.2 Dynamic Response

The Laplace and z transform offer the possibility to compute the dynamic response of a dynamic system
by means of algebraic manipulations. The analysis of the dynamic response gives insight into the dynamic
behavior of the system by addressing the response to typical test signals such as impulse, step, and sinusoid
excitation of the system.

The response can be computed for relatively simple continuous or discrete dynamical systems given
by low order differential or difference equations. Both the state space model and the transfer function
descriptions provide helpful representations in the analysis of a dynamic system. The result are presented
in the following.

5.2.1 Pulse and Step Response

A possible way to evaluate the response of a dynamic system is by means of pulse and step based test signals.
For continuous time systems an input impulse signal is defined as a δ function

with the property

where f(t) is an integrable function over (−∞, ∞). Although an impulse signal is not practical from an
experiment point of view, the computation or simulation of the impulse response gives insight into the
transient behavior of the dynamical system.

With the properties of the impulse function δ(t) mentioned above, the Laplace transform of the impulse
function is given by

Hence the output y(s) due to an impulse input is given by yimp(s) = G(s)uimp(s) = G(s)δ(s) = G(s). As a
result, an immediate inverse Laplace transform of the continuous time transfer function G(s),

gives the dynamic response yimp(t) of the system to an impulse input response.
The computation of the step response is done in a similar way. In (5.9), the Laplace transform of the

step signal

uimp t( )  := δ t( )
∞, t 0=
0, t 0≠




=

f t( )δ t( )
t=−∞

∞

∫ f 0( )=

L δ t( ){ } δ s( ) δ t( )e
st–

td
t=0

∞

∫ e
s0–

1= = = =

yimp t( ) L
1–

G s( ){ }=

ustep t( ) := 
0, t 0<
1, t 0≥
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5-8 Mechatronic System Control, Logic, and Data Acquisition

is given as ustep(s) = 1 /s. Consequently, with ystep(s) = G(s)ustep(s) = G(s) /s, the inverse Laplace transform
of G(s)/ s

will yield the dynamic response ystep(t) of the system to a step input response.
From a practical point of view, the computation of an inverse Laplace transform is limited to low

order models of first or second order. However, the results give insight into the dominant behavior of
most dynamic systems. This is illustrated in the following examples.

• Consider a first order continuous model given by the transfer function

where K and τ indicate, respectively, the static gain and the time constant of the system. Such a
transfer function may arise from a simple RC network with τ = RC. In order to compute the step
response of the system, the inverse Laplace transform of G(s)/s needs to be computed. This inverse
Laplace transform is given by

and it can be seen that the step response is an exponential function. For stability the time constant
τ needs to satisfy τ  > 0. It can also be observed that the smaller the time constant, the faster the
response.

• Consider a second order continuous time model given by the transfer function

(5.16)

where ωn and β, respectively, indicate the undamped resonance frequency and the damping
coefficient of the system. This model can be derived from the dynamical behavior of the one cart
system depicted in Figure 5.1 and given in (5.3). For β < 1 (underdamped), the inverse Laplace
transform of G(s) is given by

From this expression it can be observed that the response is a decaying sinusoid with a resonance
frequency of . For stability, both ωn > 0 and β > 0 and the larger ωn, the faster the decay
of the sinusoid and the higher is the frequency of the response yimp(t). Illustration of the impulse
response of this second order system have been depicted in Figures 5.2 and 5.3 where variations
in the undamped resonance frequency ωn and the damping coefficient β illustrate the dynamic
behavior of the system.

For discrete systems, the analysis of the pulse response is based on the discrete time pulse function

ystep t( ) = L 1– G s( )
s
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τs 1+
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=
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which has a value of 1 at k = 0 and zero anywhere else. The step signal is similar to the continuous time
signal and is given by

In order to characterize the discrete time pulse and step response a similar procedure as for the continuous
time model can be followed by using the z transform. It is easy to show that the z-transform uimp(z) = 1
and the z transform of the step signal equals ustep z = z/(z − 1). Hence, the response of the discrete time
system to a pulse or step signal can be computed with 

FIGURE 5.2 Variations in impulse response yimp(t) of second order system with ωn = 6 and β = 0.1(�), 0.2(�),
0.4(+), 0.6 (*), 0.8(�).

FIGURE 5.3 Variations in impulse response yimp(t) of second order system with β = 0.4 and ωn = 2(�), 4(�),
6(+), 8(*), 10(�). 
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5-10 Mechatronic System Control, Logic, and Data Acquisition

In addition to the approach using a z-transform, the ratio of the polynomials in the difference model
(5.6) can be written in a series expansion:

With the discrete time pulse function uimp(k) as an input, it can be observed that

and it can be concluded that the pulse response yimp(k) equals the coefficients in the series expansion of
the difference equation. Similarly, with the discrete time step function ustep(k) as an input, it can be
observed that

and it can be concluded that the step response ystep(k) values are computed as a finite sum of the
coefficients in the series expansion of the difference equation. The computation of a discrete time pulse
response for a first order discrete time model is given in the following example.

• Consider a first order discrete model given by the difference model

where d indicates the discrete time constant of the system. The series expansion of the difference
model can be computed as follows:

and it can be seen that the discrete time pulse response

yimp(k) = dk

is an exponential function. For stability the discrete constant d needs to satisfy |d | < 1. Similar as
in the continuous time model it can be observed that the smaller the time constant, the faster the
response. Additionally, the first order discrete time model may exhibit an oscillation in case −1 <
d < 0.

5.2.2 Sinusoid and Frequency Response

So far we have considered transient effects caused by step, pulse, and impulse inputs to investigate the
dynamic properties of a dynamical system. However, periodic inputs occur frequently in practical situ-
ations and the analysis of a dynamic system to periodic inputs and especially sinusoidal inputs can yield
more insight into the behavior of the system.
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The response of a linear system to a sinusoidal input is referred to as the frequency response of the
system. An input signal, u(t) = U sin ω t, that is, a sine wave with amplitude U and frequency ωj, has a
Laplace transform

Consequently, the response of the system is given by

and a partial fraction expansion of y(s) will result in terms that represent the (stable) transient behavior
of y(s) and the term associated to the sinusoidal input u(s). Elimination of the transient effects and
performing an inverse Laplace transform will yield a periodic time response y(t) of the same frequency
ωj given by

where the amplitude magnification A and the phase shift φ are given by

(5.17)

By evaluating the transfer function G(s) along the imaginary axis s = iω, ω ≥ 0, the magnitude |G(iω)|
gives information on the relative amplification of the sinusoidal input, whereas the phase (iω) gives
information on the relative phase shift between input and output.

This analysis can be easily extended to discrete time systems by employing the relation between the
Laplace variable s and the z-transform variable in (5.11) to obtain the discrete time sinusoidal response

where the amplitude magnification A and the phase shift φ are given by

(5.18)

Due to the sampling nature of the discrete time system, the transfer function G(z) is now evaluated on
the unit circle

to attain information of the magnitude and phase shift of the sinusoidal response.
Plotting the frequency response of a dynamical system gives insight in the pole locations (resonance

modes) and zero locations of the dynamical system. As an example, the frequency response of the second
order system given in (5.16) has been depicted in Figure 5.4. It can be seen from the figure that, as
expected, the second order system is less damped for smaller damping coefficients β and this results in
a larger amplitude response of the second order system at the resonance frequency ωn = 6 rad/s. It can
also be observed that the phase change at the resonance frequency becomes more abrupt for smaller
damping coefficients.
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5-12 Mechatronic System Control, Logic, and Data Acquisition

5.3 Performance Indicators for Dynamic Systems

5.3.1 Step Response Parameters

Specifications for dynamic systems often involve requirements on the transient behavior of the system.
Transient behavior requirements can be formulated on the basis of a step response and the most significant
parameters have been summarized below and illustrated in Figure 5.5.

• Steady state or DC value ys of step response output.

• The steady state error yse is the error between steady state value ys and desired DC value of step
response output.

• The maximum overshoot Am is the maximum deviation of the step response output above its
steady state value ys.

• The peak time tp is the time at which the maximum overshoot occurs.

• Settling time ts is the time at which the step response input stays within some small percentage
rage of the steady state value ys. Typically, a percentage of 2% or 5% is chosen to determine the
settling time.

• The rise time tr is usually defined as the time required for the step response output to rise from
10% to 90% of the steady state value ys.

• The delay time td is defined as the time required to reach 50% of the steady state value ys.

FIGURE 5.4 Variations in frequency response of second order system G(s) with ωn = 6 and β = 0.1(�), 0.2(�),
0.4(+), 0.6(*), 0.8(�).
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Response of Dynamic Systems 5-13

Most of the above value can be obtained from an experimentally determined step response. In general,
they cannot be obtained in an analytical form, except for low order models. For the second order model
of the one mass system given in (5.3), some analytical results can be obtained. For a second order model
of (5.3), the maximum overshoot Am is determined by 

The peak time tp can be computed by

whereas the delay time td can be approximated by

As the maximum overshoot increases with a smaller damping coefficient β in the system, the maximum
overshoot is often used to indicate the relative stability of the system.

5.3.2 Frequency Domain Parameters

With the frequency domain analysis of dynamic systems, specifications for the dynamic properties of a
system can also be stated in the frequency domain. Frequency domain specifications in filter design often
address ripple, bandwidth, roll-off, and phase lag parameters. Similar characteristics can also be specified
for dynamic systems in case the model of the system is analyzed in the frequency domain. The most
significant parameters have been summarized below and illustrated in Figure 5.6.

• The bandwidth ω b is a notion for the maximum frequency at which the output will track a
sinusoidal input in a satisfactory manner. By convention, the bandwidth is defined as the frequency
at which the output is attenuated −3 dB (0.707).

• The resonant frequency ωr is the first frequency at which a significant resonance mode with low
damping occurs. The resonance mode can, if uncontrolled, negatively influence the settling time
of the dynamic system and plays an important role in characterization of performance

FIGURE 5.5 Parameters for step-response behavior: steady state value ys, steady state error yse, maximum overshoot
Am, peak time tp, settling time ts, rise time tr, and delay time td .
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5-14 Mechatronic System Control, Logic, and Data Acquisition

• The resonant peak Mr is the height of a resonance mode. The resonant peak is a measure for the
damping. As illustrated in Figure 5.2 for a second order model, the resonance mode increases at
lower damping coefficients.

• Steady state errors Me can also be analyzed in the frequency response of a system. Using the final
value theorem for continuous time systems

the presence of steady state errors can be inspected in the frequency domain by evaluation |G(s)|
at s = iω = 0 or for small values of the frequency vector ω. This can be seen as follows. As the
Laplace transform ustep(s) of a step input signal ustep(t) is ustep(s) = 1 /s,

By evaluating  for small frequencies ω, the steady state behavior of G(s) can be studied.
A similar result exist for discrete time systems, where the final value theorem reads as follows.

If u(z) converges for  > 1 and all poles of (z − 1)u(z) are inside the unit circle, then

Hence, for discrete time systems the steady state behavior of a transfer function G(z) can be studied
by evaluating |G(eiω∆T)| for small frequencies ω.

• Roll-off Rd at high frequencies is defined as the negative slope of the frequency response at higher
frequencies. The roll-off determines the performance of the dynamic system as high frequent
disturbances can be amplified if a dynamic system does not have enough high frequent roll-off.

FIGURE 5.6 Parameters for frequency response behavior: bandwidth ωb, resonance frequency ωr, resonant peak
Mr, steady state error Me, and roll-off Rd .
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6.1 Introduction

The root locus technique is a graphical tool used in feedback control system analysis and design. It has
been formally introduced to the engineering community by W. R. Evans [3,4], who received the Richard
E. Bellman Control Heritage Award from the American Automatic Control Council in 1988 for this major
contribution.

In order to discuss the root locus method, we must first review the basic definition of bounded
input bounded output (BIBO) stability of the standard linear time invariant feedback system shown in
Figure 6.1, where the plant, and the controller, are represented by their transfer functions P(s) and C(s),
respectively.* The plant, P(s), includes the physical process to be controlled, as well as the actuator and
the sensor dynamics. 

The feedback system is said to be stable if none of the closed-loop transfer functions, from external inputs
r and v to internal signals e and u, have any poles in the closed right half plane,  .
A necessary condition for feedback system stability is that the closed right half plane zeros of P(s)
(respectively C(s)) are distinct from the poles of C(s) (respectively P(s)). When this condition holds, we
say that there is no unstable pole–zero cancellation in taking the product P(s)C(s) =: G(s), and then
checking feedback system stability becomes equivalent to checking whether all the roots of

(6.1)

are in the open left half plane, . The roots of (6.1) are the closed-loop system
poles. We would like to understand how the closed-loop system pole locations vary as functions of a real
parameter of G(s). More precisely, assume that G(s) contains a parameter K, so that we use the notation

*Here we consider the continuous time case; there is essentially no difference between the continuous time case
and the discrete time case, as far as the root locus construction is concerned. In the discrete time case the desired
closed-loop pole locations are defined relative to the unit circle, whereas in the continuous time case desired pole
locations are defined relative to the imaginary axis.

C+ := s C∈ : Re s( ) 0≥{ }

1 G s( ) 0=+

C− := s C  : Re(s)∈ 0<{ }

Hitay Özbay
The Ohio State University
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6-2 Mechatronic System Control, Logic, and Data Acquisition

G(s) = GK(s) to emphasize the dependence on K. The root locus is the plot of the roots of (6.1) on the
complex plane, as the parameter K varies within a specified interval.

The most common example of the root locus problem deals with the uncertain (or adjustable) gain
as the varying parameter: when P(s) and C(s) are fixed rational functions, except for a gain factor, G(s)
can be written as G(s) = GK(s) = KF(s), where K is the uncertain/adjustable gain, and

(6.2)

with z1,…,zm, and p1,…,pn being the open-loop system zeros and poles. In this case, the closed-loop
system poles are the roots of the characteristic equation

(6.3)

The usual root locus is obtained by plotting the roots r1(K),…,rn(K) of the characteristic polynomial χ(s)
on the complex plane, as K varies from 0 to + ∞. The same plot for the negative values of K gives the
complementary root locus. With the help of the root locus plot the designer identifies the admissible values
of the parameter K leading to a set of closed-loop system poles that are in the desired region of the
complex plane. There are several factors to be considered in defining the “desired region” of the complex
plane in which all the roots r1(K),…,rn(K) should lie. Those are discussed briefly in the next section.
Section 6.3 contains the root locus construction procedure, and design examples are presented in
Section 6.4.

The root locus can also be drawn with respect to a system parameter other than the gain. For example,
the characteristic equation for the system G(s) = Gλ(s), defined by

can also be transformed into the form given in (6.3). Here Kc and TI are given fixed PI (Proportional
plus Integral) controller parameters, and λ > 0 is an uncertain plant parameter. Note that the phase of
the plant is

so the parameter λ can be seen as the uncertain phase lag factor (e.g., a small uncertain time delay in
the plant can be modeled in this manner, see [9]). It is easy to see that the characteristic equation is

FIGURE 6.1 Standard unity feedback system.
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and by rearranging the terms multiplying λ this equation can be transformed to

By defining K = λ−1, N(s) = (s2 + Kcs + Kc /TI), and D(s) = s(s2 − Kcs − Kc /TI), we see that the characteristic
equation can be put in the form of (6.3). The root locus plot can now be obtained from the data N(s)
and D(s) defined above; that shows how closed-loop system poles move as λ−1 varies from 0 to + ∞, for
a given fixed set of controller parameters Kc and TI. For the numerical example Kc = 1 and TI = 2.5, the
root locus is illustrated in Figure 6.2.

The root locus construction procedure will be given in Section 6.3. Most of the computations involved
in each step of this procedure can be performed by hand calculations. Hence, an approximate graph
representing the root locus can be drawn easily. There are also several software packages to generate the
root locus automatically from the problem data z1,…,zm, and p1,…,pn.

If a numerical computation program is available for calculating the roots of a polynomial, we can also
obtain the root locus with respect to a parameter which enters into the characteristic equation nonlinearly.
To illustrate this point let us consider the following example: G(s) = (s) where

Here ωo ≥ 0 is the uncertain plant parameter. Note that the characteristic equation

(6.4)

cannot be expressed in the form of D(s) + KN(s) = 0 with a single parameter K. Nevertheless, for each
ωo we can numerically calculate the roots of (6.4) and plot them on the complex plane as ωo varies within
a range of interest. Figure 6.3 illustrates all the four branches, r1(K),…,r4(K), of the root locus for this
system as ωo increases from zero to infinity. The figure is obtained by computing the roots of (6.4) for
a set of values of ωo by using MATLAB.

FIGURE 6.2 The root locus with respect to K = 1/λ.
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6-4 Mechatronic System Control, Logic, and Data Acquisition

6.2 Desired Pole Locations

The performance of a feedback system depends heavily on the location of the closed-loop system poles
ri(K) = 1,…,n. First of all, for stability we want ri(K) � �− for all i = 1,…,n. Clearly, having a pole “close”
to the imaginary axis poses a danger, that is, “small” perturbations in the plant might lead to an unstable
feedback system. So the desired pole locations must be such that stability is preserved under such
perturbations (or in the presence of uncertainties) in the plant. For second-order systems, we can define
certain stability robustness measures in terms of the pole locations, which can be tied to the characteristics
of the step response. For higher order systems, similar guidelines can be used by considering the dominant
poles only.

In the standard feedback control system shown in Figure 6.1, assume that the closed-loop transfer
function from r(t) to y(t) is in the form

and r(t) is the unit step function. Then, the output is

where  and θ :=  cos−1(ζ ). For some typical values of ζ, the step response y(t) is as shown
in Figure 6.4. The maximum percent overshoot is defined to be the quantity

where yp is the peak value. By simple calculations it can be seen that the peak value of y(t) occurs at the
time instant tp = π/ωd, and

FIGURE 6.3 The root locus with respect to ωo.
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The Root Locus Method 6-5

Figure 6.5 shows PO versus ζ. The settling time is defined to be the smallest time instant ts, after which
the response y(t) remains within 2% of its final value, that is,

Sometimes 1% or 5% is used in the definition of settling time instead of 2%; conceptually, there is no
difference. For the second-order system response, we have

So, in order to have a fast settling  response, the product ζωo should be large.
The closed-loop system poles are

Therefore, once the maximum allowable settling time and PO are specified, we can define the region of
desired pole locations by determining the minimum allowable ζ and ζωo. For example, let the desired
PO and ts be bounded by

FIGURE 6.4 Step response of a second-order system.

FIGURE 6.5 PO versus ζ.
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6-6 Mechatronic System Control, Logic, and Data Acquisition

The PO requirement implies that ζ  0.6, equivalently θ  53° (recall that cos(θ) = ζ). The settling time
requirement is satisfied if and only if Re(r1,2)  −0.5. Then, the region of desired closed-loop poles is the
shaded area shown in Figure 6.6. The same figure also illustrates the region of desired closed-loop poles
for similar design requirements in the discrete time case.

If the order of the closed-loop transfer function T(s) is higher than two, then, depending on the
location of its poles and zeros, it may be possible to approximate the closed-loop step response by the
response of a second-order system. For example, consider the third-order system

The transient response contains a term e−rt. Compared with the envelope  of the sinusoidal term,
e−rt decays very fast, and the overall response is similar to the response of a second-order system. Hence,
the effect of the third pole r3 = −r is negligible.

Consider another example,

In this case, although r does not need to be much larger than ζωo, the zero at −(r + �) cancels the effect
of the pole at −r. To see this, consider the partial fraction expansion of Y(s) = T(s)R(s) with R(s) = 1/s:

where A0 = 1 and

Since  as , the term A3e
−rt is negligible in y(t).

In summary, if there is an approximate pole–zero cancellation in the left half plane, then this pole–zero
pair can be taken out of the transfer function T(s) to determine PO and ts. Also, the poles closest to the

FIGURE 6.6 Region of the desired closed-loop poles.
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The Root Locus Method 6-7

imaginary axis dominate the transient response of y(t). To generalize this observation, let r1,…,rn be the
poles of T(s), such that Re(rk) << Re(r2) = Re(r1) < 0, for all . Then, the pair of complex conjugate
poles r1,2 are called the dominant poles. We have seen that the desired transient response properties, for
example, PO and ts, can be translated into requirements on the location of the dominant poles.

6.3 Root Locus Construction

As mentioned above, the root locus primarily deals with finding the roots of a characteristic polynomial
that is an affine function of a single parameter, K,

(6.5)

where D(s) and N(s) are fixed monic polynomials (i.e., coefficient of the highest power is normalized to 1).
If N and/or D are not monic, the highest coefficient(s) can be absorbed into K.

6.3.1 Root Locus Rules

Recall that the usual root locus shows the locations of the closed-loop system poles as K varies from 0
to +∞. The roots of D(s), p1,…, pn, are the poles, and the roots of N(s), z1,…, zm, are the zeros, of the
open-loop system, G(s) = KF(s). Since P(s) and C(s) are proper, G(s) is proper, and hence . So the
degree of the polynomial χ(s) is n and it has exactly n roots.

Let the closed-loop system poles, that is, roots of χ(s), be denoted by r1(K),…, rn(K). Note that these
are functions of K; whenever the dependence on K is clear, they are simply written as r1,…, rn. The points
in  that satisfy (6.5) for some K > 0 are on the root locus. Clearly, a point  is on the root locus if
and only if

(6.6)

The condition (6.6) can be separated into two parts:

(6.7)

. (6.8)

The phase rule (6.8) determines the points in  that are on the root locus. The magnitude rule (6.7)
determines the gain K > 0 for which the root locus is at a given point r. By using the definition of F(s),
(6.8) can be rewritten as

(6.9)

Similarly, (6.7) is equivalent to

(6.10)

k 3≥

χ s( ) D s( ) KN s( )+=

n m≥

C r C∈

K 1
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----------–=

K 1
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-------------–=
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C
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6-8 Mechatronic System Control, Logic, and Data Acquisition

6.3.2 Root Locus Construction

There are several software packages available for generating the root locus automatically for a given F =
N/D. In particular, the related MATLAB commands are rlocus and rlocfind. In many cases,
approximate root locus can be drawn by hand using the rules given below. These rules are determined
from the basic definitions (6.5), (6.7), and (6.8).

1. The root locus has n branches: r1(K),…,rn(K).
2. Each branch starts  at a pole pi and ends (as ) at a zero zj, or converges to an

asymptote, , where  and

3. There are (n − m) asymptotes with angles α . The center of the asymptotes (i.e., their intersection
point on the real axis) is

4. A point  is on the root locus if and only if the total number of poles pi’s and zeros zj’s to
the right of x (i.e., total number of pi’s with Re(pi) > x plus total number of zj’s with Re(zj) > x)
is odd. Since F(s) is a rational function with real coefficients, poles and zeros appear in complex
conjugates, so when counting the number of poles and zeros to the right of a point  we
just need to consider the poles and zeros on the real axis.

5. The values of K for which the root locus crosses the imaginary axis can be determined from the
Routh–Hurwitz stability test. Alternatively, we can set s = jω in (6.5) and solve for real ω and K
satisfying

Note that there are two equations here, one for the real part and one for the imaginary part.
6. The break points (intersection of two branches on the real axis) are feasible solutions (satisfying

rule 4) of

(6.11)

7. Angles of departure (K  0) from a complex pole, or arrival  to a complex zero, can be
determined from the phase rule. See example below.
Let us now follow the above rules step by step to construct the root locus for

First, enumerate the poles and zeros as p1 = −4 + j2, p2 = −4 − j2, p3 = −5, p4 = 1, z1 = −3. So, n = 4
and m = 1. 

1. The root locus has four branches.
2. Three branches converge to the asymptotes whose angles are 60°, 180°, and −60°, and one branch

converges to z1 = −3.

(K 0≅ ) K ∞→
Me

jα ,
M ∞→

α ,
2, 1+
n m–
-------------= 180°× , , 0,… , n m– 1–( )=

σa

∑ i=1
n

pi ∑ j=1
m zj–

n m–
----------------------------------=

x R∈

x R∈

D jω( ) KN jω( )+ 0=

d
ds
-----F s( ) 0=

≅ (K +∞→ )

F s( ) s 3+( )
s 1–( ) s 5+( ) s 4 j2+ +( ) s 4 j2–+( )

--------------------------------------------------------------------------------------=
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3. The center of the asymptotes is σ = (−12 + 3)/3 = −3.
4. The intervals (−∞, −5] and [−3, 1] are on the root locus.
5. The imaginary axis crossings are the feasible roots of

(6.12)

for real ω and K. Real and imaginary parts of (6.12) are

They lead to two feasible pairs of solutions (K = 100/3, ω = 0) and (K = 215.83, ω = ±4.62).
6. Break points are the feasible solutions of

Since the roots of this equation are −4.55 ± j1.11 and −1.45 ± j1.11, there is no solution on the
real axis, hence no break points.

7. To determine the angle of departure from the complex pole p1 = −4 + j2, let ∆ represent a point
on the root locus near the complex pole p1, and define vi, i = 1,…,5, to be the vectors drawn from
pi, for i = 1,…,4, and from z1 for i = 5, as shown in Figure 6.7. Let θ1,…,θ5 be the angles of
v1,…,v5. The phase rule implies

(6.13)

As ∆ approaches p1, θ1 becomes the angle of departure and the other θi’s can be approximated by
the angles of the vectors drawn from the other poles, and from the zero, to the pole p1. Thus θ1

can be solved from (6.13), where , , , and 
. That yields .

The exact root locus for this example is shown in Figure 6.8. From the results of item 5 above, and
the shape of the root locus, it is concluded that the feedback system is stable if

that is, by simply adjusting the gain of the controller, the system can be made stable.  In some situations
we need to use a dynamic controller to satisfy all the design requirements.

FIGURE 6.7 Angle of departure from −4 + j2.
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6-10 Mechatronic System Control, Logic, and Data Acquisition

6.3.3 Design Examples

Example 1

Consider the standard feedback system with a plant

and design a controller such that

• Feedback system is stable.

• , , and steady state error is zero when r(t) is unit step. 

• Steady state error is as small as possible when r(t) is unit ramp.

It is clear that the second design goal cannot be achieved by a simple proportional controller. To satisfy
this condition, the controller must have a pole at s = 0, that is, it must have integral action. If we try an
integral control of the form C(s) = Kc /s, with Kc > 0, then the root locus has three branches, the interval
[−1, 0] is on the root locus; three asymptotes have angles {60°, 180°, −60°} with a center at σa = −1; and
there is only one break point at , see Figure 6.9. From the location of the break point, center, and
angles of the asymptotes, it can be deduced that two branches (one starting at p1 = −1, and the other
one starting at p3 = 0) always remain to the right of p1. On the other hand, the settling time condition
implies that the real parts of the dominant closed-loop system poles must be less than or equal to −1.
So, a simple integral control does not do the job. Now try a PI controller of the form

In this case, we can select zc = −1 to cancel the pole at p1 = −1 and the system effectively becomes a
second-order system. The root locus for F(s) = 1/s(s + 2) has two branches and two asymptotes, with
center σa = −1 and angles {90°, −90°}; the break point is also at −1. The branches leave −2 and 0, and
go toward each other, meet at −1, and tend to infinity along the line Re(s) = −1. Indeed, the closed-loop
system poles are

FIGURE 6.8 Root locus for F(s) = .
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The steady state error, when r(t) is unit ramp, is 2/K. So K needs to be as large as possible to meet the
third design condition. Clearly, Re(r1,2) = −1 for all , which satisfies the settling time requirement.
The percent overshoot is less than 10% if ζ of the roots r1,2 is greater than 0.6. A simple algebra shows
that , hence the design conditions are met if K = 1/0.36, that is Kc = 2. Thus a PI controller
that solves the design problem is

The controller cancels a stable pole (at s = −1) of the plant. If there is a slight uncertainty in this pole
location, perfect cancellation will not occur and the system will be third-order with the third  pole at

.  Since the zero at zo = −1 will approximately cancel the effect of this pole, the response of this
system will be close to the response of a second-order system. However, we must be careful if the pole–zero
cancellations are near the imaginary axis because in this case small perturbations in the pole location
might lead to large variations in the feedback system response, as illustrated with the next example.

Example 2

A flexible structure with lightly damped poles has transfer function in the form

By using the root locus, we can see that the controller

stabilizes the feedback system for sufficiently large r and an appropriate choice of Kc. For example, let
ω1 = 2, ζ = 0.1, and r = 10. Then the root locus of F(s) = P(s)C(s)/K, where K = Kc , is as shown in Figure 6.10.
For K = 600, the closed-loop system poles are

FIGURE 6.9 Root locus for Example 1.
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Since the poles −0.2 ± j1.99 are canceled by a pair of zeros at the same point in the closed-loop system
transfer function T = G(1 + G)−1, the dominant poles are at −0.56 and −0.94 ± j1.61 (they have relatively
large negative real parts and the damping ratio is about 0.5).

Now, suppose that this controller is fixed and the complex poles of the plant are slightly modified by
taking ζ = 0.09 and ω1 = 2.2. The root locus corresponding to this system is as shown in Figure 6.11.
Since lightly damped complex poles are not perfectly canceled, there are two more branches near the
imaginary axis. Moreover, for the same value of K = 600, the closed-loop system poles are

In this case, the feedback system is unstable.

Example 3

One of the most important examples of mechatronic systems is the DC motor.  An approximate transfer
function of a DC motor [8, pp. 141–143] is in the form

FIGURE 6.10 Root locus for Example 2(a).

FIGURE 6.11 Root locus for Example 2(b).
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Also note that if τm is large, then , where  is the transfer function of a rigid
beam. In this example, the general class of plants Pm(s) will be considered. Assuming that pm = −1/τm and
Km are given, a first-order controller

(6.14)

will be designed. The aim is to place the closed-loop system poles far from the Im-axis. Since the order
of F(s) = Pm(s)C(s)/KmKc is three, the root locus has three branches. Suppose the desired closed-loop
poles are given as p1, p2, and p3. Then, the pole placement problem amounts to finding {Kc, zc, pc} such
that the characteristic equation is

But the actual characteristic equation, in terms of the unknown controller parameters, is

where K := KmKc. Equating the coefficients of the desired χ(s) to the coefficients of the actual χ(s), three
equations in three unknowns are obtained:

From the first equation pc is determined, then K is obtained from the second equation, and finally zc is
computed from the third equation.

For different numerical values of pm, p1, p2, and p3 the shape of the root locus is different. Below are
some examples, with the corresponding root loci shown in Figures 6.12–6.14.

(a) pm = −0.05, p1 = p2 = p3 = −2 

K = 11.70, pc = −5.95, zc = −0.68

FIGURE 6.12 Root locus for Example 3(a).
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(b) pm = −0.5,  p1 = −1,  p2 = −2,  p3 = −3 

K = 8.25, pc = −5.50, zc = −0.73

(c) pm = −5,  p1 = −11,  p2 = −4 + j1,  p3 = −4 − j1 

K = 35, pc = −14, zc = −5.343

Example 4

Consider the open-loop transfer function

where Kc is the controller gain to be adjusted, and zc and pc are the controller zero and pole, respectively.
Observe that the root locus has four branches except for the non-generic case zc = pc. Let the desired
dominant closed-loop poles be r1,2 = −0.4. The steady state error for unit ramp reference input is

FIGURE 6.13 Root locus for Example 3(b).

FIGURE 6.14 Root locus for Example 3(c).
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Accordingly, we want to make the ratio Kczc /pc as large as possible.
The characteristic equation is

and it is desired to be in the form

for some r3,4 with Re(r3,4) < 0, which implies that

(6.15)

Conditions (6.15) give two equations:

from which zc and pc can be solved in terms of Kc. Then, by simple substitutions, the ratio to be maximized,
Kczc /pc, can be reduced to

The maximizing value of Kc is 0.1297; it leads to pc = −0.9508 and zc = −1.1637. For this controller, the
feedback system poles are

The root locus is shown in Figure 6.15.

FIGURE 6.15 Root locus for Example 4.
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6.4 Complementary Root Locus

In the previous section, the root locus parameter K was assumed to be positive and the phase and
magnitude rules were established based on this assumption. There are some situations in which controller
gain can be negative as well. Therefore, the complete picture is obtained by drawing the usual root locus
(for K > 0) and the complementary root locus (for K < 0). The complementary root locus rules are

(6.16)

(6.17)

Since the phase rule (6.16) is the 180° shifted version of (6.9), the complementary root locus is obtained
by simple modifications in the root locus construction rules. In particular, the number of asymptotes
and their center are the same, but their angles α ’s are given by

Also, an interval on the real axis is on the complementary root locus if and only if it is not on the usual
root locus.

Example 3 (revisited)

In the Example 3 given above, if the problem data is modified to pm = −5, p1 = −20, and p2,3 = −2 ± j,
then the controller parameters become

Note that the gain is negative. The roots of the characteristic equation as K varies between 0 and −
form the complementary root locus; see Figure 6.16.

FIGURE 6.16 Complementary root locus for Example 3.
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Example 4 (revisited)

In this example, if K increases from  to , the closed-loop system poles move along the comple-
mentary root locus, and then the usual root locus, as illustrated in Figure 6.17.

6.5 Root Locus for Systems with Time Delays

The standard feedback control system considered in this section is shown in Figure 6.18, where the
controller C and plant P are in the form

and

with (Nc, Dc) and (Np, Dp) being coprime pairs of polynomials with real coefficients.* The term e
−hs

 is
the transfer function of a pure delay element (in Figure 6.18 the plant input is delayed by h seconds). In
general, time delays enter into the plant model when there is

• Sensor (or actuator) processing delay

• Software delay in the controller

• Transport delay in the process

In this case the open-loop transfer function is

where G0(s) = P0(s)C(s) corresponds to the no delay case, h = 0.
Note that magnitude and phase of G( jω) are determined from the identities

(6.18)

(6.19)

FIGURE 6.17 Complementary and usual root loci for Example 4.

*A pair of polynomials is said to be coprime pair if they do not have common roots.
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6.5.1 Stability of Delay Systems

Stability of the feedback system shown in Figure 6.18 is equivalent to having all the roots of

(6.20)

in the open left half plane, , where D(s) = Dc(s)Dp(s) and N(s) = Nc(s)Np(s). We assume that there is
no unstable pole–zero cancellation in taking the product P0(s)C(s), and that deg(D) > deg(N) (here N
and D need not be monic polynomials). Strictly speaking, χ(s) is not a polynomial because it is a
transcendental function of s. The functions of the form (6.20) belong to a special class of functions called
quasi-polynomials. The closed-loop system poles are the roots of (6.20).

Following are known facts (see [1,10]):

(i) If rk is a root of (20), then so is  (i.e., roots appear in complex conjugate pairs as usual).
(ii) There are infinitely many poles , k = 1, 2,…,satisfying χ(rk) = 0.

(iii) And rk’s can be enumerated in such a way that ; moreover,  as
.

Example

If Gh(s) = e
−hs/s, then the closed-loop system poles rk, for k = 1, 2,…, are the roots of

(6.21)

where rk = σk + jωk for some . Note that e± j2kπ = 1 for all k = 1, 2,…. Equation (6.1) is equivalent
to the following set of equations:

(6.22)

(6.23)

It is quite interesting that for h = 0 there is only one root r = −1, but even for infinitesimally small h > 0 there
are infinitely many roots. From the magnitude condition (6.22), it can be shown that

(6.24)

Also, for , the phase  is between −π/2 and +π/2, therefore (6.23) leads to

(6.25)

FIGURE 6.18 Feedback system a with time delay.
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By combining (6.24) and (6.25), it can be proven that the feedback system has no roots in the closed
right half plane when h < π/2. Furthermore, the system is unstable if h ≥ π/2. In particular, for h = π/2
there are two roots on the imaginary axis, at ± j1. It is also easy to show that, for any h > 0 as k → ∞,
the roots converge to

As h → 0, the magnitude of the roots converge to ∞.
As illustrated by the above example, property (iii) implies that for any given real number σ there are

only finitely many rk’s in the region of the complex plane

In particular, with σ = 0, this means that the quasi-polynomial χ(s) can have only finitely many roots in
the right half plane. Since the effect of the closed-loop system poles that have very large negative real
parts is negligible (as far as closed-loop systems’ input–output behavior is concerned), only finitely many
“dominant” roots rk, for k = 1,…,m, should be computed for all practical purposes.

6.5.2 Dominant Roots of a Quasi-Polynomial

Now we discuss the following problem: given N(s), D(s), and , find the dominant roots of the quasi-
polynomial

For each fixed h > 0, it can be shown that there exists σmax such that χ(s) has no roots in the region ,
see [11] for a simple algorithm to estimate σmax, based on Nyquist criterion. Given h > 0 and a region
of the complex plane defined by σmin ≤ Re(s) ≤ σmax, the problem is to find the roots of χ(s) in this region.

Clearly, a point r = σ + jω in � is a root of χ(s) if and only if

Taking the magnitude square of both sides of the above equation, χ(r) = 0 implies

where x = jω. The term D(σ + x) stands for the function D(s) evaluated at σ + x. The other terms of
Aσ(x) are calculated similarly. For each fixed σ, the function Aσ(x) is a polynomial in the variable x. By
symmetry, if x is a zero of Aσ�, then (−x) is also a zero.

If Aσ(x) has a root x  whose real part is zero, set r  = σ + x . Next, evaluate the magnitude of χ(r ); if
it is zero, then n  is a root of χ(s). Conversely, if Aσ(x) has no root on the imaginary axis, then χ(s) cannot
have a root whose real part is the fixed value of σ from which Aσ� is constructed.

6.5.2.1 Algorithm

Given N(s), D(s), h, σmin, and σmax:
Step 1. Pick σ values σ1,…,σM between σmin and σmax such that σmin = σ1, σi < σi+1, and σM = σmax. For

each σi perform the following.

rk
1
h
--- − 2kπ

h
---------

 
    j2kπ±ln→

Cσ : s C: Re s( ) σ }≥∈{=

h ≥  0

χ s( ) D s( ) e
−hs

N s( )+=

Cσmax

D σ jω+( ) e
−hσ

e
− jhω

N σ jω+( )–=

Aσ x( ) : D σ x+( )D σ x–( )= e
−2hσ

N σ x+( )N σ x–( ) 0=–

9260_06.fm  Page 19  Friday, October 5, 2007  10:42 AM
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Step 2. Construct the polynomial Ai(x) according to

Step 3. For each imaginary axis roots x  of Ai, perform the following test:
 Check if |χ(σi + x )| = 0; if yes, then r = σi + x  is a root of χ(s); if not, discard x . 

Step 4. If i = M, stop; else increase i by 1 and go to Step 2.

Example

We will find the dominant roots of

(6.26)

for a set of critical values of h. Recall that (6.26) has a pair of roots ± j1 when h = π/2 = 1.57. Moreover,
dominant roots of (6.26) are in the right half plane if h > 1.57, and they are in the left half plane if h < 1.57.
So, it is expected that for h  (1.2, 2.0) the dominant roots are near the imaginary axis. Take σmin = −0.5
and σmax = 0.5, with M = 400 linearly spaced σi’s between them. In this case

Whenever  ≥ , Ai(x) has two roots:

For each fixed σi satisfying this condition, let r  = σi + x  (note that x  is a function of σi, so r  is a
function of σi) and evaluate

If f(σi) = 0, then r  is a root of (6.26). For 10 different values of h  (1.2, 2.0), the function f(σ) is plotted
in Figure 6.19. This figure shows the feasible values of σi for which r  (defined from σi) is a root of (6.26).

FIGURE 6.19 Detection of the dominant roots.
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The dominant roots of (6.26), as h varies from 1.2 to 2.0, are shown in Figure 6.20. For h < 1.57, all the
roots are in . For h > 1.57, the dominant roots are in , and for h = 1.57, they are at ± j1.

6.5.3 Root Locus Using Padé Approximations

In this section we assume that h > 0 is fixed and we try to obtain the root locus, with respect to
uncertain/adjustable gain K, corresponding to the dominant poles. The problem can be solved by numer-
ically calculating the dominant roots of the quasi-polynomial

(6.27)

for varying K, by using the methods presented in the previous section. In this section an alternative
method is given that uses Padé approximation of the time delay term e−hs. More precisely, the idea is to
find polynomials Nh(s) and Dh(s) satisfying

(6.28)

so that the dominant roots

(6.29)

closely match the dominant roots of χ(s), (6.27). How should we do the approximation (6.28) for this
match?

By using the stability robustness measures determined from the Nyquist stability criterion, we can
show that for our purpose we may consider the following cost function in order to define a meaningful
measure for the approximation error:

where Kmax is the maximum value of interest for the uncertain/adjustable parameter K.

FIGURE 6.20 Dominant roots as h varies from 1.2 to 2.0.
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The  th order Padé approximation is defined as follows:

where coefficients ck’s are computed from

First- and second-order approximations are in the form

Given the problem data {h, Kmax, N(s), D(s)}, how do we find the smallest degree,  , of the Padé
approximation, so that  (or ) for a specified error δ, or a specified relative error δ′ ?
The answer lies in the following result [7]: for a given degree of approximation   we have 

In light of this result, we can solve the approximation order selection problem by using the following
procedure:

1. Determine the frequency ωx such that

and initialize   = 1.
2. For each   ≥ 1 define
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3. Check if

(6.30)

If yes, stop, this value of   satisfies the desired error bound: ∆h ≤ δ. Otherwise, increase   by 1,
and go to Step 2. Note that the left-hand side of the inequality (6.30) is an upper bound of ∆h.

Since we assumed deg(D) > deg(N), the algorithm will pass Step 3 eventually for some finite  ≥ 1. At
each iteration, we have to draw the error function Φ (ω) and check whether its peak value is less than
δ. Typically, as δ decreases, ωx increases, and that forces  to increase. On the other hand, for very large
values of , the relative magnitude c0 /c  of the coefficients becomes very large, in which case numerical
difficulties arise in analysis and simulations. Also, as time delay h increases,  should be increased to
keep the level of the approximation error δ fixed. This is a fundamental difficulty associated with time
delay systems.

Example

Let N(s) = s + 1, D(s) = s2+ 2s + 2 and h = 0.1, and Kmax = 20. Then, for  = 0.05, applying the above
procedure we calculate  = 2 as the smallest approximation degree satisfying ∆h/Kmax < . Therefore,
a second-order approximation of the time delay should be sufficient for predicting the dominant poles
for . Figure 6.21 shows the approximate root loci obtained from Padé approximations of
degrees  = 1, 2, 3. There is a significant difference between the root loci for  = 1 and  = 2. In the
region , the predicted dominant roots are approximately the same for  = 2, 3, for

. So, we can safely say that using higher order approximations will not make any significant
difference as far as predicting the behavior of the dominant poles for the given range of K.

6.6 Notes

This chapter in the handbook is an edited version of related parts of the author’s book [9].  More detailed
discussions of the root locus method can be found in all the classical control books, such as [2, 5, 6, 8].
As mentioned earlier, extension of this method to discrete time systems is rather trivial: the method to
find the roots of a polynomial as a function of a varying real parameter is independent of the variable s
(in the continuous time case) or z (in the discrete time case). The only difference between these two
cases is the definition of the desired region of the complex plane: for the continuous time systems, this
is defined relative to the imaginary axis, whereas for the discrete time systems the region is defined with
respect to the unit circle, as illustrated in Figure 6.6.

FIGURE 6.21 Dominant root for   = 1.
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7.1 Introduction

The analysis and design of industrial control systems are often accomplished utilizing frequency response
methods. By the term frequency response, we mean the steady-state response of a linear constant coefficient
system to a sinusoidal input test signal. We will see that the response of the system to a sinusoidal input
signal is also a sinusoidal output signal at the same frequency as the input. However, the magnitude and
phase of the output signal differ from those of the input signal, and the amount of difference is a function
of the input frequency. Thus, we will be investigating the relationship between the transfer function and
the frequency response of linear stable systems.

Consider a stable linear constant coefficient system shown in Figure 7.1. Using Euler’s formula, e jωt =
cosω t + j sinω t, let us assume that the input sinusoidal signal is given by

(7.1)

Taking the Laplace transform of u(t) gives

(7.2)

The first term in Equation 7.2 is the Laplace transform of U0cosω t, while the second term, without the
imaginary number j, is the Laplace transform of U0 sinω t. 

Suppose that the transfer function G(s) can be written as

(7.3)

u t( ) U0e jωt U0 ωtcos jU0 ωtsin+= =

U s( )
U0

s jω–
------------- U0

s jω+
s2 ω2+
----------------

U0s

s2 ω2+
---------------- j

U0ω
s2 ω2+
----------------+= = =

G s( ) n s( )
d s( )
---------- n s( )

s p1+( ) s p2+( )… s pn+( )
-------------------------------------------------------------= =

Jyh-Jong Sheen
National Taiwan Ocean University
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where pi, i = 1, 2,…,n, are assumed to be distinct poles. The Laplace transform of the output Y(s) is then

(7.4)

Taking the partial fraction expansion of Y(s) gives 

(7.5)

The coefficient α can be determined by

Therefore, the inverse Laplace transform of Y(s) yields

(7.6)

For a stable system, all −pi have negative nonzero real parts and, therefore, all the terms  i = 1,
2,…,n, approach zero as t approaches infinity. Thus, at steady state, the output y(t) becomes

(7.7)

The sinusoidal transfer function, G( jω), is written in exponential form

where

(7.8a)

and

(7.8b)

Equation 7.7 shows that for a stable system subject to a sinusoidal input, the steady-state response is
a sinusoidal output of the same frequency as the input. The amplitude of the output is that of the input
times , and the phase angle differs from that of the input by the amount .

Example 1

A first-order low-pass filter is shown in Figure 7.2. The transfer function of this filter is

FIGURE 7.1 A stable linear constant coefficient system.
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The sinusoidal transfer function is given by

where ω1 = 1/RC. The magnitude and phase angle of the frequency response are

Figure 7.3 shows the response of the system with RC = 0.5 to the input u = sin2t. It can be seen that
the steady-state response is irrelevant to the initial conditions, and the steady-state amplitude of the
output is 1/  and the phase angle is −45°.

7.2 Bode Plots

There are three commonly used displays of frequency response of a system. They are:

1. Bode diagram or logarithmic plot
2. Polar plot
3. Log-magnitude versus phase plot or Nichols chart

We will present Bode diagrams of sinusoidal transfer functions in this section, followed by the sections
on polar plots and log-magnitude versus phase plots.

The main advantages in using the logarithmic plot are the capability of plotting low and high frequency
characteristics of the transfer function in one diagram, and the relative ease of adding the separate terms

FIGURE 7.2 A first-order low-pass filter.

FIGURE 7.3 Frequency response of G(s) = 1/(0.5s + 1) to u(t) = sin 2t.
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of a high-order transfer function graphically. The basic types of factors that may occur in a transfer function
are as follows:

1. Constant gain K
2. Poles (or zeros) at the origin (jω)±n

3. Poles (or zeros) on the real axis (jωτ  + 1)±1

4. Complex conjugate poles (or zeros) [( jω /ωn)
2 + 2ς( jω /ωn) + 1]±1

The curves of logarithmic magnitude and phase angle for these four factors can easily be drawn and then
added together graphically to obtain the curves for the complete transfer function. The process of drawing
the logarithmic plot can be further simplified by using asymptotic approximations to these curves and
obtaining the actual curves at specific important frequencies.

7.2.1 Constant Gain K 

The logarithmic gain for the constant gain K is

The gain and phase curves are simply horizontal lines on the Bode diagram.

7.2.2 Poles (or Zeros) at the Origin (jω)±n 

Since

the slopes of the magnitude curves are  ±20n dB/decade for the factor (jω)±n and the phase angles are
constants equal to ±n × 90°.

7.2.3 Poles (or Zeros) on the Real Axis (jωτ + 1)±1 

For a pole factor ( jωτ + 1)−1,

The magnitude of the pole factor is 1 when ω << 1/τ, and 1/(ωτ) when ω >> 1/τ. Thus, there are two
asymptotic curves for the pole factor,

The slope of the asymptotic curve when ω >> 1/τ is −20 dB/decade for the pole factor. The two asymptotes
intersect at ω = 1/τ, the break frequency or the corner frequency. The actual logarithmic gain at ω = 1/τ
is −3 dB. The phase angle is φ(ω) = −tan−1ωτ.

The Bode diagram of a zero factor (jωτ  + 1) is obtained in the same manner. However, the slope of
the magnitude asymptotic curve when ω  >> 1/τ is +20 dB/decade, and the phase angle is φ(ω) = +tan−1ωτ.
The Bode diagrams of first-order factors are shown in Figure 7.4. Linear approximations to the phase angle
curves are also presented.

20 Klog constant in decibel, K∠
0°, if K 0>

180°– , if K 0<



==
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--------------------------=
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7.2.4 Complex Conjugate Poles (or Zeros) [( jω /ωn)
2 + 2ς ( jω /ωn) + 1]±1 

The magnitude and phase angle of the complex conjugate poles [( jω /ωn)2 + 2ζ( jω /ωn) + 1]−1 are

The magnitude of the complex conjugate pole factor is 1 when ω << ωn, and (ω /ωn)
−2

 when ω >> ωn.
Therefore, the two asymptotic curves for the complex conjugate pole factor are

The slope of the asymptotic curve when ω >> ωn is −40 dB/decade for the complex conjugate pole factor. The
magnitude asymptotes intersect at ω  = ωn, the natural frequency. The actual gain at ω  = ωn is G(jω n) = 1/2ζ.
The Bode diagram of a complex conjugate pole factor is shown in Figure 7.5. It is seen from Figure 7.5 that the

FIGURE 7.4 Bode diagrams for the first-order factors ( jωτ  + 1)±1.

FIGURE 7.5 Bode diagram for the quadratic pole factor [( jω /ωn)2 + 2ζ( jω /ωn) + 1)]−1.
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7-6 Mechatronic System Control, Logic, and Data Acquisition

difference between the actual magnitude curve and the asymptotic approximation is a function of damping
ratio. The resonant frequency ωr is defined as the frequency where the peak value of the frequency response
Mr occurs. When the damping ratio approaches zero, ωr approaches ωn. The resonant frequency can be
determined by taking the derivative of the magnitude with respect to the frequency, and setting it equal to
zero. The resonant frequency and the peak value of the magnitude are represented by

(7.9a)

and

(7.9b)

Example 2 

Let us consider the transfer function

We first list the basic factors of G(s) in Table 7.1 in the order of increasing corner or natural frequencies.
The complete asymptotic magnitude curve for G( jω) is produced by adding together the asymptotic

logarithmic magnitudes of each factor, as shown by the solid line in Figure 7.6. Since the dc gain of each
factor is 1, these factors have no effect on the asymptotic magnitude until the frequency approaches their
corner or natural frequencies. Thus, the asymptotic magnitude can be quickly obtained by plotting each
asymptote in order as frequency increases. The asymptotic curve intersects 20 dB at ω  = 1 with the slope
−20 dB/decade due to the pole at the origin and the constant gain K = 10. At ω  = 1 the slope further
decreases to −40 dB/decade due to the pole at ω  = 1. Then at ω  = 5 the slope increases to −20 dB/decade

TABLE 7.1 The Basic Factors of G( jω)

Type of Factors Constant Gain Pole Pole Zero Complex Poles

Corner frequency K = 10 0 1 5 10
Order 0 −1 −1 +1 −2

FIGURE 7.6 The Bode plot of the transfer function in Example 2.
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Frequency Response Methods 7-7

due to the zero at ω  = 5. Finally at ω  = 10 the slope becomes −60 dB/decade due to the complex conjugate
poles at ωn = 10.

The exact magnitude is obtained by calculating the actual magnitude at important frequencies such
as the corner or natural frequencies of each factor. The phase curve can be obtained by adding the phase
due to each factor. Although the linear approximation of the phase characteristic for a single pole or zero
is suitable for initial analysis, the error between the exact phase curve and the linear approximation of
complex conjugate poles can be large, as seen in Figure 7.6. Hence, if the accurate phase angle curve is
required, a computer program such as Matlab or Ctrl-C can be utilized to generate the actual phase curve.

7.3 Polar Plots

The polar plot of a sinusoidal transfer function G( jω) is a plot of both the magnitude and the phase of
the frequency response in polar coordinates as the frequency ω varies from zero to infinity. Since the
sinusoidal transfer function G( jω) can be expressed as

the polar plot of G( jω) is a plot of Re[G( jω)] on the horizontal axis versus Im[G( jω)] on the vertical
axis in the complex G(s)-plane as ω varies from zero to infinity. Hence, for each value of ω, a polar plot
of G( jω) is defined by a vector of length |G( jω)| and a phase angle , as in Equation 7.8.

We can investigate the general shapes of polar plots according to the system types and relative degrees
of transfer functions. Relative degree of a transfer function is defined as the difference between the degree
of the denominator polynomial and that of the numerator. Consider a transfer function of the form

where K > 0 and the relative degree n − m ≥ 0. The magnitudes and phase angles of G( jω) as ω approaches
zero and infinity are presented in Table 7.2. The general shapes of the polar plots of various system types
in the low-frequency portion are shown in Figure 7.7. The high-frequency portions of the polar plots of
various relative degrees are shown in Figure 7.8. It can be seen that the G( jω) loci are parallel to either
the horizontal or the vertical axes with infinite magnitude as  for system types greater than zero.
If the relative degree is greater than zero, the G( jω) loci converge to the origin clockwise and are tangent
to one or the other axes. Note that the polar plot curves can be very complicated due to the numerator
and denominator dynamics over the intermediate frequency range. Therefore, the polar plot of G( jω)
in the frequency range of interest must be accurately determined.

TABLE 7.2 G( jω) versus System Type and Relative Degree 
as ω → 0+ and ∞

System Type 
N ω → 0+

Relative Degree
n − m ω → ∞

0 K ∠ 0° 0 b0/a0 ∠ 0°
1 ∞ ∠ −90° 1 0 ∠ −90°
2 ∞ ∠ −180° 2 0 ∠ −180°
3 ∞ ∠ −270° 3 0 ∠ −270°

G jω( ) Re G jω( )[ ] j Im G jω( )[ ]+ G jω( ) e jφ= =

φ G(jω)∠=

G jω( )
K 1 jωτa+( ) 1 jωτb+( )…

jω( )N
1 jωτ1+( ) 1 jωτ2+( )…

-----------------------------------------------------------------------=

b0 jω( )m
b1 jω( )m−1 …+ +

a0 jω( )n
b1 jω( )n−1 …+ +

---------------------------------------------------------------=

ω 0
+→
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7-8 Mechatronic System Control, Logic, and Data Acquisition

We will see that for a closed-loop system, the polar plot of the loop transfer function is useful in
determining the stability of the system. The polar plots of some simple systems are shown in Figure 7.9. 

7.4 Log-Magnitude versus Phase Plots 

Another approach to presenting the frequency response of a system by a single graph is to plot its
logarithmic magnitude versus the phase angle over a frequency range of interest. The resulting curve is
a function of the frequency ω. Such log-magnitude versus phase plots are called Nichols charts.

Advantages of the Nichols chart are that the relative stability of the closed-loop system can be deter-
mined quickly and that the process of closed-loop compensation can be carried out easily. The Nichols
charts of the systems in Figure 7.9 are depicted in Figure 7.10 for comparison. Figure 7.11 displays three
different frequency-response curves of the second-order system

FIGURE 7.7 Polar plots of system with various system types as ω → 0.

FIGURE 7.8 Polar plots of system with various relative degrees as ω → ∞.
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Frequency Response Methods 7-9

7.5 Experimental Determination of Transfer Functions

We can obtain a transfer function model from frequency-response measurements of a stable system. First,
the Bode diagram of the frequency response is plotted from the measurements. Then the open-loop
transfer function can be deduced from the magnitude and phase plots based on the relationships of the
basic pole and zero factors.

A wave analyzer is a device to measure the amplitudes and phases of the steady-state response as the
frequency of the input sinusoidal wave is altered. A transfer function analyzer can be used to measure
the open-loop and closed-loop transfer functions.

We will use a computer program combined with an analog-to-digital and digital-to-analog (AD and
DA) card to generate the sinusoidal input signal and to measure the frequency response of a system.
Consider the second-order Sallen-Key low-pass filter in Figure 7.12. The transfer function of the filter is
given by

(7.10)

FIGURE 7.9 Polar plots of simple transfer functions.
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7-10 Mechatronic System Control, Logic, and Data Acquisition

where 

and

The Real-Time Windows Target in MATLAB is used with an Advantech PCL-818L AD and DA card.
The sampling time is 0.001 s. The measured magnitudes and phase angles are shown in Figure 7.13.
From the Bode plot, we can find that the dc gain is equal to 1.995 and the natural frequency ωn = 17.90
rad/s. From Equation 7.9b and Mr = 1.993, we have ζ  = 0.26.

An alternative to estimating the transfer function is to use an excitation signal that is sufficiently rich
in the frequency contents of interest and to measure the corresponding output. System identification
technique is then applied to find the order and parameters of the transfer function. Suitable excitation
signals are the impulse signal, sweep sine signal, random sequence, and so forth. Figure 7.14 presents the
sweep sine input and the corresponding output. The MATLAB System Identification Toolbox is then

FIGURE 7.10 Nichols charts of simple transfer functions.
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Frequency Response Methods 7-11

FIGURE 7.11 Three frequency response representations of G(s) = /(s2 + 2 ωns + ): (a) Bode diagram, (b) polar
plot, and (c) Nichols chart.
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7-12 Mechatronic System Control, Logic, and Data Acquisition

FIGURE 7.12 Sallen-Key low-pass filter.

FIGURE 7.13 Frequency response of the Sallen-Key filter from experimental data.

FIGURE 7.14 Sweep sine response of the Sallen-Key filter.
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Frequency Response Methods 7-13

utilized to estimate the transfer function. The resulting transfer functions from the ideal op-amp circuit
in Equation 7.10, the Bode plot, and system identification are shown in Table 7.3 for comparison. It is
seen that the differences among the three transfer functions are very small. However, the task of determining
transfer functions from Bode plots can be very difficult as various pole or zero factors of close corner
frequencies can complicate the magnitude and phase plots for high-order systems. Thus, it is recommended
that system identification technique be used for determination of high-order transfer functions.

7.6 The Nyquist Stability Criterion

The Nyquist stability criterion provides a graphical procedure for determining the closed-loop stability
from the open-loop frequency-response curves. The criterion is based on a result from complex variables
theory known as the argument principle, due to Cauchy.

Suppose F(s) is a rational function of s with real coefficients that are analytic everywhere in the s-plane
except at its poles. Let Γs be a closed, clockwise contour in the s-plane that does not pass through any
zeros or poles of F(s). The contour map ΓF is defined by substituting the values of s on the contour Γs

for s in F(s). The resulting map is also a closed continuous contour in the F(s)-plane. The principle of
the argument can be stated as follows:

A contour map ΓF of a complex function F(s) defined on Γs in the s-plane will only encircle the origin
of the F(s)-plane if the contour contains a pole or zero of the function. The net number that ΓF encircles
the origin in the clockwise direction is

(7.11)

where Z and P are, respectively, the numbers of zeros and poles of F(s) enclosed by a closed clockwise
contour Γs in the s-plane.

Example 3 

To illustrate the argument principle, consider a rational function

which has zeros at s = −3, −4 and poles at s = −1, −2. The various contour maps of F(s) are shown in
Figure 7.15, where Γr denotes the contour map of a clockwise circular contour of radius r in the s-plane.
We have the following observations from Figure 7.15:

1. The contour map Γ0.5 does not encircle the origin of the F(s)-plane as the contour in the s-plane
does not encircle any pole or zero.

2. Γ1.99 encircles the origin once in the counterclockwise direction as the contour encircles the pole
at s = −1 in the clockwise direction in the s-plane, and from Equation 7.11, N = Z − P = 0 − 1 =
−1. Note that Γ1.99 is a closed contour with two loops and only the one encircling the origin is
shown in Figure 7.15.

TABLE 7.3 Estimated Transfer Functions for the Second-Order Low-Pass Filter

1. Ideal op-amp circuit: 

where the measured values of resistors and capacitors are substituted in Equation 7.10 with R1 

= 98.4 kΩ, R2 = 98.7 kΩ, RA = 51.3 kΩ, RB = 98.5 kΩ, CA = 1.083 µF, and CB = 0.564 µF.

2. From the Bode plot: 

3. System identification: 

G s( ) 1.997

s /18.09( )2 2 0.271 s /18.09( ) 1+×+
-------------------------------------------------------------------------------------=

G s( ) 1.995

s /17.90( )2 2 0.259 s /17.90( ) 1+×+
------------------------------------------------------------------------------------=

G s( ) 1.997

s /17.78( )2
2 0.255 s /17.78( ) 1+×+

------------------------------------------------------------------------------------=

N Z P–=

F s( ) s 3+( ) s 4+( )
s 1+( ) s 2+( )

--------------------------------=

9260_07.fm  Page 13  Wednesday, October 10, 2007  8:37 PM



7-14 Mechatronic System Control, Logic, and Data Acquisition

3. Γ2.5 encircles the origin twice in the counterclockwise direction as the contour contains two poles
at s = −1, −2 and N = Z − P = 0 − 2 = −2.

4. When the radius of the contour is increased to contain the poles at s = −1, −2 and the zero at s =
−3, then N = Z − P = 1 − 2 = −1 and a contour map like Γ3.5 encircles the origin once in the
counterclockwise direction.

5. When the radius of the contour is further increased to encircle the two poles and two zeros, then
N = 2 − 2 = 0 and the contour map like Γ4.5 does not encircle the origin.

We now apply Cauchy’s principle of argument to develop the Nyquist stability criterion. Suppose that
the characteristic equation of the closed-loop system in Figure 7.16 is

Let L(s) = G(s)H(s), the loop transfer function. Using the argument principle, let us assume that none
of the poles or zeros of F(s) lie on the imaginary axis in the s-plane. We now define the Nyquist path,
Γs, that is composed of the imaginary axis and a semicircle of infinite radius. This contour completely
encloses the entire complex right-half plane as depicted in Figure 7.17a. The corresponding contour map
ΓF is shown in Figure 7.17b. It follows from the argument principle that N corresponds to the net number
of clockwise encirclements of the origin of the 1 + L(s)-plane by ΓF. P is the number of poles of F(s) in
the right-half s-plane and thus is the number of poles of the loop transfer function L(s) in the right-half
s-plane. Z is the number of zeros of the characteristic equation F(s) of the closed-loop system in the
right-half s-plane. Therefore, Z must be zero for the closed-loop system to be stable.

In practice, a modification is made to simplify the application of the Nyquist criterion. Instead of
plotting ΓF in the 1 + L(s)-plane, we plot just L(s) evaluated along the contour Γs. The resulting contour
map ΓL is in the L(s)-plane and has the same shape as ΓF but is shifted 1 unit to the left, as shown in
Figure 7.17c. It thus follows that N is the net number of encirclements of the −1 point in the L(s)-plane.

FIGURE 7.15 The contour maps of F(s) in Example 3.

FIGURE 7.16 Closed-loop system.

−4 −3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Γ1.99

Γ2.5

Γ3.5 Γ4.5

Γ0.5

 F(s)−plane 

 Re 

Im 

R(s)
G(s)

Y(s)

H(s)

+

−

F s( ) 1 G s( )H s( )+ 0= =

9260_07.fm  Page 14  Wednesday, October 10, 2007  8:37 PM



Frequency Response Methods 7-15

The Nyquist stability criterion can now be stated as follows:

A necessary and sufficient condition for the closed-loop stability of a system defined by the loop
transfer function L(s) is that

(7.12)

be equal to zero, where N is the net number of encirclements of the −1 point in the L(s)-plane, and
P is the number of unstable poles of the loop transfer function L(s).

Example 4 

Consider the system with the loop transfer function

(7.13)

Let us determine the range of the gain K such that the closed-loop system is stable. Since there is a
pole at s = 0, we need to modify the Nyquist path to detour around the origin. The contour is shown
in Figure 7.18a, where the detour is chosen to be a semicircle of radius approaching zero in the limit.
We use the following procedure to sketch the Nyquist plot in Figure 7.18b:

1. Determine L( jω) as ω → 0+ : L(s) is of system type 1 and thus

 

according to Table 7.2.

FIGURE 7.17 Nyquist diagram.

FIGURE 7.18 Nyquist diagram and root locus of Example 4.
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2. Determine L( jω) as ω → ∞ : L(s) has a relative degree of 1 and

 

according to Table 7.2.
3. From the Bode plot, draw the polar plot of L( jω) as ω varies from 0+ to ∞. Although the magnitude

curve of the factor (s2 − 2s + 2) is the same as the factor (s2 + 2s + 2), the phase of the factor (s2 −
2s + 2) changes from 0° to −180°. Thus, a sketch of the Bode diagram shows that the magnitude
curve varies from infinity to zero and the phase changes from −90° to −450°. Since there are two
points at which the phases are −180° and −360°, there will be two intersections of the L( jω) locus
with the real axis in the L(s)-plane.

4. Draw the polar plot of L( jω) as ω varies from 0− to −∞ by reflecting the curve of L( jω) in procedure
3 with respect to the real axis in the L(s)-plane.

5. Determine the contour map of the small detour around the origin of the s-plane to complete the
plot. On the detour,

The contour map of the detour can then be determined by

The resulting map is a large semicircle of radius approaching infinity. This semicircle starts at the
point L( j0 −) and swings 180° in the counterclockwise direction to connect the point L( j0+) in the
L(s)-plane.

6. Calculate the intersections of the L( jω) locus with the real-axis, for these points are related to the
relative stability of the system. Suppose that the L( jω) locus intersects the real axis for some critical
frequency ωcr. Then

where k = 0, ±1, ±2, ±3,…. This phase condition at the critical frequency is directly related to the
angle condition of the root locus when the root locus crosses the imaginary axis. Therefore, we can
utilize the Routh–Hurwitz criterion to determine the points where the L( jω) locus crosses the real
axis. The characteristic equation of the system (7.13) can be written as

Thus, the Routh array is

where
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Frequency Response Methods 7-17

Let c = 0, and solving for K, we get the critical gains

Substituting the values of Kcr in the auxiliary equation

we obtain the critical frequencies

At the critical frequency, we have the characteristic equation

Hence the points of the L( jω) locus that cross the real-axis are

The complete Nyquist plot is shown not to scale in Figure 7.18b. The range of the gain K for which
the system is stable can be determined using Nyquist criterion. For different values of K, the Nyquist
diagram needs to be redrawn in order to count the number of encirclement of the −1 point. We can
avoid this by counting the number of encirclement of −1/K point instead. From the Nyquist criterion,
Z = N + P, where P = 0. It can be seen from Figure 7.18b that there are four cases of the encirclements
of the −1/K point.

1. K > 0 and −1/K < −1/0.79  and N = 0. We have Z = 0 and the system is stable.
2. K > 0 and −1/K > −1/0.79  and N = 2. We have Z = 2 and the system has two unstable

poles.
3. K < 0 and −1/K < 1/3.79  and N = 3. We have Z = 3 and the system has three unstable

poles.
4. K < 0 and −1/K > 1/3.79  and N = 1. We have Z = 1 and the system has one

unstable pole.

The root locus of system (7.13) is also shown in Figure 7.18c for comparison.

7.7 Relative Stability

In designing a control system, it is required that the system be stable. In addition to stability, there are
important concerns such as acceptable transient response and capability to deal with model uncertainty.
Since the model used in the design and analysis of a control system is never exact, it may suggest a stable
system; but the physical system turns out to be unstable. Therefore, it is required that the system not
only be stable but also have some stability margin or adequate relative stability.

Suppose that the sinusoidal loop transfer function L( jω) locus intersects the −1 point for some critical
frequency ωcr. Then

Kcr
3 21±–

2
---------------------- 0.79, 3.79–= =

Kcr 3+( )s
2

2Kcr+ 0=

ωcr
2Kcr

Kcr 3+
----------------

0.65, when Kcr 0.79=
3.10, when Kcr 3.79–=



= =

1 KcrL jωcr( )+ 0=

L jωcr( ) 1
Kcr

-------– 1
0.79
---------- , 1

3.79
----------–= =

0 K 0.79,< <⇒
K 0.79> ,⇒

K 3.79,–<⇒

3.79 K<– 0<⇒

L jωcr( ) G jωcr( )H jωcr( ) −1= =
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7-18 Mechatronic System Control, Logic, and Data Acquisition

or

This indicates that the closed-loop system has a pair of complex poles at s = ±jωcr . Hence, the system
is marginally stable and oscillates with the frequency ωcr, provided that all other closed-loop system poles
are in the left half s-plane. In general, the closer the L( jω) locus comes to the −1 + j0 point in the Nyquist
plot, the more oscillatory is the system response. For this reason, the closeness of the L( jω) locus to the
−1 point can be used as a measure of the stability margin. Two traditional measures of the stability margin
are gain margin and phase margin.

Gain margin and phase margin are usually defined for stable closed-loop systems that are characterized
by a minimum phase, loop transfer function L(s). The gain margin is the factor by which the open-loop
gain of a stable closed-loop system can be increased before the system goes unstable. The phase margin
is the amount of additional phase lag at the gain crossover frequency required to make the stable closed-
loop system marginally stable. Thus we have the following definitions:

Gain margin (GM):  The gain margin is the reciprocal of the magnitude |L( jω)| at the phase crossover
frequency ωφ, where the phase of L( jωφ) reaches −180°. The gain margin is given by

Phase margin (PM):  The phase margin is defined as the angle between the phase of the loop transfer
at the gain crossover frequency ωg where  and the angle −180°, or .

The gain and phase margins are shown in Figure 7.19. Gain and phase margins are stability margins
for single-input single-output systems. They cannot apply for multi-input multi-output systems. In addi-
tion, they can be a poor indication of stability margin in the face of combined gain and phase variations,
as shown in Figure 7.20. This is due to the fact that gain and phase margins are measures of stability
margin in terms of only pure gain and phase variations, but not a combination of both. As a consequence,
a system may have good gain and phase margins, but it is close to instability, as indicated in Figure 7.20.
To make up for the insufficiencies of gain and phase margins, a third stability margin, return difference,
is used in modern control theory. We will only consider single-input single-output systems.

FIGURE 7.19 Gain and phase margins.
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Minimum return difference:  The minimum return difference is the minimum value of |1 + L( jω)|, for
0 < ω < ∞. It can be seen from Figure 7.20 that the minimum return difference is the minimum distance
from the Nyquist plot to the −1 point. Therefore, the gain and phase margins are special cases of the
minimum return difference. The gain margin is directly related to the case when the minimum return
difference occurs at the phase crossover frequency, and the phase margin is corresponding to the case
that the minimum return difference occurs at the gain crossover frequency.

Although the minimum return difference is a better measure of stability margin than the gain and
phase margins, it is seldom used in the classical control theory. This is because the classical control
analysis and design is usually carried out using the Bode diagram or the Nichols chart instead of the
Nyquist plot. The gain and phase margins are more easily determined from the Bode diagram or the
Nichols chart than the Nyquist plot. Despite the fact that the minimum return difference can be easily
evaluated from the Nyquist plot, it is difficult to determine the minimum return difference from the
Bode plot or the Nichols chart.

We now correlate the phase margin and the damping ratio ζ of an underdamped second-order system.
Consider the standard second-order system

(7.14)

We assume that the transfer function T(s) comes from a unity feedback configuration and can be rewritten
as

where the open-loop transfer function G(s) is given by

(7.15)

FIGURE 7.20 Insufficiency of gain and phase margins.
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7-20 Mechatronic System Control, Logic, and Data Acquisition

The phase margin occurs at the gain crossover frequency ωc when |G(jωc)| = 1, or

This equation can be rewritten as

Solving for positive ωc, we obtain

Substituting s = jωc into Equation 7.15, the phase margin for the system is

 

(7.16)

Equation 7.16 relates the damping ratio of the standard second-order system (7.14) to the phase margin
of its corresponding open-loop system (7.15) in a unity feedback configuration. This equation provides
a correlation between the frequency response and the time response. A plot of ζ versus PM is shown in
Figure 7.21. The curve of ζ versus PM can be approximated by a dashed line in Figure 7.21. The linear
approximation can be expressed as

(7.17)

FIGURE 7.21 Damping ratio versus phase margin for a second-order system.
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Frequency Response Methods 7-21

This approximation is reasonably accurate for  and is useful in relating the frequency response to
the transient performance of a second-order system. Equation 7.17 may also be used for higher-order
systems if the system can be assumed to have a pair of dominant underdamped complex poles. 
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8.1 The Discrete-Time Linear Kalman Filter

Distilled to its most fundamental elements, the Kalman filter [1] is a predictor–corrector estimation
algorithm that uses a dynamic system model to predict state values and a measurement model to correct
this prediction. However, the Kalman filter is capable of a great deal more than just state observation in
such a manner. By making certain stochastic assumptions, the Kalman filter carries along an internal metric
of the statistical confidence of the estimate of individual state elements in the form of a covariance matrix.
The essential properties of the Kalman filter are derived from the requirements that the state estimate be

• Linear combination of the previous state estimate and current measurement information

• Unbiased with respect to the true state 

• Optimal in terms of having minimum variance with respect to the true state

Starting with these basic requirements an elegant and efficient formulation for the implementation of
the Kalman filter may be derived. 

The Kalman filter processes a time series of measurements to update the estimate of the system state
and utilizes a dynamic model to propagate the state estimate between measurements. The observed
measurement is assumed to be a function of the system state and can be represented via

 (8.1)

where Y(t) is an m dimensional observable, h is the nonlinear measurement model, X(t) is the n-
dimensional system state, β is a vector of modeling parameters, and v(t) is a random process accounting
for measurement noise.

Y t( ) h X t( ),β,t( ) v t( )+=

Timothy P. Crain II
NASA Johnson Space Center
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8-2 Mechatronic System Control, Logic, and Data Acquisition

The true dynamic system is described by a general first-order, ordinary differential equation

(8.2)

where f is the nonlinear dynamics function that incorporates all significant deterministic effects of the
environment, α is a vector of parameters used in the model, and w(t) is a random process that accounts
for the noise present from mismodeling in f or from the quantum uncertainty of the universe, depending
on the accuracy of the deterministic model in use.

With these general models available, a linear Kalman filter (LKF) may be derived in a discrete-time
formulation. The dynamics and measurement functions are linearized about a known reference state,

(t), which is related to the true environment state, X(t), via

(8.3)

The LKF state estimate is related to the true difference by

(8.4)

where the “ ” denotes the state estimate (or filter state),  is the estimation error, and “±” indicates
whether the estimate and error are evaluated instantaneously before (−) or after (+) measurement update
at discrete time tk.

It is important to emphasize that the LKF filter state is the estimate of the difference between the
environment and the reference state. The LKF mode of operation will therefore carry along a reference
state and the filter state between measurement updates. Only the filter state is at the time of measurement
update. Figure 8.1 illustrates the generalized relationship between the true, reference, and filter states in
an LKF estimating a two-dimensional trajectory.

8.1.1 Linearization of Dynamic and Measurement System Models

The dynamics and measurement functions may be linearized about the known reference state, (t),
according to

(8.5)

(8.6)

FIGURE 8.1 LKF tracking of a two-dimensional
trajectory.
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where F is the dynamics partial derivative matrix and H is the measurement partial derivative matrix
defined by

(8.7)

(8.8)

and x(t) is the true state to be estimated representing the difference between the environment and reference
states

(8.9)

After linearizing the dynamic and measurement models, the effect of neglecting the higher order terms
is assumed to be included in the random processes w(t) and v(t). The linearization is an acceptable
approximation if x(t) is sufficiently small.

The reference and filter states are propagated according to the discrete-time linear relationship

(8.10)

 (8.11)

where Φ(tk+1, tk) is the state transition matrix from time tk to time tk+1 and has the following properties:

(8.12)

Note that the system dynamics are now incorporated into the propagation of the reference and filter
states by the integration of the dynamics partial derivative in Equation 8.13. 

Mathematically, the true difference state is propagated in a similar fashion with the addition of a
process noise random value

(8.13)

In general, it is not required that the reference dynamic model be exactly the same as the truth dynamics
or that the modeling parameter α be equivalent to the true modeling vector. This notation is left in place
to simplify the derivation of the Kalman filter formulation. A number of innovative approaches have been
developed for adapting reference model parameters to improve fidelity with the unknown real-world
system model [2–6] and can be used to enhance filter operation.

The LKF also requires a linearized measurement, yk = Yk − , modeled by

(8.14)

For the development of the Kalman filters presented here, the random contributions vk and wk are assumed
to be discrete realizations of the continuous zero mean Gaussian process in Equations 8.1 and 8.2 and
are defined by

(8.15)

(8.16)

 F X̃ t( ) , α , t( ) ∂f
∂X
-------

X= X̃

=

H X̃ t( ), β, t( ) ∂h
∂X
-------

X= X̃

=

x t( ) X t( ) X̃ t( )–=

X̃k+1 Φ tk+1, tk( )X̃k=

x̂k+1
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Φ tk+1 , tk( ) x̂k
−( )

=

Φ tk, tk( ) I=

Φ
·

tk+1, tk( ) F X̃ t( ), α , t( )Φ tk+1, tk( )=
Φ tk+2, tk( ) Φ tk+2, tk+1( )Φ tk+1, tk( )=

xk+1 Φ tk+1 , tk( )xk wk+=

Ỹk

yk Hkxk vk+=

E vkvi
T Rkδki=

E wkwi
T Qkδk i=
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8-4 Mechatronic System Control, Logic, and Data Acquisition

Generally, it is assumed that the process noise and measurement noise sequences are uncorrelated so that 

(8.17)

However, the Kalman filter can be configured to operate in systems where this assumption does not apply
[7].

8.1.2 Linear Kalman Filter Error Covariance Propagation

The propagation of the filter and reference states in the LKF were outlined in the previous section in
Equations 8.11 and 8.13. However, all Kalman filter formulations must also propagate a confidence metric
of the state estimate in the form of a state error covariance matrix. The state error covariance, P, is defined
as the expectation of the outer product of the estimation error vector

(8.18)

The state error covariance matrix is n × n and symmetric, and must remain positive definite to retain filter
stability. The mechanism for propagating the covariance can be derived by taking the covariance just before
measurement update at time tk+1

(8.19)

and substituting the estimation error and propagation definitions in Equations 8.4, 8.11, and 8.13 to yield

(8.20)

Utilizing the definitions of process noise covariance in Equation 8.16 and state error covariance in
Equation 8.18 the propagation equation reduces to 

(8.21)

The propagation equation can be interpreted as the sum of the mapping of the previous post-update
error covariance through the system dynamics and the system process noise induced uncertainty. Thus,
process noise acts to increase the state error covariance between measurement updates.

8.1.3 Linear Kalman Filter Update

The LKF seeks an unbiased, minimum variance solution for the difference state, xk, by combining previous
state information with available measurements. The state estimate after measurement update is therefore
assumed to be a linear combination of the pre-update state and the linearized measurement information

(8.22)

Substituting Equations 8.4 and 8.14 into Equation 8.22 and solving for the estimation error yields

(8.23)
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By definition Ε[vk] = 0 and E[ ] = 0 by assumption of unbiased estimation. Therefore, the updated
state estimation error is unbiased

(8.24)

only if

(8.25)

Substitution of Equation 8.25 into Equation 8.22 results in an expression for the updated state estimate

(8.26)

with estimation error

(8.27)

The post-measurement error covariance in Equation 8.18 may be expanded to

(8.28)

by substitution of Equation 8.27 and applying the conditions of uncorrelated process and measurement
noise, zero mean measurement noise, and the definition of the pre-measurement state estimation error
covariance. At this point, only the requirement that the Kalman filter be an unbiased estimator has been
satisfied, so now we will select the Kalman gain Kk that delivers the minimum summed variance on the
post-measurement state estimation error. In other words, we seek the gain that will minimize

(8.29)

The necessary condition for minimality of Jk is that its partial derivative with respect to the Kalman
gain is zero. By employing the following relationship:

(8.30)

where B is a symmetric matrix, on the components of Equation 8.28 with respect to Kk results in

(8.31)

The optimal gain (the Kalman gain) is therefore

(8.32)

which is sometimes written as

(8.33)

where the term Wk is referred to as the innovations covariance

(8.34)
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8.2 Other Kalman Filter Formulations

In addition to the LKF, there are several other formulations of the Kalman filter that may be employed to
more closely follow the characteristics of specific state observation scenarios. The LKF may be varied according
to the temporal nature of the dynamic and measurement systems to be continuous in dynamics and mea-
surements or continuous in dynamics and discrete in measurements [12 ]. Also, there are applications when
the dynamic system is energetic or the measurement quality is poor that may cause the reference state in the
LKF to quickly leave the region of linearity about the environment state. In such systems, the reference state
can be updated through addition of the filter state into an implementation known as the extended Kalman
filter (EKF). The EKF is highly suited to real-time applications but is nonlinear in the sense that the reference
state is essentially reinitialized at the time of each measurement update. Both the continuous–discrete LKF
and EKF will be developed in the following sections.

8.2.1 The Continuous–Discrete Linear Kalman Filter

There may quite naturally arise an application where the reference state, filter state, and state error
covariance are more suitably propagated in a continuous fashion than through the linear application of
the state transition matrix. Also, it is common for the measurement system to deliver discrete-time
observations even when the dynamics are best modeled continuously. In such a situation the update
mechanization is unchanged from the previous LKF derivation while the propagation between updates
is carried out through continuous integration. Without loss of generality, it may be stated that the
reference dynamics of a continuous Kalman filter may be represented by

(8.35)

Furthermore, by taking time derivatives of the filter state and covariance propagation (Equations 8.11
and 8.21) and substituting in Equation 8.13 for the derivative of the state transition matrix, the contin-
uous-time filter state and covariance relations are found to be

(8.36)

(8.37)

where (t) is the spectral density of the dynamic process noise at time t and the explicit functional
dependency of F was dropped for notational convenience. In this mechanization of the LKF, the state
transition matrix need not be calculated as the dynamics are included directly via the partial derivative
matrix and the reference state, filter state, and error covariance are propagated continuously.

The process and measurement noise representations in this formulation are continuous and discrete
for the respective models, and are again assumed to be zero mean processes governed by the continuous
dynamic process noise covariance

(8.38)

and the discrete measurement noise covariance

(8.39)

It is also assumed here that the process and measurement noises are uncorrelated so that

(8.40)

although the formulation can be modified to accommodate process and measurement noise correlations
if necessary [7].
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8.2.2 The Continuous–Discrete Extended Kalman Filter

In applications where the reference state may quickly deviate beyond the linear region of the environment
state, the reference may be directly updated at the time of measurement update by adding the LKF filter
state to the reference in an EKF. The EKF is similar to the LKF, in that measurements are processed to
provide an estimate of the difference between the true state and reference state of the spacecraft. Also,
the EKF evaluates dynamics and measurement partials with respect to the reference state in a manner
similar to the LKF. However, the reference state about which these partials are evaluated is modified
through the addition of measurement information

(8.41)

The reference state dynamics model used in the EKF formulation is given by Equation 8.35, but the
measurement model is the discrete form given by Equation 8.1. The filter state representing the estimated
difference between the true state and the reference state is only calculated at the time of measurement
update via dropping the previous estimate information term from Equation 8.26:

(8.42)

where the innovation is now the actual measurement residual

(8.43)

Therefore, in the EKF there is not a separate filter state that needs to be propagated to the time of the
next measurement, as the filter state has been incorporated into the updated reference state.

As before, the error covariance at each measurement is updated by

, (8.44)

and the EKF Kalman gain and innovations covariance are analogous to their LKF counterparts

(8.45)

(8.46)

The difference between EKF operation and LKF operation is illustrated by revisiting the two-dimensional
trajectory illustration in Figure 8.2. The reference trajectory can now be seen to respond to measurement
information availability and tracks the true environment trajectory.

FIGURE 8.2 EKF tracking of a two-dimensional trajectory.

X̃ tk( ) +( ) X̃ tk( ) −( ) x̂ tk( )+=

x̂k KkZk=

Zk Yk h X̃k
−( )

, β, tk 
 –=

Pk
+( ) I KkHk–( )Pk

−( ) I KkHk–( )T KkRkKk
T+=

Kk Pk
−( )HkWk

−1=

Wk HkPk
−( )Hk Rk.+=

Estimated/Reference
Trajectory

True Trajectory

Estimation Error

9260_08.fm  Page 7  Friday, October 5, 2007  10:44 AM



8-8 Mechatronic System Control, Logic, and Data Acquisition

8.3 Formulation Summary and Review

The LKF discrete–discrete formulation was given by the following propagation equations:

and update equations

In the discrete time LFK mechanization, the reference state is unaffected by the incorporation of
measurement information into the filter state. 

In a slight variation of this approach, the dynamics of the LKF may be made continuous, and the filter
state, reference state, and covariance propagated without the use of a state transition matrix.

When the application requires that the reference state be modified to remain in the linear vicinity of
the environment state, the EKF continuous–discrete formulation may be appropriate. In the continuous–
discrete EKF formulation, the propagation is carried out according to

and the measurement update according to

The reference state will change with the incorporation of measurement information into the EKF and
the partials evaluated along this changing reference.
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Kalman Filters as Dynamic System State Observers 8-9

8.4 Implementation Considerations

It is commonly held among designers of Kalman filters that the implementation of the formulas listed above
represent only a portion of the effort required to develop an accurate and robust Kalman filter application.
Once the dynamics, measurements, and partial derivatives have been coded, the task remains to tune the
noise magnitudes represented in the process noise covariance Q and the measurement noise covariance R.
While the measurement noise can be based in realistic hardware performance specifications, the process
noise is often used as a tuning parameter to ensure that the filter operates correctly. This process of tuning
the filter crosses over into the area of design and is nearly an art form of such myriad approaches that it is
beyond the scope of this work to outline. However, a Kalman filter checklist is provided for the newcomer
to the field to reduce the time of the implementation and tuning learning curve:

• Because the linear Kalman filter does not change the reference state in the presence of measurement
information, the reference state and partial derivatives for an LKF application may be computed
prior to operation. This makes the LKF more amenable to computationally restricted applications
or hypothesis testing where differing process noise and measurement noise parameters are being
evaluated in parallel [8].

• Process noise serves to keep the filter from becoming overconfident in its estimate (i.e., a covariance
with near zero diagonal values) and converging prematurely. Examining the propagation equations
for the Kalman filters presented previously, it can easily be seen how the addition of process noise
increases the magnitude of the state error covariance between measurements.

• The innovations covariance should ideally converge to describe the variance in the filter measure-
ment residuals. Adaptive techniques have been implemented where the filter noise parameters are
tuned according to a metric linking residual statistics with the innovations covariance [5]. In an
ideal filter, the innovations covariance should approach the measurement noise covariance as the
process noise magnitude approaches zero.

• When multiple measurements are available at the same time, they may be processed as a series of
scalar observations as long as they are uncorrelated (i.e., R is a diagonal matrix). The effect of
processing scalar measurements is that the innovations covariance becomes a scalar, and a numer-
ical division rather than a matrix inversion is required to calculate the Kalman gain.

• Measurement editing may be employed to prevent spurious data from causing filter divergence
in a number of ways. One of the most common is to reject measurements when the ratio of the
measurement residual squared to the scalar innovations covariance

(8.47)

is above a user-defined threshold. The threshold value may either be a constant or may be time
varying after long propagation periods to allow for a smooth transition to a steady state innovations
covariance. 

• The covariance should always be positive definite. If filter divergence is a chronic problem in a
particular application, the numerical integrity of the covariance may provide insight into the
nature of the divergence. There are also several numerical implementations of the covariance
update equation that take advantage of its symmetry and positive definiteness to enhance its
stability while reducing computational load [9].

• Process noise may be enhanced by including time correlated states such as first-order Gauss–Markov
processes to the filter to account for specific dynamic effects. The biases associated with these processes
can be included in the filter state for estimation. 

As a final note it should be stressed that the Kalman filter is not the state observer algorithm best
suited for all applications. Its strengths lie in light computational requirements and real-time availability

rk
2

Wk

-------
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8-10 Mechatronic System Control, Logic, and Data Acquisition

of a state estimate in the presence of accurate measurement information. However, batch estimation
techniques such as least-squares estimation may be more appropriate in applications where the dynamic
process is modeled to a high degree of fidelity, measurements are not uniformly accurate, and real-time
operation is not an issue. A number of quality texts [10–12] have been written on the subject of stochastic
estimation in general and specifically Kalman filtering that the the reader is encouraged to pursue for
more detailed information.
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9.1 Introduction

Most engineers work in the world of mechatronics as there are relatively few systems that are purely
mechanical or electronic. There are a variety of means by which electrical systems augment mechanical
systems and vise versa. For example, most microprocessors found in a computer today have some sort
of heat sink and perhaps a fan attached to them to keep them within their operational temperature zone.
Electrical systems are widely employed to monitor and control a wide variety of mechanical systems.
With the advent of inexpensive digital processing chips, digital filtering and digital control for mechanical
systems is becoming commonplace. Examples of this can be seen in every automobile and most household
appliances. For example, sensor signals used in monitoring and controlling of mechanical systems require
some form of signal processing. This signal processing can range from simply “cleaning-up” the signal
using a low pass filter to more advanced analyses such as torque and power monitoring in a DC servo
motor. This chapter presents a brief overview of digital signal processing methods suitable for mechanical
systems. Since this chapter is limited in space, it does not give any derivation or details of analysis. For
a more detailed discussion, see references [1,2].

9.2 Signal Processing Fundamentals

A few fundamental concepts on signal processing must be introduced before a discussion of filtering or
control can be undertaken.

Bonnie S. Heck 
Georgia Institute of Technology 

Thomas R. Kurfess
Clemson University
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9-2 Mechatronic System Control, Logic, and Data Acquisition

9.2.1 Continuous-Time Signals

Laplace transforms are used for system analysis of continuous-time systems, solving for system response,
and control design. The single-sided Laplace transform of a continuous-time signal, x(t), is given by

A transfer function of a linear system, H(s), can be found as the ratio of the Laplace transforms of the
output over that of the input (with zero initial conditions). 

The Fourier transform is used to determine the frequency content of a signal. The Fourier transform
of x(t) is given by

(9.1)

where ω is in units of radians per second. Notice that when x(t) = 0 for t ≤ 0, the Laplace transform is
equivalent to the Fourier transform by setting s = jω. (It should be noted that there are some additional
convergence considerations for the Fourier transform.) The frequency response of a system is defined as
the ratio of the Fourier transforms of the output over that of the input. Equivalently, it can be found
from the transfer function as H(ω) ≡ H( jω) = H(s)|s=jω. For simplicity of notation, the j is usually not
shown in the argument list, giving rise to the notation H(ω) to represent the frequency response. The
bandwidth of a system is defined as the frequency at which H(ω) = 0.707H(0). 

9.2.2 Discrete-Time Signals 
The z-transform is useful for solving a difference equation and for performing system analysis. The
z-transform of a discrete-time signal, x[n], is defined as

The discrete-time Fourier transform (DTFT) is used to determine the frequency content of a signal. The
DTFT and the inverse DTFT of a signal are defined by

(9.2)

and

(9.3)

Note that the DTFT can be derived from the z-transform by setting z = e jΩ. (Again, there are some
assumptions on convergence in this derivation.) Since the DTFT is periodic with period 2π, it is typically
displayed over the range [−π, π] or [0, 2π], where the frequencies of general interest are from Ω = 0 (low
frequency) to Ω = π (high frequency). The frequency response of a discrete-time system can be found
as the ratio of the DTFT of the output signal over that of the input signal. Alternatively, it can be found
from the transfer function as H(Ω) ≡ H(e jΩ) = H(z) . The notation H(Ω) is preferred over H(e jΩ)
for its simplicity. As in the continuous-time case, the bandwidth is defined as the frequency at which
H(Ω) = 0.707H(0).
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Digital Signal Processing for Mechatronic Applications 9-3

While the DTFT is continuous with respect to the frequency variable Ω, the discrete Fourier transform
(DFT) contains points that are discrete with respect to a parameter k. Consider a finite duration sequence
x[n], where x[n] = 0 for n < 0 and for n ≥ N. The DFT of x[n] and the inverse DFT are defined as

(9.4)

and

Note that the DFT is a discretized version of the DTFT where Xk = X(Ω)  over the range Ω = 0
to Ω = 2π. Calculating a closed-form solution for the DTFT can be done only for simple signals such as
a square pulse or a triangular pulse. Therefore, the DFT is generally used as a numerical method to
calculate the DTFT at discrete points in frequency in the range 0 ≤ Ω ≤ 2π. In particular, to obtain a plot
of the DTFT, plot Xk versus k where k is scaled by 2π/N. For an arbitrary signal, such as obtained from
measurements of a physical device, computing the DFT instead of the DTFT is the preferred method to
find the frequency content of the signal. To get more resolution in plotting a DTFT from the points
calculated by a DFT, zeros can be added to the end of the sequence so that the value of N is increased.

Suppose a time domain signal is not finite in duration, so that there is no value of N such that x[n] = 0
for n Š N. In order to perform the DFT, the signal must be truncated. There are two cases to be considered:
the case where x[n] is decaying to zero and the case where x[n] has periodic components. The case when
x[n] decays to zero is handled by choosing N to be large enough so that the signal is negligible beyond
that value. The resulting DFT is an approximation (not a discretized version) of the DTFT. If the signal
is periodic, the DTFT cannot be computed numerically since the resulting DTFT would have impulses
in it. However, the frequencies present in the signal could still be determined if the value of N used for
the truncation is chosen so that the truncated signal goes through an integer number of cycles. If this
not done, the resulting DFT will have leakage in the frequency plot when compared to the DTFT of the
true signal. For example, consider a signal x[n] = cos(0.4πn). This is periodic with period n = 5 and has
DTFT given by X(Ω) = π[δ(Ω + 0.4π) + δ(Ω − 0.4π)] for −π ≤ Ω ≤ π. All the frequency content is
located at Ω = 0.4π and Ω = −0.4π. Since the DTFT is periodic with 2π, there is also an impulse at Ω =
2π  − 0.4π. The DFT is computed for two truncations of the signal, one at N = 20 (four complete cycles)
and the other at N = 22. The DFT for N = 20 is plotted in Figure 9.1a where the independent variables
k are scaled by 2π/N for the plot. This plot shows zero frequency content except at Ω = 0.4π (=1.2566)
and Ω = 2π − 0.4π  (=5.0265), giving the correct location of the impulses in the DTFT. Similarly, the
DFT for N = 22 is plotted in Figure 9.1b, notice the resulting leakage in the frequency characteristics.

FIGURE 9.1 DFT of periodic signal (a) truncated after 4 complete cycles and (b) truncated after 4.4 cycles.
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9-4 Mechatronic System Control, Logic, and Data Acquisition

If a signal has periodic content, but is not periodic, such as x[n] = cos(0.5πn) + cos(0.2n), then leakage
cannot be avoided by a selection of N. An alternate means of reducing leakage is to first taper the signal
to zero at the initial and end points of the sequence prior to computing the DFT. This process, known
as windowing the data, is accomplished by multiplying x[n] by a window function w[n] and then
performing the DFT on the product x[n]w[n]. Three common windows are the rectangular window,
which is a sharp truncation, the Hanning window, and the Hamming window [1]. 

Rectangular Window:

w[n] = 1, 0 ≤ n ≤ N − 1  

Hanning Window:

 

Hamming Window:

If the value of N in a DFT is a power of 2, there is a fast method to compute the DFT called the fast
Fourier transform (FFT). If the value of N is not a power of 2, zeros can be padded to the end of the
signal in order to use the FFT. This does not affect the accuracy of the result, but it does improve the
resolution of the resulting plot when the DFT (or FFT) is used to compute the DTFT. In many cases,
the expression used in Equation 9.4 suffices to compute the DFT since the added computational power
of today’s processors lessens the need for the numerical efficiency of the FFT. The details of the algorithm
for the FFT are beyond the scope of this handbook. See [1] or [2] for details.

9.3 Continuous-Time to Discrete-Time Mappings

While most physical systems operate in continuous-time, computers operate in discrete-time. Therefore,
in order to use computers to process measurements taken from continuous-time systems, there must be
ways of mapping between the continuous-time world to the discrete-time world.

9.3.1 Discretization 

Before an analog signal can be analyzed using digital techniques, it must be discretized (i.e., converted into a
discrete-time signal). The ideal method for discretization is sampling, where the values of the signal are
determined at discrete points in time. Generally, the signal is sampled at a fixed rate known as the sampling
period. The sampling rate (in hertz) is the inverse of the sampling period. Figure 9.2 depicts a 1 Hz signal that
has been sampled at two rates. The dark points are sampled at 15 ms intervals, while the lighter points are
sampled at 250 ms intervals. From Figure 9.2, the waveform approximation clearly degrades as the sampling
frequency is reduced and approaches the signal frequency. In fact, it can be shown that a signal must be
sampled at a frequency that is higher than twice its maximum frequency content. This is known as the Nyquist
Sampling Theorem. For example, if the signal in Figure 9.2 is sampled at 0.5 Hz, it is possible for every sample
to have a value of 0 as at 0, 500, 1000 ms, etc… the value of the signal is 0. The erroneous interpretation of
the signal due to a sample frequency that is too low is known as aliasing. There are two means by which the
Nyquist Sampling Theorem can be satisfied. The first is by employing a sample frequency that is more than
twice the highest frequency content of the signal being sampled. This value frequency is known as the Nyquist
frequency. As one never is sure of the actual frequency content of a real signal, a low pass filter may be used
to ensure that a signal does not possess frequencies above a certain cut-off level. Such a filter is commonly
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Digital Signal Processing for Mechatronic Applications 9-5

called an anti-aliasing filter. This is the second and most practical method that is used to satisfy the Nyquist
Sampling Theorem. Thus, a combination of a well-designed anti-aliasing filter as well as a sampling frequency
that is well above the cut-off frequency of the filter will ensure that the Nyquist Sampling Theorem is satisfied. 

There are two important points that should be noted when using an anti-aliasing filter. First, it is important
that the anti-aliasing filter be used before the signal is sampled as sampling is what causes aliasing. Basically,
this requires that the anti-aliasing filter is implemented using an analog filter prior to the signal being digitized.
Once a signal has been aliased during sampling, it cannot be corrected using digital filtering. The second
point is that, in practice, the cutoff frequency of the anti-aliasing filter should be a factor of 5–10 below the
value of the Nyquist frequency. It should be noted that an anti-aliasing filter adds phase lag to the measure-
ment, which might deteriorate stability and performance in a feedback loop unless the bandwidth of the
anti-aliasing filter is much higher than that of the closed loop system. Commercially available devices that
perform sampling are analog-to-digital converters (ADCs), and the anti-aliasing filter is used before this
device.

The converse of sampling is reconstruction where a discrete-time signal is converted into a continuous-
time signal. The Nyquist sampling rate ensures that if a continuous-time signal is sampled at a rate that is
at least twice the highest frequency component in the signal, then the continuous-time signal can be recon-
structed exactly from the samples. However, this theorem assumes that an ideal reconstruction process is
available, which is not practical. The most common practical means to reconstruct a signal is a zero-order
hold (ZOH). The ZOH assumes that the value of the signal is constant between samples. This approxi-
mation is quite reasonable if the sampled signal does not change substantially between individual samples.
Figure 9.3 is an example of a signal and its ZOH representation. The gray, smooth line represents the
original analog signal. The black points along the signal indicate sample values of the signal. Each black

FIGURE 9.2 A 1 Hz signal.

FIGURE 9.3 A signal sampled and reconstructed using a zero order hold.
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9-6 Mechatronic System Control, Logic, and Data Acquisition

point is connected to the next via a horizontal then vertical straight line. The horizontal line is representative
of the ZOH assumption that the value of the signal remains constant between samples. The vertical line is
the reality that the signal does not remain constant over the sample period. As the time between sample
points is increased, the accuracy of the ZOH decreases. Conversely, as the sample period is decreased, the
accuracy of the ZOH is improved. Commercially available devices that perform reconstruction are digital-
to-analog converters (DACs), which generally use the ZOH method.

9.3.2 s-Plane to z-Plane Mappings

One method to relate the s-plane to the z-plane is to derive a continuous-time mathematical represen-
tation of the sampled signal for x(t) and compute its Laplace transform. The resulting Laplace transform
of the sampled signal can be related to the z-transform of x[n] by setting z =  e

sT
 where T is the sampling

period. The relationship z = e
sT

 is commonly termed the exact mapping between the z-plane and the s-plane.
(For details of this derivation, see [1]). For example, a digital representation, Hd (z), of a continuous-time
system, H(s), can be obtained using this mapping Hd(z) = H(s) . However, this mapping results in a
nonrational function for Hd(z). 

Approximate mappings between the s-plane and the z-plane are commonly used that do result in a
rational function for Hd(z). Three such mappings are the bilinear transformation, forward transforma-
tion, and backward transformation. 

Bilinear transformation:

Forward transformation:

Backward transformation: 

The bilinear transformation (also known as Tustin’s rule or the trapezoidal rule) is the most accurate of
these mappings. It maps the entire left-hand side of the s-plane into the unit circle of the z-plane, so that
it preserves stability. Consider a first-order example of H(s) = 1/(s + 2). The discrete-time representation
of this transfer function is 

Note that the resulting transfer function is rational in z.
An alternate method of mapping transfer functions between the continuous-time and the discrete-

time domains is the response-matching mapping.
Response-matching: Suppose x(t) is the input to a system H(s) with the resulting output y(t). Let x[n]

and y[n] be the sampled versions of x(t) and y(t). Then, Hd (z) is found from the ratio of z-transforms
of x[n] and y[n]. The most common response matching is step-response matching where x(t) is a step
function, x(t) = 1 for t ≥ 0 and x(t) = 0 for t < 0. An expression for Hd (z) is found from the following
operation:
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where Z[H(s)/s] represents the z-transform of the sampled version of the step response of the continuous-
time system. The form for a generic first-order system is given below:

The response matching method (especially with step inputs) is commonly used to map a continuous-
time plant to discrete-time when designing a digital controller in the discrete-domain. Since most digital
controllers are implemented using a ZOH on the output of the digital controller, the plant sees a stepped
signal, one that looks like a sum of delayed step signals. Therefore, the step-response matching method
is the most accurate way to map a plant that has a ZOH on its input.

9.3.3 Frequency Domain Mappings

The continuous-time Fourier transform can be related to the DTFT through the expression: 

where X(ω) is defined in Equation 9.1 and represents the continuous-time Fourier transform of x(t), while
X(Ω) is defined in Equation 9.2 and represents the DTFT of the sampled signal x[n]. This mapping is
very useful for computing the Fourier transform of measured data. In particular, suppose a continuous-
time signal is measured by sampling it through an ADC and storing it as a discrete-time sequence. If the
signal x(t) is finite in duration, the DTFT of x[n] can be computed at discrete points in frequency by using
the DFT, Xk, as given in Equation 9.4. Using the relationships ω = Ω/T, Ω = 2πk/N, and Xk = X(Ω) ,
where N is the length of the sequence for x[n] and T is the sampling period, gives the relationship:

where ωs = 2π/T is the sampling frequency in radian per second. Accuracy can be improved by decreasing
the sampling period T, and the resolution in the plot can be increased by increasing NT. 

If the signal x(t) is not finite in duration, it must be truncated in order to use this numerical method
to calculate the continuous-time Fourier transform. As discussed in Section 9.2.2, if the sampled signal
x[n] decays to zero, choose the number of sampled points N to be large enough so that x(t) is negligible
beyond that value. If the sampled signal x[n] is periodic, choose the sampling period T and the number
of points N such that the sampled signal x[n] goes through an integer number of cycles. For example,
consider the signal x(t) = cos(π t). If the sampling period is chosen as T = 0.4 s, the discretized signal
would be x[n] = x(nT) = cos(0.4πn), which is the same signal analyzed in Section 9.2.2. Choosing N = 5,
10, 15, etc. would yield correct results in the DFT while any other value would result in leakage. If the
signal x(t) has periodic content, but does not appear to be periodic, then use a windowing function as
discussed in Section 9.2.2 to reduce leakage when computing the DFT.

Note that the DFT can also be used to determine the Fourier coefficients of periodic signals. Consider
a Fourier series in the form

Sample the signal x(t) by first making sure that the sampled signal goes through an integer number of
cycles. The coefficients ck for k = 0,…,(N − 1)/2 can be found as ck = Xk/N where Xk is found from the
DFT. The rest of the coefficients are obtained from c−k = .
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9-8 Mechatronic System Control, Logic, and Data Acquisition

Since the frequency response of a system is the ratio of the Fourier transforms of the output over the
input, a mapping between a continuous-time system, H(ω), and a corresponding discrete-time system,
Hd(Ω), can be derived from the previous mapping as 

This mapping is useful for the design of both digital filters and digital controllers.

9.4 Digital Filter Design

The frequency response function of a discrete-time system describes how the system processes input
signals of different frequencies. Consider an input signal x[n] = A cos(Ω0n) to a system with frequency
response H(Ω) where 0 ð Ω0 ð 2π. The corresponding output is given by

 

For aperiodic signals, the filtering property of Fourier transforms gives the relationship:

Thus, if  is small over a certain range of frequencies, then input signals with frequency content
in that range are attenuated as they pass through the system.

It is often convenient to filter continuous-time signals through a digital filter as shown in Figure 9.4.
The analog-to-digital converter (ADC) samples the continuous-time signal creating a sequence of discrete-
time signals for processing by the computer or digital signal processing board. The filtered signal can be
stored digitally for further study or it can be sent through a digital-to-analog converter (DAC). The digital
filter can be implemented in software by a recursive equation obtained from the difference equation.
Consider a digital filter with transfer function:

The recursion used to calculate the current value of the output y[n] is given by the difference equation:

(9.5)

Notice that the past values of y and x must be stored for use in the recursion.
Now consider the impulse response of a digital filter, where y[n] is calculated for an input x[n] equal

to an impulse (that is, δ[n] = 1 when n = 0 and δ[n] = 0 otherwise). The recursion shown above results
in a response for y[n] that has infinite duration (that is, there is no value of M so that y[n] = 0 for all n
> M). This type of filter is called an infinite impulse response (IIR) filter.

FIGURE 9.4 Configuration for standard digital signal processing hardware.
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Now consider the case where the coefficients of the filter am = 0 for m > 1. The resulting expression
for y[n] from Equation 9.5 would no longer be recursive since it would depend only on present and past
values of x, and not on past values of y. As a result, the impulse response would have duration N. This
type of filter is called a finite impulse response (FIR) filter. FIR filters are sometimes preferred over IIR
filters since they have linear phase in the frequency response. Linear phase means that the angle of the
frequency response is given by −θΩ, where θ is a constant. This corresponds to a delay in the time domain.
Design methods for both types of filters are described in the next two sections.

9.4.1 IIR Filter Design

The two methods for designing IIR filters are termed analog emulation (or indirect design) and direct
design. Analog emulation involves designing an analog filter first and then using one of the mapping
techniques described in Section 9.3.2 to convert it to a digital filter. This method has advantages in that
there is a wealth of design techniques for analog filters that can be used in digital filter design. Direct
design methods generally involve numerical techniques, and they are often preferred over analog emu-
lation when the sampling period is not very small. Direct design is beyond the scope of this handbook;
consult reference [2] for more information on the topic.

Analog filter design begins by selecting a bandwidth, a prototype of filter, and an order of the filter.
Additional specifications may be set on the amount of ripple that is allowed in the passband or stopband.
Two common analog prototypes are the Butterworth filters and the Chebyshev filters. 

Butterworth filter: The Butterworth filter is characterized by having no zeros and having poles that are
situated on a semicircle in the left-half of the s-plane. The distance of the poles to the origin is the
bandwidth frequency and is denoted as ωb. The angle of the poles can be determined by equally spacing
out twice the number of poles around a full circle with radius ωb and then keeping only the poles in the
left-half plane, as shown in Figure 9.5. An Nth order Butterworth filter is given by

where

FIGURE 9.5 Pole distribution of a fourth-order Butterworth filter.
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9-10 Mechatronic System Control, Logic, and Data Acquisition

This filter is lowpass in that the magnitude of the frequency response is reasonably flat and close to a
value of 1 for ω < ωb and drops off sharply beyond the bandwidth frequency. The larger the order of the
filter, the sharper the drop off. Three filters are compared in Figure 9.6. Notice that the sharp transitions
offered by the larger order filters do come with a price: the phase is also decreased dramatically. The phasing
becomes important in real-time measurement systems such as that required by feedback controllers. 

Chebyshev filter: Unlike the monotonic behavior of the Butterworth filter, the Chebyshev filter allows
some ripple in the magnitude plot for either the passband or the stopband. The Type 1 Chebyshev filter
allows for ripple in the passband while the Type 2 Chebyshev filter allows for ripple in the stopband. Allowing
for a ripple results in the Chebyshev filters having sharper transitions near the bandwidth than are achievable
by a Butterworth filter of the same order. In Chebyshev design, the cutoff frequency ωc is usually specified
as opposed to the bandwidth. The cutoff frequency is the frequency at which the magnitude of the filter
decays to a preset ratio of the DC value. When this ratio is 0.707, the cutoff frequency is the bandwidth.
Often, in Chebyshev design, this ratio is chosen to correspond to the amount of ripple allowed in the
passband. A Type 1 Chebyshev lowpass filter is defined by the relationships:

 

and 

The CN(x) expression is called the Nth order Chebyshev polynomial, and it is calculated recursively
starting with C0(x) = 1 and C1(x) = x. The value of ε > 0 determines the amount of ripple allowed in the
passband; in particular, the ripple exists between the values of 1 and 1/ . Consider, for example,
the Type 1 Chebyshev filters shown in Figure 9.7; these filters were designed to have 1 dB of ripple in
the passband (ε  = 0.51). Note that ε = 1 for 3 dB of ripple.

As mentioned above, these prototype filters are lowpass. To design another type of filter, first the
lowpass filter is designed, H(s), with a cutoff frequency ωc (typically chosen to be 1). Then a frequency
transformation is used to convert the filter to the desired type. The standard frequency transformations
are given below.

Lowpass to lowpass: To obtain a lowpass filter with cutoff frequency ω1, replace s in the original H(s)
by sωc /ω1.

FIGURE 9.6 Comparison of analog Butterworth filters.
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Lowpass to highpass: To obtain a highpass filter with a passband running from ω1 to ∞, replace s in
the original H(s) by ω1ωc/s.

Lowpass to bandpass: To obtain a bandpass filter with a passband running from ω1 to ω2, replace s in
the original H(s) by 

Lowpass to bandstop: To obtain a bandstop filter with stopband running from ω1 to ω2, replace s in
the original H(s) by 

9.4.2 FIR Filter Design

One way to obtain an FIR filter is to truncate the impulse response of an ideal IIR filter. For example,
an ideal IIR lowpass filter has the frequency response:

 

where A is a constant and Ωc is the cutoff frequency. The impulse response of this filter is found from
taking the inverse DTFT using Equation 9.3:

Notice that this has infinite duration for both n < 0 and n > 0. Creating an FIR filter would entail
truncating the impulse response for n < −N and for n > N. However, the original IIR filter and the
resulting truncated FIR filter are both noncausal; that is, the impulse response is nonzero for n < 0.

FIGURE 9.7 Comparison of analog Type I Chebyshev filters.
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9-12 Mechatronic System Control, Logic, and Data Acquisition

Noncausal filters need future values of the input in order to calculate the present value of the output;
hence, they cannot be implemented in real-time. For this reason, typical IIR design uses nonideal filters
(often based on analog prototypes) that approximate the ideal frequency response. When filtering a signal
off-line that has been stored, causality is no longer required since all of the values of the signal are available
(including “future” values).

In order to perform real-time implementation of an FIR filter that was generated by truncating an
ideal IIR filter, the filter must be delayed so that all of the significant information of the impulse response
occurs for n Š 0. This delay in the time domain is equivalent to a linear phase lag in the frequency domain. 

Thus, an FIR filter can be designed by first selecting an ideal IIR filter (lowpass, highpass, etc.), then
taking the inverse DTFT to find the impulse response, and then truncating the impulse response, and finally,
delaying it in time. An equivalent and more preferred method is to rearrange the steps described above.
First, add a phase lag in the frequency response of the ideal IIR filter. This is done by multiplying the
frequency response by e j(N − 1)/2. Then, take the inverse DTFT and truncate it for n < 0 and n > N − 1. The
result is a causal FIR filter with order N.

The following are generic FIR filters of order N that have been generated using the method described
above. Let m = (N − 1)/2.

Lowpass FIR filter with cutoff frequency Ωc :

 

where sinc(x) = sin(πx)/πx.
Highpass FIR filter with passband from Ω1:

Bandpass FIR filter with passband from Ω1 to Ω2:

To implement these filters, the coefficients in Equation 9.5 are set to bm = h[m − 1], a1 = 1, and am = 0
for m > 1.

The FIR filters designed using this method have frequency responses that have rather sharp transitions
between the passband and the stopband (the larger the order, the sharper the transition), but they tend
to give rise to a ripple in the passband and stopband. This ripple results from the sharp truncation of the
IIR filter’s impulse response. A more gradual truncation using a window can be performed that smooths
the ripple in the frequency response. The windows discussed in Section 9.3.2 that are employed in data
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collection are also used in FIR filter design, where the modified filter is given as h[n]w[n]. FIR design
using different windows is discussed in further detail in [1,2].

9.4.3 Computer-Aided Design of Digital Filters

MATLABTM is a common software package for signal processing analysis and design. The signal processing
toolbox contains several commands for designing and simulating digital filters. For example, the com-
mands butter and cheby1 automatically design a prototype analog filter for an IIR and then use the bilinear
transformation to map the filter to the discrete-time domain. Lowpass, highpass, bandstop, and bandpass
filters can be designed using these commands as long as the digital cutoff frequencies, normalized by π,
are specified. To design a digital lowpass filter based on the analog Butterworth filter with cutoff frequency
w1, use the command [b, a] = butter(N, w1∗T/pi) where N is the number of poles, T is the sampling
period, and w1∗T is digital cutoff frequency. This command puts the coefficients of the filter, defined in
Equation 9.5, in vectors b and a in ascending order. To design a digital highpass filter with analog cutoff
frequency w1, use the commands [b, a] = butter(N, w1∗T/pi, ‘high’). To design a digital bandpass filter
with analog passband from w1 to w2, define w = [w1, w2] and use the command [b, a] = butter (N,
w ∗T/pi). To design a digital bandstop filter with stopband from w1 to w2, define w = [w1, w2] and use
the command [b, a] = butter(N, w ∗T/pi, ‘stop’). The design for an Nth order Type I Chebyshev filter is
accomplished using the same methods as for butter except that “butter” is replaced by “cheby1.” 

The signal processing toolbox also provides commands for designing FIR filters. To obtain a lowpass FIR
filter with length N and analog cutoff frequency w1, use the command h = fir1(N − 1, w1∗T/pi). The
resulting vector h contains the impulse response of the FIR where h(1) is the value of h[0]. The values in
the vector h also equal the coefficients of b in Equation 9.5 in ascending order. (Recall, that a1 = 1 and am

= 0 for m > 1.) A length N highpass FIR filter with analog cutoff frequency w1 is designed by using the
command h = fir1(N − 1, w1∗T/pi, ‘high’). A bandpass FIR filter with passband from w1 to w2 is obtained
by typing h = fir1(N − 1, w ∗T/pi) where w = [w1, w2]. A bandstop FIR filter with stopband from w1 to
w2 is obtained by typing h = fir1(N − 1, w ∗T/pi, ‘stop’) where w = [w1, w2]. The fir1 command uses the
Hamming window by default. Other windows are obtained by adding an option of “hanning” or “boxcar”
(which is the rectangular window) to the arguments; for example, h = fir1(N − 1, w1∗T/ pi, ‘high,’ boxcar(N))
creates a highpass FIR filter with analog cutoff frequency w1 using a rectangular window.

The filter command in MATLAB is used to compute an output of a digital filter given its input sequence.
An example of its use is y = filter(b, a, x) where b and a are the coefficients of the filter and x is the input
sequence.

9.4.4 Filtering Examples

Quite often, 60 Hz noise is encountered in measurements of electromechanical systems due to standard
line voltage. (Note, in Europe noise at a 50-Hz frequency is typically encountered.) For demonstration
purposes, a 60-Hz signal is superimposed on a lower frequency signal shown in Figure 9.8. To alleviate
the detrimental effects of the 60-Hz noise, a bandstop filter may be employed. Typically, most systems

FIGURE 9.8 Measurement corrupted with 60-Hz noise. 
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9-14 Mechatronic System Control, Logic, and Data Acquisition

have a bandstop filter designed around 60 Hz to avoid the type of response seen in Figure 9.8. The
following MATLAB commands can be employed to design an eighth-order digital Butterworth bandstop
filter whose break frequencies are 50 and 70 Hz. Thus, the filter should reject the 60-Hz noise.

T = 0.001; %Sample period
n = 4; % half the order of filter
low_freq = 50 * (2*pi); %Stop signals between 50 and 70 Hz
high_freq = 70 * (2*pi);

w1 = low_freq*(T/pi); % normalized digital break frequencies
w2 = high_freq*(T/pi);
w = [w1 w2];

[b,a] = butter(n,w,‘stop’); % filter coefficients

W = -pi:pi/200:pi; % define a digital frequency vector
H = freqz(b,a,W); % computes the frequency response for plotting

Figure 9.9 shows the magnitude of the frequency response for the resulting IIR filter. Note that the
frequency variable is plotted for the range [−π, π] where DC frequency corresponds to Ω = 0 and the highest
frequency allowable is Ω = π. In this example, the digital break frequencies correspond to Ω1 = 50(2π)T =
0.314 and Ω2 = 70(2π)T = 0.44. Figure 9.10 shows the result of applying this filter to the noisy signal. For
all practical purposes, the 60-Hz noise is completely attenuated. As can be seen in Figure 9.10, there are
some initial system transients during the first 100 ms of the step response. This is a combination of the
fourth-order Butterworth filter and the initial system transients to the 60-Hz signal. It should be noted
that the sample frequency of 1000 kHz is fast enough to accurately capture the 60-Hz signal. If a sample
frequency of less than 120 Hz is used, the 60-Hz signal will be aliased, and no amount of digital filtering
would be able to eliminate the effects of the 60-Hz disturbance.

Another application of digital filtering in mechatronics is used when estimating displacement from an
acceleration measurement. A simplistic approach to calculating the displacement is to integrate the accel-
eration twice. In the s-domain, this double integration is equivalent to multiplying by 1/s2. Using the

FIGURE 9.9 Bandstop filter.

FIGURE 9.10 Filtered measurement.
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bilinear transformation to convert 1/s
2
 to the z-domain yields the following transfer function,

The corresponding difference equation used to calculate the displacement y[•] from the acceleration
ydd[•] is 4(y[n] − 2y[n − 1] + y[n − 2]) = T 2(ydd[n] + 2ydd[n − 1] + ydd[n − 2]). However, accelerometers
generally do not have good response at low frequencies; in fact, they often insert a bias in the data yielding
a drift in the calculated displacement. They also are very sensitive to random vibrations. An alternate
approach is to process the acceleration data through a bandpass filter before using the difference equation
to integrate it numerically. The bandpass range must contain the natural frequencies in the system.

Consider, for example, the acceleration data shown in Figure 9.11, which has some random noise. This
signal is sampled at a rate of 6400 Hz, where the natural frequency of the system is 50 Hz. Figure 9.12
shows the actual displacement, while Figure 9.13 shows the estimated displacement calculated by numer-
ically integrating the acceleration data, using the difference equation given above. This estimation is very
poor. Alternatively, an analog eighth-order Chebyshev Type I bandpass filter with passband 25–500 Hz

FIGURE 9.11 Acceleration measurement.

FIGURE 9.12 Actual displacement.

FIGURE 9.13 Estimated displacement without use of a prefilter.
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9-16 Mechatronic System Control, Logic, and Data Acquisition

is designed and then discretized using the bilinear transformation. The acceleration data is processed
through this filter first, and then the filtered data are numerically integrated with the result shown in
Figure 9.14. Notice that the estimate is much better than that obtained without the bandpass filter. A
500th order FIR bandpass is also designed for this example with passband 25–500 Hz. After passing the
data through the FIR filter, it is then numerically integrated resulting in the estimated displacement shown
in Figure 9.15. Due to the linear phase characteristic of the FIR filter, it has less transient distortion than
the IIR filter, but it adds a larger lag. The larger the order, the more accurate the result, since less significant
information is lost in truncating the impulse response of the ideal IIR bandpass filter, but the lag is larger.
The magnitudes of the IIR filter and the FIR bandpass filters are shown in Figure 9.16.

Two observations on this example should be mentioned: 

1. The unfiltered calculation was extremely sensitive to bias in the data (as expected from the double
integration). Therefore, the bias was removed from the acceleration before processing. Both filters
effectively removed bias, so the results were virtually unchanged if the bias was present.

2. The FIR filter shows some drift. Presumably, the cause of the drift is that the filter seems to have
some difficulty with the small stopband region near the origin. Increasing the stopband region

FIGURE 9.14 Estimated displacement with IIR prefilter.

FIGURE 9.15 Estimated displacement with FIR prefilter.

FIGURE 9.16 Digital bandpass filters: (a) Chebyshev IIR and (b) FIR filter.
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does reduce the drift. This can be done by decreasing the sample frequency or by increasing the
passband frequency. Both of these remedies decrease the drift but increase other errors in the
signal. Increasing the length of the filter decreases the drift error without introducing other errors.

Some of the MATLAB commands used to design the filters and generate the results are:

[num,den] = c2dm(1,[1 0 0],T,‘tustin’); %digitize 1/s^2
y1 = filter(num,den,ydd); % double integration of ydd

Wbreak = [2*pi*25*T, 2*pi*500*T}; % digital break frequencies
[b,a] = cheby1(4,1,Wbreak); % design IIR filter with 1dB ripple

W = -pi:pi/200:pi; % define digital frequency range for plot
H = freqz(b,a,W); % get frequency response
plot(W,abs(H)); % plot magnitude of frequency response

yddfilt = filter(b,a,ydd); % calculate output of IIR filter
y2 = filter(num,den,yddfilt); % double integration of yddfilt

hfir = fir1(500,Wbreak); % design FIR filter of order 500
yddfilt = filter(hfir,1,ydd); % calculate output of FIR filter
y3 = filter(num,den,yddfilt); % double integration of yddfilt

9.5 Digital Control Design

As in the digital filter design case, there are two general methods for designing a digital controller: an indirect
method that is based on discretizing an analog design, and a direct method that is based on discretizing a
plant (usually using the step-response matching method) and then designing the controller directly in the
discrete domain. Most engineers learn classical continuous-time controls, and it is common for them to
have more training in continuous-time control design than in discrete-time or digital control design.
Fortunately, continuous-time control tools can often be used when designing digital control systems. To
make use of controllers designed in the continuous-time domain, an s-plane to z-plane mapping is used.
Any of the mappings discussed in this chapter can be used for a variety of controllers. It is always best to
determine the mapping that is most efficient for a particular control or filter. Even though the bilinear
approximation is more complex than the forward or backward approximations, it is used for most mecha-
tronic systems. This is due to the fact that most modern controllers have enough computational power to
manage the increased complexity at the required bandwidth of the mechatronic system. 

As an example of the indirect design method, consider a PD (proportional derivative) controller that
may be used to enhance the performance of a system. The derivative and proportional gains for the
controller are Kd and Kp, respectively. The PD controller, K(s), is given by

(9.6)

Equation 9.6 can be implemented digitally using any of the s-plane to z-plane mappings discussed
earlier in this chapter. As an example, the bilinear transformation is used generating the digital controller,
K(z).

(9.7)

Besides the control gains, the only factor that is needed for Equation 9.7 is T, the sample time. As
previously stated, the sample time should be at least a factor of 5–10 times the fastest system time constant.

K s( ) Kds Kp.+=

K z( ) K s( ) |
s= 2 z −1( )

T z +1( )
------------------

2Kd TKp+( )z TKp  − 2Kd( )+
Tz T+

----------------------------------------------------------------------= =
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9-18 Mechatronic System Control, Logic, and Data Acquisition

However, sampling times are often chosen to be several hundred times faster than the fastest system time
constant. An alternative strategy for a feedback system is to choose the sample rate to be at least 20 times
the desired closed loop bandwidth. Having sampling times that are substantially faster than the actual system
mitigates any differences between the controller as it is designed in the continuous domain and the imple-
mentation in the discrete domain. It should be noted that as the sampling frequency becomes higher, the
control gains become smaller. For example, in Equation 9.7, as the sampling time becomes smaller, T becomes
smaller requiring better numerical resolution for the controller gains. If T becomes smaller than the con-
troller’s numerical gain resolution, it may be erroneously implemented at a value of 0 (zero) yielding an
incorrect control law.

9.5.1 Digital Control Example

Consider a high speed position motor with motor dynamics governed by the first-order equation

where Km is the motor gain constant, Tm is the motor time constant, ω(s) is the Laplace transform of the
motor velocity, and Vin(s) is the Laplace transform of the motor input voltage. To determine the values
of Tm and Km, the velocity step response of the motor is used. Figure 9.17 is the response of the motor
to a 1-V step input. The motor gain, Km, is the steady-state value of the final motor speed and is 5. This
result can also be determined using the Final Value Theorem as

The motor time constant, Tm, can be computed by determining the motor velocity for the step response
at time t = Tm as follows:

 

So the time required for the motor to reach 63.2% of its steady-state step response is its time constant.
From Figure 9.18, the time constant of this motor is 0.05 s. Thus, the transfer function for the motor is
given by

(9.8)

FIGURE 9.17 Motor velocity step response.
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For this example, the motor is used in position control mode. Since the motor position is the integral
of its velocity, Equation 9.8 can be augmented with an integrator to generate the transfer function of the
motor relating the input voltage to the output position, θ(s):

(9.9)

A PD controller is chosen for use in this example in order to enhance the system performance. To achieve
a fast response with no overshoot, the derivative gain, Kd, and the proportional gain, Kp, are chosen to be
0.05 and 1, respectively, yielding the following control law:

 (9.10)

Nominally, this design cancels the high frequency pole of the motor dynamics given in Equation 9.9. 
A sample period of 1 ms is chosen for this example as it is significantly faster than the system’s time

constants, and it is not an unreasonable value given modern digital controllers. As previously discussed,
using a 1-kHz (1 ms) sample frequency mitigates any differences between the controller as it is designed
in the continuous domain and its implementation is in the discrete domain. Using the bilinear transfor-
mation given in Section 9.3.2 results in a digital controller of the form:

In fact, the closed-loop response of the system using the digital controller cannot be easily distinguished
from that of the system using the analog controller given by Equation 9.10. The closed-loop position
response of the motor for a 10° command input is shown in Figure 9.18.

As mentioned in Section 9.4.4, 60 Hz noise is often present in measurements of electro-mechanical
systems, so a bandstop filter is often used to attenuate the noise. In the closed-loop operation, the digital
bandpass filter is cascaded with the digital PD controller. 
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FIGURE 9.18 Closed-loop position response.
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10.1 Introduction

This chapter addresses control system design via H 2 (quadratic) optimization. A unifying framework
based on the concept of a generalized plant and weighted optimization permits designers to address state
feedback, state estimation, dynamic output feedback, and more general structures in a similar fashion.
The framework permits one to easily incorporate design parameters and/or weighting functions that may
be used to influence the outcome of the optimization, satisfy desired design specifications, and systematize
the design process. Optimal solutions are obtained via well-known Riccati equations; for example, Control
Algebraic Riccati Equation (CARE) and Filter Algebraic Riccati Equation (FARE). While dynamic weight-
ing functions increase the dimension of the Riccati equations being solved, solutions are readily obtained
using today’s computer-aided design software (e.g., MATLAB, robust control toolbox, µ-synthesis tool-
box, etc.).

In short, H 2 optimization generalizes all of the well-known quadratic control and filter design
methodologies:

• Linear Quadratic Regulator (LQR) design methodology [7,11]

• Kalman–Bucy Filter (KBF) design methodology [5,6]

• Linear Quadratic Gaussian (LQG) design methodology [4,10,11]

H 2 optimization may be used to systematically design constant gain state feedback control laws, state
estimators, dynamic output controllers, and much more.

Armando A. Rodriguez
Arizona State University
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10-2 Mechatronic System Control, Logic, and Data Acquisition

10.2 General Control System Design Framework

In this section, we present a general framework for control system (and estimator) design. Toward this
end, we consider the generalized feedback system in Figure 10.1. In this figure, G represents a generalized
plant. G contains a model for the actual plant P (physical system) to be controlled. It may also contain
additional (frequency dependent) weighting functions that are used to address closed loop design objec-
tives. K represents a controller or compensator to be designed.

10.2.1 Central Idea: Design Via Optimization

The central idea here is that many important problems that arise in controls, estimation, filtering, and
other areas of engineering may be cast in terms of a generalized plant G and a controller K to be designed
by minimizing some norm (e.g., H 2) on the closed loop transfer function matrix Twz from the signals w
to the signals z.

10.2.2 The Signals

To appreciate the flexibility of our generalized feedback system structure, it suffices to consider the nature
of the signals z, u, w, and y in the figure. These signals may be described as follows:

• Regulated Signals. The signals  represent regulated signals or signals that we would like to
keep “small” in some sense, which depends on the application and desired performance objectives.
Such signals might include tracking errors, actuator or control inputs, signal estimation errors, etc.

• Control Signals. The signals  represent control signals or manipulated variables that are
generated by the controller K. Control signals might include fuel flow to an engine, voltage applied
to a dc motor, etc. They might also include state estimates provided by K. The idea is for K to
manipulate and coordinate control signals u in a manner which keeps the regulated signals z “small.”
In practice, we typically have more signals that require “regulation” than controls (i.e., nz ≥ nu). It
should be noted, however, that generally if we want to independently control m quantities, then
we need at least m independent controls. This basic tenet must be adhered to in practice. The
more independent controls u that are available, the easier (in principle) it is to influence the signals
z to be regulated.

• Exogenous Signals. The signals  represent exogenous (or external) signals that act upon the
system. Exogenous signals may include reference commands issued to the control system, distur-
bances acting on the system, sensor noise, etc.

FIGURE 10.1 Generalized feedback system.
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Control System Design Via H 2 Optimization 10-3

• Measurement Signals. The signals  represent measurements or signals that are directly
available to the controller K. Measurements may include a portion of or all of the plant state
variables, measurable plant “outputs,” measurable control signals, measurable exogenous signals,
etc. In practice, we typically have more exogenous signals than measurements (i.e., nw ≥ ny).
Generally, the more independent measurements we have the better—since, in theory, more useful
information can be extracted.

Comment 10.1 (Toward a Separation Principle)

It is natural to associate the controls u with the regulated signals z. One might argue that the pair implicitly
defines a regulation or control problem. This is analogous to the situation addressed in classical LQR
problems. In such problems, one trades off control action (size) versus speed of regulation.

Similarly, it is natural to associate the exogenous signals w with the measurements y. One might argue
that the pair implicitly defines an information extraction or estimation problem. This is analogous to
the situation addressed in classical KBF problems. In such problems, one trades off sensor cost (or
immunity to noise) versus speed of estimate construction.

Such associations suggest that just as in classical LQG problems, our surprisingly general structure
may give rise to a natural separation principle. Indeed, this will be the case for the so-called H 2 output
feedback problem that we consider. �

10.2.3 General H2 Optimization Problem

The so-called general H 2 optimization problem may be stated as follows:

• ‘Find a proper real-rational (finite dimensional) controller K that internally stabilizes G such that
the H 2 norm of the closed loop system transfer function matrix Twz(K) is minimized:

(10.1)

where

(10.2)

(10.3)

(10.4)

and f is the impulse response matrix associated with the transfer function matrix F.

Comment 10.2 (Use of Two Norm: Wide Band Exogenous Signals)

Noting that the two norm measures the energy of the response to an impulse and noting that the transform
of unit Dirac delta function δ is unity, it follows that the two norm is appropriate when the exogenous
signals w are wide band in nature. This can always be justified by introducing appropriate (low pass)
filters within G. It should be noted that these ideas have stochastic interpretations as well. Instead of unit
delta functions, one instead deals with white noise with unit intensity. �

Comment 10.3 (Control and Estimation Problems)

Although we are seeking an H 2 optimal controller, it must be noted that the generalized plant framework
will enable the design of state estimators as well as dynamic and constant gain control laws. �

Given the above problem statement, it is appropriate to recall the following elementary result:

y R
ny∈
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10-4 Mechatronic System Control, Logic, and Data Acquisition

Lemma 10.1 (Two Norm of a Stable System)

Consider a causal stable LTI strictly proper system F = [A, B, C]. It follows that

(10.5)

where Lc is the system controllability gramian and Lo is the system observability gramian. The controllability
gramian

(10.6)

is the unique symmetric (at least) positive semi-definite solution of the algebraic Lyapunov equation

(10.7)

Lc is positive definite if and only if (A, B) is controllable. The observability gramian

(10.8)

is the unique symmetric (at least) positive semi-definite solution of the algebraic Lyapunov equation

(10.9)

Lo is positive definite if and only if (A, C) is observable. �

Comment 10.4 (H2 Norm May Mislead—L∞ Norm Is Important)

It is important to note that the H 2/L2 norm (or energy) of a function may be very small, while the function
itself may be very large in amplitude. Consider a tall thin pulse, for example. This observation is critical
because there are many important cases in which we are very concerned with the height of a function—
more so than its energy. A good example of this comes from classical Nyquist stability theory [2,8].
Nyquist taught us that the peak magnitude of the sensitivity function S = 1/(1 + L) associated with a
standard negative feedback loop is very important in terms of the feedback loop’s stability robustness. A
large sensitivity means that the Nyquist plot comes close to the critical −1 point—implying that a small
perturbation (or unanticipated modeling error) may cause the closed loop system to go unstable. To
assist us with this fundamental issue we may use frequency dependent weighting functions, but what we
really need is a norm that directly addresses such concerns. This motivates the so-called H ∞ and L∞

norms as well as H ∞/L∞ control theory [4,11]. �

Comment 10.5 (Computation of H 2 Norm in MATLAB)

The H 2 norm of a system F = [A, B, C, D] may be computed using the following MATLAB command
sequence:

lc = lyap (a, b∗b’)

twonorm = sqrt (trace(c∗lc∗c’))

or

lo = lyap (a’, c∗c’)

twonorm = sqrt (trace(b’∗lo∗b)). �
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10.2.4 Generalized Plant

The generalized plant G is assumed to possess the following two-port state space structure:

(10.10)

where        

Comment 10.6 (Weighting Functions: Satisfying Closed Loop Design Specifications)

As stated earlier, the generalized plant G may contain frequency dependent weighting functions as well
as a model for the physical system P (plant) being controlled. Typically P = G22 = [A, B2, C2]. Weighting
functions within G may be viewed as design parameters (mathematical knobs) that may be manipulated
by a designer to influence the H 3

 problem in a manner which results in a controller that is not just
optimal—a notion that is often irrelevant in practical applications—but which satisfies desired closed
loop design specifications. Weighting functions may be used to weight (penalize) tracking errors, actuator
and other signal levels, state estimation errors, etc. By making the weight on a signal large in a specific
frequency range, we are indirectly telling the optimization problem to find a controller that makes the signal
small in that frequency range. By making the weight on a signal small in a specific frequency range, we
are indirectly conveying our willingness to tolerate a signal which is large in that frequency range. This
idea can be illustrated via example. �

Comment 10.7 (D11 = 0 Necessary, D22 = 0 Not Necessary)

D11 = 0 Necessary. Note that we have assumed that D11 = 0; that is, there is no direct path from the
exogenous signals w to the regulated signals z. This assumption is essential for the H 2 norm of the closed
loop transfer function Twz to be finite. If D11 ≠ 0, then  will be infinite and the H 2

 problem will
be ill-posed; that is, make no sense. If we have a nonzero D11, adding strictly proper filters on either w or z
(e.g., [1000 /(s + 1000)]I) will result in D11 = 0. In this sense, the assumption is not restrictive.

D22 = 0 Not Necessary. It has also been assumed that D22 = 0; that is, the transfer function matrix D22

from controls u to measurements y is strictly proper. This assumption is very realistic since G22 (our
plant P) is typically strictly proper in practice. If not, high frequency dynamics (e.g., actuator dynamics,
flexible modes, parasitics, etc.) may be included to make it strictly proper. One might even include a simple
high bandwidth low pass filter (e.g., 1000/(s + 1000)) to make G22 strictly proper. If this is not desirable
because of the increased dimension, there is an alternative that does not increase the dimension of G.

• One can always remove D22 from G22 to obtain a new generalized plant  with = 0. The term
D22 is then absorbed into an augmented controller  by noting that u is related to y as follows:

u = K[y + D22u] = [I − KD22]
−1

Ky (10.11)

Noting this, it follows that the augmented controller, denoted , is given by

(10.12)

The H 2
 problem can then be carried out for  and  (without regard to D22). When the optimal

controller  for  is obtained, one can compute the optimal controller K for G using the relationship

(10.13)

With this stated, the assumption D22 = 0 is made without any loss of generality. � 
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Ĝ K̂
K̂ Ĝ
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10.2.5 Closed Loop Transfer Function Matrices

Given the structure for the generalized plant G, we have the following closed loop relationships:

(10.14)

(10.15)

(10.16)

(10.17)

(10.18)

(10.19)

(10.20)

(10.21)

From this, we have the following closed loop transfer function matrices:

(10.22)

(10.23)

(10.24)

We say that each of these is a linear fractional transformation (LFT ) involving K.

Comment 10.8 (Well Posedness of Closed Loop System)

In the above manipulation, it has been assumed that the inverse [I − G22K]−l is well defined. This well
posedness condition is guaranteed by our assumption that D22 = 0. This assumption implies that G22(j∞) =
D22 = 0 and hence that the inverse is well defined. �

The following example shows how to formulate a so-called Weighted H 3 Mixed Sensitivity Problem
to address feedback control system design issues.

Example 10.1 (Weighted H2 Mixed Sensitivity Problem: Design Philosophy)

This example considers the design of a controller K for a plant P = [Ap, Bp, Cp, Dp] as shown in Figure 10.2.
To obtain K, we will formulate an H 2 optimization that considers (directly or indirectly) various issues
that are of importance in the design of a good feedback loop.

FIGURE 10.2 Standard negative feedback loop.
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Feedback System Performance Issues. Generally, in designing a feedback controller K as shown in
Figure 10.2, a designer must consider each of the following closed loop performance issues:

1. Closed Loop Stability. The closed loop system should be stable. This involves all closed loop transfer
function matrices since we generally want all of them to be stable. A stricly proper closed loop
transfer function matrix whose H 2 norm is infinite, for example, implies that the transfer function
matrix is unstable (or marginally stable). Stable strictly proper transfer function matrices neces-
sarily have a finite H 3 norm.

2. Command Following. The closed loop system should exhibit good low frequency reference com-
mand following; i.e., the output y (not to be confused with generalized plant measurements)
should track low frequency reference commands r that are issued to the feedback system. This
typically requires that the sensitivity transfer function matrix

(10.25)

be small at low frequencies.
3. Disturbance Attenuation. The closed loop system should exhibit good low frequency disturbance

attenuation. For disturbances do modeled at the plant output, this requires that the sensitivity
transfer function matrix be small at low frequencies. For disturbances di modeled at the plant
input, this requires that

(10.26)

be small at low frequencies.
4. Sensor Noise Attenuation. The closed loop system should exhibit good high frequency noise n

attenuation. This typically requires that the complementary sensitivity transfer function matrix

(10.27)

be small at high frequencies.
5. Stability Robustness. The closed loop system should exhibit robustness with respect to high fre-

quency unmodeled dynamics (e.g., flexible modes, parasitic dynamics, time delays, etc.); This
typically requires that the “peak” of some closed loop transfer function matrix be small at high
frequencies.

• Multiplicative Modeling Error. For a plant modeled as

(10.28)

where Pact represents the actual plant, P represents a nominal model, and ∆ represents a stable
multiplicative perturbation at the plant output, the relevant closed loop transfer function matrix
(that seen by ∆) is T.

• Additive Modeling Error. For a plant modeled as

(10.29)
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def
=  I PK+[ ] 1–

Tdiy
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10-8 Mechatronic System Control, Logic, and Data Acquisition

where Pact represents the actual plant, P represents a nominal model, and ∆ represents a stable
additive perturbation, the relevant closed loop transfer function matrix (that seen by ∆) is KS.

• Reasonable Control Action. The closed loop system should exhibit reasonably sized control action
for typical reference commands and sensor noise. This typically requires that the “size” of KS be
controlled. Too much lead (i.e., derivative action) in K may help in terms of stabilization, achieving
a high bandwidth and phase margin, but it may result in controls that are unnecessarily large in
the presence of typical reference commands r and sensor noise n.

The above list suggests that there are many important issues that impact the control system design process.
Part of a designer’s job, however, is to prioritize and select issues that are most important. Toward this
end, we turn our attention away from Figure 10.2 and consider instead the “fictitious” (mathematical)
system depicted in Figure 10.3.

Weighting Functions and Closed Loop Transfer Function Matrix
Figure 10.3 includes specific weighting functions that will help us formulate an H 2 optimization that
(directly or indirectly) addresses some of the issues mentioned above. The figure shows a weighting W1

on the signal y (the tracking error), a weighting W2 on the controls u, and a weighting W3 on the plant
outputs  From the figure, it follows that regulated signals 

are related to the exogenous signals w as follows:

(10.30)

(10.31)

(10.32)

From this, it follows that the closed loop transfer function matrix from w to z is given by

(10.33)

FIGURE 10.3 Negative feedback system for weighted mixed sensitivity problem.
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Since Twz involves various “sensitivity” transfer function matrices, we say that we have a weighted mixed
sensitivity problem.

Selection of Weighting Functions
Typically, the weighting functions W1, W2, W3 are selected to be stable transfer function matrices that
are (at least initially) diagonally structured.

• Sensitivity Weighting. One might select the sensitivity weighting W1 on the sensitivity S as follows:

(10.34)

where k1, � > 0. The parameter k1 is typically selected to be large. The parameter � is typically
selected to be small. Such selections are made so that S is heavily penalized at low frequencies—
precisely where we want K to make S small.

• Control Weighting. One might select the control weighting W2 on KS as follows:

(10.35)

where k2 > 0 provides a nonsingular penalty on the controls u (i.e., on KS).

• Output Weighting. One might select the output weighting W3 on T as follows:

(10.36)

with k3 > 0 and z3 < p3. Such a weighting would penalize T more heavily at higher frequencies.

In general, care must be taken in selecting the structure of weighting functions. Inappropriate selections
may result in an ill-posed problem and a very arduous design process. For example, W1 must be strictly
proper for H 2 problems—otherwise the H 2 norm of W1S makes no sense (since S approaches the identity
at high frequencies). While there exists no precise systematic method for the selection of weighting
functions, the above structures seem to work well (as starting points) in many applications.

Input–Output Representation for Generalized Plant G
To obtain an input–output (transfer function matrix) description for our generalized plant, we must
express the regulated signals z1, z2, z3 and the measurements y in terms of the exogenous signals w and
the controls u. Doing so yields

(10.37)

(10.38)

(10.39)

(10.40)

From this, we obtain the following input–output (transfer function matrix) description for our gener-
alized plant G:

(10.41)

W1

k1

s ε+
---------- Iny ny×=

W2 k2Inu nu×=

W3

k3 s z3+( )
s p3+

---------------------- Iny ny×=

z1 W1 ẑ1 W1 w Pu–( ) W1w W1Pu–= = =

z2 W2ẑ2 W2u= =

z3 W3 ẑ3 W3Pu= =

y w ẑ3– w Pu–= =

z

y

G11 G12

G21 G22

w

u
=
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or

(10.42)

State Space Representation for Generalized Plant G
Next we obtain a two-port state space representation for G. To do so, we assume the following state space
representations:

P = [Ap, Bp, Cp, Dp] with state xp (10.43)

W1 = [A1, B1, C1, D1] with state x1 (10.44)

W2 = [A2, B2, C2, D2] with state x2 (10.45)

W3 = [A3, B3, C3, D3] with state x3 (10.46)

To obtain the desired state space representation for G, we need to express the signals 
in terms of the signals  This is just a matter of simple bookkeeping. Doing so yields
the following:

(10.47)

(10.48)

(10.49)

(10.50)

(10.51)

(10.52)

(10.53)

(10.54)

The above equations may be written in standard two-port form:

(10.55)

z1

z2

z3

y

W1 W1P–

0 W2

0 W3P

I P–

w

u
=

x· i{ } i=1
3

, x· p, zi{ }i= 1
3

, y( )
xi{ } i=1

3
, xp, w, u( ) .

x· 1 A1x1 B1y+ A1x1 B1+ w Cpxp Dpu––( ) A1x1 B1Cpxp B1Dpu––= = =

x· 2 A2x2 B2u+=

x· 3 A3x3 B3 ẑ3+ A3x3 B3+ Cpxp Dpu+( ) A3x3 B3Cpxp B3Dpu+ += = =

x· p Apxp Bpu+=

z1 C1x1 D1y+ C1x1 D1+ w Cpxp Dpu––( ) C1x1 D1Cpxp D1w D1Dpu–+–= = =

z2 C2x2 D2u+=

z3 C3x3 D3 ẑ3+ C3x3 D3+ Cpxp Dpu+( ) C3x1 D3Cpxp D3Dpu+ += = =

y w Cpxp– Dpu– Cpxp– w Dpu–+= =

x·

z

y

A B11 B12

C11 D11 D12

C21 D21 D22

x

w

u

=
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as follows:

(10.56)

Checking Assumptions
In selecting the weights, W1, W2, W3, one must make sure that none of the “standard” H 2 problem assump-
tions are violated. Thus far, we require that D11 = 0 and D22 = 0. To ensure that D11 = 0, we need

(10.57)

To ensure that D22 = 0, we need

(10.58)

This results in

(10.59)

In subsequent sections, additional assumptions will be imposed on the two-port state space representation
for the generalized plant G. The additional assumptions imposed will depend upon the specific H 2

problem being considered.

Weighted H 
2 Optimal Mixed Sensitivity Problem

Given the above, the weighted H 2 optimal mixed sensitivity problem is then to find a real-rational (finite-
dimensional) proper internally stabilizing controller K that minimizes ; that is,

(10.60)

x1
·

x2
·

x3
·

xp
·

z1

z2

z3

y

A1 B1Cp– B1Dp–

A2 B2

A3 B3Cp B3Dp

Ap Bp

C1 D1Cp– D1 D1Dp–

C2 D2

C3 D3Cp D3Dp

Cp– I Dp–

x1

x2

x3

xp

w

u

=

D1 0=

Dp 0.=

x1
·

x2
·

x3
·

xp
·

z1

z2

z3

y

A1 B1Cp– B2

A2

A3 B3Cp

Ap Bp

C1

C2 D2

C3 ∆3Cp

Cp– I

x1

x2

x3

xp

w

u

=

Twz H
2

min
K

Tw z
H

2
min

K

W1S

W2KS

W3T
H

2

=
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We will show how this optimal control problem—and problems like it—can be readily solved using
computer-aided design soflware (e.g., MATLAB, robust control toolbox, µ-tools). �

Comment 10.9 (Construction of Generalized Plant G)

Generalized plants G are very easy to construct within SIMULINK. Input port blocks may be used to
specify exogenous signals w and controls u. Output port blocks may be used to specify regulated signals
z and measurements y. The “linmod” command may be applied to the constructed block diagram
(SIMULINK file) to obtain a two-port state space (A, B = [B1 B2], C = [C1; C2], D = [D11 D12; D21 D22])
representation for G. The syntax for the command is as follows:

[ a, b, c, d ] = linmod (‘filename’)

This method enables one to create generalized plant models quickly. �

10.2.6 Overview of H 2 Optimization Problems to Be Considered

Three fundamental problems are considered in this chapter:

1. H 2 Output Feedback Problem. The solution to this problem is an optimal model-based dynamic
compensator possessing the structure

(10.61)

where Gc, is a control gain (state feedback) matrix and Hf is a filter gain (observer) matrix. Gc is
found by using the solution of a Control Algebraic Riccati Equation (CARE)—similar to that
found in Linear Quadratic Regulator (LQR) problems. Hf is found by using the solution of a Filter
Algebraic Riccati Equation (FARE)—similar to that found in Kalman–Bucy Filtering (KBF) prob-
lems. The structure of Kopt, Gc, and Hf can be thought of as the solution to a classical Linear
Quadratic Gaussian (LQG) control problem which gives rise to the well known separation prin-
ciple: closed loop poles are the eigenvalues of A − B2Gc, and the eigenvalues of A − Hf C2.

2. H 2 State Feedback Problem. The solution to this problem is an optimal constant gain (state
feedback) compensator possessing the structure

(10.62)

where Gc is a control gain (state feedback) matrix found by using the solution to a CARE—similar
to that found in LQR problems. The poles of the resulting closed loop system are the eigenvalues
of A− B2Gc. In short, this problem should be viewed as a mechanism for computing control gain
matrices Gc that may be used in a state feedback application or in a model-based compensator
application.

3. H 2
 Output Injection Problem. The solution to this problem is an optimal constant gain (static)

compensator possessing the structure

(10.63)

where Hf is a filter gain (observer) matrix found by using the solution to a FARE—similar to that
found in KBF problems. The poles of the resulting closed loop system are the eigenvalues of A −
Hf C2. In short, this problem should be viewed as a mechanism for computing filter gain matrices
Hf that may be used in a state estimation application or in a model-based compensator application.

Kopt

A B2Gc– Hf C2– Hf

Gc– Onu×n

=

Kopt Gc–=

Kopt Hf–=
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10.3 H2 Output Feedback Problem

In this section, we consider the H 2 output feedback problem. This problem results in model-based
(dynamic) compensators involving a control gain (state feedback) matrix Gc and a filter gain (observer)
matrix Hf. As such, the problem generalizes the ideas presented in classical LQG theory.

The following “standard” H 2 output feedback problem assumption is now made.

Assumption 10.1 (H2 Output Feedback Problem)

Throughout this section, it will be assumed that

1. Plant G22 Assumption. (A, B2, C2) stabilizable and detectable.

• This assumption is necessary and suficient for the existance of a proper internally stabilizing
controller K. With this assumption, the following model based (observer based) controller
stabilizes the feedback loop in Figure 10.1:

(10.64)

provided that (A − B2Gc) and (A − Hf C2) are stable, as suggested by the classical separation
principle from the theory of linear systems.

This assumption mandates that all of the “bad” open loop poles (right half plane and imaginary)
must be controllable through the controls u and observable through the measurements y.

Suppose that G satisfies the assumption. Consider the augmentation of an integrator I/s
(weighting function). Such an augmentation can result in the assumption being violated.
Absorbing an integrator I/s (weighting function) on the exogenous signals w into G, for example,
would violate the stabilizability assumption since it would introduce an open loop pole on the imag-
inary axis that is not controllable through the controls u. Absorbing an integrator on the
regulated signals z into G would violate the detectability assumption since it would introduce
an open loop pole on the imaginary axis that is not observable through the measurements y.
Using I/(s + �)(� > 0) instead of I/s––in either case—would result in a G that does not violate
the assumption.

2. Nonsingular Control Weighting Assumption. R =  > 0.

• This assumption implies that  has full column rank (i.e., rank D12 = nu) and hence
that every control (direction) u influences the regulated signals z through D12 (i.e., D12 has no
right null space). The matrix D12 must therefore be “tall” and “thin;” that is,

(number of regulated signals) nz ≥ nu (number of control signals) (10.65)

The matrix R =  may be interpreted as a weighting on the controls u—just
like the control weighting matrix “R” in LQR problems. As in the LQR problem, we might say
that the control weighting R on u is nonsingular. The larger R, the smaller we want our controls
to be—sacrificing speed of regulation. A large R results in a low “regulation” bandwidth. The
smaller R, the larger we will permit our controls u to be—in order to speed up regulation. A
small R results in a high “regulation” bandwidth. 

3. Regulator Assumption.  has full column rank (n + nu) for all ω.

• This assumption implies that transfer function matrix from control signals u to regulated signals
z has no (right) zero on the imaginary axis. Together with (1) and (2), it will guarantee that
the Hamiltonian Hcon involving (A, B2, C1, D12, R)—that is, associated with the controls u and
regulated signals z—will belong to dom(Ric). This, in turn, guarantees that the solution of the
associated CARE results in a control gain matrix  such that A − B2Gc is stable.

K
A B2Gc Hf C2 D22 Gc–( )–– Hf

Gc– Onu×n

=

D12
T

D12

D12 R
nz nu×

∈

D21
T D12 R

nu nu×
∈

jωI A B2––

C1 D12

Gc R
nu× n∈
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10-14 Mechatronic System Control, Logic, and Data Acquisition

The assumption implies that G has no imaginary modes that are unobservable through the
regulated signals z; that is, all open loop poles on the imaginary axis must be observable through
the regulated signals z. (A,C1), therefore, cannot possess unobservable imaginary modes. This
is a necessary condition. It is not suficient. An integrator hanging on the measurements y, for
example, would violate this.

Since D12 has full column rank, the assumption is equivalent to the pair

(10.66) 

having no unobservable imaginary modes:

• If D12 is square, then it is invertible and the assumption is equivalent to A − B2R
−1 C1

having no imaginary modes.

• If  (no cross penalty between controls and states), then the assumption is equiv-
alent to (A, C1) having no unobservable imaginary modes.

4. Nonsingular Measurement Weighting Assumption. .

• This assumption implies that  has full row rank (i.e., rank D2l = ny) and hence
that the measurements y are linearly independent through D21 (i.e., D21 has no left null space).
The matrix D21 must therefore be “short” and “fat;” that is, 

(number of measurements) ny ≤ n (number of exogenous signals) (10.67)

The matrix  may be interpreted as the intensity of sensor noise impacting
the measurements y—just like the sensor noise intensity matrix “Θ” found in KBF problems.
As in the KBF problem, we say that the intensity matrix Θ associated with the measurements
y is nonsingular. The larger Θ, the more we want to low pass filter the measurements y—
sacrificing speed of estimation. A large Θ results in a low bandwidth for the associated estimator
(observer). The smaller Θ, the less we want to low pass filter the measurements y—trading off
our immunity to noise for speed of estimation. A small Θ results in a high bandwidth for the
associated estimator (observer).

5. Filter Assumption.  has full row rank (n + ny) for all ω.

• This assumption implies that transfer function matrix from exogenous signals w to measure-
ments y has no (left) zero on the imaginary axis. Together with (1) and (3), it will guarantee
that the Hamiltonian Hfil involving (A, B1, C2, D21, Θ)—that is, involving exogenous signals z
and measurements y—will belong to dom(Ric). This, in turn, guarantees that the solution of
the associated FARE results in a filter gain matrix  such that A − HfC2 is stable.

The assumption implies that G has no imaginary modes that are uncontrollable through the
exogenous signals w; that is, all open loop poles on the imaginary axis must be controllable
through the exogenous signals w. (A, B1), therefore, cannot possess uncontrollable imaginary
modes. This is a necessary condition. It is not suficient. An integrator hanging on the controls
u, for example, would violate this.

Since D21 has full row rank, the assumption is equivalent to the pair

 (10.68)

having no uncontrollable imaginary modes.

• If D21 is square, then it is invertible and the assumption is equivalent to A − B1 Θ−1C2

having no imaginary modes.

• If  (uncorrelated process and sensor noise), then the assumption is equivalent
to (A, B1) having no uncontrollable imaginary modes. �

A B2R
1–
D12

T
C1– , I D12R

1–
D12

T–( )C1( )

D12
T

D12
T

C1 0=

Θ D21D12
T 0>=

D21 R
ny nw×

∈

Θ D21D21
T R

ny ny×
∈=

jωI A B1––
C2 D21

Hf R
n ny×

∈

A B1D21
T Θ 1–

C2– , B1 I D21
T Θ 1–

D21–( )( )

D21
T

B1D21
T

0=
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Comment 10.10 (Duality Relationships)

In the above discussion, we note the following dual relationships:

 (10.69)

(10.70)

(10.71)

(10.72)

(10.73)

These imply that

• Controls u are dual to measurements y.

• Regulated signals z are dual to exogenous signals w. �

10.3.1 Hamiltonian Matrices

Associated with our H 2
 optimal control problem are the following two Hamiltonian matrices:

(10.74)

(10.75)

(10.76)

(10.77)

The first Hamiltonian is associated with an optimal state feedback control or regulator problem. The
second is associated with an optimal filtering or estimation problem.

The solution to the H 2 output feedback problem is now given [11, pp. 261–262].

Theorem 10.1 (Solution to H 2 Output Feedback Problem 
Subject to Standard Assumptions)

Suppose that G satisfies the assumptions given in Assumption 10.1—the so-called standard H 2
 output

feedback problem assumptions. Given this, we have the following.
The unique minimizing H 2 optimal controller is n dimensional (like generalized plant G) and is given by

(10.78)

A  ←→  A
T

B2 ←→  C2
T

C1 ←→  B1
T

D12  ←→  D21
T

R D12
T D12 ←→  Θ D21D21

T= =

Hcon

A 0

C1
T
C1– A

T–

B2

C1
T
D12

T–
R

1–
D12

T
C1 B2

T[ ]–=

A B2R
1–
D12

T
C1– B2R

1–
B2

T–

C1
T

I D12
T

R
1–
D12

T–( )C1– A B2R
1–
D12

T
C1–( )

T
–

=

H fil
A

T
0

B1B1
T– A–

C2
T

B1D21
T–

Θ 1–
D21B1

T C2
–=

A B1D21
T Θ 1–

C2–( )
T

C2
TΘ 1–

C2–

B1 I D21
T Θ 1–

D21–( )B1
T– A B1D21

T Θ 1–
C2–( )–

=

Kopt

A B2Gc– Hf C2– Hf

Gc–  Onu
ny×

=
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where the control gain matrix  is given by

(10.79)

X = Ric(Hcon) ≥ 0 is the unique (at least) positive semi-definite solution of the CARE:

(10.80)

and the filter gain matrix  is given by

(10.81)

Y = Ric(Hfil) ≥ 0 is the unique (at least) positive semi-definite solution of the FARE:

(10.82)

Moreover, the minimum norm is given by

(10.83)

(10.84)

where

(10.85)

(10.86)

Finally, the closed loop poles are the eigenvalues of A − B2Gc and A − HfC2. �

Comment 10.11 (Computing Optimal H 2 Controller in MATLAB)

The following MATLAB command sequence may be used to compute the optimal H 2 controller Kopt and
the resulting closed loop transfer function matrix Twz:

tss_g = mksys(a, [b1 b2], [c1; c2], [0∗ones(nz, nw) d12; d21
0∗ones(ny, nu),‘tss’)
[ss_k ss_twz] = h21qg(tss_g, ‘schur’)
[a_k, b_k, d_k] = branch(ss_k, ‘a,b,c,d’)

The “mksys” command packs the two-port state space data for the generalized plant G into a column
vector data structure (called a tree) possessing the “tss” (two-port state space) variable designation. All
dimension information is encoded into the column vector. The “h21qg” command computes the optimal
H 2 controller Kopt and the associated closed loop system from the exogenous signals w to the regulated
signals z. An eigenvalue-eigenvector method is the default method used to solve the two relevant algebraic
Riccati equations. A Schur method—based on Schur’s unitary transformation of a matrix to upper
triangular form—may be used by including the “schur” option. The results are stored in the tree vectors
ss_k and ss_twz, respectively. The ‘branch’ command is then used to retrieve the state space repre-
sentation for Kopt from the tree vector ss_k. �

Comment 10.12 (Relationship to LQG, Stability Robustness Margins)

Theorem 10.1 shows that the optimal H 2 output feedback controller is identical in structure to that found
in classical LQG problems. While certain LQR, KBF, and LQG/LTR problem formulations do result in
feedback loops possessing stability robustness margins, LQG controllers need not possess margins [3].

Gc R
nu n×

∈

Gc R 1– B2
TX D12

T C1+[ ]=

A B2R
1–
D12

T
C1–( )T

X X A B2R
1–
D12

T
C1–( ) C1

T
1 D12

T
R

1–
D12

T–( )C1 XB2R
1–
B2

T
X–+ + 0=

Hf R
n ny×

∈

Hf YC2
T

B1D21
T+[ ]Θ 1–=

A B1D12
T Θ 1–

C2–( )Y Y A B1D21
T Θ 1–

C2–( )T
B1 I D21

T Θ 1–
D21–( )B1

T
YC2

TΘ 1–
C2Y–+ + 0=

Twz Kopt( )
L

2 McB1 L
2

2
R

1/2
GcMf L

2

2
+=

trace B1
T
XB1( ) trace RGcYGc

T( )+=

Mc A B2Gc , In n× , C1– D12Gc–[ ]=

Mf A Hf C2, In n× , B1– HfD21–[ ]=
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The same is true for H 2 output feedback designs. We will show how the H 2 framework presented can
be manipulated to solve LQG/LTR problems which yield model-based controllers with desirable stability
robustness margins—comparable to those found in feedback designs resulting from suitably formulated
LQR and KBF problems (e.g., infinite upward gain margin, at least 6 dB downward gain margin, at least
±60° phase margin). �

The following example shows how weighted H 2 mixed sensitivity optimization may be used to design
a controller for an unstable system with a time delay.

Example 10.2 (Weighted 2 Mixed Sensitivity Design
for Unstable System with Time Delay)

In this example, we consider an unstable system with a time delay ∆ = 0.05 s (50 ms). The system is
modeled (approximately) as follows:

(10.87)

Design Specifications. The objective is to design a controller K that satisfies the following closed loop
specifications: (1) closed loop stability, (2) sensitivity below −60 dB for all frequencies below 0.1 rad/s,
(3) sensitivity gain crossover between 2 and 3 rad/s, (4) peak sensitivity below 5 dB, (5) peak comple-
mentary sensitivity below 10 dB.

Weighted H 2 Mixed Sensitivity Problem. To achieve the above specifications, we formulated a weighted
H 2 mixed sensitivity problem—with a weighting W1 on the sensitivity S and a weighting W2 on KS; i.e.,

(10.88)

The weighting functions used were as follows:

(10.89)

(10.90)

WI penalizes the sensitivity S heavily at low frequencies (e.g., below 0.001 rad/s). Above 0.1 rad/s, WI is
small and W2 penalizes KS (with magnitude greater than unity) until about 4 rad/s. Since the solution
of our H 2 optimization depends in a very complex manner on the parameters that define WI and W2, it
should be no surprise that it took a while to determine suitable parameters.

Construction of Generalized Plant. The generalized plant G was assembled using SIMULINK and the
“linmod” command. The resulting two-port state space representation is as follows:

(10.91)

HH

P
1

s 1–
---------- 2/∆ s–

2/∆ s+
-----------------≈ 1

s 1–
---------- 40 s–

40 s+
--------------=

min
K

Twz H
2 min

K

W1S

W2KS H
2

=

W1
k1

s p1+
------------- 10

s 0.01+
------------------= =

W2
k2 s z2+( )

s p2+
---------------------- 0.1 s 40+( )

s 2+
--------------------------= =

G
0 W1P–

0 W2

1 P–

A B1 B2

C1 D11 D12

C2 D21 D22

0.01– 0 40– 1 1 0

0 2– 0 0 0 1

0 0 0 1 0 0

0 0 40 39– 0 1

10 0 0 0 0 0

0 3 0 0 0 0.1

0 0 40– 1 1 0

= = =
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Computation of H 2 Optimal Controller. The “mksys” command was used to pack the above two-port state
space into a tree vector data structure. The “h2lqg” command was then used to obtain the optimal
controller. Note that the generalized plant is 4th order (two for plant P, one for sensitivity weighting W1,
one for control weighting W2). The optimal controller:

(10.92)

is also 4th order—the order of the generalized plant G. The pole at s = −0.01 is an approximate integrator—a
consequence of the heavy weighting that WI places on the sensitivity at low frequencies.

Closed Loop Analysis. The resulting closed loop poles (two plant P = G22, four from controller Kopt)
are as follows:

(10.93)

The resulting sensitivity, KS, and complementary sensitivity frequency responses are shown in Figures
10.4–10.6, respectively. The figures show that all of the design specifications are met (or nearly met). The
peak sensitivity is about 4.855 dB. The peak complementary sensitivity is about 8.71 dB. The KS response
shows the impact of the compensators’ lead between 0.1 and 10 rad/s.

Computation of Minimum H 2 Norm. The minimum two-norm was computed using the following
MATLAB command sequence:

lc = lyap(acl, bcl∗bcl)

minnorm = sqrt( trace( cc1∗c∗c’))

The minimum two-norm was found to be 9.0648. �

The following simple example illustrates how the H 2 output feedback problem solution can be used
to solve classical LQG problems.

FIGURE 10.4 H 2 Design sensitivity frequency response.
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Example 10.3 (LQG/LTR Design for First Order Unstable Missile Model)

We consider an unstable missile described by a simple first order model with state x (pitch attitude),
control input u (fin elevator deflection), process noise wI = ξ (angular wind gust), and sensor noise w2 = θ.

It is assumed that the missile’s center of gravity (c.g.) is aft of its center of pressure (c.p.)—where lift
is concentrated. This assumption results in a missile pitch instability. It is also assumed that the missile’s

FIGURE 10.5 H 2 Design KS frequency response.

FIGURE 10.6 H 2 Design complementary sensitivity frequency response.
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10-20 Mechatronic System Control, Logic, and Data Acquisition

moment of inertia about its c.g. is very small. This assumption leads to a simple first order model. The
missile’s angular velocity  is assumed to be proportional to its attitude x and the process noise wI = ξ.
Regulated signals z = [zl z2]T include the vehicle’s pitch attitude zl = x and a weighted control input z2 =

. Here, ρ > 0 is a design parameter to be selected below. The vehicle’s pitch attitude is measured.
The pitch attitude measurement y includes additive sensor noise w2 = θ.

Missile Model. The (generalized) missile model is given as follows:

(10.94)

(10.95)

(10.96)

where µ > 0 is design parameter to be selected below.
Design Specifications. The goal is to design a real-rational proper model-based H 2 optimal compensator

(i.e., minimizes ) which results in a stable closed loop system with a dominant closed loop pole
at s = −5 (settling time ts ≈ 1 s).

Construction of Generalized Plant. The above model may be rewritten as follows:

(10.97)

(10.98)

(10.99)

From this, it follows that

(10.100)

(10.101)

(10.102)

H 2 Problem Assumptions. We now check each of the H 2 output feedback problem assumptions, as
stated in Assumption 10.2. From the above data, it follows that D11 = 02 × 2, D22 = 01 × 1, and (A, B2, C2)
is stabilizable and detectable, and

(10.103)

(10.104)

x·

ρu

x· x ξ u+ +=

z
x

ρu
=

y x µθ+=

Twz H
2

x· x 1 0
ξ
θ

u+ +=

z 1

0
x 02 2×

ξ
θ

0

σ
u+ +=

y x 0 µ
ξ
θ

01 1× u+ +=

A 1, B1 1 0 , B2 1===

C1
1

0
, D11 02 2× , D12

0

ρ
===

C2 1, D21 0 µ , D22 01 1×===

R D12
T

D12 ρ 0>= =

Θ D21
T

D21 µ 0>= =
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Since

(10.105)

(10.106)

the imaginary axis rank conditions involving (A, B2, Cl, D12) and (A, B1, C2, D21) in Assumption 10.2
become equivalent to (A,Cl) having no imaginary unobservable modes and (A, B1) having no imaginary
uncontrollable modes. These are clearly satisfied since A = 1 has no imaginary modes. Given this, it
follows that all of the H 2 output feedback problem assumptions in Assumption 10.2 are satisfied.

Plant. Finally, we note that the so-called plant (or missile) transfer function P = G22 is given by

(10.107)

(10.108)

G22 is unstable with a right half plane pole at s = 1. G22 is also minimum phase (i.e., no zeros in Res > 0).
Filter Gain Matrix Hf. Since , the associated FARE is given by

(10.109)

or

(10.110)

Application of the quadratic formula and selecting the positive (stabilizing) root yields:

(10.111)

This yields the following filter gain matrix:

(10.112)

We now select µ to achieve the given dominant pole specification:

(10.113)

This yields

(10.114)

The associated KBF open loop transfer function is given by

(10.115)

(10.116)

D12
T

C1 0=

B1D21
T

0=

P G22 C2 sI A–( )−1
B2= =

1
s 1–
----------=
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0=
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T
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TΘ 1–

C2Y–+ + Y Y 1
1
µ
---Y

2–+ + 0= =

Y
2

2µY µ–– 0=

Y µ µ2 µ++=
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TΘ 1– 1 1

1
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10-22 Mechatronic System Control, Logic, and Data Acquisition

We will see below that this will be the approximate open loop transfer function PKopt for the final design.
In this sense, GKF represents our target open loop transfer function.

Control Gain Matrix Gc. Since , the associated CARE is given by

(10.117)

or

(10.118)

Application of the quadratic formula and selecting the positive (stabilizing) root yields:

(10.119)

This yields the following control gain matrix:

(10.120)

This results in a closed loop (regulator) pole at

(10.121)

Note that for large ρ (referred to as expensive control in LQR problems) we have a closed loop pole at
s = −1, at the left half plane reflection of the plant pole at s = 1. We will select the design parameter ρ
to be small (referred to as cheap control in LQR problems) so that this closed loop (regulator) pole s ≈ −

 is fast and the closed loop filter pole at s = −5 at is the dominant closed loop pole.
H 2

 Optimal Output Feedback Model-Based Compensator. The resulting H 2 optimal output feedback
model-based compensator is given by

(10.122)

where

(10.123)

(10.124)

(10.125)

(10.126)

(10.127)

(10.128)

(10.129)
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Given this, the compensator transfer function is given by

(10.130)

(10.131)

For small ρ (cheap control), this yields

(10.132)

Open Loop Transfer Function. The associated open loop transfer function is given by

(10.133)

(10.134)

For small ρ (cheap control), this becomes

(10.135)

Loop Transfer Recovery (LTR). From this, we see that as control weighting parameter ρ approaches zero
(cheap control), the open loop transfer function approaches the KBF open loop transfer function GKF;
that is,

(10.136)

(10.137)

This shows that as ρ approaches zero (cheap control), the actual open loop transfer function PKopt

approaches the target open loop transfer function GKF. The above procedure of recovering a target open
loop transfer function (with desirable closed loop properties) using an LQG controller is called LQG
with loop transfer recovery or LQG/LTR.

Selection of Far Away Closed Loop Regulator Pole. For small ρ, the closed loop system is stable with
closed loop poles at s = −5 and s ≈ . A good selection for ρ might be ρ = 1/2500. This results in
a fast closed loop pole at s ≈ −50 and makes the closed loop filter pole at s = −5 the dominant closed
loop pole, as required.

Stability Robustness Margins. It is well known that H 2 and LQG designs need not possess good stability
robustness margins. In fact, they can be arbitrarily bad [3]. LQG/LTR designs for minimum phase plants
(such as ours: P = 1/(s − 1) have guaranteed stability robustness margins. LQG/LTR designs provide
margins that approach those associated with LQR and KBF designs; i.e., infinite upward gain margin, at
least 6 dB downward gain margin, and at least ±60° phase margin. Our final LQG/LTR design

(10.138)
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10-24 Mechatronic System Control, Logic, and Data Acquisition

offers an infinite upward gain margin and a downward gain margin of 1/6 (−15.56 dB). The resulting
unity gain crossover frequency is ωg =  = 5.92 rad/s and the associated phase margin is about 99.59°.
Not bad.

The following example extends the LQG/LTR ideas presented in Example 10.3 to the general MIMO
setting—enabling the design of feedback loops (with nominal robustness margins) via H 2 optimization.

�

Example 10.4 (MIMO LQG and LQG/LTR Control Design Via H 2 Optimization)

We consider a MIMO plant P defined by the state space representation

(10.139)

(10.140)

It is assumed that the plant P = [A, B, C] is stabilizable and detectable.
The goal is to demonstrate how the H 2 optimal output feedback solution that has been presented may

be used to solve MIMO LQG control problems. We specifically would like to present a method which
lends itself to the concept of LTR—whereby we use a model-based LQG controller to recover a target
loop transfer function matrix with desirable closed loop properties. Our motivation is not optimal
stochastic LQG control problems; it is the design of control laws with desirable closed loop properties.

Construction of Generalized Plant G. With our final objective being a model-based compensator defined
by a control gain matrix Gc and a filter gain matrix Hf, we consider the following generalized plant:

(10.141)

(10.142)

(10.143)

where u is the control, x is the (generalized) plant state, w1 = ξ represents process noise in the state
equation, w2 = θ represents sensor noise in the measurement equation, A ∈R n×n, , ,

, , ny = nu, ρ > 0, µ > 0.
Design Parameter Assumptions. It is assumed that either:

(A, L) has no imaginary uncontrollable modes and (A, M) is detectable, or
(A, L) is stabilizable and (A, M) has no imaginary unobservable modes.

Here, L, M, µ, and ρ should be viewed as “design parameters” that are selected in order to obtain control
and filter gain matrices G, and Hf such that the resulting model-based compensator exhibits desirable
closed loop properties.

Two-Port State Space Representation for Generalized Plant G. The above model may be rewritten in
two-port state space form as follows:

(10.144)

35
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0ny nu× 0ny ny×
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0ny nu×

ρInu nu×

C 0ny nu× µIny ny×
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=
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Check on H 2 Output Feedback Assumptions. We now make sure that all of the H 2 output feedback
problem assumptions in Assumption 10.2 are satisfied:

• Plant P = G22 Assumptions. Since the plant P = G22 = [ A, B, C ] is stabilizable and detectable, it
follows that (A, B2 = B, C2 = C) is stabilizable and detectable.

• Regulator Assumptions. Since 

has full column rank, it follows that the control weighting matrix  is
nonsingular.

Since  it follows that the imaginary axis (column) rank condition involving (A, B2,
C1, D12) in Assumption 10.2 is equivalent to 
having no unobservable imaginary modes. Since (A, M) is either detectable or has no imaginary
unobservable modes, it follows that

has no unobservable imaginary modes. The associated Hamiltonian Hcon will, therefore, yield a
Riccati solution and control gain matrix Gc such that A − BGc is stable.

• Filter Assumptions. Since D21 =  has full row rank, it follows that the measurement
weighting matrix  is nonsingular.

Since , it follows that the imaginary axis (row) rank condition involving (A, B1, C2,
D21) in Assumption 10.2 is equivalent to  having
no uncontrollable imaginary modes. Since (A, L) is either stabilizable or has no uncontrollable
imaginary modes, it follows that  has no uncontrollable imaginary modes.
The associated Hamiltonian Hfil will therefore yield a Riccati solution and filter gain matrix Hf

such that A − HfC is stable.

Given the above, it follows that all of the H 2 output feedback problem assumptions in Assumption 10.2
are satisfied.

Control Gain Matrix. It follows that the control gain matrix Gc is given by

(10.145)

where X ≥ 0 is the unique (at least) positive semi-definite solution of the CARE:

(10.146)

Moreover, A − BG is stable.
Filter Gain Matrix. It follows that the filter gain matrix Hf is given by

(10.147)
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where Y > 0 is the unique (at least) positive semi-definite solution of the FARE:

(10.148)

Moreover, A − HC is stable.
H 2 Optimal (LQG) Compensator. The H 2 optimal compensator that minimizes the H 2 norm of the

transfer function matrix from the exogenous signals w =  to the regulated signals z =  is
then given by

(10.149)

Note that the minus sign on Gc (lower left hand entry of Kopt) has been removed in anticipation of the
negative feedback system implementation shown in Figure 10.7. By the separation principle, the closed
loop poles are the eigenvalues of A − BGc and A − HfC.

Stability Robustness Margins. It should be emphasized that the resulting controller Κopt, although
stabilizing, may possess arbitrarily bad stability robustness margins [3]. This is despite the fact that the
associated regulator loop

(10.150)

and filter loop

(10.151)

when viewed as MIMO open loop transfer function matrices within their own negative feedback loops,
possess the following well-known stability robustness margins: infinite upward gain margin, at least 6 dB
downward gain margin, and at least ±60° phase margin. This gives rise to the following natural question:

Is there a way that we can select the control gain matrix Gc and the filter gain matrix Hf so that the
resulting model-based compensator Kopt results in a feedback loop which possesses the above nice margins?

Fortunately, the answer to this is a definitive yes! Two methods which result in comparable stability
margins at the plant input or at the plant output (but not both simultaneously) are now presented.

Loop Transfer Recovery (LTR) Methods. The approach we take to achieve a feedback design with good
stability margins is as follows. The process involves two steps.

1. Target Loop Design. The first step is to design a target open loop transfer function matrix that possesses
desired closed loop properties. The target loop may be associated with the plant output. If so, we denote
it Lo. In such a case, Lo represents our desired PKopt. If associated with the plant input, we denote it
Li. In such a case, Li represents our desired Kopt. (In general, PKoptP ≠ KoptP.)

FIGURE 10.7 Negative feedback loop with LQG model-based compensator and plant.

e v
−I

− −
Filter

gain matrix
Control

gain matrix
Plantdef

Hf −Gc P

B

xk u u y

C

Φ(s)

Φ(s) = (sI − A)−1

∧

AY YA
T

LL
T

Y– C
TΘ−1

CY 0=+ +

ξ
θ

Cx

ρI
nu nu×

Kopt

A BGc– Hf C– Hf

Gc 0nu n×

=

GLQ Gc sI A–( )−1
B=

GKF C sI A–( )−1
Hf=

9260_10.fm  Page 26  Wednesday, October 10, 2007  9:39 PM



Control System Design Via H 2 Optimization 10-27

2. Target Loop Recovery Via Model-Based Compensator. The second step is to use a model-based com-
pensator Kopt = [A − BGc − Hf C, H, G] to recover the target loop (either Lo or Li).

If we want to recover Lo (i.e., good properties at that plant output), then we want PKopt ≈ Lo.
This is called loop transfer recovery at the plant output (LTRO).

If we want to recover Li (i.e., good properties at that plant input), then we want KoptP ≈ Li,.
This is called loop transfer recovery at the plant input (LTRI).

Note: In general, the properties associated with breaking the loop at the plant output (properties
of PKopt) are different (perhaps very different) from those associated with breaking the loop at the
plant input (properties of KoptP). It is usually very difficult for PKopt and KoptP to both possess
great properties (e.g., margins, etc.). Typically, a designer must trade off nice properties at the
plant output for nice properties at the plant input, or vice versa.

H 2-based methods for LTRO and LTRI are now presented.

a. Loop Transfer Recovery at Plant Output (LTRO)

1. Design of Target Loop Lo. The first step is to design a target loop Lo = C(sI − A)−lHf with desirable
closed loop properties (e.g., stability, sensitivity, complementary sensitivity, stability robustness
margins, etc). This may be done using any method! (Any method you feel comfortable enough
with.)

One procedure that results in good properties at the plant output is based on KBF methods.
The idea is to select the design (shaping) matrix L so that the singular values GFOL = C(sI − A)−lL
look nice; for example, large minimum singular value at low frequencies, small maximum
singular value at high frequencies, singular values cross 0 dB with slopes of −20 dB/dec, etc. 

We then solve the FARE with A, L, C, Θ = —using µ > 0 to adjust the bandwidth of
our target loop Lo = GKF = C(sI − A)−lHf . A smaller (larger) µ results in a larger (smaller)
bandwidth. 

Guidelines for Shaping of Target Loop Lo = GKF.

• The so-called Kalman Frequency Domain Equality (KFDE) guides our loop shaping:

(10.152)

From this, it follows that

(10.153)

This suggests that by shaping GFOL, we can shape the target loop Lo = GKF. Specifically, if GFOL

is large at low frequencies, then we expect

(10.154)

at low frequencies. This shows that the matrix L should be used for shaping the target loop Lo =
GKF while µ > 0 is used to adjust the target loop bandwidth—decreasing/increasing µ to
raise/lower the target loop bandwidth. The resulting loop Lo = GKF is guaranteed to possess nice
closed loop properties as described below.

• The above singular value relation implies that

(10.155)

µIny×ny

I GKF jω( )+[ ] I GKF jω( )+[ ]H
I

1
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-------GFOL jω( ) 1
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---σ i

2 GFOL jω( )[ ]+=
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for all ω. This, in turn, implies that the associated sensitivity singular values satisfy

(10.156)

for all ω, where

(10.157)

• From the above sensitivity singular value relationship, we obtain the follow celebrated KBF loop
margins:

infinite upward gain margin

at least (6 dB) downward gain margin

at least ±60° phase margin

The above gain margins apply to simultaneous and independent gain perturbations when the
loop is broken at the output. The same holds for the above phase margins. The above margins
are NOT guaranteed for simultaneous gain and phase perturbations. It should be noted that
these margins can be easily motivated using elementary SISO Nyquist stability arguments [2,8].

• From the above sensitivity singular value relations, we obtain the following complementary
sensitivity singular value relationship:

(10.158)

for all ω, where

(10.159)

2. Recovery of Target Loop Lo Using Model-Based Compensator. The second step is to use a model-
based compensator Kopt = [ A − BGc − HfC, Hf, Gc ] where Gc is found by solving the CARE
with A, B, M = C, R =  with ρ a small positive scalar. Since ρ is small, we call this a
cheap control problem.

• If the plant P = [A, B, C] is minimum phase, then it can be shown that 

(10.160)

(10.161)

for some orthonormal W (i.e., WΤW = WWT = Ι )

(10.162)

In such a case, PKopt ≈ Lo for small ρ and hence PKopt will possess stability margins that are
close to those of Lo (at the plant output)—whatever method was used to design Lo. It must
be noted that the minimum phase condition on the plant P is a suficient condition. It is
not necessary. Moreover, Gc need not be computed using a CARE. In fact, any Gc which (1)
satisfies a limiting condition  for some invertible matrix W and which (2)
ensures that A − BGc is stable (for small ρ), will result in LTR at the plant output. This result
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is a consequence of the structure of model-based compensators and has nothing to do with
optimal control and filtering problems.

• Assuming that a limiting condition  holds for some invertible matrix W,
loop transfer recovery of the target loop Lo = C(sI − A)

−l
Hf may be proven as follows: For

small ρ we have

(10.163)

which gives yields the following:

(10.164)

(10.165)

(10.166)

(10.167)

(10.168)

(10.169)

(10.170)

The central idea (underneath the algebra) is that as ρ goes to zero, the C feedback path
within the compensator Kopt = [A − BGc − HfC, Gc, Hf] is broken (see Figure10.7 ) and the
nice properties that hold at the so-called innovations v (e.g., open loop transfer function
matrix at v is Lo = C(sI − A)−lHf) in Figure 10.7 get transferred to the error signal e (compen-
sator input, or plant output) within the feedback loop.

b. Loop Transfer Recovery at Plant Input (LTRI).

1. Design of Target Loop Li. The first step is to design a target loop Li = GC(sI − Α)
−1

B with desirable
closed loop properties (e.g., stability, sensitivity, complementary sensitivity, stability robustness
margins, etc). This may be done using any method! (Any method you feel comfortable enough with.)

One procedure that results in good properties at the plant input is based on LQR methods.
The idea is to select the design (shaping) matrix M so that the singular values of GOL = M(sI −
Α)−lB look nice; for example, large minimum singular value at low frequencies, small maximum
singular value at high frequencies, singular values cross 0 dB with slopes of −20 dB/dec, etc.

We then solve the CARE with A, B, M, R = , using ρ > 0 to adjust the bandwidth
of our target loop Li =  GLQRGc(sI − A)−lB. A smaller (larger) ρ results in a larger (smaller)
bandwidth. 
Guidelines for Shaping of Target Loop Li = GLQ. 

• The so-called LQ frequency domain equality (LQFDE) guides our loop shaping:

(10.171)

ρGcρ 0+→
lim WC=

Gc
WC

ρ
---------≈

PKopt PGc sI A– BGc Hf C+ +( )−1
Hf=

P
WC

ρ
--------- sI A– B

WC

ρ
---------+

 
 

−1

Hf≈

P
WC

ρ
--------- sI A–( )− 1 I B

WC

ρ
--------- sI A–( )−1+

−1

Hf≈

P
WC sI A–( )−1

ρ
--------------------------------- I B

WC sI A–( )− 1

ρ
---------------------------------+

−1

Hf≈

P I
WC sI A–( )−1

ρ
---------------------------------B+

−1
WC sI A–( )−1

ρ
---------------------------------Hf≈

P
WP

ρ
---------

−1

W
C sI A–( )−1

Hf

ρ
---------------------------------≈

C sI A–( )−1
Hf Lo=≈

ρInu nu×

I GLQ jω( )+[ ]H
I GLQ jω( )+[ ] I

1

ρ
-------GOL jω( )

H 1

ρ
-------GOL jω( )+=

9260_10.fm  Page 29  Wednesday, October 10, 2007  9:39 PM



10-30 Mechatronic System Control, Logic, and Data Acquisition

From this, it follows that

(10.172)

This suggests that by shaping GOL, we can shape the target loop Li = GLQ. Specifically, if GOL is
large at low frequencies, then we expect

(10.173)

at low frequencies. This shows that the matrix M should be used for shaping the target loop Li =
GLQ while ρ > 0 is used to adjust the target loop bandwidth—decreasing/increasing ρ to raise/
lower the target loop bandwidth. The resulting loop Li = GLQ is guaranteed to possess nice closed
loop properties as described below.

• The above singular value relation implies that

(10.174)

for all ω. This, in turn, implies that the associated sensitivity singular values satisfy

(10.175)

for all ω, where

(10.176)

• From the above sensitivity singular value relationship, we obtain the follow celebrated LQR
loop margins:

infinite upward gain margin,

at least (6 dB) downward gain margin,

at least ±60° phase margin.

The above gain margins apply to simultaneous and independent gain perturbations when the
loop is broken at the input. The same holds for the above phase margins. The above margins
are NOT guaranteed for simultaneous gain and phase perturbations. It should be noted that
these margins can be easily motivated using elementary SISO Nyquist stability arguments [2,8].

• From the above sensitivity singular value relations, we obtain the following complementary
sensitivity singular value relationship:

(10.177)

for all ω, where

(10.178)

2. Recovery of Target Loop Li Using Model-Based Compensator. The second step is to use Kopt = [A −
BGc, − HfC, Hf,Gc ] where Hf is found by solving the FARE with A, L = B, C, Θ =  with µ
a small positive scalar. Since µ is small, we call this an expensive sensor problem.

σi I GL Q jω( )+[ ] I
1
ρ
---σ i

2
GOL jω( )[ ]+=

GLQ jω( ) 1

ρ
-------≈ GOL jω( )

σmin I GLQ jω( )+[ ] 1≥

σmax SLQ jω( )[ ] 1

σmin SLQ jω( )−1[ ]
-------------------------------------- 1 0dB( )≤=

SLQ I GLQ+[ ]= −1

1
2
--

σmax TLQ jω( )[ ] σmax I SLQ jω( )–[ ]= 1 σmax SLQ jω( )[ ] 2 6dB( )≤+≤

TLQ I SLQ GLQ=–= 1 GLQ+[ ]−1

µIny ny×
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• If the plant P = [A, B, C] is minimum phase, then it can be shown that

(10.179)

(10.180)

for some orthonormal V (i.e., VTV = VVT= I)

(10.181)

In such a case, Kopt P ≈ Li for small µ and hence Kopt P will possess stability margins that are
close to those of Li (at the plant input)—whatever method was used to design Li. 

It must be noted that the minimum phase condition on the plant P is a suficient condition.
It is not necessary. Moreover, Hf need not be computed using a FARE. In fact, any Hf which
(1) satisfies a limiting condition  for some invertible matrix V and which
(2) ensures that A − HfC is stable (for small µ), will result in LTR at the plant input; that is,

. This result is a consequence of the structure of model-based compensators
and has nothing to do with optimal control and filtering problems.

• Assuming that a limiting condition  holds for some invertible matrix V, loop
transfer recovery of the target loop Li = Gc(sI − A)−1 B may be proven as follows. For small µ
we have

(10.182)

which gives the following:

(10.183)

(10.184)

(10.185)

(10.186)

(10.187)

(10.188)

(10.189)

(10.190)

The central idea (underneath the algebra) is that as µ goes to zero, the B feedback path within
the compensator Kopt = [A − BGc − HfC, Gc , Hf] is broken (see Figure 10.7) and the nice properties

Y
µ 0+→
lim 0=

µHf
µ 0+→
lim BV=

KoptP
µ 0 +→
lim Li=

µ
µ 0+→
lim Hf BV=

KoptPµ 0+→
lim Li=

µHfµ 0+→
lim BV=

Hf
BV

µ
-------≈

KoptP Gc sI A– BGc Hf C+ +( )−1
Hf P=

Gc sI A– BGc
BV

µ
-------C+ +

 
 

− 1BV

µ
-------P≈

Gc sI A–
BV

µ
-------C+

 
 

− 1BV

µ
-------P≈

Gc sI A–( )−1
I

BV

µ
-------C sI A–( )−1++

− 1BV

µ
-------P≈

Gc sI A–( )−1 BV

µ
------- I C sI A–( )−1 BV

µ
-------+

−1

P≈

Gc sI A–( )−1 BV

µ
------- C sI A–( )−1 BV

µ
-------

−1

P≈

Gc sI A–( )−1
B

V

µ
------- P

V

µ
-------

−1

P≈

Gc sI A–( )− 1
B Li=≈
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that hold at  (e.g., open loop transfer function matrix at  is ) in Figure 10.7
get transferred to the plant input u (compensator output) within the feedback loop. �

Comment 10.13 (Stability Margins and Peak Sensitivity)

The peak on the sensitivity plot is very important in the design of a feedback system. A large peak, for
example, may be due to a closed loop pole near the imaginary axis. This certainly is undesirable. We
thus want the peak to be “small.” It can be shown that the peak necessarily establishes gain and phase
margin bounds.

Suppose that the peak sensitivity is bounded above by α ≥ 1; that is, σmax S(jω) < α for all ω. It can
be shown that the feedback loop then enjoys the following nominal multivariable stability robustness
(gain and phase) margin bounds:

(10.191)

(10.192)

(10.193)

These bounds may be easily motivated using SISO Nyquist [2,8] ideas as follows:
If

(10.194)

for all ω, then it follows that

(10.195)

for all ω. This, however, implies that the Nyquist plot associated with L cannot penetrate a circle centered
at −1 with radius 1/α, left most end point at −[(α+1)/α], and right most end point at −[(α −1)/α]. The
upward gain margin bound follows from the right most point of the circle. The downward gain margin
bound follows from the left most point of the circle. The phase margin bound can be obtained with a
little geometry. �

The following example considers the application of H 2 theory to a robotic manipulator.

Example 10.5 (H 2-LQG/LTR Design for PUMA 560 Robotic Manipulator)

In this example, we show how H 2 optimization may be used to design an LQG/LTR controller for a
PUMA 560 robotic manipulator. The manipulator is shown in Figure 10.8.

A two degree-of-freedom (dof) linear model P = [Ap, Bp, Cp] was used to initiate the design process.
Linearizing the PUMA’s nonlinear model [9] about the equilibrium point θ1 = 90° θ2 = 0° (both links
vertical), results in the following linear model:

(10.196)

(10.197)

(10.198)

(10.199)

(10.200)

û û Li Gc(sI A)– −1
B=

↑GM
α

α 1–
------------>

↓GM
α

α 1+
------------<

PM 2
1

2α
-------

 
 

−1

sin>

S jω( ) α<

1
α
--- 1 L jω( )+<

x· p Apxp Bpµp+=

yp Cpxp=

up τ1 τ2[ ]T=

xp θ1 θ2 θ1
· θ2

·[ ]
T

=

yp θ1 θ2[ ]T=
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where

(10.201)

(10.202)

(10.203)

The system poles are s = ±14.1050, s = ±4.5299. Eigenvector analysis shows that the fast instability at s =
14.1050 is primarily associated with the upper (shorter) link, while the slower instability at s = 4.5299 is
primarily associated with the lower (longer) link. The system does not possess any natural integrators
(i.e., no zero eigenvalues) and, as expected, the singular values σi[P(jω)] are flat at low frequencies (see
Figure 10.9).

Closed Loop Objectives
A controller to be implemented within a negative feedback loop is sought. The closed loop system should
exhibit the following properties: (1) closed loop stability, (2) zero steady state error to step reference com-
mands, (3) good low frequency reference command following (step commands followed with little
overshoot within 3 s), (4) good low frequency disturbance attenuation, (5) good high frequency noise
attenuation, (6) good stability robustness margins at the plant output.

Each step of the control system design process is now described. A central idea is the formation of a
so-called design plant Pd from the original plant P. The design plant Pd is what is submitted to our H 2-
LQG/LTR design machinery. 

Step 1: Augment Plant P with Integrators to Get Design Plant Pd = [A, B, C]
In order to guarantee zero steady-state error to step reference commands, we begin by augmenting the
plant P = [Ap, Bp, Cp] with integrators—one in each control channel—to form the design plant Pd =
[A, B, C]; that is, Pd = P(I2×2/s). This is done as follows:

(10.204)

FIGURE 10.8 Two degree-of-freedom PUMA 560 robotic
manipulator.
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56.9381– 187.7089 0.0000 0.0000

=

Bp

0.0000 0.0000

0.0000 0.0000
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=

Cp I2 2× 02 2×[ ]=

A
02 ×2 02×4

Bp Ap

=
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(10.205)

(10.206)

The state of this system is x =  where xi is the integrator state and xp is the plant state. The singular
values for the augmented system Pd exhibit a slope of −20 dB/dec at low frequencies as expected (see
Figure 10.10). The minimum singular value crosses zero dB just above 1 rad/s. The maximum singular
value crosses zero dB at about 8 rad/s.

Step 2: Design Target Open Loop Transfer Function Matrix Lo = GKF = C(sI − A)−lHf

Next we design a target open loop transfer function matrix Lo = GKF = C(sI − A)−lHf that has desirable
closed loop properties (e.g., sensitivity singular values, pole locations, stability margins, etc.) at the output.
To do this, we use Kalman Filtering ideas. Like LQR loops designed without a cross-state-control-coupling
penalty, Kalman Filter loops designed in similar fashion exhibit desirable stability robustness margins
(e.g., infinite upward gain margin, at least 6 dB downward gain margin, at least ±60° phase margin).
This target loop design is carried out as follows:

• Consider the augmented system shown in Figure 10.11.

It will be used to design a target loop transfer function matrix Lo = GKF with desirable closed loop
properties at the output. To do so, we begin by forming an augmented system GFOL = C(sI − A)

−l
L with

(10.207)

(10.208)

(10.209)

FIGURE 10.9 PUMA 560 robotic manipulator singular values.
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The matrix LL matches the singular values of GFOL = C(sI − A)−lL at low frequencies. The matrix
LH matches the singular values at high frequencies. Together, LL and LH match the singular values
of GFOL = C(sI − A)−lL at all frequencies (see Figure 10.12). Why is this?
This selection for LL and LH results in

(10.210)

(10.211)

(10.212)

(10.213)

(10.214)

(10.215)

The resulting gain crossover frequency in Figure 10.12 is 1 rad/s, as expected.

FIGURE 10.10 PUMA 560 robotic manipulator design plant singular values.

FIGURE 10.11 Augmented system used for designing target loop.
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Why match the singular values of GFOL in this manner? From the so-called Kalman Frequency
Domain Equality (KFDE), it follows that

(10.216)

This suggests that by shaping GFOL, we can shape the target Lo = GKF. Specifically, if GFOL is large
at low frequencies, then we expect (from KFDE)

(10.217)

at low frequencies. This shows that the matrix L should be used for shaping the target loop Lo =
GKF while µ > 0 is used to adjust the target loop bandwidth—decreasing/increasing µ to raise/lower
the target loop bandwidth.

Note that through our selection of L, we have made all of the plant’s unstable modes uncon-
trollable through L. Hence, (A, L) is NOT stabilizable! While this might appear to be troublesome,
it is not. What matters is that the associated Hamiltonian belongs to dom(Ric) so that a stabilizing
Hf exists. A necessary and suficient condition for this, however, is that (A, C) be detectable and
(A, L) has no unobservable modes on the imaginary axis. Since each of these conditions are indeed
satisfied, we can use the “are” command to find a stabilizing solution to the FARE.

• Next we solved the FARE with Θ = µI2×2(µ = 0.1):

(10.218)

FIGURE 10.12 PUMA 560 robotic manipulator GFOL singular values.
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for Y ≥ 0. The “are” command was used to do this, as it returns a stabilizing solution (provided
that one exists). We then formed the filter gain matrix

(10.219)

(10.220)

Doing so results in the following target closed loop poles (λi(A − HfC)):

s = −3.1623, −3.1623, −4.5299, −4.5299, −14.1050, −14.1050 (10.221)

The singular values for the resulting target open loop transfer function matrix Lo = GKF = C(sI − A)−lHf

are shown in Figure 10.13.
The target open loop singular values—as expected from the KFDE—are matched at low frequencies

with a slope of −20 dB/dec. They remain matched til about 1 rad/s, then they separate. This is expected
since GFOL = I/s is not an achievable loop. (Not if closed loop stability matters!) The resulting filter gain
matrix provides the necessary bandwidth to stabilize the unstable robotic manipulator, with open loop
instabilities at s = 14.1050, 4.5299. One singular value crosses 0 dB just above 10 rad/s, the other just
below 30 rad/s. µ was used to adjust the bandwidth.

The corresponding target sensitivity SKF = [I + GKF]−1 singular values and complementary sensitivity
TKF = GKF[I + GKF]−1 singular values are shown in Figures 10.14 and 10.15, respectively. The associated

FIGURE 10.13 PUMA 560 robotic manipulator target loop GKF singular values.
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FIGURE 10.14 PUMA 560 robotic manipulator target sensitivity SKF = [I + GKF]
−1 singular values.

FIGURE 10.15 PUMA 560 robotic manipulator target complementary sensitivity TKF = GKF[I + GKF]−1 singular
values.
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sensitivity and complementary sensitivity singular values are desirable in that they suggest that the target
loop will possess:

• Good low frequency command following properties

• Good low frequency disturbance attenuation properties

• Good high frequency sensor noise attenuation properties

• Good MIMO stability margins (nearly infinite upward gain margin, at least 6 dB downward gain
margin, and at least ±60° phase margin) at the output

The complementary sensitivity singular values suggest that a reference command prefilter W would reduce
overshoot due to step reference commands. The design of such a filter will be considered below.

Step 3: Solve Cheap Control Problem to Recover Target Loop at Plant Output 
Next we solve an appropriately formulated “cheap LQR control problem” that would produce a control
gain matrix Gc such that the H 2

 optimal model-based compensator Kd = [A − BGc − HfC, Hf , Gc] with
Pd = [A, B, C] approximates (“recovers”) the target loop transfer function matrix Lo = GKF; that is,

(10.222)

This was done by solving the following CARE (using the “lqr” command) with R = ρI2×2(ρ = 10
−13

):

(10.223)

for X ≥ 0 and forming the control gain matrix

(10.224)

(10.225)

Doing so yields the following closed loop regulator poles (λi(A − BGc)):

s = −440.8808, −220.4404 ± j381.7871, −1881.9053, −940.9527 ± j1629.7168 (10.226)

All have damping factors greater than or equal to ζ = 0.5. As a practical note to facilitate real-time imple-
mentation of the resulting controller, one might use model reduction techniques [10] to remove some
of the very high frequency poles in the compensator. Doing so would permit using a larger integration
step size in any real-time embedded system or microprocessor implementation.

Step 4: Construct Final Controller K
Next we form the final controller as follows:

(10.227)

(10.228)

(10.229)

A state space representation for this controller is given by

(10.230)

 (10.231)

PdKd Lo≈ GKF=

XA A
T
X C

T
C XBR

1–
B

T
X–+ + 0=

Gc R
1–
B

T
X=

987.9832 543.0034– 3162945.2928 56.9921 13941.9005 2069.8324

543.0034– 3657.5891 11.7867 3162634.3919 2069.7987 3765.7978
=

K
Kd

s
-----=

A BGc– Hf C, Hf , Gc–[ ]
s

-----------------------------------------------------------=

Ak, Bk, Ck[ ]=

AK
02 2× Gc

06 2× A BGc– Hf C–
,= BK

02 2×

Hf

=

CK I2 2× 02 6×=
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With this selection, we have

(10.232)

(10.233)

(10.234)

(10.235)

Through this selection of K, we have recovered the target loop transfer function matrix Lo = GKF. That
is, K has approximately inverted P (from the right) in order to achieve PK ≈ Lo = GKF. An examination
of the singular values for the actual loop PK shows that the actual singular values agree with the target
singular values up to and beyond 100 rad/s.

Loop Transfer Recovery. Why were we able to recover the target loop? The recovery was permitted by
the model-based structure of the compensator K, the Riccati equations used to obtain the gain matrices
Gc and Hf , and the fact that the plant P = [Ap, Bp, Cp] (and hence the design plant 
is minimum phase. The minimum phase condition, specifically, is a suficient condition which guarantees
that there exists an orthonormal matrix U(UTU = UUT = I) such that

(10.236)

This limiting behavior relating the control gain matrix and the design plant’s C matrix, however, can be
used to prove that loop transfer recovery takes place; that is,

(10.237)

Step 5: Design Command Pre-filter W
The MATLAB command

(10.238)

can be used to find the compensator’s transmission zeros. These are also zeros of the closed loop transfer
function matrix from r to y. The final compensator (as well as the target loop GKF) has zeros near s ≈ −1.2.
Given this, a reference command prefilter

(10.239)

was added outside the loop to filter reference commands. By so doing, we ensure that step reference com-
mands for θ1 and θ2 are followed in the steady state (due to integrators in controller) without excessive
overshoot during the transient.

Sensitivity Frequency Response
The resulting sensitivity singular values are plotted in Figure 10.16. The plot suggests that low frequency
reference commands r will be followed and low frequency output disturbances do will be attenuated.
More precisely, reference commands r with frequency content below 0.3 rad/s should be followed to
within about 20 dB; that is, with a steady-state error of about 10%. Similarly, output disturbances do

with frequency content below 0.3 rad/s should be attenuated by approximately 20 dB.

PK P
Kd

s
-----=
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I2 2×

s
---------Kd=

PdKd=

Lo≈ GKF=
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ρGc
ρ 0

+→
lim UC=

PdKd
ρ 0
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lim Lo GKF= = =
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----------------= I2 2×
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Reference to Output Frequency Response
The transfer function matrix from reference commands r to link angles y is

(10.240)

Its singular values are plotted in Figure 10.17. The plot suggests that low frequency reference commands
will be followed in the steady state and that little overshoot will result during the transient.

FIGURE 10.16 PUMA 560 sensitivity frequency response at error.

FIGURE 10.17 PUMA 560 reference to output frequency response.
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Response to Θ1 Step Reference Command
The response to a unit step θ1 command is plotted in Figure 10.18. As expected, θ1 follows the step
command well, with no overshoot and settling in about 1.6 s. The associated θ2 response is small,
indicating little cross coupling in the final closed loop system. The corresponding controls are plotted
in Figure 10.19. They are acceptable in size.

FIGURE 10.18 PUMA 560 outputs: response to θ1 reference command.

FIGURE 10.19 PUMA 560 controls: response to θ1 reference command.
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Response to Θ2 Step Reference Command
The response to a unit step θ2 command is plotted in Figure 10.20. As expected, θ2 follows the step
command well, with no overshoot and settling in about 3 s. The associated θ1 response is small, indicating
little cross coupling in the final closed loop system. The corresponding controls are plotted in Figure
10.21. They are acceptable in size. �

FIGURE 10.20 PUMA 560 outputs: response to θ2 reference command.

FIGURE 10.21 PUMA 560 controls: response to θ2 reference command.
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10.4 H
2 State Feedback Problem

This section shows that the methods presented for output feedback may be readily adopted to permit
the design of H 2 optimal constant gain state feedback control laws (control gain matrices Gc) as well.

10.4.1 Generalized Plant Structure for State Feedback

For this case, the generalized plant G (including plant P and weighting functions) takes the following form:

(10.241)

This implies that the measured signals y are the states x of the generalized plant G. As such, all of the modes
of A are observable through C2 = In×n.

10.4.2 State Feedback Assumptions

The standard state feedback assumptions are a subset of those required for the output feedback problem
formulation. The state feedback assumptions are as follows.

Assumption 10.2 (H 2 State Feedback Problem)

Throughout this section, it will be assumed that

1. Plant G22 Assumption. (A, B2) stabilizable.
2. Nonsingular Control Weighting Assumption.  (D12 full column rank).
3. Regulator Assumption.  has full column rank for all ω. �

It should be noted that if  then (3) is equivalent to (A, C1) having no unobservable imaginary
modes. If (A, C1) is detectable, then this is satisfied.

H 2 Optimal State Feedback Control Law
The H 2 optimal controller is given by

(10.242)

where the control gain matrix  is given by

(10.243)

where X ≥ 0 is the unique (at least) positive semi-definite solution of the CARE:

(10.244)

The closed loop poles that result from the above constant gain state feedback control law are the
eigenvalues of A − B2Gc. The minimum closed loop norm is given by

(10.245)
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State Feedback Loop Shaping
If one selects

(10.246)

(10.247)

(10.248)

(10.249)

then  and we have

(10.250)

where X ≥ 0 is the unique (at least) positive semi-definite solution of the CARE:

(10.251)

The following LQFDE may be derived from the CARE:

(10.252)

where

(10.253)

(10.254)

Given this, the loop shaping ideas discussed earlier are applicable. A designer may use the matrix M and
the scalar ρ > 0 to shape GOL in an effort to get a desirable loop GLQ. The matrix M, specifically, may be
used to match singular values at low frequencies, high frequencies, all frequencies, etc. Assuming that
(A, B) is stabilizable and (A, M) has no imaginary modes that are unobservable, a stabilizing solution is
guaranteed to exist. Moreover, the resulting GLQ loop will possess nominal sensitivity and stability
robustness properties—a consequence of the LQFDE. The resulting control gain matrix Gc may be used
within a state feedback loop, a modified state feedback loop, or within a model-based compensator.
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10.5 H2 Output Injection Problem

This section shows how the methods presented for output feedback may be readily adopted to permit
the design of H 2 optimal state estimators (filter gain matrices Hf) as well.

10.5.1 Generalized Plant Structure for Output Injection

For this case (dual to the state feedback case), the generalized plant G (including plant P and weighting
functions) takes the following form:

(10.255)

This implies that the control signals u directly impact all of the generalized plant states x. As such, all of
the modes of A are controllable through B2 = .

10.5.2 Output Injection Assumptions

The standard output injection assumptions are a subset of those required for the output feedback problem
formulation. The output injection assumptions are as follows.

Assumption 10.3 (H 2 Output Injection Problem)

Throughout this section, it will be assumed that

1. Plant G22 Assumption. (A, C2) detectable.
2. Nonsingular Measurement Weighting Assumption.  (D21 full row rank).
3. Filter Assumption.  has full row rank for all ω. �

It should be noted that if , then (3) is equivalent to (A, B1) having no uncontrollable
imaginary modes. If (A, B1) is stabilizable, then this is satisfied.

H 2 Optimal Output Injection Law
The H 2 optimal controller is then given by

(10.256)

where the filter gain matrix  is given by

(10.257)

where Y ≥ 0 is the unique (at least) positive semi-definite solution of the FARE:

(10.258)

The closed loop poles that result from the above output injection law are the eigenvalues of A − HfC2.
The minimum closed loop norm is given by

(10.259)

where Y is the solution to the FARE.
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Estimator (Filter) Loop Shaping
If one selects

(10.260)

(10.261)

(10.262)

(10.263)

then  and we have

(10.264)

where Y ≥ 0 is the unique (at least) positive semi-definite solution of the FARE:

(10.265)

Given this, the following KFDE may be derived from the FARE:

(10.266)

where

(10.267)

(10.268)

Given this, the loop shaping ideas discussed earlier are applicable. A designer may use the matrix L and
the scalar µ > 0 to shape GFOL in an effort to get a desirable loop GKF . The matrix L, specifically, may be
used to match singular values at low frequencies, high frequencies, all frequencies, etc. Assuming that
(A, C) is detectable and (A, L) has no imaginary modes that are uncontrollable, then a stabilizing solution
is guaranteed to exist. Moreover, the resulting GKF loop will possess nominal sensitivity and stability
robustness properties—a consequence of the KFDE. The resulting filter (output injection) gain matrix
Hf may be used within an estimator (feedback) loop, a modified estimator (feedback) loop, or within a
model-based compensator. 

10.6 Summary

This chapter has presented a general framework for control system design via H 2 optimization. While
the focus has been on continuous time LTI systems, the methods are very flexible and have wide
application. They may be used to design constant gain state feedback control laws, constant gain state
estimators, dynamic output feedback controllers, and much more. Weighting functions are easily accom-
modated within the generalized plant framework presented. Such functions may be used to achieve closed
loop design objectives. All of the ideas presented may be extended with subtle (all be it very important)
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modifications, to accommodate control system design via H × optimization. Additional details may be
found in.

The methods presented in this chapter may be extended to discrete time linear shift invariant (LSI)
systems. Extensions to sampled data systems are also possible [1].
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11.1 Introduction

The most important challenge for modern control theory is that it should deliver acceptable performance
while dealing with poor models, high nonlinearities, and low-cost sensors under a large number of op-
erating conditions. The difficulties encountered are not peculiar to any single class of systems and they
appear in virtually every industrial application. Invariably, these systems contain such a large amount of
model and parameter uncertainty that “fixed”controllers can no longer meet the stability and perfor-
mance requirements. Any reasonable solution for such problems must be a suitable amalgamation
between nonlinear control theory, adaptive elements, and information processing. Such are the factors
behind the birth and evolution of the field of adaptive control theory, strongly motivated by several
practical applications such as chemical process control and design of autopilots for high-performance
aircraft, which operate with proven stability over a wide variety of speeds and altitudes. 

A commonly accepted definition for an adaptive system is that it is any physical system that is designed
from an adaptive standpoint!

1
 All existing stability and convergence results, in the field of adaptive control

theory, hinge on the crucial assumption that the unknown parameters must occur linearly within the
plant containing known nonlinearities. Conceptually, the overall process makes the parameter estimates
themselves as state variables, thus enlarging the dimension of the state space for the original system. By
nature, adaptive control solutions for both linear and nonlinear dynamical systems lead to nonlinear time-
varying formulations wherein the estimates of the unknown parameters are updated using input–output
data. A parameter adaptation mechanism (typically nonlinear) is used to update the parameters within the

Maruthi R. Akella 
The University of Texas at Austin
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11-2 Mechatronic System Control, Logic, and Data Acquisition

control law. Given the nonlinearity due to adaptive feedback, there is the need to ensure that the closed-
loop stability is preserved. It is thus an unmistakable fact that the fields of adaptive control and nonlinear
system stability are intrinsically related to one another and any new insights gained in one field would be
of potential benefit to the other. Many formalisms in nonlinear stability theory can be employed such as
the Lyapunov direct method and passivity-based methods. We will first present some important mathe-
matical and analytical tools for studying the stability of nonlinear dynamical systems. 

11.2 Lyapunov Theory for Time-Invariant Systems

The Lyapunov direct method is a commonly adopted and arguably one of the most popular methods
for proving closed-loop stability in the adaptive control area. It is not restricted to local system behavior
and determines the stability properties of the nonlinear system by considering the time evolution of the
system solutions with respect to an “energy-like” scalar function, often known as the Lyapunov function. 

Consider any dynamical system represented by the following nonlinear autonomous differential equation

(11.1)

Obviously x(t) = 0 is a solution. A sufficient condition for the existence and uniqueness of solutions for
Equation 11.1 is that f(x) be locally Lipschitz, that is, 

(11.2)

for all x and y in a finite neighborhood of the origin. We are interested in the stability of the solutions
of Equation 11.1 in the presence of perturbations. Before discussing the main Lyapunov stability theo-
rems, we present some important definitions. 

Definition: Lyapunov stability
The solution x(t) = 0 of Equation 11.1 is called stable in the sense of Lyapunov if for all � > 0, there exists
a δ(�) > 0 such that for all initial conditions satisfying  < δ, we have  < � for t ∈ [0, ∞).
The solution is unstable if it is not stable. The solution is asymptotically stable if it is stable and there
exists a δ > 0 such that every initial condition that satisfies  < δ has the property

The solution is globally asymptotically stable if it is asymptotically stable for all initial conditions. These
definitions refer to stability of particular solutions of Equation 11.1 with respect to initial conditions and
not to the stability of differential equations. 

Definition: Positive definite and semidefinite functions
Any continuously differentiable function V: − n → −  is called positive definite if (i)V(0) = 0 and (ii) V(x) >
0 for all x ≠ 0. A function is positive semidefinite if condition (ii) is replaced by V(x) ≥ 0 for all x ≠ 0. 

Theorem: Lyapunov’s stability theorem for time-invariant systems
If there exists a positive definite function V: − n → − such that the time derivative of V along the solution
of  = f(x) given by

is negative semidefinite, then the solution x(t) = 0 of Equation 11.1 is stable. In this case, the solution
converges to the set {x ∈ − n: (x) = 0}. If  is negative definite, then the solution is asymptotically stable.
Furthermore, if  is negative definite and V(x) → ∞ as  → ∞, then the solution is globally asymptotically
stable. The function V(x) is called a Lyapunov function for the system described by Equation 11.1. 
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Remark: Lyapunov’s theorem, though simple to state, has powerful applications in the stability analysis
of nonlinear systems. However, since the theorem provides only a sufficient condition in terms of the
Lyapunov function, we are often encountered with the difficult problem of finding a suitable Lyapunov
function. In the special case when Equation 11.1 is a stable linear system, 

a quadratic Lyapunov function V = xTPx exists where P is a symmetric positive definite matrix satisfying
the so-called Lyapunov equation

(11.3)

for any symmetric positive definite Q matrix. On the other hand, there is no general recipe for construc-
tion of Lyapunov functions for nonlinear systems. As a rule of thumb, in the case of mechanical systems,
“energy-like”quantities are good candidates for a first attempt. 

11.3 Lyapunov Theory for Time-Varying Systems

We are now ready to consider the stability of solutions for a time-varying (nonautonomous) differential
equation

(11.4)

The function g is assumed to be piecewise continuous with respect to t and locally Lipschitz in x about a
neighborhood of the solution x(t) = 0. This would guarantee that the origin is an equilibrium for Equation
11.4. In order to investigate the stability of equilibrium for this nonautonomous system, it is important
to recognize that any solution of Equation 11.4 depends not only on time t but also on the initial time
t0. Thus, we need to revisit our previous definitions of stability.

Definition: Uniform Lyapunov stability
The solution x(t) = 0 for Equation 11.4 is uniformly stable if for every � > 0, there exists a δ(�) > 0 that
is independent of the initial time t0 such that

implies

The solution is uniformly asymptotically stable if it is uniformly stable and there is a positive constant ρ
independent of t0 such that → 0 as t → ∞ for all  < ρ. The solution is globally uniformly
asymptotically stable if it is uniformly asymptotically stable for all initial conditions. 

The main stability theorem for nonautonomous systems requires the definition of certain class K
functions. 

Definition: Class K functions
A continuous function α: [0, a) → [0, ∞) is said to belong to class K if it is strictly increasing and α(0) = 0.
It is said to belong to class K∞, or radially unbounded, if a = ∞ in such a way that α(r) → ∞ as r → ∞. 

Theorem: Lyapunov’s stability theorem for time-varying systems
Consider a set D = {x ∈− n:  ≤ R} about the equilibrium x(t) = 0 for Equation 11.4. If there exists a
scalar function V: − n × − + → − with continuous partial derivatives such that

(i)

(ii)

for all t ≥ 0, where α1, α 2, and α3 are class K functions, then the equilibrium point x = 0 is uniformly
asymptotically stable. 

x· Amx=
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11-4 Mechatronic System Control, Logic, and Data Acquisition

Remark: Note that in order to show stability for nonautonomous systems, it is necessary to bound the
function V(x, t) by the class K functions that do not depend upon time t. A detailed treatment of all the
definitions and proof for this theorem can be found in Slotine and Li2 and Khalil.3

Remark: In the recent years, several interesting converse Lyapunov results have been obtained. In par-
ticular, for every uniformly stable (or uniformly asymptotic stable) system, there exists a positive definite
Lyapunov function with a negative semidefinite time derivative (see Sastry and Bodson4). These results
are particularly useful from a closed-loop performance point of view because they allow us to explicitly
estimate the convergence rates in some cases of nonlinear adaptive control systems. 

The application of Lyapunov’s stability theorem for nonautonomous systems arising out of adaptive
control often leads us to negative semidefinite time derivatives of the Lyapunov function. Therefore,
asymptotic stability analysis is a much harder problem and the following result, known as Barbalat’s
Lemma, is extremely useful in such situations. 

Lemma: Barbalat.
Consider a uniformly continuous function φ : − → − defined at all real values of t ≥ 0. If

exists and is finite, then φ(t) → 0 as t → ∞.

Remark: A consequence of this result is that if φ ∈L2 and  ∈L∞, then φ(t) → 0 as t → ∞ (see Slotine
and Li2 and Tao5 for discussion and proof).

11.4 Adaptive Control Theory

In contrast to a fixed or ordinary controller, an adaptive controller is one with adjustable parameters
and an adjustment mechanism. The following are some basic concepts that are necessary for any discus-
sion of adaptive control theory. 

11.4.1 Regulation and Tracking Problems

The desired objective for any control problem is to maintain the plant output either at its desired value
or within specified/acceptable bounds of the desired value. If these desired values are constant with
respect to time, we have a regulation problem, otherwise it is a tracking problem. 

11.4.2 Certainty Equivalence Principle

This principle has been the bedrock of most adaptive control design methods and has received consid-
erable attention during the past two decades.4, 6, 7 Adaptive controllers based on this approach are obtained
by independently designing a control law that meets the control objective assuming complete knowledge
of all the unknown plant parameters (deterministic case), along with a parameter update law, which is
usually a differential equation that generates online parameter estimates that are used to replace the
unknown parameters within the control law. Such a controller would have perfect output tracking
capability in the case when the plant parameters are exactly known. In the presence of parameter
uncertainty, the adaptation mechanism will adjust the controller parameters so that the tracking objective
is asymptotically achieved. The main issue, thus, in adaptive controller design is to synthesize the adaptation
mechanism (parameter update law) that will guarantee that the control system remains stable and the
output tracking error converges to zero as the parameter values are updated. 

φ s( ) ds
0

t

∫t→∞
lim

φ·
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11.4.3 Direct and Indirect Adaptive Control

There exist two philosophically distinct approaches within adaptive control for plants containing unknown
or uncertain parameters. The first of those is the so-called direct approach where the controller parameters
are directly adjusted by the adaptation mechanism in such a way to optimize some pre-specified perfor-
mance index based on the output. The second approach is the indirect approach wherein plant parameters
are directly estimated and updated by the adaptation law and these estimated values are then used to
compute the controller parameters. Direct adaptive control eliminates the need for this additional com-
putation. Consequently, indirect adaptive control is plant parameter adaptive, whereas direct adaptive
control is output performance adaptive. The plant parameter identification process is explicit within the
direct approach while implicit in the direct approach. Hence, they have also been referred to as explicit
and implicit approaches. In both of these cases, the controller structure remains the same and is determined
from the certainty equivalence principle. 

11.4.4 Model Reference Adaptive Control (MRAC)

The model reference adaptive control (MRAC) framework consists of four parts: (i) the plant containing
the unknown parameters, (ii) a suitable reference model for specifying the desired output characteristics,
(iii) a feedback control law that contains adjustable parameters, and (iv) an adaptation mechanism that
updates the adjustable parameters within the control law. A schematic sketch for this framework is shown
in Figure 11.1. 

The plant is assumed to have a known structure with unknown parameters. For the case of linear systems,
this means that the number of poles and zeros are assumed to be known, but the exact locations of poles
and zeros are unknown. In the case of nonlinear systems, the structure of the governing equations of motion
is assumed to be known, but some of the parameters appearing linearly within those equations can be
unknown. The reference model specifies the desired output behavior expected from the plant as a result
of the external reference input. It provides the ideal plant response which the adaptation mechanism
should seek to track while updating the parameter estimates. The choice of the reference plant lies at the
heart of any MRAC design and any acceptable selection must essentially satisfy two crucial requirements.
The first of these requirements is that the reference model must accurately reflect the closed-loop
performance specifications such as rise time, settling time, overshoot, and other transient performance
characteristics. The other requirement is that given the assumed structure of the plant dynamics, the
reference model’s output behavior should be asymptotically achievable by the adaptive control system
implying certain extra conditions on the relative degree of the reference model and persistent excitation
conditions on the reference input. The controller structure is dictated by the certainty equivalence

FIGURE 11.1 The model reference adaptive control framework. 
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11-6 Mechatronic System Control, Logic, and Data Acquisition

principle and both direct and indirect parameter update procedures can be adopted within the MRAC
framework. Much of the work in this area deals with continuous time systems. 

11.4.5 Self-Tuning Controller (STC)

In contrast to MRAC, there is no reference model in the self-tuning controller (STC) design. A schematic
sketch is shown in Figures 11.2. In this formulation, the controller parameters of the plant parameters
are estimated in real time, depending on whether it is a direct or indirect approach. These estimates are
then used as if they are equal to the true parameters (certainty equivalence design). Parameter estimation
involves finding the best-fit set of parameters based on the plant input–output data. This is different from
the MRAC parameter adaptation scheme, where the parameter estimates are updated in such a way to
achieve asymptotic tracking between the tracking error between the plant and the reference model. In
several STC estimation schemes, it is also possible to quantify a measure of the quality of the parameter
estimates, which can be used in the design of the controller. Many different combinations of the estimation
methods can be adopted and can be applied to both continuous time and discrete time plants. Due to
the “separation” between parameter estimation and control in STC, there is greater fiexibility in design.
However, stability and convergence are difficult to prove and stronger conditions on input signals are
required (persistent excitation) to guarantee parameter convergence. Historically speaking, STC designs
arose in the study of the stochastic regulation problem and much of the literature is devoted to discrete
time plants using an indirect approach. In spite of the seeming difference between MRAC and STC, a
direct correspondence exists between problems from both the areas.8

11.5 Nonlinear Adaptive Control Systems

For the most general case of nonlinear systems, there exists very limited theory in the field of adaptive
control. Even though there is great interest in this area due to potential applications in a wide variety of
complex machanical systems, theoretical diffculties exist because of the lack of general analysis tools.
However, some important special cases are well understood by now, and we summarize the conditions
that these classes of systems satisfy:

1. The unknown parameters within the nonlinear plant are linearly parameterized. 
2. The complete state vector is measured. 
3. When the unknown parameters are assumed known, the control input can cancel all the nonlin-

earities in a feedback-linearization sense and any remaining internal dynamics should be stable.
The adaptive design is then accomplished by certainty equivalence. 

We now show a typical nonlinear MRAC methodology to deal with a situation in which the nonlinear
plant model has unknown parameters. Consider the nonlinear system

(11.5)

FIGURE 11.2 The self-tuning control architecture. 
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Adaptive and Nonlinear Control Design 11-7

where θ is a constant and unknown matrix parameter, and f is a known and differentiable nonlinear
vector function. In analogy with the MRAC methodology, we assume that it is desired to have the state
x asymptotically track the state xm of a reference system that satisfies

(11.6)

where r(t) is any piecewise continuous and bounded reference input and Am is a Hurwitz matrix. Introduce
an error vector e = x − xm so that the error dynamics can be established by taking the difference between
Equations 11.5 and 11.6 as follows:

(11.7)

If the parameter θ is assumed to be known, selecting the control input u = Amx + r − θ f(x) would render
the following structure for the error dynamics:

which would achieve the control objective. However, such a choice of control law is not impossible
because θ is unknown. Hence we retain the same structure for the control law except for replacing θ by
its time-varying estimate  so that the certainty-equivalence-based adaptive control law is given by

(11.8)

Application of the control law in Equation 11.7 leads us to the following closed-loop error dynamics:

(11.9)

where we have introduced the variable (t) to represent the parameter estimation error (t) − θ. There
are two things remaining to be done: (i) to show the stability and asymptotic convergence of e(t) to zero
as t → ∞, (ii) to provide an appropriate parameter adaptation mechanism for (t). We accomplish both
these tasks by adopting the Lyapunov method. Given that Am is Hurwitz, for any choice of symmetric
and positive definite matrix Q, there exists a symmetric, positive definite matrix P that satisfies the
Lyapunov equation given in Equation 11.3. Choosing a Lyapunov function in terms of such a P matrix, 

(11.10)

where Γ is a symmetric positive definite learning rate matrix. Taking the time derivative of V along the
solutions of Equation 11.9 we find that

(11.11)

Using several matrix trace identities,9 it is possible to show that

so that we can combine the last two terms on the right-hand side of Equation 11.11 as follows:

(11.12)
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Since θ is constant,  = 0 and  = . Thus, if the adaptive law for updating  is chosen as

(11.13)

then the derivative of the Lyapunov function in Equation 11.12 becomes

(11.14)

which is negative semidefinite, but not negative definite. This implies that V(t) ≤ V(0) for all t ≥ 0, and
thus, e and  must be bounded. This further implies that x = e + xm also is bounded. Also, V ≥ 0 and

, which means limt→∞V(t)  V∞ exists and is finite. Now, 

implying that e ∈L2  L∞. From Equation 11.9, it is obvious that  ∈L∞ . Thus, we can invoke Barbalat’s
lemma to claim that e(t) → 0 as t → ∞. Notice, however, that the parameter error  =  − θ will not
necessarily converge to zero. True parameter convergence can occur only when the reference input r(t)
satisfies certain uniform observability and persistent excitation conditions.4 

Remark: Note in the above MRAC design that while stability and tracking error convergence are guar-
anteed for any value of Am , Q, and Γ, the performance of the controller will depend critically on the
learning rate Γ. “Smaller” learning rates mean that the adaptation will be slow leading to large tracking
errors and large transients. Conversely, the upper limit on the learning rate is limited by the presence of
unmodeled dynamics, because too large a value for the learning rate will lead to highly oscillatory
parameter estimates that can adversely excite the high frequency unmodeled plant dynamics. 

Remark: The controller design methodology is based upon three crucial steps: (i) finding the appropriate
controller structure in the spirit of feedback linearization, (ii) derivation of the tracking error dynamics that
depend upon the parameter error terms, and (iii) finding a suitable Lyapunov function that can be used to
derive the parameter update law such that the tracking error will go to zero. Determining the controller
structure for the known parameter case is probably the most crucial step within any adaptive design
because it turns out that adaptive feedback linearization cannot be alway applied to systems that are
linearizable by feedback in the known parameter case. This happens because higher derivatives of the
parameter estimates appear in the control law for systems of higher order, making difficult the application
of the certainty equivalence principle. Other relatively new approaches deviate from the conventional
certainty equivalence principles by adopting integrator backstepping, nonlinear damping, and tuning
functions.10 In these methods, the adaptive law estimates the unknown plant parameters directly, thereby
permitting full utilization of any prior knowledge and therefore eliminating the possibility for overpa-
rameterization introduced by traditional direct MRAC methods. The design methodology and stability
proof are obtained through a recursive process,10,11 an overview for which can be obtained from
Kokotovic12 and subsequent results by his research group. 

Remark: Given the fact that there always exist model errors and other unknown disturbance effects in
addition to the unknown parameters, adaptive control solutions would have to address the robustness
question. Since the parameter error is always unknown, the Lyapunov function time derivative is always
negative semidefinite. This implies that the closed-loop equations are not exponentially stable, nor even
uniformly asymptotically stable. Any external or unmodeled disturbance would immediately make 
indefinite, and most methods that modify the stability proof for robustness are fixed to ensure  to be
negative outside a compact neighborhood of the equilibrium state. By introducing an additional term
in the adaptive law Equation 11.13 (referred to as σ-modification), Ioannou7 accomplishes robust stability.
This method, though very popular, suffered from the drawback that when the disturbance is absent, the
tracking error would not converge to zero. To overcome this problem, other schemes such as the �-
modification6 have been suggested to ensure robustness within the adaptive designs. 
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Adaptive and Nonlinear Control Design 11-9

11.6 Spacecraft Adaptive Attitude Regulation Example

Consider the problem of a rigid spacecraft with an initial nonzero attitude and body angular velocity vector
that has to be brought to rest at a zero attitude vector. This rigid body adaptive attitude regulation problem
based on the feedback linearization approach has been derived by Schaub, Akella, and Junkins.13 The
governing equations are described by Euler’s rotational equations of motion and the desired linear closed-
loop dynamics (LCLD) can be of either PD or PID form.13, 14 Only a crude estimate of the moment of
inertia matrix is assumed to be known. An adaptive control law is presented, which includes an integral
feedback term in the desired closed-loop dynamics and achieves asymptotic stability even in the presence
of unmodeled external disturbances. 

The resulting simulation is illustrated in Figure 11.3. The attitude vector is specified in terms of the
modified Rodrigues parameter (MRP) whose components σi are shown in Figure 11.3a. Without any
adaptation, the open-loop control is still asymptotically stable. However, the transient attitude errors
don’t match those of the desired LCLD well at all. With adaptation turned on, the performance matches
that of the ideal LCLD very closely. 

FIGURE 11.3 Rigid body stabilization while enforcing LCLD in the presence of large inertia and external distur-
bance ignorance. 
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11-10 Mechatronic System Control, Logic, and Data Acquisition

Figure 11.3b shows the magnitude of the MRP attitude error vector σ on a logarithmic scale. Again
the large transient errors of the open-loop, adaptation-free control law are visible during the first 20 s
of the maneuver along with the good final convergence characteristics. The ideal LCLD performance is
indicated again through the dotted line. Two versions of the adaptive control law are compared here,
which differ only by whether or not the external disturbance is adaptively estimated too. On this figure
both adaptive laws appear to enforce the desired LCLD very well for the first 40 s of the maneuver. After
this the adaptive law without disturbance learning starts to decay at a slower rate, slower even than the
open-loop (nonadaptive) solution. Including the external disturbance, adaptation clearly improves the
final convergence rate. Note, however, that neither adaptive case starts to deviate from the ideal LCLD
case until the MRP attitude error magnitude has decayed to roughly 10−3. This corresponds to having a
principal rotation error of roughly 0.23°. With external disturbance adaptation, the tracking error at
which the LCLD deviations appear is about two orders of magnitude smaller. 

The performance of the adaptive control law can be greatly varied by choosing different learning rates.
However, since large initial inertia matrix and external disturbance model errors are present, the adap-
tive learning rates were reduced to avoid radical transient torques. The control torque vector components
ui for various cases are shown in Figure 11.3c. The open-loop torques don’t approach the ideal LCLD
torque during the transient part of the maneuver. The torques required by either adaptive case are very
similar. The difference is that the case with external disturbance learning is causing some extra oscillation
of the control about the LCLD case. However, note that with the chosen adaptive learning rates neither
control law exhibits any radical transient torques about the ideal LCLD torque profile. Figure 11.3d
illustrates that the adaptive external disturbance estimate Fe indeed asymptotically approaches the true
external disturbance . By reducing the external disturbance adaptive learning rate  the transient
adaptive estimate errors are kept within a reasonable range. 

Figure 11.3f shows the absolute performance error in attitude rates. Both cases with adaptation added
show large reductions in attitude rate errors compared to the nonadaptive case. 

The purpose of the adaptive control discussed in this example is to enforce the desired LCLD. The previous
figures illustrate that the resulting overall system remains asymptotically stable. Figure 11.3e illustrates the
absolute performance error between the actual motion σ(t) and the desired linear reference motion σr(t).
This figure demonstrates again the large performance error that results from using the open-loop control
law with the incorrect system model. Adding adaptation improves the transient performance tracking
by up to two orders of magnitude. Without including the external disturbance learning, the final per-
formance error decay rate flattens out. This error will decay to zero. However, with the given learning
gains, it does so at a slower rate than if no adaptation is taking place. Adding the external disturbance
learning greatly improves the final performance error decay since the system is obtaining an accurate
model of the actual constant disturbance. If the initial model estimates were more accurate, more
aggressive adaptive learning rates could be used, resulting in even better LCLD performance tracking.
This simulation illustrates though that even in the presence of large system uncertainty it is possible to
track the desired LCLD very well. 

11.7 Output Feedback Adaptive Control

In contrast to the state-space approaches, the input–output approach treats the plant as a black box that
transforms the applied inputs into the corresponding output space. Stability theory for nonlinear systems
from an input–output viewpoint is important in the context of adaptive output feedback control design.
Solution to the problem of adaptive observer design involving state estimation of systems with unknown
parameters is often the stepping stone towards resolving the output feedback control problem. There
has been fairly recent breakthroughs in this area where the nonlinear adaptive observer design procedure
has been extended to a slightly more general case of systems where the coefficients of the unknown
parameters can depend on the entire state, and not just on the measured part.15

To a large extent, some powerful results have been made possible by exploiting certain “passivity-
like”conditions coupled with the usual persistent excitation conditions. Crucial to this discussion is the

Fe
∗ γFe
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Adaptive and Nonlinear Control Design 11-11

concept of passivity, which is really an abstract representation of the idea of energy dissipation in both
linear and nonlinear systems. Passive systems are most common in mechanical and electrical engineering
applications. A mechanical system consisting of masses, springs, and viscous dashpots is a common
example for a passive system. We now give the following definitions. 

Definition: Truncation of a signal
Let Y be the space of real-valued functions defined on [0, ∞). Let x be an element of Y. Then the
truncation of x at some T > 0 is defined by

Definition: Extended space
If X is a normed linear subspace of Y, then the extended space Xe is defined by the set

The extended L2 space is denoted by L2e.

Definition: Scalar product between two signals
The scalar product between two real-valued time signals x, y ∈L2e is defined as

Definition: Passive systems
A system with input u(t) and output y(t) is passive if

The system is input strictly passive if  �  > 0 such that

The system is said to be output strictly passive if  � > 0 such that

11.8 Adaptive Observers and Output Feedback Control

We now state the nonlinear adaptive observer problem formulated by Besancon:
15

 
(11.15)

where functions f and g are C
∞
 with respect to all their arguments and θ is a constant and unknown

parameter. Variables x, u, and y respectively denote the state, input, and output vectors. The input signals
may be assumed to belong to some set of measurable and bounded functions. By the phrase adaptive
observer, we imply the problem of reconstructing a state estimate (t) using the input u and output y

xT t( )
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11-12 Mechatronic System Control, Logic, and Data Acquisition

in the presence of the unknown parameter θ such that . The conditions for the
existence of such an observer are now available,15 which can be stated as follows. If a corresponding
observer exists in the case when θ is known, and if this deterministic case observer is such that when a
parameter error  is made and the state estimation error system is passive between the “input”

 and the output error h  − y, then an asymptotic state observer can be designed even when θ is
unknown. In addition to this passivity requirement, parameter error convergence, as usual, would further
need persistence of excitation with respect to u. 

This powerful result finds immediate applications within the problem of spacecraft attitude tracking in
the absence of angular velocity measurements.16 It is now well known that the governing equations of the
rigid-body attitude control problem in terms of the MRP vector satisfy certain passivity conditions17, 18

between the angular velocity vector and the MRP vector. A very important consequence of passivity in
this context is the fact that feedback control laws for attitude control can be implemented in a Lyapunov-
based construction without requiring angular velocity measurements. In such a case, the only signal
needed for feedback purposes would be the attitude vector. The resulting control laws provide almost
global asymptotic stability in the sense of Tsiotras.18

11.9 Concluding Remarks

Historically speaking, the development and application of modern adaptive control theory for generic
nonlinear systems adopted the philosophical approach of extending existing linear system methodologies.
In some limited cases such as regulator theory, this approach of paralleling linear system methods has
been highly successful. However, obtaining the same degree of success has been elusive in other research
areas such as trajectory tracking, controller synthesis, and state reconstruction. 

It is not difficult to fathom the reason for this bottleneck. Nonlinear systems occur in a vast variety of
ways, and not all of them can be handled by simple extensions to existing linear adaptive control meth-
odologies. One promising approach for the purpose of future research would be to specialize the study to
mechanical systems, thereby restricting the class of nonlinear systems considered, and thus enabling the
introduction of “structure” and additional constraints. Whereas in the case of output feedback control for
general nonlinear systems, separate designs of stable observers and controllers do not necessarily guarantee
stability for their combination (no separation principle), some structured approaches utilizing state trans-
formations have already been shown to help recover the separation properties in some cases.15 As a result,
these so-called structured approaches also enabled the formulation of global and semi-global tracking
controllers based on output (partial state) feedback. It is quite possible that a focused pursuit of the same
approach has the potential for providing a key to solving several other problems arising out of electrome-
chanical systems that are otherwise intractable. 
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12.1 Neural Networks and Fuzzy Systems

New and better electronic devices have inspired researchers to build intelligent machines operating in a
fashion similar to the human nervous system. Fascination with this goal started when McCulloch and
Pitts (1943) developed their model of an elementary computing neuron and when Hebb (1949) intro-
duced his learning rules. A decade later Rosenblatt (1958) introduced the perceptron concept. In the early
1960s Widrow and Holf (1960, 1962) developed intelligent systems such as ADALINE and MADALINE.
Nillson (1965) in his book Learning Machines summarized many developments of that time. The pub-
lication of the Mynsky and Paper (1969) book, with some discouraging results, stopped for some time the
fascination with artificial neural networks, and achievements in the mathematical foundation of the back-
propagation algorithm by Werbos (1974) went unnoticed. The current rapid growth in the area of neural
networks started with the Hopfield (1982, 1984) recurrent network, Kohonen (1982) unsupervised training
algorithms, and a description of the backpropagation algorithm by Rumelhart et al. (1986).

Bogdan M. Wilamowski
Auburn University
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12.2 Neuron Cell

A biological neuron is a complicated structure, which receives trains of pulses on hundreds of excitatory
and inhibitory inputs. Those incoming pulses are summed with different weights (averaged) during the
time period of latent summation. If the summed value is higher than a threshold, then the neuron itself
is generating a pulse, which is sent to neighboring neurons. Because incoming pulses are summed with
time, the neuron generates a pulse train with a higher frequency for higher positive excitation. In other
words, if the value of the summed weighted inputs is higher, the neuron generates pulses more frequently.
At the same time, each neuron is characterized by the nonexcitability for a certain time after the firing
pulse. This so-called refractory period can be more accurately described as a phenomenon where after
excitation the threshold value increases to a very high value and then decreases gradually with a certain
time constant. The refractory period sets soft upper limits on the frequency of the output pulse train.
In the biological neuron, information is sent in the form of frequency modulated pulse trains.

This description of neuron action leads to a very complex neuron model, which is not practical.
McCulloch and Pitts (1943) show that even with a very simple neuron model, it is possible to build logic
and memory circuits. Furthermore, these simple neurons with thresholds are usually more powerful than
typical logic gates used in computers. The McCulloch–Pitts neuron model assumes that incoming and
outgoing signals may have only binary values 0 and 1. If incoming signals summed through positive or
negative weights have a value larger than threshold, then the neuron output is set to 1. Otherwise, it is
set to 0.

(12.1)

where T is the threshold and net value is the weighted sum of all incoming signals:

(12.2)

Examples of McCulloch–Pitts neurons realizing OR, AND, NOT, and MEMORY operations are shown
in Figure 12.1. Note that the structure of OR and AND gates can be identical. With the same structure,
other logic functions can be realized, as Figure 12.2 shows.

The perceptron model has a similar structure. Its input signals, the weights, and the thresholds could
have any positive or negative values. Usually, instead of using variable threshold, one additional constant
input with a negative or positive weight can added to each neuron, as Figure 12.3 shows. In this case,

FIGURE 12.1 OR, AND, NOT, and MEMORY operations using networks with McCulloch–Pitts neuron model.

FIGURE 12.2 Other logic function realized with McCulloch–Pitts neuron model.
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the threshold is always set to be zero and the net value is calculated as

(12.3)

where wn+1 has the same value as the required threshold and the opposite sign. Single-layer perceptrons
were successfully used to solve many pattern classification problems. The hard threshold activation
functions are given by

(12.4)

for unipolar neurons and

(12.5)

for bipolar neurons. For these types of neurons, most of the known training algorithms are able to adjust
weights only in single-layer networks.

Multilayer neural networks usually use continuous activation functions, either unipolar 

(12.6)

or bipolar

(12.7)

These continuous activation functions allow for the gradient-based training of multilayer networks.
Typical activation functions are shown in Figure 12.4. In the case when neurons with additional threshold
input are used (Figure 12.3b), the λ parameter can be eliminated from Equations 12.6 and 12.7 and the
steepness of the neuron response can be controlled by the weight scaling only. Therefore, there is no real
need to use neurons with variable gains.

Note, that even neuron models with continuous activation functions are far from an actual biological
neuron, which operates with frequency modulated pulse trains. 

FIGURE 12.3 Threshold implementation with an additional weight and constant input with +1 value: (a) neuron
with threshold T, (b) modified neuron with threshold T = 0 and additional weight equal to −T.
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12.3 Feedforward Neural Networks

Feedforward neural networks allow only one-directional signal flow. Furthermore, most feedforward
neural networks are organized in layers. An example of the three-layer feedforward neural network is
shown in Figure 12.5. This network consists of input nodes, two hidden layers, and an output layer. 

A single neuron is capable of separating input patterns into two categories, and this separation is linear.
For example, for the patterns shown in Figure 12.6, the separation line is crossing x1 and x2 axes at points
x10 and x20. This separation can be achieved with a neuron having the following weights: w1 = 1/x10, w2 =
1/x20, and w3 = −1. In general for n dimensions, the weights are 

(12.8)

One neuron can divide only linearly separated patterns. To select just one region in n-dimensional input
space, more than n + 1 neurons should be used. If more input clusters are to be selected, then the number
of neurons in the input (hidden) layer should be properly multiplied. If the number of neurons in the
input (hidden) layer is not limited, then all classification problems can be solved using the three-layer
network. An example of such a neural network, classifying three clusters in the two-dimensional space, is
shown in Figure 12.7. Neurons in the first hidden layer create the separation lines between input clusters.

FIGURE 12.4 Typical activation functions: (a) hard threshold unipolar, (b) hard threshold bipolar, (c) continuous
unipolar, (d) continuous bipolar.

FIGURE 12.5 An example of the three-layer feedforward neural network, which is sometimes known also as the
backpropagation network.

(a) (b) (c) (d)

λ λ

Output
layer

O
ut

pu
ts

Hidden
layer #2Hidden

layer #1

In
pu

ts

+1 +1 +1

wi
1

xi0

------ for wn+1 1–==

9260_12.fm  Page 4  Wednesday, October 10, 2007  9:39 PM



Neural Networks and Fuzzy Systems 12-5

Neurons in the second hidden layer perform the AND operation, as shown in Figure 12.1b. Output neurons
perform the OR operation, as shown in Figure 12.1a, for each category. The linear separation property of
neurons makes some problems especially difficult for neural networks, such as exclusive OR, parity
computation for several bits, or to separate patterns laying on two neighboring spirals.

The feedforward neural network is also used for nonlinear transformation (mapping) of a multi-
dimensional input variable into another multidimensional variable in the output. In theory, any
input–output mapping should be possible if the neural network has enough neurons in hidden layers.
(size of output layer is set by the number of outputs required). In practice, this is not an easy task.
Presently, there is no satisfactory method to define how many neurons should be used in hidden layers.
Usually, this is found by the trial-and-error method. In general, it is known that if more neurons are
used, more complicated shapes can be mapped. On the other hand, networks with large numbers of
neurons lose their ability for generalization, and it is more likely that such networks will also try to map
noise supplied to the input. 

12.4 Learning Algorithms for Neural Networks

Similarly to the biological neurons, the weights in artificial neurons are adjusted during a training
procedure. Various learning algorithms were developed, and only a few are suitable for multilayer neuron
networks. Some use only local signals in the neurons, others require information from outputs; some
require a supervisor who knows what outputs should be for the given patterns, and other unsupervised
algorithms need no such information. Common learning rules are described in the following sections. 

FIGURE 12.6 Illustration of the property of linear separation of patterns in the two-dimensional space by a single
neuron.

FIGURE 12.7 An example of the three-layer neural network with two inputs for classification of three different
clusters into one category. This network can be generalized and can be used for solution of all classification problems.
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12-6 Mechatronic System Control, Logic, and Data Acquisition

12.4.1 Hebbian Learning Rule

The Hebb (1949) learning rule is based on the assumption that if two neighbor neurons must be activated
and deactivated at the same time, then the weight connecting these neurons should increase. For neurons
operating in the opposite phase, the weight between them should decrease. If there is no signal correlation,
the weight should remain unchanged. This assumption can be described by the formula

(12.9)

where
wij = weight from ith to jth neuron,

c = learning constant,
xi = signal on the ith input,
oj = output signal.

The training process starts usually with values of all weights set to zero. This learning rule can be used
for both soft and hard threshold neurons. Since desired responses of neurons are not used in the learning
procedure, this is the unsupervised learning rule. The absolute values of the weights are usually propor-
tional to the learning time, which is undesired. 

12.4.2 Correlation Learning Rule

The correlation learning rule is based on a similar principle as the Hebbian learning rule. It assumes that
weights between simultaneously responding neurons should be largely positive, and weights between
neurons with opposite reaction should be largely negative. Contrary to the Hebbian rule, the correlation
rule is the supervised learning. Instead of actual response, oj, the desired response, dj, is used for the
weight change calculation

(12.10)

This training algorithm usually starts with initialization of weights to zero values. 

12.4.3 Instar Learning Rule

If input vectors and weights are normalized, or they have only binary bipolar values ( −1 or +1 ), then
the net value will have the largest positive value when the weights and the input signals are the same.
Therefore, weights should be changed only if they are different from the signals 

(12.11)

Note, that the information required for the weight is taken only from the input signals. This is a very
local and unsupervised learning algorithm. 

12.4.4 Winner Takes All (WTA)

The winner takes all (WTA) is a modification of the instar algorithm where weights are modified only
for the neuron with the highest net value. Weights of remaining neurons are left unchanged. Sometimes
this algorithm is modified in such a way that a few neurons with the highest net values are modified at
the same time. Although this is an unsupervised algorithm because we do not know what are desired
outputs, there is a need for a “judge” or “supervisor” to find a winner with a largest net value. The WTA
algorithm, developed by Kohonen (1982), is often used for automatic clustering and for extracting
statistical properties of input data. 

∆wij cxioj=

∆wij cxidj=

∆wi c xi wi–( )=
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12.4.5 Outstar Learning Rule

In the outstar learning rule, it is required that weights connected to a certain node should be equal to
the desired outputs for the neurons connected through those weights

(12.12)

where dj is the desired neuron output and c is the small learning constant, which further decreases during
the learning procedure. This is the supervised training procedure because desired outputs must be known.
Both instar and outstar learning rules were developed by Grossberg (1969). 

12.4.6 Widrow–Hoff LMS Learning Rule

Widrow and Hoff (1960, 1962) developed a supervised training algorithm, which allows training a neuron
for the desired response. This rule was derived so the square of the difference between the net and output
value is minimized.

(12.13)

where
Errorj = error for jth neuron,

P = number of applied patterns,
djp = desired output for jth neuron when pth pattern is applied,

net = given by Equation 12.2. 

This rule is also known as the least mean square (LMS) rule. By calculating a derivative of Equation
12.13 with respect to wij, a formula for the weight change can be found:

(12.14)

Note that weight change ∆wij is a sum of the changes from each of the individual applied patterns.
Therefore, it is possible to correct the weight after each individual pattern was applied. This process is
known as incremental updating; cumulative updating is when weights are changed after all patterns have
been applied. Incremental updating usually leads to a solution faster, but it is sensitive to the order in
which patterns are applied. If the learning constant c is chosen to be small, then both methods give the
same result. The LMS rule works well for all types of activation functions. This rule tries to enforce the
net value to be equal to desired value. Sometimes this is not what the oberver is looking for. It is usually
not important what the net value is, but it is important if the net value is positive or negative. For example,
a very large net value with a proper sign will result in correct output and in large error as defined by
Equation 12.13 and this may be the preferred solution.

12.4.7 Linear Regression

The LMS learning rule requires hundreds or thousands of iterations, using formula 12.14, before it
converges to the proper solution. Using the linear regression rule, the same result can be obtained in
only one step. 

Considering one neuron and using vector notation for a set of the input patterns X applied through
weight vector w, the vector of net values net is calculated using 

(12.15)

∆wij c dj wij–( )=

Errorj netjp djp–( )2

p=1

P

∑=

∆wij cxi djp netjp–( )
p= 1

P

∑=

Xw net=
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12-8 Mechatronic System Control, Logic, and Data Acquisition

where
X = rectangular array (n + 1) × p, 
n = number of inputs,
p = number of patterns. 

Note that the size of the input patterns is always augmented by one, and this additional weight is responsible
for the threshold (see Figure 12.3b). This method, similar to the LMS rule, assumes a linear activation
function, and so the net values net should be equal to desired output values d

Xw = d (12.16) 

Usually p > n + 1, and the preceding equation can be solved only in the least mean square error sense.
Using the vector arithmetic, the solution is given by

(12.17)

When traditional method is used, the set of p equations with n + 1 unknowns, Equation 12.16, has to
be converted to the set of n + 1 equations with n + 1 unknowns

(12.18)

where elements of the Y matrix and the z vector are given by 

(12.19)

Weights are given by Equation 12.17 or they can be obtained by a solution of Equation 12.18. 

12.4.8 Delta Learning Rule

The LMS method assumes linear activation function net = 0, and the obtained solution is sometimes far
from optimum, as is shown in Figure 12.8 for a simple two-dimensional case, with four patterns belonging
to two categories. In the solution obtained using the LMS algorithm, one pattern is misclassified. If error

FIGURE 12.8 An example with a comparison of results obtained using LMS and delta training algorithms. Note
that LMS is not able to find the proper solution. 
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Neural Networks and Fuzzy Systems 12-9

is defined as 

(12.20)

then the derivative of the error with respect to the weight wij is 

(12.21)

since o = f (net) and the net is given by Equation 12.2. Note that this derivative is proportional to the derivative
of the activation function f ′(net). Thus, this type of approach is possible only for continuous activation
functions and this method cannot be used with hard activation functions (12.4) and (12.5). In this respect
the LMS method is more general. The derivatives’ most common continuous activation functions are 

(12.22)

for the unipolar, Equation 12.6, and

(12.23)

for the bipolar, Equation 12.7.
Using the cumulative approach, the neuron weight wij should be changed with a direction of gradient 

(12.24)

In case of the incremental training for each applied pattern 

(12.25)

the weight change should be proportional to input signal xi, to the difference between desired and actual
outputs djp − ojp, and to the derivative of the activation function . Similar to the LMS rule, weights
can be updated in both the incremental and the cumulative methods. In comparison to the LMS rule,
the delta rule always leads to a solution close to the optimum. As it is illustrated in Figure 12.8, when
the delta rule is used, all four patterns are classified correctly. 

12.4.9 Error Backpropagation Learning

The delta learning rule can be generalized for multilayer networks. Using an approach similiar to the
delta rule, the gradient of the global error can be computed with respect to each weight in the network.
Interestingly, 

(12.26)

where
c = learning constant, 
xi = signal on the ith neuron input, 

= derivative of activation function.

Errorj ojp djp–( )2

p=1

P

∑=

d Errorj

dwij

------------------ 2 ojp djp–( )
df  netjp( )

d netjp

----------------------xi

p=1

P

∑=

f ′ o 1 o–( )=

f ′ 0.5 1 o
2–( )=

∆wij cxi djp ojp–( )f ′jp
p=1

P
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∆wij cxi f ′j dj oj–( )=

f ′jp

∆wij cxi fj′ Ej=
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12-10 Mechatronic System Control, Logic, and Data Acquisition

The cumulative error Ej on neuron output is given by

(12.27)

where K is the number of network outputs and Ajk is the small signal gain from the input of the jth
neuron to the kth network output, as Figure 12.9 shows. The calculation of the backpropagating error
starts at the output layer and cumulative errors are calculated layer by layer to the input layer. This
approach is not practical from the point of view of hardware realization. Instead, it is simpler to find
signal gains from the input of the jth neuron to each of the network outputs (Figure 12.9). In this case,
weights are corrected using 

(12.28)

Note that this formula is general, regardless of whether the neurons are arranged in layers or not. One
way to find gains Ajk is to introduce an incremental change on the input of the jth neuron and observe
the change in the kth network output. This procedure requires only forward signal propagation, and it
is easy to implement in a hardware realization. Another possible way is to calculate gains through each
layer and then find the total gains as products of layer gains. This procedure is equally or less computa-
tionally intensive than a calculation of cumulative errors in the error backpropagation algorithm.

The backpropagation algorithm has a tendency for oscillation. To smooth the process, the weights
increment ∆wij can be modified according to Rumelhart et al. (1986): 

(12.29)

or according to Sejnowski and Rosenberg (1987),

(12.30)

where α is the momentum term.

FIGURE 12.9 Illustration of the concept of gain computation in neural networks.
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Neural Networks and Fuzzy Systems 12-11

The backpropagation algorithm can be significantly sped up, when, after finding components of the
gradient, weights are modified along the gradient direction until a minimum is reached. This process
can be carried on without the necessity of a computationally intensive gradient calculation at each step.
The new gradient components are calculated once a minimum is obtained in the direction of the previous
gradient. This process is only possible for cumulative weight adjustment. One method of finding a
minimum along the gradient direction is the tree step process of finding error for three points along
gradient direction and then, using a parabola approximation, jump directly to the minimum. The fast
learning algorithm using the described approach was proposed by Fahlman (1988) and is known as the
quickprop. 

The backpropagation algorithm has many disadvantages, which lead to very slow convergency. One
of the most painful is that in the backpropagation algorithm, the learning process almost perishes for
neurons responding with the maximally wrong answer. For example, if the value on the neuron output
is close to +1 and desired output should be close to −1, then the neuron gain f ′(net) ≈ 0 and the error
signal cannot backpropagate, and so the learning procedure is not effective. To overcome this difficulty,
a modified method for derivative calculation was introduced by Wilamowski and Torvik (1993). The
derivative is calculated as the slope of a line connecting the point of the output value with the point of
the desired value, as shown in Figure 12.10. 

(12.31)

Note that for small errors, Equation 12.31 converges to the derivative of activation function at the point
of the output value. With an increase of system dimensionality, the chances for local minima decrease.
It is believed that the described phenomenon, rather than a trapping in local minima, is responsible for
convergency problems in the error backpropagation algorithm. 

12.5 Special Feedforward Networks

The multilayer backpropagation network, as shown in Figure 12.5, is a commonly used feedforward network.
This network consists of neurons with the sigmoid type continuous activation function presented in
Figures 12.4c and 12.4d. In most cases, only the one hidden layer is required, and the number of neurons
in the hidden layer are chosen to be proportional to the problem complexity. The number of neurons in
the hidden layer is usually found by a trial-and-error process. The training process starts with all weights
randomized to small values, and the error backpropagation algorithm is used to find a solution. When the
learning process does not converge, the training is repeated with a new set of randomly chosen weights.

FIGURE 12.10 Illustration of the modified derivative calculation for faster convergency of the error backpropagation
algorithm. 
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12-12 Mechatronic System Control, Logic, and Data Acquisition

Nguyen and Widrow (1990) proposed an experimental approach for the two-layer network weight initial-
ization. In the second layer, weights are randomly chosen in the range from −0.5 to +0.5. In the first layer,
initial weights are calculated from

(12.32)

where zij is the random number from −0.5 to +0.5 and the scaling factor β is given by 

(12.33)

where n is the number of inputs and N is the number of hidden neurons in the first layer. This type of
weight initialization usually leads to faster solutions.

For adequate solutions with backpropagation networks, typically many tries are required with different
network structures and different initial random weights. It is important that the trained network gains a
generalization property. This means that the trained network also should be able to handle correctly
patterns that were not used for training. Therefore, in the training procedure, often some data are removed
from the training patterns and then these patterns are used for verification. The results with backprop-
agation networks often depend on luck. This encouraged researchers to develop feedforward networks,
which can be more reliable. Some of those networks are described in the following sections. 

12.5.1 Functional Link Network

One-layer neural networks are relatively easy to train, but these networks can solve only linearly separated
problems. One possible solution for nonlinear problems was presented by Nilsson (1965) and was then
elaborated by Pao (1989) using the functional link network shown in Figure 12.11. Using nonlinear terms
with initially determined functions, the actual number of inputs supplied to the one-layer neural network
is increased. In the simplest case, nonlinear elements are higher order terms of input patterns. Note that
the functional link network can be treated as a one-layer network, where additional input data are generated
off-line using nonlinear transformations. The learning procedure for one-layer is easy and fast. Figure 12.12
shows an X OR problem solved using functional link networks. Note that when the functional link approach
is used, this difficult problem becomes a trivial one. The problem with the functional link network is that
proper selection of nonlinear elements is not an easy task. In many practical cases, however, it is not difficult
to predict what kind of transformation of input data may linearize the problem, and so the functional link
approach can be used. 

FIGURE 12.11 The functional link network. 
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12.5.2 Feedforward Version of the Counterpropagation Network

The counterpropagation network was originally proposed by Hecht-Nilsen (1987). In this section a mod-
ified feedforward version as described by Zurada (1992) is discussed. This network, which is shown in
Figure 12.13, requires numbers of hidden neurons equal to the number of input patterns, or more exactly,
to the number of input clusters. The first layer is known as the Kohonen layer with unipolar neurons.
In this layer only one neuron, the winner, can be active. The second is the Grossberg outstar layer. The
Kohonen layer can be trained in the unsupervised mode, but that need not be the case. When binary
input patterns are considered, the input weights must be exactly equal to the input patterns. In this case, 

(12.34)

where 
n = number of inputs,
w = weights,
x = input vector, 

HD (w, x) = Hamming distance between input pattern and weights. 

FIGURE 12.12 Functional link networks for solution of the X OR problem: (a) using unipolar signals, (b) using
bipolar signals. 

FIGURE 12.13 The counterpropagation network. 
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12-14 Mechatronic System Control, Logic, and Data Acquisition

For a neuron in the input layer to be reacting just for the stored pattern, the threshold value for this
neuron should be 

(12.35)

If it is required that the neuron must also react for similar patterns, then the threshold should be set to
wn +1 = −[n − (1 + HD)], where HD is the Hamming distance defining the range of similarity. Since for
a given input pattern only one neuron in the first layer may have the value of 1 and remaining neurons
have 0 values, the weights in the output layer are equal to the required output pattern. 

The network, with unipolar activation functions in the first layer, works as a lookup table. When the
linear activation function (or no activation function at all) is used in the second layer, then the network
also can be considered as an analog memory. For the address applied to the input as a binary vector, the
stored set of analog values, as weights in the second layer, can be accurately recovered. The feedforward
counterpropagation network may also use analog inputs, but in this case all input data should be
normalized, 

(12.36)

The counterpropagation network is very easy to design. The number of neurons in the hidden layer
is equal to the number of patterns (clusters). The weights in the input layer are equal to the input patterns,
and the weights in the output layer are equal to the output patterns. This simple network can be used
for rapid prototyping. The counterpropagation network usually has more hidden neurons than required.
However, such an excessive number of hidden neurons are also used in more sophisticated feedforward
networks such as the probabilistic neural network (PNN) Specht (1990) or the general regression neural
networks (GRNN) Specht (1992). 

12.5.3 WTA Architecture

The winner take all (WTA) network was proposed by Kohonen (1988). This is basically a one-layer
network used in the unsupervised training algorithm to extract a statistical property of the input data,
Figure 12.14a. At the first step, all input data are normalized so that the length of each input vector is
the same and, usually, equal to unity, Equation 12.36. The activation functions of neurons are unipolar
and continuous. The learning process starts with a weight initialization to small random values. During
the learning process the weights are changed only for the neuron with the highest value on the out-
put—the winner:

(12.37)

where 
ww = weights of the winning neuron, 

x = input vector,
c = learning constant. 

Usually, this single-layer network is arranged into a two-dimensional layer shape, as shown in Figure
12.14b. The hexagonal shape is usually chosen to secure strong interaction between neurons. Also, the
algorithm is modified in such a way that not only the winning neuron but also neighboring neurons are
allowed for the weight change. At the same time, the learning constant c in Equation 12.37 decreases
with the distance from the winning neuron. After such an unsupervised training procedure, the Kohonen
layer is able to organize data into clusters. Output of the Kohonen layer is then connected to the one-
or two-layer feedforward network with the error backpropagation algorithm. This initial data organiza-
tion in the WTA layer usually leads to rapid training of the following layer or layers.

w n+1( ) n 1–( )–=

wi x̂i

xi

xi

--------= =

∆ww c x ww–( )=
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12.5.4 Cascade Correlation Architecture

The cascade correlation architecture was proposed by Fahlman and Lebiere (1990). The process of
network building starts with a one-layer neural network and hidden neurons are added as needed. The
network architecture is shown in Figure 12.15. In each training step, a new hidden neuron is added and
its weights are adjusted to maximize the magnitude of the correlation between the new hidden neuron
output and the residual error signal on the network output to be eliminated. The correlation parameter
S must be maximized:

(12.38)

FIGURE 12.14 A winner take all architecture for cluster extracting in the unsupervised training mode: (a) network
connections, (b) single-layer network arranged into a hexagonal shape. 

FIGURE 12.15 The cascade correlation architecture.
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12-16 Mechatronic System Control, Logic, and Data Acquisition

where
O = number of network outputs,
P = number of training patterns,

Vp = output on the new hidden neuron, 
Epo = error on the network output.

 and  are average values of Vp and Epo, respectively. By finding the gradient, δS/δwi, the weight,
adjustment for the new neuron can be found as 

(12.39)

where
σo = sign of the correlation between the new neuron output value and network output,

= derivative of activation function for pattern p,
xip = input signal.

The output neurons are trained using the delta or quickprop algorithms. Each hidden neuron is trained
just once and then its weights are frozen. The network learning and building process is completed when
satisfactory results are obtained. 

12.5.5 Radial Basis Function Networks

The structure of the radial basis network is shown in Figure 12.16. This type of network usually has only
one hidden layer with special neurons. Each of these neurons responds only to the inputs signals close
to the stored pattern. The output signal hi of the ith hidden neuron is computed using formula 

(12.40)

FIGURE 12.16 A typical structure of the radial basis function network. 
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where 
x = input vector, 
si = stored pattern representing the center of the i cluster,

 σi = radius of the cluster.

Note that the behavior of this “neuron” significantly differs form the biological neuron. In this “neuron,”
excitation is not a function of the weighted sum of the input signals. Instead, the distance between the
input and stored pattern is computed. If this distance is zero, the neuron responds with a maximum
output magnitude equal to one. This neuron is capable of recognizing certain patterns and generating
output signals that are functions of a similarity. Features of this neuron are much more powerful than
a neuron used in the backpropagation networks. As a consequence, a network made of such neurons is
also more powerful. 

If the input signal is the same as a pattern stored in a neuron, then this neuron responds with 1 and
remaining neurons have 0 on the output, as is illustrated in Figure 12.16. Thus, output signals are exactly
equal to the weights coming out from the active neuron. This way, if the number of neurons in the hidden
layer is large, then any input–output mapping can be obtained. Unfortunately, it may also happen that
for some patterns several neurons in the first layer will respond with a nonzero signal. For a proper
approximation, the sum of all signals from the hidden layer should be equal to one. To meet this requirement,
output signals are often normalized, as shown in Figure 12.16.

The radial-based networks can be designed or trained. Training is usually carried out in two steps. In
the first step, the hidden layer is usually trained in the unsupervised mode by choosing the best patterns
for cluster representation. An approach similar to that used in the WTA architecture can be used. Also
in this step, radii σi must be found for a proper overlapping of clusters.

The second step of training is the error backpropagation algorithm carried on only for the output
layer. Since this is a supervised algorithm for one layer only, the training is very rapid, 100–1000 times
faster than in the backpropagation multilayer network. This makes the radial basis-function network
very attractive. Also, this network can be easily modeled using computers; however, its hardware imple-
mentation would be difficult. 

12.6 Recurrent Neural Networks

In contrast to feedforward neural networks, with recurrent networks neuron outputs can be connected
with their inputs. Thus, signals in the network can continuously circulate. Until recently, only a limited
number of recurrent neural networks were described. 

12.6.1 Hopfield Network

The single-layer recurrent network was analyzed by Hopfield (1982). This network, shown in Figure
12.17, has unipolar hard threshold neurons with outputs equal to 0 or 1. Weights are given by a
symmetrical square matrix W with zero elements (wij = 0 for i = j) on the main diagonal. The stability
of the system is usually analyzed by means of the energy function 

(12.41)

It has been proved that during signal circulation the energy E of the network decreases and the system
converges to the stable points. This is especially true when the values of system outputs are updated in
the asynchronous mode. This means that at a given cycle, only one random output can be changed to
the required values. Hopfield also proved that those stable points, which the system converges, can be
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programmed by adjusting the weights using a modified Hebbian rule, 

(12.42)

Such memory has limited storage capacity. Based on experiments, Hopfield estimated that the maximum
number of stored patterns is 0.15N, where N is the number of neurons. 

Later the concept of energy function was extended by Hopfield (1984) to one-layer recurrent networks
having neurons with continuous activation functions. These types of networks were used to solve many
optimization and linear programming problems. 

12.6.2 Autoassociative Memory

Hopfield (1984) extended the concept of his network to autoassociative memories. In the same network
structure as shown in Figure 12.17, the bipolar hard-threshold neurons were used with outputs equal to
−1 or +1. In this network, pattern sm are stored into the weight matrix W using the autocorrelation
algorithm 

(12.43)

where M is the number of stored patterns and I is the unity matrix. Note that W is the square symmetrical
matrix with elements on the main diagonal equal to zero (wji for i = j). Using a modified formula 12.42,
new patterns can be added or subtracted from memory. When such memory is exposed to a binary
bipolar pattern by enforcing the initial network states, after signal circulation the network will converge
to the closest (most similar) stored pattern or to its complement. This stable point will be at the closest
minimum of the energy 

(12.44)

Like the Hopfield network, the autoassociative memory has limited storage capacity, which is estimated
to be about Mmax = 0.15N. When the number of stored patterns is large and close to the memory capacity,
the network has a tendency to converge to spurious states, which were not stored. These spurious states
are additional minima of the energy function. 

FIGURE 12.17 A Hopfield network or autoassociative memory. 
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12.6.3 Bidirectional Associative Memories (BAM)

The concept of the autoassociative memory was extended to bidirectional associative memories (BAMs) by
Kosko (1987, 1988). This memory, shown in Figure 12.18, is able to associate pairs of the patterns a and b.
This is the two-layer network with the output of the second layer connected directly to the input of the
first layer. The weight matrix of the second layer is WT

 and W for the first layer. The rectangular weight
matrix W is obtained as a sum of the cross-correlational matrices 

(12.45)

where M is the number of stored pairs, and am and bm are the stored vector pairs. If the nodes a or b are
initialized with a vector similar to the stored one, then after signal circulations, both stored patterns am

and bm should be recovered. The BAM has limited memory capacity and memory corruption problems
similar to the autoassociative memory. The BAM concept can be extended for association of three or
more vectors. 

12.7 Fuzzy Systems

The main applications of neural networks are related to the nonlinear mapping of n-dimensional input
variables into m-dimensional output variables. Such a function is often required in control systems,
where, for specific measured variables, certain control variables must be generated. Another approach
for nonlinear mapping of one set of variables into another set of variables is the fuzzy controller. The
principle of operation of the fuzzy controller significantly differs from neural networks. The block
diagram of a fuzzy controller is shown in Figure 12.19. In the first step, analog inputs are converted into
a set of fuzzy variables. In this step, for each analog input, 3–9 fuzzy variables typically are generated.
Each fuzzy variable has an analog value between zero and one. In the next step, a fuzzy logic is applied
to the input fuzzy variables and a resulting set of output variables is generated. In the last step, known
as defuzzification, from a set of output fuzzy variables, one or more output analog variables are generated,
which are used as control variables. 

FIGURE 12.18 An example of the bidirectional autoassociative memory: (a) drawn as a two-layer network with
circulating signals, (b) drawn as a two-layer network with bidirectional signal flow. 
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12.7.1 Fuzzification

The purpose of fuzzification is to convert an analog variable input into a set of fuzzy variables. For higher
accuracy, more fuzzy variables will be chosen. To illustrate the fuzzification process, consider that the input
variable is the temperature and is coded into five fuzzy variables: cold, cool, normal, warm, and hot. Each
fuzzy variable should obtain a value between zero and one, which describes a degree of association of the
analog input (temperature) within the given fuzzy variable. Sometimes, instead of the term degree of associ-
ation, the term degree of membership is used. The process of fuzzification is illustrated in Figure 12.20. Using
Figure 12.20 we can find the degree of association of each fuzzy variable with the given temperature. For
example, for a temperature of 57°F, the following set of fuzzy variables is obtained: [0, 0.5, 0.2, 0, 0], and for
T = 80°F, it is [0, 0, 0.25, 0.7, 0]. Usually only one or two fuzzy variables have a value other than zero. In the
example, trapezoidal functions are used for calculation of the degree of association. Various different functions
such as triangular or Gaussian can also be used, as long as the computed value is in the range from zero to
one. Each membership function is described by only three or four parameters, which have to be stored in
memory. 

For proper design of the fuzzification stage, certain practical rules should be used: 

• Each point of the input analog variable should belong to at least one and no more than two
membership functions. 

• For overlapping functions, the sum of two membership functions must not be larger than one.
This also means that overlaps must not cross the points of maximum values (ones).

• For higher accuracy, more membership functions should be used. However, very dense functions
lead to frequent system reaction and sometimes to system instability. 

12.7.2 Rule Evaluation

In contrary to boolean logic where variables can have only binary states, in fuzzy logic all variables may
have any values between zero and one. The fuzzy logic consists of the same basic: ∧—AND, ∨—OR, and
NOT operators: 

⇒ min{A, B, C}—smallest value of A or B or C
A ∨ B ∨ C ⇒ max{A, B, C}—largest value of A or B or C

 ⇒ 1 1–A—one minus value of A 

FIGURE 12.19 The block diagram of the fuzzy
controller.

FIGURE 12.20 Fuzzification process: (a) typical membership functions for the fuzzification and the defuzzification
processes, (b) example of converting a temperature into fuzzy variables.
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For example, 0.1 ∧ 0.7 ∧ 0.3 = 0.1, 0.1∨0.7 ∨ 0.3 = 0.7, and  = 0.7. These rules are also known as
Zadeh AND, OR, and NOT operators (Zadeh, 1965). Note that these rules are true also for classical
binary logic.

Fuzzy rules are specified in the fuzzy table as it is shown for a given system. Consider a simple system
with two analog input variables x and y, and one output variable z. The goal is to design a fuzzy system
generating z as f(x, y). After fuzzification, the analog variable x is represented by five fuzzy variables:
x1, x2, x3, x4, x5 and an analog variable y is represented by three fuzzy variables: y1, y2, y3. Assume that
an analog output variable is represented by four fuzzy variables: z1, z2, z3, z4. The key issue of the design
process is to set proper output fuzzy variables zk for all combinations of input fuzzy variables, as shown
in the table in Figure 12.21. The designer has to specify many rules such as if inputs are represented by
fuzzy variables xi and yj, then the output should be represented by fuzzy variable zk . Once the fuzzy table is
specified, the fuzzy logic computation proceeds in two steps. First, each field of the fuzzy table is filled with
intermediate fuzzy variables tij, obtained from AND operator tij = min{xi, yj}, as shown in Figure 12.21b.
This step is independent of the required rules for a given system. In the second step, the OR (max) operator
is used to compute each output fuzzy variable zk. In the given example in Figure 12.21, z1 = max{t11, t12,
t21, t41, t51}, z2 = max{t13, t31, t42, t52}, z3 = max{t22, t23, t43,}, z4 = max{t32, t34, t53}. Note that the formulas
depend on the specifications given in the fuzzy table shown in Figure 12.21a. 

12.7.3 Defuzzification

As a result of fuzzy rule evaluation, each analog output variable is represented by several fuzzy variables.
The purpose of defuzzification is to obtain analog outputs. This can be done by using a membership
function similar to that shown in Figure 12.20. In the first step, fuzzy variables obtained from rule
evaluations are used to modify the membership function employing the formula 

(12.46)

For example, if the output fuzzy variables are 0, 0.2, 0.7, 0.0, then the modified membership functions
have shapes shown by the thick line in Figure 12.22. The analog value of the z variable is found as a center

FIGURE 12.21 Fuzzy tables: (a) table with fuzzy rules, (b) table with the intermediate variables tij.

FIGURE 12.22 Illustration of the defuzzification process.
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of gravity of modified membership functions , 

(12.47)

In the case where shapes of the output membership functions µk(z) are the same, the equation can be
simplified to 

(12.48)

where 
n = number of membership function of zanalog output variable,
zk = fuzzy output variables obtained from rule evaluation,

zck = analog values corresponding to the center of kth membership function. 

Equation 12.47 is usually too complicated to be used in a simple microcontroller based system;
therefore, in practical cases, Equation 12.48 is used more frequently. 

12.7.4 Design Example

Consider the design of a simple fuzzy controller for a sprinkler system. The sprinkling time is a function
of humidity and temperature. Four membership functions are used for the temperature, three for humid-
ity, and three for the sprinkle time, as shown in Figure 12.23. Using intuition, the fuzzy table can be
developed, as shown in Figure 12.24a.

Assume a temperature of 60°F and 70% humidity. Using the membership functions for temperature and
humidity, the following fuzzy variables can be obtained for the temperature: [0, 0.2, 0.5, 0], and for the
humidity: [0, 0.4, 0.6]. Using the min operator, the fuzzy table can be now filled with temporary fuzzy
variables, as shown in Figure 12.24b. Note that only four fields have nonzero values. Using fuzzy rules, as
shown in Figure 12.24a, the max operator can be applied in order to obtain fuzzy output variables: short
→ o1 = max{0, 0, 0.2, 0.5, 0} = 0.5, medium → o2 = max{0, 0, 0.2, 0.4, 0} = 0.4, long → o3 = max{0, 0} = 0.

FIGURE 12.23 Membership functions for the presented example: (a) and (b) are membership functions for input
variables, (c) and (d) are two possible membership functions for the output variable. 
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Using Equation 12.47 and Figure 12.23c, a sprinkle time of 28 min is determined. When the simplified
approach is used with Equation 12.46 and Figure 12.23d, then sprinkle time is 27 min. 

12.8 Genetic Algorithms

The success of the artificial neural networks encouraged researchers to search for other patterns in nature
to follow. The power of genetics through evolution was able to create such sophisticated machines as
the human being. Genetic algorithms follow the evolution process in nature to find better solutions to
some complicated problems. The foundations of genetic algorithms are given by Holland (1975) and
Goldberg (1989). After initialization, the steps selection, reproduction with a crossover, and mutation are
repeated for each generation. During this procedure, certain strings of symbols, known as chromosomes,
evaluate toward a better solution. The genetic algorithm method begins with coding and an initialization.
All significant steps of the genetic algorithm will be explained using a simple example of finding a
maximum of the function (sin2(x) − 0.5 ∗ x)2 with the range of x from 0 to 1.6. Note that in this range,
the function has a global maximum at x = 1.309, and a local maximum at x = 0.262. 

12.8.1 Coding and Initialization

At first, the variable x has to be represented as a string of symbols. With longer strings, the process usually
converges faster, so the fewer symbols for one string field that are used, the better. Although this string
may be the sequence of any symbols, the binary symbols 0 and 1 are usually used. In our example,
6-bit binary numbers are used for coding, having a decimal value of 40x. The process starts with a
random generation of the initial population given in Table 12.1. 

12.8.2 Selection and Reproduction

Selection of the best members of the population is an important step in the genetic algorithm. Many
different approaches can be used to rank individuals. In this example the ranking function is given.
Highest rank has member number 6, and lowest rank has member number 3. Members with higher rank
should have higher chances to reproduce. The probability of reproduction for each member can be
obtained as a fraction of the sum of all objective function values. This fraction is shown in the last column

FIGURE 12.24 Fuzzy tables: (a) fuzzy rules for the design example, (b) fuzzy temporary variables for the design
example.
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of Table 12.1. Note that to use this approach, our objective function should always be positive. If it is
not, the proper normalization should be introduced at first. 

12.8.3 Reproduction

The numbers in the last column of Table 12.1 show the probabilities of reproduction. Therefore, most
likely members numbers 3 and 8 will not be reproduced, and members 1 and 6 may have two or more
copies. Using a random reproduction process, the following population, arranged in pairs, could be
generated: 

101101 → 45 110001 → 49 100101 → 37 110001 → 49
100111 → 39 101101 → 45 110001 → 49 101000 → 40

If the size of the population from one generation to another is the same, two parents should generate
two children. By combining two strings, two other strings should be generated. The simplest way to do
this is to split in half each of the parent strings and exchange substrings between parents. For example,
from parent strings 010100 and 100111, the following child strings will be generated: 010111 and 100100.
This process is known as the crossover. The resultant children are 

101111 → 47 110101 → 53 100001 → 33 110000 → 48
100101 → 37 101001 → 41 110101 → 53 101001 → 41

In general, the string need not be split in half. It is usually enough if only selected bits are exchanged
between parents. It is only important that bit positions are not changed. 

12.8.4 Mutation

In the evolutionary process, reproduction is enhanced with mutation. In addition to the properties
inherited from parents, offspring acquire some new random properties. This process is known as muta-
tion. In most cases mutation generates low-ranked children, which are eliminated in the reproduction
process. Sometimes, however, the mutation may introduce a better individual with a new property. This
prevents the process of reproduction from degeneration. In genetic algorithms, mutation usually plays
a secondary role. For very high levels of mutation, the process is similar to random pattern generation,
and such a searching algorithm is very inefficient. The mutation rate is usually assumed to be at a level
well below 1%. In this example, mutation is equivalent to the random bit change of a given pattern. In
this simple case, with short strings and a small population, and with a typical mutation rate of 0.1%,
the patterns remain practically unchanged by the mutation process. The second generation for this
example is shown in Table 12.2. 

TABLE 12.1 Initial Population 

String 
Number  String 

Decimal 
 Value 

Variable 
Value 

Function 
Value 

Fraction 
of Total

1  101101 45 1.125 0.0633 0.2465
2  101000 40 1.000 0.0433 0.1686
3  010100 20 0.500 0.0004 0.0016
4  100101 37 0.925 0.0307 0.1197
5  001010 10 0.250 0.0041 0.0158
6  110001 49 1.225 0.0743 0.2895
7  100111 39 0.975 0.0390 0.1521
8  000100 4 0.100 0.0016 0.0062

Total  0.2568 1.0000
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Note that two identical highest ranking members of the second generation are very close to the solution
x = 1.309. The randomly chosen parents for the third generation are:

010111 → 47 110101 → 53 110000 → 48 101001 → 41
110101 → 53 110000 → 48 101001 → 41 110101 → 53

which produces the following children:

010101 → 21 110000 → 48 110001 → 49 101101 → 45
110111 → 55 110101 → 53 101000 → 40 110001 → 49

The best result in the third population is the same as in the second one. By careful inspection of all
strings from the second or third generation, it may be concluded that using crossover, where strings are
always split in half, the best solution 110100 → 52 will never be reached, regardless of how many generations
are created. This is because none of the population in the second generation has a substring ending with
100. For such crossover, a better result can be only obtained due to the mutation process, which may
require many generations. Better results in the future generation also can be obtained when strings are
split in random places. Another possible solution is that only randomly chosen bits are exchanged between
parents. 

The genetic algorithm is very rapid, and it leads to a good solution within a few generations. This
solution is usually close to global maximum, but not the best. 

Defining Terms

Backpropagation: Training technique for multilayer neural networks.
Bipolar neuron: Neuron with output signal between −1 and +1. 
Feedforward network: Network without feedback. 
Perceptron: Network with hard threshold neurons. 
Recurrent network: Network with feedback. 
Supervised learning: Learning procedure when desired outputs are known. 
Unipolar neuron: Neuron with output signal between 0 and +1. 
Unsupervised learning: Learning procedure when desired outputs are unknown. 
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13.1 Introduction

Due to the development of technology in the last few years, robots are seen as advanced mechatronic
systems which require knowledge from mechanics, actuators, and control in order to perform very
complex tasks. Different kinds of servo-systems, especially electrohydraulic, could be met at the executive
level of the robots. Taking into account the most advanced control approaches, this paper deals with the
implementation of advanced controllers besides conventional ones which are used in an electrohydraulic
system. The considered electrohydraulic system is one of the axes of a robot. These robots possess three
or more electrohydraulic axes, which are identical with the axis studied in this chapter.

An electrohydraulic axis whose mathematical model (MM) is described in this chapter presents a
multitude of nonlinearities. Conventional controllers are becoming increasingly inappropriate to control
the systems with an imprecise model where many nonlinearities are manifested. Therefore, advanced
techniques such as neural networks and fuzzy algorithms are deeply involved in the control of such
systems. Neural networks, initially proposed by McCulloch and Pitts, Rosenblatt, Widrow, had several
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13-2 Mechatronic System Control, Logic, and Data Acquisition

limitations that restricted the domain of applications. An important change took place in the 1980s when
Hopfield’s theory regarding recurrent neural networks, the model of self-organization developed by
Kohonen, and cellular neural networks (Chua) relaunched this research field. The development of some
efficient algorithms dedicated specifically to the architecture of neural networks, and the application of
these networks in control, represents an interesting area of research in the contemporary world of science.

Fuzzy systems, in conjunction with neural networks, hold an important place in advanced techniques
of control. These systems have origins in fuzzy set theory initiated by L. Zadeh. One essential feature of
fuzzy systems is the approximate reasoning in which the variables are described in a qualitative manner.
Due to the capability of fuzzy systems to deal with imprecise information, they are strongly recommended
in order to express knowledge in the form of linguistic rules. In this way, the human operator’s knowledge,
which is linguistic or numerical, is used to generate the set of fuzzy if-then rules as a basis for a fuzzy
controller. A main drawback of fuzzy systems is the difficulty to design them on the basis of a systematic
methodology. To overcome this drawback, the learning procedures from neural networks are applied
successfully in order to tune the parameters of membership functions.

The merging of these two fields has led to the emergence of neuro-fuzzy systems, which have been applied
with promising results in the field of control-engineering. In order to improve dynamic and static perfor-
mances of the systems characterized by nonlinearities and uncertainties, neuro-fuzzy controllers are used.

The present contribution is organized as follows. An introduction of the electrohydraulic systems with
an emphasis on the control of such devices is realized in Section 13.2. Section 13.3 is devoted to the MM
of electrohydraulic axes, and the subsequent sections treat the control of electrohydraulic axes through
conventional methods (Section 13.4), fuzzy systems (Section 13.5), neural networks (Section 13.6), and
neuro-fuzzy techniques (Section 13.7). Conclusions are given in Section 13.8.

13.2 Generalities Concerning ROBI_3, a Cartesian Robot
with Three Electrohydraulic Axes

The automated installation, which uses electrohydraulic axes, whose mathematical model is described in
Section 13.3, is a Cartesian robot named ROBI_3. ROBI_3 has three identical electrohydraulic axes and
is built from aluminium profiles [21]. The slides are actuated by hydraulic servoactuators (Rexroth).
Slades move on the linear guideways with balls and two recirculation paths. The hydraulic supply
installation is placed under the robot table and has a cooling and controlling installation with air. The
mechanical structure of the robot is depicted in Figure 13.1. The three axes of ROBI_3 are identically
controlled by the controlling software named TORCH, which runs in Windows. The 32-bit dSPACE
controlling hardware endowed with 10 A/D and D/A interfaces is plugged into the PC and serves as the
interface between the PC and each of the axes. 

An electrohydraulic axis consists of a servovalve and a hydraulic cylinder and has a nonlinear structure.
The control system of one axis consists of:

1. The controller represented by a personal computer endowed with a process card
2. The electrohydraulic converter
3. The actuator (a linear hydraulic servomotor (LHM))
4. The mechanical process to be controlled, characterized by the slade position
5. The position transducer

The control system of robot ROBI_3 is illustrated in Figure 13.2, where the presence of three electro-
hydraulic axes, as well as the structure of one axes, identical to the others, can be observed.

The corresponding mathematical model for one axis, on the basis of which the control of the robot
is achieved, is described in Section 13.3. Through numerical simulations of the three axes of the robot,
the necessary mechanical structure interface data is obtained.

Preliminary experiments with driven and controlled variable: position and velocity are made in order
to achieve experience (Figures 13.2 and 13.3). The diagram of a closed-loop position control with
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direct measurement (driven by means of a servovalve) is shown in Figure 13.3, and the closed-loop
position control with indirect measurement at spindle (actuated by means of a servovalve) is shown in
Figure 13.4.

A volumetric Q-rate regulation with constant pressure (Q ¦ const; p ≅ const) is shown in Figure 13.5.
However, this classic model, useful for application, was used only for preliminary results in simulation.
One of the main reasons to use this is because we need a well-known mathematical model with well-
studied behavior in order to test the controllers (neural and neuro-fuzzy, namely).

FIGURE 13.1 ROBI_3, a Cartesian robot with three axes [21]. (a) Design. (b) Practical allignment.

FIGURE 13.2 The control system of the robot [21,24].

FIGURE 13.3 Diagram of a closed-loop position control with direct measurement.
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13.3 Mathematical Model and Simulation
of Electrohydraulic Axes

Section 13.3 deals with the analytical findings of the mathematical model (MM) of an electrohydraulic
axis, a component part of robot ROBI_3. This method of analysis is advantageous because it offers the
possibility to use this MM for other electrohydraulic axes as well, regardless of the different number of
stages, and also allows the testing of dynamic performances of the axis at the design level. 

In this section, the following were realized: 

1. Static models of electrohydraulic system components (servovalve, hydraulic linear motor).
2. Parameters involved in MM, based on constructive and flowing regime characteristics.
3. Nonlinear MM of the proposed electrohydraulic system.
4. Structural scheme of the hydraulic axis in order to simulate its behavior (SIMULINK).
5. Investigations regarding MM, which certify the stability of the system and the fact that the modelled

process is a rapid one.

Values of parameters that describe the MM are set based on hydraulic characteristics and on construc-
tive parameters of the considered system. 

13.3.1 The Extended Mathematical Model

The studied system consists of a servovalve and an asymmetric motor. In most cases, the control of an
electrohydraulic axis is directed towards position control, velocity control, pressure control, or force
control. The position control of the axis is studied. The position control loop for the proposed installation
is illustrated in Figure 13.6, together with the denomination of some data.

FIGURE 13.4 Closed loop-position control with indirect measurement.

FIGURE 13.5 Volumetric Q-rate regulation with constant pressure.
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13.3.2 Nonlinear Mathematical Model of the Servovalve

As previously mentioned, the servovalve used at the proposed electrohydraulic axis has four paths and
three positions. The servovalve has four active control edges at the second hydraulic stage. Three stages
could be distinguished by this servovalve: the electromechanical, the mechanohydraulical, and the hydro-
mechanical one. Regarded as a system, a servovalve is complex, with various types of nonlinearities being
manifested. Different static and dynamic nonlinearities such as dead zone, jump in origin, saturation,
Coulombian and Newtonian frictions with hysteresis, and asymmetry appear in each of these three levels
and also in the actuator of the electrohydraulic motor. These were taken into account in the modeling
of the servovalve and of the cylinder behavior.  

For the studied servovalve, the circulation of the fluid is considered directed from the pump to the
admission chamber A (QA) and from the discharge chamber B to the reservoir (QB). Figure 13.6 presents
the control loop where the transducer is placed on the feedback path and the controller R and the amplifier
A are on the direct path. Electrical signal (±10 V or ±300 mA) is converted into the displacement xv of
the valve, and in this way in a flow Q, which is transmitted to the linear hydraulic motor.

From the point of view of control characteristics, the number of active edges serves as a method of
classification of slide valves [3]. A servovalve with four active control edges was considered. The lightly
simplified mathematical model, which describes the functionality of the servovalve, consists of the
following equations:

(13.1)

where L [H], the inductance of electrical level; R [W], the resistance of electrical level; u(t) [V], the
control voltage; i(t) [A], the control intensity.

(13.2)

where m [kg], the mass of valve; d [N/(m/s)], the linearized gradient of viscous friction for the piston
of the valve; c[N/m], the coefficient of hydraulic elasticity; xv [m], the spool displacement; ∑F [N], the

FIGURE 13.6 Control scheme of the servosystem.
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13-6 Mechatronic System Control, Logic, and Data Acquisition

resulting force, which actuates on the valve spool.

(13.3)

The displacement xv, obtained based upon the mentioned equations, is implemented in SIMULINK
using the scheme from Figure 13.7. This module of nonlinear MM includes two stages of electrohydraulic
axis: the electrohydraulic and the hydromechanical one.

The corresponding equations for the four flows that go through the servovalve are

(13.4)

where QPA [m3/s], the flow to the hydraulic motor, from pump to the chamber A of the motor; QAT [m3/s],
the flow from the chamber A to reservoir; QPB [m3/s], the flow from pump to the chamber B of the
motor; QBT [m3/s], the flow from the chamber B to reservoir;  αD [-], the discharge coefficient; Dv [m],
the spool’s diameter; x0 [m], the dimension of the lap of the spool; xv [m], the spool’s displacement;
pA [N/m2], the fluid pressure in chamber A; pB [N/m2], the fluid pressure in chamber B [kg/m3] fluids
density. The flows, which are transmitted to LHM and evacuated from LHM, are QA and QB, which are
computed as following:

(13.5)

The lap of the spool is considered to be zero (x0 = 0), and, therefore, the static characteristic is linear
around the origin and also in the rest. With Q0 = αD ⋅ π  ⋅ Dv ⋅ , the flow equations become

(13.6)

13.3.3 Nonlinear Mathematical Model of Linear Hydraulic Motor 

The differential equations, based on which the MM of the linear hydraulic motor (LHM) was achieved, are

i. Equation of the dynamic equilibrium of the forces reduced to the motor’s rod
ii. Equation of movement and flow continuity 

FIGURE 13.7 Nonlinear MM of the first stages of the servovalve.
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Modeling the LHM, several simplifications (most of them concerning the Coulombian and Newtonian
friction) were used. The forces that actuate on the LHM cylinder are depicted in Figure 13.8: 

Applying D’Alembert’s principle, the equation of dynamic equilibrium of forces for the cylinder of
LHM is

(13.7)

where c1 [N/m], the elasticity; d1 [N/(m/s)], the linearized coefficient of the viscous Newtonian friction
in the connection actuators’ cylinder and wall; cfu [-], the coefficient of the dry Coulombian friction in
the cylinder and rod seals; dz [N/(m/s)], the coefficient of Newtonian friction in the piston and rod seals;
m2 [kg], the cylinder mass; pA [N/m2], the fluid pressure in the admission chamber A of the actuator; pB

[N/m2], the fluid pressure in the discharge chamber B of the actuator; AK [m2], the piston active area in
chamber A; AR [m2], the piston active area in chamber B; N [N], the normal force, which determines
the friction force between piston and cylinder; x [m], the piston displacement; x1 [m], the wall displace-
ment; and x2 [m], the cylinder displacement.

The forces acting on the rod, piston, and working element are illustrated in Figure 13.9
The velocity corresponding to the rod, piston, and mass m3 (slade, guideway, and loading are considered

stiff fastened) is inferred from the equilibrium equation:

(13.8)

where mp [kg], the piston mass; mT [kg], the rod mass; m3 [kg], load mass (reduced at the rod of piston);
cfu3 [-], the coefficient of Coulombian friction between guide ways and slade; d3 [N/(m/s)], the coefficient
of Newtonian friction between guideways and slade; N3 [N], the normal force which appears between
loading and table; FL [N], the loading force.

FIGURE 13.8 D’Alembert’s principle applied to the cylinder. 

FIGURE 13.9 D’Alembert’s principle applied to the rod, piston, and load.
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13-8 Mechatronic System Control, Logic, and Data Acquisition

From the equations of continuity the pressures pA and pB are inferred:

 (13.9)

 (13.10)

where a11, a12 [(N/m2)/(m3/s)], the gradients of leakages; V0K,0R [m3], the initial average volume of
chambers A and B, respectively; Eers [N/m2], the equivalent bulk modulus of oil; pA,B [N/m2], the fluid
pressure in chambers A and B, respectively; and h [m], the stroke of the piston-rod.

The LHM operation is based on the equations described above, namely (13.7)–(13.10). The MM
proposed in this section is implemented in SIMULINK 2.1/ MATLAB 5.1 and has the structure presented
in Figure 13.10.

The signal generator icon from the above figure generates the displacement of the wall x1, which has
a sinusoidal form with the frequency 0.5 Hz and amplitude 0.0001 m. 

The subsystems Ssys1 and Ssys2 have as outputs the valve displacement xv, and the flows QA and QB,
respectively. Ssys3 is the block that implemented Equation 13.9, while the subsystem Ssys4 modelled
Equation 13.10. The equations that describe the displacement of the wall cylinder and the LHM piston
are modelled by subsystem Ssys5. The reference signal is a step one whose values are in the range 0–10 V.

13.4 Conventional Controllers Used to Control
the Electrohydraulic Axis

This section is organized as follows: the first part presents the bibliographic research concerning the
traditional directions of the control system, and the second one contains the testing of several classic
control structures (PID and control algorithms with Luenberger observer) through simulations of the
electrohydraulic axis endowed with these controllers.

The testing of the MM is performed with SIMULINK and has a goal of the achievement of reference
experimental results in order to perform a comparative study of classical controllers and advanced control
structures applied to the electrohydraulic axis.

FIGURE 13.10 Electrohydraulic axis implemented in SIMULINK.
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13.4.1 PID, PI, PD with Filtering

The conventional control structures used in this chapter are PI (proportional-integral), PID (proportional-
integral-derivative), and PD (proportional-derivative) with filtering coefficient. 

The transfer function of the PI controller has the following expression:

(13.11)

KR is the proportional factor, and Ti is the time constant of the integrative component.
The transfer function of the PID controller is described by the following equation:

 (13.12)

KR and Ti have the same significance as previously mentioned, and Td is the time constant of derivative
component.

The transfer function corresponding to PD with filtering has the expression:

 (13.13)

where the coefficient α could have values in the range 0.1–0.125.
Generally speaking, PID controllers are commonly used in industrial control systems and, therefore,

are well established. Nevertheless, the results obtained using a PID controller for complex control loops
are not very satisfactory because it could be costly and time consuming to retune such regulators. PI
controller is enough in situations where derivative action is not frequently used. 

13.4.2 Observer

The theory of observers, started with the work of Luenberger and Ackermann, is fairly complete and
comprehensive. For the proposed axis, an (n − m − 1) order structure of the observer is adopted, where
n = 5 represents the order of the system and m = 1 is the number of outputs [25]. The model of the
servodrive is described by five state variables: two of them for the second-order model of the servovalve
and the other three for the third-order servoactuator. The use of a linear observer as a parallel model
reconstitutes the state-variables of the installation and delivers them to the controller. Two possibilities
could be followed: with partial and with global reconstruction. The solution chosen was with partial
reconstruction [12]. The complete system consists of the installation with nonlinearities, a parallel
second-order model for the servovalve, a third-order linear servoactuator, a correction matrix for the
observer, and a controller with five loops for the five state variables [23,25,26]. 

The block diagram of an electrohydraulic axis controlled with a third-order observer is shown in
Figure 13.11, where A, b, cT are the characteristic matrices of the linear system (electrohydraulic axis),
k is the correction matrix, and R represents the matrix corresponding to the controller.

The simulation diagram of the electrohydraulic axis, controlled by a third-order observer, as it is
depicted in SIMULINK, is illustrated in Figure 13.12.

The algorithm used to compute the matrix k and r consists of the following steps:

i. Achievement of the MM for servovalve and servoactuator
ii. Setting the state-variables of the process

iii. Obtaining the controller upon the dynamics of the closed-loop system
iv. Computing the correction matrix by using the desired poles for the observer [12]
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13.4.2.1 The Linear Mathematical Models

The linear mathematical models (LMM) of the servovalve and of the servoactuator are obtained by using
the appropriate transfer functions HSV, HZ: 

(13.14)

(13.15)

with the following meanings: QV, the servovalve’s flow; IV, the current intensity, YZ , the rod’s position.

FIGURE 13.11 Block diagram of the control loop using the observer.

FIGURE 13.12 Control structure with observer for the electrohydraulic axis with SIMULINK.
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13.4.2.2 LMM in the State of Space

The used variables are: x1, the rod position; x2, the rod velocity; x3, the rod acceleration; x4, the spool
position; and x5, the spool velocity.

 (13.16)

Thus the MM of the axis in state-space form becomes

(13.17)

where

(13.18)

13.4.2.3 Controller Design

The characteristic polynomial is obtained from det[sI − (AC − bC rT)] = 0, where AC and bC are the
controllable forms of the matrices A and b. If A ≠ AC , the use of transformation matrix T is advisable,
in order to obtain AC and bC.  Thus AC = TAT −1, and bC = Tb.  The matrix F = AC − bCrT has the form

(13.19)

The characteristic polynomial of the matrix F is

 (13.20)

The poles chosen for the closed-loop determine the polynomial

 (13.21)
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otherwise

 (13.22)

13.4.2.4 Correction Matrix Design 

The matrix F is F = A∗−KcT, where A∗ is the matrix of the observer. For F the chosen poles are s1, s2,…,
sn, and

  (13.23)

 (13.24)

From these two equations, the coefficients k1, k2,…, kn are obtained.
In this case, cT = (1 0 0) and the matrix of the third observer is 

 (13.25)

The correction matrix influences the transient behavior; the further the poles of F from the poles of
A∗

 the quicker the response. 

13.4.3 Simulation Results of Electrohydraulic Axis with Conventional 
Controllers

Based on the above algorithm in order to determine the correction matrix and the controller matrix, the
SIMULINK implementation of the observer involves the following values: 

r1 = 19.95854, r2 = 0.069481, r3 = −7.06024 × 10−4, 

r4 = −3.158688 × 102, r5 = −3.451209 × 10−1

for the controller, and

k1 = 1.67 × 10
−2

, k2 = 3.7028 × 10
4
, k3 = −6.969698 × 10

6
 for the correction matrix.

When the reference signal is a step signal with U = 10 V, the simulation results are shown in Figures
13.13 and 13.14.  

FIGURE 13.13 Position of servovalve for MM with observer.
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13.5 Control of Electrohydraulic Axis with Fuzzy Controllers

Section 13.5 of this contribution is devoted to the presentation and the testing of nontraditional con-
trollers based on fuzzy sets, which model the behavior of a human operator in the control process. The
simulation results of an electrohydraulic axis with SUGENO and MAMDANI controllers are depicted.
For the same number of inference rules extracted from the knowledge base, simulations proved that
dynamic performances are improved for a fuzzy controller with two inputs.

The scheme achieved with SIMULINK to control the electrohydraulic axis with two inputs fuzzy
controller and a MAMDANI or SUGENO inference is depicted in Figure 13.15.

The results presented concern the simulation of the hydraulic axis endowed with a fuzzy controller,
which is based on MAMDANI inference [59]. “Fuzzy Logic” toolbox gives the user the possibility to
create MAMDANI or SUGENO fuzzy systems using graphic interfaces. FIS (Fuzzy Inference System)
Editor, Membership Function Editor, and Inference Rules Editor are several of the tools available in
SIMULINK. For instance, the corresponding FIS editor and the Membership Function Editor of each
input for the proposed fuzzy controller with MAMDANI inference and two inputs are illustrated in
Figures 13.16 and 13.17.

FIGURE 13.14 Cylinder position. 

FIGURE 13.15 Electrohydraulic axis control with a fuzzy controller with two inputs.
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13-14 Mechatronic System Control, Logic, and Data Acquisition

For this fuzzy controller there were chosen nine inference rules, which could be visualized using the
Inference Rules Editor of SIMULINK. Several simulation results of electrohydraulic axes obtained with
the proposed fuzzy controller are shown in Figures 13.18 and 13.19 and depict graphically the position
and the velocity of the cylinder.

13.6 Neural Techniques Used to Control
the Electrohydraulic Axis 

Section 13.6 has as its goals: to emphasize MATLAB’s possibilities of using its resources in order to design
control systems based on advanced control techniques such as neural networks; to test through simulation
these neural algorithms; and to verify performances of the neural control architecture applied to the
studied electrohydraulic axis.

There are two main research directions involved in the neural control. One of these implies the
developing of one controller going from a neural network, and the other one embeds several controllers

FIGURE 13.16 FIS Editor for fuzzy system based on MAMDANI inference.

FIGURE 13.17 Membership function associated to the inputs.
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inside a neural network [50]. This section deals with the control of an electrohydraulic axis using a neural
controller that has a widely spread structure, namely, multilayer perceptron (MLP). 

13.6.1 Neural Control Techniques

13.6.1.1 Learning Based on Mimic

Inspired from biological systems, learning by mimic is applied to control systems. A supervised neural
network can mimic the behavior of another system. A first method to develop a neural controller is to
replicate a human controller. The neural controller tries to behave like the human operator. Neural
training means learning the correspondence between the information received by the human operator
and the control input (Figure 13.20).

13.6.1.2 Inverse Learning

The purpose of inverse control is to control a system by using its inverse dynamic. In this case, the neural
network receives the output of the system as input and has the input of the system as output. The system
works in open loop and has to be in the region where the controller will operate. Inverse learning
(Figure 13.21) is an indirect approach to minimize the network output error instead of the overall system
error.

13.6.1.3 Specialized Inverse Learning

According to Psaltis, who proposed in 1988 a specialized inverse learning, the neural network should be
trained online in order to minimize the control error ey = r − y (see Figure 13.22).

FIGURE 13.18 LHM position.

FIGURE 13.19 LHM velocity.
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13-16 Mechatronic System Control, Logic, and Data Acquisition

The neural controller used to control the position of an electrohydraulic axis is a feed-forward multi-
layer neural network, whose learning algorithm is back-propagation. In order to adapt the weights which
preserve the learned information, two steps are gone through with: a forward propagation procedure of
the useful signal and a backward propagation of the error. The control structure is implemented in
SIMULINK as it is shown in Figure 13.23. The neural control of the electrohydraulic axis and the
achievement of controller parameters are performed online.

A neural network with four layers, having two neurons on the first layer, a neuron on the last layer,
and five neurons on each hidden layer, is proposed. The graphic characteristic corresponding to the axis
position and obtained using the neural network described above is illustrated in Figure 13.24.

13.7 Neuro-Fuzzy Techniques Used to Control
the Electrohydraulic Axis

This chapter deals with several computer-aided design techniques of hybrid control algorithms. This
paper concentrates on these types of algorithms, because the performances achieved through simulation
of an electrohydraulic axis with a neuro-fuzzy controller are comparable or superior to those yielded by
other control algorithms. Taking into account the novelty of neuro-fuzzy algorithms and the absence in

FIGURE 13.20 Diagram for learning based on mimic.

FIGURE 13.21 Training phase at inverse learning.

FIGURE 13.22 Specialized inverse control architecture (after [50]).
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SIMULINK of a toolbox devoted to them, the research was oriented to the achievement of a library of
C++ programs, which can afford the use of SIMULINK in the design of such controllers. Thus, online
adaptation procedures of fuzzy controller parameters are implemented. The comparative study of dif-
ferent classic and advanced algorithms is performed on the basis of integral squared error computed on
the transitory horizon.

Because of the capability of fuzzy systems to treat imprecise information, they are strongly recom-
mended in order to express knowledge in the form of linguistic rules. In this way, the human operator’s
knowledge, which is linguistic or numerical, is used to generate the set of fuzzy if-then rules as a basis
for a fuzzy controller. A main drawback of fuzzy systems is the difficulty to design them based on a
systematic methodology. To overcome this drawback, the learning procedures from neural networks are
successfully applied in order to tune the parameters of membership functions. The merger of neural
networks and fuzzy logic has led to the existence of neuro-fuzzy controllers. It can be asserted that neuro-
fuzzy controllers embed essential features of both fuzzy systems and neural networks.

The proposed neuro-fuzzy controller has a structure based on the Takagi-Sugeno method and it is
depicted in Figure 13.25.

A learning procedure in fact represents a parameter estimation problem. The learning procedure for
the proposed neuro-fuzzy controller is gradient-descendent. The method applied to design such a con-
troller is called inverse learning in which an online technique is used to model the inverse dynamics of the
plant. The obtained neuro-fuzzy model—the inverse dynamics of the plant—is used to generate control
actions.

FIGUGE 13.23 The control structure for proposed controllers.

FIGURE 13.24 The axis position for U = 8 V input voltage.
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13-18 Mechatronic System Control, Logic, and Data Acquisition

The neuro-fuzzy controller is a multilayer connectionist system, a multi-input and single-output fuzzy
logic system. The network has three layers: one input layer with n × m units, one hidden layer with n units,
and one output layer with one unit [15]. The partition used for this model is a scatter partition [33].

Figure 13.25 presents a particular case where the fuzzy controller has only two inputs and one output.
In a general case, the fuzzy controller has m inputs and one output. 

The fuzzy rule base contains a set of n linguistic rules in the form:

Ri: If x1 is A1i and x2 is A2i 
and…
and xm is Ami 
then y is wi, i = 1, 2,…, n

where i is the index of the rule; Aji is a fuzzy set for the jth linguistic variable and the ith rule; and wi is
a number that represents the consequent part.

The membership functions assigned to each input are Gaussian functions. The centers of the mem-
bership functions are chosen such that these functions are uniformly distributed over the universe of
discourse:

(13.26)

The fuzzy inference involved in this neuro-fuzzy controller is the product operator T-norm defined
as an and conjunction. The firing strength of every rule is

(13.27)

FIGURE 13.25 Structure of the neuro-fuzzy controller.
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The output is a crisp value obtained as a result of the evaluation of a center of gravity:

(13.28)

The parameters to be estimated are obtained by finding the minimum of the following cost function:

(13.29)

where yd(k) is the desired output and y(k) is the obtained response at time k. 
To minimize this cost function, the stochastic approximation method is used. The learning procedure

means the estimation of parameters and is based on the least-mean square algorithm. The parameters
to be estimated are

(13.30)

The equations to adapt the parameters are the following:

(13.31)

where the learning factors λa, λb, λw are predefined.
In the learning process, parameters that could be modified are (aji,bji) which describe Gaussian func-

tions, and wi, the conclusion values. If the structure of the membership function is established, the only
values that could be modified are wi.

13.7.1 Control Structure

In order to design the neuro-fuzzy controller proposed above, the inverse learning method is applied.
The control of an electrohydraulic axis involves the use of an online technique to model the inverse
dynamics of the plant. The block diagram for online inverse learning is presented in Figure 13.26.

This scheme is in open loop and it is also found by the controller output error method (COEM) [1]
to online tune or adapt the parameters of a fuzzy controller. This method does not require the plant
output error to be propagated at the input. There is another constraint, namely the controller has to be
capable of stabilizing the plant before the commencement of tuning. To avoid this requirement, a modified
COEM (MCOEM) [2] is used. The diagram block in this case is depicted in Figure 13.27. 

A proportional feedback controller P is introduced and in this situation the plant input is the sum of
u′(k) and up(k). The consequent singletons are initialized to zero and the controller P is chosen in such
a way that it stabilizes the plant. The structure and the parameters of inverse model and of neuro-fuzzy
controller are identical.
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13-20 Mechatronic System Control, Logic, and Data Acquisition

There are two phases in the design of such a controller: the control and the adaptation. In the control
phase, the plant output and the reference signal determine a control command u(k). The plant input
becomes u(k), the sum of the u(k) and up(k). In the adaptation phase, the inverse model, which has as
inputs y(k + 1) and y(k), produces the signal (k) as an output. This signal is used to compute the error
eu(k), which determines the value of the cost function J(k) that has to be minimized.

(13.32)

This procedure was used at the control of the electrohydraulic axis position, where the controller
parameters are determined online. The actuator position obtained when the reference signal is changed
from U = 4 V to U = 8 V is depicted in Figure 13.28. 

FIGURE 13.26 Diagram of control based on inverse learning. 

FIGURE 13.27 Block diagram for inverse learning with proportional controller.

FIGURE 13.28 The position control with neuro-fuzzy controller.
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In order to achieve a comparison of the modern control algorithms (included in this thesis) to the
conventional structures, two spread integral criteria, namely, the integral of absolute error (IAE) perfor-
mance index and the integral of squared error (ISE), are used. The results obtained applying these criteria
are included in Table 13.1.

According to previous results, it can be inferred that the described neuro-fuzzy controller exhibits
superior performances compared to those obtained with the neural controller based on MLP, or with
the classic controllers (PID, PI, PD with filtering) presented in this chapter. The simulation results
emphasize the neuro-fuzzy controller, arguing that it represents a very useful tool for practical applications
with many nonlinearities.

Optimized results were obtained through variation of data sets and number of iterations. In order to
test the performance of the proposed neuro-fuzzy controller, one nonlinear function given by an analytical
equation was approximated. The membership functions of  input variables x1 and x2 before learning are
shown in Figure 13.29a,b. The surface obtained after simulation is depicted in Figure 13.30c. One may
observe the accuracy of the reconstruction after 300 learning iterations by comparison with the surface
to be obtained.

Sets of intermediary results obtained with different simulation data sets are presented below. Dif-
ferent data sets of simulations were used in order to achieve optimized results. Some of them are
presented in Figures 13.30–13.34 without comment. 

In order to obtain good performances from the model, 10 membership functions are used for each
input variable. The learning factors  λa, λb, λw were chosen as 0.01. The control algorithm is capable of
handling the change in operating range. The results of the electrohydraulic axis simulation with the
proposed neuro-fuzzy controller are obtained for various inputs. Those in time domain, results presented
in Figure 13.35a,b, correspond to input voltages of 8 and 10 V. 

TABLE 13.1 Results Obtained by Applying IAE and ISE

Regulator IAE ISE

PID (chapter 4) 0.8042 3.4754
PI (chapter 4) 0.8006 3.4618
PD (chapter 4) 0.7928 3.4537
Neural (chapter 6) 0.8027 3.4622
Neuro-fuzzy (chapter 7) 0.7911 3.4501

FIGURE 13.29 (a) Membership functions before learning for the variable x1. (b) Membership functions before
learning for the variable x2.
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1st set: gw = 0.1; ga = 0.05; gb = 0.05; nepoc = 100; nesant = 100; niter = 200; threshold error = 0.001;
Vmax = 0.04.

FIGURE 13.30 (a) The surface obtained after the first iteration, (b) membership functions after learning for the
variable x2, (c) the surface obtained after simulation.

2nd set: gw = 0.1; ga = 0.07; gb = 0.05; nepoc = 100; nesant = 21; niter = 200; threshold error = 0.001;
Vmax = 0.0475.

FIGURE 13.31 The surface obtained after the first iteration. 
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13.8 Software Considerations

The MM of electrohydraulic axis studied in this thesis is supported by a physical installation existing in
the mechatronics laboratory of UAS-Konstanz (see Figure 13.1b). Two variants of nonlinear MM are set
forth in Section 13.3 and add in static and dynamic nonlinearities that arise in the function of electro-
hydraulic axis [23,58]. 

The MM of hydraulic drive presented in the structure of ROBI_3 was implemented in SIMULINK in
order to study the dynamic behavior of the axis [26,27]. The extended variant of MM hydraulic axis was
done taking into account the relative motion of the constituent parts of this servodrive.

The neural and neuro-fuzzy controller (Takagi-Sugeno) was developed in Borland C++ and imple-
mented in SIMULINK for controlling the electrohydraulic axis. SIMULINK offers the user a FUZZY
LOGIC library that allows the designing and modeling of SUGENO or MAMDANI fuzzy inference
systems. The lack of a dedicated software to design neuro-fuzzy controllers persuaded the implementation
of such a controller in C++ and afterwards the use of it in SIMULINK [26–28]. 

The support for simulation, SIMULINK 2.1 and MATLAB 5.2 (under Windows), offers solutions to
implement our controllers as modules and corresponding icon in a specialized toolbox. In our experi-
ments, we used the facility offered by S-functions and C MEX in conjunction with Borland C++ 5.0 to
compile them. We have chosen the C S-function because of the speed necessary to process the information
in our block that implement the controller. The block that implements the controller has two inputs
(even three inputs are available, though the adaptation process is more complicated) and one output.    

3rd set: gw = 0.5; ga = 0.07; gb = 0.03; nepoc = 200; nesant = 21; niter = 200; threshold error = 0.001;
Vmax = 0.047515.

FIGURE 13.32 Membership functions after learning for the variable x2.

FIGURE 13.33 The surface obtained after learning.
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The adapting parameters (weights, centers, and spread for Gaussian function) must be persistent.
Declaring global, static or using the workspace in order to store the are useful techniques to accomplish
the task.  

The newest version of Simulink offers the possibility to write wrapper S-function, to use the callbacks
functions, and as an alternative ADA or Fortran programming language. 

FIGURE 13.34 (a) The surface obtained after first iteration, (b) membership functions after learning for the variable
x1, (c) membership functions after learning for the variable x2, (d) the surface after learning.

FIGURE 13.35 (a) The position control with neuro-fuzzy controller (U = 8 V), (b) the position control with neuro-
fuzzy controller (U = 10 V). 

0.62
0.6

0.58
0.56
0.54
0.52
0.5

1

0.5

0 0
0.2

0.4 0.6 0.8 1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

0.8

0.7

0.6

0.5
1

0.5

0 0 0.2
0.4 0.6

0.8 1

Membership functions after learning for x2

The surface before learning Membership functions after learning for x1(a) (b)

(c) (d)

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

−0.05
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a) (b)

9260_13.fm  Page 24  Friday, October 5, 2007  2:14 PM



Advanced Control of an Electrohydraulic Axis 13-25

13.9 Conclusions

The research achieved as part of this chapter has, as an essential purpose, the development of improved
control structure based on advanced techniques (neural and fuzzy), in relation to the conventional one.
The studied electrohydraulic axis is a component of the Cartesian robot ROBI_3 implemented in the
mechatronics laboratory of UAS-Constance. 3D-simulations with direct and inverse dynamics and imple-
mented controllers by using the SDS-Modelling and Simulation software of the real installation were
performed [21,23,25,28]. Model and simulation results are presented in Figure 13.36.

As an overview, Section 13.1 deals with the introduction of this chapter. In Section 13.2, the most
important aspects of electrohydraulic system control and of nonlinearities that arise with this type of
installation are pointed out. The robot, ROBI_3, is presented from both a component and control
perspective.

The mathematical model (MM) of ROBI_3’s hydraulic axis is described in Section 13.3. The nonlinear
MM is achieved based upon technical data of different components of installation and also taking into
account theoretic assessments of electrohydraulic installation functionality. Simulation results of non-
linear MM placed into a position loop are obtained with simulation environment SIMULINK/MATLAB.
As a general remark, it should be mentioned that all simulations included in this chapter are achieved
by using MATLAB/SIMULINK, while the advanced control algorithms (neural and neuro-fuzzy) are
developed in Borland C++ 5.0. 

Section 13.4 contains a short overview of the theory devoted to conventional controllers PID, PD, PI,
and observer, followed by simulation results of the electrohydraulic axis endowed with the above control
structures.

Following the scientific goal of this contribution, Section 13.5 reviews fuzzy system theory and presents
simulations of electrohydraulic axis with fuzzy controllers. Fuzzy system theory has contributed greatly
to system modeling, and the development of a theoretical frame appropriate to implement the qualitative
reasoning specific to human beings. This kind of reasoning is very useful to model complex systems,
which are characterized by nonlinearities or imprecise information. Simulation results of hydraulic axis
are obtained using SUGENO and MAMDANI fuzzy controllers.

A short introduction of neural networks theory, the most widespread neural structures and also neural
control techniques are presented in the beginning of Section 13.6. Neural networks work quantitatively,
numerically. If fuzzy logic has an inference based on uncertainty, then neural networks learn by training,
at the end of which the network will approximate a desired function. The analysis of trained NN involves
many challenges, and as a result, the rules are usually not extracted from trained NN. Simulation results
included in Section 13.6 are obtained with a multilayer NN.

Neuro-fuzzy systems preserve the characteristics of NN and also of fuzzy systems, and have been used
successfully in control in recent years. Section 13.7 is devoted to the neuro-fuzzy system theory, to the
presentation of neuro-fuzzy controller implemented in Borland C++ and applied in SIMULINK to

FIGURE 13.36 3-Axes Cartesian robot modeled, controlled, and simulated in SDS [21,24].
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electrohydraulic axis, to the simulation results achieved in this case, and to the comparative study of
conventional and modern controllers.

Section 13.8 contains a concise presentation of this chapter, the main contributions to the subject area
presented, as well as a listing of perspective areas of interest in order to pursue further research in this
direction.

Without intending to confine the parameters of this chapter, following is a listing of possible research
directions and development perspectives that may be followed in future research endeavors:

• Applying various controllers implemented in SIMULINK not only to control the electrohydraulic
axis discussed, but also for systems with very complex structure which are involved in large
hydraulic installations, offering the user a neuro-fuzzy controller’s library;

• The hardware implementation of described neuro-fuzzy controller;

• Continued research in the development of an optimal controller, systemically based (through the
further study of stability utilizing linear matrix inequalities—LMI);    

• The integration of presented controllers in software packages dedicated to hydraulic and pneumatic
fields (for instance in HYPAS[23], DSH, etc.);

• The development of controller design in order to promote those controllers, which allow a better
symbiosis between classical and advanced methods (neuro-fuzzy, genetic algorithms); 

• The extension of preoccupations and extrapolation of research results regarding control of velocity,
acceleration, pressure, flow, force, moment, and power.
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14.1 Introduction

Electromechanical systems form an integral part of mechanical and mechatronic systems. Their optimi-
zation is a necessary condition for a product to be competitive. In engineering practice, a large number of
optimization and identification problems exist that could not be solved without the use of computers [5].
The present level of technological development is characterized by increasing the performance of
machines with the production costs kept at a satisfactory level. The demands on the reliability and safety
of operation of the designed machines are also considerable.

From practical experience we know that the dynamic properties of electromechanical systems have a
considerable influence on their reliability and safety. On the other hand, the tendency to push the price
of a machine down often leads to unfavorable dynamic properties that result in increased vibrations and
noise during operation. Also, electrical properties dramatically deteriorate as the amount of active
materials in a machine is reduced. The increased load leads to, among other things, excessive heat
formation, which, in turn, has a negative effect on insulation, shortening the service life of a machine.

14.2 Optimization Methods

14.2.1 Principles of Optimization

The properties of electromechanical systems can be described mathematically using physical quantities.
The degree of these properties is then described using mathematically formulated objective (preference)
functions. Structural parameters ranging between limit values given as satisfying secondary conditions
are the independent variables of these functions. The particular form of the functions depends on the type
of machine and its mathematical description. The solutions of a mathematically formulated optimization
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problem together with optimization methods allow a considerable number of different design variants
of a machine to be calculated in a relatively short time. They also make it possible to perform these
calculations at production planning stages for a prototype to possess the qualities given by a chosen
criteria function. In this way, the design of a machine is not only analyzed but also modified and
reconstructed in terms of its electromechanical properties with the aim to improve these properties as
much as possible (or optimize them).

From a physical point of view, these are actually problems that, to a certain degree, are inverse to those
of calculus. A problem of calculus assumes a fixed, mathematically described model of a real machine to
be used for deriving its resulting properties. In problems of calculus, we define properties and try to find
out which parameters of a chosen mathematical model possess those properties. In problems of parametric
optimization, we look for those parameters that, by a chosen preference function, provide the best properties.
It is clear that problems of synthesis and optimization are much more sophisticated than those of calculus. 

14.2.2 Parametric Optimization

As the aim is to find the values of certain structural parameters of a machine, we shall deal with this
notion in more detail. By a parametric optimization of electromechanical systems, we mean the process
of finding those parameters of a mathematical description of the system (arranged in a vector  from
a set P of admissible parameters at which a suitably selected objective (preference) function ψ(p) of these
parameters reaches its extreme.

The objective function ψ(p) quantifies the degree of the properties of an electromagnetic system that
has to be made extreme (the parameters with the best degree of this property have to be chosen). When
defining an admissible set P, we are guided by the structural possibilities of changes in individual
parameters (variables), or we can introduce secondary criteria of the type “the degree of properties may
not exceed given critical limits.” The possibility of taking into consideration the structural changes of
parameters leads to the so-called trivial (natural) constraints of the type  where  is the
lower and  the upper bound of the ith optimization variable. The introduction of secondary criteria
leads to the definition of limiting functions qi of optimization variables for which we have  ≤ qi(p) ≤ 
where  is the lower and  is the upper bound of the relevant function.

Thus, from the mathematical point of view, parametric optimization of electromechanical systems is
formulated as the problem of finding a point p in the admissible set P, at which the preference function
ψ reaches its global extreme value (maximum or minimum) with regard to P. The admissible set is
generally described by m inequalities defined by functions qj(p), where j = 1, 2,…, m. If P = Rs, where s
is the number of variables to be optimized, we say that the optimization is unconditional. In all other
cases we say that the optimization is conditional.

To solve the problem of optimizing the selected properties of a system, the following has to be done:

• A mathematical description has to be formulated.

• It has to be analyzed at the starting point.

• The desired form of the objective function ψ has to be specified.

• The optimization variables have to be selected.

• The desired form of the constraining functions qj has to be specified.

• A suitable optimization method has to be selected.

• The resulting mathematically formulated optimization problem has to be solved.

• Using the mathematical model, the results have to be transformed back into the dynamic model
(for dynamic problems only).

14.2.3 General Aspects of the Optimization Process

If the aim of an optimization process is to optimize several properties that simultaneously affect the system
(such as minimizing the size values while respecting the electrical properties), we obtain a multi-criteria
objective function. The objective function then takes the form of a weighted sum of single-criterion
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functions. Each of these functions generally assumes its local minima at different points of the optimization
parameter spaces. This is the reason why a multi-criteria function can have a large number of shallow local
minima or is insensitive to changes in the optimization parameters. Due to this fact, the selection of an
optimization method is of great importance. The result is averaged in the sense that several criteria may
participate simultaneously in a reduction of the multi-criteria function, while some other criteria may
increase.

A more suitable method may be to select a single-criterion objective function, including all criteria in
the constraints. Only the most significant criterion is chosen for the objective function to be specified
in the subsequent process. All other criteria included in the constraints are kept within specified limits
without being optimized. Thus, the results of an optimization process are dependent on the degree of
reduction of the admissible set given by the inequality-type constraints.

Generally, we specify the constraints in a form similar to the objective function

(14.1)

Here fi are suitable functions of a vector variable and  their maximum admissible values.
The selection of optimization variables is given by the sensitivity of the objective function to changes

of relevant optimization variables. This sensitivity is described by the gradient vector of the objective
function.

(14.2)

14.2.4 Types of Optimization Methods

14.2.4.1 Standard Optimization Methods

Most practical problems lead to nonlinear (transcendental) systems of equations. These may only be
solved using numerical optimization methods. According to the order of the derivatives used in the
application of a method, numerical methods of finding local minima of functions of several variables
may be divided into:

1. Zero-order methods (comparative)

• Methods of co-ordinate comparison

• Simplex methods

• Stochastic methods

2. First-order methods (gradient and quasi-gradient)

• Methods of associated directions

• Variable-metric methods

3. Second-order method (Newton method)

Stochastic Methods
These methods consist of calculating the values of the objective function at a large number of selected
points. The points are selected by such criteria that each point in the space has an equal probability of
being selected. The best points are then determined by comparing the function values. From the outlined
strategy, it follows that these methods lead to computing the function values at a large number of points,
which may protract the calculation. On the other hand, we can more easily reach the global optimum
of the function to be optimized. These methods also comprise the evolution methods since the first
solution population is generated completely by random. The difference only consists in the strategy of
selecting better solutions.
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14.2.4.2 Evolutional Optimization Methods

Since some problems are difficult to solve by standard numeric optimization methods, even if they
converge to an acceptable optimum in a reasonable time, new approaches had to be developed. Therefore,
a number of new methods have been designed based on the laws of natural genetics copying them in
various degrees. These methods employ random generation of input parameters and so can be thought
of as stochastic methods. In general, stochastic optimizing algorithms (including virtually all the evolu-
tional algorithms) optimize using multi-parameter function with “wild” behavior, that is, with many
minima or with an unknown gradient. Stochastic optimization methods are necessarily slower than
heuristic approaches, which take advantage of the fact that they know the type and details of the function
to be optimized. Unless the conditions for the global optimum are previously known, we can never be
sure whether we have reached the global optimum to be able to terminate the optimization process.
However, stochastic optimization methods also bring numerous benefits. They are generally very well
specified and thus applicable virtually to any problem, and they can get out of the trap of a local minimum.
The evolutional process of searching the space of potential solutions requires an equilibrium of two
objectives:

• To find the nearest (mostly local) minimum as quickly as possible

• To search the space of all potential solutions in the optimum manner

The methods differ in their orientation towards these two objectives and they can be roughly ordered
in a sequence starting with methods tending to local minima to methods searching a large number of
potential solutions:

1. Stochastic “hill climbing” algorithms
2. Tabu search algorithms
3. Simulated annealing algorithms
4. Genetic algorithms

Hill Climbing Algorithm
This is the simplest optimization algorithm being a variant of the gradient method “without gradient”
where the direction of the steepest climb is determined by searching the neighborhood. This algorithm
also has all the drawbacks of gradient methods, in that it is very likely to end up in a local extreme
without reaching the global minimum. Here the starting solution is generated at random. For the
currently designed solution, a certain neighborhood is generated using a finite set of transformations
and the best minimum is chosen from this neighborhood. The local solution obtained in this way is then
used as the center of a new neighborhood in which the optimization is repeated. This process is iterated
a specified number of times. In the course of this process the subsequent best solutions are recorded to
be finally used as the resulting minimum. The basic drawback of this algorithm is that, after a number
of iterations, it may revert to a local minimum that has already been passed in a previous step (the
problem of looping). This problem can be avoided by running the algorithm several times with different
randomly generated initial values to eventually choose the best result achieved.

Tabu Search Algorithm
At the end of the 1980s, Professor Fred Glover designed a new approach to solving the problem of finding
the global minimum, which he called tabu search. At present, this method is among those used most
frequently to solve combinatorial problems and problems of finding the global minimum. Based on the
hill-climbing algorithm, it tries to eliminate the problem of looping. The hill-climbing algorithm is
equipped with a so-called short-time memory, which, for a short previous interval of the algorithm
history, remembers the inverse transformations to locally optimal solution transformations used to obtain
the new centers in iterations. These inverse transformations are prohibited (tabu) when the new neigh-
borhood is created for a given current solution. In this way, the looping caused by falling into the trap
of a local minimum may substantially be reduced. A hill-climbing algorithm modified in this way
systematically searches the entire area in which the global minimum of a function is to be found. 
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Simulated Annealing Algorithm
Apart from the stochastic methods and methods based on natural evolution, there is another possibility
of simulating the evolution of systems based on the physical evolution of macroscopic systems. The
annealing of a solid body in order to remove the internal stress is a simple example of this kind of
evolution. For a physical interpretation of this process, consider a body that is heated until it reaches a
high temperature. The temperature is then gradually lowered. The atoms of a body heated to a high
temperature can easily overcome the local energetic barriers to reach equilibrium states. When the
temperature is lowered, atoms are fixed in this state and the cooled off body is without internal stress.

This principle was used to design the method of simulated annealing. First, an initial temperature Tmax

is set, whose value is important for the method to be efficient. The simulated annealing algorithm then
searches the space of all potential solutions in a strongly stochastic way, also accepting the states that
correspond to solutions worse than the current one. This property of simulated annealing is a charac-
teristic feature of this method and provides a way of escaping from a local minimum trap, thus allowing
the search of another area of the entire solution space. However, as the annealing temperature T is
lowered, the probability of accepting worse states as well is diminishing. For small temperature values
then, only solutions better than the current one are considered.

Genetic Algorithm (GA)
Genetic algorithms (GAs) are most frequently used to optimize the parameters of an unknown system
whose mathematical description is either too complicated or unknown [5]. When applying a GA, it is
mostly sufficient to know a function assigning a price to each individual in the population. This may be
the error of the solution for randomly selected parameters during GA. Since a GA is looking for a
maximum, the error, which, on the contrary, is being minimized, must be transformed into looking for
a maximum. This may be done in several different ways: by subtracting the error from the maximum
error occurring, by calculating the inverted value of the error, or by using another transforming function
that approaches zero as the error approaches one. Increased attention should be paid to setting up the
program implementing the pricing function since it consumes the most computing time compared with
the other GA components.

Apart from general optimization problems, GAs are mostly applied to neural networks. Here the
tendency is to employ GAs at two different levels. First, for finding suitable weights for a neural network
and second, when optimizing the structure of a neural network, that is, when selecting the algorithm,
the number of input neurons in the hidden layers, the number of hidden layers, etc. Using a genetic
algorithm to optimize the parameters of another genetic algorithm (the size of the population, the number
of crossbreedings, the extent of mutations, the frequency of mutations) is a very revolutionary idea
(optimization of the computation time where the computation time is a pricing function of the GA). As
far as applications of GAs to problems encountered in research of electric machines are concerned, GAs
have been used to identify the parameters of the substitution diagram of an induction motor.

By way of conclusion, it may be added that genetic algorithms perform surprisingly well when all
other algorithms fail, such as for incomplete problems where the computation time is an exponential or
factorial function of the number of variables. There is no point in using GAs to optimize relatively simple
functions or functions for which special algorithms exist for their description. Considering the necessity
to calculate the function values for tens or hundreds of genetic chains in a population and the necessity
to evaluate hundreds or even thousands of populations during a single run of the program, GAs are
rather time-consuming.

Despite the positive results achieved by using GAs, it is clear that nature must use even more intricate
and, at the same time, not very sophisticated methods. The GAs described above only correspond to
very primitive examples observed in nature, particularly those related to asexual reproduction with a
single chromosome. Since nature has taken billions of years to test its algorithms, it is highly efficient
to further learn from it. It is interesting that it needs no mathematics to solve complicated problems
of optimization. Nevertheless there are other optimization methods suitable to solve the problems of
the design [2–4].
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14.2.5 Selection of a Suitable Optimization Method

The standard gradient method is still one of the most frequently used methods. Gradient methods or
even the standard non-gradient methods (such as the simplex method) are not suitable if the finding of
the global minimum is required of a function with many local minima. Mostly, these methods only reach
an insignificant minimum close to the starting point (the initial solution) in which they are trapped.
This deficiency is mostly removed by repeatedly selecting at random the initial solution of an optimization
problem and taking the best result for the solution. The stochastic character of this process can only be
seen in the random selection of the initial solution. The subsequent optimization algorithm then proceeds
without any randomness. Then the evolutional optimization methods are thought of as stochastic ones
despite their employing of a certain strategy when choosing the getter points. The following are the main
differences between a genetic algorithm and the more frequently used gradient method:

• GA performs no gradient computation, which might be difficult and time consuming particularly
for large systems.

• GA works with randomly generated solutions and may converge more quickly to the global
minimum.

To optimize the draft design of an induction motor, an optimization method was employed using a
genetic algorithm. This method is described in more detail in the following chapter.

14.3 Optimum Design of Induction Motor

14.3.1 IM Design Introduction

Actual design of an induction motor (IM) usually depends on the requirements of individual customers,
who specifically define parameters which a designed machine should accomplish. In this way, with the
same machine output, we can obtain different implementations that meet individual conditions more
or less. It is possible to require a good quality of one parameter only with the deterioration of other
parameters. We are going to deal with a design of motors of (0,6–200) kW outputs. Motors are designed
for permanent load and with the project assignment the following input values are required:

Machine output Pn [kW], voltage U1n [V], winding connection Y/D, number of poles 2p or rotation
speed n [min−1], grid frequency f [Hz], efficiency η[%], power factor cos ϕ, insulation class, IP imple-
mentation, and the shape of the machine.

We consider squirrel-cage motors in closed implementation with framework and cooling ribs. There
is a cast aluminum rotor cage. For the design, data such as conductors and slots dimension or magnetic
characteristics deducted from tables and graphs that are given by the standard or by the manufacturer’s
measurement, are needed. The actual design is a compromise between individual design parameters, so
that a resulting machine would have the best possible operating characteristics with a perfect heat and
material utilization. The actual motor design is described in the following section.

14.3.2 Classical IM Design Evaluation

An induction motor design, when carried out manually, represents hundreds of calculations, which can
last tens of hours even with an experienced constructor. As computers made their way into practically
all branches of design and analysis, a series of programs which co-operate with a designer in an interactive
fashion and speed up a calculation were created.

In spite of indisputable advantages of this design process, we have to realize that there is a remarkable
quantity of various design implementations of the given motor which, more or less, achieve the required
motor operating characteristics. This approximates the global minimum of an objective function, which
evaluates the design quality.

Thus, the idea to create a program for searching the whole state space of all possible solutions and
selecting such a variant, which is the most appropriate to an evaluating objective function (the required
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motor characteristics) using some of the optimization methods, was developed. The stochastic evolu-
tionary method genetic algorithm was selected, because it searches the whole state space of all possible
solution in a best way.

14.3.3 Description of a Solved Problem

14.3.3.1 Generated Parameters

The values given in Table 14.1 are recommended only, and, for the motors of outputs below 200 kW,
they are mostly limiting values. Varying the parameter values or substituting one parameter for another
is possible only by intervention in the program source text. Diameter limits De and D from the input file
are considered only in the case that a motor design without regard to standardized axis height is required.
In the case that standardized axis height is entered, these limits are calculated. Limits of an ideal rotor
length are appropriate to enter as narrow as possible for faster convergence to a limit. But this is not a
required condition. Generally, the lower the range of individual parameters, the faster the convergence
to a global minimum, and the number of local minimums is lower.

14.3.3.2 Objective (Criterion) Function

It is not just the form of the objective function, but also the selection of optimized parameters that is
important for good optimization results. Selected parameters must sufficiently describe a quality solution
to the given problem. In the case of an induction motor design optimization task, the following parameters
were selected:

Motor volume V [dm3]
Motor temperature rise ϑn [K]
Motor nominal power factor cos ϕn [−]
Motor nominal efficiency ηn [−]
Torque overload capacity mpn [−]

These parameters are most important for the quality of the design and describe the design sufficiently.
The total error is based on the relation given in Equation 14.1, a sum of individual partial errors of

each controlled parameter. If we put more emphasis on some parameter, we increase a corresponding
weight coefficient, thus achieving its improvement in the final design. At the same time, values of other
parameters will decrease. Finding an optimal setup of gain coefficients is one of the most important and
difficult problems. The term “optimal setup” means that the designed motor has the highest power factor,
efficiency, and torque overload capacity values at the minimal volume and simultaneously does not exceed
a permitted temperature rise for a selected insulation class. We have the relationship 

(14.3)

TABLE 14.1 Generated Parameters List and Setup of Their Limits

Parameter Name Symbol Dimension High Limit Low Limit

Stator outside diameter De mm User optional User optional
Stator inside diameter D mm User optional User optional
Ideal iron length li mm User optional User optional
Air gap induction Bδ T 0.5 1.0
Stator slot filling kdr1 — 0.6 0.75 (0.8)
Air gap size δ mm 0.2 0.4
Stator current density σ1 A mm−2 3.0 15.0
Rotor rod current density σt A mm−2 2.0 6.0
Rotor ring current density σk A mm−2 2.0 4.0
Teeth magnetic induction Bz T 1.6 2.0
Slot number per pole and stator phase q1 — 2.0 5.0

ε GRi( ) abs kV V⋅( ) abs kϑ 0.89ϑd ϑn–( )( ) abs k ϕcos 1 ϕcos n–( )( )+ +=

abs kη 1 ηn–( )( ) abs kmp mp 1 mpn–+( )( )+ +
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where kV is the volume weight coefficient, kϑ is the temperature factor weight coefficient, kcosϕ is the
power factor weight coefficient, kη is the efficiency weight coefficient, kmp is the torque overload capacity
weight coefficient.

14.3.4 Achieved Results

14.3.4.1 5.5 kW, 380 V Motor Design Description

During program development and tuning, an optimization was performed on the motor described in
Table 14.2. In this section we describe the results and problems encountered in the optimization process.
The symbols and quantities, which are not explained in detail, were either used in the previous text or
are listed at the list of used quantities at the beginning of the document. The motor input parameters
are given in Table 14.2.

14.3.4.2 Other Results

It follows from the physical principle that optimized quantities are closely related. Increase of a gain of
one quantity results in a disadvantage of the quantities. Based on the performed optimizations, it can
be concluded that two kinds of motors exist, depending on the content of iron and copper:

1. Motor with prevailing iron content, high stator current density, good power factor, for a price of
worse efficiency of the motor and with slightly worse torque overload capacity than the second
motor.

2. Motor with high copper content and conversely low stator current density, good efficiency, and
worse power factor value. Torque overload capacity is good.

The type of motor is determined based on the setting of gain coefficients. A sum of temperature and
power factor errors on one side impacts the sum of volume and efficiency errors on the other side. The
torque overload capacity can be good for both kinds of motors.

Results of individual optimizations are listed in Table 14.3, ordered by volume value from smallest to
largest. Different varieties of motors were obtained, depending on values of gain coefficients. It is difficult
to determine which solutions are good or bad, because the selections depend on actual customers’ require-
ments. The solution that gives the best value of optimized quantity is marked in bold. Solution numbers
1, 5, 8, 23, and 25 can be considered successful from this perspective. The motor described above (solution
no. 2) serves for depicting of the task. Previously-mentioned relations between individual quantities can
be observed in Table 14.3, which lists the optimization results without limiting the generated parameter,
thus using the requirements in Table 14.1.

Next, a motor optimization was performed with just one optimized parameter, when the gain of the
other parameters was set equal to zero.

1. Volume optimization. In this case, the algorithm selected as the best solution motors with minimal
dimensions, when parameters De, D, and li were converging to minimum preset limits.

2. Temperature optimization. The algorithm reached first reached a local minimum with temperature
at the maximum based on the required insulation class, and mostly stayed on this value.

TABLE 14.2 Input Values of 5.5 kW, 380 V Motor

Quantity Name Symbol Dimension Value

Nominal power output Pn W 5500
Nominal voltage U1n V 380
Required power factor cosϕ — 0.81
Required efficiency η — 0.86
Grid frequency f Hz 50
Motor axis height H mm 132
Number of pole pairs p — 3
Temperature class of insulation TT — F
Torque overload capacity mp — 2
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3. Power factor optimization. An effort to achieve the first type of motor (see above discussion) with low
copper content, high current density σ1, worse value of efficiency. Torque overload capacity was good.

4. Efficiency optimization. The designed motor corresponded to the second type of motor (see above
discussion) with prevailing copper content, low current density σ1, and good efficiency, however,
with worse power factor values. Torque overload capacity was good.

5. Torque overload capacity optimization. The motor is designed with high number of slots for pole
and phase, resulting in gradual spread of conductors on the perimeter. The motor can have
prevailing iron or copper content depending on a local solution, to which it converged. It can
have good values of power factor and efficiency for a price of machine volume increase.

14.4 The Use of a Neuron Network for the Identification 
of the Parameters of a Mechanical Dynamic System

The basic step used to solve the dynamic tasks by means of any type of modeling is to create a set of
important quantities that include both the quantities describing structure, conditions, and the interac-
tions of technical objects and the quantities that characterize the consequences (i.e., their demonstration
and behavior).

The methods of creating the mathematical models in drive systems, in general an interactive process,
utilize

• The applications of well-known physical principles that describe the phenomena in drive systems
(e.g., the second Newton’s principle, Kirchhoff ’s laws, etc.)

• The applications of the methods based on artificial intelligence algorithms (e.g., genetic algorithms
[1] and artificial neuron networks [6,7])

TABLE 14.3 Motor P = 5.5 kW, U = 380 V Solutions List, without Generated 
Parameters Limited

Number V [dm3] ϑ [K] cosϕ [−] η [−] mp [−] Directory

1 3.96 88.1 0.798 0.834 1.72 Motor1
2 4.20 86.9 0.818 0.843 1.90 Motor2
3 4.31 74.9 0.787 0.865 1.77 Motor3
4 4.32 88.8 0.836 0.817 1.78 Motor4
5 4.33 75.1 0.690 0.973 1.07 Motor5
6 4.50 89.0 0.836 0.834 1.79 Motor6
7 4.51 86.8 0.818 0.818 1.93 Motor7
8 4.54 90.0 0.884 0.812 1.98 Motor8
9 4.56 84.6 0.857 0.816 1.74 Motor9

10 4.58 86.5 0.836 0.817 1.77 Motor10
11 4.63 68.2 0.792 0.858 2.10 Motor11
12 4.69 88.4 0.862 0.808 1.80 Motor12
13 4.70 73.4 0.845 0.830 2.25 Motor13
14 4.73 61.0 0.799 0.871 1.90 Motor14
15 4.78 78.1 0.853 0.858 1.67 Motor15
16 4.78 71.0 0.767 0.870 1.80 Motor16
17 4.81 70.6 0.703 0.934 1.28 Motor17
18 4.97 54.5 0.804 0.883 1.90 Motor18
19 5.08 55.5 0.762 0.877 2.20 Motor19
20 5.12 88.2 0.879 0.806 2.05 Motor20
21 5.96 44.0 0.784 0.870 2.55 Motor21
22 6.35 42.4 0.803 0.882 2.69 Motor22
23 6.40 87.5 0.887 0.853 2.27 Motor23
24 6.57 59.0 0.747 0.956 1.16 Motor24
25 7.05 42.3 0.793 0.865 3.00 Motor25
26 7.39 52.9 0.714 0.986 1.03 Motor26
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The theories on which the methods of artificial intelligence are based replace the “standard” analytical
and numerical methods when

• These are the only theories which can solve the problem.

• They exhibit better properties from the point of view of the problem solution (e.g., a better
conditionality considering the changes of input values).

• They allow the problems to be solved more effectively.

The last case is typical when we want to approach the real operational conditions as close as possible.
From various methods of artificial intelligence, the stochastic evolution algorithms and the artificial
neuron networks are being increasingly utilized in the field of the modelling of drive interactive systems.
In the following section, two methods are shown that are applied to the problems of the analysis of
dynamic properties in drive systems.

The solution of dynamics by means of the algorithms of artificial intelligence represents a solution of
the following partial problems:

• Specifying the set of important (relevant) quantities

• Selecting the theory which is suitable to solve the problems

• Arranging the relations among relevant quantities so that they allow the selected algorithm of
artificial intelligence to be used

• Generating the training data, and the selection of the method of teaching, for example, in neuron
networks

• Testing the quality of the results reached and their evaluation

14.4.1 Practical Application

Many identification methods are known and very often verified quite well in practical terms. The limit
factors that make these procedures more difficult (e.g., the assumptions about system linearity, station-
arity, and normality of the phenomena which occur in the systems, etc.) are also known. Hence, we have
used an untraditional approach to the problem f identifying the dynamic properties in mechanical systems
for which the use of neuron systems seems to be promising, and at the same time available for engineers’
thinking.

14.4.1.1 A Practical Application—Gearbox

The first case that was analyzed is a vehicle gearbox. Inputs (engine load), outputs (frequency-amplitude
spectra of torsional oscillations), and the gearbox structure were known. The ilete information was related
to the selected parameters of stiffness and damping in the drive. Due to variable operational conditions,
the magnitude of damping may vary enough to significantly affect output characteristics. If many
experimental results are evaluated, some typical failures can be identified and their possible occurrence
can be anticipated from output files. We have used the data that were measured in the real system. The
frequency-amplitude spectrum of torsional oscillations was measured at the gearbox shaft, which is seated
on four bearings with five speed gears (Figure 14.1). Originally, the measurement was carried out to
determine the resonance of frequency systems with the goal to reduce noise. The following parameters
were set in the system:

Stiffness K ∈ {0.3, 12.0, ∞}
Damping B ∈ {−, 0, 0.3, 12.0}

The measurements were done with testing frequencies f = 512 Hz and f =1024 Hz. To record significant
oscillation harmonics, the excitation frequency was flexible in both cases:

1. From 2.5 to 14.0 Hz in steps of 0.5 Hz
2. From 14.0 to 40.0 Hz in steps of 1.0 Hz
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The spectrum always included 512 spectral lines. The measurement was repeated 360 times for different
variations of the parameters K and B (the system adjustment). The values of natural and excitation
frequencies, which are expected for the gearbox to be analyzed, are shown in Table 14.4.

14.4.1.2 Task Definition 

The task was originally defined in the following way: to estimate the corresponding magnitudes of
parameters K and B (this means, to recognize the adjustment of parameters used in the mechanical
dynamic system) by means of the artificial neuron network on the basis of the frequency-amplitude

FIGURE 14.1 Five speed gear.

TABLE 14.4 Expected Natural and Excitation Frequencies for the Gearbox

Table of Expected Frequencies [Hz]

Low frequencies up to 5.0
Operational frequency (OF) (speed) OF 14.16

2 × OF 28.32
3 × OF 42.48

Interharmonic frequency (IHF) 0.5 × OF 7.08
1.5 × OF 21.25
2.5 × OF 35.42

Natural frequency (NF) I.NF 43.91
0.5 × I.NF 21.96

2 × I.NF 87.82
II.NF 322.1

0.5 × II.NF 161.1
2.0 × II.NF 644.2

Combination frequency (CF) 2 × OF + 0.5 × I.NF 50.28
OF + I.NF 58.07

2 × OF + I.NF 72.23
2 × OF + 2 × I.NF 116.1

Tooth frequency (TF) {TF = z.OF} 1st speed gear 184.1
2nd speed gear 325.7
3rd speed gear 424.9
4th speed gear 580.6

Automobile gearbox

K,B

V

Sampling frequency

Parameters:
Stiffness K=(0.3, 12.0, Inf.)
Dampling B=(None, 0.0, 3.0, 12.0)
Distance V=(0.0, 3.0)

f = 512 Hz
f = 1024 Hz

Information base:
360 measurements
with several parame-
ters K,B,V
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spectrum of torsional shaft oscillations in the given system. A multilayer perceptron with three layers
(i.e., input, hidden, and output) is used as the configuration of the neuron network. Select the signal
neuron functions as the linear, hidden, and output layers of the logistic function, f(x) = 1/(1 + e−x).

According to this definition, this is to identify the system parameters on the basis of the measured
frequency-amplitude spectra. However, the parameters are taken from discrete sets (and very low), and
the task could be redefined as the “standard” task of the spectrum classification according to seven
attributes (each attribute corresponded to one of the possible values of the parameters K and B). The
application of neuron networks to solve such a problem is more successful when compared to the solution
of the original task.

The amplitudes of spectral lines were expressed in logarithm scale, and a reduction of spectral dynamics
with an increase of their informative quality has been achieved. Considering the nonlinear nature of the
activation neuron functions used, which extends beyond the saturation range for the input interval 〈0.5,
0.95〉, the network cannot respond well to stimulus vectors with a high range of the values in the individual
components. This is illustrated in Figure 14.2. The input network layer was configured to 512 input
neurons. The amplitude logarithmic value of one spectral line was entered into each input. The individual
neurons in the output layer correspond to the classification attributes. Because there are seven attributes,
seven neurons were configured in the output layer.

The only-hidden layer was set as the arithmetic mean of the number of input and output neurons.
Two hundred sixty neurons were configured to the only-hidden layer, as illustrated in Figure 14.3. Each
item corresponded to one measurement of the frequency spectrum (a stimulus vector) with a corre-
sponding attribute vector (a vector of the required responses). The specific variation of the parameters
was expressed by the required network response to two corresponding output neurons equal to 1, and
the remaining output neurons equal to 0.

From the original 360 items, 36 items were randomly separated (10% of total) for the future tests. We
ensured that the network tests would be carried out with the items that have not passed the training
network process (the network was not trained to these situations). This is necessary to verify the gener-
alization model properties. The training set was formed by the remaining 324 items. The sequential
strategy of teaching was used, i.e., the items from the training set were used in the teaching process with
the fixed sequence (cyclic passages through the training set). Taking into consideration the size of the
neuron network to be configured, the method of feedback moment propagation has been selected as the
teaching method that exploits only the information up to the first-order inclusively (the values of a special
function—a teacher and his gradient), and it has not used Hessian or its estimate, which, in this case,
would be very demanding.

FIGURE 14.2 Stimulus vectors normalization (top, before normalization; bottom, after normalization).
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14.4.1.3 Results

The neuron model of the mechanical system has manifested a high rate of success during the verification
by test sets. The network was taught with random selections of the test items. During testing of the
individual models, the responses of the network were successful in 85–95% of all cases (see Figures 14.4
and 14.5). Moreover, the estimate of the values K and B that correspond to the parameters is available
within a couple of seconds for the frequency spectrum in the active mode. However, it is possible that a
model with higher quality will be achieved if special optimizing techniques are used in the future.

In summary, the neuron model of the mechanical system described above can be assessed as usable
in practical terms.

FIGURE 14.3 Network configuration (hidden layer contains neurons without labels).

FIGURE 14.4 Successful response of neural net.
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FIGURE 14.5 Failure response of neural net.
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15.1 Introduction to Motion Control

15.1.1 Definition

Motion control involves precisely controlling the position, velocity, and torque of a rotational or linear
electromechanical device. Examples of such devices include hydraulic pumps, linear actuators, and
electric motors.

15.1.2 History

In 1831, Michael Faraday discovered electromagnetic induction—electricity being generated in a wire
by means of the electromagnetic effect of a current in another wire, and magneto-electric induction—
electricity being generated in a wire by means of the electromagnetic effect of a magnet. These results
led to the creation of the modern electric motor.

The industrial revolution put the motor to use in a variety of applications. A single motor was typically
used by multiple machines connected to a drive train using belts for transmission and gears for speed
reduction. A clutch was used to engage and disengage different machines on the drive train.

Complex machines were designed for mass production using a motor connected to amechanical system
based on gears and cams. Hundreds of parts were produced on the same line as long as no parameter in
the design changed.

As world moves from mass production to mass customization, machine designers want the same
machine to handle a variety of different products at different times in the day, with minimal

Rahul Kulkarni
National Instruments, Inc
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changeover time. Servo-based motion control systems enabled tight control over position and move
profiles. Thus most machines today are complex electromechanical systems involving servo-based control.

15.2 Components of a Typical Motion Control System

A typical motion control system consists of a variety of components including user interface, motion
controller, drive, motor, feedback device, and motion I/O. These components work together seamlessly
to control the position, velocity, or torque of an electromechanical device. Figure 15.1 shows the different
components of a motion control system.

15.2.1 User Interface

The user interface component accepts commands from the engineer or operator and sends them to the
motion controller for execution. These commands include parameters such as target position, and motion
control profiles for smooth movement. The user interface typically includes a graphical interface with
switches and knobs to resemble the control panel of a machine in operation, and elements such as graphs
or XY plots to represent the current position of the object in motion.

15.2.2 Motion Controller

A motion controller is at the center of a typical motion system, which consists of supervisory control,
trajectory generation, and a control loop. The controller converts high-level user commands into com-
mand signals that drives use to move actuators. The motion controller also monitors the system for error
conditions, faults, and asynchronous events that can cause the system to change speed, direction, or
start/stop the actuators.

15.2.3 Drive

In a motion control system, the drive is the component that translates the command signals from the
controller to current that produces torque or rotation in the motor. Drives can be classified on the basis
of the type of motor they actuate—brushed servo, brushless servo, or stepper, or on the basis of the level
of computation carried out in the drive—analog or digital. We will learn more about different types of
drives in Sections 15.4 and 15.5.

15.2.4 Motor

Motors turn electrical energy into mechanical energy and produce the torque required to move to the
desired target position. Motors are designed to provide torque to some mechanical elements including
linear slides, robotic arms, and special actuators. There are three main types of motors—brushed DC

FIGURE 15.1 Components of a motion control system.
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servo motors, brushless servo motors, and stepper motors. Table 15.1 summarizes the pros, cons, and
typical application areas for each type of motor.

15.2.5 Feedback Device

In most motion control systems, amethod for measuring the characteristic being controlled (i.e., position,
velocity, etc.) needs to be implemented. This is known as feedback. Some of the different kinds of feedback
used in motion control are relative position, absolute position, velocity, and analog voltage feedback. For
relative position feedback, the most common device used is the incremental encoder. This device incre-
ments as it turns and can be used to keep track of the total distance traveled from some point of reference.
The most common absolute position feedback devices are absolute encoders and resolvers. An absolute
encoder is similar to an incremental encoder except that it does not need to have a reference position
and can know what position the shaft is in on start-up. A resolver is also another absolute position device
that is commonly used for both position and velocity feedback. For velocity feedback, a tachometer is
commonly used. Some applications require feedback other than the type that has been mentioned above.
In these cases, analog feedback describing some characteristic of the system such as temperature or
pressure can be useful in controlling motors. A position feedback device is not required for some motion
control applications, such as controlling stepper motors, but is vital for servo motors.

15.2.6 Motion I/O

A motion control system also includes digital I/O such as limit switches, home switches, position compare
outputs, and position capture inputs. 

Limit switches provide information about the end of travel to help you avoid damaging your system.
When a motion system hits a limit switch, it typically stops moving. Home switches, on the other hand,
indicate the system home position to help you define a reference point. This is important for applications
such as pick-and-place (Figure 15.2).

FIGURE 15.2 Limit and home switches in a motion control system.
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15-4 Mechatronic System Control, Logic, and Data Acquisition

Triggers such as position compare outputs or position capture inputs help when synchronizing moves
with other external devices and sensors such as data acquisition and vision.With position compare outputs,
you can set up a trigger that fires at a defined position. This type of action is very useful in operations
such as scanning, where you might want to trigger a system to take measurements at a series of defined
positions. Position capture inputs, on the other hand, cause the motion controller to immediately capture
a position on the occurrence of an external event such as a sensor being encountered while moving. This
is useful for resynchronizing the position of an axis (registration moves for “cut on the fly” applications)
or recording positions for analysis (scanning defects on a printed circuit board (PCB)). 

15.3 Functions of a Motion Controller

If we look at the functions of a motion controller, they can be broadly split up into three components—
trajectory generation that involves path planning on the basis of the profile desired by the user, supervisory
control that includes system initialization, event handling, fault detection, and command response, and
the control loop that includes closing the position and velocity loops on the basis of feedback. Figure 15.3
shows the parts and processes of a typical motion controller.

These three components of a motion controller work in synchronization with each other. The supervis-
ory control is the interface that handles user-defined requests and commands the trajectory generator to
start calculating set points. The trajectory generator calculates a set point per iteration and writes it to the
control loop. The control loop takes this set point and using a control algorithm ensures that the actuator
follows this set point accurately. In the case, the control loop can run faster than the trajectory generator;
the control loop uses an interpolation algorithm that creates intermediate set points per iteration of the
control loop.

15.3.1 Supervisory Control

The supervisory control is the main loop of the motion control system. This loop intercepts commands
from the user and signals the trajectory generator to start/stop moves. The supervisory control loop
also monitors all I/O needed to perform initialization tasks, such as finding the reference or origin.
Supervisory controlmonitors I/O for fault conditions and user-defined events and accordingly commands
the trajectory generator to take action.

FIGURE 15.3 Motion controller architecture.
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15.3.1.1 Axis Initialization (Reference Moves)

A reference move resets the axes of a motion script to a known location or state. Reference moves
are generally used at the beginning of a motion script to prepare the motion system for subsequent
motion. The following are valid types of reference moves—finding the home switch, finding the encoder
index, finding the forward limit switch, finding the reverse limit switch, and finding the center for a
system.

Finding the Home Switch
Home reference moves perform a course reference move by traversing the entirety of the motion path
in search of a physical home switch. A home switch consists of a logical ON state bordered by a front
edge and a back edge. Home reference moves can operate when there is a physical home switch present
or if there is a physical end-of-travel present, such as on a stage.

Finding the Encoder Index
Index reference moves perform a find reference move by moving the axis until the index state on the
encoder is reached. The index state is a specific position on the 360° encoder that is passed during each
revolution of the motor. An index reference move is usually performed after a home reference move for
fine reference adjustment. The encoder index signal is accurate to one encoder count and provides amuch
more repeatable reference than using just a home switch edge.

Finding the Forward Limit and Reverse Limit Switches
A forward limit reference move initiates a search sequence to find the forward limit. A reverse limit
reference move initiates a search sequence to find the reverse limit.When the search operation is initiated,
the axis starts moving in the direction of the limit. When the limit in that direction is encountered, the
search is completed. A fine-tuning operation is performed when the limit is reached to minimize the
effects of motion system windup, backlash, and/or home sensor hysteresis. This type of reference move
is used when a home switch is not available on a system.

Finding the Center
Center reference moves initiate a search sequence positioning the axis in the middle of the forward and
reverse limits.When the search direction is forward, the axis starts moving in the forward direction.When
the limit in that direction is encountered, the direction is reversed to find the reverse limit. After both
limits are reached, a center position can be calculated from the recorded positions. The axis then proceeds
to the calculated center.

After finding the reference position for an axis the internal position register for that axis is typically
updated by:

Resetting the Position Counter Resetting the position counter for an axis causes the axis to start counting
its position at a specified starting number. This starting number is typically zero, but resetting to a
nonzero number can be useful when you want to begin the moves relative to an absolute zero, rather
than the current position. For example, a steering system for a vehicle might come online with the wheels
turned 7000 counts to the right of absolute zero. In this example, absolute zero points the wheels straight
ahead. To ensure the motion system recognizes that the wheels are not starting off pointed straight ahead,
reset the position to the absolute count of 7000.

Offsetting the Axis Position This is achieved by moving the axis by an amount equal to a predetermined
offset. Offsetting the position preserves the value of performing the reference moves, but adds another
move to create distance from the home switch or index. This is usually done to prevent the axis from
sitting on a switch or encoder index.
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15.3.1.2 Electronic Gearing

Electronic gearing allows one slave motor to be driven in proportion to a master motor or feedback
sensor, such as an encoder or torque (analog) sensor. As the slave follows the master position at a constant
ratio, the effect is similar to that of two axes mechanically geared. For example, every turn of the master
axis may cause a slave axis to turn twice.

Electronic gearing has several advantages over mechanical gears. The most notable is flexibility because
you can change gear ratios on-the-fly. The other major advantage to electronic gearing is that you can
superimpose amove over a geared axis. The superimposedmove is added to the geared profile of the slave
axis, which allows the slave axis to be synchronized on-the-fly (Figure 15.4).

The gear ratio is used to determine how far the slave axis must move in proportion to the master
when gearing is enabled. The gear ratio can be absolute or relative. 

Slave axis move � Master axis position � Gear ratio 

For example, if you have a gearing ratio of 2:1 (slave:master), the slave moves 20 counts when the
master device moves 10 counts.

Absolute gearing behaves similarly to relative gearing in that when gearing is enabled, the slave axis
follows the master axis movement as it is defined by the gear ratio. The difference between relative and
absolute gearing is that the reference position calculated for the master axis is updated only when gearing
is enabled. This difference is apparent when the gear ratio is updated on-the-fly (Figure 15.5). 

For example, if the gear ratio is 2:1, the current master position is 1010, the current slave position is
3020, and the gear ratio is changed to 3:1; the slave axis jumps from 3020 to 3030 but the master position
remains the same (Figure 15.6).

Changing a gear ratio on-the-fly during absolute gearing allows you to quickly synchronize the slave
axis with the master axis. 

FIGURE 15.4 Electronic gearing algorithm.
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15.3.1.3 Electronic Camming (Includes Registration Moves)

Electronic camming operates similarly to electronic gearing in that the move distance of an axis is propor-
tional to the move distance of its master device. Camming differs from gearing in how the master/slave
ratio is handled by the motion controller. Gearing is used in applications where a constant gear value
creates a linear slave position profile, as shown in Figure 15.7.

FIGURE 15.5 Relative gearing at enable.

FIGURE 15.6 Absolute gearing at gear ratio change.

FIGURE 15.7 Master/slave ratio in gearing.
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15-8 Mechatronic System Control, Logic, and Data Acquisition

Camming creates a more flexible profile by using more master/slave ratios. These ratios are handled
automatically by the motion controller, allowing precise switching of the gear ratios, as shown in
Figure 15.8. Camming is used in applications where the slave axis follows a nonlinear profile from a
master device. 

Figure 15.9 shows that a welding point moves to the first position, and then welds the material for a
couple of seconds. Because the conveyor belt keeps moving at a constant rate, the welding point must
follow the material at the same speed as the conveyor belt during the weld process. When the welding
process is finished for one item, the welding point must quickly return to its initial position, and the
process repeats.

In this application, the master device is the position encoder attached to the conveyor belt, and the
slave axis is the actuator that moves the welding point. The slave axis repeatedly performs a two-segment
movement—first, it follows the material with the same speed as the conveyor belt, and next, it returns to

FIGURE 15.8 Multiple camming gear ratios.

FIGURE 15.9 Welding application showing (1) conveyor belt, (2) movement of the welder as it follows the object
and then returns to the initial position, and (3) welding point.
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the initial position as the next material approaches. Each segment of the move is represented with a gear
ratio that dictates how fast and which direction the welding point is moving relative to the conveyor belt.
This application requires the slave axis to switch from one ratio to the other at the correct master position,
otherwise the welding process is not repeatable. If this application used gearing instead of camming, the
latency, or delay, of loading a new gear ratio might cause an accumulation of position errors.

Similar to gearing, in a camming application, a slave axis can perform any move when camming is
enabled. The move profile is superimposed over the camming profile (Figure 15.10).

15.3.1.4 Exception Handling (E-Stop and Limit Switches)

A motion controller needs to be able to detect fault conditions and handle these exceptions in order of
severity. Examples of exceptions include scenarios where the actuator hit a forward or reverse limit switch
or if the E-stop switch was pressed.

Limit switches can be either hardware or software limits. The hardware limit inputs are typically
connected to end-of-travel limit switches or sensors. An enabled limit input causes a full torque halt stop
on the axis when the input becomes active. Active limit inputs also prohibit attempts to start motion that
would cause additional travel in the direction of the limit. Similarly, software limits are often used to
restrict the range of travel further and avoid ever hitting the hardware limit switches. An enabled software
limit causes the axis to smoothly decelerate to a stop when the limit position is reached or exceeded.

15.3.1.5 I/O Synchronization (Captures, Compares, Time-Sampled Data Logging)

You may need to synchronize motion control with data acquisition or image acquisition devices within
the same systemusing position compares, position captures and time-sampled data logging. Let us
understand first what each of these terms mean.

In scanning applications, you typically inspect an object such as a wafer or an LCD display for defects
using a camera. The wafer or LCDdisplay rests on an XY stage that moves in two dimensions. The objective

FIGURE 15.10 Camming algorithm.
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of the scan is to cover as much space on the wafer as possible in the shortest amount of time and trigger
the camera to take an image at specific points along the scan. In such applications, you need to send a
digital signal (called a breakpoint) to the trigger line of a camera to command it to take an image based
on a specific position reached by the XY stage. This functionality is called position compares (breakpoints),
which can be classified into absolute breakpoints, relative position breakpoints, modulo breakpoints,
periodically occurring breakpoints, and buffered breakpoints.

In some cases, you may need to synchronize position with some measurement occurring externally
to the motion controller. You can think of this conceptually as a conveyor belt application running at a
constant velocity. Each time a manufactured item moves down the conveyor belt and breaks a light beam
across the belt, a stamp is placed on the item, a set distance from the point where the beam is broken.
This allows all items to be stamped in the same relative position without necessarily being equally spaced
along the conveyor belt. You need to command amove of a specified length relative to the position at
which a trigger input is received to perform such a stamping operation. This functionality is called high-
speed position captures (triggers), which could be buffered or nonbuffered.

In vision-guided motion applications, you may need to log position and velocity data periodically for
off-line analysis and correlation with vision data obtained concurrently. This functionality is known as
time-sampled data logging. Data is collected at hardware/firmware timed period and stored in the motion
controller’s internal memory. This data can be retrieved from the motion controller asynchronously.

Position Compares (Breakpoints)
You can configure a motion controller to generate a trigger signal or toggle the state of an I/O line when
the motor reaches a specified position. This specified position is called a breakpoint and is similar to a
switch that is triggered after the motor passes a certain position. To use breakpoints, you must have a
board with closed-loop encoder feedback, because the controller needs the encoder position to determine
where the breakpoint occurs. You can specify breakpoints for both servo motors and stepper motors.
You can use breakpoints as a trigger for another piece of hardware because it sends a signal to an I/O
line. For example, when a motor reaches a certain position, you can use a breakpoint signal to initiate
an image capture or a data acquisition operation. The five ways in which breakpoints can be configured
are as follows:

Absolute Mode: With absolute position breakpoints, you can trigger external activities as the motors
reach specified positions. For example, if you need to use an image acquisition device to capture
an image from a certain position while the device under test is in continuous motion, the motion
controller must be able to trigger the image acquisition device as it reaches those positions. The
current position is continuously compared against the specified breakpoint position by the encoder
circuitry to produce a latency of less than 100 ns. After a breakpoint triggers, you must re-enable
it for the breakpoint to work again. In certain cases, such as buffered and periodic breakpoints,
the motion controller automatically re-enables the breakpoints.

Relative Mode: Relative position breakpoints trigger events on the basis of a change in position relative
to the position at which the breakpoint was enabled. Instead of keeping track of absolute positions
and the current position, you can use relative breakpoints to specify the breakpoint relative to the
position where the breakpoint is enabled. For example, if you are creating a motion control system
to control the 2D movement of a microscope, you might use relative position breakpoints to move
the microscope a specific distance in a direction, and then hit a breakpoint that triggers a camera
snap. The relative breakpoint is useful in this example because the current position is not impor-
tant. The application must move the axis a specific number of counts from wherever it is, and
then generate a breakpoint.

Periodic Mode: You can program the motion controller to generate multiple breakpoints at fixed and
exact intervals, regardless of the direction of travel or velocity. Periodic breakpoints require that you
specify an initial breakpoint and an ongoing repeat period.When enabled, the periodic breakpoints
begin when the initial breakpoint occurs. From then on, a new breakpoint occurs each time the axis
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moves a distance equal to the repeat period, with no re-enabling required. For example, if an axis
is enabled at position zero, the initial breakpoint is set for position 100, and the breakpoint period
is set at 1000, then the axis behaves as shown in Figure 15.11.

Modulo Mode: Modulo breakpoints use a breakpoint window that defines an area around the current
position. The two breakpoints around the current position are always enabled. The breakpoint
modulus creates a repeat period for the breakpoints, and the breakpoint position is the offset from
absolute zero. For example, to create a breakpoint every 500 counts, set the repeat period to 500
and the breakpoint position to 0. If the breakpoint is enabled when the axis is at 710, the
breakpoints at 1000 and 500 are both armed, as shown in Figure 15.12.

Buffered Mode: Buffered breakpoints are a way of specifying absolute or relative breakpoint positions
in a buffer that can be preloaded into the motion controller memory. The motion controller then
automatically arms breakpoint positions from the buffer as and when the breakpoints triggers.
The, arming of breakpoints occurs on a firmware-timed basis, which provides higher bandwidth.

Position Captures (Triggers)
Some motion control applications require that you execute amove and record the position where external
triggers occur. For example, you might be aligning two fiber-optic cables, in which case, the maximum
optical power needs to correspond with the alignment position. To align the fibers, the external device
that is recording the optical power must trigger the motion controller so that you can synchronize and
analyze positions and optical power measurements. This functionality is known as high-speed capture
or trigger inputs. The implementation for high-speed capture is divided into the buffered and nonbuffered
high-speed capture methods:

Buffered High-Speed Captures: With buffered high-speed capture, you can create a buffer that holds
captured positions that you can read asynchronously from the motion controller. The motion
controller automatically arms the next high-speed capture, and writes the captured high-speed
data into its onboard buffer. The enabling of high-speed capture occurs on a firmware-timed basis,
which provides better frequency than the nonbuffered high-speed capture method.

Nonbuffered High-Speed Captures: With nonbuffered, high-speed capture, you can configure a single
high-speed capture event. For multiple high-speed captures, you must re-enable the high-speed
capture each time before it triggers.

FIGURE 15.11 Periodic breakpoint every 1000 counts/steps.

FIGURE 15.12 Breakpoint modulus of 500.
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Time-Sampled Data Logging
Some motion controllers can acquire a hardware-timed buffer of position and velocity data for time-
sampled data logging. After you command the motion controller to acquire position and velocity data, a
separate acquire data task is created in the motion controller, which reads time-sampled position
and velocity data into a FIFO buffer on the motion controller. You can read data in from this buffer number
of samples that consist of position data, in counts or steps, and velocity data, in counts/s or asynchronously
from the user interface on the host computer. Typically, the FIFO buffer holds a certain steps/s.

15.3.2 Trajectory Generation

The trajectory generator on a motion controller is responsible for the path planning on the basis of
geometry specified by the user. Different kinds of geometries are typically supported: straight lines,
circular arcs, helical arcs, and spherical arcs. In addition to the predefined geometries, the user can specify
a custom geometry via a buffer of points that the motion controller uses to interpolate through using a
cubic spline algorithm. This is known as a contoured move.

The user can also specify the velocity profiles that he wants used when traversing desired geometries.
This can be specified using move constraints that include maximum velocity, maximum acceleration,
and maximum deceleration and jerk (rate of change of acceleration/deceleration). These parameters are
used to generate a trapezoidal or s-curve profile. The trajectory generator on the motion controller
ensures that these move constraints are never violated while making a move. In addition to this, the user
can specify custom profiles by providing position, velocity, and time data (Position Velocity Time, PVT).
The trajectory generator also typically supports blending velocity profiles. In this case, the users can
concatenate multiple profiles specifying the point of concatenation.

The output of the trajectory generator are set points that are fed to the control loop to act on the basis
of the path that needs to be followed. 

To be highly reactive and allow for on-the-fly changes, the trajectory generator on the motion controller
creates these set points in real time. This allows users to pre-empt the current trajectory by changing end
positions, velocity, and acceleration. It also allows for stopping and restarting a move that is currently
in progress.

15.3.2.1 Straight-Line Moves

A straight-line move executes the shortest move between two points. Straight-line moves can be position
based or velocity based.

Position Based
Position-based straight-line moves use the specified target position to generate the move trajectory. For
example, if the motor is currently at position zero, and the target position is 100, a position-based move
creates a trajectory that moves 100 counts (steps). 

The controller requires the following information to move to another position in a straight line:

• Start position—current position, normally held over from a previous move or initialized to zero

• End position—also known as the target position, or where you want to move to

• Move constraints—maximum velocity, maximum acceleration, maximum deceleration, and max-
imum jerk

The motion controller uses the given information to create a trajectory that never exceeds the move
constraints and that moves an axis or axes to the end position you specify. The controller generates the
trajectory in real time, so you can change any of the parameters while the axes are moving. Figure 15.13
illustrates a typical algorithm for a position-based straight-line move.

Velocity Based
Some motion applications require moves that travel in a straight line for a specific amount of time at a
given speed. This type of move is known as velocity profiling or jogging. You can use a motion control
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application to move a motor at a given speed for a specific time, and then change the speed without
stopping the axis. The sign of the loaded velocity specifies the direction of motion. Figure 15.14 illustrates
an algorithm for a typical velocity-based straight-line move.

15.3.2.2 Arc Moves

An arc move causes a coordinate space of axes to move on a circular, spherical, or helical path. You can
move two-dimensional vector spaces in a circle only on a 2D plane. You can move a three-dimensional
vector space on a spherical or helical path. Each arc generated by the motion controller passes through
a cubic spline algorithm that ensures the smoothest arc. A cubic spline algorithm generates multiple
points between every two points of the arc, ensuring smooth motion, minimum jerk, and maximum
accuracy at all times.

Circular Arcs
A circular arc defines an arc in the XY plane of a 2D or 3D coordinate space. The arc is specified by a
radius, start angle, and travel angle. In addition, like all coordinate space moves, the arc uses the values
of move constraints—maximum velocity, maximum acceleration, and maximum deceleration.

To move axes in a circular arc, the motion controller needs the following information:

• Radius—specifies the distance from the center of the arc to its edge.

• Start Angle—orients the arc on its plane using the starting point as an axis to spin around. Because
the starting point for a new arc is fixed on the basis of the current position, moving its center
around the starting point alters the orientation of a new arc.

• Travel Angle—indicates how far the arc travels in a 360� circle. For example, a travel angle of 90�

executes a quarter circle, a travel angle of 360� creates a full circle, and a travel angle of 720� creates
two full circles (Figure 15.15).

FIGURE 15.13 Position-based straight-line move algorithm.
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FIGURE 15.14 Velocity-based straight-line move algorithm.

FIGURE 15.15 Circular arc move algorithm.
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Spherical Arcs
A 3D spherical arc defines a 2D circular arc in the XY plane of a coordinate system that is transformed
by rotation in pitch and yaw from the normal 3D coordinate space (XYZ), as shown in Figures 15.16
and 15.17. 

In the transformed X�Y�Z� space, the 3D arc is reduced to a simpler 2D arc. The 3D arc is defined as
a 2D circular arc in the X�Y� plane of a transformed vector space X�Y�Z�. This transformed vector space,
X�Y�Z�, is defined in orientation only, with no absolute position offset. Its orientation is relative to the
XYZ vector space, and is defined in terms of pitch and yaw angles.When rotating through the pitch angle,
the Y and Y� axes stay aligned with each other while the X�Z� plane rotates around them. When rotating
through the yaw angle, the Y� axis never leaves the original XY plane, as the newly-defined X�Y�Z� vector
space rotates around the original Z-axis. The radius, start angle, and travel angle parameters also apply
to a spherical arc that defines the arc in two dimensions.

Helical Arc
Ahelical arc defines an arc in a 3Dcoordinate space that consists of a circle in the XY plane and synchronized
linear travel in the Z-axis. The arc is specified by a radius, start angle, travel angle, and Z-axis linear travel.
Linear travel is the linear distance traversed by the helical arc on the Z-axis, as shown in Figure 15.18.

FIGURE 15.16 Changing pitch by rotating the X-axis.

FIGURE 15.17 Changing yaw by rotating the Z-axis.

FIGURE 15.18 Helical Arc showing (1) side view, (2) top view, (3) isometric view, and (4) linear travel.
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15.3.2.3 Contoured Moves

A contoured move moves an axis or a coordinate space of axes in a pattern that you define. The trajectory
generator on the motion controller is not used during a contoured move. The controller takes position
data in the form of an array, and splines the data before outputting it to the control loop.

Contoured moves are useful when you want to generate a trajectory that cannot be constructed from
straight lines and arcs. To ensure that the motion is smooth with minimum jerk, the motion controller
creates intermediate points using a cubic spline algorithm. The move constraints commonly used to limit
other types of moves, such as maximum velocity, maximum acceleration, maximum deceleration, and
maximum jerk, have no effect on contoured moves. These need to be embedded in the series of contoured
points provided (by spacing the points) (Figure 15.19).

15.3.2.4 Position Velocity Time Profiles

Position velocity time moves give you maximum control over the velocity of the move at certain times
throughout the move. PVT moves specify a series of move segments by giving several move points for
each axis. In addition, PVT moves specify both the time, in ms, each move segment takes and the velocity
at which all axes are traveling at the end of each segment.

The following table demonstrates typical PVT inputs:

T: Time begins at 0 for each PVT move, and is cumulative through the end of the move. In this
example, there are three segments of duration 750, 750, and 1000.

FIGURE 15.19 Contoured move algorithm.
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V: PVT moves assume a beginning velocity of zero. Therefore, you must bring each axis to a complete

stop in the previous move before beginning a PVT move.
X, Y, Z: PVT moves start a position counter for each axis at 0, independent of where you are in relation

to the original reference move. The numbers in the spreadsheet or text file are absolute in relation to the
new counter. In this example, there are three move segments of lengths 4317, 7928, and 2928, respectively.

15.3.2.5 Blending

Blending, also called velocity blending, superimposes the velocity profiles of two moves to maintain
continuous motion. Blending is useful when continuous motion between concatenated move segments
is important. Examples of some applications that can use blending are scanning, welding, inspection,
and fluid dispensing. Blending must occur on velocity profiles of two move segments, so the end positions
of each move segment may or may not be reached. For example, if you are blending two straight-line
moves that form a 90� angle, the blended move must round the corner to make the move continuous.
In this case, the move never reaches the exact position where the two straight lines meet, but instead
follows the rounded corner, as shown in Figure 15.20.

Motion controllers can perform blending between two straight-line moves, between two arc moves,
or between straight-line and arc moves. Blending typically is not supported for reference and contoured
moves.

Superimposing Two Moves
Superimposing two moves is the most common use of blending. In this case, the motion controller tries
to maintain continuous motion by superimposing the two move segments such that the second move
segment starts its profile while the first move is decelerating, as shown in Figure 15.21.

The velocity during the superimposition depends on the cruising velocity, deceleration, and jerk of
the first move segment, and the jerk, acceleration, and cruising velocity of the second move segment.

Blending Moves after the First Move Is Complete
Blending moves after the first move is complete; this causes the first move segment to come to a complete
stop before starting the profile of the second segment, as shown in Figure 15.22. This type of blending
is useful if you want to start two move segments, one after the other, with no delay between them.

Blend after Delay
You can blend two moves after a delay at the end of the first move. Blending in this manner is useful if
you want to start two move segments after a deterministic delay. The two move segments can be either
straight-line moves or arc moves.

Because blending occurs on velocity profiles, the effect of reaching the end positions of the move
segments and the maximum velocity depends on the velocity, acceleration, deceleration, and jerk loaded

FIGURE 15.20 Two blended straight-linemoves showing (1) starting position, (2) end point, and (3) corner rounded
by blending.

31

2

9260_15.fm  Page 17  Wednesday, October 10, 2007  9:43 PM



15-18 Mechatronic System Control, Logic, and Data Acquisition

for the two move segments. Because two move segments are always used while blending, it is very important
that you wait for the blend to complete before loading the next move segment you want to blend.

15.3.2.6 Second- and Third-Order Profiles (Trapezoidal/s-Curve)

The trajectory generator uses the commanded parameters of position, acceleration, and velocity for a
particular move to determine how much time it spends in the three primary move segments—acceleration,
constant velocity, and deceleration—that define a velocity profile.

Trapezoidal Velocity Profile
When you use a trapezoidal profile, the axes accelerate at the acceleration value you specify, and then
cruise at the maximum velocity you load. On the basis of the type of move and the distance being covered,
it may be impossible to reach the maximum velocity you set. The velocity of the axis, or axes, in a
coordinate space never exceeds the maximum velocity loaded. The axes decelerate to a stop at their final
position, as shown in Figure 15.23.

S-curve Velocity Profile
The acceleration and deceleration portions of an s-curve motion profile are smooth, resulting in less
abrupt transitions, as shown in Figure 15.24. This limits the jerk in the motion control system, but
increases cycle time. The value by which the profile is smoothed is called the maximum jerk or s-curve
value.

FIGURE 15.21 Superimposing two moves.

FIGURE 15.22 Blending after move complete showing (1) blending starting point and (2) blending complete.
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15.3.2.7 Multiple Axis Synchronization (Coordinate/Vector Spaces)

With the exception of the arc move, you can execute all basic moves on either a single axis or on a
coordinate space. A coordinate space is a logical grouping of axes, such as the XYZ axes. Arc moves always
execute on a coordinate space. If you are performing a move that uses more than one axis, you must
specify a coordinate space made up of the axes the move will use.

Typically, there exists a function in the motion controller to configure a coordinate space. This function
creates a logical mapping of axes and treats the axes as part of a coordinate space. The function then
executes the move generated by the trajectory generator on the vector, and treats all the move constraints
as vector values.

Multistarts versus Coordinate Spaces
Coordinate spaces always start and end the motion of all axes simultaneously. You can use multistarts
to create a similar effect without grouping axes into coordinate spaces. Using a multistart automatically
starts all axes virtually simultaneously. To simultaneously end the moves, you must calculate the move
constraints to end travel at the same time. In coordinate spaces, this behavior is calculated automatically.

15.3.3 Control Loop

15.3.3.1 Spline Interpolation

The trajectory generator and the proportional, integral, derivative (PID) control loop need not execute
at the same loop rates.While the PID control loop needs to run at microseconds, the trajectory generator
may generate a new set point every millisecond. To maintain the steady flow of set points from the
trajectory generator to the PID control loop, a motion controller needs a spline interpolator that inter-
polates between set points given by the trajectory generator to create finer set points to be acted on by
the control loop (Figure 15.25).

FIGURE 15.23 Trapezoidal move profile.

FIGURE 15.24 S-curve move profile.
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An example of a spline interpolator is a cubic spline algorithm that uses four set points to calculate
interpolated positions between two positions calculated by the trajectory generator. The polynomial used
to calculate interpolated points can be represented as:

P(t) � a3t 
3 � a2t 

2 � a1t 
1
� a0t 

0 

Given four set points, P0, P1, P2, and P3, the spline coefficients are determined in real time as:

The number of interpolated points created depends on the rate of the trajectory generator loop and control
loop. For example, if the trajectory generator loop runs at 1 ms and the control loop runs at 100 µ s, the
spline engine calculates 1 ms/100 µ s �10 interpolated points. Using the spline interpolator results in
smoother motion and allows you to run the trajectory generator loop slower than the control loop.

15.3.3.2 Position and Velocity Loops

The control loop creates the command signal on the basis of the set point provided by the trajectory
generator. In most cases, the control loop includes both a position and a velocity loop, but in some cases
the control loop may include only a position loop. The position is typically read from encoders, but
also may be read from analog inputs. The velocity is calculated from the position values, and may be
read directly from a velocity sensor, such as a tachometer. Because feedback is not required for stepper
motors, the control loop concerts the set point generated by the trajectory generator into stepper signals
(step/direction).

The position and velocity control loops on the motion system correct for errors and maintain tight
control of the trajectory. The position and velocity loops typically incorporate the PIDalgorithm. The PID
algorithm consists of three basic coefficients: proportional, integral, and derivative, which are varied to
get optimal response (Figure 15.26).

In addition to parameters such as proportional gain, integral gain, and derivative gain, the PID
algorithm-implemented part of a motion control system includes additional parameters such as velocity
feedback, velocity feed forward, and acceleration feed forward for optimal position control.

FIGURE 15.25 Spline engine function uses cubic spline algorithm to calculate interpolated positions between two
positions from the trajectory generator.
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Kp (Proportional Gain)
The proportional gain (Kp) determines the contribution of restoring force that is directly proportional
to the position error. This restoring force functions in much the same way as a spring in a mechanical
system. An axis with too small a value of Kp is unable to hold the axis in position and is very soft.
Increasing Kp stiffens the axis and improves its disturbance torque rejection. However, too large a value
of Kp often results in instability.

Ki (Integral Gain)
The integral gain (Ki) determines the contribution of restoring force that increases with time, ensuring
that the static position error in the servo loop is forced to zero. This restoring force works against constant
torque loads to help achieve zero position error when the axis is stopped. In applications with small static
torque loads, this value can be left at its default value of zero (0). For systems having high static torque
loads, this value should be tuned to minimize position error when the axis is stopped. Although nonzero
values of Ki cause reduced static position error, they tend to cause increased position error during
acceleration and deceleration. This effect can be mitigated through the use of the integration limit
parameter. Too high a value of Ki often results in servo loop instability.

Kd (Derivative Gain)
The derivative gain (Kd) determines the contribution of restoring force proportional to the rate of change
(derivative) of position error. This force acts much like viscous damping in a damped spring and mass
mechanical system. A shock absorber is an example of this effect. A nonzero value of Kd is required for
all systems that use torque block amplifiers, where the command output is proportional to motor torque,
for the servo loop operation to be stable. Too small a Kd value results in servo loop instability. With
velocity block amplifiers, where the command output is proportional to motor velocity, it is typical to
set Kd to zero or a very small positive value.

Kv (Velocity Feedback)
You can use a primary or secondary feedback encoder for velocity feedback. Setting the velocity feedback
gain (Kv) to a value other than zero (0) enables velocity feedback using the secondary encoder, if
configured, or the primary encoder if a secondary encoder is not configured. The derivative gain scales
the derivative of the position error, which is the difference between the instantaneous trajectory position
and the primary feedback position. Velocity feedback is estimated through a combination of speed-
dependent algorithms.

FIGURE 15.26 PID servo loop.
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Vff (Velocity Feedforward)
The velocity feedforward gain (Vff) determines the contribution in the command output that is directly
proportional to the instantaneous trajectory velocity. This value is used to minimize following error
during the constant velocity portion of a move and can be changed at any time to tune the PID loop.
Velocity feedforward is an open-loop compensation technique and cannot affect the stability of the system.
However, if you use too large a value for Vff, following error can reverse during the constant velocity
portion, thus degrading performance, rather than improving it. Velocity feedforward is typically used
when operating in PIVff mode with either a velocity block amplifier or substantial amount of velocity
feedback. In these cases, the uncompensated following error is directly proportional to the desired velocity.

Aff (Acceleration Feedforward)
The acceleration feedforward gain (Aff) determines the contribution in the command output that is
directly proportional to the instantaneous trajectory acceleration. Aff is used to minimize following error
(position error) during acceleration and deceleration and can be changed at any time to tune the PID
loop. Acceleration feedforward is an open-loop compensation technique and cannot affect the stability
of the system. However, if you use too large a value of Aff, following error can reverse during acceleration
and deceleration, thus degrading performance, rather than improving it.

Dual-Loop Feedback
Motion control systems often use gears to increase output torque, increase resolution, or convert rotary
motion to linear motion. The main disadvantage of using gears is the backlash created between the motor
and the load. This backlash can cause a loss of position accuracy and system instability. The control loop
on the motion system corrects for errors and maintains tight control over the trajectory. The control
loop consists of three main parts—proportional, integral, and derivative—known as PID parameters.
The derivative part estimates motor velocity by differentiating the following error (position error) signal.
This velocity signal adds, to the loop, damping and stability. If backlash is present between the motor
and the position sensor, the positions of the motor and the sensor are no longer the same. This difference
causes the derived velocity to become ineffective for loop damping purposes, which creates inaccuracy
in position and system instability.

Using two position sensors for an axis can help solve the problems caused by backlash. As shown in
Figure 15.27, one position sensor resides on the load and the other on the motor before the gears. The
motor sensor is used to generate the required damping and the load sensor for position feedback. The
mix of these two signals provides the correct position feedback with damping and stability. 

15.3.3.3 Commutation

When a current-carrying conductor is placed in a magnetic field, it experiences a force. Motors are based
on this principle of physics. Motors comprise of permanent magnets and current-carrying conductors
in a mechanical assembly. Maintaining the correct direction of current and magnetic fields is critical to
proper operation of the motor. This functionality is called commutation. 

In case of brushed DC servo motors, a physical brush performs commutation by switching the current
between different conductors. However, in case of brushless servo motors, three phases of current are

FIGURE 15.27 Dual-loop feedback.
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electrically commutated. This requires commutation to be performed either by the motion controller or
the drive.

15.3.3.4 Current Loop (Torque Loop)

A current loop takes a set point from the position and velocity loop and uses feedback from a current
sensor to generate a voltage output signal. This voltage is used to control the power transistors in the
drive to ensure that the right amount of torque is being generated. While in brushed DC servo motors
the current command is directly proportional to the current in one winding in the motor, in brushless
servo motors it is dependent on current in three windings. As a result, brushless servo motors often come
paired with drives that include commutation and a pretuned current loop.

15.4 Motion Controller Hardware

A motion controller can be implemented on dedicated hardware connected to an analog drive, independ-
ent of the PC processor that hosts the user application. It can also be designed to share resources on the
PC processor with the user application with some functions being executed within a digital drive, thus
eliminating the need for dedicated motion controller hardware. These two architectures for implementing
a motion controller have their advantages and disadvantages.

15.4.1 Architecture of an Analog Motion Controller (Dedicated Processor)

A motion controller is responsible for executing supervisory control, trajectory generation, and control-
loop functions. In case of an analog motion controller, these functions are executed on dedicated hardware
that communicates with the host PC via an interface such as the PCI bus, USB, Ethernet, Serial RS 232,
and so forth. Commands from the user application running on the host computer are sent to the motion
controller via this interface. The motion controller performs supervisory control, trajectory generation,
and I/O synchronization, and executes position and velocity control loops. The motion controller then
sends commands in the form of 10V analog voltage signals to an analog drive that closes the current
loop. There are four main hardware components in a typical analog motion controller.

15.4.1.1 Microprocessor

A microprocessor runs amultitasking, real-time operating system, and handles host communication with
the PC and supervisory control including command processing and fault handling. 

15.4.1.2 Digital Signal Processor

A digital signal processor is used for math-intensive operations such as trajectory generation and position
and velocity loops. 

In some motion controllers, all the supervisory control, trajectory generation, and control-loop func-
tions are performed on a single microcontroller that includes I/O interfaces, memory, and clock in
addition to the CPU in an integrated circuit.

15.4.1.3 Field-Programmable Gate Array

Afield-programmable gate array (FPGA) is used to perform I/O synchronization functions such as encoder
decoding, position capture and position compare, motion I/O processing, and stepper pulse generation. 

15.4.1.4 Motion I/O

An analog motion controller connects to different types of motors as follows:

1. Brushed DC servo motor—An analog motion controller provides a �10 V analog output signal
to a servo drive that closes the current loop to move a brushed DC servo motor.

2. Brushless servo motor—An analog motion controller provides a �10 V analog output signal to
a servo drive that performs sinusoidal commutation and closes the current loop to move a brushless
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servo motor. In case the drive does not perform sinusoidal commutation, the analog motion
controller provides two analog output signals to the drive. The motion controller in this case
performs sinusoidal commutation in addition to closing the position and velocity loops.

3. Stepper motor—An analog motion controller provides step and direction signals to a stepper drive
to move a stepper motor. The motion controller performs step generation to output step and
direction signals.

15.4.2 Architecture of a SoftMotion-Based Motion Controller 
(Shared Processor with User Application)

In case of a soft motion-based motion controller, functions such as supervisory control and trajectory
generation execute on a real-time operating system shared with the operating system used for the user
interface on the same processor. Control loops are executed within the drive, thus eliminating the need
for dedicated motion controller hardware. Some configurations allow for the control loops to be also
closed on the shared processor.

Common operating systems that are used for soft motion-based motion controllers include off-the
shelf RTOSes such as QNX, Pharlap ETS, RTX, VxWorks, or Windows CE or, in many cases, proprietary
implementations by motion control vendors.

15.4.2.1 PC/PLC-Based with Analog Interface (Motion I/O Connected to the 
PC/PLC via PCI or ISA Bus)

A PLC-based SoftMotion controller runs on the real-time operating system on the PLC. It connects to
analog drives with a �10 V analog interface. In this case, the motion controller performs supervisory
control, trajectory generation on the PLC processor, and closes position and velocity control loops on
the PLC motion control modules. These modules connect to analog drives that handle the task of
commutation, closing the current loops. In this case, the motion controller tasks run at the highest
priority on the PLC processor and coexist with the user’s sequential logic tasks.

A PC-based SoftMotion controller runs on a real-time operating system (VxWin, VxCE, InTime) or
real-time extension (RTX, TwinCAT) that runs on a PC and shares the processor with Windows or any
desktop OS. In this case, the motion controller performs supervisory control, trajectory generation on
the PC processor, and closes position and velocity control loops on the PCI/ISA-based motion control
card plugged into the PC. These cards connect to analog drives that handle the task of commutation,
closing the current loops. In this case, since the motion controller runs on the real-time OS on the PC,
it is guaranteed bandwidth and priority over Windows or any desktop OS sharing the processor with it.

15.4.2.2 PC/PLC-Based with Deterministic Digital Network (Distributed Motion, 
I/O Connected to the PC/PLC via a Deterministic Network)

As discussed in Section 15.4.2.1, a SoftMotion controller shares the processor with either the PLC tasks
or tasks running on the Windows or desktop OS on a PC. The primary difference between this mode of
operation and the former is that in this mode the communication of the motion controller with the
drives is via a deterministic bus. This solves a number of issues faced in Section 15.4.2.1 such as
connectivity and signal integrity. This architecture is also termed as “DistributedMotion.” Similar to the
previous case, the motion controller performs supervisory control, trajectory generation, and in some
cases also closes the position and velocity control loops. The drives close handle the commutation and
close the current loops. They also support closing the position and the velocity loops that allow for lower
bandwidth utilization of the deterministic network. 

A primary requirement for such a configuration is that the digital network connecting the motion
controller to the digital drive is deterministic and that it is able to transmit data deterministically.
Emerging networks include IEEE 1394, Ethernet PowerLink, EtherCAT, SERCOS III, PROFInet (IRT),
EtherNET/IP, CANopen, and PROFIbus (MC).
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IEEE 1394
IEEE 1394 (isochronous) (www.1394ta.org) is a high speed, real-time digital network based on the serial
bus. It requires an IEEE 1394 interface on the host PC. It offers submillisecond response times and
submicrosecond jitter for use with soft motion-based motion controllers.

Ethernet PowerLink
Ethernet PowerLink (www.ethernet-powerlink.org) is an Ethernet-based digital network based on TCP/IP
and isochronous slot communication network management (SCNM). It offers submillisecond response
times and submicrosecond jitter for use with soft motion-based motion controllers.

EtherCAT
EtherCAT (www.ethercat.org) is an Ethernet-based digital network based on the principle of reading and
writing EtherCAT telegram packets as they pass through the different slave devices in cyclic order. It
offers submillisecond response times and submicrosecond jitter for use with soft motion-based motion
controllers.

SERCOS III
SERCOS-III (www.sercos.com) is an Ethernet-based digital network based on TCP/IP and the principle
of cyclic data transfer with an exact time pattern. It requires the use of a master to control the timing
behavior of the data transfer to the devices on the network. It provides submillisecond response rates
for use with soft motion-based motion controllers.

PROFInet (IRT)
PROFInet (isochronous real time) (www.profinet.com) is an Ethernet-based digital network that lever-
ages TCP/IP and DCOM standards, and works with internal switches in all devices to handle synchro-
nization. It provides submillisecond response rates for use with soft motion-based motion controllers. 

EtherNET/IP
EtherNET/IP (www.odva.org) is an Ethernet-based digital network that is based on TCP/IP and Control
switches and uses time stamps for synchronization. It provides clock-cycle synchronous data transmis-
sion, and Information Protocol (CIP) standards. It supports a star topologywith devices connected via
managed and millisecond response rates for use with soft motion-based motion controllers that per-
formsupervisory control and trajectory generation.

CANopen
CANopen (www.canopen.de) is a layer on CAN that is based on the DS301 communication profile and
the DS402 device profile for motion control. It supports deterministic data transmission, and millisecond
response rates for use with soft motion-based motion controllers that perform supervisory control and
trajectory generation. The control loops are closed on the digital drive.

PROFIbus (MC)
PROFIbus (Motion Control) (www.profibus.org) is based on the PROFIbus digital network with
enhancements to response times and clock synchronization. PROFIbus (MC) has response rates of several
milliseconds making it suitable for soft motion-based motion controllers that perform supervisory
control and trajectory generation. The control loops are closed on the digital drive.

15.5 Summary

Motion control systems are used to control the position, velocity, and torque of a rotational or linear
electromechanical device. A typical motion control system consists of a variety of components including
user interface, motion controller, drive, motor, feedback device, and motion I/O.The functions of a
motion controller include trajectory generation, supervisory control, and a position and velocity feedback
control loop.
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16.1 Introduction to Real-Time Systems

Real-time operating systems originated with the need to solve two main types of applications: event
response and closed-loop control systems. Event response applications require a response to a stimulus
in a determined amount of time; an example of such a system is an automotive airbag system. Closed-
loop control systems continuously process feedback in order to adjust an output; an automotive cruise
control system is an example of a closed-loop control system. Both of these types of systems require the
completion of an operation within a specific deadline. This type of performance is referred to as deter-
minism.

Real-time systems are sometimes classified as “soft” or “hard.” Soft real-time typically means the utility
of a system is inversely proportionate to how long it has been since a deadline is missed. For example,
when pressing a cell phone button to answer an incoming call, the connection must be established soon
after the button has been pressed. However, the deadline is not mission-critical and small delays can be
tolerated. Hard real-time systems are those in which the utility of a system becomes zero in the event of
a missed deadline. An automotive engine control unit (ECU) must process incoming signals and calculate
spark plug timing within a deadline. If the deadline is missed, the engine will fail to operate correctly.
The usefulness of a task after a deadline is missed depends on whether the system is a soft real-time or
a hard real-time system, as shown in Figure 16.1.

Operating systems such as Microsoft Windows and Mac OS provide an excellent platform for developing
and running your noncritical measurement and control applications. However, because these operating

Gerardo Garcia
National Instruments, Inc.
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systems are designed for general purpose use, they are not the ideal platforms for running applications
that require deterministic performance or extended uptime. 

General-purpose operating systems are optimized to run a variety of applications simultaneously,
ensuring that all applications receive some processing time. These operating systems must also respond
to interrupts from peripherals such as the mouse and keyboard. The user has limited control regarding
how these tasks are handled by the processor. As a result, high-priority tasks can be preempted by lower
priority tasks, making it impossible to guarantee a response time for your critical applications.

In contrast, real-time operating systems give users the ability to prioritize tasks so that the most critical
task can always take control of the processor when needed. This property enables you to program an
application with predictable results. 

Real-time operating systems are required when the processor is involved in operations such as closed
loop control and time-critical decision making. These applications require timely decisions to be made
on the basis of incoming data. For example, an I/O device samples an input signal and sends it directly
to memory. Then, the processor must analyze the signal and send the appropriate response to the I/O
device. In this application, the software must be involved in the loop; therefore, you need a real-time
operating system to guarantee response within a fixed amount of time. In addition, applications requiring
extended run-times or stand-alone operation are often implemented with real-time operating systems.

16.2 Real-Time Development Tools

Traditional real-time software development requires a code editor to develop code, a compiler to generate
embedded code, and a compatible debugger to validate the application, as well as tools to profile the
application performance, track memory usage, and trace system thread execution. Many software devel-
opment packages integrate these tools into one environment. An example of such an environment is the
LabVIEW Real-Time Development Module. Figure 16.2 depicts the real-time development environment,
including the host computer for software development and the real-time target for execution.

System profiling tools are important for optimizing the execution of a real-time system. The LabVIEW
Execution Trace Toolkit is an example of a tracing tool that captures low-level execution details of a
realtime application. Figure 16.3 shows a typical trace capture that displays when application tasks
executed in time.

FIGURE 16.1 Differences between hard and soft real-time.
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Hardware deployment platforms vary depending on the application. Real-time applications use desktop
PCs, modular hardware platforms such as PXI, off-the-shelf rugged controllers such as programmable
logic controllers (PLCs) and programmable automation controllers (PACs), single-board computers, and
embedded microprocessors on custom hardware. The popular NI CompactRIO PAC is shown in Figure
16.4. An appropriate real-time operating system is used in these hardware platforms to execute the
application software.

16.2.1 Operating System Scheduler

All real-time operating systems have a scheduler that coordinates the execution of tasks (threads) by the
CPU. There are various scheduling methods that are used by operating systems. Round-robin scheduling
shares processor time between threads based on equal slices of time. 

To illustrate round-robin scheduling, we consider the analogy of an automobile repair shop. The
mechanic represents the CPU, the shop manager represents the scheduler, and multiple cars represent
the multiple threads of our system. Using round-robin scheduling, the mechanic will cycle between each
car for a set period of time. Round-robin scheduling guarantees that each thread will have some time
with the processor.

FIGURE 16.2 Real-time development process.

FIGURE 16.3 Application tracing tool.
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Another method of scheduling is called preemptive scheduling, where priority can be given to the
time-critical tasks.When a time-critical thread needs time from the processor, the other threads will wait
until the time-critical thread is finished. In the repair shop example, an ambulance is assigned time-
critical priority. As a result, it will be serviced as soon as it arrives. All other cars will be put on hold
until the ambulance service is complete. Once the ambulance service is complete, the other cars will
continue to share time with the mechanic. Figure 16.5 shows an example of two tasks running at different
priority levels. Task B has a higher priority and runs every half millisecond, while Task A runs every
10 ms. The red flags indicate when Task A is preempted so that the higher priority Task B can be executed.

16.3 Real-Time Software Architecture

When developing a real-time application, you must decide which operations need to have real-time
performance and which operations do not. The components that need real-time performance are those
that need to occur within a specific period of time, meaning they are deterministic. These time-critical
tasks should be assigned the highest priority in the application. 

Operations that are of lower priority will run only when the time-critical operations are suspended.
Examples of low priority operations are communication with a host computer, reading and writing to
files, and nondeterministic communication with external instruments. These operations are sometimes
called the house-keeping tasks.

FIGURE 16.4 NI CompactRIO programmable automation controller.

FIGURE 16.5 Example trace of preemptive scheduling.
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16.4 Deterministic Timing

Determinism is how consistently a systemis able to perform operations within a fixed period of time.
This is the most fundamental component of all real-time systems. Jitter is the variance between the
expected execution time of a real-time task and the actual execution time. All real-time systems have
some jitter; however, the jitter is bound and can be quantified. Systems that are not real time have very
large or unbounded jitter. Figure 16.6 depicts a jitter diagram.

The most basic source of jitter is variation in the clock. However, you can induce additional jitter if
you do not follow certain programming practices. To reduce jitter, tasks are programmed to run peri-
odically on the basis of a hardware clock that can be derived from an I/O signal or a precise CPU timer.
Figure 16.7 shows the configuration of a real-time task set to run every 500 ms.

FIGURE 16.6 A jitter diagram.

FIGURE 16.7 Real-time task configuration.

1

2

3

4

5

Loop Time

Lo
op

 It
er

at
io

n

Desired Loop Time

Jitter

9260_16.fm  Page 5  Friday, October 5, 2007  11:13 AM



16-6 Mechatronic System Control, Logic, and Data Acquisition

16.5 Implementing Real-Time Control

Control algorithm implementation is an important part of real-time system development. Control
strategies can vary in complexity, from simple digital logic to advanced mathematical models that are
carefully tuned to control dynamic systems. A typical block diagram of a closed-loop control system is
shown in Figure 16.8.

16.5.1 Proportional-Integral-Derivative Control

The proportional-integral-derivative (PID) algorithm is the most common control algorithm used in
industry. With PID, you specify a process variable and a set point. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate, and the set point is the desired
value for the parameter you are controlling.

The proportional gain determines the ratio of output response to the error. The error is the difference
between the set point and the process variable. In general, increasing the proportional gain will increase
the speed of the control system response. However, if the proportional gain is too large, the process
variable will begin to oscillate.

The integral component sums the error term over time. The integral response will continually increase
over time unless the error is zero, so the effect is to drive the steady state error to zero.

The derivative component causes the output to decrease if the process variable is increasing rapidly.
The derivative response is proportional to the rate of change of the process variable.Most practical control
systems use very small derivative time, because the derivative response is highly sensitive to noise in the
process variable signal.

16.5.2 Fuzzy Logic Control

Fuzzy logic control is most often used for expert systems and process control. It is a method of rule-
based decision making that emulates the rule of thumb thought process of humans. If an expert can
qualitatively describe a control strategy, fuzzy logic can be used to develop the controller.

16.5.3 Model-Based Control Design

Another method for designing control systems is by using model-based design methods. This involves
using software tools to model the behavior of dynamic systems completely in software. Then, designers
can use mathematical software tools to develop control algorithms and test them with the software
simulation of the dynamic system. Figure 16.9 shows a simulation diagram created in LabVIEW.

FIGURE 16.8 The block diagram of a closed-loop control system.
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16.6 Monitoring Systems

Real-time systems are usually monitored by one or more human–machine interfaces (HMI) that send
and receive data from the real-time controllers. These HMIs can be in the form of powerful desktop
servers, laptops, PDAs, web browser interfaces, or touch-panel displays. Communication is done through
a variety of media and protocols. Ethernet is widely used as a media of data transfer with differing
protocols depending on the application. These include TCP/IP for point-to-point streaming, OLE for
Process Control (OPC) for distributed control systems, or web servers for remote viewing. Other methods
for communicating are serial interfaces, fieldbuses such as PROFIBUS and DeviceNet, and wireless media
such as WIFI and Bluetooth.

Large distributed real-time systems typically use a Supervisory Control and Data Acquisition (SCADA)
system for monitoring. These systems have visualization features and can display data from real-time
controllers, show alarm conditions, and log data to databases. An example of a SCADA software is the
LabVIEW Datalogging and Supervisory Control (DSC) Module. A SCADA visualization of a heat
exchanger is shown in Figure 16.10. 

For distributed real-time control systems, data can be stored on multiple computers and monitored
centrally, or it can be stored on one central server. The most difficult challenge is to communicate with
live data. OPC is an industry standard interface through which software and hardware can communicate
irrespective of the manufacturer. Controller hardwares from different manufacturers communicate with
their own OPC server on a host system and publish I/O and calculated values as tags. SCADA systems
act as OPC clients that subscribe to tags from all the individual OPC servers. Figure 16.11 shows a
LabVIEW project with a list of tags that can be read from OPC servers to develop an operator interface.

For some applications, OPC data transfer may not be fast enough. In these cases, using lower-level
protocols such as TCP/IP and UDP allows you to send data at faster rates.

16.7 Summary

In summary, real-time systems solve a variety of applications that require determinism and reliability.
To achieve such requirements, real-time operating systems define strict scheduling behavior, which all

FIGURE 16.9 Simulation diagram.
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software abides by. Due to the complex nature of real-time applications and the small margin for error,
developers must employ good programming practices in order to be successful.

Further Information

Web sites

1. http://www.omimo.be/encyc/publications/faq/rtfaq.htm
2. http://www.ni.com/realtime

FIGURE 16.10 SCADA visualization.

FIGURE 16.11 OPC tags.
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3. http://zone.ni.com/devzone/cda/tut/p/id/3938
4. http://zone.ni.com/devzone/cda/tut/p/id/4040
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17.1 Micromechatronic Systems Design

Micromechatronic systems integrate actuators, sensors, power electronics, and ICs. Within a focus on
high-performance micromechatronic systems, books [1–3] cover the general issues in the systems design.
Important topics and issues are outlined and covered in this section. One of the major components of
micromechatronic systems is a high-performance microelectromechanical motion device that (1) con-
verts physical stimuli to electrical or mechanical signals and vice versa, and, (2) performs actuation and
sensing. These motion devices are controlled by ICs. Electromagnetic and electromechanical features of
microelectromechanical motion devices are basics of their operation, design, analysis, and fabrication.
Correspondingly, motion devices and ICs are designed taking into account possible system architectures
[1–3]. The baseline step-by-step procedure in the design of micromechatronic systems is 

1. Define application and environmental requirements 
2. Specify performance specifications

*Some results reported in this chapter were published in [1–3].

Sergey Edward Lyshevski
Rochester Institute of Technology
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17-2 Mechatronic System Control, Logic, and Data Acquisition

3. Devise (synthesize) microelectromechanical motion devices (actuators and sensors) researching
operating principles, topologies, configurations, geometry, electromagnetic systems, and so forth

4. Perform electromagnetic, mechanical, and sizing-dimension estimates
5. Define technologies, techniques, processes, and materials to fabricate electromechanical motion

devices
6. Design ICs to control electromechanical motion devices
7. Develop high-fidelity mathematical modelswith minimumlevel of simplifications and assumptions

to examine integrated electromagnetic–mechanical phenomena and effects
8. Perform coherent electromagnetic and mechanical analysis
9. Modify and refine the design optimizing performance

10. Design control laws to control motion devices and implement these controllers using ICs
11. Integrate micromechatronic system

One of the most challenging design problems is the system architecture synthesis, system integration,
optimization, and hardware (actuators, sensors, power electronics, ICs, microcontrollers, and DSPs)
selection. The design starts with a given set of requirements and specifications. High-level functional
design is performed first in order to produce detailed design at the subsystem and component level.
Using the advanced subsystems and components, the initial design is performed, and the closed-loop
electromechanical system performance is tested against the requirements. At each level of the design
hierarchy, the system performance in the behavioral domain is used to evaluate and refine the design.
The design flow is illustrated in Figure 17.1.

The micromechatronic system is illustrated in Figure 17.2. The systemperformance is measured against
many criteria, for example, stability, robustness, transient behavior, accuracy, disturbance attenuation,
and so forth. In the behavioral domain, the designer can examine and optimize the input–output transient
dynamics using the tracking error e(t) = y(t) � r(t), where y(t) and r(t) are the output and reference
(command) variables. The tracking error e(t) is minimized and dynamics is optimized using different
performance criteria. For example,

FIGURE 17.1 Design flow in synthesis of micromechatronic systems.
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Mechatronic systems (robots, electric drives, servomechanisms, pointing systems, assembles, etc.) are
actuated by electromechanical motion devices that are highly nonlinear systems. Therefore, accurate
actuator actuation and control are very important problems. Depending on operation and functionality
of motion devices, onemust derive the expressions for the voltages applied to the phase windings in order
to maximize the electromagnetic torque and ensure optimality. Actuators and sensors must be designed
and integrated with the corresponding power electronics and ICs. The control laws are implemented
using analog controllers, which can be integrated with power electronics (PWM amplifiers), as well as
digital controllers (microcontrollers and DSPs). The principles of matching and compliance are general
design principles that require that the system architectures should be synthesized integrating all sub-
systems and components. The matching conditions have to be determined and guaranteed, and actua-
tors— sensors—power electronics—ICs—controller compliance must be ensured. 

A functional block diagram of a controlled micromechatronic system is illustrated in Figure 17.3.
Different techniques to design optimal controllers are reported in the next section. Those controllers
should be derived using the baseline electromagnetic laws that define the operating principles of elec-
tromechanical motion devices. It was emphasized that depending on the motion devices, distinct power
electronics must be utilized. High-performance micromechatronic systems can be designed using per-
manent-magnet electromechanical motion devices that ensure high torque and power densities. Radial
and axial technology permanent-magnet motion devices are covered in the following sections.

17.2 Tracking Control of Micromechatronic Systems

In general, mechatronic systems are nonlinear [1–3]. Using the Hamilton–Jacobi theory and Lyapunov
concepts, design of control algorithms for nonlinear systems is reported in References 1–3. To introduce

FIGURE 17.2 Dynamic micromechatronic system.

FIGURE 17.3 High-level functional block diagram of the closed-loop micromechatronic system.
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17-4 Mechatronic System Control, Logic, and Data Acquisition

the design, we consider linear and nonlinear models. A linear model is given as

(17.1)

where xsys � Xsys � �n is the state vector with auxiliary conditions; u � U � �m is the control vector;
y � Y � �b is the output vector; and Asys � �

n×n
 and Bsys � �

n×m
 are the constant-coefficient matrices.

Define the tracking error vector as

(17.2)

Therefore, from Equations 17.1 and 17.2, one finds

 (17.3)

Using the expanded state vector x(t) = , we have

(17.4)

The space transformation method is based on the use of the following z and v vectors: z =  and
v = . Thus, from Equation 17.4, we obtain the system

(17.5)

Minimizing the quadratic performance functional

(17.6)

with respect to the system dynamics (Equation 17.5), the application of the first-order necessary condition
for optimality gives

(17.7)

The Riccati equation

(17.8)

is solved to find the unknown matrix K � �(n+m)×(n+m). Taking note of Equation 17.7, one has

(17.9)

x

uu·
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Using (t) = Ax�Bu, wehave u = B�1
 ( (t) � Ax) = (BTB)�1 BT ( (t) �Ax). From Equation 17.9, one

obtains

(17.10)

Using Equation 17.10, and taking note of x(t) = , one finally derives the proportional-integral
controller in the following form

(17.11)

For nonlinear micromechatronic systems, as given by

(17.12)

the proposed procedure can be straightforwardly used. In Equation 17.12), F(.): �
n

 � �
n

 and B(.):
�

n
� �

n×m
 are the smooth Lipschitz maps; H � �

b×c
 is the output matrix with constant coefficients.

The proportional-integral controller for Equation 17.12 is given as

(17.13)

where V(x, u) is the return function.
The control law is bounded, and umin � u � umax. To design the admissible control laws, we minimize

(17.14)

where �(.): �
n
 � �

m
 is the bounded, integrable, one-to-one, real-analytic, globally Lipschitz continuous

function, � � U � �
m

.
Minimizing Equation 17.14 with umin � u � umax, u  U, for linear and nonlinear systems, we have

(17.15)

(17.16)

Using the first-order necessary condition for optimality, the minimization of Equations 17.15 and 17.16
results in the admissible controllers

(17.17)

x· x· x·
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Assuming that the solution of the Hamilton-Jacobi equation is approximated by the quadratic return
function, from Equation 17.17, one obtains

(17.18)

The admissible control law synthesized is bounded, and the second-order necessary condition for
optimality is satisfied. However, the sufficient conditions must be examined. Using the admissibility
concept, it is demonstrated in References 1–3 that a system with bounded control (Equation 17.18) is
stable in X(X0,U), and robust tracking is guaranteed in the convex and compact set E(E0, Y, R) if for the
reference input r � R there exists a positive-definite function V(e,x) such that [dV(e, x)]/dt � 0. If the
criteria imposed on the Lyapunov pair, V(e, x) > 0 and [dV(e, x)]/dt � 0, are guaranteed for all x0 � X0,
e0 � E0, u � U, and r � R, then, the closed-loop system is robustly stable in X(X0,U), and robust tracking
is guaranteed in the convex and compact set E(E0, Y, R). By computing the derivative of the V(e, x), the
unknown feedback gains can be found to satisfy the sufficient conditions for stability. 

The designed analog controllers may be implemented using microcontrollers. Therefore, analog con-
trollers are discretized. The feedback gains kdp and kdi of the digital control law are found using the
proportional, integral, and derivative coefficients of the analog PID controller (kp and ki) as well as the
sampling period Ts. We have kdp = kp .  kdi and kdi = Tski. In particular, the controller can be implemented
as u (kTs) = kpe (kTs) + kiTs [e ((i �1)Ts) + e (iTs)]. The proportional-integral controllers with
the state feedbacks are implemented in the similar way, and the state variables are sampled at the specified
sampling period Ts.

17.3 Synthesis of Microelectromechanical 
Motion Devices

The designer synthesizes microelectromechanical motion devices by devising and examining baseline
physics and operational principles. Axial and radial topology, ac and dc, electromagnetic and electrostatic,
and other actuators are covered in [1–3]. To introduce the synthesis taxonomy, we consider radial topology
two-phase permanent-magnet synchronous motion devices as shown in Figure 17.4. The electromagnetic
system is endless, and different geometries can be utilized. In contrast, the translational (linear) synchro-
nous machines have the open-ended electromagnetic system. Thus, the device geometry and electromag-
netic systems can be integrated within the synthesis, classification, analysis, design, and optimization
taxonomy. In particular, motion devices can have different geometries (plate, spherical, torroidal, conical,
cylindrical, and asymmetrical) and electromagnetic systems. Using these distinct features, one can classify
motion devices.

The basic types of electromagnetic motion devices are induction, synchronous, while topologies are
rotational and translational (linear). That is, devices can be classified using a type classifier as given by
Y = {y : y � Y}. As illustrated in Table 17.1, electromechanical motion devices are categorized using a
geometric classifier (plate P, spherical S, torroidal T, conical N, cylindrical C, or asymmetrical A geom-
etry), and an electromagnetic system classifier (endless E, open-ended O, or integrated I). The classifier,
as documented in Table 17.1, is partitioned into 3 horizontal and 6 vertical strips, and contains 18
sections, each identified by ordered pairs of characters, such as (E, P) or (O, C). In each ordered pair,
the first entry is a letter chosen from the bounded electromagnetic system set M�{E, O, I}. The second
entry is a letter chosen from the geometric set G�{P, S, T, N, C, A}. That is, the electromagnetic
system—geometric set is

M × G � {(E, F), (E, S), (E, T), . . . , (I, N), (I, C), (I, A)}.

In general, we have M × G � {(m, g) : m � M and g � G}.

1
2
--

1
2
--

i 1=

k

∑
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Other categorization can be applied. For example, multiphase motion devices are classified using a
phase classifier H = {h : h � H}. Therefore, we have

Y × M × G × H = {(y, m, g, h) : y � Y, m � M, g, � G and h � H}

Topology (radial, axial, or integrated), permanent magnet shapes (strip, arc, disk, rectangular, rhomb,
triangular, etc.), permanent magnet characteristics (BHdemagnetization curve, energy product, hysteresis
minor loop, etc.), electromotive force distribution, cooling, power, torque, size, torque-speed character-
istics, bearing, packaging, as well as other distinct features can be classified. Hence, microelectromechan-
ical motion devices can be devised and classified by an N-tuple as: motion device type, electromagnetic
system, geometry, topology, phase, winding, sizing, bearing, cooling, fabrication, materials, packaging,
and so forth.

By using distinct geometry, electromagnetic systems (endless, open ended, and integrated), topologies,
and other features, novel high-performance motion devices can be synthesized by utilizing the Synthesis
and Classification Solver. For example, the spherical, conical, and cylindrical geometry of two-phase
permanent-magnet synchronous motion devices are illustrated in Figure 17.5. The cross-section of the
slotless radial-topology synchronous microactuator, fabricated on the silicon substrate with polysilicon
stator (with deposited windings), polysilicon rotor (with deposited permanent magnets), and contact

FIGURE 17.4 Radial topology permanent-magnet synchronous motion devices with endless electromagnetic system
and different geometries.
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17-8 Mechatronic System Control, Logic, and Data Acquisition

bearing is illustrated in Figure 17.6. The fabrication of this microactuator and the processes are reported
in References 1–3.

The major task is to devise high-performance motion devices relaxing fabrication difficulties guaran-
tying affordability. The electrostatic and planar motion devices fabricated and tested to date are found
to be inadequate for a wide range of applications owing to specifications imposed on performance [1–3].
Figure 17.7 illustrates the axial topology motion device. The stator is made on the substrate with deposited
windings (surface micromachined or printed coils can be made using the fabrication processes as well
as using double-sided substrate, applying conventional photolithography and etching processes [1–3]).
The bearing post is fabricated on the stator substrate and the bearing hold is a part of the rotor
microstructure. The rotor with permanent-magnet thin films rotates because of the electromagnetic
torque developed. It is important to emphasize that stator and rotor are made using the conventional
well-developed processes and materials.

FIGURE 17.5 Two-phase permanent-magnet synchronous motion devices with endless electromagnetic system and
distinct geometries.
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17.4 Micromechatronic System with an Axial Topology 
Motion Device

High-torque-density permanent-magnet axial-topology actuators with high switching-frequency power
electronics and ICs, controlled by controllers (microcontroller or analog controllers), are found to be a
very promising solution. High performance is achieved by utilizing: (1) high-torque-density brushless
motion devices; (2) designing tracking controllers implemented utilizing controllers that integrate filters,
IO devices, and advanced converters; (3) high-performance two- and four-quadrant power stages. The
control laws are designed to satisfy the specifications imposed. Consider a servosystem as depicted in
Figure 17.8. The reference signal is the angular displacement. Using the reference �ref  and actual �r angular
displacements (measured by the high-accuracy optical sensor), the controller develops PWM signals to

FIGURE 17.6 Cross-section schematics of a slotless radial-topology permanent-magnet brushless microactuator
with controlling ICs.

FIGURE 17.7 Cross-section of an axial topology motion device with controlling ICs.

FIGURE 17.8 Schematic diagram of a servosystem: controller; ICs; actuator/sensors; and mechanism.
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17-10 Mechatronic System Control, Logic, and Data Acquisition

drive high-frequency field effect transistors in the power stage. The output voltage uas is controlled by
changing the duty cycle. 

A limited-angle axial-topology permanent-magnet microactuator is documented in Figure 17.9. This
device is used in the studied hard drive reported in Figure 17.8. To rotate the disk and displace the pointer,
we utilize axial topology direct-drive synchronous actuators with the segmented array of the permanent-
magnet strips. These high-torque-density permanent-magnet actuators exceed performance characteris-
tics achieved by other servomotors [1–3]. The mathematical model must be found and used in the design
of controllers as well as numerical analysis. The magnetic field developed by the magnets is approximated
as continuous or discontinuous functions, for example, B(�r) = Bmax sgn(sin( Nm�r)), where Bmax is the
magnetic flux density from the permanent magnets as viewed at the coils; Nm is the number of magnets.
For the limited-angle actuator, depending on the geometry, magnetization, and separations of magnets,
one can approximate B(�r) as B(�r) = Bmax tanh

q
(k�r), where q is the technologydependent integer, and

usually one finds q = 1 or q = 3; k is the technology-dependent coefficient.
The electromagnetic torque is derived using the magnetic dipole moment m, for example,

Te � m × B. That is, for the symmetric two-filament limited angle actuator, for q � 1 we obtain Te

� 2NlBmax |tanh(k�r)| ias, where N is the number turns in filaments; l is the equivalent coil active
length; ias is the current in the coil. 

The mathematical model is found by using Kirchhoff ’s and Newton’s second laws. In particular, the
following circuitry and torsional–mechanical equations are used.

where uas is the applied voltage; rs is coil resistance; as is the flux linkages as viewed from the winding;
Bm is the friction coefficient; TL is the load torque; J is the equivalent moment of inertia.

The flux linkage is expressed as

where Las is the self-inductance, and Ae is the equivalent cross-sectional area.

FIGURE 17.9 Axial topology actuator.
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A set of nonlinear differential equations that models an axial topology microactuator is

The bounded proportional-integral tracking controller with state feedbacks (Equation 17.18) is designed 

using the state transformation method. We use the expanded state vector as z =  

where xsys(t ) =  Using different weighting matrices Qz and Gz in Equation 17.14, distinct 

feedback gains are obtained. Letting Qz = I and Gz = 1, for the bounded controller (Equation 17.18)
synthesized we have kp = 31 and ki = 24. The output dynamics for �ref = 0.349 rad is shown in
Figure 17.10 for Ts = 0.0014 s. For kp = 31 and ki = 24 with the state feedbacks, the settling time is
0.027 s, and the overshoot is 27%. It is possible to minimize the overshoot to 13%. The application
of proportional-integral controllersmay not ensure the desired transient behavior as reported in Figure
17.10, when kp = 20 and ki = 19. We tested the servo without a return spring that is commonly used
to ensure mechanical damping. Thus, the most challenging problem is considered. Pointer acceleration
and deceleration are achieved by properly controlling the actuator that operates at very high efficiency
and develops high electromagnetic torque.We conclude that optimal performance is achieved.

17.5 Synchronous Micromachines

In micromechatronics systems, rotational and translational motion devices (actuators and sensors), con-
trolled by ICs, are widely used. Among various devices, synchronous permanent-magnet motion devices
exhibit superior performance. The advantages of axial topology motion devices are feasibility, efficiency,
and reliability. Fabrication simplicity results because: (1) magnets are flat; (2) there are no strict shape
requirements imposed on magnets; (3) rotor back ferromagnetic material is not required; (4) it is easy to
deposit planar windings on the flat stator. An axial topology permanent-magnet two-phase synchronous
motion device is documented in Figure 17.11.

For two-phase actuator, one supplies two phase voltages uas and ubs in order to develop an electromag-
netic torque. Assuming that the magnetic flux is constant through the magnetic plane (current loop),
the torque on a planar current loop of any size and shape in the uniformmagnetic field is T = is × B =
m × B, where i is the current in the loop (winding); m is the magnetic dipole moment. The electromag-
netic force is given as F = l × B. The interaction of the current (in windings) and magnets will produce
the rotating electromagnetic torque. Microscale synchronous transducers can be used as motors (actu-
ators) and generators (sensors). Microgenerators (velocity and position sensors) convert mechanical
energy into electrical energy, while micromotors (actuators) convert electrical energy into mechanical
energy. A broad spectrum of synchronous microtransducers can be used as actuators, for example,
microscale drives, servos, and power systems.

Distinct electrostatic and electromagnetic motion devices can be designed and fabricated using the
surface micromachining technology. However, all high-performance, high-power, and torque density
devices are electromagnetic, and these devices use permanent magnets. Therefore, the issues of fabrication
and analysis of magnets are of great interest. Different soft and hard magnets can be fabricated using surface
micromachining. In particular, Ni, Fe, Co, NiFe, and other magnets can be made. In general, four types of

id∫°
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17-12 Mechatronic System Control, Logic, and Data Acquisition

high-performance magnets have been commonly used in electromechanical motion devices, for example,
neodymium iron boron (Nd2Fe14B), samarium cobalt (usually Sm1Co5 and Sm2Co17), ceramic (ferrite),
and alnico (AlNiCo). The term soft is used to refer to magnets that have high saturation magnetization
and a low coercivity (narrow BH curve). Another property of these magnets is their low magnetostriction.
The soft magnets have been widely used in magnetic recording heads, and, in particular, NiFe thin films
with the desired properties have been utilized. Hard magnets have wide BH curves (high coercivity) and,
therefore, high-energy storage capacity. These magnets should be used in devices in order to attain high
force, torque, and power densities. Unfortunately, limited progress has been made in the fabrication of
hard permanent magnets.

The energy density is given as the area enclosed by the BH curve, for example, wm � B . H. When
magnets are used in motion devices, the demagnetization curve (second quadrant of the BH curve) is of

FIGURE 17.10 Transient dynamics of the closed-loop servo with the bounded proportional-integral controller with
state feedback.
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Micromechatronics and Microelectromechanical Motion Devices 17-13

interest. Permanent magnets store, exchange, and convert energy. In particular, permanent magnets pro-
duce stationary magnetic field without external energy sources or radiation devices.We apply Kirchhoff ’s
and Newton’s laws to derive the equations of motion for axial topology permanent-magnet synchronous
motion devices. Using an axial permanent-magnet synchronous device documented in Figure 17.11, we
assume that this variation of the flux density is sinusoidal, for example, B(�r) = Bmax sinn( Nm�r), n = 1,
3, 5, . . ., where Bmax is the maximum flux density in the airgap produced by the magnet as viewed from
the winding; n is the integer that is a function of the magnet geometry and the waveform of the airgap
B. It should be emphasized that Bmax depends on the magnets used, airgap length, temperature, and so forth.

The electromagnetic torque, developed by a single-phase axial topology permanent-magnet synchron-
ous actuator, is found using the expression for the coenergy Wc (ias, �r) that is given as Wc (ias, �r) �
NAeB(�r)ias. Assuming that the airgap flux density obeys B(�r) = Bmax sin( Nm�r), we haveWc (ias, �r) �
NAeBmax sin( Nm�r)ias, and the electromagnetic torque is

As we fed the following currentwith the magnitude i
M to the micromotorwinding ias � i

M cos( Nm�r),
the electromagnetic torque is Te � NmNAeBmaxiM cos2( Nm�r) 	 0. The mathematical model of the
single-phase permanent-magnet micromotor is found by using Kirchhoff ’s and Newton’s second laws.
In particular, one obtains

FIGURE 17.11 Axial permanent-magnet synchronous motion device.
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17-14 Mechatronic System Control, Logic, and Data Acquisition

Taking note of the flux linkage equation as � Lasias � NAeB(�r), we have a set of three first-order
nonlinear differential equations that models a single-phase axial topology permanent-magnet synchro-
nous motion device

17.6 Fabrication Aspects

Mini and microscale electromechanical motion devices can be fabricated by creating (etching or depos-
iting) of conductors (coils and windings), ferromagnetic core, magnets, insulating layers, as well as other
microstructures (radiating energy devices, movable and stationarymembers, and their components
including bearings and posts). The subsequent order of the processes, sequential steps, and materials are
different depending on the devised, designed, analyzed, and optimized devices. Several textbooks [1–6]
provide the reader with the basic fabrication features and processes. In partcilular, the electrostatic devices
are covered in References 1–6, while the electromagnetic motion devices are reported in References 1–3.
Complementary metal oxide semiconductor (CMOS), high aspect ratio (LIGA and LIGA-like), and
surface micromachining technologies are key features for fabrication of microdevices and structures. The
LIGA (Lithography–Galvanoforming–Molding, or in German Lithografie–Galvanik–Abformung) tech-
nology allows one to make three-dimensional microstructures with the aspect ratio (depth versus lateral
dimension is more than 100). The LIGA technology is based on the x-ray lithography that ensures short
wavelength (from few to 10 Å), which leads to negligible diffraction effects and larger depth of focus
compared with photolithography. The major processes in the machine’s microfabrication are diffusion,
deposition, patterning, lithography, etching, metallization, planarization, assembling, and packaging.
Thin film fabrication processes were developed and used for polysilicon, silicon dioxide, silicon nitride,
and other different materials (e.g., metals, alloys, composites, etc.). The basic steps are lithography,
deposition of thin films and materials (electroplating, chemical vapor deposition, plasma-enhanced
chemical vapor deposition, evaporation, sputtering, spraying, screen printing, etc.), removal of material
(patterning) by wet or dry techniques, etching (plasma etching, reactive ion etching, laser etching, etc.),
doping, bonding (fusion, anodic, and other), and planarization.

To fabricate motion and radiating energy microscale structures and devices, different fabrication tech-
nologies are used [1–6]. New processes were developed and novel materials were applied modifying the
CMOS, surface micromachining, and LIGA technologies. Currently, the state-of-the-art technology in
microfabrication has been progressed to the nanometer minimal features. Motion devices and structures
(stator, rotor, bearing, coils, etc.) are defined photographically, and the high-resolution photolithography
is applied to define two- (planar) and three-dimensional shapes (geometry). Deep ultraviolet lithography
processes were developed to decrease the feature sizes of microstructures to 0.1 ƒÊm and less. Different

ψ
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exposure wavelengths 
 (435, 365, 248, 193 nm) are used. Using the Rayleigh model for image resolution,
the expressions for image resolution iR and the depth of focus dF are iR � ki  and dF � kd  , where
ki and kd are the lithographic process constants; 
 is the exposure wavelength; NA is the numerical aperture
coefficient, and for high-numerical aperture we have NA � 0.5–0.6.

The g- and i-line IBM lithography processes (with wavelengths of 435 and 365 nm, respectively) allow
one to attain minimal features in the range of 0.35 µm. The deep ultraviolet light sources (mercury source
or excimer lasers) with 248-nm wavelength enable the industry to achieve 0.25 µm resolution, leading
to the minimal features in the range of 0.13 µm. The changes to short exposure wavelength possess
challenges and present new highly desired possibilities. Using advanced lithography, 90-nm features were
achieved. Different lithography processes commonly applied are photolithography, screen printing, elec-
tron-beam lithography, x-ray lithography (high-aspect ratio technology), and so forth. Althoughmachine
topologies and configurations vary, magnetic and insulating materials, magnets, and windings are used
in all motion devices. Figure 17.12 illustrates the electroplated 10 µm wide and thick with 10 µm spaced
insulated copper microwindings (deposited on ferromagnetic cores), microstructures, and permanent
magnets (electroplated NiFe alloy). Finally, it must be emphasized that usually the size of microelectro-
mechanical motion devices is defined by the torque and power densities specified. Those requirements,
as well as physical limits, define the device dimensionality.
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15.1 Introduction to Motion Control

15.1.1 Definition

Motion control involves precisely controlling the position, velocity, and torque of a rotational or linear
electromechanical device. Examples of such devices include hydraulic pumps, linear actuators, and
electric motors.

15.1.2 History

In 1831, Michael Faraday discovered electromagnetic induction—electricity being generated in a wire
by means of the electromagnetic effect of a current in another wire, and magneto-electric induction—
electricity being generated in a wire by means of the electromagnetic effect of a magnet. These results
led to the creation of the modern electric motor.

The industrial revolution put the motor to use in a variety of applications. A single motor was typically
used by multiple machines connected to a drive train using belts for transmission and gears for speed
reduction. A clutch was used to engage and disengage different machines on the drive train.

Complex machines were designed for mass production using a motor connected to amechanical system
based on gears and cams. Hundreds of parts were produced on the same line as long as no parameter in
the design changed.

As world moves from mass production to mass customization, machine designers want the same
machine to handle a variety of different products at different times in the day, with minimal
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15-2 Mechatronic System Control, Logic, and Data Acquisition

changeover time. Servo-based motion control systems enabled tight control over position and move
profiles. Thus most machines today are complex electromechanical systems involving servo-based control.

15.2 Components of a Typical Motion Control System

A typical motion control system consists of a variety of components including user interface, motion
controller, drive, motor, feedback device, and motion I/O. These components work together seamlessly
to control the position, velocity, or torque of an electromechanical device. Figure 15.1 shows the different
components of a motion control system.

15.2.1 User Interface

The user interface component accepts commands from the engineer or operator and sends them to the
motion controller for execution. These commands include parameters such as target position, and motion
control profiles for smooth movement. The user interface typically includes a graphical interface with
switches and knobs to resemble the control panel of a machine in operation, and elements such as graphs
or XY plots to represent the current position of the object in motion.

15.2.2 Motion Controller

A motion controller is at the center of a typical motion system, which consists of supervisory control,
trajectory generation, and a control loop. The controller converts high-level user commands into com-
mand signals that drives use to move actuators. The motion controller also monitors the system for error
conditions, faults, and asynchronous events that can cause the system to change speed, direction, or
start/stop the actuators.

15.2.3 Drive

In a motion control system, the drive is the component that translates the command signals from the
controller to current that produces torque or rotation in the motor. Drives can be classified on the basis
of the type of motor they actuate—brushed servo, brushless servo, or stepper, or on the basis of the level
of computation carried out in the drive—analog or digital. We will learn more about different types of
drives in Sections 15.4 and 15.5.

15.2.4 Motor

Motors turn electrical energy into mechanical energy and produce the torque required to move to the
desired target position. Motors are designed to provide torque to some mechanical elements including
linear slides, robotic arms, and special actuators. There are three main types of motors—brushed DC

FIGURE 15.1 Components of a motion control system.
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servo motors, brushless servo motors, and stepper motors. Table 15.1 summarizes the pros, cons, and
typical application areas for each type of motor.

15.2.5 Feedback Device

In most motion control systems, amethod for measuring the characteristic being controlled (i.e., position,
velocity, etc.) needs to be implemented. This is known as feedback. Some of the different kinds of feedback
used in motion control are relative position, absolute position, velocity, and analog voltage feedback. For
relative position feedback, the most common device used is the incremental encoder. This device incre-
ments as it turns and can be used to keep track of the total distance traveled from some point of reference.
The most common absolute position feedback devices are absolute encoders and resolvers. An absolute
encoder is similar to an incremental encoder except that it does not need to have a reference position
and can know what position the shaft is in on start-up. A resolver is also another absolute position device
that is commonly used for both position and velocity feedback. For velocity feedback, a tachometer is
commonly used. Some applications require feedback other than the type that has been mentioned above.
In these cases, analog feedback describing some characteristic of the system such as temperature or
pressure can be useful in controlling motors. A position feedback device is not required for some motion
control applications, such as controlling stepper motors, but is vital for servo motors.

15.2.6 Motion I/O

A motion control system also includes digital I/O such as limit switches, home switches, position compare
outputs, and position capture inputs. 

Limit switches provide information about the end of travel to help you avoid damaging your system.
When a motion system hits a limit switch, it typically stops moving. Home switches, on the other hand,
indicate the system home position to help you define a reference point. This is important for applications
such as pick-and-place (Figure 15.2).

FIGURE 15.2 Limit and home switches in a motion control system.
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15-4 Mechatronic System Control, Logic, and Data Acquisition

Triggers such as position compare outputs or position capture inputs help when synchronizing moves
with other external devices and sensors such as data acquisition and vision.With position compare outputs,
you can set up a trigger that fires at a defined position. This type of action is very useful in operations
such as scanning, where you might want to trigger a system to take measurements at a series of defined
positions. Position capture inputs, on the other hand, cause the motion controller to immediately capture
a position on the occurrence of an external event such as a sensor being encountered while moving. This
is useful for resynchronizing the position of an axis (registration moves for “cut on the fly” applications)
or recording positions for analysis (scanning defects on a printed circuit board (PCB)). 

15.3 Functions of a Motion Controller

If we look at the functions of a motion controller, they can be broadly split up into three components—
trajectory generation that involves path planning on the basis of the profile desired by the user, supervisory
control that includes system initialization, event handling, fault detection, and command response, and
the control loop that includes closing the position and velocity loops on the basis of feedback. Figure 15.3
shows the parts and processes of a typical motion controller.

These three components of a motion controller work in synchronization with each other. The supervis-
ory control is the interface that handles user-defined requests and commands the trajectory generator to
start calculating set points. The trajectory generator calculates a set point per iteration and writes it to the
control loop. The control loop takes this set point and using a control algorithm ensures that the actuator
follows this set point accurately. In the case, the control loop can run faster than the trajectory generator;
the control loop uses an interpolation algorithm that creates intermediate set points per iteration of the
control loop.

15.3.1 Supervisory Control

The supervisory control is the main loop of the motion control system. This loop intercepts commands
from the user and signals the trajectory generator to start/stop moves. The supervisory control loop
also monitors all I/O needed to perform initialization tasks, such as finding the reference or origin.
Supervisory controlmonitors I/O for fault conditions and user-defined events and accordingly commands
the trajectory generator to take action.

FIGURE 15.3 Motion controller architecture.
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15.3.1.1 Axis Initialization (Reference Moves)

A reference move resets the axes of a motion script to a known location or state. Reference moves
are generally used at the beginning of a motion script to prepare the motion system for subsequent
motion. The following are valid types of reference moves—finding the home switch, finding the encoder
index, finding the forward limit switch, finding the reverse limit switch, and finding the center for a
system.

Finding the Home Switch
Home reference moves perform a course reference move by traversing the entirety of the motion path
in search of a physical home switch. A home switch consists of a logical ON state bordered by a front
edge and a back edge. Home reference moves can operate when there is a physical home switch present
or if there is a physical end-of-travel present, such as on a stage.

Finding the Encoder Index
Index reference moves perform a find reference move by moving the axis until the index state on the
encoder is reached. The index state is a specific position on the 360° encoder that is passed during each
revolution of the motor. An index reference move is usually performed after a home reference move for
fine reference adjustment. The encoder index signal is accurate to one encoder count and provides amuch
more repeatable reference than using just a home switch edge.

Finding the Forward Limit and Reverse Limit Switches
A forward limit reference move initiates a search sequence to find the forward limit. A reverse limit
reference move initiates a search sequence to find the reverse limit.When the search operation is initiated,
the axis starts moving in the direction of the limit. When the limit in that direction is encountered, the
search is completed. A fine-tuning operation is performed when the limit is reached to minimize the
effects of motion system windup, backlash, and/or home sensor hysteresis. This type of reference move
is used when a home switch is not available on a system.

Finding the Center
Center reference moves initiate a search sequence positioning the axis in the middle of the forward and
reverse limits.When the search direction is forward, the axis starts moving in the forward direction.When
the limit in that direction is encountered, the direction is reversed to find the reverse limit. After both
limits are reached, a center position can be calculated from the recorded positions. The axis then proceeds
to the calculated center.

After finding the reference position for an axis the internal position register for that axis is typically
updated by:

Resetting the Position Counter Resetting the position counter for an axis causes the axis to start counting
its position at a specified starting number. This starting number is typically zero, but resetting to a
nonzero number can be useful when you want to begin the moves relative to an absolute zero, rather
than the current position. For example, a steering system for a vehicle might come online with the wheels
turned 7000 counts to the right of absolute zero. In this example, absolute zero points the wheels straight
ahead. To ensure the motion system recognizes that the wheels are not starting off pointed straight ahead,
reset the position to the absolute count of 7000.

Offsetting the Axis Position This is achieved by moving the axis by an amount equal to a predetermined
offset. Offsetting the position preserves the value of performing the reference moves, but adds another
move to create distance from the home switch or index. This is usually done to prevent the axis from
sitting on a switch or encoder index.
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15.3.1.2 Electronic Gearing

Electronic gearing allows one slave motor to be driven in proportion to a master motor or feedback
sensor, such as an encoder or torque (analog) sensor. As the slave follows the master position at a constant
ratio, the effect is similar to that of two axes mechanically geared. For example, every turn of the master
axis may cause a slave axis to turn twice.

Electronic gearing has several advantages over mechanical gears. The most notable is flexibility because
you can change gear ratios on-the-fly. The other major advantage to electronic gearing is that you can
superimpose amove over a geared axis. The superimposedmove is added to the geared profile of the slave
axis, which allows the slave axis to be synchronized on-the-fly (Figure 15.4).

The gear ratio is used to determine how far the slave axis must move in proportion to the master
when gearing is enabled. The gear ratio can be absolute or relative. 

Slave axis move � Master axis position � Gear ratio 

For example, if you have a gearing ratio of 2:1 (slave:master), the slave moves 20 counts when the
master device moves 10 counts.

Absolute gearing behaves similarly to relative gearing in that when gearing is enabled, the slave axis
follows the master axis movement as it is defined by the gear ratio. The difference between relative and
absolute gearing is that the reference position calculated for the master axis is updated only when gearing
is enabled. This difference is apparent when the gear ratio is updated on-the-fly (Figure 15.5). 

For example, if the gear ratio is 2:1, the current master position is 1010, the current slave position is
3020, and the gear ratio is changed to 3:1; the slave axis jumps from 3020 to 3030 but the master position
remains the same (Figure 15.6).

Changing a gear ratio on-the-fly during absolute gearing allows you to quickly synchronize the slave
axis with the master axis. 

FIGURE 15.4 Electronic gearing algorithm.
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15.3.1.3 Electronic Camming (Includes Registration Moves)

Electronic camming operates similarly to electronic gearing in that the move distance of an axis is propor-
tional to the move distance of its master device. Camming differs from gearing in how the master/slave
ratio is handled by the motion controller. Gearing is used in applications where a constant gear value
creates a linear slave position profile, as shown in Figure 15.7.

FIGURE 15.5 Relative gearing at enable.

FIGURE 15.6 Absolute gearing at gear ratio change.

FIGURE 15.7 Master/slave ratio in gearing.
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Camming creates a more flexible profile by using more master/slave ratios. These ratios are handled
automatically by the motion controller, allowing precise switching of the gear ratios, as shown in
Figure 15.8. Camming is used in applications where the slave axis follows a nonlinear profile from a
master device. 

Figure 15.9 shows that a welding point moves to the first position, and then welds the material for a
couple of seconds. Because the conveyor belt keeps moving at a constant rate, the welding point must
follow the material at the same speed as the conveyor belt during the weld process. When the welding
process is finished for one item, the welding point must quickly return to its initial position, and the
process repeats.

In this application, the master device is the position encoder attached to the conveyor belt, and the
slave axis is the actuator that moves the welding point. The slave axis repeatedly performs a two-segment
movement—first, it follows the material with the same speed as the conveyor belt, and next, it returns to

FIGURE 15.8 Multiple camming gear ratios.

FIGURE 15.9 Welding application showing (1) conveyor belt, (2) movement of the welder as it follows the object
and then returns to the initial position, and (3) welding point.
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the initial position as the next material approaches. Each segment of the move is represented with a gear
ratio that dictates how fast and which direction the welding point is moving relative to the conveyor belt.
This application requires the slave axis to switch from one ratio to the other at the correct master position,
otherwise the welding process is not repeatable. If this application used gearing instead of camming, the
latency, or delay, of loading a new gear ratio might cause an accumulation of position errors.

Similar to gearing, in a camming application, a slave axis can perform any move when camming is
enabled. The move profile is superimposed over the camming profile (Figure 15.10).

15.3.1.4 Exception Handling (E-Stop and Limit Switches)

A motion controller needs to be able to detect fault conditions and handle these exceptions in order of
severity. Examples of exceptions include scenarios where the actuator hit a forward or reverse limit switch
or if the E-stop switch was pressed.

Limit switches can be either hardware or software limits. The hardware limit inputs are typically
connected to end-of-travel limit switches or sensors. An enabled limit input causes a full torque halt stop
on the axis when the input becomes active. Active limit inputs also prohibit attempts to start motion that
would cause additional travel in the direction of the limit. Similarly, software limits are often used to
restrict the range of travel further and avoid ever hitting the hardware limit switches. An enabled software
limit causes the axis to smoothly decelerate to a stop when the limit position is reached or exceeded.

15.3.1.5 I/O Synchronization (Captures, Compares, Time-Sampled Data Logging)

You may need to synchronize motion control with data acquisition or image acquisition devices within
the same systemusing position compares, position captures and time-sampled data logging. Let us
understand first what each of these terms mean.

In scanning applications, you typically inspect an object such as a wafer or an LCD display for defects
using a camera. The wafer or LCDdisplay rests on an XY stage that moves in two dimensions. The objective

FIGURE 15.10 Camming algorithm.
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of the scan is to cover as much space on the wafer as possible in the shortest amount of time and trigger
the camera to take an image at specific points along the scan. In such applications, you need to send a
digital signal (called a breakpoint) to the trigger line of a camera to command it to take an image based
on a specific position reached by the XY stage. This functionality is called position compares (breakpoints),
which can be classified into absolute breakpoints, relative position breakpoints, modulo breakpoints,
periodically occurring breakpoints, and buffered breakpoints.

In some cases, you may need to synchronize position with some measurement occurring externally
to the motion controller. You can think of this conceptually as a conveyor belt application running at a
constant velocity. Each time a manufactured item moves down the conveyor belt and breaks a light beam
across the belt, a stamp is placed on the item, a set distance from the point where the beam is broken.
This allows all items to be stamped in the same relative position without necessarily being equally spaced
along the conveyor belt. You need to command amove of a specified length relative to the position at
which a trigger input is received to perform such a stamping operation. This functionality is called high-
speed position captures (triggers), which could be buffered or nonbuffered.

In vision-guided motion applications, you may need to log position and velocity data periodically for
off-line analysis and correlation with vision data obtained concurrently. This functionality is known as
time-sampled data logging. Data is collected at hardware/firmware timed period and stored in the motion
controller’s internal memory. This data can be retrieved from the motion controller asynchronously.

Position Compares (Breakpoints)
You can configure a motion controller to generate a trigger signal or toggle the state of an I/O line when
the motor reaches a specified position. This specified position is called a breakpoint and is similar to a
switch that is triggered after the motor passes a certain position. To use breakpoints, you must have a
board with closed-loop encoder feedback, because the controller needs the encoder position to determine
where the breakpoint occurs. You can specify breakpoints for both servo motors and stepper motors.
You can use breakpoints as a trigger for another piece of hardware because it sends a signal to an I/O
line. For example, when a motor reaches a certain position, you can use a breakpoint signal to initiate
an image capture or a data acquisition operation. The five ways in which breakpoints can be configured
are as follows:

Absolute Mode: With absolute position breakpoints, you can trigger external activities as the motors
reach specified positions. For example, if you need to use an image acquisition device to capture
an image from a certain position while the device under test is in continuous motion, the motion
controller must be able to trigger the image acquisition device as it reaches those positions. The
current position is continuously compared against the specified breakpoint position by the encoder
circuitry to produce a latency of less than 100 ns. After a breakpoint triggers, you must re-enable
it for the breakpoint to work again. In certain cases, such as buffered and periodic breakpoints,
the motion controller automatically re-enables the breakpoints.

Relative Mode: Relative position breakpoints trigger events on the basis of a change in position relative
to the position at which the breakpoint was enabled. Instead of keeping track of absolute positions
and the current position, you can use relative breakpoints to specify the breakpoint relative to the
position where the breakpoint is enabled. For example, if you are creating a motion control system
to control the 2D movement of a microscope, you might use relative position breakpoints to move
the microscope a specific distance in a direction, and then hit a breakpoint that triggers a camera
snap. The relative breakpoint is useful in this example because the current position is not impor-
tant. The application must move the axis a specific number of counts from wherever it is, and
then generate a breakpoint.

Periodic Mode: You can program the motion controller to generate multiple breakpoints at fixed and
exact intervals, regardless of the direction of travel or velocity. Periodic breakpoints require that you
specify an initial breakpoint and an ongoing repeat period.When enabled, the periodic breakpoints
begin when the initial breakpoint occurs. From then on, a new breakpoint occurs each time the axis
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moves a distance equal to the repeat period, with no re-enabling required. For example, if an axis
is enabled at position zero, the initial breakpoint is set for position 100, and the breakpoint period
is set at 1000, then the axis behaves as shown in Figure 15.11.

Modulo Mode: Modulo breakpoints use a breakpoint window that defines an area around the current
position. The two breakpoints around the current position are always enabled. The breakpoint
modulus creates a repeat period for the breakpoints, and the breakpoint position is the offset from
absolute zero. For example, to create a breakpoint every 500 counts, set the repeat period to 500
and the breakpoint position to 0. If the breakpoint is enabled when the axis is at 710, the
breakpoints at 1000 and 500 are both armed, as shown in Figure 15.12.

Buffered Mode: Buffered breakpoints are a way of specifying absolute or relative breakpoint positions
in a buffer that can be preloaded into the motion controller memory. The motion controller then
automatically arms breakpoint positions from the buffer as and when the breakpoints triggers.
The, arming of breakpoints occurs on a firmware-timed basis, which provides higher bandwidth.

Position Captures (Triggers)
Some motion control applications require that you execute amove and record the position where external
triggers occur. For example, you might be aligning two fiber-optic cables, in which case, the maximum
optical power needs to correspond with the alignment position. To align the fibers, the external device
that is recording the optical power must trigger the motion controller so that you can synchronize and
analyze positions and optical power measurements. This functionality is known as high-speed capture
or trigger inputs. The implementation for high-speed capture is divided into the buffered and nonbuffered
high-speed capture methods:

Buffered High-Speed Captures: With buffered high-speed capture, you can create a buffer that holds
captured positions that you can read asynchronously from the motion controller. The motion
controller automatically arms the next high-speed capture, and writes the captured high-speed
data into its onboard buffer. The enabling of high-speed capture occurs on a firmware-timed basis,
which provides better frequency than the nonbuffered high-speed capture method.

Nonbuffered High-Speed Captures: With nonbuffered, high-speed capture, you can configure a single
high-speed capture event. For multiple high-speed captures, you must re-enable the high-speed
capture each time before it triggers.

FIGURE 15.11 Periodic breakpoint every 1000 counts/steps.

FIGURE 15.12 Breakpoint modulus of 500.
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Time-Sampled Data Logging
Some motion controllers can acquire a hardware-timed buffer of position and velocity data for time-
sampled data logging. After you command the motion controller to acquire position and velocity data, a
separate acquire data task is created in the motion controller, which reads time-sampled position
and velocity data into a FIFO buffer on the motion controller. You can read data in from this buffer number
of samples that consist of position data, in counts or steps, and velocity data, in counts/s or asynchronously
from the user interface on the host computer. Typically, the FIFO buffer holds a certain steps/s.

15.3.2 Trajectory Generation

The trajectory generator on a motion controller is responsible for the path planning on the basis of
geometry specified by the user. Different kinds of geometries are typically supported: straight lines,
circular arcs, helical arcs, and spherical arcs. In addition to the predefined geometries, the user can specify
a custom geometry via a buffer of points that the motion controller uses to interpolate through using a
cubic spline algorithm. This is known as a contoured move.

The user can also specify the velocity profiles that he wants used when traversing desired geometries.
This can be specified using move constraints that include maximum velocity, maximum acceleration,
and maximum deceleration and jerk (rate of change of acceleration/deceleration). These parameters are
used to generate a trapezoidal or s-curve profile. The trajectory generator on the motion controller
ensures that these move constraints are never violated while making a move. In addition to this, the user
can specify custom profiles by providing position, velocity, and time data (Position Velocity Time, PVT).
The trajectory generator also typically supports blending velocity profiles. In this case, the users can
concatenate multiple profiles specifying the point of concatenation.

The output of the trajectory generator are set points that are fed to the control loop to act on the basis
of the path that needs to be followed. 

To be highly reactive and allow for on-the-fly changes, the trajectory generator on the motion controller
creates these set points in real time. This allows users to pre-empt the current trajectory by changing end
positions, velocity, and acceleration. It also allows for stopping and restarting a move that is currently
in progress.

15.3.2.1 Straight-Line Moves

A straight-line move executes the shortest move between two points. Straight-line moves can be position
based or velocity based.

Position Based
Position-based straight-line moves use the specified target position to generate the move trajectory. For
example, if the motor is currently at position zero, and the target position is 100, a position-based move
creates a trajectory that moves 100 counts (steps). 

The controller requires the following information to move to another position in a straight line:

• Start position—current position, normally held over from a previous move or initialized to zero

• End position—also known as the target position, or where you want to move to

• Move constraints—maximum velocity, maximum acceleration, maximum deceleration, and max-
imum jerk

The motion controller uses the given information to create a trajectory that never exceeds the move
constraints and that moves an axis or axes to the end position you specify. The controller generates the
trajectory in real time, so you can change any of the parameters while the axes are moving. Figure 15.13
illustrates a typical algorithm for a position-based straight-line move.

Velocity Based
Some motion applications require moves that travel in a straight line for a specific amount of time at a
given speed. This type of move is known as velocity profiling or jogging. You can use a motion control

9260_15.fm  Page 12  Wednesday, October 10, 2007  9:43 PM



Motion Control 15-13

application to move a motor at a given speed for a specific time, and then change the speed without
stopping the axis. The sign of the loaded velocity specifies the direction of motion. Figure 15.14 illustrates
an algorithm for a typical velocity-based straight-line move.

15.3.2.2 Arc Moves

An arc move causes a coordinate space of axes to move on a circular, spherical, or helical path. You can
move two-dimensional vector spaces in a circle only on a 2D plane. You can move a three-dimensional
vector space on a spherical or helical path. Each arc generated by the motion controller passes through
a cubic spline algorithm that ensures the smoothest arc. A cubic spline algorithm generates multiple
points between every two points of the arc, ensuring smooth motion, minimum jerk, and maximum
accuracy at all times.

Circular Arcs
A circular arc defines an arc in the XY plane of a 2D or 3D coordinate space. The arc is specified by a
radius, start angle, and travel angle. In addition, like all coordinate space moves, the arc uses the values
of move constraints—maximum velocity, maximum acceleration, and maximum deceleration.

To move axes in a circular arc, the motion controller needs the following information:

• Radius—specifies the distance from the center of the arc to its edge.

• Start Angle—orients the arc on its plane using the starting point as an axis to spin around. Because
the starting point for a new arc is fixed on the basis of the current position, moving its center
around the starting point alters the orientation of a new arc.

• Travel Angle—indicates how far the arc travels in a 360� circle. For example, a travel angle of 90�

executes a quarter circle, a travel angle of 360� creates a full circle, and a travel angle of 720� creates
two full circles (Figure 15.15).

FIGURE 15.13 Position-based straight-line move algorithm.
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FIGURE 15.14 Velocity-based straight-line move algorithm.

FIGURE 15.15 Circular arc move algorithm.
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Spherical Arcs
A 3D spherical arc defines a 2D circular arc in the XY plane of a coordinate system that is transformed
by rotation in pitch and yaw from the normal 3D coordinate space (XYZ), as shown in Figures 15.16
and 15.17. 

In the transformed X�Y�Z� space, the 3D arc is reduced to a simpler 2D arc. The 3D arc is defined as
a 2D circular arc in the X�Y� plane of a transformed vector space X�Y�Z�. This transformed vector space,
X�Y�Z�, is defined in orientation only, with no absolute position offset. Its orientation is relative to the
XYZ vector space, and is defined in terms of pitch and yaw angles.When rotating through the pitch angle,
the Y and Y� axes stay aligned with each other while the X�Z� plane rotates around them. When rotating
through the yaw angle, the Y� axis never leaves the original XY plane, as the newly-defined X�Y�Z� vector
space rotates around the original Z-axis. The radius, start angle, and travel angle parameters also apply
to a spherical arc that defines the arc in two dimensions.

Helical Arc
Ahelical arc defines an arc in a 3Dcoordinate space that consists of a circle in the XY plane and synchronized
linear travel in the Z-axis. The arc is specified by a radius, start angle, travel angle, and Z-axis linear travel.
Linear travel is the linear distance traversed by the helical arc on the Z-axis, as shown in Figure 15.18.

FIGURE 15.16 Changing pitch by rotating the X-axis.

FIGURE 15.17 Changing yaw by rotating the Z-axis.

FIGURE 15.18 Helical Arc showing (1) side view, (2) top view, (3) isometric view, and (4) linear travel.
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15.3.2.3 Contoured Moves

A contoured move moves an axis or a coordinate space of axes in a pattern that you define. The trajectory
generator on the motion controller is not used during a contoured move. The controller takes position
data in the form of an array, and splines the data before outputting it to the control loop.

Contoured moves are useful when you want to generate a trajectory that cannot be constructed from
straight lines and arcs. To ensure that the motion is smooth with minimum jerk, the motion controller
creates intermediate points using a cubic spline algorithm. The move constraints commonly used to limit
other types of moves, such as maximum velocity, maximum acceleration, maximum deceleration, and
maximum jerk, have no effect on contoured moves. These need to be embedded in the series of contoured
points provided (by spacing the points) (Figure 15.19).

15.3.2.4 Position Velocity Time Profiles

Position velocity time moves give you maximum control over the velocity of the move at certain times
throughout the move. PVT moves specify a series of move segments by giving several move points for
each axis. In addition, PVT moves specify both the time, in ms, each move segment takes and the velocity
at which all axes are traveling at the end of each segment.

The following table demonstrates typical PVT inputs:

T: Time begins at 0 for each PVT move, and is cumulative through the end of the move. In this
example, there are three segments of duration 750, 750, and 1000.

FIGURE 15.19 Contoured move algorithm.
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V: PVT moves assume a beginning velocity of zero. Therefore, you must bring each axis to a complete

stop in the previous move before beginning a PVT move.
X, Y, Z: PVT moves start a position counter for each axis at 0, independent of where you are in relation

to the original reference move. The numbers in the spreadsheet or text file are absolute in relation to the
new counter. In this example, there are three move segments of lengths 4317, 7928, and 2928, respectively.

15.3.2.5 Blending

Blending, also called velocity blending, superimposes the velocity profiles of two moves to maintain
continuous motion. Blending is useful when continuous motion between concatenated move segments
is important. Examples of some applications that can use blending are scanning, welding, inspection,
and fluid dispensing. Blending must occur on velocity profiles of two move segments, so the end positions
of each move segment may or may not be reached. For example, if you are blending two straight-line
moves that form a 90� angle, the blended move must round the corner to make the move continuous.
In this case, the move never reaches the exact position where the two straight lines meet, but instead
follows the rounded corner, as shown in Figure 15.20.

Motion controllers can perform blending between two straight-line moves, between two arc moves,
or between straight-line and arc moves. Blending typically is not supported for reference and contoured
moves.

Superimposing Two Moves
Superimposing two moves is the most common use of blending. In this case, the motion controller tries
to maintain continuous motion by superimposing the two move segments such that the second move
segment starts its profile while the first move is decelerating, as shown in Figure 15.21.

The velocity during the superimposition depends on the cruising velocity, deceleration, and jerk of
the first move segment, and the jerk, acceleration, and cruising velocity of the second move segment.

Blending Moves after the First Move Is Complete
Blending moves after the first move is complete; this causes the first move segment to come to a complete
stop before starting the profile of the second segment, as shown in Figure 15.22. This type of blending
is useful if you want to start two move segments, one after the other, with no delay between them.

Blend after Delay
You can blend two moves after a delay at the end of the first move. Blending in this manner is useful if
you want to start two move segments after a deterministic delay. The two move segments can be either
straight-line moves or arc moves.

Because blending occurs on velocity profiles, the effect of reaching the end positions of the move
segments and the maximum velocity depends on the velocity, acceleration, deceleration, and jerk loaded

FIGURE 15.20 Two blended straight-linemoves showing (1) starting position, (2) end point, and (3) corner rounded
by blending.
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for the two move segments. Because two move segments are always used while blending, it is very important
that you wait for the blend to complete before loading the next move segment you want to blend.

15.3.2.6 Second- and Third-Order Profiles (Trapezoidal/s-Curve)

The trajectory generator uses the commanded parameters of position, acceleration, and velocity for a
particular move to determine how much time it spends in the three primary move segments—acceleration,
constant velocity, and deceleration—that define a velocity profile.

Trapezoidal Velocity Profile
When you use a trapezoidal profile, the axes accelerate at the acceleration value you specify, and then
cruise at the maximum velocity you load. On the basis of the type of move and the distance being covered,
it may be impossible to reach the maximum velocity you set. The velocity of the axis, or axes, in a
coordinate space never exceeds the maximum velocity loaded. The axes decelerate to a stop at their final
position, as shown in Figure 15.23.

S-curve Velocity Profile
The acceleration and deceleration portions of an s-curve motion profile are smooth, resulting in less
abrupt transitions, as shown in Figure 15.24. This limits the jerk in the motion control system, but
increases cycle time. The value by which the profile is smoothed is called the maximum jerk or s-curve
value.

FIGURE 15.21 Superimposing two moves.

FIGURE 15.22 Blending after move complete showing (1) blending starting point and (2) blending complete.
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15.3.2.7 Multiple Axis Synchronization (Coordinate/Vector Spaces)

With the exception of the arc move, you can execute all basic moves on either a single axis or on a
coordinate space. A coordinate space is a logical grouping of axes, such as the XYZ axes. Arc moves always
execute on a coordinate space. If you are performing a move that uses more than one axis, you must
specify a coordinate space made up of the axes the move will use.

Typically, there exists a function in the motion controller to configure a coordinate space. This function
creates a logical mapping of axes and treats the axes as part of a coordinate space. The function then
executes the move generated by the trajectory generator on the vector, and treats all the move constraints
as vector values.

Multistarts versus Coordinate Spaces
Coordinate spaces always start and end the motion of all axes simultaneously. You can use multistarts
to create a similar effect without grouping axes into coordinate spaces. Using a multistart automatically
starts all axes virtually simultaneously. To simultaneously end the moves, you must calculate the move
constraints to end travel at the same time. In coordinate spaces, this behavior is calculated automatically.

15.3.3 Control Loop

15.3.3.1 Spline Interpolation

The trajectory generator and the proportional, integral, derivative (PID) control loop need not execute
at the same loop rates.While the PID control loop needs to run at microseconds, the trajectory generator
may generate a new set point every millisecond. To maintain the steady flow of set points from the
trajectory generator to the PID control loop, a motion controller needs a spline interpolator that inter-
polates between set points given by the trajectory generator to create finer set points to be acted on by
the control loop (Figure 15.25).

FIGURE 15.23 Trapezoidal move profile.

FIGURE 15.24 S-curve move profile.
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An example of a spline interpolator is a cubic spline algorithm that uses four set points to calculate
interpolated positions between two positions calculated by the trajectory generator. The polynomial used
to calculate interpolated points can be represented as:

P(t) � a3t 
3 � a2t 

2 � a1t 
1
� a0t 

0 

Given four set points, P0, P1, P2, and P3, the spline coefficients are determined in real time as:

The number of interpolated points created depends on the rate of the trajectory generator loop and control
loop. For example, if the trajectory generator loop runs at 1 ms and the control loop runs at 100 µ s, the
spline engine calculates 1 ms/100 µ s �10 interpolated points. Using the spline interpolator results in
smoother motion and allows you to run the trajectory generator loop slower than the control loop.

15.3.3.2 Position and Velocity Loops

The control loop creates the command signal on the basis of the set point provided by the trajectory
generator. In most cases, the control loop includes both a position and a velocity loop, but in some cases
the control loop may include only a position loop. The position is typically read from encoders, but
also may be read from analog inputs. The velocity is calculated from the position values, and may be
read directly from a velocity sensor, such as a tachometer. Because feedback is not required for stepper
motors, the control loop concerts the set point generated by the trajectory generator into stepper signals
(step/direction).

The position and velocity control loops on the motion system correct for errors and maintain tight
control of the trajectory. The position and velocity loops typically incorporate the PIDalgorithm. The PID
algorithm consists of three basic coefficients: proportional, integral, and derivative, which are varied to
get optimal response (Figure 15.26).

In addition to parameters such as proportional gain, integral gain, and derivative gain, the PID
algorithm-implemented part of a motion control system includes additional parameters such as velocity
feedback, velocity feed forward, and acceleration feed forward for optimal position control.

FIGURE 15.25 Spline engine function uses cubic spline algorithm to calculate interpolated positions between two
positions from the trajectory generator.
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Kp (Proportional Gain)
The proportional gain (Kp) determines the contribution of restoring force that is directly proportional
to the position error. This restoring force functions in much the same way as a spring in a mechanical
system. An axis with too small a value of Kp is unable to hold the axis in position and is very soft.
Increasing Kp stiffens the axis and improves its disturbance torque rejection. However, too large a value
of Kp often results in instability.

Ki (Integral Gain)
The integral gain (Ki) determines the contribution of restoring force that increases with time, ensuring
that the static position error in the servo loop is forced to zero. This restoring force works against constant
torque loads to help achieve zero position error when the axis is stopped. In applications with small static
torque loads, this value can be left at its default value of zero (0). For systems having high static torque
loads, this value should be tuned to minimize position error when the axis is stopped. Although nonzero
values of Ki cause reduced static position error, they tend to cause increased position error during
acceleration and deceleration. This effect can be mitigated through the use of the integration limit
parameter. Too high a value of Ki often results in servo loop instability.

Kd (Derivative Gain)
The derivative gain (Kd) determines the contribution of restoring force proportional to the rate of change
(derivative) of position error. This force acts much like viscous damping in a damped spring and mass
mechanical system. A shock absorber is an example of this effect. A nonzero value of Kd is required for
all systems that use torque block amplifiers, where the command output is proportional to motor torque,
for the servo loop operation to be stable. Too small a Kd value results in servo loop instability. With
velocity block amplifiers, where the command output is proportional to motor velocity, it is typical to
set Kd to zero or a very small positive value.

Kv (Velocity Feedback)
You can use a primary or secondary feedback encoder for velocity feedback. Setting the velocity feedback
gain (Kv) to a value other than zero (0) enables velocity feedback using the secondary encoder, if
configured, or the primary encoder if a secondary encoder is not configured. The derivative gain scales
the derivative of the position error, which is the difference between the instantaneous trajectory position
and the primary feedback position. Velocity feedback is estimated through a combination of speed-
dependent algorithms.

FIGURE 15.26 PID servo loop.
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Vff (Velocity Feedforward)
The velocity feedforward gain (Vff) determines the contribution in the command output that is directly
proportional to the instantaneous trajectory velocity. This value is used to minimize following error
during the constant velocity portion of a move and can be changed at any time to tune the PID loop.
Velocity feedforward is an open-loop compensation technique and cannot affect the stability of the system.
However, if you use too large a value for Vff, following error can reverse during the constant velocity
portion, thus degrading performance, rather than improving it. Velocity feedforward is typically used
when operating in PIVff mode with either a velocity block amplifier or substantial amount of velocity
feedback. In these cases, the uncompensated following error is directly proportional to the desired velocity.

Aff (Acceleration Feedforward)
The acceleration feedforward gain (Aff) determines the contribution in the command output that is
directly proportional to the instantaneous trajectory acceleration. Aff is used to minimize following error
(position error) during acceleration and deceleration and can be changed at any time to tune the PID
loop. Acceleration feedforward is an open-loop compensation technique and cannot affect the stability
of the system. However, if you use too large a value of Aff, following error can reverse during acceleration
and deceleration, thus degrading performance, rather than improving it.

Dual-Loop Feedback
Motion control systems often use gears to increase output torque, increase resolution, or convert rotary
motion to linear motion. The main disadvantage of using gears is the backlash created between the motor
and the load. This backlash can cause a loss of position accuracy and system instability. The control loop
on the motion system corrects for errors and maintains tight control over the trajectory. The control
loop consists of three main parts—proportional, integral, and derivative—known as PID parameters.
The derivative part estimates motor velocity by differentiating the following error (position error) signal.
This velocity signal adds, to the loop, damping and stability. If backlash is present between the motor
and the position sensor, the positions of the motor and the sensor are no longer the same. This difference
causes the derived velocity to become ineffective for loop damping purposes, which creates inaccuracy
in position and system instability.

Using two position sensors for an axis can help solve the problems caused by backlash. As shown in
Figure 15.27, one position sensor resides on the load and the other on the motor before the gears. The
motor sensor is used to generate the required damping and the load sensor for position feedback. The
mix of these two signals provides the correct position feedback with damping and stability. 

15.3.3.3 Commutation

When a current-carrying conductor is placed in a magnetic field, it experiences a force. Motors are based
on this principle of physics. Motors comprise of permanent magnets and current-carrying conductors
in a mechanical assembly. Maintaining the correct direction of current and magnetic fields is critical to
proper operation of the motor. This functionality is called commutation. 

In case of brushed DC servo motors, a physical brush performs commutation by switching the current
between different conductors. However, in case of brushless servo motors, three phases of current are

FIGURE 15.27 Dual-loop feedback.
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electrically commutated. This requires commutation to be performed either by the motion controller or
the drive.

15.3.3.4 Current Loop (Torque Loop)

A current loop takes a set point from the position and velocity loop and uses feedback from a current
sensor to generate a voltage output signal. This voltage is used to control the power transistors in the
drive to ensure that the right amount of torque is being generated. While in brushed DC servo motors
the current command is directly proportional to the current in one winding in the motor, in brushless
servo motors it is dependent on current in three windings. As a result, brushless servo motors often come
paired with drives that include commutation and a pretuned current loop.

15.4 Motion Controller Hardware

A motion controller can be implemented on dedicated hardware connected to an analog drive, independ-
ent of the PC processor that hosts the user application. It can also be designed to share resources on the
PC processor with the user application with some functions being executed within a digital drive, thus
eliminating the need for dedicated motion controller hardware. These two architectures for implementing
a motion controller have their advantages and disadvantages.

15.4.1 Architecture of an Analog Motion Controller (Dedicated Processor)

A motion controller is responsible for executing supervisory control, trajectory generation, and control-
loop functions. In case of an analog motion controller, these functions are executed on dedicated hardware
that communicates with the host PC via an interface such as the PCI bus, USB, Ethernet, Serial RS 232,
and so forth. Commands from the user application running on the host computer are sent to the motion
controller via this interface. The motion controller performs supervisory control, trajectory generation,
and I/O synchronization, and executes position and velocity control loops. The motion controller then
sends commands in the form of 10V analog voltage signals to an analog drive that closes the current
loop. There are four main hardware components in a typical analog motion controller.

15.4.1.1 Microprocessor

A microprocessor runs amultitasking, real-time operating system, and handles host communication with
the PC and supervisory control including command processing and fault handling. 

15.4.1.2 Digital Signal Processor

A digital signal processor is used for math-intensive operations such as trajectory generation and position
and velocity loops. 

In some motion controllers, all the supervisory control, trajectory generation, and control-loop func-
tions are performed on a single microcontroller that includes I/O interfaces, memory, and clock in
addition to the CPU in an integrated circuit.

15.4.1.3 Field-Programmable Gate Array

Afield-programmable gate array (FPGA) is used to perform I/O synchronization functions such as encoder
decoding, position capture and position compare, motion I/O processing, and stepper pulse generation. 

15.4.1.4 Motion I/O

An analog motion controller connects to different types of motors as follows:

1. Brushed DC servo motor—An analog motion controller provides a �10 V analog output signal
to a servo drive that closes the current loop to move a brushed DC servo motor.

2. Brushless servo motor—An analog motion controller provides a �10 V analog output signal to
a servo drive that performs sinusoidal commutation and closes the current loop to move a brushless
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servo motor. In case the drive does not perform sinusoidal commutation, the analog motion
controller provides two analog output signals to the drive. The motion controller in this case
performs sinusoidal commutation in addition to closing the position and velocity loops.

3. Stepper motor—An analog motion controller provides step and direction signals to a stepper drive
to move a stepper motor. The motion controller performs step generation to output step and
direction signals.

15.4.2 Architecture of a SoftMotion-Based Motion Controller 
(Shared Processor with User Application)

In case of a soft motion-based motion controller, functions such as supervisory control and trajectory
generation execute on a real-time operating system shared with the operating system used for the user
interface on the same processor. Control loops are executed within the drive, thus eliminating the need
for dedicated motion controller hardware. Some configurations allow for the control loops to be also
closed on the shared processor.

Common operating systems that are used for soft motion-based motion controllers include off-the
shelf RTOSes such as QNX, Pharlap ETS, RTX, VxWorks, or Windows CE or, in many cases, proprietary
implementations by motion control vendors.

15.4.2.1 PC/PLC-Based with Analog Interface (Motion I/O Connected to the 
PC/PLC via PCI or ISA Bus)

A PLC-based SoftMotion controller runs on the real-time operating system on the PLC. It connects to
analog drives with a �10 V analog interface. In this case, the motion controller performs supervisory
control, trajectory generation on the PLC processor, and closes position and velocity control loops on
the PLC motion control modules. These modules connect to analog drives that handle the task of
commutation, closing the current loops. In this case, the motion controller tasks run at the highest
priority on the PLC processor and coexist with the user’s sequential logic tasks.

A PC-based SoftMotion controller runs on a real-time operating system (VxWin, VxCE, InTime) or
real-time extension (RTX, TwinCAT) that runs on a PC and shares the processor with Windows or any
desktop OS. In this case, the motion controller performs supervisory control, trajectory generation on
the PC processor, and closes position and velocity control loops on the PCI/ISA-based motion control
card plugged into the PC. These cards connect to analog drives that handle the task of commutation,
closing the current loops. In this case, since the motion controller runs on the real-time OS on the PC,
it is guaranteed bandwidth and priority over Windows or any desktop OS sharing the processor with it.

15.4.2.2 PC/PLC-Based with Deterministic Digital Network (Distributed Motion, 
I/O Connected to the PC/PLC via a Deterministic Network)

As discussed in Section 15.4.2.1, a SoftMotion controller shares the processor with either the PLC tasks
or tasks running on the Windows or desktop OS on a PC. The primary difference between this mode of
operation and the former is that in this mode the communication of the motion controller with the
drives is via a deterministic bus. This solves a number of issues faced in Section 15.4.2.1 such as
connectivity and signal integrity. This architecture is also termed as “DistributedMotion.” Similar to the
previous case, the motion controller performs supervisory control, trajectory generation, and in some
cases also closes the position and velocity control loops. The drives close handle the commutation and
close the current loops. They also support closing the position and the velocity loops that allow for lower
bandwidth utilization of the deterministic network. 

A primary requirement for such a configuration is that the digital network connecting the motion
controller to the digital drive is deterministic and that it is able to transmit data deterministically.
Emerging networks include IEEE 1394, Ethernet PowerLink, EtherCAT, SERCOS III, PROFInet (IRT),
EtherNET/IP, CANopen, and PROFIbus (MC).
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IEEE 1394
IEEE 1394 (isochronous) (www.1394ta.org) is a high speed, real-time digital network based on the serial
bus. It requires an IEEE 1394 interface on the host PC. It offers submillisecond response times and
submicrosecond jitter for use with soft motion-based motion controllers.

Ethernet PowerLink
Ethernet PowerLink (www.ethernet-powerlink.org) is an Ethernet-based digital network based on TCP/IP
and isochronous slot communication network management (SCNM). It offers submillisecond response
times and submicrosecond jitter for use with soft motion-based motion controllers.

EtherCAT
EtherCAT (www.ethercat.org) is an Ethernet-based digital network based on the principle of reading and
writing EtherCAT telegram packets as they pass through the different slave devices in cyclic order. It
offers submillisecond response times and submicrosecond jitter for use with soft motion-based motion
controllers.

SERCOS III
SERCOS-III (www.sercos.com) is an Ethernet-based digital network based on TCP/IP and the principle
of cyclic data transfer with an exact time pattern. It requires the use of a master to control the timing
behavior of the data transfer to the devices on the network. It provides submillisecond response rates
for use with soft motion-based motion controllers.

PROFInet (IRT)
PROFInet (isochronous real time) (www.profinet.com) is an Ethernet-based digital network that lever-
ages TCP/IP and DCOM standards, and works with internal switches in all devices to handle synchro-
nization. It provides submillisecond response rates for use with soft motion-based motion controllers. 

EtherNET/IP
EtherNET/IP (www.odva.org) is an Ethernet-based digital network that is based on TCP/IP and Control
switches and uses time stamps for synchronization. It provides clock-cycle synchronous data transmis-
sion, and Information Protocol (CIP) standards. It supports a star topologywith devices connected via
managed and millisecond response rates for use with soft motion-based motion controllers that per-
formsupervisory control and trajectory generation.

CANopen
CANopen (www.canopen.de) is a layer on CAN that is based on the DS301 communication profile and
the DS402 device profile for motion control. It supports deterministic data transmission, and millisecond
response rates for use with soft motion-based motion controllers that perform supervisory control and
trajectory generation. The control loops are closed on the digital drive.

PROFIbus (MC)
PROFIbus (Motion Control) (www.profibus.org) is based on the PROFIbus digital network with
enhancements to response times and clock synchronization. PROFIbus (MC) has response rates of several
milliseconds making it suitable for soft motion-based motion controllers that perform supervisory
control and trajectory generation. The control loops are closed on the digital drive.

15.5 Summary

Motion control systems are used to control the position, velocity, and torque of a rotational or linear
electromechanical device. A typical motion control system consists of a variety of components including
user interface, motion controller, drive, motor, feedback device, and motion I/O.The functions of a
motion controller include trajectory generation, supervisory control, and a position and velocity feedback
control loop.
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16.1 Introduction to Real-Time Systems

Real-time operating systems originated with the need to solve two main types of applications: event
response and closed-loop control systems. Event response applications require a response to a stimulus
in a determined amount of time; an example of such a system is an automotive airbag system. Closed-
loop control systems continuously process feedback in order to adjust an output; an automotive cruise
control system is an example of a closed-loop control system. Both of these types of systems require the
completion of an operation within a specific deadline. This type of performance is referred to as deter-
minism.

Real-time systems are sometimes classified as “soft” or “hard.” Soft real-time typically means the utility
of a system is inversely proportionate to how long it has been since a deadline is missed. For example,
when pressing a cell phone button to answer an incoming call, the connection must be established soon
after the button has been pressed. However, the deadline is not mission-critical and small delays can be
tolerated. Hard real-time systems are those in which the utility of a system becomes zero in the event of
a missed deadline. An automotive engine control unit (ECU) must process incoming signals and calculate
spark plug timing within a deadline. If the deadline is missed, the engine will fail to operate correctly.
The usefulness of a task after a deadline is missed depends on whether the system is a soft real-time or
a hard real-time system, as shown in Figure 16.1.

Operating systems such as Microsoft Windows and Mac OS provide an excellent platform for developing
and running your noncritical measurement and control applications. However, because these operating

Gerardo Garcia
National Instruments, Inc.
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systems are designed for general purpose use, they are not the ideal platforms for running applications
that require deterministic performance or extended uptime. 

General-purpose operating systems are optimized to run a variety of applications simultaneously,
ensuring that all applications receive some processing time. These operating systems must also respond
to interrupts from peripherals such as the mouse and keyboard. The user has limited control regarding
how these tasks are handled by the processor. As a result, high-priority tasks can be preempted by lower
priority tasks, making it impossible to guarantee a response time for your critical applications.

In contrast, real-time operating systems give users the ability to prioritize tasks so that the most critical
task can always take control of the processor when needed. This property enables you to program an
application with predictable results. 

Real-time operating systems are required when the processor is involved in operations such as closed
loop control and time-critical decision making. These applications require timely decisions to be made
on the basis of incoming data. For example, an I/O device samples an input signal and sends it directly
to memory. Then, the processor must analyze the signal and send the appropriate response to the I/O
device. In this application, the software must be involved in the loop; therefore, you need a real-time
operating system to guarantee response within a fixed amount of time. In addition, applications requiring
extended run-times or stand-alone operation are often implemented with real-time operating systems.

16.2 Real-Time Development Tools

Traditional real-time software development requires a code editor to develop code, a compiler to generate
embedded code, and a compatible debugger to validate the application, as well as tools to profile the
application performance, track memory usage, and trace system thread execution. Many software devel-
opment packages integrate these tools into one environment. An example of such an environment is the
LabVIEW Real-Time Development Module. Figure 16.2 depicts the real-time development environment,
including the host computer for software development and the real-time target for execution.

System profiling tools are important for optimizing the execution of a real-time system. The LabVIEW
Execution Trace Toolkit is an example of a tracing tool that captures low-level execution details of a
realtime application. Figure 16.3 shows a typical trace capture that displays when application tasks
executed in time.

FIGURE 16.1 Differences between hard and soft real-time.
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Hardware deployment platforms vary depending on the application. Real-time applications use desktop
PCs, modular hardware platforms such as PXI, off-the-shelf rugged controllers such as programmable
logic controllers (PLCs) and programmable automation controllers (PACs), single-board computers, and
embedded microprocessors on custom hardware. The popular NI CompactRIO PAC is shown in Figure
16.4. An appropriate real-time operating system is used in these hardware platforms to execute the
application software.

16.2.1 Operating System Scheduler

All real-time operating systems have a scheduler that coordinates the execution of tasks (threads) by the
CPU. There are various scheduling methods that are used by operating systems. Round-robin scheduling
shares processor time between threads based on equal slices of time. 

To illustrate round-robin scheduling, we consider the analogy of an automobile repair shop. The
mechanic represents the CPU, the shop manager represents the scheduler, and multiple cars represent
the multiple threads of our system. Using round-robin scheduling, the mechanic will cycle between each
car for a set period of time. Round-robin scheduling guarantees that each thread will have some time
with the processor.

FIGURE 16.2 Real-time development process.

FIGURE 16.3 Application tracing tool.
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Another method of scheduling is called preemptive scheduling, where priority can be given to the
time-critical tasks.When a time-critical thread needs time from the processor, the other threads will wait
until the time-critical thread is finished. In the repair shop example, an ambulance is assigned time-
critical priority. As a result, it will be serviced as soon as it arrives. All other cars will be put on hold
until the ambulance service is complete. Once the ambulance service is complete, the other cars will
continue to share time with the mechanic. Figure 16.5 shows an example of two tasks running at different
priority levels. Task B has a higher priority and runs every half millisecond, while Task A runs every
10 ms. The red flags indicate when Task A is preempted so that the higher priority Task B can be executed.

16.3 Real-Time Software Architecture

When developing a real-time application, you must decide which operations need to have real-time
performance and which operations do not. The components that need real-time performance are those
that need to occur within a specific period of time, meaning they are deterministic. These time-critical
tasks should be assigned the highest priority in the application. 

Operations that are of lower priority will run only when the time-critical operations are suspended.
Examples of low priority operations are communication with a host computer, reading and writing to
files, and nondeterministic communication with external instruments. These operations are sometimes
called the house-keeping tasks.

FIGURE 16.4 NI CompactRIO programmable automation controller.

FIGURE 16.5 Example trace of preemptive scheduling.
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16.4 Deterministic Timing

Determinism is how consistently a systemis able to perform operations within a fixed period of time.
This is the most fundamental component of all real-time systems. Jitter is the variance between the
expected execution time of a real-time task and the actual execution time. All real-time systems have
some jitter; however, the jitter is bound and can be quantified. Systems that are not real time have very
large or unbounded jitter. Figure 16.6 depicts a jitter diagram.

The most basic source of jitter is variation in the clock. However, you can induce additional jitter if
you do not follow certain programming practices. To reduce jitter, tasks are programmed to run peri-
odically on the basis of a hardware clock that can be derived from an I/O signal or a precise CPU timer.
Figure 16.7 shows the configuration of a real-time task set to run every 500 ms.

FIGURE 16.6 A jitter diagram.

FIGURE 16.7 Real-time task configuration.
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16.5 Implementing Real-Time Control

Control algorithm implementation is an important part of real-time system development. Control
strategies can vary in complexity, from simple digital logic to advanced mathematical models that are
carefully tuned to control dynamic systems. A typical block diagram of a closed-loop control system is
shown in Figure 16.8.

16.5.1 Proportional-Integral-Derivative Control

The proportional-integral-derivative (PID) algorithm is the most common control algorithm used in
industry. With PID, you specify a process variable and a set point. The process variable is the system
parameter you want to control, such as temperature, pressure, or flow rate, and the set point is the desired
value for the parameter you are controlling.

The proportional gain determines the ratio of output response to the error. The error is the difference
between the set point and the process variable. In general, increasing the proportional gain will increase
the speed of the control system response. However, if the proportional gain is too large, the process
variable will begin to oscillate.

The integral component sums the error term over time. The integral response will continually increase
over time unless the error is zero, so the effect is to drive the steady state error to zero.

The derivative component causes the output to decrease if the process variable is increasing rapidly.
The derivative response is proportional to the rate of change of the process variable.Most practical control
systems use very small derivative time, because the derivative response is highly sensitive to noise in the
process variable signal.

16.5.2 Fuzzy Logic Control

Fuzzy logic control is most often used for expert systems and process control. It is a method of rule-
based decision making that emulates the rule of thumb thought process of humans. If an expert can
qualitatively describe a control strategy, fuzzy logic can be used to develop the controller.

16.5.3 Model-Based Control Design

Another method for designing control systems is by using model-based design methods. This involves
using software tools to model the behavior of dynamic systems completely in software. Then, designers
can use mathematical software tools to develop control algorithms and test them with the software
simulation of the dynamic system. Figure 16.9 shows a simulation diagram created in LabVIEW.

FIGURE 16.8 The block diagram of a closed-loop control system.
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16.6 Monitoring Systems

Real-time systems are usually monitored by one or more human–machine interfaces (HMI) that send
and receive data from the real-time controllers. These HMIs can be in the form of powerful desktop
servers, laptops, PDAs, web browser interfaces, or touch-panel displays. Communication is done through
a variety of media and protocols. Ethernet is widely used as a media of data transfer with differing
protocols depending on the application. These include TCP/IP for point-to-point streaming, OLE for
Process Control (OPC) for distributed control systems, or web servers for remote viewing. Other methods
for communicating are serial interfaces, fieldbuses such as PROFIBUS and DeviceNet, and wireless media
such as WIFI and Bluetooth.

Large distributed real-time systems typically use a Supervisory Control and Data Acquisition (SCADA)
system for monitoring. These systems have visualization features and can display data from real-time
controllers, show alarm conditions, and log data to databases. An example of a SCADA software is the
LabVIEW Datalogging and Supervisory Control (DSC) Module. A SCADA visualization of a heat
exchanger is shown in Figure 16.10. 

For distributed real-time control systems, data can be stored on multiple computers and monitored
centrally, or it can be stored on one central server. The most difficult challenge is to communicate with
live data. OPC is an industry standard interface through which software and hardware can communicate
irrespective of the manufacturer. Controller hardwares from different manufacturers communicate with
their own OPC server on a host system and publish I/O and calculated values as tags. SCADA systems
act as OPC clients that subscribe to tags from all the individual OPC servers. Figure 16.11 shows a
LabVIEW project with a list of tags that can be read from OPC servers to develop an operator interface.

For some applications, OPC data transfer may not be fast enough. In these cases, using lower-level
protocols such as TCP/IP and UDP allows you to send data at faster rates.

16.7 Summary

In summary, real-time systems solve a variety of applications that require determinism and reliability.
To achieve such requirements, real-time operating systems define strict scheduling behavior, which all

FIGURE 16.9 Simulation diagram.
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software abides by. Due to the complex nature of real-time applications and the small margin for error,
developers must employ good programming practices in order to be successful.

Further Information

Web sites

1. http://www.omimo.be/encyc/publications/faq/rtfaq.htm
2. http://www.ni.com/realtime

FIGURE 16.10 SCADA visualization.

FIGURE 16.11 OPC tags.
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3. http://zone.ni.com/devzone/cda/tut/p/id/3938
4. http://zone.ni.com/devzone/cda/tut/p/id/4040
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17.1 Micromechatronic Systems Design

Micromechatronic systems integrate actuators, sensors, power electronics, and ICs. Within a focus on
high-performance micromechatronic systems, books [1–3] cover the general issues in the systems design.
Important topics and issues are outlined and covered in this section. One of the major components of
micromechatronic systems is a high-performance microelectromechanical motion device that (1) con-
verts physical stimuli to electrical or mechanical signals and vice versa, and, (2) performs actuation and
sensing. These motion devices are controlled by ICs. Electromagnetic and electromechanical features of
microelectromechanical motion devices are basics of their operation, design, analysis, and fabrication.
Correspondingly, motion devices and ICs are designed taking into account possible system architectures
[1–3]. The baseline step-by-step procedure in the design of micromechatronic systems is 

1. Define application and environmental requirements 
2. Specify performance specifications

*Some results reported in this chapter were published in [1–3].
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3. Devise (synthesize) microelectromechanical motion devices (actuators and sensors) researching
operating principles, topologies, configurations, geometry, electromagnetic systems, and so forth

4. Perform electromagnetic, mechanical, and sizing-dimension estimates
5. Define technologies, techniques, processes, and materials to fabricate electromechanical motion

devices
6. Design ICs to control electromechanical motion devices
7. Develop high-fidelity mathematical modelswith minimumlevel of simplifications and assumptions

to examine integrated electromagnetic–mechanical phenomena and effects
8. Perform coherent electromagnetic and mechanical analysis
9. Modify and refine the design optimizing performance

10. Design control laws to control motion devices and implement these controllers using ICs
11. Integrate micromechatronic system

One of the most challenging design problems is the system architecture synthesis, system integration,
optimization, and hardware (actuators, sensors, power electronics, ICs, microcontrollers, and DSPs)
selection. The design starts with a given set of requirements and specifications. High-level functional
design is performed first in order to produce detailed design at the subsystem and component level.
Using the advanced subsystems and components, the initial design is performed, and the closed-loop
electromechanical system performance is tested against the requirements. At each level of the design
hierarchy, the system performance in the behavioral domain is used to evaluate and refine the design.
The design flow is illustrated in Figure 17.1.

The micromechatronic system is illustrated in Figure 17.2. The systemperformance is measured against
many criteria, for example, stability, robustness, transient behavior, accuracy, disturbance attenuation,
and so forth. In the behavioral domain, the designer can examine and optimize the input–output transient
dynamics using the tracking error e(t) = y(t) � r(t), where y(t) and r(t) are the output and reference
(command) variables. The tracking error e(t) is minimized and dynamics is optimized using different
performance criteria. For example,

FIGURE 17.1 Design flow in synthesis of micromechatronic systems.
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Micromechatronics and Microelectromechanical Motion Devices 17-3

Mechatronic systems (robots, electric drives, servomechanisms, pointing systems, assembles, etc.) are
actuated by electromechanical motion devices that are highly nonlinear systems. Therefore, accurate
actuator actuation and control are very important problems. Depending on operation and functionality
of motion devices, onemust derive the expressions for the voltages applied to the phase windings in order
to maximize the electromagnetic torque and ensure optimality. Actuators and sensors must be designed
and integrated with the corresponding power electronics and ICs. The control laws are implemented
using analog controllers, which can be integrated with power electronics (PWM amplifiers), as well as
digital controllers (microcontrollers and DSPs). The principles of matching and compliance are general
design principles that require that the system architectures should be synthesized integrating all sub-
systems and components. The matching conditions have to be determined and guaranteed, and actua-
tors— sensors—power electronics—ICs—controller compliance must be ensured. 

A functional block diagram of a controlled micromechatronic system is illustrated in Figure 17.3.
Different techniques to design optimal controllers are reported in the next section. Those controllers
should be derived using the baseline electromagnetic laws that define the operating principles of elec-
tromechanical motion devices. It was emphasized that depending on the motion devices, distinct power
electronics must be utilized. High-performance micromechatronic systems can be designed using per-
manent-magnet electromechanical motion devices that ensure high torque and power densities. Radial
and axial technology permanent-magnet motion devices are covered in the following sections.

17.2 Tracking Control of Micromechatronic Systems

In general, mechatronic systems are nonlinear [1–3]. Using the Hamilton–Jacobi theory and Lyapunov
concepts, design of control algorithms for nonlinear systems is reported in References 1–3. To introduce

FIGURE 17.2 Dynamic micromechatronic system.

FIGURE 17.3 High-level functional block diagram of the closed-loop micromechatronic system.
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17-4 Mechatronic System Control, Logic, and Data Acquisition

the design, we consider linear and nonlinear models. A linear model is given as

(17.1)

where xsys � Xsys � �n is the state vector with auxiliary conditions; u � U � �m is the control vector;
y � Y � �b is the output vector; and Asys � �

n×n
 and Bsys � �

n×m
 are the constant-coefficient matrices.

Define the tracking error vector as

(17.2)

Therefore, from Equations 17.1 and 17.2, one finds

 (17.3)

Using the expanded state vector x(t) = , we have

(17.4)

The space transformation method is based on the use of the following z and v vectors: z =  and
v = . Thus, from Equation 17.4, we obtain the system

(17.5)

Minimizing the quadratic performance functional

(17.6)

with respect to the system dynamics (Equation 17.5), the application of the first-order necessary condition
for optimality gives

(17.7)

The Riccati equation

(17.8)

is solved to find the unknown matrix K � �(n+m)×(n+m). Taking note of Equation 17.7, one has

(17.9)

x

uu·
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Micromechatronics and Microelectromechanical Motion Devices 17-5

Using (t) = Ax�Bu, wehave u = B�1
 ( (t) � Ax) = (BTB)�1 BT ( (t) �Ax). From Equation 17.9, one

obtains

(17.10)

Using Equation 17.10, and taking note of x(t) = , one finally derives the proportional-integral
controller in the following form

(17.11)

For nonlinear micromechatronic systems, as given by

(17.12)

the proposed procedure can be straightforwardly used. In Equation 17.12), F(.): �
n

 � �
n

 and B(.):
�

n
� �

n×m
 are the smooth Lipschitz maps; H � �

b×c
 is the output matrix with constant coefficients.

The proportional-integral controller for Equation 17.12 is given as

(17.13)

where V(x, u) is the return function.
The control law is bounded, and umin � u � umax. To design the admissible control laws, we minimize

(17.14)

where �(.): �
n
 � �

m
 is the bounded, integrable, one-to-one, real-analytic, globally Lipschitz continuous

function, � � U � �
m

.
Minimizing Equation 17.14 with umin � u � umax, u  U, for linear and nonlinear systems, we have

(17.15)

(17.16)

Using the first-order necessary condition for optimality, the minimization of Equations 17.15 and 17.16
results in the admissible controllers

(17.17)

x· x· x·
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17-6 Mechatronic System Control, Logic, and Data Acquisition

Assuming that the solution of the Hamilton-Jacobi equation is approximated by the quadratic return
function, from Equation 17.17, one obtains

(17.18)

The admissible control law synthesized is bounded, and the second-order necessary condition for
optimality is satisfied. However, the sufficient conditions must be examined. Using the admissibility
concept, it is demonstrated in References 1–3 that a system with bounded control (Equation 17.18) is
stable in X(X0,U), and robust tracking is guaranteed in the convex and compact set E(E0, Y, R) if for the
reference input r � R there exists a positive-definite function V(e,x) such that [dV(e, x)]/dt � 0. If the
criteria imposed on the Lyapunov pair, V(e, x) > 0 and [dV(e, x)]/dt � 0, are guaranteed for all x0 � X0,
e0 � E0, u � U, and r � R, then, the closed-loop system is robustly stable in X(X0,U), and robust tracking
is guaranteed in the convex and compact set E(E0, Y, R). By computing the derivative of the V(e, x), the
unknown feedback gains can be found to satisfy the sufficient conditions for stability. 

The designed analog controllers may be implemented using microcontrollers. Therefore, analog con-
trollers are discretized. The feedback gains kdp and kdi of the digital control law are found using the
proportional, integral, and derivative coefficients of the analog PID controller (kp and ki) as well as the
sampling period Ts. We have kdp = kp .  kdi and kdi = Tski. In particular, the controller can be implemented
as u (kTs) = kpe (kTs) + kiTs [e ((i �1)Ts) + e (iTs)]. The proportional-integral controllers with
the state feedbacks are implemented in the similar way, and the state variables are sampled at the specified
sampling period Ts.

17.3 Synthesis of Microelectromechanical 
Motion Devices

The designer synthesizes microelectromechanical motion devices by devising and examining baseline
physics and operational principles. Axial and radial topology, ac and dc, electromagnetic and electrostatic,
and other actuators are covered in [1–3]. To introduce the synthesis taxonomy, we consider radial topology
two-phase permanent-magnet synchronous motion devices as shown in Figure 17.4. The electromagnetic
system is endless, and different geometries can be utilized. In contrast, the translational (linear) synchro-
nous machines have the open-ended electromagnetic system. Thus, the device geometry and electromag-
netic systems can be integrated within the synthesis, classification, analysis, design, and optimization
taxonomy. In particular, motion devices can have different geometries (plate, spherical, torroidal, conical,
cylindrical, and asymmetrical) and electromagnetic systems. Using these distinct features, one can classify
motion devices.

The basic types of electromagnetic motion devices are induction, synchronous, while topologies are
rotational and translational (linear). That is, devices can be classified using a type classifier as given by
Y = {y : y � Y}. As illustrated in Table 17.1, electromechanical motion devices are categorized using a
geometric classifier (plate P, spherical S, torroidal T, conical N, cylindrical C, or asymmetrical A geom-
etry), and an electromagnetic system classifier (endless E, open-ended O, or integrated I). The classifier,
as documented in Table 17.1, is partitioned into 3 horizontal and 6 vertical strips, and contains 18
sections, each identified by ordered pairs of characters, such as (E, P) or (O, C). In each ordered pair,
the first entry is a letter chosen from the bounded electromagnetic system set M�{E, O, I}. The second
entry is a letter chosen from the geometric set G�{P, S, T, N, C, A}. That is, the electromagnetic
system—geometric set is

M × G � {(E, F), (E, S), (E, T), . . . , (I, N), (I, C), (I, A)}.

In general, we have M × G � {(m, g) : m � M and g � G}.

1
2
--

1
2
--

i 1=

k

∑
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Micromechatronics and Microelectromechanical Motion Devices 17-7

Other categorization can be applied. For example, multiphase motion devices are classified using a
phase classifier H = {h : h � H}. Therefore, we have

Y × M × G × H = {(y, m, g, h) : y � Y, m � M, g, � G and h � H}

Topology (radial, axial, or integrated), permanent magnet shapes (strip, arc, disk, rectangular, rhomb,
triangular, etc.), permanent magnet characteristics (BHdemagnetization curve, energy product, hysteresis
minor loop, etc.), electromotive force distribution, cooling, power, torque, size, torque-speed character-
istics, bearing, packaging, as well as other distinct features can be classified. Hence, microelectromechan-
ical motion devices can be devised and classified by an N-tuple as: motion device type, electromagnetic
system, geometry, topology, phase, winding, sizing, bearing, cooling, fabrication, materials, packaging,
and so forth.

By using distinct geometry, electromagnetic systems (endless, open ended, and integrated), topologies,
and other features, novel high-performance motion devices can be synthesized by utilizing the Synthesis
and Classification Solver. For example, the spherical, conical, and cylindrical geometry of two-phase
permanent-magnet synchronous motion devices are illustrated in Figure 17.5. The cross-section of the
slotless radial-topology synchronous microactuator, fabricated on the silicon substrate with polysilicon
stator (with deposited windings), polysilicon rotor (with deposited permanent magnets), and contact

FIGURE 17.4 Radial topology permanent-magnet synchronous motion devices with endless electromagnetic system
and different geometries.
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17-8 Mechatronic System Control, Logic, and Data Acquisition

bearing is illustrated in Figure 17.6. The fabrication of this microactuator and the processes are reported
in References 1–3.

The major task is to devise high-performance motion devices relaxing fabrication difficulties guaran-
tying affordability. The electrostatic and planar motion devices fabricated and tested to date are found
to be inadequate for a wide range of applications owing to specifications imposed on performance [1–3].
Figure 17.7 illustrates the axial topology motion device. The stator is made on the substrate with deposited
windings (surface micromachined or printed coils can be made using the fabrication processes as well
as using double-sided substrate, applying conventional photolithography and etching processes [1–3]).
The bearing post is fabricated on the stator substrate and the bearing hold is a part of the rotor
microstructure. The rotor with permanent-magnet thin films rotates because of the electromagnetic
torque developed. It is important to emphasize that stator and rotor are made using the conventional
well-developed processes and materials.

FIGURE 17.5 Two-phase permanent-magnet synchronous motion devices with endless electromagnetic system and
distinct geometries.
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17.4 Micromechatronic System with an Axial Topology 
Motion Device

High-torque-density permanent-magnet axial-topology actuators with high switching-frequency power
electronics and ICs, controlled by controllers (microcontroller or analog controllers), are found to be a
very promising solution. High performance is achieved by utilizing: (1) high-torque-density brushless
motion devices; (2) designing tracking controllers implemented utilizing controllers that integrate filters,
IO devices, and advanced converters; (3) high-performance two- and four-quadrant power stages. The
control laws are designed to satisfy the specifications imposed. Consider a servosystem as depicted in
Figure 17.8. The reference signal is the angular displacement. Using the reference �ref  and actual �r angular
displacements (measured by the high-accuracy optical sensor), the controller develops PWM signals to

FIGURE 17.6 Cross-section schematics of a slotless radial-topology permanent-magnet brushless microactuator
with controlling ICs.

FIGURE 17.7 Cross-section of an axial topology motion device with controlling ICs.

FIGURE 17.8 Schematic diagram of a servosystem: controller; ICs; actuator/sensors; and mechanism.
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17-10 Mechatronic System Control, Logic, and Data Acquisition

drive high-frequency field effect transistors in the power stage. The output voltage uas is controlled by
changing the duty cycle. 

A limited-angle axial-topology permanent-magnet microactuator is documented in Figure 17.9. This
device is used in the studied hard drive reported in Figure 17.8. To rotate the disk and displace the pointer,
we utilize axial topology direct-drive synchronous actuators with the segmented array of the permanent-
magnet strips. These high-torque-density permanent-magnet actuators exceed performance characteris-
tics achieved by other servomotors [1–3]. The mathematical model must be found and used in the design
of controllers as well as numerical analysis. The magnetic field developed by the magnets is approximated
as continuous or discontinuous functions, for example, B(�r) = Bmax sgn(sin( Nm�r)), where Bmax is the
magnetic flux density from the permanent magnets as viewed at the coils; Nm is the number of magnets.
For the limited-angle actuator, depending on the geometry, magnetization, and separations of magnets,
one can approximate B(�r) as B(�r) = Bmax tanh

q
(k�r), where q is the technologydependent integer, and

usually one finds q = 1 or q = 3; k is the technology-dependent coefficient.
The electromagnetic torque is derived using the magnetic dipole moment m, for example,

Te � m × B. That is, for the symmetric two-filament limited angle actuator, for q � 1 we obtain Te

� 2NlBmax |tanh(k�r)| ias, where N is the number turns in filaments; l is the equivalent coil active
length; ias is the current in the coil. 

The mathematical model is found by using Kirchhoff ’s and Newton’s second laws. In particular, the
following circuitry and torsional–mechanical equations are used.

where uas is the applied voltage; rs is coil resistance; as is the flux linkages as viewed from the winding;
Bm is the friction coefficient; TL is the load torque; J is the equivalent moment of inertia.

The flux linkage is expressed as

where Las is the self-inductance, and Ae is the equivalent cross-sectional area.

FIGURE 17.9 Axial topology actuator.
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A set of nonlinear differential equations that models an axial topology microactuator is

The bounded proportional-integral tracking controller with state feedbacks (Equation 17.18) is designed 

using the state transformation method. We use the expanded state vector as z =  

where xsys(t ) =  Using different weighting matrices Qz and Gz in Equation 17.14, distinct 

feedback gains are obtained. Letting Qz = I and Gz = 1, for the bounded controller (Equation 17.18)
synthesized we have kp = 31 and ki = 24. The output dynamics for �ref = 0.349 rad is shown in
Figure 17.10 for Ts = 0.0014 s. For kp = 31 and ki = 24 with the state feedbacks, the settling time is
0.027 s, and the overshoot is 27%. It is possible to minimize the overshoot to 13%. The application
of proportional-integral controllersmay not ensure the desired transient behavior as reported in Figure
17.10, when kp = 20 and ki = 19. We tested the servo without a return spring that is commonly used
to ensure mechanical damping. Thus, the most challenging problem is considered. Pointer acceleration
and deceleration are achieved by properly controlling the actuator that operates at very high efficiency
and develops high electromagnetic torque.We conclude that optimal performance is achieved.

17.5 Synchronous Micromachines

In micromechatronics systems, rotational and translational motion devices (actuators and sensors), con-
trolled by ICs, are widely used. Among various devices, synchronous permanent-magnet motion devices
exhibit superior performance. The advantages of axial topology motion devices are feasibility, efficiency,
and reliability. Fabrication simplicity results because: (1) magnets are flat; (2) there are no strict shape
requirements imposed on magnets; (3) rotor back ferromagnetic material is not required; (4) it is easy to
deposit planar windings on the flat stator. An axial topology permanent-magnet two-phase synchronous
motion device is documented in Figure 17.11.

For two-phase actuator, one supplies two phase voltages uas and ubs in order to develop an electromag-
netic torque. Assuming that the magnetic flux is constant through the magnetic plane (current loop),
the torque on a planar current loop of any size and shape in the uniformmagnetic field is T = is × B =
m × B, where i is the current in the loop (winding); m is the magnetic dipole moment. The electromag-
netic force is given as F = l × B. The interaction of the current (in windings) and magnets will produce
the rotating electromagnetic torque. Microscale synchronous transducers can be used as motors (actu-
ators) and generators (sensors). Microgenerators (velocity and position sensors) convert mechanical
energy into electrical energy, while micromotors (actuators) convert electrical energy into mechanical
energy. A broad spectrum of synchronous microtransducers can be used as actuators, for example,
microscale drives, servos, and power systems.

Distinct electrostatic and electromagnetic motion devices can be designed and fabricated using the
surface micromachining technology. However, all high-performance, high-power, and torque density
devices are electromagnetic, and these devices use permanent magnets. Therefore, the issues of fabrication
and analysis of magnets are of great interest. Different soft and hard magnets can be fabricated using surface
micromachining. In particular, Ni, Fe, Co, NiFe, and other magnets can be made. In general, four types of

id∫°
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17-12 Mechatronic System Control, Logic, and Data Acquisition

high-performance magnets have been commonly used in electromechanical motion devices, for example,
neodymium iron boron (Nd2Fe14B), samarium cobalt (usually Sm1Co5 and Sm2Co17), ceramic (ferrite),
and alnico (AlNiCo). The term soft is used to refer to magnets that have high saturation magnetization
and a low coercivity (narrow BH curve). Another property of these magnets is their low magnetostriction.
The soft magnets have been widely used in magnetic recording heads, and, in particular, NiFe thin films
with the desired properties have been utilized. Hard magnets have wide BH curves (high coercivity) and,
therefore, high-energy storage capacity. These magnets should be used in devices in order to attain high
force, torque, and power densities. Unfortunately, limited progress has been made in the fabrication of
hard permanent magnets.

The energy density is given as the area enclosed by the BH curve, for example, wm � B . H. When
magnets are used in motion devices, the demagnetization curve (second quadrant of the BH curve) is of

FIGURE 17.10 Transient dynamics of the closed-loop servo with the bounded proportional-integral controller with
state feedback.
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interest. Permanent magnets store, exchange, and convert energy. In particular, permanent magnets pro-
duce stationary magnetic field without external energy sources or radiation devices.We apply Kirchhoff ’s
and Newton’s laws to derive the equations of motion for axial topology permanent-magnet synchronous
motion devices. Using an axial permanent-magnet synchronous device documented in Figure 17.11, we
assume that this variation of the flux density is sinusoidal, for example, B(�r) = Bmax sinn( Nm�r), n = 1,
3, 5, . . ., where Bmax is the maximum flux density in the airgap produced by the magnet as viewed from
the winding; n is the integer that is a function of the magnet geometry and the waveform of the airgap
B. It should be emphasized that Bmax depends on the magnets used, airgap length, temperature, and so forth.

The electromagnetic torque, developed by a single-phase axial topology permanent-magnet synchron-
ous actuator, is found using the expression for the coenergy Wc (ias, �r) that is given as Wc (ias, �r) �
NAeB(�r)ias. Assuming that the airgap flux density obeys B(�r) = Bmax sin( Nm�r), we haveWc (ias, �r) �
NAeBmax sin( Nm�r)ias, and the electromagnetic torque is

As we fed the following currentwith the magnitude i
M to the micromotorwinding ias � i

M cos( Nm�r),
the electromagnetic torque is Te � NmNAeBmaxiM cos2( Nm�r) 	 0. The mathematical model of the
single-phase permanent-magnet micromotor is found by using Kirchhoff ’s and Newton’s second laws.
In particular, one obtains

FIGURE 17.11 Axial permanent-magnet synchronous motion device.
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Taking note of the flux linkage equation as � Lasias � NAeB(�r), we have a set of three first-order
nonlinear differential equations that models a single-phase axial topology permanent-magnet synchro-
nous motion device

17.6 Fabrication Aspects

Mini and microscale electromechanical motion devices can be fabricated by creating (etching or depos-
iting) of conductors (coils and windings), ferromagnetic core, magnets, insulating layers, as well as other
microstructures (radiating energy devices, movable and stationarymembers, and their components
including bearings and posts). The subsequent order of the processes, sequential steps, and materials are
different depending on the devised, designed, analyzed, and optimized devices. Several textbooks [1–6]
provide the reader with the basic fabrication features and processes. In partcilular, the electrostatic devices
are covered in References 1–6, while the electromagnetic motion devices are reported in References 1–3.
Complementary metal oxide semiconductor (CMOS), high aspect ratio (LIGA and LIGA-like), and
surface micromachining technologies are key features for fabrication of microdevices and structures. The
LIGA (Lithography–Galvanoforming–Molding, or in German Lithografie–Galvanik–Abformung) tech-
nology allows one to make three-dimensional microstructures with the aspect ratio (depth versus lateral
dimension is more than 100). The LIGA technology is based on the x-ray lithography that ensures short
wavelength (from few to 10 Å), which leads to negligible diffraction effects and larger depth of focus
compared with photolithography. The major processes in the machine’s microfabrication are diffusion,
deposition, patterning, lithography, etching, metallization, planarization, assembling, and packaging.
Thin film fabrication processes were developed and used for polysilicon, silicon dioxide, silicon nitride,
and other different materials (e.g., metals, alloys, composites, etc.). The basic steps are lithography,
deposition of thin films and materials (electroplating, chemical vapor deposition, plasma-enhanced
chemical vapor deposition, evaporation, sputtering, spraying, screen printing, etc.), removal of material
(patterning) by wet or dry techniques, etching (plasma etching, reactive ion etching, laser etching, etc.),
doping, bonding (fusion, anodic, and other), and planarization.

To fabricate motion and radiating energy microscale structures and devices, different fabrication tech-
nologies are used [1–6]. New processes were developed and novel materials were applied modifying the
CMOS, surface micromachining, and LIGA technologies. Currently, the state-of-the-art technology in
microfabrication has been progressed to the nanometer minimal features. Motion devices and structures
(stator, rotor, bearing, coils, etc.) are defined photographically, and the high-resolution photolithography
is applied to define two- (planar) and three-dimensional shapes (geometry). Deep ultraviolet lithography
processes were developed to decrease the feature sizes of microstructures to 0.1 ƒÊm and less. Different

ψ
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exposure wavelengths 
 (435, 365, 248, 193 nm) are used. Using the Rayleigh model for image resolution,
the expressions for image resolution iR and the depth of focus dF are iR � ki  and dF � kd  , where
ki and kd are the lithographic process constants; 
 is the exposure wavelength; NA is the numerical aperture
coefficient, and for high-numerical aperture we have NA � 0.5–0.6.

The g- and i-line IBM lithography processes (with wavelengths of 435 and 365 nm, respectively) allow
one to attain minimal features in the range of 0.35 µm. The deep ultraviolet light sources (mercury source
or excimer lasers) with 248-nm wavelength enable the industry to achieve 0.25 µm resolution, leading
to the minimal features in the range of 0.13 µm. The changes to short exposure wavelength possess
challenges and present new highly desired possibilities. Using advanced lithography, 90-nm features were
achieved. Different lithography processes commonly applied are photolithography, screen printing, elec-
tron-beam lithography, x-ray lithography (high-aspect ratio technology), and so forth. Althoughmachine
topologies and configurations vary, magnetic and insulating materials, magnets, and windings are used
in all motion devices. Figure 17.12 illustrates the electroplated 10 µm wide and thick with 10 µm spaced
insulated copper microwindings (deposited on ferromagnetic cores), microstructures, and permanent
magnets (electroplated NiFe alloy). Finally, it must be emphasized that usually the size of microelectro-
mechanical motion devices is defined by the torque and power densities specified. Those requirements,
as well as physical limits, define the device dimensionality.
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FIGURE 17.12 Deposited copper microwindings, microstructure, and permanent magnets.
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18.1 Introduction: The Mechatronic Use of Computers

Mechatronics is the synergistic combination of mechanical engineering, electronics, control systems, and
computers. The key element in mechatronics is the integration of these areas through the design process.
Synergism and integration in design set a mechatronic system apart from a traditional, multidisciplinary
system. In a mechatronic system, computer, electronic, and control technology allow changes in design
philosophy, which lead to better performance at lower cost: accuracy and speed from controls, efficiency
and reliability from electronics, and functionality and flexibility from computers. Automotive engine-
control systems are a good example. Here a multitude of sensors measure various temperatures, pressures,
flow rates, rotary speeds, and chemical composition and send this information to a microcomputer. The
computer integrates all this data with preprogrammed engine models and control laws and sends com-
mands to various valves, actuators, fuel injectors, and ignition systems so as to manage the engine’s
operation for an optimum combination of acceleration, fuel economy, and pollution emissions.

In mechatronics, balance is paramount. The essential characteristic of a mechatronics engineer and
the key to success in mechatronics design is a balance between two sets of skills: 

• Modeling (physical and mathematical), analysis (closed-form and numerical simulation), and
control design (analog and digital) of dynamic physical systems

• Experimental validation of models and analysis and understanding the key issues in hardware
implementation of designs 

In mechatronic systems, computers play a variety of roles. First, computers are used to model, analyze,
and simulate mechatronic systems and mechatronic system components and, as such, are useful for
control design. Second, computers, as part of measurement systems, are used to measure the performance
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of mechatronic systems, to determine the value of component parameters, and to experimentally validate
models. Finally, computers or microcomputers form the central component in digital control systems
for mechatronic designs. Thus, computers play an essential role in the two essential characteristics of the
mechatronics balance and comprise a key component to mechatronic system designs. This is illustrated
by the following example. 

Consider the schematic of a pneumatic servomechanism, a computer-controlled, closed-loop posi-
tioning system, shown in Figure 18.1. Pneumatic servomechanisms have the advantages of low cost, high
power-to-weight ratio, ease of maintenance, cleanliness, and a readily-available and cheap power source.
However, the disadvantages are high, nonlinear friction forces, deadband due to stiction, and dead
time due to the compressibility of air. The design goal is to implement a fast, accurate, and inexpensive
pneumatic-actuator system using inexpensive on/off solenoid valves, rather than expensive continuously-
variable servo valves. To accomplish this task, one must completely understand the physical system,
develop a physical model on which to base analysis and design, and experimentally determine and/or
validate model parameters. One must then develop a mathematical model of the system, analyze the
system, and compare the results of the analysis to experimental measurements to validate the model.
One must then design a closed-loop position control system utilizing on/off, modified on/off, or pulse-
width modulated control. Finally, one must implement the control system and experimentally validate
its predicted performance. 

A MatLab/Simulink model of this system is shown in Figure 18.2. The mathematical model is highly
nonlinear, as are the various control schemes. A computer numerical simulation is needed to understand
the behavior of the system and the various control schemes. A data acquisition system is needed to take
measurements of the various system inputs and outputs and validate the numerical simulation. And, a
computer (a microcontroller in this case) is needed for the real-time implementation of the various
control schemes. There are a variety of computer numerical simulation tools available, some requiring
the detailed mathematical model while others enable virtual prototyping where the various system
components are assembled on the computer screen with the component mathematical models given
hidden in the background. There are also a variety of computer platforms on which to run the control
algorithm, e.g., high-end PC using a DSP board and a real-time control-code generator; a microcontroller
programmable in C or Basic with an analog-to-digital (A/D) converter and numerous digital input/output
(I/O) ports; and a microchip implementation needed for product development.

FIGURE 18.1 Pneumatic servomechanism.
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18.2 Mechatronics and Computer Modeling and Simulation

In design, balance is the key to success, i.e., balance between theory and practice and balance between
modeling/analysis skills and hardware-implementation/measurement skills. Figure 18.3 illustrates the steps
in a dynamic system investigation, which is the process that would be utilized to design a mechatronic
system. The distinction between physical modeling and mathematical modeling is emphasized, as is the
importance of both analytical and numerical solutions to the model equations. To generate a physical
model, approximations must be made to the actual physical system. Small effects are neglected. The
influence of the environment is ignored. Elements are assumed to be lumped instead of distributed. The
dynamics are assumed to be linear. Parameters are assumed to be constant. Noise and uncertainty is
ignored. These approximations have a direct influence on the mathematical model. Neglecting small
effects limits the number of equations. Environmental independence reduces the complexity of the
equations. Other approximations result in linear ordinary differential equations with constant coeffi-
cients. Neglecting uncertainty avoids the use of statistics in the model. In most cases, a design consider-
ation is to develop the simplest model which adequately depicts the complexity of the system dynamics.

The predicted dynamic behavior of the model is only half the story, for these results, without experimental
verification, are at best questionable, and at worst useless. Comparing the predicted dynamic behavior with
the actual measured dynamic behavior is the key step in the dynamic system investigation process.

FIGURE 18.2 MatLab/Simulink model of the pneumatic servomechanism.

FIGURE 18.3 Dynamic system investigation process.
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18-4 Mechatronic System Control, Logic, and Data Acquisition

The steps in the dynamic system investigation process should be applied not only when an actual
physical system exists (as in reverse engineering) and one desires to understand and predict its behavior,
but also when the physical system is a concept in the design process that needs to be analyzed and
evaluated. After recognizing a need for a new product or service, one uses past experience (personal and
vicarious), awareness of existing hardware, understanding of physical laws, and creativity to generate
design concepts. The importance of modeling and analysis in the design process has never been more
important than in this situation. These design concepts can no longer be evaluated by the build-and-test
approach because it is too costly and time consuming. Validating the predicted dynamic behavior in this
case, when no actual physical system exists, becomes even more dependent on one’s past hardware and
experimental experience. 

In physical modeling, one first specifies the physical system to be studied along with the system
boundaries, input variables, and output variables. In modeling dynamic systems, we use engineering
judgment and simplifying assumptions to develop a physical model. The complexity of the physical
model depends on the particular need, e.g., system design iteration, control system design, control design
verification, physical understanding. The intelligent use of simple physical models requires that we have
some understanding of what we are missing when we choose the simpler model over the more complex
model. The astuteness with which these approximations are made at the onset of an investigation is the
very crux of engineering analysis. A variety of engineering models may be developed based on the particular
need. Always ask the question: “Why am I modeling the physical system and what is the range of operation
that I wish my model to be valid for?” If the need is system-design iteration or control-system design,
then a “design model” is needed, i.e., a physical model whose mathematical model is a linear ordinary
differential equation with constant coefficients and, therefore, useful with a broad, highly-developed
assortment of linear design techniques. If the need is design verification before actual hardware imple-
mentation, then a “truth model” is needed, i.e., a physical model that is as close to reality as possible;
with nonlinear simulation tools available, almost any mathematical model can now be simulated. Itera-
tions can then be performed using, as a starting point, the results of the work performed with the design
model. Models only need to be valid for the particular range of operation of interest; low-order models
then can often represent very complex, higher-order models very effectively. In practice, you may need
a hierarchy of models of varying complexity: a very detailed truth model for final performance evaluation
before hardware implementation, several less complex truth models for use in evaluating particular
effects, and one or more design models.

18.3 Mechatronics, Computers, and Measurement Systems

Measurement systems or data acquisition systems may be used for a variety of purposes, and a computer
plays an integral role in each.

1. Monitoring of Processes and Operations. Certain applications of measuring instruments may be
characterized as having essentially a monitoring function, e.g., thermometers, barometers, and
water, gas, and electric meters.

2. Control of Processes and Operations. An instrument can serve as a component of a control system.
To control any variable in a feedback control system, it is first necessary to measure it. A single
control system may require information from many measuring instruments, e.g., industrial
machine and process controllers, aircraft control systems.

3. Experimental Engineering Analysis. In solving engineering problems, two general methods are avail-
able: theoretical and experimental. Many problems require the application of both methods and
theory and experiment should be thought of as complementing each other. Further, all models need
validation, and measurement systems offer a means to collect the data required for model validation.

The distinction among monitoring, control, and analysis functions is not clear-cut; the category that a
given application may fit may depend somewhat on the engineer’s point of view and the apparent
looseness of the classifications should not cause any difficulty. Rather it should be realized that computers,
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as general purpose processing elements, can serve many functions in the processing of measured param-
eters from mechatronic systems and that these processing functions can be related to or unrelated to the
modeling and control of such systems. Special purpose digital signal processing electronics are also used
in measurement systems. High-speed digital signal processors (DSPs), for example, are used to collect
input and output signals in the determination of transfer functions for mechatronic systems. The high
speed allows the processing of simultaneous samples of the input and output for minimal phase error.
The primary application for DSPs in mechatronic systems, however, is real-time control, discussed below.

Figure 18.4 is the input–output configuration of a measurement system. Input quantities are classified
into three categories:

1. Desired Inputs. These are quantities that the instrument is specifically intended to measure.
2. Interfering Inputs. These are quantities to which the instrument is unintentionally sensitive. FD

and FI are input–output relations, i.e., the mathematical operations necessary to obtain the output
from the input. They represent different concepts depending on the particular input–output
characteristic being described, e.g., a constant, a mathematical function, a differential equation,
a statistical distribution function.

3. Modifying Inputs. These are quantities that cause a change in the input–output relations for the
desired and interfering inputs, i.e., they cause a change in FD and/or FI. FM,I and FM,D represent
the specific manner in which iM affects FI and FD, respectively.

There are several methods for canceling or reducing the effects of spurious inputs. One method which
relies upon computer processing of the signals is the method of calculated output corrections. This
method requires one to measure or estimate the magnitudes of the interfering and/or modifying inputs
and to know quantitatively how they affect the output. Then it is possible to calculate corrections, which
may be added to or subtracted from the indicated output so as to leave (ideally) only that component
associated with the desired input. Since many measurement systems today can afford to include a
computer to carry out various functions, if sensors for the spurious inputs are provided, the computer
can implement the method of calculated output corrections on an automatic basis.

18.4 Mechatronics and the Real-Time Use of Computers

We turn to the field of closed-loop control using a digital computer as the controller. Several comments
are in order. First, a mechatronic system typically involves continuous variables. Elements rotate or
translate in space. Fluids or gasses flow. Heat or energy is transferred. Computers are, by their nature,
digital elements. Variables are represented in a computer by discrete values or simply by collections of
zeroes and ones. For a computer to be used as the controller for a mechatronic system, therefore, the

FIGURE 18.4 Input–output configuration of a measurement system.
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18-6 Mechatronic System Control, Logic, and Data Acquisition

continuous variables must be converted to discrete variables for processing and then back again to
continuous variables. This might seem obvious. What is not so apparent is that the computer algorithm
forms an inherent separation between the processing of the signals and the signals themselves, which is
not true of other mechatronic system components. Even if digital logic elements are used (as discussed
in this chapter) the signals are converted to discrete form, but the flow of information is still continuous
through the elements. When a computer is used for the control element, this information flow is broken
and buried in the computer algorithm. As an example, computer algorithms sometimes mimic contin-
uous proportional-integral-derivative (PID) control laws. When the execution of this algorithm is ana-
lyzed, even if the effects of sampling and quantization are included, it is assumed that the signals are
processed just as if they were being determined by continuous processing elements. In reality, if the computer
code is examined at the machine level (i.e., not in the high level language in which it may be written), it
would bear very little resemblance to a differential equation representation of the PID algorithm. This
has practical implications both for modeling the exact operation of the computer as a control element
and for validating that the computer code actually produces the desired response to signals.

Other issues are involved when the mechatronic system controller is implemented in software. Software
execution is often asynchronous to the other time constants in the system (i.e., the software execution
and system response are often not synchronized). Software can be made synchronous by syncing it to
the sampler period, but this typically limits performance and is difficult if the computer is to be used
for other tasks than control. Once a computer is contained as an element in a mechatronic system, there
is a tendency to use some of the processing power to provide additional functionality or ease of use for
the product. This additional code can affect, sometimes adversely, the operation of the real time controller
execution. Testing of the code and safety of the code are also issues. The engineer has to determine that
his system operates deterministically and safely for all possible combinations of input signals and for all
possible states in the execution of the algorithm. For real-time systems, execution order for the code is
often not predictable since it can be dependent on the particular combination of input signals. Simplicity
of the code, providing for testability of the code, using established software quality assurance practices,
and developing extensive documentation are ways to achieve system determinism and safety. Often, a
hardware interlock, that is, a safety system utilizing electronic or mechanical hardware, is often included
in software controlled systems.

Code operation has to be further verified as the code is modified and as the code is reused for systems
other than that for which it was developed. Unlike other controllers, computer code is portable, but this
requires more thought for its possible reuse. Using standard software packages, standard processors,
modular code, and commercial real-time environments increases the possibility for reuse.

Besides the issues inherent in using computer code as the controller, there are issues involved whenever
a digital processing component is incorporated into a mechatronic system. Further, there are consider-
ations that must be taken into account whenever digital signals are processed. Figure 18.5 shows a con-
figuration useful for this discussion. The computer is important, but the computer “component” of many
mechatronic machines and processes is often not the critical system element in terms of either technical
or economic factors. Rather, components external to the computer, the actuators and sensors, the
sampling system, and the anti-aliasing filter are more often the limiting factors in the system design.

Since both continuous (analog) and digital signals exist in computer-controlled systems, the signals
in such a system can be classified as shown in the table below.

For analog signals, the precise value of the quantity (voltage, rotation angle, etc.) carrying the information
is significant, meaning that the specific waveform of input and output signals is of vital importance.
Conversely, digital signals are binary (on/off) in nature, and variations in numerical value are associated

Signal Classification Discrete in Time Continuous in Time

Discrete in amplitude D-D (digital) D-C
Continuous in amplitude C-D C-C (analog)
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with changes in the logical state (true/false) of some combination of switches, e.g., +2 V to +5 V represents
ON state, 0 V to +0.8 V represents OFF state.

In digital devices, it is simply the presence (logical 1) or absence (logical 0) of a voltage within some
wide range that matters; the precise value of the signal is of no consequence. Digital devices are therefore
very tolerant of noise voltages and need not be individually very accurate, even though the overall system
can be extremely accurate. When combined analog/digital systems are used, the digital portions need
not limit system accuracy; these limitations generally are associated with analog portions and/or the
analog-to-digital (A/D) conversion devices. Since most mechatronic systems are analog in nature, it is
necessary to have both A/D converters and digital-to-analog (D/A) converters, which serve as translators
that enable the computer to communicate with the outside analog world.

In most cases, the sensor and the final control element are analog devices, requiring, respectively, A/D
and D/A conversion at the computer input and output. There are, of course, exceptions, e.g., stepper
motor and optical encoder. In most cases, however, the sensors can be thought of as providing analog
voltage output and the final control element will accept an analog voltage input.

The current trend toward using dedicated, computer-based, and often decentralized (distributed)
digital control systems in mechatronic applications can be rationalized in terms of the major advantages
of digital control:

• Digital control is less susceptible to noise or parameter variation in instrumentation because data
can be represented, generated, transmitted, and processed as binary words, with bits possessing
two identifiable states.

• Very high accuracy and speed are possible through digital processing. However, hardware imple-
mentation is usually faster than software implementation. Determining the time required to
develop a system in software is notoriously difficult to estimate.

• Digital control can handle repetitive tasks extremely well, through programming.

• Complex control laws and signal conditioning methods that might be impractical to implement
using analog devices can be programmed. Very sophisticated algorithms can be implemented
digitally.

• High product reliability can be achieved by minimizing analog hardware components and through
decentralization using dedicated computers for various control tasks.

FIGURE 18.5 General computer-control configuration.

Digital Set Point

Sampled & Quantized
Measurement

Sampled & Quantized
Control SignalDigital Computer

A/D
Converter

Sampling
Switch

Sampling
System

D/A 
Converter

Anti-
Aliasing

Filter
Sensor Plant

Final
Control
Element

9260_18.fm  Page 7  Friday, October 5, 2007  11:22 AM
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• Digital systems are more easily “programmed” and offer the ability to time-share a single process-
ing unit among a number of different functions.

• Large amounts of data can be stored using compact high-density data storage methods.

• Data can be stored or maintained for very long periods of time without drift and without being
affected by adverse environmental conditions. Digital control has easy and fast data retrieval
capabilities.

• Fast data transmission is possible over long distances without introducing dynamic delays, as in
analog systems.

• Digital processing uses low operational voltages (e.g., 0–12 V DC).

• Digital control has low overall component cost.

Further, from the standpoint of the mechatronic product, the inclusion of a computer means that
additional system functions can be provided. The user can select from a range of operations. Additional
features can be included. A user interface providing indications of operation can be added with minimal cost.

In a real sense, some of the problems of analysis and design of digital control systems (beyond the issues
associated with software) are concerned with taking into account the effects of the sampling period, T, and
the quantization size, q. If both T and q are extremely small (i.e., sampling frequency 50 or more times the
system bandwidth with a 32-bit word size), digital signals are nearly continuous, and continuous methods
of analysis and design can be used. It is most important to understand the effects of all sample rates, fast
and slow, and the effects of quantization for large and small word sizes. Lower cost computers are typically
slower and have a smaller word size. Figure 18.6 shows the effects of having too few quantization levels,
i.e., too small a word size. The signal that will be processed by the controller has large errors over the original
analog signal. 

Figure 18.7 shows the effects of sampling. It is worthy to note that the single most important impact
of implementing a control system digitally is often the delay associated with the D/A converter, i.e., T/2.
This pure delay results in a substantial phase shift in the closed-loop feedback system and often limits
the control operation.

FIGURE 18.6 Simulation of a continuous and 4-bit quantized signal.
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In a feedback system, the analog signal coming from the sensor contains useful information related
to controllable disturbances (relatively low frequency), but also may often include higher frequency
“noise” due to uncontrollable disturbances (too fast for control system correction), measurement noise,
and stray electrical pickup. Such noise signals cause difficulties in analog systems and low-pass filtering
is often needed to allow good control performance. The phase shift from this filter also adversely affects
control system stability.

Finally, in digital systems, a phenomenon called aliasing introduces some new aspects to the area of
noise problems. If a signal containing high frequencies is sampled too infrequently, the output signal of
the sampler contains low-frequency (“aliased”) components not present in the signal before sampling.
This is illustrated in Figure 18.8. If the higher frequency signal is sampled too infrequently, the result
will be exactly the same values as the low frequency signal. From the standpoint of the controller, there
is no way for the system to distinguish which signal is present. If we base our control actions on these
false low-frequency components, they will, of course, result in poor control. The theoretical absolute
minimum sampling rate to prevent aliasing is two samples per cycle; however, in practice, rates of about
10 are more commonly used. A high-frequency signal, inadequately sampled, can produce a reconstructed
function of a much lower frequency, which cannot be distinguished from that produced by adequate
sampling of a low-frequency function.

In all of the above, the word computer was used for the digital processing element. In electronics
literature, a distinction is usually drawn between a microprocessor, microcomputer, DSP, and computer.
There is no standard for what each of these terms can mean, but some insight can be gained by examining
Figure 18.9, which is a general block diagram for a computer. All computers have a means of getting
input, a means of generating output, a means of controlling the flow of signals and operations, memory
for data storage, and an arithmetic logic unit (ALU) which executes the instructions. The ALU and control
elements are often called the central processing unit (CPU). Small computers, which just contain a CPU,
are often called microprocessors. Memory for these computers is often attached to the microprocessor
but in distinct electronic packages. Input and output to the microprocessor is often handled by electronics
called peripherals. If the memory is included in the same package, the computer is called either a micro-
computer or computer depending on its physical size. CPU and memory on a single electronics chip is often

FIGURE 18.7 Continuous and D/A converter output.
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18-10 Mechatronic System Control, Logic, and Data Acquisition

called a microcomputer. The reader should be aware that a single electronics package can contain many
“chips,” which are connected by fine wires within the package. The overall package is still called a chip.
Finally, if the A/D and D/A functions are provided in the same package, the computer is often called a
DSP. However, these functions can also be contained in something which is called a microcomputer. DSPs
are also computers which have a special instruction in the ALU called a multiply-accumulate (MAC)
instruction even if the A/D and D/A are not present. Digital signal processing algorithms often involve
MAC instructions and a computer, which can execute this instruction very effectively (in one instruction
cycle of the computer), and are often called DSPs. To further complicate the situation, electronic devices
called application specific integrated circuits (ASICs) exist. These devices can be custom made to perform
a specific operation (such as a PID algorithm). ASICs can contain a CPU or memory or peripheral functions
or even a MAC cell as part of its makeup. If the reader is thoroughly confused by this explanation, he probably
has the proper grasp of the situation. However, he should be aware that diagrams like the one shown in Figure
18.9 often accompany the electronic component so the internal capabilities can be determined.

Before leaving computers, one final point will be made. Memory in a computer can often be divided
between program space and data space, as shown in Figure 18.10. This representation is meant to be

FIGURE 18.8 Simulation of continuous and sampled signal: aliasing.

FIGURE 18.9 Elements of a computer.
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pictorial rather than to define a specific computer architecture. In a von Neumann architecture, for
example, the program memory and data memory share the same space and information busses. Whereas
in a Harvard architecture, program memory and data memory are distinct (looking more like the figure).
In either case, for a mechatronic system, one can think of the program (in program memory) as the set
of instructions which tells the CPU how to manipulate data (in data memory) to produce an output.
This view should emphasize the earlier point that the flow of signals in a mechatronic system becomes
confused if a computer is to be used for real-time control.

Because of the low cost of modern microcomputers, the use of logic elements as discrete components
in a mechatronic system has diminished. Microcomputers are often programmed to perform logic
functions, which has the advantage that the operation can be altered in software rather than requiring
electronic hardware changes. In analyzing this logic, of course, any of the traditional methods can be
employed. The logic can be minimized via Karnaugh maps, for example. The only difference lies in the
implementation of the algorithm. ASICs are also used to implement logic functions.

18.5 The Synergy of Mechatronics

As stated at the beginning of this section, mechatronics is the synergistic combination of mechanical
engineering, electronics, control systems, and computers and the key element in mechatronics is the
integration of these areas through the design process. The use of computers and logic elements as
components in mechatronic systems will produce successful designs only if this synergy is achieved. The
system must be designed as a system. Computers should never be an add-on component included when
the design is complete. When computers are synergistically incorporated in the system, the power of the
mechatronics approach to design is realized.

FIGURE 18.10 Computer memory organization.
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19.1 Introduction

Digital logic deals with the representation, transmission, manipulation, and storage of digital information.
A digital quantity has only certain discrete values in contrast with an analog quantity, which can have
any value in an allowed continuum. The enormous advantage digital has over analog is its immunity to
degradation by noise, if that noise does not exceed a tolerance threshold.

19.2 Digital Information Representation

Information can be characterized as qualitative or quantitative. Quantitative information requires a
number system for its representation. Qualitative does not. In either case, however, digitalized informa-
tion is represented by a finite set of different characters. Each character is a discrete quanta of information.
The set of characters used constitutes the alphabet.

George I. Cohn
California State University
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19-2 Mechatronic System Control, Logic, and Data Acquisition

19.3 Number Systems

Quantitative information is represented by a number system. A character that represents quantitative infor-
mation is called a digit. The number of different values which a digit may have is called the radix, designated
by R. The symbols that designate the different values a digit can have are called numeric characters. The most
conventionally used numeric characters are 0, 1, 2,…, etc., with 0 representing the smallest value. The largest
value that a digit may have in a number system is the reduced radix, r = R − 1. Different radix values
characterize different number systems: with R different numeric character values the number system is Rnary,
with 2 it is binary, with 3 it is ternary, with 8 it is octal, with 10 it is decimal, and with 16 it is hexadecimal.

Any value that can be expressed solely in terms of digits is an integer. A negative integer is any integer
obtained by subtracting a positive integer from a smaller integer. Any number obtained by dividing a number
by a larger number is a fraction. A number that has both an integer part and a fraction part is a real number.

All of the digits in a number system have the same radix. The radix is the base of the number system.
Presumably, the possession of 10 fingers has made the decimal number system the most convenient for humans
to use. The characters representing the 10 values a decimal digit can have are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
The binary number system is the most natural for digital electronic systems because a desired reliability for
a system can be most economically achieved using elements with two stable states. The characters normally
used to represent the two values a binary digit may have are 0 and 1. The hexadecimal number system (0, 1,
2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F; R = 16) is of importance because it shortens by a factor of four the
string of digits representing the binary information stored and manipulated in digital computers.

19.4 Number Representation

Numbers that require more than one digit can be represented in different formats, as shown in Table 19.1.
Different formats facilitate execution of different procedures. Arithmetic is most conveniently done with
the juxtaposition format. Theoretical developments are facilitated by the polynomial format.

19.5 Arithmetic

The most common arithmetic processes, addition, subtraction, multiplication, and division are conve-
niently implemented using multidiget notation. Development of formulation procedures is facilitated
using the polynomial notation. Since the numbers are digital representations, the logic used to maniputate
the numbers is digital logic. However, this is different than the logic of boolean algebra, which is what is
usually meant by the term digital logic. The logic of the former is implemented in hardware by using
the logic of the latter. The four basic arithmetic operations can be represented as functional procedures
in equation form or in arithmetic manipulation form, as shown in Table 19.2. 

The arithmetic processes in the binary system are based on the binary addition and multiplication
tables given in Table 19.3.

Table 19.4 gives binary examples for each of the basic arithmetic operations.

TABLE 19.1 Notation for Numbers

Juxtaposition Polynomial 

Integer N = Nn−1 Nn−2 … N1N0  

Fraction F = F−1F−2 … F−m+1F−m  

Real X = Xn−1 Xn−2 … X1X0 ⋅ X−1X−1 … X−m+1 X−m  

N NkRk

k=0

n−1

∑=

F FkRk

k=−m

−1

∑=

X XkRk

k=−m

n−1

∑=
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TABLE 19.2    Arithmetic Operations

Algebraic Form Arithmetic Form

Addition
Addend

Sum

Minuend

Subtraction Difference = Minuend−Subtrahend
Subtrahend

Multiplicand

Multiplication Product = Multiplicand × Multiplier × Multiplier

Product

Division Dividend/Divisor = Quotient
+ Remainder/Divisor Divisor

Quotient Remainder

Dividend

Augend
+Sum = Augend + Addend 

Difference

TABLE 19.3    Single Digit Binary Arithmetic Table 

(a) Addition (b) Multiplication

1 0 1
0 0 1 0 0 0

1 1 10 1 0 1

0

 TABLE 19.4    Binary Arithmetic Operation Examples

Addition: Multiplication:

multiplicand

Subtraction, borrow method: Division, with fraction remainder:

1 1 1

Subtraction, payback method: Division, with remainder in quotient:

             1 0 1 1 

1 1 0 0
1 1 1 0 0
+ 1 1 0 1 addend

0 1 0 0 11

 1 1 0 1
 ×1 1 0
0 0 0  0 
1 0 1
0 1 
1 1 1 01 0 0

1 1
1

10

1 0 1 1  1 1 0 0 1 1 0 1
1 0 1 1

0 1 1 1  0
   1 0 1  1 
      0 1  1 1 

divisor

1 0 0 1 0 1 0 1 1 

10
1 0 1 1  1 1 1.0 0 0 0 0 0 0 dividend

                   1 1 0 0
                   1 0 1 1 
                         0 1 0 0 0 0
                               1 0 1 1

 

multiplier
partial product 1
partial product 2
partial product 3
product

remainder

quotient

dividend

quotient

divisor

borrows
minuend
payback
subtrahend

difference

101

10
11

difference
subtrahend
minuend
borrows

101
10
11

carries
augend

sum

9260_19.fm  Page 3  Thursday, October 11, 2007  3:27 PM



19-4 Mechatronic System Control, Logic, and Data Acquisition

19.6 Number Conversion from One Base to Another

The method of using series polynomial expansions for converting numbers from one base to another is
illustrated in Table 19.5.

Evaluation of polynomials is more efficiently done with the nested form. The nested form is obtained
from the series form by successive factoring of the variable from all terms in which it appears as
shown in Table 19.6. The number of multiplications to evaluate the nested form increases linearly
with the order of the polynomial, whereas the number of multiplications to evaluate the series form
increases with the square of the order.

Conversion of integers between bases is more easily done using the lower order polynomials, Table 19.6b,
obtained by nesting. The least significant digit of the number in the new base is the remainder obtained
after dividing the number in the old base by the new radix. The next least significant digit is the remainder
obtained by dividing the first reduced polynomial by the new radix. The process is repeated until the most
significant digit in the new base is obtained as the remainder, when the new radix no longer fits into the last
reduced polynomial. This is more compactly represented with the arithmetic notation shown in Table 19.7
along with the same examples used to illustrate the polynomial series method.

TABLE 19.5 Series Polynomial Method for Converting Numbers between Bases

Sample Conversion From

Method A Lower to a Higher Base A Higher to a Lower Base

1. Express number in polynomial 
form in the given base

101.12 = 1 × 22 + 0 × 21 + 1 × 20 + 1 × 2−1 19.510 = 3 × 101 + 6 × 100 + 5 × 10−1

2. Convert radix and coefficients 
to the new base

= 1 × 4 + 0 × 2 + 1 × 1 + 1 × 0.5 = 11 × 10101 + 110 × 10100 + 101 × 1010−1

3. Evaluate terms in the new
base = 4 + 0 + 1 + 0.5

= 11 × 1010 + 110 + 101/1010
= 11110 + 110 + .1

4. Add the terms 101.12 = 5.510 19.510 = 100100.12

TABLE 19.6    Nested Polynomials

(a) Nested Polynomial via Iterated Factoring (b) Lower Order Polynomials

N = Nn−1Rn−1 + Nn−2Rn−2 + · · · + N2R2 + N1R + N0

N = (Nn−1Rn−2 + Nn−2Rn−3 + · · · + N2R + N1)R + N0

N = ((Nn−1Rn−3 + Nn−2Rn−4 + · · · + N2)R + N1)R + N0

N = (· · ·(Nn−1R + Nn−2)R + · · · + N2)R + N1)R + N0

N = N(1)R + N0

N(1) = N(2)R + N1

N(2) = N(3)R + N2

N(n−2) = N(n−3)R + Nn−2

N(n−1) =  Nn−1

...

···

TABLE 19.7    Radix Divide Method for Converting Numbers between Bases

Sample Conversion From
Method

A Higher to a Lower Base A Lower to a Higher Base

R N 2 36 10

R N(1) N0 2 18       0
R N(2) N1 2 9        0 12 2012 3

R N(3) N2 2 4        1 12 102     11
2 2        0 12 2       1··· 2 1        0 0 2

R N(n 1) Nn 2 0 1
R 0 Nn 1 36 10 = 100100 2

2012 3 = 214 5

12
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Conversion of a fraction from one base to another can be done by successive multiplications of the
fraction by the radix of the number system to which the fraction is to be converted. Each multiplication
by the radix gives a product that has the digits shifted to the left by one position. This moves the most
significant digit of the fraction to the left of the radix point, placing that digit in the integer portion of
the product, thereby isolating it from the fraction. This process is illustrated in algebraic form in the left
column of Table 19.8 and in arithmetic form in the next column. Two sample numeric conversions are
shown in the next two columns of Table 19.8.

Table 19.8 deals only with terminating fractions, that is, the remaining fractional part vanishes
after a finite number of steps. For a nonterminating case the procedure is continued until a sufficient
number of digits have been obtained to give the desired accuracy. A nonterminating case is illustrated
in Table 19.9. A set of digits, which repeat ad infinitum, are designated by an underscore, as shown
in Table 19.9. 

TABLE 19.8    Radix Multiply Number Convertion Method (Terminating Case)

Formalism
Sample Conversion between Bases

Algebraic Arithmetic
Higher to

 HigherLower toLower

F = F 1 F 2 F 3 · · · F m F 1 F 2 F 3 · · · F m 0.100101 2

× R 0.125 10
×1010

R F = F 1 · F 2 F 3 · · · F m

= F 1 · F (1)
F 1 · F 2 F 3 · · · F m

0 .25

101 .11001

× R
×1010

R F (1) = F 2 · F 3 F 4

· · · F m = F 2 · F (2)

F 2 · F 3 · · · F m

111 .1101

×R
×1010

R F (2) = F 3 F 4 F 5

· · · F m = F 2 ·F (3)

R F (m 2) = F m+ 1 F m

= F m +1 · F (m 1)
F m+ 1 · F m

× R

R F (m 1) = F m F m · .125 10 = .001 2 .100101 2 = .578125 10

1000 .001
×1010

1 .10
×1010

10 .1
×1010

101 .

× 2

× 2

× 2
1.0

···

····

·

0 .5

TABLE 19.9    Nonterminating
Fraction Conversion Example

0.110 = 0.000110011 . . . 2

2

0 . 2 or more compactly
2
4 0.110 = 0.00011 2

2×

×

×

0 .

8
2×

0 .

6
2×

1 .

2
2×

1 .

4
2×

0 .

8
2×

0 .

61 .
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19-6 Mechatronic System Control, Logic, and Data Acquisition

Conversion to base 2 from a base, which is an integer power of 2, can be most simply accomplished
by independent conversion of each successive digit, as illustrated in Table 19.10a. Inversely, conversion
from base 2 to a base 2k can be simply accomplished by grouping the bits into sets of k bits, each starting
with the least significant bit for the integer portion and with the most significant bit for the fraction
portion, as shown by the examples in Table 19.10b.

19.7 Complements

Each number system has two conventionally used complements:

where R is the radix and n is the number of digits in the number N. These equations provide complements
for numbers having the magnitude N.

A positive number can be represented by a code in the two character machine language alphabet, 0
and 1, which is simply the positive number expressed in the base 2, that is, the code for the number is
the number itself. A negative number requires that the sign be coded in the binary alphabet. This can
be done by separately coding the sign and the magnitude or by coding the negative number as a single
entity. Table 19.11 illustrates four different code types for negative numbers. Negative numbers can be
represented in the sign magnitude form by using the leftmost digit as the code for the sign (0 for + and
1 for −) and the rest of the digits as the code for the magnitude. Complements and biasing provide the
means for coding the negative number as a single entity instead of having a discrete separate coding for
the sign. The use of complements provides for essentially equal ranges of values for both positive and
negative numbers. The biased representation can also provide essentially equal ranges for positive and
negative values by choosing the biasing value to be essentially half of the largest binary number that could
be represented with the available number of digits. The bias code is obtained by subtracting the biasing
value from the code considered as a positive number, as shown in the rightmost column of Table 19.11.

Complements enable subtraction to be done by addition of the complement. If the result fits into
the available field size the result is automatically correct. A diagnostic must be provided to show that
the result is incorrect if overflow occurs, that is, the number does not fit in the available field. Table
19.12 illustrates arithmetic operations with and without complements. The two rightmost columns
illustrate cases where the result overflows the 3-b field size for the magnitude. The overflow condition
can be represented in terms of two carry parameters:

• C0, the output carry from the leftmost digit position

• C1, the output carry from the second leftmost digit position (the output carry from the magnitude
field if sign magnitude representation is used)

If both of these carries are coincident (i.e., have the same value) the result fits in the available field and,
hence, is correct. If these two carries are not coincident, the result is incorrect.

TABLE 19.10 Conversions between Systems Where 
One Base Is an Integer Power of the Other Base

(a) Conversion from high base to lower base
B2. C516 = 1011 0010 .1100 01012

62.758 = 110 010 .111 1012

(b) Conversion from lower base to high base
11 0010 0100.0001 1100 012 = 324.1C416

10 110 001.011111 012 = 261.3728

Radix complement of N N
RC

R
n

N–= =

Reduced radix complement of N N
rC

N
RC

1–= =
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19.8 Codes

Various types of codes have been developed for serving different purposes. There are codes that enable
characters in an alphabet to be individually expressed in terms of codes in a smaller alphabet. For example,
the alphabet of decimal numeric symbols can be expressed in terms of the binary alphabet by the binary-
coded decimal (BCD) or 8421 code shown in Table 19.13. The 8421 designation represents the weight
given to each of the binary digits in the coding process.

There are codes that facilitate doing arithmetic. The 2421 code can also be used to represent the decimal
numeric symbols. The 2421 code has the advantage that the code for the reduced radix complement is

TABLE 19.11 Number Representations

Signed Numbers Having the Specified Codes

Available 
Codes

Positive 
Numbers

Sign 
Magnitude

One’s 
Complement

Two’s 
Complement 111 bias

1111 1111 −111 −000 −001 +1000
1110 1110 −110 −001 −010 +111
1101 1101 −101 −010 −011 +110
1100 1100 −100 −011 −100 +101
1011 1011 −011 −100 −101 +100
1010 1010 −010 −101 −110 +011
1001 1001 −001 −110 −111 +010
1000 1000 −000 −111 −1000 +001
0111 0111 +111 +111 +111 000
0110 0110 +110 +110 +110 −001
0101 0101 +101 +101 +101 −010
0100 0100 +100 +100 +100 −011
0011 0011 +011 +011 +011 −100
0010 0010 +010 +010 +010 −101
0001 0001 +001 +001 +001 −110
0000 0000 +000 +000 +000 −111

TABLE 19.12    Comparison of Arithmetic with and without Complements

Sample N = 7 5 N = 5 7 N = 5 + 7 N = 5 7
Illustrations = 2 = 2 = 12 = 12

Pencil and paper arithmetic 111 ( 111 ) 101 ( 101 )
101 ( 101 ) +111 + ( 111 )(without complements)
10 10 1100 1100

Computer arithmetic with 0111 0101 0101 1011
+1011 + 1001 + 0111 +10012’s complement

10010 1110 1100 10100

4-binary digit working  eld ↓ ↓ ↓ ↓
Designates Designates Designates Designates(accommodates 3-b 
positive negative negative positivemagnitude)
number number number number

Result

Significant carries

+010 010 100 100
TrueVeracity

or equivalently

True False False

C 0 = 1 C 0 = 0 C 0 = 0 C 0 = 1
C 1 = 1 C1 = 0 C 1 = 1 C 1 = 0

Veracity condition C 0 C1 C 0 C1 C 0 C1 C 0 C1

C 0 C1 = 1 C0 C1 = 1 C 0 C1 = 0 C 0 C1 = 0. . . .

≡ ≡ /≡ /≡
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19-8 Mechatronic System Control, Logic, and Data Acquisition

the same as the reduced radix complement of the code, and this is not true of the BCD code. Thus, the
2421 code facilitates arithmetic with multiple individually coded digit numbers.

There are codes designed to detect errors that may occur in storage or transmission. Examples are the
even and odd parity codes and the 2-out-of-5 code shown in Table 19.13. The 2-out-of-5 error detection
code is such that each decimal value has exactly two high digit values. Parity code attaches an extra bit
having a value such that the total number of high bits is odd if odd parity is used, and the total number
of high bits is even if even parity is used. An even number of bit errors are not detectable by a single bit
parity code. Hence, single bit parity codes are adequate only for sufficiently low bit error rates. Including
a sufficient number of parity bits enables the detection and correction of all errors. 

There are codes designed to prevent measurement misrepresentation due to small errors in sensor
alignment. Gray codes are used for this purpose. A Gray code is one in which the codes for physically
adjacent positions are also logically adjacent, that is, they differ in only one binary digit. Gray codes can
be generated for any number of digits by reflecting the Gray code for the case with one less digit, as
shown in Table 19.13, for the case of 1, 2, and 3-bit codes. The advantage of a Gray scale coded lineal
position sensor is illustrated in Figure 19.1 for the eight-segment case.

TABLE 19.13 Sample Codes

Decimal 
Digits

BCD 
8421 2421

2-out-
of-5

Parity Gray

Even Odd 1-bit 2-bit 3-bit

0 0000 0000 00011 0000 0 0000 1 0 00 000
1 0001 0001 00101 0001 1 0001 0 1 01 001
2 0010 0010 00110 0010 1 0010 0 11 011
3 0011 0011 01001 0011 0 0011 1 10 010
4 0100 0100 01010 0100 1 0100 0 110
5 0101 1011 01100 0101 0 0101 1 111
6 0110 1100 10001 0100 1 0110 0 101
7 0111 1101 10010 0111 1 0111 0 100
8 1000 1110 10100 1000 1 1000 0
9 1001 1111 11000 1001 0 1001 1

FIGURE 19.1 Eight-segment position sensor with slightly misaligned contacts: (a) binary code physical configu-
ration, (b) gray code physical configuration.
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19.9 Boolean Algebra

Boolean algebra provides a means to analyze and design binary systems and is based on the seven
postulates given in Table 19.14. All other Boolean relationships are derived from these seven postulates.
Expressed in graphical form, called Venn diagrams, the postulates appear more natural and logical. This
benefit results from the two-dimensional pictorial representation freeing the expressions from the one-
dimensional constraints imposed by lineal language format.

The OR and AND operations are normally designated by the arithmetic operator symbols + and ⋅ and
referred to as sum and product operators in basic digital logic literature. However, in digital systems that
perform arithmetic operations this notation is ambiguous and the symbols � for OR and Λ for AND
eliminates the ambiguity between arithmetic and boolean operators. Understanding the conceptual
meaning of these boolean operations is probably best provided by set theory, which uses the union
operator � for OR and the intersection operator � for AND. An element in a set that is the union of
sets is a member of one set OR another of the sets in the union. An element in a set that is the intersection
of sets is a member of one set AND a member of the other set in the intersection.

A set of theorems derived from the postulates facilitates further developments. The theorms are
summarized in Table 19.15. Use of the postulates is illustrated by the proof of a theorem in Figure 19.2.

TABLE 19.15 Boolean Theorems

Theorem

Forms

(a) (b)

8 Idempotency a + a = a a ⋅ a = a
9 Complement a + 1 = 1 a ⋅ 0 = 0

Theorem
10 Absorption a + ab = a a(a + b) = a
11 Extra Element a + b = a + b a  + b) = ab

Elimination
12 De Morgan’s Theorem  =  ⋅  =  + 
13 Concensus ab + c + bc = ab + c (a + b)  + c)(b + c) = (a + b)  + c)
14 Complement ab + a  = a (a + b)(a +  = a

Theorem 2
15 Concensus 2 ab + a c = ab + ac (a + b)(a +  + c) = (a + b)(a + c)
16 Concensus 3 ab + c = (a + c)  + b) (a + b)  + c) = ac + b

TABLE 19.14    Boolean Postulates

Postulate Name Meaning

Forms

(a) (b)

1 De nition aset {K} = {a,b,...} OR AND
of two or more elements
and two binary operators

V
{K} =� {a , b,a + b, a · b, . . .} � �

2 Substitution
Law

expression1 = expression2

If one replaced by the other
does not alter the value

Identity identity elements
Element for each operator

a + 0 = a a 1 = a

4 Commutativity For every a and b in K a + b = b + a a b = b a

5 Associativity a + (b + c ) = (a + b )+ c a · (b · c ) = (a · b) · c

6 Distributivity For every a, b, and c in K
For every a, b, and c in K

a + (b · c ) = (a + b ) · (a + c ) a · (b + c ) = (a · b)+ (a · c )

7 Complement For every a in K a + a- -= 1 a a = 0
acomplement in K�

+

3

a (a

a  b+ a b ab a b
a a (a (a

b b)

b b
a (a (a a

9260_19.fm  Page 9  Thursday, October 11, 2007  3:27 PM
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19.10 Boolean Functions

Boolean functions can be defined and represented in terms of boolean expressions and in terms of truth
tables as illustrated in Figure 19.3a,c. Each form can be converted into the other form. The function
values needed for the construction of the truth table can be obtained by evaluating the function as
illustrated in Figure 19.3b. The reverse conversion will be illustrated subsequently.  

For a given number of variables there are a finite number of boolean functions. Since each boolean
variable can have two values, 0 or 1, a set of n variables has 2n different values. A boolean function has
a specific value for each of the possible values that the independent variables can have. Since there are
two possible values for each value of the independent variables there are  different boolean functions
of n variables. The number of functions increases very rapidly with the number of independent variables,
as shown in Table 19.16.

The 16 different boolean functions of the two independent variables are defined in algebraic form in
Table 19.17 and in truth table form in Table 19.18.

19.11 Switching Circuits

Boolean functions can be performed by digital circuits. Circuits that perform complicated boolean
functions can be subdivided into simpler circuits that perform simpler boolean functions. The circuits
that perform the simplest boolean functions are taken as basic elements, called gates and are represented

FIGURE 19.2 Proof of Theorem 8: Idempotency (a): x + x = x.

FIGURE 19.3 Example of forms for defining boolean functions: (a) boolean expression definition, (b) boolean
expression evaluation, (c) truth table definition.

TABLE 19.16 Number of Different 
Boolean Functions

Variables 
n

Arguments
2n

Functions

‘

0 1 2
1 2 4
2 4 16
3 8 256
4 16 65,536
5 32 4,194,304
� � �

‘

1)

2)

3)

4)

5)

6)

x + x = x + x

= (x + x).1

= (x + x).(x + x)

= x + x.x

= x + 0

= x

IDENTITY

P3b IDENTITY ELEMENT EXISTENCE

P7a COMPLEMENT EXISTENCE

P6a DISTRIBUTIVITY

P7b COMPLEMENT EXISTENCE

P3a IDENTITY ELEMENT EXISTENCE

f(A, B, C) = AB + AC + AC(a)

f(0, 0, 1) = 0.0 + 0.1 + 0.1
              = 0.0 + 0.0 + 1.1
              = 0 + 0 + 1
              = 1

(b)

A

0

0

0

0

1

1

1

1

B

0

0

1

1

0

0

1

1

C

0

1

0

1

0

1

0

1

f(A, B, C)

0

1

0

1

1

0

1

1

(c)

2
2

n

2
2

n
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Digital Logic Concepts and Combinational Logic Design 19-11

by specialized symbols. The circuit symbols for the gates that perform functions of two independent
variables are shown in Table 19.17. The gates are identified by the adjective representing the operation
they perform. The most common gates are the AND, OR, NAND, NOR, XOR, and COIN gates. The
only nontrivial single input gate is the invertor or NOT gate. Gates are the basic elements from which
more complicated digital logic circuits are constructed.

A logic circuit whose steady-state outputs depend only on the present steady-state inputs (and not on
any prior inputs) is called a combinational logic circuit. To depend on previous inputs would require
memory, thus a combinational logic circuit has no memory elements.

Boolean algebra allows any combinational logic circuit to be constructed soley with AND, OR, and
NOT gates. Any combinational logic circuit may also be constructed solely with NAND gates, as well as
solely with NOR gates.

19.12 Expansion Forms

The sum of products (SP) is a basic form in which all boolean functions can be expressed. The product
of sums (PS) is another basic form in which all boolean functions can be expressed. An illustrative
example is given in Figures 19.4b,c for the example given in Figure 19.4a.

TABLE 19.18 Truth Tables for Two Variable Functions

NOR AND OR NAND
a b m0 m1 m2 m3 M0 M1 M2 M3 XOR COIN a b LO HI

0 0 1 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1
0 1 0 1 0 0 1 0 1 1 1 0 0 1 1 0 0 1
1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1
1 1 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1

TABLE 19.17    Functions of Two Variables De ned as Boolean Expressions

Name Expression Circuit Representation

 0 ALWAYS 1

V

V

V

VV

V

- -
-

- -

-

-

-

-

- -

--

-

 1 NEVER 0

 2 1st Var    a

 3 2nd Var b

 4 NOT 1st Var a

 5 NOT 2nd Var b

 6 MIN-0/NOR a b = a ↓ b

 7 MIN-1 a b

 8 MIN-2 a b

 9 MIN-3/AND a b

10 MAX-0/OR a b

11 MAX-1 a b

12 MAX-2 a b

13 MAX-3/NAND a b = a ↑ b

14 EXOR A b = a b a b

15 COIN a b = �

�

a b

1 1
0 0
a a

b b
a a

b b

a
b

a
b

a
b
a
b

a
b

a
b

a
b

a
b

a
b

a
b
a
b
a
b

∨

∨

∨

∨

∨

a b
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19-12 Mechatronic System Control, Logic, and Data Acquisition

Minterms are a special set of functions, none of which can be expressed in terms of the others. Each
minterm has each of the variables in the complemented or the uncomplemented form ANDed together.
An SP expansion in which only minterms appear is a canonical SP expansion. Figure 19.4d shows the
development of the canonical SP expansion for the previous example. The canonical SP expansion may
also be simply expressed by enumerating the minterms as shown in Figure 19.4f. Comparison of the
truth table with the minterm expansion shows that each function value of 1 represents a minterm of the
function and vice versa. All other function values are 0.

Maxterms are a special set of functions, none of which can be expressed in terms of the others. Each
maxterm has each of the variables in the complemented or the uncomplemented form ORed together. A
PS expansion in which only maxterms appear is a canonical PS expansion. Figure 19.4e shows the devel-
opment of the canonical PS expansion for the previous example. The canonical PS expansion may also be
simply expressed by enumerating the maxterms as shown in Figure 19.4g. Comparison of the truth table
with the maxterm expansion shows that each function value of 0 represents a maxterm of the function and
vice versa. All other function values are 1.

19.13 Realization

The different types of boolean expansions provide different circuits for implementing the generation of the
function. A function expressed in the SP form is directly realized as an AND–OR realization, as illustrated
in Figure 19.5a. A function expressed in the PS form is directly realized as an OR–AND realization as
illustrated in Figure 19.5b. By using involution and deMorgan’s theorm the SP expansion can be expressed
in terms of NAND–NAND and the PS expansion can be expressed in terms of NOR–NOR, as shown in
Figures 19.5c,d. The variable inversions specified in the inputs can be supplied by either NAND or NOR
gates, as shown in Figures 19.5g,h, which then provide the NAND–NAND–NAND and the
NOR–NOR–NOR circuits shown in Figures 19.5i,j.

FIGURE 19.4 Examples of converting boolean functions between forms: (a) given example, (b) conversion to SP
form, (c) conversion to PS form, (d) conversion to canonical SP form, (e) conversion to canonical PS form,
(f) minterm notation/canoncial SP form, (g) maxterm notation/canonical PS form.
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f(A, B, C)

0

1

0

1

1

0

1

1

f(A, B, C) = A(B + C ) + (A + B)C

TRUTH TABLE

P6b →   f(A, B, C) = AB + AC + AC + BC

T13a →  f(A, B, C) = AB + AC + AC

(b) (c)

P7a →
f(A, B, C) = AB(C + C) + A(B + B)C + A(B + B)C
P6b →
f(A, B, C) = ABC + ABC + ABC + ABC + ABC + ABC

T8a →
f(A, B, C) = ABC + ABC + ABC + ABC + ABC 

(d)

P7b →  f(A, B, C) = A(A + B + C) + (A + B + C)C

P6b →  f(A, B, C) = (A +C)(A + B + C)

P7b →  f(A, B, C) =  (A + C + BB)(A + B + C)

P6a →  f(A, B, C) = (A + B  + C)(A + B + C)(A + B + C)

(e)

f(A, B, C) = m111 + m110 + m100 + m011 + m001
(f)

f(A, B, C) = ∑m(1, 3, 4, 6, 7)

f(A, B, C) = M000 + M010 + M101
(g)

f(A, B, C) = Π(0, 2, 5)
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19.14 Timing Diagrams

Timing diagrams are of two major types. A microtiming diagram has a time scale sufficiently expanded
in space to display clearly the gate delay, such as shown in Figure 19.6a for an AND gate. A macrotiming
diagram has a time scale sufficiently contracted in space so that the gate delay is not noticeable, as shown
in Figure 19.6b for an AND gate.

FIGURE 19.5 Examples of realizations based on various expansion forms: (a) AND-OR realization of f(a, b, c, d) =
a  + bcd + ad, (b) OR-AND realization of f(a, b, c, d) = (a + b)  + c)(b + c + d), (c) AND-OR conversion to NAND-
NAND, (d) OR-AND conversion to NOR-NOR, (e) NAND-NAND realization of f(a, b, c, d) = a  + bcd + ad, (f) NOR-
NOR realization of f(a, b, c, d) = (a + b)  + c)(b + c + d), (g) NAND gate realization of NOT gate, (h) NOR gate
realization of NOT gate, (i) NAND-NAND-NAND realization of f(a, b, c, d) = a  + bcd + ad, (j) NOR-NOR-NOR
realization of f(a, b, c, d) = (a + b)  + c)(b + c + d).

FIGURE 19.6 Timing diagrams for the AND gate circuit: (a) microtiming diagram, (b) macrotiming diagram.
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19-14 Mechatronic System Control, Logic, and Data Acquisition

The advatange of the macrotiming diagram is that larger time intervals can be represented in a given
spatial size and they can be more quickly developed. The disadvantage is that they do not display the
information required for speed limitation considerations.

19.15 Hazards

The variation in signal delays through different circuit elements in different paths may cause the output
signal to fluctuate from that predicted by non-time-dependent truth tables for the elements. This fluc-
tuation can cause an undesired result and, hence, is a hazard. This is illustrated in Figure 19.7.

19.16 K-Map Formats

In a truth table the values of a boolean function are displayed in a one-dimensional array. A K-map
contains the same information arranged in as many effective dimensions as there are independent
variables in the function. The special form of the representation provides a simple procedure for mini-
mizing the expression and, hence, the number of components required for realizing the function in a
given form. The function is represented in a space that in a Venn diagram is called the universal set. The
K-map is a special form of Venn diagram. The space is divided into two halves for each of the independent
variables. The division of the space into halves is different for each independent variable. For one inde-
pendent variable the space is divided into two different identical size regions, each of which represents
a minterm of the function. For n independent variables the space is divided into 2n different identical
size regions, one for each of the 2n minterms of the function. This and associated considerations are
illustrated in a sequence of figures from Figures 19.8–19.15.

Figure 19.8 shows one-variable K-map formats. Figure 19.8a shows the space divided into two equal
areas, one for each of the two minterms possible for a single variable. The squares could also be identified
by the variable placed external to the space to designate the region that is the domain of the variable, with
the unlabeled space being the domain of the complement of the variable, as shown in Figure 19.8b. Another
way of identifying the regions is by means of the minterm number the area is for, as shown in Figure 19.8c.
Still another way is to place the values the variable can have as a scale alongside the space, as shown in
Figure 19.8d. The composite labeling, shown in Figure 19.8e, appears redundant but is often useful because
of the different modes of thought used with the different label types. Putting the actual minterm expressions
inside each square is too cluttering and is rarely used except as an aid in teaching the theory of K-maps.
The use of minterm numbers, although widely used, also clutters up the diagram, and the methodology
presented here makes their use superfluous once the concepts are understood.

FIGURE 19.7 Example of a hazard (output variation) caused by unequal delay paths: (a) circuit for illustrating a
hazard, (b) ideal case, no delays, τ1 = τ2 = τ3 = 0, no hazard introduced; (c) signal paths with different delays, τ1 +
τ2 + τ3 > τ3, hazard introduced.
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The organization of a two-variable K-map format is illustrated in Figure 19.9. The space is subdivided
vertically into two domains for the variable a and its complement, and is subdivided horizontally for the
variable b and its complement, as shown in Figures 19.9a,b. The composite subdivisions for both variables
together with the expressions for the two-variable minterms are shown in Figure 19.9c. 

The different formats for identifying the areas for the two-variable case are shown in Figure 19.10. Of
particular interest is the comparison of the binary and decimal minterm number labels. The binary
minterm number is simply the catenation of the vertical and horizontal scale number for the position.
It is the use of this identity that makes internal labels in the square totally superfluous.

FIGURE 19.8 One vartiable K-map forms: (a) internal minterm labels, (b) external domain label, (c) internal min-
term number labels, (d) external scale label, (e) composite labeling. 

FIGURE 19.9 Two-variable K-map format construction: (a) domains for a, (b) domains for b, composite. 

FIGURE 19.10 Two variable K-map formats: (a) minterm labels, (b) domain labels, (c) minterm binary labels,
(d) minterm decimal labels, (e) scale labels, (f) composite labeling.

FIGURE 19.11 Two-variable K-map alternate format construction: (a) domains for a, (b) domains for b,
(c) composite.

FIGURE 19.12 Two-variable K-map alternate format: (a) minterm labels, (b) composite labeling.
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FIGURE 19.13 Three-variable K-map formats: (a) three-dimensional, (b) three-dimensional left and right halves,
(c) two-dimensional. 

FIGURE 19.14 Three variable two-dimensional K-map formats: (a) minterm labels, (b) composite scale labels.

FIGURE 19.15 Formats for K-maps for functions of 2–6 independent variables with conformal coordinate scales:
(a) two-variable case f(a, b), three-variable case f (a, b, c); (c) four-variable case f(a, b, c, d); (d) five-variable case
f(a, b, c, d, e); (e) six-variable case f(a, b, c, d, e, f ).
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An alternate way of subdividing the space for the two-variable case is illustrated in Figure 19.11 and labeling
alternatives in Figure 19.12. The configuration employed in Figure 19.9 uses two dimensions for two
variables, whereas the configuration employed in Figure 19.11 uses one-dimension for two variables. The
two-dimensional configuration appears to be more logical and is more convenient to use than the one-
dimensional configuration for the case of two variables. For the case of a larger number of variables the
configuration in Figure 19.12 offers special advantages, as will be shown.

The organization of three-variable K-map formats is illustrated in Figure 19.13. It is logical to introduce
an additional space dimension for each additional independent variable as depicted in Figure 19.13a;
however, the excessive inconvenience of working with such formats makes them impractical. To make
the mapping process practical it must be laid out in two dimensions. This can be done in two ways. One
way is to take the individual slices of the three-dimensional configuration and place them adjacent to
each other as illustrated in Figure 19.13b. Another way is to use the one-dimensional form for two
variables, illustrated in Figure 19.12, as shown in Figure 19.13c. For the case of three and four independent
variables the format given in Figure 19.13c is more convenient and for further independent variables
that of Figure 19.13b is convenient. These are all illustrated in Figure 19.15. Labeling for three independent
variables is given in Figure 19.14.

The independent boolean variables in conformal coordinate scales have exactly the same order as
in the boolean function argument list, as depicted in Figure 19.15. Conformal assignment of the
independent variables to the K-map coordinate scales makes the catenated position coordinates for
a minterm (or maxterm) identical to the minterm (or max-term) number. Utilization of this identity
eliminates the need for the placement of minterm identification numbers in each square or for a
separate position identification table. This significantly decreases the time required to construct K-
maps and makes their construction less error prone. The minterm number, given by the catenation
of the vertical and horizontal coordinate numbers, is obvious if the binary or octal number system
is used.

19.17 K-Maps and Minimization

A function is mapped into the K-map format by entering the value for each of the minterms in the space
for that minterm. The function values can be obtained in various ways such as from the truth table for
the function, the Boolean expression for the function, or from other means by which the function may
be defined. An example is given for the truth table given in Figure 19.4a, which is repeated here in
Figure 19.16a and whose K-map is shown in various forms in Figures 19.16b–d.

The function can also be mapped into a conformally scaled K-map directly from the canonical
expansion, this being essentially the same process as entering the minterms (or maxterms) from the truth
table. The function may also be directly mapped from any PS or SP expansion form. Another means of
obtaining the K-map is to formulate it as a function table, as illustrated for the multiplication of 1- and
2-b numbers in Figure 19.17.

FIGURE 19.16 Three-variable K-map example: (a) truth table, (b) K-map with all values shown, (c) minterm K-map,
(d) maxterm K-map.
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19.18 Minimization with K-Maps

The key feature of K-maps that renders them convenient for minimization is that minterms, which are
spatially adjacent in the horizontal or vertical directions, are logically adjacent. Logically adjacent min-
terms are identical in all variables except one. This allows the two minterms to be combined into a single
terms with one less variable. This is illustrated in Figure 19.18. Two adjacent minterms combine into a
first-order implicant. A first-order implicant is the combination of all of the independent variables but
one. In this example, the first-order implicant expressed in terms of minterms contains eight literals but
the minimized expression contains only three literals. The circuit realization for the OR combination of
the two minterms has two AND gates and one OR gate, whereas the realization for the equivalent
implicant requires only a single AND gate.

The combination of minterms into first-order implicants can be represented more compactly by using
the single symbol minterm notation with the subscript that identifies the particular minterm expressed
in binary, as illustrated in Figure 19.18d. 

Two adjacent first-order implicants can be combined into a second-order implicant as illustrated in Figure
19.19. A second-order implicant contains all of the independent variables except two. In general, an nth-
order implicant contains all of the variables except n and requires an appropriately grouped set of 2n minterms. 

Minterms that are at opposite edges of the same row or column are logically adjacent since they differ
in only one variable. If the plane space is rolled into a cylinder with opposite edges touching, then the
logically adjacent edge pairs become physically adjacent. For larger numbers of variables using K-maps
with parallel sheets, the corresponding positions on different sheets are logically adjacent. If the sheets
are considered as overlaid, the corresponding squares are physcally adjacent. The minimized expression
is obtained by covering all of the minterms with the fewest number of largest possible implicants. A
minterm is a zero-order implicant. Figure 19.20 illustrates a variety of examples. A don’t care is a value
that never occurs or if it does occur it is not used, and hence, it does not matter what its value is. Don’t
cares are also included to illustrate that they can be used to simplify expressions by taking their values
to maximize the order of the implicants.

Maxterm K-maps can also be utilized to obtain minimized expressions by combining maxterms into
higher order implicants, as illustrated for the example in Figure 19.21.

FIGURE 19.17 Examples of K-maps formulated as function tables: (a) K-map for the product of two 1-b numbers
P = x ∗ y; (b) composite K-map for the product of two 2-b numbers, P3 P2 P1 P0 = x1 x0  y1 y0; (c) K-map for the
digit P3 of the product of two 2-b numbers; (d) K-map for the digit P2 of the product of two 2-b numbers; (e) K-map
for the digit P1 of the product of two 2-b numbers; (f) K-map for the digit P0 of the product of two 2-b numbers.
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FIGURE 19.18 Example of minimization with a K-map: (a) sample K-map, (b) expression in minterms of function
definition in (a), (c) simplification of the expression in (b), (d) simplification of the expression in (b) using single
symbol minterm and implicant notation.

FIGURE 19.19 Example of minimization with K-map.

FIGURE 19.20 Example of minimization with six-variable K-map.

FIGURE 19.21 Three-variable maxterm K-map example.
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19.19 Quine–McCluskey Tabular Minimization

The K-map minimization method is too cumbersome for more than six variables and does not readily
lend itself to computerization. A tabular method, which can be implemented for any number of variables
and which lends itself to computer program implementation, consists of the following steps: 

1. List all the minterms in the boolean function (with their binary code) organized into groups
having the same number of 1s. The groups must be listed in consecutive order of the number of 1s.

2. Construct the list of first-order implicants. Use flags to indicate which minterms, don’t cares, or
implicants go with which functions. (Only minterms in adjacent groups have the possibility of
being adjacent and, hence, this ordering method significantly reduces the labor of compiling the
implicants.)

3. Construct the list of second-order implicants and the lists of all higher order implicants, until no
higher order implicants can be constructed.

4. Construct the prime implicant chart. The prime implicant chart shows what prime implicants
cover which minterms.

5. Select the minimum number of largest prime implicants that cover the minterms.

This procedure is illustrated in Figure 19.22 for the simultaneous minimization of two boolean functions. 

Defining Terms

Base: The number of different values a single digit may have. The number a digit must be multiplied
by to move it one digit to the left, also called the radix.

Binary-coded decimal (BCD): Each decimal digit is expressed individually in binary form.
Catenation: Symbols strung together to form a larger sequence, as the characters in a word and the digits

in a number.
Code: The representation in one alphabet of something in another alphabet. 
Complement: The quantity obtained by subtracting a number from the largest quantity that can be

expressed in the specified number of digits in a given number system.

FIGURE 19.22 Illustration of the Quine–McClusky method of simultaneous minimization.

GIVEN F(A, B, C, D) = Σm(2, 6, 7, 8) + d(0, 4, 5, 12, 13)  and  G(A, B, C, D) = Σm(2, 4, 5) + d(6, 7, 8, 10)
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Conformal: The same arrangment of a set of quantities in two different contexts.
Digit: A character that represents quantitative information.
Don’t care: A value that can be represented either as a minterm or a maxterm.
Fraction: Any number divided by a larger number.
Gray code: A set of codes having the property of logical adjacency.
Implicant: A first-order implicant is a pair of logically adjacent minterms. A second-order implicant is

a set of logically adjacent first-order implicants and so on.
Integer: Any number that can be expressed solely in terms of digits. 
K-map: An arrangment of space into equal size units, each of which represents a minterm (or maxterm)

such that each physically adjacent square is also logically adjacent.
Logically adjacent: Any two codes having the same number of digits for which they differ in the value

of only one of the digits.
Macrotiming diagram: A graphical display showing how the waveforms vary with time, but with a time

scale that does not have sufficient resolution to display the delays introduced by the individual
basic elements of the digital circuit.

Maxterm: A function of a set of boolean variables that has a low value for only one combination of
variable values and has a high value for all other combinations of the variable values.

Microtiming diagram: A graphical display showing how the waveforms vary with time, but with a time
scale that has sufficient resolution to display clearly the delays introduced by the individual basic
elements of the digital circuit.

Minterm: A function of a set of boolean variables that has a high value for only one combination of
variable values and has a low value for all other combinations of the variable values. 

Overflow: That part of a numerical operation result that does not fit into the allocated field.
Parity bit: An extra bit catenated to a code and given a value such that the total number of high bits is

even for even parity and odd for odd parity.
Prime implicant: An implicant that is not part of a larger implicant.
Product of sums (PS): The AND combination of terms, which are OR combinations of boolean variables.
Radix: The number of different values that a digit can have in a number system.
Realization: A circuit that can produce the value of a function.
Real number: A number that has a fractional part and an integer part.
Reduced radix: The largest value a digit can have in a number system. It is one less than the radix.
Sum of products (SP): The OR combination of terms, which are AND combinations of Boolean variables.
Truth table: The table of values that a boolean function can have for which the independent variables

considered as a multidigit number are arranged in consecutive order.
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This chapter deals with asynchronous serial interfaces described by interface standards RS-232, RS-422, and
RS-485 and with the general-purpose parallel interface bus described by IEEE-488 standard. The chapter
also provides background information, terminology and parameters, which are important in the design
of system interfaces for mechatronic systems. 

20.1 Background

Modern mechatronic systems comprise a number of subsystems, which rely heavily on digital data commu-
nications. Different levels of complexity of these systems means that the requirement for data communications
range from a simple communication between two devices to systems with a large number of subsystems,
where each subsystem communicates directly or indirectly with other subsystems using a communication
network. Depending on the proximity of subsystems, different requirements are placed on data communi-
cation channels, the physical implementation of channels, and interfaces between these devices. Figure 20.1
shows a schematic diagram of a simple data communication system connecting two devices.

A data source creates the data to be transmitted to the destination system and may convert the data into
a specific form. The originating system usually does not create the data in a form suitable for transmission
over transmission lines. This is left to the transmitter, which transforms the data into a signal suitable for
transmission over a specific type of transmission line. The transmission line is generally implemented using
electrical wiring but can involve a variety of physical medium including radio frequency, infrared, and sound

Michael J. Tordon
Jayantha Katupitiya
The University of New South Wales
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signals. A transmission line provides a physical medium connecting the two systems. A receiver accepts the
signal and converts it to the data form suitable to be passed onto the destination system. A data destination
processes the data in order to recover the original information. From the previous information, it follows that
even in the case of a simple data communication system a number of subsystems is involved in the comm-
unication task.

20.1.1 Terminology and Definitions 

Interface: The common boundary between two subsystems is called an interface, and as can be seen
in Figure 20.1, a number of interfaces can be involved even in a simple communication system.

Bit: The simplest form of data is one bit, which can take one of the two values 0 or 1, and hence is
called binary data. All information in modern digital computers is stored in binary form.

Byte: A fixed number of bits (usually 8), which can be treated by a computer as a unit.
Character: Historically, the information is expressed in terms of characters. A character is a member

of a character set. An example of a character set is the set of characters in the English language.
Character code: Individual characters from the selected character set are encoded in digital computers

as binary numbers. One of the most widely used character set codes is the American Standard
Code for Information Interchange (ASCII).

20.1.2 Serial versus Parallel 

The basic unit of information to be transferred between subsystems is usually a character. For short
distances, multiple parallel lines can be used to carry out simultaneous transmission of all the bits of a
character. For the transmission of data over long distances, the cost of multiple data lines is often pro-
hibitive and it is normal to serialize the data so that it can be passed over a single data path as a stream of bits.

20.1.3 Bit Rate versus Baud Rate 

The speed of data transmission is usually expressed as a number of data bits transmitted per second and
is called an effective bit rate with a unit bps. Larger units like kbps (1,000 bps) and Mbps (1,000,000 bps)
are commonly used. The baud rate is a signaling rate and is expressed as a number of times per second that
the signal transmitted over a data transmission line changes state. For systems using only two states, the
signaling bit rate is equivalent to the baud rate. Distinction should be made between the effective data trans-
mission bit rate and the signaling bit rate. In asynchronous serial communications, the effective data trans-
mission bit rate can be significantly lower than the signaling bit rate because of the inclusion of start, stop,
and parity bits. To maximize the transmission speed over a serial line, modern communication systems
use signals with more than two states, thus achieving higher signaling bit rates. For example, if the trans-
mission signal uses 16 states, then the signaling bit rate is four times higher than the baud rate. The terms
baud rate, signaling bit rate, and effective data transmission rate are often used interchangeably which
leads to confusion.

20.1.4 Synchronous versus Asynchronous

For both parallel and serial interface, the problem of synchronization must be solved. The communication
over a transmission line can be done either in synchronous or asynchronous communication mode. In
synchronous communication mode, the transmission of data is synchronized with a clock; thus, the trans-
mission is occurring at regular time intervals. Since the data transmission takes place at fixed times, the

FIGURE 20.1 A schematic diagram of a simple data communication system.

Data Source Receiver Transmitter Transmission Lines Data Destination 

9260_20.fm  Page 2  Friday, October 5, 2007  11:01 AM



System Interfaces 20-3

completion of data transfer does not have to be acknowledged. In asynchronous transmission mode, the
two systems are using clocks, that are not synchronized and may run at frequencies slightly out of step.
Thus, for asynchronous systems, data validation requires a separate scheme called handshaking.

20.1.5 Data Flow-Control 

Another problem in asynchronous communication systems is the speed of data processing. If one system
is significantly slower in processing the data, a flow-control must be implemented to avoid data loss. Data
flow-control may require additional handshaking. Similar problems may arise in multitasking systems in
which, due to other tasks, the system is unable to handle incoming data during the period of high workload.

20.1.6 Handshaking 

In order to ensure efficient transmission of data without errors, the sending system will use a separate
signal to indicate that valid data has been presented to the interface. Because the instant at which the
receiving device can process the data is not known, the sending device must wait for an acknowledgment
signal before presenting new data to the interface. The handshaking can be implemented in either hard-
ware or software.

20.1.7 Communication Protocol 

Operation of a communication system is governed by a set of rules which must ensure reliable data transfer
without errors and data loss. Such a set of rules is called a communication protocol. 

20.1.8 Error Handling 

Data transmitted over a communication line are subjected to noise and can thus be corrupted. Since it is
essential to maintain the integrity of data, a number of different schemes for error detection have been
developed. The simplest remedy after error detection is retransmission of the corrupted data. More sophis-
ticated communication protocols can involve complex error correction schemes implemented at protocol
level.

20.1.9 Simplex, Half-Duplex, Full-Duplex 

In its simplest form, communication can be established with a single pair of wires. The data transmission
mode, in which data can pass in one direction only, is called simplex or unidirectional channel. In most
applications it is required that the communication takes place in both directions. If the cost of the data
transmission line is high, it can be arranged that signals can pass in either direction over a single trans-
mission line using additional circuitry on both ends of the transmission line but only in one direction
at a time. This type of data communication mode is called half-duplex. Additional handshaking is re-
quired to implement the time sharing of the transmission line. 

If signals can pass in either direction over a single transmission line simultaneously, the data commu-
nication mode is called full-duplex. An example of a full-duplex is a telephone line where the two channels
are created as separate frequency bands. Cost permitting, two separate transmission lines can be estab-
lished in which case the full-duplex communication is conducted over two simplex channels. This requires
duplication of all the functions of a simple data communication system as shown in Figure 20.1.

20.1.10 Unbalanced versus Balanced Transmission 

Implementation of the electrical transmission line can take two basic forms, unbalanced (single-ended) or
balanced (differential). For unbalanced operation, a single conductor is used to carry the signal voltage,
which is referenced to a signal ground. The signal ground is usually common return for all signals in the
interface. Figure 20.2 shows an example of an unbalanced data transmission system with two channels
and three wires. Symbol D represents driver and symbol R receiver. Unbalanced data transmission is
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relatively inexpensive because, for multiple signal lines, only one common line is required; however, this
type of interface is susceptible to induced and ground noise and is not suitable for high-speed communi-
cation over long distances. The ground noise is associated with voltage drop in a common return line, while
the induced noise comes from interfering electromagnetic fields. Both types of noise can come from external
sources or from neighboring transmission circuits. A remedy can be the use of coaxial cable, shielded cable,
and/or the use of separate return lines for individual signals. These additional measures tend to increase
the cost of the interface.

The balanced (differential) transmission mode has much better noise immunity than the unbalanced
mode. Two complementary signal lines carry the data signal. The implementation often involves two single-
ended drivers driving a twisted-pair transmission line. Figure 20.3 shows an example of balanced data
transmission with two channels and five wires. As in Figure 20.2, symbol D represents driver and symbol
R receiver. Symbol T represents termination resistor. Use of a termination resistor at the receiver end of the
transmission line is critical for high-speed communications over long distances as unterminated transmis-
sion lines can cause severe distortion of signals. Both induced and ground noises appear on both conductors
as common-mode signals that are rejected by the differential receiver. The differential signals carrying data
are amplified while the common-mode noise signals are suppressed. As a result, the balanced data trans-
mission lines can be used for longer distances with higher transmission rates. Both unbalanced and balanced
interfaces shown in Figures 20.2 and 20.3 represent two simplex interfaces, which can form one full-duplex
point-to-point (see below) communication channel.

A good source of information on individual drivers and receivers is provided in the data sheets and
application notes of semiconductor manufacturers [1,2].

20.1.11 Point-to-Point versus Multi-Point

If communication takes place between two devices, we call such a communication link a point-to-point
link. In mechatronic systems, it is often required for the master system to communicate with a number
of subsystems. Cost permitting, a number of point-to-point data transmission lines can be implemented.
In a point-to-point arrangement, the master system has a point-to-point connection to each individual
subsystem, i.e., there is a separate port and communication line for each subsystem. This type of arrange-
ment is shown in Figure 20.4. The connection can also be arranged as a multi-point connection in which

FIGURE 20.2 Example of an unbalanced data transmission. 

FIGURE 20.3 Example of a balanced data transmission.
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all devices are connected to a single transmission line, as shown in Figure 20.5. This arrangement is a
data communication network arrangement where data can be transmitted from any device to any other
device on the network. All devices on the network must be equipped with a receiver and a transmitter.
Transmitters must have a tri-state (high output impedance) capability so that they do not provide
additional load to the line. When transmitters are not transmitting, they are virtually disconnected from
the transmission line. Complex communication protocol is required to manage individual transmitters
on the network. The major advantage of a multi-point arrangement is usually the lower cost of the
network compared to the individual communication links. The disadvantage is a more complex com-
munication protocol (which must deal with the identity of the transmitting and receiving devices) and
a more complex interface. 

20.1.12 Serial Asynchronous Communications 

In asynchronous serial communications, the data are transmitted at irregular intervals as a bit stream.
Individual characters coded as binary numbers are converted to serial data streams, which are framed
with start and stop bits. Optionally, a parity bit is added to the stream. In general, a computer represents
information in parallel form such as bytes and words while the majority of communications with external
devices takes place serially. The task of the parallel-to-serial and serial-to-parallel conversion is performed
by a special integrated circuit called a universal asynchronous receiver transmitter (UART) as described
later (see Figure 20.7).

Figure 20.6 shows an example of a typical data stream for asynchronous transmission. During idle
time the line is in logical state 1 (for historical reasons also called “MARK”). The start of the data stream

FIGURE 20.4 A point-to-point communication system with four subsystems.

FIGURE 20.5 A multi-point communication system.

FIGURE 20.6 Asynchronous serial data format.
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is always indicated by the start bit, which has logical value 0 (also called “SPACE”). The start bit is
followed by 5–8 data bits representing a character. The data bits are followed by an optional parity bit.
The stream is terminated by one or two stop bits with logical value 1, which can be followed by idle line
or the start bit of the next character. The idle line corresponds to logical state 1. A parity bit is an extra
bit inserted after the data bits and before the stop bit(s). It is set according to the parity information of
the data in the stream. For example, if an even parity is used, the parity bit is set such that total number
of ones in the data stream including the parity bit is even. The parity bit is used by the receiver for error
checking. The task of the receiver is to detect the start of the data stream and to correctly sample individual
bits in the stream. After the detection of the start bit the receiver should sample individual bits, ideally
at the mid point of each bit, as shown in Figure 20.6. In the case of an ideal sampling, as shown in Figure
20.6, the receiver is said to have distortion tolerance of 50%. In practice, the receiver of a UART is
sampling incoming signals using the Baud Rate Generator frequency, which is 16 times higher than the
corresponding baud rate used for transmission. The uncertainty in the detection of the start bit will
reduce the distortion tolerance by 6.25% (1/16) to 43.75% [3].

If, for example, the receiver clock is 1% slower than the clock of the corresponding transmitter, the
sampling time of the first data bit will be delayed by 1.5% of the bit time and the sampling time of the
stop bit will be delayed by 9.5%. In this case, the distortion tolerance would be further reduced to 34.25%.
If the receiver clock is slower by 5%, then the receiver may detect the start bit of the next character instead
of the stop bit of the current character. This results in a framing error. The above example shows the
significance of the accuracy of the clock speed and the reason why the data stream must be kept short
in asynchronous transmission.

Other factors affecting the error-free communications include length and type of transmission line, speed
of communications, parameters of line drivers, termination of transmission line, and the level of noise in
the communication system.

20.1.13 The Universal Asynchronous Receiver Transmitter

The basic function of the UART is to facilitate parallel-to-serial and serial-to-parallel data conversion.
The UART usually contains one transmitter and one receiver. The receiver and transmitter can operate
simultaneously and independently. The UART can operate in full-duplex or half-duplex mode. 

Parallel data from the host computer are converted to an asynchronous serial bit stream. The UART
automatically adds a start bit, an optional parity bit, and the programmed number of stop bits, and sends
the stream out through the transmitter serial data output (TxD) output pin. The parallel data are con-
verted to a serial stream with the least significant bit shifted out first. Figure 20.7 shows a typical arrange-
ment for UART. As can be seen, the UART uses TTL (transistor transistor logic) compatible interface. The
TIA/EIA (see later) transmission line drivers and receivers are specific to a particular interface; thus,
changing system interface means changing the transmission medium and the relevant drivers and receivers.
The use of UART is independent of the transmission medium. 

Serial data received on the receiver serial data input (RxD) pin is converted to parallel data. In the
process the UART checks the start bit, parity bit (if any), and stop bit and reports any error conditions.
Note that the UART is capable of generating all signals required for successful bit-serial asynchronous
communications.

The UART can also report a number of error conditions, including receiver overrun, parity error, framing
error, and break error. Receiver overrun error occurs when the bytes are received faster than the computer

FIGURE 20.7 Typical arrangement for the UART.
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processes them. The parity error is indicated if the parity of the bit stream changed during the commu-
nication process. Framing error is reported if the sampled stop bit is not at logic 1 level. The break error
is reported if the communication line is idle for the time equivalent to the duration of at least one character.

Older types of UART devices such as 8250, 16450 had only one byte FIFO (first in first out) buffer and
thus it was easy to overrun the receiver buffer. More recent devices are equipped with larger buffers providing
more efficient communications. For example, device 16550D from National Semiconductor has a 16-byte
receiver buffer and a 16-byte transmitter buffer and can operate at speeds up to 1.5 Mbps. Modern UARTs
can also automatically handle tasks pertaining to multi-drop systems on a network.

20.2 TIA/EIA Serial Interface Standards

20.2.1 RS-232 Serial Interface

The RS-232 (Recommended Standard) was originally developed in 1962 by the Electronic Industries
Association (EIA) as an interface between a computer and communication equipment. It is now jointly
maintained by the Telecommunication Industries Association (TIA) and the EIA. The current version is
designated as TIA/EIA 232-F (sixth revision) [4]. The Consulting Committee for International Telegraphs
and Telephones (CCITT) issues recommendations that cover interfaces equivalent or similar to those
issued by TIA/EIA.

Rapid development of computers created a demand for computer-to-computer communications over
long distances. The switched public telephone network provided a readily available infrastructure for the
communication task. Because computers generate digital data while the telephone network was designed
for the transmission of voice signal, the digital signals from the computer had to be converted to a mod-
ulated signal which can be transmitted over the analog network. Modems (modulator/demodulator) are
used to convert the digital signal into a modulated analog signal that is transmitted over the telephone line
and converted back to digital signal by the modem at the other end of the telephone line. The RS-232 was
designed as an interface between a computer and a modem. The formal name of the RS-232 standard is
“Interface Between Data Terminal Equipment and Data Communication Equipment Employing Serial
Binary Data Interchange,” in which the Data Terminal Equipment (DTE) represents the computer and
the Data Communication Equipment (DCE) represents the modem. Figure 20.8 shows an example of the
RS-232 interface in the system providing computer-to-computer communication over the switched tele-
phone network. The computers at each end represent DTE and the modems represent DCE. 

The RS-232 interface standard specifies mechanical, electrical, and functional characteristics of the DTE/
DCE interface. The CCITT V.24 interface describes equivalent functional characteristics and relies on other
standards for mechanical and electrical characteristics of the interface. The RS-232 standard is widely used
in applications where it provides a direct point-to-point connection between two computers or computers
and field elements of mechatronic systems in which case we are dealing with DTE to DTE interface. As this
is a situation where a modem is not required, the cable used to connect a DTE to another DTE is called a
“null modem” cable, which has internal built-in connections to fake the presence of a modem.

The mechanical characteristic is concerned with the actual physical connection of the DTE and DCE
and involves specification of pin assignments and genders of the connectors. The RS-232 standard does
not specify a connector type, but it is customary to use either 25-pin D-type (DB-25) connector, which

FIGURE 20.8 Data communication over a telephone network.
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20-8 Mechatronic System Control, Logic, and Data Acquisition

can accommodate all 25 pins, listed in the standard. In practice, a smaller number of pins are used; thus,
as an alternative, a 9-pin D-type connector (DB-9) is often used. Please note that the pin assignment for
DB-9 connector is not specified by RS-232 and is different from DB-25 pin assignment.

Figure 20.9 shows DB-25 connector pin assignments and the interconnection of selected circuits between
a DTE and a DCE. Figure 20.10, on the other hand, shows an example of the DB-25 connector pin assign-
ments and interconnection of selected circuits between two computers, i.e., two DTEs.

20.2.2 Functional Description of Selected Interchange Circuits

A full description of all signals as specified by the RS-232 standard is beyond the scope of this chapter.
The reader is referred to the relevant standard [4]. We will describe the most common signals used in
DTE/DCE and DTE/DTE interface. Please note that with the exception of the Protective Ground circuit
and the Signal Ground circuit the circuits carry signals unidirectionally, as shown by arrows in Figure 20.9.
Functional characteristics specify the functions that are performed by individual interchange circuits. 

Protective Ground (PG). This line ensures that the chassis of the DTE and DCE are on the same
potential.

Transmitted Data (TxD). Transmission line-signal originating from the DTE propagates to DCE.
Received Data (RxD). Receiver line-signal originating from the DCE propagates to DTE.
Request to Send (RTS). This signal is used to condition DCE for data transmission. On a half-duplex

channel the signal controls the direction of data transmission of the DCE (transmit or receive). On
a one-way-only channel (simplex) and on the full-duplex channels this signal controls the transmit
state of the DCE (transmit or nontransmit state). A signal originating from the DTE propagates to
DCE.

Clear to Send (CTS). This signal indicates that the DCE is ready to receive and is the response to the
asserted RTS signal. The signal is originating from the DCE and propagates to DTE.

Data Set Ready (DSR). This signal indicates that the DCE is ready to operate. The signal is originating
from the DCE and propagates to DTE.

FIGURE 20.9 Pin assignment between a DTE and DCE.

FIGURE 20.10 Example of a null modem cable pin assignment.
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Signal Ground (SG). This line is a common ground return line for all other signals.
Data Carrier Detect (DCD). This signal indicates that the DCE is receiving a valid modulated signal

from the DCE at the other end. The signal is originating from the DCE and propagates to the DTE.
Data Terminal Ready (DTR). This signal indicates that the DTE is powered up and ready to operate.

This signal is originating from the DTE and propagates to DCE.

The RS-232 specifies unbalanced, unidirectional, point-to-point interface. The interconnection is done
over a set of wires referred to as interchange circuits. The electrical characteristics specify voltage levels
of signals, rate of change of signals, and line impedance of interchange circuits. The standard specifies
Nonreturn to Zero (NRZ) coding of digital signals. 

The standard requires that the drivers be designed such that for the terminator load resistance between
3 and 7 kΩ the drivers should be capable of delivering high-level voltages between +5 and +15 V and
low voltages between −5 and −15 V. The electrical signals are designed to provide a 2 V margin in
signaling levels. The receiver signals are defined as +3 to +15 V for high voltage and as −3 to −15 V for
low voltage.

It should be noted that for the data interchange circuit the high level voltage is defined as logic 0
(SPACE), while the low level voltage is defined as logic 1 (MARK). For control signals, on the other hand,
the high level voltage defines the ON state while the low level voltage defines the OFF state. The maximum
rate of change of signal allowed on both data and signal lines is 30 V/µs.

The original standard has also specified the maximum length of cable as 15 m. This specification was
replaced by the specification of the maximum allowed capacitive load of 2500 pF in the EIA/TIA-232-D.
The maximum cable length is determined by the capacitance of the cable per unit length; thus, this
parameter now defines indirectly the length of the interface cable. The RS-232 interface is rated at signaling
rates in the range from 0 to 20 kbps. It should be noted that in practice a good design would allow greater
distances and greater data rates than the ones specified by the standard.

20.2.3 RS-422 and RS-485 Interfaces 

The TIA/EIA-422-B standard “Electrical Characteristics of Balanced Voltage Digital Interface Circuits”
[5] defines electrical characteristics of RS-422 interface. The RS-422 specifies a unidirectional, single
driver, terminated balanced interface. The standard allows multiple receivers (up to 10) on one line.
Figure 20.3 illustrates a typical point-to-point application of RS-422. As a result of improved noise
immunity the RS-422 interface supports data rates up to 10 Mbps and cable length up to 1200 m, although
not simultaneously. The maximum data rate of 10 Mbps is supported on a cable length up to 12 m, while
a cable length of 1200 m supports data rates up to 100 kbps. Observe that the product of cable length
and data rate is a limiting parameter of the interface. The transmission medium is a twisted-pair trans-
mission line.

The TIA/EIA-485-A standard “Standard for Electrical Characteristics of Generators and Receivers for
Use in Digital Multipoint Systems” [6] defines electrical characteristics of RS-485 interface. The RS-485
is a unique standard, which allows multiple nodes to communicate bidirectionally over a single twisted-
pair transmission line. The RS-485 standard defines a low cost, multipoint balanced interface with ele-
ctrical characteristic, supported cable types, cable length and data rates equivalent to those specified by
the RS-422 standard. RS-485 parts are backward compatible and interchangeable with their equivalent
RS-422 parts; however, RS-422 parts should not be used in RS-485 systems. RS-422 is usually used in
point-to-point full-duplex communication systems, while RS-485 is used in multipoint half-duplex com-
munication systems. The distinguishing feature of RS-485 drivers is their TRI-STATE capability, which
allows the use of multiple drivers. The RS-485 has improved driver capability and input voltage range and
supports up to 32 devices (drivers and/or receivers) on a single transmission line. Figure 20.11 shows a
typical RS-485 multipoint application.

It should be noted that both RS-422 and RS-485 are electrical standards only. They do not specify
mechanical or functional requirements. 
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20-10 Mechatronic System Control, Logic, and Data Acquisition

As mentioned earlier, data sheets and application notes of component suppliers provide an excellent
source of information [1,2]. An excellent overview of practical data communications and interfacing for
instrumentation and control is provided in reference 7. Detailed discussion of design aspects of serial
communications and interfacing based on RS-232 and RS-485 is given in reference 8 It is recommended
that for the full specification the designer should consult the relevant standards [4–6]. Additional infor-
mation including design recommendations can be found in [9–11]. A good introduction and background
theory to data communication and computer networks can be found in reference 12.

20.3 IEEE 488—The General Purpose Interface Bus

20.3.1 Introduction

The interface described by IEEE 488 standard, which will be referred to as general purpose interface bus
(GPIB) in this chapter, is used to connect instruments to test and measurement systems. Examples of
such instruments are digital voltmeters, storage oscilloscopes, printers, and plotters. In general, these
instruments are called GPIB devices. These devices operate under the coordination of a controller. Most
modern systems consist of a cluster of such devices connected to one or more computers. In such a
system, one of the computers will become the controller.

Historically, the interface was developed by Hewlett–Packard in 1965. At that time, the interface was
called HPIB, and a general standard did not exist. In 1975, it was formulated as IEEE 488 and was called
IEEE Standard Digital Interface for Programmable Instrumentation. The standard specified the electrical,
mechanical, and hardware aspects, i.e., the signals, their functioning, and purpose. Instrument manufac-
turers used the interface freely without adhering to a standard protocol in communicating with instruments.
Instruments meant for the same purpose, yet manufactured by different manufacturers required widely
varied commands. Some instruments made measurements in response to a command, while some other
instruments of similar type made measurements without a command at all. Further, there were no agreed
data formats between instruments sending data and instruments receiving data. This situation led to the
development of an extension to the IEEE 488 standard. The new standard was published in 1987 and was

FIGURE 20.11 Example of an RS-485 multipoint application. 
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called IEEE 488.2 Standard Codes, Formats, Protocols, and Common Commands for Use with IEEE 488.1
(1987) [13], where IEEE 488.1 is the new name for the original IEEE 488 standard. 

The IEEE 488.2 compliant devices must present data through data formats and codes specified in the
standard. The standard also specifies a minimum set of mandatory control sequences or commands and
suggests a few other optional commands. It also provides a standard status-reporting model that must
be implemented by the instrument manufacturers so that determining the status of instruments will be
easier for the instrument programmers. 

Although not yet a standard, The Standard Commands for Programmable Instrumentation (SCPI)
put together in 1990 agrees upon a standard set of commands for various instrument categories. Accord-
ingly, all digital voltmeters manufactured by different manufacturers will respond to the same GPIB
command. 

20.3.2 GPIB Hardware

This section describes the electrical and mechanical specifications of the GPIB interface as well as the
signal description and their purpose. 

All GPIB devices are connected using a special cable with each end having the male as well as the female
ends of the connector. This permits piggyback connections of cables. The devices can be connected either
in a chained manner (i.e., device B connected to device A, device C connected to device B, etc.) or in a
star configuration (i.e., device A, B, C, etc. connected to a common node). The connection configurations
are shown in Figure 20.12.

A maximum of 15 devices can be connected to the bus. The maximum separation between two devices
is 4 m with an average separation of not more than 2 m. At least two-thirds of the devices connected
must be powered on.

The GPIB cable consists of 24 wires. Eight of these lines are data lines, while three lines are used for
handshaking. Another five lines are used for interface management and the remaining eight lines are
ground lines. Among the ground lines are a cable shield line, a signal ground line, three ground return
lines for the handshaking signals, and three other ground return lines for three of the interface manage-
ment lines. All signals used are standard TTL signal levels with negative logic. The handshake lines and
interface management lines are given in Table 20.1. 

The operation of the individual lines is not important to the average user or programmer as their
usage is taken care of by the controllers and the instruments that comply with IEEE 488.2 standard. 

TABLE 20.1 Handshaking and Interface Management Lines

Handshaking Lines Interface Management Lines

NRFD Not ready for data ATN Attention
NDAC Not data accepted IFC Interface clear
DAV Data valid REN Remote enable

SRQ Service request
EOI End of identify

FIGURE 20.12 Linear and star configurations of connecting GPIB devices to a controller.
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20.3.3 Controllers, Talkers, and Listeners

The controller carries out the general management of the bus. While there can be many controllers
connected to the GPIB network, there can be only one controller-in-charge (CIC) which manages the
bus at that given time. All information sent out by the controller on the data lines are called “commands”
and all information sent out by other devices are termed “data.” The GPIB devices that send data any
time are called “talkers” and the devices that receive data are called “listeners.” While there can be more
than one listener operating at any given time, there can be only one talker operating at any given time.
A system can have permanent talkers and permanent listeners; however, if the capability exists, a GPIB
device can be a listener at one time and a talker at another time. A brief explanation of the signal lines
is given below, as it would enhance our understanding of the operation of GPIB interface. 

20.3.4 Interface Management Lines 

20.3.4.1 Attention (ATN) 

The ATN line is controlled by the CIC. When asserted, the signals on the data lines constitute a command
signal and all devices must listen. When unasserted, the signals on the data lines represent data and are
generally sent by a talker to one or more listeners. 

20.3.4.2 Interface Clear (IFC)

The IFC line is asserted by the CIC to reset the GPIB bus. Upon receipt of this signal, all GPIB devices
on the bus will initialize themselves.

20.3.4.3 Remote Enable (REN)

GPIB devices can be controlled either locally or remotely. The CIC asserts the REN line to bring all GPIB
devices under remote programming mode. Thus, for example, the change of scale of a DVM can be
carried out by a GPIB command instead of a front panel control.

20.3.4.4 Service Request (SRQ)

Any device other than a controller can asynchronously assert the SRQ line requesting service from the
controller. The controller monitors the SRQ line and polls all devices to determine the device or devices
requiring service. 

20.3.4.5 End of Identity (EOI)

The EOI signal is used by a talker to indicate the end of the data message of the talker. It indicates to the
listener(s) the end of the receiving data record.

20.3.5 Handshake Lines

In general, a data transfer with complete handshake gets through three stages: request or preparedness,
data transfer, and acknowledgment. On some systems, where the stability of data on the data bus is
questionable, a data valid signal may also be provided. On the GPIB bus, when a talker has to send data
to a listener, the controller must address a device and instruct it to be the talker and then address one or
more other devices and instruct them to be listeners. See Section 20.3.7 for addressing of GPIB devices. 

20.3.5.1 Not Ready for Data (NRFD)

The NRFD line is controlled by the controller when sending commands or by the talker when sending
data. A device that has been instructed to be a listener will unassert NRFD to indicate to the talker that
it is ready to receive data. Of all the listeners, the slowest device will be the last to unassert NRFD and
thus control the speed of data transfer.

20.3.5.2 Data Valid (DAV)

When all listeners have indicated their readiness to receive data by unasserting NRFD, the talker (or the
controller when sending commands) will assert a DAV signal to indicte to all listeners that the data on the
data lines DIO1-DIO8 are stable and may be read by the listeners. In response to a DAV signal, the listeners
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may assert NRFD to halt any further data transmission by talkers until the data already transmitted has
been received.

20.3.5.3 Not Data Accepted (NDAC)

The NDAC line driven by all listeners is the acknowledgment signal. When data has been received by all
listeners, the NDAC line will be unasserted. The talker can then remove the data and unassert the DAV signal. 

20.3.6 Data Lines DIO1–DIO8 (8 lines)

The data lines are controlled by the controller when issuing commands or by the talker. As soon as the
controller instructs a particular device to be a talker, that device will place data on the lines DIO1–DIO8
and will wait for at least T1 seconds. 

20.3.7 Addressing of GPIB Devices

All GPIB devices connected to a GPIB bus must have a unique GPIB address. A device can have a primary
address as well as a secondary address. Most devices use a primary address only. The addresses are in the
range 0–30 decimal. In general, the addresses on the instruments as well as the controller are set using
switches. The controller instructs a device with a particular address to be a talker or a listener by sending
a bit pattern on the data bus. The bit pattern is formed according to Table 20.2. The data bits are numbered
from D7 to D0. The value of each bit is listed straight underneath. The letter A signifies 0 or 1. The five
bits D4–D0 will form a bit pattern representing the address of the device. The letter X signifies a “don’t
care” bit, which is not used. TA will be set to 1 if the controller is instructing the device to be a talker.
LA will be set to 1 if the controller is instructing the device to be a listener. For example, if a particular
device has the address 15 (decimal) and if the controller is instructing that device to be the talker, then
the controller must send the following bit pattern over the data lines DIO8-DIO1.

Device with address 15 be the talker 0 1 0 0 1 1 1 1 = 4F (hex)

Similarly,

Device with address 0 be the listener 0 0 1 0 0 0 0 0 = 20 (hex)

“Untalk” the current talker 0 1 0 1 1 1 1 1 = 5F (hex)

“Unlisten” all listeners 0 0 1 1 1 1 1 1 = 3F (hex)

Note that Untalk and Unlisten commands look very similar to Talk and Listen commands; however,
the address 31 (decimal) does not exist. Therefore, the address 31 is used to affect Untalk and Unlisten.

For the controllers, IEEE 488.2 Standard provides the Required and Optional Control Sequences. All
controllers that comply with IEEE 488.2 must support all mandatory commands. The standard also
provides the “Controller Protocols.” Protocols are formed by combining a set of control sequences. For
example, FINDLSTN command will issue a set of control sequences to determine the existing listeners. 

For the instruments, IEEE 488.2 specifies a set of mandatory commands and queries. For example,
when the command “

∗
RST” is received by IEEE 488.2 compliant instruments, they all must carry out an

instrument reset. Similarly, upon receipt of “
∗
STB?” command the instrument will send the status byte

to the controller. 

TABLE 20.2 Talker/Listener Addressing Commands

D7 D6 D5 D4 D3 D2 D1 D0
X TA LA A A A A A
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All mandatory common commands and queries, all required and optional control sequences as well
as the controller protocols can be found in references 14 and 15.
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The field of communications and computer networks deals with efficient and reliable transfer of infor-
mation from one point to another. The need to exchange information is not new but the techniques
employed to achieve information exchange have been steadily improving. During the past few decades,
these techniques have experienced an unprecedented and innovative growth. Several factors have been and
continue to be responsible for this growth. The Internet is the most visible product of this growth and it
has impacted the life of each and every one of us. This chapter describes salient features and operational
details of communications and computer networks.

The contents of this chapter are organized in several sections. Section 21.1 describes a brief history of
the field of communications. Section 21.2 deals with the introduction of communication and computer
networks. Section 21.3 describes operational details of computer networks. Section 21.4 discusses resource
allocation mechanisms. Section 21.5 briefly describes the challenges and issues in communication and
computer networks that are still to be overcome. Finally, Section 21.6 summarizes the chapter.

21.1 A Brief History

Exchange of information (communications) between two or more entities has been a necessity since the
existence of human life. It started with some form and shape of human voice that one entity can create and
other(s) can listen to and interpret. Over a period of several centuries, these voices evolved into languages.
As the population of the world grew, more and more languages were born. For a long time, languages were
used for face-to-face communications. If there were ever a need to convey some information (a message)
over a distance, someone would be briefed and sent to deliver the message to a distant site. Gradually,
additional methods were developed to represent and exchange the information. These methods included
symbols, shapes, and eventually alphabets. This development facilitated information recording and use
of nonvocal means for exchanging information. Hence, preservation, dissemination, sharing, and com-
munication of knowledge became easier.

Until about 150 years ago, all communication was via wireless means and included smoke signals,
beating of drums, and use of reflective surfaces for reflecting light signals (optical wireless). Efficiency of
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these techniques was heavily influenced by environmental conditions. For instance, smoke signals were not
very effective in windy conditions. In any case, as we will note later, some of the techniques that were in use
centuries ago for conveying information over a distance were similar to the techniques that we currently use.
The only difference is that the implementation of those techniques is exceedingly more sophisticated now
than it was centuries ago.

As the technological progress continued and electronic devices started appearing on the surface, the
field of communication also started making use of the innovative technologies. Alphabets were translated
into their electronic representations so that information could be electronically transmitted. Morse code
was developed for telegraphic exchange of information. Further developments led to the use of the tele-
phone. It is important to note that in earlier days of technological masterpieces, users would go to a
common site where one could send a telegraphic message over a distance or could have a telephonic con-
versation with a person at a remote location. This was a classic example of resource sharing. Of course,
human help was needed to establish a connection with remote sites.

As the benefits of the advances in communication technologies were being harvested, electronic com-
puters were also emerging and making the news. Earlier computers were not only expensive and less reliable,
they were also huge in size. For instance, the computers that used vacuum tubes were of the size of a
large room and used roughly about 10,000 vacuum tubes. These computers would stop working if a
vacuum tube burned out, and the tube would need to be replaced by using a ladder. On average, those
computers would function for a few minutes before another vacuum tube’s replacement was necessary.
A few minutes of computer time was not enough to execute a large computer program. With the advent
of transistors, computers not only became smaller in size and less expensive, but also more reliable. These
aspects of computers resulted in their widespread applications. With the development of personal com-
puters, there is hardly any side of our lives that has not been impacted by the use of computers. The field
of communications is no exception and the use of computers has escalated our communication capabil-
ities to new heights.

21.2 Introduction

Communication of information from one point to another in an efficient and reliable manner has always
been a necessity. A typical communication system consists of the following components as shown in
Figure 21.1:

• Source that generates or has the information to be transported

• Transmitter that prepares the information for transportation

• Transmission medium that carries the information from one end to the other

• Receiver that receives the information and prepares it for delivering to the receiver

• Destination that takes the information from receiver and utilizes it as necessary

The information can be generated in analog or digital form. Analog information is represented as a
continuous signal that varies smoothly in time. As one speaks in a microphone, an analog voice signal is
generated. Digital information is represented by a signal that stays at some fixed level for some duration of
time followed by a change to another fixed level. A computer works with digital information that has two
levels (binary digital signals). Figure 21.2 shows an example of analog and digital signals. Transmission of

FIGURE 21.1 A typical communication system.
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information can also be in analog or digital form. Therefore, we have the following four possibilities in a
communication system [21]:

• Analog information transmitted as an analog signal

• Analog information transmitted as a digital signal

• Digital information transmitted as an analog signal

• Digital information transmitted as a digital signal

There may not be a choice regarding the form (analog or digital) of information being generated by
a device. For instance, a voice signal as one speaks, a video signal as generated by a camera, a speed signal
generated by a moving vehicle, and an altitude signal generated by the equipment in a plane will always
be analog in nature; however, there is a choice regarding the form (analog or digital) of information
being transmitted over a transmission medium. Transmitted information could be analog or digital in
nature and information can be easily converted from one form to another.

Each of these possibilities has its pros and cons. When a signal carrying information is transmitted, it
looses its energy and strength and gathers some interference (noise) as it propagates away from the
transmitter. If the energy of the signal is not boosted at some intermediate point, it may attenuate beyond
recognition before it reaches its intended destination. That will certainly be a wasted effort. In order to
boost energy and strength of a signal, it must be amplified (in case of analog signals) and rebuilt (in case
of digital signals). When an analog signal is amplified, the noise also becomes amplified and that certainly
lowers expectations about receiving the signal at its destination in its original (or close to it) form. On the
other hand, digital signals can be processed and reconstructed at any intermediate point and, therefore,
the noise can essentially be filtered out. Moreover, transmission of information in digital form has many

FIGURE 21.2 Typical analog (a) and digital (b) signals.
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other advantages including processing of information for error detection and correction, applying encryp-
tion and decryption techniques to sensitive information, and many more. Thus, digital information trans-
mission technology has become the dominant technology in the field of communications [9,18].

As indicated earlier, communication technology has experienced phenomenal growth over the past
several decades. The following two factors have always played a critical role in shaping the future of
communications [20]:

• Severity of user needs to exchange information

• State of the technology related to communications

Historically, inventions have always been triggered by the severity of needs. It has been very true for
the field of communications as well. In addition, there is always an urge and curiosity to make things
happen faster. When electricity was discovered and people (scattered around the globe) wanted to exchange
information over longer distances and in less time, the telegraph was invented. Morse code was developed
with shorter sequences (of dots and dashes) for more frequent alphabets. That resulted in transmission
of messages in a shorter duration of time. The presence of electricity and the capability of wires to carry
information over longer distances led to the development of devices that converted human voice into
electrical signal, and thus led to the development of telephone systems. Behind this invention was also a
need/desire to establish full-duplex (two-way simultaneous) communication in human voice. As use of
the telephone became widespread, there was a need for a telephone user to be connected to any other
user, and that led to the development of switching offices. In the early days, the switching offices were
operated manually. As the state of the technology improved, the manual switching offices were replaced
by automatic switching offices. Each telephone user was assigned a telephone number for identification
purposes and a user able to dial the number for the purpose of establishing a connection with the called
party. As the computer technology improved and the computers became easier to afford and smaller in
size, they found countless uses including their use in communications. The computers not only replaced
the automatic (electromechanical) switching offices, they were also employed in many other aspects of
communication systems. Examples include conversion of information from analog to digital and vice
versa, processing of information for error detection and/or correction, compression of information, and
encryption/decryption of information.

As computers became more powerful, there were many other applications that surfaced. The most visible
application was the amount of information users started sharing among themselves. The volume of infor-
mation being exchanged among users has been growing exponentially over the last three decades. As
users needed to exchange such a mammoth amount of information, new techniques were invented to
facilitate the process. There was not only a need for users to exchange information with others in an
asynchronous fashion, there was also a need for computers to exchange information among themselves.
The information being exchanged in this fashion has different characteristics than the information being
exchanged through the telephone systems. This need led to the interconnection of computers with each
other and that is what is called computer networks.

21.3 Computer Networks

A computer network is an interconnection of computers. The interconnection forms a facility that
provides reliable and efficient means of communication among users and other devices. User commu-
nication in computer networks is assisted by computers, and the facility also provides communication
among computers. Computer networks are also referred to as computer communication networks.
Interconnection among computers may be via wired or wireless transmission medium [5,6,10,13,18].

There are two broad categories of computer networks:

• Wide area networks

• Local/metropolitan area networks
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Wide area computer networks, as the name suggests, span a wider geographical area and essentially
have a global scope. On the other hand, local/metropolitan area networks span a limited distance. Local
area networks are generally confined to an industrial building or an academic institution. Metropolitan
area networks also have limited geographical scope but it is relatively larger than that of the local area
networks [19]. Typical wide and local/metropolitan area networks are shown in Figure 21.3.

Once a user is connected to a computer network, that user can communicate with any other user also
connected to the network at some point. It is not required for a user to be connected directly to another

FIGURE 21.3 (a) A typical wide area computer communication network. (b) A typical local/metropolitan area
communication bus network. (c) A typical local/metropolitan area communication ring network.
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user in order to communicate. In fact, in wide area networks, two communicating users will rarely be
directly connected with each other. This implies that the users will be sharing the transmission links for
exchanging their information. This is one of the most important aspects of computer networks. Sharing
of resources improves utilization of the resources and is, of course, cost-effective as well. In addition to
sharing the transmission links, the users will also share the processing power of the computers at the
switching nodes, buffering capacity to store the information at the switching nodes, and any other resources
that are connected to the computer network. A user who is connected to a computer network at any
switching node will have immediate access to all the resources (databases, research articles, surveys, and
much more) that are connected to the network as well. Of course, access to specific information may be
restricted and a user may require appropriate authorization to access the information.

The information from one user to another may need to pass through several switching nodes and trans-
mission links before reaching its destination. This implies that a user may have many options available to
select one out of many sequences of transmission links and switching nodes to exchange information. That
adds to the reliability of the information exchange process. If one path is not available, not feasible, or not
functional, some other path may be used. In addition, for better and effective sharing of resources among
several users, it is not appropriate to let any user exchange a large quantity of information at a time; however,
it is not uncommon that some users may have a large quantity of information to exchange. In that case,
the information is broken into smaller units known as packets of information. Each packet is sent toward
its destination as a separate entity and then all packets are assembled together at the destination side to
re-create the original piece of information [2].

Due to the resource sharing environment, users may not be able to exchange their information at any
time they wish because the resources (switching nodes, transmission links) may be busy serving other
users. In that case, some users may have to wait for some time before they begin their communication.
Designers of computer networks should design the network so that the total delay (including wait time)
is as brief as possible and that the total amount of information successfully exchanged (throughput) is
as large as possible.

Many aspects must be addressed for enabling networks to transport users’ information from one point
to another. The major aspects are:

• Addressing mechanism to identify users

• Addressing mechanism for information packets to identify their source and destination

• Establishing a connection between sender and receiver and maintaining it

• Choosing a path or a route (sequence of switching nodes and transmission links) to carry the
information from a sender to a receiver

• Implementing a selected route or path

• Checking information packets for errors and recovering from errors

• Encryption and decryption of information

• Controlling the flow of information so that shared resources are not over-taxed

• Informing the sender that the information has been successfully delivered to the intended desti-
nation (acknowledgment)

• Billing for the use of resources

• Ensuring that different computers running different applications and operating systems can exchange
information

• Preparing information appropriately for transmission over a given transmission medium

This is not an exhaustive list of items that need to be addressed in computer networks. In any case, all
such issues are addressed by very systematic and detailed procedures. The procedures are called communi-
cation protocols. The protocols are implemented at the switching nodes by a combination of hardware and
software. It is not advisable to implement all these features in one module of hardware or software because
that will become very difficult to manage. It is a standard practice that these features be divided into different
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smaller modules and then these modules can be interfaced together to collectively provide implementation
of these features. International Standards Organization (ISO) has suggested dividing these features into
seven distinct modules called layers. The proposed model is referred to as Open System Interconnection
(OSI) reference model. The seven layers proposed in the OSI reference model are [2]:

• Application layer

• Presentation layer

• Session layer

• Transport layer

• Network layer

• Data link layer

• Physical layer

The physical layer deals with the transmission of information on the transmission medium. The data link
layer handles the information on a single link. The network layer deals with the path or route of information
from the switching node where the source is connected to the switching node where the receiver is connected.
It also monitors end-to-end information flow. The remaining four layers reside with the user equipment.
The transport layer deals with the information exchange from the source to the sender. The session layer
handles the establishment of a session between the source and the receiver and maintains it. The presenta-
tion layer deals with the form in which information is presented to the lower layer. Encryption/decryption
of information can also be performed at this layer. The application layer deals with the application that
generates the information at the source side and what happens to it when it is delivered at the receiver side.

As the information begins from the application layer at the sender side, it is processed at every layer accord-
ing to the specific protocols implemented at that layer. Each layer processes the information and appends
a header and/or a trailer with the information before passing it on to the next layer. The headers and trailers
appended by various layers contribute to the overhead and are necessary for transportation of the
information. Finally, at the physical layer, the bits of information packets are converted to an appropriate
signal and transmitted over the transmission medium. At the destination side, the physical layer receives
the information packets from the transmission medium and prepares them for passing these to the next
higher layer. As a packet is processed by the protocol layers at the destination side, its headers and trailers
are stripped off before it is passed to the next layer. By the time information reaches the application layer,
it should be in the same form as it was transmitted by the source.

Once a user is ready to send information to another user, he or she has two options. He or she can
establish a communication with the destination prior to exchanging information or he can just give the
information to the network node and let the network deliver the information to its destination. If
communication is established prior to exchanging the information, the process is referred to as connec-
tion-oriented service and is implemented by using virtual circuit connections. On the other hand, if no
communication is established prior to sending the information, the process is called connectionless
service. This is implemented by using a datagram environment. In connection-oriented (virtual circuit)
service, all packets between two users travel over the same path through a computer network and, hence,
arrive at their destination in the same order as they were sent by the source. In connectionless service,
however, each packet finds its own path through the network while traveling towards its destination. Each
packet will therefore experience a different delay and the packets may arrive at their destination out of
sequence. In that case, the destination will be required to put all the packets in proper sequence before
assembling them [2,10,13].

As in all resource sharing systems, allocation of resources in computer networks requires careful atten-
tion. The main idea is that the resources should be shared among users of a computer network as fairly
as possible. At the same, it is desired to maintain the network performance as close to its optimal level
as possible. The fairness definition, however, varies from one individual to another and depends upon
how one is associated with a computer network. Although fairness of resource sharing is being evaluated,
two performance parameters—delay and throughput—for computer networks are considered. The delay
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is the duration of time from the moment information is submitted by a user for transmission to the
moment it is successfully delivered to its destination. The throughput is the amount of information
successfully delivered to its intended destination per unit time. Due to the resource sharing environment
in computer networks, these two performance parameters are contradictory. It is desired to have the
delay as small as possible and the throughput as large as possible. For increasing throughput, a computer
network must handle increased information traffic, but the increased level of information traffic also
causes higher buffer occupancy at the switching nodes and, hence, more waiting time for information
packets. This results in an increase in delay. On the other hand, if information traffic is reduced to reduce
the delay, that will adversely affect the throughput. A reasonable compromise between throughput and
delay is necessary for the satisfactory operation of a computer network [10,11].

21.3.1 Wide Area Computer Networks

A wide area network consists of switching nodes and transmission links as shown in Figure 21.3a. Layout
of switching nodes and transmission links is based on the traffic patterns and expected volume of traffic
flow from one site to another site. Switching nodes provide the users access to a computer network and
implement communication protocols. When a user is ready to transmit his or her information, the
switching node, to which the user is connected, will establish a connection if a connection-oriented service
has been opted. Otherwise, the information will be transmitted in a connectionless environment. In either
case, switching nodes play a key role in determining the path of the information flow according to some
well-established routing criteria. The criteria include performance (delay and throughput) objectives
among other factors based on user needs. For keeping the network traffic within a reasonable range, some
traffic flow control mechanisms are necessary. In late 1960s and early 1970s, when data rates of trans-
mission media used in computer networks were low (a few thousand bits per second), these mechanisms
were fairly simple. A common method used for controlling traffic over a transmission link or a path was
an understanding that the sender would continue sending information until the receiver sent a request to
stop. The information flow would resume as soon as the receiver sent another request to resume trans-
mission. Basically the receiver side had the final say in controlling the flow of information over a link or
a path. As the data rates of transmission media started increasing, this method was not deemed efficient.
To control the flow of information in relatively faster transmission media, a sliding window scheme was
used. According to this scheme, the sender will continuously send information packets but no more than
a certain limit. Once the limit is reached, the sender will stop sending the information packets and will
wait for the acknowledgment that the packets have been transmitted. As soon as an acknowledgment is
received, the sender may send another packet. This method ensures that there are no more than a certain
specific number of packets in transit from sender to receiver at any given time. Again, the receiver has
control over the amount of information that the sender can transmit. These techniques for controlling the
information traffic are referred to as reactive- or feedback-based techniques because the decision to trans-
mit or not to transmit is based on the current traffic conditions.

Reactive techniques are acceptable in low to moderate data rates of transmission media. As the data rates
increase from kilobits per second to megabits and gigabits per second, the situation changes. Over the past
several years, there has been a manifold increase in data rates. Optical fibers provide enormously high data
rates. Size of the computer networks has also experienced tremendous increase. The amount of traffic
flowing through these networks has been increasing exponentially. Given that, the traffic control techniques
used in earlier networks are not quite effective anymore [11,12,22]. One more factor that has added to the
complexity of the situation is that users are now exchanging different types of information through the
same network. Consider the example of the Internet. The geographical scope of the Internet is essentially
global. Extensive use of optical fiber as transmission media provides very high data rates for exchanging
information. In addition, users are using the Internet for exchanging any type of information they come
across, including voice, video, and data. All these factors have essentially necessitated the use of a modified
approach for traffic management in computer networks. The main factor leading to this change is that the
information packets are moving so fast through the computer networks that any feedback-based (or reactive)
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control will be too slow to be of any use. Therefore, some preventive mechanisms have been developed
to maintain the information traffic inside a computer network to a comfortable level. Such techniques
are implemented at the sender side by ensuring that only as much information traffic is allowed to enter
the network as can be comfortably handled by the networks [1,20,22]. Based on the users’ needs and
state of the technology, providing faster communications for different types of services (voice, video,
data, and others) in the same computer network in an integrated and unified manner has become a
necessity. These computer networks are referred to as broadband integrated services digital networks
(BISDNs). BISDNs provide end-to-end digital connectivity and users can access any type of communi-
cation service from a single point of access. Asynchronous transfer mode (ATM) is expected to be used
as a transfer mechanism in BISDNs. ATM is essentially a fast packet switching technique where infor-
mation is transmitted in the form of small fixed-size packets called cells. Each cell is 53 bytes long and
includes a header of 5 bytes. The information is primarily transported using a connection-oriented
(virtual circuit) environment [3,4,8,12,17].

Another aspect of wide area networks is the processing speed of switching nodes. As the data rates of
transmission media increase, it is essential to have faster processing capability at the switching nodes.
Otherwise, switching nodes become bottlenecks and faster transmission media cannot be fully utilized.
When transmission media consist of optical fibers, the incoming information at a switching node is
converted from optical form to electronic form so that it may be processed and appropriately switched
to an outgoing link. Before it is transmitted, the information is again converted from electronic form to
optical form. This slows down the information transfer process and increases the delay. To remedy this
situation, research is being conducted to develop large optical switches to be used as switching nodes.
Optical switches will not require conversion of information from optical to electronic and vice versa at
the switching nodes; however, these switches must also possess the capability of optical processing of
information. When reasonably sized optical switches become available, use of optical fiber as transmis-
sion media together with optical switches will lead to all-optical computer and communication networks.
Information packets will not need to be stored for processing at the switching nodes and that will certainly
improve the delay performance. In addition, wavelength division multiplexing techniques are rendering
use of optical transmission media to its fullest capacity [14].

21.3.2 Local and Metropolitan Area Networks

A local area network has a limited geographical scope (no more than a few kilometers) and is generally
limited to a building or an organization. It uses a single transmission medium and all users are connected
to the same medium at various points. The transmission medium may be open-ended (bus) as shown
in Figure 21.3b or it may be in the form of a loop (ring) as shown in Figure 21.3c. Metropolitan area
networks also have a single transmission medium that is shared by all the users connected to the network,
but the medium spans a relatively larger geographical area, up to 150 km. They also use a transmission
medium with relatively higher data rates. Local and metropolitan area networks also use a layered imple-
mentation of communication protocols as needed in wide area networks; however, these protocols are
relatively simpler because of simple topology, no switching nodes, and limited distance between the
senders and the receivers. All users share the same transmission medium to exchange their information.
Obviously, if two or more users transmit their information at the same time, the information from
different users will interfere with each other and will cause a collision. In such cases, the information of
all users involved in a collision will be destroyed and will need to be retransmitted. Therefore, there must
be some well-defined procedures so that all users may share the same transmission medium in a civilized
manner and have successful exchange of information. These procedures are called medium access control
(MAC) protocols.

There are two broad categories of MAC protocols:

• Controlled access protocols

• Contention-based access protocols
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In controlled access MAC protocols, users take turns transmitting their information and only one user
is allowed to transmit information at a time. When one user has finished his or her transmission, the next
user begins transmission. The control could be centralized or distributed. No information collisions occur
and, hence, no information is lost due to two or more users transmitting information at the same time.
Examples of controlled access MAC protocols include token-passing bus and token-passing ring local area
networks. In both of these examples, a token (a small control packet) circulates among the stations. A
station that has the token is allowed to transmit information, and other stations wait until they receive
the token [19].

In contention-based MAC protocols, users do not take turns transmitting their information. A user
makes his or her own decision to transmit and also faces a risk of becoming involved in a collision with
another station that also decides to transmit at about the same time. If no collision occurs, the information
may be successfully delivered to its destination. On the other hand, if a collision occurs, the information
from all users involved in a collision will need to be retransmitted. An example of contention- based MAC
protocols is carrier sense multiple access with collision detection (CSMA/CD), which is used in Ethernet.
In CSMA/CD, a user senses the shared transmission medium prior to transmitting its information. If the
medium is sensed as busy (someone is already transmitting the information), the user will refrain from
transmitting the information; however, if the medium is sensed as free, the user transmits the information.
Intuitively, this MAC protocol should be able to avoid collisions, but collisions still do take place. The
reason is that transmissions travel along the transmission medium at a finite speed. If one user senses
the medium at one point and finds it free, it does not mean that another user located at another point
of the medium has not already begun its transmission. This is referred to as the effect of the finite
propagation delay of electromagnetic signal along the transmission medium. This is the single most
important parameter that causes deterioration of performance in contention-based local area networks
[11,19].

Design of local area networks has also been significantly impacted by the availability of transmission
media with higher data rates. As the data rate of a transmission medium increases, the effects of
propagation delay become even more visible. In higher speed local area networks such as Gigabit Ethernet,
and 100-BASE-FX, the medium access protocols are designed to reduce the effects of propagation delay.
If special attention is not given to the effects of propagation delay, the performance of high-speed local
area networks becomes very poor [15,19].

Metropolitan area networks essentially deal with the same issues as local area networks. These networks
are generally used as backbones for interconnecting different local area networks. These are high-speed
networks and span a relatively larger geographical area. MAC protocols for sharing the same trans-mission
media are based on controlled access. The two most common examples of metropolitan area networks are
fiber distributed data interface (FDDI) and distributed queue dual bus (DQDB). In FDDI, the transmission
medium is in the form of two rings, whereas DQDB uses two buses. FDDI rings carry information in one
but opposite directions and this arrangement improves reliability of communication. In DQDB, two buses
also carry information in one but opposite directions. The MAC protocol for FDDI is based on token
passing and supports voice and data communication among its users. DQDB uses a reservation-based
access mechanism and also supports voice and data communication among its users [19].

21.3.3 Wireless and Mobile Communication Networks

Communication without being physically tied-up to wires has always been of interest and mobile and
wireless communication networks promise that. The last few years have witnessed unprecedented growth
in wireless communication networks. Significant advancements have been made in the technologies that
support wireless communication environment and there is much more to come in the future. The devices
used for wireless communication require certain features that wired communication devices may not
necessarily need. These features include low power consumption, light weight, and worldwide commu-
nication ability.

In wireless and mobile communication networks, the access to a communication network is wireless
so that the end users remain free to move. The rest of the communication path could be wired, wireless,
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or combination of the two. In general, a mobile user, while communicating, has a wireless connection with
a fixed communication facility and rest of the communication path remains wired. The range of wireless
communication is always limited and therefore the range of user mobility is also limited. To overcome this
limitation, the cellular communication environment has been devised. In a cellular communication envi-
ronment, a geographical region is divided into smaller regions called cells, thus the name cellular. Each
cell has a fixed communication device that serves all mobile devices within that cell. However, as a mobile
device, while in active communication, moves out of one cell and into another cell, service of that conn-
ection is transferred from one cell to another. This is called the handoff process [7,16].

The cellular arrangement has many attractive features. As the cell size is small, the mobile devices do
not need very high transmitting power to communicate. This leads to smaller devices that consume less
power. In addition, it is well known that the frequency spectrum that can be used for wireless commu-
nication is limited and can therefore support only a small number of wireless communication connections
at a time. Dividing communication regions into cells allows the use of the same frequency in different cells
as long as they are sufficiently far apart to avoid interference. This increases the number of mobile devices
that can be supported. Advances in digital signal processing algorithms and faster electronics have led
to very powerful, smaller, elegant, and versatile mobile communication devices. These devices have tremen-
dous mobile communication abilities including wireless Internet access, wireless e-mail and news items,
and wireless video (though limited) communication on handheld devices. Wireless telephones are already
available and operate in different communication environments across the continents. The day is not far
when a single communication number will be assigned to every newborn and will stay with that person
irrespective of his/her location.

Another field that is emerging rapidly is the field of ad hoc wireless communication networks. These
networks are of a temporary nature and are established for a certain need and for a certain duration. There
is no elaborate setup needed to establish these networks. As a few mobile communication devices come in
one another’s proximity, they can establish a communication network among themselves. Typical situations
where ad hoc wireless networks can be used are in the classroom environment, corporate meetings, confer-
ences, disaster recovery situations, etc. Once the need for networking is satisfied, the ad hoc networking setup
disappears.

21.4 Resource Allocation Techniques

As discussed earlier, computer networks are resource sharing systems. Users share the common resources
as transmission media, processing power and buffering capacity at the switching nodes, and other resources
that are part of the networks. A key to successful operation of computer networks is a fair and efficient
allocation of resources among its users. Historically, there have been two approaches to allocation of
resources to users in computer networks:

• Static allocation of resources

• Dynamic allocation of resources

Static allocation of resources means that a desired quantity of resources is allocated to each user who
may use it whenever he or she needs to. If the user does not use his/her allocated resources, no one else
can. On the other hand, dynamic allocation of resources means that a desired quantity of resources is
allocated to users on the basis of their demands and for the duration of their need. Once the need is
satisfied, the allocation is retrieved. In that case, someone else can use these resources if needed. Static
allocation results in wastage of resources, but does not incur the overhead associated with dynamic
allocation. Which technique should be used in a given situation is subject to the concept of supply and
demand. If resources are abundant and demand is not too high, it may be better to have static allocation
of resources; however, when the resources are scarce and demand is high, dynamic allocation is almost
a necessity to avoid the wastage of resources.

Historically, communication and computer networks have dealt with both situations. Earlier commu-
nication environments used dynamic allocation of resources when users walked to a public call office to
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make a telephone call or send a telegraphic message. After a few years, static allocation of res-ources was
adopted, when users were allocated their own dedicated communication channels and these were not
shared among others. In the late 1960s, the era of computer networks dawned with dynamic allocation of
resources and all communication and computer networks have continued with this tradition to date.
With the advent of optical fiber, it was felt that the transmission resources are abundant and can satisfy
any demand at any time. Many researchers and manufacturers were in favor of going back to the static
allocation of resources, but a decision to continue with dynamic resource allocation was made and that
is here to stay for many years to come [10]. 

21.5 Challenges and Issues

Many challenges and issues are related to communications and computer networks that are still to be
overcome. Only the most important ones will be described in this section.

High data rates provided by optical fibers and high-speed processing available at the switching nodes
has resulted in lower delay for transferring information from one point to another. However, the propagation
delay (the time for a signal to propagate from one end to another) has essentially remained unchanged.
This delay depends only on the distance and not on the data rate or the type of transmission medium.
This issue is referred to as latency vs. delay issue [11]. In this situation, traditional feedback-based reactive
traffic management techniques become ineffective. New preventive techniques for effective traffic man-
agement and control are essential for achieving the full potential of these communication and computer
networks [22].

Integration of different services in the same networks has also posed new challenges. Each type of
service has its own requirements for achieving a desired level of quality of service (QoS). Within the
networks any attempt to satisfy QoS for a particular service will jeopardize the QoS requirements for
other services. Therefore, any attempt to achieve a desired level of quality of service must be uniformly
applied to the traffic inside a communication and computer network and should not be intended for any
specific service or user. That is another challenge that needs to be carefully addressed and its solutions
achieved [13].

Maintaining security and integrity of information is another continuing challenge. The threat of sensitive
information passively or actively falling into unauthorized hands is very real. In addition, proactive and
unauthorized attempts to gain access to secure databases are also very real. These issues need to be resolved
to gain the confidence of consumers so that they may use the innovations in communications and computer
networking technologies to their fullest [13].

21.6 Summary and Conclusions

This chapter discussed the fundamentals of communications and computer networks and the latest
developments related to these fields. Communications and computer networks have witnessed tremen-
dous growth and sophisticated improvements over the last several decades.

Computer networks are essentially resource sharing systems in which users share the transmission media
and the switching nodes. These are used for exchanging information among users that are not necessarily
connected directly. There has been a manifold increase in transmission rates of transmission media and the
processing power of the switching nodes (which are essentially computers) has also been multiplied. The
emerging computer networks are supporting communication of different types of services in an integrated
fashion. All types of information, irrespective of type and source, are being transported in the form of
packets (e.g., ATM cells). Resources are being allocated to users on a dynamic basis for better utilization.
Wireless communication networks are emerging to provide worldwide connectivity and exchange of infor-
mation at any time.

These developments have also posed some challenges. Effective traffic management techniques, meet-
ing QoS requirements, and information security are the major challenges that need to be surmounted
in order to win the confidence of users.
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22.1 Introduction

As the degree of automation increases, particularly intelligent automation, high reliability, fail-safe and
fault tolerance become an essential part of the mechatronic system design. A mechatronic system is
reliable if no failure and malfunction could result in an unsafe system; is safe if it causes no injury or
damage to the operator, environment and system itself; is fail-safe if the system could be stopped safely
after the failure; and is fault tolerant if the system could complete its task safely after any failure.

Fault/failure corresponds to any condition or component/subsystem degradation (sharp or graceful
degradation) that affects the performance of a system such that the system cannot function as it is required.
As the application of the mechatronic systems expands to areas such as highly dynamic/unstructured or
space/remote environments, medical and high-speed applications, the necessity for the system to be fail-
safe (could stop with no harm to the environment, operator, and itself) and fault tolerant (tolerate the
failure and complete the assigned task) increases. 

A mechatronic system is called fault tolerant if after any failures there will be no interruption in the
task/operation of the system. Fault tolerance and high reliability could be achieved by using high quality
components, through design and robust control, and by incorporating redundancy in the design of
mechatronic systems. A mechatronic system consists of mechanical, electrical, computer, and control
(hardware and software) subsystems. Therefore, their redundancy could be in the form of hardware
redundancy (redundancy in sensing, actuation, transmission, communication, and computing), software
redundancy, analytical redundancy, information redundancy, and time redundancy.

22.2 Tools Used for Failure/Reliability Analysis

The failure analysis techniques could be classified as inductive techniques and deductive techniques (Wolfe,
1978). Inductive techniques, such as decision or event trees and failure modes and effects analysis (FMEA),
consider the possible states of components/subsystems and determine their effects on the system, that is,

Leila Notash
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Queen’s University
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22-2 Mechatronic System Control, Logic, and Data Acquisition

identify the undesired state. Deductive analyses, such as fault tree analysis (FTA), involve investigation
of possible desired state of the overall system and identify the component states that contribute to the
occurrence of the undesired state, that is, describe how the undesired state is achieved.

The event tree method is a pictorial representation of all the events (success or failures) that can occur
in a system. Similar to other techniques, the event tree method can be used for systems in which all
subsystems/components are continuously operating. This method is also widely used for systems in which
some or all of the subsystems/components are in a standby mode with sequential operational logic and
switching, such as safety oriented systems (Billinton and Allan, 1983).

FMEA is a bottom-up qualitative technique used to evaluate a design by identifying possible failure modes
and their effects on the system, occurrence of the failure modes, and detection techniques. The history of
FMEA goes back to the early 1950s when the technique was utilized in the design and development of flight
control systems (Dhillon, 1983). Since then it has been widely used in the industry for specific designed
systems with known knowledge of their components, subsystems, functions, required performance and
characteristics, and so on. Criticality analysis (CA) is a quantitative method used to rank critical failure
mode effects by taking into consideration the probability of their occurrence. FMECA is a design technique
composed of FMEA and CA and provides a systematic approach to clarify hardware failures.

Fault tree analysis (FTA) is a top-down procedure which considers components in working or failed
states, and it has been proven difficult to handle degraded component states. FTA can be used to obtain
minimum cut sets, which define the modes of system failures and identify critical components. The
reliability measures for the top event of FTA can be obtained provided that the failure data on primary
events/failures is available.

22.3 Failure Analysis of Mechatronic Systems

The failure modes of a mechatronic system include failure modes of mechanical, electrical, computer,
and control subsystems, which could be classified as hardware and software failures. The failure analysis
of mechatronic systems consists of hardware and software fault detection, identification (diagnosis),
isolation, and recovery (immediate or graceful recovery), which requires intelligent control.

The hardware fault detection could be facilitated by redundant information on the system and/or by
monitoring the performance of the system for a given/prescribed task. Information redundancy requires
sensory system fusion and could provide information on the status of the system and its components,
on the assigned task of the system, and the successful completion of the task in case of operator error or
any unexpected change in the environment or for dynamic environment. 

The simplest monitoring method identifies two conditions (normal and abnormal) using sensor
information/signal: if the sensor signal is less than a threshold value, the condition is normal, otherwise
it is abnormal. In most practical applications, this signal is sensitive to changes in the system/process
working conditions and noise disturbances, and more effective decision-making methods are required.
Generally, monitoring methods can be divided into two categories: model-based methods and feature-
based methods. In model-based methods, monitoring is conducted on the basis of system modeling and
model evaluation. Linear, time-invariant systems are well understood and can be described by a number
of models such as state space model, input–output transfer function model, autoregressive model, and
autoregressive moving average (ARMA) model. When a model is found, monitoring can be performed
by detecting the changes of the model parameters (e.g., damping and natural frequency) and/or the
changes of expected system response (e.g., prediction error). Model-based monitoring methods are also
referred to as failure detection methods.

Model-based systems suffer from two significant limitations. First, many systems/processes are non-
linear, time-variant systems. Second, sensor signals are very often dependent on working conditions.
Thus, it is difficult to identify whether a change in sensor signal is due either to the change of working
conditions or to the deterioration of the process.

Feature-based monitoring methods use suitable features of the sensor signals to identify the operation
conditions. The features of the sensor signal (often called the monitoring indices) could be time and/or
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frequency domain features of the sensor signal such as mean, variance, skewness, kurtosis, crest factor,
or power in a specified frequency band. Choosing appropriate monitoring indices is crucial. Ideally the
monitoring indices should be: (i) sensitive to the system/process health conditions, (ii) insensitive to the
working conditions, and (iii) cost effective. Once a monitoring index is obtained, the monitoring function
is accomplished by comparing the value obtained during system operation to a previously determined
threshold, or baseline, value. In practice, this comparison process can be quite involved. There are a
number of feature-based monitoring methods including pattern recognition, fuzzy systems, decision
trees, expert systems, and neural networks. 

Fault detection and identification (FDI) process in dynamic systems could be achieved by analytical
methods such as detection filters, generalized likelihood ratio (which uses Kalman filter to sense discrep-
ancies in system response), and multiple mode method (which requires dynamic model of the system and
could be an issue due to uncertainty in the dynamic model) (Chow and Willsky, 1984).

As mentioned above, the system failures could be detected and identified by investigating the difference
between various functions of the observed sensor information and the expected values of these functions.
In case of failure, there will be a difference between the observed and the expected behavior of the system,
otherwise they will be in agreement within a defined threshold. The threshold test could be performed
on the instantaneous readings of sensors, or on the moving average of the readings to reduce noise.

In a sensor voting system, the difference of the outputs of several sensors and each component (sensor
or actuator) is included in at least one algebraic relation. When a component fails, the relations including
that component will not hold and the relations that exclude that component will hold. For a voting system
to be fail-safe and detect the presence of a failure, at least two components are required. For a voting
system to be fail-operational and identify the failure, at least three components are required, for example,
three sensors to measure the same quantity (directly or indirectly). As Chow and Willsky (1984) pointed
out, for the detection and identification of a single failure among m components at least (m − 1) relations
are required (more relations are preferred for better performance in the presence of noise).

22.4 Intelligent Fault Detection Techniques

The fault tolerant control (robust control and decision-making process) should include allowable per-
formance degradation in the failed state, criticality and likelihood of the failure, urgency of response to
failure, tradeoffs between correctness and speed of response, normal range of system uncertainty, dis-
turbance environment, component reliability vs. redundancy, maintenance goals (mean-time-to-failure,
mean-time-to-repair, maintenance-hour/operation-hour, etc.), system architecture, limits of manual inter-
vention, and life-cycle costs (Stengel, 1991).

Fault detection could be achieved by redundancy in sensing (measurement) and actuation, parallel
redundancy (e.g., dual sensors or actuators), analytical redundancy, and artificial intelligence (expert
systems, artificial neural network, or integration of both techniques) combined with redundancy. 

Stengel (1991) classified the analytical redundancy into direct and temporal redundancy. Direct redun-
dancy consists of algebraic relationship among instantaneous outputs of sensors and is useful for sensor
failure detection, but not for actuator failure detection. Temporal redundancy includes the relationship
among histories of sensor outputs and actuator inputs (also comparison of the outputs of dissimilar
sensors at different times). Temporal redundancy could be used for both sensor and actuator FDI, for
example, a sensor voting system with mixed displacement and velocity sensors could detect failures of
both types of sensors. The computational complexity of temporal redundancy is higher compared to the
direct redundancy case as it requires the dynamics of the system.

An expert system embodies in a computer the knowledge-based component of an expert skill in such
a manner that the system can generate intelligent actions and advice and can, when required, justify to
the user its line of reasoning. In general, an expert system is composed of three parts: an inference engine,
a human-machine interface, and a knowledge base. The inference engine is the knowledge processor and is
modeled after the expert’s reasoning. The engine works with available information on a particular problem,
coupled with the knowledge stored in the knowledge base to draw conclusions or recommendations.
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The knowledge base contains highly specialized knowledge on the problem area as provided by the expert
in the form of statistical analysis, empirical or semi-empirical rules, theoretic and computer simulation
studies, and experimental testing. It includes problem facts, rules, concepts, and relationships.

Expert systems have obvious knowledge representation forms that make knowledge easy to manage,
have the capability to explain their behavior, and can diagnose new faults using their knowledge bases.
At the same time, self-learning is still a problem and computation time can be quite lengthy for difficult
tasks.

A neural network is a highly nonlinear system with adaptation and generalization capabilities. There
are many different architectures of neural networks; however, the multilayer feedforward neural network
(refer to Figure 22.1) is one of the most popular ones. This is because of the simplicity, availability of
efficient learning methods, generalization capabilities, and noise tolerance of these networks. This net-
work is a collection of simple, interconnected nodes, also known as neurons, which operate in parallel
and store knowledge on the strength of connections between the individual nodes. Such a parallel
computing network, inspired by the computational architecture of the human brain, has been successfully
applied to intelligent tasks such as learning, speech synthesis, and pattern recognition. The input vector
feeds into each of the first layer neurons, the outputs of this layer feed into each of the second layer
neurons, and so on. The last layer, which generates output to the external world, is called the output
layer. The hidden layers are not connected to the external world. Often the neurons are fully connected
between the layers, that is, every neuron in layer l is connected to every neuron in layer l + 1.

Training a neural network consists of the process of finding the set of interconnection weights (there
is an interconnection weight associated with each neuron which modifies the input signal to that neuron
in a specific manner), which results in a network output that satisfies a predefined criterion. Feedforward
neural networks are trained using the backpropagation algorithm. This is a supervized training method.
This means that the network will be presented with sample inputs and correct responses, called a training
pattern. The network is then trained to reproduce the correct responses.

Neural networks have capabilities of association, memorization, error tolerance, self-adaptation, and
multiple complex pattern processing. However, they cannot explain their own reasoning behavior and
cannot diagnose new faults (those not already made available previously in training the network). 

22.5 Problems in Intelligent Fault Detection

The fault detection scheme should be capable of detecting and identifying the failures correctly and
promptly with minimum delays. This requires a reconfigurable robust controller. That is, the controller
should distinguish between failures, uncertainties/inaccuracies in the model of the system, and distur-
bances such as sensor noise; and reduce the effect of measurement error and noise, uncertainties in the
system model, and disturbances (even component failure) on the system output.

FIGURE 22.1 Architecture of a typical multilayer feedforward neural network.
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The sensor noise could be taken care of by statistical analysis on sensor readings. The uncertainties in
the system model could be taken care of by estimating the effect of parameter uncertainties and compen-
sating for it in the FDI system, or by minimizing the sensitivity of the FDI system to these uncertainties.
The detection scheme should also be capable of monitoring the degradation of the system, as well as
evolution and progress of failure over time (and predicting the failure), and responding to each accordingly.

22.6 Example Mechatronic System: Parallel 
Manipulators/Machine Tools

Parallel structured machine tools consist of multiple serial branches/legs acting in parallel on a common
mobile platform with the spindle being connected to the mobile platform. Parallel manipulator-based devices
have the advantages of not requiring actuation of base distal joints and of having their active joints acting
in parallel on the mobile platform. These advantages can lead to parallel machine tools having desirable
stiffness, accuracy, and dynamic characteristics, which, in turn, will provide high material removal rate
(high product volume) with tight tolerances and in-process inspection capability (on-machine measure-
ments of workpieces, fixtures, and tools during and after manufacturing process without breaking setups).

The failure analysis of parallel machine tools should include failures of parallel architecture, as well
as failure of cutting tool, in addition to software failures.

22.6.1 Parallel Architecture Manipulators (Based on a Paper by Huang 
and Notash, 1999)

The following discussion will focus on the design orientated failure analysis of the mechanical system of
parallel manipulators/machines.

Parallel manipulators consist of a base platform (stationary link), a mobile platform (end effector),
and multiple branches/legs connecting the base and mobile platforms. Figure 22.2 depicts an example
of a six-branch parallel manipulator.

The mechanical failure modes of manipulators could be classified as joint failure (component), link
failure/breakage (component), branch failure (subsystem), end effector failure (subsystem), and device
failure (system). Figure 22.3 represents the top level FTA of a three-branch parallel manipulator/machine.

22.6.1.1 Component Failures

Parallel (closed-loop) manipulators possess both active joints (joints that are sensed and actuated) and
passive joints (unactuated joints which could be sensed or unsensed). Therefore, their failures could be
due to the failures of active, passive sensed, or passive unsensed joints. The failure of any joint will cause

FIGURE 22.2 Example of a six-branch parallel manipulator/machine.
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the failure of the parallel manipulator, unless the device is redundantly actuated/sensed or has a redundant
unsensed joint(s) for the given task.

The common failure modes of active, passive sensed, and passive unsensed joints are the joint break
and joint jam. The only failure modes of passive unsensed joints are the common joint failures. The
failure modes of passive sensed joints include sensor failure, in addition to the common failure modes.
In this case, the motion of the joint cannot be measured and the joint will be reduced to a passive
unsensed joint. The major failure modes of active joints could be classified as actuator failure, transmis-
sion failure, and sensor failure. As a result of an actuator failure, the active joint degrades to a passive
sensed joint, provided that the joint is back drivable; otherwise, the joint must be locked and the
corresponding branch and the parallel manipulator will lose one DOF and an actuation. Because of a
transmission failure, the actuator fails to drive the joint, and the active joint could only be used as a
passive sensed joint. When the sensor of an active joint fails, although the actuator may operate properly,
the motion of the joint cannot be controlled as there will be no reliable information available on the
joint motion; hence, the active joint is degraded to a passive unsensed joint. 

22.6.1.2 Subsystem Failures

The branches of a parallel device could be categorized as active or passive branches. An active branch
possesses at least one active joint to provide a required force and to facilitate a suitable loci for the branch
end location. A passive sensed branch has at least one sensed joint and its main function is to constrain the
loci of the branch end position. Neither joint of a passive unsensed branch is sensed, and the branch is
mainly used to constrain the motion of the mobile platform.

A branch of a parallel manipulator could fail because of component (link, joint) failures. As well, a
branch will not follow its assigned path if it is in the workspace boundary, or at an internal singularity
(where it loses one or more DOF). Therefore, the mechanical failure modes of a branch include branch
break, loss of DOF, and loss of sensing/actuation.

22.6.1.3 Mechanical System Failures

A parallel manipulator could fail because of component and/or subsystem failures. Therefore, the
mechanical failures of a parallel manipulator include loss of the DOF, loss of the actuation, loss of the
motion constraint, and uncertainty configurations. A summary of the mechanical failure levels, modes,
effects, and causes of parallel manipulators has been tabulated in Table 22.1.

FIGURE 22.3 Top level fault tree for a three-branch parallel manipulator.
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 TABLE 22.1 Failure Modes of Parallel Manipulators and Their Effects

Failure Levels Failure Modes Failure Causes Effects

Components Links Break Overload, fatigue,
impact, material 
flaw

Reduction in number of branches

Joints Common Joint break Overload, fatigue, 
impact, material 
flaw

Reduction in number of branches

Joint jam Deterioration, 
external 
interference

Reduction in DOF of corresponding 
branch

Active Actuator failures Depends on 
actuator type

Reduction in actuation, DOF if joint 
not back-drivable

Transmission 
failures

Depends on
transmission 
type

Reduction in actuation, DOF if joint 
not back-drivable

Sensor failures Depends on sensor 
type

Reduction in sensing, actuation, 
maybe DOF

Passive sensed Sensor failures Depends on sensor 
type

Reduction in sensing

Passive unsensed Common failures 
(break, jam)

Overload, fatigue, 
impact, material 
flaw; 
deterioration, 
external 
interference

Reduction in number of branches; 
reduction in DOF

Branches Common Break Joint/link break Reduction in number of branches, 
maybe actuation and DOF, 
interference with other branches

Loss of DOF Joint jam, locked 
active joint, 
branch 
singularity

Reduction in DOF of manipulator

Active Loss of actuation Active joint failure Reduction in actuation, maybe DOF
Loss of sensing Sensor failure Reduction in actuation, degradation 

to passive branch
Passive 

sensed
Loss of sensing Sensor failure Reduction in sensing, degradation to 

passive unsensed branch
Passive 

unsensed
Common failures 

(break, loss of 
DOF)

Joint/link break, 
joint jam, locked 
active joint, 
branch 
singularity

Reduction in constraint or DOF of 
manipulator

Manipulator Loss of DOF Joint jam, branch 
singularity, 
branch 
interference

Insufficient DOF

Loss of actuation Active 
joint/branch 
failure

Degradation in force and motion 
capabilities

Loss of constraint Reduction in 
number of active 
branches

Uncontrolled motion of manipulator

Passive unsensed 
branch break

Uncontrolled motion of manipulator

Uncertainty 
configuration

Instantaneous uncontrolled motion 
of manipulator
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22.6.1.4 Failure Identification

A fault tolerant manipulator should be capable of identifying a failure, as well as tolerating the failure.
The failed component (mechanical system) of a parallel manipulator, e.g., a failed joint sensor, could be
identified via the manipulator controller using the information provided by the sensors of the device. A
joint sensor fault detection scheme for a class of fault tolerant parallel manipulators, based on redundant
sensing of joint displacements and the comparison of forward displacement solutions, was presented in
(Notash, 2000).

While the failure of active joints could be identified based on the information provided by the sensor(s)
on the corresponding joint, failure of passive joints could be identified by monitoring the overall perfor-
mance of the manipulator in the software. For a given parallel manipulator, the criteria for failure should
be incorporated in the simulation software. For example, the loss of DOF due to workspace boundary
could be monitored (similar to the joint limits and branch interference) and the manipulator could be
stopped before it reaches its envelope to prevent potential failure and damage to the device. As well, all of
the potential special (uncertainty) configurations of the manipulator should be identified, and the closeness
to these singularities should be monitored as the device moves around within its workspace.

22.6.1.5 Fault Tolerance through Redundancy

The fault tolerant capabilities of parallel manipulators could be improved by employing appropriate
redundancies. Redundant sensing has been investigated for improving the fault tolerance capabilities of
parallel manipulators, for simplifying the forward displacement analysis of these manipulators, and for
facilitating fixtureless calibration of these devices. Redundancy in actuation has been considered for
eliminating the uncertainty configurations of parallel manipulators. More work is required to develop
methodologies for identifying the failed components of parallel manipulators with elements of redun-
dancy, and compensating for their failures. For parallel manipulators, redundancy could be incorporated
as redundant DOF (mobility), redundant sensing, and redundant actuation.

Redundant DOF could be achieved by incorporating additional joints into the parallel manipulator.
A redundant DOF requires one more actuator on the parallel manipulator. This additional actuator is
not considered as a redundant one because its failure will result in the failure of the parallel manipulator
due to the loss of a required actuation. Redundancy in sensing could be obtained by sensing the existing
passive unsensed joints of the manipulator, by adding a redundant passive sensed branch, or by using
an external sensor such as a vision system. It should be noted that the information redundancy is achieved
by redundant sensing, as well as by providing the task description of the manipulator, such as the Cartesian
trajectory of the end effector (for robot path planning and machining operation). Redundancy in actu-
ation could be accomplished by actuating the passive joints of the manipulator, or by adding an active
branch (in addition to employing dual actuators).

22.6.2 Tool Condition Monitoring 

An important element of the automated process control function is the real-time detection of cutting
tool failure, including both wear and fracture mechanisms in machining operations. The ability to detect
such failures online would allow remedial action to be undertaken in a timely fashion, thus ensuring
consistently high product quality (quality of surface finish and dimensional precision) and preventing
potential damage to the process machinery. The basic premise of any automated, real-time tool condition
monitoring system is that there exists either a directly measurable, or a derived parameter, which can be
related to advancing tool wear and/or breakage. Information about tool wear, if obtained online, can be
used to establish tool change policy, adaptive control, economic optimization of machining processes,
and full automation of machining processes. 

In the ideal case, the system should be able to detect levels of wear well below those at which the tool
would have to be replaced and should also be sensitive to relatively small changes in the level of wear.
The latter characteristic would provide the system with the potential to “trend” the wear pattern and
predict the amount of useful life left in the tool (allowable wear limit reached).
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With respect to tool fracture, the system should be able to detect both small fractures, “chipping” phe-
nomena, and catastrophic failure of a tool. Although prediction of such failures would be desirable, it is
problematic whether this is a practical goal, at least in the near future. The number of variables, which
determine the actual occurrence of tool fracture together with their complex interactions, and in many
instances their underlying stochastic nature, make reliable prediction capabilities, at best, a long-term
prospect in tool monitoring systems.

22.6.2.1 Cutting Tool Failure Monitoring Techniques

Tool condition monitoring systems are based upon either direct or indirect methods of quantifying the
magnitude of tool failure.

The direct methods are those that utilize effects caused directly by tool failure. The direct methods,
usually performed by means of optical, radiometric, pneumatic, or contact sensors can be effectively
applied to the offline measurement of tool wear or breakage. However, such direct means of measuring
tool failure have generally been found to be difficult to apply in practical shop floor applications. This
is particularly true in those situations requiring online (real-time) monitoring capability.

Indirect methods of sensing tool failure depend upon the measurement of parameters, which are
indirectly related to the condition of the cutting edge. For example, the cutting forces generated during
a machining operation are dependent upon the condition of the tool’s cutting edge. Generally, as the tool
edge wears the generated cutting forces increase. Thus, measurement of the cutting forces present during
a machining operation provides an indication of the tool condition, i.e., increasing cutting forces indicates
increasing wear. In reality the relationship can be very complex. Other parameters that have been studied
to determine their suitability as indicators of cutting tool failure include spindle motor current, acoustic
emissions, cutting tool temperature, and noise and vibration signals. It is also possible to measure cutting
forces directly and then relate these values to the condition of the cutting tool. In fact, this is one of the
more common indirect tool wear monitoring methods. It has been reported that cutting force signals are
more sensitive to tool wear than vibration or power measurements. The general reliability of force mea-
surements is another reason for their popularity in tool condition monitoring applications. To use cutting
force measurements for practical tool monitoring systems, there is a need to relate these forces to the
state of tool condition online. However, since the measured cutting forces are affected by both cutting
edge condition and changes in cutting conditions (feed rate, cutting speed, and depth of cut), the detection
of tool failure using measurements of these forces becomes quite challenging in practice.

22.6.2.2 System Characteristics

Whether a tool condition monitoring system employs direct or indirect measures of tool failure (auto-
mated, computer-based system or not), it must include a number of common features if it is to be truly
practical. Figure 22.4 shows the block diagram of a generalized tool condition monitoring system (Braun,
1986).

In the measurement section, the physical parameter (or possibly, parameters) of interest is converted
to a form that is appropriate for further manipulation by the system (generally a digitized representation
of an electric analog signal).

Within the processing section, various techniques are implemented in order to suppress noise, compress
information, and emphasize important features of the acquired signal. Typical methods include analog

FIGURE 22.4 Block diagram of a generalized tool condition monitoring system.
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or digital filtering, time domain averaging, Fourier transformation, parametric identification based on
ARMA models, etc.

The purpose of the feature extraction section is to obtain a specific feature, or features, (often referred
to as a feature vector), which can be used by the classifier to determine the specific type of failure and
initiate appropriate corrective actions. Examples of features would include total power of the signal, crest
factor value, power in a particular frequency range, frequency of the maximum peak, amplitude of the
maximum peak, the autoregressive parameters of an ARMA model, etc. If multiple features are employed,
they should be uncorrelated so that they provide independent indications of tool failure. When coupled
with a hierarchical decision tree structure (or other appropriate structure) in the classifier, such multiple
feature vectors can greatly improve the reliability of the tool monitoring system.

The adaptation and database section should not only efficiently manage all data storage and manip-
ulation requirements but also provide the system, to as great a degree as possible, with the ability to learn
from experience.

22.7 Concluding Remarks

It should be noted that the first and most practical step for increasing the reliability and improving the
fault tolerance of mechatronic systems, for example, a parallel machine, is by enhancing the existing
design, or by improving the robustness of the design, such as using coupled joints while designing the
architecture of the manipulator. Redundancies through redesign are recommended for the applications
where the fail-safe system could be very crucial, or the down time should be minimum and previously
scheduled, such as the medical applications or space operation. It is also worth mentioning that not any
redundancy could improve the fault tolerance of a system with no modification to the architecture of
the device.

It is noteworthy to emphasize the importance of fail-safe simulation software and controller for a fault
tolerant mechatronic system, which requires a robust software capable of monitoring the performance
of system and responding to any system failures (including mechanical, electrical, and control systems).
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23.1 Introduction to Digital Logic

In analog electronics, voltages and current represent variables that vary continuously from the allowable
minimum to the maximum. These variables are measured, amplified, added, and subtracted through
analog circuits to achieve the desired results. For instance, measurement of temperature using thermo-
couples requires the amplification of voltages generated to a suitable range, calibration of the voltage with
measured temperatures, and outputting the results on a voltmeter to indicate temperature. In this design,
it may be necessary to subtract an offset voltage, multiply with a gain factor depending on the temperature
range. The amplification of voltages and current are accomplished easily with operational amplifiers and
transistors, respectively. The measured temperature can be used as the feedback signal in a control loop
for a mechatronic temperature control system. In digital electronics, the variables assume a binary state,
assuming a value of 0 or 1. In the above example, we might want to shut the solenoid valve down if the
temperature was below desired value and open the valve if the temperature was above that value. In this
case, we simply require a TRUE or FALSE input to the question “Is the temperature above or below the
threshold?” The representation of these types of variables in circuits, which assume binary values, and
their manipulation to achieve desired results is the topic of discussion in this chapter.

23.1.1 Logic Switching Levels

In digital circuits, voltage levels indicate binary states where the HIGH or TRUE state is represented by
the maximum voltage value, typically 5 V, and the LOW or FALSE state is represented by the minimum
voltage value, typically 0 V. In Boolean logic,“1” represents TRUE and “0” represents FALSE. In practice,
any voltage above a minimum input threshold, VIH, is interpreted as logic HIGH and any voltage below

M. K. Ramasubramanian
North Carolina State University
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23-2 Mechatronic System Control, Logic, and Data Acquisition

a maximum threshold, VIL, is interpreted as logic LOW. The minimum output from a logic device for
HIGH is represented by VOH (different from VIH), and maximum output level for a logic LOW is
represented by VOL (different from VIH). These values depend on the type of logic device and a general
chart of values for these parameters is shown in Figure 23.1 [1].VCC is the supply voltage. The difference
between the VOH and VIH, or VOL and VIL, is called the noise margin. It is important to design the logic
circuit with the constraint that voltages will never fall in the region between VIH and VIL, which is called
the forbidden region where the logic device will fail to interpret signals. The differences between switching
levels for different technologies such as 5-V logic, 3.3-V logic, CMOS (complementary metal oxide
semiconductor), and TTL (transistor–transistor logic) should all be considered when interfacing these
systems with each other. 

A logic variable can rapidly change states as shown by an ideal pulse train in Figure 23.2. The variables
can vary periodically or nonperiodically between 0 and 1. Logic gates read these signals as inputs, perform
the appropriate Boolean operations among them, and generate the correct output at desired operating
speeds. Robust design and use of logic functions and its implementation in circuits is an integral part
of mechatronics design.

21.3.2 Logic Gate Application

Consider the example of an autonomous robot moving about on a table surface. The robot should
move towards the destination denoted by a bright light source while avoiding obstacles and at the same
time not falling off the edge. Assuming that we have three digital sensors, namely, obstacle detector,

FIGURE 23.1 Switching levels for logic gates [1].

FIGURE 23.2 Periodic and nonperiodic logic level signals.
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Logic System Design 23-3

edge detector, and destination sensor, we can write a simple logic function for moving forward, as shown
in Equation 23.1. Of course, this is not the complete logic required for the robot to function properly.
However, we focus on one aspect of the problem to illustrate the use of logic functions.

MOVE FORWARD = (OBSTACLE NOT DETECTED) AND (EDGE NOT
DETECTED) AND (BEACON IS VISIBLE) (23.1)

The input from the three sensors is interfaced to a logic circuit consisting of logic gates, in this simple
example, a three-input AND gate and the output drives the motors. Of course, other cases of behaviors
for the robot where the edge is found or the beacon is not visible or an obstacle is detected have to be
worked out to make this circuit robust and worthwhile. Figure 23.3 shows an implementation of the
logical statement expressed in Equation 23.1. 

23.2 Semiconductor Devices

23.2.1 Diode

In order to understand logic gates, it is important to develop a basic understanding of semiconductor
devices, especially the diode and the transistor. A diode is a pn-junction, which means that the diode is
made up of a p-type (electron deficient) material layer and an n-type (electron rich) material layer
sandwiched together. When the positive terminal of a battery is connected to the p-side of the diode
(anode) and the negative of the battery is connected to the n-side of the diode (cathode), then the diode
is said to be forward biased as long as the voltage across the junction exceeds 0.7 V. When the terminals
are reversed, the diode is said to be reverse biased and does not conduct until very high voltages are
applied across the junction, known as the breakdown voltage. For all practical purposes, we can assume
that a reverse-biased diode does not conduct. A schematic of a diode, its symbol, and a forward-biased
circuit is shown in Figure 23.4. When forward biased, the diode can be treated as a simple closed switch
with a 0.7 V drop across it and when the diode is reverse biased, the diode is an open switch.

23.2.2 Bipolar Transistor

A bipolar transistor has three semiconductor layers. In an npn-transistor, a very thin p-layer is sandwiched
between two n-layers. Transistor types and their symbols are shown in Figure 23.5a,b.

FIGURE 23.3 Forward motion logic implementation for a tabletop robot.
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23-4 Mechatronic System Control, Logic, and Data Acquisition

There are three leads in a transistor, namely, the collector (C), emitter (E), and the base (B). For an
npn-transistor in a circuit, as shown in Figure 23.6, the base–emitter junction is forward biased and will
conduct if the voltage VBE exceeds the forward bias voltage for the pn-junction, typically 0.7 V. VBE is
increased by increasing the voltage at B. However, the base–collector junction is reverse biased as the
collector C is at a higher potential. As current flows in the base–emitter loop, the electrons from the emitter

FIGURE 23.4 The diode and its behavior.

FIGURE 23.5 (a) npn-transistor symbol, and (b) pnp-transistor symbol.

FIGURE 23.6 Schematic representation of the working of an npn-transistor.
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flow into the base terminal by filling in the “holes” in the p-layer and subsequently releasing an electron
from the p-layer out of the base terminal. However, because of a limited number of “holes” in the p-layer
(which is very thin), the electrons from the emitter see a larger potential across the collector–emitter
path and jump the junction. A large current, IC, flows in the collector–emitter loop as a result. Thus, the
transistor is a current amplifier. A small current flowing in the base–emitter loop, IB, is amplified by
typically a factor of about 100 in the collector–emitter path. As the current flow in the base–emitter is
increased by increasing VBE, the collector–emitter current increases by decreasing VCE. Since the collector
is connected to the power source, VCC, and the emitter is connected to the ground, the device controls
this current flow by controlling the drop in voltage across the collector–emitter junction, continuing
to drop the voltage as the base–emitter current is increased. It is obvious that the voltage cannot drop
below 0; in fact, it cannot drop below 0.2–0.35 V in a real device. Under these conditions, the transistor
is said to be saturated and is acting as a closed switch. Circuits that are built with transistors in the
saturating condition are called saturating circuits; for example, the TTL family of logic gates. Circuits
that do not allow the transistor to saturate and find a stable operating point in the active region of the
transistor are called nonsaturating circuits; for example, emitter-coupled logic (ECL) gates. The biggest
advantage of a nonsaturating circuit is the speed with which states can be changed compared to a
saturating circuit.

23.2.3 Field Effect Transistor

These devices are easier to make and uses less silicon. There are two major classes of field effect transistors
(FETs), namely, the junction FET (JFET) and the metal oxide semiconductor FET (MOSFET). In both
cases, a small input voltage controls the output current with practically no input current. The three
terminals are called the source (S), drain (D), and gate (G). Figure 23.7 shows the symbols for the n-
and p-channel enhancement type MOSFETs. MOSFET is the most popular of transistor technologies. A
MOSFET gate has no electrical contact with the source and the drain. A silicon-dioxide layer insulates
the gate. Electrical voltage applied at the gate attracts electrons to the region below the gate and provides
an n-type channel in a p-type substrate for conduction between the drain and source. This is called the
enhancement type of MOSFET. The other is the depletion-enhancement type where there is an n-channel
present between the drain and source, but the channel resistance can be increased or decreased by applying
either a negative or a positive voltage at the gate, respectively. Depletion-enhancement MOSFET symbols
and function are described in Figure 23.8. MOSFET devices are slower than bipolar devices and are used
in slower but high density circuits, due to ease of manufacture and use of less silicon.

FIGURE 23.7 n- and p-channel MOSFETs and symbols.
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23-6 Mechatronic System Control, Logic, and Data Acquisition

23.3 Logic Gates

Logic gates are the basic building blocks of logic circuits and a computer. Mechatronic systems have a
central computational element as well as specific logic functions implemented in hardware. A logic circuit
consists of several logic gates working together. We will discuss the logic gates in general and as building
blocks of mechatronic subsystems. Logic operations can be subdivided into two categories, namely,
combinatorial and sequential. In the case of combinatorial logic circuits, the logic gates are used to
produce an output based on instantaneous values of the inputs, whereas in the case of sequential logic
circuits, the change in output depends on the present state as well as the state before the changes in input
values, thus exhibiting memory behavior. Further, the sequential logic circuits can be synchronous or
asynchronous. When the output changes synchronously with a clock input, it is said to be synchronous.
When the inputs are read as soon as there is any change in it, it is called an asynchronous logic circuit. 

There are three fundamental logic operations, namely the AND, OR, and NOT functions. Other logic
operations are derived operations from these fundamental ones. The AND gate symbol and its truth
table are shown in Figure 23.9. The AND gate can have more than two inputs. 

Figure 23.10 shows an OR gate. Here the output is HIGH when either of the inputs or both the inputs
are HIGH. The OR gate can also have more than two inputs. Figure 23.11 shows an inverter, also known
as a NOT gate. This gate takes one input and simply inverts the logic, that is, a HIGH input is returned
as LOW output and vice versa. 

Other common logic gates that are derived from these fundamental ones are NAND, NOR, and
Exclusive OR gates. NAND gate is a combination of AND and NOT gates; NOR is a combination of OR
and NOT gates, and Exclusive OR can be generated with a combination of OR, NAND, and AND gates.
Figures 23.12 through 23.14 show the derived gate types, namely the NAND, NOR, and XOR gates and
their truth tables, respectively. The logic functions and their implementation into hardware using gates
is the basic building block of a digital computer. 

23.4 Logic Design

As in any design, it is important to keep it simple, robust, and cost effective. Mechatronics design or
logic circuit design is no exception. When a logic function of a system is translated into relationships
between inputs and outputs, it is not certain if the number of elements involved in realizing the design
are the minimum or further simplification is possible. If the complexity is defined as the number of logic
gates used, then the problem reduces to minimizing the logic function mathematically. However, if
complexity is defined as the number of ICs used in the circuit (the amount of real estate occupied by
the circuit), additional approaches have to be considered, namely using the same type of gate, as much

FIGURE 23.8 Depletion-enhancement type MOSFET.
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FIGURE 23.9 AND gate, symbol, and behavior.

FIGURE 23.10 OR gate, symbol, and behavior.

FIGURE 23.11 NOT gate or an inverter, symbol, and behavior.

FIGURE 23.12 NAND gate, symbol, and behavior.
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23-8 Mechatronic System Control, Logic, and Data Acquisition

as possible, although it may not be minimal in terms of number of gates. This will be preferred
over using less different types of gates necessitating use of more ICs, in which some of the gates are
unused. 

23.4.1 Minimization

A method for minimizing Boolean functions is the Karnaugh map (K-map). From a physical description
of the problem, logic statements are written as shown in Equation 23.1 for the tabletop robot problem.
A truth table is generated showing the relationship between inputs and outputs. Let us take a truth table
for a three-variable design, shown in Figure 23.15.

The logical function can be written as

(23.2)

An implementation of the function without any further consideration will require four 3-input AND
gates, one 4-input OR gate, and three inverters. If we assume that both complemented and uncomple-
mented forms of the signal for each variable are available, we still end up with a complex two-level circuit

FIGURE 23.13 NOR gate, symbol, and behavior.

FIGURE 23.14 XOR gate, symbol, and behavior.
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for what needs to be accomplished. Applying Karnaugh mapping, we can attempt to minimize the Boolean
function and hence simplify the type and number of logic gates needed for circuit implementation.

The Karnaugh map is derived from the truth table shown in Figure 23.15. The two variables AB are
grouped for column designations and the third variable provides the row designation. The values are
arranged in such a way that adjacent columns or rows differ by only 1 bit. 

Figure 23.16 essentially represents the logic described in the truth table in Figure 23.15. Because
adjacent blocks in a K-map differ by 1 bit, the bit that changes is insignificant in a grouping of adjacent
ones. In order to obtain the minimized function, adjacent ones on a K-map are identified by covering
each one on the map at least once in a row or a column grouping, observing that in each case one variable
is insignificant with respect to the value of X, the output. That variable is eliminated and the process is
continued until all the groupings are evaluated. Finally, the reduced set of product terms is combined
with an OR function to give the minimized function.

FIGURE 23.15 Truth table for a logic circuit design and minimization.

FIGURE 23.16 Karnaugh map for the logic design problem with three inputs and one output.
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Figure 23.16 shows three sets of adjacent ones in rows and columns identified by circles around them
and the following observations can be made:

Group 1. Only variable B changes states. Hence, it can be eliminated and the minimized form for the
grouping is .

Group 2. Only variable A changes states. Hence, it can be eliminated and the minimized form of the
grouping is .

Group 3. Only variable C changes states. Hence, it can be eliminated and the minimized form of the
grouping is .

Hence, the minimized form for the logic function is

This can be implemented with one 2-input AND gate IC and one 3-input OR gate. A K-map is helpful
in minimizing up to six variables.

23.4.2 Dynamic Characteristics

Having studied the logic function and obtaining a minimum, we can build the logic circuit. However, in
order to ensure that the circuit will work as intended over the entire operating range, dynamic characteristics
of logic circuits must be considered. It was stated earlier that the input signal can change rapidly in a system
and the logic circuit should perform as intended at frequencies at which the system is expected to operate.

The correct functioning of the logic circuit when the inputs are changing rapidly is an important
consideration in design. In our discussion thus far, we have assumed that the logic signal is an ideal
square wave and that the logic gates function without any delay. Let us examine the effects of relaxing
these two assumptions to obtain some insight into the dynamic behavior of logic circuits. 

A real pulse is shown in Figure 23.17 [2]. The rise time is denoted by tr and fall time by tf . The pulse
further shows a settling time, overshoot, and undershoot when changing states. The signal amplitude is
specified as the difference between the two stable signal levels for high (VH) and low (VL), that is, from
100% to 0%, and tw is the pulse width of the signal measured at 50% of the amplitude. tTHL, tTLH are the
transition times for the output signal to go from high to low and low to high, respectively. tPHL and tPLH

are propagation delay times for high to low and low to high transitions, respectively. For medium speed
operation, tPHL, and tPLH are typically about 30 ns.

When an input to a logic gate changes states, the output lags behind by a characteristic time delay called
the propagation delay, measured by the time difference between the input at 50% of the amplitude and
the output at 50% of the amplitude. A simplified model of a real pulse for an inverter is shown in

FIGURE 23.17 A real pulse and definition of characteristic parameters [2].
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Figure 23.18 [3]. Values for the propagation, typically expressed in nanoseconds, are available in the
datasheet for a device. 

For a logic circuit, a propagation delay analysis is carried out by mapping out the total delay from
input to output as the inputs change states, and identifying any static problems (frequency independent)
and dynamic problems. Additional gates may be added to the circuit of the problem. 

23.4.3 Other Design Considerations

The number of logic gates that a given gate can drive is called fan-out and the number of gates that can
be connected to the input of a given gate is called fan-in. These data are given in the data sheet and
should be adhered to. Further, minimizing the number of ICs needed in a logic circuit is an important
consideration that might require modifying the design to use the same kind of gate although more
numbers may be used than the minimum circuit identified with K-map analysis. Use of the same type
of gates for compatibility between ICs is another design consideration in logic circuits.

23.5 Logic Gate Technologies

The first of the logic families that became commercially available was the resistor–transistor logic (RTL),
where the transistor is used as a high-speed switch in circuits. Diode–transistor logic (DTL) and transistor–
transistor logic (TTL) followed in the evolution. While the RTL and the DTL are obsolete, the TTL gates
are still widely used. There are several variations of TTL logic, namely, the high-speed (H), low-power (L),
Shottkey (S), and low-power Shottkey (LS). CMOS logic gates are an entirely different implementation
of logic gates based on the complimentary metal-oxide semiconductor devices (CMOS) technology. These
devices have low-power requirements and improved noise characteristics. These devices are extremely
static sensitive and are easily damaged. A mixture of CMOS and bipolar processes resulted in the BiCMOS
technology, using internal CMOS components and high-power bipolar outputs. Several different families
evolved from the original BiCMOS processes [1]. 

23.5.1 Resistor–Transistor Logic

Figure 23.19a shows an resistor–transistor (RTL) inverter and Figure 23.19b shows a NAND gate. The
transistor is assumed to operate in the saturation mode. Because of the nature of a transistor, there is a
minimum voltage drop across the collector–emitter junction at saturation and there is a minimum current
required in the base–emitter loop to saturate the transistor. In Figure 23.19a, the output voltage is between
0.3 and 5.0 V. The NAND gate shown has an output of 0.6 V for logic LOW as the collector–emitter drop
for the two transistors in series has to be added up. If we add an additional transistor to add an input,
we have additional power dissipation and the output voltage is at 0.9 V for a logic LOW causing problems

FIGURE 23.18 Propagation delay definition.
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with the logic devices that it is driving. The logic function operation becomes unreliable as output can
get into the forbidden region. Further, the presence of resistors in the base–emitter loop tends to slow the
device. Because of these limiting characteristics, RTL gates are obsolete.

23.5.2 Diode–Transistor Logic

Diodes themselves can be used to build logic gates for simple applications as shown in Figure 23.20. The
diode drops the voltage by 0.7 V across the pn-junction when conducting, resulting in 0.7 V for a LOW
and 4.3 V for a HIGH at the output. It is readily seen that the cascading of several of these circuits will
push the circuit into the forbidden region, resulting in erroneous logic. Moreover, the diode resistor logic
cannot implement an inverter (NOT) function, and it is not practical to produce high density ICs with
diodes and resistors. Because of these shortcomings, the diode-resistor logic gate is obsolete. 

A diode–transiistor logic (DTL) gate is shown in Figure 23.21. Here, the diodes are used for the OR
function and the transistor is used for the NOT function to give a NOR gate. Still the presence of the
resistor at the base of the transistor causes power dissipation and reduces the speed of operation. Figure
23.22 shows an improved diode–transistor design that eliminates the bias resistor, thereby improving the
speed of operation. DTL devices are obsolete owing to the same limitations discussed earlier.

23.5.3 Transistor–Transistor Logic

In Figure 23.22, it can be observed that the diodes at the input are forward biased while the diode at
the base of the transistor is reverse biased when any input is LOW. On the other hand, when all inputs
are HIGH, the base diode is forward biased and the transistor conducts, giving the NAND function.

FIGURE 23.19 (a) Resistor–transistor NOT gate, (b) resistor–transistor NAND gate.

FIGURE 23.20 Diode–resistor logic.
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In a transistor npn, for example, the base–emitter is forward biased during conduction and collector–
base is reverse biased. If we have a transistor with multiple emitter leads, then we can use the emitter–base
junction for the input diodes. The base–collector junction is used for the base-diode in the DTL gate. The
result is a transistor–transistor logic (TTL) gate implementation of a NAND function in Figure 23.23 [4].

Here, when any of the inputs is LOW, the base–emitter loop conducts and the emitter of the first stage
transistor is at 0.2 V, giving HIGH for output at the inverter. When all the inputs are HIGH, the transistor
multiple emitters (first stage) is cutoff. Therefore, all other transistors conduct with a logic LOW at output.
The manufacturer’s data sheet for each device provides circuit diagrams, and all technical data including
maximum and minimum input values, propagation delay, rise and fall times, fan-out, fan-in limitations,
power consumption, and application suggestions. These are excellent sources of information for the designer. 

23.5.4 Emitter-Coupled Logic

Emitter-coupled logic (ECL) devices are bipolar devices in which the transistor is never saturated or
completely shut off. The result is very high speed compared to TTL or CMOS implementations. The ECL
gates are used in several applications where high speed is essential, for example, computer cache memory.
Figure 23.24 shows a NOR/OR gate [5]. VCC is connected to ground (0 V) while VEE is connected to supply
voltage, −5.2 V for better noise immunity. The transition time from one state to another is less than 1 ns,
resulting in several gigahertz operating frequency when ECL gates are used. 

Because the transistors are not fully saturated, the ECL gates output at HIGH and LOW are about
–0.75 and –1.6 V, respectively. The bias voltage is set at the base of transistor Q4, the value is the average

FIGURE 23.21 Diode–transistor logic NOR gate.

FIGURE 23.22 Improved diode–transistor NAND logic gate.
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23-14 Mechatronic System Control, Logic, and Data Acquisition

of HIGH and LOW values for the gate; in this case, the value would be –1.175 V. Next, the resistors are
selected to control the current flow and prevent transistor saturation. When the signal at A or B is HIGH
(–0.75 V), the transistors conduct. The voltage at point P becomes –1.5 V (VBE of Q2 + VA). This reduces
the difference between Vbb and the voltage at point P below the threshold for transistor Q3 to conduct
and hence it is off, raising the voltage at point R to 0 V. This turns transistor Q6 on. With a VBE threshold
of 0.75 V, the measured OR output is –0.75 V, a logic HIGH. The value of resistance RC and RE are chosen
so that the voltage at point Q is −0.85 V when transistor Q1 or Q2 is conducting. It is true when B is
HIGH and A is LOW or when A and B are both HIGH. When both A and B are LOW, the transistors Q1

and Q2 are off and Q3 conducts lowering the voltage at point P to –1.925 V. Voltage at point R is –0.85 V
resulting in an OR output of  –1.6 V at the OR output and −0.75 V at the NOR output.

Because of the constant operation of the transistors in the active region, there is continuous current
draw and hence heat dissipation. The ECL devices draw four to five times the power of a comparable
TTL device. Hence, this is used cautiously as front-end devices where speed is essential, while using
HCMOS or TTL gates elsewhere. In order to mix ECL gates with TTL or CMOS devices, special level
shifters are used, for example, National Semiconductor’s 100325 Low Power ECL-to-TTL Translator. This
device converts an ECL input (−0.75 (H) and –1.6 (L)) to a TTL output (2.4 V min for HIGH and 0.5 V
max. for LOW), while maintaining a rise or fall time of less than 1 ns.

FIGURE 23.23 Transistor–transistor logic implementation of a NAND gate [4].

FIGURE 23.24 Emitter-coupled logic NOR/OR gate [5].
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23.5.5 CMOS Logic 

As discussed earlier, MOSFET can be used as a transistor switch without significant power dissipation.
NMOS logic gates are designed with n-MOSFETs and  PMOS logic gates are designed with p-MOSFET
transistors. As an example, an NMOS inverter is shown in Figure 23.25. Figure 23.26a shows a logic NAND
function when two n-MOSFETs are connected in series and Figure 23.26b shows a parallel arrangement of
two n-MOSFETs to give a NOR gate. The NMOS circuits shown have a pull-up resistor and a pull-down
n-MOSFET. To eliminate the resistor, the pull-up side of the circuit is replaced with p-MOSFET. The
modified NOT or inverter circuit is shown in a commercial implementation in Figure 23.27 [3]. Additional
diodes are shown for static protection of the device. This is known as a CMOS circuit since the pull-down
and pull-up parts of the circuit have complimentary MOSFET devices. When two n-MOSFETs are connected
in the pull-down side of the circuit in series, the pull-up resistor is replaced by two p-MOSFETs in parallel,
and vice versa. A CMOS implementation of the NOR gate is shown in Figure 23.28. 

An important characteristic of CMOS gates is their low-power consumption as there is practically no
current flow in both HIGH and LOW states. However, the device is slower than a bipolar transistor device.

FIGURE 23.25 An NMOS inverter.

FIGURE 23.26 (a) An NMOS NAND gate, (b) an NMOS NOR gate.
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23-16 Mechatronic System Control, Logic, and Data Acquisition

With decreasing transistor sizes due to advancements in fabrication technologies, the speed of CMOS
devices continue to increase.

23.6 Logic Gate Integrated Circuits 

A commercial logic gate ICs has several gates of the same type on it. For example, Figure 23.29 shows a
commercial quad-AND gate IC. The chip itself is powered with VCC and GND pins, A and B pins are inputs,
and the Y pins are the corresponding outputs. You can use one or all of the gates on a chip as needed.

FIGURE 23.27 A CMOS inverter [3].

FIGURE 23.28 A CMOS NOR gate.
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The designation of the chips requires some attention. Let us take the Texas Instruments designations for
an AND gate, namely, SN5408, SN54LS08, SN54S08, SN7408, SN74LS08, and SN74S08. While the desig-
nation shown on a device has much more information than what is shown here, the basic information that
we should be aware of is the function designation (00 = NAND gate, 02 = NOR, 04 = Inverter, 08 = AND,
etc.), and technology type (HC for high-speed CMOS, LS for low-power Schottky, etc.). For other notations
used in chip designations, refer to the Texas Instruments Logic Selection Guide [1].

23.7 Programmable Logic Devices (PLD)

Programmable logic devices (PLDs) are ICs with several uncommitted logic gates in them, the connec-
tions among which are programmable based on the logic circuit design that needs to be implemented.
This is especially helpful when very large circuits consisting of several thousands of logic gates have to be
built and tested. For large circuit design and testing, it is not practical to use standard logic gate ICs since
each IC has at most four or six logic gates on it, requiring large circuit boards and interconnects. The PLD
consists of several hundred logic gates on it and the device design is programmable with a special
programming hardware. When more than one PLD is used to implement a design, programmable inter-
connects are used between PLDs. One type of fully PLD, called the programmable logic array (PLA),
consists of an AND level in the middle and an OR level at output, similar to a TTL single logic gate
structure, with both layers being programmable. All input signals are connected to an inverter level, which
provides both the normal and complemented values of input variables to the AND level. Appropriate
connections are made at the AND level and at the OR level to produce the desired logic outputs. In this
device all the levels are programmable. 

A simpler version of PLD, called a programmable array logic (PAL) device, consists of a program-
mable AND layer and a fixed OR layer. This is easier and less expensive to manufacture, although it is
not as flexible as a PLA. A variety of combinations is available to suit various needs. A schematic of a
PLA is shown in Figure 23.30 [6] where the connections to be made in the hardware are marked with
an X. When programmed these connections will be made or “fused” and verified by the programming
hardware. 

23.8 Mechatronics Application Example

A driver circuit for a DC motor is a good example for the use of transistors and logic gates. The objectives
of the design are the following:

1. The motor should drive forward and reverse at different speeds.
2. The motor should either coast to a stop or brake abruptly.
3. The motor should drive at different speeds, controllable by a microprocessor. 

FIGURE 23.29  A DIP package of quad-AND gate IC.
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The complete logic and power circuit implementation of the solution to this design problem is shown
in Figure 23.31, which is known as the H-bridge. The motor is connected between the output pins (out1
and out2) [7]. The EN (enable) and IN1 (input 1) and IN2 (input 2) are the inputs. The behavior of the
system is given by the adjacent table in Figure 23.31. When the enable signal is LOW, regardless of the
input states, all the AND gates are LOW, and the power transistors are all off and the motor is off. If the
motor is moving when the enable line switches to LOW, the motor coasts to a stop. When the enable
input is HIGH, it can be seen that when IN1 is high and IN2 is LOW, transistors 1 and 4 are on, and 2
and 3 are off. This drives the motor one way as the current can flow through the motor to the ground
through the two diagonal transistors. Since transistors 2 and 3 are off, short circuit from power to ground
is prevented. This is designed by inputting the complements of IN1 and IN2 to the AND gates driving
transistors 3 and 4, respectively. When IN2 is HIGH and IN1 is LOW, the motor runs in the opposite
direction (while the enable is HIGH). Since transistors 2 and 4 are closed and 1 and 3 are open, current
flows in the opposite direction through the motor.

When enable is HIGH, and the inputs IN1 and IN2 are either turned HIGH or LOW at the same time
while the motor is moving, then the motor terminals are forced to VCC or ground. However, the motor
power is off since IN1 and IN2 are LOW. Now, the motor is a generator trying to maintain a potential
difference across its terminal as the rotor moves in a magnetic field. The emf generated is forced to the
source or sink potential. This brings the motor to a rapid stop, identified as the fast stop or the braking
function. Further, the IN1 and IN2 lines can be used for direction and braking functions, while the enable
can be pulsed at different duty cycle levels (pulse width modulation) to achieve different speeds. Since
the motor is free running when enable is LOW regardless of input, as EN is switched rapidly, the inertia
of the rotor helps smooth out the motion. The selection of pulse repetition time (PRT) and arrangement
of pulses within the PRT in a uniform fashion to produce desired PWM signals should be done to fine-
tune the performance of this system. 

FIGURE 23.30 Programmable logic array [6].
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FIGURE 23.31 H-bridge motor driver circuit [7].

INPUTS FUNCTION
FORWARD
REVERSE
FAST MOTOR STOP
FREE RUNNING MOTOR STOP

SENSE A

Out1 Out2

M

D1

D3

D2

D4

2 3 4

2

4

1

3
5

7

6

9

1 8

100nF

EnA

In2

In1

In1=H =L

=X =X

=L
=

=H
In2

In1ENA=H In2

In1 In2

In1 In2

+Vs

RsA

ENA=L

9260_23.fm  Page 19  Friday, October 5, 2007  11:03 AM



9260_23.fm  Page 20  Friday, October 5, 2007  11:03 AM



24-1

24
Architecture

24.1 Types of Microprocessors .......................................... 24-1
24.2 Major Components of a Microprocessor ................. 24-2

Central Processor • Memory Subsystem • Input/Output
Subsystem • System Interconnect

24.3 Performance Enhancing Hardware Techniques ....... 24-11
Pipelining • Branch Handling • Dynamic Instruction
Execution

24.4 Instruction Set Architecture ...................................... 24-15
Word Size • Instruction Encoding • Architecture Style

24.5 Instruction Level Parallelism ..................................... 24-17
Predicated Execution • Speculative Execution

24.6 Industry Trends .......................................................... 24-20
Computer Microprocessor Trends • Embedded
Microprocessor Trends • Microprocessor Market Trends

References .............................................................................. 24-22

The microprocessor industry is divided into the computer and embedded sectors. Both computer and
embedded microprocessors share aspects of computer system design, instruction set architecture, organ-
ization, and hardware. The term architecture is used to describe these fundamental aspects, and more
directly refers to the hardware components in a computer system and the flow of data and control
information among them. In this section, various types of microprocessors will be described, funda-
mental architecture mechanisms relevant in the operation of all microprocessors will be presented, and
microprocessor industry trends discussed.

24.1 Types of Microprocessors

Computer microprocessors are designed for use as the central processing units (CPU) of computer systems
such as personal computers, workstations, servers, and supercomputers. Although microprocessors started
as humble programmable controllers in the early 1970s, virtually all computer systems built after 1990
use microprocessors as their central processing units. The dominating architecture in the computer
microprocessor domain today is the Intel 32-bit Architecture, also known as IA-32 or X86. Other high
profile architectures in the computer microprocessor domain include Intel Itanium Processor Family
(IPF), HP PA-RISC, SUN Microsystems SPARC, and IBM/Motorola PowerPC. 

Embedded microprocessors are increasingly used in consumer and telecommunications products
to satisfy the demands for quality and functionality. Major product areas that require embedded
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24-2 Mechatronic System Control, Logic, and Data Acquisition

microprocessors include digital TV, DVD players, digital camera, network switches, high speed
modems, digital cellular phones, video games, laser printers, and automobiles. Future improvements
in energy consumption, fabrication cost, and performance will further enable new applications such
as intelligent hearing aid. Many experts expect that embedded microprocessors will form the fastest
growing sector of the semiconductor business in the next decade [1].

Embedded microprocessors have been categorized into DSP processors and Embedded CPUs owing
to historic reasons. DSP processors have been designed and marketed as special purpose devices that are
mostly programmed by hand to perform digital signal processing computations. A recent trend in the
DSP market is to use compilers to alleviate the need for tedious hand coding in DSP development. Leading
DSP microprocessor vendors include Texas Instruments, Lucent Technologies, Motorola, and ST. 

Embedded CPUs are often used to execute operating system, networking, and user interface code in
a consumer and telecommunications products. They have been traditionally derived from out-of-date
computer microprocessors. Embedded CPUs often reuse the compiler and related software support
developed for their computer cousins. Recycling the microprocessor design and compiler software min-
imizes engineering cost. Major vendors of embedded CPUs include IBM, Motorola, ARM, and MIPS.

An important recent trend in the embedded microprocessor market is toward integrating an embedded
CPU, a DSP processor, and application-specific logic to form a single-chip solution. This approach is
enabled by the ever-increasing transistor density achieved by the semiconductor fabrication technology.
The major benefit is reduced system cost and energy consumption. In these designs, embedded CPU
and DSP processor vendors no longer market microprocessor chips. Rather, they make their designs
available for licensing by solution developers such as a cell phone vendor. The embedded CPU and the
DSP processors thus incorporated into these single-chip solutions are called embedded CPU cores and
DSP processor cores. For example, MIPS customized its embedded CPU core for use in Nitendo64. IBM,
ARM, ST, NEC, and Hitachi offer similar products and services. Because of an increasing need to perform
DSP computation in consumer and telecommunication products, an increasing number of embedded
CPUs have extensions to enable more effective DSP computation.

There are several ways in which the needs of embedded computing differ from those of more traditional
general-purpose computing systems. Constraints on the code size, weight, and power consumption place
stringent requirements on embedded microprocessors and the software they execute. Also, constraints
rooted in real-time requirements are often a significant consideration in many embedded systems.
Furthermore, cost is a severe constraint in designing and manufacturing embedded processors. 

In spite of the different constraints and product markets, both computer and embedded microproces-
sors share many main elements in their design. These main elements will be described. Additionally, over
the past decade, substantial research has gone into the design of microprocessors embodying parallelism
at the instruction level, as well as aggressive compiler optimization and analysis techniques for harnessing
this opportunity. Exploitation of parallelism is a very effective approach to reducing the power consump-
tion under given performance requirements. Much of this effort has since been validated through the
proliferation of high-performance general purpose microprocessors, such as the Intel Itanium II processor,
on the basis of these technologies. Nevertheless, growing demand for high performance in embedded
computing systems is creating new opportunities to leverage these techniques in application-specific
domains. The research of instruction-level parallelism (ILP) has developed distinct architecture method-
ologies referred to as very long instruction word (VLIW) and explicitly parallel instruction computing
(EPIC) technology. Overall, these techniques represent fundamental, substantial changes in computer
architecture.

24.2 Major Components of a Microprocessor

The main hardware of a microprocessor system can be divided into sections according to their func-
tionalities. A popular approach is to divide a system into four subsystems: the central processor, the
memory subsystem, the input/output (I/O) subsystem, and the system interconnect. Figure 24.1 shows
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the connection between these subsystems. The main components and characteristics of these subsystems
will be described.

24.2.1 Central Processor

A modern microprocessor system’s central processor is typically further divided into control unit and
data path.

24.2.1.1 Control Unit

The control unit of a microprocessor generates the control signals to orchestrate the activities in the data
path. There are two major types of communication lines between the control unit and the data path: the
control lines and the condition lines. The control lines deliver the control signals from the control unit
to the data path. Different signal values on these lines trigger different actions in the data path. The
condition lines carry the status of the execution from data path to the control unit. These lines are needed
to test conditions involving the registers in the data path in order to make future control decisions. Note
that the decision is made in the control unit but the registers are in the data path. Therefore, the conditions
regarding the register contents are formed in the data path and then communicated to the control unit
for decision making. A control unit can be implemented with hardwiring, microprogramming, or a
combination of both.

A hardwired control unit is designed as a finite state machine that is realized with registers, combina-
tional logic, and wires. Once constructed, the design can be changed only through physically rewiring the
unit. Therefore, the resulting circuits are called hardwired control units. Design optimizations are typically
performed on the combinational logic to minimize component count and maximize operation speed,
which makes the resulting circuits exhibit little structure. The lack of structure makes it very difficult to
design and debug complicated control units with this technique. Therefore, hardwiring is normally used
when the control unit is relatively simple.

Most of the design difficulties in the hardwired control units are due to the effort of optimizing the
combinational logic. One popular alternative to hardwired control unit design is to use either read only
memory (ROM) or random access memory (RAM) to implement the combinational logic. A control
unit whose combinational logic is realized by the use of ROM or RAM is called a microprogrammed
control unit. The memory used is called control memory (CM). The practice of realizing the combinational
circuit in a control unit with ROM/RAM is called microprogramming. The concept of microprogramming
was first introduced by Maurice V. Wilkes.

The idea of using a memory to implement a combinational circuit can be illustrated with a simple
example. Assume that we are to implement a logic function with three input variables, as described in the

FIGURE 24.1 Subsystems of a computer system.
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truth table illustrated in Figure 24.2a. A common way to realize this function is to use Karnaugh maps to
derive highly optimized logic and wiring. The result is shown in Figure 24.2b. The same function can also
be realized using a memory with eight 1-bit locations to retain the eight possible combinations of the
three input variables. Location i contains an F value corresponding to the ith input combination. For
example, location 3 contains the F value (0) for the input combination 011. The three input variables are
then connected to the address input of the memory to complete the design (Figure 24.2c). In essence, the
memory contains the entire truth table. Considering the decoding logic and storage cells involved in a 8x1
memory, it is obvious that the memory approach uses a lot more hardware components than the Karnaugh
map approach. However, the design is much simpler in the memory approach. 

Figure 24.3 illustrates the general model of a microprogrammed control unit. Each control memory
location consists of an address field and some control fields. The address field plus the next address logic
implements the combinational logic for generating the next state value. The control fields implement the
combinational logic for generating the control signals. The state register/counter is referred to as control
memory address register (CMAR) for an obvious reason: the contents of the register are used as the address
input to the control memory. An important insight is that the CMAR stores the state of the control unit.

In modern microprocessor designs, hardwiring and microprogramming are often used in conjunction
with each other. In such a design, hardwiring is used to handle common, simpler cases of instruction
execution whereas microprogramming is used to handle complex cases such as string move instructions
in the IA-32 microprocessors.

24.2.1.2 Data Path

The data path of a microprocessor contains the main arithmetic and logic execution units required to
execute instructions. Designing the data path involves analyzing the function(s) to be performed, then

FIGURE 24.2 Using memory to simplify combinational logic design (a) truth table, (b) Karaugh map approach,
and (c) memory approach.

FIGURE 24.3 Basic model of microprogrammed control units.
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specifying a set of hardware registers to hold the computation state, and designing computation steps to
transform the contents of these registers into the final result. In general, the functions to be performed
are divided into steps, each of which can be done with a reasonable amount of logic in one clock cycle.
Each step brings the contents of the registers closer to the final result. The data path must be equipped
with sufficient amount of hardware to allow these computation steps in one clock cycle. The data path
of a typical microprocessor contains integer and floating-point register files, ten ormore functional units
for computation and memory access, and pipeline registers. The concept of pipelining and pipeline
registers will be introduced later in this chapter.

24.2.2 Memory Subsystem

The memory system serves as a repository of information in a microprocessor system. The processing
unit retrieves information stored in memory, operates on the information, and returns new information
back to memory. The memory system is constructed from basic semiconductor DRAM units called
modules or banks.

There are several properties of memory, including speed, capacity, and cost that play an important
role in the overall system performance. The speed of a memory system is the key performance parameter
in the design of the microprocessor system. The latency (L) of the memory is defined as the time delay
from when the processor first requests data from memory until the processor receives the data. Bandwidth
is defined as the rate at which information can be transferred to and from the memory system. Memory
bandwidth and latency are related to the number of outstanding requests (R) that the memory system
can service:

 (24.1)

Bandwidth plays an important role in keeping the processor busy with work. However, technology
tradeoffs to optimize latency and improve bandwidth often conflict with the need to increase the capacity
and reduce the cost of the memory system.

24.2.2.1 Cache Memory

Cache memory, or simply cache, is a fast memory constructed using semiconductor SRAM. In modern
computer systems, there is usually a hierarchy of cache memories. The top level (Level-1 or L1) cache is
closest to the processor and the lowest level is closest to the main memory. Each lower level cache is
about 3–5 times slower than its predecessor level. The purpose of a cache hierarchy is to satisfy most of
the processor memory accesses in one or a small number of clock cycles. The L1 cache is often split into
an instruction cache and a data cache to allow the processor to perform simultaneous accesses for
instructions and data. Cache memories were first used in the IBM mainframe computers in the 1960s.
Since 1985, cache memories have become a standard feature for virtually all microprocessors.

Cache memories exploit the principle of locality of reference. This principle dictates that some memory
locations are referenced more frequently than others on the basis of two program properties. Spatial
locality is the property that an access to a memory location increases the probability that the nearby
memory location will also be accessed. Spatial locality is predominantly based on sequential access to
program code and structured data. In order to exploit spatial locality, memory data are placed into cache
inmultiple-word units called cache lines. Temporal locality is the property that access to amemory location
greatly increases the probability that the same location will be accessed in the near future. Together, the
two properties assure that most memory references will be satisfied by the cache memory.

Set associativity refers to the flexibility in placing a memory data into a cache memory. If a cache
design allows each memory data to be placed into any of N cache locations, it is referred to as an N-way
set-associative cache. A 1-way set-associative cache is also called a direct-mapped cache, as is shown in
Figure 24.4a. A 2-way set-associative cache, as shown in Figure 24.4b, allows a memory data to reside in
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one of two locations in the cache. Finally, an extreme design called fully associative cache allows amemory
data to be placed anywhere in the cache.

Cache misses occur when the data requested does not reside in any of the possible cache locations.
Misses in caches can be classified into three categories: conflict, compulsory, and capacity. Conflict misses
are misses that would not occur for fully associative caches with least recently used (LRU) replacement.
Compulsory misses are misses required in cache memories for initially referencing a memory location.
Capacity misses occur when the cache size is not sufficient to keep data in the cache between references.
Complete cache miss definitions are provided in Reference 2.

The latency in cache memories is not fixed and depends on the delay and frequency of cache misses.
A performance metric that accounts for the penalty of cache misses is effective latency. Effective latency
depends on the two possible latencies: hit latency (LHIT), the latency experienced for accessing data
residing in the cache; and miss latency (LMISS), the latency experienced when accessing data not residing
in the cache. Effective latency also depends on the hit rate (H), the percentage ofmemory accesses that
are hits in the cache, and miss rate (M or 1 - H), the percentage of memory accesses that miss in the
cache. Effective latency in a cache system is calculated as

Leffective � LHIT × H + LMISS × (1 � H) (24.2)

In addition to the base cache design and size issues, there are several other dimensions of cache design
that affect the overall cache performance and miss rate in a system. The main memory update method
dictates when the main memory will be updated by store operations. In a write-through cache, each write
is immediately reflected to the main memory. In a write-back cache, the writes are reflected to main
memory only when the respective cached data is purged from cache to make room for other memory
data. Cache allocation designates whether cache locations are allocated on writes and/or reads. Finally,
cache replacement algorithms for associative structures can be designed in various ways to extract
additional cache performance. These include LRU, least frequently used (LFU), random, and first in, first
out (FIFO). These cache management strategies attempt to exploit the properties of locality. Traditionally,
when caches service misses they would block all new requests. However, nonblocking cache can be designed
to service multiple miss requests simultaneously, thus alleviating delay in accessing memory data.

In addition to the multiple levels of cache hierarchy, additional memory buffers can be used to improve
cache performance. Two such buffers are a streaming/prefetch buffer and a victim cache [3]. Figure 24.5
illustrates the relation of the streaming buffer and victim cache to the primary cache of a memory system.
A streaming buffer is used as a prefetching mechanism for cache misses. When a cache miss occurs, the
streaming buffer begins prefetching successive lines starting at the miss target. A victim cache is typically

FIGURE 24.4 Cache memory (a) direct mapped design and (b) two-way set associative design.
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a small fully associative cache loaded only with cache lines that are removed from the primary cache. In
the case of a miss in the primary cache, the victim cache may hold the missed data. The use of a victim
cache can improve performance by reducing the number of conflict misses. Figure 24.5 illustrates how
cache accesses are processed through the streaming buffer into the primary cache on cache requests and
from the primary cache through the victim cache to the secondary level of memory on cache misses. 

Overall, cache memory is constructed to hold the most important portions of memory. Techniques
using either hardware or software can be used to select which portions of main memory to store in cache.
However, cache performance is strongly influenced by program behavior and numerous hardware design
alternatives.

24.2.2.2 Virtual Memory

Cache memory illustrated the principle that the memory address of data can be separate froma particular
storage location. Similar address abstractions exist in the two-level memory hierarchy of main memory
and disk storage. An address generated by a program is called a virtual address, which needs to be translated
into a physical address or location in main memory. Virtual memory management is a mechanism that
provides the programmers with a simple, uniform method to access both main and secondary memories.
With virtual memory management, the programmers are given a virtual space to hold all the instructions
and data. The virtual space is organized as a linear array of locations. Each location has an address for
convenient access. Instructions and data have to be stored somewhere in the real system; these virtual
space locations must correspond to some physical locations in the main and secondary memory. Virtual
memory management assigns (or maps) the virtual space locations into the main and secondary memory
locations. The mapping of virtual space locations to the main and secondary memory is managed by the
virtual memory management mechanism. The programmers are not concerned with the mapping. 

The most popular memory management scheme today is demand paging virtual memory management,
where each virtual space is divided into pages indexed by the page number (PN). Each page consists of
several consecutive locations in the virtual space indexed by the page index (PI). The number of locations
in each page is an important system design parameter called page size. Page size is usually defined as a
power of two so that the virtual space can be divided into an integer number of pages. Pages are the basic
units of virtual memory management. If any location in a page is assigned to the main memory, the
other locations in that page are also assigned to main memory. This reduces the size of the mapping
information.

The part of the secondary memory to accommodate pages of the virtual space is called the swap space.
Both the main memory and the swap space are divided into page frames. Each page frame can host a
page of the virtual space. The mapping record in the virtual memory management keeps track of the
association between pages and page frames. 

FIGURE 24.5 Advanced cache memory system.
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When a virtual space location is requested, the virtual memory management looks up the mapping
record. If the mapping record shows that the page containing requested virtual space location is in main
memory, the management performs the access without any further complication. Otherwise a secondary
memory access has to be performed. Accessing the secondary memory is a complicated task and is usually
performed as an operating system service.When a page is mapped into the secondary memory, the virtual
memory management has to request a service in the operating system to transfer the requested page into
the main memory, update its mapping record, and then perform the access. The operating system service
thus performed is called the page fault handler.

The core process of virtual memory management is a memory access algorithm. A one-level memory
access algorithm is illustrated in Figure 24.6. At the start of the memory access, the algorithm receives a
virtual address in a memory address register (MAR), looks up the mapping record, requests an operating
system service to transfer the required page if necessary, and performs the main memory access. The
mapping is recorded in a data structure called the page table located in main memory at a designated
location marked by the page table base register (PTBR).

Each page is mapped by a page table entry (PTE) that occupies a fixed number of bytes in the page
table. Thus, one can easily multiply the page number by the size of each PTE to form a byte index into
the page table. The byte index of the PTE is then added to the PTBR to form the physical address (PAPTE)
of the required PTE. Each PTE includes two fields: a hit/miss bit and a page frame number. If the hit/miss
(H/M) bit is set (hit), the corresponding page is in main memory. In this case, the page frame hosting
the requested page is pointed to by the page frame number (PFN). The final physical address (PAD)
of the requested data is then formed by concatenating the PFN and PI. The data is returned and placed
in the memory buffer register (MBR) and the processor is informed of the completed memory access.
Otherwise (miss), a secondary memory access has to be performed. In this case, the page frame number
should be ignored. The fault handler has to be invoked to access the secondary memory. The hardware
component that performs the address translation part of the memory access algorithm is called the
memory management unit (MMU).

The complexity of the algorithm depends on the mapping structure. A very simple mapping structure
is used in this section to focus on the basic principles of the memory access algorithms. However, more
complex two-level schemes are often used when the page table becomes a large portion of the main
memory. There are also requirements for such designs in a multiprogramming system, where there are

FIGURE 24.6 A simple virtual memory access algorithm.
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multiple processes active at the same time. Each processor has its own virtual space and therefore its own
page table. As a result, these systems need to keep multiple page tables at the same time. It usually takes
too much main memory to accommodate all the active page tables. Again, the natural solution to this
problem is to provide additional levels of mapping where a second-level page table is used to map the
main page table. In such designs, only the second-level page table is stored in a reserved region of main
memory, while the first page table is mapped just like the code and data between the secondary storage
and the main memory.

24.2.2.3 Translation Lookaside Buffer

Hardware support for virtual memory management generally includes a translation lookaside buffer
(TLB) to accelerate the translation of virtual addresses into physical addresses. A TLB is a cache structure
that contains the frequently used page table entries for address translation.With a TLB, address translation
can be performed in a single clock cycle when TLB contains the required page table entries (TLB hit).
The full address translation algorithm is performed only when the required page table entries are missing
from the TLB (TLB miss).

Complexities arise when a system includes both virtual memory management and cache memory. The
major issue is whether address translation is done before accessing the cache memory. In virtual cache
systems, the virtual address directly accesses cache. In a physical cache system, the virtual address is
translated into a physical address before cache access. Figure 24.7 illustrates the both the virtual and
physical cache approaches.

A physical cache system typically overlaps the cache memory access and the access to the TLB. The
overlap is possible when the virtual memory page size is larger than the cache capacity divided by the
degree of cache associativity. Essentially, since the virtual page index is the same as the physical address
index, no translation for the lower indexes of the virtual address is necessary. These lower index bits can
be used to access the cache storage while the PN bits go through the TLB. The PFN bits that come out
of the TLB are compared with the tag bits of the cache storage output, as shown in Figure 24.6, to
determine the hit/miss status of cache memory access. Thus, the cache storage can be accessed in parallel
with the TLB.

FIGURE 24.7 Translation lookaside buffer (TLB) architectures (a) virtual cache and (b) physical cache.
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Virtual caches have their pros and cons. Typically, with no TLB logic between the processor and the
cache, access to cache can be achieved at lower cost in virtual cache systems. This is particularly true in
multiaccess-per-cycle cache systems where a multiported TLB is needed for a physical cache design.
However, the virtual cache alternative introduces virtual memory consistency problems. The same virtual
address from two different processes mean different physical memory locations. Solutions to this form
of aliasing are to attach process identifier to the virtual address or to flush cache contents on context
switches. Another potential alias problem is that different virtual addresses of the same process may be
mapped into the same physical address. In general, there is no easy solution to this second form of
aliasing; typical solutions involve reverse translation of physical addresses to virtual addresses.

Physical cache designs are not always limited by the delay of the TLB and cache access. In general,
there are two solutions to allow large physical cache design. The first solution, employed by companies
with past commitments to page size, is to increase the set associativity of cache. This allows the lower
index portion of the address to be used immediately by the cache in parallel with virtual address
translation. However, large set associativity is very difficult to implement in a cost-effective manner. The
second solution, employed by companies without past commitment, is to use a larger page size. The
cache can be accessed in parallel with the TLB access similar to the other solution. In this solution there
are fewer address bits that are translated through the TLB, potentially reducing the overall delay. With
larger page sizes, virtual caches do not have advantage over physical caches in terms of access time. With
the advance of semiconductor fabrication processes, in particular the increasing levels of metals, it has
become increasingly inexpensive to have highly set-associative caches and multiported TLB. As a result,
physical caches have become much more favored solutions today.

24.2.3 Input/Output Subsystem

The input/output (I/O) subsystem transfers data between the internal components (CPU and main
memory) and the external devices (disks, networks, printers, keyboards, pointing devices, and scanners). 

24.2.3.1 Peripheral Controllers

The CPU usually controls the I/O subsystem by reading from and writing into the I/O (control) registers.
There are two popular approaches for allowing the CPU to access these I/O registers: I/O instructions and
memory-mapped I/O. In an I/O instruction approach, special instructions are added to the instruction
set to access I/O status flags, control registers, and data buffer registers. In a memory-mapped I/O approach,
the control registers, the status flags, and the data buffer registers are mapped as physical memory locations.

Due to the increasing availability of chip area and pins, microprocessors are increasingly including
peripheral controllers on chip. This trend is especially clear for embedded microprocessors.

24.2.3.2 Direct Memory Access Controller

A direct memory access (DMA) controller is a peripheral controller that can directly drive the address
lines of the system bus. The data is directly moved from the I/O data buffer registers to the main memory,
rather than from the data buffer registers to a CPU register, then from CPU register to main memory.
DMA controllers greatly increase the achieved transfer bandwidth of I/O operations and have become a
standard feature of microprocessor systems today.

24.2.4 System Interconnect

System interconnect is the facility that allows the components within a computer system to communicate
with each other. There are numerous logical organizations of these system interconnect facilities. 

Dedicated links or point-to-point connections enable dedicated communication between components.
There are different system interconnect configurations based on the connectivity of the system compo-
nents. A complete connection configuration, requiring N · (N � 1)/2 links, is created when there is one
link between every possible pair of components. A hypercube configuration assigns a unique n-tuple
{1,0} as the coordinate of each component and constructs a link between components whose coordinates
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differ only in one dimension, requiring N·log N links. A mesh connection arranges the system components
into a N-dimensional array and has connections between immediate neighbors, requiring 2 · N links. 

Switching networks are a group of switches that determine the existence of communication links among
components. A cross-bar network is considered the most general form of switching network and uses a
N × M two-dimensional array of switches to provide an arbitrary connection between N components
switching network is the multistage network that employs multiple stages of shuffle networks to provide
on one side and M components on another side using N · M switches and N + M links. Another
a permutation connection pattern between N components on each side by using N · log N switches and
N · log N links.

Shared buses are single links that connect all components to all other components and are the most
popular connection structures. The sharing of buses among the components of a system requires several
aspects of bus control. First, there is a distinction between bus masters, the units controlling bus transfers
(CPU, DMA), and bus slaves, the other units (memory, programmed I/O interface).

Bus interfacing and bus addressing are the means to connect and disconnect units on the bus. Bus
arbitration is the process of granting the bus resource to one of the masters. Arbitration typically uses a
selection scheme on the basis of some type of priority assignment. Fixed-priority arbitration gives every
master a fixed priority, and dynamic-priority arbitration such as round-robin ensures every master
become the most favorable at one point in time.

Bus timing refers to the method of communication among the system units and can be classified as
either synchronous or asynchronous. Synchronous bus timing uses a shared clock that defines the time
other bus signals change and stabilize. Clock sharing by all units allows the bus to be monitored at agreed
time intervals and action taken accordingly. However, the synchronous system bus must operate at the
speed of the slowest component. Asynchronous bus timing allows units to use different clocks, but the lack
of a shared clock makes it necessary to use extra signals to determine the validity of bus signals. The use
of these signals to determine the validity of bus signals is called hand-shaking protocols, which typically
reduce the achievable transfer bandwidth via the bus.

24.3 Performance Enhancing Hardware Techniques

24.3.1 Pipelining

In the 1970s, only supercomputers and mainframe computers were pipelined. Today, virtually all
microprocessors are pipelined. In fact, pipelining has been a major reason why microprocessors today
outperform supercomputer CPU’s built less than 10 years ago. Pipelining is a technique to coordinate
parallel processing of operations [3]. This technique has been used in assembly lines of major industries
for more than a century. The idea is to have a line of workers specializing in different pieces of work
required to finish a product. A conveying belt carries products through the line of workers. Each worker
performs a small piece of work on each product. Each product is finished after it is processed by all
the workers in the assembly line.

The obvious advantage of pipelining is to allow one worker to immediately start working on a new
product after finishing the work on a current product. The same methodology is applied to instruction
processing in microprocessors. Figure 24.8a shows an example five-stage pipeline dividing instruction
execution into fetch (F), decode (D), execute (E), memory (M), and write-back (W) operations, each
requiring various stage-specific logic. Between each stage is a stage register (SR), or pipeline register, used
to hold the instruction information necessary to control the instruction. A very basic principle of
pipelining is that the work performed by each stage must take about the same amount of time. Otherwise,
the efficiency will be significantly reduced because one stage becomes a bottleneck of the entire pipeline.
That is, the time duration of the slowest pipeline stage determines the overall clock frequency of the
processor. Because of this constraint and the often-time slower memory speeds, some of the principle
five stages are often divided into smaller stages. For instance, the memory stage may be divided into three
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stages, allowing memory accesses to be pipelined and the overall processor clock speed to be a fraction
of the memory access latency.

The time required to finish N instructions in a pipeline with K stages can be calculated. Assume a
cycle time of T for the overall instruction completion, and an equal T/K processing delay at each stage.
With a pipeline scheme, the first instruction completes the pipeline after T, and there will be a new
instruction out of the pipeline per stage delay T/K. Therefore, the delays of executing N instructions
without (1) and with (2) pipelining respectively are

(24.3)

(24.4)

There is an initial delay in the pipeline execution model before each stage has operations to execute.
The initial delay is usually called pipeline startup delay, and is equal to total execution time of one
instruction (T). The speedup of a pipelined machine relative to a nonpipelined machine is calculated as

(24.5)

When N is much larger than the number of pipe stages k, the ideal speedup approaches k. This is an
intuitive result since there are k parts of the machine working in parallel, allowing the execution to go
about k times faster in ideal conditions.

The overlap of sequential instructions in a processor pipeline is shown in Figure 24.8b. The processing
of each instruction is shown as a five-stage process that goes from left to right; each stage is marked by the
initial of its name: F(etch), D(ecode), E(xecute), M(emory), W(riteback). A new instruction is initiated in

FIGURE 24.8 Pipeline architecture (a) machine and (b) overlapping instructions.
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every clock cycle. The instruction pipeline becomes full after the pipeline delay of k � 5 cycles. Although
the pipeline configuration executes operations in each stage of the processor, two important mechanisms
are constructed to ensure correct functional operation between dependent instructions in the presence of
data hazards. Data hazards occur when instructions in the pipeline generate results that are necessary for
later instructions that are already started in the pipeline. In the pipeline configuration of Figure 24.8a,
register operands are initially retrieved during the decode stage. However, the execute and memory stage
can define register operands and contain the correct current value but are not able to update the register
file until the later write-back execution stage. Forwarding (or register bypassing) is the action of retrieving
the correct operand value for an executing instruction between the initial register file access and any pending
instruction’s register file updates. Interlocking is the action of stalling an operation in the pipeline when
conditions cause necessary register operand results to be delayed. It is necessary to stall early stages of the
machine so that the correct results are used, and the machine does not proceed with incorrect values for
source operands. The primary causes of delay in pipeline execution are initiated due to instruction fetch
delay and memory latency.

24.3.2 Branch Handling

Branch instructions pose serious problems for pipelined processors by causing hardware to fetch and
execute incorrect instructions until the branch instructions are completed. Executing incorrect instruc-
tions can result in severe performance degradation through the introduction of wasted cycles into the
execution process.

There are several methods for dealing with pipeline stalls caused by branch instructions. The simplest
performance scheme handles branches by marking branch instructions as either taken or not taken. The
compiler marks each branch by using a special branch opcode for each case. The designation allows
the pipeline to fetch subsequent instructions according to the compiler’s choice of opcode. However, the
fetched instruction may need to be discarded and the instruction fetch restarted when the branch outcome
is inconsistent with the compiler’s designation.

Delayed branching is a scheme that treats the set of sequential instructions following a branch as delay
slots. The delay-slot instructions are executed whether or not the branch instruction is taken. Limitations
on delayed branches are caused by the compiler and program characteristics being unable to identify
numerous instructions that execute independent of the branch direction. Improvements have been
introduced to provide nullifying branches, which include a predicted direction for the branch.When the
prediction is incorrect, the delay-slot instructions are nullified.

A more modern approach to reducing branch penalties uses hardware to dynamically predict the
outcome of a branch. Branch prediction strategies reduce overall branch penalties by allowing the
hardware to continue processing instructions along the predicted control path, thus eliminating wasted
cycles. Efficient execution can be maintained while branch targets are correctly predicted. However,
performance penalty is incurred when a branch is mispredicted. Branch target buffer is a cache structure
that is accessed in parallel with the instruction fetch. It records the past history of branch instructions
so that a prediction can be made while the branch is fetched again. The prediction method adapts the
branch prediction to the run-time program behavior, generating a high prediction accuracy. The target
address of each branch is also saved in the buffer so that the target instruction can be fetched immediately
if a branch is predicted taken.

Several methodologies of branch target prediction have been constructed [4]. Figure 24.9 illustrates
the relation of several general branch prediction schemes to the processor pipeline. The table in Figure
24.9a retains history information for each branch. The history includes the previous branch directions
for making predictions on future branch directions. The simplest history is last taken, which uses 1 bit
to recall whether the branch condition was taken or not taken during its most recent execution. A more
effective branch predictor, as shown in Figure 24.9b, uses a 2-bit saturating state history counter to
determine the future branch outcome. Two bits rather than one bit allow each branch to be tagged as
strongly or weakly taken or not taken. Every correct prediction reinforces the prediction, while an incorrect
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prediction weakens it. It takes two consecutive mispredictions to reverse the direction (whether taken or
not taken) of the prediction.

Recently, more complex two-level adaptive branch prediction schemes have been built, which use two
levels of branch history to make predictions [5]. An example of such predictor is shown in Figure 24.9c.
The first level is the branch outcome history of the last branches encountered. The second level is the
branch behavior for the last occurrences of a specific pattern of branch histories, commonly maintained
as 2-bit saturating counters. There are alternative ways of constructing both levels of adaptive branch
prediction schemes, the mechanisms can contain information that is either based on individual branches,
groups (set-based), or all (global). Individual information contains the branch history for each branch
instruction. Set-based information groups branch according to their instruction address, thereby forming
sets of branch history. Global information uses a global history containing all branch outcomes. The
second level containing branch behaviors can also be constructed using any of the three types. In general,
the first-level branch history pattern is used as an index into the second-level branch history.

24.3.3 Dynamic Instruction Execution

A major limitation of pipelining techniques is the use of in-order instruction execution. When an instruc-
tion in the pipeline stalls, no further instructions are allowed to proceed to ensure proper execution of
in-flight instruction. This problem is especially serious for multiple issue machines, where each stall cycle
potentially costs work of multiple instructions. However, in many cases, an instruction could execute
properly if no data dependence exists between the stalled instruction and the instruction waiting to
execute. Dynamic instruction execution, also known as out-of-order execution, is an approach that uses
hardware to rearrange the instruction execution to reduce the effect of stalls. The concept of dynamic
execution uses hardware to detect dependences in the in-order instruction stream sequence and rearrange
the instruction sequence in the presence of detected dependences and stalls.

Today, most modern superscalar microprocessors use dynamic execution to increase the number of
instructions executed per cycle. Such microprocessors use basically the same concept: all instructions
pass through an issue stage in order, are executed out of order, and are retired in order. There are several
functional elements of this common sequence that have developed into computer architecture concepts.
The first functional concept is scoreboarding. Scoreboarding is a technique for allowing instructions to
execute out of order when there are available resources and no data dependences. Scoreboarding originates
from the CDC 6600 machine’s issue logic, named the scoreboard. The overall goal of scoreboarding is
to execute every instruction as early as possible.

FIGURE 24.9 Branch prediction.
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A more aggressive approach to dynamic execution is Tomasulo’s algorithm. This scheme was employed
in the IBM 360/91 processor. Although there are many variations on this scheme, the key concept of
avoiding write-after-read (WAR) andwrite-after-write (WAW) dependences during dynamic execution
is attributed to Tomasulo. In Tomasulo’s scheme, the functionality of the scoreboarding is provided by
reservation stations. Reservation stations buffer the operands of instructions waiting to issue as soon as
they become available. The concept is to issue new instructions immediately when all source operands
become available instead of accessing such operands through the register file. As such, waiting instructions
designate the reservation station entry that will provide their input operands. This action removes WAW
dependences caused by successive writes to the same register by forcing instructions to be related by
dependences instead of by register specifiers. In general, renaming of register specifiers for pending
operands to the reservation station entries is called register renaming. Overall, Tomasulo’s scheme com-
bines scoreboarding and register renaming. Tomasulo [6] provides complete details of his scheme in the
context of a floating point unit design. Patt, et al. first described the extensions required to implement
complete modern CPU’s with the Tomasulo’s Algorithm [7].

24.4 Instruction Set Architecture

There are several elements that characterize an instruction set architecture, word size, instruction
encoding, and architecture style.

24.4.1 Word Size

Programs often differ in the size of data they prefer to manipulate. Word processing programs operate
on 8-bit or 16-bit data that correspond to characters in text documents. Many applications require
32-bit integer data to avoid frequent overflow in arithmetic calculation. Scientific computations often
require 64-bit floating point data to achieve desired accuracy. Operating systems and databases may
require 64-bit integer data to represent a very large name space with integers. As a result, the processors
are usually designed to access data of a variety of sizes from memory systems. This is a well-known
source of complexity in microprocessor design.

The endian convention specifies the numbering of bytes within a memory word. In the little endian
convention, the least significant byte in a word is numbered byte 0. The number increases as the positions
increase in significance. The DEC VAX and X86 architectures follow the little endian convention. In the
big endian convention, the most significant byte in a word is numbered 0. The number decreases as the
positions decrease in significance. The IBM 360/370, HP PA-RISC, SUN SPARC, and Motorola 680X0
architectures follow the big endian convention. The endian convention determines how the word is stored
in the address space or in a binary file. The difference usually manifests itself when users try to transfer
binary files between machines using different endian conventions.

24.4.2 Instruction Encoding

Instruction encoding plays an important role in the code density and performance of microprocessors.
Traditionally, the cost of memory capacity was the determining factor in designing either a fixed-length
or variable-length instruction set. Fixed-length instruction encoding assigns the same encoding size to
all instructions. Fixed-length encoding is generally a product of the increasing advancements in memory
capacity. 

Variable-length instruction set is the termused to describe the style of instruction encoding that uses
different instruction lengths according to addressing modes of operands. Common addressing modes
include either register or methods of indexing memory. Figure 24.10 illustrates two potential designs found
in modern use of decoding variable-length instructions. The first alternative in Figure 24.10a involves an
additional instruction decode stage in the original pipeline design. In this model, the first stage is used to
determine instruction lengths and steer the instructions to the second stage where the actual instruction
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decoding is performed. The second alternative in Figure 24.10b involves predecoding and marking instruc-
tion lengths in the instruction cache. The primary advantage of this scheme is the simplification of the
number of decode stages in the pipeline design. However, the method requires a larger instruction cache
structure for holding the resolved instruction information. Both design methodologies have been effec-
tively used in decoding X86 variable instructions [8].

24.4.3 Architecture Style

Several instruction set architecture styles have existed over the past three decades of computing. First,
complex instruction set computers (CISC) characterized designswith variable instruction formats,
numerous memory addressing modes, and large numbers of instruction types. The original CISC
philosophy was to create instruction sets that resembled high-level programming languages in an effort
to simplify compiler technology. In addition, the design constraint of small memory capacity also led
to the development of CISC. Two examples of the CISC model are the Digital Equipment Corporation
VAX and Intel X86 architecture families.

Reduced instruction set computers (RISC) gained favor with the philosophy of uniform instruction
lengths, load-store instruction sets, limited addressing modes, and reduced number of operation types.
RISC concepts allow the microarchitecture design of machines to be more easily pipelined, reducing the
processor clock cycle frequency and the overall speed of a machine. The RISC concept resulted from
improvements in compiler technology and memory size. The HP PA-RISC, Sun SPARC, IBM Power PC,
MIPS, and DEC Alpha machines are examples of RISC architectures. 

Architecture models that specify multiple operations to issue in a clock cycle are very long instruction
word (VLIW). VLIWs issue a fixed number of operations conveyed as a single long instruction and place
the responsibility of creating the parallel instruction packet on the compiler. Early VLIW processor
suffered from code expansion due to unfilled operation slots in the long instructions. Examples of VLIW
technology are the Multiflow Trace, Cydrome Cydra machines, and TI-C6X. Explicitly parallel instruction
computing (EPIC) is similar in concept to VLIW in that both use the compiler to explicitly group
instructions for parallel execution. In fact, many of the ideas for EPIC architectures come from previous
RISC and VLIW machines. In general, the EPIC concept solves the excessive code expansion and scalability
problems associated with VLIW models by providing encoding mechanisms to reduce the need to
represent unfilled operation slots in long instructions. Also, the trend of compiler-controlled architecture
mechanisms such as predicated execution and speculative execution to be described later in this section
are generally considered part of the EPIC-style architecture domain. The Intel IA-64, Philips Trimedia,
and Lucent/Motorola StarCore are examples of EPIC machines.

FIGURE 24.10 Variable-sized instruction decoding (a) staging and (b) predecoding.
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24.5 Instruction Level Parallelism

Explicitly parallel instruction computing processors are equipped with instruction set architecture
mechanisms designed to facilitate compiler’s effort to arrange for the parallel execution of many oper-
ations in each clock cycle. These mechanisms, referred to as instruction level parallelism (ILP) features,
are new instruction set architecture concepts for improving microprocessor performance.

24.5.1 Predicated Execution

Branch instructions are recognized as a major impediment to exploiting ILP. Branches force the compiler
and hardware to make frequent predictions of branch directions in an attempt to find sufficient paral-
lelism. Branch prediction strategies reduce this problem by allowing the compiler and hardware to
continue processing instructions along the predicted control path, thus eliminating these wasted cycles.
However, misprediction of these branches can result in severe performance degradation through the
introduction of wasted cycles into the instruction stream.

Predicated execution provides an effective means to eliminate branches from an instruction stream.
Predicated execution refers to the conditional execution of an instruction based on the value of a boolean
source operand, referred to as the predicate of the instruction. This architectural support allows the
compiler to use an if-conversion algorithm to convert conditional branches into predicate defining
instructions, and instructions along alternative paths of each branch into predicated instructions [9].
Predicated instructions are fetched regardless of their predicate operand value. Instructions whose pred-
icate operands are true are executed normally. Conversely, instructions whose predicate operands are
false are nullified, and thus are prevented from modifying the processor state. Predicated execution allows
the compiler to trade instruction fetch efficiency for the capability to expose ILP to the hardware along
multiple execution paths. 

Predicated execution offers the opportunity to improve branch handling in microprocessors. Elimi-
nating frequently mispredicted branches may lead to a substantial reduction in branch prediction misses.
As a result, the performance penalties associated with mispredicting these branches are removed. Elim-
inating branches also reduces the need to handle multiple branches per cycle for wide issue processors.
Finally, predicated execution provides an efficient interface for the compiler to exposemultiple execution
paths to the hardware. Without compiler support, the cost of maintaining multiple execution paths in
hardware can be prohibitive.

The essence of predicated execution is the ability to suppress the modification of the processor state
on the basis of some execution condition. There must be a way to express this condition and a way to
express when the condition should affect execution. Full predication cleanly supports this through a
combination of instruction set and microarchitecture extensions. These extensions can be classified as
support for suppression of execution and expression of condition. The result of the condition that
determines if an instruction should modify state is stored in a set of 1-bit registers. These registers are
collectively referred to as the predicate register file. The values in the predicate register file are associated
with each instruction in the extended instruction set through the use of an additional source operand.
This operand specifies which predicate register will determine whether the operation should modify
processor state. If the value in the specified predicate register is 1, or true, the instruction is executed
normally; if the value is 0, or false, the instruction is suppressed.

Predicate register values may be set using predicate define instructions, as described in the HPL Playdoh
architecture [10]. There is a predicate define instruction for each comparison opcode in the original
instruction set. The major difference with conventional comparison instructions is that these predicate
defines have up to two destination registers and that their destination registers are predicate registers.
The instruction format of a predicate define is shown below. 

pred_<cmp> Pout1<type>, Pout2<type>, src1, src2 (Pin)
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This instruction assigns values to Pout1 and Pout2 according to a comparison of src1 and src2 specified
by <cmp>. The comparison <cmp> can be: equal (eq), not equal (ne), greater than (gt), and so forth. A
predicate <type> is specified for each destination predicate. Predicate defining instructions are also
predicated, as specified by Pin . 

The predicate <type> determines the value written to the destination predicate register given the result
of the comparison and of the input predicate, Pin . For each combination of comparison result and Pin ,
one of three actions may be performed on the destination predicate. It can write 1, write 0, or leave it
unchanged. There are six predicate types that are particularly useful, the unconditional (U), OR, and
AND type predicates and their complements. Table 24.1 contains the truth table for these predicate
definition types.

Unconditional destination predicate registers are always defined, regardless of the value of Pin and the
result of the comparison. If the value of Pin is 1, the result of the comparison is placed in the predicate
register (or its compliment for

 
U). Otherwise, a 0 is written to the predicate register. Unconditional

predicates are utilized for blocks that are executed along only one path in the if-converted code region. 
The OR type predicates are useful when execution of a block can be enabled along multiple paths,

such as logical AND (&&) and OR (||) constructs in C. OR type destination predicate registers are set if
Pin is 1 and the result of the comparison is 1 (0 for OR), otherwise the destination predicate register is
unchanged. Note that OR type predicates must be explicitly initialized to 0 before they are defined and
used. However, after they are initialized, multiple OR type predicate defines may be issued simultaneously
and in any order on the same predicate register. This is true since the OR type predicate either writes a
1 or leaves the register unchanged, which allows implementation as a wired logical OR condition. AND
type predicates are analogous to the OR type predicate. AND type destination predicate registers are
cleared if Pin is 1 and the result of the comparison is 0 (1 for AND), otherwise the destination predicate
register is unchanged.

Figure 24.11 contains a simple example illustrating the concept of predicated execution. Figure 24.11a
shows a common programming if-then-else construction. The related control flow representation of that
programming code is illustrated in Figure 24.11b. Using if-conversion, the code in Figure 24.11b is then
transformed into the code shown in Figure 24.11c. The original conditional branch is translated into
pred_eq instructions. Predicate register p1 is set to indicate if the condition (A = B) is true, and p2 is set
if the condition is false. The “then” part of the if statement is predicated on p1 and the “else” part is

FIGURE 24.11 Instruction sequence (a) program code, (b) traditional execution, and (c) predicated execution.

Z = Z + 1

beq A, B

X = X + 1 Y = Y + 1

if (A == B)
X = X + 1;

Z = Z + 1

else
Y = Y + 1;

Z = Z - 1;
JUMP

Y = Y + 1
X = X + 1
p1_t,p2_f = pred_eq A, B

<p2>
<p1>

(a) (b) (c)
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predicated on p2. The pred_eq simply decides whether the addition or subtraction instruction is performed
and ensures that one of the two parts is not executed.

24.5.2 Speculative Execution

The amount of ILP available within basic blocks, defined as consecutive instruction sequences without
branching in or out, is extremely limited in most programs. As such, processors must optimize and
schedule instructions across basic block boundaries to achieve higher performance. In addition, future
processors must contend with both long latency load operations and long latency cache misses. When
load data is needed by subsequent dependent instructions, the processor execution must wait until the
cache access is complete.

In these situations, our-of-order processors dynamically perform branch prediction and reorder the
instruction stream to execute nondependent instructions. As a result, they have ability of exploiting
parallelism between instructions before and after a correctly predicted branch instruction. However, this
approach requires complex circuitry at the cost of chip die space as well as additional power consumption.
Similar performance gains can be achieved using static compile-time speculation methods without
complex, power hungry out-of-order logic. Speculative execution, a technique for executing an instruc-
tion before knowing that its execution is required, is an important technique for exploiting ILP in
programs. Speculative execution is best known for its use in hiding memory latency. A compiler can
utilize speculative code motion to achieve higher performance in several ways. First, in regions of code
where insufficient ILP exists to fully utilize the processor resources, useful instructions from other regions
may be executed. Second, instructions at the beginning of long dependence chains may be executed early
to reduce the computation’s critical path. Finally, long latency instructions may be initiated early to
overlap their execution with other useful operations. Figure 24.12 illustrates a simple example of code
before and after a speculative compile-time transformation is performed to execute a load instruction
above a conditional branch.

Figure 24.12a shows how the branch instruction and its implied control flow define a control depen-
dence that restricts the load operation from being scheduled earlier in the code. Cache miss latencies
would halt the processor unless out-of-order execution mechanisms were used. However, with speculation
support, Figure 24.12b can be used to hide the latency of the load operation.

The solution requires the load to be speculative or nonexcepting. A speculative load will not signal
exceptions such as address alignment errors or address space access violations. Essentially, the load
remains silent for these exceptions. The additional check instruction in Figure 24.12b enables these signals
to be detected when the execution does reach the original location of the load. When the other path of
branch’s execution is taken, such silent signals are meaningless and can be ignored. Using this mechanism,
the load can be placed above all existing control dependences, providing the compiler with the ability to
hide load latency. Details of compiler speculation can be found in Reference 11.

FIGURE 24.12 Instruction sequence (a) traditional execution and (b) speculative execution.

CHECK
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24.6 Industry Trends

The microprocessor industry is one of the fastest moving industry today. Healthy demands from the
market place have stimulated strong competition, which in turn resulted in great technical innovations.

24.6.1 Computer Microprocessor Trends

Recent trends of computer microprocessors include deep pipelining, high clock frequency, wide instruc-
tion issue, speculative and out-of-order execution, predicated execution, multimedia data types, large
on-chip caches, floating point capabilities, and multiprocessor support. In the area of pipelining, the
Intel Pentium 4 processor is pipelined approximated twice as deeply as its predecessor Pentium 3. The
deep pipeline has allowed the clock of Pentium 4 processor to run at a much higher clock frequency than
Pentium 3. This trend has, however, been reversed in 2005 owing to power budget limitations. The
pipeline depth of the Intel IA32 microprocessors that succeeded Pentium 4 have been reduced toward
that of Pentium 3.

In the area of wide instruction issue, the Pentium 4 processor can decode and issue up to three X86
instructions per clock cycle, compared to the two-instruction issue bandwidth of Pentium. More recently,
the Intel Itanium I and Itanium II processors can issue up to six instructions per clock cycle. Wide
instruction issue, however, requires multiported register and multiple cache access ports that can signif-
icantly increase power consumption. As a result, future microprocessors will likely maintain or reduce
the issue width compared to their recent predecessors.

Pentium 4 has dedicated a very significant amount of chip area to Branch History Table, Branch Target
Buffer, Reservation Stations, Load-store Queue, and Reorder Buffer to support speculative and out-of-
order execution. These structures together allow the Pentium 4 processor to maintain a large instruction
window within which it performs aggressive speculative and out-of-order execution. All these structures,
however, consume power in an intensive manner. As a result, the trend of larger instruction windows
has also slowed owing to power budget limitations.

One important trend of the computer microprocessors in general is the slow down of the increase in
complexity, size, and clock frequency of processor cores. Rather, the industry is moving into incorporating
multiple processor cores on the same chip. If all the cores can be productively used, such model can
achieve much higher performance than a single core given the same power and chip area budget. This,
however, places much more burden on the programmer, compiler, and operating system than traditional
single-core models.

In the area of predicated execution, Pentium 4 supports a conditional move instruction that was not
available in Pentium. This trend is furthered by the next generation IA-64 architecture where all instruc-
tions can be conditionally executed under the control of predicate registers. This ability will allow future
microprocessors to execute control-intensive programs much more efficiently than their predecessors.

In the area of data types, the multimedia instructions from Intel and AMD have become a standard
feature of all X86 microprocessors. These instructions take advantage of the fact that multimedia data
items are typically represented with a smaller number of bits (8–16 bits) than the width of an integer
data path today (32–64 bits). On the basis of an observation, the same operation is often repeated on all
data items in multimedia applications; the architects of multimedia instructions specify that each such
instruction performs the same operation on several multimedia data items packed into one register word.
Intel first proposed MMX instructions that process several integer data items simultaneously to achieve
significant speedup in targeted applications. In 1998, AMD proposed the 3DNow! instructions to address
the performance needs of 3D graphics applications. The 3DNow! instructions are designed on the basis
of the concept that 3D graphics data items are often represented in single precision floating-point format,
and they do not require the sophisticated rounding and exception handling capabilities specified in the
IEEE Standard format. Thus, one can pack two graphics floating-point data into one double-precision
floating-point register for more efficient floating-point processing of graphics applications. Note that
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MMX and 3DNow! are similar in concepts applied to integer and floating-point domains. More recently,
Intel proposed the SSE instructions to compete with AMD 3DNow!. 

In the area of large on-chip caches, the popular strategies used in computer microprocessors are either
to enlarge the first-level caches or to incorporate second-level and sometimes third-level caches on chip.
For example, the AMD K7 microprocessor has a 64 KB first-level instruction cache and a 64 KB first-
level data cache. These first-level caches are significantly larger than those found in the previous gener-
ations. For another example, the Intel Celeron microprocessor has a 128 KB second-level combined
instruction and data cache. These large caches are enabled by the increased chip density that allows much
more transistors on the chip. The Compaq Alpha 21364 microprocessor has a 64 KB first-level instruction
cache, a 64 KB first-level data cache, and a 1.5 MB second-level combined cache. The recent Intel Itanium
processors have up to 9 MB third-level combined cache on chip.

In the area of floating-point capabilities, the computer microprocessors in general have much stronger
floating-point performance than their predecessors. For example, the Intel Pentium 4 processor achieves
several times of floating-point performance improvements of the Pentium processor. For another exam-
ple, most RISC and EPIC microprocessors now have floating-point performance that rival supercomputer
CPUs built just a few years ago.

Owing to the increasing demand of multiprocessor enterprise computing servers, many computer
microprocessors now seamlessly support cache coherence protocols. For example, the AMDK7 micro-
processor provides direct support for seamless multiprocessor operation when multiple K7 micropro-
cessors are connected to a system bus. This capability was not available in its predecessor AMD K6. The
more recent AMD Opteron processors further support HyperTransport protocol to allow each processor
in a multiprocessor system to have much higher communication bandwidth than what the traditional
memory controllers can support.

24.6.2 Embedded Microprocessor Trends

There are three clear trends in embedded microprocessors. The first trend is to integrate a DSP core
with an embedded CPU/controller core. Embedded applications increasingly require DSP functional-
ities such as data encoding in disk drives and signal equalization for wireless communications. These
functionalities enhance the quality of services of their end consumer products. At the 1999 Embed-
ded Microprocessor Forum, ARM, Hitachi, and Siemens all announced products with both DSP and
embedded microprocessors [12]. 

Three approaches exist in the integration of DSP and embedded CPUs. One approach is to simply
have two separate units placed on a single chip. The advantage of this approach is that it simplifies
the development of the microprocessor. The two units are usually taken from existing designs. The
software development tools can be directly taken from each unit’s respective software support environ-
ments. The disadvantage is that the application developer needs to deal with two independent hardware
units and two software development environments. This usually complicates software development and
verification. 

An alternative approach to integrating DSP and embedded CPUs is to add the DSP as a coprocessor
of the CPU. This CPU fetches all instructions and forwards the DSP instructions to the coprocessor. The
hardware design is more complicated than the first approach owing to the need to more closely interface
the two units, especially in the area of memory accesses. The software development environment also
needs to be modified to support the coprocessor interaction model. The advantage is that the software
developers now deal with a much more coherent environment.

The third approach to integrating DSP and embedded CPUs is to add DSP instructions to a CPU
instruction set architecture. This usually requires brand new designs to implement the fully integrated
instruction set architecture. The benefit is that software developers need to deal with just one development
environment.

The second trend in embedded microprocessors is to support the development of single-chip solutions
for large volume markets. Many embedded microprocessor vendors offer designs that can be licensed
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and incorporated into a larger chip design that includes the desired input/output peripheral devices and
application specific integrated circuit (ASIC), and field programmable gate array (FPGA) design. This
paradigm is referred to as system-on-a-chip design. A microprocessor that is designed to function in
such a system is often referred to as a licensable core.

The third major trend in embedded microprocessors is aggressive adoption of high-performance
techniques. Traditionally, embedded microprocessors are slow to adopt high-performance architecture
and implementation techniques. They also tend to reuse software development tools such as compilers
from the computer microprocessor domain. However, owing to the rapid increase of required perfor-
mance in embedded markets, the embedded microprocessor vendors are now making fast moves in
adopting high-performance techniques. This trend is especially clear in the DSP microprocessors. Texas
Instruments, Motorola/Lucent, and Analog Devices all ship aggressive EPIC/VLIW DSP microprocessors
and associated compilers.

24.6.3 Microprocessor Market Trends

Readers who are interested in market trends for microprocessors are referred to Microprocessor
Report, a periodic publication by MicroDesign Resources (www.MDRonline.com). In every issue,
there is a summary of microarchitecture features, physical characteristics, availability, and pricing of
microprocessors.
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25.1 Introduction

Modern control systems include some form of computer, most often an embedded computer or pro-
grammable logic controller (PLC). An embedded computer is a microprocessor- or microcontroller-
based system used for a specific task rather than general-purpose computing. It is normally hidden from
the user, except for a control interface. A PLC is a form of embedded controller that has been designed
for the control of industrial machinery (see Figure 25.1).

A block diagram of a typical control system is shown in Figure 25.2. The controller monitors a process
with sensors and affects it with actuators. A user interface allows a user or operator to direct and monitor
the control system. Interfaces to other computers are used for purposes such as programming, remote
monitoring, or coordination with another controller.

When a computer is applied to a control application, there are a few required specifications. The
system must always remain responsive and in control of the process. This requires that the control software
be real-time so that it will respond to events within a given period of time, or at regular intervals. The
systems are also required to fail safely. This is done with thermal monitoring for overheating, power level
detection for imminent power loss, or with watchdog timers for unresponsive programs.

25.2 Embedded Computers

An embedded computer is a microprocessor- or microcontroller-based system designed for dedicated
functionality in a specialized (i.e., nongeneral-purpose) electronic device. Common examples of embed-
ded computers can be found in cell phones, microwave ovens, handheld computing devices, automotive
systems, answering machines, and many other systems.

Hugh Jack
Andrew Sterian
Grand Valley State University
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The design constraints and parameters for an embedded computer are usually different from those of
a general-purpose computer. Although the latter is designed for maximum computing power and support
for the latest interconnection and peripheral standards, an embedded computer is designed to be just
powerful enough and to support only the interfaces and protocols that are specifically required. The
constraints of an embedded computer design often include size, power consumption and heat dissipation,
and cost.

25.2.1 Hardware Platforms

25.2.1.1 Microcontroller-Based Systems

Microcontrollers are closely related to the microprocessors that power today’s general-purpose computers.
They differ from microprocessors, in general, by being highly integrated, with built-in peripherals that
minimize total system part count, having low power consumption, providing a small amount of on-chip
RAM and ROM, and having several general-purpose input/output (I/O) lines available for instrument
sensors and control. For this reason, a microcontroller-based embedded system may be designed with
very few external components. In contrast, a microprocessor-based system requires external RAM, exter-
nal peripherals, and I/O interfaces, and often dissipates so much heat that active cooling is required for
proper operation.

The peripherals built into many microcontrollers include serial-line interfaces (such as RS232), timers,
pulse generators, event counters, etc. These peripherals support many sensor and actuator control functions.

FIGURE 25.1 An embedded computer with an Altera FPGA (front-left) and an Allen Bradley SLC500 program-
mable logic controller (top-right).

FIGURE 25.2 An example block diagram of a computer controlled application.
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For example, pulse generators and timers can be used to construct stepper motor drive sequences. Micro-
controllers are becoming increasingly specialized with respect to the data communication interfaces they
support. While many support the ubiquitous RS232, SPI, and I2C protocols, recent microcontrollers have
built-in support for interfaces such as USB.

In order to minimize power consumption, most microcontrollers have a special sleep or standby mode
in which no instructions are executed and very little power is consumed. Microcontrollers can be pro-
grammed to awaken in response to an external event so that the program code is executed, and power
consumed, only when necessary.

Microcontrollers are a very large semiconductor market due to the wide range and high volume of
devices that use them. There are many manufacturers and models of microcontrollers, ranging from tiny
8-pin devices with minimal functionality and costing mere pennies, to large devices with hundreds of
pins, many features, and much higher cost. This broad spectrum reflects the highly specific nature of an
embedded computer and its design.

25.2.1.2 FPLD-Based Systems

Field-programmable logic devices (FPLDs) such as complex programmable logic devices (CPLDs) and-
field-programmable gate arrays (FPGAs) are a more recent alternative to microcontrollers for embedded
computer design. An FPLD represents a programmable hardware device; the actual hardware function-
ality of the device is what is being designed. A microcontroller, in contrast, has fixed hardware function-
ality and is programmed with software. It is possible, however, to design an FPLD that behaves as a
microcontroller, and is further programmed in software. The programmable hardware functionality,
however, affords the designer a much greater degree of flexibility over a fixed hardware solution. The
price for this flexibility, however, is complexity.

FPLDs may be designed from the ground up or may be composed of one or more predesigned core
and peripheral blocks. It is possible, for example, to purchase microcontroller core functions, peripheral
functions, etc. and assemble them to form a customized microcontroller on an FPLD with non-recurring
engineering (NRE) costs that are much lower than a full custom chip design.

FPLDs can often be programmed “on-the-fly,” allowing for reconfigurable computing. This is a com-
puting paradigm that reprograms a system at the hardware level while it is in operation, according to
system demands. This means, for example, that the same hardware device can implement multiple bus
protocols, interfaces, or algorithms as needed, rather than requiring a larger and more expensive device
that supports all of the necessary functions but only uses one at a time.

25.2.1.3 Digital Signal Processing Systems

Digital signal processing (DSP) devices are in many ways similar to microcontrollers with respect to
peripheral integration, power consumption, etc. but also have specialized hardware support for common
DSP operations, such as filtering. DSP devices are ideal for use in systems that process speech and music,
or for robust control and communications applications. The specialized hardware support of these devices
means that they are capable of sustaining much higher effective computation rates (on signal processing
tasks), but at the same clock speed and power dissipation as the more general-purpose microcontrollers.

25.2.1.4 Real-Time Systems

Most embedded systems must operate in real time, that is, they must respond in a timely fashion to
external events such as user commands and sensor readings. When an absolute upper limit on response
time is required (and guaranteed), the system is a hard real-time system; otherwise, it is a soft real-time
system. Systems that have safety constraints, such as automotive and industrial control systems, are often
hard real-time systems so that absolute maximum time delays can be computed and verified for safety-
critical events.

Real-time computation is effected using interrupts. These are mechanisms supported by all common
microcontrollers that cause a change in the flow of execution of the program when the interrupt occurs.
The program that is executed in response to the interrupt is expected to respond in some way to the interrupt.

9260_25.fm  Page 3  Friday, October 5, 2007  11:06 AM



25-4 Mechatronic System Control, Logic, and Data Acquisition

For example, an interrupt may occur when a digital logic level changes at a device pin, indicating a sensor
condition, or it may occur when the user presses a button on a keypad, indicating that an action is desired
and is to be performed immediately.

The implementation of a real-time software system may either be custom designed or may make use
of a commercial real-time operating system (RTOS). Since the design of an interrupt-driven real-time
system has many potential pitfalls, the usage of a mature RTOS can greatly speed development time.

25.2.1.5 Embedded Modules

The functionality of commercially available embedded computing modules has been steadily increasing.
It is common to find powerful microcontrollers, an Ethernet interface, and basic Internet protocol support
all combined in a very small form factor for less than $50 in single quantities. This level of integration
can greatly speed development time for network-enabled control or remote sensing applications.

25.2.2 Hardware Interfacing

25.2.2.1 Mechanical Switches

Switches are easily interfaced to digital logic with a resistor as shown in Figure 25.3. The mechanical
nature of the switch may lead to bounce or oscillation of the digital signal for a brief period during the
switch opening/closing action. This bounce may be eliminated in the software or with a small amount
of additional hardware.

25.2.2.2 Analog Inputs

Analog inputs that indicate one of the two conditions can be interfaced to a digital logic input with a
simple comparator (Figure 25.4). A threshold voltage is set with a resistor divider. The comparator
generates a digital signal, which indicates whether the analog input voltage is above or below the threshold
voltage. This approach can be used for sensors such as optical interrupters (for part counting, motor
movement detection, etc.), temperature limit sensors, and many others.

When the analog voltage itself is of interest (as in, for example, temperature measurements), an analog-
to-digital converter (ADC) can be used to provide either a serial or a parallel representation of the voltage
with a precision ranging anywhere from 8 bits to 16 bits and above. A serial ADC may require as few as
two digital I/O pins on a microcontroller for transferring data, while a parallel ADC requires at least as

FIGURE 25.3 A mechanical switch is easily interfaced
to a digital input on a microcontroller using a single
resistor.

FIGURE 25.4 A digital input driven by a comparator
detects whether an analog voltage signal is above or below
a threshold voltage (set with a resistor divider network).
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many pins as there are bits of resolution, but can transfer an entire analog reading in one transaction
for faster throughput.

Some microcontrollers have built-in ADC peripherals with multiple input channels enabling highly
integrated low-cost analog sensor systems.

Analog voltages that are very small may be amplified with an instrumentation amplifier prior to analog-
to-digital conversion. Instrumentation amplifiers have very high gain and high impedance, and hence,
are suitable for sensors with very weak driving voltages and currents.

25.2.2.3 Simple Actuators

Embedded computers are not usually capable of driving most practical actuators directly, since the latter
often require voltages and currents not compatible with digital circuitry. As with sensors, however, some
simple interface circuitry is all that is required. Simple on/off actuators such as lamps, LEDs, relay coils,
etc. can be driven from a digital output, using a transistor as a switch, as shown in Figure 25.5. The
digital output controls the on/off state of the transistor, which, in turn, either allows or does not allow
current to flow through the actuator.

Motors can also be controlled using transistors as interfaces between digital outputs and the high-
current motor coils. The lamp in Figure 25.5 can be replaced with a DC motor to allow simple on/off
control of the motor. A set of four transistors arranged in an H-bridge configuration allows such a motor
to rotate in either direction. Two H-bridge configurations can be used to control a stepper motor. In all
cases, the speed and direction of rotation are under direct control of the embedded computer through
its digital outputs.

25.2.2.4 Analog Outputs

For actuators that require a variable analog voltage or current, a digital-to-analog converter (DAC) can
be used as an interface between the embedded computer and the actuator. As with ADCs, DACs are
available in a variety of bit widths, conversion speeds, number of channels, etc. Often, the current driving
capacity of these devices is not sufficient and an additional buffer amplifier is required to meet the current
demands of the actuator.

25.2.3 Programming Languages

Embedded computers are most commonly programmed in low-level languages for maximum control
over the hardware resources. The most time-critical sections of the code are generally programmed in
assembly language, which is the lowest-level language understood by a microcontroller. The C language
is generally used for higher-level structured programming. Even higher-level languages, such as C++ or
Java, are not well suited for embedded programming as they require larger amounts of memory and are
not designed for low-level access to hardware resources.

Figure 25.6 shows a fragment of an assembly language program written for the Microchip PIC 16F84A
microcontroller. It enables power to a DC motor (through an external interface circuit) when two digital
inputs are both at a logic 1 level. The code runs continuously, always checking for the status of the two
digital inputs (which may be manual switches, current sensors, etc.).

The same code fragment written in C is shown in Figure 25.7. The code is more compact and easier
to read since C is a higher-level language than assembly.

FIGURE 25.5 A digital output can control a high-cur-
rent device (such as a lamp pictured to the right) using a
transistor as a switch.
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25.3 Programmable Logic Controllers

The modern programmable logic controller (PLC) is the successor of relay-based controls. The techno-
logical shift began in the 1960s, when the limitations of electromechanical relay-based controllers drove
General Motors to search for electronic alternatives. The answer was provided in 1970 by Modicon, who
provided a microprocessor-based control system. The programming language was modeled after relay
ladder logic diagrams to ease the transition of designers, builders, and maintainers to these new controllers.
Throughout the 1970s the technology was refined and proven, and since the early 1980s they have become
ubiquitous on the factory floor.

Most PLC components are in card form that can be interchanged quickly in the event of a failure. A
typical PLC application has about one hundred inputs and outputs, but the scale of the applications varies
widely. A small PLC costing $200 might have six inputs and four outputs. A large application might
involve multiple PLCs working together over an entire plant and collectively have tens of thousands of
inputs and outputs. In general, the aggregated cost of PLC hardware per input and output is approximately
$10–$50. This does not include the cost of sensors (typically $50–$100), actuators (typically $50–$200),
installation (typically $10–$100), design, or programming.

Manufacturing control systems always require logical control and sometimes continuous control.
Logical control involves the examination of binary inputs (on or off) from sensors and setting binary
outputs to drive actuators. A simple example is a photosensor that detects a box on a conveyor and
actuates an air cylinder to divert the box. Continuous control systems are used less frequently because
of their higher costs and increased complexity. A typical continuous controller might use an analog
output card ($1000) to output a voltage to a variable frequency motor driver ($1000) to control the
velocity of a conveyor. 

FIGURE 25.6 Fragment of assembly code for Microchip PIC 16F84A microcontroller. This code fragment examines
two digital inputs (bits 0 and 1 of input Port A) and sets bit 5 of output Port B if both inputs are at a logic 1 level.
The output can be used to enable or disable a DC motor with appropriate interface circuitry.

FIGURE 25.7 Fragment of C code to effect the same functionalilty as the code in Figure 25.6.

loop:
btfss PORTA,0 Check digital input bit 0 of Port A

       and disable motor if not 1goto turnoff
btfss PORTA,1 Check digital input bit 1 of Port A

       and disable motor if not 1goto turnoff

bsf PORTB,5 Enable motor by setting bit 5 of Port B
       and check inputs againgoto loop

turnoff:
bcf PORTB,5 Disable motor by clearing bit 5 of Port B

       and check inputs againgoto loop

while (1) {
if (PA0 && PA1) {// Check status of bits 0 and 1 in Port A

PB5 = 1;       // Set bit 5 of Port B
} else {

PB5 = 0;       // Clear bit 5 of Port B
}

}
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25.3.1 Programming Languages

Every PLC can be programmed with ladder logic. Ladder logic uses input contacts (shown with two
vertical lines) and output coils (shown with a circle). A contact with a slash through it represents a
normally closed contact. In ladder logic, the left-hand rail is energized. When the contacts are closed in
the right combinations, power can flow through the coil to the right-hand neutral rail.

Consider the ladder logic example in Figure 25.8. It is assumed that the hot rail at the left side has
power, and the right side rail is neutral. When the contacts are opened and closed in the right combina-
tions they allow power to flow through the output coils, thus actuating them. The program logic is
interpreted by working from the left side of the ladder. In the first rung if A and D are on, the output X
will be turned on. This can also be accomplished by turning B on, turning C off, and turning D on. In
the second, the output Y will be on if X is on and A is on, or D is off. Notice that the branches behave
as OR functions and the contacts in line act as an AND function. It is possible to write ladder logic rungs
as Boolean equations, as shown on the right-hand side of the figure.

The example in Figure 25.8 contains only conditional logic, but Figure 25.9 shows a more complex example
of a ladder logic program that uses timers and memory values. When the run input is active, output heater
will turn on, 5 s later fan1 will turn on, followed by fan2 at 10 s. The first rung of the program will allow
the system to be started with a normally open run push button input, or stopped with a normally closed
push button stop. All stop inputs are normally closed switches, so the contact in this rung needs to be
normally open to reverse the logic. The output active is also used to branch around the run to seal-in the
run state. The next line of ladder logic turns on an output heater when the system is active. The third

FIGURE 25.8 A simple ladder logic program with equivalent Boolean equations.

FIGURE 25.9 A complex ladder logic example.
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line will run a timer when active is on. When the input to the TON timer goes on, the timer T4:0 will
begin counting, and the timer element T4:0.ACC will begin to increment until the delay value of 10 s is
reached, at this point the timer done bit T4:0/DN bit will turn on and stay on until the input to the timer
is turned off. The fourth rung will compare the accumulated time of the timer and if it is greater than 5
the output fan1 will be turned on. The final rung of the program will turn on fan2 after the timer has
delayed 10 s. 

A PLC scans (executes) a ladder logic program many times per second. Typical execution times range
from 5 to 100 ms. Faster execution times are required for processes operating at a higher speed. 

The notations and function formats used in Figure 25.9 are based on those developed by a PLC
manufacturer. In actuality, every vendor has developed a different version of ladder logic.

25.3.1.1 IEC 61131-3 Programming Languages

The IEC 61131 standards (formerly IEC 1131) have been created to unify PLCs [3,5]. The major portions
of the standard are listed below.

IEC 61131-1 Overview
IEC 61131-2 Requirements and Test Procedures
IEC 61131-3 Data Types and Programming
IEC 61131-4 User Guidelines
IEC 61131-5 Communications
IEC 61131-7 Fuzzy Control

The most popular part of the standard is the programming specification, IEC 61131-3. It describes five
basic programming models including ladder diagrams (LD), instruction list (IL), structured text (ST),
sequential function charts (SFC), and function block diagrams (FBD). These languages have been designed
to work together. It is possible to implement a system using a combination of the languages, or to
implement the same function in different languages. A discussion of ST, SFC, and FDB programs follows. 

Structured Text
A structured text program is shown in Figure 25.10. This program has the same function as the previous
ladder logic example. The first line defines the program name. This is followed by variable definitions.
The variables run and stop are inputs to the controller from sensors and switches. The variables heater,

FIGURE 25.10 A structured text program equivalent
to Figure 25.9.

PROGRAM example
VAR_INPUT

run : BOOL ;
stop : BOOL ;

END_VAR
VAR_OUTPUT

heater : BOOL ;
fan1 : BOOL ;
fan2 : BOOL ;

END_VAR
VAR

active :BOOL ;
delay : TON ;

END_VAR
active :=(run OR active) & stop ;
heater := active ;
delay(EN :=active,PRE := 10) ; 
IF ( delay.ACC >5 ) THEN

fan1 :=1 ;
ELSE

fan1 := 0 ;
END_IF ;
fan2 :=delay.DN ; 

END_PROGRAM
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fan1, and fan2 are outputs to the actuators in the system. The variables active and delay are internal to
the program only. 

The program section immediately follows the variable declarations. In the program the first two lines
set the values of active and heater. The instruction delay (….) calls the instantiated timer. The argument
EN := active sets the timer to run, and PRE := 10 sets the timer delay to 10 s. The following lines use an
“if ” statement to set the value of fan1, using the accumulated timer value delay.ACC. The value of fan2
is then set when the timer accumulator has reached the delay time and set the done bit delay.DN.

Structured text is popular and shows potential for eventually replacing ladder logic as the most popular
programming language.

Function Block Diagrams
A data flow model is the basis of function block diagrams. In these programs, the data flows from the
inputs on the left to the outputs on the right. The example in Figure 25.11 is equivalent to the previous
ladder logic example. The OR and AND functions are used to set the values of active and heater. The
TON timer uses the enable EN and delay PRE inputs to drive the accumulator ACC and DN outputs.
The DN output drives fan2 while the ACC value is compared to the value of 5 to set the output fan1.

Data flow diagrams can be very useful for doing a high-level design of a control system.

Sequential Function Charts
An SFC is used to describe a system in terms of steps and transitions. A step describes a mode of operation
or state in which some action is performed, normally setting outputs. Transitions determine the change
of states, normally by examining inputs. (Note: Some readers may notice that SFCs are based on Petri nets.)

Figure 25.12 shows an example of an SFC to control storage tanks. When the controller is started and
the power input goes true, it will empty the tanks. After that the run input will start cycles where both
the tanks are filled and then emptied repeatedly.

In this example, the flow of control begins at the initial step start, and then moves to step S1. The
action associated with the step is R, which will reset, or turn off the outputs in_valve1 and in_valve2.
The system will remain in step S1 until the transition is fired by input power. After this there are two
possible paths. If empty1 and empty2 are both true, the left-hand branch will be followed, otherwise the
right-hand transition will fire and that branch will be followed. The left-hand branch sets the run_light
on (with S), and turns off the outlet_valve. The right-hand branch will turn on outlet_valves until the
inputs empty1 and empty2 are both on. At that point run_light will be turned on, and the out_valves
turned off. Regardless of which branch was followed, the flow of execution will pause at the following
transition until the input run becomes true. 

FIGURE 25.11 A FBD program equivalent to Figure 25.9.
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After the run transition is fired the flow of execution splits into both the left and right branches, as
indicated by the two horizontal lines. The left branch fills one tank, while the right branch fills the other
tank independently. When both branches are complete the flow of execution rejoins at the second set of
horizontal lines, and then activates step S9. After step S10 the flow of execution returns to the point after
the run transition.

The SFC programming method differs from other programming methods in that the program is not
expected to run completely in a single scan, while all others must run completely in each scan.

25.3.2 Interfacing

The installation and interfacing requirements for PLCs are driven by the need to protect people and
equipment by failing safely. A typical wiring diagram for a PLC application is shown in Figure 25.13. At
the top of the diagram a transformer is used to step down a higher supply voltage. This is immediately
followed by a power disconnect and fuses. The power is then split into left and right rails, much like the
ladder diagrams discussed earlier. Line 10 shows a master power control for the system. This includes a
normally open start button and a normally closed stop button. These switches control a master control
relay (MCR) C1. Notice that if power is supplied to the coil C1, it will close the contacts C1 on the same
run and hold C1 on until the stop button is pushed. Another set of contacts is used on the left rail to
disconnect power from the inputs to the PLC and the DC power supply. This control circuitry external
to the PLC is required so that the stop buttons of a control system are able to directly disconnect the
power. This is often required by law. 

In this example the PLC is powered with 120 V AC, connected between the power rails. There are
two 120 V AC inputs from normally open push buttons. The 24 V DC power supply is input to the V+
on the output terminals of the PLC, which will then switch output power to solenoid S1 and indicator
light L1.

FIGURE 25.12 An SFC program for tank level control.
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25.3.3 Advanced Capabilities

PLCs are often used in applications that go beyond basic logic solving. Some advanced programming
and input/output (I/O) functions are listed below:

Calculations—The ability to do basic scientific calculations. Lower end PLCs only use integer math,
while higher end PLCs also provide floating point math.

Analog I/O—Continuous voltage and current values can be input and output.
Feedback control—Proportional integral derivative (PID) controller calculations are provided as func-

tion blocks and can be used with analog I/O.
Communications—The ability to transmit data as strings over serial ports or to transfer parts of the

PLC memory using proprietary protocols.
ASCII strings—Functions to manipulate ASCII strings.
System—Fault detection, status monitoring, interrupt routines, etc.
Fuzzy logic—Some PLCs include fuzzy set functions for nonlinear control problems.

At a minimum PLCs use communications for programming. But in many applications PLCs are used
to communicate with other devices. In the past, most communications were based on proprietary, or
closed, standards. More recently a few open communication standards have been developed and are
supported by many vendors; these include Profibus, DeviceNet, CanBus, and ModBus. There has also
been a trend to use more universal communication standards such as RS-232, RS-422, RS-485, and
Ethernet. An example of an automation system is shown in Figure 25.14. An RS-232 connection is used
between a laptop computer (e.g., COM1) and PLC1 for programming. DH+ is used to connect PLC1,
PLC2, and the HMI; it is a proprietary communication standard developed by Allen-Bradley. An operator
can use the human machine interface (HMI) to display data and accept operator input and communicate
these values directly to both PLCs. Devicenet, an open automation standard, is used to connect PLC2 to
a welding controller. 

FIGURE 25.13 A PLC wiring example.
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25.4 Conclusion

PLCs and embedded controllers are complementary technologies and, when applied strategically, they
will both provide low cost and reliable solutions to control problems. Figure 25.15 shows the relative
trade-offs between the controllers. In general, an embedded controller requires more initial development
time than a PLC for a simple system. As the system grows more complex, the embedded controller benefits

FIGURE 25.14 PLC communication example.

FIGURE 25.15 Relative trade-offs between control
solutions.
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from the existence of software libraries and design tools. When using a PLC the cost of the purchased hardware
will always be higher per unit. The development costs for an embedded computer will usually be higher,
but these become minimal when amortized over a large number of units. As a result, embedded controllers
are typically selected for applications that will be mass-produced and allow a greater development time,
such as a toy robot. PLCs are often selected for applications that only require a few controllers and are
to be completed in a relatively short time, such as the production machines to make a toy. 

References

1. Bryan, L.A., Bryan, E.A., Programmable Controllers, Industrial Text and VideoCompany, 1997.
2. Filer, R., Leinonen, G., Programmable Controllers and Designing Sequential Logic, Saunders College

Publishing, 1992.
3. Lewis, R.W., Programming Industrial Control Systems using IES1131-3, The Institution of Electrical

Engineers, 1998.
4. Petruzella, F., Programmable Logic Controllers, 2nd Ed., McGraw-Hill, 1998.
5. Programmable Controllers—Part 3: Programming Languages, IEC 61131-3 Ed. 1.0, 1993.
6. Stenerson, J., Fundamentals of Programmable Logic Controllers, Sensors and Communications, Prentice-

Hall, 1998.
7. Webb, J.W., Reis, R.A., Programmable Logic Controllers, Principles and Applications, Prentice-Hall,

1995.

9260_25.fm  Page 13  Friday, October 5, 2007  11:06 AM



9260_25.fm  Page 14  Friday, October 5, 2007  11:06 AM



26-1

26
Graphical System

Design for Embedded
Systems

26.1 Introduction ................................................................. 26-1
26.2 Graphical Programming for Embedded Design ........ 26-1
26.3 Customizable Off-the-Shelf Prototyping Platforms ..... 26-3
26.4 Custom Deployment Options ..................................... 26-4
26.5 Conclusion .................................................................... 26-5
References ................................................................................ 26-5

26.1 Introduction

Nearly 50% of embedded system designs are late or never to market and nearly 30% fail after release [1].
Many of the challenges are a direct result of embedded systems becoming more complex as average code
size has increased nearly an order of magnitude over the past 5 years [2]. In addition, with embedded
systems becoming more common place, many domain experts, such as machine builders, test engineers,
or control engineers, need embedded technologies to develop their systems, yet do not currently have
the expertise required to develop embedded systems.With the increase in system complexity and with
an ever-increasing number of nonembedded experts requiring this technology, there is a strong need for
a new approach to embedded design. Graphical system design is a revolutionary approach to solving
design challenges that blends intuitive graphical programming and flexible commercial off-the-shelf
(COTS) hardware to help engineers and scientists more efficiently design, prototype, and deploy embed-
ded systems. Figure 26.1 illustrates the embedded system development process. The graphical system
design streamlines the embedded development process from design to prototype to deployment. Using
the graphical system design approach will enable you to use a single environment across all stages of
design to increase productivity, save money, and bring embedded technology to the domain expert.

26.2 Graphical Programming for Embedded Design

Many embedded systems run autonomously and need to execute many tasks in parallel with specific
timing requirements. Consider a machine control system that needs to control a linear stage, rotate
multiple shafts, control lighting, and read in video data; in a system like this, there are multiple processes
that must happen deterministically, in real-time, and in parallel. Using traditional, text-based tools such

Shelley Gretlein
National Instruments, Inc.
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as C for these applications quickly escalates in complexity. Graphical programming facilitates complex
programming and timing models easily because of native functionality. More than 20 years ago, NI
created components and technology in the formof the LabVIEW graphical development environment.
LabVIEW natively incorporates timing into code using coding structures to implement timing, and
representing parallelism is simply a matter of drawing another loop as shown in Figure 26.2. 

To implement this level of timing and parallelism in text code is a barrier to a broader audience of
domain experts, where the graphical representation is simply much more clear and accessible to scientists
and engineers. If the graphical programming paradigm was extended to chips including FPGAs and
microprocessors, it would be relatively painless to manage the parallel architecture of the silicon using
the same consistency and scalability. Another key requirement for embedded system design is that the
software platform addresses the various algorithm design views common in real-time embedded design.
Various design views as models of computation for embedded software platforms are described in
Reference 3. These models of computation match the way system designers view their system to help

FIGURE 26.1 Graphical system design streamlines the embedded development process from design to prototype
to deployment.

FIGURE 26.2 Parallel timed loops in the graphical programming environment of LabVIEW intuitively display
parallel tasks.
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minimize the complexity of translating system requirements into a software design. Over the past several
years, LabVIEW has expanded to incorporate multiple models of computation to better meet the needs
of embedded system designers and their varied skill sets. LabVIEW now includes text-based math,
continuous time simulation, state diagrams, and graphical dataflow models to represent a variety of
algorithms. LabVIEW also includes interactive tools to enhance the design experience for digital filters,
control models, and digital signal processing algorithms to further ease designs in these vertical appli-
cations. You can implement algorithms on flexible COTS hardware platforms to significantly decrease
your time to first prototype.

26.3 Customizable Off-the-Shelf Prototyping Platforms

As previously mentioned, with the many designs that are late or never released to market or worse,
designs failing after release, something needs to be done to get more high-quality products out sooner.
One way to address both of these issues is to prototype the systems better by integrating real-world signals
and real hardware into the design process sooner so that high-quality designs are iterated on and problems
are found (and fixed) earlier.

Consider the design flow in Figure 26.3. The hardware path is a viable location to search for efficiencies
and ways to shorten the design process. Today, if you are creating custom hardware for final deployment,
it is difficult to have the software and hardware developed in parallel, as the software is never tested on
representative hardware until the process reaches the system integration step. In addition, you do not
want the software development to be purely theoretical, because waiting until the system integration test
to include I/O and test the design with real signals may mean that you discover problems too late to
meet design deadlines.

Most designers currently use a solution such as an evaluation board to prototype their systems.
However, these boards often only include a few analog and digital I/O channels and rarely include vision,
motion, or ability to synchronize I/O. In addition, designers often have to waste time developing custom
boards for sensors or specialized I/O, just to complete a proof of concept. Using flexible COTS prototyping
platforms instead can truly streamline this process, as shown in Figure 26.4, and can eliminate much of
the work required for hardware verification and board design. Much like PCs today, where anyone can
go to an electronics store and plug components such as memory, motherboards, and peripheral together
to create a PC, graphical system design strives to achieve the same standardization for prototyping
platforms.

For most systems, a prototyping platform must incorporate the same components of the final deployed
system. These components are often a real-time processor for executing algorithms deterministically,
programmable digital logic for high-speed processing or interfacing the real-time processor to other

FIGURE 26.3 Typical embedded system software and hardware design flow showing separate software and hardware
design flows.
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components, and varied types of I/O and peripherals, as shown in Figure 26.5. Finally, as with any system,
if the off-the-shelf I/O does not serve all your needs, the platform should also be extensible and custom-
izable when needed. 

National Instruments offers several types of prototyping platforms including NI CompactRIO that
contain all the basic building blocks of an embedded system. The controller contains a 32-bit processor
running a real-time operating system. The CompactRIO backplane contains an FPGA that can implement
high-speed processing and actually configure and provide interfaces to the I/O modules, which include
options for analog input and output, digital input and output, and counter/timer functionally. Each of
the modules includes direct connectivity to sensors and actuators as well as built-in signal conditioning
and isolation. A module development kit is also available, which allows developers to expand the platform
to include custom modules with all plugging into this COTS framework. In addition, CompactRIO is
industrially packaged (�40�C to 70�C, 50G shock) with a small footprint (3.5 in. × 3.5 in. × 7.1 in.) and
low power requirements (7–10 W typical), making it ideal for not only prototyping but also deployment
of in-vehicle, machine control, and on-board predictive maintenance applications.

26.4 Custom Deployment Options

As previously mentioned, hardware devices, such as NI CompactRIO, can be employed for prototyping.
It can be used for deployment because of its packaging, durability, and cost. However, there may be times
when size or power may drive the need for smaller, custom board designs. To address that need, designers
can preserve their software investment by using the LabVIEW Embedded Development Module to deploy
code to any 32-bit processor. The LabVIEW Embedded Development Module combines all the graphical
development benefits with the out-of-the-box analysis functions, integrated I/O, and interactive graphical
debugging. This module is able to target any 32-bit microprocessor and provides a framework that can
openly integrate a variety of existing C-based, third party tool chains and operating systems to target
custom board designs. Once integrated, users can develop 100% graphically and interactively debug their
application. By generating code to integrate with all existing targets in the market, users can have ultimate
flexibility and breadth in target options. This new technology empowers a broader range of scientists,
engineers, and domain experts to design their algorithms, develop the application, program the logic,
prototype the system, and then deploy it to the target of choice.

FIGURE 26.4 Stream-lined development flow with graphical system design.

FIGURE 26.5 Typical components of an embedded system.
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26.5 Conclusion

The time has come for a new approach to electronic system design. Graphical system design brings a
software platform combined with a hardware platform that offers the opportunity to significantly reduce
development cost and time to market. A software platform that integrates multiple models of computa-
tion minimizes the time to implement specifications into a design. A flexible COTS hardware prototyping
platform that supports the software platform and offers customizable components minimizes the time
to first prototype, because the time and money required for designing custom hardware is eliminated.
In addition, prototyping with real I/O results in a higher quality design—eliminating the design failures
we see today. Finally, consistent graphical software from your design to your prototyping platform to
your final deployment target maximizes code reuse and eases the transition to final deployment.
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27.1 Introduction

Field-programmable Gate Arrays, or FPGAs, are a type of integrated circuit (IC) that contain logic
components and interconnects that can be programmed after the device is manufactured in a semicon-
ductor fabrication laboratory [1]. In short, an FPGA is a type of gate array that is programmable multiple
times in the field rather than once at manufacturing time. FPGAs can host complex logic designs that
include both combinational logic (AND, OR, NOT, XOR, etc.) as well as sequential logic (latches,
flip–flops, etc). Most FPGAs also contain memory elements in the form of flip–flops or block memories.
Modern FPGA-based chips contain up to hundreds of thousands of gates, and there are a variety of FPGA
architectures on the market. In addition, there are emerging FPGA design trends to include not only
programmable logic blocks but also programmable interconnects and switches between the blocks, and
fixed hardware such as block memories, digital signal processing (DSP) cores, and processors. Overall,
FPGA programmability allows them to be used in a variety of applications: prototyping ICs, in low-
volume applications where the nonrecurring engineering (NRE) cost of designing and manufacturing a
custom IC is too high, as glue logic for linking together other ICs, and for reconfigurable computing,
which uses FPGAs as optimized computing engines. FPGAs provide this versatility through configurable
logic and a hierarchy of flexible, programmable interconnects.

FPGAs [2] trace their roots to programmable logic devices, or PLDs, that emerged during the 1980s.
These devices, known as programmable logic arrays (PLAs) and programmable array logics (PALs),
allowed the designer to implement simple combinational and sequential logic. The PLA is composed of
a set of programmable AND planes that connect to a set of programmable OR planes. The resulting
connection of AND and OR planes creates the potential for any logic functions to be synthesized as its
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sum of products (or alternatively the product of sums) form. Figure 27.1 displays the respective AND
and OR planes of a PLA design. The original PLA-based designs were far more limited than FPGAs, with
their functionality restricted to registering a few levels of simple sum-of-products Boolean expressions.
Moreover, FPGA-generation of programmable logic, including Complex PLDs, or CPLDs, expanded
these limited capabilities by adding more programmable logic and by allowing more flexible interconnect.
As such, CPLDs can be used to implement functionality like feedback loops between logic blocks and
even simple microcontrollers.

27.2 Field-Programmable Gate Array Architecture

At the heart of every FPGA architecture lies two basic resources: configurable logic blocks (CLBs) and
routing resources. FPGAs organize the CLBs into a two-dimensional array with rows and columns of
CLBs separated by routing channels. While the CLBs in modern FPGAs are often quite complicated, they
all share similar basic functionality. To implement arbitrary combinational logic, they contain a lookup
table (LUT), which is an N � N memory array that can implement any N-input Boolean function. The
second component is a storage element such as a D flip–flop. Finally, there is also at least a multiplexer
(MUX) that allows the storage element to be bypassed. These final two components allow the CLB to
implement sequential logic like state machines. Figure 27.2 displays the basic view of a LUT-based CLB
in modern FPGA systems.

Commercial FPGAs typically include more complex and specialized logic within their CLBs. Manu-
facturers often augment CLBs with multiple LUTs, fast carry chains for implementing low-latency
arithmetic, and/or more sophisticated storage capabilities: some vendors’ CLBs, for example, allow the
LUT memory to be used as conventional read/write memory. Many FPGAs also contain various special–
purpose blocks, such as memory, fast multipliers, DSP blocks, high-speed I/O, and even full-fledged
microprocessors.

FPGAs can hold their configuration in different ways; however, the most common way for them to
hold their configuration is using static RAM (SRAM). As compared to other configuration storage
techniques, SRAM-programmed FPGAs enjoy high logic densities and can be rapidly reprogrammed

FIGURE 27.1 The respective AND and OR planes of a programmable logic array design.
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multiple times; however, they lose their configuration if the FPGA loses power. Some FPGAs hold their
configuration information using some kind of electrically erasable programmable read-only memory
(EEPROM). FPGAs tend to have a lower logic density than SRAM-programmed FPGAs, and can only
be reprogrammed a limited number (about 10,000–1,000,000) of times, but they can lose power and still
retain their programming information. The final way FPGAs can store their configuration information
is through either fuses or antifuses. Like EEPROM-programmed FPGAs, they retain their configuration
information even after losing power; however, they can be programmed only once.

Most FPGAs have abundant clock resources consisting of dedicated low-skew logic and routing for
distributing multiple clock signals around the FPGA. In addition, many FPGAs contain embedded clock
managers that contain phase-locked loops (PLLs) for generating multiple arbitrary clock signals from a
single external clock source.

27.3 Field-Programmable Gate Array Design Flow

To design for an FPGA, the designer first describes the behavior of the circuit. Once entered, the designer,
using an electronic design automation (EDA) tool, generates a technology-mapped netlist. Place-androute
tools then take this netlist and fit it to the target FPGA. After place-and-route is complete, the designer
then uses the tools to generate a programming file to load on the FPGA. Timing analysis, simulation,
and in-circuit logic analysis are used to debug the design throughout this process. Figure 27.3 illustrates
a high-level overview of the design process using FPGAs including components of design entry, synthesis,
verification, and simulation.

Design entry for FPGAs can be done in any number of ways [3]. One way is for the designer to enter
the FPGA’s design as a circuit schematic. Schematic entry is useful for designs that can be easily described
using basic logic elements such as logic gates, flip–flops, multiplexers, encoders, and decoders. For larger
projects, hardware description language (HDL) entry is usually a better choice. These languages allow
the designer to describe an FPGA’s functionality at a much higher level of abstraction. HDLs are like
standard programming languages such as C/C++ and Java, with added extensions to support hardware-
specific notations such as timesteps, interconnects, and concurrency. While there exist a variety of HDLs,
the most widely used HDLs (and the ones the FPGA tools typically support) are VHDL or Verilog HDL.
Many newer FPGA tools help increase designer productivity by allowing the designer to describe the
design’s higher levels of abstraction than those afforded by conventional HDLs. Some tools, such as
Impulse-C, Handel-C, NAPA-C, and SystemC, allow the designer to describe the hardware in a modified
version of the widely used C programming language. Other languages are used as well, including exten-
sions to existing HDLs such as SystemVerilog and SystemVHDL. Tools also exist for converting DSP
algorithms programmed in MATLAB into FPGA-synthesizable hardware.

Many toolchains provide libraries of predefined circuits, called IP cores. These cores are pretested and
preoptimized for the target FPGA, which facilitates rapid development of complex FPGA designs. When

FIGURE 27.2 The basic view of a LUT-based CLB in modern FPGA systems.
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the majority of the design consists of linking up predefined IP cores using standardized interconnect,
the resulting design is called a system on a programmable chip (SoPC), which is analogous to the system
on a chip (SoC) design flow for application-specific integrated circuits (ASICs). 

Before testing the design while it is running on an actual FPGA, the FPGA designer debugs the design
using a software simulator. Software simulation is first done after entering the design, to locate errors in
the behavior of the circuit. After synthesis turns the circuit’s behavioral description into a lower-level
description, the simulation is rerun on the mapped netlist to look for bugs the synthesis tools might
produce. After place and route, the design is tested again for tool-induced bugs. The final stage of testing
involves testing the design while it actually runs on the FPGA. Like any other IC, FPGAs can be debugged
with tools like logic analyzers and oscilloscopes. Many FPGA tools, however, also allow the designer to
synthesize designs with full-speed logic analyzers. These tools synthesize logic analyzers onto the FPGA
logic, allowing for full-speed, detailed analysis of the FPGA’s internal circuitry.

The synthesis process outlined above consists of several key stages. First, the tools parse design entry
information and convert it to an intermediate format understandable by the rest of the synthesis tools.
Synthesis tools usually provide syntax checking at this stage. The tools then map the design to the
functionality of the FPGA’s logic blocks by packing Boolean logic functions to fit within the LUTs, by
inferring arrays of storage as memory blocks, and so forth. Once the design is mapped to a technolo-
gyspecific netlist, the place and route phase begins. During this stage, the tools decide where to place the
mapped blocks, with the route stage subsequently deciding how to interconnect the placed CLBs. During
place and route, the tools can make tradeoffs between fast logic or logic that uses as few CLBs as possible.
The designer can provide timing and area constraints to help guide the tools. It is also frequently possible
for the designer to intervene at this stage to provide custom placement of the CLB mappings. Known

FIGURE 27.3 High-level overview of the design process using FPGAs.
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as floorplanning, this technique allows the designer to manually place certain functionality to either
improve synthesis time (the tools only need to place and route parts of the overall design), speed, or
FPGA utilization. After completing the place and route stage, the tools proceed to generate a programming
bitstream to load onto the FPGA. To protect the designer’s intellectual property, some FPGA vendors
allow this bitstream to be encrypted.

Once the tools finish generating the programming bitstream, it is then loaded onto the FPGA. FPGAs
can be programmed in any of three ways. The first is to load the bitstream using a programming cable
that connects the FPGA to computer that loads in the bitstream onto the array. This programming
method is most frequently used during development/prototyping. The second method, which is used-
more often for shipping products, is to have the FPGA read its configuration from an external PROM
or Flash memory chip on power up. Finally, on FPGAs with internal nonvolatile storage, the FPGA can
be programmed to hold a configuration indefinitely.

27.4 Different Uses for Field-Programmable Gate Arrays

Field-programmable gate arrays can be put to a variety of uses. One of these is for ASIC prototyping.
For ASIC prototyping, a high-level description of the ASIC is synthesized to the FPGA to check for
functionality bugs as well as for basic timing checks. For simple ASICs, the entire design can be synthesized
onto a single FPGA. More complicated designs, however, may require multiple FPGAs. Products such as
QuickTurn and IKOS provide large-scale hardware emulation systems made up of many interconnected
FPGAs for full circuit emulation of a large design.

FPGAs are also commonly used as ASIC replacements. They are desirable in low-volume applications
where the high NRE costs cannot be amortized over enough units to justify the ASIC’s lower per-unit
cost over an FPGA. FPGAs are also useful in situations where the ASIC’s design is subject to change;
instead of having to qualify and manufacture an entire new set of ASICs to implement a change, the
FPGA can be modified simply by reprogramming it.

FPGAs are also very useful in education of computer engineering.With the inherent attribute of being
programmable, an FPGA can be used as a “programmable breadboard” that allows students to try out
different designs. Their abundant logic resources allow students to implement elaborate projects with
complexity ranging from hundreds of logic gates to embedded computer systems replete with multiple
microprocessors, external I/O, and large external memories. A large selection of boards designed for
education exist, which are made by the major FPGA vendors as well as by third-party companies. These
boards usually contain an FPGA with access to external memory, switches and push buttons, light emitting
diodes (LEDs), display screens, as well as expansion ports for attaching other hardware. 

A growing use of FPGAs is to use them for reconfigurable computing. Reconfigurable computing
leverages the vast parallel computational resources of FPGAs to accelerate certain classes of computational
problems. These include DSP, bioinformatics, graphics/visualization, simulation, searching, video com-
pression/decompression, and encryption/decryption. In general, any application that involves large
amounts of computation but does not have very complex control flow (e.g., has few if-else statements
and typically does not call a lot of procedures) is a candidate for FPGA acceleration. Most FPGAs do not
implement floating-point arithmetic well, so applications that do a lot of floating-point calculations need
to be reimplemented to only use integer arithmetic if they are to be efficiently implemented on an FPGA.

While it is possible for a reconfigurable computer to consist solely of FPGAs, virtually all reconfigurable
computers contain one or more conventional microprocessors for running parts of the program that are
ill-suited for running on the FPGA. A major way reconfigurable computers differentiate themselves is
by how tightly coupled the FPGA logic is to the CPU. FPGA logic that is more closely coupled with the
CPU logic reduces the communication latency between the CPU and the FPGA; however, these setups
often have less FPGA logic available than more-decoupled designs. Generally, low-latency CPU–FPGA
communication is essential when the FPGA part of the algorithm is relatively small or requires frequent
communication with the CPU part of the algorithm. Production reconfigurable computers can take on
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a variety of configurations. In one configuration, the FPGA fabric is completely integrated with the
processor itself. In this configuration, programs implement special complex instructions on the FPGA
fabric. Another type of reconfigurable computer treats the FPGA as a tightly-coupled coprocessor. In
this setup, the FPGA coprocessor shares memory with the main processor, allowing fast communication
via direct memory access (DMA). Other systems take a traditional computer system and add FPGAs as
expansion cards in the same way as someone might add a network card or video card.

27.5 Embedding Microprocessors and Microcontrollers onto 
Field-Programmable Gate Arrays

In recent years, it has become possible for designers to integrate microprocessor/microcontroller designs
onto an FPGA. Many FPGAs now contain enough logic resources to implement a full-fledged micro-
processor/microcontroller onto the FPGA. Known as “Soft CPU Cores,” these parts are a standard part
of many FPGA vendors’ toolchains and contain microprocessor cores specially optimized for efficient
implementation on the FPGA. Designers can typically tailor the soft microprocessor for its intended use
by adding/removing resource-intensive hardware components such as caches, floating-point units, and
barrel shifters. In addition to soft microprocessor cores, some FPGAs actually contain embedded micro-
processor blocks. Since these microprocessor blocks are entirely custom logic, they can perform much
faster, have more features, and use less FPGA area than a typical soft microprocessor core; however, the
designer is limited to the hard microprocessor cores available within a given FPGA family.

Designers use integrated microprocessors/microcontrollers in a variety of ways. One way is to use
them to implement complicated statemachines, as it is often easier towrite a statemachine as a software
program than it is to express the statemachine as a state diagramand then synthesize a custom finite
statemachine. Integrated microprocessor/microcontroller cores on FPGAs are also useful as an area-saving
feature; instead of spending precious FPGA hardware resources implementing infrequently used, perfor-
mance insensitive functionality, these features can instead be implemented as a software program running
on the microprocessor/microcontroller. An example of thiswould be awireless router; while the signal
processing and packet processing features are implemented on the FPGA fabric for high performance,
the web server used for configuration purposes is run as a software program on the microprocessor/micro-
controller.

FPGA-integrated microprocessors/microcontrollers usually have various interfaces that allow the core
to interface with the rest of the FPGA. Many contain special high-speed interface blocks that allow for
connecting custom accelerator blocks and coprocessors, such as fast Fourier transform (FFT) blocks or
floating-point units. In addition, these cores usually have slower buses for interfacing with memory
and/or I/O. Figure 27.4 illustrates the integration of programmable components with design blocks in a
modern FPGA.

27.6 Reliability and Power Considerations

Serious and growing concerns with digital logic, particularly that used in extreme environments such as
space, are soft error upsets, or SEUs. SEUs occur most often when a high-energy particle, such as a cosmic
ray, hits a transistor and reverses its state. While the SEU does not permanently damage the transistor,
it can lead to incorrect behavior in the circuit. While SEUs can occur in any kind of modern digital logic,
they are of a special concern when using SRAM-based FPGAs. If an SEU flips one of the configuration
bits on an SRAM-based FPGA, it can seriously alter the functionality of the FPGA’s logic, with the error
persisting until the FPGA gets reconfigured.

There are several ways to mitigate these problems. First, all critical state storage and interconnect buses
should be protected with at least parity to detect the errors. If on-the-fly error detection and correction
is desired, the circuits should also have some sort of error-correcting code (ECC) implemented on the
state and interconnects. Another redundancy technique that can be used in lieu of or in conjunction with
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the previously stated techniques is triple modular redundancy (TMR). TMR consists of triplicating all
the on-chip logic. At regular stages throughout the design, the results of all three copies are compared
using a minority voter scheme. If one of the results differs from the other two, the two matching results
are then passed on downstream.

All the above techniques are effective ways to deal with SEU errors on any form of digital logic. One
problem remains for SRAM-based FPGAs, however; as time goes on, the number of errors within the
configuration storage grows until even ECC and TMR techniques cannot correct for the faulty logic. To
mitigate this, the FPGA’s configuration must be periodically refreshed to scrub out built-up configuration
errors.

Power consumption is also an important consideration when designing with FPGAs. Overall, an FPGA’s
power needs tend to be significantly higher than for a custom ASIC; however, an FPGA typically uses
less power than the equivalent algorithm implemented as a software program on a microprocessor or
microcontroller. Relative to an ASIC, an FPGA design’s power consumption can be easily estimated
because of its premade, precharacterized logic blocks. Tools that will estimate power consumption using
a simulation of the FPGA exist.

27.7 Similar Devices

Besides FPGAs and traditional PLDs, there exist a variety of other quasiprogrammable ICs; one of these
is a mask programmable gate array, or MPGA. These parts start out as partially finished ICs; they come

FIGURE 27.4 Integration of programmable components with design blocks in a modern FPGA.
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out of the factory with their transistors finished in a regular array as well as specifying the first few
interconnect layers. To finalize the product, the customer connects the finished transistors in a desired
pattern by specifying the remaining interconnect layers. Such a chip plays the middle ground between
the low NRE/high unit cost of FPGAs and the high NRE/low unit cost of ASICs. They accomplish this
by achieving densities close to ASICs; however, the customer only needs to design a few of the uppermost
(and typically the lowest cost) of the masks in the mask set. 

Structured ASICs are closely related to MPGAs. Structured ASICs bring the advantages of IP blockbased
SoC design to MPGAs by combining mask-programmable logic with nonprogrammable blocks such as
microprocessors, embedded memories, memory controllers, and high-speed I/O blocks. Some FPGA
vendors provide special structured ASICs that exactly replicate the functionality of their FPGAs, to make
it easier for customers to port their design from an FPGA over to a structured ASIC. 

There is an analog equivalent to digital FPGAs: field-programmable analog arrays (FPAAs). These
parts contain configurable analog blocks interfaced with programmable interconnect. Each configurable
analog block typically contains at least one operational amplifier (“Op-Amp”) along with various passive
electronic components such as resistors and capacitors.
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28.1 Introduction

Embedded control systems require a high degree of reliability and determinism. However, the costs of
designing and testing these control systems can be very high because of application complexity and
stringent performance requirements. In addition, reducing time-to-market for product development is
essential for many companies. For researchers, the use of high-level software tools in a unified environ-
ment can abstract away many implementation details. This facilitates the rapid investigation of advanced
algorithms and control approaches on real-world systems.

Field-programmable gate arrays (FPGAs) are being used for an increasing number of embedded control
and monitoring systems. They are less expensive than ASICs in terms of development and can also be
reprogrammed in the field. FPGAs also have advantages over microprocessors in that all of the control
logic is implemented in hardware. This leads to a significant advantage in terms of speed. Also, multiple
tasks can run in parallel because each task will utilize a different set of gates on the FPGA. FPGAs can
be used for control, signal processing, digital communication, health monitoring, and custom timing
and triggering.

Programming for FPGAs has previously required knowledge of VHDL or Verilog [1]. VHDL and
Verilog are taught in electrical engineering programs but not in mechanical, aerospace, biomedical, or
chemical engineering programs. This has limited the proliferation of FPGAs in control and mechatronic
systems. Figure 28.1 shows a LabVIEW FPGA example for pulse width modulation (PWM) output
generation. Figure 28.2 shows VHDL for the same task [2].

National Instruments (NI) has recently developed several new design tools and a hardware architecture
that can be used to speed the design and implementation of embedded control systems utilizing FPGAs.
The design tools are based on LabVIEWFPGA—agraphical programming language for FPGAs. The
hardware architecture combines an FPGA with a microprocessor and is available for desktop computers,
PXI/CompactPCI industrial computers, as well as an NI embedded control system called CompactRIO. 

Built-in LabVIEW FPGA functions are available for control and signal processing. Control systems
with digital inputs (such as encoders) and digital outputs (such as PWM signals) can be built on the
FPGA with rates up to 20 MHz. Control systems with analog inputs and outputs can be built with rates
up to 500 kHz. Parallelism is inherent because separate FPGA gates are used for each loop on a LabVIEW
FPGA diagram. Thus, the addition of control or monitoring tasks will not slow the overall FPGA
application. The total number of tasks is limited, however, by the number of gates of the FPGA. 

This paper will present a background on FPGAs, discuss programming methods and system architec-
tures, and describe the LabVIEW FPGA module for graphical programming of FPGAs. Several applica-
tions in control and mechatronics will also be discussed. 

FIGURE 28.1 LabVIEW FPGA program for PWM output.
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28.2 Field-Programmable Gate Array (FPGA) Background

28.2.1 FPGA Definition and Market

An FPGA is a chip that consists of many unconfigured logic gates. Unlike the fixed, vendor-defined
functionality of an application-specific integrated circuit (ASIC) chip, an FPGA can be configured and
reconfigured for different applications. FPGAs are used in applications where the cost of developing and
fabricating an ASIC is prohibitive, or the hardware must be reconfigured after being placed into service.
Because FPGAs can be used for implementation of custom algorithms in hardware, they offer benefits
such as precise timing and synchronization, rapid decision making, and simultaneous execution of parallel
tasks. Today, FPGAs appear in such devices as electronic instruments, consumer electronics, automobiles,
aircraft, copy machines, and application-specific computer hardware.

The major manufacturers of FPGAs are Xilinx [3] and Altera [4] and, together, they comprise more
than 80% of the FPGA market [5].

28.2.2 Programming Methods

Historically, programming FPGAs has been limited to engineers who have in-depth knowledge of VHDL
or other low-level design tools, and requires overcoming a very steep learning curve. 

FIGURE 28.2 VHDL example for PWM output.
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Other FPGA design options are available. Celoxica [6] offers comprehensive C/C++ design tools for
FPGAs. Mentor Graphics [7] creates FPGA code using C++.

AccelChip [8] offers MATLAB® programming capability for FPGAs including tools for floating-point
to fixed-point conversion. Xilinx [3] provides a graphical programming option using Simulink® as part
of their Xilinx System Generator for DSP.

28.2.3 LabVIEW FPGA Graphical Programming

28.2.3.1 LabVIEW FPGA Introduction

The NI LabVIEW FPGA Module extends the LabVIEW graphical development environment to recon-
figurable FPGAs on various hardware platforms [9]. With the LabVIEW FPGA Module, the operation
of the FPGA device as well as the connected analog and digital I/O can be configured by programming
in LabVIEW. The graphical dataflow and parallelism inherent in LabVIEW are useful for intuitively
programming control tasks, algorithms, signal processing, and logic.

Once the FPGA is targeted in the LabVIEW development environment, LabVIEW displays only the
functions that can be implemented in the FPGA (Figure 28.3). The LabVIEW FPGA Module functions
palette includes typical LabVIEWstructures and functions, such as while loops, for loops, case structures,
and sequence structures, as well as a dedicated set of LabVIEW FPGA-specific functions for math, signal
generation and analysis, simple control (including PID), comparison logic, array and cluster manipulation,
occurrences, analog and digital I/O, and timing. A combination of these functions can be used to embed
logic and intelligence onto the FPGA-based device.Math and control in FPGA are limited to integer-math
operations. However, simple control blocks such as PID have been developed with pseudo-floating point
capability.

The LabVIEW block diagram is implemented in hardware, which provides direct control over the
reconfigurable hardware I/O. The I/O signals can be analyzed and manipulated in ways that are not
possible with fixed I/O hardware. Figure 28.4 shows the block diagram for a simple rising-edge counter.
Following the data flow makes it very easy to understand the behavior of this counter. A while loop

FIGURE 28.3 LabVIEW FPGA Functions Palette showing programming structures, timing, math, logic, control,
synchronization, and I/O functions.
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structure is used to continuously read from a digital line and compare the line status from one iteration
to the next. When the digital line changes state, the counter is incremented by one. The counter size is
defined by the I32 data type of the counter indicator, making this a 32-bit counter. 

The uniqueness of LabVIEW FPGA is thatmultiple, parallel counters can be created through additional
while loops placed on the LabVIEW block diagram. These will consume completely different sections of
the FPGA, resulting in true parallel process. In addition, the hardware can be reconfigured as needed.
For example, the digital I/O lines connected to the FPGA can be apportioned as needed into any
combination of encoder inputs, counter inputs, PWM outputs, or serial communication protocols. If
different digital I/O is needed for a new application, the FPGA is simply reprogrammed with LabVIEW-
FPGA to provide different I/O configuration. 

The hardware configuration on the FPGA can be augmented with in-line signal processing, health
monitoring, fault detection, logic, and feedback control. Each additional task consumes additional FPGA
gates until the total number of gates on the FPGA device is consumed.

28.2.4 Development Flow

After creating the LabVIEW FPGA VI, the code must be compiled. Similar to other FPGA development
tools, compile time for an FPGA VI can range fromminutes to several hours, depending on the complexity
of the code and the specifications of the development system. To maximize development productivity,
a bit-accurate emulation mode can be used, so the logic of the design can be verified before initiating
the compile process. When targeting the FPGA Device Emulator, LabVIEW accesses I/O from the device
and executes the VI logic on the Windows development computer. In this mode, it is possible to use the
same debugging tools available in LabVIEW for Windows, such as execution highlighting, probes, and
breakpoints.

Once the LabVIEW FPGA code is compiled, a LabVIEW host VI can be created to integrate the
hardware into the rest of the test and control system. Figure 28.5 illustrates the development process for
creating an FPGA application. The host VI uses controls and indicators on the FPGA VI front panel to
transfer data between the FPGA on the RIO device and the host processing engine. These front panel
objects are represented as data registers within the FPGA. The host computer can be either a PC or PXI
controller running Windows or a PC, PXI controller, Compact Vision System, or CompactRIO controller
running a real-time operating system (RTOS).

28.2.5 Combined FPGA/MicroProcessor Architectures

National Instruments provides multiple hardware platforms with FPGA technology. Figure 28.6 shows
the PXI/cPCI Industrial Computer platform, with plug-in FPGA boards as an option, as well as the
CompactRIO programmable automation controller with an FPGA on the backplane of the chassis. NI
also provides programmable plug-in FPGA boards for desktop computers. An additional hardware
platform with a programmable FPGA is the NI Compact Vision System with distributed machine vision
and control capability.

FIGURE 28.4 LabVIEW FPGA program for 32-bit counter.
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The shared hardware architecture among the platforms is illustrated in Figure 28.7. The desktop PC
and the PXI/cPCI Industrial PC can run Windows or LabVIEW Real-Time on the main floating-point
processor. LabVIEW Real-Time allows LabVIEW diagrams to run on top of a commercial real-time
operating system for multiple types of targets. In both the desktop and the PXI system, the plug-in FPGA
board is connected to the processor via the PCI bus. Plug-in FPGA boards are available with both balanced
analog I/O and multiple digital lines.

The CompactRIO architecture shown in Figure 28.7 is similar to that of the desktop and the PXI
system with FPGA technology. The floating-point processor in the CompactRIO controller is tied to the
FPGA on the backplane via an internal PCI bus. The FPGA is, in turn, connected to the analog and
digital I/O modules in a star topology. Analog modules contain both conversion circuitry and signal
conditioning while digital modules have signal conditioning alone. 

FIGURE 28.5 Application development flow showing FPGA compilation step.

FIGURE 28.6 PXI/cPCI Industrial Computer and NI CompactRIO automation controller.

FIGURE 28.7 Hardware architecture diagram for FPGA/processor platforms.
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Because of the similar hardware architecture, a common software application architecture can be used
for all three platforms. This software architecture is shown in Figure 28.8 and includes a host VI (program)
running on a Windows PC, a real-time VI running on the processor, and an FPGA VI running completely
in hardware on the FPGA.

With this software and hardware architecture, it is possible to quickly develop various hierarchical
control strategies. Some lower level control loops can take place completely in the FPGA. Higher level
control loops can be written for the floating-point processor in the system. In addition, various tasks
such as custom startup and shutdown behavior, in-line signal processing, and custom timing, synchro-
nization, and digital communication can be implemented in the FPGA. Time-critical parallel tasks such
as health monitoring and fault detection can be developed on the FPGA as well.

While processors run computations in sequence, FPGAs can run computations in parallel. New
processor architectures involving multiple cores are being released, but the FPGA is still the best choice
for parallel computation. If multiple control loops or tasks are implemented in a processor, then the
overall loop rate will decrease. Multiple control loops and tasks that are implemented in an FPGA can
execute independently so that extremely high loop rates can be achieved. The limiting factor for FPGAs
is the space available or the number of gates.

28.2.6 Integration of FPGA Graphical Programming with Simulation and 
Control

A simple analog input and analog output operation written with LabVIEWFPGA is shown in Figure
28.9. The analog I/O will run at the maximum rate allowed by the FPGA since a timing VI has not been
added to the program. The timing is then limited only by the conversion rate for I/O on the FPGA-based
device. 

Figure 28.10 shows the front panel for this VI when the analog output is wrapped back to the analog
input. The user can adjust the slider for the analog output on the front panel and see the result in the
graph of the analog input.

A simple control program can be developed for the real-time processor using the LabVIEW Simulation
Module. Figure 28.11 shows the simulation loop with a signal generator VI writing a sine wave to the
analog output. The analog input is read back through the FPGA and communicated to the processor.

Many other dynamic system modeling and control blocks are available in LabVIEW Simulation Module
including linear continuous and discrete-time models, as well as both graphical and textual blocks for
nonlinear systems.

FIGURE 28.8 Software application architecture diagram for FPGA/processor platforms.
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FIGURE 28.9 Simple analog input and output VI written in LabVIEW FPGA for single-point I/O.

FIGURE 28.10 Front panel of analog input and output VI written in LabVIEW FPGA.

FIGURE 28.11 Simple LabVIEW Simulation Module VI that communicates with LabVIEW FPGA VI through an
interface node.
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28.3 Applications

28.3.1 High-Speed Control on a FPGA for Micro-Electromechanical Systems 
 Device

Using LabVIEW FPGA and the NI PXI-7831R module, Kurfess and Degertekin implemented parallel,
extremely high speed control (120 kHz) of an array of micro-electromechanical systems (MEMS) devices
[10]. MEMS devices are produced in large quantities on a single silicon wafer, and, even when packaged
or built into another device, they are often spatially arranged in arrays. Kurfess and Degertekin developed
a novel measurement system that can test multiple MEMS devices in an array simultaneously rather than
stepping and scanning a single measurement device over the MEMS array. The new measurement system
is itself an array of MEMS microinterferometers. Each microinterferometer in the array is a position-
sensing grating interferometer (µPSGI) capable of measuring out-of-plane distances with subnanometer
accuracy at frequencies more than 20 MHz. The microinterferometer is 1000 times smaller than typical,
bench-sized laser interferometers. Initial results demonstrate mapping of microscale membranes vibrat-
ing in the 2 MHz range (Figure 28.12).

Kurfess and Degertekin implemented the microinterferometer in both single and array units using the
LabVIEW FPGA Module and NI reconfigurable I/O hardware, which makes the transition from moni-
toring and controlling a single interferometer to an array of interferometers a simple task. They used the
NI PXI-7831R reconfigurable I/O module to provide analog I/O along with high-speed PID control.
They applied the control to a deformable grating within the interferometer sensor to minimize the effects
of sample misalignment and external disturbances and improve the sensitivity of the microinterferometer
during operation. They used the pseudo–floating-point PID example in the LabVIEW FPGA Module as
a basis for the control implementation. With the high-speed hardware timing capabilities of the Lab-
VIEW FPGA Module, Kurfess and Degertekin easily achieved the required 120 kHz bandwidth for the
control loop.

In this application, the maximum bandwidth was determined by the conversion speed of the A/D and
D/A circuitry on the PXI-7831R module. Higher bandwidth control can be achieved if the digital lines
on the plug-in FPGA board are used for both sensors and actuators. An example would be encoders or
tachometers for sensors and PWM commands to amplifiers or drives for actuators. Also, the CompactRIO
system includes options for high bandwidth analog-to-digital and digital-to-analog conversion circuitry.

28.3.2 Single-Point I/O on FPGA for Haptics

Kopp and O’Malley [11] used LabVIEW Real-Time and LabVIEW FPGA for control and high-speed
single-point I/O in a haptics experiment focused on creating stiff “virtual walls.” A limiting factor for

FIGURE 28.12 SEM image of MEMS microinterferometer.
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stiffness in virtual walls is the sampling rate of the control system for the haptic device. If the desired
stiffness is too high in relation to the sampling rate, then the virtual wall ceases to be passive and exhibits
active behavior in the form of vibrations and, at too high of a stiffness, instability. The device used in
the experiment was the Phantom Premium 1.0 haptic device from SensAble Technologies [12]. Using
LabVIEW FPGA and a PXI-7831R FPGA board, the researchers were able to achieve a sampling rate of
20 kHz. The Windows/GHOST software and hardware platform that shipped with the Phantom device
had a maximum sampling rate of 1 kHz. The increased sampling rate for the FPGA-based system resulted
in a maximum wall stiffness of 500 N/m compared to a maximum wall stiffness of 25 N/m for the
Windows/GHOST system.

28.3.3 Phase-Locked Loop for Scanning Probe Microscope

Rychen and Vancura [13] developed a compact, high-speed control system for a scanning probe micro-
scope (SPM) using LabVIEW FPGA, LabVIEW Real-Time, and a PXI system. The 1.26 GHz real-time
processor ran several algorithms such as raster scan generators, the tip-sample distance controller, and
auxiliary feedback controllers. A digital phase-locked loop (PLL) was implemented with LabVIEWFPGA
resulting in a demodulation bandwidth of more than 10 kHz, using the analog I/O lines to interface to
the external components. With a redesign involving the use of digital I/O lines, 24 MS/s is possible with
a frequency resolution of 0.1 µHz. The fully digital case will yield high-phase accuracy compared to the
analog circuitry. In addition, the demodulation bandwidth may be adjusted into the millihertz range for
the highest frequency resolution.

28.3.4 Model-Free Adaptive Control for FPGA

CyboSoft [14] has developed a model-free adaptive (MFA) control toolset for LabVIEW. Used in con-
junction with NI SoftMotion on CompactRIO, one option in the toolset provides high-speed positioning
control using LabVIEW FPGA with a minimum sampling period of 25 µs. The toolset has been successfully
demonstrated with high precision piezoelectric stages with significant load changes.

28.3.5 Motorcycle Engine Control Prototyping

Dase [15] from Drivven Inc. [16] used LabVIEW FPGA, CompactRIO, and custom I/O modules to build
an engine control prototyping system. Engine control is a challenging application involving loop times
on the order of milliseconds and precision fuel and spark timing on the order of microseconds. Dase
was able to completely replace the ECU on a 2004 Yamaha YZF-R6 motorcycle using the CompactRIO
system such that experienced riders could not identify significant differences between the factory ECU
control and the prototype control.

28.4 Additional Tools for FPGA Development

28.4.1 SoftMotion Position Control Loop on FPGA

The NI SoftMotion Development Module, shown in Figure 28.13, includes enhanced real-time and FPGA
algorithms for motion control and built-in inputs for a variety of feedback devices including quadrature
encoders and sine cosine encoders. Table 28.1 shows the servo update rates that can be obtained using
NI SoftMotion on a variety of hardware targets including FPGA targets.

28.4.2 Digital Filter Design Toolkit

The NI Digital Filter Design Toolkit provides functions and interactive tools for design, analysis, and
implementation of digital filters within LabVIEW FPGA. The toolkit includes interactive design methods
for both classical filter design and filter design based on pole-zero placement (Figure 28.14). A control
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law that can be represented as a discrete-time transfer function can be implemented on the FPGA using
LabVIEW FPGA code generated from the Digital Filter Design Toolkit.

28.4.3 State Diagram Editor on FPGA

The LabVIEW State Diagram Toolkit can be used to help build state machines on an FPGA. The toolkit
includes a state diagram editor for drawing the logic that defines an application. An example of this is
shown in Figure 28.15. As states and transitions are added to the state machine diagram, LabVIEW
generates code to match each change. The logic for the statemachines is represented in the LabVIEW code
by a series of while loops and case statements. The toolkit can also insert comments in the LabVIEW block
diagram to indicate where additional code can be added. The entire LabVIEW block diagram can then
be implemented on an FPGA using the LabVIEW FPGA module.

28.5 Conclusion

Graphical programming for FPGAs can be used by control and mechatronic system designers and
researchers to quickly develop robust and high-performance applications. The combination of FPGAs
with floating-point processors allows engineers to intelligently distribute computation, control, and signal

FIGURE 28.13 Architecture of NI SoftMotion Development Module.
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FIGURE 28.14 Interactive filter design using LabVIEW Digital Filter Design Toolkit.

FIGURE 28.15 Architecture of NI SoftMotion Development Module.
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processing functions. LabVIEW FPGA is a comprehensive tool for graphical programming FPGAs and
includes functions for timing, logic, synchronization, high-speed control, analog, and digital I/O. The
NI SoftMotion Module provides motion-specific functionality for combined real-time processor/FPGA
systems. The NI Digital Filter Design Toolkit can be used in conjunction with LabVIEW FPGA to quickly
prototype and implement digital filters on an FPGA.
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29.1 Introduction

Data acquisition is the gathering of signals from real-world measurement sources and the digitizing of
those signals for storage, analysis, and presentation on a personal computer (PC). Light, temperature,
pressure, and torque are a few of the many different types of signals that can interface to a data acquisition
system. In addition to acquiring data, data acquisition systems also are used to generate electrical signals.

These signals can either intelligently control mechanical systems or provide a stimulus so that the data
acquisition system can measure the response. A data acquisition system provides a way to empirically
test designs, theories, and real-world systems for validation or research. Figure 29.1 illustrates a typical
computer-based data acquisition module.

The design and the production of amodern car, for instance, rely heavily on data acquisition. Engineers
will first use data acquisition to test the design of the car’s components. The frame can be monitored for
mechanical stress, wind noise, and durability. The vibration and temperature of the engine can be
acquired to evaluate the design quality. The researchers and engineers can then use this data to optimize
the design of the first prototype of the car. The prototype can then bemonitored under many different
conditions on a test track while information is collected through data acquisition. After required iterations
of design change and data acquisition, the car is ready for production. Data acquisition devices can
monitor the machines that assemble the car, and they can ensure that the assembled car meets the
necessary specifications.

At first, data acquisition devices stood alone and were manually controlled by an operator. When the
PC emerged, data acquisition devices and instruments could be connected to the computer through a
serial port, parallel port, or some custom interface. A computer program could control the device
automatically and retrieve data from the device for storage, analysis, or presentation. Now, instruments

Craig Anderson
National Instruments, Inc.

9260_29.fm  Page 1  Friday, October 5, 2007  2:42 PM



29-2 Mechatronic System Control, Logic, and Data Acquisition

and data acquisition devices can be integrated into a computer through high-speed communication links
such as PCI, PCI Express, Ethernet, IEEE 1394, or USB busses for tighter integration between the power
and .exibility of the computer and the instrument or device.

Modern data acquisition systems are composed of transducers and sensors to measure a physical
phenomenon, the resulting electrical signals, hardware to prepare the signals for measurement, measure-
ment hardware, and data acquisition software.

29.2 Transducers and Sensors

Data acquisition begins with the physical phenomenon to be measured. This physical phenomenon
could be the temperature of a room, the intensity of a light source, the pressure inside a chamber, the
force applied to an object, or many other things. An effective data acquisition system can measure all
these different phenomena. 

A transducer is a device that converts a physical phenomenon into a measurable electrical signal, such
as voltage or current. The ability of a data acquisition systemto measure different phenomena depends
on the transducers that convert the physical phenomena into signals measurable by the data acquisition
hardware. Transducers are synonymous with sensors in data acquisition systems. There are specific
transducers for many different applications, such as measuring temperature, pressure, or fluid flow.

A common example of a transducer is a thermocouple. A thermocouple uses the material properties
of dissimilar metals to convert a temperature into a voltage. As the temperature increases, the voltage
produced by the thermocouple increases. A software program can then convert the voltage reading back
into a temperature for analysis, presentation, and data logging. Many sensors produce currents instead
of voltages. A current is often advantageous because the signal will not be corrupted by small amounts
of resistance in the wires connecting the transducer to the data acquisition device. A disadvantage of
current-producing transducers, though, is that most data acquisition devices measure voltage, not current.

Generally, the data acquisition devices that can measure current use a very small resistance of a known
value to convert the known current into a readable voltage. Ultimately, the device isthen still acquiring
a voltage.

29.3 Signals

The appropriate transducer converts the physical phenomena into measurable signals. However, different
signals need to be measured in different ways. For this reason, it is important to understand the different
types of signals and their corresponding attributes. Signals can be categorized into two groups; analog
and digital.

FIGURE 29.1 Examples of typical, computer-based data acquisition devices. Plug-in devices are also commonly
available for USB, PCI, and PCI Express buses.
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29.3.1 Analog Signals

An analog signal can be at any value with respect to time. A few examples of analog signals include voltage,
temperature, pressure, sound, and load. The three primary characteristics of an analog signal are level,
shape, and frequency (Figure 29.2).

29.3.1.1 Level

Because analog signals can take on any value, the level gives vital information about the measured analog
signal. The intensity of a light source, the temperature in a room, and the pressure inside a chamber are
all examples that demonstrate the importance of a signal’s level. When measuring a signal’s level, the
signal generally doesnot change quickly with respect to time. The accuracy of the measurement, however,
is very important. A data acquisition system that yields maximum accuracy should be chosen to aid in
analog level measurements.

29.3.1.2 Shape

Some signals are named after their speci.c shape—sine, square, sawtooth, and triangle. The shape of an
analog signal can be as important as the level, because measuring the shape of an analog signal allows
further analysis of the signal, including peak values, dc values, and slope. Signals where shape is of interest
generally change rapidly with respect to time and therefore require faster sampling of the analog signal
than is required for a level measurement. The analysis of heartbeats, video signals, sounds, vibrations,
and circuit responses are some applications involving shape measurements.

29.3.1.3 Frequency

Analog signals can be categorized by their frequency. Unlike the level or shape of the signal, frequency
cannot be directly measured. The signal must be analyzed using software to determine the frequency
information. Thisanalys isisus ually done using an algorithm known asthe Fourier transform. 

When frequency is the most important piece of information, it is important to consider both accuracy
and acquisition speed. Although the acquisition speed for acquiring the frequency of a signal is less than
the speed required for obtaining the shape of a signal, the signal must still be acquired fast enough so
that the pertinent information is not lost while the analog signal is being acquired. The Nyquist sampling
theorem states that an analog signalmust be sampled two times faster than the highest frequency com-
ponent in the signal source in order to preserve frequency information. To preserve shape and frequency
information, sampling should be performed 10 times faster than the highest frequency component in
the signal source. Speech analysis, telecommunication, and earthquake analysis are some examples of
common applications where the frequency of the signal must be known.

FIGURE 29.2 Primary characteristics of an analog signal.
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29.3.2 Digital Signals

A digital signal cannot take on any value with respect to time. Instead, a digital signal has two possible
levels—high and low. Digital signals generally conform to certain speci.cations that de.ne the character-
istics of the signal. Digital signals are commonly referred to as transistor–transistor logic (TTL). TTL
speci.cationsdictat e that a digital signal islo w when the level fallsw ithin 0–0.8 V, and high when it falls
between 2 and 5 V. The useful information that can be measured from a digital signal includes the state
and the rate, ass een in Figure 29.3.

29.3.2.1 State

Digital signals cannot take on any value with respect to time. The state of a digital signal is essentially
the level of the signal—on or off, high or low.Monitoring the state of a switch—open or closed—is a
common application showing the importance of knowing the state of a digital signal. The most commonly
used digital levels are TTL and TTL-compatible CMOS. These are both very common 5-V standards for
digital hardware.

Digital transfer rates to and from data acquisition hardware vary from unstrobed to high speed.
Unstrobed digital input and output involves setting digital lines and monitoring states by software
command. Thisformof digital input and output isals o known ass tatic or immediate digital I/O.The
maximum speed of an unstrobed I/O is highly dependent on the computer hardware, the operating
system, and the application program. Pattern digital I/O referst o inputsand outputsof digital pattern-
sunder the control of a clock signal. The speed at which the data can be sent or received depends on the
amount of data, the characteristics of the data acquisition hardware, and the computer speed.

29.3.2.2 Rate

The rate of a digital signal de.nes how it changes state with respect to time. One example of measuring
a digital signal’s rate is determining how fast a motor shaft spins. Unlike frequency, the rate of a digital
signal measures how often a portion of the signal occurs. A software algorithm is not required to
determine the rate of a signal. Instead, a digital signal’s rate is typically calculated using counter/timers.
Counter/timers are capable of measuring or producing time-critical digital pulses. These pulses, such
asthe digital input and output, are generally TTL or TTL-compatible CMOS. These components are used
for measuring or producing a number of time-critical signals, including event counting, pulse train
generation, frequency-shift keying, and quadrature encoder monitoring. The two main characteristics of
a counter/timer are counter size and maximum source frequency. The counter size is generally represented
in bitsand determinesho w high a counter can count. For instance, a 32-bit counter can count 232 � 1
� 4,294,967,295 eventsbefor e it returnsthe count value back to zero. The maximum source frequency

FIGURE 29.3 Primary characteristics of a digital signal.
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represents the speed of the fastest signal the counter can count. An 80-MHz counter can count events
that are asfas t as12.5 nsapar t. An “event” isactually the rising or falling edge of a digital signal.

29.4 Signal Conditioning

No real situation will have perfect signals, be completely free of noise, or be guaranteed to be electrically
safe. Most real signals require some sort of preparation (conditioning) before being gathered by a data
acquisition system. Signal conditioning hardware provides a method to remove—as much as possible—
unwanted componentsof a digital or analog signal. 

Measurement hardware, particularly for high-frequency analog signals, is usually equipped with an
antialiasing filter. Thisisa low-pass.lt er that blocks frequencies above the desired frequency range and
increasesthe measurement accuracy. Digital and counter/timer lines are also commonly fitted with filters
that remove signal spikes that could otherwise be mistakenly counted as a rising or falling edge. Isolation
is another type of signal conditioning that separates the measurement hardware circuitry from the signal
being measured. Thisisdone to remove large differencesin electric potential between the measurement
hardware and the signal, and it protectsoper atorsand measurement hardware from damage, given a large
surge in voltage or current. Other types of signal conditioning include ampli.cation, attenuation, multi-
plexing, excitation, and cold-junction compensation.

29.5 Data Acquisition Hardware

The heart of a data acquisition device is a digital-to-analog converter (DAC), an analog-to-digital con-
verter (ADC), or some combinationsof the two. An ADC hasa .nite list of binary valuesthat represent
analog voltage ranges. The ADC’s purpose is to select a value from this list that is closest to an actual
voltage at a specified time. The value is then transferred in binary format to a computer. Alternatively,
a DAC can produce an analog voltage froma list of binary values. The voltage generated by a basicDAC
stays the same until it receivesanother value from the computer. In order to acquire and produce analog
waveforms, the DAC and ADC must activate at precise intervals. Consequently, measurement hardware
has timing circuitry to produce a pulse train of a constant frequency to control the ADC and DAC.

The data that ist ransferred from the ADC and to the DAC travelst o the computer over a bus. A bus
isa group of electrical conductorsthat transfer information inside a computer. Some common examples
of a busar e PCI and USB. The buscan carry both control information and binary measurement data
to and from measurement hardware. One of the most important considerations in selecting a bus is bus
transfer rate, usually expressed in megabytes per second (Mb/s). A single analog value could require
less than 1 byte or asm uch as4 bytes, depending on the type of measurement hardware. The busiss
hared among multiple devices, so data acquisition devices often have onboard memory to serve as a
holding place for data when the bus is not available. In very fast data acquisition routines, the memory
can hold all the data, and at the end of the acquisition, all the data can be transferred to the computer
for processing.

When data isac quired at high speedson multiple channels, it isoft en important to understand the
phase relationship from one signal to the next. If the signals need to be generated or acquired on a single
data acquisition device, simultaneously sampling data acquisition hardware provides a dedicated ADC
or DAC and a shared clock for all channels. If the signals are generated or acquired on multiple data
acquisition devices, there are a number of ways to synchronize the systems and preserve relative phase
relationships. One way is to share the ADC and DAC clock between the data acquisition devices. The
real-time system integration (RTSI) bus can connect multiple devices together to share timing circuitry
among multiple devices. Phase-lock looping (PLL) is a more sophisticated synchronization method. A
reference signal is supplied to all the data acquisition devices, and the internal clocks stay in phase with
the reference signal. Consequently, the phase relationship can be reserved even if different measurement
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hardware is using different sampling or update speeds. Figure 29.4 is a diagram showing the components
of a typical data acquisition system.

The difference between an actual analog voltage and the closest voltage from the list of binary values
is called the quantization error. In a perfect digitizing measurement system that is free of noise, the
quantization errorwould solely explain any difference between the actual voltage and the measured
voltage. No measurement hardware and no environment, however, are perfect. The accuracy of an
instrument describes the amount of uncertainty when considering quantization error, unavoidable system
noise, and hardware imperfections. Accuracy is sometimes confused with precision. Precision refers to
the amount of deviation inmultiple measurements connected to a constant and level signal source. Even
if an instrument is precise, it could still be inaccurate if the readings were consistent but signi.cantly
different than the actual value of the signal.

The accuracy of a data acquisition system can change with temperature, time, and usage. Data acqui-
sition hardware can store onboard correction constants for offset and gain errors. An offset error is a
constant difference between the measured and actual voltage, regardless of the voltage level. A gain error
increases linearly as the measured voltage increases. Some data acquisition hardware also includes an
accurate voltage source on board that can be periodically used as a reference to correct the gain and
offset error parameters.

29.6 Data Acquisition Software

The final piece of a data acquisition systemto understand is the software. Software transforms the PC
and the data acquisition hardware into a complete data acquisition, analysis, and presentation tool.
Without software to control or drive the hardware, the data acquisition device will not function properly.
The driver software is a set of commands that a programmer can incorporate into a program. The driver
software is usually supplied by the manufacturer of the hardware and can be used in a variety of
programming languages. Driver software is the layer of software that allows easy communication with
the hardware. It forms the middle layer between the application software and the hardware. Driver
software also prevents a programmer from having to do register-level programming or complicated
commands in order to access the hardware functions.

Application software adds analysis and presentation capabilities to the driver software. To choose the
right application software, evaluate the complexity of the application, the availability of con.gurationbased
software that fits the application, and the amount of time available to develop the application. If the
application isc omplex or there isno existing program, use a development environment. A programmer
can use a programming language and an application development environment to build an application
from the driver software such as the one shown in Figure 29.5, or use a con.guration-based programwith
preset functionality. The application is then ready for an end user to easily control and acquire data from
the hardware—a custom instrument built specifically for the user’s needs. 

FIGURE 29.4 The components of a typical data acquisition system.
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29.7 Summary

Data acquisition is the process of collecting signals fromreal-world measurement sources and the digitizing
of those signals for storage, analysis, and presentation. Data acquisition systems can also be used to
generate signals that either intelligently control mechanical systems or provide a stimulus so that the data
acquisition system can measure the response. Initially, data acquisition devices were stand-alone and
controlled manually by an operator. Today, data acquisition devices and instruments are connected to
computers and are composed of transducers and sensors for measuring physical phenomena, hardware
to prepare the signals for measurement, measurement hardware, and data acquisition software.

29.8 Related Information

More information about PC-based data acquisition systems is available from National Instruments in
the form of white papers, application notes, customer solutions, and product information. Visit
http://www.ni.com and search for “data acquisition” to view available information.

FIGURE 29.5 An example of an application built from LabVIEWsoftware.
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30.1 Introduction

An automatic control system is said to be error actuated because the forward path components (comparator,
controller, actuator, and plant or process) respond to the error signal (Figure 30.1). The error signal is
developed by comparing the measured value of the controlled output to some reference input, and so the
accuracy and precision of the controlled output are largely dependent on the accuracy and precision with
which the controlled output is measured. It follows then that measurement of the controlled output,
accomplished by a system component called the transducer, is arguably the single most important function
in an automatic control system.

A transducer senses the magnitude or intensity of the controlled output and produces a proportional
signal in an energy form suitable for transmission along the feedback path to the comparator. [The term
proportional is used loosely here because the output of the transducer may not always be directly
proportional to the controlled output; that is, the transducer may not be a linear component. In linear
systems, if the output of the transducer (the measurement) is not linear, it is linearized by the signal
conditioner.] The element of the transducer which senses the controlled output is called the sensor; the
remaining elements of a transducer serve to convert the sensor output to the energy form required by
the feedback path. Possible configurations of the feedback path include:

• Mechanical linkage

• Fluid power (pneumatic or hydraulic)

• Electrical, including optical coupling, RF propagation, magnetic coupling, or acoustic propagation

Cecil Harrison
University of Southern Mississippi
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30-2 Mechatronic System Control, Logic, and Data Acquisition

Electrical signals suitable for representing measurement results include:

• DC voltage or current amplitude

• AC voltage or current amplitude, frequency, or phase (CW modulated)

• Voltage or current pulses (digital)

In some cases, representation may change (e.g., from a DC amplitude to digital pulses) along the feedback
path.

The remainder of this discussion pertains to a large number of automatic control systems in which
the feedback signal is electrical and the feedback path consists of wire or cable connections between the
feedback path components. The transducers considered hereafter sense the controlled output and produce
an electrical signal representative of the magnitude, intensity, or direction of the controlled output.

The signal conditioner accepts the electrical output of the transducer and transmits the signal to the
comparator in a form compatible with the reference input. The functions of the signal conditioner include:

• Amplification/attenuation (scaling)

• Isolation

• Sampling

• Noise elimination

• Linearization

• Span and reference shifting

• Mathematical manipulation (e.g., differentiation, division, integration, multiplication, root find-
ing, squaring, subtraction, or summation)

• Signal conversion (e.g., DC–AC, AC–DC, frequency–voltage, voltage–frequency, digital–analog,
analog–digital, etc.)

• Buffering

• Digitizing

• Filtering

• Impedance matching

• Wave shaping

• Phase shifting

In cases in which part or all of the required signal conditioning is accomplished within the transducer,
the transducer output may be connected directly to the comparator. [Connection of the transducer output
directly to the comparator should not be confused with unity feedback. Unity feedback occurs when the
cascaded components of the feedback path (transducer and signal conditioner) have a combined transfer
function equal to 1 (unity).] In a digital control system, many of the signal conditioning functions listed
here can also be accomplished by software.

FIGURE 30.1 Functional block diagram of a canonical (standard) automatic control system.
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Transducers are usually considered in two groups:

• Motion and force transducers, which are mainly associated with servomechanisms

• Process transducers, which are mainly associated with process control systems

As will be seen, most process transducers incorporate some sort of motion transducer.

30.2 Motion and Force Transducers

This section discusses those transducers used in systems that control motion (i.e., displacement, velocity,
and acceleration). Force is closely associated with motion, because motion is the result of unbalanced
forces, and so force transducers are discussed concurrently. The discussion is limited to those transducers
that measure rectilinear motion (straight line motion within a stationary frame of reference) or angular
motion (circular motion about a fixed axis). Rectilinear motion is sometimes called linear motion, but
this leads to confusion in situations where the motion, though along a straight line, really represents a
mathematically nonlinear response to input forces. Angular motion is also called rotation or rotary motion
without ambiguity.

The primary theoretical basis for motion transducers is found in rigid-body mechanics. From the
equations of motion for rigid-bodies (Table 30.1), it is clear that if any one of displacement, velocity, or

TABLE 30.1 Equations of Motion

Continuous Discrete ∆t = ti − ti−1 

Rectilinear displacement:

Angular displacement:

Rectilinear velocity:

Angular velocity:

Rectilinear acceleration:

Angular acceleration:
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acceleration is measured, the other two can be derived by mathematical manipulation of the signal within
an analog signal conditioner or within the controller software of a digital control system.

Position is simply a location within a frame of reference; thus, any measurement of displacement
relative to the frame is a measurement of position, and any displacement transducer whose input is
referenced to the frame can be used as a position transducer.

30.2.1 Displacement (Position) Transducers

Displacement transducers may be considered according to application as gross (large) displacement trans-
ducers or sensitive (small) displacement transducers. The demarcation between gross and sensitive dis-
placement is somewhat arbitrary, but may be conveniently taken as approximately 1 mm for rectilinear
displacement and approximately 10′ arc (1/6°) for angular displacement. The predominant types of
gross displacement transducers (Figure 30.2) are:

• Potentiometers (Figure 30.2a)

• Variable differential transformers (VDT) (Figure 30.2b)

• Synchros (Figure 30.2c)

• Resolvers (Figure 30.2d)

• Position encoders (Figure 30.2e)

Potentiometer-based transducers are simple to implement and require the least signal conditioning,
but potentiometers are subject to wear due to sliding contact between the wiper and the resistance
element and may produce noise due to wiper bounce (Figure 30.2a). Potentiometers are available with
strokes ranging from less than 1 cm to more than 50 cm (rectilinear) and from a few degrees to more
than 50 turns (rotary).

VDTs are not as subject to wear as potentiometers, but the maximum length of the stroke is small,
approximately 25 cm or less for a linear VDT (LVDT) and approximately 60° or less for a rotary VDT
(RVDT). VDTs require extensive signal conditioning in the form of phase-sensitive demodulation of the
AC signal; however, the availability of dedicated VDT demodulators in integrated circuit (IC) packages
mitigates this disadvantage of the VDT.

Synchros are rather complex and expensive three-phase AC machines, which are constructed to be
precise and rugged. Synchros are capable of measuring angular differences in the positions (up to ±180°)
of two continuously rotating shafts. In addition, synchros may function simultaneously as reference input,
output measurement device, feedback path, and comparator (Figure 30.2c).

Resolvers are simpler and less expensive than synchros, and they have an advantage over RVDTs in
their ability to measure angular displacement throughout 360° of rotation. In Figure 30.2d, which
represents one of several possibilities for utilizing a resolver, the signal amplitude is proportional to
the cosine of the measured angle at one output coil and the sine of the measured angle at the other.
Dedicated ICs are available for signal conditioning and for conversion of resolver output to digital
format. The same IC, when used with a Scott-T transformer, can be used to convert synchro output
to digital format.

Position encoders are highly adaptable to digital control schemes because they eliminate the require-
ment for digital-to-analog conversion (DAC) of the feedback signal. The code tracks are read by track
sensors, usually wipers or electro-optical devices (typically infrared or laser). Position encoders are
available for both rectilinear and rotary applications, but are probably more commonly found as shaft
encoders in rotary applications. Signal conditioning is straightforward for absolute encoders (Figure
30.2e), requiring only a decoder, but position resolution depends on the number of tracks, and increasing
the number of tracks increases the complexity of the decoder. Incremental encoders require more complex
signal conditioning, in the form of counters and a processor for computing position. The number of
tracks, however, is fixed at three (Figure 30.2f). Position resolution is limited only by the ability to render
finer divisions of the code track on the moving surface.

9260_30.fm  Page 4  Friday, October 5, 2007  11:07 AM



Measurement Techniques: Sensors and Transducers 30-5

Although gross displacement transducers are designed specifically for either rectilinear or rotary
motion, a rack and pinion, or a similar motion converter, is often used to adapt transducers designed for
rectilinear motion to the measurement of rotary motion, and vice versa.

The predominant types of sensitive (small) displacement transducers (Figure 30.3) are:

• Differential capacitors

• Strain gauge resistors

• Piezoelectric crystals

FIGURE 30.2 Gross displacement transducers: (a) potentiometers, (b) variable differential transformers (VDT),
(c) synchros (typical connection), (d) resolvers (typical connection), (e) absolute position encoders, (f) code track
for incremental position encoder.
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30-6 Mechatronic System Control, Logic, and Data Acquisition

Figure 30.3a provides a simplified depiction of a differential capacitor used for sensitive displacement
measurements. The motion of the input rod flexes the common plate, which increases the capacitance
of one capacitor and decreases the capacitance of the other. In one measurement technique, the two
capacitors are made part of an impedance bridge (such as a Schering bridge), and the change in the
bridge output is an indication of displacement of the common plate. In another technique, each capacitor
is connected to serve as tuning capacitor for an oscillator, and the difference in frequency between the
two oscillators is an indication of displacement.

A strain gauge resistor is used to measure elastic deformation (strain) of materials by bonding the resistor
to the material (Figure 30.3b) so that it undergoes the same strain as the material. The resistor is

FIGURE 30.2 (Continued)
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usually incorporated into one of the several bridge circuits, and the output of the bridge is taken as an
indication of strain.

The piezoelectric effect is used in several techniques for sensitive displacement measurements
(Figure 30.3c). In one technique, the input motion deforms the crystal by acting directly on one electrode.
In another technique, the crystal is fabricated as part of a larger structure, which is oriented so that input
motion bends the structure and deforms the crystal. Deformation of the crystal produces a small output
voltage and also alters the resonant frequency of the crystal. In a few situations, the output voltage is
taken directly as an indication of motion, but more frequently the crystal is used to control an oscillator,
and the oscillator frequency is taken as the indication of strain.

FIGURE 30.3 Sensitive displacement transducers: (a) differential capacitor, (b) strain gauge resistor, (c) piezoelectric
crystals.
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30.2.2 Velocity Transducers

As stated previously, signal conditioning techniques make it possible to derive all motion measurements—
displacement, velocity, or acceleration—from a measurement of any one of the three. Nevertheless, it is
sometimes advantageous to measure velocity directly, particularly in the cases of short-stroke rectilinear
motion or high-speed shaft rotation. The analog transducers frequently used to meet these two require-
ments are:

• Magnet-and-coil velocity transducers (Figure 30.4a)

• Tachometer generators

A third category of velocity transducers, counter-type velocity transducers (Figure 30.4b), is simple to
implement and is directly compatible with digital controllers.

The operation of magnet-and-coil velocity transducers is based on Faraday’s law of induction. For a
solenoidal coil with a high length-to-diameter ratio made with closely spaced turns of fine wire, the
voltage induced into the coil is proportional to the velocity of the magnet. Magnet-and-coil velocity
transducers are available with strokes ranging from less than 10 mm to approximately 0.5 m.

A tachometer generator is, as the name implies, a small AC or DC generator whose output voltage is
directly proportional to the angular velocity of its rotor, which is driven by the controlled output shaft.
Tachometer generators are available for shaft speeds of 5000 rpm, or greater, but the output may be
nonlinear and there may be an unacceptable output voltage ripple at low speeds.

AC tachometer generators are less expensive and easier to maintain than DC tachometer generators,
but DC tachometer generators are directly compatible with analog controllers and the polarity of the
output is a direct indication of the direction of rotation. The output of an AC tachometer generator must
be demodulated (i.e., rectified and filtered), and the demodulator must be phase sensitive in order to
indicate direction of rotation.

Counter-type velocity transducers operate on the principle of counting electrical pulses for a fixed
amount of time, then converting the count per unit time to velocity. Counter-type velocity transducers

FIGURE 30.4 Velocity transducers: (a) magnet and coil, (b) proximity sensors.
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rely on the use of a proximity sensor (pickup) or an incremental encoder (Figure 30.2f). Proximity sensors
may be one of the following types:

• Electro-optic

• Variable reluctance

• Hall effect

• Inductance

• Capacitance

Two typical applications of counter-type velocity transducers are shown in Figure 30.4b.
Since a digital controller necessarily includes a very accurate electronic clock, both pulse counting and

conversion to velocity can be implemented in software (i.e., made a part of the controller program).
Hardware implementation of pulse counting may be necessary if time-intensive counting would divert
the controller from other necessary control functions. A special-purpose IC, known as a quadrature
decoder/counter interface, can perform the decoding and counting functions and transmit the count to the
controller as a data word.

30.2.3 Acceleration Transducers

As with velocity measurements, it is sometimes preferable to measure acceleration directly, rather than derive
acceleration from a displacement or velocity measurement. The majority of acceleration transducers may be
categorized as seismic accelerometers because the measurement of acceleration is based on measuring the
displacement of a mass called the seismic element (Figure 30.5). The configurations shown in Figures 30.5a,b
require a rather precise arrangement of springs for suspension and centering of the seismic mass. One of the
disadvantages of a seismic accelerometer is that the seismic mass is displaced during acceleration, and this
displacement introduces nonlinearity and bias into the measurement. The force-balance configuration shown
in Figure 30.5c uses the core of an electromagnet as the seismic element. A sensitive displacement sensor
detects displacement of the core and uses the displacement signal in a negative feedback arrangement to
drive the coil, which returns the core to its center position. The output of the force-balance accelerometer is
the feedback required to prevent displacement rather than displacement per se.

A simpler seismic accelerometer utilizes one electrode of a piezoelectric crystal as the seismic element
(Figure 30.5d). Similarly, another simple accelerometer utilizes the common plate of a differential capac-
itor (Figure 30.3a) as the seismic element.

30.2.4 Force Transducers

Force measurements are usually based on a measurement of the motion, which results from the applied
force. If the applied force results in gross motion of the controlled output, and the mass of the output
element is known, then any appropriate accelerometer attached to the controlled output produces an
output proportional to the applied force (F = Ma). A simple spring-balance scale (Figure 30.6a) relies
on measurement of displacement, which results from the applied force (weight) extending the spring.

Highly precise force measurements in high-value servomechanisms, such as those used in pointing
and tracking devices, frequently rely on gyroscope precession as an indication of the applied force. The
scheme is shown in Figure 30.6b for a gyroscope with gimbals and a spin element. A motion transducer
(either displacement or velocity) on the precession axis provides an output proportional to the applied
force. Other types of gyroscopes and precession sensors are also used to implement this force measure-
ment technique.

Static force measurements (in which there is no apparent motion) usually rely on measurement of
strain due to the applied force. Figure 30.6c illustrates the typical construction of a common force
transducer called a load cell. The applied force produces a proportional strain in the S-shaped structural
member, which is measured with a sensitive displacement transducer, usually a strain gauge resistor or
a piezoelectric crystal. 
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FIGURE 30.5 Seismic accelerometers: (a) rectilinear acceleration transducers, (b) rotary accelerometer, (c) force-
balance accelerometer, (d) piezoelectric accelerometer.
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30.3 Process Transducers

This section discusses transducers used in measuring and controlling the process variables most frequently
encountered in industrial processes, namely,

• Fluid pressure

• Fluid flow

• Liquid level

• Temperature

30.3.1 Fluid Pressure Transducers

Most fluid pressure transducers are of the elastic type, in which the fluid is confined in a chamber with
at least one elastic wall, and the deflection of the elastic wall is taken as an indication of the pressure.
The Bourdon tube and the bellows are examples of elastic pressure transducers, which are used in
laboratory-grade transducers and in some industrial process control applications. The fluid pressure
transducer depicted in Figure 30.7, which uses an elastic diaphragm to separate two chambers, is the type
most frequently encountered in industrial process control. Diaphragms are constructed from one of a
variety of elastic materials ranging from thin metal to polymerized fabric.

For gross pressure measurements, the displacement of the diaphragm is sensed by a potentiometer or
LVDT; for more sensitive pressure measurements, any one of the three sensitive displacement sensors
described earlier is used. In the most common configuration for sensitive pressure transducers, a strain
gauge resistor with a rosette pattern is bonded to the diaphragm. In another configuration, the outer

FIGURE 30.6 Force transducers: (a) spring scale, (b) gyroscope, (c) load cell.
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30-12 Mechatronic System Control, Logic, and Data Acquisition

walls of the pressure sensor serve as capacitor plates and the diaphragam serves as the common plate of
a differential capacitor. In a very sensitive and highly integrated configuration, the diaphragm is a silicon
wafer with a piezoresistive strain gauge and signal conditioning circuits integrated into the silicon.

High-vacuum (very low pressure) measurements, usually based on observations of viscosity, thermal
conductivity, acoustic properties, or ionization potential of the fluid, will not be included in this discus-
sion. Transducers used in high-pressure hydraulic systems [70 MPa (10,000 psi) or greater] are usually
of the piston and spring type (Figure 30.8).

In either of the pressure transducers, the output is actually a measure of the difference in pressure
between the working chamber and the reference chamber of the transducer (i.e., pOUT = p − pREF). The
measurement is called:

• An absolute pressure if the reference chamber is sealed and evacuated (i.e., pREF = 0 and pOUT = p)

• A gauge pressure if the reference chamber is vented to the atmosphere (i.e., pOUT = p − pATM)

• A differential pressure if any other pressure is applied to the reference chamber

30.3.2 Fluid Flow Transducers (Flowmeters)

Flowmetering, because of the number of variables involved, encompasses a wide range of measurement
technology and applications. In industrial processes, the term fluid is applied not only to gases and liquids,
but also to flowable mixtures (often called slurries or sludges) such as concrete, sewage, or wood pulp.
Control of a fluid flow, and hence the type of measurement required, may involve volumetric flow rate,
mass flow rate, or flow direction. Gas flows may be compressible, which also influences the measurement
technique. In addition, the condition of the flow—whether or not it is homogenous and clean (free of
suspended particles)—has a bearing on flowmeter technology. Another factor to be considered is flow
velocity; slow moving laminar flows of viscous material require different measurement techniques than

FIGURE 30.7 Diaphragm pressure transducer.

FIGURE 30.8 Piston-and-spring transducer.

INPUT
p

REFERENCE
PRESSURE

DISPLACEMENT
SENSOR OUTPUT

WORKING CHAMBER

DIAPHRAGM

p
INPUT

REFERENCE
PRESSURE

DISPLACEMENT
SENSOR

∆x

WORKING CHAMBER

PISTON

SPRING
OUTPUT

9260_30.fm  Page 12  Friday, October 5, 2007  11:07 AM



Measurement Techniques: Sensors and Transducers 30-13

those used for high-velocity turbulent flows. Still another consideration is confinement of the flow. Whereas
most fluid flow measurements are concerned with full flow through closed channels such as ducts and
pipes, some applications require measurements of partial flow through open channels such as troughs and
flumes. Only the most widely used flowmeters are considered here. 

The major categories of flowmeters are:

• Differential pressure, constriction-type (venturi, orifice, flow nozzle, elbow (or pipe bend), and
pitot static) (Figure 30.9)

• Fluid-power (gear motors, turbines, and paddle wheels) (Figure 30.10)

FIGURE 30.9 Differential pressure flowmeters: (a) Venturi flowmeter, (b) orifice flowmeter, (c) nozzle flowmeter,
(d) pipebend (elbow) flowmeter, (e) pitot-static-flowmeter.

FLUID FLOW

INPUT THROAT

DIFFERENTIAL
PRESSURE
TRANSDUCER

OUTPUT

FLUID FLOW

INPUT

DIFFERENTIAL
PRESSURE
TRANSDUCER

OUTPUT

ORIFICE

OBSTRUCTION
PLATE

(a) (b)

FLUID FLOW

INPUT

DIFFERENTIAL
PRESSURE
TRANSDUCER

OUTPUT

NOZZLE

(c)

FLUID FLOW

INPUT

STAGNATION POINT

STATIC PRESSURE PORT

STATIC PRESSURE

TOTAL PRESSURE

OUTPUT

DIFFERENTIAL
PRESSURE
TRANSDUCERPITOT TUBE

FLUID FLOW

DIFFERENTIAL
PRESSURE
TRANSDUCER

OUTPUT

INPUT

(d)

(e)

9260_30.fm  Page 13  Friday, October 5, 2007  11:07 AM



30-14 Mechatronic System Control, Logic, and Data Acquisition

• Ultrasound (Figure 30.11)

• Vortex shedding (Figure 30.12)

• Thermal anemometer (Figure 30.13)

• Electromagnetic (Figure 30.14)

• Rotameter (variable-area in-line flowmeter) (Figure 30.15)

Differential pressure flowmeters are suited to high- and moderate-velocity flow of gas and clean, low-
viscosity liquids. Venturi flowmeters (Figure 30.9a) are the most accurate, but they are large and expensive.
Orifice flowmeters (Figure 30.9b) are smaller, less expensive, and much less accurate than venturi flowmeters.

FIGURE 30.10 Fluid power flowmeters: (a) turbine flowmeter, (b) paddle wheel flowmeter, (c) gear motor flow-
meter.
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Nozzle flowmeters (Figure 30.9c) are a compromise between venturi and orifice flowmeters. Pipe-bend
flowmeters (Figure 30.9d), which can essentially be installed in any bend in an existing piping system, are
used primarily for gross flow rate measurements. Pitot-static flowmeters (Figure 30.9e) are used in flows
which have a large cross-sectional area, such as in wind tunnels. Pitot-static flowmeters are also used in
freestream applications such as airspeed indicators for aircraft.

Fluid-power flowmeters are used in low-velocity, moderately viscous flows. In addition to industrial
control applications, turbine flowmeters (Figure 30.10a) are sometime used as speed indicators for ships
or boats. Paddle wheel flowmeters (Figure 30.10b) are used both in closed- and open-flow applications
such as liquid flow in flumes. Since a fluid-power gear motor (Figure 30.10c) is a constant volume device,
motor shaft speed is always a direct indication of fluid flow rate.

FIGURE 30.11 Ultrasound flowmeters: (a) transmission-type ultrasound flowmeter, (b) doppler ultrasound
flowmeter.

FIGURE 30.12 Vortex-shedding flowmeter.
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FIGURE 30.13 Thermal anemometer.

FIGURE 30.14 Electromagnetic flowmeter.

FIGURE 30.15 Variable-area in-line flowmeter (rotameter).

INPUT

FLUID FLOW

HEATING
ELEMENT

CURRENT/
TEMPERATURE
SENSOR/
CONTROLLER

OUTPUT

INPUT

FLUID FLOW

OUTPUT

S

N

ELECTRODES

FLUID FLOW
INPUT

OUTPUT (HIGH)

OUTPUT (LOW)

MOVABLE
PROXIMITY
SENSORS

GUIDE WIRE

FLOAT

CALIBRATED
GRADUATIONS

9260_30.fm  Page 16  Friday, October 5, 2007  11:07 AM



Measurement Techniques: Sensors and Transducers 30-17

Ultrasound flowmeters of the transmission type (Figure 30.11a), which are based on the principle that
the sound transmission speed will be increased by the flow rate of the fluid, are used in all types of clean,
subsonic flows. Doppler flowmeters (Figure 30.11b) rely on echoes from within the fluid, and are thus
only useful in dirty flows that carry suspended particles or turbulent flows that produce bubbles. Ultrasound
flowmeters are nonintrusive devices, which can often be retrofitted to existing duct or pipe systems.

Vortex shedding flowmeters (Figure 30.12) introduce a shedding body into the flow to cause production
(shedding) of vortices. The sound accompanying the production and collapse of the vortices is monitored
and analyzed. The dominant frequency of the sound is indicative of the rate of vortex production and
collapse, and hence an indication of flow rate. Vortex shedding flowmeters are useful in low-velocity,
nonturbulent flows.

Thermal anemometers (Figure 30.13) are used in low-velocity gas flows with large cross-sectional area,
such as in heating, ventilation, and air conditioning (HVAC) ducts. Convection cooling of the heating
element is related to flow rate. The flow rate measurement is based either on the current required to
maintain a constant temperature in the heating element, or alternatively on the change in temperature
when the current is held constant.

Electromagnetic flowmeters (Figure 30.14) are useful for slow moving flows of liquids, sludges, or
slurries. The flow material must support electrical conduction between the electrodes, and so in some
cases it is necessary to ionize the flow upstream from the measurement point in order to use an
electromagnetic flowmeter.

Variable-area in-line flowmeters (Figure 30.15), or rotameters, are sometimes referred to as sight gauges
because they provide a visible indication of the flow rate. These devices, when fitted with proximity sensors
(such as capacitive pickups) that sense the presence of the float, can be used in on–off control applications.

30.3.3 Liquid Level Transducers

Liquid-level measurements are relatively straightforward, and the transducers fall into the categories of
contact or noncontact. Measurements may be continuous, in which the liquid level is monitored contin-
uously throughout its operating range, or point, in which the liquid level is determined to be above or
below some predetermined level.

The contact transducers encountered most frequently are:

• Float

• Hydrostatic pressure

• Electrical capacitance

• Ultrasound

The noncontact transducers encountered most frequently are:

• Capacitive proximity sensors

• Ultrasound

• Radio frequency

• Electro-optical

Float-type liquid level transducers are available in a wide variety of configurations for both continuous
and point measurements. One possible configuration is depicted in Figure 30.16 for continuous mea-
surement and for both single- and dual-point measurements.

Hydrostatic pressure liquid level transducers may be used in either vented or pressurized applications
(Figure 30.17). In either case the differential pressure is directly proportional to the weight of the liquid
column, since the differential pressure transducer accounts for surface pressure.

Capacitance probes (Figure 30.18a) are widely used in liquid level measurements. It is possible, when
the tank walls are metal, to use a single bare or insulated metal rod as one capacitor plate and the tank
walls as the other. More frequently, capacitance probes consist of a metal rod within a concentric cylinder
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FIGURE 30.16 Float-type liquid level transducers.

FIGURE 30.17 Hydrostatic pressure liquid level transducers.

FIGURE 30.18 Capacitive-type liquid level transducers: (a) capacitive probes, (b) capacitive switches.
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open at the ends, which makes the transducer independent of the tank construction. An interesting
application of this type of capacitance probe is as aircraft fuel quantity indicators. Capacitance switches
can be utilizes as depicted in Figure 30.18b to provide noncontact point measurements of liquid level.

Ultrasound echo ranging transducers can be used in either wetted (contact) or nonwetted (noncontact)
configurations for continuous measurement of liquid level (Figure 30.19a). An interesting application of
wetted transducers is as depth finders and fish finders for ships and boats. Nonwetted transducers can
also be used with bulk materials such as grains and powders. Radio-frequency and electro-optic liquid
level transducers are usually noncontact, echo ranging devices that are similar in principle and applica-
tion to the nonwetted ultrasound transducer.

Ultrasonic transducers can also be adapted to point measurements by locating the transmitter and the
receiver opposite one another across a gap (Figure 30.19b). When liquid fills the gap, attenuation of the
ultrasound energy is markedly less than when air fills the gap. The signal conditioning circuits utilize this
sharp increase in the level of ultrasound energy detected by the receiver to activate a switch.

30.3.4 Temperature Transducers

Temperature measurement is generally based on one of the following physical principles:

• Thermal expansion

• Thermoelectric phenomena

• Thermal effect on electrical resistance

• Thermal effect on conductance of semiconductor junctions

• Thermal radiation

(Strictly speaking, any device used to measure temperature may be called a thermometer, but more
descriptive terms are applied to devices used in temperature control.)

Bimetallic switches (Figure 30.20) are widely used in on–off temperature control systems. If two metal
strips with different coefficients of thermal expansion are bonded together while both strips are at the same
temperature, the bimetallic structure will bend when the temperature is changed. Although these devices
are often called thermal cutouts, implying that they are used in normally closed switches, they can be
fabricated in either normally closed or normally open configurations. The bimetallic elements can also be
fabricated in coil or helical configurations to extend the range of motion due to thermal expansion. 

Thermocouples are rugged and versatile temperature sensors frequently found in industrial control
systems. A thermocouple consists of a pair of dissimilar metal wires twisted or otherwise bonded at one
end. The Seebeck effect is the physical phenomena that accounts for thermocouple operation, so thermo-
couples are known alternatively as Seebeck junctions. The potential difference (Seebeck voltage) between
the free ends of the wire is proportional to the difference between the temperature at the junction and

FIGURE 30.19 Ultrasound liquid level transducers: (a) echo-ranging liquid level transducer, (b) ultrasound switch.
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the temperature at the free ends. Thermocouples are available for measurement of temperature as low
as −270°C and as high as 2300°C, although no single thermocouple covers this entire range. Thermo-
couples are identified as type B, C, D, E, G, J, K, N, R, S, or T, according to the metals used in the wire.

Signal conditioning and amplification of the relatively small Seebeck voltage dictates that the thermo-
couple wires must be connected to the terminals of a signal conditioning circuit. These connections
create two additional Seebeck junctions, each of which generates its own Seebeck voltage, which must
be canceled in the signal conditioning circuit. To implement cancellation to the corrections the following
are necessary (Figure 30.21a): 

• The input terminals of the signal conditioning circuit must be made of the same metal.

• The two terminals must be on an isothermal terminal block so that each Seebeck junction created
by the connection is at the same temperature.

• The temperature of the terminal block must be known.

FIGURE 30.20 Bimetallic thermal switch.

FIGURE 30.21 Thermocouples: (a) typical thermocouple connection, (b) some thermocouple accessories and
configurations.
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The first two requirements are met by appropriate construction of the signal conditioning circuit. The
third requirement is met by using a reference temperature sensor, probably an IC temperature transducer
of the type described later.

Thermocouple and thermocouple accessories are fabricated for a variety of applications (Figure
30.21b). Protective shields (thermowells) are used to protect thermocouple junctions in corrosive envi-
ronments or where conducting liquids can short circuit the thermocouple voltage; however, exposed
(bare) junctions are used wherever possible, particularly when a fast response is essential.

Resistance temperature detectors (RTD) are based on the principle that the electrical resistivity of most
metals increases predictably with temperature. Platinum is the preferred metal for RTDs, although other
less expensive metals are used in some applications. The resistivity of platinum is one of the standards
by which temperature is measured. The relatively good linearity of the resistivity of platinum over a wide
temperature range (−200 to 800°C) makes platinum RTDs suitable for stable, accurate temperature
transducers, which are easily adapted to control systems applications.

The disadvantage of the RTD is that the temperature-sensitive element is a rather fragile metal filament
wound on a ceramic bobbin or a thin metal film deposited on a ceramic substrate. RTD elements are
usually encapsulated and are rarely used as bare elements. The accessories and application packages used
with RTDs are similar to those used with thermocouples (Figure 30.21b).

Most platinum RTDs are fabricated so as to have a nominal resistance of 100 Ω at 0°C. The resistance
temperature coefficient of platinum is approximately 3–4 mΩ/Ω/°C, so resolution of the temperature to
within 1°C for a nominal 100-Ω RTD element requires resolution of the absolute resistance within
0.3–0.4 Ω. These resistance resolution requirements dictate use of special signal conditioning techniques
to cancel the lead and contact resistance of the RTD element (Figure 30.22). The circuit depicted in
Figure 30.22 is a variation of a 4-wire ohmmeter. Most RTDs are manufactured with four leads to be
compatible with such circuits.

Thermistors are specially prepared metal oxide semiconductors that exhibit a strong negative temper-
ature coefficient, in sharp contrast to the weak positive temperature coefficient of RTDs. Nominal
thermistor resistance, usually specified for 25°C, ranges from less than 1000 Ω to more than 1 MΩ, with
sensitivities greater than 100 Ω/°C. Thus, the thermistor is the basis for temperature sensors that are
much more sensitive and require less special signal conditioning than either thermocouples or RTDs.
The tradeoff is the marked nonlinearity of the resistance-temperature characteristic. To minimize this
problem, manufacturers provide packages in which the thermistor has been connected into a resistor
network chosen to provide a relatively linear resistance-temperature characteristic over a nominal tem-
perature range.

The development of thermistor technology has lead to the IC temperature sensor in which the
temperature-sensitive junction(s) and the required signal conditioning circuits are provided in a mono-
lithic package. The user is only required to provide a supply voltage (typically 5 V DC) to the IC in order
to obtain an analog output voltage proportional to temperature. Thermistors and IC temperature sensors

FIGURE 30.22 Typical resistance temperature detector (RTD) application.
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can be produced in very small packages, which permit highly localized temperature measurements. Some
thermistors designed for biological research are mounted in the tip of a hypodermic needle. The short-
comings of both thermistor and IC temperature sensors are that they are not rugged, cannot be used in
caustic environments, and are limited to temperatures below approximately 200°C.

Radiation thermometers are used for remote (noncontact) sensing of temperature in situations where
contact sensors cannot be used. Operation is based on the principles of heat transfer through thermal
radiation. Radiation thermometers focus the infrared energy from a heat source onto a black body (target)
within the radiation thermometer enclosure (Figure 30.23). One of the contact temperature sensors
described previously is incorporated into the target to measure the target temperature. The rise in temper-
ature at the target is related to the source temperature. Typical radiation thermometers have standoff ranges
(focal lengths) of 0.5–1.5 m, but instruments with focal length as short as 1 cm or as long as 10 m are
available. Radiation thermometers are available for broadband, monochromatic, or two-color thermometry.

30.4 Transducer Performance

The operation of a transducer within a control system can be described in terms of its static performance
and its dynamic performance. The static characteristics of greatest interest are:

• Scale factor (or sensitivity)

• Accuracy, uncertainty, precision, and system error (or bias)

• Threshold, resolution, dead band, and hysteresis

• Linearity

• Analog drift

The dynamic characteristics of greatest interest are:

• Time constant, response time, and rise time

• Overshoot, settling time, and damped frequency

• Frequency response

Static performance is documented through calibration, which consists of applying a known input
(quantity or phenomenon to be measured) and observing and recording the transducer output. In a
typical calibration procedure, the input is increased in increments from the lower range limit to the
upper range limit of the transducer, then decreased to the lower range limit. The range of a component
consists of all allowable input values. The difference between the upper and lower range limits is the
input span of the component; the difference between the output at the upper range limit and the output
at the lower range limit is the output span.

Dynamic performance is documented by applying a known change, usually a step, in the input and
observing and recording the transducer output, usually with a strip recorder or a storage oscilloscope.

FIGURE 30.23 Schematic of the radiation thermometry scheme.
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30.5 Loading and Transducer Compliance

A prime requirement for an appropriate transducer is that it be compliant at its input. Compliance in
this sense means that the input energy required for proper operation of the transducer, and hence a
correct measurement of the controlled output, does not significantly alter the controlled output. A
transducer that does not have this compliance is said to load the controlled output. For example, a
voltmeter must have a high-impedance input in order that the voltage measurement does not significantly
alter circuit current and, hence, alter the voltage being measured.

Defining Terms

Controlled output: The principal product of an automatic control system; the quantity or physical
activity to be measured for automatic control.

Feedback path: The cascaded connection of transducer and signal conditioning components in an
automatic control system.

Forward path: The cascaded connection of controller, actuator, and plant or process in an automatic
control system.

Motion transducer: A transducer used to measure the controlled output of a servomechanism; usually
understood to include transducers for static force measurements.

Plant or process: The controlled device that produces the principal output in an automatic control
system.

Process control: The term used to refer to the control of industrial processes; most frequently used in
reference to control of temperature, fluid pressure, fluid flow, and liquid level.

Process transducer: A transducer used to measure the controlled output of an automatic control system
used in process control.

Reference input: The signal provided to an automatic control system to establish the required controlled
output; also called setpoint. 

Servomechanism: A system in which some form of motion is the controlled output.
Signal conditioning: In this context, the term used to refer to the modification of the signal in the

feedback path of an automatic control system; signal conditioning converts the sensor output to
an electrical signal suitable for comparison to the reference input (setpoint); the term can also be
applied to modification of forward path signals. 

Transducer: The device used to measure the controlled output in an automatic control system; usually
consists of a sensor or pickup and signal conditioning components.
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Further Information

Manufacturers and vendors catalogs, data documents, handbooks, and applications notes, particularly
the handbook series (current year) by Omega Engineering, Inc.:

The Flow and Level Handbook
The Pressure, Strain, and Force Handbook
The Temperature Handbook

Trade journals, magazines, and newsletters, particularly:

Instrumentation Newsletter (National Instruments)
Personal Engineering and Instrumentation News
Test and Measurement News (Hewlett Packard)
Test and Measurement World
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31.1 Introduction

As computers began to gain popularity, engineers and scientists realized that computers could become
a powerful tool for data acquisition and control. However, almost all real-world phenomena (such as
light, pressure, velocity, temperature, etc.) are measured with sensors that produce analog signals, and
computers, on the other hand, rely on digital signals. Therefore, many companies began to invest in
advancements in analog-to-digital and digital-to-analog converters (ADC and DAC). These devices have
become the keystone in every measurement device. This chapter will examine the ADC and DAC on a
functional level as well as discuss important specifications of each.

31.2 Sampling

In order to convert an analog signal into a digital signal, the analog signal must first be sampled. Sampling
involves converting one value of a signal at a particular interval of time. Generally, conversions happen
uniformly in time. For example, a digitizing system may convert a signal every 5 ms, or sample at 200 k
S/s. Although it is not necessary to uniformly sample a signal, doing so provides certain benefits that
will be discussed later. 

A typical sampling circuit contains two major components: a track-and-hold (T/H) circuit and the
ADC. Since the actual conversion in the ADC takes some amount of time, it is necessary to hold constant
the value of the signal being converted. At the instance the sample is to be taken, the T/H holds the
sample value even if the signal is still changing. Once the conversion has been completed, the T/H releases
the value it is currently storing and is ready to track the next value.

Brian Betts
National Instruments, Inc.
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One aspect of sampling that cannot be avoided is that some information is lost because of the fact
that an analog waveform actually has an infinite number of samples and there is no way to capture
every value. The major pitfall associated with this fact is called undersampling or sampling too slow. If a
10-kHz sine wave is to be acquired and sampling only occurs at 5 kS/s, the true waveform will not be
preserved. In fact, a waveform of a different frequency will result. The result of undersampling is often
referred to as aliasing. According to the Nyquist theory, which deals with sampling, sampling should
occur at a rate twice as high as the highest frequency component of the signal. In general, this theory
just preserves the frequency of the signal; so, if the shape of the waveform is desired, sampling should
probably be at least ten times as fast as the signal.

31.3 Analog-to-Digital Converter Specifications

31.3.1 Range

The input range of an ADC is the span of voltages over which the ADC can make a conversion. For
example, a common range for ADC is 0–5 V, meaning that the ADC can convert an input that is within
0–5 V. The end points of the low and high end of the range are called –full-scale and �full-scale (they
are also referred to as rails). If the –full-scale is equal to 0 V, then the range is referred to as unipolar,
and if the two full-scale values have the same magnitude, for example, �5 to �5 V, then the range of
the ADC is referred to as bipolar. If an input voltage falls outside the range, the ADC is said to be
overranged. In this case, most ADCs will return a value of the endpoint closest to the sampled signal.

31.3.2 Resolution

The resolution of a digitizer is the smallest detectable change in voltage; however, the resolution of an ADC
usually refers to the number of binary bits it produces. For example, a 12-bit ADC represents a converted
analog value, using 12 digital bits. This same 12-bit ADC can resolve a value to one of 4096(� 2

12
) different

levels. Another common way to specify resolution is by decimal digits. A 6-digit voltmeter measuring on
a 1-V scale could measure in 0.000001 V steps from �0.999999 to 0.999999 V. 

31.3.3 Coding Convention

The different formats an ADC can use to represent its output are known as coding conventions. An ADC
using binary coding produces all 0s at –full-scale and all 1s at +full-scale (e.g., a 3-bit converter would
produce 000 through 111).

31.3.4 Linear Errors

Linear errors are the largest and most common errors in an ADC, and are easily corrected by simple
calibration or by additions and multiplications by correction constants. Although linear errors do not
distort the ADC transfer function, they can change the range over which the ADC correctly operates.

31.3.5 Nonlinear Errors

Unlike linear errors, nonlinear errors are more difficult to compensate for in either the analog or digital
signal. The best way to mitigate nonlinear error is to choose a well-designed, well-specified ADC.
Nonlinear errors are characterized by two different specifications: differential nonlinearity (DNL) and
integral nonlinearity (INL).

DNL measures any irregularity in the code width (smallest detectable change) by comparing the actual
change in value to the ideal value of one code width (or 1 LSB). INL measures the deviation from an
ideal transfer line of the code transitions.
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Another important specification of an ADC in regards to DNL is if any codes are missing. A missing
code can be thought of as a code with a width of 0 LSB (or a DNL of �1). If a code is missing, the step
size at that point in the transfer function is doubled, effectively cutting the local resolution of the ADC
in half. Therefore, ADC datasheets will specify if the ADC has no missing codes.

Another way to capture the same information included in INL is a measurement called relative
accuracy. Relative accuracy indicates how far away fromthe ideal the code transitions are (which is INL),
and also includes how far any part of the transfer function, including quantization “staircase” error,
deviates fromideal. In an ideal noiseless ADC, the worse case relative accuracy is always greater than
the INL.

31.3.6 Aperture Errors

Aperture errors deal with the timing of the conversions themselves. All ADCs require some signal,
generally a pulse train clock, to tell the ADC when to start a conversion. Inherently, some small amount
of time will elapse between the ADC receiving this convert signal and the sample being held. This amount
of time is called the aperture delay. Most ADCs have an aperture delay of just a few nanoseconds. However,
most measurement devices have additional circuitry in front of the ADC, such as amplifiers, which have
the effect of negating the aperture delay caused by the ADC. For example, if the ADC has a delay of 10 ns
and the amplifier has a delay of 160 ns, the effective aperture delay of the system is �150 ns.

Another important time specification is jitter. Jitter (or aperture jitter) measures the difference in the
amount of time between each sample. If a signal is sampled at 1 million samples per second (1 MS/s),
the expected period between each sample would be exactly 1µ s. Jitter caused by the clock source, digital
clock circuitry, or S/H circuitry could cause this 1µ s sample time to vary by as much as a few picoseconds
to a nanosecond fromcy cle to cycle.

31.3.7 Noise

Noise limits the ADC resolution because an interfering waveform is present in the input signal as it is being
converted. The most common source of noise in a signal is thermal noise. Thermal noise is caused by the
random nature of electrical components. With higher temperatures and resistances in components, the
thermal noise will increase. Other common sources of noise are electromagnetically coupled signals from
nearby components, such as logic circuits and clocks. Generally, noise is specified in volts peak-to-peak or
rms, or LSBs rms or peak-to-peak.

Quantization error, resulting from the bit-resolution limitation of the ADC, is sometimes referred to
as quantization noise. Although quantization error is perfectly predictable with respect to the input signal,
when a signal is fairly “busy” (meaning that each consecutive conversions do not result in many common
bits of data) the quantization error becomes chaotic. When this occurs, the quantization error can be
thought of as another source of random noise, whose statistical distribution is uniform from �0.5 to
0.5 LSB. In spectral analysis, this is sometimes the dominant source of noise.

Once noise reaches the ADC, there are ways to process the noise out of the signal, provided that the
noise is an independent signal. One of the most common ways to decrease noise in a dc measurement
is to acquire a number of points and average the values. If the noise is white random noise, which has
equal energy density at all frequencies, averaging will reduce the amount of noise by the square root of
the number of samples averaged. If the noise is interfering with a repetitive waveform, the noise can be
reduced by measuring a number of waveforms, using a level trigger and then averaging the waveforms.
Most noise specifications for an ADC are for quiet, low-impedance signals. To preserve the noise per-
formance of the ADC, the user must connect signals to the inputs with shielded cabling that keeps signals
away from any electromagnetic interference.
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31.3.8 Dynamic Range

Dynamic range is the ratio of largest to smallest signal the ADC can represent. The dynamic range is
found by taking a full-scale signal value and comparing that to the smallest detectable noise level of the
ADC. The dynamic range is usually expressed in decibels (dB) and can be found by the following formula:

where S is large signal level and N is noise level. The noise level includes quantization noise of the ADC,
which for an ideal ADC is equal to LSB rms. A full-scale sine wave has an amplitude of 2n � 1 LSB or
(n � number of bits of the ADC) . Therefore, an ideal ADC has a dynamic range of 

Since no ADC is ideal, the effective number of bits (ENOB) of an actual ADC can be calculated using
the above equation. The ENOB represents the real-world resolution of an ADC, and can be found with
the following equation using dynamic range: 

For example, a 12-bit ADC with a dynamic range of 69 dB has an ENOB of 11.17 bits.

31.3.9 Types of Analog-to-Digital Converters

All ADCs accomplish the same fundamental task of taking an analog signal and converting it into a
digital representation. Two crucial characteristics of an ADC are the speed at which conversions can be
made and the resolution of the conversions. Because it takes an ADC longer to resolve input signals to
higher resolutions, designing or specifying an ADC often becomes a trade-off of speed versus resolution.
This makes it important to understand how the ADC will be used in order to match the correct converter
for the application.

Despite the many different types of ADCs available, they all share some common characteristics. The
heart of any ADC converter is the comparator. A comparator is a simple 1-bit ADC that has two analog
inputs and one digital output. One of the analog input signals is a reference voltage that has some known
value. The other inputs will either be greater than or less than the known input value, and that will turn
into a digital value of 1 or 0. Some ADCs are actually composed of multiple comparators, but the basic
theory for each one is the same.

31.3.10 Flash

Flash ADCs are the fastest ADCs available, obtaining speeds in multiple gigasamples per second. However,
true to the speed versus resolution trade-off discussed, the flash converters generally have resolutions of
10 bits and below. A flash converter with n bits of resolution is composed of 2n � 1 high-speed
comparators operating in parallel, see Figure 31.1. A string of 2n � 1 resistors between two voltage
references supplies a set of uniformly spaced voltages that span the input range, one for each comparator.
The input voltage is then compared to each level simultaneously. The comparators then output a 1 for
all voltages below the input voltage, and a 0 for all voltages above the input voltage. These resulting digital
values are then fed into a logic convert to output an n-bit value.

Because of the simplicity of the design, flash converters are fast, but as the resolution of the converter
is increased, the number of comparators and resistors needed increases exponentially. Both the size and
power needed to operate the converter also increase exponentially as a result of increased resolution, and
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this way the converters are limited in their resolution. However, because string resistors’ values typically
vary only a few percent fromone another, the differential linearity of the flash ADC is quite good.

31.3.11 Successive-Approximation Register

Successive-approximation register (SAR) ADCs are the most common ADCs, having resolutions of 8–18
bits and speeds up to 10 MS/s. These ADCs have a low cost, and generally have good integral linearity.
The SAR ADC architecture contains a high-speed DAC in a feedback loop, see Figure 31.2. The SAR
iterates the DAC through a series of levels, which are then compared to the input voltage. As the conversion
progresses, the SAR builds the n-bit digital output as a result of these comparisons. When the SAR has
finished, the output of the DAC is as close to the input signal as possible, and the digital input of the
DAC becomes the output of the SAR ADC.

A good real-world analogy to an SAR is a balance scale. If an object of unknown mass is placed on
one side and continues to test a combination of weights until the scale is balanced, the weight of the
object can be obtained.

The speed of the SAR ADC is limited by the rate at which the DAC can settle inside the feedback loop.
In fact, the DAC must settle n times for every n bits of resolution desired in the ADC. In order to achieve
faster rates, the SAR architecture can be used as the basis for a different ADC, the multistage.

FIGURE 31.1 Flash ADC—a flash converter has 2n � 1 comparators operating in parallel. It relies on the uniformity
of the resistors for linearity.

FIGURE 31.2 SAR ADC—a successive-approximation (SAR) converter has one comparator that iterates through
a series of “guesses” to determine a digital representation of the signal.
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31.3.12 Multistage

In order to achieve higher rates than the SAR, multistage ADCs use the iterative approach of the SAR
but reduce the number of comparisons needed to complete the conversion. In addition to the comparator,
the multistage ADC uses low-resolution flash converters, see Figure 31.3. In the figure, the 6-bit flash is
used to convert the residual errors from the 8-bit flash. These two outputs fromthe ADCs are then
combined using digital logic to produce a 12-bit output.

Most multistage ADCs are actually pipelined ADC. Pipelined ADCs have the same architecture as a
multistage ADC, but each flash converter contains a T/H at the input. This allows each stage to convert
the residual error while the previous stage has moved on to the next sample. This way the whole converter
can operate at the speed of the slowest stage, as opposed to the multistage that operates at a speed equal
to the sum of all the stages.

31.3.13 Integrating

Integrating ADCs are designed to return very high-resolution readings. As a trade-off, they operate at
slower speeds. It is a very simple design; the integrating ADCs consist of an integrating amplifier, a
comparator, a digital counter, and an extremely stable capacitor. The most common integrating ADC is
the dual slope. In this architecture, the capacitor is initially discharged to have no potential across it. At
a set time, the input is applied across the capacitor and it begins to charge for a set period of time T1.
Because of the properties of a capacitor, the rate of charge is proportional to the input voltage. After T1,
the capacitor is switched to a negative reference voltage and begins to discharge at a rate proportional
to the reference. The digital counter simply measures how much time it took for the capacitor to
completely discharge T2. Since T1 and the rate at which the capacitor discharges are both known values,
the voltage of the input can be obtained by a simple ratio.

It is important to note that the converter is not actually measuring the input voltage itself. Instead,
the ADC obtains the voltage by measuring time and using digital logic to calculate the input voltage.
This method has the advantage of rejecting noise, such as periodic noise, to which other ADCs are
susceptible. In addition, most integrating ADCs operate on a multiple of an AC line period (1/60 or
1/50 s) so that stray electromagnetic fields caused by power systems are cancelled.

FIGURE 31.3 Multistage ADC—a multistage converter is a combination of the SAR and flash converters to provide
faster sampling than the SARs and at a higher resolution than the flash converters could provide.

FIGURE 31.4  SDADC—asigma-delta converter uses a 1-bit comparator to determine the signal value. SD converters
have great linearity by design, because the 1-bit ADC is perfectly linear, theoretically, since it can assume only one
of two values.
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31.3.14 Sigma Delta

The sigma-delta (SD) ADC is one of the most popular types of ADCs because of its fit on the speed
versus resolution curve. SD ADCs can provide 16–24 bits of resolution at sample rates of up to hundreds
of thousands of samples per second. This speed and resolution makes them ideal for certain applications
such as vibration and audio analysis; however, the process of integration causes the SD ADC to have poor
DC accuracy. Figure 31.4 shows the design of an SD ADC. The heart of an SD ADC is actually a 1-bit
ADC that samples at incredibly high rates. Typically, these 1-bit ADCs sample at 64 or 128 times the
eventual sample rate, which is a process known as oversampling. In addition to the high-speed ADC, an
SD architecture consists of an analog low-pass filter and a DAC all together in a feedback loop. The result
forces otherwise unavoidable quantization noise into higher frequency bands. This resulting spectrum of
the noise is part of a process called noise shaping. The output of this feedback loop, which is actually just
a streamof 1-bit conversions, is then fed to a digital filter. The digital filter then increases the resolution,
reduces the data rate, and applies a low-pass digital filter to the data coming out of the feedback loop.
After this process, the SD ADC has an output with high resolution and signals only in the frequency band
of interest, eliminating most of the inherent electronic noise.

31.3.15 Digital-to-Analog Converters

The opposite of an ADC, which takes an analog value and produces a digital value, would be a device
that takes digital values and creates analog values. A DAC is a device that, given a digital representation
of a signal, can create an analog signal at a specific voltage level. Although much of the theory behind
ADCs discussed previously applies to DACs, a unique set of terms and phenomena do exist.

31.3.16 Updating

Updating can be thought of as the DAC equivalent to sampling. If a DAC is to generate a sine wave from
a group of digital values, we need some way to specify how this waveform is to be generated. Simply put,
the update rate is how many points per second that a DAC can output an analog value, generally given
in samples per second, kilosamples per second, or million samples per second.

31.4 Digital-to-Analog Converter Specifications

31.4.1 Range

The range of a DAC is identical to the de.nition of the range of an ADC. This refers to the voltage range
of values that the DAC can output.

31.4.2 Resolution

The resolution of a DAC is specified identical to the ADC; however, the perspective is reversed. In an
ADC, resolution defines how many digital bits would represent an analog value, thus giving us a level
of granularity we could acquire. With a DAC, the resolution indicates how many digital bits need to be
supplied to the DAC to operate and what analog signal granularity we can produce.

31.4.3 Monotonicity

One of the most useful specifications of a DAC is the monotonicity. If a DAC is monotonic, this implies
that as the digital value increases, the analog output value will also increase or at least stay the same.
Conversely, a device is said to be nonmonotonic if one or more values of the analog output may actually
be less than the values corresponding to codes having smaller weight. Many applications are sensitive to
fine changes in output value; therefore, any DAC used needs to be monotonic on all bits. 
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31.4.4 Settling Time and Slew Rate

Settling time and slew rate together determine how rapidly a DAC can change the analog value it is
outputting. Settling time refers to the amount of time it takes the output of the DAC to reach a specified
accuracy level. Most DACs specify settling time as a full-scale change in voltage, from the smallest output
value to the largest. Slew rate, specified in volt per second, is the maximum rate of change of the output
of the DAC. Therefore, a DAC with a fast slew rate and a small settling time can generate high-frequency
signals because an accurate voltage level can be obtained in a very small amount of time.

31.4.5 Offset Error and Gain Error

Offset error refers to the transfer characteristic of the DAC not outputting an analog value of 0 when
the digital value of 0 is applied. The range fromz ero to full would be offset fromthe specified value
because the offset would carry throughout the transfer function. The offset error can be thought of as a
translation in the transfer line either up or down fromthe ideal. Gain error indicates a linear deviation
fromthe ideal transfer line of a DAC. This can be caused by a variety of factors, which results in a change
of slope from the ideal.

31.4.6 Architecture of Digital-to-Analog Converters

Unlike ADCs, DACs do not implement a wide range of approaches to convert a digital input code to an
analog value. Instead, almost all DACs use some combination of a switch network, resistive network, and
summing amplifier. This is not to say that all DACs have the same design, but they are all based on the
principle of switching.

31.4.7 Switching Network

The switching network of a DAC can be thought of as the heart of the conversion. Since digital bits are
either on or off, these bits can be used to control single poll switches. These switches are then used to
direct some formof analog circuitry to develop an analog value. For example, a 3-bit DAC would comprise
three switches, one for each bit of input data. Depending on the code given, these switches would close
in such a way to develop an analog value froma reference source that is equal to the digital representation,
see Figure 31.5. Depending on the design of the analog circuitry in the DAC, the switches may be
connecting current or voltage references to a resistive network.

FIGURE 31.5 DAC architecture—most digital-to-analog converters (DACs) follow a standard architecture of a
switch network, a resistive network, and an amplifier.
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31.4.8 Resistive Networks

Resistive networks in a DAC provide the varying levels of analog output voltage, which will form the
output of the DAC. Although many different resistive schemes are used in DAC design, the basic principle
is common in all of them. The one shown in Figure 31.5 uses a dual resistor quad approach. In the figure,
bits 0–3 and 4–7 are separated by a single resistor. These two independent groups are each a resistor quad
with resistor values of 1R-2R-4R-8R where R is equal to 10 k. If any of the switches is in the 1 position,
a current will develop across the resistor proportional to the resistors’ value. Therefore, if bit 0 is on, a
current proportional to 1/1R is generated; whereas, if switch 2 is on, a current proportional to 1/4R would
be generated. The resistor between the two quads has the effect of a 16:1 current attenuator, so that even
though bit 4 would generate a current proportional to 1/1R, once it gets to the amplifier it would appear
to have a current proportional to 1/16R. In this case, bit 0 would be the most signi.cant bit (MSB), and
bit 7 would be the least significant bit (LSB).

31.4.9 Summing Amplifier

The operational amplifier (op-amp) used in the DAC circuit of Figure 31.5 is acting as a summing
amplifier. As the different bits generate a particular current, the op-amp is designed to collect the total
current and would generate an output voltage. This output voltage of the op-amp is now an analog
representation of the digital code that was fed to the DAC.
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Kelvin’s first rule of instrumentation states, in essence, that the measuring instrument must not alter the
event being measured. For the present purposes, we can consider the instrument to consist of an input
transducer followed by a signal-conditioning section, which in turn drives the data-processing and display
section (the remainder of the instrument). We are using the term instrument in the broad sense, with the
understanding that it may actually be a measurement subsystem within virtually any type of system.

Certain requirements are imposed upon the transducer if it is to reproduce an event faithfully: It must
exhibit amplitude linearity, phase linearity, and adequate frequency response. But it is the task of the
signal conditioner to accept the output signal from the transducer and from it produce a signal in the
form appropriate for introduction to the remainder of the instrument.

Analog signal conditioning can involve strictly linear operations, strictly nonlinear operations, or some
combination of the two. In addition, the signal conditioner may be called upon to provide auxiliary
services, such as introducing electrical isolation, providing a reference of some sort for the transducer,
or producing an excitation signal for the transducer.

Important examples of linear operations include amplitude scaling, impedance transformation, linear
filtering, and modulation.

A few examples of nonlinear operations include obtaining the root-mean-square (rms) value, square
root, absolute value, or logarithm of the input signal.

There is a wide variety of building blocks available in either modular or integrated-circuit (IC) form for
accomplishing analog signal conditioning. Such building blocks include operational amplifiers, instrumenta-
tion amplifiers, isolation amplifiers, and a plethora of nonlinear processing circuits such as comparators, analog
multiplier/dividers, log/antilog amplifiers, rms-to-DC converters, and trigonometric function generators.

Also available are complete signal-conditioning subsystems consisting of various plug-in input and output
modules that can be interconnected via universal backplanes that can be either chassis- or rack-mounted.

32.1 Linear Operations

Three categories of linear operations important to signal conditioning are amplitude scaling, impedance
transformation, and linear filtering.

32.1.1 Amplitude Scaling

The amplitude of the signal output from a transducer must typically be scaled—either amplified or
attenuated—before the signal can be processed.

Stephen A. Dyer
Kansas State University
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32.1.1.1 Amplification

Amplification is generally accomplished by an operational amplifier, an instrumentation amplifier, or an
isolation amplifier.

Operational Amplifiers
A conventional operational amplifier (op amp) has a differential input and a single-ended output. An
ideal op amp, used often as a first approximation to model a real op amp, has infinite gain, infinite
bandwidth, infinite differential input impedance, infinite slew rate, and infinite common-mode rejection
ratio (CMRR). It also has zero output impedance, zero noise, zero bias currents, and zero input offset
voltage. Real op amps, of course, fall short of the ideal in all regards.

Important parameters to consider when selecting an op amp include:

1. DC voltage gain K0.
2. Small-signal gain-bandwidth product (GBWP) fT, which for most op amps is fT � K0 f1, where f1

is the lower break frequency in the op amp’s transfer function. The GBWP characterizes the closed-
loop, high-frequency response of an op-amp circuit.

3. Slew rate, which governs the large-signal behavior of an op amp. Slew rates range from less than
1 V/µs to several thousand volts per microsecond.

Other parameters, such as input and output impedances, DC offset voltage, DC bias current, drift voltages
and currents, noise characteristics, and so forth, must be considered when selecting an op amp for a
particular application.

There are several categories of operational amplifiers. In addition to “garden-variety” op amps there
are many op amps whose characteristics are optimized for one or more classes of use. Some categories
of op amps include:

1. Low-noise op amps, which are useful in the portions of signal conditioners required to amplify
very-low-level signals.

2. Chopper-stabilized op amps, which are useful in applications requiring extreme DC stability.
3. Fast op amps, which are useful when large slew rates and large GBWPs are required.
4. Power op amps, which are useful when currents of greater than a few mA must be provided to

the op amp’s load.
5. Electrometer op amps, which are used when very high (>1013 Ω) input resistances and very low

(<1 pA) input bias currents are required.

An introduction to op amps and basic circuit configurations occurs in essentially any modern text on
circuit theory or electronics, and the reader can find detailed theoretical developments and many useful
configurations and applications in Roberge (1975), Graeme et al. (1971), Graeme (1973, 1977), Horowitz
and Hill (1989), and Stout and Kaufman (1976).

Instrumentation Amplifiers
Instrumentation amplifiers (IAs) are gain blocks optimized to provide high input impedance, low output
impedance, stable gain, relatively high common-mode rejection (CMR), and relatively low offset and
drift. They are well suited for amplification of outputs from various types of transducers such as strain
gages, for amplification of low-level signals occurring in the presence of high-level common-mode
voltages, and for situations in which some degree of isolation is needed between the transducer and the
remainder of the instrument.

Although instrumentation amplifiers can be constructed from conventional op amps [a three-op-amp
configuration is typically discussed; see, for example, Stout and Kaufman (1976)], they are readily available
and relatively inexpensive in IC form. Some IAs have digitally programmable gains, whereas others are
programmable by interconnecting resistors internal to the IA via external pins. More-basic IAs have their
gains set by connecting external resistors.
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Isolation Amplifiers
Isolation amplifiers are useful in applications in which a voltage or current occurring in the presence of
a high common-mode voltage must be measured safely, accurately, and with a high CMR. They are also
useful when safety from DC and line-frequency leakage currents must be ensured, such as in biomedical
instrumentation.

The isolation amplifier can be thought of as consisting of three sections: an input stage, an output stage,
and a power circuit. All isolation amplifiers have their input stages galvanically isolated from their output
stages. Communication between the input and output stages is accomplished by modulation/demodulation.

An isolation amplifier is said to provide two-port isolation if there is a DC connection between its
power circuit and its output stage. If its power circuit is isolated from its output stage as well as its input
stage, then the amplifier is said to provide three-port isolation. Isolation impedances on the order of 1010 Ω
are not atypical.

Isolation amplifiers are available in modular form with either two-port or three-port isolation. Both
single-channel and multichannel modules are offered.

32.1.1.2 Attenuation

Although the majority of transducers are low-level devices such as thermocouples, thermistors, resistance
temperature detectors (RTDs), strain gages, and so forth, whose outputs require amplification, there
are many measurement situations in which the input signal must be attenuated before introducing it
to the remainder of the system.

Voltage Scaling
Most typically, the signals to be attenuated take the form of voltages. Broadly, the attenuation is accom-
plished by either a voltage divider or a voltage transformer.

Voltage Dividers
In many cases a simple chain divider proves adequate. The transfer function of a two-element chain of
impedances Z1(s) and Z2(s) is

where the output voltage Vo(s) is the voltage across Z1(s) and the input voltage Vin is the voltage across
the two-element combination.

Of course, the impedances of the source (transducer) and the load (the remainder of the system) must
be taken into account when designing the divider network.

Resistive Dividers
If the elements in the chain are resistors, then the divider is useful from DC up through the frequencies
for which the impedances of the resistors have no significant reactive components. For Z1(s) = R1 and
Z2(s) = R2,

Other configurations are available for resistive dividers. One example is the Kelvin–Varley divider, which
has several advantages that make it useful in situations requiring high accuracy. For a detailed description,
see Gregory (1973).

Capacitive Dividers
If the elements in the chain divider are capacitors, then the divider has as its transfer function

Vo s( )
Vin s( )
--------------

Z1 s( )
Z1 s( ) Z2 s( )+
-------------------------------=

Vo s( )
Vin s( )
--------------

R1

R1 R2+
-----------------=

Vo s( )
Vin s( )
--------------

C2

C1 C2+
------------------=
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This form of divider is useful from low frequencies up through frequencies of several megahertz. A
common application is in the scaling of large voltages.

Inductive Dividers
If the elements in the chain divider are inductors, then an autotransformer results. Inductive dividers
are useful over frequencies from a few hertz to several hundred kilohertz. Errors in the parts-per-billion
range are achievable.

Voltage Transformers
Voltage transformers constitute one of the most common means of accomplishing voltage scaling at line
frequencies. Standard double-wound configurations are useful unless voltages above about 200 kV are
to be monitored. For very high voltages, alternative configurations such as the capacitor voltage transformer
and the cascade voltage transformer are employed (Gregory, 1973).

Current Scaling
Current scaling is typically accomplished via either a current shunt or a current transformer.

A current shunt is essentially an accurately known resistance through which the current to be measured
is passed. The voltage developed across the shunt as a result of the current is the quantity measured.
Shunts are useful at DC and frequencies through the audio range. Two disadvantages are (1) the shunt
consumes power, and (2) the measurement circuitry must be operated at the same potential as the shunt.

The current transformer overcomes the mentioned disadvantages of the current shunt. Typically, the
current transformer consists of a specially constructed toroidal core upon which the secondary (sense)
winding is wrapped and through which the primary winding is passed. A single-turn primary is com-
monly used, although mutiturn primaries are available.

Other Attenuators
In addition to the aforementioned means of voltage and current scaling are attenuator pads, which
provide, in addition to voltage or power reduction, the ability to be matched in impedance to the source
and load circuits between which it is connected. The common pads include the T, L, and Π types, either
balanced or unbalanced. Resistive attenuator pads are discussed in most textbooks on circuit design (e.g.,
Cuthbert, 1983). They are useful from DC through several hundred megahertz.

32.1.2 Impedance Transformation

Oftentimes the impedance of the transducer must be transformed to a value more acceptable to the
remainder of the measurement system. In many cases maximum power must be transferred from the
transducer’s output signal to the remaining circuitry. In other cases it is sufficient to provide buffering
that presents a very high impedance to the transducer, a very low impedance to the rest of the system,
and a voltage gain of unity.

Matching transformers, passive matching networks such as attenuator pads, and unity-gain buffers are
standard means of accomplishing impedance transformation. Unity-gain buffers are available in IC form.

32.1.3 Linear Filtering

Although, in general, digital signal processing offers many advantages over analog techniques for filtering
signals, there are many relatively simple applications for which frequency-selective analog filtering is well
suited.

Filters are used within signal conditioners (1) to reduce the effects of noise that corrupts the input
signal, (2) as part of a demodulator, (3) to limit signal bandwidth, or (4) if the signal is to be sampled,
to limit its bandwidth in order to prevent aliasing. These filters can be built either entirely of passive
components or based on active devices such as op amps.
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There are many good references that discuss methods of characterizing, specifying, and implementing
frequency-selective analog filters. See Van Valkenburg (1960) for design of passive filters; for the design
of active-RC filters, see Sedra and Brackett (1978) and Stephenson (1985).

32.2 Nonlinear Operations

There is a wide variety of nonlinear operations useful to signal-conditioning tasks. Listed below are some
typical nonlinear blocks along with brief descriptions. Most of the blocks are available as ICs.

1. Comparator. A comparator is a two-input device whose output voltage, Vo, takes on one of two
stable values, Vo0 and Vo1, as follows:

where V1 and V2 are the voltages at the two inputs.
2. Schmitt trigger. A Schmitt trigger is a comparator with hysteresis. It can be constructed from a

comparator by applying positive feedback.
3. Multiplier. A two-input multiplier supplies an output voltage that is proportional to the product

of its input voltages.
4. Divider. A two-input divider has as its output a voltage proportional to the ratio of its input

voltages. The functions of multiplication and division are usually combined within a single device.
5. Squarer. A squarer has as its output a voltage proportional to the square of its input. Squarers can

be constructed by a number of means: from multipliers, based on diode-resistor networks, based
on FETs, and so forth.

6. Square-rooter. A square-rooter has as its output a voltage proportional to the square root of its
input. A square-rooter can be built most easily from either a divider or a log/antilog amplifier.

7. Logarithmic/antilogarithmic amplifier. A log/antilog amplifier produces an output voltage propor-
tional to the logarithm or the antilogarithm of its input voltage.

8. True RMS-to-DC converter. A true RMS-to-DC converter computes the square root of the average,
over some interval of time, of the instantaneous square of the input signal. The averaging operation
is generally accomplished via a simple low-pass filter whose capacitor is selected to give the desired
interval.

9. Trigonometric function generator. Generators are available in IC form that produce as their outputs
any of the standard trigonometric functions or their inverses, taken as functions of the differential
voltage at the generator’s inputs.

10. Sample-and-hold and track-and-hold amplifiers. A sample-and-hold amplifier (SHA) is a device
that samples the signal at its input and holds the instantaneous value whenever commanded by
a logic control signal. A track-and-hold amplifier is identical to an SHA but is used in applications
where it spends most of its time tracking the input signal (i.e., in “sample” or “track” mode), in
contrast to the SHA, which spends most of its time in “hold” mode.

11. Precision diode-based circuits. Circuits such as precision half-wave rectifiers, absolute-value circuits,
precision peak detectors, and precision limiters are relatively easy to design and implement based on
diodes and op amps. See Horowitz and Hill (1989), Stout and Kaufman (1976), and Graeme (1977).

A detailed description of these and other nonlinear circuit blocks can be found in Sheingold (1976).

Example
We provide briefly an example of a device that has embedded within it several signal-conditioning circuits.
Figure 32.1 shows the basic block diagram of a therapeutic ultrasound unit, which finds widespread use
in physical medicine.

Vo

Vo0,  if V2 V1<

Vo1,  otherwise



=
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32-6 Mechatronic System Control, Logic, and Data Acquisition

The particular unit being discussed consists of five principal subsystems:

1. An application probe and ultrasound transducer, which imparts ultrasonic energy to the tissue
being treated. Note that this transducer is NOT an input transducer such as has been discussed in
relation to signal conditioners.

2. A radio-frequency (RF) module, which provides electrical excitation to the ultrasound transducer.
3. Front-panel display and switches, which allow communication between the unit and its operator.
4. A microprocessor-based digital module, which orchestrates the overall control of the ultrasound

unit.
5. A power supply/battery pack, which provides operating power to the unit.

We focus now on the RF module, whose basic block diagram is shown in Figure 32.2. The module consists
of a sine-wave oscillator that produces a signal at the resonant frequency of the transducer, a modulator
that allows that signal to be pulse-modulated, and an amplifier with RF-voltage feedback. Incorporated in
the amplifier are a power amplifier capable of driving the transducer and automatic-gain-control (AGC)
circuitry required to adjust the output power to coincide with that selected by the operator. The AGC uses

FIGURE 32.1 Basic block diagram of the therapeutic ultrasound unit discussed as an example.

FIGURE 32.2 Simplified block diagram of the RF module used in the ultrasound unit of Figure 32.1.

RF module

front panel
display and

switches

digital module

power supply/
battery pack

intermodule bus

application probe
and transducer

modulator AGC amplifier power amplifier transducer

AGC

integrator

RF-voltage pickoff
and peak detector

feedback amplifier
and sample/hold

desired
power

(reference)

+ −

sinewave
oscillator

frequency
counter

9260_32.fm  Page 6  Thursday, October 11, 2007  4:39 PM



Signal Conditioning 32-7

a standard feedback-control loop to maintain a constant-voltage envelope on the RF signal output from the
power amplifier.

Some of the signal conditioners employed within the RF module include the following:

1. The RF-voltage pickoff at the output of the power amplifier. The pickoff employs a half-wave
rectifier, followed by a simple capacitive chain divider for voltage scaling.

2. A precision peak detector, which obtains the peak value of the output from the voltage divider
during a modulation cycle and presents that value to the feedback loop.

3. An amplifier, having digitally selectable gain, which amplifies the output of the peak detector.
4. A sample-and-hold amplifier, used to hold the amplified output from the peak detector during

the “off-time” of the modulator. The SHA is needed since the time constant of the peak detector
is not sufficient to prevent significant “droop” during the off-time of the modulator.

5. An integrator (an example of frequency-selective filtering), which develops the control voltage for
the AGC loop from the output of the differencer.

6. A current shunt, not shown in Figure 32.2, which is used to monitor the DC current supplied to
the power amplifier.

As can be seen from this simple example, several signal-conditioning functions may be employed
within a single system, and the system itself might not even be an instrument!

Defining Terms

Common-mode rejection (CMR): CMRR given in decibels. CMR = 20 log|CMRR|. CMR is a nonlinear
function of common-mode voltage and depends on other factors such as temperature.

Common-mode rejection ratio (CMRR):  The ratio of the differential gain to the common-mode gain
of an amplifier.

Gain-bandwidth product (GBWP): The product of an amplifier’s highest gain and its corresponding
bandwidth. Used as a rough figure of merit for bandwidth.

Slew rate: The maximum attainable time rate of change of an amplifier’s output voltage in response to
a large step change in input voltage.
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33.1 Introduction to Instrumentation

Like instrumentation systems of the past, today’s instrumentation systems build on widely accepted
contemporary technologies. In the early days of instrumentation, the jeweled movement of clocks in the
nineteenth century was first adapted to build analog meters. In the 1930s, when engineers began to accept
the variable capacitor, variable resistor, and vacuum tubes as pieces of the radio, the first electronic
instruments were introduced using the same components. As display technologies improved for use on
the first televisions, oscilloscopes and analyzers began using the same technology to display the user’s
measurements. These first steps of integrating relevant technologies into instrumentation set the stage
for today’s virtual instrumentation.

33.2 Approaches to Instrumentation: Virtual and Traditional

Fundamentally, there are two types of instrumentation today: virtual and traditional. Figure 33.1 illustrates
the architectures of these approaches. 

The diagrams show the similarities in these two approaches. Both have measurement hardware, a
chassis, a power supply, a bus, a processor, an OS, and a user interface. Because the approaches use the
same basic components, the most obvious difference from a purely hardware standpoint is how the
components are packaged. A traditional, or stand-alone, instrument puts all the components in the same

Darcy Dement
National Instruments, Inc.
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33-2 Mechatronic System Control, Logic, and Data Acquisition

box for every discrete instrument. When automated, a traditional instrument is often controlled with
GPIB, USB, or LAN/Ethernet. While there are a large number of traditional instruments, the software
and user interface are fixed and can only be updated when and how the vendor chooses (e.g., through
a firmware update). This makes it impossible for the user to perform measurements not included in the
traditional instrument’s function list, and it makes it challenging to perform measurements for new
standards or to modify the system if needs change.

By contrast, a virtual instrument makes the raw data from the hardware available to the user to define
their own measurements and user interface. This software-defined approach lets users make custom
measurements, perform measurements for emerging standards, or modify the system if requirements
change (e.g., to add instruments, channels, or measurements).

A virtual instrument can take several forms. Referring again to the architecture of a virtual instrument-
ation system in Figure 33.1, many of the components are shared across instrument modules—such as
the chassis and power supply—instead of duplicating these components for every instrument function.
These instrument modules can also include different types of hardware, including oscilloscopes, function
generators, digital, and RF. In some cases, such as PXI (PCI eXtensions for Instrumentation)—a rugged
platform for test, measurement, and control supported by over 70 member companies—the measurement
hardware is housed in an industrial chassis (see Figure 33.2). 

FIGURE 33.1 Traditional versus virtual instrumentation architectures. Both share similar hardware components;
the primary difference between the architectures is where the software resides and whether it is user accessible.

FIGURE 33.2 Example of a virtual instrumentation system using PXI hardware and National Instruments LabVIEW
graphical development software.
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In those cases, the host computer can be embedded in the chassis (as shown in Figure 33.2) or it can
be a separate desktop PC or server-class machine that controls the measurement hardware through a
cable. In other cases, as shown in Figure 33.3, the measurement hardware is simply a peripheral that is
installed in one of the host computer’s peripheral ports or peripheral slots.

A virtual instrument can even use a traditional instrument as the measurement hardware
(see Figure 33.4). While modular hardware provides other benefits described in the next section, fun-
damentally, a virtual instrument system can use any type of instrument as the measurement hardware,
provided the user has access to the raw data to define custom measurements. A virtual instrumentation
system can also use different measurement hardware—whether PXI, USB, plug-in peripheral, or tradi-
tional instrument—in the same system. (This is termed a “hybrid” system.) Strictly speaking, a virtual
instrumentation system is defined as follows:

• Virtual instrument system (n.): Software-defined system, where software based on user require-
ments defines the functionality of generic measurement hardware

• Virtual instrument (n.): Diminutive form of a virtual instrument system 

By any definition, the measurement software that resides on the host computer is fundamental to a
virtual instrument. This user-defined software is what converts the raw data into the measurement of
interest. It could be a common task such as a simple voltage measurement or a fast Fourier transform, or
it could be a custom application such as a flyback measurement, octave analysis, or brain activity mapping.

Note that while the term “computer based” is often applied to virtual instruments, ultimately many
modern traditional instruments are also computer based. Modern traditional instruments have all the
same components of a PC, including a processor, memory, and a bus to move data internally, as shown
in Figure 33.1. Thus, the distinction between virtual and traditional instruments is determined by whether
the software is exposed to the user for custom measurements and tasks.

FIGURE 33.3 Examples of other measurement hardware choices for virtual instrumentation. On the left is a USB
peripheral module and on the right, a PCI Express plug-in module.

FIGURE 33.4 Virtual instrumentation implementation using a traditional instrument as the measurement hardware.
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33.3 Modular Hardware for System Scalability

Modular hardware uses commercial semiconductor, processor, and bus technologies to create virtual
instruments with high performance at a low cost. The explosion of widely used commercial technologies
such as analog-to-digital converters (ADCs), digital-to-analog converters (DACs), field-programmable
gate arrays (FPGAs), digital signal processors (DSPs) has resulted in rapid growth of functionality and
performance in modular I/O.

The most common instruments in use today digitize an analog signal into bits that can be interpreted
by a processor, for example, digitizing a high-frequency signal (as in the case of an oscilloscope) or
digitizing a slower signal with higher resolution (as with a digital multimeter). A greatly simplified
digitizer architecture is shown in Figure 33.5.

The analog input path attenuates, amplifies, filters, and/or couples the signal to optimize the digitization
by the ADC. (For some applications—e.g., with many physical measurements via transducers—additional
signal conditioning is housed externally and connected to the digitizer via cable or direct mount.) The
ADC samples the conditioned waveform and converts the analog input signal to digital values that
represent the conditioned input signal. The data is then stored in onboard memory, where it is transferred
across a bus (e.g., PCI Express) to the processor. (In some applications, there can be very little onboard
memory if the bus throughput is high enough to stream the data continuously from the measurement
hardware to the host PC.) Then, the software (in the CPU for a virtual instrument) makes the proper
measurement and presents the data to the user interface, sends it to a database across the network,
publishes it to the Internet, or whatever the instrument user chooses.

Analog input is presented here as an example, but many other measurement types can be inferred
from this case. For example, engineers can build signal generation (analog output), digital I/O,
counter/timers, RF, switching, and other instrument functions using the same virtual approach with
different front-end architectures. Because the system is software defined, engineers can combine any
of these elements into an integrated system with very little additional work—a unique property of
virtual instrumentation. This property also means that the system developer can add new instruments,
measurements, or channels over time as requirements change—a concept referred to as “scalability.”
Although not discussed in detail here, these modular I/O components also typically include timing and
synchronization resources for sharing clocks, triggers, and events between hardware I/O modules.
Engineers can use these shared resources to create a 1000-channel digitizer, a mixed-signal system with
10 ps skew between modules, or a fast, hardware-handshaked digital multimeter/switch system.

33.4 Software for Flexible, Custom Measurements

The role of software in virtual instrumentation cannot be overstated. Software converts the raw bitstream
from hardware into a useful measurement. A well-architected virtual instrumentation system considers
multiple layers of software, including I/O drivers, application development, and test management, as
shown in Figure 33.6.

The bottom layer, measurement and control services, is one of the most crucial elements of a virtual
instrumentation system, though often overlooked. This layer represents the driver I/O software and

FIGURE 33.5 Typical digitizer architecture. In a virtual instrument implementation, most of the memory, the CPU,
and the display are provided by the host PC.
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hardware configuration tools. This driver software is critical, because it provides the connectivity between
the test development software and the hardware for measurement and control. 

Instrument drivers provide a set of high-level, human-readable functions for interfacing with instru-
ments. Each instrument driver is specifically tailored to a particular model of instrument to provide an
interface to its unique capabilities. Of particular importance in an instrument driver is its integration
with the development environment so that the instrument commands are a seamless part of the applica-
tion development. System developers need instrument driver interfaces optimized for their development
environment of choice, for example, NI LabVIEW, C, C++, or Microsoft .NET.

Also represented in measurement and control services are configuration tools. These configuration
tools include resources for configuring and testing I/O, as well as storing scaling, calibration, and channel
aliasing information. These tools are important for quickly building, troubleshooting, and maintaining
an instrumentation system.

The software in the application development environment layer provides the tools to develop the code
or procedure for the application. Although graphical programming is not a requirement of a virtual
instrument system, these systems often use graphical tools for their ease of use and rapid development
time. Graphical programming uses “icons” or symbolic functions that pictorially represent the action to
be performed, as shown in Figure 33.7. These symbols are connected together through “wires” that pass
data and determine order of execution. NI LabVIEW provides the industry’s most used and most complete
graphical development environment.

Some applications also require an additional layer of software management, either for test execution
or visibility into test data. These are represented in the system management software layer. For highly
automated test systems, test management software provides a framework for sequencing, branching/
looping, report generation, and database integration. The test management toolmust also provide tight
integration into the development environments where the application-specific code is created. National
Instruments TestStand, for example, provides this framework for sequencing, branching, report gener-
ation, and database integration and includes connectivity to all common development environments. In
other applications that need visibility into large quantities of test data, other tools may be useful. These
needs include quick access to large volumes of scattered data, consistent reporting, and data visualization.
These software tools aid in managing, analyzing, and reporting data collected during data acquisition
and/or generated during simulations.

Every layer of this software architecture should be considered for a virtual instrumentation system.

FIGURE 33.6 Software layers in a virtual instrumentation system.
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33.5 Extensions beyond Test and Measurement

While virtual instrumentation has roots in test and measurement, these concepts can extend to industrial
control and design prototyping. In fact, engineers and scientists who adopt a virtual instrumentation
approach see large efficiency gains from using this approach across different types of applications. 

In control and industrial applications, PCs and PLCs both play important roles. PCs bring great
software flexibility and capability, while PLCs deliver outstanding ruggedness and reliability. A program-
mable automation controller (PAC) is an example of how virtual instrument techniques can be applied
to industrial control; a PAC combines elements of both PCs and PLCs to accommodate more complex,
dynamic, adaptive, and algorithm-based control while retaining its ruggedness and reliability. Other
industrial-focused hardware might include logic, motion, machine vision, and other functions. In all
these cases, the software environment can be the same one used for a virtual instrumentation system for
test and measurement, bringing great efficiency gains to applications combining test, measurement, and
industrial control.

For design prototyping, virtual instrumentation technology offers an architecture for designing custom
measurement hardware circuitry using reconfigurable FPGA chips and NI LabVIEW graphical develop-
ment tools. This architecture facilitates the customization of data acquisition, communication, and
control hardware using the same software tools for test and measurement or industrial control. These
users can quickly create custom hardware circuitry with high-performance I/O and unprecedented
flexibility in system timing control without actually building custom circuitry.

33.6 Benefits of Virtual Instrumentation Systems

The software-defined nature of virtual instrumentation brings several benefits to engineers and scientists,
which are discussed in the following sections. 

FIGURE 33.7 Code for a typical stimulus/response application using virtual instrumentation. This code is written
in National Instruments LabVIEW for (1) generating a signal from an arbitrary waveform generator; (2) acquiring
the signal with a digitizer/oscilloscope; (3) performing a fast Fourier transform; and (4) graphing the result of the
FFT on the user interface (front panel).
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33.6.1 Adaptability and Longevity

Only with virtual instrumentation can engineers and scientists create the user-defined instruments that
nimbly adapt to a changing design or a multifunctional device under test. As the device under test gains
more features and new measurements or tasks are added, only a software-defined architecture can adapt
at the speed of the device under test itself. Because virtual instrumentation uses highly productive
software, modular I/O, and commercial platforms, it is uniquely positioned to keep pace with the product
development rate. Engineers can modify the software to add new functionality or support new devices
or tests, and the modular I/O hardware can be rapidly combined in any order or quantity to performany
I/O task required. These same properties can accommodate a wide variety of test, measurement, or
control tasks required for a single device or process, or disparate tasks across multiple devices.

33.6.2 Greater Speed

Virtual instrumentation applications that use modular I/O are capable of high-speed measurement and
high throughput to PCmemory because of the use of bus and processor technologies. The PCI Express
bus, for example, is commonly available today with a throughput of 1 GB/s—1000 times faster than the
GPIB bus used to connect most traditional instruments to a PC, 16 times faster than USB 2.0, 80 times
faster than 100-Mbps Ethernet, and even 8 times as fast as emerging Gbps Ethernet. For high-streaming
applications, PCI Express slots are available today with 4 GB/s bandwidth, and plans exist for higher
throughputs in the future. In virtual instrumentation systems, GHz PC processors analyze the data and
make measurements using software. The result is measurements at 10–100 times the throughput of a
test system built solely on traditional instruments that use built-in vendor-defined firmware and appli-
cation-specific processors.

33.6.3 Lower Cost and Size

A virtual instrumentation system using modular I/O shares resources across the instruments, such as the
processor, the bus, and the memory (see Figure 33.1). By sharing these resources across the instruments
in the system, the integrated solution is much smaller and much less expensive than the traditional
solution. The benefits of greater throughput, smaller size, and the ability to only change or upgrade
specific components of the system when necessary also lead to lower total cost of ownership. 

It is worth noting that these benefits do not sacrifice measurement performance. Today, the instruments
designed with a virtual instrumentation approach include the industry’s highest-resolution digitizer, the
highest-bandwidth arbitrary waveform generator, and the most accurate 71/2-digit digital multimeter.

Further Reading
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Prentice Hall (copyright 2005).

Gary W. Johnson and Richard Jennings, LabVIEW Graphical Programming, 4th Edn., New York:McGraw-
Hill (copyright 2007).

David G. Alciatore and Michael B. Histand, Introduction to Mechatronics and Measurement Systems, 3rd
Edn., New York: McGraw-Hill (copyright 2007).
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A software-based system can be neatly compared with a biological entity called a superorganism. Com-
prising software, hardware, peopleware and their interconnectivity (such as the Internet), and requiring
all to survive, the silicon superorganism is itself a part of a larger superorganism—for example, a medical
system including patients, drugs, drug companies, doctors, hospitals, and health care centers; a space
mission including the spacecraft, the laws of the universe, mission control, and the astronauts; a system
for researching genes including funding organizations, funds, researchers, research subjects, and genes;
a financial system including investors, money, politics, financial institutions, stock markets, and the health
of the world economy; or it could be just the business itself. 

Whether that business be government, academic, or commercial, the software-based system, like its bio-
logical counterpart, must grow and adapt to meet rapidly changing requirements. And, like other organisms,
the business has both physical infrastructure and operational policies, which guide and occasionally constrain
its direction and the rate of evolution, which it can tolerate without becoming dysfunctional.

Compared to a biological superorganism, which may take many generations to effect even a minor
hereditary modification, software can be modified immediately. This makes it far superior in this
respect to the biological entity in terms of its evolutionary adaptability. Continuity of business rules
and/or the physical infrastructure provides a natural tension between “how fast the software can
change” and “how rapidly the overall system can accept change.” Software, the brain of the silicon
superorganism, controls the action of the entire entity. Keep in mind, however, it was a human being
that created the software. 

In this chapter we will discuss the tenets of software, what it is and how it is developed, as well as
the precepts of software engineering, which are the methodologies by which ideas are turned into
software.† 

* Parts of this chapter were taken from Object Thinking: Development Before the Fact, M. H. Hamilton and W. R.
Hackler, in press.

†001, 001 Tool Suite, DBTF, Development Before the Fact, SOO, and System Oriented Objects are all trademarks
of Hamilton Technologies, Inc.

Margaret H. Hamilton
Hamilton Technologies, Inc.
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34.1 The Notion of Software

Software is the embodiment of logical processes, whether in support of business functions or in control
of physical devices. The nature of software as an instantiation of process can apply very broadly, when
modeling complex organizations, or very narrowly as when implementing a discrete numerical algorithm.
In the former case, there can be significant linkages between reengineering businesses to accelerate the
rate of evolution—even to the point of building operational models, which then transition into application
suites and thence into narrowly focused implementations of algorithms, as above. Software thus has a
potentially wide range of application, and that well designed has a potentially long period of utilization.

While some would define software as solely the code that a programming language generates from the
compilation process, a broader and more precise definition includes requirements, specifications, designs,
program listings, documentation, procedures, rules, measurements, and data as well as the tools used to
create, test, optimize, and implement the software. 

That there is more than one definition of software is a direct result of the confusion about the very
process of software development itself. A 1991 study by the Software Engineering Institute (SEI) [1]
amplifies this rather startling problem. SEI developed a methodology for classifying an organization’s
“software process maturity” into one of five levels which range from Level 1, the initial level (where there
is no formalization of the software process), to Level 5, the optimizing level where methods, procedures,
and metrics are in place with a focus toward continuous improvement in software reliability. The result
of this study showed that fully 86% of organizations surveyed in the United States were at Level 1 where
the terms “ad-hoc,” “dependent on heroes,” and “chaotic” are commonly applied. And, given the com-
plexity of today’s Internet-based applications, it would not be surprising to see the percentage of Level 1
organizations increase.

Creating order from this chaos requires an insightful understanding into the component parts of
software as well as the development process. Borrowing again from the world of natural science, an
entelechy is something complex that emerges when a large number of simple objects are put together.
For example, one molecule of water is rather boring in its utter lack of activity. But pour a bunch of
these molecules into a glass and there is a ring of ripples on the water’s surface. If many of these molecules
are combined, the result is an ocean. So too software. By itself, a line of code is a rather simple item. But
combine many lines and the result is a complex program. Add additional programs and the result could
be a system that can put a person on the moon.

Although the whole is indeed bigger than the sum of its parts, one must still understand those parts
if the whole is to work in an orderly and controlled fashion. Like a physical entity, software can “wear”
as a result of maintenance, changes in the underlying system, and updates made to accommodate the
requirements of the ongoing user community. Entropy is a significant phenomenon in software, especially
for Level 1 organizations.

Software at the lowest programming level is termed source code. This differs from executable code
(i.e., which can be executed by the hardware to perform one or more specified functions) in that software
is written in one or more programming languages and cannot, by itself, be executed by the hardware. A
programming language is a set of words, letters, numerals, and abbreviated mnemonics, regulated by a
specific syntax, used to describe a program to a computer. There are a wide variety of programming
languages, many of them tailored for a specific type of application. C, one of today’s more popular
programming languages, is used in engineering as well as business environments while object-oriented
languages such as C++ [2] and Smalltalk have been gaining acceptance in both of these environments.
More recently, Java [3] has been gaining acceptance. In fact, it has become a language of choice for
Internet-based applications. In the recent past, engineering applications have often used programming
languages such as FORTRAN, HAL (or HAL/s) for NASA space applications, and Ada for government
applications while commercial business applications have favored COBOL (COmmon Business Oriented
Language). For the most part one finds that in any given organization there are no prescribed rules, other
than those related to what is most popular at the moment, which dictate which languages are to be used.
And, as one might expect, a wide diversity of languages is being deployed.
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The programming language, whether it be C++, Java, Visual BASIC, C, FORTRAN, HAL/s, COBOL,
or something else, provides the capability to code such logical constructs as that having to do with:

• User Interface. Provides a mechanism whereby the ultimate end-user can input, view, manipulate,
and query information contained in an organization’s computer systems. Studies have shown that
productivity increases dramatically when visual user interfaces are provided. Known as GUIs
(graphical user interfaces), each operating system provides its own variation. Some common
graphical standards are Motif for UNIX systems and Microsoft Windows for PC-based systems.

• Model Calculations. Perform the calculations or algorithms (step-by-step procedures for solving a
problem) intended by a program, e.g., process control, payroll calculations, or a Kalman filter.

• Program Control. Exerts control in the form of comparisons, branching, calling other programs,
and iteration to carry out the logic of the program.

• Message Processing. There are several varieties of message processing. Help-message processing is
the construct by which the program responds to requests for help from the end-user. Error-message
processing is the automatic capability of the program to notify and then recover from an error
during input, output, calculations, reporting, communications, etc. And, in object-oriented devel-
opment environments, message processing implies the ability of program objects to pass infor-
mation to other program objects.

• Moving Data. Programs store data in a data structure. Data can be moved between data structures
within a program, moved from an external database or file to an internal data structure or from
user input to a program’s internal data structure. Alternatively, data can be moved from an internal
data structure to a database or even to the user interface of an end-user. Sorting and formatting
are data moving operations used to prepare the data for further operations. 

• Database. A collection of data (objects
1
) or information about a subject or related subjects, or a

system (for example, an engine in a truck or a personnel department in an organization). A database
can include objects, such as forms and reports or a set of facts about the system (for example,
the information in the personnel department needed about the employees in the company). A
database is organized in such a way so as to be easily accessible to computer users. Its data is a
representation of facts, concepts, or instructions in a manner suitable for processing by computers.
It can be displayed, updated, queried, printed, and reports can be produced from it. A database can
organize data in several ways including in a relational, hierarchical, network, or object-oriented
format.*

• Data Declaration. It describes data and data structures to a program. An example would be
associating a particular data structure with its type (for example, data about a particular employee
might be of type person).

• Object. A person, place, or thing, which could be physical or abstract. An object contains other
more primitive objects (or data) and a set of operations to manipulate objects (or data). When
brought to life, it knows things (called attributes) and can do things (to change itself or interact
with other objects). For example, in a robotics system a robot object may contain the functions
to move its own armature to the right, while it is coordinating with another robot to transfer yet
another object. Objects can communicate with each other through a communications medium
(e.g., message passing, radio waves, Internet).

• Real-Time. A software system that satisfies critical timing requirements. The correctness of the
software depends on the results of computation, as well as on the time at which the results are
produced. Real-time systems can have varied requirements such as performing a task within a
specific deadline and processing data in connection with another process outside of the computer.

*Data and object are used interchangeably throughout this chapter to define information in a software program.
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Applications such as transaction processing, avionics, interactive office management, automobile
systems, and video games are examples of real-time systems.

• Distributed. Any system in which a number of independent, interconnected processes can coop-
erate. The client/server model is one of the most popular forms of distribution in use today. In
this model, a client initiates a distributed activity and a server carries out that activity.

• Simulation. The representation of selected characteristics of the behavior of one physical or abstract
system by another system. For example, a software program can simulate an airplane or an orga-
nization or another software program.

• Documentation. It includes the description of requirements, specification, and design as well as
written or generated documentation, which describe how each program within the larger system
operates and can be used; and comments which describe the operation of the program that are
stored internally in the program.

• Tools. The software programs used to design, develop, test, analyze, or maintain system designs
or another software program and its documentation. They include code generators, compilers,
editors, database management systems (DBMS), GUI builders, debuggers, operating systems, and
software development and systems engineering tools referred to in the 1990s as computer-aided
software engineering (CASE) tools and now often referred to as life-cycle design or life-cycle
development environments, which combine a set of tools, including some of those listed above.

Although the reader should by now understand the dynamics of a line of source code, where that line
of source code fits into the superorganism of software is dependent upon many variables. This includes
the industry the reader hails from as well as the software development paradigm used by the organization.

As a base unit, a line of code can be joined with other lines of code to form many things. In a traditional
software environment many lines of code form a program, sometimes referred to as an application
program or just plain application. But lines of source code by themselves cannot be executed. First, source
code must be run through what is called a compiler to create an object code. Next, the object code is
run through a linker which is used to construct an executable code. Compilers are programs themselves.
Their function is twofold. The compiler first checks the source code for obvious syntax errors and then,
if it finds none, creates object code for a specific operating system. UNIX, Linux (a spinoff of UNIX),
and NT are all examples of operating systems. An operating system can be thought of as a supervising
program that controls the application programs that run under its control. Since operating systems (as
well as computer architectures) can be different from each other, the object code resulting from the source
code compiled for one operating system cannot be executed under a different kind of operating system—
without a recompilation.

Solving a complex business or engineering problem often requires more than one program. One or
more programs that run in tandem to solve a common problem is known collectively as a system. The
more modern technique of object-oriented development dispenses with the notion of the program alto-
gether and replaces it with a classification-oriented concept of an object. 

Where a program can be considered a critical mass of code, which performs many functions in the
attempt to solve a problem with little consideration for object boundaries, an object is associated with
the code to solve a particular set of functions having to do with just that type of object. By combining
objects, like molecules, it is possible to create more organized systems than those created by traditional
means. Software development becomes a speedier and less error-prone process as well. Since objects can
be reused, once tested and implemented, they can be placed in a library for other developers to reuse.
The more objects in the library, the easier and quicker it is to develop new systems. And since the objects
being reused have, in theory, already been warranted (i.e., they’ve been tested and made error-free), there
is less possibility that object-oriented systems will have major defects.

The process of writing programs and/or objects is known as software development, or software engi-
neering. It is composed of a series of steps or phases, collectively referred to as a development life cycle.
The phases include (at a bare minimum) the following: an analysis or requirements phase, where the
business problem is dissected and understood; a specification phase, where decisions are made as to how
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the requirements will be fulfilled (e.g., deciding what functions are allocated to software and what
functions are allocated to hardware); a design phase, where everything from the GUI to the database to
the output is designed or selected as part of a design; an implementation or programming phase, where
one or more tools are used to write and/or generate code; a testing (debugging) phase, where the code
is tested against a business test case and errors in the program are found and corrected; an installation
phase, where the systems are placed in production; and a maintenance phase, where modifications are
made to the system. But different people develop systems in different ways. These different paradigms
make up the opposing viewpoints of software engineering.

34.2 The Nature of Software Engineering

Engineers often use the term “systems engineering” to refer to the tasks of specifying, designing, and
simulating a non-software system such as a bridge or electronic component. Although software may be
used for simulation purposes, it is but one part of the systems engineering process. Software engineering,
on the other hand, is concerned with the production of nothing but software.

In the 1970s industry pundits began to notice that the cost of producing large-scale systems was growing
at a high rate and that many projects were failing or, at the very least, resulting in unreliable products.
Dubbed the software crisis, its manifestations were legion and the most important include the following:

• Programmer Productivity. In government in the 1980s, an average developer using C was expected
to produce 10 lines of code per day (an average developer within a commercial organization was
expected to produce 30 lines a month); today the benchmark in the government is more like 2 to
5 lines a day while at the same time the need is dramatically higher than that, perhaps by several
orders of magnitude, ending up with a huge backlog. Programmer productivity is dependent upon
a plethora of vagaries—from expertise to complexity of the problem to be coded to the size of the
program that is generated. The science of measuring the productivity of the software engineering
process is called metrics. Just as there are many diverse paradigms in software engineering itself,
there are many paradigms of software measurement. Today’s metric formulas are complex and
often take into consideration the following: cost, time to market, productivity on prior projects,
data communications, distributed functions, performance, heavily used configuration, transaction
rate, online data entry, end-user efficiency, online update, complex processing, reusability, instal-
lation ease, operational ease, and multiplicity of operational sites.

• Defect Removal Costs. The same variables that affect programmer productivity affect the cost of
“debugging” the programs and/or objects generated by those programmers. It has been observed
that the testing and correcting of programs consumes a large share of the overall effort.

• Development Environment. Development tools and development practices greatly affect the quan-
tity and quality of software. Most of today’s design and programming environments contain only
a fragment of what is really needed to develop a complete system. Life-cycle development envi-
ronments provide a good example of this phenomena. Most of these tools can be described either
as addressing the upper part of the life cycle (i.e., they handle the analysis and design) or the lower
part of the life cycle (i.e., they handle code generation). There are few integrated tools on the
market (i.e., that seamlessly handle both upper and lower functionalities). There are even fewer
tools that add simulation, testing, and cross-platform generation to the mix. Rare are the tools
that seamlessly integrate system design to software development.

• GUI Development. Developing GUIs is a difficult and expensive process unless the proper tools are
used. The movement of systems from a host-based environment to the workstation and/or PC saw
the entry of countless GUI development programs onto the marketplace. But the vast majority of
these GUI-based tools do not have the capability of developing the entire system (i.e., the processing
component as opposed to merely the front-end). This leads to fragmented and error-prone systems.
To be efficient, the GUI builder must be well integrated into the software development environment.
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The result of these problems is that most of today’s systems require more resources allocated to mainte-
nance than to the original development of that system. Lientz and Swanson [4] demonstrate that the
problem is, in fact, larger than the one originally discerned during the 1970s. Software development is
indeed complex, and the limitations on what can be produced by teams of software engineers given finite
amounts of time, budgeted dollars, and talent have been amply documented by Jones [5].

Essentially the many paradigms of software engineering attempt to rectify the causes of declining
productivity and quality. Unfortunately, this fails because current paradigms treat symptoms rather than
the root problem. In fact, software engineering is itself extremely dependent upon both the software and
hardware as well as the business environments upon which they sit [6].

SEI’s process maturity grid very accurately pinpoints the root of most of our software development
problems. The fact that a full 86% of organizations studied remain at the ad hoc or chaotic level indicate
that only a few organizations (the remaining 14%) have adopted any formal process for software engi-
neering. Simply put, 86% of all organizations react to a business problem by just writing codes. If they
do employ a software engineering discipline, in all likelihood it is one that no longer fits the requirements
of the ever-evolving business environment.

In the 1970s, the “structured methodology” was popularized. Although there were variations on the
theme (i.e., different versions of the structured technique included the popular Gane–Sarson method
and Yourdon method), for the most part, it provided a methodology to develop usable systems in an era
of batch computing. In those days, online systems with even the dumbest of terminals were a radical
concept and GUIs were as unthinkable as the fall of the Berlin Wall.

Although times have changed and today’s hardware is one thousand times more powerful than when
structured techniques were introduced, this technique still survives. And it survives in spite of the fact
that the authors of these techniques have moved on to more adaptable paradigms, and more modern
software development and systems engineering environments have entered the market.

In 1981, Finkelstein and Martin popularized “information engineering” [7] for the more commercially
oriented users (i.e., those whose problems to be solved tended to be more database centered) which, to
this day, is quite popular among mainframe developers with an investment in CASE strategies of the
1990s. Information engineering is essentially a refinement of the structured approach. However, instead
of focusing on the data so preeminent in the structured approach, information engineering focuses on
the information needs of the entire organization. Here business experts define high-level information
models, as well as detailed data models. Ultimately, the system is designed from these models.

Both structured and information engineering methodologies have their roots in mainframe-oriented
commercial applications. Today’s migration to client/server technologies (where the organization’s data
can be spread across one or more geographically distributed servers while the end-user uses his or her GUI
of choice to perform local processing), disables most of the utility of these methodologies. In fact, many
issues now surfacing in more commercial applications are not unlike those that needed to be addressed
earlier in the more engineering-oriented environments such as telecommunications and avionics.

Client/server environments are characterized by their diversity. One organization may store its data
on multiple databases, program in several programming languages, and use more than one operating
system, and hence, different GUIs. Since software development complexity is increased 100-fold in this
new environment, a better methodology is required. Today’s object-oriented techniques solve some of
the problems. Given the complexity of the client/server environment, code trapped in programs is not
flexible enough to meet the needs of this type of environment. We have already discussed how coding
via objects rather than large programs engenders flexibility as well as productivity and quality through
reusability. But object-oriented development is a double-edged sword.

While it is true that to master this technique is to provide dramatic increases in productivity, the sad
fact of the matter is that object-oriented development, if done inappropriately, can cause problems far
greater than problems generated from structured techniques. The reason for this is simple. The stakes
are higher. Object-oriented environments are more complex than any other, the business problems chosen
to be solved by object-oriented techniques are far more complex than other types of problems, and there
are few if any conventional object-oriented methodologies and corollary tools to help the development
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team develop good systems. There are many flavors of object orientation. But with this diversity comes
some very real risks. As a result, the following developmental issues must be considered before the
computer is even turned on.

• Integration is a challenge and needs to be considered at the onset. With traditional systems,
developers rely on mismatched modeling methods to capture aspects of even a single definition.
Whether it be integration of object to object, module to module, phase to phase, or type of
application to type of application, the process can be an arduous one. The mismatch of products
used in design and development compounds the issue. Integration is usually left to the devices of
myriad developers well into development. The resulting system is sometimes hard to understand
and objects are difficult to trace. The biggest danger is there is little correspondence to the real
world. Interfaces are often incompatible and errors usually propagate throughout development.
As a result, systems defined in this manner can be ambiguous and just plain incorrect.

• Errors need to be minimized. Traditional methods including those that are object oriented can
actually encourage the propagation of errors, such as propagating errors through the reuse of
objects with embedded and inherited errors throughout the development process. Errors must be
eliminated from the very onset of the development process before they take on a life of their own.

• Languages need to be more formal.*2 Although some languages are formal and others are friendly,
it is hard to find languages both formal and friendly. Within environments where more informal
approaches are used, lack of traceability and an overabundance of interface errors are a common
occurrence. Recently, more modern software requirements languages have been introduced (for
example, the Unified Modeling Language, UML [8]), most of which are informal (or semi-formal);
some of these languages were created by “integrating” several languages into one. Unfortunately,
the bad comes with the good—often, more of what is not needed and less of what is needed; and
since the formal part is missing, common semantics need to exist to reconcile differences and
eliminate redundancies. 

• The syndrome of locked-in design needs to be eliminated. Often, developers are forced to develop
in terms of an implementation technology that does not have an open architecture, such as a
specific database schema or a GUI. Bad enough is to attempt an evolution of such a system; worse
yet is to use parts of it as reusables for a system that does not rely on those technologies. Well
thought-out and formal business practices and their implementation will help minimize this
problem within an organization.

• Flexibility for change and handling the unpredictable must be dealt with up front. Too often it is
forgotten that the building of an application must take into account its evolution. Users change
their minds, software development environments change, and technologies change. Definitions
of requirements in traditional development scenarios concentrate on the application needs of the
user, but without consideration of the potential for the user’s needs or environment to change.
Porting to a new environment becomes a new development for each new architecture, operating
system, database, graphics environment, or language. Because of this, critical functionality is often
avoided for fear of the unknown, and maintenance, the most risky and expensive part of a system’s
life cycle, is left unaccounted for during development. To address these issues, tools and techniques
must be used to allow cross technology and changing technology, as well as provide for changing
and evolving architectures.

• Developers must prepare ahead of time for parallelism and distributed environments. Often, when
it is known that a system is targeted for a distributed environment, it is first defined and developed
for a single processor environment and then redeveloped for a distributed environment—an unpro-
ductive use of resources. Parallelism and distribution must be dealt with at the very start of the
project.

*See Defining Terms for definition of formal.
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• Resource allocation should be transparent to the user. Whether or not a system is allocated to
distributed, asynchronous, or synchronous processors and whether or not two or ten processors
are selected, with traditional methods, it is still up to the designer and developer to be concerned
with incorporating such detail into the application. There is no separation between the specifica-
tion of what the system is to do vs. how the system does it. This results in far too much imple-
mentation detail to be included at the level of design. Once such a resource architecture becomes
obsolete, it is necessary to redesign and redevelop those applications which have old designs
embedded within them. 

• Automation that minimizes manual work needs to replace “make work” automated solutions. In
fact, automation itself is an inherently reusable process. If a system does not exist for reuse, it
certainly does not exist for automation. But most of today’s development process is needlessly
manual. Today’s systems are defined with insufficient intelligence for automated tools to use them
as input. In fact, automated tools concentrate on supporting the manual process instead of doing
the real work. Typically, developers receive definitions, which they manually turn into code. A
process that could have been mechanized once for reuse is performed manually again and again.
Under this scenario, even when automation attempts to do the real work, it is often incomplete
across application domains or even within a domain, resulting in incomplete code such as shell
code. The generated code is often inefficient or hardwired to a particular kind of algorithm, an
architecture, a language, or even a version of a language. Often partial automations need to be
integrated with incompatible partial automations or manual processes. Manual processes are
needed to complete unfinished automations.

• Run-time performance analysis (decisions between algorithms or architectures) should be based
on formal definitions. Conventional system definitions contain insufficient information about a
system’s run-time performance, including that concerning the decisions between algorithms or
architectures. System definitions must consider how to separate the system from its target envi-
ronment. Design decisions, where this separation is not taken into account, thus depend on analysis
of results from ad hoc “trial and error” implementations and associated testing scenarios.

• The creation of reliable reusable definitions must be promoted, especially those that are inher-
ently provided. Conventional requirements definitions lack the facilities to help find, create,
use, and ensure commonality in systems. Modelers are forced to use informal and manual
methods to find ways to divide a system into components natural for reuse. These components
do not lend themselves to integration and, as a result, they tend to be error-prone. Because
these systems are not portable or adaptable, there is little incentive for reuse. In conventional
methodologies, redundancy becomes a way of doing business. Even when methods are object
oriented, developers are often left to their own devices to explicitly make their applications
object oriented. This is because these methods do not support all that is inherent to the process
of object orientation. 

• Design integrity is the first step to usable systems. Using traditional methods, it is not known if
a design is a good one until its implementation has failed or succeeded. Usually, a system design
is based on short-term considerations because knowledge is not reused from previous lessons
learned. Development, ultimately, is driven towards failure. The solution is to have an inherent
means to build reliable, reusable definitions.

Once these issues are addressed, software will cost less and take less time to develop. But time is of the
essence. These issues are becoming compounded and even more critical as developers prepare for the
distributed environments that go hand in hand with the increasing predominance of Internet applications.

With respect to the challenges described above, an organization has several options, ranging from one
extreme to the other. The options include: (1) keep things the same; (2) add tools and techniques that
support business as usual, but provide relief in selected areas; (3) bring in more modern but traditional
tools and techniques to replace existing ones; (4) use a new paradigm with the most advanced tools and
techniques that formalizes the process of software development, while at the same time capitalizing on
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software already developed; or (5) completely start over with a new paradigm that formalizes the process
of software development and uses the most-advanced tools and techniques. 

34.3 Development before the Fact 

Thus far, this chapter has explained the derivation of software and attempted to show how it has evolved
over time to become the true “brains” of any automated system. But, like a human brain, this software
brain must be carefully architected to promote productivity, foster quality, and enforce control and reus-
ability.

Traditional software engineering paradigms fail to see the software development process from the
larger perspective of the superorganism described at the beginning of this chapter. It is only when we
see the software development process as made of discrete, but well-integrated, components can we begin
to develop a methodology that can produce the very benefits that have been promised by the advent of
software decades ago.

Software engineering, from this perspective, consists of a methodology as well as a series of tools with
which to implement the solution to the business problem at hand. But even before the first tool can be
applied, the software engineering methodology must be deployed to assist in specifying the requirements
of the problem. How can this be accomplished successfully in the face of the issues needed to be addressed
outlined in the last section? How can this be accomplished in situations where organizations must develop
systems that run across diverse and distributed hardware platforms, databases, programming languages,
and GUIs when traditional methodologies make no provision for such diversity? And how can software
be developed without having to fix or “cure” those myriad of problems, which result “after the fact” of
that software’s development?

What is required is a radical revision of the way we build software, an approach that understands how
to build systems using the right techniques at the right time. First and foremost, it is a preventative
approach. This means it provides a framework for doing things right the first time. Problems associated
with traditional methods of design and development are prevented “before the fact” just by the way a
system is defined. Such an approach would concentrate on preventing problems of development from
even happening rather than letting them happen “after the fact,” and fixing them after they have surfaced
at the most inopportune and expensive point in time. 

Consider such an approach in its application to a human system. To fill a tooth before it reaches the
stage of a root canal is curative with respect to the cavity, but preventive with respect to the root canal.
Preventing the cavity by proper diet prevents not only the root canal, but the cavity as well. To follow a
cavity with a root canal is the most expensive alternative, to fill a cavity on time is the next most expensive,
and to prevent these cavities in the first place is the least expensive option.

Preventiveness is a relative concept. For any given system, be it human or software, one goal is to prevent,
to the greatest extent and as early as possible, anything that could go wrong in the life cycle process.

With a preventative philosophy, systems would be carefully constructed to minimize development
problems from the very outset. A system could be developed with properties that controlled its very own
design and development. One result would be reusable systems that promote automation. Each system
definition would model both its application and its life cycle with built-in constraints—constraints that
protect the developer, but yet do not take away his flexibility.

The philosophy behind preventative systems is that reliable systems are defined in terms of reliable
systems. Only reliable systems are used as building blocks, and only reliable systems are used as mecha-
nisms to integrate these building blocks to form a new system. The new system becomes reusable for
building other systems.

Effective reuse is a preventative concept. That is, reusing something (e.g., requirements or code) that
contains no errors to obtain a desired functionality avoids both the errors and the cost of developing a
new system. It allows one to solve a given problem as early as possible, not at the last moment. But to
make a system truly reusable, one must start not from the customary end of a life cycle, during the
implementation or maintenance phase, but from the very beginning.
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Preventative systems are the true realization of the entelechy construct where molecules of software
naturally combine to form a whole much greater than the sum of its parts. Or one can think of con-
structing systems from the tinker toys of our youth. One recalls that the child never errs in building
magnificent structures from these tinker toys. Indeed, tinker toys are built from blocks that are architected
to be perpetually reusable, perfectly integratable, and infinitely user-friendly.

One approach that follows this preventative philosophy is development before the fact (DBTF), as
shown in Figure 34.1. Not yet in the mainstream, it has been used successfully by research and “trail
blazer” organizations and is now being adopted for more commercial use. This technology is described
in order to illustrate, by example, the potential that preventative approaches have.

Where traditional approaches begin the process of developing software after the fact, the DBTF
paradigm is very much about beginnings. It was derived from the combination of steps taken to solve
the problems of traditional systems engineering and software development. DBTF includes a technology,
a language, and a process (or methodology) based on a formal theory.

34.3.1 Language

Once understood, the characteristics of good design can be reused by incorporating them into a language
for defining any system (i.e., not just a software system). One language based on DBTF is a formalism
for representing the mathematics of systems. A system defined with this language has properties that
come along “for the ride” that in essence control its own destiny. Based on a theory (DBTF) that extends
traditional mathematics of systems with a unique concept of control, this formal, but friendly language
has embodied within it a natural representation of the physics of time and space. With this language,
every object is a system-oriented object (SOO), an integration that includes aspects of being function
oriented (including dynamics) and object oriented. Instead of systems being object oriented, objects are
systems oriented. All systems are objects and all objects are systems. 

Because of this, many things heretofore not believed possible with traditional methods are possible.
A DBTF system inherently integrates all of its own objects (and all aspects, relationships, and viewpoints
of these objects) and the combinations of functionality, including timing, using these objects; maximizes
its own reliability and flexibility to change (including the change of target requirements, static and
dynamic architectures, and processes and as well reconfiguration in real time); capitalizes on its own
parallelism and traceability; supports its own run-time performance analysis; and maximizes the potential
for its own reuse (providing inherent resource allocation and reuse without need for the designer’s
intervention); and it provides the ability to automate design and development wherever and whenever
possible. Each DBTF system is defined with built-in quality, built-in productivity, and built-in control.

FIGURE 34.1 The development before the fact paradigm.
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The language—meta-language, really—is the key to DBTF. Its main attribute is to help the designer reduce
the complexity and bring clarity into his thinking process, turning it into the ultimate reusable, which is
wisdom itself. It can be used to define any aspect of any system and integrate it with any other aspect.
The crucial point is that these aspects are directly related to the real world and, therefore, the same language
can be used to define system requirements, specifications, design, and detailed design for functional, resource,
and resource allocation architectures throughout all levels and layers of seamless definition, including hard-
ware, software, and peopleware.

This language based on DBTF can be used to define organizations of people, missile or banking systems,
cognitive systems, as well as real-time or database environments and is, therefore, appropriate across
industries, academia, or government.

34.3.2 Technology

Real-world experience sets the stage for the DBTF technology. Having evolved over three decades, the
theory has roots in the worlds of systems theory, formal methods, and object technology. The DBTF
technology embodies the theory, the language supports its representation, and its automation supports
its application and use. Each is evolutionary (in fact, recursively so), with experience feeding the theory
and the theory feeding the language, which in turn feeds the automation. All are used, in concert, to
design systems and build software.

The DBTF approach had its beginnings in 1968 with an empirical analysis of the Apollo space missions.
A better way was needed to define and develop systems than the ones being used and available because
the existing ones (just like the traditional ones today) did not solve the pressing problems. Research for
developing software for man-rated missions led to the finding that interface errors accounted for approx-
imately 75% of all errors found in the flight software during final testing (in traditional development,
the figure is as high as 90%). Such errors include data flow, priority, and timing errors from the highest
levels of a system to the lowest level of detail. Each error was categorized according to how it could be
prevented just by the way a system is defined. This work led to a theory and methodology for defining
a system that would eliminate all interface errors.

The first technology derived from this theory concentrated on defining and building reliable systems.
Having realized the benefits of addressing one major issue, such as reliability, research continued to evolve
by addressing other major issues the same way, that is, just by the way a system is defined [9–11].

DBTF is a function- and object-oriented approach based on a unique concept of control, which is
lacking in any other software engineering paradigm. The foundations are based on a set of axioms and
on the assumption of a universal set of objects. Each axiom defines a relation of immediate domination.
The union of the relations defined by the axioms is control. Among other things, the axioms establish
the relationships of an object for invocation, input and output, input and output access rights, error
detection and recovery, and ordering during its developmental and operational states. Table 34.1 sum-
marizes some of the properties of objects within DBTF systems.

34.3.3 Process

Where software engineering fails is in its inability to grasp that not only the right paradigm (out of many
paradigms) must be selected, but that the paradigm must be part of an environment that provides an
integrated automated means to solve the problem at hand. What this means is that the paradigm must
be coupled with an integrated system of tools with which to implement the results of utilizing that
paradigm to develop the model of the system. 

Essentially, the paradigm generates the model and a toolset must be provided to generate the system.
DBTF provides this next-generation capability.

This DBTF approach is used throughout a life cycle, starting with requirements and continuing with
functional analysis, simulation, specification, analysis, design, system architecture design, algorithm devel-
opment, implementation, configuration management, testing, maintenance, and reverse engineering. Its
users include end users, managers, system engineers, software engineers, and test engineers.
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TABLE 34.1 System Oriented Object Properties of Development before the Fact

Quality (better, faster, cheaper)
• Reliable Handles the unpredictable 
• Affordable • throughout development and operation

• Without affecting unintended areas
Reliable (better) • Error detect and recover from the unexpected
• In control and under control • Interface with, change and reconfigure in asynchronous,
• Based on a set of axioms  distributed, real-time environment

–domain identification (intended, unintended)
–ordering (priority and timing) Flexible
–access rights: Incoming object (or relation), outgoing • Changeable without side effects

  object (or relation) • Evolvable
–replacement • Durable

• Formal • Reliable
–consistent, logically complete • Extensible
–necessary and sufficient • Ability to break up and put together
–common semantic base –one object to many: modularity, decomposition, 
–unique state identification   instantiation

• Error free (based on formal definition of “error”) –many objects to one: composition, applicative operators, 
–always gets the right answer at the right time and in   integration, abstraction

  the right place • Portable
–satisfies users and developers intent –secure

• Handles the unpredictable –diverse and changing layered developments
• Predictable –open architecture (implementation, resource allocation, 

  and execution independence)
Affordable (faster, cheaper) –plug-in (or be plugged into) or reconfiguration of 
• Reusable   different modules
• Optimizes resources in operation and development –adaptable for different organizations, applications, 

–in minimum time and space   functionality, people, products
–with best fit of objects to resources

Automation
Reusable • the ultimate form of reusable
• Understandable, integratable and maintainable • formalize, mechanize, then automate
• Flexible –it
• Follows standards –its development
• Automation –that which automates its development
• Common definitions

–natural modularity Understandable, integratable and maintainable
-natural separation (e.g., functional architecture • Reliable
 from its resource architectures); • A measurable history
-dumb modules • Natural correspondence to real world
-an object is integrated with respect to structure, –persistence, create and delete
behavior and properties of control –appear and disappear

–integration in terms of structure and behavior –accessibility
–type of mechanisms –reference

-function maps (relate an object’s function to other –assumes existence of objects
functions) –real time and space constraints

-object type maps (relate objects to objects) –representation
-structures of functions and types –relativity, abstraction, derivation

–category • Provides user friendly definitions
-relativity –recognizes that one user’s friendliness is another user’s 

instantiation   nightmare
polymorphism –hides unnecessary detail (abstraction)
parent/child –variable, user selected syntax
being/doing –self teaching
having/not having –derived from a common semantic base

-abstraction –common definition mechanisms
encapsulation • Communicates with common semantics to all entities
replacement • Defined to be simple as possible but not simpler 

(continued)
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The DBTF process combines mathematical perfection with engineering precision. Its purpose is to
facilitate the “doing things right in the first place” development style, avoiding the “fixing wrong things
up” traditional approach. Its automation is developed with the following considerations: error prevention
from the early stage of system definition, life cycle control of the system under development, and inherent
reuse of highly reliable systems. The development life cycle is divided into a sequence of stages, including
requirements and design modeling by formal specification and analysis, automatic code generation based
on consistent and logically complete models, test and execution, and simulation. 

The first step in building a DBTF system is to define a model with the language. This process could
be in any phase of the developmental life cycle, including problem analysis, operational scenarios, and
design. The model is automatically analyzed to ensure it was defined properly. This includes static analysis
for preventive properties and dynamic analysis for user-intent properties.

In the next stage, the generic source code generator automatically generates a fully production-ready
and fully integrated software implementation for any kind of application, consistent with the model, for a
selected target environment in the language and architecture of choice. If the selected environment has
already been configured, the generator selects that environment directly; otherwise, the generator is first
configured for a new language and architecture.

Because of its open architecture, the generator can be configured to reside on any new architecture
(or interface to any outside environment), e.g., to a language, communications package, an Internet
interface, a database package, or an operating system of choice; or it can be configured to interface to
the users own legacy code. Once configured for a new environment, an existing system can be automat-
ically regenerated to reside on that new environment. This open architecture approach, which lends itself
to true component-based development, provides more flexibility to the user when changing requirements
or architectures, or when moving from an older technology to a newer one. 

It then becomes possible to execute the resulting system. If it is software, the system can undergo
testing for further user-intent errors. It becomes operational after testing. Application changes are always
made to the requirements/specification definition—not to the code (the developer does not even need
to change the code). Target architecture changes are made to the configuration of the generator environ-
ment (which generates one of a possible set of implementations from the model)—not to the code. If
the real system is hardware or peopleware, the software system serves as a simulation upon which the
real system can be based. Once a system has been developed, the system and the process used to develop
it are analyzed to understand how to improve the next round of system development.

Seamless integration is provided throughout from systems to software, requirements to design to code
to tests to other requirements and back again; level to level and layer to layer. The developer is able to
trace from requirements to code and back again.

TABLE 34.1 (Continued)

relation including function • Defined with integration of all of its objects (and all aspects 
typing including classification  of these objects)
form including both structure and • Traceability of behavior and structure and their changes 
behavior (for object types and functions) (maintenance) throughout its birth, life and death

-derivation • Knows and able to reach the state of completion
deduction –definition
inference –development of itself and that which develops it
inheritance -analysis

-design
-implementation
-instantiation
-testing
-maintenance

Note: all underlined words point to a reusable.
Source: Hamilton, M., “Software Design and Development,” The Electronics Handbook, CRC Press, Boca Raton, FL,

1996. With permission.
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Given an automation that has these capabilities, it should be of no surprise that an automation of
DBTF has been defined with itself and that it continues to automatically generate itself as it evolves with
changing architectures and changing technologies. Table 34.2 contains a summary of some of the differ-
ences between the more modern preventative paradigm and the traditional approach.

A relatively small set of things is needed to master the concepts behind DBTF. Everything else can be
derived, leading to powerful reuse capabilities for building systems. It quickly becomes clear why it is no
longer necessary to add features to the language or changes to a developed application in an ad hoc
fashion, since each new aspect is ultimately and inherently derived from its mathematical foundations. 

34.4 Experience with DBTF

That preventative development is a superior alternative has been proven rather dramatically in several
experiments. DBTF has been through many evaluations and competitions conducted and sponsored by
leading academic institutions, government agencies, and commercial organizations. In every evaluation
and competition this alternative came out on top. What set this alternative apart from the others was

TABLE 34.2 A Comparison

Traditional (After the Fact) DBTF (Before the Fact)

Interface errors (over 75% of all errors) No interface errors
Most found after implementation All found before implementation
Some found manually All found by automatic and 
Some found by dynamic runs analysis static analysis
Some never found Always found

Ambiguous requirements Unambiguous requirements
Informal or semiformal language formal, but friendly language
Different phases, languages, and tools All phases, same language and tools
Different language for other systems than for 

software
Same language for software, hardware and 

any other system
Automation supports manual process Automation does real work

Mostly manual documentation, programming, 
test generation, traceability, etc.

Automatic documentation, programming,     
test generation, traceability, etc.

 100% code automatically generated for any 
kind of software

No guarantee of function integrity after 
implementation

Guarantee of function integrity after 
implementation

Systems not traceable or evolvable Systems traceable and evolvable
Locked in products, architectures, etc. Open architecture
Painful transition from legacy Smooth transition from legacy 
Maintenance performed at code level Maintenance performed at spec level

Reuse not inherent Inherent reuse
Reuse is adhoc Every object a candidate for reuse
Customization and reuse are mutually exclusive Customization increases reuse pool

Mismatched objects, phases, products, architectures 
and environment

Integrated & seamless objects, phases, products, 
architectures, and environment

System not integrated with software System integrated with software 
Function oriented or object oriented System oriented objects:  integration of 

function, timing, and object oriented
GUI not integrated with application GUI integrated with application
Simulation not integrated with software code Simulation integrated with software code

Automation not defined and developed with itself Automation defined with and generated by itself 
#1 in all evaluations

Dollars wasted, error prone systems Better, faster, cheaper systems
Not cost-effective 10 to 1, 20 to 1, 50 to 1…dollars saved 
Difficult to meet schedules Minimum time to complete
Less of what you need and more of what you 

don’t need
No more, no less of what you need
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that it provided a totally integrated system design and development environment, whereas the traditional
methods resulted in an informal, difficult to integrate (including application modules as well as the
products used to implement them), fragmented, more manual, and “after the fact” life-cycle process. 

The National Test Bed of the U.S. Department of Defense sponsored an experiment in which it provided
a development problem to each of three contractor/vendor teams chosen from a large pool of vendors
and development environments, based upon a well-defined set of requirements. The application was a
real-time, distributed, multiuser, client server system, which needed to be defined and developed under
the government 2167A guidelines.

All teams were able to complete the first part, the definition of preliminary requirements. Two teams
completed the detailed design. But only one team was able to generate complete, integrated, and fully
production-ready code automatically; a major portion of this code was running in both C and Ada at
the end of the experiment [12]. The team that was able to generate the production-ready code was using
the 001 Tool Suite, a development environment based on the DBTF methodology.

34.5 Conclusion

Businesses that expected a big productivity payoff from investing in technology are, in many cases, still
waiting to collect. A substantial part of the problem stems from the manner in which organizations are
building their automated systems. While hardware capabilities have increased dramatically, organizations
are still mired in the same old methodologies that saw the rise of the behemoth mainframes. Old meth-
odologies simply cannot build the new systems.

There are other changes as well. Users demand much more functionality and flexibility in their systems.
And given the nature of many of the problems to be solved by this new technology, these systems must
also be error-free as well.

Where the biological superorganism has built-in control mechanisms fostering quality and produc-
tivity, until now the silicon superorganism has had none. Hence, the productivity paradox.

Often, the only way to solve major issues or to survive tough times is through nontraditional paths
or innovation. One must create new methods or new environments for using new methods.

Innovation for success often starts with a look at mistakes from traditional systems. The first step is
to recognize the true root problems, then categorize them according to how they might be prevented.
Derivation of practical solutions is a logical next step. Iterations of the process entail looking for new
problem areas in terms of the new solution environment and repeating the scenario. That is how DBTF
came into being.

With DBTF all aspects of system design and development are integrated with one systems language
and its associated automation. Reuse naturally takes place throughout the life cycle. Objects, no matter
how complex, can be reused and integrated. Environment configurations for different kinds of architec-
tures can be reused. A newly developed system can be safely reused to increase even further the produc-
tivity of the systems developed with it.

The paradigm shift occurs once a designer realizes that many of the old tools are no longer needed to
design and develop a system. For example, with one formal semantic language to define and integrate
all aspects of a system, diverse modeling languages (and methodologies for using them), each of which
defines only part of a system, are no longer necessary. There is no longer a need to reconcile multiple
techniques with semantics that interfere with each other.

DBTF can support a user in addressing many of the challenges presented in today’s software development
environments. There will, however, always be more to do to capitalize on this technology. That is part of
what makes a technology like this so interesting to work with. Because it is based on a different premise
or set of assumptions (set of axioms), a significant number of things can and will change because of it.
There is the continuing opportunity for new research projects and new products. Some problems can be
solved, because of the language, that could not be solved before. Software development as we know it will
never be the same. Many things will no longer need to exist—they, in fact, will be rendered extinct, just
as that phenomenon occurs with the process of natural selection in the biological system. Techniques for
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bridging the gap from one phase of the life cycle to another become obsolete. Testing procedures and tools
for finding most errors are no longer needed because those errors no longer exist. Tools to support prog-
ramming as a manual process are no longer needed.

Compared to the development using traditional techniques, the productivity of DBTF developed systems
has been shown to be significantly greater. Upon further analysis, it was discovered that the larger and more
complex the system, the greater the productivity—the opposite of what one finds with traditional systems
development. This is, in part, because of the high degree of DBTF’s support of reuse. The larger a system,
the more it has the opportunity to capitalize on reuse. As more reuse is employed, productivity continues to
increase. Measuring productivity becomes a process of relativity—that is, relative to the last system developed.

Capitalizing on reusables within a DBTF environment is an ongoing area of research interest. An
example is understanding the relationship between types of reusables and metrics. This takes into con-
sideration that a reusable can be categorized in many ways. One is according to the manner in which its
use saves time (which translates to how it impacts cost and schedules). More intelligent tradeoffs can
then be made. The more we know about how some kinds of reusables are used, the more information
we have to estimate costs for an overall system. Keep in mind also that the traditional methods for
estimating time and costs for developing software are no longer valid for estimating systems developed
with preventative techniques.

There are other reasons for this higher productivity as well, such as the savings realized and time saved
due to tasks and processes that are no longer necessary with the use of this preventative approach. There
is less to learn and less to do—less analysis, little or no implementation, less testing, less to manage, less to
document, less to maintain, and less to integrate. This is because a major part of these areas has been
automated or because of what inherently take place because of the nature of DBTF’s formal systems language.

In the end, it is the combination of the technology and that which executes it that forms the foundation
of successful software. Software is so ingrained in our society that its success or failure will dramatically
influence both the operation and the success of an organization. For that reason, today’s decisions about
systems engineering and software development have far-reaching effects. 

Software is a relatively young technological field that is still in a constant state of change. Changing
from a traditional software environment to a preventative one is like going from the typewriter to the
word processor. Whenever there is any major change, there is always the initial overhead needed for
learning the new way of doing things. But, as with the word processor, progress begets progress.

Collective experience strongly confirms that quality and productivity increase with the increased use
of properties of preventative systems. In contrast to the “better late than never” after the fact philosophy,
the preventive philosophy behind DBTF is to solve—or if possible, prevent—a given problem as early as
possible. Finding a problem statically is better than finding it dynamically. Preventing it by the way a
system is defined is even better. Better yet is not having to define (and build) it at all.

Reusing a reliable system is better than reusing one that is not reliable. Automated reuse is better than
manual reuse. Inherent reuse is better than automated reuse. Reuse that can evolve is better than one that
cannot evolve. Best of all is reuse that ultimately approaches wisdom itself. Then, have the wisdom to use it.

The answer continues to be in the results just as in the biological system; and the goal is that the
systems of tomorrow will inherit the best of the systems of today. 

Defining Terms

Data Base Management System (DBMS): The computer program that is used to control and provide
rapid access to a database. A language is used with the DBMS to control the functions that a DBMS
provides. For example, SQL is the language that is used to control all of the functions that a
relational architecture-based DBMS provides for its users, including data definition, data retrieval,
data manipulation, access control, data sharing, and data integrity.

Graphical User Interface (GUI): The ultimate user interface, by which the deployed system interfaces
with the computer most productively, using visual means. Graphical user interfaces provide a series
of intuitive, colorful, and graphical mechanisms that enable the end-user to view, update, and
manipulate information.

9260_34.fm  Page 16  Friday, October 5, 2007  11:08 AM



Software Design and Development 34-17

Interface: A point of access in a boundary between objects or programs or systems. It is at this juncture
that many errors surface. Software can interface with hardware, humans, and other software.

Methodology: A set of procedures, precepts, and constructs for the construction of software.
Metrics: A series of formulas that measure such things as quality and productivity.
Software Architecture: The structure and relationships among the components of software.
Formal: A system defined in terms of a known set of axioms (or assumptions); it is, therefore, mathe-

matically based (e.g., a DBTF system is based on a set of axioms of control). Some of its properties
are that it is consistent and logically complete. A system is consistent if it can be shown that no
assumption of the system contradicts any other assumption of that system. A system is logically
complete if the assumptions of the method completely define a given set of properties. This assures
that a model of the method has that set of properties. Other properties of the models defined with
the method may not be provable from the method’s assumptions. A logically complete system has
a semantic basis (i.e., a way of expressing the meaning of that system’s objects). In terms of the
semantics of a DBTF system, this means it has no interface errors and is unambiguous, contains
what is necessary and sufficient, and has a unique state identification.
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35.1 Overview

Data logging and recording is a very common measurement application. In its most basic form, data
logging is the measurement and recording of physical or electrical parameters over a period of time.
These parameters can be temperature, strain, displacement, .ow, pressure, voltage, current, resistance,
power, or any of a wide range of other measurement types. Real-world data-logging applications are
typically more involved than just acquiring and recording signals, as illustrated in Figure 35.1. They
usually involve some combination of online analysis, offline analysis, display, report generation, and data
sharing. In addition, many data-logging applications are beginning to require the acquisition and storage
of other types of data. One example would be recording sound and video in conjunction with the other
parameters measured during an automobile crash test.

Data logging is used in a broad spectrum of applications. Chemists record data such as temperature,
pH, and pressure when performing experiments in a lab. Design engineers log performance parameters
such as vibration, temperature, and battery level to evaluate product designs. Civil engineers record strain
and load on bridges over time to evaluate safety. Geologists use data logging to determine mineral
formations when drilling for oil. Breweries log the conditions of their storage and brewing facilities to
maintain quality.

The list of applications for data logging goes on and on, but all these applications have similar require-
ments. The purpose of this chapter is to provide some general background on data logging, discuss the
various functional requirements that are common to most data-logging applications, and examine some

Craig Anderson
National Instruments, Inc.
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35-2 Mechatronic System Control, Logic, and Data Acquisition

of the modern hardware and software options available that allow scientists and engineers to implement
powerful PC-based data-logging systems.

35.2 Historical Background

The earliest form of data logging involved taking manual measurements from analog instruments, such
as thermometers and manometers. These measurements were recorded in a written log, along with the
time of observation. To view trends over time, people manually plotted their measurements on paper.
In the late-nineteenth century, it became possible to begin automating this process with machines, and
strip chart recorders evolved. Strip chart recorders are analog instruments that translate electrical impulses
from sensors into mechanical movement of an arm. A pen is attached to the arm, and long rolls of paper
aremoved at a constant rate under the pen. The result is a paper chart displaying the parameters measured
over the course of time. Strip chart recorders were a great improvement over manual data logging, but
they still had drawbacks. For example, translating the traces on the paper into meaningful engineering
measurements was tedious at best, and the data that was recorded took up reams and reams of paper. 

With the development of the personal computer in the 1970s and 1980s, people began to leverage
computers for analysis of data, data storage, and report generation. The need to bring data into the PC
brought about a new type of equipment—the data logger. Data loggers are stand-alone box instruments
that measure signals, convert them to digital data, and store the data internally. This data must be
transferred to the PC for analysis, permanent storage, and report generation. Data is typically transferred
either by manually moving a storage device, such as a .oppy disk, from the data logger to the computer,
or by connecting the data logger to the PC through some communications link, such as serial or Ethernet.

In the 1990s, a further evolution in data logging took place as people began to create PC-based data-
logging systems. These systems combined the acquisition and storage capabilities of stand-alone data
loggers with the archiving, analyzing, reporting, and displaying capabilities of modern PCs. PC-based
logging systems finally enabled full automation of the data-logging process. The move to PC-based data-
logging systems was made possible by the following three technological enhancements:

1. Increasing PC reliability
2. Steadily decreasing cost of PC hard drive space
3. PC-based measurement hardware that could meet or exceed stand-alone data logger measurement

capabilities

FIGURE 35.1 PC-based data-logging application.
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Today, PC-based logging systems provide the widest range of measurement types, analysis capabilities,
and reporting tools. The remainder of this chapter focuses on the functionality necessary to implement
a PC-based data-logging system.

35.3 Data Logging Functional Requirements

Every data-logging application—from .fteenth-century monks manually recording weather patterns to
twenty-first-century physicists logging the experimental parameters of a fusion reactor test—can be
broken down into a set of .ve commonfunctional requirements, illustrated in Figure 35.2. Acquiring is
the process of actually measuring the physical parameters and bringing them into your logging system.
Online analysis consists of any processing done to the data while it is being acquired, including alarms,
data scaling, and sometimes control. Logging or storing the data is an obvious requirement of every data-
logging system.

Offline analysis is everything that is done with the data after it has been acquired in order to extract
useful information from it. The final functional block is made up of display, reporting, and data sharing.
These are all the “miscellaneous” requirements that fill out the functionality of a data-logging system. Let
us examine how each of these functional blocks is addressed with modern PC-based data-logging systems.

35.3.1 Acquisition

The acquisition function is one of the most critical components of every data-logging system. In a
PCbased system, the acquisition is accomplished by the measurement hardware, which can be broken
down further into sensors, signal connectivity, signal conditioning, and analog-to-digital (A/D) conver-
sion, as shown in Figure 35.3. Each of these topics is covered in more detail in other sections of this
chapter, so only a high-level overview is given here.

FIGURE 35.2 Basic elements of a data-logging system.

FIGURE 35.3 Measurement hardware components of a PC-based data-logging system.
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35.3.2 Sensors

A wide variety of sensors are used to convert physical parameters into electrical signals. Temperature
sensors such as thermocouples, RTDs, or thermistors are some of the most common sensors used in
data-logging applications. Other widespread sensors are .owmeters, pressure transducers, strain gauges,
accelerometers, and microphones, to name a few. Proper sensor selection and installation is beyond the
scope of this chapter.

35.3.3 Signal Connectivity

After sensors are installed, they must be connected to the data-logging system. Signal connectivity is the
component of the measurement hardware that allows you to connect your sensors to your logging system.
Screw terminals, which allow you to connect bare wires from sensors directly to your logging system, are
the most basic form of connectivity. Screw terminals are a good choice for general-purpose use, partic-
ularly when you need to connect a large number of signals into a small amount of space. The disadvantage
of screw terminals is that they are time-consuming to connect and dif.cult to recon.gure. Figure 35.4
shows some other standard connectivity options that are designed to make connecting and disconnecting
sensors less labor intensive. Minithermocouple connectors are a widely used connectivity option for
thermocouples. BNC and SMB connectors are commonly used when electrical shielding is required for
noise immunity. Banana jacks are often used when measuring current, resistance, or higher voltages. The
sensor provider typically defines the connectivity options available for a sensor, and it is up toy ou toc
hoose measurement hardware that can accept that connectivity.

35.3.4 Signal Conditioning

Signal conditioning is one of the most important and most overlooked components of a PC-based
datalogging system. Many sensors require special signal conditioning technology. For example, signals
from a thermocouple have very low voltage and require amplification, filtering, and linearization. Other
sensors, such as strain gauges and accelerometers, require power in addition to amplification and filtering,
while other signals may require isolation to protect the system from high voltages. No single stand-alone
data logger can provide the flexibility required to make all these measurements. However, with front-
end signal conditioning, you can combine the necessary technologies to bring these various types of
signals into a single PC-based data-logging system.

FIGURE 35.4 Examples of signal connectivity options.
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Because of the vast array of signal-conditioning technologies, the role and need for each technology
can quickly become confusing. A list of common types of signal conditioning, their functionality, and
examples of when they are needed is given below.

35.3.4.1 Amplification

When the voltage levels being measured are very small, amplification is used to maximize the effectiveness
of the digitizer. By amplifying the input signal, the conditioned signal uses more of the effective range
of the A/D converter. This allows better accuracy and resolution of the measurement. Typical sensors
that require amplification are thermocouples and strain gauges.

35.3.4.2 Attenuation

Attenuation is the opposite of amplification. It is necessary when the voltages to be digitized are outside
the input range of the digitizer. This form of signal conditioning divides the input signal so that the
conditioned signal is within the range of the A/D converter. Attenuation is necessary for measuring high
voltages.

35.3.4.3 Isolation

Voltage signals outside the range of the digitizer can damage the measurement systemand harm the oper-
ator. For that reason, isolation is usually required in conjunction with attenuation to protect the system
and the user from dangerous voltages or voltage spikes. Isolation may also be required when the sensor
is on a different electrical ground plane from the measurement sensor (such as a thermocouple mounted
on an engine).

35.3.4.4 Multiplexing

Typically, the digitizer is the most expensive part of a data acquisition system. Multiplexing allows you
to automatically routemultiple signals into a single digitizer, providing a cost-effective way to greatly
expand the signal count of your system. Multiplexing is necessary for any high-channel-count application.

35.3.4.5 Filtering

Filtering is required to remove unwanted frequency components from a signal. This prevents aliasing
and reduces signal noise. Thermocouple measurements typically require a low-pass filter to remove
power-line noise from the signals. Vibration measurements normally require a higher-frequency low-
pass filter to remove high-frequency signal components that are above the range of the acquisition system.

35.3.4.6 Excitation

Many sensor types, including RTDs, strain gauges, and accelerometers, require some form of power to
make a measurement. Excitation is the signal conditioning technology required to provide this power.
This excitation can be a voltage or current source, depending on the sensor type.

35.3.4.7 Linearization

Some types of sensors produce voltage signals that are not linearly related to the physical quantity they
are measuring. Linearization is the process of interpreting the signal from the sensor as a physical
measurement. This can be done either with signal conditioning or through software. Thermocouples are
the classic examples of sensors that require linearization.

35.3.4.8 Cold-Junction Compensation

Another technology that is required for thermocouple measurements is cold-junction compensation
(CJC). Any time a thermocouple is connected to a data acquisition system, the temperature of the connec-
tion must be known in order to calculate the true temperature the thermocouple is measuring. A built-
in CJC sensor must be present at the location of the connections.
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35.3.4.9 Simultaneous Sampling

When it is critical tomeasur emultiple signals at exactly the samemoment in time, simultaneous sampling
is required. Front-end signal conditioning can provide amuchmore cost-effective simultaneous sampling
solution than purchasing a digitizer with those capabilities. Typical applications that might require
simultaneous sampling include vibration measurements and phase-difference measurements. 

Most sensors require a combination of the above signal conditioning technologies. Again, the thermo-
couple is the classic example because it requires amplification, linearization, CJC, filtering, and sometimes
isolation. Ideally, a good PC-based data-logging platform should give you the ability to select the type
of signal conditioning that you need for your application. In some systems, front-end signal conditioning
is an option, but in others, front-end signal conditioning is a necessity to make the required measure-
ments. As a rule of thumb, your measurement system should include front-end signal conditioning if
you are planning to use any of the following: thermocouples, RTDs, thermistors, strain gauges, LVDTs,
accelerometers, switching, multiplexing, mixed low-voltage/high-voltage signals, current inputs, or resis-
tance inputs.

35.3.5 Conversion

After physical parameters have been converted into electrical signals and properly conditioned, it is time
toc onvert the analog electrical signals intodig ital values and pass those values back tothe computer. The
A/D conversion can be accomplished with either a plug-in data acquisition (DAQ) board, or it can be
integrated into a single package with the conditioning and connectivity.

The combination of sensors, signal connectivity, signal conditioning, and A/D conversion makes up
the measurement hardware portion of a data-logging system. In a PC-based system, the measurement
hardware is con.gured and controlled through software, and it is critical to use software that is designed
to integrate smoothly with all components of your data-logging system.

35.3.6 Online Analysis

The next functional component in a typical data-logging system is online analysis. In PC-based systems,
online analysis is accomplished through software. Different data-logging applications require different
forms of online analysis.We will discuss some of the most common ones here.

Channel scaling is the conversion of the raw binary values returned by the acquisition system into
properly scaled measurementswith appropriate engineering units. One example is computing tempera-
ture (in ¢ªC) from a thermocouple reading. The digitizer returns binary measurements of the thermo-
couple voltage and the cold-junction sensor voltage. The software converts the binary measurements into
voltages, and then uses a thermocouple conversion formula to compute temperature. Similar channel
scaling routines are used for strain gauges, RTDs, accelerometers, and others. Fortunately, modern PC-
based measurement software handles most scaling functions automatically.

Another important online analysis function is alarming and event management. This includes mon-
itoring a channel and providing some noti.cation if preset limits are exceeded. This noti.cation can be
as basic as turning on a warning light, or as complex as paging someone with information about the
problem. Alarming can also include an automated response to certain events. For example, a data-logging
system could shutdown a machine being monitored if the oil temperature exceeded a certain limit.

A wide range of online analysis functionality can be required in different data-logging applications.
This functionality could include feedback control systems or advanced signal analysis. Only PC-based
data-logging systems have the flexibility to implement these differing requirements.

35.3.7 Logging and Storage

The logging (or storage) functional block is, by de.nition, required in every data-logging system.Methods
of storing data varywidely across different systems. Strip chart recorders use paper; traditional data loggers
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can use internal nonvolatile memory, .oppy disks, or a variety of other mediums. PC-based data-logging
systems typically use the hard drive of the PC, although they can also use tape drives, network drives,
RAID drives, and other more exotic options.

Software is of critical importance in PC-based data-logging systems because well-written logging
software determines how data is stored, how quickly data can be written to disk, and how efficiently disk
space is used. Logging software also gives you data management capabilities, such as changing data
formats, archiving data, and connecting to databases.

The data storage format has a strong link to the performance and ease of use of your data-logging
system. Three general formats are commonly used for storage in data-logging systems—ASCII text files,
binary files, and databases.

ASCII text files are the most common and .exible form of data storage. Text files for data-logging
applications are typically made up of a header section and columns of data. The header section provides
information that includes channel names, units, test equipment, and user comments. The first data
column is usually the time stamp of each sample, and it is followed by another column for each channel
being logged. Text files are useful because they can be opened or imported into almost any software
package, and they are easily transferred between operating systems. Some disadvantages of text files are
that they use disk space inefficiently, and that they require additional processing overhead to write and
read from files. ASCII text files are commonly used when the acquisition speed is slow (<1000 samples
per second), the total amount of data to log is not large, or the user needs to share data between different
software applications.

Binary files are the most efficient method of data storage. With binary files, the raw bytes that the
computer uses to store data in memory are written directly to the file. This data takes up considerably
less space than the same information written in ASCII text format, and it requires much less processor
overhead than formatting into text. Binary files cannot be viewed in common software applications like
Microsoft Excel. Instead, they must be translated by a software routine into meaningful data. With
PCbased data-logging systems, you can log scaled data that is already processed into correct engineering
units, or you can log the raw binary values returned by the digitizer. The raw binary values representing
the A/D conversions of each sample returned from a 16-bit data acquisition device take up 16 bits, or 2
bytes, of memory. The channel scaling routines in your logging software automatically convert this raw
data intoa real number that represents the physical value you measured. Scaled data is typically handled
inside your data-logging software as a double precision .oating-point value that refers to a data type
taking up 8 bytes of memory on most computer systems.

For performance reasons, some high-speed data-logging systems might log the raw binary values to
disk, along with the necessary scaling constants to convert them to scaled data at a later time. Figure 35.5
shows the relationship between logging raw binary data, scaled binary data, and ASCII text. Binary files
take up less space and allow greatly improved stream-to-disk speed. Raw binary files can be less than
one-tenth the size of a text file containing the same information. The disadvantage of binary files is that
they typicallymust be translated to another format before they can be shared between different application
types.

Many data-logging software packages log data into databases. Databases are typically binary files that
provide a structured format for inserting and retrieving data. They are optimized for efficiently handling
large amounts of data and for searching through information in the database without loading everything
intomemo ry. Often, databases are alsodesig ned toallo w easy backup and archiving of data, and multiple
user access. They usually have software methods tomak e it easy toimpo rt data intodiffer ent software
packages for analysis and report generation. In many ways, databases are the ideal storage format for
PC-based data-logging systems. Two disadvantages of using databases for storage are that they add
increased complexity, and that they can be dif.cult to implement if starting from scratch.

Many different storage media types are used for data logging. Stand-alone data loggers can use onboard
nonvolatile memory, .oppy disks, PCMCIA memory cards, tapes, or a variety of other options. PC-based
data-logging systems usually rely on the computer’s internal hard disk. This is possible because of the
trends toward more reliable and higher-capacity hard drives. The 200 GB (and larger) hard drives that are
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readily available today make hard drives one of the most economical storage devices. It is still advisable
to periodically back up or archive data stored on a local hard drive.

High-speed data-logging applications (more than 1 MS/s) can start to exceed the write-to-disk speeds
of normal PC hard drives. One of the advantages of PC-based logging systems is that you can move to
more high-performance storage devices and higher-performance computers, often with little or no
modification to your logging software or measurement hardware. One type of high-performance storage
device is the redundant array of independent disks (RAID) controller. RAID controllers usemultiple hard
drives in concert to greatly enhance the combined stream-to-disk speed and to provide improved data
integrity. Audiovisual (AV) drives are another type of storage device used for high-speed data logging. 

AV drives are optimized for streaming large amounts of audio and video information to disk, and this
optimization also makes them well suited for high-performance data-logging applications. Finally, some
companies make custom hardware that allow data acquisition devices to stream data across the computer’s
PCI or PCI Express bus directly into device storage. The stream-to-disk rates of these devices are limited
by the available bandwidth of the data transfer bus.

35.3.8 Offline Analysis

Offline analysis is performing mathematical functions on data after it has been acquired in order to extract
important information. Types of Offline analysis can include computing basic statistics of measured
parameters as well as more advanced functions such as the frequency content of signals and order analysis.
Offline analysis can be integrated with the rest of the data-logging application, or it can occur separately
through stand-alone analysis software packages. Often, offline analysis is combined with the report
generation, historical display, and data-sharing functions.

35.3.9 Display

Most data-logging applications require some form of display to view the measurements being recorded.
The display function can be broken down further to view live data and historical data. Live data display

FIGURE 35.5 Data storage file size examples.
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is necessary if you need to view data as it is being acquired. Many stand-alone data loggers have a live
data display integrated into the box with them. Historical display lets you view data that was previously
acquired. Most stand-alone data loggers require you to move the data to a PC for historical viewing. PC-
based data-logging applications let you combine both live display and historical display into the same
user interface. Data-viewing utilities should provide an intuitive user interface, scrolling and zooming
capabilities, cursors, and general customization features. Figure 35.6 is an example of a typical historical
data display found with commercially available software.

35.3.10 Report Generation

Report generation is a function that is often not considered part of the data-logging application. In reality,
almost every data-logging application requires some form of reporting capability, for the simple reason
that if data is being recorded, someone needs to see it in a presentable format. Report generation can be
integrated into PC-based data-logging applications for increased ef.ciency. The logging application can
be set up toper iodically generate prede.ned reports and distribute them tothe appropriate people.
Powerful commercial software designed to give you advanced capabilities for analyzing data and gener-
ating reports from your measurements is available. Figure 35.7 shows an example of some of the report
generation capabilities possible with commercially available packages.When choosing software for report
generation, it is critical that it integrates smoothly with the rest of your data-logging software. Ideally,
the logging software should be able to pass data directly to the report generation application and trigger
automatic reports.

35.3.11 Data Sharing and Publishing

In order for logged data to be useful, it must be available to the right people. With the networking
capabilities found in modern data-logging software, sharing data and publishing it to the network no
longer requires a degree in computer science. Logging applications can be set up to publish live data to

FIGURE 35.6 Example of historical data display from National Instruments VI logger software.
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the network as it is acquired, periodically e-mail both raw data and analyzed results to key personnel, or
automatically post reports to aWeb page.

In widely distributed data-logging applications, each logging node can publish its measurements to
the network, and a main computer can serve as the central collection facility. The central computer
retrieves the measurements from each node, combines them for further analysis, logs the results for
permanent archiving, and periodically generates reports analyzing the data. 

35.4 Data-Logging Systems

Nowthatwe have seen the functional components of a data-logging system, let us examine howthese
components can be implemented in real systems. All PC-based data-logging systems are made up of
hardware and software. The measurement hardware handles the acquisition portion of the logging
application, and the hardware choice defines channel count, sensor type, acquisition speed, and mea-
surement accuracy. The measurement software, in addition to controlling the hardware, also handles the
online analysis, logging, offline analysis, display, reporting, and data sharing.

35.4.1 Software Options

Choosing software is one of the most critical steps when defining a PC-based data-logging system. Your
logging system depends on software to give you a productive, .exible solution. The measurement software
must be designed toint egrate seamlessly with your hardware. In addition tothe basic task of acquiring
data and logging it to disk, your software should provide tools to handle configuration of measurement
hardware, scaling of data from channels, and calibration of your system. The software should allow you
to complete your entire application—including report generation, analysis, archiving, and sharing. There
are two general categories of software that can be used for PC-based data-logging applications—turnkey
software, also known as configuration-based software, and application development environments. 

Turnkey packages are ready-to-run data-logging software applications that interface with your mea-
surement hardware to acquire and log data. These applications provide a user-friendly environment for

FIGURE 35.7 Advanced report generation capabilities with National Instruments DIAdem software.

9260_35.fm  Page 10  Thursday, October 11, 2007  3:39 PM



Data Recording and Logging 35-11

configuring your logging task and getting up and running quickly. An example of graphical programming
of data-logging is shown in Figure 35.8.

A good configuration-based data-logging software package provides the features discussed below.

35.4.1.1 An Intuitive User Interface

The software configuration should be through a window-based, menu-driven interface with easily
accessible help functions and tutorials.

35.4.1.2 Automatic Data Storage and Archiving

One of the primary functions of any data-logging software package is to handle the storage of the data.
It should automatically store the data in an efficient manner, and the software should provide a method
for backing up and archiving data.

35.4.1.3 Capability to Export Data

At a minimum, the software package should allow you to export data to ASCII text files, so you can
import it into other packages. More advanced data-logging software packages let you automatically
transfer data into common databases and analysis programs.

35.4.1.4 Alarming and Event Management

The data-logging softwaremust provide the capability to handle alarms and events. This includes detecting
if a signal is over or under a limit, outside of a range, or inside of a range. If an alarm occurs, the software
should allow a range of actions, such as sending pages or performing some type of digital or analog output.

35.4.1.5 Display and Trending Tools

All turnkey logging software packages need to have a good interface for viewing both live and historical
data. This interface must let you scroll through data, zoom in on regions of interest, and see long-term
data trends.

A disadvantage of configuration-based applications is that unless there is a method for customization,
you are locked into the functionality provided by the manufacturer. If your measurement needs to change,
and you need to add a different type of signal, you might be out of luck if your turnkey software does not
support that measurement type. In addition, if you want to integrate offline analysis, report generation,
and network connectivity into your data-logging application, a closed turnkey software application can
make that dif.cult. On the other hand, there are turnkey software applications that provide methods for
customizationwith popular application development tools. These customizable logging software packages

FIGURE 35.8 Example of graphical programming of data-logging applicationswithNational Instruments LabVIEW.
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provide the best of both worlds, allowing you to get up and run quickly with your logging application,
and also giving you a method for integrating more advanced functionality at a later date. 

Application development tools are the other option available for developing PC-based data-logging
systems. Development tools can range fromtext-based programming languages to graphical programming
environments. Figure 35.8 is an example of the software code for a data-logging application developed
in a graphical programming environment. Development tools let you build your own customized data-
logging application to do exactly what you need. Application development tools let you modify your
application as your needs change, integrate customized analysis and report capabilities with your logging
application, and fully automate your data-logging system.

When developing data-logging applications, it is advisable to choose a development environment with
productivity features that let you create powerful PC-based logging systems. Some features to look for
when evaluating application development tools are as follows:

A Wide Range of Graphical User Interface Components
Developing user interface components such as graphs, displays, and controls from scratch is extremely
time-consuming. You should choose a development environment that contains high-quality user interface
components.

Tight Integration with Measurement Hardware
It is critical that you use software designed to work with your measurement hardware. Not only does
proper software integration result in signi.cantly shorter development times, but it also helps ensure that
you get measurements you can trust.

Analysis Functions
One of the primary reasons for custom developing a data-logging software application is to integrate
advanced analysis functions. A good application development environment provides a wide range of
analysis functions to handle almost any need.

Network Connectivity
In today’s networked environment, the ability to connect your data-logging application to a network or
publish data to the Web can be very important. Your application development software should provide
tools tomak e publishing results tothe network a trouble-free process.

Report Generation
Your application development environment should either allow you to generate reports automatically or
allow programmatic control of external report generation packages. The choice between turnkey software
and development tools depends on the complexity of your datalogging application and the amount of
customization required.With either choice, it is important to use a software vendor that specializes in
connecting measurements to computers and that provides high-quality service and support.

35.4.2 Hardware Options

Many different hardware platforms are available for data-logging systems. Platform choice depends on
your size, operating environment, and installation requirements. Although the combinations are nearly
endless, platforms for PC-based data logging can be broken down broadly into four categories—portable,
desktop, rack mount/industrial, and distributed. One of the key benefits of PC-based data-logging systems
is that the same data-logging software scales across all these platforms.

Portable data-logging solutions are necessary in a variety of applications, such as in-vehicle data logging
and field-testing of equipment. Portable PC-based solutions use laptop computers and measurement
hardware designed to be easily portable. Figure 35.9 shows a portable, PC-based data-logging system
from National Instruments. The digitizer is a USB-based data acquisition system with integrated signal

9260_35.fm  Page 12  Thursday, October 11, 2007  3:39 PM



Data Recording and Logging 35-13

conditioning and connectivity. However, portable data-logging systems are frequently limited to less than
40 channels, purely owing to size constraints.

Desktop systems, such as the one shown in Figure 35.3, use measurement hardware designed to work
with standard desktop PCs. Desktop systems are ideal for a wide range of laboratory-based data-logging
applications, such as validation testing of new product designs. Because fixed desktop systems are not as
constrained by size, the signal connectivity and conditioning functions are typically accomplished by a
modular front-end signal conditioning system that provides the capability to measure a wide range of
sensor and signal types and toeasily expand tolo g hundreds of channels.

Often, desktop systems take up toomuch space or donot fit well in environments such as large
laboratories or manufacturing facilities. In these cases, the more compact and clean solution of amodular
industrial PC, based on the PXI or CompactPCI standard, might be a more appropriate data-logging
solution. Figure 35.10 is an example of a PXI-based data-logging system. The PC, data acquisition board,
signal conditioning, and connectivity functions are all comprised in one modular system. These systems
are designed tobe rack mountable, sothe y can be cleanly installed intoan industrial or laboratory
environment.

Finally, some data-logging systems need to be distributed away from the PC. This is the case when
you need to log data from multiple locations around a facility, such as when logging the performance
parameters of a chemical plant. Distributed logging systems should be compact so that they can be
mounted unobtrusively, and they typicallymust operate in extended temperature ranges.With distributed
logging systems, you typically have multiple measurement nodes that communicate back to a central
computer through a communications link such as RS485 or Ethernet. Figure 35.11 presents two examples
of distributed logging systems.

FIGURE 35.9 Portable PC-based data-logging system.

FIGURE 35.10 Rack-mount industrial PC-based data-logging system.
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The choice of logging platform depends on the requirements of your data-logging system, and some
systems might require using multiple platforms together.With properly designed hardware and software,
data-logging systems can scale from simple, low-channel-count laboratory systems up to very highchan-
nel-count, distributed industrial logging systems.

35.5 Conclusion

Data logging lets scientists and engineers evaluate a variety of phenomena, fromweather patterns to
factory performance. PC-based data-logging systems provide the most flexibility, customization, and
integration. To define a data-logging system, you must evaluate your requirements for acquisition, online
analysis, logging, offline analysis, display, report generation, and data sharing. On the basis of these
requirements, you can choose data-logging software and hardware to meet your needs.

35.6 Related Information

More information about PC-based data-logging systems is available fromNational Instruments in the
form of white papers, application notes, customer solutions, and product information. Visit
http://www.ni.com and search for “data logging” to view available information.

FIGURE 35.11 Examples of distributed data-logging systems.
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current scaling, 32-4
current shunt, 32-4
current transformer, 32-4

voltage scaling, 32-3
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Cache lines, 24-5
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physical cache system, 24-9
physical cache, 24-10
virtual cache systems, 24-9
virtual caches, 24-10

Cauchy’s principle, 7-14
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algorithm, 15-9
applications, 15-8
multiple camming gear ratios, 15-8
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Capacitive dividers, 32-3
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Carrier sense multiple access with 
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Cascade voltage transformer, 32-4
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Cells, 21-11
Central processing unit (CPU), 18-9
Central processor, 24-2, 24-3–24-5

control unit, 24-3–24-4
control memory (CM), 24-3
hardwired control unit, 24-3

data path, 24-4–24-5
Certainty equivalence principle, 11-4
Character code, 20-2
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Chebyshev filters, 9-9–9-10, 9-14–9-15
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Closed loop transfer function matrices, 
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feedback system performance 
issues, 10-7
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COBOL (COmmon Business Oriented 
Language), 34-2
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Codes, 19-7–19-8
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sample codes, 19-8

Coding convention, A/D and D/A, 31-2
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Combinational logic design, 

19-1–19-21
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32-7
Common-mode rejection ratio 

(CMRR), 32-2, 32-7
Communication protocol, system 

interfaces, 20-3
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Communications and computer 

networks, 21-1–21-12, 
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digital signals, 21-3
factors affecting the future of, 21-4

Commutation, 15-22–15-23
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architecture, 28-6
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17-14
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6-16–6-17
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Complex instruction set computers 
(CISC), 24-16

Computer microprocessor industry 
trends, 24-20–24-21

Pentium 4 processor, 24-20
Computer networks, communications 

and, 21-1–21-11, See also 
Communications

categories of, 21-4
local and metropolitan area 

networks, 21-9–21-10
bus network, 21-5
ring network, 21-5
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reference model, 21-7

resource allocation techniques, 
21-11–21-13

wide area computer networks, 
21-8–21-9

wireless and mobile communica-
tion networks, 21-10–21-11

Computer-aided design of digital 
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Computer-aided software engineering 
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Computers and logic systems, 
18-1–18-11

computer memory organization, 
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elements of a computer, 18-10
mechatronic use of, 18-1–18-3
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modeling and simulation, 
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process, 18-3, 18-4

mechatronics, computers, and 
measurement systems, 
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input–output configuration of, 
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interfering inputs, 18-5
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real-time use of computers, 

mechatronics and, 
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Conditional mathematical 
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Conformal coordinate scales, 19-17, 

19-21
Contact transducers, 30-17
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Continuous- and discrete-time signals, 
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analysis of continuous-time signals, 

3-6–3-8
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convolution and correlation 

integrals, 3-7–3-8
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Fourier analysis of CT signals, 
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state-space models, 
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discrete-time state-space modeling, 
3-51–3-53

experimental modeling using 
frequency-response, 
3-49–3-51

state-space model, 3-51
time scaling of transfer-function 

model, 3-50–3-51
linear state-space equation and its 

solution, 3-44–3-45
linearization of nonlinear systems, 

3-46
state equations and transfer-

functions, 3-47–3-49
frequency-response using 

transfer-functions, 
3-47–3-49

transfer-function to state-space, 
3-48

states and the state-space, 
3-41–3-46

piezoceramic actuator, 
3-41–3-43

states of a system, 3-43–3-44
Continuous–discrete extended Kalman 

filter, 8-8–8-9
of a two-dimensional trajectory, 8-7

Continuous–discrete linear Kalman 
filter, 8-6

Continuous-time signal, 9-2
Continuous-time systems, 4-3

state space description for, 
4-4–4-14, See also under 
state space analysis

Continuous-time to discrete-time 
mappings, 9-4–9-8

Continuous time systems, 5-1–5-3
Contoured moves, 15-16
Control Algebraic Riccati Equation 

(CARE), 10-1
Control implementation, mechatronic 

systems, 1-3–1-12, See also 
under Controlled 
mechatronic systems

Control loop, in motion control, 
15-19–15-23, See also under 
Motion control

Control memory address register 
(CMAR), 24-4

Control system design via H2 
optimization, 10-1–10-47

general control system design 
framework, 10-2–10-12

generalized feedback system, 10-2
H2 output feedback problem, 

10-12–10-43
H2 output injection problem, 

10-46–10-47
H2 state feedback problem, 

10-44–10-45
Controllability, 4-26–4-32

controllability gramian, 4-29–4-31
Controlled mechatronic systems, 

1-1–1-16

conceptual design phase, 1-2
controller, optimization, 1-2
integrated modeling, design and 

control implementation, 
1-3–1-12

control system design 
methodologies, 1-6–1-7

modeling, 1-3–1-6
ideal physical elements, 1-5
low-order models, 1-4
physical modeling, 1-4
polymorphic modeling, 1-4
simple servo system, 1-4, 1-5

servo system design, 1-7–1-10
key elements, 1-3
mobile robot, design of, 1-10–1-12
system components, optimization, 

1-2
Controlled output, 30-23
Controller output error method 

(COEM), 13-19
Convolution integrals, 3-7–3-8
Correlation integrals, 3-7–3-8
Correlation learning rule, 12-6
Counterpropagation network, 

feedforward version of, 
12-13–12-14

Counter-type velocity transducers, 
30-8–30-9

Custom deployment options, 
embedded systems, 26-4

Cutting tool failure monitoring 
techniques, 22-9

D
D’Alembert’s principle, 13-7
Data acquisition, 29-1–29-7

components, 29-6
computer-based data acquisition 

module, 29-1
data acquisition hardware, 29-5–29-6
data acquisition software, 

29-6–29-7, See also Software
signals, 29-2–29-5
transducers and sensors, 29-2

Data declaration, 34-3
Data Valid (DAV) lines, 20-12–20-13
Database management systems 

(DBMS), 34-4
Database, 34-3
Defuzzification, 12-20, 12-22–12-23
Delta learning rule, 12-8–12-10
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Design optimization of mechatronic 
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methods, 14-1–14-6
neuron network for, 14-9–14-14

practical application, 
14-10–14-14
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14-11–14-13
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parametric optimization, 14-2
principles of, 14-1–14-2
standard optimization methods, 

14-3–14-5
evolutional optimization 

methods, 14-4–14-5
first-order methods, 14-3
Genetic algorithm (GA), 14-5
Hill climbing algorithm, 14-4
optimization method, 14-6
second-order method, 14-3
simulated annealing algorithm, 

14-5
stochastic methods, 14-3
stochastic optimization 

methods, 14-4
Tabu search algorithm, 14-4
zero-order methods, 14-3

types, 14-3–14-5
Design, mechatronic systems, 

1-3–1-12, See also under 
Controlled mechatronic 
systems

Desired pole locations, 6-4–6-7
Deterministic signals, 3-2

aperiodic signals, 3-2
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Deterministic timing, 16-5–16-6
Development before the fact (DBTF), 

34-9–34-14
definition, 34-16
experience with, 34-14–34-15
language, 34-10–34-11
process, 34-11–34-14
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34-12–34-13
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automation, 34-12
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maintainable, 34-12
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technology, 34-11
traditional and, 34-14

Differential capacitors, 30-5–30-6
Differential nonlinearity (DNL), 31-2
Differential pressure flowmeters, 30-13
Digit, 19-2, 19-21
Digital control design, 9-17–9-19

direct method, 9-17
indirect method, 9-17

Digital filter design, 9-8–9-17
computer-aided, 9-9–9-13
FIR filter design, 9-11–9-13
IIR filter design, 9-9–9-11

Butterworth filters, 9-9–9-10
Chebyshev filters, 9-9–9-10

toolkit for FPGA, 28-10–28-11
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Digital information representation, 
19-1–19-2

qualitative, 19-1
quantitative, 19-1

Digital logic concepts, 19-1–19-21, 
23-1–23-3, See also Logic 
system design

Boolean algebra, 19-9–19-10
codes, 19-7–19-8
complements, 19-6–19-7
digital information representation, 

19-1–19-2
expansion forms, 19-11–19-12
hazards, 19-14
k-map formats, 19-14–19-17
number systems, 19-2
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zation, 19-20–19-21
realization, 19-12–19-13
switching circuits, 19-10–19-11
timing diagrams, 19-13–19-14

Digital signal processing (DSP) 
systems, 25-3

Digital signal processing for 
mechatronic applications, 
9-1–9-19

continuous-time signal, 9-2
continuous-time to discrete-time 

mappings, 9-4–9-8
discretization, 9-4–9-6

digital control design, 9-17–9-19
digital filter design, 9-8–9-17
discrete-time signal, 9-2–9-4
filtering examples, 9-13–9-17
frequency domain mappings, 

9-7–9-8
signal processing, fundamental 

concepts, 9-1–9-4
s-plane to z-plane mappings, 

9-6–9-7
Digital signals, 23-12–23-13, 29-2

emitter-coupled logic NOR/OR 
gate, 23-13

rate, 29-4–29-5
state, 29-4
transistor–transistor logic 

implementation of a NAND 
gate, 23-13

Digital systems and discretized data, 
3-30–3-32

Digital-to-analog converters (DACs), 
3-21, 31-7–31-9

rchitecture, 31-8
resistive networks, 31-8–31-9
specifications, 31-7–31-9

gain error, 31-8
monotonicity, 31-7
offset error, 31-8
range, 31-7
resolution, 31-7
settling time and slew rate, 

31-7
Diode, 23-3

and its behavior, 23-4

Diode–transistor logic (DTL), 23-12
diode–transistor logic NOR gate, 

23-13
diode–transistor NAND logic 

gate, 23-13
Diophantine equation, 3-35
Direct adaptive control, 11-5
Direct memory access (DMA) 

controller, 24-10
Dirichlet conditions, 3-9, 3-10
Discrete Fourier series (DFS), 

3-25–3-26
properties, 3-26

Discrete Fourier transform (DFT), 
3-26–3-28, 3-33, 9-3

DFT parameter selection, 3-28
error sources, 3-28
properties, 3-27
zero padding, 3-28

Discrete Laplace transform
definition, 3-38

Discrete-time (DT) signals, 3-1–3-29, 
See also Continuous- and 
discrete-time signals

discrete-time and sampled data 
systems, state space 
description for, 4-14–4-24, 
5-3–5-4, See also under State 
space analysis

Discrete-time Fourier transformation 
(DTFT), 3-22–3-29, 9-2

discrete Fourier series (DFS), 
3-25–3-26

properties, 3-24
Discrete-time linear Kalman filter, 

8-1–8-5
dynamic and measurement system 

models, linearization, 
8-2–8-4

Discrete-time signal, 9-2–9-4
frequency analysis, 3-22–3-29

discrete-time Fourier transform, 
3-22–3-29

Discrete-time state-space modeling, 
3-51–3-53

z-transform and state-space, 
3-52–3-53

Discrete-time systems, 4-3
Discretization, 9-4–9-6
Discretized data, 3-30–3-32
Displacement (position) transducers, 

30-4–30-8
Distributed queue dual bus (DQDB), 

21-10
Distribution, 34-4
Divider, 32-5
Documentation, 34-4
Documentation, modeling in, 2-7
Don’t care, definition, 19-21
Doppler flowmeters, 30-17
Drive, 15-2
Dual-loop Feedback, 15-22
Dynamic instruction execution, 

24-14–24-15

Dynamic range, A/D and D/A 
conversion, 31-4

Dynamic systems, See also Response of 
dynamic systems

investigation process, 18-3, 18-4
observers, Kalman filters as, 

8-1–8-10, See also Kalman 
filters

performance indicators for, 
5-12–5-14

frequency domain parameters, 
5-13–5-14

step response parameters, 
5-12–5-13

E
Electrohydraulic axis

advanced control of, 13-1–13-25
control with fuzzy controllers, 

13-13–13-14
conventional controllers to control, 

13-8–13-13
controller design, 13-11
linear mathematical models 

(LMM), 13-10
LMM in the state of space, 13-11
observer, 13-9
PID, PI, PD with filtering, 

13-9
simulation results with, 

13-12–13-13
mathematical model and 

simulation of, 13-4–13-8
extended mathematical model, 

13-4–13-5
nonlinear mathematical model 

of LHM, 13-6–13-8
nonlinear mathematical model 

of the servovalve, 13-5–13-6
neural techniques to control, 

13-14–13-16
inverse learning, 13-15
learning based on mimic, 13-15
specialized inverse learning, 

13-15–13-16
neuro-fuzzy techniques used to 

control, 13-16–13-23
based on inverse learning, 13-20
control structure, 13-19–13-23
structure of, 13-18

ROBI_3 cartesian robot, generalities 
concerning, 13-2–13-4

software considerations, 
13-23–13-25

Electromagnetic flowmeters, 30-14, 
30-17

Electronic camming, 15-7–15-9, 
See also Camming

Electronic design automation (EDA), 
27-3

Electronic gearing, 15-6–15-7
Embedded computers, control with, 

25-1–25-6
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block diagram, 25-2
hardware interfacing, 25-4–25-5

analog inputs, 25-4–25-5
analog outputs, 25-5
mechanical switches, 25-4
simple actuators, 25-5

hardware platforms, 25-2–25-4
Digital Signal Processing Systems 

(DSP), 25-3
embedded modules, 25-4
Field-programmable logic 

devices (FPLDs), 25-3
microcontroller-based systems, 

25-2
requirements, 25-2

real-time systems, 25-3–25-4
programming languages, 

25-5–25-6
C code, 25-6

with an Altera FPGA, 25-2
Embedded microprocessor industry 

trends, 24-21–24-22
high-performance techniques 

adoption, 24-22
integration of DSP and embedded 

CPUs, 24-21
Embedded microprocessors

categories, 24-2
DSP processors, 24-2
embedded CPUs, 24-2

Embedded modules, 25-4
Embedded systems

components, 26-4
graphical system design for, 

26-1–26-4, See also under 
Graphical system design

Emitter-coupled logic (ECL) devices, 
23-13–23-15

End of Identity (EOI) lines, 20-12
Erasable programmable read-only 

memory (EEPROM), 
27-3

Error backpropagation learning, 
12-10–12-12

Error handling, 20-3
Error sources, 3-28
Evolutional optimization methods, of 

mechatronic systems, 
14-4–14-5

Expansion forms, 19-11–19-12
Maxterms, 19-12
Minterms, 19-12
product of sums (PS), 19-11
sum of products (SP), 19-11

Explicitly parallel instruction 
computing (EPIC), 24-16

Euler’s formula, 7-1

F
Fabrication aspects, 

microelectromechanical 
motion devices, 
17-14–17-15

Failure modes and effects analysis 
(FMEA), 22-1–22-10

Fault analysis in mechatronic systems, 
22-1–22-10

hardware fault detection, 22-2
intelligent fault detection 

techniques, 22-3–22-4
monitoring methods, 22-2
parallel manipulators/machine 

tools, 22-5–22-10
tools used for, 22-1–22-2

Fault detection and identification 
(FDI) process, 22-3

Feedback connection, 4-25–4-26
Feedback device, 15-3
Feedback path, 30-1, 30-23
Feedforward networks, 12-12–12-18, 

See also under Neural 
networks

Feedforward neural networks, 
12-4–12-6, See also under 
Neural networks

Fiber distributed data interface 
(FDDI), 21-10

Field effect transistors (FETs), 
23-5–23-6

Field-programmable gate arrays 
(FPGAs), 27-1–27-8

architecture, 27-2–27-3
background, 28-3–28-8
definition and market, 28-3
design flow, 27-3–27-5
design process using, 27-4
development tools, 28-10–28-11

digital filter design toolkit, 
28-10–28-11

softmotion position control loop 
on, 28-10

state diagram editor, 28-11
embedding microprocessors and 

microcontrollers onto, 27-6
graphical programming for, 

28-1–28-13, See also under 
Graphical programming

LabVIEW FPGA, 28-2
LUT-based CLB in, 27-3
microprocessors vs., 28-2
programming methods, 28-3–28-4
reliability and power consider-

ations, 27-6–27-7
similar devices, 27-7–27-8

quasiprogrammable ICs, 27-7
structured ASICs, 27-8

uses for, 27-5–27-6
Field-programmable logic devices 

(FPLDs), 25-3
Filter Algebraic Riccati Equation 

(FARE), 10-1
Finite impulse response (FIR) filter, 

9-9
FIR filter design, 9-11–9-13

magnitude, 9-16
First-order methods, of mechatronic 

systems, 14-3

Float-type liquid level transducers, 
30-17, 30-18

Flowmeters, 30-12–30-17, See also 
Fluid flow transducers

Fluid flow transducers (flowmeters), 
30-12–30-17

categories, 30-13
differential pressure flowmeters, 

30-13
Doppler flowmeters, 30-17
electromagnetic flowmeters, 

30-14
Fluid power flowmeters, 30-14
gear motor flowmeter, 30-14
nozzle flowmeter, 30-13
nozzle flowmeters, 30-15
orifice flowmeter, 30-13
paddle wheel flowmeter, 30-14
paddle wheel flowmeters, 

30-15
pipebend (elbow) flowmeter, 

30-13
pipe-bend flowmeters, 30-15
pitot-static flowmeters, 30-15
pitot-static-flowmeter, 30-13
rotameter flowmeters, 30-14
thermal anemometer 

flowmeters, 30-14
turbine flowmeter, 30-14
turbine flowmeters, 30-15
ultrasound flowmeters, 

30-14
Venturi flowmeter, 30-13
vortex shedding flowmeters, 

30-14
Fluid flow transducers, 30-11
Fluid pressure transducers, 

30-11–30-12
elastic type, 30-11

Force transducers, 30-3–30-11
Forced response, 4-10
Forward path, 30-23
Fourier analysis of CT signals, 

3-8–3-13
complex exponential Fourier series, 

3-9–3-12
differentiation technique, 3-11
Fourier series

properties, 3-13
symmetry conditions, 3-13

Fourier series for real signals, 
3-12–3-13

orthogonal basis functions, 
3-8–3-9

Fourier transform, 3-14, See also 
Fourier analysis of CT 
signals

energy and power spectral density, 
3-15–3-16

properties, 3-14–3-16
4-Wire ohmmeter, 30-21
Fraction, 19-2, 19-21
Frequency domain mappings, 

9-7–9-8
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Frequency response methods, 
7-1–7-20

Bode plots, 7-3–7-7
log-magnitude versus phase plots, 

7-8–7-9
Nyquist stability criterion, 

7-13–7-17
polar plots, 7-7–7-8
transfer functions, experimental 

determination, 7-9–7-13
Frequency-selective analog filtering, 

32-4
Function block diagrams (FBD), 

25-8–25-9
Fuzzy systems, 12-1–12-26

degree of association, 12-20
fuzzification, 12-20–12-21
genetic algorithms, 12-23–12-26

coding and initialization, 
12-24

mutation, 12-25–12-26
reproduction, 12-25
selection and reproduction, 

12-24–12-25
rule evaluation, 12-21–12-22

G
Gain error, in DACs, 31-8
Gain-bandwidth product (GBWP), 

32-2, 32-7
Gaussian process, 8-3
Gear motor flowmeter, 30-14
General control system design 

framework, 10-2–10-12
closed loop transfer function 

matrices, 10-6–10-12
design via optimization, 10-2
general H2 optimization problem, 

10-3–10-4
H2/L2 norm of a function, 

10-4
generalized plant G, 10-5

input–output representation for, 
10-9

H2 norm in MATLAB, 
10-4–10-5

H2 optimization problems to be 
considered, 10-12

signals, 10-2
control signals, 10-2
exogenous signals, 10-2
measurement signals, 10-3
regulated signals, 10-2

General Purpose Interface Bus (GPIB), 
20-10–20-14, See also IEEE 
488 interface bus

addressing of, 20-13–20-14
General regression neural etworks 

(GRNN), 12-14
Genetic algorithm (GA), 14-5
Genetic algorithms, fuzzy systems, 

12-23–12-26, See also under 
Fuzzy systems

Graphical programming for FPGAs, 
28-1–28-13

applications, 28-9–28-10
for micro-electromechanical 

systems device, 28-9
model-free adaptive (MFA) 

control for FPGA, 28-10
motorcycle engine control 

prototyping, 28-10
phase-locked loop for scanning 

probe microscope, 28-10
single-point I/O on FPGA for 

Haptics, 28-9–28-10
combined FPGA/microprocessor 

architectures, 28-5–28-7
CompactRIO, 28-2
control and mechatronics 

applications, 28-1–28-13
development flow, 28-5
integration with simulation and 

control, 28-7–28-8
LabVIEW FPGA, 28-2
software application architecture of, 

28-7
Graphical system design for embedded 

systems, 26-1–26-4
custom deployment options, 26-4
customizable off-the-shelf 

prototyping platforms, 
26-3–26-4

design, 26-2
parallel timed loops in, 26-2
programming, 26-1–26-3

Graphical User Interface (GUI)
definition, 34-16

Gray code, definition, 19-21
Gross displacement (position) 

transducers, 30-4
position encoders, 30-4
potentiometers, 30-4
resolvers, 30-4
synchros, 30-4
variable differential transformers, 

30-4

H
H2 output feedback problem, 

10-12–10-43, See also 
PUMA 560 Robotic 
manipulator

filter assumption, 10-14
Hamiltonian matrices, 10-15
nonsingular control weighting 

assumption, 10-13
nonsingular measurement weighting 

assumption, 10-14
plant G22 assumption, 10-13
regulator assumption, 10-13

H2 output injection problem, 
10-46–10-47

H2 state feedback problem, 
10-44–10-45

Hamiltonian matrices, 10-15

H2 output feedback problem, 
solution to, 10-15–10-16

LQG/LTR design for first order 
unstable missile model, 
10-19–10-24

MIMO LQG and LQG/LTR control 
design via H2 optimization, 
10-24–10-32

Hamilton–Jacobi theory, 17-3, 17-6
Handshake lines, 20-12–20-13

Data Valid (DAV), 20-12–20-13
Not Data Accepted (NDAC), 20-13
Not Ready for Data (NRFD), 20-12

Handshaking, 20-3
Hard real-time systems, 

16-1, 25-3–25-4
Hardware description language 

(HDL), 27-3
Hardware interfacing, embedded 

computers, 25-4–25-5, 
See also under Embedded 
computers

Hardware platforms, embedded 
computers, 25-2–25-4, 
See also under Embedded 
computers

Hardware techniques, performance 
enhancing, 24-11–24-15

branch handling, 24-13–24-14
branch prediction, 24-14
data acquisition, 29-5–29-6
dynamic instruction execution, 

24-14–24-15
motion controller, 15-23–15-25, See 

also under Motion controller
pipelining, 24-11–24-13

Hebbian learning rule, 12-6
Hierarchical framework, 2-7–2-8
Hill climbing algorithm, 14-4
Hopfield network, 12-18–12-20
Human machine interface (HMI), 25-11
Hydrostatic pressure liquid level 

transducers, 30-17, 30-18

I
I/O synchronization, 15-9–15-12

position captures (triggers), 
15-11

buffered high-speed captures, 
15-11

nonbuffered high-speed 
captures, 15-11

position compares (breakpoints), 
15-10

absolute mode, 15-10
buffered mode, 15-11
modulo mode, 15-11
periodic mode, 15-10
relativemode, 15-10

time-sampled data logging, 
15-12

IEC 61131-3 programming languages, 
25-8–25-10
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function block diagrams (FBD), 
25-8–25-9

sequential function charts (SFC), 
25-9–25-10

structured text (ST), 25-8
IEEE 488 interface bus, 20-10–20-14

controllers, talkers, and listeners, 
20-12

data lines DIO1–DIO8 (8 lines), 
20-13

GPIB hardware, 20-11
handshake lines, 20-12–20-13
interface management lines, 20-12
linear and star configurations of, 

20-11
IIR filter design, 9-9–9-11

magnitude, 9-16
Implicant, definition, 19-21
Impulse sampling, 3-17–3-18
Incremental encoders, 30-4
Indirect adaptive control, 11-5
Induction motor (IM), optimum 

design of, 14-6–14-9, 17-6
classical IM design evaluation, 

14-6–14-7
solved problem, description of, 

14-7–14-8
generated parameters, 14-7
objective (criterion) function, 

14-7–14-8
Inductive dividers, 32-4
Information representation, digital, 

19-1–19-2, See also Digital 
information representation

Input, definition, 3-60
Input/output (I/O) subsystem, 24-2
Input/output subsystem, 

microprocessors, 24-10
direct memory access (DMA) 

controller, 24-10
peripheral controllers, 24-10

Input–output system equation, 3-54, 
3-60

Instar learning rule, 12-6–12-7
Instruction encoding, 24-15–24-16
Instruction level parallelism, 

24-17–24-19
instruction sequence, 24-18
predicate definition truth table, 

24-18
predicate register, 24-17
predicated execution, 

24-17–24-19
speculative execution, 24-19
unconditional destination predicate 

registers, 24-18
Instrumentation amplifier, 32-2
Instrumentation, 33-1, See also 

Traditional instrumentation 
systems; Virtual integer, 
19-2

Integer, definition, 19-21
Integral nonlinearity (INL), 31-2
Integrated modeling, mechatronic 

systems, 1-3–1-12, See also 
under Controlled 
mechatronic systems

Integrating ADCs, 31-6
Intelligent fault detection techniques, 

22-3–22-4
problems in, 22-4–22-5

Interchange circuits, 20-8–20-9
Interconnected systems, state space 

models for, 4-24–4-26
feedback connection, 4-25–4-26
parallel connection, 4-25
series connection, 4-24–4-25

Interface, 20-2, See also System 
interfaces

definition, 34-17
in PLCs, 25-10–25-12

advanced capabilities, 25-11
Interface Clear (IFC) lines, 20-12
interface management lines, 20-12

Attention (ATN), 20-12
End of Identity (EOI), 20-12
Interface Clear (IFC), 20-12
Remote Enable (REN), 20-12
Service Request (SRQ), 20-12

Interrupts, 25-3
optical interrupters, 25-4

Inverse Laplace transformation, 3-56
Isolation amplifier, 32-2, 32-3

K
Kalman filters, 3-37–3-39

as dynamic system state observers, 
8-1–8-10

discrete-time linear kalman 
filter, 8-1–8-5

linear Kalman filter (LKF), 8-2
Kalman filter formulations, 

8-6–8-7
continuous–discrete linear 

Kalman filter, 8-6
continuous–discrete extended 

Kalman filter, 8-8–8-9
implementation considerations, 

8-9–8-10
Kalman frequency domain equality 

(KFDE), 10-27, 10-36
Karnaugh map, 23-9
Kd (Derivative Gain), 15-21
Kelvin–Varley divider, 32-3
Ki (Integral Gain), 15-21
Kirchhoff ’s laws, 17-10, 17-13
K-Map formats, 19-14–19-17, 19-21

logically adjacent minterms, 19-18
maxterm K-maps, 19-18
minimization, 19-17–19-19
one vartiable, 19-15
three-variable, 19-16, 19-17
two-variable, 19-15

Kp (Proportional Gain), 15-21
Kronecker delta function, 

3-6, 4-23
Kv (Velocity Feedback), 15-21

L
Laboratory-grade transducers, 

30-11
LabVIEW FPGA graphical 

programming, 28-4–28-5
for 32-bit counter, 28-5
hardware configuration on, 28-5
uniqueness, 28-5

LabVIEWDigital filter design toolkit, 
interactive filter design 
using, 28-12

Laplace transformation, 3-56–3-57, 
5-4–5-6

inverse Laplace transformation, 
3-56, 5-8

one-sided Laplace transformation, 
3-56

transfer functions and, 3-54–3-60
properties, 3-58
transform properties, 

3-57–3-58
transformation and solution of 

system equation, 
3-58–3-60

Learning algorithms for neural 
networks, 12-6–12-12

Learning feed-forward controller 
(LFFC), 1-14

Linear closedloop dynamics (LCLD), 
11-9

Linear errors, A/D and D/A 
conversion, 31-2

Linear filtering, 32-4–32-5
Linear fractional transformation 

(LFT), 10-6
Linear hydraulic motor (LHM), 

nonlinear mathematical 
model of, 13-6–13-8

Linear Kalman filter (LKF), 8-2
error covariance propagation, 8-4
filter update, 8-4–8-5

Linear mathematical models (LMM), 
13-10

Linear operations, in signal 
conditioning, 32-1–32-5

amplitude scaling, 32-1–32-4
impedance transformation, 32-4
linear filtering, 32-4–32-5

Linear regression, 12-8
Linear state space models, 4-7–4-11, 

4-17–4-23
sampled data systems and time 

delays, 4-22–4-23
sampling periods, effect of, 

4-20–4-22
speed of response and resonances, 

4-19–4-20
structure of the unforced response, 

4-18
structure of the unforced response, 

4-18–4-19
system dynamics, 4-17–4-18
system stability, 4-18–4-19
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Linear state-space equation and its 
solution, 3-44–3-45

Linearization, 4-5–4-7
Lipschitz maps, 17-5
Liquid level transducers, 30-11, 

30-17–30-19
capacitive-type liquid level 

transducers, 30-18
contact transducers, 30-17
float-type liquid level transducers, 

30-17
noncontact transducers, 30-17
ultrasound liquid level transducers, 

30-19
Local and metropolitan area networks, 

21-9–21-10
bus network, 21-5
ring network, 21-5

local/metropolitan area 
communication bus 
network, 21-5

Logarithmic/antilogarithmic amplifier, 
32-5

Logic gate integrated circuits, 
23-16–23-17

Logic gate technologies, 23-6, 
23-11–23-16

CMOS logic, 23-15–23-16
diode–transistor logic (DTL), 

23-12
diode–resistor logic, 23-12
emitter-coupled logic (ECL) 

devices, 23-13–23-15
resistor–transistor logic, 

23-11–23-12
transistor–transistor logic, 

23-12–23-13
Logic system design, 23-1–23-19

computers and, 18-1–18-11, See also 
under Computers

logic design, 23-6–23-11
AND gate, symbol, and behavior, 

23-7
dynamic characteristics, 

23-10–23-11
minimization, 23-8–23-10
NAND gate, symbol, and 

behavior, 23-7
NOR gate, symbol, and behavior, 

23-8
NOT gate or an inverter, symbol, 

and behavior, 23-7
OR gate, symbol, and behavior, 

23-7
XOR gate, symbol, and behavior, 

23-8
logic gate application, 23-2–23-3
logic gate integrated circuits, 

23-16–23-17
logic gate technologies, 

23-11–23-16
logic gates, switching levels for, 

23-2
logic switching levels, 23-1–23-2

mechatronics application, 
23-17–23-19

periodic and nonperiodic logic level 
signals, 23-2

programmable logic devices (PLD), 
23-17

semiconductor devices, 23-3–23-6
Logically adjacent, definition, 

19-21
Log-magnitude versus phase plots, 

7-8–7-9
Loop transfer recovery (LTR) methods, 

10-26
Loop transfer recovery at plant input 

(LTRI), 10-29
Loop transfer recovery at the plant 

output (LTRO), 10-27
LQ frequency domain equality 

(LQFDE), 10-29
Lyapunov concepts, 11-2, 17-3

for time-invariant systems, 
11-2–11-3

M
Macrotiming diagram, definition, 

19-21
Magnet-and-coil velocity transducers, 

30-8
Mass-spring-damper model, 3-43
MatLab/Simulink model, 18-2
Maxterms, 19-12, 19-21
McCulloch–Pitts neuron model, 

12-2
logic function realized with, 12-3
OR, AND, NOT, and MEMORY 

operations in, 12-2
Measurement techniques, 30-1–30-23, 

See also Sensors; 
Transducers

electrical signals suitable for, 30-2
Mechatronic applications

digital signal processing for, 
9-1–9-19, See also Digital 
signal processing

Mechatronic systems in action, 
1-12–1-15

iterative learning controller, 1-13
nonlinear effects in a linear motor, 

1-13–1-15
rudder roll stabilization of ships, 

1-12–1-13
special requirements that differenti-

ate “classic” systems and 
control design, 1-15–1-16

Mechatronic systems
and computer modeling and 

simulation, 18-3–18-4
controls role in, See Controlled 

mechatronic systems
design optimization of, 14-1–14-14, 

See also Design optimization
fault analysis in, 22-1–22-10, 

See also Fault analysis

mechatronic use of computers, 
18-1–18-3

modeling role in, 2-1–2-11, See also 
Modeling role

synergy of, 18-11
Medium access control (MAC) 

protocols
categories, 21-9

contention-based MAC 
protocols, 21-10

controlled access MAC 
protocols, 21-10

Memory address register (MAR), 24-8
Memory buffer register (MBR), 24-8
Memory management unit (MMU), 

24-8
Memory subsystem, 24-2, 

24-5–24-10
advanced cache memory system, 

24-7
bandwidth, 24-5
cache lines, 24-5
cache memory, 24-5–24-7
effective latency, 24-6
hit rate, 24-6
miss rate, 24-6
spatial locality, 24-5
temporal locality, 24-5
translation lookaside buffer (TLB), 

24-9–24-10
virtual memory, 24-7–24-9
write-back cache, 24-6
write-through cache, 24-6

Message processing, 34-3
Methodology

definition, 34-17
Metrics

definition, 34-17
Microcomputer, 18-10
Microcontrollers

in FPGAs, 27-6
using a single resistor, 25-4

Microelectromechanical (MEMS) 
motion devices, 17-1–17-15

classification using 
electromagnetic system, 
17-8

fabrication aspects, 17-14–17-15
FPGA for, 28-9
radial topology permanent-magnet 

synchronous motion 
devices, 17-7

synthesis of, 17-6–17-9
two-phase permanent-magnet 

synchronous motion 
devices, 17-8

types of, 17-6
induction, 17-6
synchronous, 17-6

Micromechatronics, 17-1–17-15
closed-loop micromechatronic 

system, 17-3
design flow in synthesis of, 17-2
design, 17-1–17-3
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step-by-step procedure in, 
17-1

synchronous micromachines, 
17-11–17-14, See also 
separate entry

tracking control of, 17-3–17-6
with an axial topology motion 

device, 17-9–17-11
Microprocessors, See also Embedded 

microprocessors
in FPGAs, 27-6
major components, 24-2–24-11

central processor, 24-2
input/output (I/O) subsystem, 

24-2
input/output subsystem, 

24-10
memory subsystem, 24-2
system interconnect, 

24-10–24-11
system interconnect, 24-2

types of, 24-1–24-2
Microprogramming, 24-3

microprogrammed control units
basic model of, 24-4

Microtiming diagram, definition, 
19-21

Minimal realization, 4-13
Minterms, 19-12  definition, 19-21 

k-map formats, 19-18
Missile model, 10-19–10-24
Mobile communication networks, 

21-10–21-11
Mobile robot (MART), design of, 

1-10–1-12
after completion, 1-12
conceptual design, 1-10, 1-11

Model calculations, 34-3
Model Reference Adaptive Control 

(MRAC), 11-5–11-6
Model-free adaptive (MFA) control for 

FPGA, 28-10
Modeling

as part of design process, 2-1–2-6
fundamental concepts, 4-1–4-2
mechatronic systems, 1-3–1-12, 

See also under Controlled 
mechatronic systems

Modeling role in mechatronics design, 
2-1–2-11

class diagram, 2-4
context diagram, 2-4
goals of modeling, 2-6–2-9

analogies, 2-8
documentation and 

communication, 2-7
electrical–mechanical analogies, 

2-8
hierarchical framework, 

2-7–2-8
identification of ignorance, 2-9
insights, 2-8

modeling of systems and signals, 
2-9–2-11

analytic and numerical 
modeling, 2-9

linear versus nonlinear, 
2-10–2-11

partial versus ordinary differen-
tial equations, 2-9–2-10

stochastic versus deterministic 
models, 2-10

Phase 1, 2-2–2-5
requirements analysis 

phase, 2-2
Phase 2, 2-5

concept generation phase, 2-5
Phase 3, 2-6

potential solutions, evaluation, 
2-6

Phase 4, 2-6
detailed design, 2-6

sequence diagrams, 2-3
Modified Rodrigues parameter (MRP), 

11-9
Modular hardware for system 

scalability, 33-4
Monotonicity, DACs, 31-7
Motion control/controller, 

15-1–15-25
components, 15-2–15-14

drive, 15-2
feedback device, 15-3
motion controller, 15-2
motion I/O, 15-3–15-14
motors, 15-2–15-3
user interface, 15-2

control loop, 15-19–15-23
commutation, 15-22–15-23
current loop (Torque Loop), 

15-23
position and velocity loops, 

15-20–15-22 
Kp (Proportional Gain), 15-21 

Ki (Integral Gain), 15-21  
Kd (Derivative Gain), 15-21  
Kv (Velocity Feedback), 
15-21 Vff (Velocity 
Feedforward), 15-22  

Aff (Acceleration 
Feedforward), 15-22 

Dual-loop Feedback, 15-22
spline interpolation, 

15-19–15-20
definition, 15-1
functions of, 15-4–15-23

supervisory control, 15-4–15-12, 
See also separate entry

history, 15-1–15-2
motion controller hardware, 

15-23–15-25
analog motion controller 

(dedicated processor), 
15-23–15-24

digital signal processor, 15–23
FPGA, 15–23
microprocessor, 15–23
motion I/O, 15–23–15-24

softmotion-based motion 
controller, 15-24

trajectory generation, 15-12–15-19
Motion, 30-3

angular motion, 30-3
equations of, 30-3
motion and force transducers, 

30-3–30-11
motion I/O, 15-3–15-14
motion transducer, 30-23
rectilinear motion, 30-3

Motorcycle engine control 
prototyping, 28-10

Motors, 15-2–15-3
types, 15-3

brushed DC servo motors, 
15-3

brushless servo motors, 15-3
stepper motors, 15-3

Moving average (MA) process
definition, 3-39

Moving data, 34-3
Multilayer feedforward neural 

network, 22-4
Multiple axis synchronization, 

15-19
Multiplier, 32-5
Multistage ADCs, 31-5–31-6

N
Nested polynomials, 19-4
Neural networks, 12-1–12-26

Bidirectional associative memories 
(BAM), 12-19, 12-20

feedforward neural networks, 
12-4–12-6

learning algorithms for, 12-6–12-12
correlation learning rule, 

12-6
delta learning rule, 12-8–12-10
error backpropagation learning, 

12-10–12-12
Hebbian learning rule, 12-6
instar learning rule, 12-6–12-7
linear regression, 12-8
outstar learning rule, 12-7
Widrow–Hoff LMS learning 

rule, 12-7–12-8
winner takes all (WTA), 12-7

neuron cell, 12-2–12-4
special feedforward networks, 

12-12–12-18
cascade correlation architecture, 

12-16
feedforward version of the 

counterpropagation 
network, 12-13–12-14

functional link network, 
12-12–12-13

radial basis function networks, 
12-17–12-18

recurrent neural networks, 
12-18–12-20
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Neural techniques to control 
electrohydraulic axis, 
13-14–13-16, See also under 
Electrohydraulic axis

Neuro-fuzzy techniques control the 
electrohydraulic axis, 
13-16–13-23, See also under 
Electrohydraulic axis

Neuron cell, 12-2–12-4
Neuron network

for mechatronic systems design 
optimization, 14-9–14-14, 
See also under Design 
optimization

Newton laws, 4-3
second law, 3-42, 17-10, 17-13

for the cart mass, 5-2
Noise, 31-3
Noncontact transducers, 30-17
Nonlinear adaptive control systems, 

11-6–11-8
Nonlinear errors, A/D and D/A 

conversion, 31-2–31-3
Nonlinear mathematical model of 

linear hydraulic motor 
(LHM), 13-6–13-8

Nonlinear operations, in signal 
conditioning, 32-5–32-7

Nonterminating fraction conversion, 
19-5

Not Data Accepted (NDAC) lines, 
20-13

Not Ready for Data (NRFD) lines, 
20-12

Nozzle flowmeter, 30-13, 30-15
Number systems, 19-2

arithmetic, 19-2–19-3
digit, 19-2
fraction, 19-2
integer, 19-2
notation for numbers, 19-2
number conversion from one base 

to another, 19-4–19-6
nonterminating fraction 

conversion, 19-5
radix divide method for 

converting numbers 
between bases, 19-4

radix multiply number 
convertion method, 19-5

series polynomial method, 19-4
number representation, 19-2
radix, 19-2
reduced radix, 19-2

Nyquist frequency, 3-32
Nyquist plot, 10-4
Nyquist sampling theorem, 3-18, 9-4, 

29-3, 31-2
Nyquist stability criterion, 

7-13–7-17
relative stability, 7-17–7-20

minimum return difference, 
7-19

Routh–Hurwitz criterion, 7-16

O
Object, 34-3
Offset error, in DACs, 31-8
Off-the-shelf prototyping platforms, 

26-3–26-4
One-sided Laplace transformation, 

3-56
Open communication standards, 

25-11
Open System Interconnection (OSI) 

reference model, 21-7
layers in, 21-7

application layer, 21-7
data link layer, 21-7
network layer, 21-7
physical layer, 21-7
presentation layer, 21-7
session layer, 21-7
transport layer, 21-7

Open-ended electromagnetic system, 
17-6

Operating system scheduler, 16-3–16-4
Operational amplifier, 32-2
Operator notation, 3-54
Orifice flowmeter, 30-13
Orthogonal basis functions, 3-8–3-9
Output feedback adaptive control, 

11-10–11-11
Output, definition, 3-60
Outstar learning rule, 12-7
Overflow, definition, 19-21, 19-21

P
Paddle wheel flowmeter, 30-14, 

30-15
Padé approximations, root locus using, 

6-21–6-23
Page frame number (PFN), 24-8
Page table base register (PTBR), 24-8
Page table entry (PTE), 24-8
Parallel connection, 4-25
Parallel manipulators/machine tools, 

22-5–22-10
failure identification, 22-8
fault tolerance through redundancy, 

22-8
mechanical system failures, 22-6
parallel architecture manipulators, 

22-5–22-8
component failures, 22-5–22-6
failure modes of, 22-7

branches, 22-7
components links, 22-7
manipulator, 22-7

six-branch parallel 
manipulator/machine, 22-5

three-branch parallel 
manipulator, 22-6

subsystem failures, 22-6
system characteristics, 22-9–22-10

adaptation and database section, 
22-10

feature extraction section, 22-10

measurement section, 22-9
processing section, 22-9

tool condition monitoring, 
22-8–22-10

cutting tool failure monitoring 
techniques, 22-9

direct methods, 22-9
indirect methods of, 22-9

Parametric optimization, of 
mechatronic systems, 14-2

Parity bit, definition, 19-21
Parseval’s theorem, 3-15
Pentium 4 processor, 24-20
Phase-lock looping (PLL), 29-5

for scanning probe microscope, 
28-10

Physical address (PAD), 24-8
Piezoceramic actuator, 3-41–3-43

mass-spring-damper model, 3-43
simple model, 3-42

Piezoelectric crystals, 30-5–30-6
Pipebend (elbow) flowmeter, 30-13
Pipe-bend flowmeters, 30-15
Pipelining, 24-11–24-13

advantage of, 24-11
architecture, 24-12
pipeline startup delay, 24-12

Piston-and-spring transducer, 30-12
Pitot-static flowmeters, 30-13, 30-15
Plant or process, 30-23
Pneumatic servomechanism, 

18-2
MatLab/Simulink model of, 

18-2–18-3
Point-to-point versus multi-point, in 

system interfaces, 20-4–20-5
Polar plots, 7-7–7-8
Position encoders, 30-4, 30-5
Potentiometers, 30-4, 30-5
Practical sampling, 3-18–3-21
Precision diode-based circuits, 32-5
Predicated execution, 24-17–24-19
Preemptive scheduling, 16-4
Pressure transducers, 30-12
Prime implicant, definition, 19-21
Probabilistic neural network (PNN), 

12-14
Process control, 30-23
Process transducers, 30-11–30-23

fluid flow transducers, 30-11
fluid pressure transducers, 30-11
laboratory-grade transducers, 

30-11
liquid level transducers, 30-11
piston-and-spring transducer, 

30-12
pressure transducers, 30-12
temperature transducers, 30-11

product of sums (PS), 19-11, 19-21
Program control, 34-3
Programmable logic arrays (PLAs), 

27-1, See also Field-
programmable gate arrays

AND and OR planes of, 27-2
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Programmable logic controller (PLC), 
25-6–25-12

interfacing, 25-10–25-12
programming languages, 

25-7–25-10
IEC 61131-3 programming 

languages, 25-8
Programmable logic devices (PLD), 

23-17, 23-18
Programming languages

embedded computers, 25-5–25-6, 
See also under Embedded 
computers

PLC, 25-7–25-10, See also Program-
mable logic controller

Programming methods, FPGAs, 
28-3–28-4

Proportional-integral-derivative (PID) 
control, 16-6, 18-6

PTBR to form the physical address 
(PAPTE), 24-8

Pulse and step response, dynamic 
systems, 5-7–5-10

PUMA 560 robotic manipulator, 
H2-LQG/LTR design for, 
10-32–10-43 

Q
Quasi-polynomials, 6-18

dominant roots of, 6-19–6-21
algorithm, 6-19–6-21

Quasiprogrammable ICs, 27-7
Quickprop, 12-11
Quine–McCluskey tabular 

minimization, 19-20–19-21

R
Radial basis function networks, 

12-17–12-18
Radial topology permanent-magnet 

synchronous motion 
devices, 17-7

slotless radial-topology permanent-
magnet brushless microac-
tuator, 17-9

Radiation thermometers, 30-22
Radix divide method for converting 

numbers between bases, 
19-4

Radix multiply number convertion 
method, 19-5

Radix, 19-2, 19-21
Ramp function, 3-4
Random access memory (RAM), 24-3
Range, DACs, 31-7
Rational model

definition, 3-39
Reachability, 4-26–4-32
Read only memory (ROM), 24-3
Real number, definition, 19-21
Realization, 19-12–19-13, 19-21
Real-time monitoring and control, 

16-1–16-8

deterministic timing, 16-5–16-6
hard real-time systems, 16-1
implementing real-time control, 

16-6–16-7
fuzzy logic control, 16-6
model-based control design, 

16-6–16-7
proportional-integral-derivative 

(PID), 16-6
monitoring systems, 16-7
operating system scheduler, 

16-3–16-4
real-time development tools, 

16-2–16-4
real-time software architecture, 

16-4
soft real-time system, 16-1

Real-time software architecture, 16-4
Real-time systems, 25-3–25-4, 34-3

real-time system integration 
(RTSI), 29-5

Real-time use of computers, 
mechatronics and, 
18-5–18-11

computer-control configuration, 
18-7

continuous and 4-bit quantized 
signal, 18-8

continuous and D/A converter 
output, 18-9

digital processing component in, 
18-6

Reconfigurable computing, 27-5
Recurrent neural networks, 

12-18–12-20
autoassociative memory, 12-19
Hopfield network, 12-18–12-20

Reduced instruction set computers 
(RISC), 24-16

Reduced radix, 19-2, 19-21
Reference input, 30-23
Refractory period, 12-2
Remote Enable (REN) lines, 20-12
Reservation stations, 24-15
Resistance temperature coefficient, 

30-21
Resistance temperature detectors 

(RTD), 30-21
Resistive dividers, 32-3
Resistive networks, 31-8–31-9
Resistor–transistor logic, 23-11–23-12

resistor–transistor NAND gate, 
23-12

resistor–transistor NOT gate, 23-12
Response of dynamic systems, 

5-1–5-14
dynamic response, 5-7–5-12

pulse and step response, 
5-7–5-10

sinusoid and frequency response, 
5-10–5-12

system and signal analysis, 5-1–5-7
continuous time systems, 

5-1–5-3

discrete time systems, 5-3–5-4
Laplace and z-transform, 

5-4–5-6
transfer function models, 

5-6–5-7
Resolution, DACs, 31-7
Resolvers, 30-4, 30-5
Resource allocation techniques, 

21-11–21-13
dynamic allocation of resources, 

21-11
static allocation of resources, 

21-11
Riccati equation, 17-4
ROBI_3 cartesian robot, generalities 

concerning, 13-2–13-4
Root locus method, 6-1–6-23

complementary root locus, 
6-16–6-17

complementary root locus, 6-2
desired pole locations, 6-4–6-7
for systems with time delays, 

6-17–6-23
delay systems, stability of, 

6-18–6-19
quasi-polynomial, dominant roots 

of, 6-19–6-21
root locus construction, 6-7–6-15

root locus rules, 6-7
design examples, 6-10–6-15

using Padé approximations, 
6-21–6-23

usual root locus, 6-2
Rotameter flowmeters, 30-14
Routh–Hurwitz criterion, 7-16
RS-232 serial interface, 20-7–20-8
RS-485 interfaces, 20-9–20-10
Run-time performance analysis, 34-8

S
Sallen-Key low-pass filter, 7-9, 7-12
Sample-and-hold and track-and-hold 

amplifiers, 32-5
Sampled continuous-time signals, 

3-16–3-22
digital-to-analog conversion, 

3-21
impulse sampling, 3-17–3-18
practical sampling, 3-18–3-21

Sampling period, 9-4
Schmitt trigger, 32-5
Scoreboarding, 24-14
Second-order method, of mechatronic 

systems, 14-3
Seebeck junctions, 30-19
Seismic accelerometers, 30-9, 30-10
Self-tuning controller, 11-6
Semiconductor devices, 23-3–23-6

bipolar transistor, 23-3–23-5
diode, 23-3
field effect transistors (FETs), 

23-5–23-6
logic gates, 23-6
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Sensitive displacement (position) 
transducers, 30-4

differential capacitors, 30-5
piezoelectric crystals, 30-5
strain gauge resistors, 30-5
types, 30-5

Sensors, 30-1–30-23
in data acquisition, 29-2

Sequence diagrams, 2-3, 2-4
Sequential function charts (SFC), 25-9
Serial asynchronous communications, 

20-5–20-6
Serial versus parallel system interface, 

20-2
Sseries connection, 4-24–4-25
Series polynomial method, 19-4
Service Request (SRQ) lines, 20-12
Servo system design, 1-7–1-10

LQG-controlled system, 1-8
open loop responses, 1-7
process with Kalman filter and state 

feedback, 1-8
with PD-controller, 1-10

Servomechanism, 30-23
Settling time, in DACs, 31-7
Shannon sampling theorem, 3-32
Shared buses, 24-11
Sigma-delta (SD) ADCs, 31-6–31-7
Signal conditioning, 30-23, 32-1–32-7

linear operations, 32-1–32-5
nonlinear operations, 32-5–32-7

Signal, definition, 3-60
Signals and systems, 3-1–3-60

continuous- and discrete-time 
signals, 3-1–3-29

continuous- and discrete-time 
state-space models, 
3-40–3-54

signal classification, 3-1–3-3
continuous-time (CT), 3-1
deterministic, 3-1
discrete-time (DT) signals, 3-1
random signals, 3-1

transfer functions and Laplace 
transforms, 3-54–3-60

z transform and digital systems, 
3-29–3-39

Signals, in data acquistion, 29-2–29-5
categories, 29-2

analog signals, 29-2
digital signals, 29-2

conditioning, 29-5
in general control system design 

framework, 10-2, See also 
under General control system

Signal-to-quantization noise power, 
3-21

Simplex, half-duplex, full-duplex, 
20-3

simulated annealing algorithm, 
14-5

Simulation, 34-4
Single-point I/O on FPGA for Haptics, 

28-9–28-10

Singularity functions, 3-3–3-4
ramp Function, 3-4
unit impulse function, 3-3
unit step function, 3-3–3-4

Sinusoid and frequency response, 
dynamic systems, 5-10–5-12

Slew rate, in DACs, 31-7
Soft CPU Cores, 27-6
Soft magnets, 17-12
Soft real-time system, 16-1

hard real-time system vs., 
16-1, 16-2

Softmotion position control loop on 
FPGA, 28-10

Softmotion-based motion controller, 
15-24

PC/PLC-based with analog 
interface, 15-24

PC/PLC-based with deterministic 
digital network, 
15-24–15-25

CANopen, 15-25
EtherCAT, 15-25
Ethernet PowerLink, 15-25
EtherNET/IP, 15-25
IEEE 1394, 15-25
PROFIbus (MC), 15-25
PROFInet (IRT), 15-25
SERCOS III, 15-25

Software design and development, 
34-1–34-17

compiler, 34-4
data declaration, 34-3
database management systems 

(DBMS), 34-4
database, 34-3
distribution, 34-4
documentation, 34-4
message processing, 34-3
model calculations, 34-3
moving data, 34-3
notion of software, 34-2–34-5
object, 34-3
program control, 34-3
real-time, 34-3
simulation, 34-4
tools, 34-4
user interface, 34-3

Software development, 34-4
development before the fact, 

34-9–34-14
phases, 34-4

analysis or requirements phase, 
34-4

design phase, 34-5
installation phase, 34-5
maintenance phase, 34-5
specification phase, 34-4

testing (debugging) phase, 34-5
Software engineering, nature, 

34-5–34-9
client/server environments, 34-6
defect removal costs, 34-5
development environment, 34-5

developmental issues, 34-7
automation, 34-8
design integrity, 34-8
errors, 34-7
integration, 34-7
languages, 34-7
locked-in design syndrome, 34-7
parallelism and distributed 

environments, 34-7
reliable reusable definitions, 34-8
resource allocation, 34-8
run-time performance analysis, 

34-8
unpredictability, 34-7

GUI development, 34-5
object-oriented techniques, 34-6
programmer productivity, 34-5
architecture definition, 34-17
considerations, in electrohydraulic 

axis control, 13-23–13-25
data acquisition, 29-6–29-7

application software, 29-6
driver software, 29-6

execution, real-time use of 
computers, 18-6

for flexible custom measurements, 
in virtual instrumentation 
systems, 33-4–33-6

Space transformation method, 17-4
Spacecraft adaptive attitude regulation, 

11-9–11-10
Spatial locality, 24-5 
Speculative execution, 24-19
S-plane to z-plane mappings, 9-6–9-7

backward transformation, 9-6
bilinear transformation, 9-6
forward transformation, 9-6

Spring transducer, 30-12
Squarer, 32-5
Square-rooter, 32-5
Stabilizability, 4-26–4-32
Standard optimization methods, of 

mechatronic systems, 14-3
State diagram editor on FPGA, 28-11
State feedback, 4-45–4-47

basic concepts, 4-45–4-47
feedback dynamics, 4-46
optimal state feedback, 4-46–4-47

State similarity transformation, in state 
space analysis, 4-23

State space analysis, 4-1–4-48
discrete-time and sampled data 

systems, 4-14–4-24
discrete time systems, 

linearization, 4-15
linear state space models, 

4-17–4-23
sampled data systems, 4-15–4-17
state similarity transformation, 

4-23
state space and transfer 

functions, 4-23–4-24
for continuous-time systems, 

4-4–4-14
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linear state space models, 
4-7–4-11

forced response, structure, 
4-10
system dynamics, 4-8
system stability, 4-10
unforced response, structure, 

4-8
linearization, 4-5–4-7
response and resonances, speed of, 

4-10–4-11
state similarity transformation, 

4-11–4-12
state space and transfer functions, 

4-12–4-14
for interconnected systems, 

4-24–4-26, See also 
Interconnected systems

observed state feedback, 4-47–4-48
separation strategy, 4-47–4-48
single-input single-output case, 

4-48
signals and state space description, 

4-4
state feedback, 4-45–4-47
state observers, 4-40–4-45

basic concepts, 4-40
observer dynamics, 4-40–4-44

state variables, 4-2–4-4
basic state space models, 4-2–4-4

continuous-time systems, 4-3
discrete-time systems, 4-3

system properties, 4-26–4-40
State transformation method, 17-11
State, definition, 3-60
State-space models, continuous- and 

discrete-time, 3-40–3-54, 
See also Continuous- and 
discrete-time state-space 
models

State-space systems, 3-34
Stochastic optimization methods, of 

mechatronic systems, 14-4
Strain gauge resistors, 30-5–30-6
Structured text (ST), 25-8
Successive-approximation register 

(SAR), 31-4–31-5
Sum of products (SP), 19-11, 19-21
Supervisory control, motor, 

15-4–15-12
axis initialization (reference moves), 

15-5
finding the center, 15-5
finding the encoder index, 15-5
finding the forward limit and 

reverse limit switches, 15-5
finding the home switch, 15-5

electronic gearing, 15-6–15-7
electronic camming, 15-7–15-9
exception handling, 15-9
I/O synchronization, 15-9–15-12

Surface micromachining technology, 
17-11

Switching circuits, 19-10–19-11

Switching networks, 24-11
Synchronous micromachines, 

17-11–17-14
Synchronous motion device, 17-6
Synchronous versus asynchronous 

system interface, 
20-2–20-3

Synchros, 30-4, 30-5
Synergy of mechatronics, 18-11
System equation, 3-58–3-60
System interconnect, 24-2, 

24-10–24-11
dedicated links, 24-10
hypercube configuration, 24-10
shared buses, 24-11
switching networks, 24-11

System interfaces, 20-1–20-14
bit rate versus Baud rate, 20-2
communication protocol, 20-3
data flow-control, 20-3
error handling, 20-3
handshaking, 20-3
IEEE 488 interface bus, 

20-10–20-14
point-to-point versus multi-point, 

20-4–20-5
serial asynchronous 

communications, 
20-5–20-6

serial versus parallel, 20-2
simplex, half-duplex, full-duplex, 

20-3
synchronous versus asynchronous, 

20-2–20-3
terminology and definitions, 20-2

bit, 20-2
byte, 20-2
character code, 20-2
character, 20-2
interface, 20-2

TIA/EIA serial interface standards, 
20-7–20-10, See also sepa-
rate entry

unbalanced versus balanced 
transmission, 20-3–20-4

universal asynchronous receiver 
transmitter (UART), 
20-5–20-7

System on a chip (SoC), 27-4
System on a programmable chip 

(SoPC), 27-4
System properties, in state space 

analysis, 4-26–4-40
canonical decomposition and 

detectability, 4-37–4-38
canonical decomposition and 

stabilizability, 4-31–4-32
canonical decomposition, 

4-39–4-40
controllability gramian, 4-29–4-31
controllability test, 4-27–4-28
controllability, 4-26–4-32

loss of controllability, 
4-28–4-29

detectability, 4-32–4-38
duality principle, 4-37
observability canonical 

form, 4-38
observability gramian, 

4-36–4-37
observability test, 4-33–4-34
observability, 4-32–4-38

loss of, 4-34–4-36
PBH Test, 4-40
reachability, 4-26–4-32
reconstructibility, 4-32–4-38
stabilizability, 4-26–4-32

Systems and signals, modeling of, 
2-9–2-11

T
Tabu search algorithm, 14-4
Tachometer generator, 30-8
Takagi-Sugeno method, 13-17
Temperature transducers, 30-11, 

30-19–30-22
physical principles of, 30-19

Temporal locality, 24-5
Thermal anemometer flowmeters, 

30-14, 30-17
Thermal cutouts, 30-19
Thermistors, 30-21
Thermocouples, 30-19–30-20
TIA/EIA serial interface standards, 

20-7–20-10
data communication over a 

telephone network, 20-7
interchange circuits, functional 

description, 20-8–20-9
RS-232 serial interface, 

20-7–20-8
RS-422 and RS-485 interfaces, 

20-9–20-10
Time delays, root locus for systems 

with, 6-17–6-23
Time invariant, definition, 3-60
Time Series

definition, 3-39
Time-invariant systems, Lyapunov 

theory for, 11-2–11-3
Timing diagrams, 19-13–19-14

macrotiming diagram, 19-13
microtiming diagram, 19-13

Tomasulo’s algorithm, 24-15
Tools, 34-4
Torsional–mechanical equations, 

17-10
Traditional instrumentation systems, 

33-1–33-2
Trajectory generation, in motion 

control, 15-12–15-19
arc moves, 15-13–15-16

circular arcs, 15-13
algorithm, 15-14

helical arc, 15-15
spherical arcs, 15-15
blending, 15-17–15-18
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contoured moves, 15-16
multiple axis synchronization, 

15-19
position velocity time profiles, 

15-16–15-17
second-and third-order profiles, 

15-18–15-19
S-curve velocity profile, 15-18
Trapezoidal velocity profile, 

15-18
straight-line moves, 15-12–15-13

position based, 15-12
velocity based, 15-12

algorithm, 15-14
Transducers and sensors, in data 

acquisition, 29-2
Transducers, 30-1–30-23

acceleration transducers, 30-9
displacement (position) 

transducers, 30-4–30-8
fluid flow transducers (flowmeters), 

30-12–30-17
force transducers, 30-11
gross displacement (position) 

transducers, 30-4
liquid level transducers, 

30-17–30-19
loading and transducer compliance, 

30-23
motion and force transducers, 

30-3–30-11
process transducers, 30-11–30-22
sensitive displacement (position) 

transducers, 30-4
temperature transducers, 

30-19–30-22
transducer performance, 30-22

dynamic performance, 30-22
static performance, 30-22

velocity transducers, 30-8–30-9
Transfer functions, 3-55, 5-6–5-7

experimental determination, 
7-9–7-13

MATLAB system identification 
toolbox, 7-10

system identification technique, 
7-10

Transistor–transistor logic (TTL), 
See Digital signals

Translation lookaside buffer (TLB), 
24-9–24-10

architectures, 24-9
Tree step process, 12-11
Trigonometric Fourier series 

expansion, 3-12
Trigonometric function generator, 

32-5
Triple modular redundancy (TMR), 

27-7

True RMS-to-DC converter, 32-5
Truth table, definition, 19-21
Turbine flowmeter, 30-14, 30-15

U
Ultrasound flowmeters, 30-14, 30-15, 

30-17
Ultrasound liquid level transducers, 

30-19
Unbalanced versus balanced 

transmission, in system 
interfaces, 20-3–20-4

Unforced response, 4-8
Unified Modeling Language (UML), 

2-2, 34-7
Unit impulse function, 3-3
Unit step function, 3-3–3-4
Universal asynchronous receiver 

transmitter (UART), 
20-5

typical arrangement for, 20-6
Usual root locus, 6-2
User interface, 15-2, 34-3

V
Variable differential transformers, 

30-4, 30-5
Variable-area in-line flowmeters, 

30-17
Velocity transducers, 30-8–30-9

types, 30-8
counter-type velocity 

transducers, 30-8
magnet-and-coil velocity 

transducers, 30-8
tachometer generator, 30-8

Venn diagrams, 19-9
Venturi flowmeter, 30-13
Very long instruction word (VLIW), 

24-16
Vff (Velocity Feedforward), 15-22
Virtual instrumentation systems, 

33-1–33-7
benefits of, 33-6–33-7

adaptability and longevity, 
33-7

greater speed, 33-7
lower cost and size, 33-7

definition, 33-3
extensions beyond test and 

measurement, 33-6
modular hardware for system 

scalability, 33-4
software for flexible custom 

measurements, 33-4–33-6
traditional instrumentation systems 

vs., 33-1
Virtual memory, 24-7–24-9

access algorithm, 24-8
page index (PI), 24-7
page number (PN), 24-7
page size, 24-7
physical address, 24-7
virtual address, 24-7

Voltage dividers, 32-3
Voltage transformers, 32-4
Vortex shedding flowmeters, 30-14, 

30-15, 30-17

W
Weighted H2 mixed sensitivity 

problem, 10-6
feedback system performance 

issues, 10-7
weighting functions

and closed loop transfer function 
matrix, 10-8

selection of, 10-9
Wide area computer networks, 

21-8–21-9
Widrow–Hoff LMS learning rule, 

12-7–12-8
Winner takes all (WTA), 12-7

achitecture, 12-15–12-16
Wireless communication networks, 

21-10–21-11
Wold decomposition, 3-35
Word size, 24-15

Z
Z transform, 5-4–5-6

and digital systems, 3-29–3-39
described by difference 

equations, 3-34–3-35
digital systems and discretized 

data, 3-30–3-32
discrete Fourier transform, 

3-33
Kalman filter, 3-37–3-39
prediction and reconstruction, 

3-35–3-37
pulse transfer function, 3-33
state-space systems, 3-34
transfer function, 

3-33–3-34
weighting function, 3-33

and state-space, 3-52–3-53
definition, 3-39
properties, 3-31

Zero padding, 3-28
Zero state, definition, 3-60
Zero-order hold (ZOH), 9-5
Zero-order methods, of mechatronic 

systems, 14-3
Zero-pole cancellation, 4-29
Zero-state relation, 3-55
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