SCHAUM’S OUTLINE OF

THEORY AND PROBLEMS

OF

STRENGTH OF
MATERIALS

Fourth Edition

WILLIAM A. NASH, Ph.D.
Professor of Civil Engineering
University of Massachusetts

SCHAUM’S OUTLINE SERIES
McGRAW-HILL

New York San Francisco Washington, D.C. Auckland Bogotd Caracas

London Madrid Mexico City Milan Montreal New Delhi
San Juan Singapore Sydney Tokyo Toronto

Lisbon



This book is dedicated by the author to his parents, William A.
Nash and Rose Nash, for their years of patient guidance toward
his career.

WILLIAM A. NASH is Professor of Civil Engineering at the University
of Massachusetts, Amherst. He received his B.S. and M.S. from the Illinois
Institute of Technology and his Ph.D. from the University of Michigan. He
served as Structural Research Engineer at the David Taylor Research
Center of the Navy Department in Washington, D.C., and was a faculty
member at the University of Florida for 13 years prior to his present
affiliation. He has had extensive consulting experience with the US. Air
Force, the US. Navy Department, Lockheed Aerospace Corp., and the
General Electric Co. His special areas of interest are structural dynamics
and structural stability.

Schaum’s Qutline of Theory and Problems of
STRENGTH OF MATERIALS

Copyright © 1998, 1994, 1972 by The McGraw-Hill Companies, Inc. All rights reserved.
Printed in the United States of America. Except as permitted under the Copyright Act of 1976,
no part of this publication may be reproduced or distributed in any forms or by any means,
or stored in a data base or retrieval system, without the prior written permission of the
publisher.

1 23456780101112 1314151617 181920 PRSPRS G 02109 8
ISBN 0-07-046617-3

Sponsoring Editor: Barbara Gilson

Production Supervisor: Pamela Pelton

Editing Supervisor: Maureen B. Walker

Project Supervision: Keyword Publishing Services Ltd

Library of Congress Cataloging-in-Publication Data

Nash, William A.
Schaum'’s outline of theory and problems of strength of materials /
William A. Nash. — 4thed.
p. cm. -- (Schaum’s outline series)
includes index.
ISBN 0-07-046617-3
1. Strength of materials--Problems, exercises, etc. 2. Strength

of materials--Outlines, syliabi, etc. 1. Title.
TA407 AN37 1998
620.1'12--dc21 98-28410
CIP
McGraw-Hill

]
A Dwision of The McGraw-Hill Companies



Preface

This Fourth Edition of Schaum’s Outline of Theory and Problems of Strength

of Materials adheres to the basic plan of the third edition but has several distinctive

features.

1. Problem solutions are given in both SI (metric) and USCS units.

2. About fourteen computer programs are offered in either FORTRAN or
BASIC for those types of problems that otherwise involve long, tedious
computation. For example, beam stresses and defiections are readily deter-
mined by the programs given. All of these programs may be utilized on most
PC systems with only modest changes in input format.

3. The presentation passes from elementary to more complex cases for a variety

of structural elements subject to practical conditions of loading and support.
Generalized treatments, such as elastic energy approaches, as well as plastic
analysis and design are treated in detail.

The author is much indebted to Kathleen Derwin for preparation of most of

the computer programs as well as careful checking of some of the new problems.

WiLLiaM A. NAsH
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Chapter 1

Tension and Compression

INTERNAL EFFECTS OF FORCES

In this book we shall be concerned with what might be called the internal effects of forces acting
on a body. The bodies themselves will no longer be considered to be perfectly rigid as was assumed
in statics; instead, the calculation of the deformations of various bodies under a variety of loads will
be one of our primary concerns in the study of strength of materals.

Axially Loaded Bar

The simplest case to consider at the start is that of an initially straight metal bar of constant cross
section, loaded at its ends by a pair of oppositely directed collinear forces coinciding with the
longitudinal axis of the bar and acting through the centroid of each cross section. For static equilibrium
the magnitudes of the forces must be equal. If the forces are directed away from the bar, the bar is said
to be in tension: if they are directed toward the bar. a state of compression exists. These two conditions
are illustrated in Fig. 1-1.

Under the action of this pair of applied forces, internal resisting forces are set up within the bar
and their characteristics may be studied by imagining a plane to be passed through the bar anywhere
along its length and oriented perpendicular to the longitudinal axis of the bar. Such a plane is
designated as g-a in Fig. 1-2(a). If for purposes of analysis the portion of the bar to the right of this
plane is considered to be removed, as in Fig. 1-2(d). then it must be replaced by whatever effect it exerts
upon the left portion. By this technique of introducing a cutting plane. the originally internal forces
now become external with respect to the remaining portion of the body. For equilibrium of the portion
to the left this “effect™ must be a horizontal force of magnitude P. However. this force P acting normal
to the cross-section a-a is actually the resultant of distributed forces acting over this cross section in
a direction normal to it.

At this point it is necessary to make some assumption regarding the manncr of variation of these
distributed forces, and since the applied force P acts through the centroid it is commonly assumed that
they are uniform across the cross section.

Bar in tensicn (a)
Pl i 1=
Bar in compresalon (&)

Normal Stress

Instead of specaking of the internal force acting on some small element of area. it is better for
comparative purposes to treat the normal force acting over a unit arca of the cross section. The
mtensity of normal force per unit area is termed the normal stress and is expressed in units of force
per unit area, e.g.. Ib/in? or N/m”. If the forces applied to the ends of the bar are such that the bar is

1



2 TENSION AND COMPRESSION [CHAP. 1

in tension, then zensile stresses are set up in the bar: if the bar is in compression we have compressive
stresses. It 1s essential that the line of action of the applied end forces pass through the centroid of each
cross section of the bar.

Test Specimens

The axial loading shown in Fig. 1-2(a) occurs frequently in structural and machine design problems.
To simulate this loading in the laboratory, a test specimen is held in the grips of either an electrically
driven gear-type testing machine or a hydraulic machine. Both of these machines are commonly used
in materials testing laboratories for applying axial tension.

In an effort to standardize materials testing techniques the American Society for Testing Materials
(ASTM) has issued specifications that are in common use. Only two of these will be mentioned here,
one for metal plates thicker than % in (4.76 mm) and appearing as in Fig. 1-3. the other for metals over
1.5in (38 mm) thick and having the appearance shown in Fig. 1-4. As may be seen from these figures,
the central portion of the specimen is somewhat smaller than the end regions so that failure will not
take place in the gripped portion. The rounded fillets shown are provided so that no stress
concentrations will arise at the transition between the two lateral dimensions. The standard gage length
over which elongations are measured is 8in (203 mm) for the specimen shown in Fig. 1-3 and 2in
(57 mm) for that shown in Fg. 1-4.

The elongations are measured by either mechanical or optical extensometers or by cementing an
electric resistance-type strain gage to the surface of the material. This resistance strain gage consists
of a number of very fine wires oriented in the axial direction of the bar. As the bar elongates, the
electrical resistance of the wires changes and this change of resistance is detected on a Wheatstone
bridge and interpreted as clongation.

e B —— - o
E*_" O ‘E:L—ﬂ"‘_:lﬂ_ @
r ™ . D
Fig. 1-3 Fig. 1-4

Normal Strain

Let us suppose that one of these tension specimens has been placed in a tension-compression
testing machine and tensile forces gradually applied to the ends. The elongation over the gage length
may be measured as indicated above for any predetermined increments of the axial load. From these
values the elongation per unit length, which is termed normal strain and denoted by €, may be found
by dividing the total elongation A by the gage length L, that is, e = A/L. The strain is usually expressed
in units of inches per inch or meters per meter and consequently is dimensionless.

Stress-Strain Curve

As the axial load is gradually increased in increments, the total elongation over the gage length
is measured at each increment of load and this is continued until fracture of the specimen takes place.
Knowing the original cross-sectional area of the test specimen the normal stress, denoted by o, may
be obtained for any value of the axial load by the use of the relation

P

U'={—4'
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where P denotes the axial load in pounds or Newtons and A the original cross-sectional area. Having
obtained numerous pairs of values of normal stress ¢ and normal strain e, the experimental data may
be plotted with these quantities considered as ordinate and abscissa, respectively. This is the
stress-strain curve or diagram of the material for this type of loading. Stress-strain diagrams assume
widely differing forms for various materials. Figure 1-5 is the stress-strain diagram for a medium-carbon
structural steel, Fig. 1-6 is for an alloy steel, and Fig. 1-7 is for hard steels and certain nonferrous alloys.
For nonferrous alloys and cast iron the diagram has the form indicated in Fig. 1-8, while for rubber the
plot of Fig. 1-9 is typical.

Ductile and Brittle Materials

Metallic engineering materials are commonly classed as either ductile or brittle materials. A ductile
material is one having a relatively large tensile strain up to the point of rupture (for example, structural
steel or aluminum) whereas a brittle material has a relatively small strain up to this same point. An
arbitrary strain of 0.05 in/in (or mm/mm) is frequently taken as the dividing line between these two
classes of materials, Cast iron and concrete are examples of brittle materials,

Hooke’s Law

For any material having a stress-strain curve of the form shown in Fig. -5, 1-6, or 1-7, it 1s evident
that the relation between stress and strain is linear for comparatively small values of the strain. This
linear relation between elongation and the axial force causing it (since these quantities respectively
differ from the strain or the stress only by a constant factor) was first noticed by Sir Robert Hooke in
1678 and is called Hooke's law. To describe this initial linear range of action of the material we may
consequently write

o= Fe

where E denotes the slope of the straight-line portion OP of each of the curves in Figs. 1-5, 1-6,
and 1-7.
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Modulus of Elasticity

The quantity E, i.e., the ratio of the unit stress to the unit strain, is the modulus of elasticity of the
material in tension. or. as it is often called, Young’s modulus.* Values of E for various engineering
materials are tabulated in handbooks. A table for common materials appears at the end of this chapter.
Since the unit strain € is a pure number (being a ratio of two lengths) it is evident that E has the same
units as does the stress, for example Ib/in’, or N/m’. For many common engineering materials the
modulus of elasticity in compression is very nearly equal to that found in tension. It is 1o be carefully
noted that the behavior of materials under load as discussed in this book is restricted (unless otherwise
stated) to the linear region of the stress-strain curve.

MECHANICAL PROPERTIES OF MATERIALS

The stress-strain curve shown in Fig. 1-5 may be used to characterize several strength characteris-
tics of the material. They are:

Proportional Limit

The ordinate of the point P is known as the proportional limit, i.e., the maximum stress that may
be developed during a simple tension test such that the stress is a linear function of strain. For a
material having the stress-strain curve shown in Fig. 1-8 there is no proportional limit.

Elastic Limit

The ordinate of a point almost coincident with P is known as the elastic limit, i.e., the maximum
stress that may be developed during a simple tension test such that there is no permanent or residual
deformation when the load is entirely removed. For many materials the numerical values of the elastic
limit and the proportional limit are almost identical and the terms are sometimes used synonymously.
In those cases where the distinction between the two values is evident the elastic limit is almost always
greater than the proportional limit.

Elastic and Plastic Ranges

That region of the stress-strain curve extending from the origin to the proportional limit is called
the elastic range; that region of the stress-strain curve extending from the proportional limit to the point
of rupture is called the plastic range.

Yield Point

The ordinate of the point Y in Fig. 1-5, denoted by o,,, at which there is an increase in strain with
no increase in stress is known as the yield point of the material. After loading has progressed to the
point Y, yielding is said to take place. Some materials exhibit two points on the stress-strain curve at
which there is an increase of strain without an increase of stress. These are called upper and lower yield
points.

*Thomas Young was an English physicist, born in 1773, who worked in a number of areas such as mechanics, light, and heat.
Before Young, historians had been unable to decipher stone tablets cut or painted in the characters (hieroglyphics) employed
by Egyptians several thousand years p.c. Young, a master of eleven languages, was the first to successfully decipher any of the
characters based upon study of the famous Rosetta stone found in 1799. His work, followed by that of Champollion in France,
led to complete decipherment of the ancient language.



CHAP 1] TENSION AND COMPRESSION 5

Ultimate Strength or Tensile Strength

The ordinate of the point U in Fig. 1-5, the maximum ordinate to the curve, is known either as the
ultimate strength or the tensile strength of the material.

Breaking Strength
The ordinate of the point B in Fig. 1-5 is called the breaking strength of the material.

Modnlus of Resilience

The work done on a unit volume of material, as a simple tensile force is gradually increased from
zero to such a value that the proportional limit of the material is reached, is defined as the modulus
of resilience. This may be calculated as the area under the stress-strain curve from the origin up to the
proportional limit and is representied as the shaded area in Fig. 1-5. The units of this quantity are
in-Ib/in’, or N-m/m’ in the SI system. Thus, resilience of a material is its ability to absorb energy in
the elastic range.

Modulus of Toughness

The work done on a unit volume of material as a simple tensile force is gradually increased from
zero to the value causing rupture is defined as the modulus of roughness. This may be calculated as the
entire area under the stress-strain curve from the origin to rupture. Toughness of a material is its ability
to absorb energy in the plastic range of the material.

Percentage Reduction in Area

The decrease in cross-sectional area from the original area upon fracture divided by the original
area and multiplied by 100 is termed percentage reduction in area. It is to be noted that when tensile
forces act upon a bar, the cross-sectional area decreases, but calculations for the normal stress are
usually made upon the basis of the original area. This is the case for the curve shown in Fig. 1-5. As
the strains become increasingly larger it is more important to consider the instantaneous values of the
cross-sectional area (which are decreasing), and if this is done the rrue stess-strain curve is obtained.
Such a curve has the appearance shown by the dashed line in Fig. 1-5.

Percentage Elongation

The increase in length (of the gage length) after fracture divided by the initial length and multiplied
by 100 is the percentage elongation. Both the percentage reduction in area and the percentage
elongation are considered to be measures of the ductility of a material.

Working Stress

The above-mentioned strength characteristics may be used to select a working stress. Frequently
such a stress is determined merely by dividing either the stress at yield or the ultimate stress by a
number termed the safety facror. Selection of the safety factor is based upon the designer’s judgment
and experience. Specific safety factors are sometimes specified in design codes.

Strain Hardening

If a ductile material can be stressed considerably beyond the yield point without failure, it is said
to strain-harden. This is true of many structural metals,
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The nonlinear stress-strain curve of a brittle material, shown in Fig,. 1-8, characterizes several other
strength measures that cannot be introduced if the stress-strain curve has a linear region. They are:

Yield Strength

The ordinate to the stress-strain curve such that the material has a predetermined permanent
deformation or “set” when the load is removed is called the yield strength of the material. The
permanent set is often taken to be either 0.002 or 0.0035 in per in or mm per mm. These values are
of course arbitrary. In Fig. 1-8 a set ¢, is denoted on the strain axis and the line Q'Y is drawn parallel
to the initial tangent to the curve. The ordinate of ¥ represents the yield strength of the material,
sometimes called the proof stress.

Tangent Modulus

The rate of change of stress with respect to strain is known as the tangent modulus of the material.
It is essentially an instantaneous modulus given by E, = dolde.

Coefficient of Linear Expansion

This is defined as the change of length per unit length of a straight bar subject to a temperature
change of one degree and is usually denoted by a. The value of this coefficient is independent of the
unit of length but does depend upon the temperature scale used. For example, from Table 1-1 at the
end of this chapter the coefficient for steel is 6.5 % 10 “/°F but 12 X 10 *°C. Temperature changes in
a structure give rise to internal stresses, just as do applied loads.

Poisson’s Ratio

When a bar is subject to a simple tensile loading there is an increase in length of the bar in the
direction of the load, but a decrease in the lateral dimensions perpendicular to the load. The ratio of
the strain in the lateral direction to that in the axial direction is defined as Poisson’s ratio. It is denoted
in this book by the Greek letter u. For most metals it lies in the range 0.25 to 0.35. For cork, u is very
nearly zero. One new and unique material, so far of interest only in laboratory investigations, actually
has a negative value of Poisson’s ratio; i.e., if stretched in one direction it expands in every other
direction. See Problems 1.19 through 1.24.

General Form of Hooke’s Law

The simple form of Hooke's law has been given for axial tension when the loading is entirely along
one straight line, i.e.. uniaxial. Only the deformation in the direction of the load was considered and
it was given by

hd
E

€=

In the more general case an element of material is subject to three mutually perpendicular normal
stresses o, 0,, 0., which are accompanied by the strains €,, €, €, respectively. By superposing the strain
components arising from lateral contraction due to Poisson’s effect upon the direct strains we obtain
the general statement of Hooke’s law:

oy — (o + o.)] € = %{U: - o + )]

) =

€ = —I-E[al. - (e, + )] € =

See Problems 1.20 and 1.23.
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Specific Strength

This quantity is defined as the ratio of the ultimate (or tensile) strength to specific weight, ie..
weight per unit volume, Thus, in the USCS system, we have

b /b
i/ "

and, in the SI system, we have

so that in either system specific strength has units of length. This parameter is useful for comparisons
of material efficiencies. See Problem 1.25.

Specific Modulus

This quantity is defined as the ratio of the Young’s modulus to specific weight. Substitution of units
indicates that specific modulus has physical units of length in either the USCS or SI systems. See
Problem 1.25.

DYNAMIC EFFECTS

In determination of mechanical properties of a material through a tension or compression test. the
rate at which loading is applied sometimes has a significant influence upon the results. In general,
ductile materials exhibit the greatest sensitivity to variations in loading rate, whereas the effect of
testing speed on brittle materials, such as cast iron, has been found to be negligible. In the case of mild
steel, a ductile material, it has been found that the yield point may be increased as much as 170 percent
by extremely rapid application of axial force. It is of interest to note, however, that for this case the
total elongation remains unchanged from that found for slower loadings.

CLASSIFICATION OF MATERIALS

Up to now, this entire discussion has been based upon the assumptions that two characteristics
prevail in the material. They are that we have

A homogeneous material, one with the same elastic properties (E, p) at all points in the body

An isotropic material, one having the same elastic properties in all directions at any one point of
the body.

Not all materials are isotropic. If a material does not possess any kind of elastic symmetry it is
called anisotropic, or sometimes aeolorropic. Instead of having two independent elastic constants (E, u)
as an isotropic material does, such a substance has 21 elastic constants. If the material has three
mutually perpendicular planes of elastic symmetry it is said to be orthotropic. The number of
independent constants is nine in this case. Modern filamentary reinforced composite materials, such as
shown in Fig. 1-10, are excellent examples of anisotropic substances.
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Fig. 1-10 (a) Epoxy bar reinforced by fine filaments in one direction; (#) cpoxy plate reinforced by fine filaments
in two directions.

ELASTIC VERSUS PLASTIC ANALYSIS

Stresses and deformations in the plastic range of action of a material are frequently permitted in
certain structures. Some building codes allow particular structural members to undergo plastic
deformation, and certain components of aircraft and missile structures are deliberately designed to act
in the plastic range so as to achieve weight savings. Furthermore, many metal-forming processes
involve plastic action of the material. For small plastic strains of low- and medium-carbon structural
steels the stress-strain curve of Fig. 1-11 is usually idealized by two straight lines, one with a slope of
E, representing the elastic range, the other with zero slope representing the plastic range. This plot,
shown in Fig. 1-11, represents a so-called elastic, perfectly plastic material. It takes no account of still
larger plastic strains occurring in the strain-hardening region shown as the right portion of the
stress-strain curve of Fig. 1-5. See Problem 1.26.
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CHAPF 1] TENSION AND COMPRESSION

If the load increases so as to bring about the strain corresponding to point B in Fig, 1-11, and then
the load is removed, unloading takes place along the line BC so that complete removal of the load

leaves a permanent “set” or elongation corresponding to the strain OC.

Solved Problems

1L1. InFig. 1-12, determine the total elongation of an initially straight bar of length L. cross-sectional
area A, and modulus of elasticity E if a tensile load P acts on the ends of the bar.

P -y P
___‘#

| L A

Fig. 1-12

The unit stress in the direction of the force P is merely the load divided by the cross-sectional area,
that is, o = F/A. Also the unit strain ¢ is given by the total elongation A divided by the original length, i.e.,
€ = A/L. By definition the modulus of elasticity £ is the ratio of & 10 €, that is,
o FPA PL PL
- = or A=

AL AA T AE

E= =%  an

Note that A has the units of length, perhaps inches or meters.

L2. A steel bar of cross section 500 mm? is acted upon by the forces shown in Fig. 1-13(a). Determine
the total elongation of the bar. For steel, consider E = 200 GPa.

A B c D A B
50 KN et 15 kN 10 kN ASKN  SOKN ~wmfm s SO KN
SULL Im 1,25 m
(a) (b)
B C c D
© ()
Fig. 1-13

The entire bar is in equilibrium, and hence all portions of it are also. The portion between A and B
has a resultant force of 50 kN acting over every cross scction and a free-body diagram of this 0.6-m length
appears as in Fig. 1-13(b). The force at the right end of this segment must be 50 kN to maintain equilibrium
with the applied load at A. The elongation of this portion is, from Problem 1.1:

(50,000 N) (0.6 m)
a = Pl 0.0‘003
L7 (500 % 1074 m?) (200 X 10° N/m?) "
The force acting in the segment between B and C is found by considering the algebraic sum of the
forces to the left of any section between B and C. i.e., a resultant force of 35 kN acts to the left. so that
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a tensile force exists. The free-body diagram of the segment between B and C is shown in Fig. 1-13(¢) and
the elongation of it is
_ (35,000 N) (1 m)
(500 X 10°® m?) (200 x 10° N/m?)
Similarly, the force acting over any cross section between C and D must be 45kN to maintain
equilibrium with the applied load at D. The elongation of CD is

~ (45,000 N) (1.25 m)
* 7 (500 X 1079 m?) (200 x 10° N/m?)

= 0.00035 m

4,

= 0.00056 m

The total elongation is
A=A +A,+A,=000121m or 1.21 mm

1.3. The pinned members shown in Fig. 1-14(a) carry the loads P and 2P. All bars have
cross-sectional area A,. Determine the stresses in bars AB and AF.

AB AF

Fig. 1-14(a) Fig. 1-14(b)
The reactions are indicated by C,, C,. and A,. From statics we have
4
EM,=—(2PL)- PQ2L)Y+A(3L) =0 A, = EP

A free-body diagram of the pin at A is shown in Fig. 1.14(b). From statics:

a1 4pPV's
= — A = = "
3F “{AB)+—2—-A =0 AB=—-—8-P
¥ \«’g( =0 3

The bar stresses are

4P\V5 8P
Tar = — (= Tap =

34 34
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14. A component of a power generator consists of a torus supported by six tie rods from an
overhead central point as shown in Fig. 1-15. The weight of the torus is 2000 N per meter of
circumferential length. The point of attachment A is 1.25 m above the plane of the torus. The
radius of the middle line of the torus is 0.5 m. Each tie rod has a cross-sectional area of 25 mm’.
Determine the vertical displacement of the torus due to its own weight.

1.25m

Fig. 1-15

A free-body diagram of the torus appears in Fig. 1-16 where T denotes the iensile force in each rod.
Summing forces vertically:
1.25

°T(ﬁ

)— (20005)2».7(0.5;11) =0
m
T=1120N

Let us examine the deformation of a typical tie rod, such as AB. Figurc 1-17 shows how A B clongates
an amount BB" given by

TL (1120 N)(1.34 m)

A=BB =—= - = (0.0003 m or 0.3 mm
AE m - N
25 z x 10—
(25 mm )(l{)’mm) (200 10 m')
 pr—
A
/]
A\
i S/
\ — —
L= V(125 +(0.5)=1.34m - 1.25m
v N
\
B‘.'
B'!:"-u E
’l “78-

Fig 1-16 Fig. 1-17
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Since B is on the torus, it (8) must move to B* which is vertical below B. From Fig. 1-16 we have
0.3

(%)

which is the vertical displacement of the rigid torus.

= 0.32 mm

BB' = (o.a)ﬁ =

In Fig. 1-18, determine the total increase of length of a bar of constant cross section hanging
vertically and subject to its own weight as the only load. The bar is initially straight.

o

i

— - — s

Fig. 1-18

The normal stress (tensile) over any horizontal cross section is caused by the weight of the material
below that section. The elongation of the element of thickness dy shown is

AE

where A denotes the cross-sectional area of the bar and v its specific weight (weight/unit volume).
Integrating, the total elongation of the bar is

A =fAy1dy _AYL_(Aay)L _ WL

dA dy

AE AE 2 2AE 2AE

where W denotes the total weight of the bar. Note that the total elongation produced by the weight of the
bar is equal to that produced by a load of half its weight applied at the end.

In 1989, Jason, a research-type submersible with remote TV monitoring capabilities and
weighing 35,200 N was lowered to a depth of 646 m in an effort to send back to the attending
surface vessel photographs of a sunken Roman ship offshore from Italy. The submersible was
lowered at the end of a hollow steel cable having an area of 452 X 107°*m? and E = 200 GPa.
The central core of the cable contained the fiber-optic system for transmittal of photographic
images to the surface ship. Determine the extension of the steel cable. Due to the small volume
of the entire system buoyancy may be neglected, and the effect of the fiber optic cable on the
extension is also negligible. (Note: Jason was the system that took the first photographs of the

sunken Titanic in 1986.)
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1.7

The total cable extension is the sum of the extensions due to (a) the weight of Jason, and () the weight
of the steel cable. From Problem 1.1, we have for (a)

PL (35,200 N) (646 m)

TAE  (452x 10 “m’) (200 X 10° Nim?) 0252m

4

and from Problem 1.5, we have for (b)

WL
A = —
? 2AE

where W is the weight of the cable. W may be found as the volume of the cable
(452 % 10 *m?) (646 m) = 0.292 m*

which must be multiplied by the weight of steel per unit volume which, from Table 1-1 at the end of the
chapter is 77 kN/m*. Thus, the cable weight is

W = (0292 m*) (77 kN/m?®) = 22,484 N
so that the elongation due to the weight of the cable is

(22.484 N) (646 m)

2(@52 % 10 ) (200 x 10° Nim?) 080 ™

AZZ

The total elongation is the sum of the cffects,

A=A+ A, =0252+0.080 =0332m

Two prismatic bars are rigidly fastened together and support a vertical load of 10,000 1b, as
shown in Fig. 1-19. The upper bar is steel having specific weight 0.283 1b/in’, length 35 ft, and
cross-sectional area 10 in?. The lower bar is brass having specific weight 0.300 Ib/in®, length 20 ft,
and cross-sectional area 8in’. For steel E =30x10°Ib/in’. for brass E = 13 X 10°Ib/in’
Determine the maximum stress in each material.

The maximum stress in the brass bar occurs just below the junction at section B-B. There, the vertical
normal stress is caused by the combined effect of the load of 10,000 1b together with the weight of the entire
brass bar below B-B,

10,000 1b

Fig. 1-19
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The weight of the brass bar is W, = (20 X 12)(8)(0.300) = 576 |b.
The stress at this scction is

P 10,000+ 576
= —=————— = 1320 lb/in*
o=— m 20 Ib/in
The maximum stress in the steel bar occurs at section A-A, the point of suspension. because there the
cntire weight of the stecl and brass bars gives rise to normal stress, whereas at any lower section only a
portion of the weight of the stecl would be effective in causing stress.
The weight of the steel bar is W, = (35 x 12) (10) (0.283) = 1185 1b.
The stress across seclion A-A is
P 10000 + 576 + 1185

= —_— = =1 in°
T a 10 180 Ibfin

L8. A solid truncated conical bar of circular cross section tapers uniformly from a diameter d at its
small end to D at the large end. The length of the bar is L. Determine the elongation due to
an axial force P applied at each end. See Fig. 1-20.

fe———— L

e—— —--rf:,n—

Il_——-’_7/ il
P#-—-—_ ] :_ + > F
4 K A4 D
2 72, :

t T
Fig. 1-20

The coordinate x describes the distance from the small end of a disc-like clement of thickness dx. The
radius of this small element is readily found by similar triangles:

d x(D—d]
r=—+4— ——-
2 L 2

<

The clongation of this disc-like element may be found by applying the formula for extension duce to
axial loading. A = PL/AE. For the element, this expression becomes

Pex
[d X ( D—d )
e
2 L\ 2
The extension of the entire bar is obtained by summing the elongations of all such elements over the
bar. This is of course done by integrating. If A denotes the clongation of the entire bar,

L ! 4P dx 4PL
A=| aa= =
: md+ (/L) (D~ dFE  wDdE

dA =

E

1.9. Two solid circular cross-section bars. one titanium and the other steel, each in the form of a
truncated cone, are joincd as shown in Fig. 1-21(a) and attached to a rigid vertical wall at the
left. The system is subject to a concentric axial tensile force of SO0 KN at the right end, together
with an axisymmetric ring-type load applied at the junction of the bars as shown and having a
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horizontal resultant of 1000 kN. Determine the change of length of the system. For titanium,
E =110 GPa, and for steel, £ = 200 GPa.

Ring load

25 rra

Titanium
alloy

500 kN

P\ P S —
045m I 0% m

Fig. 1-21(a)

A free-body diagram of the system appcears as shown in Fig. 1-21(b)

1500 kN 500 kN

Fig. 1-21(b)

and a free-body diagram of each bar is shown in Fig. 1-21(c).

1500 kN 1500 kN 500 kN 500 kN

Titanium
alloy

Fig. 1-21(c)

We may now apply the result of Problem 1.8 to cach bar and obtain

4(1.500,000 N) (0.45 m)

- — 0.00156
(010 m) (0.05 m) (110 % 10° N/m?) m

‘31\

4(500.000 N) (0.90 m)

- — = 0.00082
(007 m) (0.05 m) (200 % 10° Nim®)  ©

Asr

Using supcrposition,
A=Aqr+Ar =0.00238m  or  238mm
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1.10. A large-scale pumping system to lift water consists of a pump of weight W in a circular

cylindrical housing (with vertical axis) suspended from an axisymmetric thick-walled tube of
variable radial thickness [see Fig. 1-22(a)]. Find the variation in outer radius R along the height
so that the normal (vertical) stress in the tube is constant. The specific weight of the tube
material is y and the inner radius is R;, which is constant.

We introduce the coordinate y, with origin at the top of the pump and extending positive upward as
shown. Let us consider the free-body diagram of a ring-shaped element of the tube located a distance y
above the top of the pump and of height dy as shown in Fig. 1-22(b).

N7
1 bdt | bt
(R SANNEERN
- —y=0 KRN EEEE
\“‘Pun-!:in | I E—|
(a) ()
Fig. 1-22

The cross-sectional area of the lower surface of this ring is
A=a(R-R)) ()

and the area of the upper surface is (A + dA). The weight of the material in the ring is ¥4 dy. For vertical
equilibrium we have
Tl A + dA) — a(A) — yAldy) = 0 @)
Simplifying:
ou(dA) = yA(dy) ()

At the lower end (y = 0) of the tube, we denote the tube cross-section area by A,. Integrating Eq. (3)
between the lower end (y = 0) and the elcvation y, we have

A dA v
= J X dy) (4)
A 0y
Au V=0
A v
Thus: In—=— 5
us: A o (89 )
A = Ager'™ (6)

At y =0, we have for vertical equilibrium

w
O = A_n 7)
so from (7), (6). and (7) we have the radius at any elevation y as
R’ =R} LA (8)

Ty
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L11. The pin-connected framework shown in Fig. 1-23(a) consists of two identical upper rods AB and
AC. two shorter, lower rods BD and DC, together with a rigid horizontal brace BC. All bars
have cross-sectional area A and modulus of elasticity E. Determine the vertical displacement
of point D due to the action of the vertical load P applied at D as well as the distributed load
q per unit length.

LV 2UN?2

LNZ c L2

) (©
Fig. 1-23

Let us consider a horizontal cutting plane passed through the system slightly above BC. The free-body
diagram is shown in Fig. 1-24 where F, represents the force in each of the bars AB and AC. From

statics:

IF, = -P—q(%)(2)+2f’zsin60° =0

2
P+ (72 qL

F,= A (1)

P

Fig. 1-24

To determine the dropping of bar BC we consider the deformation of bar AB, as shown in Fig. 1-25.
The increase of length of AB is given by

A(3)

AE



18 TENSION AND COMPRESSION

and the vertical projection of this is

E ( ZL)
pgr = —\V2)
AE cos 30°
Substituting F> from (7). this is

pgr - APL | 4qL®
3NV2AE  3AE

[CHAP 1

(2)

Fig. 1-25

Fig. 1-26

Let us now consider another horizontal plane passed through the system just below BC. The free-body
diagram is shown in Fig. 1-26 where F; represents the force in each of the bars BD and DC. From

statics:

SF, = — P+ 2F, cos45° = 0

_PV2

2

3)

We must now determine the lowering of point D due to the action of the load P acting on bars BD

and DC (see Fig. 1-27). The increase of length of BD is
F, L

AE
and the vertical projection of this is
F L
AE cos45°
Substituting (3), we find the vertical projection to be
PL
AE
The actual drop of point D is the sum of (2) and (4):
A = 4PL . PL N 4qL?
" 3V24E AE  3AE

PL ql’
= 1.942 — + 1.333—
AE AE

(4) NS

45°

©) Fig. 1-27
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1.12. Consider the system of two pinned end bars AB and CB (which is vertical) subject to the single
horizontal force P applied at the pin B (see Fig. 1-28). Bar AB has area A,. length L,. and
Young's modulus E,. The corresponding quantities for bar CB are A,, L,, and E,. Determine
the horizontal and vertical components of displacement of pin B.

The free-body diagram of the pin is shown in Fig. 1-29(a) where F; and F; denote the forces bars AB
and CB. respectively. exert on that pin. Each of thesc bar forces has been assumed to be positive in the
direction shown: i.e., cach bar is assumed to be in tension. Should the equilibrium equations indicate a
negative value for cither of these bar forces, that would signify that we have assumed the direction
incorrectly and that the bar is in compression. Figures 1-29(b) and 1-29(c) indicate the effects that the pin
at B exerts on bars A8 and CB, respectively. These are of course equal and opposite to the values shown
in Fig. 1-29(a).

Fig. 1-28

For equilibrium of the pin at B, we have
IF, = P-Ficosd45° =0 )
3IF. = F,~ F,sind45° = ( (2)

Selving,

F=PV2 FK=pr (3
which indicates tension in each bar. Let us think of temporarily .
unlocking the bars at B by removing pin B. Bar AB then C
stretches an amount BB’ and bar CB stretches an amount BB”, ()
as shown in Fig. 1-30. These extensions are found from Problem
1.1 to be ‘ F,

FL PV2
BB'=‘——I'—L=—'i (4)

A[El AIEI
Bg’:fi’i‘_{__ PL, 2 'F‘

AE,  AE, %)
However, the final position of the pin must be the same after 8 P
the pin is considered to be reintroduced, so the bar AB must

undergo a rigid-body rotation about pin A and bar CB must @
rotate about pin C. The point B' on AB (extended) must move /

along a circular arc with center at A, but for the very small

dcformations that we consider this arc may be replaced by a K,

dotted straight line B’ B” perpendicular to AB’. Likewise point A &)

B” on CB (extended) must move along the horizontal dotted 45

line B"B™ as rotation takes place about pin C. The interscction

of these two dotted lines at B” must be the true, final position

of the pin B. Fig. 1-29
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From the geometry of Fig. 1-30 we have

V2PL, 1 _ PL

= (6)

BD = BB’ cos45° = —
cos AE, V2 AE

. PL,
B'D = BB'sin45° = —— 7
sin AE (7)
PL, PL,
BG=BD+DG=—F-+—%
AE, " AE, ®
GB" =BG (45° triangle) (N
PL, PL, PL, )
=BD+ GB" = + + 10
o = B+ G5 = s (e o (o)
2PL, PL,
= —_———— =
AE T AE an
Finally, from Fig. 1-30 the vertical displacement of B is
PL,
A, = BB" = 12
v=B AL (12)

In 1989 a new fiber-optic cable capable of handling 40,000 telephone calls simultaneously was
laid under the Pacific Ocean from California to Japan, a distance of 13,300 km. The cable was
unreeled from shipboard at a mean temperature of 22°C and dropped to the ocean floor having
a mean temperature of 5°C. The coefficient of linear expansion of the cable is 75 X 107°°C.
Determine the length of cable that must be carried on the ship to span the 13,300 km.

The length of cable that must be carried on board ship consists of the 13.300 km plus an unknown
length AL that will allow for contraction to a final length of 13,300 km when resting on the ocean floor.
From the definition of the coefficient of thermal expansion (Chap. 1), we have

AL = al(AT)
AL = (75 X 107°°C) [13,300 km + AL} (22 - 5)°C (a)
Solving, we find
AL = 16.96km
The percent change of length is thus
(1696)(100) _ o

13300 + 16.96
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1.14.

so that the underlined term in Eq. (a) is of minor consequence. Thus. the required length of cable at
shipboard temperature is approximately 13,317 km.

An elastic bar of variable cross section is loaded by axial tension or compression at its ends as
shown in Fig. 1-31. The variation of cross-sectional dimension may be known either analytically
or numerically along the dimension in the axial direction. Write a FORTRAN program for
change of length of the bar for the cases of (a) a bar of solid circular cross section and (b) a flat
slab of constant thickness 7 as shown in Figs. 1-31(b) and 1-31(c), respectively. The contour of
the bar is described by the equation y = Ae®, where x is the axial coordinate.

Fig. 1-31

The equation derived in Problem 1.1 may be applied to each subsegment of length dx as shown in Fig.
1-31(a). The cross-sectional area of each such subsegment is taken to be constant and we then apply the
relation

PL

a AE
to this scgment, where the length of the segment is dx and A is the cross-sectional area of the segment.
Clearly A may be found if the equation y = y(x) for the cross section is known, or, alternatively,
measurcments may be made al a number of stations along the length of the bar and the area found
numerically at each such station.

This approach is represented by the following FORTRAN program which is self-prompting. Tensile
loadings arc regarded as positive and compressives as negative.

Note that in the equation describing the shape of the bar, y = Ae®™, e represents the base of
natural logs, and A and B are parameters of the contour. Note in particular that this A is not
cross-sectional area,

CODLOAARARRRARRARKARAARARARANRAARARARARARRRARARARRARRARARRAAR AR RARAN NN AR

00020 PROGRAM SLBTEN2(INPUT,OUTPUT)
DO0030X AR A RN AR R AR AR R AR R AR N R AR R RN AR RN AR AR R AR R AR RN RN R AR AR R AR AR AR AN AR NRRR R AR

00040*

00050* AUTHOR: KATHLEEN DERWIN

00060* DATE : FEBRUARY 5, 1989

00070*

ooo80* BRIEF DESCRIPTION:

00050* THIS PROGRAM DETERMINES THE CHANGE OF LENGTH OF A BAR DUE

00100* TO AXIAL TENSION OR COMPRESSION. THE BAR MAY BE A CONSTANT
00110* THICKNESS, VARIABLE WIDTH RECTANGULAR SLAB, OR A SOLID CIRCULAR
00120* ROD WITH VARIABLE DIAMETER. IN EITHER CASE THE SHAFT IS CENTRALLY
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00130*
00140*
00150*
00160*
00170*
00180*
00190*
00200*
00210*
00220*
00230+
00240*
00250
00260*
00270*
00280+
00290*
00300*
00310*
00320%
00330*
00340*
00350%
00360*
00370*
00380*
00390*
00400*
00410*
00420+
00430%

TENSION AND COMPRESSION [CHAP. 1

LOADED BY AN AXIAL FORCE.
THE VARYING WIDTH (OF THE SLAB) OR DIAMETER (OF THE ROD) MAY
BE DESCRIBED EITHER ANALYTICALLY AS Y = A*E " (B*X) WHERE X IS THE
GEOMETRIC AXIS OF THE BAR, OR NUMERICALLY USING THE MAGNITUDE OF
Y AT EACH END OF N SEGMENTS, MEANING N+1 VALUES.

INPUT:

THE USER IS PROMPTED FOR THE TOTAL BAR LENGTH, THE ELASTIC
MODULUS, AND THE AXIAL LOAD. THE USER IS THEN ASKED IF THE
BAR IS BOUNDED BY A KNOWN FUNCTION, AS WELL AS THE SHAPE OF ITS
X-SECTION. FOR THE CASE OF THE SLAB, THE UNIFORM THICKNESS IS
ALSO ASKED FOR... IF THE FUNCTION IS KNOWN, THE CONSTANTS ARE
THEN PROMPTED AND THE ENDPOINTS OF THE BAR ON THE X-AXIS INPUTTED;
ALTERNATELY, THE NUMBER OF SEGMENTS AND MEASURED HEIGHTS/DIAMETERS
MUST BE ENTERED.

OUTPUT:
THE TOTAL ELONGATION OF THE BAR IS DETERMINED AND PRINTED.
VARIABLES:
L,T,EM ~-~ LENGTH,THICKNESS,ELASTIC MODULUS OF BAR
A,B ~-- CONSTANTS OF Y = A*E “(B*X) GOVERNING BAR BOUNDA
X0, XN --~ ENDPOINTS OF SHAPT ON X-AXIS
P --- CENTRALLY APPLIED AXIAL LOAD
AA(100) ~~- INDIVIDUAL SEGMENT HEIGHTS/DIAMETERS
AREA --- X-SECTIONAL AREA OF EACH SMALL INCREMENT
ANS --~ DETERMINE IF USER HAS A KNOWN FUNCTION
TYPE --~ DETERMINE BAR X-SECTION
DELTA --~ UNIFORM BAR ELONGATION
LEN ~-~ LENGTH OF INCREMENTAL ELEMENT

00‘40**'*.!****..*.i*t***tA***t**t***Qt*l*t**t*ﬂt**ﬁ**ltt*****t****i*tttiitiﬁ
OO‘SOitﬁii**tt*tt*t*i.iit*tittti***t***t**Q**Q**t**ﬁ***#*********ﬁ***t*t..tt.

00460+

MAIN PROGRAM

00‘70iiQ*ih**.ﬁttih**tiA*hﬁil*ht**lt‘i****!t*l*!t**!**!**ti***ll*!*‘t!!!it*iﬁ
oo‘soitlttt*li***.**ittt*t*iat**ﬁnt*tt*n***i*t****i*tt*tﬁ*******ﬁ**iiiﬁ*tiﬁ.ﬁ

00490*
00500*
00510*
00520
00530
00540*
00550%*
00560*
00570
00580
00590
00600
00610
00620
00630
00640
00650
00660*
00670*
00680*
00690
00700
00710
00720
00730
00740
00750
00760*
00770*
00780%
00790*
00800

VARIABLE DECLARATION

REAL I,T,L,EM,A,B,X0,XN,P,DELTA,AAR(100),AREA, LEN
INTEGER ANS,TYPE,NUM,J

USER INPUT PROMPTS

PRINT*, 'ENTER THE TOTAL LENGTH OF THE BAR {(IN M OR INCHES):'
READ*, L

PRINT*, 'ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI) :°
READ* ,EM

PRINT#*, 'ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) :'
READ*,P

PRINT;,’PLEASE DENOTE THE BAR X-SECTIONAL SHAPE:'

PRINT*, 'ENTER 1--SLAB ; 2--CIRCULAR ROD'

READ*, TYPE

IF A SLAB, PROMPT FOR ITS THICKNESS

IF (TYPE.EQ.l) THEN
PRINT*, 'ENTER THE THICKNESS OF THE SLAB (IN M OR INCHES):'
READ*, T
ENDIF
PRINT#*, DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?'
PRINT#*,'ENTER 1--YES ; 2~=NO'
READ*, ANS

IF ANS EQUALS ONE, THE USER KNOWS FUNCTION. PROMPT
FOR CONSTANTS AND ENDPOINTS.

IF (ANS.EQ.1l) THEN
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00810 PRINT*,'F(X) = RA*E "(B*X)'

00820 PRINT*, 'ENTER A,B:'

00830 READ*,A,B

00840 PRINT#*, 'ENTER THE X-COORDINATE FOR BOTH ENDS OF THE BAR:'
00850 PRINT*,'(IN M OR INCHES):'

00860 READ*,X0,XN

00870*

00880 AREA = 0

00890 L=XN-X0

00900 LEN=L/50

00910 DO 20 I = X0,XN,LEN

00920 Y1=(A%(2.71828%*%(B*I)))*2
00930 Y2=(A*(2.71828%* (B*(I + LEN))))*2

00940 Y=(Y1+Y2)/2

00950 IF(TYPE.EQ.1) THEN

00960 AREA=1/(Y*T) + AREA

00970 ELSE

00980 AREA=4/(3.14159*(Y#*2)) + AREA

00990 ENDIF

01000 20 CONTINUE

01010*

01020%* IF ANS EQUALS TWO, THE USER DOES NOT KNOW FUNCTION.
01030* PROMPT FOR NUMBER OF SEGMENTS AND MEASURED HEIGHTS/DIAMETERS.
01040%

01050 ELSE

01060 PRINT*, 'ENTER THE NUMBER OF SECTIONS TO BE CALCULATED:'
01070 READ* , NUM

01080 IF(TYPE.EQ.1) THEN

01090 PRINT*, 'ENTER THE HEIGHTS OF THE ENDS FOR SECTIONS 1 TO N:'
01100 PRINT*,'(IN M OR INCHES):'

01110 ELSE

01120 PRINT*, 'ENTER THE DIAMETERS OF THE ENDS FOR SECTIONS 1 TO N:'
01130 PRINT*,'(IN M OR INCHES):"'

01140 ENDIF

01150*

01160* INPUT MEASURED HEIGHTS/DIAMETERS

01170*

01180 DO 30 J=1,NUM+l

01190 READ* ,AA(J)

01200 30 CONTINUE

01210%

01220 AREA = 0

01230 LEN = L/NUM

01240 DO 40 J = 1,NUM+1

01250 Y=(AA(J)+AA(J+1))/2

01260 IF(TYPE.EQ.1) THEN

01270 AREA = 1/(Y*T) + AREA

01280 ELSE

01290 AREA = 4/(3.14159*(Y*#*2)) + AREA

01300 ENDIF

01310 40 CONTINUE
01320 ENDIF
01330*

01340* DETERMINING THE ELONGATION OF THE LOADED BAR
01350%*

01360 DELTA= (P*LEN*AREA) /EM

01370*

01380 PRINT 50,DELTA

01390*

01400 50 FORMAT(2X,'THE DEFORMATION OF THE BAR IS:',F8.5,' (M OR IN.)')
01410%*

01420 STOP

01430 END
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A bar of variable solid circular cross section is bounded by the curve y = 8¢ °°'* and extends
from x = 0 to x = 180 in. It is subject to an axial tensile load of 100,000 Ib as shown in Fig. 1-32.
The material is steel, for which E = 30 x 10° Ib/in’. Use the FORTRAN program of Problem
1.14 to determine the elongation of the bar.

Oyp

I

o o =

Fig. 1-32

Since the contour is bounded by the curve of the form y = Ae®™, we have A = 8 and B = —0.01. The
bar extends from x = 0 to x = 180 in and entry of these data into the program of Problem 1.14 leads to
an axial elongation of 0.03176 in.

run

ENTER THE TOTAL LENGTH OF THE BAR (IN M OR INCHES):
? 180

ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI) :

? 30E+6

ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) :
? 100000

PLEASE DENOTE THE BAR X-SECTIONAL SHAPE:

ENTER 1--SLAB : 2--CIRCULAR ROD

? 2

DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?
ENTER 1--YES ; 2--NO

? 1

F(X) = A*E"(B*X)

ENTER A,B:

? 8,-0.01

ENTER THE X~COORDINATE FOR BOTH ENDS OF THE BAR:
(IN M OR INCHES):

? 0,180
THE DEFORMATION OF THE BAR IS: .03176 (M OR IN)

SRU 0.804 UNTS.

A flat slab of variable depth is bounded y ¥ = 025600

by the curve y = 0.25¢°9* and extends /

from x =4m to x = 10m as shown in -}3&5<F5.k~

Fig. 1-33. The slab is 10 mm thick and 2 4 10 x
is subject to an axial tensile force of

385 kN. Use the FORTRAN program of N | S

Problem 1.14 to determine the elonga-
tion of the slab. Take E = 200 GPa. Fig. 1-33
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To enter the program of Problem 1.14, we must set A = 0.25 and B = 0.025. The input data then
appear as

run

ENTER THE TOTAL LENGTH OF THE BAR (IN M OR INCHES):
26

ENTER THE ELASTIC MODULUS (IN PASCALS OR PSI) :

? 200E+9

ENTER THE UNIFORM AXIAL LOAD (IN NEWTONS OR LBS) :
? 385000

PLEASE DENOTE THE BAR X-SECTIONAL SHAPE:

ENTER 1--SLAB : 2--CIRCULAR ROD

21

ENTER THE THICKNESS OF THE SLAB (IN M OR INCHES):
? 0.01

DO YOU KNOW THE FUNCTION DESCRIBING THE BAR?
ENTER 1--YES ; 2-=-NO

? 1
F(X) = A*E"(B*X)
ENTER A,B:

? 0.25,0.025
ENTER THE X-COORDINATE FOR BOTH ENDS OF THE BAR:

(IN M OR INCHES):
2 4,10
THE DEFORMATION OF THE BAR IS: .00198 (M OR IN)

The elongation of the bar is thus 0.00198 m or 1.98 mm.

L.17. Consider two thin rods or wires as shown in Fig. 1-34(a), which are pinned at A, B, and C and
are initially horizontal and of length L when no load is applied. The weight of each wire is
negligible. A force Q is then applied (gradually) at the point B. Determine the magnitude of
Q so as to produce a prescribed vertical deflection & of the point B.

(a) (b

Fig. 1-34

This is an extremely interesting example of a system in which the elongations of all the individual
members satisfy Hooke’s law and yet for geometric reasons deflection is not proportional to force.

Each bar obeys the relation A = PL/AE where P is the axial force in each bar and A the axial
elongation. Initially each bar is of length L and after the entire load Q has been applied the length is
L'. Thus

PL

L'-L="= )
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The free-body diagram of the pin at B is shown in Fig. 1-34(b). From statics,

ZF,=2Psina— Q=10 or Q.—.zp(%)

) L -L)AE & 28AE( L
lJSlng (l\')- Q - 2 L .L' - L ( 1 L!) {2)
But (L'Y=L"+§& 3)
. . _2AE( L
Consequently o 7 1 Vit 82) @)
Also, from the binomial theorem we have
J—— 8\ | &
VJ.'.’_,_ 2 - = =t
7+ 6 L(1+L_) L(I S ) 5)
L 1 & 186
and thus 1 L(H_lff)al (l ZL-’)ﬁ‘Z- 3 (6)
2L
From this we have the approximate relation between force and displacement,
2AES 8  AES
Q=" =" (7)

Lj

which corresponds to (4).

Thus the displacement 8 is not proportional to the force Q even though Hooke’s law holds for each
bar individually. 1t is to be noted that ) becomes more nearly proportional 10 & as & becomes larger,
assuming that Hooke's law still holds for the elongations of the bars. In this example superposition does
not hold. The characteristic of this system is that the action of the external forces is appreciably affected
bv the small deformations which take place. In this cvent the stresses and displacements are not linear
functions of the applied loads and superposition does not apply.

Seenmary: A material must follow Hooke’s law if superposition is to apply. But this requircment
alone is not sufficient. We must sce whether or not the action of the applied loads is affected by small
deformations of the structure. If the cffect is substantial, superposition does not hold.

For the system discussed in Problem 1.17, let us consider wires each of initial length 5 ft,
cross-sectional area 0.1 in?. and with £ = 30X 16°1b/in% For a load Q of 201b determine the
central deflection 8 by both the exact and the approximate relations given there.

The exact expression relating force and deflection is Q = 28115 ( - \/Lf+ 6’)‘ Substituting the given
25(0.1) (30 x 10° 60 . . .
numerical values, 20 = X )(20} ) ( 1 —m) Solving by trial and error we find § = 1.131 in.

A AES -
The approximate relation between force and deflection is Q =~ AR Substituting,

50 = 0N BOX 105

60y from which  8=1.129in

A square steel bar 50 mm on a side and 1 m long is subject to an axial tensile force of 250 kN.
Determine the decrease in the lateral dimension due to this load. Consider E = 200 GPa and
u=0.3.
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1.20.

1.21.

The loading is axial. hence the stress in the direction of the load is given by

P (250 X 10 N)
=—=———— = 100 MPa
774 (0.05m)(0.05m)
The simple form of Hooke's law for uniaxial loading states that E = ole. The strain € in the direction
of the load is thus (100 X 10°)/(200 % 10°) = 5x 10 .
The ratio of the lateral strain to the axial strain is denoted as Poisson's ratio. i.e..
_ lateral strain

axial strain

The axial strain has been found to be 5 X 10 *. Consequently, the lateral strain is p times that value,
or (0.3)(5%10 % = 1.5x10"*. Since the lateral strain is 1.5% 10", the change in a 50 mm length is
7.5 X 107" mm, which represents the decrease in the lateral dimension of the bar.

It is to be noted that the definition of Poisson’s ratio of two strains presumes that only a singlc uniaxial
load acts on the member.

Consider a state of stress of an element such that a stress o, is exerted in one direction, lateral
contraction is free to occur in a second (z) direction, but is completely restrained in the third
() direction. Find the ratio of the stress in the x-direction to the strain in that direction. Also,
find the ratio of the strain in the z-direction to that in the x-direction.

Let us examine the general statement of Hooke's law discussed earlier. If in those equations we set
o, = 0. ¢ = 0 so as to satisfy the conditions of the problem, then Hooke's law becomes

& = low~ nler + 0] (@)
|

& =lo.— o, +0)] =0 ®)
|

€= —[0— o, +0)] (©
E

From (b), g, = po,
— 2
Consequently, from (a) €, = %(O'x A E o

Solving this equation for o, as a function of €, and substituting in (), we have

__].L(l+p.) e E _ JAE,

E 1-g@ 1-p

&=l tpo)=

We may now form the ratios

€ 1—p € l—-pu

The first quantity, E/(1 — p?), is usually denoted as the effective modulus of elasticity and is useful in the
theory of thin plates and shells. The second ratio, p/(1 — ), is called the effective value of Poisson’s ratio.

Consider an elemental block subject to uniaxial tension (see Fig. 1-35). Derive approximate
expressions for the change of volume per unit volume due to this loading.

‘The strain in the direction of the forces may be denoted by ¢,. The strains in the other two orthogonal
directions are then each —ue,. Consequently, if the initial dimensions of the element are dx, dy, and dz
then the final dimensions are

(I+e)dx  (I-peddy (1 pe)dz
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lh’

Fig. 1-35

and the volume after deformation is
V=11 + &) adx] [(1 — ne)dy] [(1 ~ pe,)dz]
=(1+e€)(l —2ue)dxdydz
= (1~2ue, + €)drxdydz

since the deformations are so small that the squares and products of strains may be neglected.
Since the initial volume was dx dy dz, the change of volume per unit volume is

AV
+ = (0-2e

Hence. for a tensile force the volume increases slightly. for a compressive force it decreases,
Also, the cross-sectional arca of the element in a plane normal to the direction of the applied force
is given approximately by A = (1 — e ) dydz = (1 — 2ue) dydz.

L22. A square bar of aluminum 50 mm on a side and 250 mm long is loaded by axial tensile forces
at the ends. Experimentally, it is found that the strain in the direction of the load is 0.001.
Determine the volume of the bar when the load is acting. Consider u = 0.33.

From Problem 1.21 the change of volume per unit volume is given by

AV
= «(1~2) = 0001(1 ~ 0.66) = 0.00034

Consequently. the change of volume of the entire bar is given by
AV = (50) (50)(250) (0.00034) = 212.5 mm*

The original volume of the bar in the unstrained state is 6.25 x 10° mm?. Since a tensile force increases
the volume, the final volume under load is 6.252125 x 10° mm®. Measurements made with the aid of lasers
do permit determination of the final volume under load 1o the indicated accuracy of seven significant
figures. Ordinary methods of measurement do not of course lead to such accuracy.

1.23. The general three-dimensional form of Hooke's law in which strain components are expressed
as functions of stress components has already been presented. Occasionally il is necessary to
express the stress components as functions of the strain components. Derive these expres-
sions.

Given the previous expressions

1
€ = E[ar - P'(al i+ t"1':)] (I)
e - %[a,. o+ o) @)
€ = +o,— e + o)) @

E
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let us introduce the notation
e=€+e +e 4
0=o0,+0,+a0, (5)

With this notation, (1), (2), and (3) may be readily solved by determinants for the unknowns o, a,,
o, to yield

pnE E
- + 6
T arwa-2w° 1+p® ©
pE E
= 7
ST Mrm-20 T ” @
ukE E

ST U mi-2m TR @)

These are the desired expressions.
Further information may also be obtained from (7) through (5). If (). (2). and (3) are added and the
symbols ¢ and # introduced, we have

1
=—(1-2u)6 9
g2 9
For the special case of a solid subjected to uniform hydrostatic pressure p, o, = o, = 0. = — p. Hence
=3(1 -2wp r E
=— - - 10
¢ E o T T30 2 (10

The quantity E/3(1 —2u) is often denoted by K and is called the bulk modulus or modulus of volume
expansion of the material. Physically, the bulk modulus K is a measure of the resistance of a material to
change of volume without change of shape or form.
We see that the final volume of an element having sides dx.dy,dz prior to loading and subject to
strains €,.€,, 6, is (1 + e)dx (1 + &)dy(1 +¢)dz = (1 + ¢, + ¢, + ;) dxdydz.
Thus the ratio of the increase in volume to the original volume is given approximately by
e=¢te teg

This change of volume per unit volume, e, is defined as the dilatation.

1.24. A steel cube is subject to a hydrostatic pressure of 1.5 MPa. Because of this pressure the volume
decreases to give a dilatation of —107°. The Young’s modulus of the material is 200 GPa.
Determine Poisson’s ratio of the material and also the bulk modulus.

From Problem 1.23 for hydrostatic loading the dilatation e is given by Eq. (10)

_ T -2wp
E

Substituting the given numerical values, we have

_10°5 = —3(1 - 2u) (1.5 % 10° N/m™)
200 x 10° N/m?

from which p = 0.278. Also from Problem 1.23 the bulk modulus is

_E
3(1 - 2)

K:

which becomes
_ 200 x 10° N/m?

— 150 MP
3(1 - 0.556) ?



30 TENSION AND COMPRESSION [CHAP |

1.25. Determine the specific strength and also the specific modulus in the USCS system of (a)
aluminum alloy. () titanium alloy, and (c) S-glass epoxy. Use materials properties given in
Table 1-1.
By definition, specific strength is the ratio of the ultimate stress 1o the specific weight of the maicrial
and specific modulus is the ratio of Young's modulus to the specific weight.

(@) From aluminum alloy we have

80,000 Ib/in? .
i h = —————— = 813(
Specific strengt o, T/ X)W in
. 12 X 10° Ibfin’ .
Specific modulus = TR 122 % 10" in
(b) For titanium alloy we have
. 140,000 Ib/in® .
Specific strength = TV 864,200 in
17 x 10° Ibfin®
. _ 0IbAnT e o
Specific modulus 0.162 o7 105 % 10"in
(c) For S-glass cpoxy we have
275,000 Ib/in*
. - - 16 % 10°;
Specific strength 0076 o™ 3.6 x 10%in
. 9.6 x 10° Ib/in’ .
Specific modulus = AT 125 x 10*in

Comparison of these specific strengths reveals that the composite material (S-glass epoxy) is much
stronger on a unit weight basis than cither of the metals, and it also has a slightly higher modulus. indicating
greater rigidity than either of the metals.

1.26. Consider a low-carbon square steel bar 20 mm on a side and 1.7 m long having a material yield
point of 275 MPa and E = 200 GPa. An applied axial load gradually builds up from zero to a
value such that the elongation of the bar is 15 mm, after which the load is removed. Determine
the permanent elongation of the bar after removal of the load. Assume elastic. perfectly plastic
behavior as shown in Fig. 1-36.

Yield begins when the applied load reaches a value of

P = o, (arca)
= (275 x 10° N/m?) (0.020 m)*

= 110,000 N
7 (MP)

IS
™

0 (0K —|

Fig. 1-36
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1.27.

1.28.

1.29.

1.30.
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which corresponds to point A of Fig. 1-36. Note that in that figure the ordinate is stress and the
abscissa is strain. However, valucs on cach of these axes differ only by constants from those on a

force-elongation plot.
When the elongation is I5 mm, corresponding to point B in Fig. 1-36, unloading begins and the axial

strain at the initiation of unloading is

15 mm
1700 mm

= (1.00BE2

Unloading follows along line BC (parallel to AO) until the horizontal axis is reached. so that OC
corresponds to the strain after complete removal of the load. We next find the strain CF—but this is readily
found from using the similar triangles OAD and CBF to be

=2
€
75 % 10°
e=25—'gpa =1.375x10 *
200 10° Pa

Thus. after load removal the residual strain is
OC=0F-CF
= 0.00882 - 0.00138 = 0.00744
The clongation of the 1.7-m long bar is consequently
(L7m) (0.00744) = 00126 or 12.6 mm

Supplementary Problems

Forces acting in the articulated joints in the human vertebrae may lead to excessive stresses and cventual
rupture of the spinal discs. Measurements of the adult disc indicate a surface arca of approximately
1000 mm’. Additional measurements during a lifting exercisc indicate that a normal force of 708 N has
been developed. Determine the normal stress in the disc, Ans. 708 kPa

Laboratory tests on human teeth indicate that the area effective during chewing is approximately 0.04 in”
and that the tooth length is about 0.41 in. If the applied load in the vertical direction is 2001b and the
measured shortening is 0.0015 in, determine Young's modulus. Ans. 137 3 10° Ibfin’

A hollow right-circular cylinder is made of cast iron and has an outside diameter of 75 mm and an inside
diameter of 60 mm. If the cylinder is loaded by an axial compressive force of 50 kN, determine the total
shortening in a 600-mm length. Also determine the normal stress under this load. Take the modulus of
clasticity to be 100 GPa and neglect any possibility of lateral buckling of the cylinder.

Ans. A =018 mm, o= 31.45MPa

A solid circular steel rod 6 mm in diameter and 500 mm long is rigidly fastened to the end of a square brass
bar 25 mm on a side and 400 mm long, the geometric axes of the bars lying along the same line. An axial
tensile force of 5 kN is applied at cach of the extreme ends. Determine the total elongation of the assembly.
For stecl. £ = 200 GPa and for brass £ = % GPa. Ans 0477 mm

A high-performance jet aircraft cruises at three times the speed of sound at an altitude of 25,000 m. It has
a long, slender titanium body reinforced by titanium ribs. The length of the aircraft is 30 m and the
coefficient of thermal expansion of the titanium is 10 X 10 “°C. Determine the increase of overall length
of the aircraft at cruise altitude over its length on the ground if the temperature while cruising is 500°C
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above ground temperature. (Note: This change of length is of importance since the designer must account
for it because it changes the performance characteristics of the system.) Ans. (L1500 m

One of the most promising materials for use as a superconductor is composed of yttrium (a rare earth
metal), barium, copper, and oxygen. This material acts as a superconductor (i.c., transmits clectricity with
essentially no resistance losses) at temperatures up to ~178°C. If the temperature is then raised 1o 67°C,
and the coefficient of thermal expansion is 11.0x 10 “/°C, determine the clongation of a 100-m long
segment due to this temperature differential. Ans. 027m

A solid circular cross-section bar in the form of a truncated cone is made of aluminum and has
the dimensions shown in Fig. 1-37. The bar is loaded by an axial tensile force of 80.0001b and
E = 10 X 10°Ib/in’. Find the elongation of the bar. Ans. (L00874 in

23 )
Lr_‘__”’————_ o
— - H0).000 b
RO00 1b - ' {— T
I‘ an' ———-———-l
Fig. 1-37

A solid conical bar of circular cross section is suspended vertically. as shown in Fig. 1-38. The length of the
bar is L. the diameter of the base is D. the modulus of clasticity is E. and the weight per unit volume is
v. Determine the clongation of the bar due to its own weight.

o

Ans. QE'E—E

A T AR Y

'.F Mmoo 18in I
, | |
. :
y-— [
| é P=43.7501b
o o - Lo
F C D
Fig. 1-38 Fig. 1-39

A Z-shaped rigid bar ABCD, shown in Fig. 1-39, is suspended by a pin at B, and loaded by a vertical force
P. At A a steel tic rod AF connects the section to a firm ground support at F. Take £ = 30 x 10" Ibfin’.
Determine the vertical deflection at D. Ans. 0.099in
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1.36. The rigid bar ABC is pinned at 8 and at A attached to a vertical steel bar AD which in turn is attached
to a larger steel bar DF which is firmly attached to a rigid foundation. The geometry of the system is shown
in Fig. 1-40. If a vertical force P of magnitude 40 kN is applied at C, determine the vertical displacement
of point C. Ans. 917 mm

4m

Fig. 1-40

1.37. A body having the form of a solid of revolution supports a load P as shown in Fig. 1-41. The radius of the
upper base of the body is r, and the specific weight of the material is y per unit volume. Determine how
the radius should vary with the altitude in order that the compressive stress at all cross sections should be
constant. The weight of the solid is not negligible. ~ Ans. r = ryer™2*

P




34

1.38.

1.39.

1.40.

TENSION AND COMPRESSION [CHAP. 1

In Problem L.12 consider the force P to be 200001b, A, = 1L.2in°, L, =51, E, = 16 X 10°1bfin’,
A,=L5in". L. =41, and E, = 10X I Ibfin". Find the horizontal and vertical components of displace-

ment of pin B. Ans. A, =0189in; A, = 0.064in

InFig. 1-42. AB, AC, BC. CD. and BD are pin-connected rods. Point B is attached to point £ by aspring whose
unstretched lengthis 1 m and whose spring constant is 4 kN/m. Neglecting the weight of all bars and the spring,
determine the magnitude of the load W applied at I that makes CD horizontal. Ans. SE3IN

VC
L1 IJI—L—Im———-i

Fig. 1-42

The steel bars AB and BC are pinned at each end and support the load of 200 kN. as shown in Fig. 1-43.
The material is structural steel. having a yield poimt of 200 MPa. and safety factors of 2 and 3.5 are
satisfactory for tension and compression, respectively. Determine the size of cach bar and also the
horizontal and vertical components of displacement of point B. Take £ = 200 GPa. Neglect any possibility

of lateral buckling of bar BC.
Ans. Arca AB = 1732 mm’, area BC = 1750 mm. A, = 0.37 mm (to right), A, = 1.78 mm (downward)

L

00 kN

il

’
i
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1.42.

1.43.

1.4,

1.45.

146,

147.

The two bars AB and CB shown in Fig. 1-44 are pinned at cach cnd and subject to a single vertical force
P. The geometric and clastic constants of each arc as indicated. Determine the horizontal and vertical
components of displacement of pin B.
PL, PL, PL, PL,
Ans. AA='- + = .A.‘=.-_.._._+_____'__
GBA.E. \;3,4253 3JAE, 3A.E,

In Problem 1-41, the bar AB is titanium. having an arca of 1000 mm®, length of 2.4 m. and £, = 110 GPa. Bar
CBisstecl having anarca of 400 mm”. length of 2.4 m.and E = 200 GPa. What are the horizontal and vertical
components of displacement of the pin B if P = 600 kN? Ans. A =28 mm. A, = 104 mm

A flat slab of variable width is bounded by the curve y = 10e¢ "™ and extends from the origin to x = 5in.
It is subject 1o an axial tensile load of 20.000 Ib and the material is steel for which £ = 30 % 10° Ib/in’. The
slab thickness is 0.125 in. Usc the FORTRAN program of Problem 1.14 to determine the elongation of the
slab. Ans. 0.00275in

A steel bar of solid circular cross scction is bounded by the curve v = 0.07¢ " and extends from the
origin 1o x = 5m. It is subjcct to an axial tensile load of 1.5 MN and Young's modulus is 200 GPa. Usc the
FORTRAN program of Problem 1.14 to determine the elongation of the bar. Ans. 3.24mm

Considcr a state of stress of an element in which a stress o, is exerted in one direction and lateral
contraction is completely restrained in each of the other two directions. Find the effective modulus of
elasticity and also the effective value of Poisson's ratio.

E( - p)

T—200+m) eff. Poisson’s ratio = ()

Ans. eff. mod. =

A block of alumimum alloy is 400 mm long and of rectangular cross section 25 by 30 mm. A compressive
force P = 60 kN is applicd in the dircction of the 400-mm dimension and latcral contraction is completely
restrained in cach of the other two directions. Find the effective modulus of elasticity as well as the change
of the 400-mm length. Take £ = 75 GPa and Poisson’s ratio to be 0.33.

Ans.  eff. mod. = 114.5 GPa. change of length = —0.286 mm

Consider the state of stress in a bar subject to compression in the axial direction. Latcral cxpansion is
restrained to half the amount it would ordinarily be if the lateral faces were load frce. Find the effective
modulus of elasticity.

E(1 - )

Ans. 3
l-p—p
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A bar of uniform cross section is subject to uniaxial tension and develops a strain in the direction of the force
of 1/800, Calculate the change of volume per unit volume. Assume p = 1/3.  Ans. 1/2400 (increase)

A square steel bar is 50 mm on a side and 250 mm long. It is loaded by an axial tensile force of 200 kN.
If E = 200 GPa and p = 0.3, determine the change of volume per unit volume.  Ans.  0.00016

Consider a low-carbon steel square steel bar 1in on a side and 70 in long having a material yield point of
40,000 Ib/in? and a Young's modulus of 30 X 10° Ib/in®. An axial tensile load gradually builds up from zero to
avalue such that the elongation of the bar is 0.6 in, after which the load is removed. Determine the permanent
elongation of the bar. Assume that the material is elastic, perfectly plastic. Ans. 0.50%in

Determine, from Table 1-1, the specific strength and also the specific modulus of (a) nickel, and (b) boron
epoxy composite. Use the SI system,

Ans. (@) nickel: specific strength = 3563 1o 8736 m, specific modulus = 2.41 X 10°m; (b) boron epoxy:
specific strength = 71.8 X 10" m, specific modulus = 11.0 X 10" m
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Table 1-1. Properties of Common Engineering Materials at 68 °F (20 °C)
Coefficient of
linear thermat
Specific weight Young's modulus Ultimate stress expansion
Material Ibfin'  kN/m® Ibfin* GPa Ib/in® kPa We-6/°F  10e-6/°C | Poisson's ratio
1. Metals in slab. bar. o1 block form
Aluminum alloy 0.0984 27 10-12¢6 0-79 45-80¢3 310-550 13 23 0.33
Brass 0.307 84 14-16e6 96110 43-K5¢3 300-590 11 20 0.34
Copper 0.322 87 16-18¢6 112-120 33-55¢3 230-380 95 17 0.33
Nickel 0.318 87 30¢6) 24 45-110¢3 310-760 7.2 13 031
Stect 0.283 77 28-30¢6 195-210 80-200¢3 530-1400 6.5 12 .30
Titanium alloy 0.162 44 15-17e6 105-120 130-140¢3 HKIB-970 4.5-55 810 0.33
1. Nonmetaliics in slab, bar, or block form
Concrcte (composite) 0.0868 24 3.6¢6 25 4000-6000 2841 6 11
Glass 0.0955 26 7-12¢6 48-83 10.000 70 36 5-11 0.23
11k, Maicnals in filamentary (whisker) form:  |dia. <0.001 n ((L.025 mm)]
Aluminum oxide 0.141 38 100-350e6 690-2410 2-dety 13.800-27 600
Banum carbide 0.060 25 65¢6 450 lef 6900
Gilass S0e6 345 1-3et TOO0-20.000
Giraphite 0.081 22 142¢6 YO 3eb 20,000
IV. Composite materials (unsdirectionally reinforced in direction of loading)
Boron cpoxy 071 19 3let 210 198.000 1365 2.5 45
S-glass-rcinforced cpoxy 0.0766 21 9.6e6 66.2 275,000 1900
V. Others
Graphite-reinforced epoxy | (.054 15 15¢6) 104 190,000 1310
Kevlar-49 epoxy* 0.050 13.7 12.5¢6 Ré 220,000 1520

*Tradename of E T duPont Co.




Chapter 2

Statically Indeterminate Force Systems
Tension and Compression
DEFINITION OF A DETERMINATE FORCE SYSTEM

If the values of all the external forces which act on a body can be determined by the equations of
static equilibrium alone, then the force system is statically determinate. The problems in Chap. 1 were
all of this type.

Example 1
The bar shown in Fig. 2-1 is loaded by the force P. The reactions are R;. R, and R.. The system

is statically determinate because there are three equations of static equilibrium available for the system
and these are sufficient to determine the three unknowns.

3 \
s e
8 !

Fig. 2-1

Example 2

The truss ABCD shown in Fig. 2-2 is loaded by the forces P, and P,. The reactions are R, R,, and
R;. Again, since there are three equations of static equilibrium available, all three unknown reactions
may be determined and consequently the external force system is statically determinate.

The above two illustrations refer only to external reactions and the force systems may be defined
as statically determinate externally.

P,
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DEFINITION OF AN INDETERMINATE FORCE SYSTEM

In many cases the forces acting on a body cannot be determined by the equations of statics alone
because there are more unknown forces than there are equations of equilibrium. In such a case the
force system is said to be statically indeterminate.

Example 3

The bar shown in Fig. 2-3 is loaded by the force P. The reactions are R, R;, R;, and R,. The force
system is statically indeterminate because there are four unknown reactions but only three equations
of static equilibrium. Such a force system is said to be indeterminate to the first degree.

Fig. 2-3

Example 4

The bar shown in Fig. 2-4 is statically indeterminate to the second degree because there are five
unknown reactions R,, R;, R;, Ry, and M, but only three equations of static equilibrium. Consequently
the values of all reactions cannot be determined by use of statics equations alone.

L
(g

Fig. 2-4
METHOD OF ELASTIC ANALYSIS

The approach that we will consider here is called the deformation method because it considers the
deformations in the system. Briefly, the procedure to be followed in analyzing an indeterminate system
is first to write all equations of static equilibrium that pertain to the system and then supplement these
equations with additional equations based upon the deformations of the structure. Enough equations
involving deformations must be written so that the total number of equations from both statics and
deformations is equal to the number of unknown forces involved. See Problems 2.1 through 2.12.

ANALYSIS FOR ULTIMATE STRENGTH (LIMIT DESIGN)

We consider that the stress-strain curve for the material is of the form indicated in Fig. 2-5, i.e.,
one characterizing an extremely ductile material such as structural steel. Such idealized elastoplastic
behavior is a good representation of low-carbon steel. This representation assumes that the material
is incapable of developing stresses greater than the yield point.



40 STATICALLY INDETERMINATE FORCE SYSTEMS TENSION AND COMPRESSION [CHAP 2
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Fig. 2-5

In a statically indeterminate system any inelastic action changes the conditions of constraint.
Under these altered conditions the loading that the system can carry usually increases over that
predicted on the basis of completely elastic action everywhere in the system. Design of a statically
indeterminate structure for that load under which some or all of the regions of the structure reach the
yield point and cause *“collapse™ of the system is termed limit design. The ultimate load corresponding
to such design is of course divided by some factor of safety to determine a working luad. The term
“limit design,” when used in this manner, applies only to statically indeterminate structures. For
applications, see Problems 2.13 through 2.17.

Solved Problems

Elastic Analysis

In Problems 2.1 through 2.12 it is assumed that the system is acting within the linear elastic range
of action of the material.

2.1. In medical (orthopedic) applications it is occasionally necessary to lengthen a main bone of a
human leg or arm. This situation may arise if the bone has healed in a wrong configuration after
some accident, or alternatively the improper length may be due to a birth defect. One way to
accomplish this lengthening is for the surgeon to weaken the bone through the introduction of
one or two cuts near the outer surface of the bone, then attach the mechanical system shown
in Fig. 2-6 to the exterior of the leg. This system consists of a pair of metallic rings which encircle
the leg, with the rings being connected by a pair of parallel brass rods which are threaded at each
end. The distance between the rings can be varied over the months of treatment by turning the
nut at each end of each rod. Typically, the bone has a cross-sectional area of 1.2 in*, a modulus
of elasticity of 4.6X10°Ib/in%, and a length of 8in. The two brass rods have a total
cross-sectional area of 0.05 in?, a modulus of 13.5 X 10° Ib/in?, and 32 threads per inch. If the nut
at the end of the bar is turned # of a revolution to streich the bone, determine the axial stress
arising in the bone.

Let us consider a section to be passed through the bone and perpendicular to the axial dimension of
the bone. The free-body diagram of the system is shown in Fig. 2-7 where Py, represents the axial force
in the bone and P, is the axial force in each brass bar. For equilibrium:

Prone = Proa U)

From deformations of the system, we rcalize that the extension of the bone plus the shortening of each
rod is equal to the displacement of the nut along the bar. This latter quantity is }(3; in). Thus, we have

Poone(Bin) + Pra(8in)

— qlys1L
(12im) (46 X 10°ToAn?) * (0,05 in?) (13.5 X 10°Tosin?) _ ® (20) 2)
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Solving (7) and (2) we find
Ppone = 5881b

_5881b _ 5
omql.zinz 490 Ib/in

]
! Sy

>
Pm.l h f ol 2

Weahencd

Rend Baonge Rod

Fig. 2-6 Fig. 2.7

2.2. Consider a steel tube surrounding a solid aluminum cylinder, the assembly being compressed
between infinitely rigid cover plates by centrally applied forces as shown in Fig. 2-8(a). The
aluminum cylinder is 3in in diameter and the outside diameter of the steel tube is 3.5in. If
P = 48,0001b, find the stress in the steel and also in the aluminum. For steel, E = 30 X 10° Ib/in?
and for aluminum E = 12 X 10° Ib/in®.

Let us pass a horizontal plane through the assembly at any elevation except in the immediale vicinity
of the cover plates and then remove one portion or the other, say the upper portion. In that event the
portion that we have removed must be replaced by the effect it exerted upon the remaining portion and
that effect consists of vertical normal stresses distributed over the two materials. The free-body diagram
of the portion of the assembly below this cutting plane is shown in Fig. 2-8(b) where o, and o, denote the
normal stresses existing in the steel and aluminum respectively.

P Oy Og Oy

e —o
S
i

13}
fe)

Fig. 2-8
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Let us denote the resultant force carried by the steel by P, (Ib) and that carried by the aluminum by
P,. Then P, = A, 0, and P, = A, 0, where A, and A, denote the cross-sectional areas of the steel tube
and the aluminum cylinder, respectively. There is only one equation of static equilibrium available for such
a force system and it takes the form

SF.=P-P,—-FP,=10

Thus. we have one equation in two unknowns, P, and P,, and hence the problem is statically
indeterminate. In that event we must supplement the available statics equation by an equation derived
from the deformations of the structure. Such an equation is readily obtained because the infinitely rigid
cover plates force the axial deformations of the two metals to be identical.

The deformation due 10 axial loading is given by A = PL/AE, Equating axial deformations of the stcel
and the aluminum we have

P,L  P,L
A s Ey Auf Ea-f

P"L _ PNL
(714) [(3.5) = 3)1 (30 X 10°) (/) (3)° (12 x 10°)

This equation is now solved simultaneously with the statics equation, P— P, — P, = (), and we find

P, = 0.448P_ P, = 0.552°F.
For a load of P = 48,000 |b this becomes P, = 21,504 Ib and P,, = 26,496 Ib. The desired stresses are
found by dividing the resultant force in each material by its cross-sectional area:

from which P,=123P,

or

_ 21504 . 5 _ 26,496 _ .,
cr,,,—(—————-——ﬂm](a}z 3050 Ibv/in oy (") [G5F — G 1038 Ib/in

2.3. The three-bar assembly shown in Fig. 2-9 supports the vertical load P. Bars AB and BD are
identical, each of length L and cross-sectional area A,. The vertical bar BC is also of length L
but of area A,. All bars have the same modulus E and are pinned at A, B, C, and D. Determine
the axial force in each of the bars.

Fig. 2.9

First, we draw a free-body diagram of the pin at B. The forces in each of the bars are represented by
P, and P, as shown in Fig. 2-10. For vertical equilibrium we find:

IF, =2Pisinp+P,—-P=1( 1)
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We assume, temporarily, that the pin at B is removed. Next we examine deformations. Under the
action of the axial force P, the vertical bar cxtends downward an amount

P, L

T ALE (2)

4,

so that the lower end (originally at B) moves to B’ as shown in Fig. 2-11.

C A2
F IR
[ .. OB
B oy
B T Tﬁ iB”
1 1 ‘6
g ot
AU AN

Fig. 2-11 Fig. 2-12

The compressive force in AB causcs it to shorten an amount A shown as BB” in Fig. 2-12. The bar AB
then rotates about A as a rigid body so that B” moves to B” dircctly below point €. From Fig. 2-12 the
vertical component of A is

BB" = ——
A Esing
Next, we consider the pin to be reinserted in the system. The points B’ and B” must coincide
so that
P L P 1L

=— (R3]
AE A Esmé

Substituting Eq. (3) in Eq. (/) we find
_ Psin @
' 2sin'0+a
Pa

P = —
27 2sint 6+«

where a = A;/A,.

24. Consider the two identical bars AB and AC, each 0.5 m long, each with area A and E = 200 GPa.
They are pinned at A, B. and C. Bar DF has area 24 and E = 200 GPa. Bar DF is accidentally
made (.8 mm too short to extend between A and D. Points A and £ must be brought together
mechanically to form a frame consisting of the two isosceles triangles shown in Fig. 2-13. Find

NN
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the initial stresses in the bars prior to application of any external loading. The system of bars
lies on a frictionless horizontal plane.

It is evident that point A must be forced downward (creating compression in AB and AC) and the
end F of the vertical bar must be pulled upward to meet the (lowered) point A. The meeting point of A
and Fis not necessarily midway between the initial locations of A and F. After these two points have met,
they are joined by a pin. At this stage there are no external applied loads on the three-bar system.
However, there are locked-in stresses in each of the bars.

We may find these initial stresses by designating compressive forces in AB and AC by P, and the
tensile force in FD by P, (Newtons). After these bars have been jointed by a pin, the free-body diagram
of that pin appears as shown in Fig. 2-14.

P,
Fig. 2-14
For equilibrium of the pin:
2P,cos30°— P, =0; or P, =PV3 )
As point A is mechanically forced downward, each of the bars AB and AC shortens an amount
P5(500)
Ay =—F"
‘T AE

in the direction of the respective bar. With the pin at A removed, the deformed configuration appears as
shown in Fig. 2-15. The vertical component of 4, is given by

P,(500)
AFE cos 30°
The deformation of the inclined bars may be visualized (see Fig. 2-15) by realizing that the compressed

~
Y

A
o S
£

Fig. 2-15

bar AB first shortens as A moves to A’, then the entire bar AB rotates as a rigid body about 8 so that 4’
moves to A" actually along a circular arc whose center is at B, but for small angles of rotation the arc may
be replaced by the straight line A’A".

The tensile force in bar DF causes the point F in the originally stress-free bar to move vertically
upward to F', as shown in Fig. 2-16. F’ is the final position of F after the pin has been inserted at the
junction of all three bars. The vertical elongation of the bar is

_ Py(500cos 30°)

= 2AE

(2)

where 24 is the cross-sectional area of bar DF.
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Fig. 2-16

Thus, to close the gap of 0.8 mm between the bars, we must have

P,(500) . P1(500cos 30F)
AEcos 30° 2AE

Substituting Eq. (7) in Eq. (3) we find

= (.8 mm 3

.Vl_
7742, Q165 (PNV3)
AE AE

But £ = 200 GPa. so solving the above equations for normal stresses in the bars we find

0.8

P
oy = f= 168 MPa

P
o = ﬁ = 145.5 MPa

2.5. The composite bar shown in Fig. 2-17(a) is rigidly attached to the two supports. The left portion
of the bar is copper, of uniform cross-sectional area 12 in? and length 12 in. The right portion
is aluminum, of uniform cross-sectional area 3 in® and length 8 in. At a temperature of 80°F the
entire assembly is stress free. The temperature of the structure drops and during this process
the right support yields 0.001in in the direction of the contracting metal. Determine the
minimum temperature to which the assembly may be subjected in order that the stress in the
aluminum does not exceed 24,000 Ib/in?. For copper E = 16 X 10° Ib/in?, & = 9.3 %X 107°°F and
for aluminum E = 10 X 10°Ib/in’, @ = 12.8 X 10" *FF.

It is perhaps simplest to consider that the bar is cut just to the left of the supporting wall at the right
and is then free to contract due to the temperature drop AT. The total shortening of the composite bar
is given by

(9.3 X 107%) (12) AT + (12.8 X 10°%)(8) AT

according to the definition of the coefficient of linear expansion. It is to be noted that the shape of the cross
section has no influence upon the change in length of the bar due to a temperature change.

Even though the bar has contracted this amount, it is still stress free. However, this is not the complete
analysis because the reaction of the wall at the right has been neglected by cutting the bar there.
Consequently, we must represent the action of the wall by an axial force P applied to the bar, as shown

A " [ J=>»r
12—t g —
(@) )]

2L

Fig. 2-17
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in Fig. 2-17(h). For cquilibrium, the resultant force acling over any cross scction of cither the copper or
the aluminum must be equal to P. The application of the force P stretches the composite bar by an
amount

P(12) + P(8)
12(16 X 10°) ~ 3(10 % 10°)

If the right support were unyielding, we would equate the last expression to the expression giving the
total shortening due to the temperature drop. Actually the right support yields 0.001 in and consequently
we may write

P(12) . P(8)
12(16 X 10°) ~ 3(10 x 10%)

The stress in the aluminum is not to exceed 24,000 Ibfin®, and since it is given by the formula o = P/A,
the maximum force P becomes P = Ao = 3(24,000) = 72,000 1b. Substituting this value of P in the above
equation relating deformations, we find AT = 115°F. Therefore the temperature may drop 115°F from the
original 80°F. The final temperature would be ~35°F

= (93% 10 *)(12)AT + (128 X 10 *)(8)AT — 0.001

2.6. A bar (see Fig. 2-18) in the shape of a solid, truncated cone of circular cross section is situated
between two rigid supports which constrain the bar from any change of axial length. The
temperature of the entire bar is then raised AT. Assume that the cross sections perpendicular
to the longitudinal axis of symmetry remain plane and neglect localized end effects due to the
end supports. Determine the normal stress at any point in the bar.

Fig. 2-18

Let us introduce the coordinate system shown in Fig. 2-18 where x denotes the distance of a thin disc
from the left end of the bar, and dx is the thickness of the disc in the direction of the x-axis. The radius
of this disc is found from gecmetry to be

If the support at the right end of the bar is considered to be temporarily removed. the entire bar will
expand in length an amount a{ L) (AT), where « is the coefficient of thermal cxpansion of the material.

We may now consider an axial force N Lo acl on the right end of the bar, as shown in Fig. 2-19,
to compress the bar back to its original length L. The disc of thickness dx compresses an amount (sec
Problem 1.1)

Ndx _ N(dx)
AE  wr(E)

because of this axial force N (which, for equilibrium, must be constant over any cross section of the bar).
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2.7.

Fig. 2-19
The total compression of the bar due to N is found by summing the changes of length of all discs fromx = 0
tox=L:

L N@dx)  NL* (' dx
. ™E  Em ] (L+x)

Integrating,

L &

, (L+ xy* 2L

and setting the bar extension due to heating equal to bar compression due to the axial force N. we find

NI? (1
a(L)(AT) = E,;;% (‘Z—L)

N = 2a(AT) Enr;

The axial normal stress is now found by dividing the force N by the cross-sectional area at any
station x,

_ N _20AT)E
T T ALy

A hollow steel cylinder surrounds a solid copper cylinder and the assembly is subject to an axial
loading of 50,000 Ib as shown in Fig. 2-20(a). The cross-sectional area of the steel is 3 in?, while
that of the copper is 10in?. Both cylinders are the same length before the load is applied.
Determine the temperature rise of the entire system required to place all of the load on
the copper cylinder. The cover plate at the top of the assembly is rigid. For copper
E =16 X 10°1b/in?, a = 9.3 X 107°°F, while for steel E = 30 x 10°Ibfin?, & = 6.5 X 107°°F,
One method of analyzing this problem is to assume that the load as well as the upper cover plate are
removed and that the system is allowed to freely expand vertically because of a temperature rise AT In

- -
res i

50,000 Ib
r——==
i ]

ipcprces B Sy R | t—

St 1~ Cu - St
20"

LT

(@) ()

Fig. 220
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that event the upper ends of the cylinders assume the positions shown by the dashed lines in Fig.
2-20(b).

The copper cylinder naturally expands upward more than the steel one because the coefficient of
linear expansion of copper is greater than that of steel. The upward expansion of the steel cylinder is
(6.5 % 10 “)(20)A 7. while that of the copper is (9.3 x 10 °)(20)AT.

This is not of course the true situation because the load of 50,000 1b has not as yet been considered.
If all of this axial load is carried by the copper then only the copper will be compressed and the
compression of the copper is given by

_ PL _ 50,000(20)
AE  10(16 x 107)

The condition of the problem states that the temperature rise AT is just sufficient so that all of the
load is carried by the copper. Thus, the expanded length of the copper indicated by the dashed lines in the
above sketch will be decreased by the action of the force. The net cxpansion of the copper is the expansion
caused by the rise of temperature minus the compression due to the load. The change of length of the steel
is due only to the temperature rise. Consequently we may wrile

50,000(20)
10(16 % 10°)

Am

(9.3 %10 ®)(20)AT - =(65%10 ) (20)AT or AT =I111°F

28. The rigid bar AD is pinned at A and attached to the bars BC and ED, as shown in Fig. 2-21(a).
The entire system is initially stress free and the weights of all bars are negligible. The
temperature of bar BC is lowered 25°C and that of the bar ED is raised 25°C. Neglecting any
possibility of lateral buckling, find the normal stresses in bars BC and ED. For BC, which is
brass, assume E = 90 GPa, a = 20 X 107%°C, and for ED, which is steel, take £ = 200 GPa and
a = 12X 107 %°C. The cross-sectional area of BC is 500 mm’ and of ED is 250 mm’.

E Pu
Steel 250 250
A B D mm A h—mm -+-—]50 mm D
(. -q-—- - —L x ﬁ
§ tz.rz 1350 mm T Y
Brass| {300 mm A.w Py,

C
(a) (b)

Fig. 2-20

Let us denote the forces on AD by P, and P,, acting in the assumed dircctions shown in the free-body
diagram, Fig. 2-21(b). Since AD rotates as a rigid body about A (as shown by the dashed line) we have
A, 1250 = A,,/350 where A, and A,, denote the axial compression of BC and the axial clongation of DE,
respectively.

The total change of length of BC is composed of a shortening due to the temperature drop as well
as a lengthening due to the axial force P,,. The total change of length of DE is composed of a lengthening
due to the temperature rise as well as a lengthening due to the force P,,. Hence we have

P.(250)
(250) (200 x 10° X 10" %)

(Z)[a2x 10 y@s0r@9)+ = ~(20x10 (300 25)

Y Pu(300)
(500) (90 % 10° X 10 *)
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2.9.

or 6.66P,, — 2.08P, = 153.0 X 10°

From statics, M, = 250P,, —600P, =0

Solving these equations simultaneously, P, = 10.99 kN and P,, = 26.3 kN.
Using o = P/A for each bar, we obtain o, = 43.9 MPa and o, = 52.6 kN,

Consider the statically indeterminate pin-connected framework shown in Fig. 2-22(a). Before
the load P is applied the entire system is stress free. Find the axial force in each bar caused by
the vertical load P. The two outer bars are identical and have cross-sectional area A,, while the
middle bar has area A,. All bars have the same modulus of elasticity, E.

The free-body diagram of the pin at A appears as in Fig. 2-22(b) where F, and F, denote axial forces
(Ib) in the vertical and inclined bars. From statics we have

IF,=F+2Fcos6-P=0

This is the only statics equation available since we have made use of symmetry in stating that the forces
in the inclined bars are equal. Since it contains two unknowns, F, and F,, the force system is statically

{9)] ()

Fig. 2-22

indeterminate. Hence we must examine the deformations of the sysiem to obtain another equation. Under
the action of the load P the bars assume the positions shown by the dashed lines in Fig, 2-22(c).

Because the deformations of the system are small, the basic geometry is essentially unchanged and
the angle BA'A may be taken to be 6. AEA’ is a right triangle and AE, which is actuvally an arc having
a radius equal in length to the length of the inclined bars, is perpendicular to BA’. The elongation of the
vertical bar is thus represented by AA’ and that of the inclined bars by EA’. From this small triangle we
have the relation

ﬁm = ACA cos @

where Ay, and Ac, denote elongations of the inclined and vertical bars, respectively.
Since these bars are subject to axial loading their elongations are given by A = PL/AE. From that
expression we have

_ Fy(Licos 6) _RL
AE and  Aca =27

Bpa

Substituting these in the above equation relating Ag, and A, wc have

RL  FL P
A,Eomﬂ_AvEmsﬂ or Fz_F'A,,.COS (2]
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Substituting this in the statics equation we find F, + 2F,(A,/A, )cos' # = P, or

P . Pcos’ ¢

h=T2amyess ™ BTGy v2c056

(H

2.10. Two initially horizontal rigid bars AC and DG are pinned at A and G and are also connected
by elastic vertical bars BD and CF, each of rigidity AE, as shown in Fig, 2-23. The temperature
of bar BD is then raised by an amount AT. Determine the force in the two vertical bars.

2 I 1] ————-i-I

Fig. 2-23

Frec-body diagrams of the components, assuming all unknown forces are posilive. in tension appear
as in Fig. 2-24.
For cquilibrium of bar DG, we have

+HIEM; = -F(LY-F3Ly=0 ~LE+3F =0 (n
A B 4
..‘ ]
Ad -
'fl lf:
ﬂ‘

A
F| F,
B C

D F
. lrr
«

D F G G,

Fig. 2-24
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Fig. 2-25
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We must now examine deformations of the system. To simplify this analysis, it is permissible to assume

that the upper bar AC remains horizontal and that all distortion is due to rigid-body rotation of the lowcr
bar DG about . This leads to the deformed position of DG as shown by the dotted line in Fig, 2-25. The
changes of length of the vertical bars arc indicated by A, and A, in that figure. From geometry. for a small

angle of rotation. we have

&
L

oo B
3L

from which
8 = 38,

The increase in length of bar BD is due partially to the force F it carries and partially to the increase

in temperature. It is

F,(1.5L)
§=——"+ Ty(15L
1 AE a(AT)( )
For bar CF, the increase of length is duc only to the force F. in it. so we have
5, - FA1LSL)
2 AE

Solving Eqs. (7). (2). (3). and (4) simultaneously, we have

- _o8T)AE
! 10
3ax(AT)AE
F‘) =
2 10

The ncgative sign accompanying the bar force F, indicates that bar BD is in compression, whereas bar CF

i5 In tension.

(2)

3)

(4)

2.11. A two-dimensional framework consists of two bars AB and BH forming a 30° triangle with pins

at A, B, and H together with a horizontal bar GD, as shown in Fig. 2-26. Because of a

manufacturing error, the bar GD is slightly short of the length 2L. All bars have axial rigidity

AE. Determine the axial force in bar GD when the gap A is closed by mechanical action.
First, let us examine the forees acting at point B. In particular. we apply a horizontal force F at

the node B, and a free-body diagram of that node is shown in Fig. 2-27. For horizontal equilibrium,

we have
EF‘=F_'FHACOS3OO=0‘
from which

F
Fo. =
547 cos 30°

)
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2.12.

Fig. 2-26 Fig. 2-27

Next, let us examine displacements at the node B. Since we have just found that bar AB is in tension,
it will lengthen an amount Ag,, as shown in Fig. 2-28, where

Fuu(2L
By = 2220 @

The bar A B will then rotate as a rigid body about point A through the circular arc from B” to B'. which
for small deformations we approximate as a straight line from B” to B’. The horizontal projections of BB”
and B"B’ are denoted by A; and A,, respectively. From geometry we have

A, = A;5in30° = Ag, (tan 30°) (sin 30°) 3
Ay = Apgac0s30° (4

The bar GD is subject to an equal and opposite force F, as shown in Fig. 2-29, and it elongates an
amount

FzL)
AE (%)
g
F - O— 2
-— 2 |
Fig. 2-28 Fig. 2-29
Thus, to bring points B and G together and close the gap, we have
FQL) _
A, + A+ AE A (6)
From Egs. (1) through (6), we have the required force in bar GD to close the gap A:
AEA _ 2AEA

F: =
20(1 +1an?30°)  SL

The rigid horizontal bar ABC is supported by vertical elastic posts and restrained against
horizontal movement at A as shown in Fig. 2-30. A vertical load P acts at C. The extensional
rigidity of each post is indicated in the figure and each is of length L. Find the axial force in each
of the three posts,
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Due to the load P the originally horizontal bar deforms to the configuration indicated by the dotted
line in Fig. 2-31. That is, it rotates as a rigid body about some point D (whose location is unknown) through

the angle a.

F,
ﬁ,’li ~ S P C
iR IHTF:THJL 5
o TE T a
Fig. 2-31

]
k] Ia(

Figure 2-31 shows a free-body diagram of ABC where the forces exerted on ABC by the posts are
represented by F,, F>, and F;. The change of length of each post is indicated by A in the figure. From the

geometry of the deformed system we have

_Ax _(FLIAE) _ (F,LI25AE)

X X a—x

(r

For this parallel force system there are two equations of static equilibrium. For the first equation we set

) M(‘ = F,(Za} - Fz(a) =0

from which

If we now substitute (2) in (7). we find

(F2LRRAE) _(F>LR25SAE)
x a—x

frem which

For the second statics equation we write
ZIMg=—-Fa+Pa—-Fa=0

Thus Fy=P-F

(2)

)

4)
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The changes of length of posts C and A arc given by

_BL _ht
A AET ‘i"‘AE ©)

From the gcometry of Fig. 2-31 we have

and from Eq. (3):

A= (159).3,. (©)
Substituting (5) in (4), we find
Fy = (139) F, (7)
and from (2) and (7) we have
Y 9
ne(ae ne (i)

Ultimare Strength (Limit Design)

In each of the following problems the elastoplastic behavior of the material is assumed to follow
the idealized stress-strain curve of Fig. 2-32.

The ultimate load, or limit load, determined in cach of the following problems is the maximum
possible load that can be applied to each system provided the stress-strain curve is of the type indicated
and the material has infinite ductility, i.e., the flat region of the curve extends indefinitely to the
right.

Y.

Fig. 2-32

2.13. Consider the system composed of three vertical bars as indicated in Fig. 2-33(a). The outer bars
of length L are equally spaced from the central bar and a load P is applied to the rigid horizontal
member. Using limit design, determine the ultimate load P. The values of A and £ are identical
in all three bars.

Let us analyze the action as the load P increases from an initial value of zero, i.c., as it is slowly applied.
For equilibrium we have

2P+ P, =P ()
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2.14.

T g | P, P, P,
{ v Pt
C l ) ¢ )

y {

P P

(a) (5)
Fig. 233

where P represents the force in each of the outer bars and Fs is the force in the inner bar [see Fig. 2-33(b)].
Since the horizontal member is rigid, the vertical elongation of each of the outer bars must equal that of
the central bar. Thus

P,L.  Py31i4)

AE T T AE @

or P, =3P, (3)
Substituting this value in (/) we find

P,=3P Py =P (4)

The system thus begins to yield when £, = o, A. Thus
P, = ;:(r.,,A

From the time of yiclding of the central bar, the system deforms as if supported by only the two outside
bars (which still act elastically) together with a constant force o, A supplicd by the central bar. The value
of P increases until yielding begins in cach of the outer bars. ic.. when P, = a,,A. The ultimate load
is thus

P,=2P + Py=20,A+0,A =30,A

It is to be noted that the deformation equation (2) is not employed to determine the ultimate load.

Reconsider Problem 2.9 for the case of three bars of equal cross-sectional area. Determine the
ultimate load-carrying capability of the system.

For A, = A, = A the force in the vertical bar exceeds that in either inclined bar as indicated by (/)
of Problem 2.9. Thus. as P increases, the central vertical bar is the first to enter the inelastic range of action
and its stiffness (effective value of AFE) decreases. Any additional increase in the load P will cause no
further increase in £, which will remain at the limit value F{ = ¢,,A. The central bar can now be replaced
by a constant upward vertical force F} and the system is now reduced to a statically determinate system
consisting of the two outer bars subject to an applied load P — F}. The load P can now be increased until
the outer bars also develop the yield stress. It is not necessary to consider deformations of the system: we
need look only at the equilibrium relation

P = F}¥+2F.cos @ ()

As the load P increases still more, the outer bars also reach the yield point and the force in cach of them
becomes

Fg =U\pA (2}
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The ultimate load thus corresponds to the situation when Ff¥ = F¥ = ¢,,A and this load is found from
(1) as
P, = a,,A(l + 2cos 6) 3)

This limit load should be divided by some safety factor to obtain a working load.

2.15. Suppose the three-bar system of Problem 2.9 is to withstand a load P = 200 kN. Compare the
bar weights required if the design is based upon (a) the peak stress just reaching the yield point,
and (b) ultimate load analysis. Assume that all bars are of identical cross section, that 8 = 45°,
and take the yield point of the material to be 250 MPa.

(a) According to the elastic theory of Problem 2.9, the force in the vertical bar becomes

P

Fy = = 117kN
T V2

If the stress in that bar is equal to the yield point, we have a required cross-sectional area of F, = A, 0,,,.
Hence

H7x10°= A,(250) or A, =468 mm?

(b) If the ultimate load analysis of Problem 2.14 is employed. the stresses in all three bars are equal
to the yield point and from (3) of Problem 2.14 we find a cross-sectional area of

200 X 10° = 2504,[1 + 2(0.707)]  or A, = 331 mm’

Ultimate load analysis thus implies a 29 percent saving in cross-sectional area and the same weight
saving.

2.16. The frame shown in Fig. 2-34 consists of three pinned end bars AD, BD, and CD. The bars are
of identical material and cross section, and the ultimate load-carrying capacity of each is 30 kN.
Determine the uitimate vertical load P, that may be applied to the system at point D.

Fig. 2-34 Fig. 2-35

Let us assume that bars BD and CD have reached yield. Examination of a free-body diagram for the
node D as shown in Fig. 2-35 leads to

ZF, =30sin35°— P,psin 70° = O

Pap = 1B3kN
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Thus, bar AD does not yield since the bar force for equilibrium is less than the 30 kN required for yield.
Summing vertically for equilibrium we have

SF, = —P,+ 183cos 70° + 30 + 30c0s 35° = 0
P, = 609 kN

2.17. A system composed of a rigid horizontal member AB supported by four bars is indicated in Fig.
2-36(a). The bars have identical cross sections and are made of the same material. Determine
the ultimate load P that may be applied to the system.

PP A wsgice OWA
1 2 1
A C v A
C |
—— —
\|
(a) ()
mr‘ awA aypA on A

[*
h
"l

A

|
L =

(c)

Fig. 2-36

Since the member AB is rigid, it is evident that, upon application of a sufficiently large load P, AB
may rotate as a rigid body about either point A or point B. (The ultimate load implies plastic deformation
in bar 2; hence it is not necessary to consider rotation about C.) It is necessary to determine the ultimate
loads corresponding to these two possibilities and then to select the smaller.

Let us first assume that yielding first begins in bars |1 and 2, in which case their effect can be
represented by the two constant forces 0, A as indicated in Fig. 2-36(b). The bars 3 and 4 are still in the
elastic range of action and the forces in them are unknown. However, it is not necessary to determine the
forces since the ultimate load P;, may be determined by summing moments about point B:

P, (233) —o,A(a@) - a,A(2a) =0

Solving,
P, =450,A
Next, let us consider that yielding begins in bars 2, 3, and 4 as indicated in Fig. 2-36(c). Bar 1 is still
in the elastic range of action. Taking moments about point A:

4
(0,,Acosa)da + a,, A — P::?“ =0
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2.18.

219

2.21.

STATICALLY INDETERMINATE FORCE SYSTEMS TENSION AND COMPRESSION  [CHAP. 2

Solving.
Pi=j0,,A(l +4cosa)

It is cvident from inspection of P, and P; that, for all values of the angle a. the value of P} is the smaller
of the two and thus P, represents the ultimate load. When the applied load reaches this value., the system
is essentially converted into a mechanism and the rigid bar rotates about point A. Even in this condition
bar | is not working to its full capacity.

Supplementary Problems

Two initially straight bars are joined together and attached to supports as in Fig. 2-37. The left bar
is brass for which £ = 90 GPa, a = 20 % 10 */°C, and the right bar is aluminum for which E = 70 GPa,
a=25x10 °°C. The cross-scctional area of the brass bar is 500 mm’, and that of the aluminum
bar is 750 mm-. Let us suppose that the system is initially stress free and that the temperature then
drops 20°C.

(a) If the supports are unyielding, find the normal stress in each bar.

(b) If the right support yiclds (.1 mm. find the normal stress in cach bar. The weight of the bars is
negligible. Ans.  (a) g, = 4] MPa, o, = 27.33 MPa: (b) o, = 284 MPa, o, = 19 MPa

j——— S0 mm -—-—cl-l.ﬁihnm—

Fig. 2-37

The framework shown in Fig. 2-38 consists of bars AD. AC, BC. and BD pinned at A. B. C. and D. and
also a fifth bar CD. The system is loaded by the equal and opposite forces P. All bars are of identical
material and cross section. Determine the decrease of the distance between A and B due to these
loads.

PIN2 -
Ans V2 + 1
1S, A ( )

Refer to the framework shown in Fig. 2-38.
Now, instcad of the two loads P, the
temperature of the entire system is raised by
an amount AT. Determine the change of
distance between A and B in terms of the
geometry of the system and the coef-
ficient of thermal cxpansion a of the
material. Ans. LN2a(AT)

Refer to Problem 2.6. If the conical
bar has a diameter at its small end
of 100mm. a length of Im. and is of
steel having E =200GPa and a coeffi-
cient of thermal expansion of 12 X 10 “°C,
determine the maximum axial stress in
the bar due to a temperature drop of
2A0°C. Ans. 96 MPa Fig. 2-38
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2.22.

2.2,

A compound bar is composed of a strip of copper between two cold-rolled steel plates. The ends of the
assembly are covered with infinitely rigid cover plates and an axial tensile load P is applied to the bar by
means of a force acting on each rigid plate as shown in Fig. 2-39. The width of all bars is 4 in. the steel plates
are cach }in thick and the copper is }in thick. Determine the maximum load P that may be applied. The
ultimate strength of the steel is 80,000 Ib/in? and that of the copper is 30,000 Ib/in’. A safety factor of 3
based upon the ultimate strength of each material is satisfactory. For steel E = 30 x 10°Ib/in” and for
copper E = 13x10°Ib/in’.  Ans. P =76.2001b

L

Fig. 2-39

An aluminum right-circular cylinder surrounds a steel cylinder as shown in Fig. 2-40. The axial compressive
load of 200kN is applied through the infinitely rigid cover plate shown. If the aluminum cylinder is
originally 0.25 mm longer than the steel before any load is applied. find the normal stress in each
when the temperature has dropped 20K and the entire load is acting. For steel take E = 200 GPa:
a = 12X 10"%°C, and for aluminum assume £ = 70 GPa, a = 25 x 10 */°C.

Ans. o, =9MPa, o, = 15.5 MPa
I 200 kN
VT
\:\ "/Z -1 500mm
ra rd

.
)
Ty

T
-
-—

-

; B0 mm e
-85 mm -

4 mm"

Fig. 2-40

2.24. The rigid horizontal bar AB is supported by three vertical wires as shown in Fig. 2-41 and carries a load

of 24,000 Ib, The weight of AB is negligible and the system is stress free before the 24.000-1b load is applied.
After the load is applied. the temperature of all three wires is raised by 25°F. Find the stress in each wire

Steel —p—
A-0zine| B';'z’ K Copper
L-6ft T A 03in?
LA L-51
-— 3 —_—..-r..—. 2" ——-f
AL 1B
-
24,000 1b

Fig. 2-41
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as well as the location of the applied load in order that AB remains horizontal. For the steel wire take
E =30 10°Ib/in?, a = 6.5 X 1075FF, for the brass wire E = 14 X 10°1b/in?, a = 10.4 X 10 °FF, and for
copper E = 17 X 10°Ib/in?, @ = 9.3 X 10 °/°F. Neglect any possibility of lateral buckling of any of the
wires.  Ans. o, = 32,300 1b/in?, o, = 22,400 Ib/in?, o, = 21,400 Ib/in?, x = 0.273 ft

2.25. A system consists of two rigid end-plates, tied together by three horizontal bars as shown in Fig, 2-42.
Through a fabrication error, the central bar, (2), is 0.0005L. too short. All bars are of identical cross section
and of steel having £ = 210 GPa. Find the stress in each bar after the system has mechanically been pulled
together so that the gap A is closed.

Ans o= —35MPa
oy = 70 MPa

§
N
»
3
3
>
=
b
.Y
3
3
R
N
N
N
N
§
i
§

LSIE, FIEESEEOEIE SIEEEEELIP

Fig. 2-42

2.26. A structural system consists of three joined bars of different materials and geometries, as shown in Fig.
2-43. Bar (D) is aluminum alloy, bar @J) is cold rolled brass, and bar (3) is tempered alloy steel. Properties
and dimensions of all three are shown in the figure. Initially, the entire system is free of stresses, but then
the right support is moved 3 mm to the right whereas the left support remains fixed in space. Determine
the stress in each bar due to this 3 mm displacement.

Ans. o, =223 MPa

o, = 178 MPa

o, = 446 MPa
Ny X 107 m’ ?:fu:cl;g:mz 4,=2% 10" m? N
\‘\§ E,=70GPa : E, =200 GPa N\
§ o @ B \S
\ N
\ \
N N
% _ _ _ N
N\ L,=05m I,=03m I,-04m \

Fig. 2-43

2.27. The bar AC is absolutely rigid and is pinned at A and attached to bars DB and CE as shown in Fig. 2-44.
The weight of AC is 50 kN and the weights of the other two bars are negligible. Consider the temperature
of both bars DB and CE to be raised 35°C. Find the resulting normal stresses in these two bars. DB is
copper for which E = 90 GPa, a = 18 X 107°7°C, and the cross-sectional area is 1000 mm?, while CE is steel
for which E = 200 GPa, a = 12 X 10 °PC, and the cross section is 500 mm®. Neglect any possibility of
lateral buckling of the bars. Ans. o, =T2MPa, o, = —21.7MPa



CHAP. 2] STATICALLY INDETERMINATE FORCE SYSTEMS TENSION AND COMPRESSION 61

2.28.

D E
Im
A B C
(e
t Im 1 I'm 1
Fig. 2-44

The three bars shown in Fig. 2-45 support the vertical load of 5000 Ib. The bars are all stress free and joined
by the pin at A before the load is applied. The load is put on gradually and simultaneously the temperature
of all three bars decreases by 15°F. Calculate the stress in each bar. The outer bars are each brass and of
cross-sectional area 0.4 in’. The central bar is steel and of area 0.3 in% For brass E = 13 x 10°Ib/in? and
a = 10.4 X 107 %°F and for steel E = 30 X 10°Ib/in® and a = 6.3 X 10" %F.

Ans. o, = 35501blin?, o, = 10,000 Ib/in®

Fig. 2-45

A framework consists of three pinned bars AD, BD, and CD as shown in Fig. 2-46. The load F = 8 kN acts
vertically at D. The cross-sectional areas of bars @ and @ are each 200 V'S mmZ. the area of bar @is
400 mm?, L = 3 m, the elastic moduli are E, = 200 GPa, E, = 80 GPa, and E; = 100 GPa. Determine the
horizontal and vertical components of displacement of point D as well as the axial force in bar ).
Ans.  —0.136 mm, —0.204 mm, 2.182 kN
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2.30.

3L

2.32.

The rigid bar AD in Fig. 2-47 is pinned at A and supported by a steel rod at D together with a linear spring
at B. The bar carries a vertical load of 30kN applied at C. Determine the vertical displacement of
point D. Ans. (0.Bmm

k=
2 NN

MN

5 = e
\% 0. mi;io's m| |

Rigid ~ B C D | Bar

R A L e e L=U‘.5 m
A=50% 10 *m’

1
i 1.5m 4*Q5m 05m |

3 |, IR T 3 —-——-f—-—-] E =200GPa
! |

i
30 kN

Fig. 2-47

The curved rigid bar ADB is joined to the two elastic bars OA and OB
as shown in Fig. 2-48. For additional strength, it is desired to join bar OC
to ADB at the midpoint D. However. through a manufacturing error OC
is fabricated 1.8 mm too short. Determine the initial stresses in these three
bars when point C is mechanically forced to D and thesc two points
pinned together. The area of each outer bar is threc times that of the
central bar, and for all bars £ = 200 GPa.

Ans.  Quter bars 43.6 MPa, central bar 75.5 MPa

The five-bar assembly of Fig. 2-49 was found to be slightly defective, Le., Fig. 2-48

points A and C which ought to have coincided failed to coincide by a

distance A. After these points had been forced to coincide, the joint at that point was pinned. Determine
the forces existing in each bar. All bars have the same cross-sectional area.

V3 \ AAE 1 AAE
A F.=F = = —_— F, = = - ——
ns Fi=F=Fh (2+3?3) L = (2+3x73) L

The rigid bar AB is supported by the four rods shown in Fig. 2-50. The rods are each circular in cross section
and of 50 mm diameter. They have a yield point of 300 MPa. Using limit design determine the maximum
weight of the bar AB. Assume that the weight is uniformly distributed along the length. Ans. 1.38BMN

Iif
]
'L———lm 2m 2m-J

Fig. 2-50




Chapter 3

Thin-Walled Pressure Vessels

In Chaps. 1 and 2 we examined various cases involving uniform normal stresses acting in bars.
Another application of uniformly distributed normal stresses occurs in the approximate analysis of
thin-walled pressure vessels, such as cylindrical, spherical, conical, or toroidal shells subject to internal
or external pressure from a gas or a liquid. In this chapter we will treat only thin shells of revolution
and restrict ourselves to axisymmetric deformations of these shells.

NATURE OF STRESSES

The shell of revolution shown in Fig. 3-1 is formed by rotating a plane curve (the meridian) about
an axis lying in the plane of the curve. The radius of curvature of the meridian is denoted by r, and
this of course varies along the length of the meridian. This radius of curvature is defined by two lines
perpendicular to the shell and passing through points B and C of Fig. 3-1. Another parameter, r,,
denotes the radius of curvature of the shell surface in a direction perpendicular to the meridian. This
radius of curvature is defined by perpendiculars to the shell through points A and B of Fig. 3-1. The
center of curvature corresponding to r, must lie on the axis of symmetry of the shell although the center
for r, in general does not lie there. An internal pressure p acting normal to the curved surface of the
shell gives rise to meridional stresses o, and hoop stresses o, as indicated in the figure. These stresses
are orthogonal to one another and act in the plane of the shell wall.

Axis of symmetry

_ hyher-order
terms

L]

Shell
Element ¢

Ehell
Element Paralle!
Circle
Meridizn

Axis of symmetry

() {h)
Fig. 3-1

In Problem 3.15 it is shown that

T, a,
Y6, % _P

noon
where h denotes the shell thickness. A second equation may be obtained by consideration of the
vertical equilibrium of the entire shell above some convenient parallel circle, as indicated in Problem
3.15. The derivation of the above equation assumes that the stresses o, and o, are uniformly distributed
over the wall thickness.

63
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Applications of this analysis to cylindrical shells are to be found in Problems 3.1 through 3.6; to
spherical shells in Problems 3.7 through 3.11, and 3.16. 3.17; to conical shells in Problem 3.14; and to
toroidal shells in Problem 3.18.

LIMITATIONS

The ratio of the wall thickness to either radius of curvature should not exceed approximately 0.10.
Also there must be no discontinuities in the structure. The simplificd treatment presented here does
not permit consideration of reinforcing rings on a cylindrical shell as shown in Fig. 3-2, nor does it give
an accurate indication of the stresses and deformations in the vicinity of end closure plates on
cylindrical pressure vesscls. Even so, the treatment is satisfactory in many design problems.

%)

Fig. 3-2

— F-—— 1 -

-

| S

‘The problems which follow are concerned with stresses arising from a uniform inrernal pressure
acting on a thin shell of revolution. The formulas for the various stresses will be correct if the sense
of the pressure is reversed, i.e.. if external pressure acts on the container. However, it is to be noted
that an additional considecration, beyond the scope of this book, must then be taken into account. Not
only must the stress distribution be investigated but another study of an entirely different nature must
be carried out to determine the load at which the shell will buckle due to the compression. A buckling
or instability failure may take place even though the peak stress is far below the maximum allowable
working stress of the material.

APPLICATIONS

Liquid and gas storage tanks and containers. water pipes, boilers, submarine hulls, and certain
airplane components are common examples of thin-walled pressure vessels.

Solved Problems

3.1. Consider a thin-walled cylinder closed at both ends by cover plates and subject to a uniform
internal pressure p. The wall thickness is /1 and the inner radius r. Neglecting the restraining
effects of the end-plates, calculate the longitudinal (meridional) and circumferential (hoop)
normal stresses existing in the walls due to this loading.

To determine the circumferential stress o let us consider a section of the cylinder of length L to be
removed from the vessel. The free-body diagram of half of this section appears as in Fig. 3-3(a). Note that
the body has been cut in such a way that the originally internal effect (o) now appears as an external force
1o this free body. Figure 3-3(b) shows the forces acting on a cross section.
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3.2,

33.

a)

v
e
L

(a) (b) (c)

Fig. 3-3

The horizontal components of the radial pressures cancel one another by virtue of symmetry about
the vertical centerline. In the vertical direction we have the equilibrium equation

2F, = —20.hL +j pr(df) (sing)L =0
0
Integrating,

=rr

h

Note that the resultant vertical force due to the pressure p could have been obtained by multiplying the
pressure by the horizontal projected area upon which the pressure acts.

To determine the longitudinal stress o; consider a section to be passed through the cylinder normal
to its geometric axis. The free-body diagram of the remaining portion of the cylinder is shown in Fig. 3-3(c).
For equilibrium

20.hL = —prL[cos6Bl; or @

- r
2F, = —par-+2arha, =0 or m=g—h

Consequently. the circumferential stress is twice the longitudinal stress. These rather simple
expressions for stresses are not accurate in the immediate vicinity of the end closure plates.

The Space Simulator at the Jet Propulsion Laboratory in Pasadena, California, consists of a
27-ft-diameter cylindrical vessel which is 85 ft high. It is made of cold-rolled stainless steel
having a proportional limit of 165,000 Ib/in?. The minimum operating pressure of the chamber
is 107 torr, where 1torr = 1/760 of a standard atmosphere, which in turn is approximately
14.7 Ib/in’. Determine the required wall thickness so that a working stress based upon the
proportional limit together with a safety factor of 2.5 will not be exceeded. This solution will
neglect the possibility of buckling due to the external pressure, and also the effects of certain
hard-load points in the Simulator to which the test specimens are attached.

From Problem 3.1 the significant stress is the circumferential stress, given by o, = prfh. The pressure
to be used for design is essentially the atmospheric pressure acting on the outside of the shell, which is
satisfactorily represented as 14.7 Ib/in’ since the internal pressure of 10 ¢ torr is negligible compared to
14.7 Ib/in’. We thus have

165,000 _ 14.7(13.5) (12)
25 h

h = 0.036in

A vertical axis circular cylindrical wine storage tank, fabricated from stainless steel, has total
height of 25 ft, a radius of 5 ft, and is filled to a depth of 20 ft with wine. An inert gas occupies
the 5-ft height H, above the liquid-free surface and is pressurized to a value of p, of 12 Ibfin?,
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If the working stress in the steel is 28,000 Ib/in?, determine the required wall thickness. The
specific weight of the wine is 62.4 b/ft*.

If there were no gas pressure above the surface of the wine. the pressure (in any direction) at any
depth v below the liquid-free surface is given as p = yy, where vy is the specific weight (weight per unit
volume) of the wine. This is evident if we consider the pressure on 1 ft? of the horizontal cross section a

Gas\‘ :)P H,

t

¥=1

Fig. 3-4

distance y below the liquid surface to be given by the weight of the column of wine above that section
divided by the 1-ft” area. The total pressurc at the base (v = H) is thus (p, + y#) so that from Problem
3.1 the circumferential stress is

o+ YH)R
U‘_:% )

where 1 is tank wall thickness.

The liquid has zero viscosity, and hence it can exert no tangential shearing stresses on the inside of
the tank wall. For vertical equilibrium the upward thrust of the gas pressure p, must be balanced by
longitudinal stresses o; distributed uniformly around the tank wall at the tank bottom as shown in Fig.
3-5. Thus

SF, = o, (27R)h — pyR* = 0

R
;.am%‘ (independent of y) @)
)
H,

-

Fig. 3-5
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The circumferential stress (1) is clearly larger than the longitudinal stress (2) and thus controls design.
We have from (1)

3

1728 in*
h

from which the thickness is found to be & = 0.055 in.

[ 12 Ib/in? + (62.4 Ib/i%) ( ) (240 in)] (60 in)

= 18,000 Ibfin’

3.4. A vertical axis circular cylindrical liquid storage tank of cross-sectional area A is filled to a depth
of 15m with a liquid whose specific weight (weight per unit volume) vy varies according to the
law y = yy,0(1 + 0.018z), where z is depth below the free surface of the liquid as shown in Fig.
3-6(a). The tank is 4m in radius and is made of steel having a yield point of 240 MPa. The
specific weight of water yy,o is 9810 N/m*. If a safety factor of 2 is applied. determine the
required tank wall thickness.

l YA(dz)
PA
I

¥ T

15m

l (p+ dp)A
T T

(@) (b)
Fig. 3-6

Let us draw a free-body diagram of a thin layer of liquid situated at a distance z below the liquid free
surfaee and of depth dz as shown in Fig. 3-6(b). The pressure at the top of the layer is p and at the bottom
of the layer is (p + dp). The weight of the layer of liquid is yA(dz) where it must be noted that <y in this
problem is a function of z: that is. v = 9(z). Note that it is incorrect to use the equation p = yz from
Problem 3.3 since its derivation assumes that vy is constant in the liquid whereas here y varies with
depth.

For vertical equilibrium of the element:

SF=(p+dp)A—pA—vAdz =0
from which
dp = yuo(l +0.0182) dz

Integrating:
zl‘
P = YH.0 [Z. +0.018?] +C

To find the constant of integration C, we note that at the liquid-free surface z = 0, p = 0. Thus. C = 0. Thus,
the pressure at the tank bottom (z = 15m) is
Poax = TH;D[IS + 0‘“}9(15)21
Since 0 is 9810 N/m?, the peak pressure is
Pmax = [9810 N/m*][15 m + 0.009(15 m)’] = 167,000 N/m’
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From Problem 3.1, this is the significant pressure that controls design, so

_ (Pmax)r
Trnax =
h

® J000 Nim?
2402 leme2= (167,000 hm ) (4 m)

from which the required tank wall thickness is

h = 0.0056 m or 5.6 mm

Calculate the increase in the radius of the cylinder considered in Problem 3.1 due to the internal
pressure p.

Let us consider the longitudinal and circumferential loadings separately. Due to radial pressure p only,
the circumferential stress is given by o. = prfh, and because o = Ee the circumferential strain is given by
€. = priEh.

It is to be noted that €, is a unit strain. The length over which it acts is the circumference of the cylinder
which is 2#7. Hence the total elongation of the circumference is

2mpr’

A= € (2am) = En

The final length of the circumference is thus 27r + 2wpr#Eh. Dividing this circumference by 27 we find
the radius of the deformed cylinder to be r + pr’fEh, so that the increase in radius is pr’/Eh.

Due to the axial pressure p only, longitudinal stresses o, = pri2h are set up. These longitudinal stresses
give rise to longitudinal strains ¢ = pr/2Eh. As in Chap. 1 an extension in the direction of loading, which
is the longitudinal direction here, is accompanied by a decrease in the dimension perpendicular to the load.
Thus here the circumferential dimension decreascs. The ratio of the strain in the lateral direction to that
in the direction of loading was defined in Chap. 1 to be Poisson’s ratio, denoted by p. Consequently the
above strain ¢ induces a circumferential strain equal to —pe and if this strain is denoted €. we have
€. = — upri2Eh, which tends to decrease the radius of the cylinder as shown by the negative sign.

In a manner exactly analogous to the treatment of the increase of radius due to radial loading only,
the decrease of radius corresponding to the strain €/ is given by ppr?/2Eh. The resultant increase of radius
due to the internal pressure p is thus

prt _wpr _pr (1 .u)
2

A thin-walled cylinder with rigid end closures is fabricated by welding long rectangular plates
around a cylindrical form so that the completed pressure vessel has the form shown in Fig. 3-7.
The angle that the helix makes with a generator of the shell is 35° at all points. The mean radius
of the cylinder is 20 in, the wall thickness is # = 0.5 in, and the internal pressure is 400 Ib/in’.
Neglect the localized effects at each end due to the end closure plates and determine the normal
and shearing stresses acting on the helical weld in the curved plane of the cylinder wall.

Fig. 3-7
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From Problem 3.1 the circumferential and longitudinal stresses in the cylinder are

_ pr _ (4001b/in’) (20in)
- 0.5in

. = = 16,000 Ibfin’
h
r . 3
o = £ = 8000 1b/in®
Let us consider a small triangular element to be removed from the cylinder wall. with the clement
being bounded on its hypotenuse by the weld and along the other two sides by a generator together with
a circumference of the shell. The stresses found above (shown by solid vectors) act on the perpendicular
sides as shown in Fig. 3-8, and on the inclined side of the element (coinciding with the helical weld) we
have the unknown normal stress o and shcaring stress 7. The length of the hypotenuse of the element is

taken to be ds, in which casc the side along a gencrator has the length ds cos35° and the length in the
circumferential direction is ds sin35°.

It is convenient to introduce n- and r-axes perpendicular to and along the helical weld. The »# and ¢
components of the applied stresses are shown in Fig. 3-8 by dotted vectors. For equilibrium in thc

a’ .
‘——)r RODO Ihrn~
4

dy win 35°

Gencrator

16,000 Ib/in”

Fig. 3-8
n-direction. we have
2 F, = olds) (k) — B0O0O(ds) (sin 35%) (h) (sin 35°) — 16,000(ds) (cos 35°) (k) (cos 35°) = 0
.o = 8000 sin’ 35° + 16,000 cos® 35° = 13,370 Ibfin®
Similarly, in the tangential direction (i.e., in the direction along the helix). we have
EF, = (ds) (h) + 8000(ds) (sin 35°) (cos 35°) (h) — 16,00K(ds) (cos 35°) () (sin35°) = O
=7 = (8000) (sin 35°) (cos 35°) = 3760 Ibfin®

3.7.  Consider a closed thin-walled spherical shell subject to a uniform internal pressure p. The inside
radius of the shell is r and its wall thickness is h. Derive an expression for the tensile stress
existing in the wall.

For a free-body diagram. let us consider exactly half of the entire sphere. This body is acted upon by
the applied internal pressure p as well as the forces that the other half of the sphere, which has been

Y
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Fig. 3.9

removed, exerts upon the half under consideration. Because of the symmetry of loading and deformation,
these forces may be represented by circumferential tensile stresses o, as shown in Fig. 3-9.

This free-body diagram represents the forces acting on the hemisphere, the diagram showing only a
projection of the hemisphere on a vertical plane. Actually the pressure p acts over the entire inside surface
of the hemisphere and in a direction perpendicular to the surface at every point. However, as mentioned
in Problem 3.1. it is permissible to consider the force exerted by this same pressure p upon the projection
of this area which in this case is the vertical circular area denoted by a-a. This is possible because the
hemisphere is symmetric about the horizontal axis and the vertical components of the pressure annul one
another. Only the horizontal components produce the tensile stress .. For equilibrium we have

=P

2h

From symmetry this circumferential stress is the same in all directions at any point in the wall of the sphere.

EF,=a2mh—prrt=0 o o

A 20-m-diameter spherical tank is to be used to store gas. The shell plating is 10 mm thick
and the working stress of the material is 125 MPa. What is the maximum permissible gas
pressure p?

From Problem 3.7 the tensile stress in all directions is uniform and given by @, = prf2h. Substituting:

N p(10m)
b P e
125 > 10* N/m 2(0.010 m)
p = 0.25MPa

The undersea research vehicle Alvin has a spherical pressure hull 1 m in radius and shell
thickness of 30 mm. The pressure hull is steel having a yield point of 700 MPa. Determine the
depth of submergence that would set up the yield point stress in the spherical shell. Consider
sea water to have a specific weight of 10.07 kN/m®.
From Problem 3.7 the compressive stress due to the external hydrostatic pressure is given by
a. = pri2h. The hydrostatic pressure corresponding 10 yield is thus
p(1m)

K o A 4 =
700 % 10° N/m 20,03 m) or p=42MPa

Since, as in Problem 3.3, we have p = yh, where vy is the specific weight of the sea water, we have
42 3 10° N/m? = (10.07 x 1(F N/m?*) (k) or h=4170m

It should be noted that this neglects the possibility of buckling of the sphere due to hydrostatic pressure
as well as effects of entrance ports on its strength. These factors, beyond the scope of this treatment, result
in a true operating depth of 1650 m.
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3.10.

1L

Find the increase of volume of a thin-walled spherical shell subject to a uniform internal
pressure p.
From Problem 3.7 we know that the circumferential stress is constant through the shell thickness and
is given by
_pr
%~ 2n
in all directions at any point in the shell. From the two-dimensional form of Hooke's law (see Chap. 1),
we have the circumferential strain as
~[1-u]

€ —l(o'— ar]-
i E £ #( ZEh

This strain is the change of length per unit length of the circumference of the sphere. so the increase of
length of the circumference is

2mr)- ﬁ[l = u

The radius of the spherical shell subject to internal pressure p is now found by dividing the circumference
of the pressurized shell by the factor 2. Thus the final radius is

[2m+(211‘r) ﬁ(l—p)]/?ﬂ H
or l""“z_ﬁ(l‘#)] @)
and the volume of the pressurized sphere is

4 pr *
3ﬂ[r+2Eh(l p.)] (&))

The desired increase of volume due to pressurization is found by subtracting from (3) the initial
volume:

3

Expanding and dropping terms involving powers of (p/E), which is ordinarily of the order of 1/1000, we
sce that the increase of volume due to pressurization is

_ A pr 14
AV = [”25}:(1 ,u,)] 3™

AV =

M)

A thin-walled titanium alloy spherical shell has a 1-m inside diameter and is 7 mm thick. It is
completely filled with an unpressurized, incompressible liquid. Through a small hole an
additional 1000 cm® of the same liquid is pumped into the shell, thus increasing the shell radius.
Find the pressure after the additional liquid has been introduced and the hole closed. For this
titanium allow E = 114 GPa and the tensile yield point of the material to be 830 MPa.

The initial volume of the spherical shell is

V= gm" d®*  (d = diameter)

a3 oy

(1 m)® = 0.5236 m"
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The volume of liquid pumped in is

1
af__m L
e () = g

so that the final volume of the incompressible liquid is
0.5236 m* + 0.001 m* = 0.5246 m*
which is equal to the volume of the expanded shell. The relation between pressure and volume change was
found in Problem 3.10 to be
27pr’
AV ="—(1-
£

Substituting,

(2m)p(0.5 m)* (0.67)

0.001 m* =
M= 114 % 10° N/m?) (0.007 m)

Solving,
F=3.03MPa

It is well to check the normal stress in the titanium shell due to this pressure. From Problem 3.7
wc have

o=

or
2h

~ (3.03 X 10" N/m*) (0.05m)
= 20,007 m) = 109 MPa

which is well below the yield point of the material.

Consider a laminated pressure vessel composed of two thin coaxial cylinders as shown in Fig.
3-10. In the state prior to assembly there is a slight “interference™ between these shells, i.e., the
inner one is too large to slide into the outer one. The outer cylinder is heated, placed on the
inner, and allowed to cool, thus providing a **shrink fit.” If both cylinders are steel and the mean
diameter of the assembly is 100 mm, find the tangential stresses in each shell arising from the
shrinking if the initial interference (of diameters) is 0.25 mm. The thickness of the inner shell
is 2.5 mm, and that of the outer shell 2 mm. Take E = 200 GPa.

There is evidently an interfacial pressure p acting between the adjacent faces of the two shells. It is
to be noted that there are no external applied loads. The pressure p may be considered to increase the
diameter of the outer shell and decrease the diameter of the inner so that the inner shell may fit inside the
outer. The radial expansion of a cylinder due to a radial pressure p was found in Problem 3.5 to be pr'/Eh.
No longitudinal forces are acting in this problem. The increase in radius of the outer shell due to p. plus

100 mm P

Laminated Pressure Vessel Outer Cylinder Inner Cylinder

Fig. 3-10
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the decrease in radius of the inner one due to p, must equal the initial interference between radii. or
0.25/2 mm. Thus we have

p(0.05 m)? p(0.05 m)? _ 0125 o
(200 % 10° Nfm?) (0.0025m) ~ (200 < 10° N/m?) (0.002m) 1000
p =11.1 MPa

This pressure, illustrated in the above figures, acts between the cylinders after the outer one has been
shrunk onto the inner one. In the inner cylinder this pressure p gives rise to a stress

_pr_ (1L1X10°N/m?) (0.05m) _

—222 MP.
S (0.0025 m) 2

In the outer cylinder the circumferential stress due to the pressure p is

pr _ (111 X 10° N/m?) (0.05 m)

“"h (0.002 m) = 277MPa

If, for example, the laminated shell is subject to a uniform internal pressure, these shrink-fit stresses
would merely be added algebraically to the stresses found by the use of the simple formulas given in
Problem 3.1 '

3.13. The thin steel cylinder just fits over the inner copper cylinder as shown in Fig. 3-11. Find the
tangential stresses in each shell due to a temperature rise of 60 °F. Do not consider the effects
introduced by the accompanying longitudinal expansion. This arrangement is sometimes used
for storing corrosive fluids. Take

E,, = 30 x 10° Ib/in® a, = 6.5%X 107%°F
E., = 13 x 10° Ib/in? ., =93 X 107%°F

Fig. 3-11

The simplest approach is to first consider the two shells to be separated from one another so that they
are no longer in contact.

Due to the temperature rise of 60 °F the circumference of the steel shell increases by an amount
27(20.375) (60) (6.5 X 107°) = 0.0498 in. Also, the circumference of the copper shell increases an amount
27(20.125) (60} (9.3 < 107%) = 0.0705 in. Thus the interference between the radii, i.e., the difference in
radii, of the two shells (due to the heating) is (0.0705 — 0.0498)/27 = (0.00345 in. Again. there are no
external loads actling on either cylinder.

However, from the statement of the problem the adjacent surfaces of the two shells are obviously in
contact after the temperature rise. Hence there must be an interfacial pressure p between the two surfaces,
i.e., a pressure tending to increase the radius of the steel shell and decrease the radius of the copper shell
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Steel Cylinder Copper Cylinder

Fig. 3-12

so that the copper shell may fit inside the steel one. Such a pressurc is shown in the free-body diagrams
of Fig. 3-12.

In Problem 3.5 the change of radius of a cylinder duc to a uniform radial pressure p (with no
longitudinal forces acting) was found to be pr’/Eh. Consequently the increase of radius of the steel shell
due 10 p, added to the decrease of radius of the copper one duc to p, must equal the interference; thus

p(20.375)° N p(20.125)
(30 107 (0.25) (13 % 10%)(0.25)

=0.00345 or p=1921b/in’

This interfacial pressure creates the required continuity at the common surface of the two shells when
they are in contact. Using the formula for the tangential siress, o = prih, we find the tangential stresses
in the steel and copper shells to be. respectively.

192(20.375)

% 025 o0 Iblin" and o, = — 19.2(20125) _

— n®
025 1550 Ibfin

Consider a thin-walled conical shell containing a liquid whose weight per unit volume is y [see
Fig. 3-13(a)]. The shell is supported around its upper rim and filled with liquid to a depth H.
Determine the stresses in the shell walls due to this loading. The geometric axis of the shell is
vertical.

Axis of symmetry'

@y + higher-order terms

Oy

()
Fig. 3-13
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The statc of stress in this shell 1s obviously axisymmetric. It is assumed that the shell thickness b is
small compared to H and R. The stresses may be determined by consideration of the equilibrium of a shell
element bounded by two closely adjacent parallel circles whosc plancs are normal to the vertical axis of
symmetry of the cone and by two closely adjacent generators of the cone. Such an element. together with
the vectors representing the stresses o, in the horizontal direction and g, in the direction of a generator.
is indicated in Fig. 3-13(h). The quantity o, is called hoop stress and o, is termed the meridional stress.

In the diagram 6 represents the angular coordinate measured in a horizontal plane which is normal
to the vertical axis of symmetry of the shell. The radius of the cone there is r,, which is of course a function
of the location of the element with respect to its position along the axis of symmetry. Another coordinate
useful for defining the gecometry of the cone is r., which corresponds to the radius of curvature of the shell
surface in a direction perpendicular to the generator. This is best illustrated by examining a section of the
cone formed by passing a vertical planc through the shell axis as indicated in Fig. 3-14(a) below. It is evident
that r, = r; cos a.

From geomctiry we have

viana
cOS o

7= vlana and so r =

The hoop stresses in Fig. 3-13(b) may be visualized more clearly by looking along the axis of symmeitry.
as shown in Fig. 3-14(b). It is evident that each of the hoop forces vectors a(dv/cos a)h makes an angle
d6i2 with the tangent 10 the element. The resultant of these hoop forces is 2a,kh(dvicos o) sin(d6/2) or.
since d&/2 is small. o;ki(dv/cos a) df acting in a horizontal planc and directed toward the gecometric axis
of the shell. From Fig. 3-14(a) we sce that this resultant must be multiplied by cosa 1o determine the
component of this force acting in a direction normal 1o the shell surface. Also. it is evident that the
meridional forces corresponding to Fig. 3-14(a) cancel onc another. The liquid exerts a normal pressure

o, + higher-order terms |

Axis of symmetry

b

(a)

Fig. 3-14
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p as indicated in the figure and it acts over an area (7, d6) (dv/cos ). Thus, for equilibrium of the clement
in a direction normal to the surface we have

dy dy
aeh (cosa) (d9)cosa — pry(de) o 0 7)

pre  pytana pr
- = =2 2
or 70" Hcosa hcosa  h 2)

This expression holds anywhere in the conical shell. In the lower half, 0 <y < H, we have p = y(H - v),
50

_YH-yytana

Y hcos a

for <y<H (3)
In the upper half. H <y <2H, p =0, so o, = 0 in that region.

The other stress o, may be found by considering the vertical equilibrium of the conical shell. For
0 <y < H the weight of the liquid in the conical region abe plus that in the cylindrical region abed 1s held
in equilibrium by the forces corresponding 10 ¢, and we have from Fig. 3-15(a)

agsh2my tanacosa — Y37y tana)’y + (H — y)m(y tan a)’] = 0 (#)
=M(&_£)
or %= a2 3 for O<y<H (5)

Similarly, for H < y < 2H, the weight of all the liquid is held in equilibrium by the forces corresponding
to o, so that from Fig. 3-15(b)

osh(2my) (1an o) cosa — yimrH = 0 (6)
Since 1, = Hlan @ we get
3
_YH tana o Hey<on 7)
6hy cos a

It is to be observed that the stresses associated with these axisymmetric deformations are statically

determinate; i.e., it was not necessary 10 use any deformation relations to determine the stresses. Thus the
relations are valid into the plastic range of action.

_.h
.;lu_l
|.!
i.'
i
r\a
II]
7]

Fig. 3-15
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3.15.

Determine the hoop stresses and meridional stresses in a thin shell of revolution subject to an
internal pressure p.

This problem is readily solved as a generalization of Problem 3.14. The stresses may be determined
by consideration of the equilibrium of a shell element bounded by two closely adjacent parallel circles
whose planes are normal o the vertical axis of a symmetry of the shell and by two closely adjacent
generators, or meridians, of the shell (see Fig. 3-1). This element is analogous to that shown in Fig. 3-13(b)
of Problem 3.14, cxcept that the vertical sides are curved rather than straight.

The hoop stresscs o, and the meridional stresses o, thus appear as shown in Fig. 3-16. We now require
two radii of curvature to describe this element. We use r, to denote the radius of curvature of the meridian
and r; to denote the radius of curvature of the shell surface in a direction perpendicular to the meridian.
The center of curvature corresponding to », must lie on the axis of symmetry although the eenter for r,
does not (in general). Figure 3-17(a) shows the hoop forces as seen by looking along the axis of symmeltry
and, analogous to Problem 3.14. they have a horizontal component 2o,hr, dd(df/2) directed toward the
shell axis. This is multiplicd by sin ¢ to obtain the component normal to the shell element. The meridional
forces appear as in Fig. 3-17(b) and they have a component normal to the shell given by o hr,d6dé. The

higher-order I

Axia of symmetry

Fig. 3-16

oghrode + higher-order terma

Axis of symmetry

(a)

Fig. 3-17
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pressure p acls over an area (ryd6) (r, dd) so thal the equation of equilibrium in the normal direction
becomes

apyhty dBddsin ¢ + o hryd@dd — prodir dd =0
or, since ry, = r,sin ¢, we get

Op , s _ P
r r; h ( )
This fundamental equation applies to axisymmetric deformations of all thin shells of revolution. A second

equation is obtained as in Problem 3.14 by consideration of the vertical equilibrium of the entire shell
above some convenient parallel circle. Again, these equations are valid into the plastic range of action.

Consider a constant-thickness thin-walled spherical dome of radius r loaded only by its own
weight g per unit of surface area. The dome is supported by frictionless rollers around its lower
boundary as shown in Fig. 3-18(a). Determine meridional and hoop stresses at all points in the
system.

rsin @

—

rsin ¢

o,
|

e

{a) (b)

Fig. 3-18

Let us consider the vertical equilibrium of a portion of the dome above some parallel circle defined
by the angle ¢ shown in Fig. 3-18(b). The variable angle a is introduced and the weight of the central
portion of the dome above the parallel circle is found by considering a ring-shaped element of radius
{r sin @) and meridional length (r de). The weight of the portion of the dome above the parallel circle is

o
f gl2m{r sin )] (rdo)
a=0)
which becomes

27 q(1 — cos )

The meridional stress o is uniformly distributed around the circumference of the parallel circle and
has an upward vertical resultant given by

27{r sin ¢p)ho,(sin )
For vertical equilibrium of the dome above the parallel circle, we thus have

2m(r sin pYho,(sin ) — 27 q(1 — cos ) = 0



CHAP 3] THIN-WALLED PRESSURE VESSELS 79

or
rq
F, = —
¢ k(1 + cos &)

This value, when introduced into Eq. (1) of Problem 3.15, leads 10 a hoop stress o, given by

(compression) ()

C | P —
o-,,—-h 1+cosd COqu] @

3.17. The spherical dome of Problem 3.16 subtends an opening angle of 120°, has a wall thickness of
100 mm, and a radius of 50m. It is constructed of concrete having a specific weight of
23.5 kN/m®. Determine meridional and circumferential stresses at (a) the apex of the dome, and
(b) the simply supported rim.
The meridional stress is given by Eq. (1) of Problem 3.16. In that equation g denotes weight per unit
of surface area. Here, since the specific weight refers 1o a cube of concrete weighing 23.5kN, the weight
per unit surface area is found by considering the 100-mm thickness to be

100
= (23,500 m-‘ —_ 1= 50 N/m?
7= N )(1000) 2350N

The meridional stress at the apex, where ¢ = (F, is

(50 m) (2350 N/m?) ,
- = — 587500 N/ — 0,587 MPa
7o = T 01m)[1 + cos0°] mooor

and at the rim, where ¢ = 60°, we have

__ (50m)(2350N/im’)
76T T 01 m)[1 +cos60]]

The circumferential stress is given by Eq. (2) of Problem 3.16. At the apex this is

o = (50 m) (2350 N/m?) [ 1
¢ (0.1 m) 1 + cos0”
and at the rim, where & = 60°. it 1s

_(50m)(350NmY) [ 1
o (0.1m) 1+ cos 60°

— 786,000 Nfm? or —0.786 MPa

- cos()"] = — 587,500 N/m? or —0.588 MPa

—00560"] = 195,000 N/m? or 0.195 MPa

Thus the carcumferential stress 1s tensile at the rim and compressive at the apex. From Eq. (2) of
Problem 3.16, the circumferential stress is zero when

1

Treosg, *®7°

Solving by trial and error. we find ¢, = 51.8°,

3.18. Thin toroidal shells are sometimes employed as gas storage tanks in boosters for space vehicles.
One design considered by the National Aeronautics and Space Administration for possible
future use employs a torus of mean diameter 2b = 70 ft with a cross-section diameter of
2R = 5ft as indicated in Fig. 3-19. The internal pressure p is 20 1b/in? and the shell material is
2219 T87 aluminum alloy, having a yield point of 50,000 Ib/in? at room temperature. For this
material the yield point increases at lower temperatures, reaching 120 percent of the above value
at —300 °F. If a safety factor of 1.5 is employed, determine the required wall thickness.

First, we consider the vertical equilibrium of a ring-shaped portion of the toroidal shell above an
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Ty 2R = 5
¢
e %A o 416_'__ ~\ 7
— - P
VA
ry ]

%¢

= 35—

Fig. 3-19

arbitrary plane, as indicated by the angle ¢. The meridional stress o, is readily found by considering the
pressure p to act on the horizontal projection of the curved area. Thus

2aryoshsing = ap(n, — bY)

or since sin¢ = (ro— b)R

_ PR(ro + b)
= ek (1)
From (/) it is evident that the peak value of ¢, occurs at the innermost points A where
PR {2b~R
{do)maxz'z_h_(h_k) (2)

If b = 0. the torus reduces 10 a sphere and (2) coincides with the stresses in a sphere as found in Problem
3.7. For the given dimensions we have R = 30in. b = 420in, p = 201bfin’. and (2) becomes
50,000  20(30) (840 — 30) _ .
s 2h(420 — 30) or h = 0.0187in 3)
If o, as given by (1) is substituted into (f) of Problem 3.15 (which holds for axisymmetric deformation
of any thin shell of revolution) we obtain. for r, = R and r, = (b + R sin ¢)/sin ¢,

_ PR

Ty
at any point in the toroidal shell. Evidently the peak value of o, as given by (2) exceeds the value of oy
and hence the maximum value of o, controls the design. The required thickness is thus given by (3).

Supplementary Problems

One proposed design for an energy-efficient automobile involves an on-board tank storing hydrogen (in
a special nonvolatile form) which would be released to a fuel cell. The tank is to be cylindrical. 0.4 m in
diameter, made of type 302 stainless steel having a working stress in tension of 290 MPa. and closed by
hemispherical end caps. The hydrogen would be pressurized 1o 15 MPa when the 1ank is initially filled.
Determine the required wall thickness of the tank. Ans. h=52mm
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321

3.22,

3.23.

3.27.

A vertical cylindrical gasoline storage tank is 30 m in diameter and is filled to a depth of 15 m with gasoline
whose specific gravity is 0.74. If the yield point of the shell plating is 250 MPa and a safety factor of 2.5
is adequate, calculate the required wall thickness at the bottom of the tank. Ans. h =167 mm

The research deep submersible Aluminaur has a cylindrical pressure hull of outside diameter 8 fi and a wall
thickness of 5.5in. It is constructed of 7079-T6 aluminum alloy. having a yield point of 60,000 Ib/in”.
Determine the circumferential stress in the cylindrical portion of the pressure hull when the vehicle is at
its operating depth of 15000 ft below the surface of the sea. Use the mean diameter of the shell in
calculations, and consider sea water to weigh 64.0Ib/ft>.  Ans.  54.800 Ibfin®

Derive an expression for the increase of volume per unit volume of a thin-walled circular cylinder
subjected to a uniform internal pressure p. The ends of the cylinder are closed by circular plates. Assume
that the radial expansion is constant along the length.

% 5
Ans. A—=E(——2p)

Calculate the increase of volume per unit volume of a thin-walled stecl circular cylinder closed at both ends
and subjected to a uniform internal pressure of 0.5 MPa. The wall thickness is 1.5 mm, the radius 350 mm,
and p = §. Consider £ =200GPa.  Ans. AVIV=10"

Consider a laminated cylinder consisting of a thin steel shell “*shrunk™ on an aluminum one. The thickness
of each is 0.10 in and the mean diameter of the assembly is 4 in. The initial “interference™ of the shells prior
to assembly is 0.004 in measured on a diameter. Find the tangential stresses in each shell caused by this
shrink fit. For aluminum £ = 10 X 10° Ib/in? and for stcel £ = 30 X 10° Ib/in".

Ans. oy, = 7500bfin?, o, = —7500 Ib/in’

A spherical tank for storing gas under pressure is 25 m in diameter and is made of structural steel 15 mm
thick. The yield point of the maienal is 250 MPa and a safcty factor of 2.5 is adequate. Determine the
maximum permissible internal pressure, assuming the welded seams between the various plates are as
strong as the solid metal. Also, determine the permissible pressure if the seams are 75 percent as strong
as the solid metal. Ans. p=024MPa, p = (.18 MPa

A thin-walled spherical shell is subject to a temperature rise AT which is constant at all points in the shell
as well as through the shell thickness. Find the increase of volume per unit volume of the shell. Let a denote
the coefficient of thermal expansion of the material. Ans. 3edAT)

A liquid storage tank consists of a vertical axis circular cylindrical R
shell closed at its lower end by a hemispherical shell as shown in ]
Fig. 3-20. The weight of the system is carried by a ring-like support §>\'_ . ﬂCE
at the top and the lower extremity is unsupported. A liguid of

specific weight y entirely fills the container. Determine the peak
eircumferential and meridional stress in the cylindrical region of
the assembly, as well as the peak stresses in the hemispherical
I'engl"l. ‘ / Cylindes

Ans
Cylinder: @, = "TR(H R o= [H —ﬁ)

T\ 73
. . YHR
Hemisphere: T |
. . , !
Reexamine Problem 3.18 with all parameters as indicated there R K -/(
except that the shell material is now Ti-6Al-4V titanium alloy _L_L__ Hemusphere

having a yield point of 126,000 Ib/in’> at room temperature. If a
safety factor of 1.5 is used, determine the required wall thick-
ness, Ans, 0.0074in Fig. 3-20



Chapter 4

Direct Shear Stresses

DEFINITION OF SHEAR FORCE

If a plane is passed through a body, a force acting along this plane is called a shear force or shearing
force. It will be denoted by F,.

DEFINITION OF SHEAR STRESS

The shear force, divided by the area over which  acts, is called the shear stress or shearing stress.
It is denoted in this book by 7. Thus

(4.1)

-
i
[

COMPARISON OF SHEAR AND NORMAL STRESSES

Let us consider a bar cut by a plane a-a perpendicular to its axis, as shown in Fig. 4-1. A normal
stress o is perpendicular to this plane. This is the type of stress considered in Chaps. 1, 2, and 3.

A shear stress is one acting along the plane, as shown by the stress 7. Hence the distinction between
normal stresses and shear stresses is one of direction.

Fig. 41

ASSUMPTION

It is necessary to make some assumption regarding the manner of distribution of shear stresses,
and for lack of any more precise knowledge it will be taken to be uniform in all problems discussed
in this chapter. Thus the expression 7 = F,/A indicates an average shear stress over the area.

APPLICATIONS

Punching operations (Problem 4.2), wood test specimens (Problem 4.3), riveted joints (Problem
4.5), welded joints (Problem 4.6), and towing devices (Problem 4.10) are common examples of systems
involving shear stresses.

82
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DEFORMATIONS DUE TO SHEAR STRESSES

Let us consider the deformation of a plane rectangular element cut from a solid where the forces
acting on the element are known to be shearing stresses 7 in the directions shown in Fig. 4-2(a).

The faces of the element parallel to the plane of the paper are assumed to be load free. Since there
are no normal stresses acting on the element, the lengths of the sides of the originally rectangular
element will not change when the shearing stresses assume the value 7. However, there will be a
distortion of the originally right angles of the element, and after this distortion due to the shearing
stresses the element assumes the configuration shown by the dashed lines in Fig. 4-2(b).

———— T
i |

T
! ’

T —1Y ]
fh"* !
[ r
I I
] )

-h-n—-— A
(a) )]

Fig. 4-2

SHEAR STRAIN

The change of angle at the corner of an originally rectangular element is defined as the shear strain.
It must be expressed in radian measure and is usually denoted by .

MODULUS OF ELASTICITY IN SHEAR

The ratio of the shear stress 7 to the shear strain vy is called the modulus of elasticity in shear and

is usually denoted by G. Thus

G=1 (4.2)
Y
G is also known as the modulus of rigidity.

The units of G are the same as those of the shear stress, e.g.. Ib/in? or N/m?, since the shear strain
is dimensionless. The experimental determination of GG and the region of linear action of 7 and y will
be discussed in Chap. 5. Stress-strain diagrams for various materials may be drawn for shearing loads,
just as they were drawn for normal loads in Chap. 1. They have the same general appearance as those
sketched in Chap. 1 but the numerical values associated with the plots are of course different.

WELDED JOINTS

In addition to the traditional techniques of gas welding and electric arc welding, the past few
decades have seen the emergence of two significant new methods, namely (@) electron beam welding
and (b) laser beam welding.
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Electron Beam Welding

In electron beam welding (EBW), coalescence of metals is achieved by having a focused beam of
high-velocity electrons striking the surfaces to be joined. This beam of electrons carries a very high
energy density that is capable of producing deep, narrow welds. Such welds can be produced much
more quickly and with less distortion of the parent metals than with either gas or arc welding. Negative
aspects of EBW are (i) surfaces to be joined must be very accurately aligned, and (ii) in certain
situations EBW must be done in a partial vacuum. Also, safety precautions must be taken to protect
personnel from the electron beam. (See Problem 4.12.)

Laser Beam Welding

In laser beam welding (LBW). joining of metals is carried out by having an optical energy source
focused over a very small spot, such as the diameter of a circle ranging from 100 to 1000 um (0.004 to
0.040in). The term “laser” 1s an acronym for light amplification by stimulated emission of radiation.
Energy densities of the order of 10° watts/cm® (6 X 10° watts/in?) make the laser beam suitable for
welding of metals. Laser beams can produce welds of high quality, but precautions must be taken to
guard the operators of the laser, particularly with regard to damage to the human eye. One of the first
successful applications involved laser welding of thermocouple gages in the Apollo lunar probe in the
late 1960s. Types of systems in common use today include lasers of ruby. carbon dioxide, and various
rare earth materials. Common commercial applications in the 1990s include sealing of batteries for
digital watches and heart pacemakers, sealing of ink cartridges for fountain pens, joining telephone
wires in circuits, and a host of other applications in aerospace, automotive, and electronic consumer
items. (See Problem 4.13.)

Solved Problems

4.1. Consider the bolted joint shown in Fig. 4-3. The force P is 30 kN and the diameter of the bolt
is 10 mm. Determine the average value of the shearing stress existing across either of the planes
a-a or b-b.

Lacking any more precise information we can only assume that force P is equally divided between the
sections a-a and b-b. Consequently a force of $(30 % 10%) = 15 X 10° N acts across cither of these plancs
over a cross-sectional area

i7(10)? = 78.6 mm?
Thus the average shearing stress across cither plane s 7= 1P/A = 15 X 10%/78.6 = 192 MPa.




CHAP 4] DIRECT SHEAR STRESSES 85

4.2.

Low-carbon structural steel has a shearing ultimate strength of approximately 45,000 Ib/in’.
Determine the force P necessary to punch a 1-in-diameter hole through a plate of this steel § in
thick. If the modulus of elasticity in shear for this material is 12 X 10° Ib/in?, find the shear strain
at the edge of this hole when the shear stress is 21,000 1b/in’.

Let us assume uniform shearing on a cylindrical surface 1 in in diameter and 3 in thick as shown in Fig.
4-4. For equilibrium the force P is P = 7A = 77(1) (3) (45.000) = 53.100 Ib.

Fig. 4-4

To determine the shear strain y when the shear stress = is 21,000 Ib/in?, we employ the definition
G = 7ly to obtain y = #/G = 21,000/12,600,000 = 0.00175 radian.

In the wood industries, inclined blocks of wood are sometimes used to determine the
compression-shear strength of glued joints. Consider the pair of glued blocks A and B which are
1.5in deep in a direction perpendicular to the plane of the paper. Determine the shearing
ultimate strength of the glue if a vertical force of 9000 1b is required to cause rupture of the joint.
It is to be noted that a good glue causes a large proportion of the failure to occur in the
wood.

9000 1b

(b) (e)

Fig. 4-5

Let us consider the equilibrium of the lower block, A. The reactions of the upper block B upon the
lower one consist of both normal and shearing forces appearing as in the perspective and orthogonal views
of Figs. 4-5(b) and 4-5(c).

Referring to Fig. 4-5(c) we see that for equilibrium in the horizontal direction

2F, = 7(2)(1.5)cos75° — o(2) (1.5)cos 15° =0 or o= 02697



44.

4.5,

4.6.

DIRECT SHEAR STRESSES [CHAP 4

For equilibrium in the vertical direction we have

ZF,=9000— 7(2)(1.5)sin75° — o{2) (1.5)sin 15° = 0
Substituting ¢ = 0.2697 and solving, we find 7= 2900 1b/in®.

The shearing stress in a piece of structural steel is 100 MPa. If the modulus of rigidity G is
85 GPa, find the shearing strain v.
By definition, G = 7/y. Then the shearing strain y = #/G = (100 % 10°)/(85 % 10*) = 0.00117 rad.

A single rivet is used to join two plates as shown in Fig. 4-6. If the diameter of the rivet is 20 mm
and the load P is 30 kN, what is the average shearing stress developed in the rivet?

Fig. 4-6

Here the average shear stress in the rivet is P/A where A is the cross-sectional area of the rivet.
However, rivet holes are usually 1.5 mm larger in diameter than the rivet and it is customary to assume
that the rivet fills the hole completely. Hence the shearing stress is given by

30,000 N
=N 896 X 107 Nim? 82.6 MP.
T (#14)[0.0215 m[? 10"N/m=—or 4

One common type of weld for joining two plates is the fillet weld. This weld undergoes shear
as well as tension or compression and frequently bending in addition. For the two plates shown
in Fig. 4-7, determine the allowable tensile force P that may be applied using an allowable
working stress of 11.300 Ib/in? for shear loading as indicated by the Code for Fusion Welding
of the American Welding Society. Consider only shearing stresses in the weld. The load is
applied midway between the two welds.

The minimum dimension of the weld cross section is termed the throat, which in this case is

3sin45° = 0353 in. The effcctive weld area that resists shearing is given by the length of the weld times
the throat dimension, or weld area = 7(0.353) = 2.47 in> for each of the two welds. Thus the allowable

2T
| - %i I+

Thln&

Fig. 4-7
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4.7.

tensile load P is given by the product of the working stress in shear times the area resisting shear, or
P = 11,300(2) (2.47) = 56,000 1b.

Shafts and pulleys are usually fastened together by means of a key, as shown in Fig. 4-8(a).
Consider a pulley subject to a turning moment T of 10,000 Ib-in keyed by a 3 X} X 3in key to
the shaft. The shaft is 2 in in diameter. Determine the shear stress on a horizontal plane through

the key.
R
e
Key

T

{a)

Fig. 4-8

Drawing a free-body diagram of the pulley alone, as shown in Fig. 4-8(f), we see that the applied
turning moment of 10,000 Ib-in must be resisted by a horizontal tangential force F exerted on the pulley
by the key. For equilibrium of moments about the center of the pulley we have

SMy=10000-F(1)=0 or F=10000lb

It is to be noted that the shaft exerts additional forces, not shown. on the pulley. These act through
the center O and do not enter the above moment equation. The resultant forces acting on the key appear
as in Fig. 4-9(a). Actually the force F acting to the right is the resultant of distributed forces acting over
the lower half of the left face. The other forces F shown likewise represent resultants of distributed force
systems. The exact nature of the force distribution is not known.

The free-body diagram of the portion of the key below a horizontal plane a-a through its midsection
is shown in Fig. 4-9(b). For equilibrium in the horizontal direction we have

SE=10000-7)(3)=0 or 7= 66701b/in’

This is the horizontal shear stress in the key.

1 ~ | ~
A ~ ' ~q
x s
W ==
a a 1" r

Fig. 49
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A lifeboat on a seagoing cruise ship is supported at each end by a stranded steel cable passing
over a pulley on a davit anchored to the top deck. The cable at each end carries a tension of
4000 N and the cable as well as the pulley are located in a vertical plane as shown in Fig. 4-10.
The pulley may rotate freely about the horizontal circular axle indicated. Determine the
diameter of this axle if the allowable transverse shearing stress is 50 MPa.

Fig. 4-10

The free-body diagram of the pulley shows not only the cable tensions but also the forces Ry, and R,
exerted on the pulley by the circular axle. From statics we have

EFy = —Ry+4000sin60° = ()
Ry =3464N (— )

T Fy-= R, — 4000 — 4000 cos 60° =
Ry = 6000 N (1)

The resultant of Ry, and Ry is R = V(3464) + (6000)° = 6930 N oriented at an angle @ from the horizontal
given by

6000 N

3464 N

¢ = arctan

= 60°

The force exerted by the pulley upon the axle is equal and opposite to that shown in Fig. 4-11. If we assume
that the resultant force of 6930 N is uniformly distributed over the cross section of the axle, the transverse
shearing stress has the appearance shown in Fig. 4-12. From Eq. (4.7). we have

6930 N
x 10f N/m® =
50 x 107 N/m EYE
j+——d
6000 N e
LN NN
SSNEAY
3464 N i

Fig. 4-11 Fig. 4-12
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4.9.

4.10.

where d is the unknown axle diameter. Solving,

d=133x10"*m or 13.3 mm

A building that is 60 m tall has essentially the rectangular configuration shown in Fig. 4-13.
Horizontal wind loads will act on the building exerting pressures on the vertical face that may
be approximated as uniform within each of the three “layers™ as shown. From empirical
expressions for wind pressures at the midpoint of each of the three layers, we have a pressure
of 781 N/m? on the lower layer. 1264 N/m? on the middle layer. and 1530 N/m?’ on the top layer.
Determine the resisting shear that the foundation must develop to withstand this wind load.

}:
EUm;\
1\ 1530 kN ——

> 1264 kN e
r? T/~
! 781 kN wie—
P, T,
Fy
P, -— 3im —-l
Fig. 4-13 Fig. 4-14

The horizontal forces acting on these three layers are found to be
P, = (20m) (50 m) (781 N/m?) = 781 kN
P; = (20 m) (50 m) (1264 N/m?) = 1264 kN
Py = (20 m) (50 m) (1530 N/m*) = 1530 kN

These forces are taken to act at the midheight of each layer, so the free-body diagram of the building has
the appearance of Fig. 4-14, where F,, denotes the horizontal shearing force exerted by the foundation
upon the structure. From horizontal equilibrium, we have

ZFy=1530+1264+ 781 — F4 =0
Fi = 3575kN

If we assume that this horizontal reaction is uniformly distributed over the base of the structure, the
horizontal shearing stress given by Eq. (47) is

3575 kN

= = 238KkN/m’
7= Gom) (s0m) - 238 kNm

In the North Atlantic Ocean, large icebergs (often weighing more than 8000 MN) present a
menace to ship navigation. A recently developed technique makes it possible to tow them to
acceptable locations. The method involves the use of a remotely operated unmanned
submersible vehicle which drills a hole in the iceberg about 30 m below the water surface and
then inserts a cylindrical anchor in the hole as shown in Fig. 4-15. The anchor is a cylindrical
steel tube of diameter 100 mm and it is secured to the hole in the iceberg by injecting gaseous
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carbon dioxide through small holes in the tube. This gas quickly freezes and fills the narrow
annular space between the outside of the anchor and the inside of the hole in the ice. A
connection from the exposed end of the anchor permits a cable to be run to the towing vessel.
If the maximum allowable shear stress in the frozen carbon dioxide is 0.5 MPa, determine the
minimum length of the cylindrical anchor so that it will not be pulled out from the iceberg under
a towing force of 200 kN.

—— » ol - g s -— - ————
——— Im m
. = 1
Towing cable
Iceberg

Fig. 4-15

A [ree-body diagram of the cylindrical tube (anchor) is shown in Fig. 4-16. There, T represents the
towing force in the cable attached to the anchor and 7 is the shearing stress in the frozen carbon dioxide.
It is assumed that 7 is uniform at all points along the length 7. of the anchor as well as around the
circumference of the tube. If 7is (0.5 MPa for horizontal equilibrium. we have

SFy=T—-aDlLt=0
200.000 N — 7r(0.1 m) (0.5 x 10° N/m?) = 0
L=127m

D=ltil.imrn o &T

Fig. 4-16

4.11. It is occasionally desirable to design certaw. structural fasteners to be strong in tension yet
somewhat weak in transverse shear. One example of this is to be found in contemporary design
of four-engine wide-body aircraft. Each engine is attached to the main supporting frame inside
the wing [see Fig. 4-17(a)] by aluminum alloy bolts that are adequately strong to support the
dead weight of the engine plus additional loads occurring in flight. However, the alloying is such
that each bolt can carry only moderate transverse shear in the unlikely event of a “‘wheels-up™
emergency landing so that the engine will be torn free from the wing. If the ultimate transverse
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shear strength of each bolt is 120 MPa, the bolt diameter 20 mm. and four bolts secure the
engine to the wing, determine the horizontal force that must act between the ground and the
engine for separation of the engine from the wing to occur.

A free-body diagram of the engine together with the four bolis is shown in Fig. 4-17(h). There F,
represents ultimate shearing force in each bolt (F, = 7,A). where 7, represents the ultimale shear stress
and A the cross-sectional area of cach bolt. Also, F, represents the force exerted by the ground on the

bottom of the engine. Note that the underside of the aircraft fuselage is above the bottom of the engine.
Wec have

F, = 7(0.020 m)*(120 % 10°N/m?) = 37.7 kN
and for horizontal equilibrium (neglecting dynamic effects)
ZF,=F,—4F, =0
F, = 4(37.7) = 151 kN

Fig. 4-17(b)

4.12. A power reactor has certain of its pressurized components (sec Fig. 4-18) made of type 304
stainless steel, 2.5 in thick. Adjacent butt-welded sections are joined by electron beam welding
in a partial vacuum using a 200 kW system. The ultimate strength of the parent steel is
160,000 1b/in®. 1f the weld is assumed to be 100 percent efficient, determine the force that may
be transmitted through each 14 in wide section. Also, determine the force if 80 percent efficiency
is assumed.

For 100 percent cffectiveness of the weld we determine the cross-scctional area of the 14 in by 2.5in
section to be (14 in) (2.5in) = 35in’. The allowable load P is then given by

P = (35in*) (160,000 Ibfin®) = 5.6 x 10°1b
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| 25in}

Weld

Fig. 4-18

For 80 percent effectiveness of the weld we have the allowable load

= (5.6 X 10° Ibfin?) (0.80) = 4.48 X 10°Ib

4.13. Two 5 in thick strips of titanium alloy 1.75 in wide are joined by a 45° laser weld as shown in
Fig. 4-19. A 100 kW carbon dioxide laser system is employed to form the joint. If the allowable

A5 ¢
P — A : —— p
\ I
Lascr ﬁln
weld
Fig. 4-19

shearing stress in the alloy is 65,000 1b/in® and the joint is assumed to be 100 percent efficient,
determine the maximum allowable force P that may be applied.

45°
\’A et p ATy -+ t= llﬁ in
4 M)
=175
(a) (2]
Fig. 4-20

A free-body diagram of the right strip has the form shown in Fig. 4-20. There, o denotes normal stress
in the weld on the 45° plane and 7 the shearing stress. These are, of course, forces per unit area on the 45°
plane and these must be multiplied by the area of the 45° plane which is bt/cos 45° where t denotes strip
thickness and b the width. For horizontal equilibrium we have

bt
EF,— ‘r(m) —~ Pcosd45° =0

Pcos45°
bt
PO/IV2)?
(1.75in) (% in)

T =

65,000 1b/in® = P=71101b
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4.14.

4.15.

4.16.

4.17.

4.18,

Supplementary Problems

In Problem 4.1, if the maximum allowable working stress in shear is 14,000 Ib/in?, determine the required
diameter of the bolt in order that this value is not exceeded. Ans d=10.585in

A circular punch 20 mm in diameter is used to punch a hole through a steel plate 10 mm thick. If the force
necessary to drive the punch through the metal is 250 kN, determine the maximum shearing stress
developed in the material. Ans. =400 MPa

In structural practice, steel clip angles are commonly used to transfer loads from horizontal girders to
vertical columns. If the reaction of the girder upon the angle is a downward force of 10,000 1b as shown
in Fig. 4-21 and if two j-in-diameter rivets resist this force, find the average shearing stress in cach of the
rivets. As in Problem 4.5, assume that the rivet fills the hole, which is 5 in larger in diameter than the
rivet.  Ans 7200 Ibfin’

Fig. 421

A pulley is keyed (to prevent relative motion) to a 60-mm-diameter shaft. The unequal belt pulls, 7 and
75, on the two sides of the pulley give rise to a net turning moment of 120 N - m. The key is 10 mm by 15 mm
in cross section and 75 mm long, as shown in Fig. 4-22. Determine the average shearing stress acting on
a horizonal plane through the key. Ans. 7=533MPa

Fig. 4-22

Consider the balcony-type structure shown in Fig, 4-23. The horizontal balcony is loaded by a total load
of 80 kN distributed in a radially symmetric fashion. The central support is a shaft S00 mm in diameter and
the balcony is welded at both the upper and lower surfaces to this shaft by welds 10 mm on a side (or leg)
as shown in the enlarged view at the right. Determine the average shearing stress existing between the shaft
and the weld. Ans. 2.5MPa
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Fig. 4-23

Consider the two plates of equal thickness joined by two fillet welds as indicated in Fig. 4-24. Determine
the maximum shearing stress in the welds. Ans. 7= 0707Plab

Fig. 4-24

A copper tube 55 mm in outside diameter and of wall thickness 5 mm fits loosely over a solid steel circular
bar 40 mm in diameter. The two members are fastened together by two metal pins each 8 mm in diameter
and passing transversely through both members, one pin being near each end of the assembly. At room
temperature the assembly is stress free when the pins are in position. The temperature of the entire
assembly is then raised 40°C. Calculate the average shear stress in the pins. For copper E = 90 GPa,
a = 18 x 107%°C; for steel £ = 200 GPa, e = 12 X 10" %°C, Ans. 7=132MPa

The shear strength of human bonc is an important parametcer when implants must be employed to maintain
the desired length of a fractured leg or arm. Substitute animal bone segments are sometimes employed but
it is necessary to select a substance having the same transverse shear strength as human bonc. For this
purpose tests such as shown in Fig. 4-25 are first carried out on the substitute under consideration. If the
cross-sectional area of the animal bone is 150 mm? and a transverse force F = 600 N is required to cause
shear fracture, find the mean transverse shear stress at fracture. Ans. 2MPa

F=600N

Bone

N/

ot (luc

e Support plate

Fig. 4-25
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4.22. Inautomotive as well as aircraft applications, two picces of thin metal are often joincd by a single lap shear
joint, as shown in Fig. 4-26. Here, the mctal has a thickness of 2.2 mm. The ultimate shearing strength of
the epoxy adhesive joining the metals is 2.57 % 10? kPa, the shear modulus of the epoxy is 2.8 GPa, and
the epoxy is effective over the 12.7 X 25.4-mm overlapping area. Determine the maximum axial load P the
Joint can carry. Neglect the slight bending effect that arises because the metal pieces are not in the same
plane. Ans. 8290 N

2.2 mm l

Epoxy
0127 mm

Fig. 4-26

4.23.  If the shear modulus of the epoxy in Problem 4.22 is 2,8 GPa, determine the axial displacement of one piece
of metal with respect to the other just prior to failure of the epoxy if the epoxy is 0.127 mm thick.

Ans.  0.0017 mm



Chapter 5

Torsion

DEFINITION OF TORSION

Consider a bar rigidly clamped at onc and twisted at the other end by a torque (twisting moment)
T = Fd applied in a planc perpendicular to the axis of the bar as shown in Fig. 5-1. Such a bar is in
torsion. An alternative representation of the torque is the double-hcaded vector directed along the axis
of the bar.

AN
x SR

kAN

Fig. 5-1

TWISTING MOMENT
Occasionally a number of couples act along the length of a shaft. In that case it is convenient to
introduce a new quantity, the twisting moment, which for any section along the bar is defined to be the
algebraic sum of the moments of the applied couples that lie to one side of the section in question. The
choice of side in any casc is of course arbitrary.

POLAR MOMENT OF INERTIA

For a hollow circular shaft of outer diameter D, with a concentric circular hole of diameter D, the
polar moment of inertia of the cross-scctional area. usually denoted by J. is given by

w
J=—(D}- D} 5.1
The polar moment of inertia for a solid shaft is obtained by setting D; = 0. See Problem 5.1. This
guantity J is a mathematical propcrty of the geometry of the cross section which occurs in the study
of the stresses sct up in a circular shaft subject to torsion.

Occasionally it is convenient to rewrite the above equation in the form

_ T2 2 :_ 2
1_32(Do+D:}(D¢) Dr)
= 3—’;_(03, + D?)(D, + D) (D, - D)

96
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This last form is useful in numerical evaluation of J in those cases where the difference (D, — D)) is
small. See Problem 5.6.

TORSIONAL SHEARING STRESS

For either a solid or a hollow circular shaft subject to a twisting moment 7T the torsional shearing
stress 7 at a distance p from the center of the shaft is given by
Tp
== 52
=5 (5.2)
This expression is derived in Problem 5.2. For applications see Problems 5.4, 5.5, 5.9, 5.10, and 5.11.
This stress distribution varies from zero at the center of the shaft (if it is solid) to a maximum at the
outer fibers, as shown in Fig. 5-2. It is to be emphasized that no points of the bar are stressed beyond
the proportional limit.

Fig. 5-2

SHEARING STRAIN

If a generator a-b is marked on the surface of the unloaded bar, then after the twisting moment
T has been applied this line moves to a-b’, as shown in Fig. 5-3. The angle ¥, measured in radians,
between the final and original positions of the generator is defined as the shearing strain at the surface
of the bar. The same definition would hold at any interior point of the bar.

e ,

T r

Fig. 5-3

MODULUS OF ELASTICITY IN SHEAR

The ratio of the shear stress 7 to the shear strain v is called the modulus of elasticity in shear and,
as in Chap. 4, is given by

== (5.3)

Again the units of G are the same as those of shear stress, since the shear strain is dimensionless.



98 TORSION [CHAP. §

ANGLE OF TWIST

If a shaft of length L is subject to a constant twisting moment 7 along its length, then the angle
6 through which one end of the bar will twist relative to the other is
TL

=5 (5.4)

where J denotes the polar moment of inertia of the cross section. See Fig. 5-4. This equation is derived
in Problem 5.3. For applications see Problems 5.5, 5.7, 5.8, 5.11, 5.12, and 5.13. This expression holds
only for purely elastic action of the bar.

)

Fig. 5-4

COMPUTER SOLUTION

For a bar of circular cross section and variable diameter, the angle of twist 6 is determined by
dividing the bar into a number of segments along its length, such that in each segment the diameter
may be taken to be constant. This procedure is well suited to computer implementation, and a
FORTRAN program for implementing it is given in Problem 5.14. (See also Problem 5.15.)

POWER TRANSMISSION

A shaft rotating with constant angular velocity w (radians per second) is being acted on by a
twisting moment T and hence transmits a power P = Tw. Alternatively, in terms of the number of
revolutions per second f, the power transmitted is P = 27fT. (See Problems 5.9, 5.10 and 5.11.)

PLASTIC TORSION OF CIRCULAR BARS

As the twisting moment acting on either a solid or hollow circular bar is increased, a value of the
twisting moment is finally reached for which the extreme fibers of the bar have reached the yield point
in shear of the material. This is the maximum possible elastic twisting moment that the bar can
withstand and is denoted by T.,. A further increase in the value of the twisting moment puts the interior
fibers at the yield point, with yielding progressing from the outer fibers inward. The limiting case occurs
when all fibers are stressed to the yield point in shear and this represents the fully plastic twisting
moment. It is denoted by T,.. Provided we do not consider stresses greater than the yield point in shear,
this is the maximum possible twisting moment the bar can carry. For a solid circular bar subject to
torsion it is shown in Problem 5.21 that T, = 47,/3.



CHAP. 5] TORSION 99

Solved Problems

5.1.  Derive an expression for the polar moment of inertia of the cross-sectional area of a hollow
circular shaft. What does this expression become for the special case of a solid circular shaft?

Let D, denote the outside diameter of the shaft and D, the inside diameter. Because of the circular
symmetry involved, it is most convenient to adopt the polar coordinate system shown in Fig, 5-5.

'
»

- D
r————— Dy

i

Fig. 5-5

By definition, thc polar moment of inertia is given by the intcgral

J= f pda
A

where A indicates that the integral is to be evaluated over the entire cross-sectional area.
To evaluate this integral we select as an clement of area a thin ring-shaped element of radius p and
radial thickness dp as shown. The area of the ring is da = 2mp(dp). Thus

120, -
J= f §@mp)dp = 2 |3~ D]
1

210,

The units of J are in* or m*. For the special case of a solid circular shafl, the above becomes J = =#D/32,
where D denotes the diameter of the shaft.

5.2.  Derive an expression relating the applied twisting moment acting on a shaft of circular cross
section and the shearing stress at any point in the shaft.

In Fig. 5-6(a) the shaft is shown loaded by the two torques 7 and conscquently is in static equilibrium.
To determine the distribution of shearing stress in the shaft. let us cut the shaft by a plane passing through
it in a direction perpendicular to the geometric axis of the bar.

The free-body diagram of the portion of the shaft to the left of this plane appears as in Fig. 5-6(b).
Obviously a torque 7" must aci over the cross section cut by the plane. This is true since the entire shaft

1 e
# ] %
H i [
. b
I‘ ‘. ’

(a) (b)
Fig. 5-6

T
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is in equilibrium, and hence any portion of it also is. The torque 7 acting on the cut section represents the
effect of the right portion of the shaft on the left portion. Since the right portion has been removed, it must
be replaced by its effect on the left portion. This effect is represented by the torque 7. This torque is of
colrse a resultant of shearing stresses distributed over the cross section. It is now necessary to make certain
assumptions in order to determine the nature of the variation of shear stress intensity over the cross
section.

One fundamental assumption is that a plane section of the shaft normal to its axis before loads are
applied remains plane and normal to the axis after loading. This may be verified experimentally for circular
shafts, but this assumption is not valid for shafts of noncircular cross section.

A generator on the surface of the shaft, denoted by 0,4 in Fig. 5-7, deforms into the configuration
O, B after torsion has occurred. The angle between these configurations is denoted by «. By definition, the
shearing unit strain v on the surface of the shaft is

y=tana=a

where the angle e is measured in radians. From the geometry of the figure.

_AB_18

L L

re

Hence ‘y——L-

But since a diameter of the shaft prior to loading is assumed to remain a diameter after torsion has
occurred, the shearing unit strain at a general distance p from the center of the shaft may likewise be
written y, = p6/L. Consequently the shearing strains of the longitudinal fibers vary lincarly as the distances
from the center of the shaft.

Fig. 5-7 Fig. 5-8

If we assume that we are concerned only with the linear range of action of the material where the
shearing stress is proportional to shearing strain, then it is evident that the shearing stresses of the
longitudinal fibers vary linearly as the distances from the center of the shaft. Obviously the distribution
of shearing stresses is symmetric around the geometric axis of the shaft. They have the appearance shown
in Fig. 5-8. For equilibrium, the sum of the moments of these distributed shearing forces over the entire
circular eross section is equal to the applied twisting moment. Also, the sum of the moments of these forces
is exactly equal to the torque T shown in Fig. 5-6(b) above.

Thus we have
T= j Tpda
(4]

where da represents the area of the shaded ring-shaped element shown in Fig. 5-8. However, the shearing
stresses vary as the distances from the geometric axis; hence
7 r

-+ = =~ = constant
p r

where the subscripts on the shearing stress denote the distances of the element from the axis of the shaft.
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503.

54.

Consequently we may write

fr . r [ s
T= f ~(p)da = —"I pda
0n p p 1

since the ratio 7,/p is a constant. However. the expression [;p”da is by definition (sce Problem 5.1) the
polar moment of inertia of the cross-scctional arca. Valucs of this for solid and hollow circular shafts are
derived in Problem 5.1. Hence the desired relationship is

_ Tl

. T

or T,=

p J

It is to be emphasized that this expression holds enly if no points of the bar are stressed beyond the
proportional limit of the material.

Derive an expression for the angle of twist of a circular shaft as a function of the applied twisting
moment. Assume that the entire shaft is acting within the elastic range of action of the
material.

Let L denote the length of the shaft. 7 the polar moment of inertia of the eross section, T the applied
twisting moment (assumed constant along the length of the bar). and G the modulus of elasticity in shear.
The angle of twist in a length L is represented by 6 in Fig. 5-9.

(—)

Fig. 5-9

From Problem 5.2 we have at the outer fibers where p = r:

1o and _Ir
YL KO
iy TL TL
By definition. the shearing modulus is given by G = % = r.‘:!L BTy from which ¢ = ol Note that

6 is expressed in radians, i.c., it is dimensionless.
Occasionally the angle of twist in a unit length is useful. It is often denoted by ¢ and is given by
¢ = 6/L = TIG].

If a twisting moment of 10.0001b-in is impressed upon a lj-in-diameter shaft, what is the
maximum shearing stress developed? Also, what is the angle of twist in a 4-ft length of the shaft?
The material is steel for which G = 12 X 10° Ib/in®. Assume entirely elastic action.

From Problem 5.1 the polar moment of incrtia of the cross-sectional area is

0 LAY
J=—=(D.) —(—) = 0.92in*
32{ ) 32\4
The torsional shearing stress T at any distance p from the center of the shaft was shown in Problem
5.2 to be 7, = Tp/J. The maximum shear stress is developed at the outer fibers and there at p = Zin
100006 .
Tmax — "'-092& = 9500 "')-‘Il'lZ

Hence the shear stress varies linearly from zero at the center of the shaft to 9500 1bfin® at the outer fibers
as shown in Fig. 5-10.
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The angle of twist @ in a 4-ft length of the shaft is

_TL _ 10.000(481in) .
6= Gl -T2 x 10°(0.92) = ().0435 radian

F'gv 5‘10

A hollow steel shaft 3 m long must transmit a torque of 25 kN - m. The total angle of twist in this
length is not to exceed 2.5° and the allowable shearing stress is 90 MPa. Determine the inside
and outside diameter of the shaft if G = 85 GPa.

Let d, and d, designate the outside and inside diameters of the shaft, respectively. From Eq. (5.4) the
angle of twist is # = TL/GJ, where 8 is expressed in radians. Thus, in the 3-m length we have

( rad ) 3 {25,000 N-m) (3 m)
T \573deg/  (8S X 10°N/m?) (w/32) (d2 — df)
or dy—d! = (206 x 10 *) m?

The maximum shearing stress occurs at the outer fibers where p = d,/2. At these points from Eq. (5.2).
we have

_ (25000N-m)(d,/2)
(m/32) (ds — d)
or d* ~d* = (1414d,) (10 *) m*

90 % 10° N/m?

Comparison of the right-hand sides of these equations indicates that
206 X 10 * = 14144d,(10 *)

and thus d = 0.145m or 145 mm. Substitution of this value into either of the equations then gives
d, = 0.125m or 125 mm.

LLet us consider a thin-walled tube subject to torsion. Derive an approximate expression for the
allowable twisting moment if the working stress in shear is a given constant 7,. Also, derive an
approximate expression for the strength—weight ratio of such a tube. It is assumed the tube does
not buckle, and the material is within the elastic range of action.

The polar moment of inertia of a hollow circular shaft of outer diameter D, and inner diameter D,
is J = (m/32) (D} — D). If R denotes the outer radius of the tube, then D, = 2R, and further, if r denotes
the wall thickness of the tube, then D, = 2R — 21,

The polar moment of inertia J may be written in the alternate form

J = @R = @R~-20"] = Z[R'~ (R~ 1)"] = T (4R'1~ 6R'¢ + 4Rr’ ~ 1

~2rfa(l)-o(&) +o (&) (&)
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Neglecting squares and higher powers of the ratio «/R, since we are considering a thin-walled tube, this
becomes, approximately, J = 2mR*1.
The ordinary torsion formula is T = 1, J/R. For a thin-walled tube this becomes, for the allowable
twisting moment, T = 2wR’r7,..
The weight W of the tube is W = yLA where vy is the specific weight of the material, L the length of
the tube, and A the cross-scctional area of the tube. The arca is given by
A= nlR — (R—1)] = m2Rt - ) = nR?| 2 ( ! )2
= = — —_— = = — ) = 171 —— J—
) R R
Again neglecting the square of the ratio #R for a thin tube, this becomes A = 27Rt.

The strength-weight ratio is defined to be T/W. This is given by
T 2nR%tr, Rz,

W 2@RtlLy L_'y
The ratio is of considcrable importance in aircraft design.

A solid circular shaft has a slight taper extending uniformly from one end to the other. Denote
the radius at the small end by a, that at the large end by b. Determine the error committed if
the angle of twist for a given length is calculated using the mean radius of the shaft. The radius
at the larger end is 1.2 times that at the smaller end.

I L
— I~ dx |J

Fig. 5-11

Let us sct up a coordinate system with the variable x denoting the distance from the small end of the
shaft (see Fig. 5-11). The radius at a section at the distance x from the small end is

_ L (h—a)x
r=a+ 2
where L is the length of the bar.
Provided the angle of taper is small, it is sufficicnt to consider the angle 46 through which the shaded
element of length dx is twisted. This is obtained by applying the expression § = TL/GJ to the element of
length dx and radius r = a + [(b — a)x/L]. For such an element the polar moment of inertia is

—_ 4
J=Tp =§,4=E[G+M5]

32 2 L
Thus de = Tdx
Gr_rl +(b—a)x]‘
2 a L

The angle of twist in the length L is found by integrating the last equation. Thus

2T £ dx ZT( l)( L ) 1 "‘_ 2TL ( 1 l)
G_— - e ———— | - - = — em e —
G‘J‘I‘I p-ayx]* Gm\ 3/\b-a b—-ayx]? Gab—a)\ ¥ &

i Ia+_L—.} [a-’..—.—.—i_—..] .

If b = 1.2a, this becomes 8 = 1.40433TL/Gwa’. For a solid shaft of radius 1.1a

TL _ 1.36602TL
Gra’

9] - ™
G(1.1a)
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Using these valucs of 8 and §,, we find
0.03831
Percent error = 140433 X100 = 2.73%

Consider two solid circular shafts connected by 2-in- and 10-in-pitch-diameter gears as in Fig.
5-12(a). The shafts are assumed to be supported by the bearings in such a manner that they
undergo no bending. Find the angular rotation of D, the right end of one shaft, with respect to
A, the left end of the other, caused by the torque of 2500 Ib-in applied at D. The left shaft is
steel for which G = 12 X 10°Ib/in® and the right is brass for which G = 5 X 10° Ib/in’. Assume
elastic action.

F

(a) (c)

Fig. 5-12

A free-body diagram of the right shaft CD [Fig. 5-12(b)] reveals that a tangential force F must act on
the smaller gear. For equilibrium, £ = 2500 Ib.
The angle of twist of the right shaft is

6, =£’l=—25£w=ﬂ.ﬂ?5{}rad

GJ T
—(1, 4
5><10“32( 25)

A free-body diagram of the left shaft AB is shown in Fig. 5-12(c). The force F is equal and opposite
to that acting on the small gear C. This force F acts 5in from the center line of the left shaft; hence it
imparts a torque of 5(2500) = 12,500 Ib-in to the shaft AB. Because of this torque there is a rotation of
end B with respect to end A given by the angle 8., where

- 12,500(48)
12 % 10%(7/32) (2.5)°

6, = 0.0130 rad

It is to be carefully noted that this angle of rotation 6, induces a rigid-body rotation of the entirc shaft
CD because of the gears. In fact, the rotation of CD will be in the same ratio to that of AB as the ratio
of the pitch diameters, or 5:1. Thus a rigid-body rotation of 5(0.0130) rad is imparted to shaft CD.
Superposed on this rigid body movement of CD is the angular displacement of D with respect to €
previously denoted by 6.

Hence the resultant angle of twist of D with respect to A is 6 = 5(0.0130) + 0.075 = 0.140 rad.
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5.10.

5.11.

A solid circular shaft is required to transmit 200 kW while turning at 1.5 rev/s. The allowable
shearing stress is 42 MPa. Find the required shaft diameter.

In the SI system the time rate of work (power) is expressed in N -m/s. By definition 1 N -m/s is 1 W.
Power is thus given by P = Tw, where T is twisting moment and w is shaft angular velocity in
radians/second. Or, alternatively, P = 2#fT, where f is revolutions per second or hertz. Thus we have

200,000 N-m/s = 27{1.5 revis)T

T=21230N-m
As in Problem 5.2, the outer fiber shearing stresses are maximum and given by
16T
T
16(21,230 N -
Thus, 42 % 10° Njm2 = L2@LZ0N m)
wd”
Solving,
d = 138 mm

It is required to transmit 70 hp from a turbine by a solid circular shaft turning at 200 r/min. If
the allowable shearing stress is 7000 Ib/in?, determine the required shaft diameter.

In the USCS system the time rate of work (i.e., power) is expressed in lb-in/s. By definition
6600 Ib-in/s is 1 hp. Power is thus given by P = Tew, where T is the twisting moment and w is shaft angular
velocity in radians/second. Or, alternatively, P = 2wfT, where fis revolutions per second, usually termed
hertz. Here, we have

) B 2007\ /1 min
70(6600|b-mfs)—2m'(lmin)( O )T

from which 7 = 22,0701b - in.
From Eq. (5.2), we have the peak shearing stresses at the outer fibers of the shaft as
_IdR) _ Tdz _ 16T
R T R
16,000 b -in

ard?

Thus 7000 Ib/in? =

Solving. d = 2.52 in.

A solid circular shaft has a uniform diameter of 2 in and is 10 ft long. At its midpoint 65 hp is
delivered to the shaft by means of a belt passing over a pulley. This power is used to drive two
machines, one at the left end of the shaft consuming 25 hp and one at the right end consuming
the remaining 40 hp. Determine the maximum shearing stress in the shaft and also the relative
angle of twist between the two extreme ends of the shaft. The shaft turns at 200 r/min and the
material is steel for which G = 12 X 10°Ib/in®. Assume elastic action.

In the left half of the shaft we have 25 hp which corresponds to a torque T given by

_ 63,000 < hp _ 63,000(25) _
n 200

7880 1b-in

T,

Similarly, in the right half we have 40 hp corresponding to a torque T, given by

_ 63,00040)

T: 200

=12,6001b-in
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The maximum shearing stress consequently occurs in the outer fibers in the right half and is given by
the ordinary torsion formula:

_Tp _12,600(1) .
"= or T (#732) ) 8000 Ib/in

The angles of twist of the left and right ends relative to the center are, respectively,

T8BO(60 .
880(60) = (L.0250 rad and 0 = 12.600(60)

"2 X 10°(m32) (2)° C T2 x 1032 (2 0.0401 rad

Since 4, and #, are in the same direction, the relative angle of twist between the two ends of the shaft
is#=6,-#, =0.015rad.

A circular cross-section bar is clamped at one end, free at the other, and loaded by a uniformly
distributed twisting moment of magnitude ¢ per unit length along its length [see Fig. 5-13(a)].
The torsional rigidity of the bar is GJ. Find the angle of twist of the free end of the bar.

£4664] i

(ar) (b)

Fig. 5-13

The twisting moment per unit length is denoted by ¢4, and the coordinate x having its origin at the left
end is introduced. A free-body diagram of the portion of the bar between the left end and the section x
is shown in Fig. 5-13(h). An clement of length dx is shown in that figure and we wish to determine the
angular rotation of the cylindrical element of length dx. For equilibrium of moments about the axis of the
bar. a twisting moment fx must act at the right of the section shown. This twisting moment #x imparts to
the clement of length dx an angular rotation (from Problem 5.3)

_ (rx) dx

de Gl

The total rotation of the left end with respect to the right end is found by integration of all such elemental
angles of twist to be

oo [
) Gl 2G7

-0

A circular cross-section bar is clamped at one end, free at the other, and loaded by a twisting
moment distributed parabolically along the length as shown in Fig. 5-14(a). The torsional
rigidity of the bar is GJ and the moment intensity is 7, at the clamped end. Find the angle of
twist of the free end of the bar.
Let us introduce a coordinate x having origin at B and extending positive to the left. The equation
of a parabola is of the general form
fL=ac+bx+c

and for the given loading we have the conditions (a) when x =0, 1, =0, (b) when x = L. 1, = 1,. and
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5.14.

Parabola

Fig. 5-14

(¢) when x = 0, dty/dy = 0. From these conditions we find @ = 1,/L°. and b = ¢ = (0. Thus, the loading
intensity is described by the relation

A free-body diagram of the portion of the bar between B and a scction x is shown in Fig. 5-15(b). An
clement of length dy is also shown there and we scek to determine the angular rotation of that element.
The moment acting on the clement dx is found by cquilibrium of twisting moments about the gecometric
axis of the bar to be equal to the sum of the distributed moments to the right of dx. This sum is found by
introducing an auxiliary variable x, and we have

i AR N I
rode, = j —)ydy =—5
J: y-=0 L 3L

L -0
From Problem 5.3. the angular rotation of the element dx is

_tdx

d
ﬂGf

and the total angle of rotation between A and B is found by integration to be

L Vel f.dx =t f".\': f"L1
6= de = = = _dx =
J: j GJ I Gr 3G

-0 - =0

An elastic bar of variable-diameter circular cross section is loaded in torsion at its ends as shown
in Fig. 5-15. The varnation of diameter may be known analytically, or through measurements at
a number of locations along the axial direction. Write a FORTRAN program to give the angle
of twist of one end of the bar with respect to the other.
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Let us divide the bar of length L into a number of infinitesimal subsegments each of length dx, so thal
the cross section may be regarded as constant for cach such element. Then, we may determine the angular
rotation of each such element through use of the equation 8 = TL/G/J from Problem 5.3. For the element
of length dx, L is replaced by dx, and J is the polar moment of inertia of the cross section of the segment.
This approach is represented by the following FORTRAN program which is applicable to any bar of
arbitrarily varying circular cross section where the bar contour is described by the equation

y = Ae

DODLIDRRRRRAARRRRARRRRRRRARRARANARRRANKARNRARRARRARRAARARARAANRARANA AL AR A RS

00020 PROGRAM TORSN2(INPUT,OUTPUT)
D000 AR R AR R AR RN A AN AR AR AR R AN R AR AR R AR AR AR AR R RAR AR R AR AN AR R AR R AR R AR AR R d

00040*

00050+ AUTHOR: KATHLEEN DERWIN

00060* DATE : FEBRUARY 5,1989

00070*

00080% BRIEF DESCRIPTION:

00050* THIS PROGRAM DETERMINES THE TOTAL ANGLE OF TWIST OF A CIRCULAR

00100* ROD DUE TO TORSIONAL LOADING, CONSIDER THE ROD TO BE OF SOLID
00110* CIRCULAR CROSS SECTION WITH A VARIABLE DIAMETER, LOADED

00120* BY A UNIFORM TORQUE.

00130* THE VARYING DIAMETER (OF THE ROD) MAY BE DESCRIBED

00140#* EITHER ANALYTICALLY AS Y = A*E “(B*X) , WHERE X IS THE
00150* GEOMETRIC AXIS OF THE ROD, OR NUMERICALLY USING THE MAGNITUDE OF
00160* Y AT EACH END OF N SEGMENTS, MEANING N+1 VALUES.

00170*
00180%* INPUT:
00150* THE USER IS PROMPTED FOR THE TOTAL SHAFT LENGTH, THE SHEAR

00200* MODULUS, AND THE APPLIED TORQUE. THE USER IS THEN ASKED IF THE
00210* ROD IS BOUNDED BY A XKNOWN FUNCTION...IF THE FUNCTION IS KNOWN, THE
00220% CONSTANTS AND THE ENDPOINTS OF THE ROD ON THE X-AXIS ARE INPUTTED:
00230* ALTERNATELY, THE NUMBER OF SEGMENTS AND MEASURED DIAMETERS

00240% MUST BE ENTERED.

00250*

00260* OUTPUT:

00270* THE TOTAL ANGLE OF TWIST OF THE ROD IS DETERMINED AND PRINTED.
00280*

00290* VARIABLES:

00300* L,G --— LENGTH,SHEAR MODULUS OF ROD

00310* A,B ~=- CONSTANTS OF Y=A*E “(B#*X) GOVERNING ROD BOUNDAR
00320%* X0,XN --- ENDPOINTS OF SHAFT ON X-AXIS

00330* T --- CENTRALLY APPLIED TORQUE

00340* AA(100) ~-— INDIVIDUAL SEGMENT DIAMETERS

00350* INER ~~= POLAR MOMENT OF INERTIA OF EACH SMALL INCREMENT
00360* ANS ~-— DETERMINE IF USER HAS A KNOWN FUNCTION

00370* TWIST === UNIFORM ANGLE OF TWIST

003B0O* LEN --— LENGTH OF INCREMENTAL ELEMENT

00390*

DOQDO*ARANARRARANARANARARRRARARRARARARARRRRARARKARARANANRRARARARARAR NI R KRNk
DOALORARARARARRAARRARKRRANKARRARRARARRARRARRARRARCARARRARARRARRRRR RN KRR RN RARA
00420* MAIN PROGRAM

DO430RARAKARRRAARARARARARARARARAKRARARARRRRARRNRNRARRRARRRARARARARKR AR AR AR RS
OOGAORANRARRARRRARARRARARRARARRAKRARRARRARRARAARRARAARRRCRRRRARERRARRARAERRRRAR

00450*

00460* VARIABLE DECLARATION

00470%

00480 REAL I,T,L,G,A,B,X0,XN,TWIST,AA(100}, INER,LEN

00450 INTEGER ANS,NUM,J

00500*

00510* USER INPUT PROMPTS

00520*

00530 PRINT#*, 'ENTER THE TOTAL LENGTH OF THE ROD (IN M OR INCHES):'
00540 READ*,L
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00550
00560
00570
00580
00590
00600
00610
00620*
00630*
00640*
00650*
00660
00670
00680
00690
00700
00710
00720
00730
00740*
00750
00760
00770
00780
00790
00800
00810
00820 20
00830*
00840*
00850+
00860*
00870
00880
00890
00900
00910
00920*
00930%
00540*
00950
00960
00970 30
00980*
00590
01000
01010
01020
01030 40
01040
01050%
01060
01070
01080
01090*%
01100 50
01110*
01120
01130

PRINT*, 'ENTER THE SHEAR MODULUS (IN PASCALS OR PSI) :
READ*,G

TORSION

PRINT*, 'ENTER THE UNIFORM TORQUE (IN N-M OR LB-IN) :°
READ*, T

PRINT*, 'DO YOU KNOW THE FUNCTION DESCRIBING THE ROD?'
PRINT*, 'ENTER 1--YES ; 2--NO'
READ*, ANS

IF ANS EQUALS ONE, THE USER KNOWS FUNCTION. PROMPT
POR CONSTANTS AND ENDPQOINTS.

INER = 0
IF (ANS.EQ.1) THEN
PRINT*, 'F(X) = A*E “(B*X) '
PRINT*, 'ENTER A,B:'
READ*,A,B
PRINT*, 'ENTER THE X-COORDINATE FOR BOTH ENDS OF THE ROD:'
PRINT*,' (IN M OR INCHES):'
READ*, X0, XN

L=XN-X0

LEN=L/50

DO 201 = X0,XN,LEN
Y1=AA(2.71828%%(B*1))
Y2=A%(2.71828%*( B*(I+LEN)))
Y={Y1+¥2}/2
INER =(2./(3.14159% (Y#%4)))+INER

CONTINUE

IF ANS EQUALS TWO, THE USER DOES NOT KNOW FUNCTION.
PROMPT FOR NUMBER OF SEGMENTS AND MEASURED DIAMETERS.

ELSE
PRINT*, ‘'ENTER THE NUMBER OF SECTIONS TO BE CALCULATED:'
READ*, NUM
PRINT#, 'ENTER THE DIAMETERS OF THE ENDS FOR SECTIONS 1 TO N:'
PRINT*, ' (IN M OR INCHES):'

INPUT MEASURED DIAMETERS

DO 30 J=1,NUM+1
READ* ,AA(J)
CONTINUE

LEN = L/NUM

DO 40 J = 1,NUM+1
Y=(AA(J)+AA(J+1))/4
INER =(2./(3.14159#%(Y**4)))+INER

CONTINUE
ENDIF
TWIST = (T*LEN*INER)/G
TWIST = TWIST*180/3.14159

PRINT 50,TWIST
FORMAT(2X, 'THE ANGLE OF TWIST IS:',F9.3,' DEGREES.')

STOP
END
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5.15. A solid circular cross-section shaft (see Fig. 5-16) lies along the x-axis and has a contour
described by the equation
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The contour extends from x = 0 to x = 25 in. The shear modulus of the material is 12 x 10° Ib/in?
and the shaft is loaded by a twisting moment of 23,000 Ib-in at each end. Use the FORTRAN
program of Problem 5.14 to determine the angle of twist between the ends.

o
T y=3¢,—ﬂl}5x
44
j-_-‘--___
2-.

23000 th+in ; 4 23,000 Ib-in
a4 ; 10 15 2 x{in)
-1 4 25
_ 3 Ju—""

w.‘--v
-5 4
Fig. 5-16

Entering the above data into the program, we have the computer run:

ENTER THE TOTAL LENGTH OF THE ROD (IN M OR INCHES}:

? 25

ENTER THE SHEAR MODULUS (IN PASCALS OR PSI) :
? 12E+6

ENTER THE UNIFORM TORQUE (IN N-M OR LB-IN) :
? 23000

DO YOU KNOW THE FUNCTION DESCRIBING THE ROD?
ENTER 1--YES ; 2--NO

? 1

F(X) = A*E"(B*X)

ENTER A,B:

? 3,-0.05

ENTER THE X-COORDINATE FOR BOTH ENDS OF THE ROD:
(IN M OR INCHES):

? 0,25
THE ANGLE OF TWIST IS: .703 DEGREES.

5.16. A circular cross-section bar is clamped at each end and loaded by the distributed twisting
moments of magnitude t, per unit length of the bar in one direction in the left region AB and
by the same intensity twisting moment but in the opposite direction in the right region BC (see
Fig. 5-17). If t, = 30N - m per meter of length, L = 0.7 m, and the maximum allowable shearing
stress is 32 MPa, determine the required diameter of the bar.
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Let us solve this problem by superposition of solutions of two subproblems. These problems are Fig.
5-18(a). labeled 1. and Fig. 5-18(b). labeled L.

M,

21,

1

4

(b

Fig. 5-18

Let us temporarily release the end A of the bar and determine the rotation of A due to an arbitrary
end moment M, plus the two distributed loadings I and I1. Using the results of Problems 5.3 and 5.12, we
find that the angular rotation at A is given by
QLY ML) (1)L

2G1 Gi 2GJ

However, since we know that end A is rigidly clamped. 8, = 0: solving we find

64

T

Thus, the free-body diagram of the bar ABC appears as shown in Fig. 5-19.
From Fig. 5-19 the sum of the twisting moments about the x-axis is

EMA-=MA"'M¢_'+']L_'?|L=O

Fig. 5-19

which leads to

HL
Me==3

Thus, the variation of twisting moment along the length of the bar may be plotted as shown in
Fig. 5-20.
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Ll

\ku_t)/

Fig. 5-20

Alternatively, using the vector representation of twisting moment, we see that the free-body diagrams of
the left and right regions of ABC appear as shown in Fig. 5-21.

112 1L
2 hL 2
A ———-- B | ~titi—
nL
ni nL
2 2

Fig. 5-21

The free-body diagram of AB indicates that there must be a twisting moment t, L./2 acting as shown at B.
By Newton’s law, there is an equal and opposite twisting moment acting at the left end of BC. Thus, there
is a nonzero moment at the midpoint B, as indicated by Fig. 5-21. It can be shown that the angular rotation
of the bar at B is zero.

From Fig. 5-21, the peak torque in the bar is t; L/2. The maximum shearing stress occurs at the outer
fibers of ABC at the ends A and C as well as the midpoint 8. The peak stress is, from Eq. (5.2):

_ T(dR)
Tmex = d 32
N -
16[30l mm-%] (0.7 m)
32 % 10°N/m* = s

Solving, d = 17.4 mm.

A steel bar ABC, of constant circular cross section and of diameter 80 mm, is clamped at the
left end A, loaded by a twisting moment of 6000 N-m at its midpoint B, and elastically
restrained against twisting at the right end C (see Fig. 5-22). At end C the bar ABC is attached
to vertical steel bars each of 16-mm diameter. The upper bar MN is attached to the end N of
a horizontal diameter of the 80-mm bar ABC and the lower bar PQ is attached to the other
end Q of this same horizontal diameter, as shown in Fig. 5-22(a). For all materials £ = 200 GPa
and G = 80 GPa. Determine the peak shearing stress in bar ABC as well as the tensile stress
in bar MN.

Let us consider that bars MN and PQ are temporarily disconnecied from the bar ABC. Then, from
Problem 5.3 the angle of twist at B relative to A is

_ TL _ (6000N-m)(0.75m)
- GJ (G)(n/32)(0.08 m)*

Since no additional twisting moments act between B and C, this same angle of twist due to the 6000-N-m
loading exists at C, called 6,-.

)
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g B0 mm

Length = 1.5 m

(&) (a)

Fig. 5-22

From Fig. 5-22(b) the horizontal diameter NQ of bar ABC must rotate to some true, final position
indicated by the dotted line. This is due to extension A of cach of the vertical bars, which is accompanied
by an axial force P in cach bar. For a small angle of rotation 6, we have A = (0.040 m) 6. The axial forces
P constitute a couple of magnitude P(0.08 m) = T, which must act at the end C of bar ABC when the
vertical bars are once again considered to be attached to the horizontal bar ABC. This couple must act in
a sense opposite 1o the 6000-N-m load as shown in Fig. 5-22(a) since the clastic vertical bars tend to
restrain angular rotation of the end C.

The elongation of each vertical bar may be found from Problem 1.1 to be

_PL_ PASm) (T 0.08)(1.5m)
AE  (m4)(0016my’E  (m4)(0.016m)' E

The angular rotation of end C of bar ABC may now be determined by (a) considering the effect of
the twisting moments of 6000 N - m and the end load 7, and by (b) considering the angular rotation caused
by the axial force P in the vertical bars. Thus, for the same rotation of end C we have

(6000N-m)(0.75m)  T(1.5m) (T/0.8) (1.5 m)
(G)(m32)(0.08m)* (G)(m32)(0.08)° (w/4)(0.016 m)*(0.04 m) (E)

Solving, T¢=1327N-m and P = T-/0.08 = 16587 N. The variation of twisting moment along ABC

TA [T T ]1327Nm
B f C
m”i“‘ 4673 N-m

Fig. 5-23
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appears as in Fig. 5-23 so that the peak torsional shearing stress occurs at the outer fibers at all points
between A and B and is from Problem 5.2

 16(4673N-m)

= = 46.5 MP
Tl w(0.08 m)* a
The axial stress in cach of the vertical bars is
P 16,587 N
- — = .5
12 ) 0.008 m)’ 82.5 MPa

5.18. Determine the reactive torques at the fixed ends of the circular shaft loaded by the couples
shown in Fig. 5-24(a). The cross section of the bar is constant along the length. Assume elastic
action.

:_1, =, - [ /‘Tl /. /‘Tn

g[—v Ll -v-L— Lg ---l-i L3 — g TL Tz
| L

-
(a) (®)

Fig, 5-24

Let us assume that the reactive torques 7, and T are positive in the dircctions shown in Fig. 5-24(b).
From statics we have

T,—T+T,—Tg=0 (1)

This is the only equation of static equilibrium and it contains two unknowns. Hence this problem is
statically indeterminate and it is necessary 10 augment this cquation with another equation based on the
deformations of the system.

The variation of torque with length along the bar may be represented by the plot shown in
Fig. 5-25.

The free-body diagram of the left region of length L, appears as in Fig. 5-26(a).

Working from left to right along the shaft, the twisting moment in the central region of length L, is
given by the algebraic sum of the torques to the left of this section. ie., T, — T;. The free-body diagram
of this region appears as in Fig. 5-26(b).

g — Ll—.-c-— Lg—ﬂ-— L3
|
' —1
T, 4

[}
i

) I PO E—
A

L I
Fig. 5-25
L, = L, ¢ Ly d
i) (Gmsal) (ot
() (Gl
T, ; ; T - Ty Ta Tr
(e} {b) (©)

Fig. 5-26



CHAP. 5] TORSION 115

5.19.

Finally, the free-body diagram of the right region of length L, appears as in Fig. 5-26(c).
Let 6, denote the angle of twist at the point of application of T, and 8, the angle at 7>. Then from
a consideration of the regions of lengths L, and L; we immediately have

L

6, = GJ (2)
Tyl

6, = G (3)

The original position of a generator on the surface of the shaft is shown by a solid line in Fig. 5-26.
and the deformed position by a dashed line. Consideration of the central region of length L, reveals that
the angle of twist of its right end with respect to its left end is 8, + 6,. Hence. since the torque causing this
deformation is 7|, — T,, we have

—-T,)L,
6+t = (ITJ' 4)
Solving (7) through (4) simultancously, we find
L'r + L_'| L1 L| L| + Lz
= = —_T— =7 —+T,
T;_ T| 3 T‘ 1 and TR \ I Tﬁ

It is of interest to examine the behavior of a generator on the surface of the shaft. Originally it was,
of course, straight over the entire length L, but after application of 7, and T it has the appearance shown
by the broken line in Fig. 5-27.

N
Ne Twist/\\/f

Fig. 5-27

Consider a composite shaft fabricated from a 2-in-diameter solid aluminum alloy, G = 4 X
10° Ib/in?, surrounded by a hollow steel circular shaft of outside diameter 2.5in and inside
diameter 2in, G = 12 X 10° Ib/in”. The two metals are rigidly connected at their juncture. If the
composite shaft is loaded by a twisting moment of 14,000 1b - in, calculate the shearing stress at
the outer fibers of the steel and also at the extreme fibers of the aluminum. The action is
elastic.

Let T, = torque carried by the aluminum shaft and 7, = lorque carried by the steel. For static
equilibrium of moments about the geometric axis we have

T\+T,=T= 14000

where T = external applied twisting moment. This is the only equation from statics available in this
problem. Since it contains two unknowns. T; and T, it is necessary to supplement it with an additional
equation coming from the deformations of the shaft. The structure is thus statically indeterminate,

Such an equation is easily found, since the two materials are rigidly joincd: hence their angles of twist
must be equal. In a length L of the shaft we have, using the formula 6 = TL/GJ,

T\ L B L
4x10%7/32) (2)° 12 X 10°(=32) [(2.5)" — (2)']

This equation, together with the statics equation, may be solved simultaneously to yicld

T, = 2600 Ib-in (carried by aluminum) and T, = 11,400 Ib- in (carried by steel)

or T, =0231T,

The shearing stresses at the extreme fibers of the steel and of the aluminum are, respectively,

o 11400(1.25) . 26000) B
T @B - ) 63001bfin>  and T, = D 1650 1b/in
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A stepped shaft has the appearance shown in Fig. 5-28. The region AB is Al 2014-T6 alloy,
having G = 28 GPa, and the region BC is steel, having G = 84 GPa. The aluminum portion is
of solid circular cross section 45 mm in diameter, and the steel region is circular of 60-mm
outside diameter and 30-mm inside diameter. ‘Determine the peak shearing stress in each
material as well as the angle of twist at B where a torsional load of 4000 N - m is applied. Ends
A and C are rigidly clamped.

Fig. 5-29

The free-body diagram of the system is shown in Fig. 5-29.
The applicd load of 4000 N-m as well as the unknown end reactive torques are indicated by the
double-headed vectors above. There is only one equation of static equilibrium:
EM, =T +Tx—4000N-m =0

Since there are two unknowns 7, and T%. another equation (based upon deformations) is required. This
is set up by realizing that the angular rotation at B is the same if we determine it at the right end of AB
or the left end of BC. Using Eq. (5.4), we thus have

T(12m)  Tg2.0m)

(28 % 10° N/im*) Sy (84 % 10° N/'m?) Jor )

The polar moment of inertia in AB is
4
Ja = m(0.045m)" _ 0.40 % 10~ m*
32
and in BC il is
Tor = 3—’;{(0.060 m)* — (0.030 m)*] = 1.19 X 10" m"*
Thus, from the above Eq. (J). we have
T, = 0.187Tx 2)

Substituting this relation in Eq. (7). we find
T, =630N-m and Tg=3370N-m
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5.21.

The outer fiber shearing stresses in AB are given by

_Tp _ (630N - m) (0.0225 m)

Tan = 040X 10 “m° = 35.2MPa

and in BC by

_Tp _ (3370N-m)(0.030 m)

7 119x10°m_ S>0MPa

Toe

The angle of twist at B, using parameters of the region AB, is

_TL (630 N-m) (1.2 m)

7 = 0675107 0.039°
O = 7 = BB X 10" NIm?) (040 > 100ty 075X 1077 rad or

Consider a bar of solid circular cross section subject to torsion. The material is considered to
be elastic-perfectly plastic, i.e., the shear stress-strain diagram has the appearance indicated in
Fig. 5-30(a). Determine the distance from the center at which plastic flow begins in terms of the
twisting moment. Also determine the twisting moment for fully plastic action of the cross
section.

I’"’
0

(a) ]

Fig. 5-30

Even though torsion of the bar has caused the outer portion to have yielded it is still realistic to assume
that plane sections of the bar normal to its axis prior to loading remain plane after the torques have been
applied, and further that a diameter in the section before deformation remains a diameter, or straight line,
after deformation. Consequently the shearing strains of the longitudinal fibers vary linearly as the distances
from the center of the bar.

Let us assume that plastic action begins at a distance p; from the center of the bar, so that the stress
distribution appcars as in Fig. 5-30(b). Thus, the shearing stresses vary linearly as the distance of the fiber
from the center up to the point p, after which they are constant and equal to the yield point in shear.

From Fig. 5-30(b) we have for p<p;:

T,
=% o 1= (i) Tp
(2] P

and for p> p;: 7= 7,, = constant. Thus the twisting moment is

T= J"rpda )
13
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where da refers to the ring-shaped element shown in Fig. 5-8 of Problem 5.2. Using the above values of
shearing stress in the inner elastic region and outer plastic region, we have

. ! T [, ’
T=J (-—) T,,pda+I 1',,,pda=—-ij p'da+1'w,J pda
b P o (I

T [ 4 2 2
= J—j pzz‘ﬂ'pdp-l' Trpf Pz’ﬂpdp= 1-“"(;_?#)‘)-:.’,%:“?’3
P, -

Solving for py,

67 1
] 2

T

b= [4f3"

as the distance from the center at which plastic flow begins. For fully plastic action, that is, 7 = 7., at all
points of the cross section, we set p; = 0 to obtain the fully plastic twisting moment T
2 47

3
T,=zmr'7, =<

; 37 @

But from Problem 5.2 if only the outer fibers of the bar are stressed to the yield point of the material
and all interior fibers are in the elastic range of action we have the maximum possible elastic twisting
moment T,
T)‘
T.= -Eﬁm--‘ (4)
Comparison of (3) and (4) indicates that T,, = 47,/3, that is, fully plastic action permits application
of a twisting moment 33} percent greater than the twisting moment that just causes plastic action to begin
in the outer fibers,

Consider a circular shaft having a concentrically bored hole. Determine the twisting moment
that it can carry for fully plastic action.

NV

Fig. 5-31

As shown in Fig. 5-31, we denote the outer radius of the shaft by R, and the inner radius by R;. The
yield point of the material in torsion is denoted by 7. We return to Eq. (1) of Problem 5.21 and merely
change the limits of integration. That is,

K, R,
T= J Tppda = t,pj p(2mpdp)

R, R

2
= SR~ Rl]

Note that if we express the fully plastic moment in Eq. (3) of Problem 5.21 in terms of J for the solid shaft
it is not possible to obtain the correct fully plastic torsional loading for a hollow shaft merely by utilizing
(J, — J,) where these Js correspond to the outside and inside boundaries of the hollow shaft, respectively.
It is necessary to determine the fully plastic load by rcturning to fundamentals and integrating as shown
above.
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5.23,

5.27.

5.28.

5.20.

Supplementary Problems

If a solid circular shaft of 1.25-in diameter is subject to a torque T of 2500 1b - in causing an angle of twist
of 3.12° in a 5-ft length. determine the shear modulus of the malenal. Ans. G =11.5x 10 b/in?

Determine the maximum shearing stress in a 4-in-diameter solid shaft carrying a torque of 228,000 Ib-in.
What is the angle of twist per unit length if the material is steel for which G = 12 X 10° Ib/in??
Ans. 18,100 1b/in’, 0.000755 rad/in

A propeller shaft in a ship is 350 mm in diameter. The allowable working stress in shear is 50 MPa and the
allowable angle of twist is 1° in 15 diameters of length. If G = 85 GPa. detcrmine the maximum torque the
shaft can transmit. Ans. 416kN-m

Consider the same shaft described in Problem 5.25 but with a 175-mm axial hole bored throughout its
length. The conditions on working stress and angle of twist remain as before. By what percentage is the
torsional load-carrying capacity reduced? By what percentage is the weight of the shaft reduced?

Ans. 6 percent, 25 percent

A compound shaft is composed of a 24-in length of solid copper 4 in in diameter, joined to a 32-in length
of solid stcel 4.5in in diameter. A torque of 120,000 lb-in is applied to each end of the shaft. Find the
maximum shear stress in each material and the total angle of twist of the entire shaft. For copper
G = 6 X 10°Ib/in?, for steel G = 12 X 10° Ib/in’.

Ans.  in the copper, 9520 1b/in”; in the steel, 6700 Ib/in® 6 = 0.027 rad

In Fig. 5-32 the vertical shaft and pulley keyed to it may be
considered to be weightless. The shaft rotates with a uniform angular
velocity. The known belt pulls are indicated and the three pulleys
are rigidly keyed to the shaft. If the working stress in shear is
50MPa, determine the necessary diameter of a solid circular
shaft. Neglect bending of the shaft because of the proximity of the
bearings to the pulleys. Ans. 29mm

Determine the reactive torques al the fixed ends of the circular shafi
loaded by the three couples shown in Fig. 5-33. The cross section of
the bar is constant along the length.

Ans. T, =36001Ib-in, Tp = 13,6001b-in

1.25kN

A hollow steel shaft has an outside diameter of 4in and an inside
diameter of 31in. Determine the maximum torque the shaft can
transmit in fully plastic action if the yield point of the material in
shear is 22000 b/in2.  Ans.  214,0001b-in Fig. 5-32
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A bar of circular cross section is clamped at its left end, free at the right, and loaded by a twisting moment
t per unit length that is uniformly distributed along the middle third of the bar as shown in Fig. 5-34. Find
the angle of twist of the free end of the bar.

3._.1,_ g_+L._ -
Fig, 5-34

It is desired to transmit 90 kW by means of a solid circular shaft rotating at 3.5 r/s. The allowable shearing
stress is 45 MPa. Find the required shaft diameter. Ans. 774 mm

A hollow circular shaft whose outside diameter is three times its inner diameter transmits 110 hp at
120 r/min. If the maximum allowable shearing stress is 6500 1b/in”. find the required outside diameter of
the shaft. Ans. 3.58in

A solid circular cross-section shaft lies along the x-axis and has a contour described by the equation
y = 0.074¢ "™

The shaft extends from x = 0 to x = 3m. The shear modulus of the material is 83 GPa and the shaft is
loaded by a twisting moment of 42,100 N -m at cach ¢nd. Use the FORTRAN program of Problem 5.14
to determine the angle of twist between the ends of the bar. Ans. 2.518°

A solid circular cross-section shaft lies along the x-axis and has a contour described by the equation
v =8e i

The shaft extends from x = 0 to x = 180 in. The shear modulus of the material is 12 X 10°1b/in’. and the
shaft is loaded by a twisting moment of 65,0001b-in. Use the FORTRAN program of Problem 5.14 to
determine the angle of twist between the ends of the bar. Ans.  1.861°

A solid circular cross-section shaft is clamped at both ends and loaded by a twisting moment 1 per unit
length as shown in Fig. 5-35. Determine the reactive twisting moments at each end of the bar.
Ans. My =3%tL, Mc =1L
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5.37.

5.38.

A solid steel shaft of circular cross section has a length of 300 mm and is tapered from 50-mm diameter
at the small end to 100-mm diameter at the large end, as shown in Fig. 5-36. The shaft is subject to a twisting
moment of 1000 N - m applied at each end. For G = 80 GPa, determine the angle of twist between the ends
and the peak shearing stress,.  Ans.  0.48° 40.7 MPa

SMC .
=3 _0mm
1000 N-m r N “_lll/nmm
300 .|
Fig. 5-36

A circular cross-section sicel shaft is of diameter 50 mm over the left 150 mm of length and of diameter
100 mm over the right 150 mm, as shown in Fig. 5-37. Each end of the shalft is loaded by a twisting moment
of 1000 N-m. If G = 80 GPa. determine the angle of twist between the ends of the shaft as well as the peak
shearing stress. Ans.  1.09°, 40.7 MPa

!

~eafemas— S0 mm 100 mm p—
1000 N-m f l 1000 N-m

l-— 150 mm —-a-I-—- 150 mm —0-|

Fig. 5-37



Chapter 6

Shearing Force and Bending Moment

DEFINITION OF A BEAM

A bar subject to forces or couples that lie in a plane containing the longitudinal axis of the bar is
called a beam. The forces are understood to act perpendicular to the longitudinal axis.

CANTILEVER BEAMS

If a beam is supported at only one end and in such a manner that the axis of the beam cannot rotate
at that point, it is called a cantilever beam. This type of beam is illustrated in Fig. 6-1. The left end of
the bar is free to deflect but the right end is rigidly clamped. The right end is usually said to be
“restrained.” The reaction of the supporting wall at the right upon the beam consists of a vertical force
together with a couple acting in the plane of the applied loads shown.

P
w ib/ft

ot
prpritard

s

Fig. 6-1

SIMPLE BEAMS

A beam that is freely supported at both ends is called a simmple beam. The term “freely supported™
implies that the end supports are capable of exerting only forces upon the bar and are not capable of
exerting any moments. Thus there is no restraint offered to the angular rotation of the ends of the bar
at the supports as the bar deflects under the loads. Two simple beams are sketched in Fig. 6-2.

lP w FUnit length

)| J
.- oS . 2.
{(a) {)]

Fig. 62

It is to be observed that at least one of the supports must be capable of undergoing horizontal
movement so that no force will exist in the direction of the axis of the beam. If neither end were free
to move horizontally, then some axial force would arise in the beam as it deforms under load. Problems

of this nature are not considered in this book.

122
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The beam of Fig. 6-2(a) is said to be subject to a concentrated force; that of Fig. 6-2(b) is loaded
by a uniformly distributed load as well as a couple.

OVERHANGING BEAMS

A beam freely supported at two points and having one or both ends extending beyond these
supports is termed an overhanging beam. Two examples are given in Fig. 6-3.

S '"
.- e , =

Fig. 6-3

P

STATICALLY DETERMINATE BEAMS

All the beams considered above, the cantilevers, simple beams, and overhanging beams, are ones
in which the reactions of the supports may be determined by use of the equations of static equilibrium.
The values of these reactions are independent of the deformations of the beam. Such beams are said
to be statically determinate.

STATICALLY INDETERMINATE BEAMS

If the number of reactions exerted upon the beam exceeds the number of equations of static
equilibrium, then the statics equations must be supplemented by equations based upon the
deformations of the beam. In this case the beam is said to be statically indeterminate. Examples are
shown in Fig. 6-4.

r" \ w 3 lPI lpz

(a) (b) (©)

Fig. 6-4

TYPES OF LOADING

Loads commonly applied to a beam may consist of concentrated forces (applied at a point),
uniformly distributed loads, in which case the magnitude is expressed as a certain number of pounds
per foot or Newtons per meter of length of the beam. or uniformly varying loads. This last type of load
is exemplified in Fig. 6-5.

A beam may also be loaded by an applied couple. The magnitude of the couple is usually expressed
inlb-ft or N-m.
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o
|

Fig. 6-5

INTERNAL FORCES AND MOMENTS IN BEAMS

When a beam is loaded by forces and couples, internal stresses arise in the bar. In general, both
normal and shearing stresses will occur. In order to determine the magnitude of these stresses at any
section of the beam, it is necessary to know the resultant force and moment acting at that section. These
may be found by applying the equations of static equilibrium.

Example 1

Suppose several concentrated forces act on a simple beam as in Fig. 6-6(a).

. b o
P, P, ‘Ps {Pq. |__ a 1}:‘ P, M
A B cl D y z A )

i S o Y S

(a) (b)

N N .
<

Fig. 6-6

It is desired to study the internal stresses across the section at D, located a distance x from the left
end of the beam. To do this let us consider the beam to be cut at D and the portion of the beam to
the right of D removed. The portion removed must then be replaced by the effect it exerted upon the
portion to the left of D and this effect will consist of a vertical shearing force together with a couple,
as represented by the vectors V and M, respectively, in the free-body diagram of the left portion of the
beam shown in Fig. 6-6(b).

The force V and the couple M hold the left portion of the bar in equilibrium under the action of
the forces R, P,. P,. The quantities V and M are taken to be positive if they have the senses indicated
above.

RESISTING MOMENT

The couple M shown in Fig. 6-6(b) is called the resisting moment at section D. The magnitude of
M may be found by use of a statics equation which states that the sum of the moments of all forces
about an axis through D and perpendicular to the plane of the page is zero. Thus

EM():M“‘Rl.l""P](X'_‘a)*]'Pz(xub}:O or M=R|x_‘P|(x‘ﬂ)“Pj(.x_b)

Thus the resisting moment M is the moment at point D created by the moments of the reaction at A
and the applied forces P, and P,. The resisting moment M is the resultant couple due to stresses that
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are distributed over the vertical section at D. These stresses act in a horizontal direction and are tensile
in certain portions of the cross section and compressive in others. Their nature will be discussed in
detail in Chap. 8.

RESISTING SHEAR

The vertical force V shown in Fig. 6-6(b) is called the resisting shear at section D. For equilibrium
of forces in the vertical direction,

EFU;_R]_P]_PE_V:O or V=R1_P1_P2

This force V is actually the resultant of shearing stresses distributed over the vertical section at D. The
nature of these stresses will be studied in Chap. 8.

BENDING MOMENT

The algebraic sum of the moments of the external forces to one side of the section D about an axis
through D is called the bending moment at D. This is represented by

R,x = P/(x —a) — Py(x - b)

for the loading considered above. The quantity is considered in Problems 6.1 through 6.12. Thus the
bending moment is opposite in direction to the resisting moment but is of the same magnitude. It is
usually denoted by M also. Ordinarily the bending moment rather than the resisting moment is used
in calculations because it can be represented directly in terms of the external loads.

SHEARING FORCE

The algebraic sum of all the vertical forces to one side, say the left side, of section D is called the
shearing force at that section. This is represented by R, — P, — P, for the above loading. The shearing
force is opposite in direction to the resisting shear but of the same magnitude. Usually it is denoted
by V. It is ordinarily used in calculations, rather than the resisting shear. This quantity is considered
in Problems 6.1 through 6.12.

SIGN CONVENTIONS

The customary sign conventions for shearing force and bending moment are represented in Fig.
6-7. Thus a force that tends to bend the beam so that it is concave upward is said to produce a positive
bending moment. A force that tends to shear the left portion of the beam upward with respect to the
right portion is said to produce a positive shearing force.

@ % & ®

Positive Bending Negative Bending
— C——3
| I ]
() Positive Shear {d) Negative Shear

Fig. 6-7
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An easier method for determining the algebraic sign of the bending moment at any section is to
say that upward external forces produce positive bending moments, downward forces yield negative
bending moments.

SHEAR AND MOMENT EQUATIONS

Usually it is convenient to introduce a coordinate system along the beam, with the origin at one
end of the beam. It will be desirable 1o know the shearing force and bending moment at all sections
along the beam and for this purpose two equations are written. one specifying the shearing force V as
a function of the distance, say x, from one end of the beam, the other giving the bending moment M
as a function of x.

SHEARING FORCE AND BENDING MOMENT DIAGRAMS

The plots of these equations for V and M are known as shearing force and bending moment
diagrams, respectively. In these plots the abscissas (horizontals) indicate the position of the section
along the beam and the ordinates (verticals) represent the values of the shearing force and bending
moment, respectively. Thus these diagrams represent graphically the variation of shearing force and
bending moment at any section along the length of the bar. From these plots it is quite easy to
determine the maximum value of each of these quantities.

RELATIONS BETWEEN LOAD INTENSITY, SHEARING FORCE, AND BENDING
MOMENT

A simple beam with a varying load indicated by w(x) is sketched in Fig. 6-8. The coordinate system
with origin at the left end A is established and distances to various sections in the beam are denoted
by the variable x.

T w(z) .l .
L
Fig. 6-8

For any value of x the relationship between the load w(x) and the shearing force V is

dV
W= —
dx

and the relationship between shearing force and bending moment M is
_ant
dx

These relations are derived in Problem 6.1. For applications see Problems 6.3 through 6.7.
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SINGULARITY FUNCTIONS

For ease in treating problems involving concentrated forces and concentrated moments we
introduce the function

falx) = x —a@)"
where for n > 0 the quantity in pointed brackets is zero if x <a and is the usual (x — @)" if x > a. This

is the singularity or half-range function. Thus, if the argument is positive the pointed brackets behave
just as ordinary parentheses. For applications see Problems 6.8 through 6.13.

COMPUTER IMPLEMENTATION

Determination of shearing forces and bending moments in a beam subject to a number of
concentrated forces, moments, and distributed loadings is best carried out on a computer. A simple
program suitable for PC implementation is given in Problem 6.13 and applications are given in
Problems 6.14 and 6.15.

Solved Problems

6.1.  Derive relationships between load intensity, shearing force and bending moment at any point
in a beam.

Let us consider a beam subject to any type of transverse load of the gencral form shown in Fig. 6-9(a).
Simple supports are illustrated but the following consideration holds for all types of beams. We will isolatc
from the beam the clement of length dx shown and draw a free-body diagram of it. The shearing force V

i i,;';; -

M

RI‘-—,:——-- - dx R, i__dz_J

@ ®)

Fig. 6-9

acts on the lcft side of the element, and in passing through the distance dx the shearing force will in general
change slightly to an amount V + dV. The bending moment M acts on the left side of the element and it
changes 1o M + dM on the right side. Since dx is extremely small, the applied load may be taken as uniform
over the top of the beam and equal to w Ib/ft. The free-body diagram of this elecment thus appears as in
Fig. 6-9(b). For equilibrium of moments about O, we have
IMy=M—(M+dM)+ Vdx+wdx(dx/2) =0 or  dM = Vdx+ lw(dxy
Since the last term consists of the product of two differentials, it is negligible compared with the other
forms involving only one differential. Hence
dM = Vdx or V= am
dx

Thus the shearing force is equal to the rate of change of the bending moment with respect to x.
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This equation will prove to be of considerable value in drawing shearing force and bending moment
diagrams for the more complicated types of loading. For example, from this equation it is evident that if
the shearing force is positive at a certain section of the beam then the slope of the bending moment
diagram is also positive at that point. Also, it demonstrates that an abrupt change in shear. corresponding
to a concentrated force, is accompanied by an abrupt change in the slope of the bending moment
diagram.

Further, at those points where the shear is zcro, the slope of the bending moment diagram is zero.
At these points where the tangent to the moment diagram is horizontal, the moment may have a maximum
or minimum value. This follows from the usual calculus technique of obtaining maximum or minimum
values of a function by equating the first derivative of the function to zero. Thus in Fig. 6-10 if the
curves shown represent portions of a bending moment diagram then critical values may occur at points
A and B.

e ___ C
e R NAN
Bending
Moment

T

SNA L

Fig. 6-10

To establish the direction of concavity at a point such as 4 or B, we may form the second derivative
of M with respect to x, that is, d 2 Midx?. If the value of this second derivative is positive, then the moment
diagram is concave upward, as at A, and the moment assumes a minimum value. If the second derivative
is negative the moment diagram is concave downward, as at B, and the moment assumes a maximum
value.

However, it is te be carefully noted that the calculus method of obtaining critical values by use of the
first derivative does not indicate possible maximum values at a cusp-like point in the moment diagram, if
one occurs, such as that shown at C. If such a point is present, the moment there must be determined
numerically and then compared to other values that are possibly critical.

Lastly. for vertical equilibrium of the element we have

dv

wdx+V —-(V+dV)=0 or W= —
dx

This relation will be of value in establishing shearing force diagrams.

For the cantilever beam subject to the uniformly distributed load of w N/m of length, as shown
below in Fig. 6-11(a). write equations for the shearing force and bending moment at any point
along the length of the bar. Also sketch the shearing force and bending moment diagrams.

It is not necessary to determine the reactions at the supporting wall. We shall choose the axis of the
beam as the x-axis of a coordinate system with origin O at the left end of the bar. To determine the shearing
force and bending moment at any section of the beam a distance x from the free end, we may replace the

z w Nfm ' "”'Nl"";'"‘l w Nim

) Y 4l \

Of —

——d

{a) (b)

T
o)
e

Fig. 6-11
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6.3.

portion of the distributed load to the left of this section by its resultant. As shown by the dashed vector
in Fig. 6-11(b), the resultant is a downward force of wx N acting midway between O and the section x. Note
that none of the load to the right of the section is included in calculating this resultant. Such a resultant
force tends to shear the portion of the bar to the left of the section downward with respect to the portion

to the right. By our sign convention this constitutes negative shear.
The shearing force at this section x is defined to be the sum of the forces to the left of the section.

In this case, the sum is wx N acting downward: hence
V=—uxN

This equation indicates that the shear is zero at x = 0 and when x = L it is —wl. Since V is a first-degree
function of x, the shearing force plots as a straight line connecting these values at the ends of the beam.
It has the appearance shown in Fig. 6-12(a). The ordinate to this inclined line at any point represents the
shearing force at that same point.

o - o ]
Shear Bending Moment 2

(a) (b)

Fig. 6-12

The bending moment at this same section x is defined to be the sum of the moments of the forces 1o
the left of this section about an axis through point A and perpendicular to the plane of the page. This sum
of the moments is given by the moment of the resultant, wx N about an axis through A: it is

x
M=- ZIN-
wx(3)N-m

The minus sign is necessary because downward loads indicate negative bending moments. By this equation
the bending moment is zero at the left end of the bar and —wL?72 at the damped end when x = L. The
variation of bending moment is parabolic along the bar and may be plotted as in Fig. 6-12(b). The ordinate
to this parabola at any point represents the bending moment at that same point.

It is to be noted that a downward uniform load as considered here leads to a bending moment diagram
that is concave downward. This could be established by taking the sccond derivative of M with respect to
x, the derivative in this particular case being —w. Since the second derivative is negative. the rules of
calculus tell us that the curve must be concave downward.

Consider a simply supported beam 10 ft long and subject to a uniformly distributed vertical load
of 1201b per ft of length, as shown in Fig. 6.13(a). Draw shearing force and bending moment
diagrams.

The total load on the beam is 1200 Ib, and from symmetry each of the end reactions is 600 Ib. We shall
now consider any cross section of the beam at a distance x from the left end. The shearing force at this

120 Tb/ft mt’: . —
. Y AL .

0
T | 600 Ib
600 Ib (@ 600 1b

(&)

Fig. 6-13
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section is given by the algebraic sum of the forces to the left of this section and these forecs consist of the
600-Ib reaction and the distributed load of 1201b/ft extending over a length x fi. We may replace the
portion of the distributed load to the left of the section at x by its resultant, which is 120x Ib acting
downward as shown by the dashed vector in Fig. 6-13(b). None of the load to the right of x is included in
this resultant. The shearing forcc at x 1s then given by

V =600 - 120x Ib

Since there are no concentrated loads acting on the beam., this equation is valid at all points along its length.
Evidently the shearing force varies linearly from V =6001b at x =0 to V = 600 — 120 = —600 1b at
x = 10 ft. The variation of shearing force along the length of the bar may then be represented by a straight
line connecting these two end-point values. The shear diagram is shown in Fig. 6-14(a). The shear is zero
at the center of the beam.

The bending moment at the section x is given by the algebraic sum of the moments of the 600-1b
reaction and the distributed load of 120x Ib about an axis through A perpendicular to the plane of the
paper. Remembering that upward forces give positive bending moments. we have

M = 600x — mu(%) Ib- ft

e = B —-————————T
s:::r“’]: | zm“n‘ /\wfl’ o
F oment (O
O b T ‘v_J '
L—— z = 10— 10 1

(a) ()

Fig. 6-14

Again, this equation holds along the entire length of the beam. It is to be noted that since the load
is uniformly distributed the resultant indicated by the dashed vector acts at a distance x/2 from A, i.c.. at
the midpoint of the uniform load to the lcft of the section x where the bending moment is being calculated.
From the above equation it is evident that the bending moment is represented by a parabola along the
length of the beam. Since the bar is simply supported thec moment is zero at cither end and, because of
the symmetry of loading. the bending moment must be a maximum at the center of the beam where
x = 5ft. The bending moment at that point is

M, _« = 600(5) — 60(5) = 1500 1b-{t

The parabotic variation of bending moment along the length of the bar may thus be represented by
the ordinates 10 the bending moment diagram shown in Fig. 6-14(b).

The beam AD in Fig. 6-15 is supported between knife edges at B and C and subject to the end
couples indicated. Draw the shearing force and bending moment diagrams.
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The resultant of the end loadings is a couple

M, M,
| —= =

2 2

which must be maintained in equilibrium by another couple of that magnitude but oppositely directed. This

reactive couple arises from the vertical force reactions R at B and C. The moment of the couple
corresponding to these forces must be M,/2 for equilibrium, so we have

L M,
R 22
k= L

For the coordinate systcm shown, the shearing force at any point a distance x to the right of A is given
by the sum of all vertical forces to the left of x. Thus, for the three regions of the bcam we have

v=0 0<x<k

4

LM L_ _3L

L 27"
3L

V=20 T-::x-::L

Analogously. the bending moment at the point x is given by the sum of the moments of all forces and
couples to the left of x. Thus. we need the three equations

M=-M, (1<x4%
M,( L) L 3L
= — + — —_— — <y < —
M M, 7 _x n 2 X 4
M, L M, 3L
= — +——=-— —<x <
M M, 72 5 2 x<<L

(@) Shear

ui__z _"‘l -—

(b)) Bending Momeni

Fig. 6-16
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6.5.  The simply supported beam shown in Fig. 6-17(a) carries a vertical load that increases uniformly
from zero at the left end to a maximum value of 600 lb/ft of length at the right end. Draw the
shearing force and bending moment diagrams.

3600 Ib

wh
fﬂn (a) fR‘ (o)

1200 1b lz——- fmm
b z {

(c)

Fig. 6-17

For the purpose of determining the reactions R, and R, the entire distributed load may be replaced
by its resultant which will act through the centroid of the triangular loading diagram. Since the load varies
from 0 at the left end to 600 Ib/ft at the right end, the average intensity is 300 Ib/ft acting over a length of
12 ft. Hence the total load is 3600 Ib applied 8 ft to the right of the left support. The free-body diagram
to be used in determining the reactions is shown in Fig. 6-17(b). Applying the equations of static
equilibrium to this bar, we find R; = 12001b and R, = 24001b.

However, this resultant cannot be used for the purpose of drawing shear and moment diagrams. We
must consider the distributed load and determine the shear and moment at a section a distance x from the
left end as shown in Fig. 6.17(c). At this section x the load intensity w may be found from the similar
triangles OAB and OCD as follows:

w 60 (i

x=ﬁ or "= 12

The average load intensity over the length x is }(x/12) 600 Ib/ft because the load is zero at the left end. The
total load acting over the length x is the average intensity of loading multiplied by the length, or
11(x/12)600) x Ib. This acts through the centroid of the triangular region OAB shown, i.e., through a point
located a distance 3x from O. The resultant of this portion of the distributed load is indicated by the dashed
vector in Fig. 6-17(c). No portion of the load to the right of the section x is included in this resultant
force.

The shearing force and bending moment at A are now readily found to be

V= lzm—l(l—’;m)x = 1200 — 25x2

) 600 Ib/ft

2

_ L(x x\ 25,
M = 1200x z(lzeoo)x(3)-1zoux 3

These equations are true along the entire length of the beam. The shearing force thus plots as a
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parabola, having a valuc 1200 1b when x = 0 and —24001b when x = 12 ft. The bending moment is a
third-degree polynomial. It vanishes at the ends and assumes a maximum value where the shear is zero.
This is true because V' = dMidx, and hence the point of zero shear must be the point where the tangent
to the moment diagram is horizontal. This point of zero shear may bc found by setting V = (:

0 = 1200 — 25x* or x=6941t

The bending moment at this point is found by substitution in the general cxpression given above:
25
M, _qas = 1200(6.94) — -5(6‘94)-" = 5520 1b-f1

The plots of the shear and moment equations appear in Fig. 6-18.

e lbl_l\ ’7_.'\55 20 1b-fe
L 6.9¢ I 2400 b I

Shear -1 Bending Moment
(a) (b

Fig. 6-18

6.6. The cantilever beam AC in Fig. 6-19 is loaded by the uniform load of 600 N/m over the length
BC together with the couple of magnitude 4800 N - m at the tip C. Determine the shearing force
and bending moment diagrams.

The reactions at A must consist of a vertical shearing foree together with a moment to prevent angular
rotation. To find these reactions, we write the statics equations

£F,= Ry~ (600N/m)(2m) = 0 (7)
JEM,=M,-4800N-m— (1200N)-(3m) =0 2)

17 x 600 N/m
C ] 9
A L c x
§ s - 4800 N'm

)

Fig. 6-19

Solving,
R,=1200N M, =8400N-m

For the coordinate system shown, the shearing force at any point a distance x to the right of A is given
by the sum of all forces to the left of x. Thus we must write the two equations

V =1200N 0<x<2m 3
V = 1200 N - 600(x — 2) N 2<x<4m @)
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Likewise, the bending moment at this point x is given by the sum of the moments of all forces (and
couples) to the left of x about point x. This is given by the two equations

M = —8400 N-m + 1200x 0<x<2m (5)

(x -2)N ]
2
Plots of Egs. (3) through (6) appear in Fig. 6-20(a) and 6-20(b), respectively. The nature of the concave

region of the bending moment in BC is determined by taking the sccond derivative of the bending moment
Eq. (6) in BC:

M=—840()N-m+IZtHIt—(ﬁfllem)[(x—l)N (6)

dM
dx’

= 600

Since this is negative for values of x in BC, the plot in BC of bending moment is concave downward. The
bending moment in AB is seen from Eq. (5) to be a linear function of x: hence the bending moment in
AB plots as a straight linc connecting the end couple of —8400 N-m with the bending moment at B of
—6000 N -m as detcrmined from Eq. (6).

=

1200 N

I |
T A B C
(@) Shear
6000 N-m ! 14HIN}N-m

8400 N-m _I_ _T-f . T

(&) Bending Moment

Fig. 6-20

6.7. The beam AC is simply supported at A and C and subject to the uniformly distributed load of
300 N/m plus the couple of magnitude 2700 N-m as shown in Fig. 6-21. Write equations for
shearing force and bending moment and make plots of these equations,

It is necessary to first determinc the reactions from the cquilibrium equations
+ 2 XM, =2700N-m+ R(6m) — (300 N/m) (6 m) (6 m) = 0 (1)
SF,= Ry+ Re=(300N/m)(6m) =0 )

¥

300 N/m
L
1 ns
Al D x
s B L)
2700 N'm
Jm—-+—3m Im—

Fig. 6-21
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Solving,
R, = 450N R = 1350N
For the coordinate x as shown the shearing force a distance x from point A is described by the three
rclations
V=450N 0<x<3m 3)
V = [450 — 300(x — 3)| N Im<xy<6m 4
V = [450 — 300(x — 3) + 1350] N 6m<x<9m (5)
Likewise the bending moment in cach of these three regions of the beam is described by
M = (450x) N-m 0<x<3m (6)
Mz[-’lﬁ[l.r—Sﬂ(J(,r—S)(%—B)]?\i»m Im<x<6m (7)
M= 450:—300“_3)?+lssn(x—e)]N-m 6m<x<9m )

Plots of these equations appear in Fig. 622, In regions BC and CD it is necessary to determine that the
sccond derivative of the bending moment from Eq. (7) and Eq. (8) is negative in cach of these regions,
and that hence in each case the curvature of the bending moment plot is concave downward.

AS0N

{¢) Shear

1687.5 N-m
1350 N'm

(&) Bending Momeni

Fig. 6-22

Singularity Functions

The techniques discussed in the preceding problems are adequate if the loadings are continuously
varying over the length of the beam. However. if concentrated forces or moments are present, a distinct
pair of shearing force and bending moment equations must be written for each region between such
concentrated forces or moments. Although this presents no fundamental difficulties, it usually leads to
very cumbersome results. As we shall see in a later chapter, these results are particularly unwieldy to
work with in dealing with deflections of beams.

At least some compactness of representation may be achieved by introduction of so-called
singularity or half-range functions. Such functions were applied to beam analysis by Macauley in 1919
and this technique of analysis sometimes bears the name of Macauley’s method, although the functions
were actually used in the 19th century by A. Clebsch. Let us introduce, by definition, the pointed
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brackets {(x — a) and define this quantity to be zero if (x — @) <0, that is, x < a, and to be simply (x — a)
if (x —a) > 0. that is. x > a. That is, a half-range function is defined to have a value only when the
argument is positive. When the argument is positive, the pointed brackets behave just as ordinary
parentheses. The singularity function

falx) = x — @)
obeys the integration law
x (I - a}ﬂfl
_[x(}’_“)"d)’= i1 for n=0

The singularity function is very well suited for representation of shearing forces and bending
moments in beams subject to loadings of the type discussed in Problems 6.4 through 6.7. This is clear
since, say in Problem 6.4 for shearing force, the effect of a single concentrated load is not present
(explicitly) in the equation for V for points along the beam to the left of that force, but it immediately
appears in the equation for ¥V when one considers values of x to the right of the point of application
of the force.

The use of singularity functions for the representations of shearing force and bending moment
makes it possible to describe each of these quantities by a single equation along the entire length of
the beam, no matter how complex the loading may be. Most important, the singularity function
approach leads to simple computer implementation.

6.8. Use singularity functions to write equations for the shearing force and bending moment at any
position in the simply supported beam shown in Fig. 6-23.

r,_.g lawom
ﬁ

Rle

3n tR2

Fig. 6-23

From siatics the reactions are easily found to be
R, = 30001b R; = 10001b
For the coordinate system shown, with origin at O, we may write
V = 3000(x)° — 4000{x —- 1)*Ib

which indicates that V = 30001b if x <1 ft and V = 3000 — 4000 = —-1000 1b if x > 1 ft.
Similarly,

M = 3000{x)' — 4000{(x — 1)' Ib- ft (2)

which tells us that M = 3000x Ib - fu if x <1 {t and M = 3000x —4000{x — 1} Ib-ft if x> 1 fi.

The relations (1) and (2) hold for all values of x provided we remember the definition of singularity
functions. Use of these equations leads 10 the shearing force and bending moment diagrams shown in
Fig. 6-24.
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6.9. Consider a cantilever beam loaded only by the couple of 2001Ib-ft applied as shown in Fig.
6-25(a). Using singularity functions, write equations for the shearing force and bending moment
at any position in the beam and plot the shear and moment diagrams.

A BR s B\
oC -+ x o A / x
|___  —d \‘/zwmn ‘ t l :zoonb-n M,
6 .| & € 4 V‘
(a) (b)
Fig. 6-25
A free-body diagram is shown in Fig. 6-25(b),
where V), and M, denote the reactions of the support- / § z
ing wall. From slatics these are found to be V, =0, | - { I
M, = 2001b-ft. N 200
We introduce the coordinate system shown in
which case the shearing force everywhere is (a)
V=20 ()
In writing the expression for bending moment, Shear
working from left to right it is clear that there is no 1)
bending moment to the left of point A. At A the applied
load of 2001b-ft tends to bend the portion AB into a
curvature that is concave downward, which according to 200161
our sign convention is negative bending. Thus the Bending Moment
bending moment anywhere in the beam is )
(c
M = —200(x - 6)°1b-ft 2)
Fig. 6-26

Plots of (1) and (2) appear in Fig. 6-26,
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6.10. Consider a cantilever beam loaded by a concentrated force at the free end together with a
uniform load distributed over the right half of the beam [see Fig. 6-27(a)]. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam

and plot the shear and moment diagrams.

P P

l w2 {Unit length F % tUnit lenglh

I B of B
l L ;E 1
r 2 Vi

(a) ®
Fig. 6-27

M,

L

A free-body diagram is shown in Fig. 6-27(b). From statics the wall reactions arce found to be

v, = p+ L M.:PL+"—"§L§

although for the case of a cantilever it is not necessary to find these prior 1o writing shearing force and

bending moment equations.

With the coordinate system shown, with origin at O, the effect of the concentrated force P as well as
the distributed load is to produce negative shear according to our shearing force sign convention. Thus we

may write

V= —Px)- w(.r E %)

which indicates shearing force at any position x if one remembers the definition of the bracketed term.

Likewise. the bending moment at any position x is
W L\?
M= -PY - —(x—-=
(x) > (x > >
The loaded beam together with plots of the shear and moment equations are shown in Fig. 6-28.

‘P W {Unit lengih
1 E
- A

L J_ L
2 ) 2
(a)
Shear
P
e — -
2
(b)
Bendi
H:me:{ 4
wol 2
PL PL + -
2

(c)
Fig. 6-28
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6.11. In Fig. 6-29(a) a simply supported beam is loaded by the couple of 1 kN -m. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam
and plot the shear and moment diagrams.

A!~ - B_:I:\I 'mh'j']u

: -/ e -
uNw?” 3kN-m f 1kN
(@)
llth‘

Shear
(b)

P
le KN-m

Bending Moment

()

Fig. 6-29

The beam is loaded by one couple, and the only possible manner in which equilibrium may be crcated
is for the reactions R at the supports A and C to constitute another couple. Thus, these reactions appear
as in Fig. 6-29(b). For equilibrium,

IM,=3R-3=0 from which R=1kN
Thus the two forces R shown constitute the reactions nccessary for equilibrium,

Inspection of the problem reveals that between A and B the shearing force is negative (according to
our sign convention shown in Fig. 6-7) and also the bending moment is negative from the same figure. Just
as soon as we consider points on the beam to the right of B, that couple of 3 kN-m tends to produce

bending which is concave upward, and thus positive from Fig. 6-7. Thercforc the expressions for V' and
M are

=-(1)m)" kN
=-()@'+3x—-2" kN-m

Shear and moment diagrams are plotted in Figs. 6-29(b) and 6-29(c). From these it is evident that when
a couple acts on a bar the bending moment diagram exhibits an abrupt jump or discontinuity at the point
where the couple is applied.

6.12. The overhanging beam AE is subject to uniform normal loadings in the regions AB and DE,
together with a couple acting at the midpoint C as shown in Fig. 6-30. Using singularity
functions, write equations for the shearing force and bending moment at any point in the beam
and plot the shear and moment diagram.

To first determine the reactions, we have from statics
+ ) Z Mg = (300 1b/) (1 1) (0.5 ft) + 150 Ib-ft + Rp(3 f1) - (300 1b/it) (1 fr) (3.5ft) = 0 T3
ZF.=-3001b+Ry+ R, —300Ib=0 (2)
Solving,
Ry =2501b and Rg=3501b (3)
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150 1b-fi
300 Ib/ft I :

/ ’\ 300 1b/fi '
AQ [P
& ¢ 2

i ) _ . __4

TR 15 ! L5 h n

RB Rl)
Fig. 6-30

For the coordinate system shown and remembering the definition of the singularity function. we

may write

O ® ® ® ®
V= =300 + 300(x ~ 1)' + 350(x ~ 1)' + 250(x — 4)' — 300Kx — 4)' (4)
. l ® ®
M= —Mﬂ(x}'% +300(x ~ 1)’ @ F 3500 = D' — 150(x - 2.5)”
© @

_ avl
+2500x ~ 4)! - 300(x —4}‘3—;-)— 5

Equations (4) and (5) each conlain quantities designated by the numerals circled above the terms.

Terms may be interpreted as follows for shearing force V:

1.

1.

Iv.

VL

The shearing force V acting in region OB of Fig. 6-30 is. for any value of the coordinate x in AB.
simply the sum of all applied downward normal forces to the left of x, i.c.. 300x, which is term (D).
Such forces tend to produce the type of displacement shown in Fig. 6-7(d). hence we must prefix the
load 300¢{x} by a negative sign.

Continuing, the first term (1) in Eq. (4) holds for all values of x ranging from x = 0 to x = 5 ft. That
is. the singulanty functions are defined as being zero if the quantity in brackets () 1s negative, but
there is no way to specify an upper bound on the coordinate x shown in term (7). Consequently, we
must annul the downward 300 1b/ft load to the right of point B and this may be accomplished by
adding an upward (positive) uniform load to the right of B. i.c., for all values of x > 1 ft, which is term
(@ . But this upward uniform load has now annulled the actual downward uniform load in region DE.
We will return to this shortly.

Immediately to the right of B the upward reaction Ry has a shear effect of 350 Ib upward so that it
tends to produce displacement such as shown in Fig. 6-7(c), which we term positive, hence the positive
sign in term (3).

The applied couple of 1501b-ft has no force effect in any direction. hence does not appear in
Eq. (4).

Immediately to the right of D the upward reaction R;, has a shear effect of 250 1b upward so that it
tends to produce displacement such as shown in Fig, 6-7(c), which we term positive. hence the positive
sign in term ().

As mentioned in (II). the true downward uniform load in DE has temporarily been annulled. hence
we must introduce the term (5) to return it and make the external loading correct.

Equation (4) in terms of singularity functions now correctly specifies the vertical shear at all points

on the beam from O 10 E. A plot of this is given below in Fig. 6-31(a).

In a nearly comparable manner. the bending moment from O to E may be written. except that now

account must be taken of the applied moment of 1501b- ft at C. The moment equation is given in (5) and
a plot of it from @ to E appears in Fig. 6-31(b).
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t
250 1b
Shear 501b _L s /r%m

77
3001
(@)
Bending
Moment Y, / i
150 1b-R 7z 1150 1b-f
N S i R B
®)
Fig. 6-31

6.13. The simply supported beam AD is subject to a uniform load over the segment BC together with
a concentrated force applied at C as shown in Fig. 6-32. Using singularity functions. write

equations for the shearing force and bending moment at any point in the beam and plot shear
and moment diagrams.

The vertical reactions at A and D mus! first be determined from statics:

+ ) ZM,=45Rp — 12kN(3.5m) — (20kN)(35m) =0

Rp = 24.89kN
SF, = Ry+2489kN—12kN - 20kN = 0
R, =7.11 kN
12 kN
1 10 kN/m
- C T 1T 1T 7 171 (;
t 25m | tm ! im
er | 1 &)
Fig. 6-32
- 3.2/m
l | 7-11kN

Shear IZ//{' L] 239 KN

(@ 14.89 kN
|t

20.37 kN

.m
Bending \
Moment |
t i
(b) I
17.78 kN-m 19.89 kN-m

Fig. 6-33
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Introducing the coordinate system shown in Fig. 6-30 we can proceed as in Problem 6.12 and write
V="711-10{x—25"— 12— 35"

{(x —2.5)"
2

M= 7.11x)" — 10{x — 2.5)! - 12(x = 3.5)

From these equations the shear and moment diagrams may be plotted as shown in Figs. 6-33(a)
and (b).

Computer Implementation

6.14. Consider a straight beam simply supported at any two points. Loading is by a system of
concentrated forces, couples, and distributed loads that may {@) be uniform along a portion of
the beam length. or (b) increasc (or decrease) linearly. Write a computer program in BASIC
to determine shearing force and bending moment at significant locations in the beam.

N — e

N EEEER] |

/ T ; -
for, QL | L, _
PZ

", 'i"r 1
l‘?
& TaA B

L

Lo—a -l el L —a

Py

Fig. 6-34

Let us represent the loadings by the terminology of Fig. 6-34, It is first necessary to employ equations
of statics to determine the reactions at points A and B. Next. we introduce numbers 1,2,... to designate
points of application of concentrated forces (including reactions), moments, and left and right end
coordinates of distributed loads. Positive directions of all such loads are indicated in Fig. 6-34. The applied
moment M; is taken positive in the direction indicated because its vector representation (shown by the
doublc-headed vector) is parallel to the z-axis and in the positive direction of that axis.

Use of the method of singularity functions leads to the BASIC program listed below. If more detailed
information is needed concerning values of shearing forces and bending moment between number points,
one may mercly introduce additional points wherever desired.

00100 REM THIS PROGRAM IS DEVELOPED TO EVALUATE THE SHEAR FORCES
00110 REM AND BENDING MOMENTS.

00120 DIM §(20), P(21), E(21), D(20,2), T(21,2), B(21,2)
00130 REM

00140 REM S IS SEGMENT LENGTH

00150 REM P IS POINT LOAD

00160 REM E IS EXTERNAL MOMENT

00170 REM D IS DISTRIBUTED LOAD

00180 REM T IS SHEAR FORCE

00190 REM B IS BENDING MOMENT

00200 REM

00210 PRINT " PROGRAM FOR SHEAR FORCES AND BENDING MOMENTS "
00220 PRINT B e e e J

00230 PRINT
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00240
00245
00250
00260
00270
00280
002990
00300
00310
00315
00320
00330
00340
00345
00350
00360
00370
00375
00380
00390
00400
00405
00410
00420
00430
00435
00440
00450
00460
00465
00470
00480
00490
060500
00510
00520
00530
00540
00550
00560
00570
00580
00550
00600
00610
00620
00630

PRINT
INPUT
PRINT
PRINT
FOR
INPUT
NEXT
PRINT
PRINT
INPUT
PRINT
FOR
PRINT
INPUT
NEXT
PRINT
PRINT
INPUT
PRINT
FOR
PRINT
INPUT
NEXT
PRINT
PRINT
INPUT
PRINT
FOR
PRINT
INPUT
NEXT
PRINT
LET
LET
FOR
LET
LET
LET
LET
LET
NEXT
PRINT
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" PLEASE ENTER THE NUMBER OF SEGMENTS: "
N

" PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TO RIGHT.
I=1 TO N

5(1I)

I

" PLEASE ENTER THE NUMBER OF POINT LOADS: *
N1

I=1 TO Nl

" LOCATIONS AND LOADS: "
11, P(I1)

I

" ENTER THE NUMBER OF EXTERNAL MCMENTS: “
N2

I=1 TO N2

" ENTER THE LOCATIONS AND MOMENTS: "
L, E(L)

I

" ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS: "
N3

I=1 TO N3

" ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT "
N4, D(N4,1), D(N4,2)

I

T(1,2)=P(1)

B(l,2)=-E(1)

I=1 TO N
T(I+1,1)=T(I,2)+(D(I,1)+D(I,2))*S(I)/2
T(I+1,2)=T(I+1,1)+P(I+1)
T2=((2*D(I,1)+D(I,2))*S(1)*2)/6
B(I+1,1)=B(I,2)+T(I,2)*S(1)+T2
B(I+1,2)=B(I+1,1)-E(I+1)

I

PRINT "LOCATION","SHEARLEFT","SHEARRIGHT","MOMENTLEFT", "MOMENTRIGHT"

FOR

I=1 TO N+l

PRINT I,T(I,1),T(I,2),B(I,1),B(I,2)

NEXT
END

I

“Adapted from a program in Basic Problems for Applied Mechanics: Statics, William Weaver. Jr., McGraw-Hill. New
York, 1972

6.15. Use the BASIC program of Problem 6.14 to determine significant shearing forces and bending

moments in the simply supported beam shown in Fig. 6-35.

BOO Ibrfy 10,000 Ib-fi

TR e o

A : \gt:f rAd
R*t 124t — BT i -—tRE

Fig. 6-35
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It is first necessary to determine the reactions. From statics,
+1EM, = —(96001b) (6 f1) — 10.0001b- ft + R(17 1) = 0
EF, =R+ Rz—96001b=0
Solving,
R, = 56241b R, =139761b

Input to the program is

Number of segments: 3

Length of each segment: 12,2,3

Number of point loads (the reactions): 2
Location and magnitude of point loads: 1, 5624

4, 3976
Number of external moments: 1

Location and magnitude of moments: 3, -10,000

Number of segments loaded by distributed load: 1
Segment number, load left, load right: 1, -800, -B800

The computer output is shown below.

PLEASE ENTER THE NUMBER OF SEGMENTS:
? 3

PLEASE ENTER THE LENGTH OF ERCH SEGMENT FROM LEFT TO RIGHT.
12

2

3

LIS LIS RS |

PLEASE ENTER THE NUMBER OF POINT LOADS:
? 2

LOCATIONS AND LOADS:
?7 1,5624
LOCATIONS AND LOADS:
? 4,3976

ENTER THE NUMBER OF EXTERNAL MOMENTS:
21

ENTER THE LOCATIONS AND MOMENTS:
? 3,-10000

ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS:
21

ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 1,-800,-800

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
1 0 5624 0 0
2 -3976 -3976 9888 9888
3 -3976 -3976 1936 11936
4 -3976 0 8 8

A simply supported beam is subject to a uniform load of 2 kN/m over the region shown in Fig,
6-36. Use the BASIC program of Problem 6.14 to determine shearing forces and bending
moments at significant points, including the midpoint of the length of the beam.

First. we must determine the end reactions from use of the statics equations. These are readily found
to be 2kN at each end.
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2 kN'm

13

»lllé»; 2 3 4 ’7;)/7

ZkNLI m--le-—

Fig. 6-36
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-—1im 2kN

For usc of the program. it is necessary to number significant points along the length. These are usually
points of application of applied loads. However. here we are asked for the shear and moment at the
midpoint of the distributed load. Thus, we introduce an additional numbered point there with the result

indicated in Fig. 6-36.
The input and output of the computer program are shown below.

PLEASE ENTER THE NUMBER OF SEGMENTS:

? 4
PLEASE ENTER THE LENGTH OF EACH SEGMENT FROM LEFT TO RIGHT.
21
21
21
21
PLEASE ENTER THE NUMBER OF POINT LOADS:
? 2
LOCATIONS AND LOADS:
21,2000
LOCATIONS AND LOADS:
? 5,2000
ENTER THE NUMBER OF EXTERNAL MOMENTS:
?0
ENTER THE NO. OF DISTRIBUTED LOADED SEGMENTS:
?2 2
ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 2,-2000,-2000
ENTER THE SEGMENT NO., LOADLEFT, LOADRIGHT
? 3,-2000,-2000
LOCATIGN SHEARLEFT SHEARRIGHT MOMENTLEFT MOMENTRIGHT
1 0 2000 0 0
2 2000 2000 2000 2000
3 0 0 3000 3000
4 -2000 -2000 2000 2000
5 -2000 0 0 0
SRU 0.129 UNTS.

RUN COMPLETE.
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Supplementary Problems

For the cantilever beams loaded as shown in Figs. 6-37 and 6-38, write equations for the shearing force and
bending moment at any point along the length of the beam. Also. draw the shearing force and bending moment

diagrams.

6.17.
LkN 2kN
1 Im # Im
ol —_——
Ans.
1kN
Shear V=—-1kN for0<x<Ilm
V=-3KkN for1<x<2m
2""_|_ M= -xkN-m for0<x<lm
M=—-x—-2(x-1)kN'm forl<x<2m
Bending
Moment
1 kN-m j-N‘m
Fig. 6-37
6.18.
24XN 1.2kN
3 |
] 1 L
x
o e
r Im aub 5 L PR R L |
Ans.
Shear 1 V=21kN for0<x<2
21kN = — -
T | V/-/A_E—”"N V=21-24=-03kN for2<x<3
b A V=21-24+15=12 for 3 <x <4
N M =21xkN-m for 0 <x <2
M=21x -24(x-2) for2<x<3
Bending M=21x—-24x—-2)+1.5(x—-3) for3<x<4
Moment B
) ‘l.ﬂkNrm
1
SIKN-m

Fig. 6-38
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For the beams of Problems 6.19 through 6.25 simply supported at the ends and loaded as shown. write
equations for the shearing force and bending moment at any point along the length of the beam. Also. draw the
shearing force and bending moment diagrams.

6.19.
l——— ¢ _-I——— Y
200 Ib/ft
100 Ib/ft
118811 x
[#] —
Ans.
TI.\
so0 1 — V = 500 — 100x Ib for 0 <x<4fi
!— 45 —!\Jmm V=100-200{x —4)Ib for 4 <x <8t
Shear 4 M = 500x — 50¢° Ib- ft for 0 <x <4t

M = 500x — 400(x — 2) — 100(x — 4) b ft for 4 <x <81t

A f
1225 Ib fe
| S

Bending Moment

Fig. 639
6.20.
15 kN/m
1,
(]| =] ——
A o
L ---—-—»Zm-—-.--o—-zm——-l
05m
Ans.

+
ZOT._\ V =20kN for0<x<05m
Shear T B - B .
b 833 —| N~ G V=20-15(-05) for 0.5<x<25m

V =—10kN for25<xy<45m

233kN m M = 20xkN-m for 0<x<0.5m
10 kN-m 20kN-m 3
i X<r“/\ M=20x—-75x-05"kN-m for0.S<x<25m
Mom:f | M =10z kN-m for0<z<2m

Fig. 6-40
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AkN-m 20KN:
6.21 fo) £
(2] - 1 ‘;——-
X N 8 o X
| |
i Im T Im 4§ Im . im i

Fig. 6-41

6.22.
10,000 1b-fy

<5 .

(4] 1 ]—

l-—- 12 —-LQ:K'T.IQM
Ans,
T \
5620 Ib
Shear {

-l-—-?.ua'-—l . IFEE

11,940 ib-fu
n
19,700 1b-t
1

Bending Moment

Fig. 6-42

800 Ib/ft

V =1kN
V=1-2(x—-1)kN

V =3kN
M=1xkN-m

M=lx—(x—l)(x;1)

M=]x—2(x—l)(£§-l) +4

M= lx—Z(x—l)(ﬂ)+4

=]

V = 5620 — 800x [b
V= —3980Ib

M = 5620x — 400x2 Ib- ft

M = 5620x — 9600(x — 6) Ib- ft
M = 3980z

[CHAP. 6

for0<x<1m
for1<x<3
for3<x<4
for0<x<lm

forl<x<?2

for2<x<3

for3<x<4

for 0<x<12ft
for 12<x<17ft
for 0<x <121t
for 12<x<14ft
for0<z<3ft
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6.23.

20 kN/m

—r V = 60kN for0<x<1lm
Shear _1 V =60—70—20(x — 1) kN for l<x<3m

G\l"""“ M =60xkN-m for0<x<Im
10kN 4

M=60x-70(x—3)—-10(x—1kN-m for l<x<3m

Bending Moment

Fig. 6-43
6.24.
3500 16
4000 -t 1
|0'— ] ———
AN i
"oag -k T Tiat - o T
Ans.

Shear

7 o

6625 Ib-fi
_r .
Fig. 6-44

V=0 for0<x<2ft
V=18751Ib for 2<x<16fi

= —331251b for 16 <x<I18ft
M =40001b-ft for0<x<2ft
M =4000+ 187.5(x — 2) Ib- fi for2<x<16Mt

M = 4000 + 187.5(x — 2) — 3500(x — 16) it for 16 < x < 18t
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6.25.
1000 1b/fe
x—~ a3
I 1 .
[¢] ———
.-
I 20 -
Ans. V = 6000 — — (1000) Ib for 0 < x < 12ft
T 24
6000 1b 2
Shear 4~ 17 V = —6000 + — (1000) Ib for 0<z<12ft
6000 Ib 24
M = 6000x — — (1000)1b-ft  for 0<x< 12ft
48,000 b1t 72
L/_/ N .
Benting. Moot M = 6000z - (1000) bt for 0<z< 121t
Fig. 6-45

For Problems 6.26 through 6.29 use singularity funetions to write the equations for shearing force and bending
moment at any point in the beam. Plot the corresponding diagrams.

6.26.
10 kN SkN ISkN
Ivl n\*—‘ m%l m 4—2 m———,
x
of | -
Ans.
1— TkiN
”ﬂ | 2kN V(x) = 17¢0)° = 10(x — 1)* = 5(¢ = 2)"
} _ — 0
T T “l'm 15(x — 3) kN
-4
Shear M(x) = 17(x)" = 10(x — 1) — 5(x — 2)
— 15(x — 3y kKN-m
28 KN-m J6kNmM

ljkr“f—-\
i

Bending Moment

Fig. 6-46
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6.27.
2 kN/m
l ¥ * X
VAN e

b tm—se——2m --——J-—l rn\—-l

Vx) = 200" =20 — ' + 20 — 3 + 2(x — KN

M(x) = 2(x)" = Kx = 1)* + x = 3)" + 2(x — 9)' KN-m

3kN-m
2KkN+em ’2 kN-m
Bending
—
Moment
Fig. 6-47
6.28.
B
200 Ib/ft
4 =
O —tn
A o
I-—- 10" 10 —~L— 10—
Amna.

T
334 1b 1600 '?
i

V(x) = —3340° — S — 10)° + 2334{x — 20)°
M(x) = ~334(x)" - $(x — 10)" + 2334(x — 20)"

Shear H;\ 1334 b

1
W'J Ib-ft

Bending Moment

Fig. 6-48
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6.29.

SHEARING FORCE AND BENDING MOMENT

1000 Nfm

Im | im

I i
Ans. (a)
583N

L

V = —166.7{x)* + 750{(x — 1)°
M = =556(x)" + 750({x — 1)"

(b) Shear

“”i"'._“mm_J\IJ.{
]

t

AN

556 N-m

{c) Bending Momeni
Fig. 6-49

[CHAP. 6

6.30. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-50. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant

points along the length of the beam. Draw approximate representations of these results.

30 lb/ft
400 b f1
I f 3 4 z
oL 1 | ————
AN 2 e
I'_W T 20 !" 10—
Fig. 6-50

Ans.

LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT
2 -47.5 -47.5 =950
3 -47.5 300 -1500
4 0 0 0

MOMENTRIGHT
0

-550

-1500
0
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4751b mm|%-\\\\
§ —

Shear [
1
'::ﬂdi ng 550 1b f1
oment
T !
950 1b ft 1500 b fr
1

Fig, 6-51

153

6.31. A simply supported beam is subject to the uniform load together with the couple shown in Fig. 6-52. Use
the BASIC program of Problem 6.14 to determine shearing forces and bending moments at significant

points along the length of the beam.

2250 N-m
¥ kN/m

C FEEEEEEREN

' St
B R

Fig. 6-52
Ans.
LOCATION SHEARLEFT SHEARRIGHT MOMENTLEFT
1 0 0 0
2 -8000 11125 -6250

3 -4875 0 0

MOMENTRIGHT
-2250
~6250

0



Chapter 7

Centroids, Moments of Inertia, and Products of
Inertia of Plane Areas

FIRST MOMENT OF AN ELEMENT OF AREA

The first moment of an element of area about any axis in the plane of the area is given by the
product of the area of the element and the perpendicular distance between the element and the axis.
For example. in Fig. 7-1 the first moment dQ, of the element da about the x-axis is given by

dQ, = yda
About the y-axis the first moment is
dQ, = xda
For applications, see Problems 7.2 and 7.12.
| R4
(- 2z —-—I da
Hﬂw-
y
l =3

Figo 7"—

FIRST MOMENT OF A FINITE AREA

The first moment of a finite area about any axis in the plane of the area is given by the summation
of the first moments about that same axis of all the elements of area contained in the finite area. This
is frequently evaluated by means of an integral. If the first moment of the finite area is denoted by
Q.. then

0. = j do.

For applications, see Problems 7.1 and 7.3,

CENTROID OF AN AREA

The centroid of an area is defined by the equations

x da vda
?: =% YV = ) _—_.%
A A YEUT AT T A

154
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where A denotes the area. For a plane area composed of N subareas A, each of whose centroidal
coordinates X; and ¥, are known, the integral is replaced by a summation

N

> %A,

=l (7.1

N

2N
i=1
N

> FA
*"*L (7.2)
> A

=1

>
Il

e
Il

For applications see Problems 7.2, 7.3, and 7.12.

The centroid of an area is the point at which the area might be considered to be concentrated and
still leave unchanged the first moment of the area about any axis. For example. a thin metal plate will
balance in a horizontal plane if it is supported at a point directly under its center of gravity.

The centroids of a few areas are obvious. In a symmetrical figure such as a circle or square, the
centroid coincides with the geometric center of the figure.

It is common practice to denote a centroid distance by a bar over the coordinate distance. Thus
X indicates the x-coordinate of the centroid.

SECOND MOMENT, OR MOMENT OF INERTIA, OF AN ELEMENT OF AREA

The second moment, or moment of inertia, of an element of area about any axis in the plane of the area
is given by the product of the area of the element and the square of the perpendicular distance between
the element and the axis. In Fig. 7-1. the moment of inertia d/, of the element about the x-axis is

dl, = y’da
About the y-axis the moment of inertia is
dl, = xX*da

SECOND MOMENT, OR MOMENT OF INERTIA, OF A FINITE AREA

The second moment, or moment of inertia, of a finite area about any axis in the plane of the area
is given by the summation of the moments of inertia about that same axis of all of the elements of area
contained in the finite area. This, too, is frequently found by means of an integral. If the moment of
inertia of the finite area about the x-axis is denoted by /,, then we have

I = I dl, = f yida (7.3)

L= f dL, = f da (7.4)

For a plane area composed of N subareas A, each of whose moment of inertia is known about the x-
and y-axes, the integral is replaced by a summation

N

L=Y ) L= W)
i=1

For applications, see Problems 7.4,7.6,7.7, 7.8, 7.9, and 7.10.
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UNITS

The units of moment of inertia are the fourth power of a length, in* or m*.

PARALLEL-AXIS THEOREM FOR MOMENT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for moment of inertia of a finite area states that the moment of inertia
of an area about any axis is equal to the moment of inertia about a parallel axis through the centroid
of the area plus the product of the area and the square of the perpendicular distance between the two
axes. For the area shown in Fig. 7-2, the axes x and y pass through the centroid of the plane area.
The x- and y-axes are parallel axes located at distances x, and y, from the centroidal axes. Let A denote
the area of the figure, I, and I, the moments of inertia about the axes through the centroid, and I,
and I, the moments of inertia about the x- and y-axes. Then we have

L=1_+AY (7.5)
I, =L, + A(x;)’ (7.6)
This relation is derived in Problem 7.5. For applications, see Problems 7.6, 7.8, 7.11, and 7.12.

lﬂ
d¥c
+— T —
.G Tg
¥
b e
O :
Fig. 7-2

RADIUS OF GYRATION

If the moment of inertia of an area A about the x-axis is denoted by 1,, then the radius of gyration
r, 1s defined by

I,

Yy = —_ 7.7
n=a 7.7)
Similarly, the radius of gyration with respect to the y-axis is given by
1,
n= A (7.8)

Since I is in units of length to the fourth power, and A is in units of length to the second power,
then the radius of gyration has the units of length, say in or m. It is frequently useful for comparative
purposes but has no physical significance. See Problems 7.10 and 7.11.
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PRODUCT OF INERTIA OF AN ELEMENT OF AREA

The product of inertia of an element of area with respect to the x- and y-axes in the plane of the
area is given by

dl,, = xyda

where x and y are coordinates of the elemental area as shown in Fig. 7-1.

PRODUCT OF INERTIA OF A FINITE AREA

The product of inertia of a finite area with respect to the x- and y-axes in the plane of the area is
given by the summation of the products of inertia about those same axes of all elements of area
contained within the finite area. Thus

I, = jxy da (7.9)

From this, it is evident that /,, may be positive, negative, or zero. For a plane area composed of N
subareas A, each of whose product of inertia is known with respect to specified x- and y-axes, the
integral is replaced by the summation

Ly = (L) (7.10)
i=1

For applications see Problems 7.13 and 7.15.

PARALLEL-AXIS THEOREM FOR PRODUCT OF INERTIA OF A FINITE AREA

The parallel-axis theorem for product of inertia of a finite area states that the product of inertia
of an area with respect to the x- and y-axes is equal to the product of inertia about a set of parallel
axes passing through the centroid of the area plus the product of the area and the two perpendicular
distances from the centroid to the x- and y-axes. For the area shown in Fig. 7.2, the axes x; and y; pass
through the centroid of the plane area. The x- and y-axes are parallel axes located at distances x, and
y, from the centroidal axes. Let A represent the area of the figure and I, , . be the product of inertia
about the axes through the centroid. Then we have

Ix_v = ngy(;'*'Axlyl (7'1")
This relation is derived in Problem 7.14. For applications see Problems 7.15 and 7.16.

PRINCIPAL MOMENTS OF INERTIA
At any point in the plane of an area there exist two perpendicular axes about which the moments

of inertia of the area are maximum and minimum for that point. These maximum and minimum values
of moment of inertia are termed principal moments of inertia and are given by

= (252 + (552 + 07 (712)

(I.n)min = (I‘ ; ly) - \/(%) + (Ix_\f)z (7’3)

These expressions are derived in Problem 7.17. For application, see Problem 7.18.
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PRINCIPAL AXES

The pair of perpendicular axes through a selected point about which the moments of inertia
of a plane area are maximum and minimum are termed principal axes. For application. see
Problem 7.16.

The product of inertia vanishes if the axes are principal axes. Also, from the integral defining
product of inertia of a finite area, it is evident that if either the x-axis, or the y-axis, or both, are axes
of symmetry, the product of inertia vanishes. Thus, axes of symmetry are principal axes.

Type of section Area Location of centroid

Rectangle bh =t =
(a)
Triangle _t
= 1 h
¥ _l 2 & @
e
O]
G t g Geometric
come
1 aR? or EDE B kT

Semicircle
d)

Quacdram of circle

¢ R - 4R
— 4 y 3’

PN

T

—]

oR? ==

— ——
Sector of circle

2

Fig. 7-3
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INFORMATION FROM STATICS

Most texts on statics develop the properties of plane cross-sectional areas shown in Fig. 7-3 that
will be needed in the present chapter. Those areas include (a) the rectangle. (b) the triangle, (¢) the
circle, (d) the semicircle, (€) the quadrant of a circle, and (e) the sector of a circle.

Solved Problems

7.1.  The shaded area shown in Fig. 7-4 is bounded by the curves

¥ =%
and Y =x

Determine the y-coordinate of the centroid of this area which ends at (1.1).
We select an element that is horizontal (thus all points in this element have the same “v") and

s
L TaTea % %

Fig. 7-4

extending from curve y, to y, as shown in Fig. 7-4. The height of the element is dy, From the definition
of the location of the centroid,
f yda

y= A

we can write
da = (x; — x,)dy

in which case we have

‘fm~m@mm

y=2o
f (x2— x,)dy
0

|
IWLﬂmw)m
= =320 = 0229
f(y"’—y’)dy
L1
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Although the integrations involved in this problem are simple, for more complex problems one should
resort to computers. A number of symbolic operations are available on proprietary software that permit
easy and rapid treatments of such computations.

7.2. A circular cross section has a sector having a central angle 26 removed as shown in Fig. 7-5.
Locate the y-coordinate of the centroid of the shaded area.

Fig. 7-5 Fig. 76

From the summary at the beginning of this chapter, we have for a sector of central angle 26 the area
and centroid given by 6R* and 2Rsin #/36, respectively (see Fig. 7-6). The area of the entire circle having
its centroid at its geometric center is also given in that summary.

By definition the y-coordinate of the centroid of the shaded area in Fig, 7-4 is given by

[yda o Zyda

YA A

Here we consider the shaded area to be composed of the three components consisting of the lower
semicircle (1), the upper semicircle (2), and the sector that has been removed (3). Thus the net shaded area

is represented as shown in Fig. 7-7.

Fig. 7-7

Using these components in the finite summation (7.1), we have

® @ ®
7 4R) . ,(4R) Z(ZR_ )
— —_ | - — = —_—
2R( ) T 28\ 3,) TR (3 e
7R? — 6R?

}:

_ 4(Rsin 6)
S (7 6)
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7.3. A thin sheet of metal 600 mm by 1000 mm has its two upper corners folded over along the
inclined lines AC and DF as shown in Fig. 7-8. In the regions bounded by the dotted lines, the
metal thus becomes doubly thick. Determine the y-coordinate of the centroid of the folded

sheet.
¥
250 mm
8 C
: 1
v 250 mm
AR 4
1000 mm
x
WCEmm | 3Mdmm
Fig. 7-8
By definition, the y-coordinate of the centroid is
- Jyda o TyA
YTTA A

where the numerator in each expression represents the first moment of the area about the x-axis. In the
numerical evaluation, the triangles ABC and DEF have been removed but replaced by triangles ACG and
DFH accounting for the double thickness. Thus we have

&PEA :’_\.{GC
- (600) (1000) (500) — Z{T% (250) (250) [1000 - @ﬁ + 2&250) (250) [750 + 2%];
¥ (600) (1000)

= 491.3 mm

74. Determine the moment of inertia of a rectangle about an axis through the centroid and parallel
to the base.

v

o [ ——a

-
g S
e
A

2

| I

Fig. 7-9

Let us introduce the coordinate system shown in Fig. 7-9. The moment of inertia I, , about the x-axis

passing through the centroid is given by 1, = I y?da. For convenience it is logical to select an element

such that y is constant for all points in the element. The shaded area shown has this characteristic.
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7.5.

7.6.

CENTROIDS, MOMENTS OF INERTIA, PRODUCTS OF INERTIA [CHAP. 7

bl 3 yhi2
b Y N 1 3
I = bdy = bl - = —bh
o I y bdy [3l nbh

B B2

This quantity has the dimension of a length to the fourth power, perhaps in* or m*.

Derive the parallel-axis theorem for moments of inertia of a plane area.

Fig. 7-10

Let us consider the plane area A shown in Fig. 7-10. The axes x; and y; pass through its centroid.
whose location is presumed to be known. The axes x and y arc located at known distances v, and t,.
respectively, from the axes through the centroid.

For the clement of arca da the moment of inertia about the x-axis is given by

dl, = (v, + V'Y da

For the entire area A the moment of inertia about the x-axis is

I = f dr, = J (i + ') da = f da +2 f v da + I (') da

The first integral on the right is cqual to y; I da = v A because y, is a constant. The second integral on
the right is equal to 2y, | ¥'da = 2y(0) = 0 because the axis from which y' is measured passes through

the centroid of the area. The third integral on the right is equal to /,, . i.c.. the moment of inertia of the
arca about the horizontal axis through the centroid. Thus

" = I"-‘, + A{ylja
A similar consideration in the other direction would show that
I, =1, +Ax)
This is the parallcl-axis thcorem for planc areas. It is to be noted that one of the axes involved in each
equation must pass through the centroid of the arca. In words. this may be stated as follows: The moment
of inertia of an area with reference to an axis not through the centrotd of the area is cqual to the moment

of inertia about a parallcl axis through the centroid of the arca plus the product of the same arca and the

square of the distance between the two axes.
The moment of inertia always has a positive value, with a minimum value for axes through the centroid
of the area in question.

Find the moment of inertia of a rectangle about an axis coinciding with the base.
The coordinate system shown in Fig. 7-11 is convenicnt. By definition the moment of inertia about the

x-axis is given by I, = J' y'da. For the element shown y is constant for all points in the element. Hence

h Ak
I, = }'2bdy=bly—] Ly
0 3 3
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1Yy
-n—b—-i

IS, ;E_I
g
3 B

This solution could also have been obtained by applying the parallel-axis theorem to the result
obtained 1in Problem 7-4. This states that the moment of inertia about the base is equal to the moment of
incrtia about the horizontal axis through the centroid plus the product of the area and the square of the
distance between these two axes. Thus

Fig. 7-11

1 AN
‘_:i,:_+ Y = "+ —) = — 3
1 oA lzbh bh(z 3 bh

7.7. Determine the moment of inertia of a triangle about an axis coinciding with the base.
¥ _T'
8

S e

-
L

b —
Fig. 7-12

Let us introduce the coordinate system shown in Fig. 7-12. The moment of inertia about the horizontal

base is
1= j yida

For the shaded elcment shown the quantity y is constant for all points in the element. Thus

h
I = f y'sdy
0

By similar triangles, s/b = (i — y)/h, so that

h b b ] h I
L= | yre-nay =0 yay— | yay| = o
Tk P 12
(o] a
7.8. Determine the moment of inertia of a triangle about an axis through the centroid and parallel
to the base.
Let the x-axis pass through the centroid and take the x-axis to coincide with the base as shown in
Fig. 7-13.
From Fig. 7-3(b) the x;-axis is located a distance of #/3 above the base. Also, the parallcl-axis theorem
tells us that

’x = IJ(; + A()’n)z
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But I, was determined in Problem 7.7, and A and y, (= A/3) are known. Hence we may solve for the desired
unknown, /, .. Substituting,

2

3 36

2
é""’ﬂxa‘flb"(é) or I, =—bK

b —
Fig. 7-13

7.9. Determine the moment of inertia of a circle about a diameter.

ﬁgq 7‘ 14

Let us select the shaded element of area shown in Fig. 7-14, and work with the polar coordinate
system. The radius of the circle is r.

To find I, we have the definition [, = I y da.

But ¥ = psin® and da = pdédp. Hence

2w 2w 1 r
1= J j pisin’ @pdedp = I sin’ Bde[zp‘]o
i} (i} [+

A f2n art
=%J; Sin28d8=T

If D denotes the diameter of the circle, then D = 2r and I, = 7D*/64. This is half the value of the polar
moment of inertia of a solid circular area (see Problem 5.1).
The moment of inertia of a semicircular area about an axis coinciding with its base is

_1#0“_#0“
2 64 128

I,



CHAP. 7] CENTROIDS, MOMENTS OF INERTIA, PRODUCTS OF INERTIA 165

7.10. Determine the moment of inertia about both the x- and y-axes as well as the corresponding radii
of gyration of the plane area shown in Fig. 7-15.

¥
y=64 —x1/25

—x dx

" e s0mm o} 40 mm )
Fig. 7-15

Let us select the shaded element of width dx and altitude y shown in Fig. 7-15. From Problem 7.6 we
have the moment of inertia of this element about the x-axis as

dl, = bk’ = }(dx)y’

Now, we must integrate over all values of x from —40 mm to +40 mm to account for all such elements.

Thus,
1 x= )
1,=fdf,=§f v dx
x= - 40
2 27

=5[:m[6"‘5]“"

= 3.197 % 10" mm*

The same element may be employed to determine the moment of inertia of the entire area about the
y-axis. By definition we have

dl, = x’da

x=40
1= Ia‘l, = I x*ydx
x=—40

x=40

=2[ x"“(64—£2-)dx
xm 25

= 1.092 X 10° mm*

To determine the radii of gyration, it is first necessary to find the area under the curve. It is
given by
A= J’ ydx

=40 12
= 2 ——— = 2
J;‘ﬂ (64 25) dx = 3413 mm

3.197 ¥ 10°* mm*
Vit~ 06mm
092 % 4
Ve = 179 mm

which becomes

from which we have

I, =
r, =

S= oo
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7.11. Two channel sections are attached to a cover plate 16in long by } in thick, as indicated in Fig.

7-16. Locate the centroid of the cross section and determine the moment of inertia and radius
of gyration about an axis parallel to the x-axis and passing through the centroid.

0.25in

xl
Axis of
symmetry

]
— l— 260 - 0.25=235in

Fig. 7-16 Fig. 7-17

Let us first consider a single channel section, as shown in Fig. 7-17. The arca of the cross section is
A = 2(3)(2.60 — 0.25) + 10(}) = 4.85in°

and from Problem 7.4 together with the parallel-axis theorem we have the moment of inertia of the channel
about an axis parallel 1o the x-axis and passing through the centroid of the channel (the x,-axis) as

® @ ®
Iy = 13G)(10) + 2{{5(2.35) (3)" + (2.35) () (5 — )’}
= 73.90in*
where term (1) corresponds to the moment of inertia of the vertical rectangle about the x,-axis, term @)
corresponds to the moment of inertia of one horizontal rectangle about the x,-axis through the centroid
of the horizontal rectangle, and term (3) indicatcs the transfer term from the parallel axis theorem to pass
from axis x, to axis x,.

Now, we may write the moment of inertia of the entire assembly about the x-axis by applying the result
of Problem 7.6 to the cover plate and applying the parallel axis theorem to I, to obtain

I, = Y(16) (1) + 2{73.87 + 485(5.5)*} = 441 .8 in*
The centroid of the cross section of the entire assembly is determined from the definition

Zyda
A

©) @
_ (16) ) (3) + 2[(4.85) (5.5)]
(16)(3) + 2[4.85]

where the terms represented by (3) correspond to the horizontal cover plate and the terms numbered (@)
correspond to the channels.

j;:

=3.13mn
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Now that we have located the centroidal axis x.; of the assembly, we may employ the parallel-axis
theorem to transfer {rom the x- to the xg-axis:

I=1,+AQ)
441.8in* = 1,_+ (17.76in%) (3.13 in)®
1, =26848in*

The corresponding radius of gyration is

/1, f268.48 .
Fo, = I"= ——— =38%in

V 17.76

7.12. A plane section is in the form of an equilateral triangle, 200 mm on a side. From it is removed
another equilateral triangle in such a manner that the width of the remaining section is 30 mm
measured perpendicular to the sides of both equilateral triangles. as shown in Fig. 7-18.
Determine the location of the centroid of the remaining (shaded) area as well as the moment
of inertia about the axis through the centroid and parallel to the x-axis.

{ 200 mm l

Fig. 7-18

It is necessary to determine the sizc of the inner triangle that has been removed. From the geometry
of Fig. 7-18 it is evident that BE = 60 mm because of the 30° angle between BE and BC. Thus the altitude
k of the “removed™ triangle DEF is

h = 200cos 30 — 30 — 60 = 83.21 mm
The length of a side of this triangle is

21
DF = fﬁﬁ = 96.08 mm

From symmetry the centroid lies on the y-axis and its location is found by the definition

[yda or ZydA
A A

?:

where the numerator represents the first moment of the area about the x-axis. Using the known location
of the centroid of a triangle and its area, as given in the summary at the beginning of this chapter,
we have

o 1(200) (200 cos 30) (% cos 30) — 3(96.08) (83.21) {30 + 83.21/3}

’ 1(200) (200 cos 30) — 1(96.08) (83.21)

= 5772 mm
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To determine the moment of inertia of the shaded area in Fig. 7-18, we begin by finding the moment
of inertia of that area about the x-axis. This is accomplished by taking the moment of inertia of the outer
triangle ABC about the x-axis using the result of Problem 7.7, then subtracting the moment of inertia of
the inner triangle D EF about that same axis. This latter value is calculated by first determining the moment
of inertia of DEF about an axis through the centroid of DEF using the result of Problem 7.8, then
employing the parallel-axis theorem to transfer that value to the x-axis. Thus,

I, = $5(200) (200 cos 30)° — {5(96.08) (83.21)* + 5(96.08) (83.21) [30 + 83.21/3F}
= 71.74 % 10° mm*
Utilizing the parallel-axis theorem, we have
I, = L.+ AGY
71.74 X 10° mm® = I, _+ [3(200) (200 cos 30) — 3(96.08) (83.21)} (57.72 mm)?
1, = 27.35 X 10° mm*

7.13. Determine the product of inertia of a rectangle with respect to the x- and y-axes indicated in
Fig. 7-19.

¥

b

T 1%

11
"7
|

|
I

—t—

Fig. 7-19

We employ the definition /,, = nyda and consider the shaded element shown. Integrating,
v=h rx=b y=h xZ (]
L, = I I xydxdy = J [—] ydy
2 Jo
y=0 ~x=0 y=0
b?

21h 252
y b*h
= =_— | — = — I

2[2}0 4 D

7.14. Derive the parallel-axis theorem for product of inertia of a plane area.

In Fig. 7-20. the axes x; and y pass through the centroid of the area A. The axes x and y are located
the known distances y, and x,, respectively, from the axes through the centroid.
For the element of area da the product of inertia with respect to the x- and y-axes is given by

dl,, = (x, +x)(», +y')dxdy

For the entire area the product of inertia with respect to the x- and y-axes becomes

I, = J dI,, = I J (1 + X) (0 +y')drdy

=Jj’x.y,dxdy+‘[jx'yldxdy+JJ‘x,y'dxdy+JIx'y'dxdy
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7.18.

Fig, 7-20

The first integral on the right side equals x, y, A since x, and y, are constants. The second and third integrals
vanish because x" and y" are measured from the axes through the centroid of the area A. The fourth integral
is equal to /., that is, the product of inertia of the area with respect to axes through its centroid and
parallel to the x- and y-axes. Thus, we have

Irjleyl-fq""rxgyu (I)

This is the parallel-axis theorem for product of inertia of a plane area. It is to be noted that the x5 and
yg-axes must pass through the centroid of the area. Also, x, and y, are positive only when the x- and
y-coordinates have the location relative to the x;-y system indicated in Fig. 7-20. Thus, care must be taken
with regard to the algebraic signs of x, and y,.

Determine I, for the angle section indicated in Fig. 7-21.

The area may be divided into the component rectangles as shown. For rectangle 1 we have, from (/)
of Problem 7.13,

(o)1 = 3(10)?(125)% = 39 X 10* mm*

For rectangle 2 we employ (1) of Problem 7.14. The product of inertia of rectangle 2 about axes through
its centroid and parallel to the x- and y-axes vanishes because these are axes of symmetry. Thus, for
rectangle 2, I, = 0. The parallel-axis theorem of Problem 7.14 thus becomes

(1) = (42.5)(5) (65) (10) = 13.8 X 10* mm*
For the entire angle section we thus have

1, =39 x10° + 13.8 X 10" = 52.8 % 10° mm*

¥ ¥o
v £
10
10 "'“E.q ) mim
- -
125 mm i G i
¥
i o 1 10 mm
‘ @ _IT mm B 1 }l ) x
I-— S mm -——4 b7 mm——|
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7.16.

717,
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Determine the product of inertia of the angle section of Problem 7.15 with respect to axes
parallel to the x- and y-axes and passing through the centroid of the angle section. See Fig.
7-22.

It is first necessary to locate the centroid of the area, that is, we must find x and y. We have
_125(10) (5) + 65(10) (42.5)

X 125(10) + 65(10) 17.8 mm
_ 125(10) (62.5) + 65(10) (5) _
Y= T 50y + 650y e8m

Now we employ the parallel-axis theorem of Problem 7.13; that is,
Ly =xinA+ L,
In Problem 7.15 we found 7,, = 52.8 X 10° mm®. Thus
52.8 X 10* = 17.8(42.8) (1900) + I,
whence

I

XGYG

= —92 X 10 mm*

Consider a plane area A and assume that [,, 1,, and I,, are known. Determine the moments of
inertia /,, and 1, as well as the product of inertia I, ,, for the set of orthogonal axes x;-y, oriented
as shown in Fig. 7-23. Determine also the maximum and minimum values of I,,.

Fig. 7-23

The moment of inertia of the area with respect to the x,-axis is

I, = Iﬁda= J(ywsﬁwxsinﬂ)zda

cos'*’&J’y’da+sin%[x’da—2sin90059]xyda

= I.cos” 6+ I, sin® @ — 21, sin cos &
1 +cos26 1 —cos26
SN i) Y L

2 2 ) —1I,,sin26
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Or
+ -1,
I, = ("‘ I,) + (*" ’*) c0s26— I,,5in 26 )
2 2
Analogously, I,, may be obtained from (7) by replacing ¢ by # + #/2 to yield
I, = (”‘;"]— ("‘;’-‘)coszeﬂ“.sinze )

The value of 6 that renders f, maximum or minimum is found by setting the derivative of Eq. (/) with
respect to 6 equal to zero. Thus, since I,, I,, and I,, are constants we have from (/)
dl

T -, — 1,)sin20 - 21, cos20 =0

Solving,
3)

Fig. 7-24

Equation (3) has the convenient graphical interpretation shown in Cases 1 and II of Fig. 7-24.
If now the values of 26 given by (3) are substituted into (/). we obtain

where the positive sign refers to Case I and the negative sign to Case Ii. These maximum and minimum
values of moment of inertia correspond to axes defined by (3). The maximum and minimum values
of moment of inertia are termed principal moments of inertia and the corresponding axes are termed
principal axes.

We may now determine /,,,, from

lrJ'l)’l = [’ny' da

= J(stﬂ+ysin9)(ymﬁ'—xsin 8) da
= coszﬂfxydahsinzﬂfxyda

+sm8cmﬂfy2da—sin9cmﬂszda

= I,,(cos® 6 — sin? 6) + (I, — 1,)sin 6cos 8

IL—Ly .
_—_( 3 ’)mn23+fx_,c0529 3
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From (9), I,,,, vanishes if

L,

(L - !!.)
2

which is identical to condition (3). Since (3) defined principal axes, it follows that the product of inertia
vanishes for principal axes.

tan 26 = —

A structural aluminum 6 Z 542 section has the nominal dimensions indicated in Fig. 7-25.
Determine I, I, I,, and also the maximum and minimum values of the moment of inertia with
respect to axes through the point O.

The section may be divided into the component rectangles (D), @), and () as indicated. The result

obtained in Problem 7.4, together with the parallel-axis theorem given in Problem 7.5, may be used to
determine /, and I

I, = () (6) + 2[5(3) 3 + (3D B) (1)) = 25.27 in’
I, = $6) @ + 2[H() 3 + @) (39 (13)] = 9.08in*
¥
I 3}” :
:r-:r"\‘qu : @, - J_i” v
.1_ "'.5 /
2 N
e @ ---i" !:
lo 4 \'\ s
154 ~ 1A
: A ,
. g N‘\.Zﬁm
— . \\\
vV[L® x
g ;
Fig, 7-25 Fig, 7-26

The product of inertia with respect to the x- and y-axes may be determined through use of the
parallel-axis theorem for product of inertia as given in Problem 7.14. It is to be noted that the product of
inertia of each of the component rectangles about axes through the centroid of each component and
parallel to the x- and y-axes vanishes because these are axes of symmetry. Hence, from (1) of Problem 7.14
we have for the entire Z-section

I, = 2[() 1) 3) @] = 11.6in°

The maximum and minimum values of moment of inertia with respect to axes through the point O
may be found from (¢) of Problem 7.17. From that equation

G~ (52) = (P57
_ (25.2? + 9'08)1 f’(25.27 -9.08
2 v 2
(F)mex = 31.381in° )
(F)min = 2-98in’ @)

)z +(11.6)2
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The orientation of these principal moments of inertia is found from (3) of Problem 7.17 to be

'{'I’_U

1L.6
( 25.27 - 9.()8)
2
= =27°20¢, —117°20’

The principal moments of inertia given in (/) and (2) correspond to the principal axes given by (3). These
principal axes are represented by the dashed lines in Fig. 7-26.

tan26 = —

(3)

Supplementary Problems

7.19. The structural channel section has welded to it a horizontal reinforcing plate as shown in cross section in
Fig. 7-27. Determine the y-coordinate of the centroid of the composite section. Ans. y=456in

1 L0
[
b 7 x
oimf BN | 1
.Q D5in 3
N
G -
12m %
— C5m
0Sin_
L3 U By
!
n-r Sm “.
Fig. 7-27

7.20. The shaded area shown in Fig. 7-28 is bounded by a circular arc and a chord. Determine the location of
the centroid of the area with respect to the center of the circular arc.

__4R  (sin’0)
ARS. Y = 3 26— sin26)

O

L
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7.21.  An area consists of a circle of radius R from which a rectangle of dimensions a X 3a has been removed,
as shown in Fig. 7-29. Dctermine the moment of inertia of the shaded area about the x- and also the

y-axes.
¥
L
T -2
L )
5>
.t_ A :
_1? = i
i e
Fig. 7-30
R a' ak'  Ya*
Ans. I,—T e f.-—‘-4——T

7.22. The shaded area in Fig. 7-30 results from removing the central square from the outer square. Determine
the moment of inertia of the net area about the x-axis. Ans. I, = 007811°

7.23. A thin reclangular sheet has semicircular and also triangular areas removed, as shown in Fig. 7-31. Locate
the centroid of the sheet and determine the moment of inertia about the horizontal axis passing through
the centroid.  Ans. ¥ = 3708 mm, [, = 9937 X 10° mm*

¥

100 mm
Fig. 7-31

7.24, A trapczoidal area has the dimensions indicated in Fig. 7-32. Determine the location of the centroid as well
as the moment of inertia about an axis through the centroid and parallel to the x-axis.
Ans. y=444mm. [, = 2414 % 10° mm*

100 mm | 1040 nam
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7.25. A thin-walled section (t < a) has the configuration indicated in Fig. 7-33. Locate the centroid of the cross
section and determine the moment of inertia of the area about an axis passing through the centroid and
parallel to the x-axis. ~ Ans. y=a, [, =533a't+arl6

—_—

=

]
I-Q—F—P-I

Fig. 7-33

7.26. An area of circular cross section from which three circular holes have been removed is shown in Fig. 7-34.
Determine the location of the centroid of the section and the moment of inertia of an axis passing through
the centroid and parallel to the x-axis. Ans. y=—-RN0, i = 0.737R*

Fig. 7-34

7.27. Determine the moment of inertia of the diamond-shaped figure shown in Fig. 7-35 with respect to the
horizontal axis of symmetry. Ans. I, =854in*

Fig. 7-35 Fig. 7-36
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7.28. Determine the moment of inertia of a channel-type section about a horizontal axis through the centroid.
Refer to Fig. 7-36. What is the radius of gyration about this same axis?
Ans. I =231in" r, =240in

7.29. Locate the centroid of the channel-type scction shown in Fig. 7-37 and determine the moment of inertia
of the cross-sectional arca about a horizontal axis through the centroid.
Ans. ¥y =3833mm, [, = 33 % 10°mm*

30 mm H 50 mm
=] 200 mm —ede- 200 M l-_-'—
N ‘l/l;'zs mm
O mm
T =
Fig. 7-37

7.30. A plane area has the shape of a parallclogram as shown in Fig. 7-38. The y- and z-axes pass through the
centroid of the area. Determinc /, and /.. Ans. I, = bk, I, = Lhb(B? + )

z —b—
Fig. 7-38 Fig. 7-39
7.31. Determine the product of inertia of a triangle with respect to the x- and y-axes indicated in Fg. 7-39.
Ans. b H'124

7.32. Determine the product of inertia of the triangle shown in Fig. 7-39 with respect to the axes x¢ and yg
passing through the centroid.  Ans. —-b*H’172

v
7.33. For the plane arca in Fig. 7-40 dectermine the mo- g

ments of inertia and product of inertia with respect T
to the x¢- and ys-axes passing through the centroid. 7S mm /
Also, determine the principal second moments of 4
area with respect to the centroid.
Ans. 1, =400 x 10° mm®*; 1, = 147 x 10° mm",
Ly = =58 X 10° mm*; (1))mex = 805 % 10° mm?*; 150 men
(7)) = 142 X 10° mm* < ol

75 mm

i z

"'73 mm-l-— (L] rnn—-l

Fig. 7-40



Chapter 8

Stresses in Beams

TYPES OF LOADS ACTING ON BEAMS

Either forces or couples that lie in a plane containing the longitudinal axis of the beam may act
upon the member. The forces are understood to act perpendicular to the longitudinal axis, and the
plane containing the forces is assumed to be a plane of symmetry of the beam.

EFFECTS OF LOADS

The effects of these forces and couples acting on a beam are (@) to impart deflections perpendicular
to the longitudinal axis of the bar and (b) to set up both normal and shearing stresses on any cross
section of the beam perpendicular to its axis. Beam defiections will be considered in Chaps. 9, 10,
and 11.

TYPES OF BENDING

If couples are applied to the ends of the beam and no forces act on the bar, then the bending
is termed pure bending. For example, in Fig. 8-1 the portion of the beam between the two downward
forces is subject to pure bending. Bending produced by forces that do not form couples is called
ordinary bending. A beam subject to pure bending has only normal stresses with no shearing stresses
set up in it; a beam subject to ordinary bending has both normal and shearing stresses acting
within it.

P P
l |
kD% I =

Fig. 8-1

NATURE OF BEAM ACTION

It is convenient to imagine a beam to be composed of an infinite number of thin longitudinal rods
or fibers. Each longitudinal fiber is assumed to act independently of every other fiber, i.e., there are
no lateral pressures or shearing stresses between the fibers. The beam of Fig. 8-1, for example, will
defiect downward and the fibers in the lower part of the beam undergo extension, while those in the
upper part are shortened. These changes in the lengths of the fibers set up stresses in the fibers. Those
that are extended have tensile stresses acting on the fibers in the direction of the longitudinal axis of
the beam, while those that are shortened are subject to compressive stresses.

177
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NEUTRAL SURFACE

There always exists one surface in the beam containing fibers that do not undergo any extension
or compression, and thus are not subject to any tensile or compressive stress. This surface is called the
neutral surface of the beam,

NEUTRAL AXIS

The intersection of the neutral surface with any cross section of the beam pcrpendicular to its
longitudinal axis is called the neutral axis. All fibers on one side of the neutral axis are in a state of
tension, while those on the opposite side are in compression.

BENDING MOMENT

The algebraic sum of the moments of the external forces to one side of any cross section of the
beam about an axis through that section is called the bending moment at that section. This concept was
discussed in Chap. 6.

ELASTIC BENDING OF BEAMS

The following remarks apply only if all fibers in the beam are acting within the elastic range of
action of the material.

Normal Stresses in Beams

For any beam having a longitudinal plane of symmetry and subject to a bending moment A at a
certain cross section, the normal stress acting on a longitudinal fiber at a distance y from the neutral
axis of thc beam (sec Fig. 8-2) is given by

c=- (8.1)
where I denotes the moment of inertia of the cross-sectional area about the neutral axis. This quantity
was discussed in Chap. 7. The derivation of this equation is discussed in detail in Problem 8.1. For
applications sce Problems 8.2 through 8.18. These stresses vary from zero at the neutral axis of the
beam to a maximum at the outer fibers as shown. The stresses are tensile on one side of the neutral
axis, compressive on the other. These stresses are also called bending, flexural, or fiber stresses.

Fig. 8-2
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Location of the Neutral Axis

When the beam action is entirely elastic the ncutral axis passes through the centroid of the cross
section. Hence, the moment of inertia / appearing in the above equation for normal stress is the
moment of inertia of the cross-sectional area about an axis through the centroid of the cross section

of the beam.

Section Modulus

At the outer fibers of the beam the value of the coordinate y is frequently denoted by the symbol
¢. In that case the maximum normal stresses are given by
Mc M

o= — or

7 o= Te (8.2)

The ratio /¢ is called the section modulus and is usually denoted by the symbol Z. The units are
in* or m*. The maximum bending stresses may then be represented as

=_ 8.3
o= (8.3)
This form is convenient because values of Z are available in handbooks for a wide range of standard
structural steel shapes. See Problems 8.5, 8.9, and 8.12.

Assumptions

In the derivation of the above expression for normal stresses it is assumed that a plane section of
the beam normal to its longitudinal axis prior to loading remains plane after the forces and couples
have been applied. Further, it is assumed that the beam is initially straight and of uniform cross section
and that the moduli of elasticity in tension and compression are equal. Again. it is to be emphasized
that no fibers of the beam are stressed beyond the proportional limit.

Shearing Force

The algebraic sum of all the vertical forces to one side of any cross section of the beam is called
the shearing force at that section. This concept was discussed in Chap. 6.

Shearing Stresses in Beams

For any beam subject to a shearing force V (expressed in pounds) at a certain cross section. both
vertical and horizontal shearing stresses 7 are set up. The magnitudes of the vertical shearing stresses
at any cross section are such that these stresses have the shearing force V as a resultant. In the cross
section of the beam shown in Fig. 8-3, the vertical plane of symmetry contains the applied forces and
the neutral axis passes through the centroid of the section. The coordinate y is measured from the
neutral axis. The moment of inertia of the entire cross-sectional area about the neutral axis is denoted
by I. The shearing stress on all fibers a distance y, from the neutral axis is given by the formula

V C
T= EJ;Iyda (8.4)

where b denotes the width of the beam at the location where the shearing stress is being calculated.
This expression is derived in Problem 8.19. For applications see Problems 8.20 through 8.23. The
integral in (8.4) represents the first moment of the shaded area of the cross section about the neutral
axis. This quantity was discussed in detail in Chap. 7. More generally, the integral always represents
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o |
f

b— s —d
Fig. 8-3

the first moment about the neutral axis of that part of the cross-sectional area of the beam between
the horizontal plane on which the shearing stress = occurs and the outer fibers of the beam, i.e., the
area between y, and c.

From (8.4) it is evident that the maximum shearing stress always occurs at the neutral axis of the
beam, whereas the shearing stress at the outer fibers is always zero. In contrast, the normal stress varies
from zero at the neutral axis to a maximum at the outer fibers.

In a beam of rectangular cross section the above equation for shearing stress becomes

V /K
7= 5(?'}%) (8.5)

where 7 denotes the shearing stress on a fiber at a distance y, from the neutral axis and 4 denotes the
depth of the beam. The distribution of vertical shearing stress over the rectangular cross section is thus
parabolic, varying from zero at the outer fibers to a maximum at the neutral axis. For application see
Problems 8.20 through 8.23.

Both the above equations for shearing stress give the vertical and also the horizontal shearing
stresses at a point, as discussed in Problem 8.19, since the intensities of shearing stresses in these two
directions are always equal.

PLASTIC BENDING OF BEAMS

The following remarks apply if some or all of the fibers of the beam are stressed to the yield point
of the material.

We shall consider a simplified stress-strain curve such as that of Fig. 8-4, where it is assumed that
the proportional limit and the yield point coincide. The yield region, i.e., the horizontal plateau of the
curve, is assumed to extend indefinitely. This conventionalized representation of ductile material
behavior is termed elastic-perfectly plastic behavior. Here, o,, denotes the yield point of the material
and ¢,, represents the strain corresponding to that stress. We shall assume that material properties are
identical in tension and compression.

1‘

Typ 4

Fig. 8-4
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Elastoplastic Action

For sulfficiently large bending moments in a beam the interior fibers will be stressed in the elastic
range of action, whereas the outer fibers will have reached the yield point of the material. Such a stress
distribution may be as indicated in Fig. 8-5.

Fully Plastic Action

As bending moments continue to increase, a limiting case is approached in which all fibers are
stressed to the yield point of the material. This stress distribution appears in Fig, 8-6.

Fo —2

-

N.A. _ N.A.

Fig. 8-5 Fig. 8-6

Location of Neutral Axis

When beam action is entirely elastic, the neutral axis passes through the centroid of the cross
section. However, as plastic action spreads from the outer fibers inward, the neutral axis shifts from
this location to another, which is determined by realizing that the resultant normal force over any cross
section vanishes. In the limiting case of fully plastic action, the neutral axis assumes a position such that
the total cross-sectional area is divided into two equal parts. This is discussed in Problem 8.29.

Fully Plastic Moment

The bending moment corresponding to fully plastic action is termed the fully plastic moment and
will be denoted by M,. For the stress-strain diagram assumed here no greater moment can be

developed.
For a beam of rectangular cross section the fully plastic moment is shown in Problem 8.25 to be

M, = bh’0,,/4 where b represents the width of the beam and A its depth.

Solved Problems

Elastic Bending of Beams

8.1.  Derive an expression for the relationship between the bending moment acting at any section in a
beam and the bending stress at any point in this same section. Assume Hooke’s law holds.

The beam shown in Fig. 8-7(a) is Ioaded by the two couples M and consequently is in static
equilibrium. Since the bending moment has the same value at all points along the bar, the beam is said
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to be in a condition of pure bending. To determine the distribution of bending stress in the beam, let us
cut the beam by a plane passing through it in a dircction perpendicular to the geometric axis of the bar.
In this manner the forces under investigation become external to the new body formed. even though they
were internal effccts with regard to the original uncut body.

M M M M
- —=1
| I

{a} )

Fig. 8-7

The free-body diagram of the portion of the beam to the left of this cutting plane now appears as in
Fig. 8-7(b). Evidently a moment M must act over the cross section cut by the plane so that the left portion
of the beam will be in static equilibrium. The moment M acting on the cut section represents the effect
of the right portion of the beam on the left portion. Since the right portion has been removed, it must be
replaced by its effect on the left portion and this effect is represented by the moment M. This moment is
the resultant of the moments of forces acting perpendicular to the cut cross section and in the plane of the
page. It is now necessary to make certain assumptions in order to determine the nature of the varation
of these forces over the cross section.

It is convenient to consider the beam to be composed of an infinite number of thin longitudinal rods
or fibers. It is assumed that every longitudinal fiber acts independently of every other fiber; that is, there
are no lateral pressures or shearing stresses between adjacent fibers. Thus each fiber is subject only to axial
tension or compression. Further. it is assumed that a plane section of the beam normal to its axis before
loads are applied remains plane and normal to the axis after loading. Finally, it is assumed that the material
follows Hooke’s law and that the moduli of elasticity in tension and compression are equal.

Let us next consider two adjacent cross scctions aa and bb marked on the side of the beam. as shown
in Fig, B-8, Prior to loading, these sections are parallel to each other. After the applied moments have acted
on the beam, these sections are still planes but they have rotated with respect to each other to the positions
shown, where O represcnts the center of curvature of the beam. Evidently the fibers on the upper surface
of the beam are in a state of compression, while those on the lower surface have been extended slightly
and are thus in tension. The line cd is the trace of the surface in which the fibcrs do not undergo any strain
during bending and this surface is called the neutral surface, and its intersection with any cross section is
called the neurral axis. The clongation of the longitudinal fiber at a distance v (measured positive
downward) may be found by drawing line de parallel to aa. If p denotes the radius of curvature of the bent
beam, then from the similar triangles cOd and edf we find the strain of this fiber to be

== ()

Thus. the strains of the longitudinal fibers are proportional to the distance y from the neutral axis.
Since Hooke's law holds, and thercfore E = o/e, or o = Ee, it immediately follows that the stresses
existing in the longitudinal fibers are proportional to the distance y from the neutral axis, or

B
P

o 2)
Let us consider a becam of rectangular cross section, although the derivation actually holds for any
cross section which has a longitudinal plane of symmetry. In this case, these longitudinal, or bending,
stresses appear as in Fig. 8-9.
Let da represent an element of area of the cross section at a distance y from the neutral axis. The stress
acting on da is given by the above expression and consequently the force on this element is the product
of the stress and the arca da, that is,

dF = ——da 3)
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Fig. 8-8 Fig. 8-9

However, the resuliant longitudinal force acting over the cross section is zero (for the case of pure bending)
and this condition may be expressed by the summation of all forces dF over the cross section. This is done

by integration:
E E
J—yda=—Jydaﬁ0 4
p P

Evidently [yda = 0. Howevcr, this integral represents the first moment of the area of the cross section
with respect to the neutral axis, since y is mcasurcd from that axis. But, from Chap. 7 we may write
[yda = yA, where y is the distance from the neutral axis to the centroid of the cross-sectional area. From
this, yA = (; and since A is not zero, then y = 0. Thus the neutral axis always passes through the centroid
of the cross section. provided Hooke’s law holds.

The moment of the elemental force dF about the neutral axis is given by

E
dM = ydF =y (?yda) (5)

The resultant of the moments of all such elemental forces summed over the entire cross section must be
equal to the bending moment M acting at that section and thus we may write

E 2
M= j Y da (©)
p
But I = [y*da and thus we have
p

[t is to be carefully noted that this moment of inertia of the cross-sectional area is computed with respect
to the axis through the centroid of the cross section. But previously we had

E '
=2 (®)
P
Eliminating p from these last two equations, we obtain
M
=7 ©

This formula gives the so-called bending or flexural stresses in the beam. In it, M is the bending moment
at any section, [ the moment of inertia of the cross-sectional area about an axis through the centroid of
the cross section, and y the distance from the neutral axis (which passes through the centroid) to the fiber
on which the stress o acts.

The value of y at the outer fibers of the beam is frequently denoted by ¢. At these fibers the bending
stresses are maximum and there we may write

o="C (10)
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A beam is loaded by a couple of 12,000 1b- in at each of its ends, as shown in Fig. 8-10. The beam
is steel and of rectangular cross section 1 in wide by 2 in deep. Determine the maximum bending
stress in the beam and indicate the variation of bending stress over the depth of the beam.

lm lb‘ll‘l .w lb‘ll!l
T N.A. - NA.
1 i i
—t17 -
Fig. 8-10 Fig. 8-11

From Problem 8.1, bending takes place about the horizontal neutral axis denoted by N.A. This axis
passes through the centroid of the cross section. The moment of inertia of the shaded rectangular cross
section about this axis is found by the methods of Chap. 7 to be

I = hbh® = L(1)(2)° = 0.667 in*

Also from Problem 8.1, the bending stress at a distance y from the neutral axis is given by o = My/l,
where y is illustrated in Fig. 8-11. Thus, all longitudinal fibers of the beam at the distance y from the neutral
axis are subject to the same bending stress given by the above formula.

Since M and [ are constant along the length of the bar, evidently the maximum bending stress occurs
on those fibers where y takes on its maximum value. These are the fibers along the upper and lower surfaces
of the beam, and from inspection it is obvious that for the direction of loading shown the upper fibers are
in compression and the lower fibers in tension. For the lower fibers, y = 1 in and the maximum bending
stress is

_ 12.000(1)

= in?
0.667 18,000 Ib/in

For the fibers along the upper surface y may be considered to be negative and we have

_12000(-1) _ -
o= =5 e = ~ 18000 Ibiin

Thus the peak stresses are 18,000 Ib/in? in tension for all fibers along the lower surface of the beam
and 18.000 Ib/in* in compression for all fibers along the upper surface. According to the formula o = Myil,
the bending stress varies linearly from zero at the neutral axis to a maximum at the outer fibers and hence
the variation over the depth of the beam may be plotted as in Fig. 8-12.

~= 18,000 1b/in® r-—

T

—-J- 18,000 Ib/in? I-v—

Fig. 8-12
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8.3.

A beam of circular cross section is 7 in in diameter. It is simply supported at each end and loaded
by two concentrated loads of 20.000 Ib each, applied 12 in from the ends of the beam. Determine
the maximum bending stress in the beam.

20,004 1b 20,000 b

20,000 1Ib 20,000 1b

/ m.nLo Ibin
_+

Bernding Moment

Fig. 8-13

Here the moment is not constant along the length of the beam, as it was in Problem 8.2. The loading
is illustrated in Fig. 8-13 together with the bending moment diagram obtained by the methods of Chap.
6. It is 1o be noted that the portion of the becam between the two downward loads of 20,0001b is in a
condition termed pure bending and everywhere in that region the bending moment is equal to
20,000(12) = 240,000 1b- in.

From Problem 7.9 the moment of inertia of the shaded circular cross section about the neutral axis,
which passes through the centroid of the circle, is I = #D64 = m(7)%64 = 118in".

The bending stress at a distance y from the horizontal neutral axis shown is ¢ = My/l. Evidently the
maximum bending stresses occur along the fibers located at the ends of a vertical diameter and designated
as A and B. This maximum stress is the same at all such points between the applied loads. At point B,
y = 3.5in and the stress becomes

o= 3_4_02]0%(@ = 7120 Ibfin* tension

At point A the stress is 7120 Ib/in® compression.

A steel cantilever beam 16 ft 8 in in length is subjected to a concentrated load of 320 Ib acting
at the free end of the bar. The beam is of rectangular cross section, 2in wide by 3 in deep.
Determine the magnitude and location of the maximum tensile and compressive bending
stresses in the beam.

The bending moment diagram for this type of loading, determined by the techniques of Chap. 6, is
triangular with a maximum ordinate at the supporting wall, as shown below in Fig. 8-14(a). The maximum
bending moment is merely the moment of the 320-Ib force about an axis through point B and perpendicular
to the plane of the page. It is —320(200) = —64.000 Ib- in.

The bending stress at a distance y from the neutral axis, which passes through the centroid of the cross
section, is o = My/I where y is illustrated in Fig. 8-14(b). In this expression / denotes the moment of inertia
of the cross-sectional area about the neutral axis and is given by

I=pbh* = $(2) (3)" = 4.50in
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320 b 3 [
16'8" -‘
B
AL
P — T.h.

v
S I I 1

64,000 1b-in _l__

Bending Moment

(a) (b)

Fig. 8-14

Thus at the supporting wall, where the bending moment is maximum, the peak tensile stress occurs
at the upper fibers of the beam and is
_ My (—64,000)(-1.5) -
o= 450 = 21.400 Ib/in
It is evident that this stress must be tension because all points of the beam deflect downward. At the lower
fibers adjacent to the wall the peak compressive stress occurs and is equal to 21,400 Ib/in”.

Let us reconsider Problem 8.4 for the case where the rectangular beam is replaced by a
commercially available rolled steel section, designated as a W6 X 155. This standard manner of
designation indicates that the depth of the section is 6 in, that it is a so-called wide-flange section,
and that it weighs 15} Ib per ft of length. Determine the maximum tensile and compressive
bending stresses.

Fig. 8-15

Such a beam has the symmetric cross section shown in Fig. 8-15 and bending takes place about the
horizontal neutral axis passing through the centroid. Extensive handbooks listing properties of all available
rolled stecl shapes are available to designers and abridged tables are presented at the end of this chapter.
From that table the moment of inertia about the neutral axis is found to be 28.1 in*.

The bending stress at a distance y from the neutral axis is given by o = My/l. At the outer fibers,
v = ¢ and

= ——

yoMe_M

I llc
The ratio {/c is designated as the section modulus and is usually denoted by the symbol Z. The units are
obviously in*. From the abridged table we find Z to be 9.7 in. Thus if one is concerned only with bending

stresses occurring at the outer fibers, which is frequently the case since we are often interested only in
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maximum stresses, then the section modulus is a convenient quantity to work with, particularly for
standard structural shapes.

The stresses in the extreme fibers at the section of the beam immediately adjacent to the wall are thus
given by

MM 64,000

—_—— = ‘2
STz o 6600

Again, since the fibers along the top of the beam are stretching, the stress there will be tension. Along the
lower face of the beam the fibers are shortening and there the stress is compressive.

8.6. A cantilever beam 3 m long is subjected to a uniformly distributed load of 30 kN per meter of
length. The allowable working stress in either tension or compression is 150 MPa. If the cross
section is to be rectangular, determine the dimensions if the height is to be twice as great as the
width.

The bending moment diagram for a uniform load acting over a cantilever beam was determined in
Problem 6.2. It was found to be parabolic, varying from zero at the free end of the beam to a maximum
at the supporting wall. The loaded beam and the accompanying bending moment diagram are shown in
Fig. 8-16. The maximum moment at the wall is given by

M,—3 = —30(3)(1.5) = —135kN-m

It is to be noted that this problem involves the design of a beam, whereas all previous problems in
this chapter called for the analysis of stresses acting in beams of known dimensions and subject to various
loadings. The only cross section that need be considered for design purposes is the one where the bending
moment is a maximum, i.e., at the supporting wall. Thus we wish to design a rectangular beam to resist
a bending moment of 135 kN -m with a maximum bending stress of 150 MPa.

Since the cross section is to be rectangular it will have the appearance shown in Fig. 8-17, where the
width is denoted by b and the height by & = 2b, in accordance with the specifications. The moment of
inertia about the neutral axis, which passes through the centroid of the action, is given by

1 =56k = 5b(2by = 3b*

At the cross section of the beam adjacent to the supporting wall the bending stress in the beam is given
by o = My/l. The maximum bending stress in lension occurs along the upper surface of the beam, since
these fibers elongate slightly, and at this surface y = —b and o= 150 MPa. Then

=135 X 10°(10°) (—b)
- o

o=ﬂ—? or 150

from which b = 110 mm and # = 2b = 220 mm.

30kN/m

N.A, A
135 kN-m | "‘: | J

Bending Moment

Fig. 8-16 Fig. 8-17
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A cantilever beam is of length 1.5 m, loaded by a concentrated force P at its tip as shown
in Fig. 8-18(a), and is of circular cross section (R = 100 mm), having two symmetrically
placed longitudinal holes as indicated. The material is titanium alloy, having an allowable
working stress in bending of 600 MPa. Determine the maximum allowable value of the
vertical force P.

R
A . Radivs of hole 3

I (=
J DA

\ 5
15m ‘ Radivx = R = 100 mm

(a) &)

Fig. 8-18

It is first necessary to determine the section modulus of the beam. From Chap. 7, Problem 7.9, the
moment of inertia of a solid circular cross section about a diametral axis z is 7R*4. Using this value for
the solid section and subtracting the moments of inertia of each of the holes about the same diametral axis
z (from the parallel-axis theorem of Chap. 7), we have

2 o)) oo

4 413 3/\2
The section modulus from Eq. (8.3) is
z=1 09K _ o some
c R

The bending stresses in the uppermost and lowermost fibers, denoted by points A and B, respectively,
in Fig. 8-18(b) are, from Eq. (8.3) and using R = 0.1 m,

M
z

Solving, P = 237 X 10° N, or 237kN.

The extruded beam shown in Fig. 8-19 is made of 6061-T6 aluminum alloy having an allowable
working stress in either tension or compression of 90 MPa. The beam is a cantilever, subject to
a uniform vertical load. Determine the allowable intensity of uniform loading.

e 23} mim

30 o —-

w/ Uit lengih 150 mm
A 10 mm —] — 10 mumi

.-

Im b —| lo— 10 um
(a) (b)
Fig. 8-19
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It is first necessary to locate the centroid of the cross section. From the methods of Chap. 7,
we have

_ (200) (30) (15) + 3(180) (10) (%0) _
(200) (30) + 3(180) (10)

It is next necessary to determine the moment of inertia of the cross section. Let us first work with the
x-axis through the top of the flange. From Chap. 7 the moment of inertia of the entire section about that

axis is

50.5 mm

|

I, = 5(200 mm) (30 mm)’ + 3(3(10 mm) (180 mm)*}
= 60.12 X< 10° mm*

and from the parallel axis theorem of Chap. 7 we may now transfer to the x,; axis through the centroid
of the cross section to find

I, = 60.12 X 10° mm* — (11,400 mm?) (50.5 mm)?

= 31.05 X 10° mm*
The peak bending moment occurs at the supporting wall and was found in Problem 6.2 to be
wil?
Mows =5~

Next, applying Eq. (8.7) to the lowermost fibers (A) of the beam since those are the most distant from the
neutral axis through G, we have
3 m)?} [(180 — 50.5) mm] (1 m/1000 mm)
90 x 10° N/m? = ¢
= T (2)(31.05 % 10° mm®) (1 m/1000 mm)*

Solving,
w = 4,80 kN/m

The simply supported beam AD is loaded by a concentrated force of 80 kN together with a
couple of magnitude 30 KN - m, as shown in Fig. 8-20. From Table 8-2 at the end of this chapter
select a commercially available steel wide-flange beam capable of carrying these loads if the
peak allowable working stress in tension as well as compression is 160 MPa.

15m 1.25m -

Fig. 8-20

It is first necessary to determine the reactions at A and C from statics. We have
+JEM,=—(80kN)(1m) + Re(2.5m)—30kN-m =0
Rc =44 kN
IF,=R,+44-80 =0
R, = 36kN
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From the methods of Chap. 6. we can now construct the moment diagram which appears as in Fig. 8-21.
From Eq. (8.3) we have oy, = M/Z. Substituting.

t .
160 X 10° Nim? — 20X 10 N-m
VA
Solving,
Z=225%10"%m’ or 225 x 10° mm’*

as the minimum acceptable valuc of scction modulus. From Table 8-2 we see that the W203 x 28 section
has a Z value of 262 x 10° mm’. which is adequate. Undoubtedly a more complete beam listing would
indicate other sections with a Z value more nearly cqual to the requircd minimum of 225 > 10* mm?*. Only
typical beams are listed in Table 8-2 for the sake of brevity.

36 kN-m

.
R

Fig. 8-21

30kN-m

|q—.-|

If a steel wire 0.5 mm in diameter is coiled around a pulley 400 mm in diameter. determine the
maximum bending stress set up in the wire. Take E = 200 GPa.

Since the radius of curvature of the wirc is constant, 200 mm, it is evident from (7) of Problem &.1,
namely M = ElIR, that thc bending moment M must be constant everywhere in the wire. Thus the wire
acts as a beam subject to pure bending. An cnlarged sketch of a portion of the wire is shown in Fig. 8-22.
For any fiber in the wire at a distancc y from the neutral axis, the normal strain was found in (/) of Problem
8.1 to be

€=

==

where R denotcs the radius of curvature of the beam at that point.

The maximum strain occurs at the fibers where y assumes its maximum value, that is, 3(0.5) mm from
the neutral axis. The radius of curvature is approximatcly 2({) mm. More accurately. this radius should be
measured to the neutral surface of the wirc, but the value in that case would only differ from 200 mm by
0.25 mm and this quantity may reasonably be neglected.

Thus the maximum strain at the outer fibers of the wire is

1
=12

00125
200

The longitudinal fibers are subject to tensile stresscs on one side of the wire and compressive on the
other, with no other stresses acting. Hooke's law may then be used to find the stress:
a = Ee = (200 % 10°)(0.00125) = 250 MPa

This is the maximum stress in the wire.
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The simply supported beam shown in Fig. 8-23(a) is subject to a uniformly varying load having
a maximum intensity of w N per meter of length at the right end of the bar. If the beam is a
wide-flange section having the dimensions shown in Fig. 8-23, determine the maximum load
intensity w that may be applied if the working stress is 125 MPa in either tension or compression.
Neglect the weight of the beam.

150 man
ToEEL .t
i~ F
= o i I
_L 2(} mm
Rut ém iﬂz T leﬁ 6m iﬂz
(a) ®

Fig. 8-23

The reactions R, and R, may readily be determined in terms of the unknown w by replacing the
distributed load by its resultant. Since the average value of the distributed load is w/2 N/m acting over a
length of 6 m, the resultant is a force of magnitude 6(w/2) = 3w N acting through the centroid of the
triangular loading diagram, that is, 4 m to the right of R,. This resultant thus appears as in Fig. 8-23(b).
From statics we immediately have R, = wN and R; = 2w N.

,aﬂrmIﬂ]H(%’“ T

A
23w Nm
4+

‘_ . | o :.um—-l —zrw |-— 346m —
IR' =w l Shear Diagram _L Bending Moment
(a) (v {c)
Fig. 8-24

The shearing force and bending moment diagrams for this type of loading were discussed in Problem
6.5. Let us introduce an x-axis coinciding with the beam and having its origin at the left support. Then at
a distance x to the right of the left reaction, the intensity of load is found from similar-triangle relationships
to be (x/6)w N/m. This portion of the loaded beam between R, and the section x appears in Fig. 8-24(a).
In accordance with the procedure explained in Problem 6.5, the shearing force V at the section a distance
x from the left support is given by

Ve _](x) v = _l o
WTa\e/ M T T Y

This equation holds for all values of x and from it the shear diagram is readily plotted, as shown in
Fig. 8-24(b). The point of zero shear is found by setting

w—pwx’=0  from which x= V12 = 346m

This is also the point where the bending moment assumes its maximum value.
The bending moment M at the section a distance x from the left support is given by

Again, this equation holds for all values of x and from it the bending moment diagram may be plotted as
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in Fig. 8-24(c). At the point of zero shear, x = 3.46 m, the bending moment is found by substitution in the
above equation to be

M, 346 = 3.46w — £w(3.46) = 231w N-m

This is the maximum bending moment in the beam.
The bending stress on any fiber a distance y from the neutral axis of the beam is given by o = My/l.
The moment of inertia [ of the beam is found from

_ 150250)° [ 65(210)°

g 12 12

] = 95 x 10° mm*

The maximum tensile stress occurs at the lower fibers of the beam where y = 125 mm at the section where
the bending moment is a maximum. This stress is 125 MPa, and thus o = My/I becomes

(2.31w) (0.125)

125X10° = o= 10°(10 )

or w = 41 kN/m

Determine the section modulus of a beam of rectangular cross section.
Let A denote the depth of the beam and & its width. Bending is assumed to take place about the neutral
axis through the centroid of the cross section. The moment of inertia about the neutral axis is I = bh*/12.
At the outer fibers the distance to the neutral axis is #/2, and this is commonly denoted by c. The
maximum bending stresses at these outer fibers are given by
_Mc M

I Iic

al‘hﬂ!

The ratio Iic is called the section modulus and is usually denoted by Z. Then o0,,,, = M/Z. For the beam
of rectangular cross section,

gL _bwn2_bi
¢ hi2 6

The section modulus Z has units of m® or in®.

A beam is loaded by one couple at each of its ends, the magnitude of each couple being 5 kN - m.
The beam is steel and of T-type cross section with the dimensions indicated in Fig. 8-25(b).
Determine the maximum tensile stress in the beam and its location, and the maximum
compressive stress and its location.

It is first necessary to locate the centroid of the cross-sectional area since the neutral axis is known

to pass through the centroid. To do this we introduce the x-y coordinate system shown and use the methods
of Chap. 7. The y-coordinate of the centroid is defined by

yda

S5kN-m 3kN-m T
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where the numerator of the right side represents the first moment of the entire area about the x-axis. The
T-section may be considered to consist of the three rectangles indicated by the dashed lines and this
expression becomes

_125(25) (62.5) + 2[50(25) (12.5)]
B 125(25) + 2[25(50)]

Thus, the centroid is located 40.3 mm above the x-axis. The horizontal axis passing through this point is

denoted by x; as shown.
The moment of inertia about the x-axis is given by the sum of the moments of inertia about this same

axis of each of the three component rectangles comprising the cross section. Thus
I, = §(25) (125) + 2[350(25)*] = 16.8 X 10° mm*
The moment of inertia about the xg-axis may now be found by use of the parallel-axis theorem. Thus
I =1_+AQ) 16.8 % 10° = I,_+ 5625(40.3)  and I, =77 % 10°mm*

Evidently for the loading shown, the fibers below the x;-axis are in tension, while the fibers above
this axis are in compression. Let ¢; and ¢, denote the distances of the extreme fibers from the neutral axis
(xg) as shown. Obviously ¢, = 40.3mm and ¢, = 84.7 mm. The maximum tensile stress occurs in those
fibers along B-B and is given by ¢ = Mc/I, where I denotes the moment of inertia of the entire cross
section about the neutral axis passing through the centroid of the cross section. Thus the maximum tensile
stress is given by

= 40.3 mm

el

o= % = § X 10°(10°) (40.3)/7.7 X 10° = 26.2 MPa
The maximum compressive stress occurs in those fibers along A-A and is given by o = Mc,/I. To
provide a consistent system of algebraic signs, it is necessary to assign a negative value to c; since it lies
on the side of the x-axis opposite to that of ¢,. Hence

o= %‘:’3 = 5 X 10°(10°) (—84.7)/7.7 X 10° = —55 MPa

The negative sign indicates that the stress is compressive.

A simply supported beam is loaded by the couple of 1000 1b - ft as shown in Fig. 8-26. The beam
has a channel-type cross section as illustrated. Determine the maximum tensile and compressive
stresses in the beam.

The bending moment diagram for this particular loading has been determined in Problem 6.11, where
it was found to appear as in Fig. 8-27.

The techniques of Chap. 7 may be employed to locate the centroid as lying 1.5 in above the x-axis and
the moment of inertia of the entire cross section about the xs-axis as 41.6 in*.

In this problem it is necessary to distinguish carefully between positive and negative bending moments.
One method of attack is to consider a cross section of the beam slightly to the left of point B where the
1000 1b- ft couple is applied. According to the bending moment diagram the moment there is —600 b - ft

r__- & 4 v | -—-|l"t;——lo"—;{l"l"_—;
B-I\ l o z v 35" 400 I-.f-l
A ) I % i
A D, ¥ —=2c !
g / Rl 77777, 74777, 600 16 f1
1000 1b-ft T » b |
(@) (b) Bending Moment

Fig. 8-26 Fig. 8-27
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and, according to the sign convention adopted in Chap. 6, since the moment is negative the beam is concave
downward at that section, as shown in Fig. 8-28. Thus the upper fibers are in tension and the lower fibers
in compression. Along the upper fibers a-a the bending stress is given by o = My/I. Then

_ (=600)(12) (=3.5)

- ' 2
o, A6 605 Ibfin

Along the lower fibers b-b the value of y in the above formula for bending stress must be taken to be
positive, and there we have

_(-600)(12) (+1.5) _
T = 416 -

— —>

Fig. 8-28 Fig. 8-29

~260 Ib/in®

It is next necessary to investigate the bending stresses at a section slightly to the right of point B. There
the bending moment is 400 Ib- ft and according to the usual sign convention the beam is concave upward
at that section, as shown in Fig. 8-29. Here the upper fibers are in compression and the lower fibers in
tension. Along the upper fibers a-a the bending stress is

_400(12) (3.5) _

l _ )
o, A6 400 Ib/in
Along the lower fibers b-b we have
, _ 400(12)(1.5) .
oy, 716 = 170 Iblin

The maximum tensile and compressive stresses must now be selected from the above four values.
Evidently the maximum tension is 605 Ib/in” occurring in the upper fibers just to the left of point B: the
maximum compression is 400 Ib/in” occurring in the upper fibers also but just to the right of point B.

Consider the beam with overhanging ends loaded by the three concentrated forces shown in
Fig. 8-30. The beam is simply supported and of T-type cross section as shown. The material is
gray cast iron having an allowable working stress in tension of 35 MPa and in compression of
150 MPa. Determine the maximum allowable value of P.

From symmetry each of the reactions denoted by R is cqual to P/2. The bending moment diagram
consists of a series of straight lines connecting the ordinates representing bending moments at the points
A, B, C. D.and E. At B the bending moment is given by the moment of the force P/4 acting at A about
an axis through B. Thus

50 mm
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At C the bending moment is given by the sum of the moments of the forces P/4 and R = P/2 about an axis
through C. Thus

e=- () + (£)as -Lnom

The bending moment at D is equal to that at B by symmetry and the moment at each of the ends A and
E is zero. Hence, the bending moment diagram plots as in Fig. 8-31.

N

Fig. 8-31

Using the techniques described in Problem 8.13, we find the distance from the lower fibers of the
flange to the centroid to be 58.7 mm and the moment of inertia of the area about the ncutral axis passing
through the centroid to be 40 x 10 mm?®,

It is perhaps simplest to calculate four values of P based upon the various maximum tensile and
compressive stresses that may exist at each of the points B and C and then select the minimum of these
values. Let us first examine point B. Since the bending moment there is negative. the beam is concave
downward at that point, as shown in Fig. 8-32. Evidently the upper fibers are in tension and the lower
fibers are subject to compression. We shall first calculate a value of P, assuming that the allowable tensile
stress of 35 MPa is realized in the upper fibers. Applying the flexure formula o = My/I to thesc upper
fibers, we find

{—PI4)(0.116)
40 10%(10 ')
Next we shall calculate a value of P, assuming that the allowable compressive stress of 150 MPa is set up
in the lower fibers. Again applying the flexure formula, we find

(—P14) (0.0587)

35x10° = P =483KkN

-150 % 10° = or P =410kN

40 X 10%(1071?)
Tension : Compression :
; Compression ; Tension
Fig. 8-32 Fig. 8-33

We shall now examine point C. Since the bending moment there is positive. the beam is concave
upward at that point and appears as in Fig. 8-33. Here, the upper fibers are in compression and the lower
fibers are subject to tension. First we will calculate a value of P, assuming that the allowable tension of
35 MPa is set up in the lower fibers. From the flexure formula we find

(PI8) (0.0587)
40 X 10°(10° %)

Last, we shall assume that the allowable compression of 150 MPa is set up in the upper fibers. Applying
the flexure formula, we have

(35X 10°) = P =191kN

(P/8) (—0.116)
40 X 10°(107 %)

The minimum of these four values is P = 48.3 kN. Thus the tensile stress at the points B and D is the
controlling factor in determining the maximum allowable load.

~150 % 10° = P = 414kN
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8.16. The cantilever beam ABC supports a uniform load over its right half and is of rectangular cross
section with a square cutout as shown in Fig. 8-34. If the maximum permissible stress in either
tension or compression is 140 MPa, determine the allowable uniform load w per unit length of

the beam.
¥

44.35 mm

N
A By 1 I t 1 I 1 o

W | € *G
N 08m ¢8m F=3565mm
N |

(@)
Fig. 8-34
It is first necessary to locate the neutral axis (N.A.) of the beam. For entirely elastic action this passes

through the cross section of the beam and is given by (see Chap. 7)

(80) (50) (40) — (30) (30) (55)
(80) (50) — (30) (30)

Also, by the methods of Chap. 7. the moment of inertia about the x-axis is
I, = 3(50) (80)’ — [1(30) (30)* + (900) (55)’]
= (8193.25) (10)* mm*

Use of the parallel-axis theorem of Chap. 7 leads to the moment of inertia about an axis parallel to x but
passing through the centroid, i.e., the x; axis:

I, = (8193.25) (10°) mm* — [(3100) (35.65)?] = 4253.39 X 10° mm?

The tensile fibers along the top surface of the beam are at a greater distance (44.35mm) than the
compressive fibers along the lower surface (35.65 mm). For these extreme fibers in tension we have
_ Me
i

M(44.35 mm) (m/1000 mm)
140 X 10° N/m? =
0 M7 4253.39 % 10° mm? (m/1000 mm)°

y= = 35.65mm

Salving,
M, =13372N-m
From the loading conditions, M, = M, so

My= M, .= (08m+04m)w(0.8m)

Salving,
W (13,372 N-m)
(1.2 m) (0.8 m)
= 13,929.6 N/fm
ar w = 13.93 kN/m
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8.17.

8.18.

The beam shown in Fig. 8-35 is of constant width & but the depth varies in the x-direction and
further the depth is symmetric about the x-axis. Loading is due to a vertical force at the tip of
the beam where x = L and y = 0. Determine the equation of the beam contour y = h(x) so that
outer fiber bending stresses are equal to o, at all points on the contour of the beam.

(a)

The bending moment equation‘iue to the concentrated load is —P(L — x). From Problem 8.12, the
section modulus of any cross section 1s given by bh*/6. The outer fiber bending stresses along the top surface
are, from Eq. (8.3).

_IM _P(L-x) _6P(L-x)
Z  (bH16) bk’

Since it is specified that this stress must be equal to o, everywhere along the top surface, we have

6P(L —x)
bz 0

. [ePL-n
h B bO’n

This determines the beam contour for constant strength at all points along the length of the beam. This
solution neglects the effect of the singular point (L, 0) at the point of load applicatiop on stress distribution
in the immediate vicinity of the force P.

a

Solving,

A cantilever beam of circular cross section has the dimensions shown in Fig. 8-36. Determine
the peak bending stress in the beam due to the concentrated force applied at the tip A.

To express the moment of inertia of the cross section at any point along the length of the beam in terms
of the given geometry, we must first determine where the extensions of the top and bottom fibers would
meet on the x-axis. From Fig. 8-36 we immediately have from similar triangles:

X1 I]"'L

d 2.5d
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Solving,
X, = E I
(=3 (1)
The bending moment at any station located a distance x from this fictitious point of intersection is
L
M=-P [ x— 2L 2)
3
If we designate the beam diameter by D at this location x, we have from geometry
X X _ 3xd
p-a % P=3 @)

so that the cross-sectional moment of inertia at the general location x is

;-ﬂ-i?ﬁ]d—(ﬂ)ﬂ (4)
“Ted eal2r”| T \enaeLt)”
From Eq. (8.2) we find the outer fiber bending stresses to be
_ M. Px- 2013)(3xdi2L) 256PL’[x - 21_,!3] 5)
77 [Blwd /(64) (16)L]x*  9md’® x* (

Note that Eq. (5) indicates that the peak bending stress does not occur at the clamped end x = L.
To find where the outer fiber stresses reach a maximum value, we take the derivative da/dx and set
it equal to zero to locate the critical value of x. Thus,

do _ (256PL")[):"{I) —(x— 2L;3)3x2] N
dx  \ 9md’ ¢ B

X
Solving, x = L measured from point 0. Substituting this value of x in Eq. (5). we find the peak outer fiber
bending stress to be

(6)

_256PLY[{L-2L3 ) _ 256PL-‘)(_!__)_302£_!:
T 9md’ L} '( 9mnd® J\312) T4

Note that from Eq. (5) the outer fiber bending stress at the clamped end x = (L + 2L/3) is 1.96 PL/d’,
which is less than the peak value.

In a beam loaded by transverse forces acting perpendicular to the axis of the beam, not only
are bending stresses parallel to the axis of the bar produced but shearing stresses also act over
cross sections of the beam perpendicular to the axis of the bar. Express the intensity of these
shearing stresses in terms of the shearing force at the section and the properties of the cross
section.

The theory to be developed applies only to a cross section of rectangular shape. However, the results
of this analysis are commonly used to give approximate values of the shearing stress in other cross sections
having a plane of symmetry.

M M+ dM
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Let us consider an clement of length dx cut from a bcam as shown in Fig. 8-37. We shall denote the
bending moment at the lcft side of the element by M and that at the right side by M + dM, since in general
the bending moment changes slightly as we move from one section to an adjacent section of the beam. If
y is measured upward from the neutral axis, then the bending stress at the left section a-a is given by

_ My

77T

where I denotes the moment of inertia of the entire cross section about the neutral axis. This stress
distribution is illustrated above. Similarly, the bending stress at the right section b-b is
_ (M +dM)y

I

Let us now consider the equilibrium of the shaded element acdb. The force acting on an area da of
the face ac is merely the product of the intensity of the force and the area: thus

M
oda = —!Zda

The sum of all such forces over the left face ac is found by integration to be

[

¥o

Likewise, the sum of all normal forces over the right face bd is given by
“(M+
J’ (M JrdM )y da
Yo

Evidently, since these two integrals are unequal, some additional harizontal force must act on the shaded
elcment to maintain equilibrium. Since the top face ab is assumed ta be free of any externally applied
horizontal forces, then the only remaining possibility is that there exists a horizontal shearing force along
the lower face cd. This represents the action of the lower portion of the beam on the shaded element. Let
us denote the shearing stress along this face by 7 as shown. Also, let b denote the width of the beam at
the position where 7 acts. Then the horizontal shearing force along the face od is 7 dx. For equilibrium
of the clement acdb we have

<M (M + dM)y
zr,;j —I—yda—J. i—*‘I—M—)lda+1-bdx=0
¥ ¥

Solving,

L

But from Problem 6.1 we have V = dM/dx, where V represents the shearing force (in pounds or Newtons)
at the section a-a. Substituting,
) yda )

The intcgral in this last equation represents the first moment of the shaded cross-sectional area about
the ncutral axis of the beam. This area is always the portion of the cross section that is abave the level at
which the desired shear acts. This first moment of area is sometimes denoted by Q in which case the above
formula becomes

T

Yo
= 2)

The units of { yda or of @ are in* or m”.

The shearing stress 7 just determined acts harizontally as shown in Fig. 8-37. However, let us consider
the equilibrium of a thin element mnop of thickness ¢ cut from any body and subject to a shearing stress
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Fig. 8-38

7; on its lower face, as shown in Fig. 8-38. The total horizontal force on the lower face is ,tdx. For
equilibrium of forces in the horizontal direction, an equal force but acting in the opposite direction must
act on the upper face, hence the shear stress intensity there too is 7,. These two forces give rise to a couple
of magnitude 7,¢dx dy. The only way in which equilibrium of the element can be maintained is for another
couple to act over the vertical faces. Let the shear stress intensity on these faces be denoted by 7. The
total force on either vertical face is 7,/ dy. For equilibrium of the moments about the center of the element
we have

EM, = iyidxdy — rpidydx =0 or =T

Thus we have the interesting conclusion that the shearing stresses on any two perpendicular planes
through a point on a body are equal. Consequently, not only are there shearing stresses 7 acting
horizontally at any point in the beam, but shearing stresses of an equal intensity also act vertically at that
same point.

In summary, when a beam is loaded by transverse forces, both horizontal and vertical shearing stresses
arise in the beam. The vertical shearing stresses are of such magnitudes that their resultant at any cross
section is exactly equal to the shearing force 1 at that same section.

A beam of rectangular cross section is simply supported at the ends and subject to the single
concentrated force shown in Fig. 8-39(a). Determine the maximum shearing stress in the beam.
Also, determine the shearing stress at a point 1 in below the top of the beam at a section 1 ft
to the right of the left reaction.

¥ 1 e .
- ] Teomn
ﬂ&” . // 4000 b
f2000 Ib zﬁ:’m 1b Jl:hl fl-_ J_
(a)

{b)

Fig. 8-39

The reactions are readily found from statics to be 2000 Ib and 4000 1b as shown. The shearing force
diagram for this type of loading appears in Fig. 8-39(b).

From the shear diagram. the shearing force acting at a section 1 ft to the right of the left reaction is
2000 Ib. The shearing stress 7 at any point in this section a distance y, from the neutral axis was shown in
Problem 8.19 and also Eq. (8.5) to be

=5 (% %) Q)

At a point lin below the top fibers of the beam, y,=lin. Also, we have h=4in and
1 = bh’12 = 2(4)*/12 = 10.67 in®. Substituting,

2000 (42

= — — = = in?
Tyt 30067\ 2 l) 280 Ib/in
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s‘zll

From Eq. (1) it is clear that the peak shearing stress occurs at the neutral axis where y, = 0. Thus,
4000 [4°

=" |- - = 750 Ibfin®

Tmax = 2(10.67) ( 4 1) m

Note that for a rectangular cross section this peak shearing stress 1s 50 percent greater than the average
shearing stress, which is given by

= 500 Ibfin?

Tmen = 4) (2)

Consider the cantilever beam subject to the concentrated load shown in Fig. 8-40. The cross
section of the beam is of T-shape. Determine the maximum shearing stress in the beam and also
determine the shearing stress 25 mm from the top surface of the beam at a section adjacent to
the supporting wall.

The shear force has a constant value of 50 kN at all points along the length of the beam. Because of

this simple, constant value the shear diagram need not be drawn.

The location of the centroid and the moment of inertia about the centroidal axis for this particular
cross section were determined in Problem 8.15. The centroid was found to be 58.7 mm above the lower
surface of the beam and the moment of inertia about a horizontal axis through the centroid was found to

be 40 X 10° mm®.
S0KN
2m i I .

125 mm

pe— 50 mm ——Im"r%

NN

§ L NA. _l 7 llbrm
% N.A. P4
i ”FWW i ]
Fig. 8-40 Fig. 8-41

The shearing stress at a distance y, from the neutral axis through the centroid was found in Problem
8.19 ta be

V Ly
T= b yda
o
Inspection of this equation reveals that the shearing stress is a maximum at the neutral axis. since at that
point y, = 0 and consequently the integral assumes the largest possible value. It is not necessary to
integrate, however, since the integral is known in this case to represent the first moment of the area
between the neutral axis and the outer fibers of the beam about the neutral axis. This area is represented
by the shaded region in Fig. 8-41. The value of the integral could also, of course. be found by taking the
first moment of the unshaded area below the neutral axis about the line, but that calculation would be
somewhat more difficult.
Thus the first moment of the shaded area about the neutral axis is

50(116.3) (58.15) = 3.38 x 10° mm?

and the shearing stress at the neutral axis, where b = 50 mm, is found by substitution in the above general
formula ta be

_ 50x10°
5040 x 10%)

In this formula b was taken to be 50 mm, since that is the width of the beam at the point where the shearing

7 (3.38 X 10°) = 8.45 MPa
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stress is being calculated. Thus the maximum shearing stress is 8.45 MPa and it occurs at all points on the
neutral axis along the entire length of the beam, since the shearing force has a constant value along the
entire length of the beam.

The shearing stress 25 mm from the top surface of the beam is again given by the formula
~ % vda
Now, the integral represents the first moment of the new shaded area shown in Fig. 8-42, about the neutral
axis. Again it is not necessary to integrate to evaluate the integral, since the coordinate of the centroid
of this shaded area is known. It is 103.8 mm above the neutral axis. Thus the first moment of this shaded
area about the neutral axis is 50(25) (103.8) = 1.3 X 10° mm". and the shearing stress 25 mm below the top
fibers is

T

50 % 10*

= (] %) = 3.
"= Soao 1oy (13X 10) 25MPa

50 mm

75 mlrin_—l I.'?‘_‘l mime]

25 mm _'
r 116.3 mm

na | {1

Fig, 8-42

Again, b was taken to be 50 mm since that is the width of the beam at the point where the shearing stress
is being evaluated. Since the shearing force is equal to SOKN everywhere along the length of the beam,
the shearing stress 25 mm below the top fibers is 3.25 MPa everywhere along the beam.

The vertically oriented wide-flange section shown in Fig. 8-43 is loaded by a single horizontal
concentrated force of 6.5 kN directed parallel to the z-axis. Determine the horizontal shear
stress distribution on a flange at a section 3 m above the lower clamped end in the x-z plane.

20mm —] |+—— 240 mm ——=] |=—20mm

y  6SKN
(@)

g
|

e I
Sk g Top view

7 (&)

Fig. 8-43 Fig. 8-44
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Figure 8-44 shows a typical horizontal cross section parallel to the x-z plane as well as dimensions of
the web and flange. The shear stress 7in this plane acts in the z-direction and at a distance 7 from the x-axis.
The specification of 3 m above the x-z plane is unimportant: all that matters is that the equation for shear
stress derived in Problem 8.19 does not apply at horizontal sections near either the bottom or top of the
vertically ariented bar. To apply Eq. (1) of Problem 8.19 to find = we must first determine the moment of
inertia of the cross section about the x-axis. From the methods of Chap. 7. we find

I = 5(2)(20 mm) (200 mm)* + 5(240 mm) (20 mm)? = 2683 % 10° mm* (1

We next introduce a coordinate z running from the x-y plane in the direction of the z-axis, and appcaring
as in Fig. 8-44. From Problem 8.19 we have here V = 6500 N, and the flange thickness b here is 0.02 m. The
integral in Problem 8.19 represents the first moment of the area extending from z to the extreme fibers
of the flange —that area is shaded in Fig. 8-44. Thus, we nced nol integrate and we may evaluate the first
moment of the shaded arca about the x’'-axis by taking the product of the area and the distance of the
centroid of the area from the x'-axis: that is,

01+z o
[(0.1 - z)(0.04 m)]( > m) or  (0.02)[(0.1F - Z]m’
Equation (2) of Problem 8.19 now yields the desired shearing stress as
- 6500 N N
"= B X 10 °m) 00z m) 2) (OO @1~ 2] m’)
= 121.1[(0.1)* - 2% (10°) )

At the point A where the value of z is zero, the peak shearing stress is found from Eq. (2) to be
T, = (121.1)[(0.1)’ = 0] (10°) = 1.21 X 10° N/m®  or 121 MPa

Consider a beam having an I-type cross section as shown in Fig. 8-45. A shearing force V of
150 kN acts over the section. Determine the maximum and minimum values of the shearing
stress 1n the vertical web of the section.

The shearing stress at any point in the cross section is given by

7 yda

;o

as derived in Problem 8.19. Here, y, represents the location of the section an which 7 acts, and is measured
from the neutral axis as shown. In this expression, J represents the moment of incrtia of the entire cross
section about the neutral axis, which passes through the centroid of the section. [ is readily calculated by
dividing the section into rectangles, as indicated by the dashed lines, and we have

= 5(10) (350)" + 2[15(200) (25)* + 200(25) (187.5)°] = 389 X 10° mm*

I ! I 25 mm
c bl b [
_L I';[nm
v mm
N.A. al la 0 - dr——!Oﬂ _-Id_l' d"-*—ZODmm——-‘ﬂ
25 mm ‘ - ////) 25 mm
mm c bpAb ¢ L b b ¢
" T 1 1
% 1?75 mm 175 mm
25 mm é
—-l l--ll]rnm—T NA._ afa N.A g Ja ]
L—lmmrn w0mme! lea— i b 10mm

Fig. 8-45 Fig. 8-46 Fig. 8-47
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Inspectian of the general formula for shearing stress reveals that this stress has a maximum value when
yo = 0, that is, at the neutral axis, since at that point the integral takes on its largest possible value. It 1s
not necessary to integrate to obtain the value of [} ¥ da, since this integral is shown to represent the first
moment of the area between y, = 0 (that is, the neutral axis) and the outer fibers of the beam. This area
is shaded in Fig. 8-46. For this area we have, taking its first moment about the neutral axis,

200
f yda = 175(10) (87.5) + 200(25) (187.5) = 1.1 X 10°* mm?
L4

Consequently the maximum shearing stress in the web occurs at the section a-a along the neutral axis and
by substituting in the general formula for shearing stress is found to be

150 x 107

oun = Tocma w107 (1 X 10 = 424 MPa

The minimum shearing stress in the web occurs at that point in the web farthest from the neutral axis.
i.e.. across the section b-b. To calculate the shearing stress there, it is necessary to evaluate [, yda for the
area between b-b and the outer fibers of the beam. This is the shaded area shown in Fig. 8-47. Apain, it
is not necessary to integrate, since this integral merely represents the first moment of this shaded area
about the neutral axis. It is

200
f yda = 200(25) (187.5) = 9.375 X 10° mm*
175

The value of b is still 10 mm, since that is the width of the beam at the position where the shearing stress
is being calculated. Substituting in the general formula

150 %10°
Tme = 70(389 X 10°)

It is to be noted that there is not too great a difference between the maximum and minimum values
of shearing stress in the web of the beam. In fact, it is customary to calculate only an approximate value
of the shearing stress in the web of such an I-beam. This value is obtained by dividing the total shearing
force V by the cross-sectional area of the web alone. This approximate value becomes

_ 100 % 10°
T = (400) (10)

A more advanced analysis of shearing stresses in an I-beam reveals that the vertical web resists nearly
all of the shearing force V and that the horizontal flanges resist only a small portion of this force. The shear
stress in the web of an I-beam is specified by various codes at rather low values. Thus some codes specify
70 MPa, others 90 MPa.

= (9.375 X 10°) = 36.2 MPa

= 37.5MPa

Plastic Bending of Beams

8.24. Consider a beam of arbitrary doubly symmetric cross section, as in Fig. 8-48(a), subject to pure
bending. The material is considered to be elastic-perfectly plastic, i.e., the stress-strain diagram
has the appearance shown in Fig. 8-48(b) and stress-strain characteristics in tension and

“up

- — — —

s

(a) )
Fig. 8-48
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compression are identical. Determine the moment acting on the beam when all fibers a distance
y1 from the neutral axis have reached the yield point of the material.

Even though bending of the beam has caused the outer fibers to have yielded it is still realistic to
assume that plane sections of the beam normal to the axis before loads are applied remain plane and
normal to the axis after loading. Consequently, normal strains of the longitudinal fibers of the beam still
vary linearly with the distance of the fiber from the neutral axis.

As the value of the applied moment is increased, the extreme fibers of the beam are the first to reach
the yield point of the material and the normal stresses on all interior fibers vary linearly as the distance
of the fiber from the neutral axis, as indicated in Fig. 8-49(a). A further increase in the value of the moment
puts interior fibers at the yield point, with yielding progressing from the outer fibers inward, as indicated
in Fig, 8-49(b). In the limiting case when all fibers (except those along the neutral axis) are stressed to the
yield point the normal stress distribution appears as in Fig. 8-49(c). The bending moment corresponding
to Fig. 8-49(c) is termed a fully plastic moment. For the type of stress-strain curve shown in Fig. 8-48(b),
no greater moment is possible.

= e S e

T = “‘I;rc ~

Neutral v -
Axis — —
(a) Fully elastic (b) Elasto-plastic (¢) Fully plastic

action in all action action

except outer fibers
Fig. 8-49

For a beam in pure bending, the sum of the normal forces over the cross section must vanish. Hence.
for the doubly symmetric section under consideration, it is evident from inspection of Fig. 8-49(b) that the
neutral axis must pass through the centroid of such a section; i.e., the area above the neutral axis must be
equal to the area below that axis. However, in Problem 8.29 it will be found that for a more gencral,
nonsymmetric cross section the location of the neutral axis after certain of the fibers have yielded is not
the same as that found for purely elastic action where the neutral axis passes through the centroid of the
Cross section.

From Fig. 8-48(b) we have for y < y;:

o_ o

Z=T2 o o=2g,

y n 44
and for y > y,:0 = g,, = constant. Thus the bending moment is

¥ C
M= jayda = 2j —y-a,,,ydanJ 0,,yda
0 2l

1

20 i €
=—21| yda+20,,| yda
Y o i

For a beam of rectangular cross section determine the moment acting when all fibers a distance
y) from the neutral axis have reached the yield point of the material.



STRESSES IN BEAMS [CHAP. 8

fl.___N.:é-.___._l_ A

Fig. 8-50

From the result of Problem 8-24 for the geometry indicated in Fig. 8-50 we have

Hn)
2

20y,
M

b
e,

(%bﬁ) +20,b(c = )

For the limiting case when y, = 0 which is indicated by Fig. 8-49(c) of Problem 8.24 the fully plastic
moment of this rectangular beam is
bh*

— 0y (1)

Mpzb‘lavp= 4

It is to be noted that the maximum possible elastic moment, i.c., when the extreme fibers have
just reached the yield point but all interior fibers are in the elastic range of action as indicated by
Fig. 8-49(a), 1s

bk’
M, = ?O'w. (2)

Thus, for a rectangular cross section, the fully plastic moment is 50 percent greater than the maximum
possible elastic moment.

Determine the fully plastic moment of a rectangular beam, 1 X 2 in in cross section, of steel with
a yield point of 38,000 Ib/in’. Compare this with the maximum possible elastic moment that this

same seclion may carry.
From (1) of Problem 8.25, the fully plastic moment is

M, = 1%)—" (38,000) = 38,0001b -in

From (2) of that same problem. the maximum possible elastic moment is

1(2)°

M, = == (38,000) = 25,4001b-in

It is evident that M, is 50 percent greater than M.,.

For a beam of rectangular cross section (Fig. 8-51) determine the relation between the bending
moment and the radius of curvature when all fibers at a distance y, from the neutral axis have
reached the yield point of the material.

As in Problem 8.25, we assume that plane scctions before loading remain plane and normal 1o the
beam axis after loading. Because of this, normal strains of the longitudinal fibers vary linearly as the
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b
- T
¥ NA. 1 .
Fig. 8-51

distance of the fibers from the neutral axis. Thus, if €,, denotes the strain of the fibers at a distance y, from
the neutral axis and ¢, represents the outer fiber strain, we have

“_ -
¢ Y1

Consideration of the geomctry of an originally rectangular element of length dx along the beam axis,
as shown in Fig. 8-52(a), reveals that after bending it assumes the configuration indicated in Fig. 8- 52(b).
From that sketch we have

1 dé e
Bl 3 2
R dx ¢ @

L. dzx

N.A

(e} &)

Fig. 8-52

a6 _ €, _ 0y
dx Wi Ey,

since the fibers a distance y, from the neutral axis obey Hooke's law: ¢,, = E¢,,,. From Problem 8.25, the
moment corresponding to these strains is

. b .\
= (b -5t) 2 @
}

Thus )

Thus, from (3) and (4),

de M

;f; Eb}’l(fz 3}'2) )
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Finally, from (2) and (§) we have
1 M
R EKMIM)V3-2MIM,

where M, = bh’¢,,/6 as in Problem 8.25. This is the desired relation between the bending moment M and
the radius of curvature R. Equation (6) plots as shown in Fig. 8-53.

(6)

E 1

Fig. 8-53

8.28. Consider a beam of rectangular cross section where b = 25 mm, A = 10 inm. The material is steel
for which o,, = 200 MPa and £ = 200 GPa. Determine the radius of curvature corresponding
to the maximum possible elastic moment and also the radius of curvature for a moment of
100N -m.

From (2) of Problem 8.25, the maximum possible elastic moment is

0.025(0.01)?

M, = 6

(200 % 10°) = 83N-m

The curvature corresponding to this moment is found from (6) of Problem 8.27 to be

L = 83 = 0.2 or R=5m
R (200 x 10°)[(0.025) (0.01)*/12) V3 ~ 2

The value of y, corresponding to a moment of 100 N - m may be found from Problem 8.25 to be 4 mm.
The curvature corresponding to this is found from (6) of Problem 8.27 to be
1 _ 100
R (200 x 10°)[(0.025) (0.01)*/12] V3 — 200/83

=0.312 or R=32Zm

8.29. Consider the more general case of a beam with a cross section symmetric only about the vertical
axis, as shown in Fig. 8-54(a). For fully plastic bending [Fig. 8-54(b)], determine the location of
the neutral axis.

Although the location of the neutral axis is unknown, let us denote the area of that portion of the cross
section lying below that axis by A, and the arca of the portion above that axis by A,. As shown by
Fig. 8-54(b), all fibers in A, are subject to a tensile stress equal to the yield point of the material and all
fibers in A, are subject to the same magnitude compressive stress. For horizontal equilibrium of these
forces, we have

Op

A|_0'”,A2=0 (.')
. A
from which A =4, = B} (2)
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Fig. 8-54

where A is the area of the entire cross section. Thus, for fully plastic action, the neutral axis divides the
cross section into two equal parts. This is in contrast to the situation for fully elastic action, where the
neutral axis was found in Problem 8.1 to pass through the centroid of the cross section.

Also, the sum of the moments of the tensile and compressive stresses must equal the applied moment
M,, the fully plastic moment. If y; and y, denote the distances from the neutral axis to the centroids of the
areas A, and A4,, respectively, then from statics

aypAl ?I + GWAZ?Z = MP (3}
From (2) this becomes
A _
oy Git7) = M, @
M
or (5)

Oyn = —
¥ (ARYGh )
This is frequently written in the form

M
=7 (6)

where Z, = (A/2) (y, +Y) is termed the plastic section modulus.

For a W8 x 40 wide-flange section of steel having a yield point of 38,000 Ib/in?, determine the
fully plastic moment. Compare this with the maximum possible elastic moment that the same
section can carry.

From Problem 8.29, the fully plastic moment M, is given by

M,=0,Z,
where Z, is the plastic section modulus. For selected wide-flange sections Z, is tabulated at the end of this
chapter. In particular, for this section it is found to be 39.9 in®. Thus
M, = 38,000(39.9) = 1,520,000b-in
The maximum possible elastic moment is M, = o,, Z where Z is the usual {clastic) section modulus.
Thus
M, = 38,000(35.5) = 1,350,000 1b- in

The plastic moment is only 12.6 percent greater than the maximum elastic moment for this particular
section. In fact, the fully plastic moment usually exceeds the maximum possible elastic moment by
approximately 12 to 15 percent for most wide-flange sections.

Consider the T-section shown in Fig. 8-55(a) in which all fibers in the vertical web at a distance
y, from the neutral axis have reached the yield point of the material, whereas all other fibers
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are still in the elastic range of action. Determine the location of the neutral axis and also the
moment that corresponds to this stress distribution.

The neutral axis (described by the unknown ¢;) may be located by investigating the normal forces over
the cross section as shown in Fig. 8-55(b). From geometry

oy o, or 5—¢q
_— = oy = T,
S5—¢q »i 0 » ”
% _ %% ,_d-a
4—c »n o oo Y1 T
I"L'l —w—
< — 7T
" g ly
NA. |° vat| TP T
4""01 " -
Yo
— g% — R
{a) (d)
Fig. 8-55

For the resultant normal force to vanish

ZFy=(c;— y1)(1)oy, + yi(1) (f;ﬂ)

{[52s- )G | - [ 524 @, |} =0

from which we obtain the quadratic equation
-2+ 1)+ (i +43)=0 )

which determines ¢, for any specified value of y,. This locates the neutral axis. Note that since y; occurred
in the denominator in the above derivation, the equation should not be used to locate the neutral axis if
yi = 0. Thus, when the action is entirely elastic the neutral axis passes through the centroid of the cross
section. As plastification increases (i.c., as y; decreases), the neutral axis shifts to the location indicated
by (Z).

The moment corresponding to the stresses in Fig. 8-55(#) may be found from

M=fcryda

B J. _G,p(y)(])dy"' Jnl a,(y) (1) dy

5-¢ ’ y 5 [ &

_Cl

) (,,) (") B)dy

[Co Cl]

j "‘)(ay,) ) @)dy

or M=i;f[g‘*r;‘(d—ym(S—c.?—%u—ctf] @
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8.32. For the T-section of Problem 8.31 determine the location of the neutral axis when the action is
fully plastic over the entire cross section. For fully plastic action determine the moment-carrying

capacity and compare this with the maximum possible elastic moment.

- .
& —
4" -
NA. | -
—
37—} L _."w_.r_l
(2) (b)

Fig. 8-56

In this case, the normal forces appear as indicated in Fig. 8-56(b). For equilibrium of normal forces
over the cross section, we have

~a(1) (1) + [0(5 — 1) (3) - 7,(4 — 1) (2)] = O

from which ¢; = 3.5 in. Thus, as mentioned in Problem 8.29, for fully plastic action the neutral axis divides

the cross section into two equal parts.
The moment corresponding to this fully plastic action is

M, = foyda

(R ]
o, (3) (3)dy - f o (3) (D) dy

0

(5—cqd

0

- f a,.,,(y)u)dwf
= ;,,,,[8, ~7c, +21.5)
For ¢; = 3.5 this becomes
M, =9.250,,

By setting y; = ¢; in (1) of Problem 8.31, the neutral axis is located for the case of the maximum
possible elastic moment. This location is found to be ¢, = 3.07 in (i.e., the neutral axis passes through the
centroid of the cross section). The maximum possible elastic moment is found from (2) of Problem 8.31

to be
M, =5.320,,

The fully plastic moment exceeds this value by 74 percent.

8.33. A beam is of square cross section, oriented as shown in Fig. 8-57, and carries a vertical load. If
only the extreme top and bottom fibers reach the yield point, determine the maximum allowable
elastic bending moment. Also, if the stress reaches yield at all fibers, determine the fully plastic

moment.
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Sle

Fig. 8-57

If tensile yield is reached at fiber B and compressive yield at fiber D, the stress distribution over the
cross section is given by (see Problem 8.1)

o= )

To determine /, we consider the cross section to consist of triangles ABC and ADC. For each of these we
have. from Problem 7.7,

I = hbk? 2)

So for the entire cross section the moment of inertia is

()]

24 ©)

So from Eq. (1) at the extreme fibers we have

TG

0,,)a’ V2

M= Gl V2
oM. 7

For fully plastic action over the entire cross section we have the stress distribution shown in
Fig. 8-58
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The resultant of the compressive stresses above AC is

3] e G

which acts at the centroid of triangle ABC, and the resultant of the tensile stresses below AC is

1) 5o

acting at the centroid of triangle ADC. These forces form a couple of magnitude

= (G |2 ()] 5%

It is also of interest to form the ratio M,/M.:

o(5%)

Supplementary Problems

A beam made of titanium, type Ti-6Al-4V, has a yield point of 120,000 Ib/in>. The beam has 1-in X 2-in
rectangular cross section and bends about an axis parallel to the 1-in face. If the maximum bending stress
is 90,000 Ib/in?, find the corresponding bending moment. ~ Ans.  60,0001b -in

A cantilever beam 3 m long carries a concentrated force of 35 kN at its frec end. The material is structural
steel and the maximum bending stress is not to exceed 125 MPa. Determine the required diameter if the
bar is to be circular. Ans. 204 mm

Two 1-in X 8-in cover plates are welded to two channels 10in high to form the cross section of the beam
shown in Fig. 8-59. Loads are in a vertical plane and bending takes place about a horizontal axis. The
moment of inertia of each channel about a horizontal axis through the centroid is 78.5 in®. If the maximum
allowable elastic bending stress is 18,000 Ib/in’, determine the maximum bending moment that may be

developed in the beam. Ans. 1,2320001b-in

Kff/?ﬁ/" /m—L-;in

N \

N N
N .
¢ - 10in

N

N

N N
i NN
77777777 T e
! -t

m Bin !

Fig. 8-59
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A 250 mm deep wide-flange section with 7 = 61 % 10° mm* is used as a cantilever beam. The beam is 2m
long and the allowable bending stress is 125 MPa. Determine the maximum allowable intensity of uniform
load that may be carried along the entire length of the beam. Ans. 305 kN/m

The beam shown in Fig. 8-60 is simply supported at the ends and carries the two symmetrically placed loads

of 60kN each. If the working stress in either tension or compression is 125 MPa, what is the required
moment of mertia of area required for a 250-mm-deep beam?  Ans 60 % 10°mm*

6D kN 60 kN

T

|
-mémz e
L-lm—lklm llﬂ—-l

Fig. 8-60

Consider the simply supported beam subject to the two concentrated forces (60 kN each) shown in Fig.
8-60. Now, the beam is of hollow circular cross section as shown in Fig. 8-61, with an allowable working
stress in either tension or compression of 125 MPa. Dctermine the necessary outer diameter of the
beam. Ans. 17.4mm

20,000 1b
1000 Ib/ft

Fig. 8-61 Fig. 8-62

Consider a simply supported beam carrying the concentrated and uniform loads shown in Fig. 8-62. Select
a suitable wide-flange section to resist these loads based upon a working stress in either tension or
compression of 20,000 Ibfin>.  Ans. W12 %25

Select a suitable wide-flange section to act as a cantilever beam 3m long that carries a uniformly
distributed load of 30 kN/m. The working stress in either tension or compression is 150 MPa.
Ans.  W305 X 66

A beam 3 m long is simply supported at each end and carries a uniformly distributed load of 10 kN/m. The
beam is of rectangular cross section, 75 mm % 150 mm. Determine the magnitude and location of the peak
bending stress. Also, find the bending stress at a point 25 mm below the upper surface at the seetion
midway between supports. Ans. 40MPa, —26.8 MPa

Reconsider the steel beam of Problem 8-42. Determinc the maximum bending stress if now the weight of
the beam is considered in addition to the load of 10 kN/m. The weight of steel is 77.0 kIN/m’.
Ans. 43.6 MPa
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8.44. The two distributed loads are carried by the simply supported beam as shown in Fig. 863. The beam is
a W8 X 28 section. Determine the magnitude and location of the maximum bending stress in the beam.

Ans. 9000 Ib/in%, 5.5 ft from the right support

8.45. A T-beam having the cross section shown in Fig. 8-64 projects 2 m from a wall as a cantilever beam and
carries a uniformly distributed load of 8 kN/m, including its own weight. Determine the maximum tensile
and compressive bending stresses. ~ Ans. +385MPa, —81 MPa

4

1200 Ib/ft 15 mm

600 1b/1t _l_

100 mm

‘-—- 8’—-La'_.-|.._ e'_.l 50 rnn_'n_:!s mi:n—éa-;m_

Fig. 8-63 Fig. 8-64

8.46. The simply supported beam AC shown in Fig. 8-65(a) supports a concentrated load P. The beam section
is rectangular, 60 mm by 100 mm, with two square cutouts as shown in Fig. 8-65(b). If the allowable working
stress is 120 MPa, determine the maximum value of P. Ans. 1.BOKN

[

NN
~
E

, 7 |
- 2 77
?

0.5 m |! 1.5m [

@ 4/?7/

Fig. 8-65

8.47. A simply supported stcel beam of channel-type cross section is loaded by both the uniformly distributed
load and the couple shown in Fig. 8-66. Determine the maximum tensile and compressive stresses.
Ans. 312 MPa, —56.8 MPa

10 kN-m ~ 225 mm—| |-

™
1,,35”, 40 mm 200 mm
Im l:tm_l —l-
Fig. 8-66
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8.48. A beam of circular cross section has the geometry shown in Fig. 8-67 and is subjected to a single
concentrated vertical force at its midpoint. Determine the location of the point of maximum bending stress
and the value of that stress. Ans. x = LA, ap,, = 0377 PLId?

y P
24
d - - N
__hﬁ
I L L |
- T 2 .
Fig. 8-67

8.49. A channel-shape beam with an overhanging end is loaded as shown in Fig. 8-68. The material is gray cast
iron having an allowable working stress of 50001b/in? in tension and 20.0001b/in’ in compression.
Determine the maximum allowable value of P. Ans. 24001b

N | e —

— 1 19 . T

o i I% i g v

I__ . AI» 4*-—'-2'.1 /E_‘///// 7 R:t w ju, _l_
Fig. 8-68 Fig. 8-69

8.50. In Fig. 8-69 the simply supported beam of length 10 ft and cross section 4 in X 8 in carries a uniform load
of 200 Ib/ft. Neglecting the weight of the beam, find (a) the maximum normal stress in the beam, (b) the
maximum shearing stress in the beam. and (¢) the shearing stress at a point 2 ft to the right of R, and 1in
below the top surface of the beam.  Ans.  {a) 705 Ib/in?, (b) 47 Ibjfin?, (¢) 12.3 Ib/in?

8.51. Determine {a) the maximum bending stress and (b) the maximum shearing stress in the simply supported
beam shown in Fig. 8-70. Ans.  (a) 22,000 Ib/in’, (b) 1660 1bfin?

10,000 Ibuts 4000 th/gt j—l
1
iy
T
Fig. 8-70

8.52. For a bar of solid circular cross section, determine the amount by which the fully plastic moment exceeds
the moment that jusi causes the yield point to be reached in the extreme fibers. Ans. 69.6 percent
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8.57.

Consider bending of a bar of isosceles triangular cross section (Fig. 8-71). The loads lie in the vertical plane
of symmetry. Determine the ratio of the fully plastic moment to the moment that just causes yielding of
the extreme fibers. Ans. 248

For the T-section shown in Fig. 8-72, determine the location of the neutral axis for fully plastic action.
Ans. 137.5 mm above the lowest fibers of the section

—
I I_J 15 men 0 mm

L s

b 50 mm 50 mm _ T

I._ _-1‘]_ 150 mm i yI-[ N 100 mm
| i 5]
1 _ 1 3
—*:!'s mt_ Lﬂﬂmm_-l;[m

Fig. 8-71 Fig. 8-72 Fig. 8-73

A bar of solid circular cross section of radius r is subject to bending. By what percent does the bending
moment required to cause plastic action at the distance r/2 from the neutral axis exceed that required to
just cause the yield point to be reached in the extreme fibers? Ans.  49.2 percent

For the section shown in Fig. 8-73 determine the value of y, which represents the point where elastic action
terminates and plastic flow begins, when the beam is subject to a bending moment of 20kN-m.
Also determine the radius of curvature. Take the yield point of the material to be 200 MPa, and
E = 200 GPa. Ans. y,=474mm, R=526m

A wide-flange section 600 mm high has welded to each of its flanges a 25 mm thick cover plate (see Fig.
8-74). The moment of inertia of the section is 1000 X 10° mm®. At a particular location along the length
of the beam, the transverse shear force is 300 kN. Determine the shear force per unit length existing in each
of the four welds.  Ans. 146 N/mm

&00 mm At

e ——

1
25 mm ! 320 mm

Fig. 8-74
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Table B-1. Properties of Selecied Wide-Flange Sections, USCS Units
Wecight per fool, Arca, 1 (about x-x axis). Z. I (about v-p axis). 7, (plastic section modulus),

Designation* Ibife in” n’ in’ n* n'

W IR X T T0.0 2056 1153 128.2 78.5 1447
W I8 X 55 55.0 16.19 8899 Y82 420 1116
WIZx72 720 2116 5974 97.5 195.3 WE.1
W 12X 58 58.0 17.06 476.1 8.1 107.4 R6.5
W12 x50 50.0 14.7] 3945 64.7 56.4 72.6
W 12X 45 45.0 1324 3508 582 $0.0 649
W 12 x40 400 177 3101 519 4.1 57.6
W I1ZX36 36.0 10.59 280.8 459 237 514
W12x32 2.0 941 246.8 40.7 20.6 450
W I2x25 250 7.39 183.4 309 14.5 350
W 10 X 89 89.0 26.19 5424 9.7 180.6 1144
W 10X 54 54.0 15.88 305.7 60.4 103.9 67.0
W 10 x 49 9.0 14.40 2729 54.6 93.0 603
W10 x45 45.0 1324 248.6 49.1 53.2 550
W 10x37 370 10.88 196.9 399 422 450
W10 x 29 290 8.53 157.3 308 15.2 347
W 10x23 230 677 1206 24.1 113 337
W x 21 210 6.19 106.3 21.5 9.7 24.1
W Rx40 400 11.76 146.3 55 49.0 399
W Bx3§ 350 {0.30 126.5 3L 425 347
W Rx31 30 9.12 109.7 27.4 370 304
W 8x28 280 823 978 24.3 21.6 271
W 8x27 210 7.93 94.1 234 08 239
W Bx24 240 7.06 82.5 208 182 231
W Rx19 19.0 5.59 64.7 16.0 79 17.7
W 615 15.5 4.62 28.1 9.7 9.7 113

*The first number after the W 1s the nomna) depth of the scctien in inches. The second number is the weight in pounds per foot of length.
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Table 8-2. Properties of Selected Wide-Flange Sections, SI Units
Mass per meter, Area, I (about x-x axis), Z, I (about y-y axis), Z, (plastic section modulus),
Designation* kg/m mm?* 10* mm* 10° mm? 10° mm* 10° mm?
W 460 % 103 1029 13,200 479 2100 326 2370
W 460 x 81 809 10,400 369 1610 17.4 1820
W 305 x 106 105.8 13,600 248 1590 81.0 1770
W 305 x 85 853 11,000 198 1280 44.6 1410
W 305 x 74 735 9,480 164 1060 234 1190
W 305 X 66 66.2 8.530 146 952 20.7 1060
W 305 % 59 58.8 7.580 129 849 183 942
W 305 % 53 529 6,820 17 750 9.83 840
W 305 x 47 47.0 6,060 102 665 855 736
W 305 x 37 36.8 4,760 76.1 505 6.02 572
W 254 % 131 130.8 16,900 225 1630 74.9 1870
W 254 X 79 79.4 10,200 127 088 43.1 1100
W 254 x 72 720 9,280 113 893 38.6 986
W 254 x 66 66.2 8.530 103 803 22.1 899
W 254 x 54 54.4 7.010 81.7 652 17.5 736
W 254 X 43 42.6 5,4%0 65.3 504 6.31 567
W 254 x 34 338 4.360 50.0 394 4.69 551
W 254 x 31 309 3.990 4.1 352 4.02 394
W 203 x 59 58.8 7,580 60.7 580 203 652
W 203 x 51 514 6,630 52.5 508 17.6 567
W 203 X 46 45.6 5870 455 448 15.4 497
W 203 x 41 412 5300 40.6 397 896 443
W 203 x 40 39.7 5110 39.0 383 8.63 391
W 203 x 35 353 4,550 342 340 7.55 378
W 203 x 28 279 3,600 268 262 3.28 290
W 152x23 228 2,980 11.7 159 4.02 185

*The first number after the W is the nominal depth of the section in millimeters. The second number is the mass in kilograms per meter of length.



Chapter 9

Elastic Deflection of Beams:
Double-Integration Method

INTRODUCTION

In Chap. 8 it was stated that lateral loads applied to a beam not only give rise to internal bending
and shearing stresses in the bar, but also cause the bar to deflect in a direction perpendicular to its
longitudinal axis. The stresses were examined in Chap. 8 and it is the purpose of this chapter and also
Chap. 10 to examine methods for calculating the deflections.

DEFINITION OF DEFLECTION OF A BEAM

The deformation of a beam is most easily expressed in terms of the deflection of the beam from
its original unloaded position. The deflection is measured from the original neutral surface to the
neutral surface of the deformed beam. The configuration assumed by the deformed neutral surface
is known as the elastic curve of the beam. Figure 9-1 represents the beam in its original undeformed
state and Fig. 9-2 represents the beam in the deformed configuration it has assumed under the action
of the load.

e r or— 1] t

Fig. 9-1 Fig. 9-2

The displacement y is defined as the deflection of the beam. Often it will be necessary to determine
the deflection y for every value of x along the beam. This relation may be written in the form of an
equation which is frequently called the equation of the deflection curve (or elastic curve) of the
beam.

IMPORTANCE OF BEAM DEFLECTIONS

Specifications for the design of beams frequently impose limitations upon the deflections as well
as the stresses. Consequently, in addition to the calculation of stresses as outlined in Chap. 8§, it is
essential that the designer be able to determine deflections. For example, in many building codes the
maximum allowable deflection of a beam is not to exceed 3 of the length of the beam. Components
of aircraft usually are designed so that deflections do not exceed some preassigned value, else the
aerodynamic characteristics may be altered. Thus, a well-designed beam must not only be able to carry
the loads to which it will be subjected but it must not undergo undesirably large defiections. Also, the
evaluation of reactions of statically indeterminate beams involves the use of various deformation
relationships. These will be examined in detail in Chap. 11.

220
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METHODS OF DETERMINING BEAM DEFLECTIONS

Numerous methods are available for the determination of beam deflections. The most commonly
used are the following:

1. Double-integration method
2. Method of singularity functions
3. Elastic energy methods

The first method is described in this chapter, the use of singularity functions is discussed in Chap.
10, and elastic energy methods are treated in Chap. 15. It is to be carefully noted that all of these
methods apply only if all portions of the beam are acting in the elastic range of action.

DOUBLE-INTEGRATION METHOD

The differential equation of the deflection curve of the bent beam is

4y _
dx?
where x and y are the coordinates shown in Fig. 9-2. That is, y is the deflection of the beam. This
equation is derived in Problem 9.1. In the equation E denotes the modulus of elasticity of the beam
and / represents the moment of inertia of the beam cross section about the neutral axis, which passes
through the centroid of the cross section. Also, M represents the bending moment at the distance x
from one end of the beam. This quantity was defined in Chap. 6 to be the algebraic sum of the moments
of the external forces to one side of the section at a distance x from the end about an axis through this
section. Usually, M will be a function of x and it will be necessary to integrate (9.1) twice to obtain an
algebraic equation expressing the deflection of y as a function of x.

Equation (9.7) is the basic differential equation that governs the elastic deflection of all beams
irrespective of the type of applied loading. For applications, see Problems 9.2 through 9.14 and 9.16
through 9.22.

EI (9.1)

THE INTEGRATION PROCEDURE

The double-integration method for calculating deflections of beams merely consists of integrating
(9.1). The first integration yields the slope dy/dx at any point in the beam and the second integration
gives the deflection y for any value of x. The bending moment M must, of course, be expressed as a
function of the coordinate x before the equation can be integrated. For the cases to be studied here
the integrations are extremely simple.

Since the differential equation (9.7) is of the second order, its solution must contain two constants
of integration. These two constants must be evaluated from known conditions concerning the slope or
deflection at certain points in the beam. For example, in the case of a cantilever beam the constants
would be determined from the conditions of zero change of slope as well as zero deflection at the
built-in end of the beam.

Frequently two or more equations are necessary to describe the bending moment in the various
regions along the length of a beam. This was emphasized in Chap. 6. In such a case, (9./) must be
written for each region of the beam and integration of these equations yields two constants of
integration for each region. These constants must then be determined so as to impose conditions of
continuous deformations and slopes at the points common to adjacent regions. See Problems 9.17
through 9.19.
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SIGN CONVENTIONS

The sign conventions for bending moment adopted in Chap. 6 will be retained here. The quantities
E and I appearing in (9.1) are, of course, positive. Thus, from this equation. if M is positive for a certain
value of x, then d’y/dx? is also positive. With the above sign convention for bending moments, it is
necessary to consider the coordinate x along the length of the beam to be positive to the right and the
deflection y to be positive upward. This will be explained in detail in Problem 9.1. With these algebraic
signs the integration of (9./) may be carried out to yield the deflection y as a function of x, with the
understanding that upward beam deflections are positive and downward deflections negative.

ASSUMPTIONS AND LIMITATIONS

In the derivation of (9.7) it is assumed that deflections caused by shearing action are negligible
compared to those caused by bending action. Also, it is assumed that the deflections are small
compared to the cross-sectional dimensions of the beam and that all portions of the beam are acting
in the elastic range. Equation (9.7) is derived on the basis of the beam being straight prior to the
application of loads. Beams with slight deviations from straightness prior to loading may be treated by
modifying this equation as indicated in Problem 9.25.

Solved Problems

9.1. Obtain the differential equation of the deflection curve of a beam loaded by lateral forces.

In Problem 8.1 the relationship
El
M=— n
P
was derived. In this expression M denotes the bending moment acting at a particular cross section of the
beam, p the radius of curvature to the neutral surface of the bcam at this same section, £ the modulus of
elasticity, and I the moment of the cross-sectional area about the neutral axis passing through the centroid
of the cross section. In this book we will usually be concerned with those beams for which E and [ are
constant along the entire length of the beam, but in general both M and g will be functions of x.
Equation (/) may be written in the form
1M (2
p EI )
where the left side of Eq. (2) represents the curvature of the neutral surface of the beam. Since M will vary
along the length of the beam, the deflection curve will be of variablc curvature.

Let the heavy line in Fig. 9-3 represent the deformed neuiral surface of the bent beam. Originally the
beam coincided with the x-axis prior to loading and the coordinate system that is usually found to be most
convenient is shown in the sketch. The deflection y is taken to be positive in the upward direction: hence
for the particular beam shown, all deflections are negative.

Py m—

li
O —
Fig. 9-3
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9.2.

An expression for the curvature at any point along the curve representing the deformed beam is
readily available from differential calculus. The exact formula for curvature is

1_ dyidy? 3
P 1+ (dyidx)T? ®

In this expression, dy/dx represents the slope of the curve at any point; and for small beam deflections this
quantity and in particular its square are small in comparison to unity and may reasonably be neglected.
This assumption of small deflections simplifies the expression for curvature into

1 &y
p dxz (4)
Hence for small deflections, (2) becomes &*y/dx* = MI/EI or
d’y
EJE = (5)

This is the differential equation of the deflection curve of a beam loaded by lateral forces. In honor of its
codiscoverers, it is called the Euler-Bernoulli equation of bending of a beam. In any problem it is necessary
to integrate this equation to obtain an algebraic relationship between the deflection y and the coordinate
x along the length of the beam. This will be carried out in the following problems.

Determine the deflection at every point of the cantilever beam subject to the single concentrated
force P, as shown in Fig. 9-4.

I
N x ﬁ)‘}
PL( e

PL

Fig. 94 Fig. 9-5

The x-y coordinate system shown is introduced. where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. It is first
necessary to find the reactions exerted by the supporting wall upon the bar, and these are easily found from
statics to be a vertical force reaction P and a moment PL as shown.

The bending moment at any cross section a distance x from the wall is given by the sum of the
moments of these two reactions about an axis through this section. Evidently the upward force P produces
a positive bending moment Px, and the couple PL if acting alone would produce curvature of the bar as
shown in Fig. 9-5. According to the sign convention of Chap. 6. this constitutes negative bending. Hence
the bending moment M at the section x is

M= —PL~+ Px
The differential equation of the bent beam is

&y
EIE =M

where E denotes the modulus of elasticity of the material and I represents the moment of inertia of the
cross section about the neutral axis. Substituting,
d’y

El—5 = —PL+Px (1)
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This equation is readily integrated once to yield

d Px?

Eld—i = ~PLx+—-+C, )
which represents the equation of the slope, where C, denotes a constant of integration. This constant may
be evaluated by use of the condition that the slope dy/dx of the beam at the wall is zero since the beam
is rigidly clamped there. Thus (dy/dx),_, = 0. Equation (2) is true for all values of x and y, and if the
condition x = 0 is substituted we obtain 0 =0+0+ C, or C, = 0.

Next, integration of (2) yields

2
S L L 3)
2 6
where (; is a second constant of integration. Again, the condition at the supporting wall will determine
this constant. There, at x = 0, the deflection y is zero since the bar is rigidly clamped. Substituting
(h-0=0in Eq. (3),we find0=0+0+Coor G =0.

Thus Egs. (2) and (3) with C, = C; = 0 give the slope dy/dx and deflection y at any point x in the
beam. The deflection is a maximum at the right end of the beam (x = L), under the load P, and from
Eq. (3).

-pPL?

Elyma = 3 4)

where the negative value denotes that this point on the deflection curve lies below the x-axis. If only the
magnitude of the maximum deflection at x = L is desired. it is usually denoted by A,,, and we have

pPL?

Amanga

&)

The cantilever beam shown in Fig. 9-4 is 3 m long and loaded by an end force of 20 kN. The
cross section is a W203 X 59 steel section, which according to Table 8-2 of Chap. 8 has
I1=60.7%10°m® and Z = 580 X 107®* m*. Find the maximum deflection of the beam. Take
E = 200 GPa.
The maximum deflection occurs at the free end of the beam under the concentrated force and was
found in Problem 9.2 to be, by Eq. (4),
PL® (20,000 N) (3 m)’

Vinax = — 3E 3200 x 10° N/md) (607 X 10 ° ) = —(.0148 m or 14.8 mm

The negative sign of course indicates downward deflection. In the derivation of this deflection formula it
was assumed that the material of the beam follows Hooke's law. Actually, from the above calculation alone
there is no assurance that the material is not stressed beyond the proportional limit. If it were then the
basic beam-bending equation E/(d”y/dx’) = M would no longer be valid and the above numerical value
would be meaningless. Consequently, in every problem involving beam deflections it is to be emphasized
that it is necessary to determine that the maximum bending stress in the beam is below the proportional
limit of the material. This is easily done by use of the flexure formula derived in Problem 8.1. According
to this formula

aTa=—

1
where o denotes the bending stress, M the bending moment, ¢ the distance from the neutral axis to the
outer fibers of the beam, and 7 the second moment of area of the beam cross section about the neutral axis,

The maximum bending moment in this problem occurs at the supporting wall and is given by
Mupax = (20,000 N) (3 m) = 60,000 N-m. Using this in the formula for bending stress, we have

M 60000N-m

Trnax :E - 580 X_IO 6m3 = lO3MPa
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9.4.

9.5.

Since this value is below the proportional limit of steel, which is approximately 200 MPa, the use of the
beam deflection equation was justifiable.

Determine the slope of the right end of the cantilever beam loaded as shown in Fig. 9-4. For the
beam described in Problem 9.3, determine the value of this slope.

In Problem 9.2 the equation of the slope was found to be
dy Px?

—_= = +—
E!dx PLx 2

At the free end, x = L, and
dy , PL?
—_— = — -|- ——
El ( ) . PL >

The slope at the end is thus

(Q) - —PU
dx),.,  2EI

For the beam described in Problem 9.3, this becomes

(5_}5) _ —(20,000 N) (3 m)’
dx),-p  2(200 X 10° N/m?) (60.7 X 10" m*)

= (0.0222 rad or 1.27°

Determine the deflection at every point of a cantilever beam subject to the uniformly distributed
load w per unit length shown in Fig. 9-6.

‘ v
w/Unit length

M—

L 1

Fig. 9-6

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The equation
for the bending moment could be determined in a manner analogous to that used in Problem 9.2, but
instead let us seek a slight simplification of that technique. Let us determine the bending moment at the
section a distance x from the wall by considering the forces to the right of this section rather than those
to the left.

The force of w/unit length acts over the length L — x to the right of this section and hence the resultant
force is w(L — x) Ib. This force acts at the midpoint of this length of beam to the right of x and thus its
moment arm from x is 3(L — x). The bending moment at the section x is thus given by

M= —«'25(1. — x)?

the negative sign being necessary since downward loads produce negative bending.
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The differential equation describing the bent beam is thus

dy w
EIE;J{;:—E‘(L—.I)Z V)]
The first integration yields
dy w(L—x)y
B =5 G @

where C, denotes a constant of integration.

This constant may be evaluated by realizing that the lefl end of the beam is rigidly clamped. At that
point, x = ), we have no change of slope and hence (dy/dx),_¢ = 0. Substituting these values in (2), we find
0=wlL¥%6+C, or C, = —wL%6. We thus have

dy wl?

EJZ—%(L-—IP—T @

The next integration yields

w (L —x) wi?
Ely=——"—"—-—x+0(
Y= a g T &
where C, represents a second constant of integration.
At the clamped end, x = 0, of the beam the deflection is zero and since (3) holds for all values of x
and y, it is permissible 1o substitute this pair of values in it. Doing this, we obtain

—wl? wil?
= + _
0 2 G, or G >4
The final form of the deflection curve of the beam is thus
w wi? wl?
Ely = ——(L—x)*"———x+ '
T Y @)

The deflection is a8 maximum at the right end of the bar (x = L) and there we have from (3')

wl?® wl? wl®
] N + = e ama—
Elyomas 6 = 24 8

where the negative value denotes that this point on the deflection curve lies below the x-axis. The
magnitude of the maximum deflection is
wl?

Amax =S 4
8ET )

9.6. A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-7. Determine the
equation of the deflected beam as well as the deflection of the tip.




CHAP 9] ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD 227

Let us introducc a coordinate system having its origin at the tip of the beam. The intensity of loading
at any point x to the right of the tip is, from the properties of a parabola,

-

From statics it is known that for any parabolic area such as shown in Fig. 9-8 the arca is given by
A = iah and the centroid C is located at x = 3a/4. Accordingly. it is now possible to detcrminc the bending
moment at the point x as the sum of the moments of all loads to the left of x about that point. The resultant
of the loading to the left of x is {xw and this rcsultant, shown by the solid arrow in Fig. 9-7, is located a

3a '
4

Fig. 9-8

distance 3x/4 from the tip, or. alternatively, (x/4) from position x. Thus, the bending moment at x is found,
with the aid of Eq. (1), to be

1 (x) wy,x*
- =AW\l = or

37 \4 S 1212
and the differential equation of the deflection curve is
d?y wox?
—== - 2
ax’ 1217 @
Integrating the first time, we find
dy  wg X°
VTR @)
When x = L, the slope dy/dx = 0, so from Eq. (3), wc have
3 3
0= %+ C, and therelore C, = ol
60
Integrating again, we have
wo X% wol?
Ely=- — + 4
} 60L2 6 60 X CZ ( )
When x = L, y =0, so from Eq. (4), we have
W|]L4 WnL‘ 1
0= —-——0r+——+( = —— 4
30 ) + G, and therefore C, = wol.

The desired equation of thc deficcted beam is

Wy L

Ely = — —0_jo T
Y= T30 T e 72

and the deflection at the tip is

Elylig = —HiwoL?
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Obtain an expression for the defiection curve of the simply supported beam of Fig. 9-9 subject
to the uniformly distributed load w per unit length as shown.

The x-y coordinate system shown is introduced, where the x-axis coincides with the original unbent
position of the beam. The deformed beam has the appearance indicated by the heavy line. The total load
acting on the beam is wlL and, because of symmetry, each of the end reactions is wl/2. Because of the
symmetry of loading, it is evident that the deflected beam is symmetric about the midpoint x = L/2.

The equation for the bending moment at any section of a beam loaded and supported as this one is
was discussed in Problem 6.3. According to the method indicated there, the portion of the uniform load
to the left of the section a distance x from the left support is replaced by its resultant acting at the midpoint
of the section of length x. The resultant is wx b acting downward and hence giving rise to a negative

bending moment.
v
F T
w/Unit length
-

wL L wL
2 | 12

Fig. 9-9

The reaction wi /2 gives rise to a positive bending moment. Consequently. for any value of x, the bending
moment is
M= :v-éx - wxs

2 2
The differential equation of the bent beam is ENd’y/dx’) = M. Substituting,

d’y wL  wx?
E1S2 =, M 1
a2 72 "
Integrating,
dy wlL x> wix®
=732 2376 2)

It is to be noted that dy/dx represents the slope of the beam. Since the deflected beam is symmetric
about the center of the span, i.e., about x = L/2, it is evident that the slope must be zero there. That is,
the tangent to the deflected beam is horizontal at the midpoint of the beam. This condition enables us to
determine C,. Substituting this condition in (2), we obtain (dy/dx),-.; = 0,

wlL 2 wli? wi3
= - — — 4 = = e—
=TT st o LTy
The slope dy/dx at any point is thus given by
dy wlL w wil? .
B = a6 @)

Integrating again, we find

Ely=—2-Z—_ G '€))
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9.8.

9.9.

This second constant of integration C; is readily determined by the fact that the deflection y is zero at the
left support. Substituting y,. = 0in (3), we find 0 =0-0-0+ G or ;= 0.
The final form of the deflection curve of the beam is thus

Ely=—x'——x e, 3"

The maximum deflection of the beam occurs at the center because of symmetry. Substituting x = L/2
in (3'), we obtain

Or, without regard to algebraic sign, we have for the maximum deflection of a uniformly loaded, simply
supported beam

Tl (<)

A simply supported beam of length 10ft and rectangular cross section 1in X 3in carries a
uniform load of 200 Ib/ft. The beam is titanium, type Ti-5Al-2.5Sn, having a yield strength of
115,000 Ib/in? and E = 16 X 10° Ib/in®. Determine the maximum deflection of the beam.

From Problem 9.7 the maximum deflection is
5 wil?
Boax = 383 BT

Substituting,

5 (200/12)(120)° _
= = 1.25
Ao = 383 (16 X 109 5(1) (3) "
Using the methods of Chap. 8, the maximum bending stress is found to be only 20,000 Ib/in?, well
below the nonlinear range of action of the material. Thus the usc of the deflection formula is justified.

Consider the simply supported beam subject to the two end couples M, and M, as shown in Fig.
9-10. Determine the equation of the deflection curve and locate the point of peak deflection if
M 1= 0.

For equilibrium the resultant of the applied couples, that is, (M, — M;), must be another couple
corresponding to the vertical reactions at the ends R, and Rg. From statics,

+J)3ZMy=-M +M,+RglL =0

L. )
Mlcif‘f | ’”‘?““9_,

Fig. 9-10
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Therefore,
Rg = Ml M. (l)
L
ZF.= R, +Rg=0
Therelore,
M —-M
R ==

The differential equation describing the bent beam is thus

dy
EIZ% = My~ Rux )
dy x
Integrating. E:Z‘ = Mix— RS +C, @)

We have no information concerning the slope anywhere in the beam. Hence it is not possible to determine
the constant of integration C, at this stage. Let us integrate again:

x R, X
Ely= M\~ - —;-§+C.x+ G, &)

We may now determine the two constants of integration through use of the fact that the beam
deflection is zero at each end. Accordingly,
When x = 0. v = 0. so from Eq. (3) we have

0=0-0+0+G, and therefore C, = 0

Next, when x = L, y = 0, so we have from Eq. (3)

R
0=M.?——E:—‘L"+C;L

from which

so that the desired equation of the deflection curve is

"_ﬂ_f_] 2 M."M}_) J_(M]L MZL)
Ely =21 ( =) - (= T ) @
If M, = 0, Eq. (4) becomes
sz’ MzLX
Ely = —*——- 2= 5
Y= oL 6 (3)
d}' Mzr! MzL
El—=—————
and [dx 3L 6 (6)

The point of peak deflection occurs when the slope given by Eq. (6) is zero. Solving Eq. (6) for this
value of x.

x=—s (7)



CHAP 9] ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD 231

9.10.

At this point (for M, = 0) thc deflection is given by Eq. (5) 1o be

MZ( L )’ M;,L( L ) M.12V3
Elypa = =2 |—=| - —2= = -2z 2 8
b =s0\V3) " 76 \V3 27 ©)
Inspection of Eq. (4) for the case M, = M, = M indicates that

Ely =gx2— %x (9)

which indicates a parabolic deflection curve. Yet, Eq. (2) of Problem 9.1 indicates that if M = constant
along the length of the beam, the curvature (1/p) is consiant; i.e., the bar bends into a circular arc. The
reason for the very slight discrepancy is that Eq. (5) of Problem 9.1. that is,
d’y
El el M

incorporates the approximation
1 d%

_—— -

p dx?

as explained in Problem 9.1. In reality the numerical difference between the parabola and the circular arc
is very small and in almost all cases may be neglected.

A simply supported beam is loaded by a couple M, as shown in Fig. 9-11. The beam is 2 m long
and of square cross section 50 mm on a side. If the maximum permissible deflection in the beam
is 5mm, and the allowable bending stress is 150 MPa, find the maximum allowable load M,.
Take E = 200 GPa.

It is perhaps simplest to determine two values of M,: onc based upon the assumption that the
deflection of 5 mm is realized. the other based on the assumption that the maximum bending stress in the
bar is 150 MPa. The truc value of M, is then the minimum of these two values.

Fig. 9-11

Let us first consider that the maximum defiection in the beam is 5 mm. According to Eq. (§). Problem
9.9, we have
M,(2PV3
27(200 % 10%) (35) (0.05) (0.05)°

0.005 = or M, =203kN-m

We shall now assume that the allowable bending stress of 150 MPa is set up in the outer fibers of the
beam at the section of maximum bending moment. Referring to Problem 9.9, since M, = 0, we find the
reactions at the ends of the beam are

M,

IRl =%

so that they have the appearance shown in Fig. 9-12, and the bending moment diagram for the beam is as
shown in Fig. 9-13.



232 ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD [CHAP. 9

v

M,
o . i A
EL = Tl. My

i — . b

Fig. 9-12 Fig. 9-13

The maximum bending moment in the beam is M,. Using the usual flexure formula, o = Me/l, we have
at the outer fibers of the bar at the right end, ie., at the section of maximum bending moment,

M,(0.025)

190%x10° = ——F———
T () 0.05) .05

or M;=3.125kN-m

Thus the maximum allowable moment is M, = 2.03 kN -m.

9.11. A simply supported beam is subjected to the sinusoidal loading shown in Fig. 9-14. Determine
the deflection curve of the beam as well as the peak deflection.

o T
y q g=qosin 7

A \ B

& N
*—»H—dw I
]
R

R

Fig. 9-14

It is first necessary to determine the total load on the beam. Let us consider the shaded element a
distance x from the end A and of width dx. If g denotes load per unit length, then the load corresponding
to the shaded element is g dx and the load on the entire beam is found by integrating:

2q0L

Ky

=L L
Load=J' qu=j qosin?dx=
x 4]

=M

From statics, half of this load is carried at each end reaction. Thus,

L
RL=RR=?"_
kis

The bending moment at the point denoted by x is found as the sum of the moments of all forces to
the left of that point. To determine the moment about x of the portion of the sinusoidal load to the left
of x, it is necessary to introduce another variable of integration, u, corresponding to a second vertical
shaded element of width du, as shown in Fig. 9-15. The variable © must run from u = 0tou = x so as to
yield the bending moment due to the sinusoidal load to the left of x.
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G - JX
yy 9=%siny g=gpsin 7}
b ] 3 _F ¢
& I & x

— Ay

. riets
qol %l
F 3 T

Fig. 9-15

Remembering the contribution that the left support makes to the bending moment, we have

M= q"Lx - J“aqo[sin-m—-] (du) (x — u)
T o L @

__QoL u=x U u=x T
= TI_%J‘"“ xsinl'd”"“?uj_u usmfdu (1)

In this integration u is a variable and x is to be (temporarily) regarded as a constant. The last integral ()
in Eq. (/) must be integrated by parts, remembering that

fﬂ(sinﬁ) d6 = sin#— fcos O )

U
Here, 6=—
L

de = %du

so that the last integral (&) becomes

=X ou L[ mu mu a4~
usmfdu=— sin— — —cos—
"

=0 u=0

— —Ccos — 3

The bending moment, Eq. (1), is thus
H=x 2
M o< ToLx qux(%) [_mﬂ] L ok [Sinff_x_ Efmff_x]
m

_ql’ . m
2 SN, 4

The differential equation of the deflected beam is thus

d’y  qol? . mx
IS = —‘;J—smf (5)
Integrating the first time, we have
. 12
Ei%:-%?(i)cos%x+q 6)

As the first boundary condition, from symmetry, when x = L/2, dy/dx = 0. Substituting in Eq. (6), we find
C, = 0. Integrating again,

3
Epy = _q(;g, (%T) sin%x+(fz (7)
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The second boundary condition is that when x = 0, y = 0. Substituting in Eq. (7), we have C, = 0. The
equation of the deflected beam is

™
Ely o siny (&)
and the peak deflection, at x = L2, is
gl
Ely]max = 2?,4

Determine the deflection curve of a simply supported beam subject to the concentrated force
P applied as shown in Fig. 9-16.

v IP
a 1 b ——-l z
M
L
P
Rl - —};—‘b IR; = T"
Fig. 9-16

The x-y coordinate system is introduced as shown. The heavy line indicates the configuration of the
deformed beam. From statics the reactions are found to be R, = Pb/L and R, = Pall..

This problem presents one feature that distinguishes it from the other problems solved thus far in this
chapter. Namely. it is essential to consider two different equations describing the bending moment in the
beam. One equation is valid to the left of the load P. the other holds to the right of this force. The
integration of each equation gives rise Lo two constants of integration and thus there are four constants
of integration to be determined. All problems mel thus far have offered only two constants.

In the region 10 the left of the force P we have the bending moment M = (Pb/L)x for 0 <x <a. The
differential equation of the bent beam thus becomes

&y Pbh

— = <x<
El L x for 0<x<a n
The first integration yields
dy PbX
E"dx_LZJrC' (2)

No numerical information is available about the slope dy/dx at any point in this region. Since the load is
not applied at the center of the beam, there is no reason to believe that the slope is zero at x = L/2.
However, for the slope of the beam under the point of application of the force P we can write

dy Pbd
I —= = ———+ 3
E (dx).-,, 2L G 3)
The next integration of (2) yields
=% Lcxrc, 4)

2L 3
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At the left support, y = 0 when x = 0. Substituting these values in (¢) we immediately find C; = 0. It is
to be noted that it is not permissible to use the condition y = 0 at x = L in (4) sincc (/) is not valid in that
region. We have for the deflection under the point of application of the force P

Pba’

E’yx_“ = E + C.a (5)

In the region to the right of the force P the bending moment equation is M = (Pb/L)x — P(x — a) for
a<x<L. Thus

El—d 3 =—Lx—F{x-—a} for a<x<L (6)
The first integration of this equation yields
dy PbxX Px-—a)
Z=——-—"—""140C 7
E de L 2 2 ’ 7

Although nothing definite may be said about the slope in this portion of the beam, we have for the slope
under the point of application of the force P

dy Pba’
— — +
H(dx )F., 2L G @)

Under the concentrated load P the slope as given by (3) must be equal to that given by (&). Consequently
the right sides of these two equations must be equal and we have
Pba* Pba*

s tC=Sr G o G=G

Equation (7) may now be integrated to give
Ely=——-——"+Cx+C, 9

We may write for the deflection under the concentrated load

Pba’
EIyABa = _6_1._’_'+C‘la+c-l (m

The deflection at x = a given by (5) must equal that given by (/0). Thus the right sides of these two
equations are equal and we have

Pba’ Pba®
—6'_1—"4' CIH=E+C30+C4

Since C, = C;, we have C, = 0.
The condition that y = 0 when x = L may now be substituted in (9), yiclding
PbL? PP Pb

0= ——-—+GL or G,

6 6 e )

In this manner all four constants of integration are determined. These values may now be substituted
in Egs. (4) and (9) to give

P
Ely = é[ﬁ —(L*—-b")x} for O<x<a 4)
FPb L
El}’=§ xa__g(x_a)s_(Lz_bZ)I] for a<x<L (9')

These two equations are necessary to describe the deflection curve of the bent bcam. Each equation
is valid only in the region indicated.
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If the load P acts at the center of the beam, the peak deflection which occurs at x = L/2 by symmetry
is given by Eq. (4') as
_ P(L2) (£3_ 2 L3\ L
Elylmin = =¢7 2) (L 2 )2

_rpL
a8

(1)

The simply supported beam described in Problem 9.12 is 14 ft long and of circular cross section
4 in in diameter. If the maximum permissible deflection is 0.20 in, determine the maximum value
of the load P if a = b = 7 ft. The material is steel for which E = 30 X 10 1b/in?.

The maximum deflection, given by (1) of Problem 9.12, is A, = PLY48EI. For a circular cross
section (see Problem 7.9), I = wD*64 = m4*64 = 12.6in*. Also, L = 14 ft = 168 in. Thus,

P(168)*
48(30 x 10 (12.6)

With this load applied at the center of the beam the reaction at each end is 383 Ib and the bending
moment at the center of the beam is 383(7) = 2681 Ib- ft. This is the maximum bending moment in the
beam and the maximum bending stress occurs at the outer fibers at this central section. The maximum
bending stress is o = Mc/l, Then O, = 2681(12)(2)/12.6 = 5100 Ib/in?. This is below the proportional limit
of the material; hence the use of the deflection equation was permissible.

0.20 =

or P=7651b

Consider the simply supported beam described in Problem 9.12. If the cross section is
rectangular, 50 X 100 mm and P = 20kN with a = 1 m, b = 0.5m. determine the maximum
deflection of the beam. The beam is steel, for which E = 200 GPa.

Since a > b, it is evident that the maximum deflection must occur to the left of the load P, It occurs
at that point where the slope of the beam is zero.

Differentiating Eq. (4°) of Problem 9.12, we find that the slope in this region is given by

dy Pb
El—=—
dx 6L

Setting the slope equal to zero, we find x = V L? — b%3 for the point where the deflection is maximum.
The deflection at this point is found by substituting this value of x in (4'):
PbV3

= 2 __ p2y32

For the rectangular section I = 50(100)*12 = 4.167 X 10° mm®. Substituting,

~ 20X 10%(0.5 X 10°) [(1.5 X 10°)2 — (0.5 X 10°V?(V3) (10%)
Yenax = 27(1.5 % 10°) (4.167 x 10°) (200 x 10°) B

[Bx* = (L2 - b))

-145mm

The negative sign indicates that this point on the bent beam lies below the x-axis.
From o = Mc/I the maximum bending stress, which occurs under the load P, is 80 MPa. This is below
the proportional limit of steel, so the above deflection equations are valid.

The beam AC is simply supported at A and at C is pinned to a cantilever beam CD as shown
in Fig. 9-17(a). Both beams have identical flexural rigidities EI. The vertical load of 8 kN acts
at point B. Determine the deflection of point B.

Free-body diagrams of the flexible beams AC and CD appear as in Figs. 9-17(b) and 9-17(c),
respectively. For AC, because of symmetry the reaction at C is 4 kN and by Newton’s law the equal and
opposite force must be exerted at the end C of beam CD as shown in Fig. 9.17(c).



CHAP. 9] ELASTIC DEFLECTION OF BEAMS: DOUBLE-INTEGRATION METHOD 237

9.16.

BkN

;—--:-
=]
E—r—t—n

Hﬂ
(L
S

4
©®) ©

Fig. 9-17

From Problem 9.2 the downward deflection of point C regarded as the tip of beam CD is

PL' _(4kN)(1.5m)’ 45

Ac=3g 3EI El

This same deflection must describe the downward displacement of C regarded as the right end of beam
AC. Prior to the deformation of AC due to the 8kN load, the displacement of point C (on AC) imparts
a downward displacement of half that, namely 2.25/EJ to point B, since the bar during this stage will rotate
as a rigid body about A. Then, the deflection of point B due to the &kN load must be considercd. From
Problem 9.12 this is

PL? _BkN)(3 m)* _45

48ET 4REI El
The resultant deflection at point B is thus
45 225 6.75
S~ Em T E0 WY

Determine the equation of the deflection curve for a cantilever beam loaded by a uniformly
distributed load w per unit length, as well as by a concentrated force P at the free end. See Fig.
9-18.

The deformed beam has the configuration indicated by the heavy line. The x-y coordinate system is
introduced as shown. One logical approach to this problem is to determine the reactions at the wall, then

—
w
o

wfUinit lengrh

-

R g R
Y
b
J—

Fig. 9-18
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write the differential equation of the bent beam, integrate this equation twice, and determine the constant
of integration from the conditions of zero slope and zero deflection at the wall.

Actually this procedure has already been carried out in Problem 9.2 for the case in which only the
concentrated load acts on the beam, and in Problem 9.5 when only the uniformly distributed load is acting.
For the concentrated force alone the deflection y was found in (3) of Problem 9.2 to be

¥ Px
R —_— 4 —
Ely PL 2 3 (1)
For the uniformly distributed load alonc the deflection y was found in (3') of Problem 9.5 to be
w . owl' owl?
= - —(L-x)~—x+—
Ely 24(1’. x) 6 " (2)

It is possible to obtain the resultant effect of these two loads when they act simultaneously merely by
adding together the effects of each as they act separately. This is called the method of superposition. It is
useful in determining deflections of beams subject to a combination of loads, such as we have here.
Essentially it consists in utilizing the results of simpler beam-deflection problems to build up the solutions
of more complicated problems. Thus it is not an independent method of determining beam deflections.

According to this method the deflection at any point of a beam subject to a combination of loads can
be obtained as the sum of the deflections produced at this point by each of the loads acting separately. The
final deflection equation resulting from the combination of loads is then obtained by adding the deflection
equations for each load.

For the present beam the final deflection equation is given by adding Egs. (/) and (2):

X Pdow wl®  wlL®
= -—PL—4+— - —(L—-x)*— +
Ely PL2 6 24{1, x) s Xt 32 (3
The slope dy/dx at any point in the beam is merely found by differentiating both sides of (3) with

respect 10 x.
The method of superposition is valid in all cases where there is a linear relationship between cach

separate load and the separate deflection which it produces.

Determine the deflection curve of an overhanging beam subject to a uniform load w per unit
length and supported as shown in Fig. 9-19.

We replace the distributed load by its resultant of wl acting at the midpoint of the length L. Taking
moments about the right reaction, we have

wi? wl.?
2M('=R|b_ 2 =0 or R1= b
v
w/Unit length
F

A ? g

1

c b
R, Iz,
L |
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Summing forces vertically, we find

2
EF,,—%+R2—wL—O
wil?
or RZ_WL_E

The bending moment equation in the left overhanging region is M = —wx’/2 for 0<x<a.
Consequently the differential equation of the bent beam in that region is

d’y —wx?
E[(F) = 2 for O<x<a (I)

Two successive integrations yield

d wx*
Bl =-53+G @
wx*
Ely=—EE—+C,x+C2 (3)

The bending moment equation in the region between supports is M = —wx*/2 + R,(x — a). The
differential equation of the bent beam in that region is thus

d’y wx?  wlL?
s x—
E i 2 (x—a) for a<x<L 4)

Two integrations of this equation yield

dy wx wl’(x—a)
g2, 2749 ¢
ax 23 2 2 : )
LZ — 3
Ely= -2 wEEma e, (6)

64 4b 3

Since we started with two second-order differential equations, (1) and (4), and two constants of integration

arose from each, we have four constants C,, C;, C;, and C, to evaluate from known conditions concerning

slopes and deflections. These conditions are the following:

1. When x = g, y = 0 in the overhanging region.

2. When x = a, y = 0 in the region between supports.

3. Whenx = L,y =0in the region between supporis.

4. When x = a, the slope given by (2) must be equal to that given by (5); consequently the right sides
of these equations must be equal when x = a.

Substituting condition ({) in {3), we obtain

-wa*
0=T+C10+Cz (7)
Substituting condition (2) in (6), we find
—wa'
= "—2—4—— + C;a + Cd, (8}

Substituting condition (3) in (6), we get

—wil?® wl?b
+

4 5 +CL+C, (9)

0=
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Finally, equating slopcs at the left reaction by substituting x = a in the right sides of equations (2) and (5),
we obtain

—wa® —wa®
+ =
6 "6 =%

+C, (10)

Note that there is no reason for assuming the slope to be zero at the left support, x = a.
These last four Eqgs. (7). (8). (9), (/0) may now be solved for the four unknown constants C,, C;, Cs.
C,. The solution is found to be

wL*-a') wL’b

G=G= 23b 2 (1)
wa® w(L'—a')la wL?ab
CECTu T T T (12)

The two equations describing the deflection curve of the bent bar are found by substituting these
values of the constants in {(3) and (6). These equations may be written in the final forms

wx!  w(l®-a*)x wL’bx . wa' w(l*-d')a N wl’ab

Ely = =0t~ 2 12 ' 2 24b 12 for 0<x<a @1
wx' wllx—a) w(L'-a)x wL’bx wa* w(lL*‘—d")a wl’ab
- - e
Ely == "1 " 12 24 26 12 fora<x<L

(6"

Problem 9.17, although involving relatively simple geometry and loading, is obviously very tedious

when solved by the method of double integration. Usually the method is well suited only to situations
where a single equation describes the entire deflected beam. Chapter 10 will be based upon use of
singularity functions (see Chap. 6) as a much-simplified approach to beam deflections far better
adapted to more complex conditions of loading and support than is the straightforward double-
integration approach. Also, the singularity function approach is very well adapted to computer
implementation, as will be shown in Chap. 10.

9.18. Determine the equation of the deflection curve for the overhanging beam loaded by the two

equal forces P shown in Fig. 9-20.

The x-y coordinate system is introduced as shown with the x-axis coinciding with the original unbent
position of the bar. The fact that the left end of the bar deflects from the coordinate curve presents no
difficulties. For the condition of symmetry it is evident that each support exerts a vertical force P upon

the bar.
The bending moment in the left overhanging region is

M= —-Px for O<x<a

P P
4 Y
& e *
a } L, b .
lr lr
L
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and the differential equation of the bent beam in that region is

EI%= —Px for 0<x<a (I

The first integration of this equation yields

2
E!% = -P,“-;— +C @)

Nothing definite is known about the slope dy/dx in this region. In particular, it is to be emphasized that
there is no justification for assuming the slope to be zero at the point of support x = a. We may denote
the slope there by the notation

d a
E!(ay)"a = —P(?) +C, 5))
The next integration yields
P/}
Ely = —-2-(:’;—)+C'p\:+(:.‘2 4)

Since the beam is hinged at the support, it is known that the deflection y is 0 there. Thus, (¥),.. = 0.
Substituting y = 0 when x = a in (4), we find

0="%+C13+C2 %)

The bending moment in the central region of the beam between supports is M = —Pa and the
differential equation of the bent beam in the central region is

d?
EI&x—f= ~Pa for a<x<(L-a) (6)

Integrating, we obtain

d
Elay = —Pax+ G, %)

Because of the symmetry of loading it is evident that the slope dy/dx must be zero at the midpoint of thc
bar. Thus (dy/dx),.,, = 0. Substituting these values in Eq. (7), we find

L
0= —Pa(~2—) + G, or G, =—5- (&)
Also, from Eq. (7) we may say that the slope of the beam over the left support, x = g, is given by
substituting x = a in this equation. This yields
dy Pal
EI( p ),-., P > (9)

But the slope dy/dx as given by this expression must be equal to that given by Eq. (3), since the bent bar
at that point must have the same slope, no matter which equation is considered. Equating the right sides

of Egs. (3) and (9), we obtain

Pd’ Pal
——+C = —PP+——
2 1 a+— 0
2
or Cl=_.f’i+ﬂ {Lr)

2 2
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Substituting this value of C, in Eq. (5), we find
Pa' Pa® Pd’L

= ————
0 6 > 5 + (12)
2Pa* Pa’L
x G=3 3
The next integration of Eq. (7) yields
* PalL
Ely = —Pa%+ —*‘;—*(x)+ Cs (13)

Again, it may be said that the deflection y is zero at the left support, where x = a. Although this same
condition was used previously in obtaining Eq. (5), there is no reason why it should not be used again. In
fact, it is essential to use it in order to solve for the constant C; in Eq. (13). Thus, substituting the values
() - = 0in Eq. (I3). we obtain

Pa* Pa’L _ P PAL

0=‘-*2—- 2 +C, or Cs T"T {14)

Thus two equations were required to define the bending moment in the left and central regions of the
beam. Each equation was used in conjunction with the second-order differential equation describing the
bent beam. and thus two constants of integration arose from the solution of each of these two equations.
It was necessary to utilize four conditions concerning slope and deflection in order to determine these four
constants. These conditions were:

(a) When x = a. y = 0 for the overhanging portion of the beam.

(b) When x = a. y = 0 for the central portion of the beam.

{c) When x = L/2, dy/dx = 0 for the central portion of the beam.

(d) When x = a, the slope dy/dx is the same for the deflection curve on either side of the support.

Finally, the equations of the bent beam may be written in the forms

Px* Pa’x Palx 2P Pd’L
Ely= - - Sr+—"+= === for  0<x<a 3s)

Pax? . Palx Pa* Pa'L

for a<x<(L-a) (16)

Because of the symmetry there is no need to write the equation for the deformed beam in the right
overhanging region.

For the overhanging beam of Problem 9.18, each force P is 4000 Ib. The distance a is 3 ft and
the length L is 16 ft. The bar is steel and of circular cross section 4 in in diameter. Determine
the deflection under each load and also the deflection at the center of the beam. Take
E = 30 x 10° Ib/in?.

The moment of inertia is given by I = 7(4)*%64 = 12.6 in*, according to Problem 7.9 in Chap. 7. Also,
we have @ = 3ft = 36in, L = 16ft = 192 in. The deflection anywhere in the left overhanging region is
given by Eq. (15) of Problem 9.18. Under the concentrated force P we have x = 0, and substituting these
values in Eq. (/5) we obtain

30 X 10(12.6) (¥~ = 2(4002) (6 _ 4000(33)’(192)

or (¥)e=0 = —0.961n
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9.20.

The deflection anywhere in the central portion between supports is given by Eq. (16) of Problem 9.18,
At the center of the beam we have x = 8ft = 96in and, as before a = 36in, L = 192in, and P = 40001b.
Substituting in Eq. (/6), we find

(30 X 10°) (12.6) (1), .y, = —00036) (96)° | (4000) (36) (192) (96)

2 2
N 4000(36)° N 4000(36)*(192)
2 2
Solving
¥x—un = 0.691n

The maximum bending stress occurs at the outer fibers of the bar everywhere between the supports,
since the bending moment has the constant value of 4000(3) = 12,000 1b-ft in this region. This maximum
stress is given by

_ M _ (12,000) (12) (2)

= — .2
T 7 26 22,800 Ibfin

This is less than the proportional limit of the material.

A cantilever beam Fig. 9-21(a) lying in a horizontal plane when viewed from the top has the
triangular plan form shown in Fig. 9-21(b). The side view, Fig. 9-21(c), shows the constant
thickness h of the beam. Determine the deflection curve of the beam and also the deflection of
the tip due to the weight of the beam, which 1s +y per unit volume.

@ ®) ©

Fig. 921

We introduce an x-y-z coordinate system having its origin at point O, the tip of the beam. The location
of an arbitrary cross section is denoted by x and the width there is u, as shown in Fig. 9-21(b). The overall
beam length and base width are denoted by L and b, respcctively. From geometry we have

i)

and the bending moment at section x is due to the weight of the portion of the triangular beam to the left
of x. That weight is

suxhy

and the resultant force corresponding to this weight acts at a distance x/3 from the cross-section x, as shown
in Fig. 9-21(c). Thus, the bending moment at x due to the weight of material to the left of x is

_wxhy x _ _x’hy(_b_x) __bhy’ 0
2 3 6 \L/ 6L
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so that the differential equation of the deflected beam is

d? bhyx*
- -t >

However, [ is a function of x. Consideration of the cross-section x indicates that / (about an axis z, parallel
to the z-axis) is

1 1 X
I=—uhl=—p{—|H
5 =50(7)

so that the differential equation of the beam becomes

A (X)) 9y o _bhy
E[ub(f_)h ]dx" 6L )
d'y 2y .,
or a? (Eh‘)x “)
Integrating the first time, we obtain
dy ( 2y ) x?
—_— = = — 11—+
dx i) 370 )
and when x = L, dy/dx = 0; hence substituting in Eq. (§), we have
2yl 2yL3?
= — + = e
0 IER C, and therefore C, 3EIR
Integrating again, we find
2y \x* 247
y= (35&2) a aERTTC ©

As a second boundary condition, when x = L, y = 0, so from Eq. (6) we find

2y L% 29L* _ L
0= YT + AER +C; and therefore C; = 2ER

Thus, the equation of the deflected beam is

Y ., 2yl 4Lt
= — + —_
Y= "6er* T 3ER* T 2ER
which at the tip becomes
_
Yheo = =350

A cantilever beam is in the form of a circular truncated cone, of length L, diameter d at the small
end, and 24 at the large end, as shown in Fig. 9-22. The beam is loaded only by its own weight,
which is y per unit volume. Determine the deflection at the free end.

From the geometry, we may extend the sloping sides until they intersect at distance x, from the left
end. By similar triangles we have

d 2

Ig_Xo+L
from which x, = L. Also,

y_4

x 2L
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]

""l

%-
L—n.-v-lon.—-—l

Fig. 9-22

- (31)
y=\a)*

The moment of inertia of any circular cross section a distance x from the point O is

7"}" T dl‘ )
!=_=— 4
4 4 (mc’ y

245

The differential equation of the deflected beam is given by employing Eq. (§) of Problem 9.1 and using
as the bending moment at x the moment of the weight of the solid region ABCD which is found as the
moment of the weight of the complete solid cone OBCO about x minus the moment of the cone OAD
about that same section. Remembering that the volume of a complete cone is } (base) (altitude) and that
the center of mass of a solid cone lies } the altitude above the base, we have for the equation of the bent

beam

efgi el @~ [ i) 5] b3t
This simplifies to the form
£y lolyny £ L L)
dx* 3nd*E 41> x 4x*
The first integration leads to
oS o) 22 (L)
As the first boundary condition, when x = 2L, dy/dx = 0. Substituting in (3), we find
_19L%y

C_
' 6d’E

The next integration gives us

_m[_‘f_’ﬁ_L_‘f’(_l),,‘-’d’(_L)},,19’-’7 i C
Y73 E T2 2 Ux) 7 7a \T22/[ Tt
and the second boundary condition is that when x = 2L, y = 0. From Eq. (4) we have
29 L%y
=" TE

The equation of the deflected beam is thus

60%y [ & . Ld*(1\ L% (1 190y 291°%y
e[ L () ()] 22
y M“El gLi* ' 2 8 Y olE Y od’E

2

X X

()

)

(3

C))

&)
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The deflection of the tip is found by setting x = L in Eq. (5) and is
yL*
3&’E

.VIl-f. =

9.22. The beam of variable rectangular cross section shown in Fig. 9-23 is simply supported at the ends
and loaded by equal magnitude end couples each equal to PL as well as symmetrically placed
transverse forces each equal to 1.5P. The thickness 4 of the beam is constant. Determine the
manner in which the width must vary so that all outer fibers are stressed to the same value o,
in both tension and compression. Also determine the central deflection of the beam.

Fig. 9-23

The end reactions are easily found from statics to each be 1.5P, as shown. The bending moment
diagrams corresponding to the force loadings and to the end couples arc found by the methods of Chap.
6 and are illustrated in Figs. 9-24(a) and 9-24(b), respectively. The resultant bending moment diagram is
found by superposition of thcse two to be that shown in Fig. 9-24(c).

PL
>

9] T Sy

(@) b} ()
Fig. 9-24

The outer fiber bending stresses in each of the regions AB and BC arc found for the rectangular cross
section through use of the results of Problems 8.1 and 8.12 to be

M _M_M_ e

T The Z b

()

where for the rectangular bar

bh?
z="- @

Figure 9-24(c) together with Eq. (/) indicates that in the region BC (since the bending moment is
constant) the beam width must also be constant. In that region the cross scction must withstand a maximum
bending moment of 2.5PL and the value of the outer fibcr bending stresses is

6(2.5PL)
T bh®

)
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Solving, we find the maximum width everywhere in BC to be

15PL
= 4
max O'nhz { )
In the end region AB, the bending moment from Fig. 9-24(c) is
M=PL+1.5PL(%) for 0<x <L (5)

where x is measured positive to the right from the support at A. Since x = 0 at A. the width of the beam
there must be sufficient to withstand the bending moment PL. Thus. for the outer fiber bending stresses
at x = 0 to have the magnitude o, we have

6M 6PL

T brn® bl

Solving,
_ 6PL
o U(]hz
The same width b, must also exist at the right end x = 3L by symmetry. Equation (5) indicates a

linear variation of bending moment between A and B so that the width increascs linearly from A to B. The
resulting constant outer fiber bending stress beam thus appears as shown in Fig. 9-25.

(6)

Fig. 9-25

To find the peak deflection, which, because of symmetry, obviously occurs at the midpoint of BC where
x =3Li2. we must write the differential equations for bending in regions AB and BC. Because of
symmetry of loading and support, there is no need to consider CD since its behavior is symmetric to that
of AB. First,

In AB:
M =15Px+ PL
Mc (PL +1.5Px)(h12)
and gg = T = f_zbh:‘ (7)
Ths, p = (PLH1SPY(E) ®
(r(:h

where b denotes the width of the bar at a distance x from A as indicated in Fig. 9-25. The moment of inertia

of the cross section a distance x from A is thus

1 [(PL +1.5Px)(6)

—_a— K
12 [ o’ ©

The differential equation of the bent beam in AB is

PL+15Px)h] d*y
E[L—-ﬁi] d—;: = 15Px+PL (10)
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or
d’y 20
2 Eh constant (1)
Integrating
d 20
2 - (E—,;’)HC. (12)
Integrating a second time
20, x*
y=E—:-?+C|x+Cz (13)

As a boundary condition, when x = 0, y = 0; hence C, = 0 from Eq. (13). Also, when x = L, the deflection
from Eq. (/3) is

204 L’
Voo =55 +GL (14)
and the slope at x = L is, from (12)
dy 20’0L
- = + C 5
al. e 2

In BC. M = 2.5PL. and since the width b, in BC is constant, the moment of inertia anywhere in
BC is

{Brmax (16)

so the bent beam in BC is described by the equation

baxh®d?y
E|-—"=—|—= =25PL 7
[ 12 ]dx2 7
d’y  30PL

or a  Eboh constant (18)
Integrating,

dy  30PLx

— = +C 19

dx  Ebgu? (19)

As a boundary condition. from symmetry we know that at x = 3L/2. dy/dx = 0. Hence from ({9)
we have
45pPL°

C e ————
! Eb, .’

Integrating again,

30PL \ X 45PL?
yz(Eb h’)-f!__(Eb h-‘)x+C‘ (20)
When x = L, the deflections are represented by Eqs. (/4) and (20), leading to
20,L° 30PL?
—+C L=~ + 21
2En ¢ b G @n

Finally, equating slopes at x = L as given by Egs. (15) and (/9), we have

20-,,L+ C = 30PL?  45PL?
Eh Y Ebp i Ebnuh®

(22)
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Solving Eqs. (21) and (22), we find

2
C = —;mehz and therefore C, =0
Hence in the region BC from Eq. (20), we have
33.75PL°
ymax].r-!uz == Er:ax_h-;

9.23. Consider the bending of a cantilever beam which remains in contact with a rigid cylindncal
surface as it deflects. The tangent to the cantilever is horizontal at point 4 in Fig. 9-26.
Determine the deflection of the tip B due to the load P.

Fig. 9-26

If the curvature of the cantilever at A is less than the curvature of the rigid cylindrical surface, then
the cantilever touches the surface only at point A and the deflection is exactly as found in Problem 9.2.
From Problem 9.1, the curvature of the beam at A is given by
1_M _PL

-_——=

p EI EI

and thus this curvature must be less than the curvature of the rigid surface, which is 1/R.

If. however, 1/R = PL/EI, then the beam comes into contact with the surface to the right of point A,
We shall denote by P* the limiting value of the load given by P* = EIIRL. For P> P* some region AC
of the beam will be in contact with the surface and at point C the curvature of the rigid surface 1/R is equal
to the curvature of the beam, that is, Px/Ef = 1/R from which x = EI/PR.

The deflection at the tip B may now be found as the sum of

1. The deflection of C from the tangent at A, which is given by &, in the diagram and is found from the
relation

(R+8) =R+ (L-x)
to be approximately

_({L—xy

& 2R
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2. The dcflcction of the portion of the beam of length x acting as a simple cantilever, given by
SN
3El 3PR
3. The deflection owing to the rotation at point C, given by
=x(l_—x}___ El ( E)')

%= p “pr\l PR

The desired deflection at the tip is thus

L (el

5=86+&t+&=
1oty 2R 6FP°R?

A thermostat consists of two strips of different materials of equal thickness bonded together at
their interface. Frequently this configuration takes the form of a cantilever beam, as in Fig. 9-27.
If E, and E, denote the Young’s moduli and a; and a, denote the coefficients of linear
expansion of the two materials, each of thickness h, determine the deflection of the end of the
cantilever assembly due to a temperature rise 7.

Fig, 927 Fig. 9-28

Let b represent the width of the assembly. As in Problem 8.1, we shall assume that a plane section
prior to deformation remains plane after deformation. The resultant normal forces F acting over each strip
must be numerically equal since no external forces are applied along the length of the beam. Thus a cross
section at any station along the Icngth has Fig. 9-28 as its free-body representation.

The normal strain in the lower fibers of the top strip is found as the sum of () the strain due to the
normal load. F/E,bh: (b) the strain due to bending. which is M 4(h/2)/E\ I from Problem 8.1: and (c) the
strain due to the temperature rise, which is a; T as mentioned in Chap. 1. The sum of these strains must
be the same as the strain in the upper fibers of the lower strip. Thus

F M . (hi2) —F  My(hl2) .
T ey T=—- +anT 1
Ebh . EI 9N T BB Bl C )
The curvaturcs at this intcrface must also be equal. Thus, from Problem 9.1,
1 M, 1 M,
— T c— - — T ee— 2
R E1 ™ RTEI @
and since R, = R.. we have
[ E
Mo = (5] M &)
From statics it is cvident that
M, + My = Fh 4)
from which
Fh Fh
M, 5)

= - M —_—e,—
1+ (E\E:) A L+ (EJE)
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Substituting (5) in (7)., we find

_ (o2 — o) ThhE, EH(E, + E3)

= 6
F El+ EL+ 14E, B, ©

and from (5) we get

_ (0‘2 - O![) Tbhz E% Eg

7
E}+ E3+ 14E K, @)

M,
We may now use the result obtained in Problem 9.23 for the deflection & of a point on a cylindrical
surface (which represents the interface, since in pure bending the assembly deforms into a circular
configuration according to Problem 9.1) and express the deflection & of the end of the assembly as
LZ
§=— 8
2R (8)
Substituting from Eq. (2),
ML

5=
2E\1

From (7) we then get

_ 6(a— @) TE,Es L
H(E: + E2 + 18E, E5)

A beam has a slight initial curvature such that the initial configuration (which is stress free) is
described by the relation y, = Kx*. The beam is rigidly clamped at the origin and is subjected
to a concentrated force at its extreme end. as shown in Fig. 9-29. As the force is increased, the
beam deflects downward and the region near the clamped end comes in contact with the rigid
horizontal plane. If the value of the applied force is P, determine the length of the beam in
contact with the horizontal plane and the vertical distance of the extreme end from the
plane.

lw P
No-load configuration
Deflected configuration vo = Kz°
z
1
Fig, 9-29 Fig, 9-30

The initial curvature may be determined from the expression y, = Kx’ so that the bending
moment arising from straightening the portion of the beam near the support is readily found to be
El(d*y,/dx*) = 6EIKx, where x is the length of beam in contact with the horizontal plane. If this expression
for moment is equated to the moment of the applied load about the point of contact, that is, P(a — x).
we have

Pa

6EIKx = P(a— x) whence x = FreEiR
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Since the beam is considered to be weightless, there is no normal force between the beam and the rigid
horizontal plane between the clamp at @ and the extreme point of contact at A. The beam is flat between
O and A. A free-body diagram of the deformed beam thus appears as in Fig. 9.30. A simple statics equation
for equilibrium of moments about point A indicates that the clamp exerts a downward force equal to 6 ETK.
For vertical equilibrium there is a concentrated force reaction Q) = P + 6EIK acting on the beam at the
extreme point of contact A.

We now seek the equation of the deflection curve in the region to the right of point A. In Problem
9.1, Eq. (5) indicated that for an initially straight beam bending moment M is proportional to the curvature,
d?yldx*. However, in the present problem it is necessary to modify (5) to say that the bending moment
M is proportional to the change of curvature since the beam is not initially straight, Thus, the
Euler-Bernoulli equation for the portion of the beam to the right of point A is

d’y, d’y _ _
E!( darx? a‘Zz) =Pe-2

where a new coordinate Z has been introduced. This coordinate runs along the x-axis but has its origin at
point A. It is important to note that, as the beam deflects, the curvature decreases from its original value;
hence the quantity in parentheses on the left side of the equation is positive. Accordingly, the right side
must be wrillen as positive. This does not contradict our previous sign convention of downward
forces giving negative moments since it was applied to initiafly straight beams. If we substitute
EI(d’y/dx”) = 6EIKx, the last equation becomes

Pa

dz’ P +6LIK

Integrating twice and imposing the boundary conditions that y = dy/dZ = 0 at Z = 0, we obtain the desired
deflection

d’y
El—= = 6EIK +Z|—Pb+ PZ

36(EIKa)®

Elyzr = P+ 6EIKY

The bar ABC in Fig. 9-31 has flexural rigidity E(37) in region AB and flexural rigidity ET in
region BC. The bar is pinned at A, supported by a roller at B, and subject to an applied bending
moment M, at the free end. Determine the vertical deflection at B.

¥

Af } 1 ¢
L S
|

R)I B
Fig. 9-31

Let us introduce the x-y coordinate system shown, where x may designate a cross section in either AB
or BC. It is first necessary to determine the reactions from statics, viz.,

I

+)EM,; _Mg"'RAL:U .RA=_(1)

SF,= =Ry +Ry=0 -~ Ry=="(I)
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We first write the differential equation of the deflected bar in region AB:

E(3l)%=—R,‘x for O<x<L

Integrating,
d x?
E{3!)ay = —Ra3+G n
Integrating again,
R 3
EGDy=-2Licx+G @

2 3

As the first boundary condition we have: When x = 0, y = 0. Substituting in Eq. (2), we have

Cz =0
As a second boundary condition we have: When x = L, y = 0, and using R, = My/L we have
M, L}
0= ~-L—"-—6—+C,L+C2
M,
Thus, C = ol

6
Next, we write the differential equation of the deflected beam in region BC:

d?

E’d—xf= —Rax+Rp(x—L) for L<x<(L+c)
M, M,
=L Rl
:_Mo

This result could also have been obtained by taking moments of applied loads to the right of any section
designated by “x" in BC.

Integrating,
dy
Integrating again,
x2
Ely = —M";,-—z—+C,'3.7c+C.1 )

As a third boundary condition at x = L, y = 0 in Eq. (4), so from (4)

Lz
0=—M; +C3L + Cq %)

As the fourth boundary condition at x = L the slopes dy/dx as given by Egs. (1) and (3) must be equal.
This leads to

1 [R.L? ML) 1
— = t—| == +
351[ 2 6 ] gl Mol + Gl ©)

Solving Eq. (6) for Cj, then (5) for C,, we find

G= gMnL; 4 = _EEMDLI
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The equations of the deflected beam are thus

Mo, MyL

E(3!)y=—ax + 6 X for O0<x<L (7)
M
Ely = —T"x2+gM(.Lx—f—SMOL2 for L<x<(L+C) 8

When x = (L + C), we have from Eq. (8) the desired tip deflection:

Mo [(L+Cy 8 7 2]
e = — |+ = L(L -—
Vherie E,[ 3 gL( +C) ISL
M,C{L C
e el g 9
El (9 2) ©)

Supplementary Problems

The cantilever beam loaded as shown in Problem 9.2 is made of a titanium alloy, having £ = 105 GPa. The
load P is 20kN, L = 4 m, and the moment of inertia of the beam cross section is 104 X 10" mm®. Find the
maximum deflection of the beam. Ans.  —39mm

Consider the simply supported beam loaded as shown in Problem 9.12. The length of the beam is 20 ft,
a = 15 ft, the load P = 10001b, and I = 150in®. Dctermine the deflection at the center of the beam. Take
E=30x10°b/in’>.  Ans. —0.044in

Refer to Fig. 9-32. Determine the deflection at every point of the cantilever beam subject to the single
moment M, shown.  Ans. Ely = —Mx2

L

)

Fig. 9-32

The cantilever beam described in Problem 9.29 is of circular cross section. 5 in in diameter. The length of
the beam is 10 ft and the applied moment is 5K Ib- ft. Determine the maximum deflection of the beam.
Take E = 30 10° Ib/in®. Ans. —0.469in

wilind Jeagih
.,

Fig. 9-33
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9.31.

9.32.

9.33.

9.34.

9.35,

Refer to Fig. 9-33. Find the cquation of the deflection curve for the cantilever beam subject to the
uniformly varying load shown.

wx'  wlix  wl?

120L 24 30

Ans. Ely = —

A cantilever beam is loaded by the sinusoidal load indicated in Fig. 9-34. Determine the deflection of the
tip of the beam. Ans.  Ely),_y = —0.07385q,.L*

¥
q“\ g = gy sin %
/ 0
1 L}
—_—=
: L12
i
L

Fig. 9-34

A cantilever beam carrying a parabolically distributed load is shown in Fig. 9-35. Determine the equation
of the deflected beam as well as the deflection at the tip.
16 wy o, 8 \ 56

56
? = —— R — + —_—
Ans yleo = =g wol N ElY = = s T 40s 945

The cross section of the cantilever beam loaded as shown in Fig. 9-33 is rectangular, 50 X 75 mm. The bar,
1 m long, is aluminum for which E = 65 GPa. Dctermine the permissible maximum intensity of loading if
the maximum deflection is not 1o excced 5 mm and the maximum stress is not to exceed 50 MPa.

Ans. w = 141kN/m

Refer to Fig. 9-36. Determine the equation of the deflection curve for the simply supported beam

supporting the load of uniformly varying intensity.
wil. X a TLx
Ans. Ely=— (

2

T 602 T18 180

Fig. 9-35 Fig. 9-36
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9.36. Determine the equation of the defiection curve for the cantilever beam loaded by the concentrated force
P as shown in Fig. 9-37.
Pd  Pd Pd  Pd’

— 3 —
3 + < xy<a P = + fi <x<UL
Ans. E'y = (a I) X for 0<x<a E’) X ora<x

P
W |
' a ]

f
L

Fig. 9-37

9.37. For the cantilever beam of Fig. 9-37, take P=5kN, a=2m, and b = 1 m. The beam 1is of equilateral
triangular cross section, 150 mm on a side, with a vertical axis of symmertry. Determine the maximum
deflection of the beam. Take E = 200 GPa. Ans. —12.8 mm

9.38. The cantilever beam shown in Fig. 9-38 is subjected to a uniform load w per unit length over its right half
BC. Determine the equations of the deflection curve as well as the maximum deflection.

wlx® 3wllx? L
P o= — <y = —
Ans. El 2 T for 0<x 2
w(L —x)* 7wl*x 15wL? L
Ely = - - f — L
y Y s 3 or  Z<x<
41 (wL?
A =— (2=
e 384( Ei )

]
—_—

w/ Unit length

k|l

SRR
m-

Fig. 9-38

9.39. The simply supported overhanging beam supports the load w per unit length as shown in Fig, 9-39. Find
the equations of the defiection curve of the beam. Take coordinates at the level of the supports.

ans EJ __£‘+wt’x_ﬁ(£_ )+ﬂ‘_wﬁ+w_£a L_ )2 for  0<x<
mOEYT T T s T \2 24 48 @ 4 (2 a or x=a
wx' wl(x—a)® wl’x wlx (L )z
Ey=—=——+ + i - =
YT 12 48 4(2 “

24 48 4

4 3 2
L wa wal. +wLa(%_a) for a<x<(a+bh)
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9.40.

9.41.

9.42.

9.43.

¥ w/Unit length
| |
a b I a
| L
Fig. 9-39

A simply supported beam with overhanging ends is loaded by the uniformly distributed loads shown in
Fig. 9-40. Determine the deflection of the midpoint of the beam with respect to an origin at the level of
the supports.

wa’(L — 2a)y’

Ans. 16ET

(above level of supports)

w/Unit length wy Unit length
1t 4t t e 43y

I

Fig. 9-40

For the beam described in Problem 9.40, determine the deflection of one end of the beam with respect to
an origin at the level of the supports.
wa'l  3wad’

4EI  8EI

Ans. (below level of supports)

The overhanging beam is loaded by the uniformly distributed load as well as the concentrated force shown
in Fig. 9-41. Determine the deflection of point A of the beam.

~wa*h  Pab? ¢
waop 4 _wa (below level of supports)

Ans e Y 3El T SEI

Figure 9-42 shows a cantilever beam in the form of a circular cone whose length L is large compared to
the base diameter D. If the only force acting is its own weight, which is ¥ per unit volume, determine the
equation of the deflection curve.

2ylL?
Ans. y=— BED (P +2L*—3L%)
wiUnit length IP
I : )
a . b b
L
I
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9.44. For the overhanging beam treated in Problem 9.17 consider the uniform load to be 120 Ib/ft, a = 3 ft, and
= 12 ft. The bar has a 3-in X 4-in rectangular cross section. Determine the maximum deflection of the

beam. Take E = 30 X 10° Ibfin®. Ans. —0.10in at x = 110.4in

9.45. A cantilever beam when viewed from the top [sce Fig. 9-43(a)] has a triangular configuration. The thickness
A of the beam is constant, as shown in the side view Fig, 9-43(b). Determine the deflection of the beam
due to a concentrated load P at the tip. Neglect the weight of the beam. Ans.  yli.o = —6PLEbh*

(a) ®)

Fig, 9-43

9.46. A cantilever bcam when viewed from the top has the configuration indicated in Fig. 9-44(a) and is of
constant thickness h. as indicated in Fig. 9-44(b). Find the equation of the deflection curve as the beam
bends under the action of the concentrated force P at the tip. Neglect the weight of the beam.

— 162 4 ) 1144 14
_16P(L —x) ——PL”:+I‘6PL ](Ef;;%a"?)

77 9 77

L, e
Yhet = " ER ™

Ans. y= |

@)

®)
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9.47.

9.48.

9.49.

b

(a) ()]

Fig. 9-45

A simply supported beam of length L is subjected to a uniformly distributed loading w per unit length,
The width b of the beam is constant and the height varies in such a manner that all outer fibers along both
the top and lower surfaces are subject to the same magnitude normal stress ¢,. Determine the variation
of height of the beam as a function of x. as shown in Fig. 9-45(b). Also determine the maximum deflection

of the beam.

2h, NV Lx —x?

max

Ans, p =DV IXTX o o17s— L
L S e b B

The cantilever beam of variable cross section shown in Fig. 9-46 is in the form of a wedge of constant width
b. The midplane of the wedge lies in the horizontal plane x-z. Find the deficction of the tip of the beam
due to its own weight y per unit volume.  Ans.  y|, = —yLYER

Two solid rigid cylinders I and II have their geometric axes in a horizontal plane spaced a distance L apart,
as shown in Fig. 9-47. A beam of flexural rigidity E7 is then placed across the tops of the cylinders and
loaded by a centrally applied vertical force P. The beam deflects (dotted line) and is tangent to each of
the cylinders at the points designated as A. Determine the angle € describing this point of contact.

PL? ( 1- PLR)
4EI

Ans. 6=

16E1

AR




Chapter 10

Elastic Deflection of Beams:
Method of Singularity Functions

In Chap. 9 we found the elastic deflections of transversely loaded beams through direct integration
of the second-order Euler-Bernoulli equation. As we saw, the approach is direct but may become very
lengthy even for relatively simple engineering situations.

A more expedient approach is based upon the use of the singularity functions introduced in Chap.
6. The method is direct and may be applied to a beam subject to any combination of concentrated
forces, moments, and distributed loads. One must only remember the definition of the singularity
function given in Chap. 6; i.e., the quantity (x — a) vanishes if x < a but is equal to (x — a) if x > a.

There are several possible approaches for using singularity functions for the determination of beam
deflections. Perhaps the simplest is to employ the approach of Chap. 6 in which the bending moment
is written in terms of singularity functions in the form of one equation valid along the entire length of
the beam. Two integrations of this equation lead to the equation for the deflected beam in terms of
two constants of integration which must be determined from boundary conditions. As noted in Chap.
6. integration of the singularity functions proceeds directly and in the same manner as simple power
functions. Thus, the approach is direct and avoids the problem of the determination of a pair of
constants corresponding to each region of the beam (between loads) as in the case of double
integration exemplified in Chap. 9.

Most important, the singularity function approach leads directly into a computerized approach for
the determination of beam deflections. See Problems 10.16, 10.17, and 10.18.

Solved Problems

10.1. Using singularity functions, determine the deflection curve of the cantilever beam subject to the
loads shown in Fig. 10-1.

}‘I
lP lZP

p y 3 c
| |
N T i

4
Fig. 10-1

SIS

&~
Z

In this case it is not necessary to determine the reactions of the wall supporting the beam at C.
From the techniques of Chap. 6 we find the bending moment along the entire length of the beam to
be given by

- Pt -2p -g) o

where the angular brackets have the meanings given in the section “Singularity Functions” of Chap. 6,
pages 135-136. Thus, the differential equation for the bent beam is

2

1
EI% = —P(x)' - 2P <x - %) )

260
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The first integration yields

L2

x—=

dy () ( 4)
E!dx— P > 2P 3

+C, (&)

where C, is a constant of integration. The next integration leads to

e fd)

= + +
Eh 2 3 2P 20) Ciix) + G, (4)
where G, is a second constant of integration. These two constants may be determined from the boundary
conditions:
(@) When x = L, dyldx = 0, so from (3):
PL? 3L\?
0=—-—-P|—]| +C 5
P (F) o (5)
(b) Whenx=L,y=0,so from (4):
PL’> P (3L\3
0=_T_§(T) +CL+GC (6)
Solving (5) and (6),
17 145
C,=—PL% C,=—-—PL° 7
i 16 2 ng ( )
The desired deflection curve is thus
P P Ly? 17 145
Ely=—— ’——< ——) +—PL*x)—-—PL? 8
y= - =3{x—7) T PL - 15 8)

For example, the deflection at point B where x = L/4 is found from (8) to be

3
Elyl-1a=— —P(é) -0+ ]—TPLZ(E) - EPL‘

6\4 16 4 192
94.5PL3 0.492pPL3
or Veern = =g % T g

10.2. The cantilever beam ABC shown in Fig. 10-2 is subject to a uniform load w per unit length
distributed over its right half, together with a concentrated couple wL%2 applied at C. Using
singularity functions, determine the deflection curve of the beam.

w/Unit length

§x By 4 4 1 4
\
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10.3.

ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS [CHAP. 10

It is first necessary to find from statics the shear and moment reactions exerted by the wall on the beam
at A. From statics we have

O EM, = M- YL +w(£)(£) =0

2 2 4
Twil?
M, ===
L wil
EF,=R‘4‘—W(E)=0; RA:T

By the singularity function approach we may write the bending moment along the entire length of the
beam as

wh . TwL® wi? A LY
=—2*(X> ——-*8——(.t)+ > (x 2) w(x > 3 a)

where, again, the singularity functions are as defined in Chap. 6. Thus the differential equation of the bent
beam is

L ]
-
dy wL Twl? wff( L)" ( L)‘( 2)
EI = —— T __ tl+_ I I— 2
- g W 2/ "\* 2/ 2 2)
Integrating,
! A
xX— = xX—=
dy wl () Twl’ wL’( 2) w( 2)
=72 2 g W+ 1 2 3 G 3

The first boundary condition is: When x = 0, dy/dx = 0. Substituting in (3), we find C, = (.
Integrating again,

x——

A L\

wL {x  TwL? () sz( 2) w (*’ 2)
Ely=——"—— + 2= -2

4 3 8 2 2 2 6 4

+ G, (4)

The second boundary condition is: When x = 0, y = 0. Substituting in (4), we find C, = 0.
Thus, the desired deflection equation is

_wh oy WL wlP L\ w L\
Ely—E{x) T3 (x)* + 2 ( 2> (1 ) (5

This yields the deflection at the tip to be

wl* Twl? w;"ﬁ(L)2 w(L)"

EW., = =Y 2=

Mer=T0 "6 2 \3) 2\2
ML

or Yoo = = a7

Consider a simply supported beam subject to a uniform load distributed over a portion of its
length, as indicated in Fig. 10-3. Use singularity functions to determine the deflection curve of

the beam.
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|y
wa/Unit length
I ﬂz
i3
* a ]
R, L R,
Fig. 10-3
From statics the reactions are found to be
Ry =20 (L~ b?)

T 2L

= —ubzg— 2_
R, = wpa ZL(L b))

The bending moment at any point x along the length of the beam is
M=R,x——?{x)2+~'—;9(x-a}2 @)

Note that the last term on the right is required to cancel the distributed load represented by the term

- 220y
for all values of x greater than x = a. Thus
EIY - M= Ry — 2o 4 2oy — @)
dx? ! 2 2
Integrating,
dy R, Wo Wo
[ ==Y ——x)*+—&-a+
Ers =) 6(:) 6(x ay' + G, 3
Finally,
_Ri, 3 Wo,a Wo,
Ely = 3 {x) 24():} + 24(1 a'+ Cix+ G, (4)
To determine C, and C,. we impose the boundary conditions that y = 0 at x = 0 and x = L. From (4) we
thus find
WuL Wob‘ WoL 2 2
¢ 24 24L 12 (L7=5%
Cz =0

The deflection curve is accordingly

3 4 2
_ WOL _ wob + WoLb ]x (5)

Wo Wo Wo
Elv = —20 (12— b2y x) — 20y 1 20— e+
Y=g TR @ e [ 24 4L 12
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10.4. Consider the overhanging beam shown in Fig. 10-4. Determine the equation of the deflection
curve using singularity functions.

IP

(-3 L. b ip * ‘ +
S 1
B —— R’

Fig. 10-4 Fig. 10-5

LI

From statics the reactions are first found to be R, = Pbfa and R, = P[1 + (b/a)], acting as indicated
in Fig. 10-5. The bending moment at any point x along the entire length of the beam is

M(x) = = R,(x)' + Ryfx — a)’ )
d’y : |
Thus A‘:T.';“_x—2 =M= —Ri(x}! + Rx — a) 2)
from which
dy R, R,
El-——=-——0yY+—(x—al+
L 5 W+ —a + G 3
R R
Ely = — ?'izx}-* + f{x @} +Cx+ G 4
The boundary conditions are y = 0 at x = 0 and x = a. From these conditions, C, and C; are found from
(4) to be
Pab
Cl = -6— C2 =0
The deflection curve is thus
Pb, ., P b FPabx
= — ¥y — + — — 3+ 5
Ely 6a(:u}+6(1 a)(x ay )

10.5. Through the use of singularity functions determine the equation of the deflected cantilever
beam subject to the triangular loading together with the couple indicated in Fig. 10-6.

—

w, fUnit leagth

Fig. 10-6
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We must first determine the reactions at point A through the use of statics. There will be a vertical
shear reaction R, as well as a moment M, to prevent angular rotation at point A. From statics

L2
DMy =M, -5 = S GL) =0
Therefore
M, = %“’DLz
L
SF = Ry——2=
’ 2
Therefore
wy L
R A — 02

To write the expression for bending moment, let us first examine the contribution from the distributed
loading. At any position x to the right of point A, the load intensity from geometry is w = wy(x/L) and the
resultant (shown by the dotted vector in Fig, 10-7} is of magnitude

2

WE_ X
2 2L
and acts at a point distance 3x from A. Thus, the moment at x due only to the triangular loading is
o XL or - wpx?
°20\3 6L

where the negative sign is inserted because this downward loading gives negative bending moment.

|
}

W
2L
[ |
-1

Fig. 10-7

Due to all loadings, that is, M,, R,, and the triangular load, the bending moment at any
location x is

5 wy L wex? x  wyl? 3L\°
M= —Swyl?+——x— — =+ — ( ——) 1
6" 2 T2 37 2 \" s ()
so that the differential equation of the deflected beam is
dy 5 o owpl  owex'  wlL? 3L\"
B = gl t "% v (‘” 4) @)

Integrating the first time, we obtain

2 4 2 1
EId—y=—§wuL2x+wLL-x—-ﬂ-x—+w°L (x—%) +C 3)
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10.6.
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As the first boundary condition, we have dy*/dx = 0 at x = 0 which when substituted in Eq. (3) yields
C, = 0. Integrating a sccond time, we obtain

3 5 2 2
wyl x Wy X +wUL (x_%) ‘G @)

x4+
12 4 3 24L 5 4

4

The second boundary condition, y = 0 at x = 0. leads. upon substitution in Eq. (¢), to C, = 0. Thus the
beam deflection equation is

5 k]
E!y = - EW@L-XQ +

'IVuL 3 Wp 5 “’QLE( __3_[.)2
12 X ToLt T 4 ®

The deflection at the tip, x = L. is found from Eq. (5) to be
Eiy]_t=j_, = _0.326“;0’_4

Using singularity functions, determine the equation of the deflection curve of the beam simply
supported at points B and C and subject to the triangular loading shown in Fig. 10-8.

t
Al
ot s
(N1
H
At
|

To determine the external vertical rcactions at points B and C, we may replace the entire loading by
its resultant which acts through the centroid of the triangle. The magnitude of the entire load is the average
load per unit length, wyp/2, multiplied by the beam length L, or wy L/2. This acts at a distance 2L/3 from
the left end A and is shown by the dotted vector in Fig. 10-8. From statics

L wol (2 L
+32M,,—R(--5 5 (SL ’E) =0
Therefore
Wn]‘.-
R-=—
L 12
Swol  wol
Fo=Ra™—5 2
Therefore
_ W"L
Rv=—12

At any station x measured from the origin at A, thc bending moment in terms of singularity functions
is given as the sum of the moments of all forces to the left of that station. Let us examine a portion of the
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triangular load of horizontal length x. The resultant of that much of the loading is shown by the dotted
vector in Fig. 10-9 and the resultant is of magnitude

LS 3
2 ‘L2
and acts at a point distance {x from A. Thus, thc moment at x due only to the triangular loading is
20 3 6L

where the minus sign is inserted because according to our bending moment sign conventions in Chap. 6
downward loads give rise to negative bending moment.

2 !
X

Fig. 10-9

In terms of singularity functions, the bending moment at any station x due to all loadings (including
reactions) is

welx)®  wylL L\ Sw,L < 3L
M= -2l L _,)+_m_ --ﬂ) I
6L 12 <" a/ T2\ ()
so that the differential equation of the bent beam is
d’y  wx)  wl L) SwolL ( 3L
o it Al A Ll ) B - 2
e oo T2 T3t 4) @
Integrating the first time, we obtain
dy Wo , 4. Wol L\? 5wuL< fi;'L)2
2= - L)+ == + —=) ¢ 3
B~ 2™ s ( 4) 2w ¥ g) TG E)
and integrating again, we find
M s ﬁ(._y‘ S (_1)
Ely = - 5000t + == (x 4} Foswel (x-7) + Co+ G 4)

As boundary conditions, when x = L/4. y = (), so substituting in Eq. (4) we obtain

we (L} L
- - =)+, =+ G
0 120L(4) Gyte ©)

Also, when x = 3L/4, y = 0, and substitution in Eq. (¢) yields

Wy 3L 5 11'{\[. (L )3 3L
-2 (=) 4 =) +C =46 6
120L(4) 72 \2 Gyt ©)

Solving Egs. (5) and (6), we obtain
C, = 0.0004666w, L*
C, = —0.0001085w,, L*
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so that the equation of the deflected beam is

wo s Wl [ L)"' Swy L 3L)"'
—— () + ——=) + (- =
L™ty (J‘ i/ T2 \""a

+ 0.0004666w, L*x — 0.0001085w, L* (7)

Ely = -

10.7. If the beam subject to triangular loading in Problem 10.6 is a W203 X 40 steel section, of length
L =4m,I=39X%10°mm* and w, = 80 kN/m, determine the deflection at the point D.
Using Eq. (7) of Problem 10.6, we have
WnL‘ + WDL (3_1.)1 + 5WOL (L)3

Bl e = =0 * 22 |3 72 \4
+ 0.0004666w, L* — 0.0001085mw, L*
= — 0.001031w, L
0.001031w, L?
Yhor=-——F%——
_ _ (0.001031) (80,000 N/m) (4 m)*

(200 x% 10° N/im?) (39 X 10" m*)
= — (.0027m or —2.7mm

10.8. The beam AD in Fig. 10-10 is simply supported at A and C, loaded by a uniform load from B
to D, and also by a couple applied as shown at D. Determine the equation of the deflection curve

through the use of singularity functions.

¥
l w,/Unit lengrh wol?
9
A x
e B Copm b 9
= L I L | L l
3 i 3 3 1
RA R(_'
Fig. 10-10

The reactions at A and C are assumed to be positive in the directions shown and are found from the
two statics equations to be

2L
EF:,.=R,4-'-Rr—w(,(T)=O (2)
Solving,
wol wolL
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The singularity approach lets us write the equation of the entire deflectcd beam in the form

L 2

Wotl X ——

2y 1 , ( 3) wol | 2L\'
—_ = = —_ [R— 3
a gVl 2 2 (" 3) @)

ET

The applied couple does not appear directly in this equation but its effect is incorporated in the statics
equations (/) and (2). Integrating the first time

(%) e 05)
2 Y T3
gr® owol & _wod 3]  wk} 37 (4)

dx 6 2 2 3 2 2

wol {x)*  wy 3 ) wo L ( 3 {x)*
= - hd 5
23 6 4 T4 3 TG tG )

As boundary conditions we have: when x = 0, y = 0, from which Eq. (5) leads to C; = 0. Also, when
x =2L13, y =0, from which Eq. (§) gives us

C[ = _0.03472“’01.2
The required equation of the deflected beam is thus

woL(x)®  wy ( I\ wylL ZL)" "
=0l ol oV 222 - 52) —0.01736w, NP 6
Ely 36 24\* 3} 12 (‘ 3 HotX ©)

10.9. In Problem 10-8 if the beam is a steel wide-flange section W203 X 51 (having = 52.5 X 10° mm"*
from Table 8-2 of Chap. 8), of length 6 m, and subject to a uniform load over BD of intensity
22 kN/m, determine the deflection at point B.
From the general equation of the deflection curve, Eq. (6) of Problem 10.8, we may write the
expression for the deflection at y = L/3 as

wol L3 X (L?)
Elylooin =22 5 040 001736wo L2 [ —
Voot =35 1736wl 7g
= —0.0009w, L*
Substituting,
(22,000 Nfm) (6 m) (6 m)? (22.000 N) . ( 6m )2
: ~0.01736 6m) [ ——
oo = 36 27 m )™ (g
Yhx=en (200 X 10° N/m?) (52.5 X 10 °m")

=-244%x10%m or —24.4 mm

10.10. The cantilever beam AD is loaded by the applied couples M, and M,/3, as shown in Fig. 10-11.
Use the method of singularities to determine the equation of the deflected beam.
For static equilibrium, there must be a reactive couple M, acting at point A, as well as possibly a
shear-type reactive force R,. From statics we find

+)‘2MA=M,,—M,+%=O andthercforeMA=§M|

SF,=R,=0
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M,
M, 3
A P -
MA L 1 o —> I
C & [
P MR S
: 2 T
RA
Fig. 10-11
The bending moment for any value of x is
2 o L\" M, 3L\*
M= 5M1<1) +M|<l :“) -3—<x T} )
so that the differential equation of the deflected beam is
d’y 2 o L\" M, 3L\"°
EI—5 = 3 M) +M.(x 4> 3 (x 2 ) 2)
Integrating the first time, we obtain
dy 2 ) O L\" M, 3L\!
Efdx— 3M,(x) +M|(.l. 4) 3 (x 4) +C, 3)

and the first boundary condition is that dy/dx = 0 when x = 0. Hence, C, = 0.
Integrating a sccond time

2 ()’ M._L’ M,_3L2
Ely = 3M|2+2(J£ 4) 6(3 4>+Cg (4)

and the second boundary condition is that y = 0 when x = (). Hence (> = 0.
The equation describing the deflected beam is finally

M (x) N M, (I L)’__ﬁﬁ( __31.)3

Ely = - (5)

le-= : el

3 2 4 4

10.11. The cantilever beam in Problem 10-10 is a steel wide-flange section W254 x 31, having
1 =441x10"°m* and a length of 2m. Determine M, if the deflection at point D is to be

3 mm.
We employ Eq. (5) of Problem 10.10 and simplify it for the deflection at x = L to find
M, L?
Ely),.p = ————
)’]\—f 16

Substituting the given numerical values. we find the tip deflection to be

My(2 my’

- =
(16) (200 x 10° N/m?) (44.1 < 10 *m?) 0.003 m

yliu L=

Solving,
M, =106 kN-m

10.12. Through the use of singularity functions determine the equation of the deflection curve of the
simply supported beam of Fig. 10-12 subject to the couple applied at B plus the linearly varying
load in CD.
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Al i x
& Cobwm D 1
L | L S
3 ! 3 3
Ra Re
Fig. 10-12

Denoting the recactions at A and C by R, and R assumed positive in the dircctions indicated and
writing the two statics equations for this parallel force system, we obtain

X 2L\ we(L\(2L 2 L
+)EMA:WHL‘_RC(T)_TO(?)(?*'?'?)=0 (f)
EF‘,=R,,-R(-—%-%=(} 2)

Solving, R, = ¥wyL and R, = BwaL. Since cach of these is positive, the assumed directions are
correct.
In terms of singularity functions, the differential cquation of the deflccted beam is

dzy_13 N o/ L\" 23 200!
El w9 wyL{(x)' — wo L (Jt 3> IRW"L {x 3 )

(-E)-F)6E) ¢-5)

R
3

where the effect of the triangular loading in CD is represented as the last term in Eq. (7) using the
technique for triangular load discussed in Problem 10.6 and illustrated in Fig. 10-9.

) I - - — ‘_‘-I_

_“’“L'(x_.? BT R TR

dy 13 x)*
El'a’— P wo L 2

+C, 4)

We have no boundary conditions on slope; hence we arc unable to determine C, at this time. Integrating
the second time

L\? . 20\ A
13 3 ,("_E) 23 ( _T> Y
Ely = “—WuL(x} wol ———————wyl -

18 773 2 36 3 8. S

+ Cix+ G (5)

As boundary conditions, we have x = 0 at y = 0, so from Eq. (5) we find C; = 0. Also, when x = 2L/3,
y = 0, from which we have from Eq. (5)

13 &r’ wol® L7 2L
O—EWUL(F) . 0—0+C|(?)
Solving,
C] = _O.OB%WQLB
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The deflection curve of the bent beam is thus

13 wy L? L\ 23 2L\ w 2L0\*°
Ely = QWI'IL{I)] - IIT(A - E) - m wy L <I - ?) - ﬁ (.1' - ?> ~ 0.02366w, L(x)

10.13. Determine the equation of the deflection curve of the simply supported beam shown in
Fig. 10-13(a). Use singularity functions.

1# 200N

100 N/m 100 Nfm

100 N-m

E|

) |
,A’ V 7% I nFJl 2m im
Im 2m Im Rlv Rs
{a) (b)

1m
-

Fig. 10-13

The free-body diagram is shown in Fig. 10-13(b). From statics the reactions are readily found to be
R, =225N, R, = 525N.
Writing the bending moment corresponding to Fig. 10-13(b) in terms of singularity functions, we have

@
d? \ 1 . 2 - 2
ErSY = b= 22509 + 1006 1y - LTI JOETH gpq gy )
where the term denoted by @ is necessary to annul the effect of the 100 N/M load to the right of
X =4m,
Integrating,
dy 225 ., 0, 3, 0 iy, 325 >
El:f;_ 5 (X" +100(x — 1) 3 {x=2) + 3 (x—4y' + 3 x—4)y +C, (2)
225 ., 100 , S0 . 50 s, 925 N
= =) ==Y == - S =+ T =) + 3
Ely A (x) > (=1 TAAEARETAY 4y 6 =4+ Cx+ G, (&)

The boundary conditions are y = 0 at x = 0. x = 4m. Using these conditions in (3) to determine C,
and G, we find C, = 504, C, = (.
The desired deflection curve is thus

225 100 50 50 525
—_ L . 2 __ . 4+ _44+ _43+
Ely r {x) 2 x—1 12{.1 2) 12 (x —4) s {x — 4y + 504x (4)

10.14. The e¢lastic beam AD shown in Fig. 10-14 is simply supported at B and C and subject to an
applied couple M, at point A together with a umiformly distributed load in the overhanging
region CD. Find the equation of the deformed beam as well as the deflection at point A.

From statics the reactions Ry and R are found to be
Rp=5%wL(l)  Re=gGwL(l)
Using the method of singularity functions, we find that the differential equation of the bent beam is

d’y 1 ., 73 L 91 5 w 5 \*
— w2 _ =y = by S WA SV )i
El n wl L (x ) wl <.r L> <.1 L> (1)
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10.15.

Fig. 10-14

Integrating the first timc, we have

dy 1 73 L\? 9] 5\ 5.\%
Efd—i=5sz(x)—%wL<x—E> +%wl.(x—§ ) —E<x—§l_) +C, 2)

Integrating a second time

1 A2 3 3 4
EIy=—wLE?-—21wL(x‘—£> +-El—wL<x—§L) —i(x—§L> +Cix+ G (3)

=

2 2 288 4 8 24 8

As boundary conditions to determine C, and C,, we have
First: When x = L/4, y = 0. Substituting in Eq. (3), we have

L
0= - 040-04+GT+G (4)

+0+ZLC+ G )

Solving Egs. (4) and (5), we obtain
C, = —0.1831wlL? C, = 0.03015wlL?

The equation of the deflected beam, for all values of x, is

N wl? 73 F AR | S5\ w5\ X .
Ely = n {x) 758 wi. <x 4) + wi. (J& L) Y (1 8!..) 0.1831wlx + 0.03015w L
(6)

At the left end, x = 0, and the deflection there is
Ely),-o = 0.03015mw, L*

Use singularity functions to determine the equation of the deflection curve of the simply
supported beam subject to a uniformly varying load as in Fig. 10-15(a). What is the central
deflection of the beam?

The free-body diagram with the reactions found from statics is shown in Fig. 10-15(b).
If we refer to Problem 10.6, we can write the bending moment at any location x in the form

WOL Wg 2W0 Ly?
Mx)=+—) - 2V + —({x-—= 1
() =+ 02 = e+ S (x-5) (1)
where the second term on the right side of (I) represents a uniformly varying load extending completely
across the beam as indicated by the triangle OAB in Fig. 10-16. To remove the portion of this loading
represented by triangle ABD, we add the third term on the right side, which leaves the true load
represented by triangle ODB.
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Fig. 10-15
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2 | 2
Fig. 10-16
Thus
d’y wol Wy 2wy Ly?
El—S=M=+4+—x)'—0)P+—(x— = 2
oM PR VA T) (x 2) @)
from which
dy wol L\*
E.!_= 4 —_—— + 3
=G i (x—0) +y @)

From symmetry we have as a boundary condition dy/dx =0 at x = L/2. From (3) we find that
C, = —5w,L¥192. Integrating again we get the desired deflection curve.

()s+_. ‘_"‘5-—5— L’'x+C (4)
s0L\" "2/ 192" 2
Since y = 0 at x = 0, it follows that C, = 0. The central deflection is found from (4) to be
o wol?
Y= T 120F1

Statically Determinate Beams— Computerized Solutions

Problems 10.1 through 10.15 have demonstrated the efficiency of the method of singularity
functions for the determination of beam deflections. The technique is very well suited to computer
implementation because there is a direct correspondence between the singularity function {x —
defined as
0 ifx<a
(x—a) ifx>a

u—m=[

and the “if” statement in FORTR AN. This feature is utilized extensively in the computerized approach
in Problem 10.16.

10.16. Write a FORTRAN program for determination of slope and deflection at selected points along
the length of a beam of constant cross section, simply supported at two arbitrary points, and
loaded by arbitrary concentrated forces, moments, and uniformly distributed loads.
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Fig. 10-17

Let us employ the terminology shown in Fig. 10-17. See Table 10-1.
A complete listing of the program based upon numerical solution of the beam bending equation

d’y
dx?

El =M

275

utilizing singularity functions follows. One must introduce all parameters of beam loading, geometry, and
clastic properties. The program will then print out the slope and deflection (with appropriate algebraic
sign) at each of the (NUM + 1) points along the length of the beam as well as values of the reactions R,

and R,.
Table 10-1
Units USCS or S1
E Young’s modulus
I Moment of inertia of beam cross section about the neutral axis
LEN Length of beam
NF Number of applied concentrated forces (not including reactions)
NM Number of applied moments
ND Number of uniformly distributed loads
NUM Number of segments into which length of beam is divided for
purpose of analysis
RCOORD1 Coordinate locating reaction R
RCOORD2 Coordinate locating reaction R
FCOORD(I) Coordinate locating applied concentrated force I
FMAG(I) Magnitude of concentrated force 1
MCOORD(I) Coordinate of locating moment I
MMAG(I) Magnitude of moment I
DDCOORD1(I) Left coordinate of distributed load I
DDCOORD2(I) Right coordinate of distributed load 1
MCOORD(I) Magnitude (load/unit length) of uniformly distributed load I
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COQLOAARRARAARRARARARARANAARRARAARAARARARARARAAARRAARARRAARAARAARARRARRARAARRAR

00020 PROGRAM BEND (INPUT,QUTPUT)
00030RRARRRARRAARARRRARRRRRAARRAAARRARAARARRRRRRANARARARRARRARAANRARRNARRRARAR
00040*

00050* AUTHOR: KATHLEEN DERWIN

00060* DATE : JANUARY 29,1989

00070*

00080* BRIEF DESCRIPTION:

00050* THIS PROGRAM CONSIDERS THE BENDING OF BEAMS DUE TO CONCENTRATED

00100* FORCES, CONCENTRATED MOMENTS, AND UNIFORMLY DISTRIBUTED LOADS. FIRST,
00110* THE PIN REACTION FORCES ARE FOUND, AND THEN THE SLOPE AND DEFLECTION OF
00120* THE LOADED BEAM AT VARIOUS INCREMENTS ALONG ITS LENGTH ARE DETERMINED.
00130* NOTE, THIS PROGRAM WAS DEVELOPED TO CONSIDER GENERAL LOADING, AND THE
00140* PINS DO NOT HAVE TO BE AT THE ENDPOINTS OF THE BEAM.

00150+#

00160* INPUT:

00170# THE USER MUST FIRST ENTER IF USCS OF SI UNITS ARE DESIRED. THEN,
00180* THE MOMENT OF INERTIA, YOUNG'S MODULUS, AND THE LENGTH OF THE BEAM
00190* ARE ENTERED. FINALLY, THE NUMBER, MAGNITUDE, AND LOCATION OF ALL
00200* [LOAD TYPES, AND THE NUMBER OF INCREMENTS TO PERFORM THE SLOPE AND
00210* DEFLECTION CALCULATIONS ARE INPUTTED.

00220#
00230* OUTPUT:
00240* THE PROGRAM PRINTS THE MAGNITUDE AND SENSE OF THE TWO REACTION

00250* FORCES, AS WELL AS THE SLOPE AND DEFLECTION AT SUCCESSIVE INTERVALS
00260* ALONG THE BEAM.

002704

00280* VARIABLES:

00290% E.INER,LEN — YOUNG'S MODULUS, MOMENT OF INERTIA, LENGTH
00300+ OF BEAM

00310#% NUM — NUMBER OF INCREMENTS TO DO CALCULATIONS ON
00320* RCOORD1,RCOORD2  --- LOCATION OF THE PINS

00330% R1,R2 —— MAGNITUDE OF THE PIN REACTION FORCES

00340* FCOORD(I),FMAG(I) --- LOCATION AND MAGNITUDE OF CONCENTRATED FORCE
00350* DDCOORD1(I),DCOORD2(I)~ LOCATION OF DISTRIBUTED LOADS

00360* DINT(I) T INTENSITY OF DISTRIBUTED LOADS

00370* MCOORD(I),MMAG(I) === LOCATION AND MAGNITUDE OF MOMENTS

00380+ DX _— INCREMENTAL STEP ALONG BEAM (LENGTH/NUM)
00390* VV1,VV2,...VV6 -— THE 'BRACKET TERMS' OF THE SINGULARITY FNCTS
00400* SLF(I),DF(I),SLM(I),

00410* DM(I),SLD(I),DD(I)-—- THE SUMMING ARRAYS FOR SLOPE AND DEFLECTION
00420% DUE TO EACH APPLIED FORCE AT A PARTICULAR PT
00430* SLR1,SLR2,DR1,DR2 —--- THE EFFECTS OF THE REACTION FORCES AT A POIN
00440% SLFX,SLMX,SLDX _— THE TOTAL SLOPE AND DEFLECTION DUE TO BOTH
00450* DFX,DMX,DDX APPLIED AND REACTIVE FORCES AT A POINT
00460* c1,c2 — THE CONSTANTS OF INTEGRATION

00470* SL(I),D(I) — THE FINAL SLOPE AND DEFLECTION AT ANY POINT
00480* NF, NM, ND — THE NUMBER OF CONCENTRATED FORCES (NOT
00490* INCLUDING REACTIONS), APPLIED MOMENTS, AND
00500* UNIFORMLY DISTRIBUTED LOADS

00510*  FSUM,MSUM — THE SUM OF THE FORCES AND MOMENTS, USED TO
00520* COMPUTE THE REACTIVE FORCES

00530* DDIST(I),LOAD(I) -—- THE DISTANCE EACH DISTRIBUTED LOAD SPANS, AN
00540* THE MAGNITUDE OF THE RESULTING FORCE

00550* BIG -— GIVES THE LARGEST NUMBER OF ALL FORCE TYPES
00560+ ANS -— DENOTES IF USCS OR SI UNITS ARE DESIRED
00570*

00580
005900***QO0**‘**“*i***l****iiilil*l*iIll*lilii*lii*i*ll*‘****Qﬁ****i*iiil‘i
00600!**!**!*** MIN Pmm AAAAARAR A hRh

Q0GLOAARAAARARARAAARRRARRRAARANARARAARRARARRARARRAARRRRAAAARRRAAAARAAARAARRARAARRAA
Q0620+

00630* VARIABLE DECLARATIONS
00640*
00650 REAL E,INER,LEN,NUM,RCOORD1,RCOORDZ,FCOORD(10),FMAG(10),MCOORD(10)

00660 REAL MMAG(10),DCOORD1(10),DCOORD2(10),DINT(10),DX,X,XX,VV1,VV2
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00670 REAL VV3,VV4,VV5,VV6,SLF(10),SLD(10),SLM(10),DF(10),DD(10),DM(10)
00680 REAL SLR1,SLR2,DR1,DR2,R1,R2,SLFX,SLDX,SLMX,DFX,DDX, DMX

00690 REAL C1,C2,FSUM,MSUM,DDIST(10),LOAD{10),SL(100),D(100)

00700 INTEGER NF,ND,NM,BIG,ANS

00710*

00720* INITIALIZING VARIABLES TO ZERO

00730*

00740 FCOORD(10)=0.0

00750 FMAG(10)=0.0

00760 MCOORD(10)=0.0

00770 MMAG(10)=0.0

00780 DCOORD1(10)=0.0

00790 DCOORD2(10)=0.0

00800 DINT(10)=0.0

00810 SLF(10)=0.0

00820 SLD(10)=0.0

00830 SLM(10)=0.0

00840 DF(10)=0.0

00850 DD(10)=0.0

00860 DM(10)=0.0

00870 SL(100)=0.0

00880 D(100)=0.0

00890 SLFX=0.0

00300 SLDX=0.0

00910 SLMX=0.0

00920 DFX =0.0

00930 DDX =0.0

00940 DMX =0.0

00950*

00960*#rnan USER INPUT I

00970*

00980 PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'

00990 PRINT*,'1 - USCS'

01000 PRINT*,'2 - SI'

01010 PRINT*,* *

01020 PRINT*, "ENTER 1,2:°

01030 READ* , ANS

01040 IF (ANS.EQ.1) THEN

01050 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
01060 ELSE

01070 PRINT+, 'PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...
01080 ENDIF

01090*

01100

01110 PRINT*,' '

01120 PRINT*, 'ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:"

01130 READ(*,*)E, INER,LEN,NF,ND, NM, NUM

01140 PRINT*,' °

01150 PRINT*, 'ENTER THE COORDINATES OF THE ALL FORCE TYPES AS DISTANCES'
01160 PRINT+*,'FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES'
01170 PRINT*, 'DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE
01180 PRINT*,* *

01190 PRINT*, 'ENTER THE COORDINATES OF THE REACTION POINTS:'

01200 READ( *, #* ) RCOORD1 , RCOORD2

01210 IF (NF.GT.0) THEN

01220 PRINT*, 'ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED '
01230 PRINT*, ' FORCES: '

01240 READ(*,*)(FCOORD(I),FMAG(I),I=1,NF)

01250 ENDIF

01260 IF (NM.GT.0) THEN

01270 PRINT#, 'ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED °
01280 PRINT#, ‘MOMENTS: '

01290 READ(*,*) (MCOORD(I),MMAG(I),I=1,NM)

01300 ENDIF

01310 IF (ND.GT.0) THEN

01320

PRINT#*, 'ENTER THE FIRST AND SECOND COCRDINATE AND THEN INTENSITY '
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01330 PRINT#*, 'OF ALL DISTRIBUTED LOADS:"'

01340 READ(*,*) (DCOORD1 (I),DCOORD2{I),DINT(I),I=1,ND)

01350 ENDIF

01360*

01370%#snnn END USER INPUT ARRRR

01380*

01390 PRINT#*,'

01400 PRINT*,' THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS)
1

01420+44444  CALCULATIONS  +#eass

01430%

01440*

01450* CALCULATING THE MAGNITUDE AND DIRECTION OF THE PIN REACTION

01460# FORCES

01470*

01480 FSUM=0.0

01490 MSUM=0.0

01500 DO 15 I=1,ND

01510 DDIST(I)= DCOORD2(I) - DCOORD1(I)

01520 LOAD(I) = DINT(I)*DDIST(I)

01530 FSUM = LOAD(I) + FSUM

01540 MSUM =(((0.5*DDIST(I) + DCOORD1(I)) - RCOORD1) * LOAD(I)) + MSUM

01550 15 CONTINUE

01560 DO 20 I = 1,NF

01570 FSUM = FSUM + FMAG(I)

01580 MSUM =((FCOORD(I) - RCOORD1)*FMAG(I)) + MSUM

01590 20 CONTINUE

01600 DO 30 I = 1,NM

01610 MSUM = MSUM + MMAG(I)

01620 30 CONTINUE

01630 R2 = -(MSUM/(RCOORD2-RCOORDL) )

01640 Rl = -(FSUM+R2)

01650*

01660* PRINTING THE REACTION FORCES

01670*

01680 PRINT*,' *

01690 PRINT*, 'Rl = ',R1," R2 = ',R2

01700 PRINT*,' '

01710*

01720* CALCULATING THE LARGEST NUMBER OF EITHER FORCES, DISTRIBUTED

01730* LOADS, OR MOMENTS

01740*

01750 IF (NF.GE.ND) THEN

01760 IF (NF.GE.NM) THEN

01770 BIG=NF

01780 ELSE

01790 BIG=NM

01800 ENDIF

01810 ELSE

01820 IF (ND.GE.NM) THEN

01830 BIG=ND

01840 ELSE

01850 BIG=NM

01860 ENDIF

01870 ENDIF

01880%

01890*

01900% THE FOLLOWING SECTION OF THIS PROGRAM PERFORMS THE CALCULATIONS

01910* THAT DETERMINE THE SLOPE AND DEFLECTION AT SEVERAL INTERVALS ALONG

01920+ THE BEAM. THE METHOD OF SINGULARITY FUNCTIONS AND INTEGRATION IS

01930+ EMPLOYED, AND THE PRINCIPAL OF SUPERPOSITION ALLOWS EACH TYPE OF

01940+ FORCE TO BE CONSIDERED SEPARATELY AND THEN SUMMED TO PRODUCE

01950 THE NET EFFECT ON THE BEAM.

01960#*

01970 DX=LEN/NUM

01980 J=1

01990 10 DO 50 XX=0,LEN,DX
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02000
02010*
02020*
02030*
02040*
02050%
02060
02070
02080*
02090#
02100*
02110
02120
02130
02140
02150
02160
02170
02180*
02190+
02200*
02210*
02220#*
02230
02240
02250
02260
02270
02280
02290*
02300*
02310*
02320+
02330
02340
02350
02360
02370
02380
02390
02400
02410
02420*
02430*
02440+
02450*
02460
02470
02480
02490
02500*
02510%*
02520+
02530+
02540
02550
02560
02570
02580
02590
02600
02610
02620
02630
02640
02650

60

40

X=XX

THE FUNCTIONS ARE FIRST SOLVED FOR THE INITIAL CONDITIONS OF ZERO
DISPLACEMENT AT THE TWO PIN REACTION POINTS, RCOORD1 AND RCOORD2,
THAT THE CONSTANTS OF INTEGRATION MAY BE DETERMINED.

IF (J.EQ.1) X=RCOORD1
IF (J.EQ.2) X=RCOORD2

EVALUATING THE 'BRACKET TERMS' USED WITH THE SINGULARITY FUNCTIONS

DO 60 I=1,BIG
VV1=X-FCOORD(I)
VV2=X-DCOORD1 (1)
VV3=X-DCOORD2(I)
VV4=X-RCOORD1
VV5=X~RCOORD2
VV6=X-MCOORD(I)

RECALL, WITH SINGULARITY FUNCTIONS IF THE QUANTITY IN THE
BRACKETS IS LESS THAN OR EQUAL TO ZERO, THAT TERM MAKES NO
CONTRIBUTION TO THE SLOPE AND/OR DEFLECTION AT THAT POINT.

IF (VV1.LE.O0) VV1=0
IF (VV2.LE.0) VV2=0
IF (VV3.LE.O) VV3=0
IF (VV4.LE.0) VV4=0
IF (VVS.LE.0) VV5=0
IF (VV6.LE.0) VV6=0

DETERMINING THE SLOPE AND DISPLACEMENT DUE TO EACH FORCE AT A
PARTICULAR POINT ON THE BEAM

SLF(I) = FMAG(I)/2%(VV1%*2)
DF(I) = FMAG(I)/6%(VV1t#3)

SLD(I) = (DINT(I)/6*(VV2*%3)) - (DINT(I)/6*({VV3#*#3))
DD(I) = (DINT(I)/24*(VV2##*4)) — (DINT(I)/24*(VV3*#4))

SLM(I) = MMAG(I)*VV6
DM(I) = MMAG(I)/2*(VV6#*2)
CONTINUE

DETERMINING THE SLOPE AND DISPLACEMENT DUE TO THE REACTION FORCE
AT A PARTICULAR POINT ON THE BEAM

SLR1 = R1/2 * (VV4##2)
SLR2 = R2/2 * (VVS#*#2)
DR1 = R1/6 * (VV4#*+3)
DR2 = R2/6 * (VV5%+3)

SUMMING THE EFFECTS OF ALL FORCE CONTRIBUTIONS OF THE SLOPE AND
DISPLACEMENT AT A PARTICULAR POINT ON THE BEAM

DO 40 I=1,BIG
SLFX= SLFX+ SLF(I)
SLDX= SLDX+ SLD(I)
SLMX= SLMX+ SLM(I)
DFX = DFX + DF(I)
DDX = DDX + DD(I)
DMX = DMX + DM(I)

CONTINUE

SL(J) = SLFX + SLDX + SLMX + SLR1 + SLR2
D(J) = DFX + DDX + DMX + DRl + DR2
J =J+1
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02660+

02670+ SETTING THE SLOPE AND DISPLACEMENT SUMS BACK TO ZERO BEFORE
02680* MOVING TO NEXT POINT ON BEAM

02690+

02700 SLFX=0.0

02710 SLDX=0.0

02720 SLMX=0.0

02730 DFX =0.0

02740 DDX =0.0

02750 DMX =0.0

02760 IF (J.EQ.3) GO TO 10

02770*

02780% REPEAT THIS PROCEDURE FOR NEXT POINT ON BEAM
02790 50 CONTINUE

02800*

02810+ CALCULATING THE CONSTANTS OF INTEGRATION FROM THE INITIAL
02820+ CONDITIONS OF ZERO DISPLACEMENT AT THE PINS.
02830*

02840 Cl1 = (D(2) - D(1))/(RCOORD1 - RCOORD2)

02850 C2 =(-D(1) - (C1*RCOORD1))

02860

02870 X=0.0

02880+

02890* FINALLY, DETERMINING THE SLOPE AND DISPLACEMENT AT EVERY POIN
02900* BY CONSIDERING ALL THE FORCE CONTRIBUTIONS AT EACH RESPECTIVE
02910* POINT, AND THE CONSTANTS OF INTEGRATION.
02920*

02930 DO 80 I1=3,3-1

02940 SL(I) =(SL{I) + Cl)/(E*INER)

02950 D(I) =(D(I) + (C1*X) + C2)/(E*INER)

02960* PRINT*,SL(1),D(I)

02970 X=X+DX

02980 80 CONTINUE

02990*

03000* PRINTING THE SLOPE AND DELECTION AT INCREMENTS ALONG THE BEAM
03010*

03020 PRINT 82, "NODE','LOCATION', 'SLOPE', 'DEFLECTION'
03030 IF (ANS.EQ.1) THEN

03040 PRINT 83

03050 ELSE

03060 PRINT 84

03070 ENDIF

03080 X=0,0

03090*

03100 DO 85 I=3,J-1

03110 PRINT 90,I-2,X,SL(I),D(I)

03120 X=X+DX

03130 85 CONTINUE

03140*

03150* FORMAT STATEMENTS

03160*

03170 B2 FORMAT(//.2X,A4,5X,A8,5X,A5,6X,A10)

03180 B3 FORMAT(3X,'NO',9X,"'IN',8X,'IN/IN',10X,"'IN")
03190 84 FORMAT(3X,'NO',9X,'M',9X,' M/M ',10X,'M")
03200 90 FORMAT(3X,I2,6X,F8.3,3X,E10.3,4X.E10.3)
03210 STOP

03220 END

10.17. A beam 12 m long is supported at knife edge reactions and loaded by a concentrated moment
of 8000 N -m together with a concentrated force of 8500 N as shown in Fig. 10-18. Use the
FORTRAN program of Problem 10.16 to determine the deflection by considering 25 segments
along the length of the beam. The beam is of rectangular cross section 60 mm wide and 280 mm
high and £ = 200 GPa.
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i B500N
. 8000 N-m
? 'l/;_ W — X
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Fig. 10-18

The input into the program is shown in Table 10-2.
Input of these parameters into the program leads to the following output:

PLEASE INDICATE YQOUR CHOICE OF UNITS:
1 - UsSCs
2 - 81

ENTER 1.2:
? 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:
? 200E+9,109E-6,12,1,0,1,25

ENTER THE COORDINATES OF ALL THE FORCE TYPES AS DISTANCES
FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES
DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE.

ENTER THE COORDINATES OF THE REACTION POINTS:
2 0,8

Table 10-2
Units 34
200 X 10°
1 5 (0.06m) (0.28m)° =109 X10°m*
LEN 12
NF 1
ND 0
NM 1
NUM 25
RCOORD1 0
RCOORD2 8
FCOORD(I) 12
FMAG(I) 8500
MCOORD(I) 4
MMAG(I) BOOO
DCOORD1 (1) 0
DCOORD2 (1) 0
DMAG(I) 0
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ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
FORCES:

? 12,8500

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
MOMENTS :

? 4,8000

THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS):

R1 = 5250. R2 = -13750.
NODE LOCATION SLOPE DEFLECTION
NO M M/M M

1 -000 —.294E-02 -000E+00

2 -480 -.291E-02 -.140E-02

3 .960 -.2B2E-02 -.278E-02

4 1.440 -.269E-02 -.411E-02

5 1.920 ~-.249E-02 -.535E-02

6 2.400 -.224E-02 -.649E-02

7 2.880 -.194E-02 -.750E-02

8 3.380 -.158E-02 -.834E-02

9 3.840 -.116E-02 -.900E-02
10 4.320 -.571E-03 -.943E-02
11 4.800 .132E-03 -.954E-02
12 5.280 -891E-03 -.929E-02
13 5.760 -.171E-02 ~.867E-02
14 6.240 -257E-02 -.765E-02
15 6.720 .350E-02 -.619E-02
16 7.200 .448E-02 -.428BE-02
17 7.680 .552E-02 -.1BBE-02
18 8.160 .660E-02 -103E-02
19 B.640 .763E-02 -445E-02
20 9.120 .856E-02 .833E-02
21 9.600 .941E-02 .127E-01
22 10.080 -102E-01 +174E-01
23 10.560 -108E-01 -224E-01
24 11.040 .114E-01 -277E-01
25 11.520 .119E-01 -333E-01
26 12.000 .123E-01 +391E-01

SRU 1.284 UNTS.

RUN COMPLETE.

From the printout we note that the deflection under the 8500-N force is 0.0391 m or 39.1 mm and
under the 8000-N - m moment located between nodes 9 and 10 it is approximately —0.0092 m or —9.2 mm.

10.18. A beam 100in long and of rectangular cross section with / = 3.375 in* is loaded and supported
as shown in Fig. 10-19. Use the FORTRAN program of Problem 10.16 to determine the
deflections if the beam is represented by 50 segments along its length. Take E = 30 X 10° Ib/in®.

3000

Fig. 10-19
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The input to the program is shown in Table 10-3.

Table 10-3

Units USCSs
E 30 X 10°
1 3.375
LEN 100
NF 1
ND
NM 1
NUM 50
RCOORD1 20
RCOORD2 50
FCOORD(I) 0
FMAG(I) 3000
MCOORD( 1) 100
MMAG(I) -8000
DCOORD1 (1) 20
DCOORD2 (1) 50
DMAG(I) 125

Input of these parameters into the program leads to the following output:

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 — USCs

2 — SI

ENTER 1.2:
21
PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...

ENTER THE VALUES FOR E,I,LEN,NF,ND,NM,NUM:
? 30E6,3.375,100,1,1,1,50

ENTER THE COORDINATES OF ALL THE FORCE TYPES AS DISTANCES
FROM THE LEFT END OF THE BEAM...ALSO, CONSIDER FORCES
DIRECTED DOWNWARD, AND MOMENTS ACTING CLOCKWISE AS POSITIVE.

ENTER THE COORDINATES OF THE REACTION POINTS:
? 20,50

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
FORCES :

? 0,3000

ENTER THE COORDINATE AND MAGNITUDE OF ALL CONCENTRATED
MOMENTS :

? 100,-8000

ENTER THE FIRST AND SECOND COORDINATE AND THEN MAGNITUDE
OF ALL DISTRIBUTED LOADS:

? 20,50,125
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THE MAGNITUDES OF THE TWO REACTIVE FORCES (LB OR NEWTONS):

Rl = -7141.666666667 R2 = 391.6666666667

NODE LOCATION SLOPE DEFLECTION
NO IN IN/IN IN
1 .000 -.101E-01 . 162E+00
2 2.000 -.100E-01 -142E+00
3 4.000 -.983E-02 -122E+00
4 6.000 -.953E-02 .103E+00
5 8.000 -.912E~-02 .83BE-01
6 10.000 -.859E-02 .661E-01
7 12.000 -.793E-02 -496E-01
8 14.000 -.716E-02 -345E-01
9 16.000 -.62BE-02 -210E-01
10 18.000 -.527E-02 -943E-02
11 20.000 -.414E-02 .000E+00
12 22.000 -.304E-02 -.715E-02
13 24.000 -.209E-02 -.123E-01
14 26.000 -.12BE-02 -.156E-01
15 28.000 -.605E-03 -.175E-01
16 30.000 -.556E-04 -.181E-01
17 32.000 .380E-03 -.178E-01
18 34.000 .710E-03 -.166E-01
1% 36.000 .946E-03 -.150E-01
20 38.000 .110E-02 -.129E-01
21 40.000 .117E-02 ~.106E-01
22 42.000 .119E-02 -.826E-02
23 44.000 .114E-02 -.592E~02
24 46.000 .106E-02 -.371E-02
25 48.000 .933E-03 -.172E-02
26 50.000 .78B4E-03 -000E+00
27 52.000 .626E-03 .141E-02
28 54.000 .468E-03 .250E-02
29 56.000 .310E-03 -328E-02
30 58.000 .152E-03 -374E-02
31 60.000 -.617E-05 .389E-02
32 62.000 -.164E-03 -372E-02
33 64.000 -.322E-03 .323E-02
34 66.000 -.480E-03 .243E-02
35 68.000 -.63BE-03 -131E-02
36 70.000 -.796E-03 -.123E-03
37 72.000 -.954E-03 -.187E-02
38 74,000 -.111E-02 -.394E-02
39 76.000 -.127E-02 -.632E-02
40 78.000 -.143E-02 -.902E-02
41 80.000 -.159E-02 -.120E-01
42 82.000 -.174E-02 -.154E-01
43 84.000 -.190E-02 -.190E-01
44 86.000 -.206E-02 -.230E-01
45 88.000 -.222E-02 -.273E-01
46 90.000 -.238E-02 -.319E-01
47 92.000 -.253E~-02 -.368E-01
48 94.000 -.269E-02 -.420E-01
49 96.000 -.285E-02 -.475E-01
50 98.000 -.301E-02 -.534E-01
51 100.000 -.317E~02 -.596E-01
SRU 1.305 UNTS.

RUN COMPLETE.



CHAP. 10] ELASTIC DEFLECTION OF BEAMS: METHOD OF SINGULARITY FUNCTIONS 285

Supplementary Problems

10.19. The cantilever beam ABC is loaded by a uniformly distributed load w per unit length over the right half

BC as shown in Fig. 10-20. Use singularity functions to determine the deflection curve of the bent beam.
Also, determine the deflection at the tip C.

e
—_—

V7
/% w/ Unit length
Z ——t —_—
2 y] I S S
7 L | L |
7 2 | 2 |
Fig. 10-20
wL 3 2w Ly
Ans. Ely = Tz—(x)‘,‘-' §WL2—(’;—)—- §<x -5>
41
Ely),-. = ~ 384

10.20. Consider a simply supported beam subject to a uniform load acting over a portion of the beam as indicated
in Fig. 10-21. Use singularity functions to determine the equation of the deflection curve.

wh(b W
Ans. Ely= GL( +c)(x}3——(x a}‘+ﬁ(x—a—b}"

ol -ar - -a91-"2= 3+ <) fw

¥
w/Unit length
z
| ——inp
by
a b J ¢
1
L
Fig. 10-21

10.21. The beam ABCD is pinned at B, rests on a roller at C, and is subjected to the tip loads each of magnitude
P as shown in Fig. 10-22. Use the method of singularity functions to determine the deflection curve of the
beam, which is symmetric about the midlength of the beam. Also, determine the deflection at point A.
P P
Ans Ely= - o0P+ glemal +g— @ L9+ (5020

_ , PL&
3 2
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L
Fig. 10-22

Use singularity functions to determine the equation of the deflected beams in Problems 10.22 through 10.25.
10.22. See Fig. 10-23.

Ans. E!y=—-‘%2(x)’—%(x)"+%{x a}"+———(x—a)2+%wa{x Za)‘——(x 30}3+——war{x}'

10.23. See Fg. 10-24.

Wt w
w
IRNG ‘
i ) | || —t
./ 7
| L Sy
! < - 1 - 2 I 2 I
Fig. 10-23 Fig. 10-24
=E£— 3—£ 4 i< _£>4_w_£‘3 1
Ans. Ely 2A(Jc) 24(,1') +]2 X—3 l%(x)

10.24. See Fig. 10-25.

5
ans Ely = "2l gy - 2 >+ﬂ<x>-‘—ﬁ(x-£>*iwwx

24 60L 10L

v
1 T

Fig. 10-25
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10.25.

Sce Fg. 10-26.
Ans. Ely = =520 + 3300(x — 3) - 5Px — 6)* + Y2(x — 9% + B(x — 9)* + 10,175x

v
1000 b/ Tt
6600 Ib-ft 13,200 Ib-ft
[ { 7] :
A S
3 3 3 3
1 ]
Fig. 10-26

10.26. The beam AC in Fig, 10-27 is 15 ft long, 3 in X 4 in in rectangular cross section, is subject to a uniform load

10.27.

10.28.

of 1201b/ft, and has E = 30 % 10 Ib/in’. Use the FORTRAN program of Problem 10.16 to determine
(a) the defiection at the left end of the beam and (b) the maximum deflection of the beam.
Ans. (a) 0.0651n, () —0.10in at x = 110in

y

wi Unit length

EEEEREEREN!
A BA), C

-—3in !“ zzn f

R, R,

Fig. 10-27

Through the use of singularity functions, determine the equation of the deflection curve of the beam simply
supported at B and C and subject to the triangular loading shown in Fig. 10-28.

M+%<x_£'
16

3
=— -0 x4+ 0. 4
Ans. Ely=-—o 2) 0.02050wq L x + 0.01042w, L

The beam shown in Fig. 10-29 is simply supported and subject to a concentrated force, the moment, and
the uniformly distributed load indicated. The material has £ = 200 GPa and the beam cross section has
I'=20%10""m* Use the FORTRAN program of Problem 10.16 to determine the deflection under the
point of application of the 42({)-N force. Ans. 19.8mm

!
l 2000 N-m

mva
Nl
i
| Fig. 10-29



Chapter 11

Statically Indeterminate Elastic Beams

STATICALLY DETERMINATE BEAMS

In Chaps. 8, 9, and 10 the deflections and stresses were determined for beams having various
conditions of loading and support. In the cases treated it was always possible to completely determine
the reactions exerted upon the beam merely by applying the equations of static equilibrium. In these
cases the beams are said to be starically determinate.

STATICALLY INDETERMINATE BEAMS

In this chapter we shall consider those beams where the number of unknown reactions exceeds the
number of equilibrium equations available for the system. In such a case it is necessary to supplement
the equilibrium equations with additional equations stemming from the deformations of the beam. In
these cases the beams are said to be statically indeterminate.

TYPES OF STATICALLY INDETERMINATE BEAMS

Several common types of statically indeterminate beams are illustrated below. Although a wide
variety of such structures exists in practice, the following four diagrams will illustrate the nature of an
indeterminate system. For the beams shown below the reactions of each constitute a parallel force
system and hence there are two equations of static equilibrium available. Thus the determination of
the reactions in each of these cases necessitates the use of additional equations arising from the
deformation of the beam.

r | [ .
T LT - :tD
k M,
R,

My .
e

AR
wy

Fig. 111 Fig. 11-2

In the case (Fig. 11-1) of a beam fixed at one end and supported at the other, sometimes termed
a supported cantilever, we have as unknown reactions R,, R,, and M,. The two statics equations
must be supplemented by one equation based upon deformations. For applications, see Problems
11.1 and 11.3.

In Fig. 11-2 the beam is fixed at one end and has a flexible springlike support at the other. In the
case of a simple linear spring the flexible support exerts a force proportional to the beam deflection
at that point. The unknown reactions are again R,, R,, and M,. The two statics equations must be
supplemented by one equation stemming from deformations. For applications see Problems 11.2 and
11.16.

288
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T ' { {

[ ]
: LN
R, R, R, R, R,y
Fig. 11-3 Fig. 114

As shown in Fig. 11-3, a beam fixed or clamped at both ends has the unknown reactions R,, R,
M,, and M,. The two statics equations must be supplemented by two equations arising from the
deformations. For applications, see Problems 11.4, 11.6, and 11.12.

In Fig. 11-4 the beam is supported on three supports at the same level. The unknown reactions are
Ry, R;, and R, The two statics equations must be supplemented by one equation based upon
deformations. A beam of this type that rests on more than two supports is called a continuous
beam.

Solved Problems

1L.1. A beam is clamped at A, simply supported at B, and subject to the concentrated force shown
in Fig. 11-5. Determine all reactions.

C"‘ 2

R, Ry
Fig. 11-5
The reactions are R,, Rz, and M,. From statics we have
+)2MA=MA*PG+R5L=0 (:)
EF,=Ry+Rs—P=0 )

Thus there are two equations in the three unknowns R,, Rz, and M,. We can supplement the statics
equations with an equation stemming from deformations using the method of singularity functions to
describe the bent beam. This is
d?
E 5;; = Ra(x) — Ma(x)* ~ P(x — a) 3
Integrating the first time, we have

2
E!E—Rﬂ%—MA(x)—-:i(x—a}z+ C, (4)



290 STATICALLY INDETERMINATE ELASTIC BEAMS [CHAP 11

The first boundary condition is that at x = 0, dy/dx = 0, and thus C, = 0. Integrating again,

Ra (x) () px—a)
Ety=-—2""_p,~L L
O T T T R
The second boundary condition is that at x = 0, y = 0. and we find C, = 0.
The third boundary condition is that at x = L, y = 0. Substituting in Eq. (5), we have

+ G, )

6 2 6 ©)
Simultancous solution of the three equations (7), (2). and (6) leads to
Pb
R,= E(Hﬁ — b%)

Pa?
=" +
Ry =551 +b)

MA=

Pb .
)

11.2. The beam AB in Fig. 11-6 is clamped at A, spring supported at B, and loaded by the uniformly
distributed load w per unit length. Prior to application of the load, the spring is stress free. The
spring constant is 345 kN/m. To determine the flexural rigidity E[ of the beam, an experiment
is conducted without the uniform load w and also without the spring being present. In this
experiment it is found that a vertical force of 10,000 N applied at end B deflects that point
50 mm. The spring is then attached to the beam at B and a uniform load of magnitude 5 kN/m
is applied between A and B. Determine the defiection of point B under these conditions.

¥

I 0 O R

Fig. 11-6

The forces acting on the beam when it is uniformly loaded as well as spring supported at its tip are
shown in Fig. 11-6. The force R represents the force exerted by the spring on the beam. The differential
cquation of the bent beam in terms of singularity functions is

d’y

- o ELRY
E‘fdxz = —M4x)" + R, (x)! 2(1) (1)

Integrating the first time, we find
dy L B0 W
—_ = - + — — —{xY +
El dx M {x) > {xy 6(1:) G @)

Now, invoking the boundary condition that when x = 0, dy/dx = 0. we find from Eq. (2) that C; = 0. The
second integration yiclds

Ely = = 2268 + 220 - e G @
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11.3.

and the second boundary condition is that x = ( when y = 0, so from Eq. (3) we have C; = 0. From Eq.
(3) we have the deflection at B due to the uniform load plus the presence of the spring to be given by

M,L* R,L* wlL’
= —A A T 4
Elly).-s = — =4+ = - 2 (@)

But for linear action of the spring we have the usual relation

Rg= —klyl.. = +kbp ©)
Also, from statics for this parallel force system we have the two equilibrium equations
L!
+ITMy=Ma+ Ryl =20 (6)
ZF,=Rs+Ry— (5000N/m)(3m) =0 (7)

Simultaneous solution of Egs. (4), (6), and (7) indicates that

R (g+£)=sm+5wv
Nk 3 k 24

(8)

The flexural rigidity Ef is easily found by consideration of the experimental evidence. The tip
deflection of a tip-loaded cantilever beam is

PL’
3E1
which becomes, for this experiment,
(10,000 N) (3 m)*
0.050m = —————
m 3EI
from which
Ef=18X10°N-m? (9)

If this value together with the spring constant of 345,000 N/m is substituted in Eq. (§), we find that
R4 = 11,440 N. From Eq. (7) we find that Rz = 3560 N, so that the spring equation (5) indicates the
displacement of point B to be
3560 N

As = 325,000 N/m

= 0.01032m or 10.3 mm (10)

Consider the overhanging beam shown in Fig. 11-7. Determine the magnitude of the supporting
force at B.

There are two statics equations

w(a+ b)Y _

DEIM,=M,+Ra— > 0 )
TF, =R +R,—w(a+b)=10 (2)
Let us employ the method of singularity functions to write the differential equation of the bent beam
dz
EI7S = ~Mix)+ R = 2 (07 + Rolx — ' €)

Note that in (1) a negative sign is assigned to M, since. as we work from left to right starting at the origin
A, the reactive moment M, tends to bend the portion of the beam to the right of A into a configuration
having curvature concave downward, which is negative according to the bending moment sign convention
given in Chap. 6.
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1U

s 1b/unit length
A cC__ 2
M, B
% }
: g
R,y
Fig. 11-7
Integrating
dy 1 RI 2 w 3 R2 2
—=- + - =P+ =—a’+
E ax M, (x) > () P (x) 5 (x—ay + G,

But when x = 0, dy/dx = 0; hence C, = 0. Integrating again,
Ml # Rl 3 W n -R2 3
=__<x _(r __(r __{r._. +(
Ely 2 a 6 ’ 24 '+ 6 a 2

But when x = 0, y = 0. so that G, = 0.

[CHAP. 11

4)

&)

Since the support at point B is unyielding, y must vanish in (5) when x = a. Substituting, we find

M@ Rya wa . a
= —— —— - — = _———
0 > 6 % from which M, = R, 3
Solving this in conjunction with the statics equations, we find
2
R1=§wa—%2 Rz=%wa+wb+3w’)

wa

11.4. The clamped end beam is loaded as shown in Fig. 11-8 by a couple M, Determine all

reactions.

A Tangent 814
M,

Fig. 11-8

Under the action of the couple, the initially straight beam bends into the configuration shown by the
curved line. Tangents to the deformed configuration remain horizontal at ends A and B and of course there
is zero vertical displacement at each of these ends. This gives rise to the reactions shown in which the
vertical (shear) reactions are of equal magnitude for vertical equilibrium. This leaves only one equation

from statics, namely,

+)EMy=-M—M,—M,+R{a+b) =0

(N

This equation contains R;, M,, and M, as unknowns. Since there are no more statics equations available,
we must supplement Eq. (1) with two additional equations stemming from deformations of the system. We
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115,

employ the method of singularity functions and write the bending moment at any point along the length
of the beam as

M = —M(x)° + Ry(x) — My(x = a)° (2)
The differential equation of the bent beam is thus
d’y 0 0
£ 5= = Mi(0)" + Ri{x) — Molx — @) E))

Integrating the first time, we obtain

d (x)? (x—a)!
Er&—’; = My + R,T) - My
As the first boundary condition, when x = 0, dy/dx = 0; hence from (4) we have C, = (. Integrating

again

+G )

a? R W (x —a)’
—_——r—— - M
2 2 3 )
The second boundary condition states that when x = 0, y = (0. Substituting these values in Eq. (5), we find
Cz =1{.
The third boundary condition is that when x = L, dy/dx = 0. Thus from Eq. (¢) we have
R, L?

0=—M|L+-2——Mnb (6)

The fourth and last boundary condition is that when x = L, y = 0. From Eq. (5) we obtain
M, R v?
—— L+ ——-Mo— 7
2 2.6 2 @
It is now possible to solve Eqgs. (7), (6), and (7) simultaneously to obtain the desired reactions
6Myab
R| = L]'
_ My(2ab - b?)
T
_ My(2ab — &%)
Tz

Ely=-M, +G, (5)

0=

M, )

M,

There may have been a temptation to say that the deflection under the point of application of the
couple, at B, is zero. There is no reason for making such an assumption and, in fact, we may now return
to the deflection Eq. (5) and calculate the deflection at x = a and find that it is

Moa*(2ab — bY)  Mya*h
Ellyliea = +
ly] 42 Ll L}

9

which is clearly nonzero.

The horizontal beam shown in Fig. 11-9(a) is simply supported at the ends and is connected to
a composite elastic vertical rod at its midpoint. The supports of the beam and the top of the
copper rod are originally at the same elevation, at which time the beam is horizontal. The
temperature of both vertical rods is then decreased 40°C. Find the stress in each of the vertical
rods. Neglect the weight of the beam and of the rods. The cross-sectional area of the copper rod
is 500 mm?, E,, = 100 GPa, and a,, = 20 X 107 %°C. The cross-sectional area of the aluminum
rod is 1000mm?, E_, =70GPa, and a,=25X10"%°C. For the beam, E = 10GPa and
I = 400 X 10° mm*,
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(b)

Fig. 11-9

A free-body diagram of the horizontal beam appears as in Fig. 11-%(b). Here. P denotes the force
exerted upon the beam by the copper rod. Since this force is initially unknown, there are three forces acting
upon the beam. but only two equations of equilibrium for a parallel force system; hence the problem is
statically indeterminate. It will thus be necessary to consider the deformations of the system.

A free-body diagram of the two vertical rods appears as in Fig. 11-9(c). The simplest procedure is
temporarily to cut the connection between the beam and the copper rod, and then allow the vertical rods
to contract freely because of the decrease in temperature. If the horizontal beam offers no restraint, the
copper rod will contract an amount

A., = (20X 107%) (10°) (40) = 0.8 mm
and the aluminum rod will contract by an amount
Ay = (25 % 107%)(500) (40) = 0.5 mm
However, the beam exerts a tensile force P upon the copper rod and the same force acts in the

aluminum rod as shown in Fig. 11-9(c). These axial forces elongate the vertical rods and this elongation
(see Problem 1.1) is

P(10°) (10%) + P(500) (10°)
5000100 % 10%)  10°(70 x 10%)

The downward force P exerted by the copper rod upon the horizontal beam causes a vertical
deflection of the beam. In Problem 9.12 this central deflection was found to be A = PLY48EL.

Actually, of course, the connection between the copper rod and the horizontal beam is not cut in the
true problem and we realize that the resultant shortening of the vertical rods is exactly equal to the
downward vertical deflection of the midpoint of the beam. This change of length of the vertical rods is
caused partially by the decrease in temperature and partially by the axial force acting in the rods. For the
shortening of the rods to be equal to the deflection of the beam we must have

PACY07) P(S{JU)(IO“)] _ P@X 10 (10°)
5000100 % 10°) * 10°(70 X 10°)

(0.8 +0.5) — l ~48(10 % 107) (400 X 10°)

Solving, P = 3.61 kN; then,
0., =3.61 X10%500 = 722MPa  and o, = 3.61 X 10%/1000 = 3.61 MPa

The beam of flexural rigidity ET shown in Fig. 11-10 is clamped at both ends and subjected to
a uniformly distributed load extending along the region BC of length 0.6L. Determine all
reactions.

At end A as well as C the supporting walls exert bending moments M,, and M- plus shearing forces
R, and R as shown. For such a plane, parallel force system there are two equations of static equilibrium
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11.7.

)!
N w/Unit length N )
C\s [T 11T\ 5
Mot oar 061 N
\ T
g, L R
Fig. 11-10

and we must supplement these equations with additional relations stemming from beam deformations. The
bending moment along the length ABC is conveniently written in terms of singularity functions:

& wix — 0.4L)
EIS x{’ = “Ma)°+ R == ()
Integrating,
dy G2 wx—04Ly
EIS = —11»;,.,(_;«)1+RAT—ET>+Cl @)

where C, is a constant of integration. As the first boundary condition, we have: when x = 0, the slope
dyldx = (). Substituting in Eq. (2). we have

0=-0+0-0+¢C, for C; =0
As the second boundary condition, when x = L, dy/dx = 0. Substituting in Eq. (2), we find

-~ 1;—(0.&)-‘ 3)

Next, integrating Eq. (2). we find

(¥  R. (P w{x—-04L)
Ely=-M,~L+=2 2L~ 7
Y ‘27273 6 a4
The third boundary condition is: when x = 0, y = 0, so from Eq. (¢) we have C, = 0. The fourth boundary
condition is: when x = L, y = (), so from Eq. (¢) we have

+ G 4)

2 3
0=——2— 442 _ 6Ly (5)

The expressions for M, given in Egs. (3) and (5) may now be equated to obtain a single equation
containing R, as an unknown. Solving this equation, we find

0.6)*
Ry =wlL I(0.6)3 - %}
= 0.1512wL

Substituting this value in Eq. (3), we find M, = 0.0396wL>,
From statics we have

SF,=—(06L)w+01512wL + Rc =0 .. R¢ = 0.4488wL
and +) IM, = —0.0396wL> — M+ (0.4488w L) (L) — [w(0.6L)] (0.7L) = 0
Mg = 0.0684wl?

The beam in Fig. 11-11 of flexural rigidity EJ is clamped at A, supported between knife edges
at B, and loaded by a vertical force P at the unsupported tip C. Determine the deflection
at C.
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C A viﬂ
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- i

Fig. 11-11

The reactions at A are the moment M, and shear force R, as shown in Fig. 11-11. From statics
we have

+)IM, =MA+P(%) ~Ry(L) =0 (1)
SF,=R,+P—Ry=0 %))

These two equations contain the three unknowns M, R,, and Rg. Thus, we must supplement these two
statics equations with another equation arising from deformation of the beam. Using the x-y coordinate
system shown, the differential equation of the deformed beam in terms of singularity functions is

dz
Efg}; = — ML)+ Ra(x)' — Rex — L)' 3)
The first integration yields
d (xy (x—-L)y
EIEy = —MA0' + Ry~ Re———=+ G, )

where C, is a constant of integration. The first boundary condition is that when x = 0, dy/dx = 0; hence
from (4). C, = 0. The next integration yields
(P  Ra(x)® Rg(&x—-L)y +

Ely = ~-My—+ 2L - 2%

22223"':2 %)

where the constant C, is determined from the second boundary condition x = 0, y = 0, leading to C, = 0.
The third boundary condition arises from the fact that there is no deflection at B; that is, whenx = L,y = 0.
Substituting in Eq. (§), we find

ML R,L?
= —_———
0 2 6 0 (6)
Solving Egs. (1), (2), and (6) simultaneously, we have
iMm, P PL P
AT A= 5 (7)
If we now introduce these values into Eq. (5) and also set x = 4L/3 (point C), we have
EIA- = 0.0401PL (%)

In Problem 11.7 if the beam is a W6 x 15} steel wide-flange section of length 10 ft, determine
the force P required to deflect the tip C 0.21in.

From Egq. (8) of Problem 11.7, we have the tip deflection A, as
EIA- = 0.0401PL?
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For this structural shape, we have from Table 8-1 that / = 28.1 in®. Substituting
(30 X 10‘5;]%) (28.1in%) (0.2 in) = 0.0401P(120 in)*
Solving, P = 2430 Ib.
11.9. The beam of flexural rigidity EJ in Fig. 11-12 is clamped at end A, supported at C, and loaded
by the couple at B together with the load uniformly distributed over the region BC. Determine

all reactions,
y

P

A 1
CF—¢<
My g,

o

Fig. 11-12

The reactions at the left support A consist of the moment M, plus the shear force R,. From statics,
for this parallel force system, we have two equations of equilibrium

L [ L\[3L
3 TM, = M- —(WE)(T)+RC{L)=0 )
EF,.=R,.,+R¢-—WTL=0 2)

These two equations contain the three unknowns M,, R,, and R.. Accordingly we must supplement the
two statics equations with another equation stemming from deformations of the system.
For the x-y coordinate system shown, the differential equation of the bent beam written in terms of
singularity functions is
d’y

EI5 = ~ M) + Ry + M, (.\: - %)D - % (x - —5—)2 @)

Integrating the first time, this becomes

d {x)? L\ w{x—-LRy
Ef—y = —MA(JC)' +RA“2—+MB(X—E> - —i~—~3—+

dx Ci 4)

where C, is a constant of integration. As the first boundary condition, when x = 0, dy/dx = 0. Substituting
these values in Eq. (4), we find C; = 0. Integrating the second time, we find

& Ra @
2 72 3

(x — L2y oW L2y
2 6 4

Ely=—M, + My +G 5)

where G, is the second constant of integration. As a second boundary condition, we have at point A,x = 0,

y = 0, and so from Eq. (5) we see that C; = 0, The third boundary condition is that at point C whenx = L,
y = 0. Substituting these values in Eq. (5), we have

ML R My 7w

2 6 2 4 EE'(£)4=° ©)

2
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Solving Egs. (1). (2), and (6) simultancously, we find
M, =ZwL? Ry =&wL Re= EwL )

1L10. In Problem 11.9 if the beam is titanium having a Young’s modulus of 110 GPa, with a
rectangular cross section 20 mm X 30 mm, is 2m long, and carries the uniform load in BC of
960 N/m, determine the deflection at the midpoint B.

From Eq. (5) of Problem 11.9 we have the deflection at the midpoint B as

Ma (LN R, (LY
el = =3 (5) <7 (3)

3 I\ 7 L3
= ——wl (=) +—wL [ —
64" (8) 64" (48)

- ﬁwﬂ = —0.00358WL4 (I)

For this beam
I = $;(0.020 m) (0.030 m)* = 0.045 x 10 * m*
so that Eq. (') becomes
(110 % 10° N/m?) (0,045 X 107 m*) [y],—r» = —0.00358(960 N/m) (2 m)*
Solving,

¥l_rp=—111mm

11.11. The beam AB of flexural rigidity EI is simply supported at A, rigidly clamped at end B, and
subject to the load of uniformly varying intensity shown in Fig. 11-13. Determine the reactions
developed at A and B by the use of the method of singularity functions.

¥y “.D{%) N —
/'//Wm/\ i “’Ufunit knglh
A 1 B\\\ l

i | ‘l\‘.’u '
I

Ry

Fig. 11-13

Let us denote the vertical force reaction at A by R, that at B by R, and the moment exerted by the
wall on the beam at B by My, as shown in Fig. 11-13. A related problem is 10.5 in this book. Following
the procedure discussed there, we write the contribution to bending moment of the distributed loading at
any point a distance x to the right of A;

M= R —w( 1)@ (5)(3)

d’y wolx)?
Thus, EI75 = Ryx) - E—L ()



CHAP. 11] STATICALLY INDETERMINATE ELASTIC BEAMS

Integrating the first time,
dy & wy !

— = — +C
Bl =R 6L 3 !
When x = L, dy/dx = 0, so from Eq. (2)
Lz l'l"on'_1
= - C
0=Ra7 "% !
Integrating a second time,
Ra (x)  wy (x)°
=L = +(Cx+C
Ely=— 3 "5 s toxtG
When x = L, y = 0, so we have from Eq. (4)
R L} L
e="‘T—“;°m +OLHG

Also, when x =0, y = 0, so from Eq. (4), G; = 0.
From Eqgs. (3) and (5) we have

— WOL3 _ R)‘Lz - _ R_,q Lz WOL"

G

24 2 6 120
Solving,
RA = T%WUL
The two statics equations for such a force system are
SF,= R, +."3,B—“%‘L -0

Solving,
RB= %W‘]L
Ma = TI$WDL2

299

(2)

3)

(4)

(5)

(6)

(7)

1L.12. The beam AC in Fig. 11-14 is rigidly clamped at both ends and loaded by a concentrated force
P at point B. Determine all reactions, the deflection at B, and the maximum deflection occurring

to the left of point B. Take a>b.




STATICALLY INDETERMINATE ELASTIC BEAMS [CHAP. 11

The end moment and shear reactions are shown in Fig. 11-14. From statics we have the two
equations

+)EIMya=Ms—Pa+Rcl—M-=0 )]
EF,=R,+Rc—-P=0 )
Next, writing the differential equation of the deflected beam in terms of singularity functions,
d’y o 1
E’F = =M (x)" + R{x) — P(x — a) 3)

Integrating the first time, we obtain

dy

2 A2
E1 = M4 R, L PR

5+ G &)
As the first boundary condition, when x = 0, the slope dy/dx = 0. Substituting these values in Eq. (4), we
obtain C, = 0.
Integrating again, we find
2 3 A3
ﬂi_R,.{x) P {(x —a) i C

— ———

Ely=-Ms -+ 57573 2

(%)

The second boundary condition is that when x = 0, y = 0, Substituting these values in Eq. (5), we find
C, = 0. The equation of the deflected beam is consequently

Ely = 24007 + %w’ - EP(x —ay (©)

Now, apply the boundary conditions at point C. The slope there is zero; hence from Eq. (4) we obtain
the equation

R, PH?
M. L +-= 2= 7
AL+ 3 L 2 0 (7)
The deflection y = 0 at x = L; hence we have from Eq. (6) the relation
M, , Ri,, PV
_a Daga 7o 8
y Lrel— =0 ®)

We may now solve Egs. (7). (2), (7). and (8) simultaneously to find the end reactions

Pb? Pab?
Ry = ?(3‘1"'!’) My= 12
)]
Pa? Pab
RC=F(0+3b) M. = 12

The deflection at B under the point of application of the load P is found by setting x = a in
Eq. (6):

M, Ra , FPa’b’

= ——= —a=- 10

Ell).. = ~=ta +a = —— (10)

To determine the maximum deflection of the beam for our case of a > b, we consider the deflected

bar as shown in Fig. 11-15, from which it is evident that the point of horizontal tangency to the beam

occurs to the left of B; that is, we are concerned with x <a in Eq. (4) so that the slope in region AB is
given by

4y _ iy Ra
EIS = =My + =) (I
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11.13.

LT
Horizontal Tangent to deflected
tangent beam at B

Fig. 11-15

which we set equal to zero to find the value x,. This leads to a horizontal tangent at the value of x,
given by

2al.
= 12
X (Ga +b) (12)
Substituting this x, in Eq. (6) and remembering that x <a, we obtain
3
2Pa’ b (13)

Byl = =355y

In Problem 11.12 the beam has a = 6ft, b = 3ft, and is of circular cross section 2.5in in
diameter. The applied load is P =60001b. Determine the deflection under the point
of application of the load as well as the maximum deflection of the beam. Take
E = 30 % 10° Ib/in?.

The moment of inertia of the cross section is
1= ap-' - 6—";(2.5in)4 - 1.917in*

The deflection under the point of application of the load is given by Eq. (10) of Problem 11.12 to be
pPa*b*
Y ITE
Substituting,
— ¥ )3
Yh-a = 350% (132?3;[3)( 333 1(:?:5;](]3)3 iy -480in
The location of the point of maximum deflection is given by Eq. (12) to be

2l 260)9 M)
- - — 5.14f
3a+b  18M+3 ¢

and the desired maximum deflection is found from Eq. (13) to be

o = — 2RO
Ylmax = = 33a + bYEI

_ 2(6000 Ib) (72 in)? (36 in)’
2[(3) (72 in) + (36 in)2 (30 X 10°Ib/in?) (1.917 in)

==0.522in

Xy

11.14. The initially horizontal beam ABC in Fig. 11-16 is clamped at C and supported on a smooth

roller at B. A uniform load w per unit length acts over the entire length of the beam. After
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w/ Unit length

By L1 1T 9 ,

S

b | b

i——
&

E

X

Fig. 11-16

application of the load, the reaction at B is mechanically displaced upward an amount A so that
the beam then has the configuration shown by the dotted line. Determine the reaction Ry after
this displacement has been imposed.

The beam reactions are Rg, R and a moment M,.. Using the method of singularity functions. we have
the equation of the bent beam.

e 2 L
ety - —w%wLR,,(x—?) )

Integrating the first time, we obtain

dy w {x)? RB( L\
a__ww  fsi_Z )
Efdx 23 + 2 X 2)+C1 2)

For the first boundary condition, we know that, when x = 3L/2, dy/dx = 0. Substituting in Eq. (2)
w(27L° L2
0= —'E(-—S—) +R3?+ C,

from which
2
C,=—wlL'——— 3

Integrating a second time,

¢ Ry (x— LI (9 L

For the second boundary condition, when x = 3L/2, y = 0. Substituting in Eq, (4), we have

21 27 L' 3L}
41 — | + — 1l +C. =0
[ {8)(16)+32] fl6 16] :
from which
g o, 1 .
= = wlt+ — :
Co= —ogWh' + Jg Rel

The third and last boundary condition stems from the imposed displacement at point b: that is, when
x = L{2, y = A. Substituting thesc valucs in Eq. (4), we have

4 2
EI6 = ——‘i"—(i) +0+ (sz—RBi{‘—)(

) 81 B
2a\16 16 8

Solving for Ry, we obtain
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11.15. The horizontal beam AB shown in Fig. 11-17 is clamped at A, subjected to a uniformly
distributed load w per unit length, and supported at B in such a manner that it is free to deflect
vertically but is completely restrained against rotation at that point. Determine the vertical
deflection at B after the beam has deflected as shown by the dotted line.

N w/ Unit length I
(S_lill.l.li#m
== - F" x
Y P i
R, L

I"
| : 4
Fig. 11-17
The equation of the dcflected beam is
d*y w(x)?
E19S = M+ Ry - 0 )
Integrating the first time, we find
d Xy ow (x)
E’d—i= _MA'<I}I+R,1‘(:.%_%%+CI {2)

The first boundary condition is that when x = 0. dy/dx = (.. Substituting these values in Eq. (2). we find
that C, = 0. Integrating again,
xRy 0w )

LT LA , 3
2t 23 54 7O 3)

Efy = _MA

Imposing the boundary condition that x = 0 at y = 0. we have G, = 0.
The third boundary condition is that, when x = L, dy/dx = 0. Substituting these values in Eq. (2), we
obtain the equation

R, L} wl?

S @

0=-M,L+
4 2 6

From statics, we have the two equilibrium cquations

+DIM =M, +My- =0 (3)

XF.=R,—wlL-=
Solving Egs. (4), (5), and (6) simultancously, we have
R, =wL
M, =3wl?
M, =iwl’®

(6)

Substitution of these values in Eq. (3) leads to

wli? L* wL L} wi*
EIDLw ==Y 3™

B wil*
24E1

or Yoo =
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11.16. The cantilever beam AB in Fig. 11-18 is clamped at B and supported through a hinge by a

partially submerged (in water) pontoon at A. The beam is of flexural rigidity Ef and length L.

It is loaded by a vertical concentrated force F at A. Determine the reactive moment at B.

i
L
—R
N
\\\ )
BN
A ] N
- N %,
D e ‘\\
| Pemoon | R &

Fig. 11-18

When the force F is applied. the pontoon submerges a distance A. According to the law of
Archimedes, the pontoon is buoyed up by a force R, of magnitude equal to the weight of the additional
water displaced during thc movement through A, If the cross-sectional arca of the pontoon is A, and the

weight of the water per unit volume is vy, then
An &’)‘ = —R A

For the coordinate system shown in Fig. 11-18, we have

dz
E1SY = Rox—Fx

dx
Integrating the first time, we have
As a boundary condition, we have dy/dx = 0 when x = L, so from Eq. (3)

T2 2
Integrating a second lime,

e
As a sccond boundary condition we have y = 0 when x = L, so from Eq. (4)
C. = R.L* FL?
. 2 3

The equation of the deflected beam AB is thus

T e

R
Efy=?‘qr‘—gx +( >

We seek the deflection y at x = 0. From Eq. (1), it is

=A==
¥ An')"

(r

)

3)

(4)

)
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Accordingly at x = 0 from Eq. (5) we have

Solving,
5)
3
R,=1L* EI (6
e —
3 Apy
From statics,
+J3IMp=RsL—FL+Mg=0 (7)

Solving Eqs. (6) and (7) simultaneously we have

3FLEI

Mo = 1545+ 3E1

Supplementary Problems

11.17. A clamped-end beam is supported at the right end, clamped at the left, and carries the two concentrated
forces shown in Fig. 11-19. Determine the reaction at the wall and the reaction at the right end of the
beam.

Ans.  4P/3 acting upward at left end, PL/3 acting counterclockwise at left end, 2P/3 acting upward at

right end

11.18. Determine the defiection under the point of application of the force P located a distance L/3 from the right
end of the beam described in Problem 11.17. Ans. TPL*486EI

L f t =

Fig. 11-19

11,19, The beam of Problem 11.17 is of titanium Ti-4Al-3Mo-IV (STA) with a tensile ultimate strength of
175,000 Ib/in? at room temperature. If the cross section is 2 in % 5 in and a safety factor of 1.4 is employed,
determine the maximum allowable value of each load P. Ans. 174001b




306 STATICALLY INDETERMINATE ELASTIC BEAMS [CHAP. 11

11.20. A clamped-end beam is supported at an intermediate point and loaded as shown in Fig. 11-20. Determine
the various reactions.
Ans. jwL — 3P upward at left end, jwl?—IPL counterclockwise at left end, 3wl + 1P upward at
support

11.21. A clamped-end beam is supported at the right end, clamped at the left, and carries the load of uniformly
varying intensity, as indicated in Fig. 11-21. Determine the moment exerted by the support on the
beam.  Ans. Twl?/120

3
w/Unit length

r

P

L I

Fig. 11-21

11.22. The beam shown in Fig. 11-22 is clamped at the left end, supported at the right, and loaded by a couple
M. Determine the reaction at the right support. Ans. 3Mya(a+2b)2(a + b)?

11.23. For the beam shown in Fig. 11-22, determine the deflection under the point of application of the applied
moment My,  Ans. Mya’bh(a® —2b*)/4(a + b)Y EI

b

Wl

|
1
M, -

Fig. 11-22

11.24. In Fig. 11-23 AB and CD are cantilever beams with a roller E between their end points. A load of
5kN is applied as shown. Both beams are made of steel for which E = 200 GPa. For beam AB,
I =20x10° mm®* for CD, [ = 30 X 10° mm®. Find the reaction at E. Ans. 398N

a5 ]
—. ]
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11.25. The straight elastic beam AB in Fig. 11-24 is a W152 X 23 wide-flange section having f = 11.7 X 10° mm*.
Member CD is a vertical steel wire of 3-mm-diameter circular cross section and length 4 m. Both the beam
and the wire are steel for which E = 200 GPa. Prior to the application of any load to the beam, due to a
fabrication error, the end D of the wire is 5 mm above the tip B of the beam. The end D of the wire and
the tip B of the beam are then mechanically pulled together and joined. Determine the axial stress in the
bar prior to the application of any load to the beam. Ans. 106 MPa

_ &

Im

Fig. 11-24

11.26. A beam is clamped at both ends and supports a uniform load over its right half, as shown in Fig. 11-25.
Determine all reactions.
Ans. 3wlL/32 acting upward at left end, SwL?/192 acting counterclockwise at left end, 13wL/32 acting
upward at right end, 11wL%192 acting clockwise at right end

w |b/unit langth
g L
= 2

Fig. 11-25

ol

11.27. Determine the central deflection of the beam described in Problem 11.26. Ans. wLT68E]

.=

[ 8 & _!

Fig. 11-26

11.28. A 16-ft beam carries a uniform load over the right half of its span and is supported at the center of the
span by a vertical red, as shown in Fig. 11-26. The rod is steel, 12 ft in length, 0.5 in? in cross-sectional area,
and E, = 30 % 10¢ Ib/in’. The beam is wood 4 in X 8 in in cross section and E,, = 1.5 X 10°Ibfin. Determine
the stress in the vertical steel tod.  Ans. 2960 1b/in’
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11.29. The beam of flexural rigidity E! in Fig. 11-27 is clamped at A, supported between knife edges at B,
and subjected to the couple M, at its unsupported tip C. Determine the deflection of point C.
Ans. MyL*4EI

Fig. 11-27

11.30. The cantilever beam in Fig. 11-28 of length 3 m and rectangular cross section 100 mm X 200 mm has its free
end {at no load) 3 mm above the top of a spring whose constant is 150 kN/m. The material is titanium alloy,
which has £ = 110 GPa and a yield point of 900 MPa. A downward force P of 7000 N is applied to the tip
of the beam. Find the deformation of the top of the spring under this load. Ans. 4.72mm

200 mm
150 kN/m é

Fig. 11-28

11.31. A beam AB is clamped at each end and subject to a load of uniformly varying intensity as shown in Fig.
11-29. Determine the moment reactions developed at each end of the beam.
Ans.  wL?30 counterclockwise at A, wL%20 clockwise at B

Fig. 11-29

1L.32. The beam AB is pinned at its left end, clamped at the right end, and subjected to the uniformly varying
vertical load shown in Fig. 11-30. Determine the vertical reaction at the support at A.

wy L,

A = —
ns Rio= e |

(1O0L, Ly + SE34+15(L, + L)L — L3 = 2L3(L, + L3) = 3L3(L, + L) — 4(L, + L3)]
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L\\Q
¢ \
w,/Unit length [ l\ s
f ] 3\3)
A M,
| | i
O o
L
R,
Fig. 11-30

1L.33. The two-span continuous beam shown in Fig. 11-31 supports the two concentrated loads shown. Determine
the various reactions. Ans. R, = 6681b, Ry =12,0611b, R-= 7271 1b

6000 1b 14,000 b

I‘_ > _‘jr ”.i.|

'_ 9 fi |[ 11f !

Fig. 11-31

11.34. The three-span continuous beam shown in Fig. 11-32 supports a uniformly distributed load in the left and
central span, but is unloaded in the right span. Determine the reactions at A, B, C, and D.
Ans. R, = 038wL(l), Rg = 1.20wL (1), Rc = 0450wl (1), Rp = —0.033wL (])

w/Unit length

11.35. The beam shown in Fig, 11-33 is simply supported at the left and right ends and spring supported at the
center. Determine the spring constant so that the bending moment will be zero at the point where the
spring supports the beam.  Aas &k = 16EI/L?




Chapter 12

Special Topics in Elastic Beam Theory

SHEAR CENTER

The simple flexure formula o = My/I determined in Problem 8.1 is valid only if the transverse loads
which give rise 1o bending act in a plane of symmetry of the beam cross section. In this type of loading
there is obviously no torsion of the beam. However, in more general cases the beam cross section will
have no axes of symmetry and the problem of where to apply transverse loads so that the action is
entirely bending with no torsion arises. Every elastic beam cross section possesses a point through
which transverse forces may be applied so as to produce bending only with no torsion of the beam. This
point is called the shear center. In general. determination of the shear center location is extremely
difficult and requires use of the theory of elasticity. However, in this chapter we will be concerned only
with beams of thin-walled open cross section having a single axis of symmetry, with the loads acting in
a plane perpendicular to this axis of symmetry. We will locate the shear center of the open cross section
on the axis of symmetry of the beam. For applications, see Problems 12.1 through 12.4.

UNSYMMETRIC BENDING

Frequently beams are of unsymmetric cross section, or even if the cross section is symmetric the
plane of the applied loads may not be one of the planes of symmetry. In either of these cases the
expression o = My/I derived in Problem 8.1 is not valid for determination of the bending stress. It is
convenient to resolve the bending moment into components along the y- and z-axes of the cross
section. as indicated by the double-headed vector representations of these moments in Fig. 12-1.

Fig. 12-1

The bending stress at a point located by the coordinates y, z is shown in Problem 12.5 to be

_ (M:"y +M_VI}'2.)}" + (“‘M,I: - M:I_v.:)z
fl.f:—fﬁx

o

(2.1

310
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where I, and I, denote the moments of inertia about the y- and z-axes, respectively, and /,, is the
product of inertia. These quantities are determined by the methods of Chap. 7. There exists a neutral
axis and those longitudinal fibers lying on the neutral axis are not subject to any normal stress.
However, the neutral axis is usually not perpendicular to the plane of the applied loads nor does it
coincide with either of the principal axes. For applications, see Problems 12.6 and 12.7. A computerized
approach for determination of bending stresses is offered in Problem 12.8 and examples are offered
in Problems 12.9 and 12.10.

CURVED BEAMS

Occasionally initially curved beams are encountered in machine design and other areas. Here we
consider only those elastic beams for which the plane of curvature is also a plane of symmetry of every
cross section and the bending loads act in this plane of symmetry. Unlike the case of the initially straight
beam, the neutral axis no longer passes through the centroid of the cross section but instead shifts
toward the center of curvature of the beam by a distance denoted by y. The bending stress distribution
over the cross section is hyperbolic in nature and in Problem 12.11 it is shown that these stresses are
given by

My
o=—"""
Ay(r+y)
where M is the bending moment, A is the cross-sectional area, r is the radius of curvature of the neutral
axis, and y denotes the distance of any fiber from the neutral axis. For applications see Problem 12.12.
Because of the tedious nature of calculations associated with bending of curved beams, the problem

is well suited to computer implementation and a FORTRAN program is developed in Problem 12.13
together with examples in Problems 12.14 and 12.15.

(12.2)

Solved Problems

Shear Center

12.1. Determine the shear center of half of a thin-walled cylindrical section oriented as shown in
Fig. 12-2 and subject to a vertical load.

Fig. 12-2
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Since the beam action is one of bending only with no torsion, it follows that normal stresses are
distributed over the cross section in accordance with the flexure formula o= My/l. Consequently,
according to Problem 8.19, page 198, horizontal shearing stresses acting perpendicular to the plane of the
cross section are generated and are determined by the relation

¥o

As indicated in Problem 8.19, the presence of these horizontal shearing stresses necessitates the
presence of equal intensity shear stresses acting over the vertical cross section. In Fig. 12-3(a) these shear
stresses have been shown as acting tangential to the center line of the cross section and further, for a
thin-walled section, it is customary to assume a uniform distribution of the shear stresses across the
thickness r. Finally, it is assumed that shearing stresses perpendicular to the circular centerline of the
section are negligible. In Fig. 12-3(a), V denotes the resultant of the distributed shearing stresses and it,
of course, acts vertically, since the horizontal components of the various stress vectors above and below
the axis of symmetry annul one another.

o

(a) (&)
Fig. 12-3

Let us examine the shearing stress 7 at an arbitrary point denoted by the angle 6, as indicated in
Fig. 12-3(b). Determination of this stress from the relation

V (4
=— d
T mfyya (a)

necessitates evaluation of I as well as the integral, which, as explained in Chap. 7, represents the first
moment of the shaded area about the axis of symmetry. This is accomplished by introducing an auxiliary
variable o (0 < a < 8) as shown in Fig. 12-3(b)} so that

T« (2]
J‘ yda= f (Rcosa)(Rda) = R*tsin 6 (b)
Yu a0
Next, the moment of inertia of the entire cross section about the axis of symmetry is given by
- Rt
;=ffda=j (R cos 6 tRd = = (©
1]
The shearing stress at any point represented by 6 is now found from (a), (b), and (c) to be
Vv 2. 2V .
= — r Y
(R T [R*tsin 6] Ry S ] (d)
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The moment of these distributed shearing stresses about any point, say O, must be equal to the
moment of the resultant V about that same point. Thus since 7 acts over an area (R d6) we have

b=m 2V
f (— sin 9) (Red6)R = Ve
Rt
6=0
4
Thus o= 3R
m

gives the location of the shear center.

12.2. Determine the shear center of the “hat”-type thin-walled section indicated in Fig. 12-4. The
thickness 1 is constant throughout the beam.

pa A A A
. 1 I
c 1 c_._l C f";,r
Jdr L T :
_ 1 _
1 l
+ V=
" l

1"

Fig. 12-4 Fig. 12-5 Fig. 12-6

In accordance with the reascning given in Problem 12.1, the distribution of shear stresses over the
cross section appears as in Fig. 12-5. The resultant of the distributed shearing stresses, denoted V, acts
vertically because the net horizontal effect of the shearing stresses in the two horizontal portions of the
“hat” is zero. Let us first examine the shearing stress in the upper vertical member AB. At a distance y
below the extreme peint A, as shown in Fig. 12-6, the shearing stress is given by

T=K yda (a)
Yo

The integral represents the first moment of the shaded area about the axis of symmetry and may be readily
evaluated as the product of the area, that is, yt, and the distance from the centroid of the area to the axis
of symmetry, that is, 2 — y/2. The shear stress at y is thus

1'-'—'%(2—%)}'! (®)

where it is to be remembered that V and / pertain to the shear force acting over the entire cross section
and the moment of inertia of the entire cross section, respectively. The resultant shear force V), acting over
the vertical region AB, as indicated in Fig. 12-7, is found by integration to be

y=1 | 1
I, 2 61



314 SPECIAL TOPICS IN ELASTIC BEAM THEORY [CHAP. 12

Let us next examine the shearing stress in the upper horizontal member BC. At a distance x from point
B. as indicated in Fig. 12-8, the shearing stress is given by Eq. (a), where now the integral represents the
first moment of the shaded area in Fig. 12-8 about the axis of symmetry. By inspection the integral has the
value (1) (¢£) (1.5) + (x}(r) (1) and the shear stress at x is thus

v
= 3[1.5: + xt] (d)
A A___L_
“
Vs (‘_1 r-
c v,
i —— r JRSS— "
B B
L I | I ”
,V,O
Powfile
——
l vy
Fig. 12-7 Fig. 12-8

where V and [ again pertain to the resultant shear over the entire cross section and the moment of inertia
of the entire cross section, respectively. The resultant shear force V;, as indicated in Fig. 12-7, is found

to be
il vt [! 3ve
V, = mtdx = — | (1.5+x)dx =— (e)
o I o 21

Since the entire section is thin walled it is customary to use only nominal dimensions and thus neglect any
slight duplication of areas at the intersections of the various members,

Because of symmetry the forces on the lower members are identical to those just found. The sum of
the moments of these forces about any point, such as O in Fig. 12-7, must equal the moment of the resultant
V about that same point. Thus, we have —2V,(1) +2V,(1) = Ve or

4
e=3 N
Finally, f may be calculated by the methods of Chap. 7 to be

1 22t

I=—=(@0@+2() @Oyl =— (g)
12 3
The shear center from (f) thus becomes

4 0.1821in (h)

‘T332

Note that by choosing the moment center at O it is not necessary to determine V.

12.3. Determine the shear center of a thin-walled rectangular section in which there is a narrow
longitudinal slit (see Fig. 12-9). The thickness ¢ is constant.

Observe that this section corresponds to the “hat” section of Problem 12-2 except that the outstanding
flanges of the “*hat™ are turned toward the axis of symmetry here. The distribution of shear stresses appears
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C B
————— A ———
50 mm — )-—l
L) Slit LA
m n
50 mm
4
_I_ e ———
50 mm
Fig. 12-9 Fig. 12-10

as indicated in Fig. 12-10 and the vertical force V denotes the resultant of these distributed shearing
stresses. Let us first examine the shearing stress in the vertical member AB. See Fig. 12-11. At a distance
z above the axis of symmetry (assuming the slit to be of negligible thickness) the shearing stress is again

given by

T=— ydﬂ (ﬂ)

50 mm

Fig. 12-11

where it is of utmost importance to observe that the integral represents the first moment of the area lying
between the section a-a where the shear stress is desired and the extreme fibers b-b of the section. This is
true even though fibers b-b lie closer 1o the axis of symmetry than ag-a. This statement follows from the
derivation of the above equation as given in Chap. 7. The integral is evaluated as the product of the area,
that is, zr, and the distance from the centroid of the area to the axis of symmetry, that is, z/2. The shear

stress at z is thus
Vv z Vvz?
= —_— l‘— = —— b
T [z ] 27 (b)

The resultant shear force V, acting over the vertical region AB, indicated in Fig. 12-12, is found by
integration to be

=50 S0 Vi 2 Vi
Vv, = j Ttdz = f —zldz =208 % 10— (c)
27 I
=0 0
Let us next examine the shearing stress in the upper horizontal member BC. At a distance x from point
B, as indicated in Fig. 12-13, the shearing stress is given by Eq. (a) where the integral represents the first

moment of the shaded area in Fig. 12-13 about the axis of symmetry. From (a),

T= T‘:[(x)(:)so +(50) (1) (25)] = SUTV (x +25) (@)
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V, 50 mm
4" ('li'-l —=—g
€ T I
0
4
—_J t 30 mm
T L€
Yy n
v _ A
—————-
V’ —
Fig. 12-12 Fig. 12-13

The resultant shear force V, acting over the horizontal member BC, as indicated in Fig. 12-12, is found by
integration to be

x=50 50
V, = f Trdx = f SUTV(x +25)dx = 125 % 10“3;—' (e)
x =0} 0

From Fig. 12-12 the sum of the moments of the forces V,, V;, and V; about any point, such as O, must equal
the moment of the resultant about that point. Thus 2(50V,) + 2(50V;) = Ve,
Substituting from (c) and (e),

v
2])(10’—?+l.25><10’—}5= Ve o

e = 1.46 x 10’; ®

The second moment of area is given by
I = 2[35(2) (100)°] + 2[501(50)*] = 4.167 x 10°1

™ _146X10t
us ¢ 2167 = 10°1 m

which locates the shear center.

Determine the shear center of the thin-walled section indicated in Fig. 12-14. The thickness 7 is
constant.

The distribution of shear stresses appears as in Fig. 12-15 where the vertical force V denotes the
resultant of these distributed shearing stresses. Let us first determine the shearing stress in the horizontal
member AB. At a distance x from point A, as indicated in Fig. 12-16, the shearing stress is found to be

L3

v
T= E yda (a)
¥o
vV Ivx
or =T (O3] = 5 (b)

The resultant shear force V, acting over AB, as indicated in Fig. 12-17, is found by integration to be

x=2 23vxt 6Vt
V.=f ﬂm=fom=T ©
x=1) 0
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i B ail
v
t
Fig. 12-14

Fig. 12-16

The shearing stress in the inclined member BC at a distance y from point B, as indicated in Fig. 12-18,
is again given by Eq. (a), where the integral represents the first moment of the shaded area in Fig, 12-18
about the axis of symmetry. For the inclined portion of that area, it is simplest to integrate through
introduction of an auxiliary variable « as indicated. Thus
¥
= T‘:[ @@ 3 +I [1.5+ (1.80 — &) sin 56°20‘]rdu]

u={

u=

= %(6 + 3y — 0.416)%) (d)

The resultant shear force V, acting over the inclined member BC in Fig. 12-17 is found by integration

y=1.80
Vg = j ﬂdy
¥

=0

to be

1.80
- j -?(6 +3y— 0416y dy = ”‘? Vi €
0
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8V,
1.56"
4]
Vs

N
N
Vo\\ ———

E F

Fig. 12-17 Fig. 12-18

From Fig. 12-17 the sum of the moments of the forces V,. V>, and V; about any point. such as O, must equal
the moment of the resultant about that point. Thus

2(3V)) + 2(V,sin 56°20°) (1) = Ve
Substituting from {c) and (e),

- 08 f)
{
The moment of inertia is given by
=180
i= %Z(I) By +2[2 () (3Y]+ 2[ [1.5 + (1.80 — u) sin 56°20' | 1 du
w=0
We then have
60.8¢ .
e= S121 1.06 in

which locates the shear center.

Unsymmerric Bending

12.5. Consider a beam of arbitrary unsymmetric cross section subject to pure bending, as indicated
in Fig. 12-19(a). Derive an expression for the relationship between the bending moment and the
bending stress at any point in this section. Assume Hooke’s law holds.

It is convenient to resolve the moment M, which acts in a plane oblique to the y- and z-axes {through
the centroid), into moment components about those axes. These components are designated as M, and M,
and their positive directions are indicated by the double-headed vectors in Fig. 12-19(b).

As in Problem 8.1 it is reasonable to assume that cross sections that were plane prior to bending
remain plane after application of the loads. However, in the general case being considered here there is
one radius of curvature p, in the x-y plane and another p, in the x-z plane. Thus, for a longitudinal fiber
of area da as indicated in Fig. 12-19(b) the normal strain, analogous to (/) of Problem 8.1, is given by
()

s=_+_z_
P: By
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{a) &)
Fig. 12-19

Since Hooke’s law holds, we immediately have
Ey E
or = _} + _z (2}
P Py

and this longitudinal. or bending, stress is indicated in the figure.
The resultant longitudinal force acting over the cross section is zero (for the case of pure bending)
and this condition may be expressed as

J'a-d'a=‘0 or I(Q-Fg)da:'tl
) A Pz Py

where the integration is extended over the cross-sectional area A. Since p, and p, arc constant over the

cross section, we have
E E
-—f}'da+—szﬂ=0 3)
P: J, P,

This equation is satisfied if the integrals vanish. This implics taking the origin of the y-z coordinate system
to coincide with the centroid of the cross section.
From Fig. 12-19(b) it is evident that

2 F
M:=J rryda=j (El+%)da
a PR Py

E E
=—J yzda+—jyzda
b1, o),

where the first integral represents the moment of inertia of the cross-sectional area about the z-axis and
the second integral (as mentioned in Chap. 7) represents the product of inertia of the same area about the
y- and z-axes. Using the notation of Chap. 7, this last equation becomes

M- El,  El, @
P P
Also from Fig. 12-19(b) we have
M, = -J‘ ozda = — J (%—#E)da
N PR P
1. 1,

P: P
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Equations (4) and (5) may be solved for p, and p, to yield

1 —MI,-M,I,

—=_rr Pz 6
o E(L T ©
1 M+ M,
— T e———— 7
b E0LL-T) “
Substituting (6) and (7) in (2) yiclds the bending stress
M., I, Ly+(—-MI - M.,
(r=( z ,1+Mv u})f _(f? a iz M-I}z)z (8}

Equation (8) is termed the generalized flexure formuia and holds for an elastic beam of arbitrary cross
section with bending loads in an arbitrary plane. For the special case M, = I, = 0 (implying that the y-
and z-axes are principal axes and that bending takes place only about the z-axis) (8) reduces to o = M_y/I,
which is equivalent to (9) of Problem £.1.

The equation of the neutral axis is readily found by setting the stress from (&) equal to zero, since by
definition the fibers along the ncutral axis are free of longitudinal stress. Thus

y M +M.I,.
== ————==lan 9
z M., +M,I,. “ ©)
where a denotes the angle of inclination of the neutral axis as indicated in Fig. 12-20. In general the ncutral
axis is not perpendicular to the planc of the applied moments nor docs it coincide with either of the
principal axes.

Neutral Axis f

Fig. 12-20

12.6. The rectangular beam of Fig. 12-21 is subject to loads that create a bending moment of 2000 Ib - ft
acting in a plane oriented at 30° to the y-axis. Determine the peak tensile and compressive
stresses in the beam.

The vector representation of the 2000 Ib - ft moment is indicated by the solid double-headed vector in
Fig. 12-22, together with its moment components (dashed vectors) in the y- and z-directions. This
convenient vector representation enables us to find the components as

M, = 2000sin30° = 10001b - ft M. = 2000 cos 30° = 1732 Ib-ft
From Problem 7.3, we have
I, = (6)(3) = 135in’ I, = %(3)(6) = 54in°

Also, since the y- and z-axes are axes of symmetry, they are principal axes of the cross section and, from
Chap. 7, the product of inertia with respect to these axes vanishes: [, = (.
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Flane of loads
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Fig. 12-21 Fig. 12-22

The angle of inclination of the neutral axis (which passes through the centroid) is given by (9) of
Problem 12.5 to be

ML+ M1,
tano =————"—""""—"—
M, I, + M1,
_ (1000) (59 +(A7R)(0) _, 4
(1732) (13.5) + 1000(0)
o = 66°40"

As mentioned in Problem 12.5, there is no reason to expect the neutral axis, as indicated in Fig. 12-23, to
be normal to the plane of the loads.

In Problem 12.5, it was assumed that plane sections remain plane during bending. The originally plane
section rotates about the neutral axis indicated in Fig. 12-23 and since both strains as well as stresses vary
as the distance from the neutral axis it is evident that the peak tensile stress occurs at point B and the peak
compressive stress occurs at A, i.e., at those points most remote from the neutral axis. Substituting the

\—

Neutral Axis_sy L, B \

Fig. 12-23
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coordinates of these points and the values of the moment components in (8) of Problem 12.5, we

obtain
[(1732)(12)(135)+0](3)+[ (1000) (12) (54) — 0] (—15)
(13.5)(5)—0 = 2480 Ibfin®
_ [(1732) (12) (13.5) + 0] (—3) + [—(1000) (12) (54) — 0] (1.5) — 2480 Ibfin?

(13.5)(54)— 0

12.7. The structural angle section designated as L127 X 127 X 22.2 has the dimensions and centroidal
axis indicated in Fig. 12.24. The values of the cross-sectional properties with respect to the
centroidal axis of the section are I, = I, = 7.41 X 10"*m* and I,, = —4.201 X 10~*m*. For a
loading M, = 0, M, = 10 kN - m, find the angle of inclination of the neutral axis and the bending
stress at point A.

—.-I = 222 mm

Fig. 12-24

The angle of inclination of the neutral axis is given by Eq. (9) of Problem 12.5 as
0+ M(—4.201 X 10 °m*)

AR = T (741X 10 “m%) 4 0
- —0567
o= —29.5

which is shown in Fig, 12-24, The minus sign indicates clockwise rotation from the positive end of the z-axis
because the positive direction of a was taken to be counterclockwise as indicated in Fig, 12-20.

Point A has coordinates y = z = —39.9 mm so that the desired stress at that point from Eq. (8) of
Problem 12.5 is

_ [(10,000N - m) (7.41 X 10~° m*) — 0] (0.0399 m) + [0 — (10,000 N - m) (—4.201 X 10~° m*) (~0.0399 m)
(7.41 X 10 °m%) (7.41 X 10 *m*) — (—4.201 X 10~ ° m*)?

= —124 MPa

12.8. Write a computer program in FORTRAN to determine elastic bending stresses as well as the
orientation of the neutral axis in a beam of unsymmetric cross section subject to pure bending
as shown in Fig. 12-19.
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The desired stress is given by Eq. (8) in Problem 12.5 and the angular oricntation of the neutral axis

is indicated by Eq. (9) of that problem. The components of moment M, and M. have the positive directions
shown in Fig. 12-19 and all other symbols arc defined in Problem 12.5. The program is

Q0010 *hkkhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhbhhhhhhhhhhhhhhhdhhdhdhk

00020

PROGRAM BEND (INPUT,OUTPUT)

00030 * hkkhdhdhbhhhhhdhhhhhhhhhhhhhhhhhhhhhhhbhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhak

00040*
00050*
00060*
00070%
00080*
00090*
00100*
00110*
00120*
00130*
00140*
00150*
00160*
00170*
00180*
00190%*
00200*
00210*
00220*
00230*
00240*
00250*
00260*
00270*
00280*
00290%
00300*
00310*
00320*
00330*
00340*
00350*
00360*
00370*

AUTHOR: KATHLEEN DERWIN
DATE : JANUARY 27,1985

BRIEF DESCRIPTION:

THIS PROGRAM CONSIDERS A BEAM OF ARBITRARY UNSYMMETRIC CROSS
SECTION SUBJECTED TC PURE BENDING. THE GENERALIZED FLEXURE FORMULA
HOLDS FOR THIS CASE, AND PROVIDES A RELATIONSHIF BETWEEN THE BENDING
MOMENT AND THE BENDING STRESS AT ANY POINT IN THE SECTION. ALSO,

THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS CAN BE CALCULATED AS A
FUNCTION OF THE BENDING MOMENTS.

INPUT:

THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,
THE SECTIONAL PFROPERTIES (MOMENTS OF INERTIA IY,IZ,IYZ) ARE INPUTTED,
AS WELL AS THE BENDING MOMENTS. FINALLY, THE COORDINATES OF THE POINT
WHERE THE BENDING STRESS IS DESIRED ARE ENTERED.

OUTPUT:
THE BENDING STRESS AT ANY POINT ON THE CROSS SECTION MAY BE
OBTAINED, AS WELL AS THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS.

VARIABLES:
IY,I12,IYZ —_— SECTIONAL PROPERTIES (MOMENTS OF INERTIA)
MY ,M2Z - BENDING MOMENTS
SIGMA -— BENDING STRESS AT THE DESIRED POINT ON THE SECTI
TALPHA - THE TANGENT OF THE ANGLE OF INCLINATION OF THE
NEUTRAL AXIS
ALPHA - THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS
Y,2 - COORDINATE OF THE POINT WHERE STRESS DETERMINATI
IS DESIRED
ANS —-—- DENOTES IF USCS OR SI UNITS ARE TO BE USED
UNIT -— GIVES THE USCS OR SI UNIT FOR STRESS

00380 ke hhhkhhhhhhhhhhhhhhhhthhhhdhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

00390**kkkk MAIN PROGRAM bl A
DO‘OO&*****i*****tit*tt*tiit*****iﬁ***i*lﬁ***t****tii**tt*litit******l***t

00410%
00420%
00430*
00440
00450
00460
00470%
00480*
00490*
00500
00510
00520
00530
00540
00550
00560
00570
00580
00590
00600
00610

VARIABLE DECLARATIONS

REAL 1Y,1Z,IYZ,SIGMA,MY,MZ, TALPHA,ALPHA
INTEGER ANS
CHARACTER UNIT*4

USER INPUT

PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'

PRINT*,'1 - USCS'

PRINT*,'2 - SI'

PRINT*, ' '

PRINT*, 'ENTER 1,2’

READ* , ANS

PRINT*,' °

PRINT*,* °

PRINT*, "NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED'
PRINT*,'SO THAT IT IS POSITIVE INTO THE PAGE AND ACTING AS THE'
PRINT*, *NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED'
PRINT*, 'DOWNWARD, WHILE THE POSITIVE Z-AXIS IS TO THE LEFT AS ONE'
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00620
00630
00640
00650
00660
00670
00680
006950
00700
00710
00720
00730
00740
00750
00760
00770
00780
00750
00800
00810
00820
00830
00B40*
00850
00860
00870
00880
00850
00900
00910
00520
00930
00940*
00550+

SPECIAL TOPICS IN ELASTIC BEAM THEORY [CHAP. 12

PRINT*, 'FACES THE SECTION, (IT IS A RIGHT HANDED SYSTEM.)'
PRINT*,* °*
PRINT*,"' *
IF (ANS.EQ.1) THEN
PRINT*, 'PLEASE ENTER THE SECTION PROPERTIES I1Y,IZ,IYZ ,(IN~g):'
READ*, IY,IZ,IYZ
PRINT*,' °*
PRINT*, ‘'PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY,MZ'
PRINT#, ‘FOLLOWING THE SIGN CONVENTION STATED (LB-FT):'
READ* ,MY , MZ
MY = My*12
MZ = MZ*12
ELSE
PRINT*, 'PLEASE ENTER THE SECTION PROPERTIES IY,IZ,IYZ ,(MM~4):'
READ*,IY,IZ,IYZ
PRINT*,' '
PRINT*, 'PFLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY,MZ'
PRINT*, 'FOLLOWING THE SIGN CONVENTION STATED (KN-M):'
READ* MY, MZ
MY = MY*1E6
MZ*1E6

x
o]
H

PRINT*,' '
PRINT*, 'ENTER THE Y AND Z COORDINATES OF THE PQINT WHERE STRESS '
PRINT*, 'DETERMINATION IS DESIRED.(FOLLOW THE SIGN CONVENTION STATED
IF(ANS.EQ.1) THEN

PRINT*, 'Y AND Z ARE DISTANCES IN INCHES FROM THE NEUTRAL AXIS:'
ELSE

PRINT*, 'Y AND Z ARE DISTANCES IN MILLIMETERS FROM NEUTRAL AXIS:'
ENDIF
READ*,Y, 2

END USER INPUT

Q0DE 0 hkhkbhhhhhhhhhhhhhhhhhhhhhhhhhhhhahhhhhhhhhhhhbhhhhhhhhhhhdd

00970*
00580 *
009550*
01000*
01010
01020
01030
01040
0lo50*
01060*
01070%
01080
01090
01100
01110
01120
01130
01140
01150*
01160*
01170*
0l180 10
01150 20
01200*
01210
01220

CALCULATIONS FOR BENDING STRESS AND THE ANGLE OF INCLINATION
AS FUNCTIONS OF THE APPLIED BENDING MOMENTS AND THE SECTION
PROPERTIES

SIGMA=(( (MZ*IY + MY*IYZ)*Y) +((-MY*IZ - MZ*IYZ)*Z))/(IY*IZ - IYZk*2
TALPHA =((MY*IZ + MZ*IYZ)/(MZ*IY + MY*IYZ))
ALPHA = ATAN(TALPHA)
ALPHA = ALPHA*1B0/3.14159
PRINTING OUTEUT

IF (ANS.EQ.1) THEN

UNIT = ' PSI'
ELSE

UNIT = ' MPA'
ENDIF

PRINT 10, 'THE BENDING STRESS AT (',Y,',',Z,') IS',SIGMA,UNIT,'.'
PRINT 20,'THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS I1S',ALPHA, 'DEG.’'

FORMAT STATEMENTS

FORMAT(//,2X,A23,F6.1,A1,F6.1,A4,F10.1,A4,AL)
FORMAT(/,2X,A,FB8.2,1X,A)

STOP
END
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129. Rework Problem 12.6 using the FORTRAN program in Problem 12.8.

The self-prompting program is utilized by entering the moment components and sectional properties
from Problem 12.6. Consideration of the directions of moment components indicates that the peak tensile
stress will occur at point B in Fig. 12-23 and the coordinates of that point are y = 3, z = —1.5. The

printout is

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - USsCs

2 - SI

ENTER 1,2
?1

NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED

SO THAT IT IS POSITIVE INTO THE PAGE AND ACTING AS THE
NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED
DOWNWARD, WHILE THE POSITIVE Z-RXIS IS TO THE LEFT AS ONE
FACES THE SECTION. ({(IT IS A RIGHT HANDED SYSTEM.)

PLEASE ENTER THE SECTION PROPERTIES 1IY,IZ,IYZ ,(IN"4):
? 13.5,54,0

PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY, MZ
FOLLOWING THE SIGN CONVENTION STATED (LB~FT):
? 1000,1732

ENTER THE Y AND Z COORDINATES OF THE POINT WHERE STRESS
DETERMINATION IS DESIRED. (FOLLOW THE SIGN CONVENTION STATED)
Y AND Z ARE DISTANCES IN INCHES FROM THE NEUTRAL AXIS:

?2 3,-1.5

THE BENDING STRESS AT ( 3.0, -1.5) 18 2488.0 PSI.
THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS IS 66.59 DEG.

SRU 0.895 UNTS.

RUN COMPLETE.

12.10. Rework Problem 12.7 using the FORTRAN program of Problem 12.8.

Enter the given cross-sectional properties, moment components, and coordinates of point A indicated
in Problem 12.8 into the self-prompting program to obtain the following printout, which agrees with the
results of Problem 12.7

run

PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - USCS

2 - 51

ENTER 1,2
? 2

NOTE, THE COORDINATE SYSTEM USED HAS THE X-AXIS ORIENTED
SO THAT IT IS POSITIVE INTO THE PAGE AND RACTING AS THE
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NEUTRAL AXIS OF THE SECTION. THE POSITIVE Y-AXIS IS DIRECTED
DOWNWARD, WHILE THE POSITIVE Z-AXIS IS TO THE LEFT AS ONE
FACES THE SECTION. {(IT IS A RIGHT HANDED SYSTEM.)

PLEASE ENTER THE SECTION PROPERTIES IY,IZ,IYZ ,MM"4):
? 7.41E+6,7.41E+6,-4.201E+6

PLEASE ENTER THE MAGNITUDE OF THE BENDING MOMENTS MY, MZ
FOLLOWING THE SIGN CONVENTION STATED (KN-M):
? 0.10

ENTER THE Y AND Z COORDINATES OF THE POINT WHERE STRESS
DETERMINATION IS DESIRED. (FOLLOW THE SIGN CONVENTION STATED)
Y AND Z ARE DISTANCES IN MILLIMETERS FROM NEUTRAL AXIS:
? -39.9,-39.9

THE BENDING STRESS AT ( -39.9, -39.9) IS -124.3 MPA.

THE ANGLE OF INCLINATION OF THE NEUTRAL AXIS IS =-29.55 DEG.

Curved Beams

12.11. Consider the bending of an initially curved elastic beam for which the plane of curvature is also

a plane of symmetry of every cross section. The bending loads act in this plane of symmetry.
Derive an expression for the relationship between the bending moment and the bending stress
at any point in the cross section. Assume Hooke’s law holds,

The beam is illustrated in Fig. 12-25, where R denotes the distance from the center of curvature C to
the axis through the centroid of the cross section. The bending moment M is taken to be positive in the
direction indicated, i.e.. when it tends to increase the curvature (decrease the radius of curvature).

Let us examine the behavior of a part of the beam corresponding to a central angle 46 before
deformation. After deformation. this angle changes to dé + A 46, as shown in Fig. 12-26. Just as in the case
of the initially straight beam studied in Problem 8.1. we will assume that plane cross sections originally
perpendicular to the gcometric axis of the beam remain plane after bending. Thus, the normal section CD
prior to loading moves to C' D" after loading. For convenience we shall assume that AB remains fixed in
space but this in no way influences the results we will obtain. It will still be assumed that there exists one
axis, the neutral axis, for which the longitudinal fibers do not change length, and thus the section CD may
be considered to rotate about this neutral axis as indicated in Fig. 12-26. However, there is no reason to
believe that the neutral axis coincides with the centroid of the cross section as it did for the initially straight
beam in Problem 8.1, In the present problem involving the curved beam, Fig. 12.26 indicates that the total
elongation of a longitudinal fiber varies as the distance y of the fiber from the neutral axis. The coordinate
v is measured positive away from the center of curvature. However, the lengths of these fibers prior to
loading arc obviously different; hence the unit elongations. i.e., normal strains, are not proportional to the
distances from the neutral axis. This point constitutes the fundamental difference between behavior of a
curved beam and behavior of the initially straight beam discussed in Problem 8.1. Since Hooke's law is
assumed to hold for this curved beam, it follows that stresses on these fibers are not proportional to the
distances from the neutral axis.

Let us consider the elongation of the fiber at a distance y from the neutral axis. From Fig, 12-26
this is v(J d#). Dividing this elongation by the original length of the fiber, (r + y) 46. yiclds the normal
strain as

_ ylAde)

<= e ndo @

where r denotes the radius of curvature of the neutral axis. Since Hooke™s law holds, the normal stress is

_ Ey(Ade)

T+ yae k)
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de + A de

Axis
€

Ads

Fig. 12-25 Fig. 12-26

The neutral axis may now be located by requiring the resultant normal force over the cross section to
vanish. Thus

J'" i [ A0 da _ E(Ade) J' ( yda @

(r+y)de r+y)

where the integration is over the entire cross-section area A. If u = r + y (i.e., the distance of any fiber from
the center of curvature C) then {c) becomes

I(“;;)d—“:o or  r=—2 (d)

f dalu
A

where the integral in the denominator represents a mathematical property of the cross-sectional area and
is analogous to the moment of inertia that arises in the case of bending of an initially straight beam.
The sum of the moments of the normal forces on the fibers must equal the bending moment:

2
M ;_J' oyda = J' Ey’(Adeyda  E(Ade) [ y'da

(rty)do — do | r+y
Simplifying,
yZda = ydﬂ—rj yfﬂ
4 f+y A A ry

The first integral represents the first or static moment of the cross-sectional arca about the neutral axis,
and the second according to (c) vanishes. Thus

= E(a de)

[Ay] (€)

where y denotes the distance from the neutral axis to the centroidal axis. Combining (b) and (¢). we find
the normal stress on any fiber to be
My

= Arty) )
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From (f) it is evident that the stress distribution across the depth of the curved beam is hyperbolic. The
maximum stress always occurs at the outer fibers on the concave side of the beam. Further, the neutral
axis always lies betwcen the centroidal axis and the center of curvature.

The U-shaped bar of rectangular cross section is loaded by collinear, oppositely directed forces
of 9680 N, as shown in Fig. 12-27. The cross-sectional dimensions are 40 mm X 60 mm. The
action line of the forces lies 120mm from the centroid of the cross section. Determine the
normal stresses at points A and B.

| 120 mm N
c 007 m Centroidal axis
Neutral axis.
0.0655 m
A B b=004m
r;=0.04m —
i -
det
hA=006m
70 mm C R,=010m
Fig. 12-27 Fig. 12-28

It is first necessary to use Eq. (d) of Problem 12.11 to locate the neutral axis. A horizontal cross section
of the system coinciding with points A and B is shown in Fig. 12-28, where the variable u is introduced to
carry out the integration in Eq. (d). We have

bh = h _ 0.6m
= o=
f b(du)lu (Inw)ze In(0.1 m/0.04 m)

as the distance from center of curvature to the neutral axis. The variable y is thus 0.07 m — 0.0655 m =
0.0045 m

The bending stresses are given by Eq. (f) of Problem 12.11, where M = —(9680N) (0.12 m) =
—1162 N - m since the loading tends to decrease the curvature, and thus we must call it negative moment.
At point A in Fig. 12-28, we have y = —0.0255 m and the bending stress at A is

(—1162 N-m) (—0.0255 m)

= 0.0655m

r=

27006 m) (0.04 m) (0.0045 m) [0.0655 m — 0.0255 m} = 68.6 MPa
At point B, we have y = 0.0345 m and the bending stress at B is
—1162 N - m) (0.
(—1162 N-m) (0.0345 m) 371 MPa

7P = (0.06 m) (0.04 m) (00045 m) [0.0655 m + 0.0345 m]

In addition to these bending stresses, the tensile action of the applied loads on the cross section A-B
scts up uniform tensile stresses given by

P 9680 N
o=

A (004m)(006m) ~ +O3MPa

The resultant normal stress at point A is thus
oy = 68.6 MPa + 4.03 MPa = 72.63 MPa
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12.13.

and at Bitis
ag = —37.1 MPa + 4.03 MPa = —33.07 MPa

Develop a computer program in FORTRAN to determine extreme fiber bending stresses in the
curved beam loaded in pure bending as shown in Fig. 12-25.

The general theory given in Problem 12.11 indicates that it is first necessary to determine the location
of the neutral axis, which is a distance r from the center of curvature in Fig. 12-26. From Egq. (d) of Problem
12.11, r is seen to be a function of the shape of the cross section. From this general cxpression (d) we
choose to write a computer program for the three common types of cross section: (a) rectangular, (b)
circular, and (c) trapezoidal. The following program carries out the integration of Eq. (d) over cach of
these cross sections, then develops outer fiber stress according to Eq. (f) for a pure bending moment
loading M as shown in Fig. 12-25, where it must be carefully noted that the moment is negative if it acts
so as to reduce the curvature of the beam. The program is

CO0LO*ARARAAAA AR A AR ARARR AR RRRR R AR R AR ARRRNRR AR ANRNR AR hh kA Rk hhhhhkhkhrhhhhkhk

00020 PROGRAM CRVBEAM

OOD30 KA kAR AR KA R RA R AR R RR AR R R AR R A AR R R AR R AR R A AR R R A AR R AR A A AR AR R AR R AR R AR AR R A A AR
00040*

00050* AUTHOR: KATHLEEN DERWIN

00060* DATE : FEBRUARY 5, 1989

00070*

00080* BRIEF DESCRIPTION:

00050* THE FOLLOWING PROGRAM CONSIDERS THE BENDING OF AN INITIALLY

00100* CURVED ELASTIC BEAM FOR WHICH THE PLANE OF CURVATURE IS ALSO A

00110* PLANE OF SYMMETRY AT EVERY CROSS SECTION. THE BENDING LOAD ACTS IN
00120* THIS PLANE OF SYMMETRY. THE MAXIMUM BENDING STRESS OCCURS AT THE
00130* EXTREME FIBERS OF THE SECTION, AND CAN BE DETERMINED FOR A RECTANGULA
00140* CIRCULAR, OR TRAPEZOIDAL CROSS SECTION. NOTE, THE RELATIONSHIP BETWEE
00150* THE BENDING MOMENT AND BENDING STRESS INVOLVES TAKING THE NATURAL
00160* LOGARITHM OF THE RATIC BETWEEN THE DISTANCE FROM THE CENTER OF CURV-
00170* ATURE TO THE OUTER AND INNER EXTREME FIBERS. FOR EXTREMELY THIN
00180* CROSS SECTIONS, THIS RATIO MAY BE QUITE CLOSE TO UNITY, IN WHICH
00190* CASE THE CALCULATION REQUIRES PRECISION BEYOND THE CAPABILITIES OF
00200* MOST COMPUTERS. TO AVOID THIS PROBLEM, A SERIES EXPANSION HAS BEEN
00210* EMPLOYED TO APPROXIMATE THE LOGARITHMIC FUNCTION. FOR THE CASE OF
00220* THE TRAPEZOIDAL CROSS SECTION, THE LOGARITHMIC FUNCTION IS USED,
00230* ASSUMING THAT IF THE BEAM WERE SUFFICIENTLY THIN TO CAUSE PROBLEMS
00240* 1IN THE CALCULATIONS, THE USER COULD APPROXIMATE THE CROSS SECTION
00250* AS RECTANGULAR WITH CONSIDERABLE ACCURACY.

00260*
00270* INPUT:
00280* THE USER IS FIRST ASKED IF USCS OR SI UNITS ARE DESIRED, AND THEN

00250* FOR THE SHAPE OF THE BEAM CROSS SECTION. THEN, DEPENDING ON THE SHAPE
00300* OF THE SECTION, THE PHYSICAL DIMENSIONS AND THE DISTANCE FROM THE
00310* CENTER OF CURVATURE TO THE INNER FIBERS OF THE SECTION ARE INPUTTED.
00320* FINALLY, AFTER THE PROGRAM FINDS THE CENTRAL AXIS LOCATION, THE USER
00330* MUST DETERMINE AND ENTER THE BENDING MOMENT BASED ON THE LOADING.

00340*
00350* OUTPUT:
00360* THE PROGRAM INITIALLY WILL DETERMINE THE LOCATION OF THE CENTRAL

00370* AXIS FOR THE PARTICULAR CROSS-SECTION. (FROM THIS INFORMATION, THE
00380* USER THEN MUST DETERMINE THE BENDING MOMENT BASED ON THE LOADING.)
003950* ULTIMATELY, THE BENDING STRESS AT THE EXTREME FIBERS OF THE CROSS
00400* SECTION IS GIVEN.

00410*
00420* VARIABLES:
00430* ANS === USER INPUT FOR CHOICE OF UNITS

00440* SHAPE --- USER INPUT FOR CHOICE OF X-SECTIONAL SHAPE
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00450*
00460*
00470*
00480*
00490%*
00500*
00510*
00520*
00530%
00540*
00550%*
00560*
00570*
00580*
00590*
00600*
00610*
00620*
00630*
00640*
00650*

QOB60* kA kdmhhhhhhhhhhhthhhhhhhhhhhhhhhhhhhihhhhkhahhhhhhhhbhhhhhhhhhhhrthhhhk

006TO*AAkkhhkkk MAIN PROGRAM ARk khkhhhhk
O0GBOKAARRARAKAAARKANARAARR AR AR AR KRR R R AR AR RRAAARARK AR R KR AR ARARKARRAAARRAARARAAR

00690*
00700*
00710*
00720
00730
00740
00750
00760%*
00770*
00780*
00790
00800
00810
00820
00830
00840
00850
00860*
00870
00880
00890
00900
00910
00920
00930
00540
00950%*
00960
60970
00980
00990
01000
01010
01020
01030*
01040%
01050%
01060
01070
01080
01090

B,H -== DIMENSIONS OF BASE, HEIGHT FOR RECTANGULAR SECTION

D ———- DIAMETER OF CIRCULAR SECTION

Bl,B2,H -== DIMENSIONS OF INNER BASE, OUTER BASE, AND HEIGHT
FOR TRAPEZOIDAL SECTION

RI,RO === DISTANCE FROM THE CENTER OF CURVATURE TO THE INNER
AND OUTER FIBERS OF THE SECTION RESPECTIVELY

A --- AREA OF THE SECTION

RR --- DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRA
AXIS OF THE SECTION

YBAR —-— DISTANCE FROM THE CENTRAL AXIS TO THE NEUTRAL AXIS

R -~- THE DISTANCE FROM THE CENTER OF CURVATURE TQ THE
NEUTRAL AXIS (THE DIFFERENCE BETWEEN RR AND YBAR)

K =—= A CONSTANT USED FOR THE CASE OF THE CIRCULAR SECTIO

¥YI1,YO0 —== THE DISTANCES FROM THE NEUTRAL AXIS TO THE INNER AN
QUTER FIBERS RESPECTIVELY

M ——- THE BENDING MOMENT ACTING ON THE SECTION

SIGMAI,SIGMAO--- THE BENDING STRESSES AT THE INNER AND OUTER FIBERS

SPECIAL TOPICS IN ELASTIC BEAM THEORY [CHAP. 12

Al,R2,YJ,YK, --- VARIABLES USED TO FIND THE CENTROID OF TRAPEZOIDAL
SUMAY, SUMA, HOL SECTION

10

UNIT —--= CHARACTER VARIABLE DENOTING THE APPROPRIATE UNITS

VARIABLE DECLARATION

REAL B,H,D,Bl,B2,RI,RO,A,RR,YBAR,R,K,YI,YO,M,SIGMAI,SIGMAD
REAL Al,A2,YJ,YK,SUMAY,SUMA, HOLD

INTEGER ANS,SHAPE

CHARACTER UNIT*7

USER INPUT

PRINT*, 'PLEASE INPUT YOUR CHOICE OF UNITS:'
PRINT*,'1 - USCS'

PRINT*,'2 - SI'

PRINT*,"* °*

PRINT*, 'ENTER 1,2 :°'

READ*, ANS

PRINT*," *

PRINT*," '

PRINT*, 'PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:'
PRINT*, 'l - RECTANGULAR' '

PRINT*, "2 - CIRCULAR'

PRINT*,"'3 - TRAPEZOIDAL'

PRINT*,' '

PRINT*, 'ENTER 1,2,3:"'

READ*, SHAPE

IF(ANS.EQ.1) THEN
PRINT*, 'PLEASE INPUT THE FOLLOWING DIMENSIONS IN INCHES...'
UNIT='INCHES.'

ELSE
PRINT*, 'PLEASE INPUT THE FOLLOWING DIMENSIONS IN METERS...'
UNIT ='METERS.’

ENDIF

PROMPTS FOR THE DIMENSIONS OF THE APPROPRIATE SECTION

PRINT*,' '

IF (SHAPE.EQ.l) THEN
PRINT*, ' PLEASE INPUT THE DIMENSIONS OF THE BASE AND HEIGHT, '
PRINT*, 'AND THE DISTANCE FROM THE CENTER OF CURVATURE TO THE



CHAP. 12]

01100
01110
01120
01130
01140
01150
01160
01170
01180
01190
01200
01210
01220
01230
01240
01250
01260
01270
01280%
01280+
01300%*
01310*
01320%
01330%*
01340*
01350%
01360+
01370
01380+%
01390%*
01400%*
01410
01420
01430
01440
01450
01460
01470
01480
01450*
01500*
01510*
01520
01530
01540
01550
01560
01570
01580
01590
01600*
01610*
01620*
01630
01640
01650
01660*
01670*
01680*
01690 20
01700
01710
01720
01730
01740
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PRINT*, ' INNER FIBERS OF THE X-SECTION: (B,H,RI)’
READ* , B, H,RI
PRINT*,* '
ELSEIF (SHAPE.EQ.2) THEN
PRINT*, 'PLEASE INPUT THE DIAMETER AND DISTANCE FROM THE CENTER O
PRINT*, *CURVATURE TO THE INNER FIBERS OF THE X-SECTION: (D,RI)’
READ*,D,RI
PRINT*, " *
ELSEIF (SHAPE.EQ.3) THEN
PRINT*, 'PLEASE INPUT THE DIMENSIONS OF THE INSIDE, THEN OUTSIDE'
PRINT*, 'BASES, THE HEIGHT, AND THE DISTANCE FROM THE CENTER OF'
PRINT*, 'CURVATURE TO THE INNER FIBERS OF THE X-SECTION:(Bl,B2,H,RI)’
READ*,Bl,B2,H,RI
PRINT*,*' °
ELSE
PRINT*, 'YOU MUST ENTER A 1,2 OR 3!’
GO TO 10
ENDIF

END USER INPUT

CALCULATIONS --- IN EACH CASE, THE DISTANCE FROM THE CENTER OF
CURVATURE TO THE CENTRAL AND NEUTRAL AXIS IS
FOUND (RR AND R) ,AND THEN THE DISTANCE FROM
THE NEUTRAL AXIS TO THE EXTREME FIBERS (YI,YO) IS
DETERMINED.

IF (SHAPE.EQ.1l) THEN
IF SHAPE EQUALS ONE, THEN THE SECTION IS RECTANGULAR

A = B*H

RO = RI + H

RR = (H)/2 + RI

YBAR = H**2/(12*RR)

R = RR-YBAR

YI = YBAR -(H/2)

YO = YBAR +(H/2)
ELSEIF (SHAPE.EQ.2) THEN

IF SHAPE EQUALS TWO, THEN THE SECTION IS CIRCULAR

[ ]

A = (3.14159/4)*D**2
RR = RI + (D/2.)
K = ((D/(2*RR))**2)/4 + ((D/(2*RR))**4)/8
YBAR = (K*RR)/(1-K)
R = RR - YBAR
YI = YBAR -(D/2)
YO = YBAR +(D/2)
ELSEIF (SHAPE.EQ.3) THEN

IF SHAPE EQUALS THREE, THEN THE SECTION IS TRAPEZOIDAL

A = ((Bl + B2)/2)*H
RO = RI + H
HOLD = 0.0

FIRST, THE CENTROID OF THE TRAPEZOIDAL SECTION IS FOUND

IF (B1.GT.B2) THEN

Al = (H/4)*(Bl1-B2)
A2 = B2*H
YJ = H/3.
YK = H/2.

SUMA = (2*%*Al) + A2



01750
01760
01770
01780
01790
01800
01810
01820
01830
01840
01850
01860
01870*
61880
01890
019500
01810
01920
01930
01540*
01950%*
01960*
01970%*
015B0%*
01990
02000
02010
02020
02030
02040
02050
02060
02070
02080
02050
02100
02110*
02120*
02130*
02140
02150
02160*
02170
02180
02190
02200
02210
02220
02230
02240%*
02250%*
02260*
02270
02280
02290
02300+
02310 15
02320#
02330
02340
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SUMAY = (Al*YJ*2) + (A2*YK)

ELSE
HOLD = B2
B2 = Bl
Bl = HOLD
GO TO 20
ENDIF

IF (HOLD.EQ.0.) THEN
RR = RI + (SUMAY/SUMA)

RR = RI + (H - (SUMAY/SUMA))

R = ((H**2)*(Bl + B2))/2.

R = R/(((BL1*RO) - (B2*RI))*(LOG(RO/RI)) - H*(Bl - B2))
YBAR = RR-R

YI = YBAR - (SUMAY/SUMA)

YO = YBAR + (H-(SUMAY/SUMA))

ONCE THE CENTRAL AXIS HAS BEEN DETERMINED, THE USER
IS PROMPTED FOR THE BENDING MOMENT WHICH THEY MUST
CALCULATE BASED ON THIS DIMENSION AND THE GIVEN LOAD

PRINT*, 'THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL'
PRINT 15, 'AXIS OF THE CURVED SECTION IS:',RR,UNIT

PRINT*,' !

PRINT*, 'GIVEN THIS DIMENSION, THE USER MUST NOW CALCULATE THE'
PRINT*, 'MOMENT ACTING ON THE CROSS SECTION...THE MOMENT IS THE'
PRINT*, ' PRODUCT OF THE APPLIED LOAD AND THE DISTANCE TO THE CENTRAL'
PRINT*, 'AXIS FROM THE POINT OF APPLICATION. NOTE, THE MOMENT IS '
PRINT*, 'NEGATIVE IF IT ACTS TO REDUCE THE CURVATURE!'

PRINT*,' '

PRINT*, ' PLEASE ENTER THE MOMENT (IN N-M OR LB-IN):'
READ* ,M

PRINT*,' °

CALCULATING THE BENDING STRESS AT THE INNER AND OUTER FIBERS

SIGMAI = (M*YI)/(A*YBAR*(R+YI))
SIGMAO = (M*YO)/(A*YBAR*(R+YO))
IF (ANS.EQ.1) THEN

UNIT = ' PSI.'
ELSE

SIGMAI = SIGMAI/1E6

SIGMAOC = SIGMAO/1E6

UNIT = ' MPA.'
ENDIF

PRINTING OUTPUT

PRINT*,' '
PRINT 15,'THE BENDING STRESS AT THE INNER FIBERS IS :',6KSIGMAI,UNIT
PRINT 15, 'THE BENDING STRESS AT THE OUTER FIBERS IS :',SIGMAO,UNIT

FORMAT(1X,A,F11.3,1X,A)

STOP
END
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12.14. Return to Problem 12.12 and use the FORTRAN program of Problem 12.13 to determine the
bending stress at point A.

Using the moment loading and geometry of Problem 12.12 we have 68.58, which is in good agreement
with the value found in Problem 12.12. Note that the uniform normal stress of 4.03 MPa must be added
to this value to obtain the resultant normal stress at A. The following computer program yields only the
bending effect.

run
PLEASE INPUT YOUR CHOICE OF UNITS:

1 - UsCs
2 - 81

ENTER 1,2 :
? 2

PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:

1 - RECTANGULAR
2 - CIRCULAR
3 - TRAPEZOIDAL

ENTER 1,2,3:

71
PLERSE INPUT THE FOLLOWING DIMENSIONS IN METERS...

PLEASE INPUT THE DIMENSIONS OF THE BASE AND HEIGHT,
AND THE DISTANCE FROM THE CENTER OF CURVATURE TO THE

INNER FIBERS OF THE X-SECTION: (B,H,RI)
? 0.04,0.06,0.04

THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL
AXIS OF THE CURVED SECTION IS: .070 METERS.

GIVEN THIS DIMENSION, THE USER MUST NOW CALCULATE THE
MOMENT ACTING ON THE CROSS SECTION...THE MOMENT IS THE
PRODUCT OF THE APPLIED LOAD AND THE DISTANCE TO THE CENTRAL
AXIS FROM THE POINT OF APPLICATION. NOTE, THE MOMENT IS
NEGATIVE IF IT ACTS TO REDUCE THE CURVATURE!

PLEASE ENTER THE MOMENT (IN N-M OR LB-IN):
? -1162

THE BENDING STRESS AT THE INNER FIBERS IS :
68.58

12.15. Consider a crane hook subject to a vertical load of 5000 Ib. The cross section is trapezoidal, as
shown in Fig. 12-29. Determine the tensile stress at point A using the computer program of
Problem 12.13.

The theory of Problem 12.11 is applicable here but the evaluation of the integral in Eq. (d) of that
problem is tedious; hence we employ the FORTRAN program of Problem 12.13 using as input the
geometry indicated in Fig, 12-29. The printout first indicates that the distance from the center of curvature
to the centroidal axis is 2.287 in and from that we can calculate the acting moment as

M = —(1.181in + 2.287 in) (5000 Ib) = —173351b-in

Now, using this moment as input in the program, we have the stresses at inner and outer fibers as indicated
in the final two lines of the printout.
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Fig, 12-29

run
PLEASE INPUT YOUR CHOICE OF UNITS:
1 - Uscs
2 - 851

ENTER 1,2 :
71

PLEASE INPUT THE SHAPE OF THE BEAM CROSS SECTION:

1 - RECTANGULAR
2 - CIRCULAR
3 - TRAPEZOIDAL

ENTER 1,2,3:
?2 3

PLEASE INPUT THE FOLLOWING DIMENSIONS IN INCHES...

PLEASE INPUT THE DIMENSIONS OF THE INSIDE, THEN OQUTSIDE

BASES, THE HEIGHT, AND THE DISTANCE

FROM THE CENTER OF

CURVATURE TO THE INNER FIBERS OF THE X-SECTION:(Bl,B2,H,RI)

? 1.57,0.40,2.76,1.18

THE DISTANCE FROM THE CENTER OF CURVATURE TO THE CENTRAL

AXIS OF THE CURVED SECTION IS:

GIVEN THIS DIMENSION, THE USER MUST

MOMENT ACTING ON THE CROSS SECTION..

PRODUCT OF THE APPLIED LOAD AND THE
AXIS FROM THE POINT OF APPLICATION.

2.2B7 INCHES.

NOW CALCULATE THE

-THE MOMENT IS THE
DISTANCE TO THE CENTRAL
NOTE, THE MOMENT IS

NEGATIVE IF IT ACTS TO REDUCE THE CURVATURE!

[CHAP. 12
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PLEASE ENTER THE MOMENT (IN N-M OR LB-IN):
? =17335

THE BENDING STRESS AT THE INNER FIBERS IS : 19878.782 PSI.
THE BENDING STRESS AT THE OUTER FIBERS IS -12928.359 PSI.

L]

SRU 1.134 UNTS.

In addition to these bending stresses, there 1s a uniformly distributed set of tensile stresses over the
cross section AB due to the direct, tensile effect of the 5000-1b load. These stresses are given by

P 5000 1b
A [(157 +0.40)/2 in] (2.76 in)

o= = 1839 [b/m’

and must be added to the bending stresses found by the computer program. Thus. the truc stress at
point A is

o’ = 19.879 Ib/in® + 1839 Ib/in® = 21,718 Ib/in® or 21,700 Ib/in?

Supplementary Problems

12.16. Locate the shear center of a thin-walled circular section with a longitudinal slit (Fig. 12-30).
Ans. e=12R

Fig. 12-30 Fig. 12-31

12.17. Determine the shear center of the thin-walled “hat™ section shown in Fig. 12-31. Ans. e=05lin

12.18. Determine the shear center of the thin-walled section indicated in Fig. 12-32. Ans. e=685mm

2I]rnm|
—
15 mm
. T
" ™ 25 mm
— e t 25 mm
Vv 15 mm

Fig. 12-32 Fig. 1233
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12.19.

12.20.

12.21.

12.22,

12.23.

12.24.

SPECIAL TOPICS IN ELASTIC BEAM THEORY [CHAP. 12

Determine the shear center of the thin-walled section shown in Fig. 12-33.
Ans.  0.747R measured from the centroid

Find the shear center of the thin-walled section shown in Fig. 12-34.
Ans.  0.703a measurcd from the centroid

\/L._%_.J

Fig. 12-34 Fig. 1235

A structural steel I-beam 250 mm decp is subjected o a bending moment lying in a plane oriented at 2°
to the vertical axis of symmetry of the beam (sce Fig. 12-35). Detcrmine the percentage incrcase in elastic
tensile stress over the stress that would exist if the moment acted in the vertical plane of symmetry. For
this section I, = 57 % 10°mm? and /7, = 3.3 X 10° mm™. Ans. 30 percent

The structural aluminum z-section has the dimensions shown in Fig. 12-36 with cross-sectional properties
I, = 41x10"mm*, I, = 10.7 x 10" mm*, and /.. = 5.0 10°mm®. The loading has components M, =
—2235kN-m, M, = 447 kN -m. Determine the bending stress at point A, Ans.  —35.5MPa

In Problem 12.7 find the bending stress at point B. neglecting the effect of the roundcd corner therc. Use
the FORTRAN program of Problem 12.8  Ans.  153.3 MPa

A semicircular bar is of square cross scction and is clamped at one end and subject 1o a load P at the other
end. as indicated in Fig. 12-37. The cross section is 4 in on a side and the radius of the bar is 20 in. If the
maximum tensile stress at the support is not to exceed 28,000 Ib/in’. determine the maximum allowable
valuc of the load P. Ans. 64601b

B5mm l'"—"'l
_jﬂ—f AF |
TSIJm i 20" i 20"
1
¥

Fig. 1236 Fig. 12-37

*IU




Chapter 13

Plastic Deformations of Beams

INTRODUCTION

In certain situations in structural design it is acceptable to permit a modest amount of permanent
deformation of the structural element. If this is the case, then it is possible to permit loads greater
than indicated by elastic theory, which permits no stress greater than the yield point of the material
to develop at any point. This results in more efficient use of the material and is called plastic design.
Fundamentally, this more efficient design is possible because of the ability of certain materials, such
as structural steel, to undergo relatively large plastic deformations after the yield point has been
reached. This is illustrated by the horizontal region of the stress-strain diagram shown in Fig. 1-5,
page 3.

PLASTIC HINGE

As the transverse loads on a beam increase, yielding begins at the outer fibers at some critical
station along the length of the beam and progresses rather rapidly toward the central fibers at this
station. When finally all the fibers on one side of the neutral axis are in a state of tension corresponding
to the yield point of the material and all those on the other side are in a state of compression, again
at the yield point, then a flowing or hinging action occurs at that station and the bending moment
transmitted across the plastic hinge remains constant. In this book a plastic hinge is denoted by a small.

open circle.

FULLY PLASTIC MOMENT

The bending moment developed at a plastic hinge is termed a fully plastic moment. This concept
was discussed in Chap. 8.

LOCATION OF PLASTIC HINGES

In general, plastic hinges form at points of maximum moment. For beams subject to concentrated
forces and moments, the peak bending moment must always occur under one of these loadings or at
some reaction and thus the plastic hinges must develop first at these points. In the case of distributed
loads, the location of the plastic hinges is considerably more difficult to determine and often several
possible points must be investigated. This is discussed in Problems 13.8 and 13.9.

COLLAPSE MECHANISM

When enough plastic hinges have formed in a structure to develop its full plastic load-carrying
capacity, then portions of the structure (such as a beam or frame) between hinges may displace without
any further increase of load; i.e., the portions between hinges behave as a mechanism. Essentially, the
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hinges allow a kinematic freedom of motion. Under these conditions the shape of the deformed body
may be characterized as a straight line between any pair of hinges. Typical representations of collapse
mechanisms are shown in Problems 13.2, 13.4, and 13.8 through 13.10.

LIMIT LOAD

The external load sufficient to cause the structure to behave as a mechanism is termed the limit
load or collapse load. Any design based upon the concept of development of a mechanism is termed
limir design. All problems in this chapter illustrate computation of the limit load.

Solved Problems

13.1. The simply supported beam ABC in Fig. 13-1(a) is loaded by a central vertical force of 1200 1b
and made of steel having a yield point of 38,000 1b/in®. The beam is of rectangular cross section,
as shown in Fig. 13-1(b), with width b, depth 1.6b, and length L = 40in. Determine b for fully
plastic action. Also determine the width b’ when only the extreme fibers have reached yield.

| Op I
1200 1b 7 T c
// 0.86 +
B N.A
A C A . ¥ 0.8b
1 1 i
— 2 7 i T -
A\ hy AN [ - o
\0.8b
20i 20 in
l_ in . i /
(D
I L=40in | !’T“ Fe
600 Ib 600 Ib

() (b} {¢)
Fig, 13-1
The reactions at A and C are each 600 Ib by symmetry. The peak bending moment at the midpoint
B is given by
(600 1b) (20 in) = 12,000 1b-in

At that time all fibers above the centrally located neutral axis (N.A.) are acting in compression C and those
below that axis are in tension 7, as shown in Fig. 13-1(c). The location of the action line of each of these
forces is shown in Fig. 13-1(c). The moment resulting from the effect of T and C is

M, = (0,,) (0.8b) (b) [0.8b]

= 0.64b g,
= 0.64b*(38,000)
Thus, 0.64b*(38,000) = 12,000
b=0.79in
1.6b = 1.261in

so that the beam cross-sectional areca is 0.995 in®.
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13.2.

From Problem 8.25 for a rectangular cross section, the maximum possible fully elastic moment (i.e.,
when only the extreme outer fibers have reached the yield point) is given by

b'(h")?
M, = 5 Oy
’ [EV]
Hence, 12,000 = ﬂ'-‘ﬁib—){ss,om)
Solving,
*=0.905in
1.6b" = 1.45in

Here, the cross-sectional area is 1.312 in”. The fully elastic moment corresponds to an area of 1.312in’.
Thus, allowing fully plastic action leads to a 24.2 percent reduction of beam weight for any given length.
Suitable safety factors, usually specified by building codes, must be introduced into each of the above
computations.

Determine the limit load of the simply supported beam shown in Fig. 13-2.

P

u L
4 4

I

—

ﬁ‘

“l‘-h ‘i

el
b

Fig. 13-2

The end reactions at A and C are readily found from statics to be P/4 and 3FP/4, respectively,
irrespective of whether the beam is in the elastic or plastic state, The peak bending moment occurs under
the point of application of P and is thus (P/4)(3L/4) = 3PL/16. When this bending moment reaches a value
corresponding to fully plastic action of the section of the beam at B, which we term M,. a plastic hinge
forms at B and the beam continues to deflect without further increase of P. This collapse mechanism has
the form shown in Fig. 13-3.

A |

Fig, 13-3

The value of the load P corresponding to this condition is termed the limir load P,. The reaction at
A is then (P;/4) and thus the moment at B is

P, \(3L\ _
( 4 )( 4 ) =M
Solving, P, = 16M_/3L. Dividing P, by some suitable safety factor gives an allowable working load. This
procedure is called limit design.
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13.3. The beam of Problem 13.2 is of rectangular cross section 1.75in X 3in. It is titanium, type
Ti-8Mn, with a yield point stress of 115,000 Ib/in’. If the length of the beam is 5 ft, determine
the central force P necessary to develop the plastic hinge at B.

From Problem 8.25 the fully plastic moment for a rectangular cross section is given by

M, = %b—m
Substituting,
M, = (115,000 Ibﬁnz)w = 453,000 1b-in
Using the result of Problem 13.2,
p, - 16M, _ 16(453,0001bin) — 403001b

3L 3(60in)

This is the limit load of the beam.
From Problem 8.25, the peak elastic moment that this beam could withstand is given by

bh?
M, = 0,,~ = 302,0001b-in

from which the maximum allowable load P, based on elastic design is
_16M,

P, = 26,8501b
Thus use of limit design permits a S0 percent greatcr load than elastic analysis. However, the designer
would want to incorporate some safety factor into the above limit load.

13.4. Determine the limit load of a simply supported beam subject to a unformly distributed load. Sece
Fig. 13-4.

According to the methods developed in Chap. 6, the peak bending moment occurs at the midpoint
of the length of the beam and is given by wL%8. For fully plastic action at the midpoint, this moment is
denoted by M,. Thus, when the plastic hinge forms at the center, the uniform load has the value w, (limit
load) so that

Fig. 13-4 Fig. 13-5

13.5. The beam shown in Fig. 13-51s clamped at the left end, simply supported at the right, and subject
to the concentrated load indicated. Determine the magnitude of the limit load P, corresponding
to plastic collapse.
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This statically indeterminate beam cannot collapse plastically through formation of a single plastic
hinge at B because the region AB is constrained to very small lateral deflections until another hinge forms
somewhere along its length. It has been demonstrated in Chap. 6 that significant bending moments in a
beam subject to concentrated forces always occur either at the points of application of these forces or
where the reactions are applied. In the present case, this would imply the formation of another plastic
hinge at A. With hinges at A and B, we have a so-called kinematically admissible mechanism of collapse.
The order in which the plastic hinges are formed is of no consequence. The collapse mechanism appears
in Fig. 13-6.

H-\'}

L
4

&

Fig. 13-6 Fig. 13-7

The free-body diagram of the right portion of the beam, extending from C 10 a point just to the right
of the applied load P when that force is the limit load P, is shown in Fig. 13-7, in which M, denotes the
fully plastic moment at B. From statics,

RcL aM
M, — ; =0 or Re=—7* (N
Py
A C
B
M, |
sL L
i 4 L' "
Rﬁ R(\ = T"

Fig. 13-8

Next, from the free-body diagram of the entirc beam (Fig. 13-8). with plastic hinges at A and B,
we have
aM
EFU.: RA+_LE_PL =0
Hence R, =P, — %ﬁ (2)
L
EMC=R,‘L—M,—PL(I)=O 3)
Substituting R, from (2) in (3) yields

20M

==

Po=37

as the limit load.
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13.6. The beam described in Problem 13.5 is of hollow circular cross section, as shown in Fig. 13-9,

and is of steel having a yield point of 200 MPa. Find the limit load that may be carried if
r=20mmand L =2m.

Fig. 13-9

For simplicity, let us first find the fully plastic moment M, for a solid circular cross section of radius
r. Above the neutral axis (N.A.) there is a uniform normal stress distribution equal to the yield point stress,
and the resultant of these stresses acts at the centroid, which is at a distance (4#/37) above the N.A. A like
situation exists below the N.A., where the normal stresses are oppositely directed from those above that

axis. Thus,
B arl\(4r\] _4ar
M, =2 o (F) (37) | = T
The fully plastic moment for the hollow circular cross section is now given by

4r* w2y [ 4(ri2) 7
My = o= o "G {2 | = e

()
For our parameters,

M, = }(0.02 m)*(200 x 10° N/m?) = 1867 N-m
and from Problem 13.5 we have

p _20M, _ 20(1867N-m)

Y} emy | OBN

as the limit load.

The beam described in Problem 13.5 is a wide-flange section having the dimensions indicated
in Fig. 13-10. For this section, determine the limit load P;. The material is structural steel with
a yield point of 250 MPa and the length of the beam is 2 m.

i
T ]
!
10 mm
—f fo— S mm
75 mm C.L. — —
L

75mm j T

Fig. 13-10
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As mentioned in Problem 8.29, for fully plastic action, the neutral axis divides the cross-scctional area
into two parts of equal arca. Here, because of the symmetry, the ncutral axis coincides with the centerline
(C.L.) and the centroidal distances from that linc arc

_ o _ (79(10) (375 - 5) + (27.5) (5) (27.52)

h =z (75) (10) + (27.5)(5) =29.6mm

The fully plastic moment is thus
A -
M, = cr_,,,,f(fu +¥,) = 250[(79) (10) + (27.5) (5)] (29.6 + 29.6) = 13.13kN-m

The limit load from Problem 13.5 is

_20(13.13% 10%)

= 43.8kN
3 2

Py

It is of intcrest to carry out an clastic analysis of this same beam. In this casc the outer fibers are taken
to be stressed to the yicld point and, of course, the stresses vary lincarly over the depth. being zero at the
neutral axis. The sccond moment of arca of the cross scction is found by the methods of Chap. 7 to be

I = 5(75) (75)* — 5(70) (55)* = 1.67 % 10° mm*
and the outer fiber stresses arc found from

M.c M.(37.5)
=T o 0= 0

and thus the maximum eclastic moment M, that the section can support is M, = 11.13 kN - m. From Problem
11.1 the bending moment at point A is found to be 0.116PL while that at point B is 0.159PL. Using the
Jatter value we can find the maximum load that the beam can support for entirely elastic action to be

0.159P,L = 11.13kN-m  or P, =35kN

The load P,, corresponding to plastic collapse, cxceeds this value by 25 percent.

13.8. Determine the limit load of a clamped-end beam carrying a uniformly distributed load
(Fig. 13-11).
The collapse mechanism appcears in Fig. 13-12. where plastic hinges have formed at points A, B, and
C. By virtue of symmetry the shear is zcro at the midpoint C; hence we may draw the free-body diagram
of the left half of thc beam as in Fig. 13-13. From statics,

Ly (L
EMA = 2M,.—WL(5) (Z) =0

g w Ib/unit length wy Ib/unit length

—- : : A | B

[
o)t~
wa| o

Fig. 13-11 Fig. 13-12
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O —(i| M,
2
Ry
Fig. 13-13

The limit load is thus w, = IBM,JL:. From considerations similar to Problem 11.6, the permissible load
based upon the outer fibers being at the yield point and all interior fibers acting in the elastic range of
action is w, = 12M./L* so that in this case the ratio of limit load w,_to maximum elastic load w, is %M,;‘M,.
However, the ratio M /M, itself may be significant. For a rectangular cross section it has the value i, as
indicated in Problem §.25. For such a rectangular bar we then have

w413,

w, 3M, 3\2

indicating that in this particular casc. limit dcsign permits application of twice the load permitted by elastic
analysis. This rather large variation between the permissible loads is due partially to the indeterminate
nature of this bcam. It should be noted that there are cxceptional cases where the limit load and maximum
clastic load coincide cven for an indcterminate system.

The beam shown in Fig. 13-14 is clamped at the left end. simply supported at the right, and
subject to a uniformly distributed load. Determine the magnitude of this load corresponding to
plastic collapse of the beam.

w Ib/unit length

§ wy Ib/funit length
S B
J A C
§ Mﬂ AA M’
| Lo
L

| R,

Fig. 13-14 Fig. 13-15

This problem is somewhat analogous to Problem 13.5 because the beam cannot collapse plastically
through formation of a singlc plastic hinge but instead, two hinges must form. One of these is obviously
at the clamped end A but the location of the other is not immediately apparent. It of course occurs at the
position of relative maximum moment (excluding point A) but that point is not known. However, since
the shear is known to be zero at the point of maximum moment, we may draw the free-body diagram of
the left region of the beam of lcngth La and rcgard a as an unknown. It thus appears as in Fig. 13-15, where
M, denotes the fully plastic moment at each of the two sections.

From statics,

SF,=R,-~w,la=0 (H
A 2.2
EMA=2M,—%=0 )
Next, let us consider the free-body diagram of the entire beam, as in Fig. 13-16. From statics,
w, 12

szg: _RAL‘l‘

+M,=10 (3
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s Tb/unit length '
wy Ibfunit length
A Fi
MA\_4
L
2-VZIL Ry
RA Rﬂ L
Fig, 13-16 Fig. 13-17

Solving (1), (2), and (3) simultaneously we arrive at the single equation
a—4a+2=0

for determination of the point of relative maximum moment. Solving, we obtaina = 2 - V2, the other root
of the guadratic being of no physical significance.
Substituting this valuc in (2), we find

~ M

as the limit load. The collapse mechanism appears in Fig. 13-17.

13.10. The clamped-end beam is subject to a concentrated force as shown in Fig. 13-18. Determine the
magnitude of this load corresponding to plastic collapse of the beam.

r P,

[
o
(]
[
-
)

A
\

#

L

T T2
- Y
te

Fig. 13-18 Fig. 13-19

The only logical collapse mechanism is that of Fig. 13-19, where plastic hinges form at A, B, and C.
From the geometry of triangle ABC we have

atp=1>0 ()

or + =8 2
a I—a )

since the deflection & is still small compared to L. even though plastic collapse has occurred. Solving (2)
we obtain

5= 6a (1 - 3) 3
and from geometry we have

amof1-%)  p-% )
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This problem could be solved by usc of statics equations as ecmployed in Problems 13.5 and 13.8.
However, let us introduce another technique which will be well suited to even more complex problems.
This involves a consideration of the work done by the load P, after plastic collapsc has occurred. If we
assume thal the elastic deflection is very small compared to the plastic deflection, then the work donc by
the load P, during plastic collapse is P, 8. It is 10 be carefully noted that the load assumes the value P,
at the start of the collapse through the deflection § and maintains this constant value throughout the
collapse process. During the collapse, the beam develops the fully plastic moment M, at each of the hinge
points A, B, and C. The total cnergy dissipated at these hinges is providcd by and is equal to the work done
by the load P,.

The work donc by the plastic hinge at A is given by M, c, at B it is given by M, 8 and at C by M.
Thus, equating work done by P, to the net work done by these thrce plastic moments, and using (4)

we have
Ba
PL5=M,,9(|—%)+M,,9+M,,(I) (5)
Substituting & from (3) we have as the collapse load
2M L
p =—b—
a(l —a)

13.11. A horizontal beam of rectangular cross section 50 mm X 120 mm is 1.5 m long and hinged at its
left end A as shown in Fig. 13-20. The right end C is supported by a vertical bar of the same
material, of cross-sectional area 3 cm’. The yield point of each material is 200 MPa. The beam
is subject to a vertical force P applied at B. Determine the limit load P;.

g AL 2
]
E ==

120 mm

(@) (b}

Fig. 13-20

It is not clcar which vields first, the vertical bar or the horizontal beam AC. Lct us assume that the
verlical bar is the first 1o yicld. The force in it is

F, = (200 % 10° N/m?) (3 cm?) (1 m/100cm)’ = 6 X 10*° N

The free-body diagram of the beam is shown in Fig. 13-21.

r r x 10°N
C
B

Al

Fig. 13-21
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For equilibrium,
+13XM, = —P(1m) + (6 X 10*N)(1.5m) = 0
from which ‘
P,=9%10°N or 90kN

Next, assume that the beam develops a plastic hinge at B with the vertical bar still being entircly
elastic. The free-body diagram of the left portion of the beam between A and a point just slightly to the
left of B is shown in Fig. 13-22.

. 1 \
| R
Al ]
;D)
MP
'A)'

Fig. 13-22

For equilibrium of this portion of the beam,
+J)EIMy=M,-A,(Im)=0
For equilibrium of the entire beam AC about point C,
+)EMc=P(05m)—-A,(1m)=0

Solving,
P} =3M,
But for a bar of rectangular cross section, the fully plastic moment (see Problem 8.25) is given by
bh?
M, =oc,—
= Oy
= (200 x 10°Nm?) 12 m}:D.OS M) 15000N-m
Thus, P =3(15,000) = 45,000 N or 45KkN

Since this load of 45 kN is reached before the load of 90 kN (causing yield of the vertical bar). it is
evident that the limit load is 45 kN, which will cause formation of a plastic hinge at B while the vertical
bar is still elastic.

13.12. Consider the rectangular frame with both bases clamped subject to the two equal loads shown
in Fig. 13-23. Determine the magnitude of the loads corresponding to plastic collapse of the
frame.

In this sitvation there are three possible plastic collapse mechanisms. These are shown in Fig. 13-24.
where Cases I and II correspond to individual actions of the applied loads and Case III is a composite
mechanism formed as a combination of I and II so as to eliminate a plastic hinge at point B. We shall
determine the collapse loads of each of these three cases and then select the minimum of the threc loads
as the correct one.

Case I can be treated by the methods of Problem 13.1, so that we immediately have P, = 4M, /L.

Case II can be treated by the same methods, so for it we have P, = 4M /L.
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Fig. 13-23

Case 111

Fig. 13-24

For Case Il there are plastic hinges at A, E. C. and D. with B constituting a rigid joint. Work-energy
balance requires that

P A+ P = [M‘,G]A + [M;,(‘ZB)]E + [M,,(?G}](- + [Mp 9].0
or P(L6) + Ppo(L6) = 6M, 0

from which Py = 3M/L.
Thus, the collapse load is P, = P,y = 3M,/L and collapse occurs as indicated by the sketch for

Case IIL

13.13. The continuous beam shown in Fig. 13-25(a) rests on three simple supports and is subject to the
single concentrated load indicated. Determine the magnitude of this load for plastic collapse of
the beam.



CHAP. 13] - PLASTIC DEFORMATIONS OF BEAMS 349

13.14.

P
A B C D
| o N Y -]
l L |z L
b " 2 2
(o)
A

(b

Fig. 13-25

The plastic collapse of such a beam usually occurs in only onc of the spans and, in this case, collapse
could occur by formation of a mechanism as indicated in Fig. 13-25(&), where plastic hinges form at points
B and C.

The work done by the load P, during plastic collapse is P, 8. The fully plastic moment M, develops
at each of the hinge points B and C. Work-energy balance requires that

PLB = [Mp B]B + [Mp(ze)](_
L
or PL(EH)=3MPH

from which the collapse load is F, = 6M,/1L..

A two-span continuous steel beam supports the concentrated forces indicated in Fig. 13-26(a).
The beam is of rectangular cross section, 2 in wide by 4 in high, with the yield point of the steel
being 38,000 Ib/in”. Determine the value of P to cause plastic collapse.

Let us first assume that collapse occurs in the span AC with the formation of the mechanism indicated
in Fig, 13-26(b). Fully plastic moments develop at B and C and the work-encrgy balance requires that

_3M,

2P,(106) = [M,(20)]s + [M,6c  or  PL="

Next, consider the possibility of collapsc in the span CE with the formation of the mechanism shown
in Fig. 13-26(c). From the geometry of triangle CDE we have

d=a+f
But since a is small compared to the span CE, this becomes

5 &
—_ ==

8 2 ¢
where 8, must of course be in consistent units (i.e., feet). Thus

& =i

and from geometry
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2P 3P
A B C pY E
| i |
10 piiyg g &
I ] ] F
{a)
2P,
A 4 l { C E
\8 ]
28
B
3]
3P,
A A | E
é L 5 "
¢ D 4
()
Fig. 13-26

In this case fully plastic moments develop at € and D and work-energy balance requires that

M

3P (8a) = [M,d], + [M,a]c or Py = *‘:12
Since this is larger than the P, found for collapse of the left span, evidently coliapse occurs with the
formation of the mechanism shown for span AC.
Since the fully plastic moment for a rectangular cross section is given by
bh*
M, = U'.vﬂ( 4 )

we find the collapse load to be

2 s 000)

P"':20(12) 38, = 3800 1b

where the factor of 12 appears in the denominator to render the units consistent.
13.15. A simply supported beam of 50-mm X 75-mm rectangular cross section has a yield point stress

of 250 MPa and carries the loads indicated in Fig. 13-27(a). Use the limit design criterion to
determine the maximum load P.
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1 kN/m r’ V/

75 mm
P B ¢ D . é
{ 4 m 2m l;m

B [
{c)

Fig. 13-27

From statics the reactions are R, = 3+ (P/4)kN and R, = 1 + (3P/4) kN.
Fully plastic action of this beam corresponds 10 a moment of

bh? (50) (75)°

M_,, = qu = 250 2 =176 kN-m

In any problem involving several loads, the location of the first plastic hinge 10 form is usually not
apparent. Here. two possibilities exist. In the first [Fig. 13-27(b)]. thc maximum moment would occur
between points A and B. If this is the correct form of the moment diagram then the shcar must vanish at
some point for which x < 4. Thus, since

V = 3 - ; — lx
we must find P from the equation
P
_ = + —
X or x=3 2

Since x <4 in this consideration, this implies P < 4. A simple calculation indicates that P = 4 kN cannot
develop the fully plastic moment of 17.6 kN-m.

For the sccond possibility (Fig. 13-27(c)], the maximum momcnt occurs at point C. The presence of
a plastic hinge at C corresponds to a load P, given by

3
(1+TP)(2)=l'?.ﬁkN-m or P =104kN

In this case the moment at B must be less than that at C. since the moment diagram must have a common
tangent to the two branches mecting at B. Henee there is no need to investigate the moment at B. Thus
P =104 kN is the peak load that may be applied according to the limit design criterion.
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Supplemetary Problems

13.16. In Problem 6.4 we considered the beam A D supported by knife-edge reactions at B and C as shown in Fig.
13-28(a). Loading was applied by end bending moments M, and M, /2 as indicated in that figure. The beam
has a T-shaped cross-section as shown in Fig. 13-28(b}, which has previously been considered in Problem
8.32. If the material has a yield point of 39,000 Ib/in®, determine thc maximum value of applied load for
fully plastic action. Ans. M, =360,7501b-in

!_l_ir_:_|

!

41in |35 in

e =y
dm  hn NALL L
My L"_- l M,
) 2
R R 3in '

(a) ®

¥

- lin

(Sl
el

Fig. 13-28

13.17. Consider again the beam AD and loading shown in Fig, 13-28, The cross section is now a hollow rectangular
shape as shown in Fig, 13-29. For a yield point of 39,000 Ib/in?, determine the maximum value of applied
load for fully plastic action. Ans. 546,000 1b-in

/ yin

N

r|
5

7

._i

lin 1.

mn 2 n

B =

Fig. 13-29
13.18. Determine the limit load F of the simply supported beam of Fig. 13-30. Ans. P =45M/L

P

1

w |t~
mig

e
|k

Fig. 13-30



CHAP. 13] PLASTIC DEFORMATIONS OF BEAMS 353

13.19. The beam of Fg. 13-30 is of rectangular cross section, 25 mm X 50 mm. It is Hy-80 steel with a yield
strength of 500 MPa. The length of the beam is 1 m. Determine the limit load when the loading is applied
at the third point as indicated. Ans. P, =352kN

13.20. The beam of Problem 13.4 is 2 m long and of square cross section 50 mm X 50 mm. It is structural steel with
a yield stress of 250 MPa. Determine the limit load. Ans. wy =15.6kN/m

13.21. Determine the magnitude of the limit load P, for the beam clamped at one end and simply supported at
the other (Fig. 13-31).

L+x
Ans. Pp= Mpm

r
L]
R

Fig. 13-31

it

13.22. In Problem 13.21 determine x so that P, is a minimum. Ans. x =041L, (P)mn = 5.64M,/L

13.23, The simply supported beam AC shown in Fig. 13-32 has a plastic moment M, and carries the two
concentrated loads shown. Determine the limit load P;. Ans. Pp = M,I2L

— ™y | —
bl

IZP
AT
b i
DR S N
Fig. 13-32
Determine the magnitude of the load for plastic collapse of the systems shown in Figs. 13-33 and 13-34.

13.24. See Fig. 13-33.

Ans, wp=(6+ 4\6)%

2 % Ib/unit length : P P
I HTnm P A 2
”;g’,},m.“” A,,,Q,,, 2 ‘ 2 F * 2
i et
|

Fig. 13-33 Fig. 13-34
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13.25, See Fig. 13-34.
oM,

Ans. P = 3

13.26. The continuous bcam ABCD is loaded as indicated in Fig. 13-35. Find the ratio (w,)L/P, so that the limit
load occurs in both AC and CD simultaneously. Ans. 213

13.27. The continuous beam shown in Fig. 13-36 rests on the three simple supports indicated. The span AC has
a fully plastic moment 3M,, and the lighter span CD has a fully plastic moment M,. A concentrated vertical
force acts at the midpoint of AC. Find the limit load ,.  Ans. P, = TM,J/L

r w/Unit Length P
kT

F Tt 5 a— T —9-4——1‘—‘
Hom =o'l .

L
4

sl

— &-
=]

-+ i.5L -

Fig. 13-35 Fig. 13-36

13.28, Determine the magnitude of the load P for plastic collapse of the beam shown in Fig. 13-37.

oM
Ans. P, = L”
P P
r ¥
¥ P }
"
l'#'l'q”—‘-Fé“%
22121 ¢2 B i
Fig. 13-37 Fig. 13-38

13.29. Determine the magnitude of P in Fig. 13-38 for plastic collapse of the rectangular frame having both bases
clamped. Ans, P, =12M,/L

13.30. Determine the magnitude of P for plastic collapse of the rectangular frame having both bases pinned
(Fig. 13-39). Ans. P =4M,3L
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13.31. Determine the magnitude of the force P for plastic collapse of the unsymmetric frame having both bases
pinnﬂd (Hg. 13'40'). Ans. Pl_ = Mp(h[ +h2))lh| h]

£ -

Fig. 13-40

13.32. Sece Fig. 13-41. Determine the value of P for plastic collapse of the system.

M,
L

Ans. PL=

Yr

Fig. 13-41



Chapter 14

Columns

DEFINITION OF A COLUMN

A long slender bar subject to axial compression is called a column. The term “column” is
frequently used to describe a vertical member, whereas the word *'strut” is occasionally used in regard
to inclined bars.

Examples

Many aircraft structural components, structural connections between stages of boosters for space
vehicles, certain members in bridge trusses, and structural frameworks of buildings are common
examples of columns.

TYPE OF FAILURE OF A COLUMN

Failure of a column occurs by buckling, i.e., by lateral deflection of the bar. In comparison it is to
be noted that failure of a short compression member occurs by yielding of the material. Buckling, and
hence failure, of a column may occur even though the maximum stress in the bar is less than the yield
point of the material. Linkages in oscillating or reciprocating machines may also fail by buckling.

DEFINITION OF THE CRITICAL LOAD OF A COLUMN

The critical load of a slender bar subject to axial compression is that value of the axial force that
is just sufficient to keep the bar in a slightly deflected configuration. Figure 14-1 shows a pin-ended bar
in a buckled configuration due to the critical load P.,.

SLENDERNESS RATIO OF A COLUMN

The ratio of the length of the column to the minimum radius of gyration of the cross-sectional area
is termed the slenderness ratio of the bar. This ratio is of course dimensionless. The method of
determining the radius of gyration of an area was discussed in Chap. 7.

If the column is free to rotate at each end, then buckling takes place about that axis for which the
radius of gyration is a minimum.

356
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CRITICAL LOAD OF A LONG SLENDER COLUMN

If a long slender bar of constant cross section is pinned at each end and subject to axial
compression, the load P, that will cause buckling is given by

™ El
b=

where E denotes the modulus of elasticity, / the minimum second moment of area of the cross-sectional
area about an axis through the centroid, and L the length of the bar. The derivation of this formula
is presented in Problem 14.1.

This formula was first obtained by the Swiss mathematician Leonhard Euler (1707-1783) and the
load P, is called the Euler buckling load. As discussed in Problem 14.2, this expression is not
immediately applicable if the corresponding axial stress, found from the expression o,, = P, /A, where
A represents the cross-sectional area of the bar, exceeds the proportional limit of the material. For
example, for a steel bar having a proportional limit of 210 MPa, the above formula is valid only for
columns whose slenderness ratio exceeds 100. The value of P,, represented by this formula is a failure
load; consequently, a safety factor must be introduced to obtain a design load. Applications of this
expression may be found in Problems 14.5 through 14.7.

(14.1)

INFLUENCE OF END CONDITIONS —EFFECTIVE LENGTH

Equation (/4.1) may be modified to the form

2 El
(KLY
where KL is an effective length of the column. For a column pinned at both ends, K = 1. If both ends

are clamped, K = 0.5; for one end clamped and the other pinned, K = 0.7. For a column clamped at
one end and unsupported at the loaded end, K = 2. See Problems 14.1, 14.3. and 14.4.

P, = (14.2)

DESIGN OF ECCENTRICALLY LOADED COLUMNS

The derivation of the expression leading to the Euler buckling load assumes that the column is
loaded perfectly concentrically. If the axial force P is applied with an eccentricity e, the peak
compressive stress in the bar occurs at the outer fibers at the midpoint of the length of the bar and is

given by
P ec L |P
=—|1+— = _[— 3
Oomax A[l rzsec(z AE)] (14.3)
where c is the distance from the neutral axis to the outer fibers, r the radius of gyration, L the length
of the column, and A the cross-sectional area. This is the secant formula for columns. It is discussed
in detail in Problem 14.22.

INELASTIC COLUMN BUCKLING

The expression for the Euler buckling load may be extended into the inelastic range of action
by replacing Young’s modulus by the tangent modulus E,. The resulting rangent-modulus formula
is then

(14.4)

See Problem 14.9,
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DESIGN FORMULAS FOR COLUMNS HAVING INTERMEDIATE SLENDERNESS RATIOS

The design of compression members having large values of the slenderness ratio proceeds
according to the Euler formula presented above together with an appropriate safety factor. For the
design of shorter compression members, it is customary to employ any one of the many semiempirical
formulas giving a relationship between the yield stress and the slenderness ratio of the bar.

For steel columns, one commonly employed design expression is that due to the American Institute
of Steel Construction (AISC), which states that the allowable (working) axial stress on a steel column
having slenderness ratio L/r is

1= (KLIPY]ay, KL
Ga ™ [g L (KL (KUr)“] for —=<C.
3 8C BC? (14.5)
 2E KL '
a, _T‘—(ﬁ)(KUr)z for T> C,
c - [*7E (14.6)
Ty

where o, is the yield point of the material and E'is Young's modulus. See Problems 14.11. 14.12. 14.13.
and 14.14,

Another approach is in the use of the Structural Stability Research Council’'s (SSRC) equations
which give mean axial compressive stress o, immediately prior to collapse:

0, = 0y for 0 < A<O.15
0. = 0,5(1.035 — 0.202A - 0.222X%) for(.15 =A<1.0
0 = 0up(—0.111 + 0.636A° '+ 0,087 2)  for LO<A <20 (14.7)
a. = ,,(0.009 + 0.877A %) for20=<x<3.6
o, = 0,277 (Euler’s curve) for A=3.6
where Ly ) (14.8)
arV E

No safety factor is present in these equations but of course one must be introduced by the designer.
See Problem 14.15.

COMPUTER IMPLEMENTATION

The design expression advanced by the AISC for allowable (working) stress on a steel column as
well as the SSRC’s equations giving mean axial compressive stress just prior to collapse are well suited
to computer implementation. Problems 14.17 and 14.20, respectively, give FORTRAN programs for
each of these recommendations. It is only necessary to input into the self-prompting programs the
geometric and materials parameters of the column to obtain its resistance as indicated by each of these
sets of relations. For application see Problems 14.18, 14.19, and 14.21.

BEAM-COLUMNS

Bars subjected to simultaneous axial compression and lateral loading are termed beam-columns.
An example is given in Problem 14.25.
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BUCKLING OF RIGID SPRING-SUPPORTED BARS

The columns discussed above are flexible members, i.e., capable of undergoing lateral bending
immediately after buckling. A related type of buckling involves one or more rigid bars pinned to fixed
supports or to each other and supported by one or more transverse springs. In certain cases the applied
loads may cause the bar system to move suddenly to an alternate equilibrium position. This too is a
form of instability of the system. See Problem 14.26.

Solved Problems

14.1. Determine the critical load for a long slender pin-ended bar loaded by an axial compressive
force at each end. The line of action of the forces passes through the centroid of the cross section
of the bar.

Fig. 14-2

The critical load is defined to be that axial force that is just sufficient to hold the bar in a slightly
deformed configuration. Under the action of the load P the bar has the deflected shape shown in
Fig. 14-2.

It is of course necessary that one end of the bar be able to move axially with respect to the other end
in order that the lateral deflection may take place. The differential equation of the deflection curve is the
same as that presented in Chap. 9, namely,

d’y
E15 = ()
Here the bending moment at the point A having coordinates (x,y) is merely the moment of the force P
applied at the left end of the bar about an axis through the point A and perpendicular to the plane of the
page. It is to be carefully noted that this force produces curvature of the bar that is concave downward,
which, according to the sign convention of Chap. 6, constitutes negative bending. Hence the bending
moment is M = — Py. Thus we have

EI% = —Py 2)
If we set
% =k 3)
(2) becomes
g-i—’; +kly=0 <)

This equation is readily solved by any one of several standard techniques discussed in works on
differential equations. However, the solution is almost immediately apparent. We need merely find a
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function which when differentiated twice and added to itself (times a constant) is equal to zero. Evidently
either sin kx or cos kx possesses this property. In fact, a combination of these terms in the form

y = Csinkx + D coskx (5)

may also be taken to be a solution of (¢). This may be readily checked by substitution of y as given by (5)
into (4).

Having obtained y in the form given in (5), it is next necessary to determine C and D. At the left end
of the bar, ¥y = 0 when x = 0. Substituting these values in (5), we obtain

0=0+D or D=0
At the right end of the bar, y = 0 when x = L. Substituting these values in (5) with D = 0. we obtain
0= CsinkL

Evidently either C = 0 or sinkL = 0. But if C = 0 then y is everywhere zero and we have only the trivial
case of a straight bar which is the configuration prior to the occurrence of buckling. Since we are not
interested in the solution, then we must take

sinklL =0 6)
For this to be true, we must have
kL = nrradians (n =1,2,3,...) )
Substituting k> = P/EI in (7). we find

| P n*m* El
EL = nw or P= IE; (&)

The smallest value of this load P evidently occurs when n = 1. Then we have the so-called first mode
of buckling where the critical load is given by

7 El

P(‘r = Lz

9)

This is called Euler’s buckling load for a pin-ended column. The deflection shape corresponding to this

load is
y= Csin( \/gx) (10)

Substituting in this equation from (9), we obtain

. X
y = Csin 3 (1n
Thus the deflected shape is in a sine curve. Because of the approximations introduced in the derivation of
(7). it is not possible to obtain the amplitude of the buckled shape, denoted by C in (11).
As may be scen from (9), buckling of the bar will take place about that axis in the cross section for
which I assumes a minimum value,
Equation (9) may be modified to the form

_mEl
“ " (KLY

where KL is an effective length of the column, defined to be a portion of the deflected bar between points
corresponding to zero curvature. For example, for a column pinned at both ends, K = 1. If both ends are
rigidly clamped, K =0.5. For one end clamped and the other pinned, K = 0.7. In the case of a
cantilever-type column loaded at its free end, K = 2.

(12)
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14.2. Determine the axial stress in the column considered in Problem 14.1.
In the derivation of the equation EI(d?y/dx?) = M used to determine the critical load in Problem 14.1,
it was assumed that there is a linear relationship between stress and strain (see Chap. 9). Thus the critical
load indicated by (9) of Problem 14.1 is correct only if the proportional limit of the material has not been

exceeded.
The axial stress in the bar immediately prior to the instant when the bar assumes its buckled

configuration is given by
O = 7 ("')

where A represents the cross-sectional area of the bar. Substituting for P, its value as given by (9) of
Problem 14.1, we find

7 EI

Ow =3 (2)
But from Chap. 7 we know that we may write
I=Ar 3)
where r represents the radius of gyration of the cross-sectional area. Substituting this value in (2}, we find
7 EAr? ry?
= = —_ 4

T T AL "ZE(L) @

T E
or %o = e (5)

The ratio L/r is called the slenderness ratio of the column.

Let us consider a steel column having a proportional limit of 210 MPa and E = 200 GPa. The stress
of 210 MPa marks the upper limit of stress for which (5) may be used. To find the value of L/r
corresponding to these constants, we substitute in (5) and obtain
(200 % 10°) L
W or ? 100
Thus for this material the buckling load as given by (9) of Problem 14.1 and the axial stress as given by
(5) are valid only for those columns having L/r = 100. For those columns having L/r < 100, the compressive
stress exceeds the proportional limit before elastic buckling takes place and the above equations are not
valid.

Equation (5) may be plotted as shown in Fig. 14-3. For the particular values of proportional limit and
modulus of elasticity assumed above, the portion of the curve to the left of L/r = 100 is not valid. Thus
for this material, point A marks the upper limit of applicability of the curve.

210 X 10% =

MPa| |\ v
.\
‘\
mr=-= A

k P P_ =z

) —
o 100 ~L/r
Fig. 14-3 Fig. 14-4

14.3. Determine the critical load of a long, slender bar clamped at each end and subject to axial thrust
as shown in Fig. 14-4.
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Let us introduce the x-y coordinate system shown in Fig. 14-4 and let (x, y) represent the coordinates
of an arbitrary point on the bar. The bending moment at this point is found as the sum of the moments
of the forces to the left of this section about an axis through this point and perpendicular to the plane of
the page. Hence at this point we have M = — Py + M. The differential equation for the bending of the bar
is then Eld” vidx® = — Pv + M,, or

dy P _ M
a  EIY T EI

)

As discussed in texts on differential equations, the solution to (/) consists of two parts. The first part is
merely the solution of the so-called homogeneous equation obtained by setting the right-hand side of (1)
equal to zero. We must then solve the equation

&.Fi =0 2
" EIY T @

But the solution to this equation has already been found in Problem 14.1 to be

y:A,cos(\/%x)+B,sin(‘/gx) &)

The second part of the solution of (1) is given by a so-called particular solution, i.e.. any function
satisfying (/). Evidently one such function is given by

y= %(= constant) {4)

The general solution of (1) is given by the sum of the solutions represented by (3) and (4), or

y=A,cm(gx+B.sin ng)-&% 5)
%= -A, ‘/gsm( gx)-l-ﬁ‘, chos( ng) (6)

At the left end of the bar we have y = (0 when x = 0. Substituting these values in (5), we find
0=A,+ M,,fP._A]so, at the left end of the bar we have dy/dx = 0 when x = 0; substituting in (6). we obtain
0=0+B,VPIEl or B, = 0.

At the right end of the bar we have dyfdx = 0 when x = L; substituting in (6), with B, =0,

we find
/P . fP
0= —-A, ESII’I( EIL)

But A, = =M, /P and since this ratio is not zero, then sin(VP/EIL) = 0. This occurs only when
VPIEIL = nwwhere n = 1.2, 3,.... Consequently

n?aEl
Pcr = Lz

For the so-called first mode of buckling illustrated in Fig. 14-4, the deflection curve of the bent bar
has a horizontal tangent at x = L/2; that is, dy/dx = 0 there. Equation (6) now takes the form

ﬂzy_ﬂ(ﬂ) Ll (6")

o P \L)MTL

Consequently

(7)

and since dy/dx = 0 at x = L2, we find

0= %(n—ﬂ)sinﬂ
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144.

14.5.

14.6.

The only manner in which this equation may be satisfied is for n to assume even values: that is. n = 2. 4,
6,....
Thus for the smallest possible value of n = 2, Eq. (7) becomes
477 EI
Pt.‘f = Lz

Determine the critical load for a long slender bar clamped at one end. free at the other. and
loaded by an axial compressive force applied at the free end.

M, P
P /

L ]

A,

Fig. 14-5

The critical load is that axial compressive force P that is just sufficient to keep the bar in a slightly
deformed configuration, as shown in Fig. 14-5. The moment M, reprcsents the effect of the support in
preventing any angular rotation of the left end of the bar.

Inspection of the above deflection curve for the buckled column indicates that the entire bar
corresponds to one-half of the deflected pin-ended bar discussed in Problem 14.1. Thus for the column
under consideration, the length L corresponds to L/2 for the pin-ended column. Hencee the critical load
for the present column may be found from Eq. (9), Problem 14.1. by rcplacing I. by 21.. This viclds

_wEl_7El
“T QLY al?

A steel bar of rectangular cross section 40 mm x 50 mm and pinned at each end is subject to
axial compression. If the proportional limit of the material is 230 MPa and E = 200 GPa.
determine the minimum length for which Euler’s equation may be used to determine the
buckling load.

The minimum second moment of area is / = L5k = [5(50)(40)* = 2.67 x 10° mm®. Hence the least

radius of gyration is
r_\/z_ (2.67><1(}‘_|Hmm
A (40)(50) N

The axial stress for such an axially loaded bar was found in Problem 14.2 to be

. . TE
Ty
The minimum length for which Euler’s equation may be applied is found by placing the critical stress in
the above formula equal to 230 MPa. Doing this, we obtain
(200 % 10°)

= 1.065
ansy ok m

230 X 10¢ =

Consider again a rectangular steel bar 40 mm X 50 mm in cross section, pinned at each end and
subject to axial compression. The bar is 2 m long and £ = 200 GPa. Determine the buckling load
using Euler’s formula.
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The minimum second moment of area of this cross section was found in Problem 14.5 to be
2.67 x 10 mm", Applying the expression for buckling load given in (9) of Problem 14.1, we find

_ 7El _ (200 x 10°) (10 %) (2.67 X 10%)

The axial stress corresponding to this load is

2% 10°)

P, 132x10°
L 2RV 66 MP,
A (40)(50) a4

= 132kN

Determine the critical load for a W10 X 21 section acting as a pinned end column. The bar is
12 ft long and E = 30 X 10° Ib/in’. Use Euler’s theory.

From Table 8-1 of Chap. 8 we find the minimum moment of inertia to be 9.7 in'. Thus.

_ 77(30 X 10°1b/in?) (9.7 in*) _

(144 in)?

= 138,000 1b

A long thin bar of length L and rigidity EI is pinned at end A, and at the end B rotation is
resisted by a restoring moment of magnitude A per radian of rotation at that end. Derive the
equation for the axial buckling load P. Neither A nor B can displace laterally, but A is free to

approach B.

Fig. 14-6

The buckled bar is shown in Fig. 14-6, where M, represents the restoring moment. The differential

equation of the buckled bar is

or

Let o = P/EL Then

d’y
dx*
dy P _V
a Bl T EY

El = Vx— Py

dz
_.__‘t’+a2}-=-—x

dx- El

The general solution of this equation is easily found to be

. v
y = Asinax + B cosax +Fx

(7)
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14.9.

As the first boundary condition, when x = 0, y = 0; hence B = (. As the second boundary condition. when
x =L,y = 0; hence from (/) we obtain

VL Vv A
0=AsinaL+—P— or F=——smaL

L
Thus y=A[sinax—%sinaL] (2)
From (2) the slope at x = L is found to be
[%]FL=A[aoosaL—%sinaL] (3)
The restoring moment at end B is thus
ML=A.\[aoosaL—%sinaL] )

Also, since in general M = El(d?yldx®), from (2) we have
M, = —Ad’Elsinal. (%)

Equating expressions (4) and (5) after carefully noting that as M, increases dy/dx at that point decreases
(necessitating the insertion of a negative sign), we have

—Ad*Elsinal. = — [AkamsaL—'l—AsinaLl (6)
Simplifying, the equation for determination of the buckling load P becomes
%—aLcolaL+l=0 {7)
This equation would have to be solved numerically for specific values of El, L, and A.

Discuss column behavior when the average applied axial stress in the bar exceeds the
proportional limit of the material.

A Inclastic behavior

Linear, elastic behavior

Fig. 14-7

The Euler buckling load determined in Problem 14.1 is based upon the assumption that the column
everywhere is acting within the linear elastic range of action of the material, shown as OA in Fig. 14-7. In
this range the modulus E is the slope of the straight line OA. When the stress-strain curve ceases to be
linear, ie., to the right of point A, the slope of the curve is called the tangent modulus E, and it varies with
strain. This parameter must be determined by materials tests. Under these conditions it is necessary to
consider inelastic buckling. One of the earliest approaches to this, still used occasionally, is due to the
German engineer Engesser who, in 1889, suggested replacing E in Euler’s expression, Eq. (9) of Problem
14.1, by the tangent modulus E,. In this case the axial stress immediately prior to buckling is given by

— TrzEf
e = Ly
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Compression Inelastic Euler-1ype
yielding tuckhing buckling

Fig. 14-8

This is the tangent modulus formulg and the load P, = Ao, is called the Engesser load. This approach is
simple and easy to use—see Problem 14.10—and indicates a load only slightly less than the inelastic
buckling load found experimentally. The theory has certain inconsistencics that will not be discussed here
s0 it is not the best approach Lo rational column design.

Test results on axially compressed bars usually can be exhibited by the plot shown in Fig. 14-8. where
the mean axial stress o just before buckling (divided by the yield point of the material) is shown as a
function of the slendcrness ratio Lir. Experimental results indicate wide scatter, as shown by data points
between the two solid curves. The scatter is due to initial geometric deviations from straightness of the bar
as well as residual stresses incurred during fabrication. The plot indicates three modes of failure. depending
on the value of Lir. The first is @), compressive yiclding for very short columns: the second is ()., inelastic
buckling for intermediate length bars (which comprisc many engineering applications); and the third is ©,
Euler-type buckling of very long slender bars. Failures of type @ have been discussed in Chap. 1 and Euler
column behavior was treated in Problems 14.1 through 14.7. The rational design of columns corresponding
to condition ® is based upon any one of a number of semiempirical approaches discussed in the following
problems.

A pinned end column is 275 mm long and has a solid circular cross section. If it must support
an axial load of 250 kN, determine the required radius of the rod if the tangent modulus theory
is employed and the experimentally determined curve relating tangent modulus to axial stress
is that shown in Fig. 14-9.

From Problem 14.9 the load, according to the tangent modulus theory, is given by

TFE, mwEl
— N e— I
P = (A e = 13 (1)
For the solid circular cross section of radius R, we have [ = wR*4 so that (1) becomes
{250,000 N)(0.275m)> 2439 R
E, = 5 = 2
' w(nR%4) g @)
For any assumed radius R it is easily possible to find the axial stress:
P 250,000
= o = 3
7T A wR? )

and for any value of o from Fig. 14-9 we can ascertain the corresponding experimentally determincd value
of E,. Thus, we can solve Egs. (2) and (3) by trial and error.
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E, (GPa)

: \

100

800
o (MPa)

Fig. 14-9

Let us try R = 0.012 m. From Eq. (3)

250,000

= ooizmy - SSIMPa

a

For this value of o from Fig. 14-9, we have E, = 175 GPa. However, from Eq. (2) it is

2439

E=0ozmy

=117GPa

Clearly these values of E, do not agree and the assumed radius is too large.
Next, let us try R = 0.011 m. From Eq. (3)
250,000

= 220 - 658 MP
7 001l m)? 2

For this value of o from Fig. 14-9, we have E, = 125 GPa. However, from Eq. (2) it is

2439
(0011 m)*

It is instructive to plot these values as shown in Fig. 14-10. Clearly an acceptable value of radius lies
between 0.011 and 0.012 m. Let us try R = 0.0112m. From Egq. (3) we have

E, = 167 GPa

250,000

= 2270 _ 633 MP
7= Hootzy MPa
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E"
200 GPa |- Eq. (2) -
—
-

100 GPa |- ="

L L

—= R
_ﬁ‘ 001l m 0012 m
Fig. 14-10

and the corresponding value of E, from Fig. 14-10 is 152 GPa. The value found from Eq. (2} is
2439
" (00112 m)*

These two values of E, are sufficiently close that we may regard the radius of 0.0112 m as acceptable. that
is, 11.2 mm.

= 155 GPa

Discuss design criteria for structural steel columns.

In one approach, advocated by the AISC, the allowable axial compressive stress o, on a stecl column
of length L, minimum radius of gyration of cross section r, matcrial yield point o,,,. and Young's modulus
E is given by the semiempirical relations

l [KUI’)Z]
- Oyp

= 2C; fi EE: < (, (1
o [ 5 3Kn (K] e T )
3" T8C 8C"
TE KL _ .
Oﬂ—m fOl"T)((. (2)
2+ E
where c.- J= 3)
U‘T}

Here K is the end fixity coefficient introduced in Problem 14.1, These equations may be used with either
the SI or USCS systems of units. In Egs. (/) and (2) the denominalors represent safety factors which clearly
increase with increasing values of the slenderness ratio L/r.

The second approach, which is perhaps in best agreement with experimental evidence, is due to R.
Bjorhovde* who. in 1971. analyzed the behavior of a large number of full-scale test columns all having
measured initial imperfections from perfect straightness as well as residual (fabrication) stresses. These
columns were relatively light- or medium-weight hot-rolled wide-flange W sections having flange
thicknesses less than 2in (50.8 mm) and material yield points less than approximately 49.000 Ib/in
(335 MPa). He found that the mean (over the cross section) axial compressive stress o, just prior Lo
collapse is given by the expressions

T, = Oy for 0 <A <0.15

o, = 0,,(1.035 — 02021 — 0.2221%) for 0.15<A<10

o, = 0,,(—0.111 +0.636X ' +0.087A *)  for LO<A<20 (4)
g, = 0,,(0.009 + 0877 7) for 20 =X <3.6

0. = 0,,A * (Euler’s curve) for A=36

*R. Bjorhovde and L. Tall. “*Minimum Column Strength and Multiple Column Curve Concept.” Report 337.29, Lehigh
University. Fritz Eng, Lab, Bethlehem. PA. 1971. R. Bjorhovde, “Deterministic and Probabilistic Approaches to the Strength of
Steel Columns,” Ph.D. dissertation, Lehigh University. Bethlehem, PA, 1972,
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a= L [T (5)

where 7tV E

These results, known in graphical form as the Structural Stability Research Council Curve No. 2,
represent prototype behavior of steel columns in region (B of Fig. 14-8. The equations may be used with
either the SI or USCS systems of units. Since the stress o, in Egs. (4) is that existing just prior to collapse,
no safety factor is present but instead must be introduced by the designer. Two comparable sets of
equations were given by Bjorhovde for other types of steel sections.

14.12. Use the AISC design recommendation discussed in Problem 14.11 to determine the allowable
axial load on a W8 X 19 section 10 ft long. The ends are pinned, the yield point is 36,000 Ib/in’,
and E = 30 X 10? Ibfin.

From Table 8-1 Chap. 8 we have the properties of the cross section as
Iin = 7.9in° A =559in?
The radius of gyration is found by the method of Chap. 7 to be

) 7.9in? .
r= 550 1.189in
L_ 02 _
r 1189

From Problem 14.11 we have from Eq, (3)

C - ‘/2785 B J2ﬂ2(30x 10° Ib/in?)
¢ - 36,000 Ib/in?

100.9

Thus,

= 128.26

Typ

For both ends pinned, K = 1 and thus K(L/r) < C, so that the allowable axial stress is given by Eq. (1) of

Problem 14.11 to be
(Kurf] (100.9)2 ]
1- 1-——2 (36,000
o [ 2 |9 _ 2028267 ) ¢ )
“75 KLr) _ (KLY 3(1009) _ (100.08
37 8C. 8C 8(128.26) 8(128.26)"
= 13,100 Ib/in?

The allowable axial load is

5
-+
3

P, = (5.59in?) (13.100 lb/in?) = 73,100 Ib

14.13. Reconsider the column of Problem 14.12 but now with a length of 15 ft. Use the AISC design
recommendation to determine the allowable axial load. Both ends are pinned.

Now we have L/r = (15)(12)/1.189 = 151.4. Thus the increased length (in comparison to that of
Problem 14.12) leads to

K% (= 151.4) > C(= 128.26)

so that we must compute the allowable axial stress from Eq. (2) of Problem 14.11:
o = 1277 E
“  23(KLir)?
_ 1277(30 X 10° Ibfin®)

Ay =00 Ibvin®
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The allowable axial load is thus

P, = (5.59in?) (6740 Ib/in?) = 37,670 Ib

14.14. Use the AISC recommendation to determine the allowable axial load on a W203 X 28 section
3 m long. The ends are pinned. The material yield point is 250 MPa and E = 200 GPa.

From Table 8-2 of Chap. 8 we have the sectional properties as
I = 3.28 X 10° mm* A = 3600 mm?
The radius of gyration is found to be

f3.28x 10°* mm*
r= ——'——-—n?m-i—- = 30.18 mm

I 3000 mm
r 3018 mm 994

From Problem 14.11, Eq. (3). we have

c - J:«ls ~ Jznz(zoo x 10° N/m?)
o - 250 x 10° N/m’

Thus

= 125.7

Ovp

For both ends pinned., K = 1 and thus K(L/r) < C, so that the allowable axial stress is given by Eq. (I') of
Problem 14.11 to be

_ (KLIr® _ 947 :

[, [ Jasox 0 em
""‘:_;+3(Kur)_u<ur)3‘ 5,3994)  (%94)
37 8C. 8C? 3 8(1257) 8(125.7)

= 90.35 MPa

The allowable axial load is

2
2
](}Jmm) (90.35 % 10°* N/m?)

= 325,000N or 325kN

P = (3600 mm?) (

14.15. Reconsider the column of Problem 14.12 but now use the SSRC recommendation discussed in
Problem 14.11 to estimate the maximum load-carrying capacity of the column.

As discussed in Problem 14.11, we must first compute the parameter

a=KL 1 fo,
r wV E
(1)(10f) (12in/fr) 1 [ 36,000 Ibjin?
. - < - 1113
Here (1.189) 7V 30 x 10° Ib/in?

From Problem 14.11, for this value of A we must determine the ultimate (peak) axial stress in the
column from the semiempirical relation

o, = qw[—ﬂ.lll+¥+ w]

Az

0636 0087
= (36,000 1bin?) | ~0.111 + 22 + 2| — 19,000 Ib/in?
(e, "’"“)[ 011+ 13 (1.113}=] i



CHAP. 14] COLUMNS 371

The axial load corresponding to this stress is
Proax = (5.59 in?) (19,000 Ib/in?) = 106.200 [b

This load represents the average of actual test values of peak loads that columns of this type were found
to carry. It is to be noted that no safety factor is incorporated into these computations, so that the design
load for this member is less than the 106,600 Ib.

14.16. Select a wide-flange section from Table 8-2 of Chap. 8 to carry an axial compressive load of
750 kN. The column is 3.5 m long with a yield point of 250 MPa and a modulus of 200 GPa. Use
the AISC specifications. The bar is pinned at each end.

To get a first approximation, let us merely use P = Ao, from which we have

750,000 N

= = 2 2
250 % 10° N/ 0.0030 m or  3000mm

This tells us that any wide-flange section having an area smaller than 3000 mm is unacceptable.
Next, let us try the W203 x 28 section, From Table 82 we find area = 3600mm® and I, =
3.28 X 10° mm*. The minimum radius of gyration is thus

/3.28X 10° mm*
r= —'-—m~"mz— = 30.2 mm

from which the slenderness ratio is L/r = 3500/30.2 = 116.
From Problem 14.11, (Eq. (3)), we have

c - Jz-n-’(zoo X 10° N/m?)
< 250 x 10° N/m?

=125.6

Thus, since K = 1 for both ends pinned,
L
K—(=116) < C,(= 125.6)

So, we must employ Eq. (1) of Problem 14.11. This leads to

(116)2
~ 2(125.6)
O™ [§+ 3116)  (116)°

37 8(1256) 8(1256)

1- 1250

= 74.95 MPa

2
from which P, = (3600 mm?) ( ) (74.95 x 10° N/m?) = 270.000N or 270kN

m
10° mm)
which indicates that this is far too light a section.

Next, let us try the section W254 x 72 having an area of 9280 mm? and /., = 38.6 X 10°mm*. The
minimum radius of gyration is found to be

38.6 X 10° mm’*
= N omomme - oSmm
from which the slenderness ratio is 3500/64.5 = 54.26. Again we have

K%(= 54.26) < C.(= 125.6)
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so that we must again use Eq. (/) of Problem 14.11 to find the allowable stress which is

2
[ . (5426) ]25 o
= 20256)' ) = 124.6 MPa
e [ 5, 3(5426) _ (54.26) ] -
3 8(125.6) 8(1256)
2
for which P, = (9280 mm?) (—-1-—) (124.6 X 10° N/m?) = L.15 X 10° N or H150kN
10° mm

This section is rather heavy, so let us investigate the W254 X 54. Here, the area is 7010 mm? and
Ioin = 17.5 x 10° mm®. So, the minimum radius of gyration is found to be 50.0 mm and the slenderness ratio
is 3500/50 = 70. Again using Eq. (/) of Problem 14.11 we find ¢, = 114 MPa, from which the allowable
load is P, = 799 kN,

Investigation of the next lighter section, W254 X 43, by the above method indicates that it can carry
only 478 KN,

Thus, the desired section is the W254 x 54, which can carry an axial load of 799 kN, which is in excess
of the 750 kN required. A more complete table of structural shapes might well indicate a slightly lighter
section than the W254 x 54,

14.17. Develop a FORTRAN program to represent the AISC value of allowable axial load on a steel
column as discussed in Problem 14.11.

The symbols are defined in Problem 14.11 and Eqgs. (7) and (2) of that problem indicate allowable axial
compressive stress for values of KL/r less than or greater than the dimensionless parameter C.. The
program listing is

QOOLORAARAAAAAAAANARRRRRAARRARRAARAARRARARRARAAARARAARAANR A ARCARAARARAARAAA

00020 PROGRAM STEELCL (INPUT,OUTPUT)
00030* (AMERICAN INSTITUTE OF STEEL CONSTRUCTION)
QOO0 AARRAARAARRRARRARARARARARARARRRAARRARAARARRARAARRARRRAAAARAARARAAARN

00050*

00060* AUTHOR: KATHLEEN DERWIN

00070* DATE : JANUARY 24, 1989

00080*

00090* BRIEF DESCRIPTION:

00100* ONE APPROACH TO CONSIDERING DESIGN CRITERIA FOR STRUCTURAL

00110* STEEL COLUMNS IS GIVEN BY THE A.I.S.C. (AMERICAN INSTITUTE OF
00120* STEEL CONSTRUCTION). THIS PROGRAM DETERMINES THE ALLOWABLE AXIAL
00130* COMPRESSIVE STRESS AND LOADING OF A STEEL COLUMN USING THE RELATIO
00140* DEVELOPED AND ACCEPTED BY THE A.I.S.C.

00150%
00160* INPUT:
00170* THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,

00180* THE COLUMN LENGTH, THE MINIMUM MOMENT OF INERTIA AND AREA OF THE
00190* COLUMN CROSS SECTION, THE MATERIAL YIELD POINT, AND YOUNG'S MODULUS
00200% ARE INPUTTED. ALSO, THE END FIXITY COEFFICIENT IS ENTERED.

00210*

00220* OUTPUT:

00230* THE ALLOWABLE AXIAL COMPRESSIVE STRESS AND LOADING OF THE COLUMN
00240* IS DETERMINED.

00250*

00260* VARIABLES:

00270* ANS - DENOTES IF USCS OR SI UNITS ARE DESIRED

00280* L,I,A =-—- LENGTH, MIN.MOMENT OF INERTIA, AREA OF COLUMN X-SECT
00290* SIGYP,E -—- YIELD POINT, YOUNG'S MODULUS OF THE MATERIAL

00300* R - MIN. RADIUS OF GYRATION AS CALCULATED FROM THE
00310* CROSS-SECTIONAL AREA AND MOMENT OF INERTIA

00320* cc - CRITICAL CONSTANT OF THE COLUMN...A FUNCTION OF ITS
00330* PHYSICAL AND MATERIAL PROPERTIES

00340* CHECK - THE COLUMN CONSTANT AS CALCULATED FOR THE SPECIFIC
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00350+ CASE CONSIDERED. THIS IS COMPARED TO THE CRITICAL
00360" CONSTANT TO DETERMINE WHICH OF TWO RELATIONS TO USE
00370* K - END PIXITY COEFFICIENT OF THE COLUMN

00380* HOLD1,HOLD2--- PARTIAL CALCULATIONS OF THE MORE COMPLICATED FUNCTIO
00390# (USED FOR EASE IN PROGRAMMING)

00400* SIGA -—- ALLOWABLE AXIAL COMPRESSIVE STRESS

00410* LOADA  -—- ALLOWABLE AXIAL LOAD

00420* PI - 3.14159

00430*

00‘40***t*iiii*i***t***li***iti******ﬂ***i***l*****i*****l*i*iii*i******t!*!i

00450* 2k ia MAIN PROGRAM
COAGOARARAREARRRARARRAARRARRRRNRRRRARRRRRRRARRRRRARRARRRRARARARRARARARARARRARA

hhk ko

00470*
00480* VARIABLE DECLARATIONS
00490*
00500 REAL L,I,A,SIGYP,E,R,CHECK,CC,K,SIGA,LOADA, PI,HOLD],HOLD2
00510 INTEGER ANS
00520*
00530 PI = 3.1415%
00540*
00550* USER INPUT
00560*
00570 PRINT#*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'
00580 PRINT*,'l - USCS'
00590 PRINT*,'2 - SI'
00600 PRINT*,' °
00610 PRINT*, "ENTER 1,2'
00620 READ* ,ANS
00630 IF (ANS.EQ.1) THEN
00640 PRINT#*, 'PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
00650 ELSE
00660 PRINT*, 'PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER..
00670 ENDIF
00680 PRINT*,*" '
00690 PRINT*, 'ENTER COLUMN LENGTH:'
00700 READ* ,L
00710 PRINT*, 'ENTER THE CROSS-SECTIONAL PROPERTIES...'
00720 PRINT*, 'MOMENT OF IMERTIA, I:'
00730 READ*, I
00740 PRINT*, 'AREA: "'
00750 READ* A
00760 PRINT#*, 'ENTER THE MATERIAL YIELD POINT:'
00770 READ*,SIGYP
00780 PRINT*, 'ENTER THE VALUE FOR YOUNG'S MODULUS:'
33790 READ* . E
800 PRINT#*, 'FINALLY, ENTER THE '
00810 READ*, K ’ END FIXITY COEFFICIENT, K:
00820*
00830# END USER INPUT
00840*
00B850*
O0BEO*AAANK CALCULATIONS AR EAK
00870*
00880 MINIMUM RADIUS OF GYRATION
00890*
00900 R = (I/A)**0,5
00910*
ggggg: CRITICAL CONSTANT FOR THIS COLUMN SPECIFICATION
00940 CHECK = (L/R)*K
00950*
gg:gg: THE CRITICAL CONSTANT FOR ALL COLUMNS OF THIS MATERIAL
00980 CC = 2 * (PI*%2) * LETV
00990+ ( { ) E)/SIGYP)**(.5
01000* COMPARE CC AND CHECK TO DETERMINE WHICH RELATION TO USE

01010*
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01020 IF (CHECK.LT.CC) THEN
01030 HOLDL = (1 - ((CHECK**2)/(2*(CC**2))))*SIGYP
01040 HOLD2 = ((5./3)+((3%CHECK)/(8%CC)) - ((CHECK**3)/(8*(CC**3))))
01050 ELSE
01060 HOLD1 = (PI**2)*E
01070 HOLDZ = (23./12)*(CHECK##*2)
01080 ENDIF
01090*
31103: THE ALLOWABLE AXIAL STRESS AND LOADING
111
01120 SIGA = HOLD1/HOLD2
01130 LOADA = SIGA*A
01140*
01150 AAR#4 PRINTING OUTPUT AARRAR
01160+
01170 PRINT*,' '
01180 PRINT*,' '
01190 PRINT#, ‘AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:'
01200 PRINT*,* '
01210 IF (ANS.EQ.l) THEN
01220 PRINT 10,SIGA,'PSI."
01230 PRINT 20,LOADA, 'LB.
01240 ELSE
01250 SIGA=SIGA/1000000.0
01260 PRINT 10,SIGA, 'MPA."
01270 PRINT 20,LOADA, 'NEWTONS.'
01280 ENDIF
01290*
01300%* FORMAT STATEMENTS
01310%*
01320 10 FORMAT(2X,'THE ALLOWABLE AXIAL COMPRESSIVE STRESS IS',F10.1,
01330+ 1X,Ad)
gig;g*zo FORMAT(2X, 'THE ALLOWABLE AXIAL LOAD IS',F10.1,1X,A)
01360 STOP
01370 END

14.18. A pinned end W8 X 19 steel column has a yield point of 33,000 1b/in®> and a modulus of
30 X 10° Ib/in”. The length of the column is 15 ft. Use the FORTRAN program of Problem 14.17
to determine the allowable axial stress and also the load based on AISC specifications.

From Table 81 of Chap. 8 we find /., = 7.9in* and A = 5.59in% The self-prompting program and

compuler run is

run
PLEASE INDICATE YOUR CHOICE OF UNITS:

1
2

- UsCs
- 8I

ENTER 1,2

21
PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...

ENTER COLUMN LENGTH:

? 180

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

7 7.9

AREA:

? 5.59

ENTER THE MATERIAL YIELD POINT:

? 33000
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ENTER THE VALUE FOR YOUNG’'S MODULUS:
7 30E+6
FINALLY, ENTER THE END FIXITY COEFFICIENT, K:

721

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:

THE ALLOWABLE AXIAL COMPRESSIVE STRESS IS 6738.2 PSI.
THE ALLOWABLE AXIAL LOAD IS 37666.5 1LB.

SRU 0.780 UNTS.

14.19. Consider a pin-ended W305 x 37 column made of steel having a yield point of 270 MPa and a
modulus of 200 GPa. The length of the column is 10 m. From Table 8-2 of Chap. 8 we find
Imin = 6.02% 10 *m* and A = 4760 x 10"® m’. Use the FORTRAN program of Problem 14.17
to determine the allowable axial stress and load based on AISC specifications.

Using these input data, the computer run is

run
PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UscCs
2 - 58I

ENTER 1,2
? 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER COLUMN LENGTH:

? 10

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

? 6.02E-6

AREA:

? 4760E-6

ENTER THE MATERIAL YIELD POINT:

? 270E+6

ENTER THE VALUE FOR YOUNG’'S MODULUS:

? 200E+9

FINALLY, ENTER THE END FIXITY COEFFICIENT, K:
21

AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) STANDARDS:

THE ALLOWABLE AXTAL COMPRESSIVE STRESS IS 13.0 MPA.
THE ALLOWABLE AXIAL LOAD IS 61998.2 NEWTONS.

SRU 0.777 UNTS.

14.20. Develop a FORTRAN program to represent the SSRC values of mean axial compressive stress
just prior to collapse as discussed in Problem 14.11.

The symbols are defincd in Problem 14.11 and the Eqs. (¢) of that problem indicate axial stress just
prior to collapse for various values of A given by Eq. (5). The program listing is
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DDDloii**********t***itlﬁll***l****ll**ﬁﬁ**lﬁ****ﬁﬁl*ﬁ***tlti*ﬁ*ltl******

00020 PROGRAM STEELCL (INPUT,QUTPUT)

00030+ (BJORHOVDE, STRUCTURAL STABILITY RESEARCH COUNCIL)
ODDADRAAAAARA AR AR KA R AR AR R R AR R AR AR R A AR A AR AR AR AR A bk hhhh
00050*

00060* AUTHOR: KATHLEEN DERWIN

00070* DATE : JANUARY 24, 1989

00080*

00090 BRIEF DESCRIPTION:

00100* ONE APPROACH TO CONSIDERING DESIGN CRITERIA FOR STRUCTURAL

00110* STEEL COLUMNS WAS DEVELOPED BY R. BJORHOVDE, AND IS POSSIBLY
00120 TIN THE BEST AGREEMENT WITH EXPERIMENTAL EVIDENCE. THE MEAN AXIAL
00130* COMPRESSIVE STRESS JUST PRIOR TO COLLAPSE CAN BE OBTAINED FOR THE
00140* SPECIFIC COLUMN BY FIRST CALCULATING THE 'COLUMN CONSTANT' AND THEN
00150* DETERMINING THE MEAN STRESS AT FAILURE FROM THE APPROPRIATE RELATION.
00160*

00170* 1INPUT:

00180#* THE USER IS FIRST ASKED IF USCS OR SI UNITS WILL BE USED. THEN,
00190* THE COLUMN LENGTH, THE MINIMUM MOMENT OF INERTIA AND AREA OF THE
00200* COLUMN CROSS SECTION, THE MATERIAL YIELD POINT, AND YOUNG'S MODULUS
00210* ARE INPUTTED. ALSO, THE END FIXITY COEFFICIENT IS ENTERED.

00220*

00230* OQUTPUT:

00240* THE MEAN (OVER THE CROSS SECTION) AXIAL COMPRESSIVE STRESS AND
00250%* THE MEAN PEAK LOADING CONDITIONS ARE DETERMINED.

00260*

00270* VARIABLES:

00280* ANS ——— DENOTES IF USCS OR SI UNITS ARE DESIRED

00290* L,I,A -— LENGTH, MIN.MOMENT OF INERTIA, AREA OF COLUMN X-SECT
00300* SIGYP,E --- YIELD POINT, YOUNG'S MODULUS OF THE MATERIAL

00310+ R - MIN. RADIUS OF GYRATION AS CALCULATED FROM THE
00320* X-SECTIONAL AREA AND MOMENT OF INERTIA

00330* LAMDA - CRITICAL CONSTANT OF THE COLUMN...A FUNCTION OF ITS
00340* PHYSICAL AND MATERIAL PROPERTIES

00350%* K - END FIXITY COEFFICIENT OF THE COLUMN

00360* SIGU - MEAN AXIAL COMPRESSIVE STRESS AT FAILURE

00370* LOADU - MEAN AXIAL LOAD AT FAILURE

00380+ PI - 3.14159

00390*
00400‘**itt*tt**************ltt**tt**tt***tt**tt***iﬁttttl*****l*i**i**tt*ti‘
00410% bk aan MAIN PROGRAM hkhd

ooqzo“*******lltlttlttl*l**l************t***tt**itttttt*i**l‘*i*l**i*i*t*ttt

00430+

00440+ VARIABLE DECLARATIONS

00450+

00460 REAL L,I,A,SIGYP,E,R,LAMDA,K,SIGU, LOADU,PI
00470 INTEGER ANS

00480+

00490 PI = 3.14159

00500%

00510* USER INPUT

00520*

00530 PRINT*, 'PLEASE INDICATE YOUR CHOICE OF UNITS:'
00540 PRINT*,'1l - USCS'

00550 PRINT*,'2 - SI'

00560 PRINT*,' °

00570 PRINT*, 'ENTER 1,2°

00580 READ* , ANS

00590 IF (ANS.EQ.1) THEN

00600 PRINT#*, ' PLEASE INPUT ALL DATA IN UNITS OF POUND AND/OR INCH...'
00610 ELSE

00620 PRINT#, ' PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER..
00630 ENDIF

00640 PRINT*,' '

00650 PRINT#*, 'ENTER COLUMN LENGTH:'

00660 READ*,L
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00670 PRINT#*, '‘ENTER THE CROSS-SECTIONAL PROPERTIES...'

00680 PRINT#*, 'MOMENT OF INERTIA, I:'

00690 READ*, I

00700 PRINT*, 'AREA:’

00710 READ* A

00720 PRINT*, 'ENTER THE MATERIAL YIELD POINT:'

00730 READ* , SIGYP

00740 PRINT*, 'ENTER THE VALUE FOR YOUNG'S MODULUS:'‘

00750 READ* ,E

00760 PRINT*, 'FINALLY, ENTER THE END FIXITY COEFFICIENT, K:'

00770 READ* K

00780*%

00790%* END USER INPUT

00800*

00810*

O0B20* *a ki CALCULATIONS hakk ki

00830+

00840* MINIMUM RADIUS OF GYRATION

00B50*

00860 R = (I/A)**0.5

00870*

gosao* CRITICAL CONSTANT FOR THIS COLUMN SPECIFICATION
0890*

00900 LAMDA = ((K*L)/(R*PI))*{(SIGYP/E)**0.5)

00910+

00920* MEAN AXIAL COMPRESSIVE STRESS AND LOADING

00930*

00940 IF (LAMDA.LT.0.15) THEN

00950 SIGU = SIGYP

00960 ELSEIF (LAMDA.GE.0.15 .AND. LAMDA.LT.l1.0) THEN

00970 SIGU = SIGYP*(1.035 - 0.202*LAMDA - 0.222*(LAMDA**2))

00980 ELSEIF (LAMDA.GE.1.0 .AND. LAMDA.LT.2.0) THEN

00990 SIGU = SIGYP*(-0.111 + 0,636/LAMDA + 0.0872/(LAMDA**2))

01000 ELSEIF (LAMDA.GE.2.0 .AND. LAMDA.LT.3.6) THEN

01010 SIGU = SIGYP*{0.009 + 0.877/(LAMDA**2))

01020 ELSEIF (LAMDA.GE.3.6) THEN

01030 SIGU = SIGYP/(LAMDA**2)

01040 ENDIF

01050%

01060 LOADU = SIGU*A

01070*

01080*#kkxn PRINTING OUTPUT AARRRR

01090*

01100 PRINT*,' '

01110 PRINT*,' '

01120 PRINT#*, ' STRUCTURAL STABILITY RESEARCH COUNCIL (BJORHOVDE) STANDARDS

01130 PRINT*,' °

01140 IF (ANS.EQ.l) THEN

01150 PRINT 10,SIGU,'PSI’'

01160 PRINT 20,LOADU, 'LB*

01170 ELSE

01180 SIGU=SIGU/1000000.0

01190 PRINT 10,SIGU, 'MPA'

01200 PRINT 20,LOADU, 'NEWTONS'

01210 ENDIF

01220+

01230* FORMAT STATEMENTS

01240*

01250 10 FORMAT(2X,'THE MEAN AXIAL COMPRESSIVE STRESS AT FAILURE IS',Fl10.1,

01260+ 1X,A3)

01270 20 FORMAT(2X,'THE MEAN AXIAL LOAD AT FAILURE IS',F10.1,1X,A)

01280+

01290 STOP

01300 END
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14.21. Consider a 3.5-m-long pinned end steel column of wide-flange type W254 X 79. The material has

14.22.

a yield point of 250 MPa and a modulus of 200 GPa. Use the FORTRAN program of Problem
14.20 to determine the mean axial compressive stress just prior to collapse as indicated by the
SSRC relations.

The constants of this cross section are found from Table 8-2 of Chap. 8 to be I = 43.1 X 107" m* and
A = 10200 x 10 *m’. Using thesc values, together with the designated length, yield point, and modulus,
the self-prompting program prints as follows:

run
PLEASE INDICATE YOUR CHOICE OF UNITS:
1 - UscCs
2 - 81

ENTER 1,2
?2 2
PLEASE INPUT ALL DATA IN UNITS OF NEWTON AND/OR METER...

ENTER COLUMN LENGTH:

? 3.5

ENTER THE CROSS-SECTIONAL PROPERTIES...
MOMENT OF INERTIA, I:

? 43.1E-6

AREA:*

? 10200E-6

ENTER THE MATERIAL YIELD POINT:

? 250E+6

ENTER THE VALUE FOR YOUNG'S MODULUS:

? 200E+9

FINALLY, ENTER THE END FIXITY COEFFICIENT, K:
21

STRUCTURAL STABILITY RESEARCH COUNCIL (BJORHOVDE) STANDARDS:

THE MEAN AXIAL COMPRESSIVE STRESS AT FAILURE IS 207.8 MPA
THE MEAN AXIAL LOAD AT FAILURE IS 2119270.2 NEWTONS

SRU 0.786 UNTS.

Consider an initially straight. pin-ended column subject to an axial compressive force applied
with known eccentricity e (see Fig. 14-11). Determine the maximum compressive stress in the
column.

Fig. 14-11
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The differential equation of the bar in its deflected configuration is
d?y
El FrEie —Py

which has the standard solution

y=cusin( JE ) +creon( [ 2s)

Since y = e at each of the ends x = —L/2 and x = L/2, the values of the two constants of integration are
readily found to be

C,=0 G =

Thus, the deflection curve of the bent bar is

= Al cos( iJr)

y= ( PL) VEI
cos| [——=

El2

The maximum value of deflection occurs at x = (), by symmetry, and is

_ fP L)
}'mn—fsec( El12

Introducing the value of the critical load F,, as given by (9) of Problem 14.1, this becomes
= esec (1’ ﬁ)
Ymax 2 Pﬂ-

Evidently the maximum deflection, which occurs at the center of the bar, becomes very great as the load
P approaches the critical value. The phenomenon is one of gradually increasing lateral deflections, not
buckling. The maximum compressive stress occurs on the concave side of the bar at C and is given by

P Miy,c P Pe (17 .P)
= e —

m AT AT 2V,
where ¢ denotes the distance from the neutral axis to the outer fibers of the bar. If we now introduce the
radius of gyration r of the cross section, this becomes

o =f[1+£m(£ fi)]
™A r 2rV AE

This is the secant formula for an eccentrically loaded long column. In it, P/A is the average
compressive stress. If the maximum stress is specified to be the yield point of the material, then the
corresponding average compressive stress which will first produce yielding may be found from the
equation

OJ"P

ec L (P
— — -—i
”Hm(m AE)

For any designated value of the ratio ec/r?, this equation may be solved by trial and error and a curve of
PIA versus Lir plotted to indicate the value of P/A at which yielding first begins in the extreme fibers.

By _
A

14.23. Obtain the load-deflection relation for a pin-ended column subject to axial compression and
undergoing finite lateral displacements.

The treatment presented in Problem 14.1 is restricted to extremely small lateral deflections because
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Fig. 14-13 Fig. 14-14

this was the assumption made in deriving Eq. (1), the Euler-Bernoulli equation. To obtain a more general
representation let us introduce the angular coordinate 6 and arc length s, in addition to the x- and
y-coordinates (see Fig. 14-12).

An enlarged view of the deformed bar illustrates the angular coordinates more clearly (Fig. 14-13).
Note that d6 is negative. Let us now examine an element of arc length ds bounded by two adjacent cross
sections of the bar. Prior to loading these cross sections are parallel to each other but after the bar has
deflected laterally they have the appearance shown in Fig. 14-14 in which they subtend a central angle dé.
In a manner similar to that used in Problem 8.1, we may determine the normal strain of a fiber a distance
y from the neutral surface to be

e=Yd0_o
ds E
where o is the longitudinal stress acting on this fiber. But from Problem 8.1 we have o = My/l. Thus
ydo _ My
ds El
or, since M = — Py for the bar,
dé P
LA 4 (1)
ds EI
If we let > = P/EI then
dé
—=-—ady @)
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from which
de dy
4 o sing 3
ds? ds sm )

This equation is valid for large, finite lateral deflections of the bar in contrast to (5) of Problem 9.1 which
is limited to very small values of deflection. To solve (3), let us multiply through by the integrating factor

2(d6/ds):
ded*e de
—_—— in §)— 4
2 Y 207 (sin 6) I 4)
Integrating,
d6\?
(?.E) — 202 cos 8+ C, 5)
When x = 0, 8 = 6, (the initial slope) and at this same point y = 0; hence d6/ds = 0 from (2). Thus,
from (2),
0=2c"cos 8+ C,
so that

%-:— 2aVeos 6 —cos @, (6)

where the negative square root is taken because d# is always negative. This may be transformed to

de _ ,.290_.2£
T 2a  [sin 5 sy (7)

We next introduce the change of variables
. 0 .
sinz = ksindg ()]
where ¢ is a parameter assuming the value #/2 when x = 0 and the value 0 when x = L/2, from which

k= sin% 9)

Then @ = 2 arcsin (k sin ¢)
2kcospdd

and d6 = VI—I—R'2=SII‘I=2¢- (10)

From (7), (8), (9), and (10) we have

d
VH?T%* ads an

Integrating the last equation and remembering the definition of ¢ at its endpoint values,
Ln 0 d
CIJ‘ ds = — T?:T
A o V1—Ksin’é

or L_("__4¢ (12)
2 L ;l—kzsinng

The right-hand side of (12) is termed the complete elliptic integral of the first kind with modulus k and
argument ¢. Tabulated values of the integral for any specified value of k are readily available; see for
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example B. O. Peirce, A Short Table of Integrals, 4th ed., Ginn, 1957. To employ these tables we must select
a value of 8, thus fixing k from Eq. (9). Then (12) may be rewritten in the form

_AEIf (™ dd :
P71 UO Vi-Ksinlé i

to determine the axial load P corresponding to this assumed value of 6,. To find the maximum deflection
occurring at x = L/2, we have from geometry

% =sinf = 25ingcosg (14)

From (11) this becomes

dy _ _adyV1-Ksin’¢

ds dé (73)
Equating the right sides of (I14) and (15),
— V1 — in? )
ady Ld) KTSin ¢ _ 2k(sin ¢) VI~ Bsintd
or ady = —2ksin ¢dd (16)

Integrating,
ay =2kcos ¢+ C,
When y = 0, ¢ = n/2 from which C; = 0. Whenx = L/2, ¢ = 0 and y = ypa, = A. Thus A = 2k or
2k ki

2k
A= T P (7 dé
El _[) V1 - Ksin’ ¢

7)

The procedure is as follows:

1. Select a value of 6, and determine k from Eq. (9).

2
2. Ascertain the value of [ vl_h%?_?; from tabulated values in, for example, B. O. Peirce, and
— k*sin

then calculate the axial force P corresponding to this value of 6, from Eq. (13).
3. Calculate the central deflection A from Eq. (17).
Results of this computation for selected values appear in Table 14-1 in which the starred value 9.87 (= #%)

indicates that the simple theory of Problem 14.1 actually gives an exact result if it is assumed that the end
slopes are zero.

Table 14-1
O ™ d¢ PL? A
degrees k 5 V1 - K sin? & El L
0 0 a2 9.87(=7)*| 0

40 0.342 1.6200 10.50 0.211

80 0.643 1.7868 12.75 0.360
120 0.866 2.1565 18.56 0.403
160 0.985 3.1534 39.76 0.313

From the above the progressive states of deformation of the bar are as shown in Fig. 14-15.
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oy = 120°; % = 0.403

0 = 160%; 7 = 0313

‘.=W;£=0-8“

W

Fig. 14-15

"o
L)

This problem was first investigated by L. Euler in 1744 and the shape of the elastic curve is termed
the elastica. It is only through use of this more exact finite-deflection theory that the amplitude of the
lateral deflection may be determined. The approximate small-deflection treatment of Problem 14.1 does

not permit determination of this quantity.

14.24. A problem that arises in insertion of a fiber-optic cable in a surrounding rigid conduit is that
the cable buckles under certain axial “pushing” forces. This situation is represented in Fig.
14-16(a) by a long slender bar (the cable) having simply supported ends (and represented by
a line element) with a clearance A between the bar and the inside of the surrounding rectangular
conduit. Assume that the behavior of the cable in this conduit is two-dimensional and determine
the behavior of the cable under increasing axial compressive forces P.*

From Problem 14.1 when the axial force P = El/L?, the bar buckles and touches the conduit walls in
the central region which is of unknown length L,. For equilibrium of the left region of length L,, there is
a concentrated force R acting at the pin, as well as another at x = L,, as indicated in Fig. 14-16(b). The
differential equation of the deformed bar in the region x <L, is

2

EI% + Py = Rx

where the transverse force R must be considered to be exerted on the bar by the pin at A. The solution

of this equation is found as the sum of the general solution to the homogeneous equation plus a particular
solution to the nonhomogeneous equation, as in Problem 14.3. Thus we have

y=Asinm+Bcosax+% (n

where ¢ = P/EI. The boundary conditions for the region of length L, are (a) when x = 0,y = 0; (b) when
x = Ly, y = A, and (c¢) when x = L,, dy/dx = 0. From (a) we have B = 0. From (b) and (c) we get

R
AsinaLl+—P;L1=A (2)

AacosaL,+£=0 3)

Since the region of the deformed bar between x = L, and x <(L, + L,) is in contact with the rigid conduit,

*The author is indebted to Professor V. I. Feodosyev of the Moscow Higher Technical School for suggesting this problem and
for his discussions concerning it.
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the cable is straight in this region, and from Eq. (5) of Problem 9.1 the bending moment in that region is
zero. Thus the Euler-Bernoulli equation of the beam in this central region of length L, becomes

PA+Rx+R(x~L)=0

from which we have

From Eq. (2) we now have
Asinal, +A=A
and thus oL, =  from which o = 7/4 or L, = m/2. Substituting (5) and (6) in (2), we obtain

A
A=—
™

Since from (7) we have of = P/El, we have from (6)
(3)’ P
4 Eil
Ef

or = e—

)

)

(6)

7)

8)

When only the midpoint of the bar of length L is in contact with the interior wall of the conduit, i.e.,

when L, = L/2, Eq. (8) becomes

_ 4El

P 73

9
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This indicates that for values of axial force lying between

™ El 4P El
K < P< E

(10)

the flexible fiber-optic cable touches the rigid wall only at the midpoint of the length of the conduit, i.e.,
at x = L/2. Only for values of P> 4+ EI/L? is the flexible cable in contact with the conduit interior for a
finite length. This is indicated in Fig. 14-16(b).

Next, the central region of length L, may buckle for sufficiently large values of compressive force P.
The central portion obviously behaves as a clamped end column as shown in Problem 14.3, and it buckles

at the load
477 El
= ¥
P=""0 )
into the configuration shown in Fig. 14-16(c). But from Fig. 14-16(b), we have
2L|_ + Lz =L
so from Eq. (5) we have
L,=L-2 (3) (12)
a
If we now equate from the values of P from (8) and (12), we find L, = L/4, and from (8) we find for this
value of L,
1677 El
P= B (13)

By analyses such as the above, it can be shown that increases in axial force P over that given by Eq.
(13) lead to the value L, = L/6, and that configuration is retained until the axial load is

3677 El
P= e

(74)

Still greater values of axial load will lead to the configuration indicated in Fig. 14-16(d). Thus, simple
buckling theory has led to the plausible configurations indicated in Fig. 14-16.

14.25. Determine the deflection curve of a pin-ended bar subject to combined axial compression P
together with a uniform normal loading as shown in Fig. 14-17.
One convenient coordinate system to designate points on the deflected bar is shown in Fig. 14-17.

There, the origin is situated at the point of maximum deflection. The bending moment at an arbitrary point
(x,y) on the deflected bar is written most easily as the sum of the moment of all forces to the righr of (x,y)

¥

Fig. 14-17
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and with algebraic signs consistent with the definitions of positive and negative bending introduced in

Chap. 6.
The bending moment is thus
L
wL(L L 2
= - +—_— = —_— ——
M= P(A-y) 2(2 x) w(z x) > (1)

so that the differential equation of the deflected bar is

d! 2
Elﬁ=Pﬁ—Py+%(—a——x’) )

If we introduce the notation

n= | £
El
we have the nonhomogeneous differential equation of the bar

d’y w (L?
4y 2y (= _ z)+2z
Y 25:(4 ol A

The solution is given by the usual methods of differential equations as the sum of (a) the solution of
the corresponding homogeneous equation, and (b) any particular solution of the entire nonhomogeneous
equation, Thus we may write the solution as

w (L? 2w
= + Bsi 2
y = Acosnx + Bsinnx 2 ( x )+ s—+4

where A and B are constants of integration. These are easily found by realizing that, because of symmetry
of the bent bar. the deflection is A at x = L/2 and aiso the bar has a horizontal tangent at x = 0. This
leads to

= A+ (sec"—[:cosnx—l)—n’(ﬁ—x—-z)
Y n’P 2 8 2

as the solution of the nonhomogeneous equation. The peak deflection occurs at the midpoint of the bar
(the origin of our coordinate system) and is given by

2r2
£=Ll(secﬁ—l)-n;]

14.26. Two identical rigid bars AB and BC are pinned at B and C and supported at A by a pin in a
frictionless roller that can only displace vertically. A spring of constant k is attached to bar BC,
as shown in Fig. 14-18(a). Determine the critical load of the system.

A free-body diagram of the entire system of two rigid bars is shown in Fig. 14-18(b). The system is
shown in a slightly deflected configuration characterized by the angle A# corresponding to its buckled
shape. Ends A and C are pinned so it is necessary to show two components of pin reaction at each of these
points. The spring elongates an amount a(A#6) and consequently exerts a force k2(A6) on bar BC. The pin
at B is internal to this free body; hence no pin forces should be shown. From statics,

+1X M, = C,(4a) — ka(A8) (3a) = 0

_ 3ka(A6)

C, 2
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Fig. 14-18

Next, consider the free-body diagram of the lower bar BC shown in Fig. 14-18(c). Now the pin forces
at B become external to this free body, and from statics we have

+DEMy= &fﬂ)aﬂ) - P.a(2a A8) — [ka(AB)]a =0

ka
P,==
or 4

It is impossible to determine (A6) by this approach.

Supplementary Problems

14.27. A steel bar of solid circular cross section is 50 mm in diameter. The
bar is pinned at each end and subject to axial compression. If the
proportiocnal limit of the material is 210MPa and E = 200 GPa,
determine the minimum length for which Euler’s formula is valid.
Also, determine the value of the Euler buckling load if the column has
this minimum length. Ans. 1.21m, 412kN

14.28. The column shown in Fig. 14-19 is pinned at both ends and is free to
expand into the opening at the upper end. The bar is steel, is 25 mm
in diameter, and occupies the position shown at 16 °C. Determine the
temperature to which the column may be heated before it will buckle.
Take a =12 X 10°%°C and E = 200 GPa. Neglect the weight of the
column. Ans. 20.3°C

14.29. A long slender bar AB is clamped at A and supported at B in such a
way that transverse displacement is impossible as in Fig. 14-20, but the Fig. 14-19
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14.30.

14.31.

14.32.

14.33.
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Fig. 14-20

end of the bar at B is capabie of rotating about B. Determine the differential equation governing the
buckled shape of the bar.  Ans. tannL = nl. where n’ = P/EI

A bar of length L is clamped at its lower end and subject to both vertical and horizontal forces at the upper
end, as shown in Fig. 14-21. The vertical force P is equal to one-fourth of the Euler load for this bar.
Determine the lateral displacement of the upper end of the bar.  Ans.  16(4 — m)RLY ™ El

Fig. 14-21

A bar of length L and flexural rigidity EI has pinned ends. An axial compressive force
El
412
is applied to the beam and a bending moment M is applied at one end. Determine the rotational stiffness,

i.e.. applied moment per radian of rotation at that end of the bar. Rework the problem for the case of an
axial tensile force of the same numerical value.

247E1 347E1
L ' L

P=

Ans.

An initially straight bar AC is pinned at each end and supported at the midpoint B by a spring which resists
any lateral movement 8 of B with a lateral force (kEI/L.?)8. The bar is of length 2L and least flexural rigidity
EI Equal and opposite thrusts P are applied at the end C as well as at the centroid of the bar at B. In any
deflected form the line of action of the thrust applied at B remains paraliel to the chord AC. Determine
the minimum buckling load of the system.

E
Ans. P, = ﬁ’rf where B is the smallest positive root of the equation

B 3k+(09+kp-p
tanf 3k - )

A long thin bar of length L and rigidity ET is supported at each end in an elastic medium which exerts a
restoring moment of magnitude A per radian of angular rotation at the end. Determine the first buckling
load of the bar.

2w

al P
Ans. lan?— Y where o =
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14.34.

14.35.

14.36.

14.37.

14.38.

14.39.

14.40.

1441

14.42,

A long thin bar is pinned at each end and is embedded in an elastic packing which exerts a transverse force
on the bar when it deflects laterally. When the transverse deflection at any point is given by y, the packing
exerts a transverse force per unit length of the bar equal to ky. Determine the axial force required to buckle

the bar.

w EI kL*?
Ans. P, = (’

I + A EI) where n is the integer for which P, is minimum
Use the AISC formula to determine the allowable axial load on a W10 X 54 column that is 22 ft long. The
yield point of the material is 34,000 Ib/in? and the modulus is 30 X 10°1b/in>.  Ans.  197,2501b

Use the AISC formula to determine the allowable axial load on a W254 X 79 column that is 14 m long. The
yield point of the material is 250 MPa and the modulus is 200 GPa.  Ans.  226,500N

A W12 x 25 pin-ended column made of steel having a yield point of 36,0001b/in” and a modulus of
30 10°1b/in? is 30 ft long. Use the FORTRAN program of Problem 14.17 to determine the allowable axial
stress and load based on AISC specifications. Ans. 23401b/in?, 17,2801b

A W254 x 79 pin-ended column made of steel having a yield point of 250 MPa and a modulus of 200 GPa
is 14 m long. Use the FORTRAN program of Problem 14.17 to determine the allowable axial stress and
load based on AISC specifications. Ans. 22.2MPa, 226 kN

Consider a pinned end column 9m long of wide flange designation W203 X 28. The yield point of the
material is 250 MPa and the modulus is 200 GPa. Use the FORTRAN program of Problem 14.20 to
determine the mean axial compressive stress as well as axial load just prior to collapse as indicated by the
SSRC equations. Ans. 21.7MPa, 78.2 kN

Consider a pinned end column 22 ft long of wide flange designation W10 X 54. The yield point of the steel
is 34,000 Ib/in? and the modulus is 30 X 10°1b/in’. Use the FORTRAN program of Problem 14.20 to
determine the mean axial compressive stress as well as load just prior to collapse as indicated by the SSRC
equations.  Ans. 18,200 Ib/in?, 289,000 ib

Determine the deflection curve of a pin-ended bar subject to axial compression together with a central
transverse force as shown in Fig. 14-22.

2;"‘»:-‘.:03E 2k Et
2

|

¢ (*x.)

L]

re~
=
-1

0

Fig. 14.22

A pin-ended bar of flexural rigidity E7 is subject to the two transverse loads indicated in Fig. 14-23, each
being one quarter of the Euler axial buckling load of the bar and simultaneousiy the axial loads each being
half the Euler buckling load of the bar. Determine the peak transverse deflection of the bar.

Ans.  0.008L
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14.43. The system of two rigid vertical bars AB and BC shown in Fig. 14-24 is pinned at the base C and restrained
against lateral motion at the top A, but is free to rotate there. The bars are also pinned at B. The midpoint
B is partially restrained against lateral displacement by the two linear springs, each offering k1b of
resistance per inch of lateral movement. The springs are load free prior to application of P. Determine the

buckling load P,,.  Ans P, = 12k

Fig. 14-24

14.44. The rigid bar OA in Fig. 14-25 is pinned at O and supports a vertical force P at the upper end A. Point
A is tied back to the ground by a spring of constant k. The spring is load free when the rod OA is vertical.
Weights of all members are to be neglected. Determine the load P at which the system becomes

unstable. Ans. kL2

P
A—
It
3
-
R
37
x 3 L
J
5
J
R
~ (&)
i L |

Fig. 14-25
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14.45. The guyed steel mast AB in Fig. 14-26 is pinned at A and braced by a pianar system of two thin wires BC
and BD, as shown in Fig. 14-26. The moment of inertia of the mast is 3.00in* and its height is 50in. Its
modulus of elasticity is 30 X 10° Ib/in®. The wires are each of aluminum having modulus of 10 X 10° Ib/in?
and cross-sectional area 0.10in? The mast is subject to a vertical force P applied at B. Determine the
magnitude of the buckling load. (Hinr: It is necessary to consider rigid-body rotation of the mast about
A to the configuration AB’ as well as independently computing the Euler-type buckling load of the mast
into one loop of a sine curve.) Ans. P =350,0001b




Chapter 15

Strain Energy Methods

Thus far in this book various techniques have been discussed for finding deformations and
determining values of indeterminate reactions. These techniques have essentially been based upon
geometric considerations. There are, however, many types of problems that can be solved more
efficiently through techniques based upon relations between the work done by the external forces and
the internal strain energy stored within the body during the deformation process. The present chapter
will discuss these techniques, which are somewhat more general and more powerful than the various
geometric approaches.

INTERNAL STRAIN ENERGY

When an external force acts upon an elastic body and deforms it, the work done by the force is
stored within the body in the form of strain energy. The strain energy is always a scalar quantity. For
a straight bar subject to a tensile force P, the internal strain energy U is given by

PL
U=2aF
where L represents the length of the bar, A is its cross-sectional area, and F is Young’s modulus. This
expression is derived in Problem 15.1.
For a circular bar of length L subject to a torque 7, the internal strain energy U is given by
2
U= u
2GJ
where G is the modulus of elasticity in shear and J is the polar moment of inertia of the cross-sectional
area. This expression is derived in Problem 15.2.
For a bar of length L subject to a bending moment M, the internal strain energy U is given by

M’L

U=

where I is the moment of inertia of the cross-sectional area about the neutral axis. This is derived in
Problem 15.3.

Note that in each of these expressions the external load always occurs in the form of a squared
magnitude, hence each of these energy expressions is always a positive scalar quantity.

SIGN CONVENTIONS

Strain energy methods are particularly well suited to problems involving several structural
members at various angles to one another. The fact that the members may be curved in their planes
presents no additional difficulties. One of the great advantages of strain energy methods is that
independent coordinate systems may be established for each member without regard for consistency
of positive directions of the various coordinate systems. This advantage is essentially due to the fact
that the strain energy is always a positive scalar quantity, and hence algebraic signs of external forces
need be consistent only within each structural member.

392
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CASTIGLIANO’S THEOREM

This theorem is extremely useful for finding displacements of elastic bodies subject to axial loads,
torsion, bending, or any combination of these loadings. The theorem states that the partial derivative
of the total internal strain energy with respect to any external applied force yields the displacement
under the point of application of that force in the direction of that force. Here, the terms force and
displacement are used in their generalized sense and could either indicate a usual force and its linear
displacement, or a couple and the corresponding angular displacement. In equation form the
displacement under the point of application of the force P, is given according to this theorem by

au
B = aP,

This theorem is derived in Problem 15.8.

APPLICATION TO STATICALLY DETERMINATE PROBLEMS

In such problems all external reactions can be found by application of the equations of statics.
After this has been done, the deflection under the point of application of any external applied force
can be found directly by use of Castigliano’s theorem. This is illustrated in Problems 15.9 and 15.10.
If the deflection i1s desired at some point where there is no applied force, then it is necessary to
introduce an auxiliary (i.e., fictitious) force at that point and, treating that force just as one of the real
ones, use Castigliano’s theorem to determine the defiection at that point. At the end of the problem
the auxiliary force is set equal to zero. This is illustrated in Problems 15.9, 15.12, 15.13, and 15.19.

APPLICATION TO STATICALLY INDETERMINATE PROBLEMS

Castigliano’s theorem is extremely useful for determining the indeterminate reactions in such
problems. This is because the theorem can be applied to each reaction, and the displacement
corresponding to each reaction is known beforehand and is usually zero. In this manner it is possible
to establish as many equations as there are redundant reactions, and these equations together with
those found from statics yield the solution for all reactions. After the values of all reactions have been
found, the deflection at any desired point can be found by direct use of Castigliano’s theorem. This is
illustrated in Problems 15.16 through 15.18.

ASSUMPTIONS AND LIMITATIONS

Throughout this chapter it is assumed that the material is a linear elastic one obeying Hooke’s
law. Further, it is necessary that the entire system obey the law of superposition. This implies that
certain unusual systems, such as that discussed in Problem 1.17, cannot be treated by the techniques
discussed here.

Solved Problems

15.1. Determine the internal strain energy stored within an elastic bar subject to an axial tensile
force P.

For such a bar the elongation A has been found in Probiem 1.1 to be A = PL/AE, where A represents
the cross-sectional area, L is the length, and E is Young’s modulus. The force-elongation diagram will
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iz a)
A A
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(a) ®)
Fig. 15-1

consequently be linear, as shown in Fig. 15-1(b). For any specific value of the force P, such as that
correspending to point B in the force-elongation diagram, the force will have done positive work indicated
by the shaded area OBA, This triangular area is given by ;PA. Replacing A by the value given above, this
becomes P’ LI2AE. This is the work done by the external force and the work is stored within the bar in
the form of internal strain energy, denoted by U. Hence
PL
v 2AE
Essentially, the elastic bar is acting as a spring to store this energy. The same expression for internal strain
energy applies if the load 1s compressive, since the axial force appears as a squared quantity and hence the
final result is the same for either a positive or negative force.
If the axial force P varies along the length of the bar, then in an elemental length dx of the bar the
strain energy is

_ Pt dx
2AE

dt

and the energy in the entire bar is found by integrating over the length:

U= L p2dx
| 24E

Determine the internal strain energy stored within an elastic bar subject to a torque T as shown
in Fig. 15-2(a).

T 4B

(a) (b
Fig. 15-2

In Problem 5.3, the angle of twist 8 has been found to be 8§ = TL/GJ, where G is the modulus of
elasticity in shear, L is the length, and J is the polar moment of inertia of the cross-sectional area. According
to this expression, the relation between torque and angle of twist is a linear one, as shown in Fig. 15-2(b).
When the torque has reached a specific value such as that indicated by point B, it will have done positive
work indicated by the shaded area OBA. This triangular area is given by 376, or 72 L/2GJ. This work done
by the external torque is stored within the bar as internal strain energy, denoted by U. Hence

- T’L
2GJ
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15.3.

15.4.

If the torque T varies along the length of the bar, then in an elemental length dx the strain
energy is

T2dx
=51
and in the entire bar it is
U= J‘ L T2 dx
A 2GJ

Determine the internal strain energy stored within an elastic bar subject to a pure bending
moment M.

In Problem 8.1 is shown an initially straight bar subject to the pure bending moment M which deforms
it into a circular arc of radius of curvature p. In Eq. (7) of that problem it was shown that M = Ellp,
where ! denotes the moment of inertia of the cross-sectional area about the neutral axis. But the length
of the bar, L, is equal to the product of the central angle 6 subtended by the circular arc and the radius
p- Thus

M 1 6 o _ ML

El p L Eil
According to this the relation between moment and angle subtended is a linear one, and this is illustrated
in Fig. 15-3. When the moment has reached a specific value M, such as that indicated by point B, it will

have done work indicated by the shaded area OAB. This area is given by $M6, or M* L/2E]. This work done
by the external moment is stored within the bar as internal strain energy. denoted by U. Hence

ML
2El

Fig. 15-3

If the bending moment M varies along the length of the bar, then in an elemental length dx the strain
energy is

M?2dx
V=5
and in the entire bar it is
L M2dx
v= 2E!

o

Consider the two simply supported beams shown in Fig. 15-4. Both are of rectangular cross
section and of equal width. The materials are identical. The first beam has constant height along
the length, the second has a small groove in the center which reduces the height by one-fifth.
The length of the groove along the axis is negligible. The maximum stress in each bar due to



STRAIN ENERGY METHODS [CHAP. 15

FreySidneks - - |

o=
[ )

Fig. 15-4

the action of the central force P is the elastic limit of the material. Neglecting the effect of stress
concentrations, determine the ratio of internal strain energies in the two bars.

For the first bar, the section modulus is

I Lbht ,
Z I e DT ee— . i
<~ 05h 0.167h b
For the second bar, in the grooved region the section modulus is
I Lb(0.8hy)
Z=-=12""""2 = 01073b
c 0.4h2 -
and in the thicker region of depth A, the section modulus is

I _ isbh .
= - =—=—==0.16Th;b

¢ 05, 1o

In general, for bending we have the bending stress at the outer fibers of a bar given by the relation
o = MIZ. Sincc the maximum stresses in each bar are equal, we have

0.167hib = 0.107H5b  or  hy = 1.25h,
The strain energy in the first bar is
ML M?L

U =
"TO2EL T 2E(5bRY)

The strain energy in the second bar, since the groove is of negligible length, is
- ML __
2E[#b(1.25h,)]

The loadings and lengths are identical. hence we need not calculate M? L to obtain the desired ratio,
which is

U,

U,:U, = 0.512

This indicates that a grooved bar is very ineffective in storing internal strain energy. This is an important
consideration in the design of bars to withstand dynamic loadings.

15.5. Consider a vertical bar of uniform cross section with a flange at the lower end (Fig. 15-5). A

weight W is released from the top of the bar and falls freely along the bar until it strikes the
flange. Determine the maximum elongation of the bar and also the maximum stress.

To solve this problem we shall introduce several simplifying assumptions: (@) the weight of the vertical
bar is very small compared to W. (b) there are no losses of energy due to friction or local distortion, and
(c) the stress-strain diagram of the material of the bar is the same for dynamic loading as for static.
Actually, a more sophisticated treatment would take strain wave propagation in the bar into account, but
that is beyond the scope of the present study.
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8~

—C——/
Fig. 15-5

The weight W falls through the distance L and after striking the flange extends the bar an unknown
amount A, At this maximum extension the tension in the bar is maximum and the equation relating work
done by W and the internal strain energy of extension at this instant of maximum deformation is

PL
W(L+A}———2AE )
But A = PLIAE, and substituting for P in (1), we get
AEN?
WL+8)=—7 (2)

The static extension of the bar due to the weight W would be A, = WLIAE. If the value of W from this
expression is introduced in the above equation and the resulting quadratic equation solved for the

unknown extension A, we get
A,
A=A+ A},+?v’ 3

where g is the acceleration due to gravity and v = V2gL is the velocity with which W strikes the flange.
If the length of the bar, L, is very large compared to A, then the above expression becomes

approximately

A
A= [ )
g

In this case the axial stress is given by
_ P _AE E A“vz_d sz£
A L LVYg V2 AL
It is of interest to note that in the dynamic case the stress depends upon the length L as well as the Young's
modulus E. The corresponding static stress does not involve either of these factors.
For the special case of a suddenly applied load W acting on the flange, the length L through which
the weight falls may be set equal to zero in (3) to obtain
A=2A, (6)
Thus, for this particular problem, a suddenly applied load produces a deflection twice as great as would
be produced by a gradually applied load.

)

A cantilever beam is struck at its tip by a body of weight W falling freely through a height A
above the beam, as shown in Fig. 15-6. Neglecting the weight of the beam, determine the total

deflection at the tip.
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P o ¢
——

Fig. 15-6

By the time the weight has deflected the tip of the beam to its maximum value, the weight will have
done an amount of work given by

W(h +4) (7)
If we let P denote the force exerted by the weight on the beam at the time of peak deflection, then

at this moment the strain energy in the beam is given by PA/2. Thus, once the work done by the external
force is stored within the beam as internal strain energy we have

wu;+m=% &
or P=?-i£(h+r.\.) %))

But from Problem 9.2 we know that if this force P acts at the tip of a cantilever beam the deflection at
that point is
2W L?
= | —1ih —_—
A lﬁ ( +A)]3EI (4)

where I is the moment of inertia of the cross section about the neutral axis through the centroid. However,
the deflection due to the weight W, if it were statically applied, is

wiL?

A, = 3E] (5)
and hence (4) becomes
A’ —2A,A-2hA, =0 (6)
Solving,
A=A, +VAL+2hA, (7)

where the positive square root is taken so as to obtain the maximum deflection. For the special case of a
suddenly applied load at the tip, 2 = 0, and (7) yields A = 2A,,. Just as in Problem 15.5, a load suddenly
applied produces twice the deflection it would if it were applied gradually.

A simply supported beam is struck at its midpoint by a weight W = 1 kN falling freely from a
height of A = 100 mm above the top of the beam. The beam is 5 m long and of circular cross
section 100 mm in diameter. Take E = 200 GPa. Determine the maximum deflection of the
beam.

The work done by the falling weight in producing the maximum central deflection A is
W(h + A) )
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15.8.

If P denotes the force exerted by the weight on the beam during the moment of maximum deflection, then
the strain energy in the beam is PA/2. Thus

% = W(h+A) (2)
2W(h +
or P = M (3)
A
But the central defiection of a centrally loaded, simply supported beam is given in Problem 9.12 as
pPL?
~ 48El “)
Substituting the above value of P, this becomes
C2W(h+4) P
A=T% w=E )
But the static deflection corresponding to Wis A,, = WLY48E!, and hence (5) can be written in the form
A?—2A,A—-2hA, =0 (6)
Solving,
A=A, +VAL+2hA, (7)

For the beam under consideration,

wD*
I= = 4.9 % 10* mm*
= mm

The maximum deflection is found from (7) as

_ (1000) (5) (10°y° _
B = 200X 10° % 10-9) (a9 x 107 _ 206
Thus, A = 2.66 + V(2.66)2 + 2(100) (2.66) = 25.9 mm

Derive Castigliano’s theorem.

Let us consider a general three-dimensional elastic body loaded by the forces P,, P,, etc. (Fig. 15-7).
These would include forces exerted on the body by the various supports. We shall denote the displacement
under P, in the direction of P, by A, that under P, in the direction of P, by A,, etc. If we assume that all

P
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forces are applied simultaneously and gradually increased from zero to their final values given by P,, P,,
etc., then the work done by the totality of forces will be

P P, P
u=§m+?m+fm+m H

This work is stored within the body as elastic strain energy.
Let us now increase the nth force by an amount dP,. This changes both the state of deformation and
also the internal strain energy slightly. The increase in the latter is given by

aU

S_P,,dp“ (2)

Thus. the total strain energy after the incrcase in the nth force is

Y ip (3)

+
v apP, "

Let us recensider this problem by first applying a very small force dP, alone to the elastic body. Then,
we apply the same forces as before, namely, P,, P;, P, etc. Due to the application of dF, there is a
displacement in the direction of dP, which is infinitesimal and may be denoted by dA,. Now, when P, P,,
P, ete., are applied, their effect on the body will not be changed by the presence of 4P, and the internal
strain energy arising from application of P,, P,, P,, etc., will be that indicated in (7). But as these forces
are being applied the small force 4P, goes through the additional displacement A, caused by the forces
P,, P,, Py, etc. Thus. it gives rise to additional work (dP,)A, which is stored as internal strain energy and
hence the total strain energy in this case is

U+ (dP)A, (4)

Since the final strain energy must be independent of the order in which the forces are applied, we may
equate (3) and (4):

al

+— =U+
Ut pdP. = U+ (dPA,
AU
or A, = E’; (5)

This is Castigliano’s theorem; i.c., the displacement of an ¢lastic body under the point of application
of any force, in the direction of that force, is given by the partial derivative of the total internal strain
energy with respect to that force. Equations for U are given in Problems 15.1, 15.2, and 15.3 for axial,
torsional, and bending loadings, respectively. However, instead of using the integral forms of the equations
in those problems, it is usually more convenient to differentiate through the integral signs. and thus for a
body subject to combined axial, torsional, and bending effects, we have for the displacement A, under the
force P,

A = P(APIdP,)ds . T(aTIaP,) ds N M(aMIaP,) ds
" f AE f GJ j EI
For a body composed of a finite number of elastic subbodies, these integrals are replaced by finite
summations, as shown in Problem 15.9.

The term “force™ here is used in its most general sense and implies either a true force or a couple.
For the case of a couple, Castigliano’s theorem gives the angular rotation under the point of application
of the couple in the sense of rotation of the couple.

It 1s important to observe that the above derivation required that we be able to vary the nth force,
P,.. independently of the other forces. Thus, P, must be statically independent of the other external forces,
implying that the energy I/ must always be expressed in terms of the statically independent forces of the
system. Obviously, reactions that can bc determined by statics cannot be considered as independent
forces.
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15.9. The bars AB and CB of Fig. 15-8 are pinned at A, C, and B and subject to the horizontal applied
load P acting at B. Use Castigliano's theorem to determine the horizontal and vertical
components of displacement of pin B.

In order to use Castigliano's theorem, we must have a force at B acting in each of the directions in
which we seek the displacement. Since the real force P acts horizontally, we must consider that force as
well as an auxiliary force Q that we introduce in the vertical direction at B. Thus, the free-body diagram
of the pin at B appears as shown in Fig. 15-9.

Fig. 15-8

For equilibrium we have
SF,=P~F,sind5°=0  and therefore  F, = PV?2 (1)
2F,=F,—- Q- F,cos45°=0 and therefore F,=P+Q )
Castigliano’s theorem applied to a bar system states that

F,(aF19P)L, F{aF/3Q)L;
":‘152:— A=§:— 3
i=12 AE; g =12 AE;
For our bar forces we have

_ aF, _ aF, _

Fy=P\V2 5= V2 =0

aF; dF,

—ps "2 _ i

FE=P+Q0 P 1 90 1

Now that we have taken the partial derivatives with respect to P and Q, we may set 0 = 0.
Substituting in (1),

A - PVDODL  (PY(W)L. _2PL, | PL,

* AE A E; AE, AL,
A o BVDOL | POL, _ PL,
¥ A]El AZEZ A2E2

which agree with the results found using a geometric approach in Problem 1.12.

15.10. The system shown in Fig. 15-10 consists of a horizontal bar CDF of bending rigidity EI, and
torsional rigidity GJ, which is rigidly welded at D to bar DB of bending rigidity El,. At point
B the horizontal bar DB is attached to the vertical bar AB of cross-sectional area A and Young’s
modulus E. The support at C permits only rotation in the x-y plane about the z-axis and the end
F is restrained against angular rotation about the x-axis and can deflect only vertically.
Determine the vertical deflection at F due to the application of the load P acting parallel to the
y-axis.
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Fig. 15-10 Fig. 15-11

A free-body diagram of the bars CDF and DB is shown in Fig. 15-11, where R is the vertical reaction
at C and S is the axial force in bar AB. For equilibrium about the z,-axis, we have

IM, =S(LY-(25L)P=0
§=25P
and for equilibrium in the y-direction
-Rc—P+5=0
Rc = 1.5P

Let us introduce the variables u, v, and w as shown in Fig. 15-11 to denote positions of points in regions
FD, CD, and BD of the system. The bending and twisting moments are then given by

aM
In FD: M = Pu EF =u
In CD: M= Rcv = 1.5Pv ih-f = 1.5v
aP
3 3 15 ar 15
M - - = 5 - = — ——
In CDF: T S(4L) @ P)(4L) oPL el
aM
In BD: M= 85w=(2.5P)w P = 25w

Castigliano’s theorem gives the deflection at F as the partial derivative of the total internal strain
energy with respect to F. As indicated by the bending moments in FD, CD, and BD, as well as the twisting
moment in CDF, and the axial force in AB, this becomes

®@ e

U _ [M(aMlaP)ds , TW@TIaP)25L) | S(aS/9P) (%L)]
P j El

Ar GJ AE

where s is a coordinate of length used as a variable of integration over the appropriate variable in each
of the bars indicated by the circled bar designators above the integrals. The twisting moment is constant
in CDF and the axial force is constant in AB, so there is no need to integrate to obfain the strain energy
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corresponding to these loads. Substituting the above values of bending and twisting moments and axial

force, we find
© @

A, = 138 (Pu) (u) du + L (1.5Pv) (1.5v)dv + 3L (2 5Pw) (2.5w) dw
£ J; El, o El J; EL

@

L (BPL)(¥L) 25L) L 25P @235 GL)

GJ, AE
pPL? PL’ PL} PL
=1815——+0879——+879—— +3.13—
EI, 0.87 EL 7961. 313AE

15.11. The pin-connected framework shown in Fig. 15-12 consists of two identical upper rods AB and
AC, two shorter, lower rods BD and DC, together with a rigid horizontal brace BC. All bars
have cross-sectional area A and modulus of elasticity E. Determine the vertical displacement
of point D due to the action of the vertical load applied there.

Fig. 15-12

This problem was considered by an approach involving the geometry of displacement in Problem 1.11.

Let us consider it now using Castigliano’s approach. We have already used statics to find bar forces in
Problem 1.11, and these are

PV2
Fop = Fpc = "2_
P+ ( 2 ) L
ik
Fap=Fac= —7‘—‘
3
The deflection of D in the direction of P is given by Castigliano’s theorem as

AE
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Substituting, we have

@@

r2|(rr5)(55)(35)

AE

gL?
-|— . —
FHI3BE

which agrees with the result found by the geometric approach in Problem 1.11.

PL
AD = 1'94214_

15.12. A structure is in the form of one quadrant of a thin circular ring of radius R. One end is clamped
and the other end is loaded by a vertical force P (see Fig. 15-13). Determine the vertical
displacement under the point of application of the force P. Consider only strain energy of
bending.

From statics, the reactions at the clamped end consist of a vertical force P and a couple PR. The
bending moment at the section in the ring located by the angle @ is given by

M=PR—-—P(R—Rcos@) = PRcos®  from which %%=Rcosﬂ

Castigliano’s theorem states that the vertical deflection at A is given by
A — U _ J”"z’ M(oMIGP)RdO J”"z (PRcos6) (RcosO)Rd6  PR®
Yo - -
0 0

El ET AET

P P

R

Pt

Fig. 15-13 Fig. 15-14

15.13. Determine the horizontal displacement of point A in Problem 15.12.

Since there is no horizontal force applied at A, we must temporarily introduce an auxiliary force Q
shown in Fig. 15-14 in order to be able to use Castigliano’s theorem. This time, let us measure 8 from the
vertical, making it unnecessary to determine reactions at B. Thus, at the section denoted by 8 the bending
moment is

M = PRsin8+ Q(R — Rcos 8) from which %=R—Rcos9
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The horizontal displacement at A is given by
_U _ =2 M(aM/6Q)R dé
FYs) \ El

Now that the partial derivative has been taken, O may be set equal to zero, yielding

4,

A = " (PRsin6) (R — Rcos§)Rd6 _ PR’
") El 2EI

15.14. A thin circular ring in the form of one quadrant OA of a circle lies in the x-z plane and has
rigidly attached to it at the point A a straight bar AB also in the x-z plane. Both the ring and
the bar have bending rigidity ET and torsional rigidity GJ. The unsupported end B is loaded by
a twisting moment represented by the vector T directed parallel to the x-axis as shown in Fig.
15-15. Determine the y-component of displacement of point B.

Fig. 15-15 Fig. 15-16

To utilize Castigliano's theorem, we must introduce an auxiliary force Q in the direction of the desired
displacement; that is, Q must be directed downward and parallel to the y-axis. The view of the system
looking from the positive end of the y-axis toward the x-z plane appears as in Fig. 15-16, where n-n and
i-1 denote axes normal and tangential, respectively, to the ring at an arbitrary location denoted by the angle
6. In that figure the applied twisting moment 7 is shown, along with its components oriented in the n-n
and -1 directions. The auxiliary force Q is represented by the tail of its vector representation at B to denote
its downward direction.

From Fig. 15-16 we have in the straight bar BA

aMm
M= Qu —=u

oQ

aTr
T=T3 ‘6—Q—=0

In the quadrant AQ from the geometry of the figure
M= Tgcos 6+ Q(gsin 6]

oM R
— ==—35inf

a2 2
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R
and 7= TBsin8+Q(R—Ecosﬂ)
ar R
— =R —Ecosﬂ

Using Castigliano's theorem, we find when we set Q = 0 after taking the partial derivatives

Ao M{&M!&Q)ds+ T(aTIaQ) ds
" f El j GJ

® @ @

Eurd H
0+ 0+ J’ (T cos 6)[(R/2) sin 6]R do
0

El

@

. J‘”? (Tgsin 8)[R — (R/2)cos )R do
0

GJ

_nm+nm
T AEI  2GJ

(m—1)

15.15. A structure consists of a quadrant of a circular ring OA, to which is rigidly attached a bar BA
which in turn is welded to bar CB. These bars all lie in the horizontal plane x-z, as shown in Fig,
15-17, and all have bending rigidity EI and torsional rigidity GJ. Determine the vertical
deflection of point C due to the load P applied vertically there.

Fig. 15-17 Fig. 15-18

It is first necessary to determine the bending and twisting moments at an arbitrary point in the
quadrant OA. Let us introduce the coordinate system shown in Fig. 15-18, where € denotes the angular
coordinate of this arbitrary point. The axes n-n and #-f represent normal and tangential directions to the
circular ring at the point represented by the angle 6. From the geometry of Fig. 15-18, we have the bending
moment about n-n to be

M=M,,=P(CD)= P(gcos6+§sin e)
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and the twisting moment about ¢-f to be

R R .
T=T,= P[(R—Emsﬁ) +-Esm8]

From these equations we thus have in the ring OA

aM R .
i E(Sln 6+ cos 8)
af R .
E = E(I + sin 8 — cos )
Next, in bar CB from Fig. 15-18 we have the bending moment at an arbitrary point represented by
u 1o be
aM
M= Pu S0 E =u

and the twisting moment T in this bar is zero.
In bar BA the bending moment from Fig. 15-18 is M = Pv and the twisting moment is 7 = PR/2. Thus,
for BA

P P 2

By Castigliano’s theorem, the deflection of point C due to the force P is

M(aMIaP)ds [ T(aTIaP)ds
Ac = El +

@)

l w2 2

— (sin 6+ cos 6 Rd6
EI) 4
+ L[ PRZ(]+ in6—cos 6’ Rde+ " (Puudu
ai| &7 | H

2

+ J'm (Pv)vdv + (PRI2Y(RI2)(R/2)

El Gl

Therefore

A _E(EJ)J_’P(,,_E)
CT4EI\2 3] aGJ 2

15.16. A thin semicircular ring is hinged at each end and loaded by a central concentrated force P, as
shown in Fig. 15-19. Determine the horizontal reaction at each hinge.
A free-body diagram of this ring, Fig. 15-20, indicates that the desired reaction H is statically
indeterminate. We may formulate the bending moment in the right half of the ring as follows:
oM

P T
= — —_— - 1 —_— — 1 < P < —
2 (R R cos 0} HRsin @ and Rsin @ for 0<e 7
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Fig. 15-19 Fig. 15-20
According to Castigliano’s theorem, the horizontal displacement at the pin is given by
oy
A, = ——
# o aH

But we know that this displacement is zero. Taking zdvantage of the symmetry about the centerline, we
may now write

0o-n U _, " M(IMIGH)Rd® _ ™ [(PI2)(R — Rcos 6) — HRsin 6] (—Rsin 6)R d#
T aH \ EI X El

Solving for the unknown H: H = Pla.

In Problem 15.16, determine the vertical displacement under the point of application of the
central force P.

In almost all statically indeterminate problems it is necessary first to determine the redundant
reactions before any displacements can be found. For the present ring this has already been done in
Problem 15.16.

In the right half of the ring, the bending moment is

P P_ . o
=—(R-— - <f<—
M 2(R R cos 6) 1TRsmfi for 0<e 3

aM 1 R .
and E—F—E(R—Rcosa)—;smﬂ

By Castigliano’s theorem, the vertical displacement under the point of application of P is

Ao U _ [ M(aMI3P)R A6
P ") EI

where we have taken advantage of symmetry. Thus
A=2 J"”*‘ [(P/2)(R — R cos 6) — (PR/7) sin 6] [3(R - R cos 6) — (R/m) sin 6|Rd6 E (E_._ 3 )
0

El Er\s T2 !

A structure in the form of a thin semicircular ring lies in a horizontal plane, has both ends
clamped, and is subjected to a central vertical force P, as shown in Fig. 15-21. Determine the
various reactions.

The vertical force reactions at A and C are each P/2 and the bending moment exerted by the support
on the ring at each of these points is found from statics to be PR/2. There is also another component of
reaction exerted by the support on the ring, i.e., a twisting moment T, acting at each of the points A and
C. These two types of moment reaction are best illustrated by the vector representation of moment in Fig.
15-22, where a double-headed arrow indicates a moment in the usual sense of the right-hand rule for vector
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To
FPE
2
g -
[}
a ./ - \\ b
Fig. 1521 Fig. 15-22

representation of moment. A segment of the ring to the arbitrary point represented by 6 (0 <6< m/2) is
shown and at this cross section given by @ there is a bending moment about the oa-axis given by

P
M= —Rsinf- fﬁwse— T,siné@
2 2
There is a twisting moment about the ob-axis given by
P PR
T= E(R_ Rcos 6) —-—i-sinﬁ+ Tycos b

From these,

al
M = —sin B

— =cos 8
3Tn alr‘ll

Since the ring is completely restrained at points A and C. we may write (taking advantage of
symmetry)

w2 w2
o=¢ﬁ=¢c=2j' W”I T(afraG?jaRde
(3]

o

where ¢ is used to denote angular rotation of an arbitrary point of the bar. and ¢. and & are the zero
values of this quantity at the points A and C. Substituting,

PR PR
——sgin § — —cos B — ﬂ,sinﬁ){—sin 0)R do

A
0=J’ 2 2
]

P PR
. [E(R_ R cos 6) — —z—sin6+ Tocos 8 ](cos&)RdG

+
f GI
[

_12}_?(2-%7_'_2—17
_ 2 EI GJ’)

(i_ i)
El GIJ

The thin rod shown in Fig. 15-23 consists of the straight bar GFD attached to semicircular end
bars BCD and GHJ, together with two more straight bars JK and AB as indicated. There exists
a very small gap 24, between points A and K. Determine the magnitude of this gap when the
forces Q are applied.

El

Solving,
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R R
F D
K! :A B
k24,
Fig. 15-23

Because of the symmetry of both structure and loading about a centerline extending through F. it is
possible to examine the structural behavior of only one half of the system, say the right-hand half as shown
in Fig. 15-23. Because of the symmetry, point F in Fig. 15-23 behaves as if it were clamped. The real load
on this half is (. and to determine displacement at the gap we introduce an auxiliary force P as shown in

Fig. 15-24.
| u
\
F D
§
/]
_ _— ——p
c o
P > | 3
Fig. 15-24

Considering only bending action, in the entire system we have the bending moment in the various
regions given by

In BC: M = P(R — Rsin ¢); % = R(1 —sin¢)
In CD: M= P(R+ Rsin8) + QRsin 6
ﬂ{ =R+ Rsinb
aP
aM
In DF: M =2PR+ QR; EF=2R

The deflection at A in the direction of P is given by Castigliano’s theorem as

aM
N m(5)
AT ap EI
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Substituting, we have

)

™ P(R — R sin $)R(1 —sin p)R d¢p

+j"’2 [P(R + Rsin 6) + QR sin 6] (R + R sin Q)R d6
El
(1]

. [F @PR+QOR) (du)
I El

A, =

0

This integrates to
_PR|m R 4PR3 20R°
l——z ] I P( )+P+Q+P+P( )+Q ] =
Now that the integration has been carried out, we may set P = 0 to find

QR® + QuR? 4 20R?
El 4E1 Ei

AA=

The gap at A is twice this because of the deformation of the left half of the system, so that the gap is

orR®
ﬁ(lz + 7)

15.20. The elastic beam FDCG of bending rigidity ET shown in Fig. 15-25 is supported by pinned elastic
bars AB, BC, and BD, each of extensional rigidity AE. These bars are incapable of resisting
bending effects. The load on the system consists of a single concentrated force P applied at the
free end F. Determine the vertical displacement of F.

B
P
3{6 C D YF
Iy s & W VAV Wl P
Y ; |
I T T
Fig. 15-25

This solution is best carried out by Castigliano’s method since both bending as well as extensional
energies are involved. We must first determine external reactions. A free-body diagram of the system is
shown in Fig. 15-26. There is no vertical reaction at A since bar AB is not able to resist transverse (bending)
loads. From statics,

SM, = G(L)- P4L) =0 -G, =4P
2Fy=—-A,+4P =0 SA, =4P
SFy=G,-P=0 ~G,=P

Thus, bar AB carries a tensile force 4P.
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4P

45°
BC BD

Fig. 15-27

Next, we show in Fig. 15-27 a free-body diagram of the system where a section has been passed
through the three bars and axial forces are represented by BD and BC in those bars. From statics,

2Fy = —4P+ BDsin45° =0
ZFy= ~-BC—BDcos45° =0
Consequently, the axial forces in the three bars are
AB=4pP
BC = —4P
BD =4V2pP

From Problem 15.8 we may determine the deflection at F due to axial loading (only) in these three
bars to be
as
_) L

1)

AE

@ ©®

_wp@en  (ap 49 E)

AE AE
N (4V2P) (4V2) (LV?2) @
AE
PL FPL
=gl 32V2] = 69.2-— (2)

Finally, we determine the deflection at F due only to the bending effects in beam FDCG. This was
shown in Problem 15.8 to be

Mﬂds

aP
A, = f pa @
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AP 4P 4V2P
A S I /
G ! c D

v Z }/ £ 2z

X
L

A

e e

4P
Fig. 15-28

Figure 15-28 shows a free-body diagram of the beam with all forces acting upon it. Coordinates « and x
are introduced to permit evaluation of the integral in (3). The bending moments are given by
oM

: = Px; —=
FD M X P x

DC: M=Px- (Nip)(%)(x— L) = 3P, + 4PL; % = —3x +4L

M

: M=Pu, -—=
GC (7] P 7]

Thus, for bending effects only, (3) becomes

@

A, = f ‘P f (=3Px +4PL) (=3x + 4L)dx
, =
» El . El

©

+ J'F:"" (Pu) (1) du

=L

El
=0
PL?
= 3.67
El
The true deflection at F is the sum of A, and A,:
PL PL*
.= 692—+ 3.

Ap =69 AE 67 El

Supplementary Problems

15.21. A solid conical bar of circular cross section (Fig. 15-29) hangs vertically, subjected only to its own
weight, which is y per unit volume. Determine the strain energy stored within the bar.
Ans. U= wD*L*y*360E

15.22. The two bars AB and CB of Fig. 15-30 are pinned at each end and subject to a single vertical force P. The
geometric and elastic constants of each bar are as indicated. Use Castigliano’s theorem to determine the
horizontal and vertical components of displacement of pin B.

PL PL
Ans A, = — LI 2 .}_—_-LL‘_+ PL,
V3A,E, V3A,E, 3A,E,  3A,E,
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Fig. 15-29 Fig. 15-30

15.23. The pin-connected truss shown in Fig. 15-31 is composed of five bars, each of area A and modulus of
elasticity £. Determine the vertical displacement of point B due to the load Q by equating the work done

by ( to the internal strain energy. Ans. A =2914QL/IAE

LA A e

&

|

— 1

Fig. 15-31 Fig. 15-32

15.24. Determine the maximum weight W that can be dropped 10 in onto the flange at the end of the steel bar
shown in Fig. 15-32. The bar is 1 in X 2 in in cross section and 6 ft in length. The axial stress is not to exceed
20,000 Ib/in®. Take E = 30 X 10° Ibfin>. Ans. W=961b

% L ]| | L l
M,
\ = z AT |
A P

M,

]

Fig. 15-33 Fig. 15-34

15.25. A cantilever beam is loaded by a moment M, applied at the tip (Fig. 15-33). Determine by Castigliano’s
theorem the deflection of the tip. Ans. M, L*2E]

15.26. A simply supported beam is loaded by a moment M, at the left end, as shown in Fig. 15-34. Use
Castigliano’s theorem to determine the deflection at the midpoint of the bar. Ans. M, L*M16E]
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15.27.

15.28.

15.29.

15.30.

A W203 X< 28 steel wide-flange section is used as a cantilever beam of length 4 m. A weight W of 1 kN falls
freely through a distance of 150 mm before striking the tip of the beam. Find the maximum deflection of
the beam. Take E = 200 GPa. Use beam parameters given in Table 82 of Chap. 8.  Ans. 38.8mm

A structure lies in a vertical plane and is in the form of three quadrants of a thin ring (see Fig. 15-35). One
end is clamped, the other is loaded by a vertical force P. Determine the horizontal displacement of point A.
Consider only bending energy. Ans. PRI2E!

3

Fig. 15-35 Fig. 15-36

A structure is in the form of one quadrant of a thin circular ring of radius R. One end is clamped and the
other is subject to a couple M,, as shown in Fig. 15-36. Determine the angular rotation, as well as the
vertical and horizontal components of displacement of point A.

MDWR_ MoRz MDRZ
2El ° EI'’ 0571 Ef

Ans.

The two-sided framework shown in Fig. 15-37 is loaded by a uniformly distributed load ¢ per unit length
in region AB together with a couple M, at the midpoint of BC. Determine the vertical displacement of
point A.

gl* N 2q1°H M,LH

Ans err Y 3R T 2E1

T
g/Unst length

B Ef 4
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15.31. The straight bar AC of Fig. 15-38 is rigidly attached at its midpoint B to another rod BD which has end
D unsupported but subject 10 a vertical force P, The flexural rigidity of each bar is EI and the torsional
rigidity is GJ. Bar AC is rigidly clamped at ends A and C, and AC and BD lie in a horizontal plane.
Determine the deflection under the load P.

3rL? + rL?

8El  4GJ

Ans.

Fig. 15-38

15.32. Figure 15-39Y shows a thin ring in the form of one quadrant of a circle. One end is fixed, the other is free,
and the system is loaded by 2a moment at the midpoint. Determine the vertical component of displacement

of point A.
My R?

Ans.  ——
V2EI

Fig. 15-39

15.33. The beam of Fig. 15-40 is supported at the left end, clamped at the right end and subject to a concentrated
load. Determine the reaction at the left support by Castigliano’s theorem. Ans. PH*(2L + a)2L?

P

o
v

Fig. 15-40
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15.34, A thin ring forms one quadrant of a circle and is loaded as shown in Fig. 15-41. One end is fixed and the
other is pinned so as to prevent horizontal and vertical displacements. Find the components of reaction
at the pin. Ans. B, =019My/R, B, = 1.12M/R

Fig. 15-41

15.35. A thin ring in the form of one quadrant of a circle lies in a vertical plane and is subject to uniform radial
loading, as shown in Fig. 15-42. One end, A, is rigidly clamped and the other end, C, is unsupported.
Determine the horizontal and vertical components of displacement of point C.

qR’ gR*
Ans. A, =0500L= A =036
e Y =030y
¥
Fig. 15-42 Fig. 15-43

15.36. A thin semicircular ring (see Fig. 15-43) of bending rigidity E/ lies in a vertical plane, is clamped at end
A, and may move in a horizontal, frictionless guide at end B. The load is P, applied horizontally at end
B. Determine the horizontal displacement of end B of the ring. Also, determine the vertical displacement
due to the same load at B if the guide is removed.

PR? 2PR?
Ans. Ag = 0.145. Ap, = “E

15.37. The structure of Fig. 15-44 is in the form of one quadrant
of a thin circular ring AB together with a straight bar BC
rigidly joined at B so that AB is tangent to the ring. A
load P acts parallel to the y-axis at B. The end C is
unsupported. Determine the y-component of displace-
ment of point C, The bending rigidity of both regions is
EI and the torsional rigidity is GJ.

1 1
Ans. Ao = EEPRMEPR%]

1 /3 PR*L
+EI[(T—2)PRJ— 2 ]
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15.38. The balcony-like structure of Fig. 15-45 is in the form of a semicircular ring, lies in a horizontal plane, and
is subject to a twisting moment Ty at its midpoint. Determine the reactive twisting moment at each end
A and C. Ans. Tpl97

Fig. 15-45

15.39. A thin ring is subjected to the equal and opposite diametral forces indicated in Fig. 15-46. Determine the
bending moment at A and also the increase in diameter of the ring along the diameter CD.

- P
Ans. M, = E(lz—z). a=0149F8

2 El
P
R
A B
P
Fig. 15-46

15.40. A thin ring is loaded by forces which are uniformly distributed along the horizontal projection of the ring
(see Fig. 15-47). Determine the decrease in the vertical diameter.  Ans. wRY6EI

Fig. 15-47
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1541. A thin semicircular ring shown in Fig. 15-48 of bending rigidity E7 lies in a vertical plane; it is clamped at
end A and unsupported at B. It is loaded by a horizontal force P at end B. Determine horizontal and
vertical components of displacement of end B of the ring,

PR _2PR’

s, = g

Ans Ag = W.

Fig. 1548

15.42. A structure in the form of a thin three-sided rectangular frame lies in a horizontal plane, has both ends
clamped, and is subject to a central vertical force P, as shown in Fig. 15-49. Determine the reactive torque

at each support. The frame is of constant cross section throughout.
PHET
b,8

El GJ

Ans.

Fig. 15-49 Fig. 15-50

15.43. A thin structure in the form of one quadrant of a circle (Fig. 15-50) lies in a horizontal plane and is subject
to a torque T, at the free end. The other end is clamped. Determine the vertical displacement of the
free end.

T T 1

A 2 ——+——~—)
ns. ToR (451 iGJ  GJ



Chapter 16

Combined Stresses

INTRODUCTION

Previously in this book we have considered stresses arising in bars subject to axial loading, shafts
subject to torsion, and beams subject to bending, as well as several cases involving thin-walled pressure
vessels. It is to be noted that we have considered a bar, for example, to be subject to only one loading
at a time, such as bending. But frequently such bars are simultaneously subject to several of the
previously mentioned loadings, and it is required to determine the state of stress under these
conditions. Since normal and shearing stress are vector quantities, considerable care must be exercised
in combining the stresses given by the expressions for single loadings as derived in previous chapters.
It is the purpose of this chapter to investigate the state of stress on an arbitrary plane through an
element in a body subject to several simultaneous loadings.

GENERAL CASE OF TWO-DIMENSIONAL STRESS

In general if a plane element is removed from a body it will be subject to the normal stresses o,
and o, together with the shearing stress 7,,, as shown in Fig. 16-1.

SIGN CONVENTION

For normal stresses, tensile stresses are considered to be positive, compressive stress negative. For
shearing stresses, the positive sense is that illustrated in Fig. 16-1.

II‘ v

'Y
Tay
f— )' -

oy ey ” hE3 ! x
Try
e
Ty

Yo,

Fig. 16-1 Fig. 16-2

STRESSES ON AN INCLINED PLANE

We shall assume that the stresses o,, 0,, and ,, are known. (Their determination will be discussed
in Chap. 17.) Frequently it is desirable to investigate the state of stress on a plane inclined at an angle

420
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0 to the x-axis, as shown in Fig. 16-1. The normal and shearing stresses on such a plane are denoted
by o and 7 and appear as in Fig. 16-2. In Problem 16.13 it is shown that

o to, o —
2 2

T= %sin 20+ 7,,cos26 (16.2)

% cos 20+ 1,,5in 26 (16.1)

Thus, for any value of 6, o and rmay be obtained from these expressions. For applications see Problems
16.15. 16.17, and 16.18.

PRINCIPAL STRESSES
There are certain values of the angle 6 that lead to maximum and minimum values of o for a given

set of stresses o,, 0,, and 7,,. These maximum and minimum values that o may assume are termed
principal stresses and are given by

_ bl
s = % + /(%) + (1) (16.3)

g\l
oi = o to, J(o‘, . (Ty) + (1_”}2 (16.4)

2
These expressions are derived in Problem 16.13. For applications see Problems 16.15 and 16.18.

DIRECTIONS OF PRINCIPAL STRESSES; PRINCIPAL PLANES

The angles designated as 6, between the x-axis and the planes on which the principal stresses occur
are given by the equation

T,

— (16.5)
o, — o,

Se

This expression also is derived in Problem 16.13. For applications see Problems 16.15 and 16.18. As

shown there, we always have two values of 6, satisfying this equation. The stress oy,,x Occurs on one

of these planes, and the stress o,., occurs on the other. The planes defined by the angles 6, are known
as principal planes.

tan26, =

COMPUTER IMPLEMENTATION

For this two-dimensional situation, a simple FORTRAN program may be written to indicate the
values of the principal stresses indicated by Eqs. (16.3) and (16.4) as well as directions of these stresses
as given by Eq. (16.5). Such a program is developed in Problem 16.20 and an application is found in
Problem 16.21,

SHEARING STRESSES ON PRINCIPAL PLANES

In Problem 16.13 it is demonstrated that the shearing stresses on the planes on which oy, and oy,
occur are always zero, regardless of the values of o, o,, and r,,. Thus, an element oriented along the
principal planes and subject to the principal stresses appears as in Fig. 16-3.
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Principal Streas

Principal Stress

Fig. 16-3

MAXIMUM SHEARING STRESSES

There are certain values of the angle @ that lead to a maximum value of 7 for a given set of stresses
0, 0,, and 7,,. The maximum and minimum values of the shearing stress are given by

Tome = * \/ (%) + (1) (16.6)

This expression is derived in Problem 16.13. For applications see Problems 16.3, 16.10, 16.18, and
16.19.

DIRECTIONS OF MAXIMUM SHEARING STRESS

The angles 6, between the x-axis and the planes on which the maximum shearing stresses occur are
given by the equation

o, — o

2
tan 26, = (16.7)

Txy

This expression also is derived in Problem 16.13. For applications see Problems 16.3, 16.10, 16.18, and
16.19. There are always two values of 6 satisfying this equation. The shearing stress corresponding to
the positive square root given above occurs on one of the planes designated by 6,, while the shearing
stress corresponding to the negative square root occurs on the other plane.

NORMAL STRESSES ON PLANES OF MAXIMUM SHEARING STRESS

In Problem 16.13, it is demonstrated that the normal stress on each of the planes of maximum
shearing stress (which are of course 90° apart) is given by

o tao,

T3

Thus an element oriented along the planes of maximum shearing stress appears as in Fig. 16-4. This
is illustrated in Problems 16.7, 16.9, and 16.15.
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i(': + d")

$lox + o)

i("x +o)

Fig. 16-4

MOHR’S CIRCLE

All the information contained in the above equations may be presented in a convenient graphical
form known as Mohrs circle. In this representation normal stresses are plotted along the horizontal
axis and shearing stresses along the vertical axis. The stresses o,, 0,, and T,, are plotted to scale and
a circle is drawn through these points having its center on the horizontal axis. Figure 16-5 shows Mohr’s
circle for an element subject to the general case of plane stress. For applications see Problems 16.4,16.5,
16.8, 16.10, 16.12, 16.14, 16.16, 16.17, and 16.19.

jLShurln‘ Stress i

S—

: )
—— l | ) . k nlh IN""‘T Stress
! i Try

Fig. 16-5

SIGN CONVENTIONS USED WITH MOHR’S CIRCLE

Tensile stresses are considered to be positive and compressive stresses negative. Thus tensile
stresses are plotted to the right of the origin in Fig. 16-5 and compressive stresses to the left. With
regard to shearing stresses it is to be carefully noted that a different sign convention exists than is used
in connection with the above-mentioned equations. We shall refer to a plane element subject to
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shearing stresses and appearing as in Fig. 16-6. We shall say that shearing stresses are positive if they
tend to rotate the element clockwise, negative if they tend to rotate it counterclockwise. Thus for the
above element the shearing stresses on the vertical faces are positive, those on the horizontal faces are
negative.

Tay

1

Ty

Fig. 16-6

DETERMINATION OF PRINCIPAL STRESSES BY MEANS OF MOHR’S CIRCLE

When Moht’s circle has been drawn as in Fig. 16-5, the principal stresses are represented by the
line segments og and oh. These may either be scaled from the diagram or determined from the
geometry of the figure. This is explained in detail in Problem 16.14. For application see Problems 16.4,
16.5, 16.8, 16.10, 16.12, 16.14, 16.16, 16.17, and 16.19.

DETERMINATION OF STRESSES ON AN ARBITRARY PLANE BY MEANS OF
MOHR’S CIRCLE

To determine the normal and shearing stresses on a plane inclined at a counterclockwise angle 6
with the x-axis, we measure a counterclockwise angle equal to 26 from the diameter bd of Mohr’s circle
shown in Fig. 16-5. The endpoints of this diameter bd represent the stress conditions in the original x-y
directions; i.e., they represent the stresses o, 0,, and 7,,. The angle 26 corresponds to the diameter ef.
The coordinates of point f represent the normal and shearing stresses on the plane at an angle 8to the
x-axis. That is, the normal stress ¢ is represented by the abscissa on and the shearing stress is
represented by the ordinate nf. This is discussed in detail in Problem 16.14. For applications see
Problems 16.4, 16.5, 16.6, 16.8, 16.14, and 16.17.

Solved Problems

16.1. Let us consider a straight bar of uniform cross section loaded in axial tension. Determine the
normal and shearing stress intensities on a plane inclined at an angle 6 to the axis of the bar.
Also, determine the magnitude and direction of the maximum shearing stress in the bar.

This is the same elastic body that was considered in Chap. 1, but there the stresses studied were normal
stresses in the direction of the axial force acting on the bar. In Fig. 16-7(a), P denotes the axial force acting
on the bar, A the area of the cross section perpendicular to the axis of the bar, and from Chap. 1 the normal
stress o, is given by o, = P/A.

Suppose now that instead of using a cutting plane which is perpendicular to the axis of the bar, we
pass a plane through the bar at an angle 8 with the axis of the bar. Such a plane mn is shown in Fig. 16-7(b).
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16.2.

(a) ®
Fig. 16-7

Since we must still have equilibrium of the bar in the horizontal direction, there must evidently be
distributed horizontal stresses acting over this inclined plane as shown. Let us designate the magnitude of
these stresses by o', Evidently the area of the inclined cross section is A/sin 6 and for equilibrium of forces
in the horizontal direction we have

il

A Psin @
o'(sin_s)_P or 0"=—A—"

In Fig. 16-8, we consider only a single stress vector ¢’ and resolve it into two components, one normal
to the inclined plane mn and one tangential to this plane. We shall label the first of these components o
to denote a normal stress, and the second 7 to represent a shearing stress.

Fig. 16-8

Since the angle between ¢’ and 7 is 8, we immediately have the relations
t=0'cos@ and o=c'sind

But ¢’ = (Psin 8)/A. Substituting this value in the above equations, we obtain

,= [sinfcosé U_Psin"o
A A

But g, = P/A. Hence we may write these in the form
r=o0,8infcos® and o= o.sin’6

Now, employing the trigonometric identities

sin26 = 2sinBcos§  and sin’9=1—-.—;is-z—o
we may write
T =}o,sin26 )
o = o (1 - cos 26) ()

These expressions give the normal and shearing stresses on a plane inclined at an angle 8 to the axis of
the bar.

A bar of cross section 850 mm? is acted upon by axial tensile forces of 60 kN applied at each end
of the bar. Determine the normal and shearing stresses on a plane inclined at 30° to the direction
of loading.
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16.3.

16.4.

COMBINED STRESSES [CHAP. 16

From Problem 16.1 the normal stress on a cross section perpendicular to the axis of the bar is

The normal stress on a plane at an angle 6 with the direction of loading was found in Problem 16.1 to be
o = }o,(1 — cos 26). For 6 = 30° this becomes

o = }(70.6) (1 ~ cos60°) = 17.65 MPa

The shearing stress on a plane at an angle 6 with the direction of loading was found in Problem 16.1 to
be 7 = Jo, sin26. For 6 = 30° this becomes

7= 4(70.6) (sin 60°) = 30.6 MPa
These stresses together with the axial load of 60 kN are represented in Fig. 16-9.

17.65 MPa

60 kN
30.6 MPa —-

Fig. 16-9

Determine the maximum shearing stress in the axially loaded bar described in Problem 16.2.

The shearing stress on a plane at an angle 6 with the direction of the load was shown in Problem 16.1
to be 7= lo, sin26. This is maximum when 26 = 90°, that is, when 0 = 45°. For this loading we have
. = 70.6 MPa and when 6 = 45° the shear stress is

7= }(70.6)5in90° = 35.3 MPa

That is, the maximum shearing stress is equal to one-half of the maximum normal stress.
The normal stress on this 45° plane may be found from the expression

o = 3o, (1 - cos 26) = ¥70.6) (1 - cos90°) = 35.3 MPa

Discuss a graphical representation of Egs. (1) and (2) of Problem 16.1.

According to these equations the normal and shearing stresses on a plane inclined at an angle 6 to
the direction of loading are given by

o=}0(l—cos26) and 7=}o,sin26

To represent these relations graphically it is customary to introduce a rectangular cartesian coordinate
system, plotting normal stresses as abscissas and shearing stresses as ordinates.

Let us proceed by first laying off to some convenient scale the normal stress o, (taken to be tensile)
along the positive horizontal axis. The midpoint of this line segment, point ¢ in Fig. 16-10, serves as the
center of a circle whose diameter is o,. The radius of this circle, denoted by oc, ch, and cd, is %o,. The angle
26 is measured positive in a counterclockwise direction from the radial line oc. From the figure we
immediately have the relations

kd = 7= }o,sin26 ok = oc — ke = Yo, — Jo, €026 = & = }o,(1 - cos 26)

It is to be noted that the scales used in the horizontal and vertical directions are equal.

Thus the abscissa and ordinate of point d represent, respectively, the normal stress and the shearing
stress acting on a plane at an angle 6 with the axis of the bar subject to tension. In plotting this diagram
tensile stresses are regarded as positive in algebraic sign and compressive stresses are taken to be negative.
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16.5.

Shearing Stress

k e k) Normal Stress

O

Fig. 16-10 Fig. 16-11

Let us return to Problem 16.1 and examine a free-body diagram (Fig. 16-11) of an clement taken from the
surface of the inclined section on which the stresses o and 7act. We shall consider shearing stresses to be
positive if they tend to rotate the element clockwise, negative if they tend to rotate the clement
counterclockwise. This sign convention is used only in this graphical representation, not in the analytical
treatment of Problem 16.1. Since the shearing stresses found in Problem 16.1 were actually those acting
on face de of the above element, they should be regarded as negative, Hence in the circular diagram
representing normal and shearing stresses in Fig. 16-10, the shearing stress on plane dc appcars as an
ordinate kd plotted in the negative sense.

This diagram, termed Mohr’s circle as noted earlier, was first presented by O. Mohr in 1882. It
represents the variation of normal and shearing stresses on all inclined planes passing through a given point
in the body. It is a convenient graphical representation of Eqs. (/) and (2) of Problem 16.1.

Consider again the axially loaded bar discussed in Problem 16.2. Use Mohr’s circle to determine
the normal and shearing stresses on the 30° plane.

4§ Shearing Stress

k ‘ e h Normal Stress

-

d
e——— 706 MPs -

Fig. 16-12

In Fig. 16-12, the normal stress of 70.6 MPa is laid off along the horizontal axis to some convenient
scale and a circle is drawn with this line as a diameter. The angle 26 = 2(30°) = 60° is measurcd
counterclockwise from oc. The coordinates of the point d are

kd = 1= —}(70.6)sin60° = — 30.6 MPa
ok = ¢ = oc — kc = §(70.6) — }(70.6) cos 60° = 17.65 MPa

The negative sign accompanying the value of the shearing stress indicates that the shearing stress on
this 30° plane tends to rotate an element bounded by this plane in a counterclockwise direction. This is in
agreement with the direction of the shearing stress illustrated in Fig. 16-9.
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16.6. A bar of cross section 1.3 in? is acted upon by axial compressive forces of 15,000 Ib applied to

16.7.

each end of the bar. Using Mohr’s circle, find the normal and shearing stresses on a plane
inclined at 30° to the direction of loading. Neglect the possibility of buckling of the bar.

The normal stress on a cross-section perpendicular to the axis of the bar is

_P_—-15000 -
=TTy " 11,500 1b/in
We shall first lay off this compressive normal stess to some convenient scale along the negative end of the
horizontal axis. The midpoint of the line segment, point ¢ in Fig. 16-13, serves as the center of a circle whose
diameter is 11,500 Ib/in’ to the scale chosen.

Shearing Stress
i
|
|
] 80° 'l Normal Stress
e J k o
i
15,000 b
2 p——
b 11,500 Ib/in?
Fig. 16-13 Fig. 16-14

The angle 26 = 2(30°) = 60° with the vertex at ¢ is measured counterclockwise from co as shown. The
abscissa of point d represents the normal stress and the ordinate the shearing stress on the desired 30°
plane. The coordinates of point d arc

kd = 7 = }(11,500) sin 60° = 4940 Ib/in?
ok = o = oc — ck = §(11,500) — 3(11,500) cos 60° = 2870 ibfin?

It is to be noted that line segment ok lies to the left of the origin of coordinates; hence this normal stress
is compressive.

The positive algebraic sign accompanying the shearing stress indicates that the shearing stress on the
30° plane tends to rotate an element (denoted by dashed lines in Fig. 16-14) bounded by this plane in a
clockwise direction. The directions of the normal and shearing stresses together with the axial load of
15.000 Ib are shown in the figure.

Consider a plane element removed from a stressed elastic body and subject to the normal and
shearing stresses o, and 7,,, respectively, as shown in Fig. 16-15. (@) Determine the normal and
shearing stress intensities on a plane inclined at an angle 6 to the normal stress o,. (b) Determine
the maximum and minimum values of the normal stress that may exist on inclined planes and
find the directions of these stresses. (¢) Determine the magnitude and direction of the maximum
shearing stress that may exist on an inclined plane.

(@) The desired normal and shearing stresses acting on an inclined plane are internal quantities with
respect to the element shown in Fig. 16-15. We shall follow the customary procedure of cutting this
element with a plane in such a manner as to render the desired stresses external to the new body:;
that is, we will cut the originally rectangular element along the plane inclined at an angle # with
the x-axis and thus obtain a triangular element as shown in Fig. 16-16. The normal and shearing
stresses, designated as o and 7, respectively, represent the effect of the remaining portion of the



CHAP. 16}

(b)

COMBINED STRESSES 429

r s

Txy - "E;
o T x T
.’_. ._’_. as
Tay ] dx

Tzy Ty
Fig. 16-15 Fig. 16-16

originally rectangular block that has been removed. Consequently, the problem reduces to finding
the unknown stresses o and 7 in terms of the known stresses o, and 7,,. It is to be observed that
in the free-body diagram of the triangular element, the vectors indicate stresses acting on the various
faces of the element and not forces. Each of these stresses is assumed to be uniformiy distributed
over the area upon which it acts. The thickness of the element perpendicular to the plane of the
paper is denoted by 1.

Let us introduce N- and T-axes normal and tangent to the inclined plane, as shown in Fig. 16-16.
First, we shall sum forces in the N-direction. For equilibrium we have

2 Fy = otds— o tdysin 6 — 1, tdycos 8 — 7, rdxsin6 = 0

But dy = dssin 6, dx = dscos 6. Substituting these relations in the equilibrium equation above,
we find

o{ds) = o,(ds)sin’ 8 + 27, ,(ds)sin 6cos 8
Next, employing the identities sin? @ = }(1 — cos 26) and sin26 = 2sin 6cos 6, we obtain
o = o, (1 — cos26) + 1,,8in 20 = }o, — }0,00826 + 7,,5In 26 (N
Thus the normal stress ¢ on any plane inclined at an angle 6 with the x-axis is known as a function
of o, 7,,, and 6.
Next we shall consider the equilibrium of the forces acting on the triangular element in the
T-direction. This leads to the equation
3F;= 1tds— o,tdycos 6+ 7, tdysin 6 — 7, rdxcos 6 = 0
Substituting dy = dssin 8 and dx = dscos 6, we obtain
1(ds) = +0,(ds) sin 6¢os 6 — 7,(ds) sin’ 0 + 7,,(ds) cos’
Employing the identities cos 26 = cos® 8 — sin? 6 and sin26 = 2sin 6 cos 6, this becomes
7=10,sin26 + 7, cos 20 (2)
Thus the shearing stress 7 on any plane inclined at an angle 6 with the x-axis is known as a function
of o, 7,,, and 6.

To determine the maximum value that the normal stress  may assume as the angle 6 varies, we shall
differentiate Eq. (/) with respect to 6 and set this derivative equal to zero. Thus

d
d—: = +0,sin26+ 21, 00526 = 0

The values of 6 leading to maximum and minimum values of the normal stress are consequently

tan26, = T €))

30:
The planes defined by the angles 8, are called principal planes. The normal stresses that exist on
these planes are designated as principal stresses. They are the maximum and minimum values that
the normal stress may assume in the element under consideration. The values of the principal stresses
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Case I Case I1

Fig. 16-17

may easily be found by interpreting Eq. (3) graphically, as in Fig. 16-17. Evidently the tangent of
cither of the angles designated as 26, has the value given in (3). Thus there are two solutions to (3),
and consequently two values of 26, (differing by 180°) and also two values of 6,. These values of 6,
differ by 90°. It is to be noted that the triangles of Fig. 16-17 bear no direct relationship to the
triangular element whose free-body diagram was considered earlier.
The values of sin26, and cos 26, as found from Fig. 16-17 may now be substituted in (1) to yield
the maximum and minimum values of the normal stresses. Observing that
*T Xy I%Gx

sin26, = = 0826, = o
" Vo) +(x,) " VGe)y + ()
where the upper signs pertain to Case | and the lower signs to Case 1I, we obtain from (I)
1 2
P 2% S %)) L o T (e )
o = 30, ¥ 50, =¥ =30, * V(o) + (7,,) (4)
Vo + (75) VGo) +(7,)’
The maximum normal stress is

Ooax = 30, + V(0. + (1) %)
The minimum normal stress is
Omin = 30 = V(30.) + (1,) (6)

The stresses given by (5) and (6) are the principal stresses and they occur on the principal planes
defined by (3). By substituting one of the values of 6, from (3) into (/), one may readily determine
which of the two principal stresses is acting on that plane. The other principal stress naturally acts
on the other principal plane.

By substituting the values of the angles 26, as given by (3) and Fig. 16-17 into (2), it is readily
seen that the shearing stresses 7 on the principal planes are zero.

To determine the maximum value the shearing stress 7 may assume as the angle 6 varies. we shall
differentiate Eq. (2) with respect to 6 and set this derivative equal to zero. Thus

dr .
yri o.cos20— 27, sin26 =0

The values of 6 leading to maximum values of the shearing stress are consequently

tan26, = — (7)

xy

The planes defined by the two solutions to this equation are the planes of maximum shearing
stress.

Again, a graphical interpretation of (7) is convenient. The two values of the angle 26, satisfying
this equation may be represented as in Fig, 16-18. We see that

+1
sin 28} = Tﬂm COSZB, = \/—__EL-:_
(%oj}z + ('rxv)z (%al)z + (7.:})2
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x \{ﬂ\‘ \% x \Qﬂ‘t
g (RN
$ox B
20, 29,
f Tay ’ T
Case 1 Case |1

Fig. 16-18

where the upper (positive) signs pertain to Case I and the lower (negative) signs apply to Case II.
Substituting these values in (2), we obtain

o = Y00 et (1) e = = V(o (7)) ®)
me Ve + () Vo) (1) ol
Here the positive sign represents the maximum shearing stress, the negative sign the minimum
shearing stress.

If we compare (3) and (7), it is evident that the angles 26, and 26, differ by 90°, since the tangents
of these angles are the negative reciprocals of one another. Hence the planes defined by the angles
6, and 6, differ from one another by 45°; that is, the planes of maximum shearing stress are oriented
45° from the planes of maximum normal stress.

It is also of interest to determine the normal stresses on the planes of maximum shearing stress.
These planes are defined by (7). If we now substitute these values of sin 26, and cos 26, in (!) for the
normal stress, we find

1
+30, _

=15 1 T Ty =1
a 50’)( 30T (-%a‘)z + (fl‘l)z + (f)q) (50_1)2 + (T“)z 20, (9)

Thus on each plane of maximum shearing stress we have a normal stress of magnitude jo,.

16.8. Discuss a graphical representation of the analysis presented in Problem 16.7.

1.

For given values of o, and 7, proceed as follows:

Introduce a rectangular coordinate system in which normal stresses are represented along the
horizontal axis and shearing stresses along the vertical axis. The scales used on these two axes must

be equal.

With reference to the original rectangular element considered in Problem 16.7 and reproduced in Fig.
16-19, we shall introduce the sign convention that shearing stresses are positive if they tend to rotate
the element clockwise, negative if they tend to rotate it counterclockwise. Here the shearing stresses
on the vertical faces are positive, those on the horizontal faces are negative. Also, tensile stresses arc
considered to be positive and compressive stresses negative.

We first locate point b by laying out o, and 7;, to their given values. The shear stress 7,, on the vertical
faces on which o, acts is positive; hence this value is plotted as positive in Fig. 16-20. This is drawn on

IV
Tzy v
Tyy  f— P e
or d bt 3 e x
v dx Ty ]
—
Ty
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Shearing Stress

the assumption that o, is a tensile stress, although the treatment presented here is valid if o, is
compressive.

4. We next locate point d in a similar manner by laying off 7., on the negative side of the vertical axis.
Actually, this point d corresponds to the ncgative shearing stresses 7., existing on the horizontal faces
of the clement together with a zero normal stress acting on those same faces.

5. Next, we draw line bd. locate the midpoint ¢, and draw a circle having its center at ¢ and radius equal
to cb. This is known as Mohr’s circle.

We shall first show that the points g and k along the horizontal diameter of the circle represent the
principal stresses. To do this we note that the point c lies at a distance o, from the origin of the coordinate
system. From the right-triangle relationship we have

(cd)’ = (oc) +(od)’  or  cd= V(&) +(7,)
Also. we have cd = ch = cg. Hence. the x-coordinate of point # is oc + ch or
So. + V(o) + (7,)

But this expression is cxactly the maximum principal stress, as found in (5) of Problem 16.7. Likewise the
x-coordinate of point g is oc-cg. But this quantity is negative; hence og lics to the left of the origin, and
point g symbolizes a compressive stress. This stress becomes

i!’o-x -V (%ﬂ'x)z + (Txy)z

But this expression is exactly the minimum principal stress, as found in (6) of Problem 16.7. Consequently
the points g and /& represent the principal stresses existing in the original element. We see that the tangent
of Locd is 7,,/(}a,). But from (3) of Problem 16.7, tan26, = —7,,/}c,; and by comparison of these two
relations we sec that £ hed = 26, since tan(180° — 6) = —tan 6. Thus a counterclockwise rotation from the
diameter bd (corresponding to the stresses in the x- and y-directions) leads us to the diameter gh,
represcnting the principal planes, on which the principal stresses occur. The principal planes lie at an angle
6, from the x-direction.

Thus Moht’s circle is a convenient device for finding the principal stresses, since one can merely
cstablish the circle for a given set of stresses o, and 7,, then measure og and oh. These abscissas represent
the principal stresses to the same scale used in plotting o, and 7,,.

It is now apparent that the radius of Mohr's circle, represented by ed = V(j0,)° + (7). corresponds
to the maximum shearing stress, as found in (8) of Problem 16.7. Actually, the shearing stress on any plane
is represented by the ordinate to Mobhr's circle; hence we should consider the radial lines ¢/ and cm as
representing the maximum shearing stresses. The angie del is evidently 26, and hence it is apparent that
the double angle between the planes of maximum normal stress and the planes of maximum shearing stress
(£ leh) 1s 90°: thus the planes of maximum shearing stress are oriented 45° from the planes of maximum
normal strcss.



CHAP. 16] COMBINED STRESSES 433

16.9.

Evidently the endpoints of the diameter bd represent the stresses acting in the original x- and
y-directions. We shall now demonstrate that the endpoints of any other diameter, such as ef (at any angle
26 with bd), represent the stresses on a plane inclined at an angle 6 to the x-axis. To do this we note that

the abscissa of point fis given by
a = oc + cn = }a, + cfcos (26, — 26)
= lg, + cf(cos 26,05 26 + sin 26, 5in 26)
= o, + V(30,)? + (1,)*(c0s 26, c0s 26 + sin 26, sin 26)
But from inspection of triangle cod appearing in Mohr's circle it is evident that

. T _%ox
? (io'x)z + (1,”)2 ? GUXJZ + (7xy)z
Substituting the values of 7,, and jo. from these two equations into the previous equation, we find
=}o, — }o, cos 20 + 7., 5in 26

But this is exactly the normal stress on a plane inclined at an angle 8 to the x-axis as derived in (J) of
Problem 16.7.
Next we observe that the ordinate of point fis given by

7= nf = cfsin (26, — 26)
= V(§0,)* + (7,) (sin 26, c0s 26 — cos 26, sin 20)
Again, substituting the values of ., and jo, from Egs, (I) into this equation, we find
T = jo,sin 20+ 7,,c0s 26

But this is exactly the shearing stress on a plane inclined at an angle # to the x-axis as derived in (2) of
Problem 16.7.

Hence the coordinates of point f on Mohr’s circle represent the normal and shearing stresses on a
plane inclined at an angle 6 to the x-axis.

A plane element in a body is subjected to a normal stress in the x-direction of 12,000 Ib/in?, as
well as a shearing stress of 4000 Ib/in?, as shown in Fig. 16-21. (¢) Determine the normal and
shearing stress intensities on a plane inclined at an angle of 30° to the normal stress. (b)
Determine the maximum and minimum values of the normal stress that may exist on inclined
planes and the directions of these stresses. (¢) Determine the magnitude and direction of the
maximum shearing stress that may exist on an inclined plane.

(a) In accordance with the notation of Problem 16.7, we have o, = 12,000 Ib/in’ and 7,, = 4000 1b/in®.

From (1) of Problem 16.7, the normal stress on a plane inclined at an angle 6 to the x-axis is

o =l}o,— o, cos20+ 7,,5in 26

i
4000 Ib/in®

12,000 1b/in®
4000 Ib/Int
" 12,000 b/in? z 1'———!-
R 4000 1b/in?
12,000 1b/in

—*
4000 Ib/in?

Fig. 16-21
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Substituting the above values of o, and 7,,, when 6 = 30° this becomes
o = }(12,000) - 3(12,000) cos 60° + 4000 sin 60° = 6470 Ib/in’
From (2) of Problem 16.7, the shearing stress on any plane inclined at an angle 6 to the x-axis is
7=10,sin20+ 7,,C08 26
Substituting the above values of o, and 7,,, when @ = 30° this becomes
7 = }(12,000) sin 60° + 4000 cos 60° = 5200 + 2000 = 7200 Ib/in?

The positive directions of the normal and shearing stresses on an inclined plane were illustrated in
Fig. 16-16. In accordance with this sign convention the stresses on the 30° plane appear as in Fig.
16-22.

The values of the principal stresses, that is, the maximum and minimum values of the normal stresses
existing in this element, were given by (5) and (6) of Problem 16.7. From (5) for the maximum normal
stress, we have

Omax = 305 + V3G + 1,,)7 = 6000 + V/(6000)% + (4000)% = 13,220 Ib/in?
From (6) for the minimum normal stress, we have

Ooun = 30, — V(30,)* + (1,,)7 = 6000 — V(6000) + (4000)2 = —1220 Ibfin?

The directions of the planes on which these principal stresses occur were found in (3) of Problem 16.7
to be

Since the tangent of the angle 26, is negative, the two values of 26, lie in the second and fourth
quadrants. In the second quadrant, 26, = 146°20’; in the fourth quadrant, 28; = 326°20'. Conse-
quently we have the principal planes defined by 6, = 73°10’ and 6], = 163°10°. If 6, = 73°10’, together
with the given values of o, and 7,,, is now substituted in (/) of Problem 16.7, we find

o = 3o, — 30,08 26 + 7,,5in 26 = 6000 — 6000 cos 146°20" + 4000sin 146°20"
= 6000 — 6000(—0.833) + 4000(0.554) = 13,220 Ib/in?

Thus the principal stress of 13,220 Ib/in® occurs on the principal plane oriented at 73°10’ to the x-axis.
The principal stresses thus appear as in Fig. 16-23. As stated in Problem 16.7, the shearing stresses
on these principal planes are zero.

The values of the maximum and minimum shearing stresses were found in (8) of Problem 16.7
to be

Toax = V(G0 + (1,,)? = = V(6000)% + (4000)? = +7220 Ibfin?

nin

1220 bfint




CHAP. 16]

COMBINED STRESSES 435

The directions of the planes on which these maximum shearing stresses occur were found in (7)

of Problem 16.7 to be given by
1
_2% _6000_3
tan26, ‘rx,, 2

The angles 26, are consequently in the first and third quadrants, since the tangent is positive. Thus
we have 26, = 56°20" and 26, = 236°20', or 6, = 28°10’ and @, = 118°1()'. The shearing stress on any
plane inclined at an angle @ with the x-axis was found in (2) of Problem 16.7 to be

7= }o,sin20 + 7,,cos 26
Substituting o, = 12,000 Ib/in?, 7,, = 4000 1b/in?, and 6 = 28°10’, we find
7= $(12,000) sin 56°20" + 4000 cos 56°20" = +7220 Ibfin’

Thus the shearing stress on the 28°10" plane is positive. The positive sense of shearing stress was

shown in Fig. 16-6.
The normal stresses on the planes of maximum shearing stress are found from (9) of Problem
16.7 to be

o = }o, = ¥(12,000) = 6000 Ib/in”

This normal stress acts on each of the planes of maximum shearing stress, as shown in Fig. 16-24.

16.10. A plane element is subject to the stresses shown in Fig. 16-25. Using Mohr’s circle, determine
(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

12,000 Ib/in?
y - 'l——> —* ! 0/
12,000 1b/in' 0
£ ]
4000 Ib/in \

v Shearing Stresa
12,000 1b/in®

- 4000 1b/in2 <

Fig. 16-25 Fig. 16-26

Following the procedure for the construction of Mohr’s circle outlined in Problem 16.8, we realize that

the shearing stress on the vertical faces of the given element are positive, whereas those on the horizontal
faces are negative. Thus the stress condition of o, = 12,000 1b/in?, 7,, = 4000 Ib/in? existing on the vertical
faces of the element plots as point b in Fig. 16-26. The stress condition of 7,, = —4000 1b/in? together with
a zero normal stress on the horizontal faces plots as point d. Line bd is drawn, its midpoint ¢ is located,
and a circle of radius cb = cd is drawn with ¢ as a center. This is Mohr’s circle. The endpoints of the
diameter bd represent the stress conditions existing in the element if it has the original orientation shown
above.

(a)

The principal stresses are represented by points g and h, as shown in Problem 16.8. The principal
stresses may be determined either by direct measurement from Fig. 16-26 or by realizing that the
coordinate of c is 6000, and that ¢d = V/(6000)? + (4000)* = 7220. Therefore the minimum principal
stress is

Omin = 08 = 0C — g = 6000 — 7200 = —12201b/in?



436 COMBINED STRESSES [CHAP. 16

Also, the maximum principal stress is
Omax = Oh = 0C + ch = 6000 + 7220 = 13,220 Ibfin?
The angle 26, designated above is given by

tan26,= ——=—-=- or 6,=73 10/

This value could also be obtained by measurement of Zdch in Mohr’s circle. From this it is readily
seen that the principal stress represented by point £ acts on a plane oriented 73°10° from the original
x-axis. The principal stresses thus appear as in Fig. 16-27(a). It is evident from Moht’s circle that the
shearing stresses on these planes are zero, since points g and h lie on the horizontal axis of Mohr's
circle.

1220 1b/in®

Fig. 1627

(b) The maximum shearing stress is represented by cl in Mohr’s circle. This radius has already been found
to be equal to 7220 1b/in’. The angle 26, may be found either by direct measurement from Fig. 16-26
or simply by subtracting 90° from the angle 26,, which has already been determined. This leads to
26, = 56°20" and 6, = 28°10’. The shearing stress represented by point I is negative; hence on this
28°10" plane the shearing stress tends to rotate the element in a counterclockwise direction. Also,
from Mohr’s circle the abscissa of point / is 6000 1b/in? and this represents the normal stress occurring
on the planes of maximum shearing stress. The maximum shearing stresses thus appear as in Fig,
16-27(b).

16.11. A plane element in a body is subject to a normal compressive stress in the x-direction of
12,000 1b/in? as well as a shearing stress of 4000 1b/in?, as shown in Fig. 16-28. (a) Determine the
normal and shearing stress intensities on a plane inclined at an angle of 30° to the normal stress.
(b) Determine the maximum and minimum values of the normal stress that may exist on

'l‘

12,000 1b/in® z
12,000 1b/In®
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inclined planes and the direction of these stresses. (¢) Find the magnitude and direction of the
maximum shearing stress that may exist on an inclined plane.

(a)

(b)

(c)

By the sign convention for normal and shearing stresses adopted in Problem 16.7, we have here
o, = —12,000 Ib/in’, 7,, = —40001b/in®>. From (/) of Problem 16.7, the normal stress on the 30°
plane is

o= —12,000/2 — (—12,000/2) cos 60° — 4000 sin 60° = —6470 1b/in’
From (2) of Problem 16.7, the shearing stress on the 30° planc is
7 = }(—12,000) sin 60° — 4000cos 6(0° = —7200 Ibfin’

The positive directions of the normal and shearing stresses on an inclined plane were illustrated in
Fig. 16-16. By this sign convention the stresses on the 30° plane appear as in Fig. 16-29.

The values of the principal stresses were given by (5) and (6) of Problem 16.7. From (5),
Omax = —12,00012 + V(=12.00072)* + (—4000)° = 1220 Ib/in?

From (6),

= ~12,0002 — V(—12,0002) + (—4000)° = —13.220 Ibfin’

aﬂ‘l‘ll‘l

The tensile principal stress is usually referred to as the maximum. even though its absolute value is
smaller than that of the compressive stress.
The dircctions of the planes on which these principal stresses occur are given by (3) of Problem
16.7 to be
T, —4000

tan26, = — - =

——— = 23
o, 120002 2

The angles defined by 26, lie in the second and fourth quadrants since the tangent is negative.
Hence 26, = 146°20' and 26, = 326°20'. Thus the principal planes are defined by 6, = 73°10' and
6, = 163°10°. If 6, = 73°10’. together with the given values of o, and 7,,. is now substituted in (/) of
Problem 16.7, we find

o =10, ~lo.cos 20+ 7., 5iN 20
= —12,000/2 — (—12,000/2) cos 146°20" — 4000sin 146°20" = —13.220 Ib/in’
Thus the principal stress of —13,220 Ib/in” occurs on the principal plane oriented at 73°10' to the

x-axis. The principal stresses are shown in Fig. 16-30. The shearing stresses on these principal planes
are zero.

The value of the maximum shearing stress is found from (8) of Problem 16.7 to be
Tnax = V() + (T,) = = V(—12,000/2) + (—4000)* = +7220 Ib/in?

min

1220 Jbfin?
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The directions of the planes on which these shearing stresses occur was found in (7) of Problem 16.7
to be

Thus 26, = 56°20' and 26, = 236°20": or 6, = 28°10’ and 6, = 118°10’. From (2) of Problem 16.7, the
shearing stress on any plane inclined at an angle 6 with the x-axis is

= }o.sin26 + 7., cos 26 = §(—12,000) sin 56°20" — 4000 cos 56°20’ = —7220 1b/in’

Thus the shearing stress on the 28°10" plane is ncgative. The positive sense of shearing stress was
shown in Fig. 16-16.
The normal stresses on the planes of maximum shearing stress were found in (9) of Problem 16.7

to be
o= 50; = —12,000/12 = —6000 Ibfin’

This normal stress acts on each of the planes of maximum shearing stress, as shown in Fig. 16-31.

L3
6000 1b/in? w®

Fig. 16-31

16.12. A plane element is subject to the stresses shown in Fig. 16-32. Using Mohr’s circle, determine

(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

The procedure for the construction of Mohr's circle was outlined in Problem 16.8. Following the
instructions there, the shearing stresses on the vertical faces of the above element are negative, those on
the horizontal faces are positive. Thus the stress condition of a, = —12,0001b/in?, 7,, = —40001b/in’
existing on the vertical faces of the element plots as point b in Fig. 16-33. The stress condition of
7,, = 4000 1b/in®, together with a zero normal stress on the horizontal faces, plots as point d. Line bd is
drawn, its midpoint ¢ is located, and a circle of radius cb = cd is drawn with c as a center. This is Mohr’s
circle. The endpoints of the diameter bd represent the stress conditions existing in the element if it has the
original orientation shown in Fig. 16-32.

lﬂ
- 4000 1b/in®

12,000 1b/in® =z
12,000 Ib/in?

4000 1b/in? agf—

Fig. 16-32
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Shearing Stress

d
L

4000 Ib/in?
h_§

/ Normal Stress
b
‘ m
12,000 lbfin? —

Fig. 1633

Q,

The principal stresses are represented by points g and h (Fig. 16-33), as demonstrated in Problem 16.8.
They may be determined either by direct measurement from the above diagram or by realizing that
the coordinate of c is —6000, and that cd = V(6000)* + (4000)* = 7220. Thus the minimum principal
stress is

Omin = 08 = +(0C + cg) = —6000 — 7220 = —13.220 Ib/in?

The maximum principal stress is
Omax = OR = ¢ch — co = 7220 — 6000 = 1220 Ibfin?

The angle 26, designated above is given by tan28, = —4000/6000 = —2/3 since tan(180° — ) =
—tan 6. Hence 26, = 146°20", and 6, = 73°10". This valuc could of course have been obtained by
direct measurement of angle dcg in Mohr’s circle. Thus the principal stress of —13,220 Ib/in’
represented by point g acts on a plane oriented 73°10" from the original x-axis. The principal stresses
thus appear as in Fig. 16-34. It is evident from Mohr’s circle that the shearing stresses on these planes
are zero, since points g and k lie on the horizontal axis of Mohr’s circle.

Fig. 16-34 Fig. 16-35

The maximum shearing stress is represented by cf in Mohr’s circle. This radius has already been found
to be equal to 72201b/in”. The angle 26, may be found either by direct measurement from Mohr’s
circle or simply by subtracting 90° from the above value of 26,. This leads to 6, = 28°10°. The shearing
stress represented by point / is positive: hence on this 28°10" plane the shearing stress tends to rotate
the element in a clockwise direction. Also, from Mohr's circle the abscissa of point [ is —6000 Ibfin’
and this represents the normal stress occurring on the planes of maximum shearing stresses, as shown
in Fig. 16-35.
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16.13. Consider a plane element removed from a stressed elastic member. In general such an element
will be subject to normal stresses in each of two perpendicular directions, as well as shearing
stresses. Let these stresses be denoted by 0., 0,, and 7,, and have the positive directions shown
in Fig. 16-36. (a) Determine the magnitudes of the normal and shearing stresses on a plane
inclined at an angle 6 to the x-axis. (b) Also determine the maximum and minimum values of
the normal stress that may exist on inclined planes and the directions of these stresses. (c)
Finally, find the magnitude and direction of the maximum shearing stress that may exist on an
inclined plane.

N
v \ |
', o
"nq—L- T '\i oy X
o Try - oy I’ x - r} ?l:: lr“
| " - T

-1 ‘l' ‘\(
"'t -
Fig. 16-36 Fig. 16-37

(a) Evidently the desired stresses acting on the inclined planes are internal quantities with respect to the
element shown in Fig. 16-36. Following the usual procedure of introducing a cutting plane so as to
render the desired quantities external to the new section, we cut the originally rectangular element
along the plane inclined at the angle 8 to the x-axis and thus obtain the triangular element shown in
Fig. 16-37. Since we have removed half of the material in the rectangular element, we must replace
it by the effect that it exerted upon the remaining lower triangle shown and this effect in general
consists of both normal and shearing forces acting along the inclined plane. We shall designate the
magnitudes of the normal and shearing stresses corresponding to these forces by o and 7. respectively.
Thus our problem reduces to finding the unknown stresses o and 7 in terms of the known stresses
o, o,. and 7,,. Chapter 17 illustrates the manner of determination of the stresses o,, o,. and 7. It
is to be carefully noted that the free-body diagram, Fig. 16-37, indicates stresses acting on the various
faces of the element, and not forces. Each of these stresses is assumed to be uniformly distributed
over the area on which it acts.

We shall introduce the N- and T-axes normal and tangential to the inclined plane as shown. Let
t denote the thickness of the element perpendicular to the plane of the page. Let us begin, by
summing forces in the N-direction. For equilibrium we have

2 Fy = otds — o,tdysin 8 — 7, tdycos § — o,tdxcos 6 ~ 7,,tdxsin 6 = 0
Substituting dy = dssin 8, dx = dscos 6 in the equilibrium equation,
ods = g,dssin’ 8 + g, ds cos’ § + 27, dssin 6cos §
Introducing the identities sin? 6 = }(1 — cos26), cos?8 = }(1 + cos 26), 5in26 = 2sin Hcos 6, we find
o = jo,(1 — cos26) + jo,(1 + cOs 26) + 7,,5in 20
or o = Yo, + 0,) - Y0, — 0,)c0s 20 + 7,,5in20 (3]

Thus the normal stress ¢ on any plane inclined at an angle 8 with the x-axis is known as a function
of @,, o,, 7,,, and 6.
Next, summing forces acting on the element in the T-direction, we find

2 Fr= 7tds— o,tdycos 6 + 7, tdysin 6 — 7,,tdxcos 0 + o,tdxsin 8 = 0
Substituting for dx and dy as before, we get

Tds = o, dssin 8cos 0 — 'r,t,d'ssin2 0+, ds cos? 6 — o, dssin cos 6
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Introducing the previous identities and the relation cos26 = cos®@—sin?#6, this last equation
becomes

7= Yo, — 0,)sin 26 + 7,,c05 26 (2)
Thus the shearing stress 7 on any plane inclined at an angle 8 with the x-axis is known as a function
of Txy Tyy Trys and 6.

To determine the maximum value that the normal stress o may assume as the angle 6 varies. we shall
differentiate Eq. (/) with respect 10 6 and set this derivative equal to zero. Thus

% = (o, — 0y)sin20+ 27,,c0826 = 0
Hence the values of 6 leading to maximum and minimum values of the normal stress are given by
Txy
tan2f, = ————— 3)
i %(ax . D’,)

The planes defined by the angles 6, are called principal planes. The normal stresses that exist on these
planes are designated as principal stresses. They are the maximum and minimum values that the
normal stress may assume in the element under consideration. The values of the principal stresses
may easily be found by considering the graphical interpretation of (3) given in Fig. 16-38. Evidently
the tangent of either of the angles designated as 26, has the value given in (3). Thus there are two
solutions of (3), and consequently two values of 26, (differing by 180°) and also two values of 6,
(differing by 90°). It is to be noted that Fig. 16-38 bears no direct relationship to the triangular element
whose free-body diagram was given in Fig. 16-37.

Fig. 16-38

The values of sin26, and cos 26, as found from the above two diagrams may now be substituted
in (1) to yield the maximum and minimum values of the normal stresses. Observing that

1
15(0} - ay}

V’[%(D’A -0, )]2 + (7,:_\-)2

*71,,
VH(D’, - oy)P + (7:7)2
where the upper signs pertain to Case I and the lower to Case II, we obtain from (/)

sin26, = cos26, =

o =i+ 3) = Vo, — 0)) + ()} )

The maximum normal stress is
s = Yo+ 03) + Vi (0, — @) + (7,,) ©)

The minimum normal stress is
Tnin = b+ 0,) = V(. — o) + (7,)° 6)

The stresses given by (5) and (6) are the principal stresses and they occur on the principal planes
defined by (3). By substituting one of the values of 6, from (3) into Eq. (/). one may readily
determine which of the two principal stresses is acting on that plane. The other principal stress
naturally acts on the other principal plane.
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By substituting the values of the angle 26, as given by (3) or by Fig. 16-38 into (2), it is readily
secn that the shearing stresses 7 on the principal planes are zero.

To determine the maximum value that the shearing stress  may assume as the angle @ varies, we shall
differentiatc Eq. (2) with respect to 6 and set this derivative equal to zero. Thus

% = (0, — ¢,)c0s 20 — 27,,5in26 = 0
The values of 6 leading to the maximum values of the shearing stress are thus
1 -
tan 26, = ———1("‘7 %) )

The planes defined by the two solutions to this equation are the planes of maximum shearing
stress.

Again, a graphical interpretation of (7) is convenient. The two values of the angle 26, satisfying
this equation may be represented as in Fig. 16-39. From these diagrams we have

+! _ +
$in 26, = —= Rk 20',.) 2 1 _%z
Vio: — 0)F + (1) VEio: — o)1 + (1,
where the upper (positive) sign refers to Case I and the lower (negative) sign applies to Case II.
Substituting these values in (2) we find

Tax = = V[0, — 0)F + (7, (8)

min

cos26, =

Here the positive sign represents the maximum shearing stress, the negative sign the minimum
shearing stress.

_i(ﬂx - "y)

Fig. 16-39

If we compare (3) and (7). it is evident that the angles 26, and 26, differ by 90°, since the tangents
of these angles are the negative reciprocals of one another. Hence the planes defined by the angles
6, and 6, differ by 45°; that is, the planes of maximum shearing stress are oriented 45° from the planes
of maximum normal stress.

It is also of interest to determine the normal stresses on the planes of maximum shearing stress.
These planes are defined by (7). If we now substitute the values of sin 26, and cos 26, in Eq. (I) for
normal stress, we find

o= %(.‘.J',r +a,) (9)

Thus on each of the planes of maximum shearing stress is a normal stress of magnitude (o, + o).

16.14. Discuss a graphical representation of the analysis presented in Problem 16.13.

1.

For given values of a,, o,, and 7,, we proceed this way:

Introduce a rectangular coordinate system in which normal stresses are represented along the
horizontal axis and shearing stresses along the vertical axis. The scales used on these two axes must
be equal.
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Try -
o * oy #
I dv dx - -
Iy

Fig. 16-40

2. With reference to the original rectangular element considered in Problem 16.13 and reproduced in Fig,
16-40, we shall introduce the sign convention that shearing stresses are positive if they tend to rotate
the element clockwise, and negative if they tend to rotate it counterclockwise. Here the shearing
stresses on the vertical faces are positive, those on the horizontal faces are negative. Also, tensile
normal stresses are considered to be positive, compressive stresses negative,

3. We first locate point b by laying out o, and 7,, to their given values. The shear stress 7., on the vertical
faces on which o, acts is positive; hence this value is plotted as positive in Fig. 16-41.

§ Shearing Stress

Fig. 16-41

4. We next locate point d in a similar manner by laying off ¢, and 7,, to their given values. Figure 16-41
is drawn on the assumption that o, > o, although the treatment presented here holds if o, < o,. The

shear stress 7,, on the horizontal faces on which g, acts is negative; hence this value is plotted below
the reference axis.

5. Next, we draw line bd, locate midpoint ¢, and draw a circle having its center at ¢ and radius equal to
cb. This is known as Mohr's circle.

We shall first show that the points g and # along the horizontal diameter of the circle represent the
principal stresses. To do this we note that the point ¢ lies at a distance (o, + ¢,) from the origin of the
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coordinate system. Also, the line segment jk is of length o, — o,; hence ck is of length }(o, — 0,). From the
right triangle relationship we have

(cdy = (ck)*+ (kd’ or  cd = V[io. - 0] +(5,)

Also. ¢g = ch = cd. Hence the x-coordinate of point h is oc + ch or

i’(ax + Uy) + \/[%(Ur - y:’]2 + (TJy}z

But this expression is exactly the maximum principal stress, as found in (5) of Problem 16.13. Likewise the
x-coordinate of point g is oc — gc or

o, + a,) - V[i(o. - 0,)] + (1,

and this expression is exactly the minimum principal stress. as found in (6) of Problem 16.13. Consequently
the points g and h represent the principal stresses existing in the original element. We see that the tangent
of 2 ked = dkick = 7./}, — o). But from (3) of Problem 16.13 we had

T
tanzap =

%(0: = D’,-)

and by comparison of these two relations we see that £kcd = 28,; that is, a counterclockwise rotation from
the diameter bd (corresponding to the stresses in the x- and y-directions) leads us to the diameter gh.
representing the principal planes, on which the principal stresses occur. The principal planes lie at an angle
6, from the x-direction.

Thus Mohr’s circle is a convenient device for finding the principal stresses, since one can merely
establish the circle for a given set of stresses g, o,. 7,,, then measure og and ok. These abscissas represent
the principal stresses to the same scale used in plotting o, g,. 7,,.

It is now apparent that the radius of Mohr’s circle,

cd = VI[io, — a)F + (1)

corresponds to the maximum shearing stress as found in (8) of Problem 16.13. Actually, the shearing stress
on any plane is represcnted by the ordinate to Mohr’s circle; hence we should consider the radial lines ¢/
and ¢m as representing the maximum shearing stress. The angle dcl is evidently 26, and hence it is apparent
that the double angle between the planes of maximum normal stress and the planes of maximum shearing
stress (£ kcl) is 90° hence the planes of maximum shearing stress are oriented 45° from the planes of
maximum normal stress.

Evidently the endpoints of the diameter bd represent the stresses acting in the original x- and
y-directions. We shall now demonstrate that the endpoints of any other diameter such as ef (at an angle
26 with bd) represent the stresses on a plane inclined at an angle 6 to the x-axis. To do this we note that
the abscissa of point f is given by

o = oc +cn = o, +0,) + cfcos (26, — 26)

= Yo, + 0,) + cf(c0s 26, c0s 20 + sin 26, 5in 26)

= Yo+ a,) + V[i(o, - a,)]’ + (7,,) (cos 26,c0520 + sin 26, s5in 26)
But from an inspection of triangle ckd in Mohr’s circle it is evident that

Ty ‘l*,(ar - 0',‘)

Ve oty T Vi of +

(r)

sin 26, =
Substituting the values of 7, and 5(0', — o) from these last two equations into the previous equation.
we find
o= Yo, +0,) — Yo, — 7,)cos 20 + 7, 5in 20

But this is exactly the normal stress on a plane inclined at an angle 6 to the x-axis as derived in (1) of
Problem 16.13.
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Next we observe that the ordinate of point fis given by
7= nf = cfsin (26, — 26) = cf(sin 26, cos 20 — cos 26, sin 26)
= V[i(o, — 0,))* + (7., ) (sin 26, cos 20 — cos 26, sin 26)

Again, substituting the values of 7,, and }(o, — o,) from (7) into this equation, we find
7= 1,,c0820 + 3(0, — 0,)sin28

But this is exactly the shearing stress on a plane inclined at an angle @ to the x-axis as derived in (2) of

Problem 16.13.
Hence the coordinates of point f on Mohr's circle represent the normal and shearing stresses on a

plane inclined at an angle 6 to the x-axis.

16.15. A plane element is subject to the stresses shown in Fig. 16-42. Determine (a) the principal
stresses and their directions, (b) the maximum shearing stresses and the directions of the planes

on which they occur.

'ﬂ‘

| 15,000 Ib/in?
|12,ooo bfinz2

8000 1bfin®

8000 1b/in*
12,000 Ib/in? I

15,000 Ib/in?

Fig. 16-42

(a) In accordance with the notation of Problem 16.13, we have o, = 12,000 Ibfin?, o, = 15,000 Ibfin?, and
7., = 8000 1b/in®. The maximum normal stress is, by (5) of Problem 16.13,

Tnax = 203 + ) + VIi(0, — 0,)P + (7,
= 3(12,000 + 15,000) + V[1(12,000 — 15,000)]? + (8000)>
= 13,500 + 8150 = 21,650 Ibfin?
The minimum normal stress is given by (6) of Problem 16.13 to be
O = }(0: + 0,) ~ V(0. — 0,)F + (7,,)* = 13,500 — 8150 = 5350 Ibfin?

From (3) of Problem 16.13 the directions of the principal planes on which these stresses of
21,650 1b/in’ and 5350 Ib/in? occur are given by

Tay 8000

Ko-o) 1200015000 >3

tan26, = —

Then 26, = 79°24’, 259°24" and 6, = 39°42’, 129°42".
To determine which of the above principal stresses occurs on each of these planes, we return to
(1) of Problem 16.13, namely,

o = (o, + 0,) — Yo, — 0,) cos 20 + 7, 5in 26
and substitute § = 39°42’ together with the given values of o,, 0,, and 7,, to obtain
o = 512,000 + 15,000) — 3(12,000 - 15,000) cos 79°24’ + 8000 sin 79°24’ = 21,650 Ib/in’

Thus an element oriented along the principal planes and subject to the above principal stresses
appears as in Fig. 16-43. The shearing stresses on these planes are zero.
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2 13,500 Ib/int

21,650 1b/in?

13,600 1b/ins

21,650 Ib/in2
13,600 1b/in?

Fig. 16-43 Fig. 16-44

(b) The maximum and minimum shearing stresses were found in (&) of Problem 16.13 to be

Toax = = Vi(e2 — )P + (7,
= + V[}(12,000 — 15,000)] + (8000)? = +8150 Ib/in?

From (7) of Problem 16.13 the planes on which these maximum shearing stresses occur are
defined by the equation

Ao —o,) _

Txy
Then 26, = 169°24°, 349°24" and 6, = 84°42', 174°42’. Evidently these planes are located 45° from the
planes of maximum and minimum normal stress.

To determine whether the shearing stress is positive or negative on the 84°42" plane, we return
to (2) of Problem 16.13, namely,

tan 26, = —0.188

= Yo, — 0,)sin26 + 7, cos 26
and substitute 8 = 84°42’ together with the given values of o, o,, and 7,, to obtain
7 = 3(12,000 — 15,000) sin 169°24" + 8000 cos 169°24’ = —8150 Ibfin’

The negative sign indicates that the shearing stress is directed oppositely to the assumed positive
direction shown in Fig, 16-36. Finally, the normal stresses on these planes of maximum shearing stress
are found from (9) of Problem 16.13 to be

o = Yo, + 0,) = }(12,000 + 15,000) = 13,500 Ibfin?

The orientation of the element for which the shearing stresses are maximum is as in Fig. 16-44.

16.16. A plane element is subject to the stresses shown in Fig. 16-45. Using Mohr’s circle, determine
(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur,

1 ¥
15,000 Ib/in?}

8000 1b/in? s
12,000 Ibfin?
12,000 Ib/in?

e BO00 1b/in?

¥15.000 1b/in?
Fig. 16-45
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The procedure for the construction of Mohr’s circle was outlined in Problem 16.14. Following the
instructions there, we realized that the shearing stresses on the vertical faces of the given element are
posllwe, whereas those on the horizontal faces are negative. Thus the stress condition of ¢, = 12,000 Ib/in?,

= 8000 Ib/in’ existing on the vertical faces of the element plots as point b in Fig. 16-46. The stress
COl'IdlllOl‘l of g, = 15,000 Ibfin?, 7,, = —8000 Ib/in’ existing on the horizontal faces plots as point d. Line bd
is drawn, its mldpoml ¢ is located, and a circle of radius cb = ¢d is drawn with ¢ as a center. This is Mohr’s
circle. The endpoints of the diameter bd represent the stress conditions existing in the clement if it has the

original orientation of Fig. 16-45.

Shearing Stress

12,000 Ib/in? !
1 /
8000 1b/int "% ““ﬂi h Normal Stress
[ g

m
po——— 15,000 1b/in®

Fig. 16-46

(a) The principal stresses are represented by points g and h, as demonstrated in Problem 16.14. The
principal stress may be determined either by direct measurement from Fig. 16-46 or by rcalizing that
the coordinate of ¢ is 13,500, that ck = 1500, and that cd = V(1500)? + (8000)> = 8150. Thus the
minimum principal stress is

O = 08 = 0C — cg = 13,500 — 8150 = 5350 Ibfin’

Also, the maximum principal stress is

Omax = Oh = 0 + ch = 13,500 + 8150 = 21,650 Ib/in?

The angle 26, is given by tan26, = 8000/1500 = 5.33 from which 6, = 39°42’. This value could also
be obtained by measurement of Zdck in Mohr's circle. From this it is readily seen that the principal
stress represented by point # acts on a plane oriented 39°42" from the original x-axis. The principal
stresses thus appear as in Fig. 16-47. It is evident that the shearing stresses on these planes are zero,
since points g and 4 lie on the horizontal axis of Mohr’s circle.

(b) The maximum shearing stress is represented by cl in Mohr’s circle. This radius has alre ady been found
to represent 8150 Ib/in’. The angle 26, may be found either by direct measurement from the above
plot or simply by adding 90° to the angle 26,, which has already been determined. This leads to
26, = 169°24’ and 6, = 84°42’. The shearing stress represented by point / is positive; hence on this
84°42" plane the shearing stress tends to rotate the element in a clockwise direction.

21,650 Ibfin2

21,650 Ib/in?
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Also, from Mohr’s circle the abscissa of point / is 13,500 1b/in’ and this represents the normal
stress occurring on the planes of maximum shearing stress. The maximum shearing stresses thus
appear as in Fig. 16-48.

16.17. For the element discussed in Problem 16.16, determine the normal and shearing stresses on a
plane making an angle of 55° measured counterclockwise from the positive end of the x-axis.

&

&

$
20,600 Ib/ins by
12,000 Ib/in2
- 8000 1b/in?
16,000 1b/int Y
Fig. 16-49

According to the properties of Mohr’s circle discussed in Problem 16.14, we realize that the endpoints
of the diameter bd represent the stress conditions occurring on the original x-y plane. On any plane inclined
at an angle 6 to the x-axis the stress conditions are represented by the coordinates of a point f, where the
radius c¢f makes an angle of 26 with the original diameter bd. This angle 26 appearing in Mohr's circle is
measured in the same direction as the angle representing the inclined plane, namely, counterclockwise.

Hence in the Mohr's circle appearing in Problem 16.16, we merely measure a counterclockwise angle
of 2(55°) = 110° from line cd. This locates point f. The abscissa of point f represents the normal stress on
the desired 55° plane and may be found either by direct measurement or by realizing that

on = oc + cn = 13,500 + 8150 cos (110° — 79°24') = 20,500 Ib/in’

The ordinate of point f represents the shearing stress on the desired 55° plane and may be found from the
relation

fn = 8150sin (110° — 79°24') = 4150 Ib/in?
The stresses acting on the 55° plane may thus be represented as in Fig. 16-49.

16.18. A plane element is subject to the stresses shown in Fig. 16-50. Determine (a) the principal
stresses and their directions and (b) the maximum shearing stresses and the directions of the
planes on which they occur.

(a) In accordance with the notation of Problem 16.13, o,= -75MPa, o,=100MPa, and
7o, = —50 MPa. The maximum normal stress is given by (5) of Problem 16.13 to be

Omax = Mo+ ) + Vi(0: - o) + (1,,)
= Y(~75+100) + V[}(~75 ~ 100)} + (—50)?
=125+ 100.8 = 113.3 MPa
The minimum normal stress is given by (6) of Problem 16.13 to be
Ooun = Yon + 0,) = V30, - 0, )P + (7, = 125 - 100.8 = ~883 MPa
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Fig. 16-50

From (3) of Problem 16.13 the directions of the principal planes on which these stresses of
113.3 MPa and —88.3 MPa occur are given by
Ty _ =50
N Yooy T K75 100)
Then 26, = 150°15’, 330°15’ and 6, = 75°8’, 165°8".
To determine which of the above principal stresses occurs on each of these planes, we return to
() of Problem 16.13, namely,

o= %(Ux +a)— %(cr, - 0,)cos 28 + 7,,sin 26

= —0.571

and substitute @ = 75°8' together with the given values of o,, o,, and 7,, to obtain
o = 3—75+ 100) — 3(—75 — 100) cos 150°15° — 50sin 150°15' = 88.3 MPa

Consequently an element oriented along the principal planes and subject to the above principal
stresses appears as in Fig. 16-51. The shearing stresses on these planes are zero.

The maximum and minimum shearing stresses were found in (8) of Problem 16.13 to be
= * V[}(0, — 0,) + (1,)* = = V[}(=75 — 100)]* + (=50)* = +100.8 MPa

Tmax
min

From (7) of Problem 16.13, the planes on which these maximum shearing stresses occur are
defined by

tan26, = Mom3) _ 95
Toy

H33IMPa

113.3 MPa

Fig. 16-51
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Then 2, = 60°157, 240°15" and 6, = 30°8', 120°8’. It is apparent that these planes are located 45° from
the planes of maximum and minimum normal stress.

To determine whether the shearing stress is positive or negative on the 30°8' plane, we return
to (2) of Problem 16.13. namely.

= }o, — ¢,)sin26 + 7,,c0s 20
and substitute 6 = 30°8" together with the given values of o,, o,, and 7, to obtain
7= }—75 - 100)sin 60°15" — 50 cos 60°15' = —100.8 MPa

The negative sign indicates that the shearing stress on the 30°8’ plane is directed oppositely to the
assumed positive direction shown in Fig. 16-36. The normal stresses on these planes of maximum
shearing stress were found in (9) of Problem 16.13 to be

o= ;!!(Uk + ﬂ",)
= 4(~75 + 100) = 12.5 MPa

Consequently, the orientation of the element for which the shearing stresses are a maximum
appears as in Fig. 16-52.

12.5MPa

Fig. 16-52

16.19. A plane element is subject to the stresses shown in Fig. 16-53. Using Mohr’s circle, determine

(a) the principal stresses and their directions and (b) the maximum shearing stresses and the
directions of the planes on which they occur.

Again we refer to Problem 16.14 for the procedure for constructing Mohr's circle. In accordance with

the sign convention outlined there, the shearing stresses on the vertical faces of the element are negative,
those on the horizontal faces positive. Thus the stress condition of o, = —75 MPa, 7,, = —50 MPa existing
on the vertical faces of the element plots as point b in Fig. 16-54. The stress condition of o, = 100 MPa,
7., = 30 MPa existing on the horizontal faces plots as point d. Line bd is drawn, its midpoint c is located,
and a circle of radius cb = cd is drawn with ¢ as a center. This is Mobr's circle. The endpoints of the

Shearing Streas

IU
100 MPa  —=
41001\1& 00 r
S0MPE e 20, |20, N |
lo }J 50 MPa
¥ ¢ kJh | Normal s
J——" orm tress
75 MPa 75 MPa 50 MPa _r
)
e 50 M Pa-
m
100 MPa jo-— 75 MPa

Fig. 16-53 Fig. 16-54
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diameter bd represent the stress conditions existing in the element if it has the original oricntation shown
above.

(a) The principal stresses are represented by points g and k. as shown in Problem 16.14. They may be
found either by direct measurement from the above diagram or by realizing that the coordinate of
c is 12.5, that ck = 87.5, and that cd = V(87.5)? + (50)° = 100.8 MPa. Thus the minimum principal
stress is

G = 08 = 0C—cg = 12.5— 100.8 = 88.3 MPa
Also, the maximum principal stress is
Oonax = 0h = 0C + ch = 125 + 100.8 = 113.3 MPa

The angle 28, is given by tan28, = —50/87.5 = —0.571 from which 6, = 75°8'. This value could also
be obtained by measurement of Zdcg in Mohr's circle. From this it is readily seen that the principal
stress represented by point g acts on a plane oriented 75°8" from the original x-axis. The principal
stresses thus appear as in Fig. 16-55. Since the ordinates of points g and h are each zero, the shearing
stresses on these planes are zero.

(b) The maximum shearing stress is represented by ¢f in Mohr's circle. This radius has already been found
to represent 100.8 MPa. The angle 26, may be found either by direct measurement from the above
plot or simply by subtracting 90° from the angle 26, which has already been determined. This Icads
to 26, = 60°15" and 6, = 30°8’. The shearing stress represented by point ! is positive, hence on this
30°8’ plane the shearing stress tends to rotate the element in a clockwise direction.

Also, from Mohr’s circle the abscissa of point ! is 12.5 MPa and this represents the normal stress
occurring on the planes of maximum shearing stress. The maximum shearing stresses thus appear as
in Fig, 16-56.

113.3 MPa

11.5 MPa

I13.3 MPa

Fig. 16-55 Fig. 16-56

16.20. Develop a FORTRAN program to indicate the principal stresses as well as their directions for
an element subject to the stresses shown in Fig. 16-36.

The input to the program consists of the two normal stresses and one shearing stress. as indicated in
Fig. 16-36. The normal stresses, for purposes of developing a program, are, as before, taken to be positive
if tensile. The simplest sign convention for shearing stresses is to regard the horizontally directed shears
as positive if they tend to produce clockwise rotation of the element. i.e.. opposite to the convention
associated with Problem 16.13. In Problem 16.13 we found the principal stresses to be given by Egs. (5)
and (6) and their directions by Eq. (3). The desired program is listed below.

OO01OMAAARAAARNARARAARAARARARAAARAARRARAARRAAAARAAAAARRARRARARAAAAARAARRAARAAAAANAAAAAAAR

00020 PROGRAM STRES2D (INPUT,QUTPUT)
Q0030NRARAARRARRRARAANAARRRAAARARRRARARNRRNAARARRARARRARRARRARRARARRARRARRNAAR
00040%

00050* AUTHOR: KATHLEEN DERWIN

00060* DATE : JANUARY 26,1989

00070*

00080% BRIEF DESCRIPTION:
000950* THIS FORTRAN PROGRAM MAY BE USED TO SOLVE A SIMPLE 2-D STRESS
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00100* PROBLEM WHERE THE USER 18 PROMPTED FOR THE STRESS CONDITIONS FOR A
00110% SINGLE OR SET OF POINTS, AND THE PRINCIPAL STRESS AND ROTATING ANGLE
00120* ARE CALCULATED.

00130%

00140* INPUT:

00150* THE USER WILL BE ASKED TO INPUT THE NUMBER OF STRESS SETS AND THE
00160* NORMAL AND SHEAR STRESSES AT EACH POINT.

00170*

00180* OUTPUT:

00185+ THE PRINCIPAL STRESSES AND ROTATING ANGLE FOR EACH SET OF PTS. WIL
00190%* BE PRINTED.

00200*

00210* VARIABLES:

00220* X(100),Y(100),8(100) --- NORMAL AND SHEAR STRESS ARRAYS

00230* NUM --- THE NUMBER OF STRESS SETS

00240+ PI --- 3.14159

00250#

00260* SUBROUTINES CALLED:

00270* PRINCIP --- CALCULATES THE PRINCIPAL STRESSES AND THE ROTATING
oogso: ANGLE FOR A SINGLE OR SET OF POINTS.
ggaggﬁ**ﬁ*i.‘.*iﬁﬁﬁ‘*****QQ***QQ*Q“iiﬁti‘*ttﬁttt*iltt*iﬁtt**ttt‘*t*.‘**t*.**
0031044k AhAhbhk MAIN PROGRAM Amhhhhhhhhhh
00320**0“““*0‘*“*1*!ttitttti*tit*titil*tt.ttiﬁﬁl**Q****ttt**tt‘**t***‘t*i
00330*%

00340* VARIABLE DECLARATIONS

00350+*

00360 REAL X(100),¥(100),8(100),PI

00370 INTEGER NUM

00380+%

00390 PI = 3.14159

00400*

00410* USER INPUT

00420*

00430 PRINT*, 'PLEASE ENTER THE NUMBER OF STRESS SETS:'

00440 READ*, NUM

00450 DO 10 N=1,NUM

00460 PRINT#, ' PLEASE ENTER THE NORMAL STRESSES IN THE X,Y DIRECTIONS'
00470 PRINT#, 'AND THE SHEAR STRESS;'

00480 READ*,X(N),Y(N),S(N)

00490 10 CONTINUE

00500*

00510 CALLING SUBROUTINE PRINCIP TO CALCULATE THE PRINCIPAL
00520+* STRESSES AND THE ROTATING ANGLE

00530*

00540 CALL PRINCIP(X,Y,S,NUM)

00550*

00560 STOP

00570 END

DOSBOR ARk hkk ARAARRRARARAARRARAAARAARARARAARARARAANRAARAARAAARRARRARAAAAAA AR AN
00590 SUBROUTINE PRINCIP(XX,YY,SS,NUM)

00600*

00610% THIS SUBROUTINE WILL EVALUATE THE PRINCIPAL STRESSES AND ROTATING
00620* ANGLE FOR A SINGLE OR SET OF POINTS.

00630+

00640% VARIABLE DECLARATIONS

00650*

00660 REAL PI,XX(100),YY(100),S8(100),P1(100),P2(100),T(100)

00670 INTEGER NUM

00680%

00690* CALCULATIONS

00700*

00710 PI = 3.14159

00720 DO 15 N=1,NUM

00730 A=( (XX(N)-YY(N))/2.0)**2

00740 B=SQRT(A+(SS(N)**2))
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00750
00760
00770
00780
00790
00800
00810
00820
00830 15
00840*
00B50*
00860*
00870
00880
00850
00900 20
00910%*
00920*
00930%
00940 30
00950+
00960 40
00970%
00980%
00950*
01000
01010
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C=(XX(N)+YY(N))/2.0
P1(N)=C+B
P2(N)=C-B
Al=2*SS(N)/(XX(N)-Y¥(N))
T(N)=90*ATAN(AL)/PI
IF (XX(N).EQ.YY(N)) THEN
T(N) = 45.0

ENDIF

CONTINUE

PRINTING OUTPUT
PRINT 30
DO 20 N=1,NUM
PRINT 40,N,XX(N),YY(N),SS(N),P1(N),P2(N),T(N)
CONTINUE
FORMAT STATEMENTS
FORMAT(/,2X, 'NO.",5X, 'SIGXX',7X, 'SIGYY',7X, 'SIGXY',7X, 'SIG(1)",
7X,'SIG(2)',7X, ‘THETA',/)
FORMAT(2X,I2,3X,5(F9.2,3X),F9.2)
END SUBROUTINE PRINCIP

RETURN
END

16.21. Use the FORTRAN program of Problem 16.20 to determine principal stresses and their
directions for an element subject to the stresses indicated in Fig. 16-57.

18,750 Ib/in?

6750 Ib/in?

6750 Ib/in?

23,500 Ib/in? 23,500 Iv/in?

6750 Ib/in?

6750 Ib/in?

18,750 Ib/in?

Fig. 16-57

If we use the notation of Problem 16.20 together with the directions of stresses shown in Fig. 16-57,

we have g, = 23,500 Ib/in?, o, = —18,750 Ib/in?, and 7,, = —6750 Ib/in?. Substituting these values into the
self-prompting program of Problem 16.20, we get the following computer run.

READY.
run

PLEASE ENTER THE NUMBER OF STRESS SETS:

71

PLEASE ENTER THE NORMAL STRESSES IN THE X,Y DIRECTIONS
AND THE SHEAR STRESS:
? 23500,-18750,-6750
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NO.

1
SRU
RUN

16.22.

16.23,

16.24.

16,25.

16.26.

16.27.

16.28.

16.29.

COMBINED STRESSES [CHAP. 16

SIGXX SIGYY SIGXY SIG(1) SIG(2) THETA
23500.00 ~18750.00 -6750.00 24552.20 -19802.20 -B.B6
0.734 UNTS.
COMPLETE.

Supplementary Problems

A bar of uniform cross section 50 mm X 75 mm is subject to an axial tensile force of 500 kN applied at each
end of the bar. Determine the maximum shearing stress existing in the bar. Ans.  66.7 MPa

In Problem 16.22 determine the normal and shearing stresses acting on a plane inclined at 11° to the line
of action of the axial loads. Ans. 487 MPa, 2497 MPa

A square steel bar 1 in on a side is subject to an axial compressive load of 8000 Ib. Determine the normal
and shearing stresses acting on a plane inclined at 30° to the line of action of the axial loads. The bar is
so short that the possibility of buckling as a column may be neglected.

Ans. o= —2000 lb/in?, 7 = —3460 Iblin?

Rework Problem 16.24 by use of Mohr’s circle.

Ans.  See Fig. 16.58. o = ko = —2000 Ib/in?, 7 = dk = 3460 Ibfin?

Shearing Stress
—-rd je— 2000 1b/in?

3460 Ib/in?

60° { .
¢ J g 0 Normal Stress

——— B000 Ib/in? —=

Fig. 16-58

A plane element in a body is subject to the stresses o, = 20 MPa, g, = 0, and 7,, = 30 MPa. Determine
analytically the normal and shearing stresses existing on a plane inclined at 45° to the x-axis.
Ans. o =40MPa, 7= 10 MPa

A plane element is subject to the stresses o, = 50 MPa and o, = 50 MPa. Determine analytically the
maximum shearing stress existing in the element.  Ans 0

A plane element is subject to the stresses o, = 12,000Ib/in® and o, = —12,0001b/in>. Determine
analytically the maximum shearing stress existing in the element. What is the direction of the planes on
which the maximum shearing stresses occur? Ans. 12,000 Ibfin? at 45°

For the element described in Problem 16.28 determine analytically the normal and shearing stresses acting
on a plane inclined at 30° to the x-axis.  Ans. ¢ = —6000 Ib/in?, 7 = 10,400 Ib/in’
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16.30. Draw Mohr’s circle for a plane element subject to the stresses o, = 8000 Ibfin? and &, = —8000 Ib/in”. From
Mohr’s circle determine the stresses acting on a plane inclined at 20° to the x-axis.
Ans.  See Fig. 16-59. o = on = —61301blin?, 7 = nf = —5130 Ib/in?

Shearing Stress
50 MPa
50 MPa
g:.d[n { h, b Normal Stress
40°./|0, ¢
50 MPs
f S0 MPa
8000 _]_ 8000
Ib/in? Ib/in?
Fig. 16-59 Fig. 16-60

16.31. A plane element removed from a thin-walled cylindrical shell loaded in torsion is subject to the shearing
stresses shown in Fig. 16-60. Determine the principal stresses existing in this element and the directions
of the planes on which they occur.  Ams. 50 MPa at 45°

75 MPa

62.5 MPa

50 MPa

50 MPa

75 MPa

Fig. 16-61

16.32. A plane element is subject to the stresses shown in Fig. 16-61. Determine analytically (a) the principal
stresses and their directions and (b) the maximum shearing stresses and the directions of the planes on

which they act.
Ans. (@) Opay = 1.2 MPa at 50°40°, 0y, = —126.2 MPa at 140°40"; (b) Toay = 63.7 MPa at 5°40°

16.33. Rework Problem 16.32 by the use of Mohr's circle. ~ Ans.  See Fig. 16-62.

Shearing Stresa

50 MPa — b

m QR
N .

62.5 MPa
1 g ke f k l'NomnlStuu

Q
62.5MPs  |\2% %""/}Lsa.u MPa
.% |
j f klllﬂl’l
™= 75 MPa
126.2 MP2

Fig. 16-62
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16.34. A plane element is subject to the stresses indicated in Fig, 16-63. Use the FORTRAN program of Problem
16.20 to determine principal stresses together with their orientation.
Ans. SIG(1): 198.12; SIG(2): 66.88; THETA.: 24.82

90 MPa

50 MPa

50 MPa
175 MPa 175 MPa

50 MPa

50 MPa

90 MPa

Fig. 16-63

16.35. A plane element is subject to the stresses indicated in Fig. 16-64. Use the FORTRAN program of Problem
16.20 to determine principal stresses together with their orientation.
Ans.  SIG(1): 20,388.68; SIG(2): —31.738.68; THETA: 14.20

17,250 1b/in?

12,400 Ib/in?

12,400 1b/in?
28,600 Ib/in? 28,600 Ibfin?
12,400 Ib/in?

12,400 Ib/in?

17,250 Ib/in?

Fig. 16-64



Chapter 17

Members Subject to Combined Loadings;
Theories of Failure

AXIALLY LOADED MEMBERS SUBJECT TO ECCENTRIC LOADS

In Chaps. 1 and 2, where we considered straight bars subject to either tensile or compressive loads,
it was always required that the action line of the applied force pass through the centroid of the cross
section of the member. In the present chapter we shall consider those cases where the action line of
the applied force acting on a bar in either tension or compression does not pass through the centroid
of the cross section. A typical example of such an eccentric loading is shown in Fig. 17-1. For those cross
sections of the bar that are perpendicular to the direction of the load, the resultant stress at any point
is the sum of the direct stress due to a concentric load of equal magnitude P plus a bending stress due
to a couple of moment Pe. This first stress is found from the expression derived in Chap. 1, namely,
o = P/A. The second stress is found from the formula for bending stress presented in Chap. 8, namely,
o = My/l. An application may be found in Problem 17.1.

CYLINDRICAL SHELLS SUBJECT TO COMBINED INTERNAL PRESSURE
AND AXIAL TENSION

In Chap. 3 we considered the stresses arising in a thin-walled cylindrical shell subject to uniform
internal pressure. There it was shown that a longitudinal stress given by ¢ = pri2t, as well as a
circumferential stress given by o = prit, exists because of the internal pressure p. If in addition an axial
tension P is acting simultaneously with the internal pressure, then there arises an additional
longitudinal stress given by o= P/A where A denotes the cross-sectional area of the shell. The
resultant stress in the longitudinal direction is thus the algebraic sum of these two longitudinal stresses,
and the resultant stress in the circumferential direction is equal to that due to the internal pressure.

CYLINDRICAL SHELLS SUBJECT TO COMBINED TORSION AND
AXIAL TENSION/COMPRESSION

In Chap. 5 we considered the stresses arising in a thin-walled cylindrical shell subject to torsion.
There it was shown that a shearing stress given by 7,, = Tp/J exists on cross sections perpendicular to
the axis of the cylinder. If in addition an axial tension P is acting simultaneously with the torque, then
there arises a longitudinal stress given by ¢ = P/A. This loading is illustrated in Fig. 17-2. In this case
the stresses due to these two loadings are acting in different directions and use must be made of the
results obtained in Chap. 16. In this manner it will be possible to obtain the principal stresses due to
these two loads acting simultaneously. For an application see Problem 17.2.

Fig. 17-1 Fig. 172

457
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CIRCULAR SHAFT SUBJECT TO COMBINED AXIAL TENSION AND TORSION

This loading is illustrated in Fig. 17-3. Due to the axial tensile force P, there exists a uniform
longitudinal tensile stress given by o = P/A, where A denotes the cross-sectional area of the bar. From
Chap. 5 we know that there exists a torsional shearing stress over any cross section perpendicular to
the axis given by 7, = TplJ. Again, the stresses due to these two loadings are acting in different
directions and the results of Chap. 16 must be employed to obtain the values of the principal stresses
al any point or to obtain the state of stress on any plane inclined at some angle 10 a generator of the

: (M(THQS

Fig. 17-3 Fig. 17-4

CIRCULAR SHAFT SUBJECT TO COMBINED BENDING AND TORSION

This loading is illustrated in Fig. 17-4. Again from Chap. 5 we know that there exists a torsional
shearing stress over any cross section perpendicular to the axis given by 7,, = Tp/J. From Chap. 8 we
know that there also exists a bending stress perpendicular to this cross section, i.¢., in the direction of
the axis of the shaft, given by o = My/I. Since these stresses are acting in different directions the results
of Chap. 16 must be employed to obtain the values of the principal stresses at any point in the shaft
or to obtain the state of stress on any plane inclined to a generator of the shaft. For applications see
Problem 17.3.

DESIGN OF MEMBERS SUBJECT TO COMBINED LOADINGS

So far we have discussed only analysis. i.e., determination of principal stresses in a member subject
to combined loadings. The inverse problem, i.e., design of a member to withstand combined loads, is
somewhat more complex and must necessarily be related to experimentally determined mechanical
properties of the materials. Because such properties cannot be determined for all possible combina-
tions of loadings, the mechanical characteristics are usually determined in very simple tensile,
compressive, or shear tests, The problem then arises as to how to relate the strength of an elastic body
subject to combined loadings to these known strength characteristics under the simpler loading
conditions. Relations between strength under various combined loads and simple mechanical
properties of the material are termed theories of failure. Many such theories are available but we shall
discuss only the three most commonly used, one applicable to brittle materials and two suitable for use
in design of ductile members.

MAXIMUM NORMAL STRESS THEORY

This theory states that failure of the material subject to biaxial or triaxial stresses occurs when the
maximum normal stress reaches the value at which failure occurs in a simple tension test on the same
material. Failure is usually defined as either yielding or fracture — whichever occurs first. This theory
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is in good agreement with experimental evidence on brittle materials. For applications. see Problems
17.9 and 17.10.

MAXIMUM SHEARING STRESS THEORY

This theory states that failure of the material subject to biaxial or triaxial stresses occurs when the
maximum shearing stress reaches the value of the shearing stress at failure in a simple tension or
compression test on the same material. The theory is widely used for design of ductile materials. For
applications see Problem 17.11.

HUBER-VON MISES-HENCKY (MAXIMUM ENERGY OF DISTORTION) THEORY

For an element subject to the principal stresses o,, o3, 0; this theory states that yielding begins
when

(01— @) + (02— 03)* + (01 — 3) = 2(a,,.)

where o, is the yield point of the material. This theory is in excellent agreement with experiments on
ductile materials. For applications see Problem 17.12.

Solved Problems

17.1. The rectangular block shown in Fig. 17-5 has its axis of symmetry oriented vertically, is clamped
at its lower base, and is subject to a concentric compressive force of 220 kN together with a
couple M at point C, the midpoint of the top cross section. If the peak allowable compressive
stress is 180 MPa, determine the allowable magnitude of the couple.

The compressive force gives rise to a compressive stress that is uniform over any horizontal cross
section. From Chap. 1 this vertically directed stress is

P 220000N
7= 4= 007 m) (005 m) 2SO MPa

The couple (located in the x-y plane) gives rise to bending about the z-axis (as a ncutral axis) and from
Chap. 8 creates a compressive stress everywhere to the right of the z-axis. At point A this is given by

Mc _ M(0.035m)
I~ 5(0.05m)(0.07 m)?

o’ =

The resultant compressive stress at A is (o, + o;) and since this must not exceed 180 MPa, we have
at A

M(0.035 m)

2 _ 2
180 % 10° N/m? = 62.86 % 10° N/m? + T(0.05m) (0.07 m)*

Solving,
M=470kN:m

17.2. Consider a hollow cylindrical shell of outer radius R, = 140 mm and inner radius R; = 125 mm.
It is subject to an axial compressive force of 68 kN together with a torque of 35 kN - m, as shown
in Fig. 17-6. Determine the principal stresses as well as the peak shearing stress in the shell.
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i TOmm

220,000 N

M

ISkN'm  68KN 7 68kN  35KkN'm
~— : 'jl -
i
N f

Fig. 17-6

The 68-kN force produces a uniformly distributed compressive stress given by

—68,000 N o
AO10m)y - B my] | -44MPa

as shown in Fig. 17-7. The torsional shearing stresses due to the 35-kN-m torque were found in Problem
5.2 to be 7 = TplJ. Here, the polar moment of inertia is

o =

= g [(0.140 m)* - (0.125)°] = 0.0002199 m*

=il —

5.44 MPa

/ —...\’23_3 MPa
3

Fig. 17-7
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17.3.

If the approximate expression of Problem 5.6 is used, we find 0.0002191 m*. Thus, the shearing stresses at
the outer fibers of the shell are given by

_ Tp _ (35,000N-m)(0.140 m)
T 0.0002199

and these are shown in Fig. 17-7.
From Problem 16.13 the principal stresses are found to be

-544+0 5.44 -0y’
oo TSr0, [(CSEOF gy

Omax = 19.75 MPa
O = —25.19 MPa

= 22.3MPa

and the peak shearing stress is 22.47 MPa.

Consider a hollow circular shaft whose outside diameter is 3in and whose inside diameter is
equal to one-half the outside diameter. The shaft is subject to a twisting moment of 20,0001b-in
as well as a bending moment of 30,000 Ib - in. Determine the principal stresses in the body. Also,
determine the maximum shearing stress.

The twisting moment gives rise to shearing stresses that attain their peak values in the outer fibers of
the shaft. From Problem 5.2 these shearing stresses are given by 7,, = Tp/J. From Problem 5.1 it is seen
that for the hollow circular area

=£ 4 =£ 4 _ 4] — )
J = (D5~ DY) = 2 [3* - (1.5)'] = 746in

where D, denotes the outer diameter of the section and D, represents the inner diameter. At the outer
fibers the torsional shearing stresses are thus

To =7 7.46

Let the bending moments lie in a vertical plane. Then the upper and lower fibers of the beam are
subject to the peak bending stresses. These are found from the expression o, = My/l. The moment of
inertia / for the hollow circular cross section may be seen from Problem 7.9 to be

T e _ =E 4 _ 4] — )
= 5 (D3- DY) = 213 - (1.5 = 3:73in

Substituting,

= — = ———— . = o]
%= 373 12,000 Ib/in

st 4000 1b/in?

12,000 12,000
1b/in? Ib/in?

4000 1b/in? s————-

Fig. 17-8
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Thus an element located at the lower extremity of the shaft is subject to the stresses shown in Fig. 17-8.
From Problem 16.7 the principal stresses for this clement are

Omar = 30 + V30, ) + (1, )7 = 12,00022 + V(12,00072)* + (4000) = 13,200 Ib/in?
Omin = 30, + V(o) +(7,,)? = 12,0002 — V(12,000/2)? + (4000)? = —1200 1b/in?

These stresses occur on planes defined by (3) of Problem 16.7:

T, 4000 2
2 = — i [ — = —— = L+l ! 30 ¥
tan 26, Io. 12 3 or 0, = 73°10", 163°10

Substituting in (1) of Problem 16.7 and letting 8 = 73°10’. we have
o = 12,0002 — (12,000/2) cos 146°20’ + 4000sin 146°20" = 13,200 Ib/in?

Thus the maximum tensile stress is 13,200 Ib/in’, occurring on a plane oriented 73°10’ to the geometric
axis of the shaft. The other principal stress, o,,, = —1200 Ib/in’, occurs on a plane oriented 163°10’ to
the axis.

The maximum shcaring stress is given by (8) of Problem 16.7. It is

= *V(Go, ) +(1,F = +V(12.00012)’ + (4000)? = +7200 Ib/in?

and occurs on plancs oriented at 45° to the plancs found above on which the principal stresses act.

The thick-walled cylindrical shell shown in Fig. 17-9 has its axis of symmetry oriented vertically.
It is clamped at its lower extremity and subject to the three concentrated forces indicated.
Determine the normal stresses at points A, B, C, and D.

2P

QOuier diameter = D

) D
Innes diameter = 5
z 2

Fig. 17-9

Let us look down the z-axis toward the x-y plane. Also, let us introduce two forces, each of magnitude
2P, at the center E of the top surface. The force system in the x-y plane for this set of three forces thus
appears as in Fig. 17-10(a). The two forces included within the dotted lines constitute a couple of magnitude
(2P)(Di2) = PD, so that the loading on the top surface (corresponding to the original force 2P) may be
considered to consist of a central downward force of magnitude 2P together with a couple of magnitude
PD, as shown in Fig. 17-10(b). The total loading on the shell thus consists of the concentric force 2P, the
couple PD, and the two concentrated forces of magnitudes 1.5P and 2P.
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The effects of these four forces are:

(4) The central downward force 2P gives rise to uniform compressive stresses over any horizontal cross
section,

() The couple PD shown in Fig. 17-10(5) gives rise to bending about an axis parallel to the z-axis as a
neutral axis.

(¢) The force 1.5P gives rise to bending about an axis parallel to the z-axis as a neutral axis.

(d) The force 2P gives rise to bending about an axis parallel 10 the x-axis as a neutral axis.

s, \
R
1
:- 2r ) ’2 p o 2P
d \ Ye — E
Y 2P |
\\\ 7
e ’l
(a) ®)
Fig. 17-10

From the geometry of the cross section, we find A = 0.589D” in and I, = I, = 0.0460D" in®.
From effect (a), we have

P 2p P
== = 3396
N AT Toswpt . D
From (b), the bending stresses are
_Mc_(PD)DR) _ | P
=T = omeont ¥
, _Mc_ (PD)(D2) P
T oose0Dt 0BT
From (c), the bending stresses are
Mc (LSP)(2D)(D12) P
oy =—=— = -3261—
AT 0.0460D° o1
Mc¢ (1.5P)(2D)(D12) P
O-" = — = = N —_—
C 0.0460D° 3261 1
These stresses appear at A and C as shown in Fig. 17-11, for which
P P P P
= ~3.396— + ——3261— = -25.14—
a, 3 o 10,8702 32.61 e 25 ldﬂ2
P P P P

oc= “3.3965- 10.87F + 32.61 N == 18.345;

From effect (d), we have the bending as

,_Mc_-@PGD)DR) _ P
BT T T oment OB

w_ Mc _ (2P)(3D)(D2) _ P
9= 0046D* 02
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Fig. 17-11
To these values must be added the direct stresses so that the resultant vertical normal stresses at B and
D are
P P
= — -65.22— .
3.306— I 65. Dr = — 68 62 g
P P
= - ; +65.22— = 61.82—
3. 396 5. D 82 0

17.5. The shaft shown in Fig. 17-12(a) rotates with constant angular velocity. The belt pulls create a
state of combined bending and torsion. Neglect the weights of the shaft and pulleys and assume
that the bearings can exert only concentrated force reactions. The diameter of the shaft is 1.25 in.
Determine the principal stresses in the shafi.

I 800 1b B p

(a) Fig. 17-12 (®)

40B0 1b-in

The transverse forces acting on the shaft are not parallel and the bending moments caused by them
must be added vectorially to obtain the resultant bending moment. This vector addition need be carried
out at only a few apparently critical points along the length of the shaft. The loads causing bending,
together with the reactions they produce, are shown above in Fig. 17-12(b). They are considered as passing
through the axis of the shaft. The upper and lower shaded portions of Fig. 17-13, respectively, represent
the bending moment diagrams for a vertical and for a horizontal plane.
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17.6.

17.7.

The resultant bending moments at B and C are
Mg = V/(4080)% + (728) = 41401b-in
M = V(1160)? + (1636)* = 2000 1b-in
The twisting moment between the two pulleys is constant and equal to
T = (400 — 100) (4) = 12001b-in

Since the torque is the same at B and C, the critical element lies at the outer fibers of the shaft at point
B. The maximum bending stress is given by

=T T T H125)764
The maximum shearing stress, occurring at the outer fibers of the shaft, is given by

T, 1200(1.25/2) .
™= w(1.25)732 3100 Ib/in

The principal stresses were found in Problem 16.13 to be

10+ V(30.)* + (1,)° = 21,5002 + V(21,50012)° + (3100)” = 22,000 Ibfin’
Jo, = V3a.) + (1) = 21,5002 — V{(21,500/2)" + (3100) = —400 lb/in’

omu

Omin

Discuss a failure criterion for brittle materials.

The criterion which is in best agreement with experimental evidence was advanced by the English
engineer W. J. M. Rankine and is termed the maxinmum normal stress theory. It states that failure of the
material (i.e., either yielding or fracture — whichever occurs first) occurs when the maximum normal stress
reaches the value at which failure occurs in a simple tension test on the same material. Alternatively, if
the loading is compressive, failure occurs when the minimum normal stress reaches the value at which
failure occurs in a simple compression test. Evidently this criterion considers only the greatest (or smallest)
of the principal stresses and disregards the influence of the other principal stresses.

Discuss the maximum shearing stress failure criterion for ductile materials.

This criterion is in good agreement with experimental evidence, provided the yield point of the
material in tension is equal to that in compression. It was advanced first by C. A. Coulomb in 1773 and
later by H. Tresca in 1864; in fact, it is often called the Tresca criterion, The criterion states that failure of
the material subject to biaxial or triaxial stress occurs when the maximum shearing stress at any point
reaches the value of the shearing stress at failure in a simple tension or compression test on the same
material. In Problem 16.13 it was shown that the maximum shear stress is one-half the difference between
the maximum and minimum principal stresses and always occurs on a plane inclined at 45° to the principal
planes. Thus, if oy, denotes the yield point of the material in simple tension or compression, then the
corresponding maximum shear stress is o,,/2. Accordingly, the maximum shearing stress criterion may be
formulated as

Tnax ~ Tmin __ Um

2 2
or Tmax ~ Omn = Oyp 03]
where o, and ., are maximum and minimum principal stresses, respectively. It is to be observed that

judgment must be used in analysis of three-dimensional situations to determine which of the three principal
stresses lead to the greatest difference on the left-hand side of (1).
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17.8. Discuss the Huber—von Mises—Hencky failure criterion for ductile matenals.

This theory was advanced by M. T. Huber in Poland in 1904 and independently by R. von Miscs in
Germany in 1913 and H. Hencky in 1925. It is in even better agrcement with experimental evidence
concerning failure of ductile materials subject to biaxial or triaxial stresses than the maximum shearing
stress theory discussed in Problem 17.7.

Development of this widely accepted criterion first necessitates determination of the strain energy per
unit volume in a simple tension specimen. If the axial tensile stress arising in this test is o; and the
corresponding axial strain is €. then the work done on a unit volume of the test specimen is the product
of the mean value of force per unit area. that is, ¢,/2, times the displacement in the direction of the force,
or €. The work is thus U = o, €,/2 and this work is stored as internal strain energy.

The strain energy per unit volume in an element subject to triaxial principal stresses a,., @, o is readily
found by supecrposition (since energy is a scalar quantity) to be

U=3016+ 50615056 (a)
where €, €, & are the normal strains in the directions of the principal stresses, respectively. If the strains
are expressed in terms of the stresses according to the relations given in Problem 1.23, Eq. (a) becomes

1
U= E[((ﬁ + a5 + %) — 2ulon 0n + 0y 03+ 003)] (b)

The triaxial principal stresses may be represented as in Fig. 17-14(a). Alternatively, this general state
of stress may be represented as the sum of the two triaxial states shown in Figs. 17-14(b) and 17-14(c).

‘03 ‘0

(a) (b) ()

Fig. 17-14

The strain energy U given by Eq. (b) may be resolved into two components, one portion U,
corresponding to a change of volume with no distortion of the element, the other, Uy, corresponding to
distortion of the element with no change of volume. The stresses indicated in Fig. 17-14(c) represent
distortion only with no change of volume, provided the expression for dilatation given in Problem 1.23 is
set equal to zero. Thus

1
€ +et+e= E[(o, ~ o)~ oy + oy~ 20) + (03 — o) — ploy + o — 20)

(o= o) = o+ oy~ 20)] = 0 ()
Solving (c), we find

o+ o +0'3

o= (d)
for the uniform stresses in Fig, 17-14(b) which correspond to change of volume with no distortion. The
normal strains corresponding to the stresses given in (d) are readily found from the three-dimensional form
of Hooke’s law given in Problem 1.23 to be

(1-2weo
e=——

3 (e)
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179.

17.10.

Thus, the internal strain energy corresponding to the unit volume indicated in Fig. 17-14(b) is found by
substituting the expressions (d) and (¢) in (a), with 0, = 0; = 03 = 0 and €, = €, = €; = €. 10 obtain

(o1 + o+ 3) f)

Uy:g,(f) _1-2

2 6E

The strain energy corresponding to distortion only, with no change of volume, is now found to be
1+
Us=U=U, = (0, = o) + (0~ 03F + (01 = 0] ®

The Huber-von Mises—-Hencky theory assumes that failure takes place when the internal strain energy
of distortion given by (g) is equal 1o that at which failure occurs in a simple tension test. In such a test
oy = 0y =), oy = 0,, and the right side of (g) becomes

1+
_— h

Equating the right side of (g) to (h), we find
(01— @) + (0~ @) + (0 — o3)” = 203, (@)

as the criterion for failure. This is sometimes called the maximum energy of distortion theory. It assumes
that U, is ineffective in causing failure.

A thin-walled cylindrical pressure vessel is subject to an internal pressure of 5 MPa. The mean
radius of the cylinder is 400 mm. If the material has a yield point of 300 MPa and a safety factor
of 3 is employed, determine the required wall thickness using (a) the maximum normal stress
theory, and (b) the Huber-von Mises-Hencky theory.

The stresses determined in Problem 3.1 are principal stresses. Thus wc have
_ pr _ 5(400) _ 2000

o = g, I

ko h h
pr 5(400) 1000
RENT0 T T K

The third principal stress varies from zero at the outside of the shell to the value —p at the inside. It is
customary to neglect this third component in thin-shell design, so we shall assume that oy = (.

(a) Using the maximum normal stress theory we have

2~h—-m]0 = -3%0 from which h =20mm

(b) Using the Huber-von Mises-Hencky theory we have, from (i) of Problem 17.8,

(- (52 () - ()

h h h 3

whence & = 17.3 mm.

The solid circular shaft in Fig. 17-15(a) is subject to belt pulls at each end and is simply
supported at the two bearings. The material has a yield point of 250 MPa. Determine the
required diameter of the shaft using the maximum normal stress theory together with a safety
factor of 3.

The bearing reactions, which are in a vertical plane. are denoted by R, and R in the free-body
diagram, Fig. 17-15(b). From statics it is found that Ry = 2.83kN and R, = 3.67kN. The variation of
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2kN

150 mm 450 mm 150 mm
ok

{a)

F
t50 mm 450 mm t 15D mm
s ¥ [
Yasun
Rg R,
(]
P 0.S3kN-m

Bending Mowent

{e)

0.6kN-m

Twisting Moment
5]

Fig. 17-15

bending moment along the length of the shaft is shown in Fig. 17-15(c). Similarly, the twisting moment
along the length of the shaft may be depicted as a constant, as in Fig. 17-15(d).

Evidently the shaft is most eritically stressed at its outer fibers at point C, where a top view of the
uppermost element indicates the stresses o, and 7,, shown in Fig, 17-16. The normal stress o, arises because
of bending action, and is found from Problem 8.1 to be

Mc _ (053 X 10°) (10°) (d/2) _ 5.4 % 10°
= = —ea =5 MPa (@)

The other normal stresses, o, and o, are zero. The shearing stresses 7,, arise from the torsion due to the
unequal belt pulls, and are found from Problem 5.2 to be

Tr _ (06X10)(10 (d2) _ 306X 10°

Tl‘l' =

7 d*/32 PE Pa ®)
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ﬁ- f"

Tzy i —

Fig. 17-16

According to the maximum normal stress theory, yielding of the shaft occurs when the maximum
normal stress reaches the value at which yielding occurs in a simple tensile test. The maximum normal
stress is found as the maximum principal stress of Problem 16.13 to be

_ 2
am:ax;a,+ f(mza}) T (ny) ©

Substituting the results of (a) and (b) into (), and introducing the safety factor of 3, yields
250 _54x10°40 \/(5.4)( 10*‘-0)2 . (3.06 X 10*‘))2

3 243 243 &

from which d = 43 mm.

17.11, For the shaft loaded as in Problem 17.10 determine the required diameter using the maximum
shearing stress theory together with a safety factor of 3.
The maximum normal stress is given in {c) of Problem 16.13. The minimum normal stress is

given by
o, + o o, — o\’
e == Y — /( 3 ’) + (1) (@)

It is to be carefully noted that the difference between the o, and o, indicated above leads to the greatest
possible difference, since the third principal stress is zero and o, is evidently negative. Substituting in (1)
of Problem 17.7, we have

(5.4>< 10° —0)’ (3.06>< 106)2 250
2 +

YL FE =T or d = 46 mm

17.12. For the shaft loaded as in Problem 17.10 determine the required diameter using the Huber-von
Mises-Hencky theory together with a safety factor of 3.

The criterion is expressed by (i) of Problem 17.8, where oy, o,, and ¢; are principal stresses. We take
these principal stresses to be

o (54)(106'1'0 J(54X.]0° 0\? (3.06)(]06)2 6.8 % 10°
T = Oimax = =

d3 dﬁ

__ (54X10°+0\  [5AXICP_0\?_ (306X 10°\ _ 14x10°
a’_a"*“_( 24 )_ 2d° )+( & )__ &

Substituting in (i) of Problem 17.8, we have

6.8x10"*0’+ 0- 1.4 % 10° P, [68%10°_ (1.4x10° ’_2 250Y’
& & ) & & ) Rk

Solving, d = 45 mm.
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Supplementary Problems

A short block is loaded by a comprehensive force of 1.5 MN. The force is applied with an eccentricity of
60 mm, as shown in Fig. 17-17. The block is 300 mm in cross section. Determine the stresses at the outer
fibers m and n. Ans. o, = —36.7MPa, v, = +3.3MPa

In Problem 17.13 how large an eccentricity must exist if the resultant stress at fiber m is to be zero?
Ans. 50mm

A short block is loaded by a compressive force of 500 kN aeting 50 mm from one axis and 75 mm from
another axis of a 200-mm X 200-mm cross section, as shown in Fig. 17-18. Determine the peak tensile and
compressive stresses in the cross section. Ans. 3475 MPa, —59.0 MPa

The hollow rectangular block shown in Fig. 17-19 has its vertical axis of symmetry parallel to the
y-direction. is clamped at its lower extremity, and is subject to a single vertical concentrated load

P = 180 kN as indicated. Determine the resultant vertical stress at point A lying at the remote corner of
the lower extremity of the block. Ans. —111.9MPa

/h 7—‘5“

/S .
Ly

/

.-on nm-—J - 200 mm -

Fig. 17-17 Fig. 17-18

200 mm 160 mm P

Fig. 17-19

In Problem 17.2, if the axial compressive force is 200 kN, find the allowable torque if the allowable shearing
stress is 100 MPa. Ans. 1570kN-m

A thin-walled cylinderis 10i a diameter and of wall thickness 0.10 in. The cylinder is subject to a uniform
internal pressure of 1001h%  What additional axial tension may act simultaneously without the maximum
tensile stress exceeding 20,0001bAn’?  Ans.  55.0001b
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17.19.

17.20.

17.21.

17.22.

17.23.

17.24.

17.25.

A thin-walled cylindrical shell is subject to an axial compression of 50.000 Ib together with a torsional
moment of 30,000 lb-in. The diameter of the cylinder is 12 in and the wall thickness 0.125 in. Determine
the principal stresses in the shell. Also determine the maximum shearing stress. Neglect the possibility of
buckling of the shell.  Ans. o, = 1201b/in%, o,,;, = —10,680 Ibfin*, 7 = 5400 lb/in

A shaft 2.50in in diamelter is subject to an axial tension of 40,000 1b together with a twisting moment of
35000 1b-in. Determine the principal stresses in the shaft. Also determine the maximum shearing
stress. Ans.  Opax = 16,180 Ib/in?, 0, = —80201b/in?, 7 = 12,100 Ib/in®

Consider a solid circular shaft subject to a twisting moment of 20,0001b-in together with a bending
moment of 30,000 1b-in. The diameter of the shaft is 3 in. Detcrmine the principal stresses, as well as the
maximum shearing stress in the shaft.  Ans.  o,., = 12,4501b/in?, o, = —1150 Ib/in?, 7 = 6800 Ib/in®

The shaft shown in Fig. 17-20 rotates with constant angular velocity and is subject to combined bending
and torsion due to the indicated belt pulls. The weights of the shaft and pullcys may be neglected and the
bearings can exert only concentrated force reactions. The diameter of the shaft is 1.75 in. Determine the
principal stresses in the shaft.  Ans. o, = 16,600 Ib/in’, o, = —750 Ib/in?

Consider a thin-walled cylindrical pressure vessel with mean diameter 150 mm subject to a twisting
moment of 1 kN -m together with an internal pressure of 3 MPa. If the allowable working stress in tension
is 150 MPa, determine the wall thickness as required by the maximum normal stress theory.

Ans. 1.55mm

For Problem 17.23 determine the wall thickness as required by the maximum shearing stress theory.
Ans.  1.55mm

For Problem 17.23 determine the wall thickness as required by the Huber-von Mises-Hencky theory.
Ans.  1.34 mm
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in tension and compression. 38-58
in torsion, 110-115
Strain:
hardening, 5
normal. 2
shear, 97
Strain energy:
in axial loading, 394, 401. 403
in bending, 395. 396
in torsion. 394, 402
Strength:
breaking, 5
ultimate, 5
yield, 4
Strength-weight ratio in torsion,
102-103
Stress:
compressive, 1
hoop. 63-65
shear, 82, 84-91
tensile, 1
torsional. 97. 100-103
working, 5
Stress-strain curve, 2-3
Stresses:
bending, in beams, 177-179
circumferential. in cylindrical shells,
6469
computer program for
two-dimensional principal.
451454
determination of principal. by
Mohr's circle, 423. 427, 431432,
435-436. 438439, 442444,
450-451
equations for combined. 440-441
flexural. in beams, 178. 181-198
hoop. in cylindrical shells, 6365
longitudinal in cylindrical shells,
6465
maximum shearing, 422, 440-442
normal, in axially loaded bars, 2,
9-20
normal, in beams, 178, 181-198
normal, on planes of maximum
shearing stress, 422423, 435, 442
principal. 421, 440-442
shearing, in beams, 179, 198-204
thermal, in axially loaded bars,
45-49
in thin shells, 6480
Structural Stability Research Council
(SSRCQ), design formula for
columns, 358, 370
Superposition, deflection of beams by,
2372238
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Supports:
clamped (fixed), 260-261, 288289
clastic spring. 290, 304
pin reaction, 10, 17, 19, 25
roller reaction. 122-123, 127, 129,
132

Tangent modulus, 6

Tangent modulus formula for columns,
365

T-beam. shearing stresses in, 192-193,
194-195, 201-202

Tensile strength, 1

Tension, 1

INDEX

Thermal effects, 4548
Toroidal shells, stresses in, 79-80
Torsion:
angle of twist, 98, 101-104
computer program for variable cross
section of bars in torsion,
107-110
elasto-plastic, 98, 117
fully plastic, 98, 118
hollow circular shaft, 106
solid circular shaft, 99, 103
stepped shaft, 116-117
variable diameter shaft, 103
Twist, angle of, in torsion, 98, 101-104

Ultimate load, 54-58
Ultimate strength, 5

Welded joints, 83
electron beam welding, 84, 91
laser beam welding, 84, 92
Wide flange seclions, properties of,
218-219

Yield point, 4
Yield strength, 3
Young's modulus, 4, 9-20



