
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303777563

Integrated toolset for WSN application planning, development,

commissioning and maintenance: The WSN-DPCM ARTEMIS-JU Project

Article in Sensors · June 2016

DOI: 10.3390/s16060804

CITATIONS

5
READS

186

24 authors, including:

Some of the authors of this publication are also working on these related projects:

IoE modeling & design View project

WSN-DPCM ARTEMIS-JU Project View project

Christos P. Antonopoulos

University of Peloponnese

123 PUBLICATIONS 589 CITATIONS

SEE PROFILE

Simone Gianfranceschi

INTECS

8 PUBLICATIONS 29 CITATIONS

SEE PROFILE

Antonio Iodice

University of Naples Federico II

350 PUBLICATIONS 3,745 CITATIONS

SEE PROFILE

Prof. Stavros A. Koubias

University of Patras

177 PUBLICATIONS 1,318 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mihai Teodor Lazarescu on 24 September 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/303777563_Integrated_toolset_for_WSN_application_planning_development_commissioning_and_maintenance_The_WSN-DPCM_ARTEMIS-JU_Project?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/303777563_Integrated_toolset_for_WSN_application_planning_development_commissioning_and_maintenance_The_WSN-DPCM_ARTEMIS-JU_Project?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/IoE-modeling-design?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/WSN-DPCM-ARTEMIS-JU-Project?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Antonopoulos?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Antonopoulos?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Peloponnese?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christos-Antonopoulos?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simone-Gianfranceschi?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simone-Gianfranceschi?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/INTECS?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Simone-Gianfranceschi?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Iodice-2?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Iodice-2?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Naples-Federico-II?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Antonio-Iodice-2?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prof-Stavros-Koubias?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prof-Stavros-Koubias?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Patras?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Prof-Stavros-Koubias?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mihai-Lazarescu-2?enrichId=rgreq-207218596df93073248b7af17e10c45c-XXX&enrichSource=Y292ZXJQYWdlOzMwMzc3NzU2MztBUzo0MDk4NDYzNDkzNTI5NjFAMTQ3NDcyNjM5MjY3NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

sensors

Article

Integrated Toolset for WSN Application Planning,
Development, Commissioning and Maintenance:
The WSN-DPCM ARTEMIS-JU Project

Christos Antonopoulos 1,†, Katerina Asimogloy 2,†, Sarah Chiti 3,†, Luca D’Onofrio 3,†,
Simone Gianfranceschi 3,†, Danping He 4,†, Antonio Iodice 5,†, Stavros Koubias 1,†,
Christos Koulamas 6,†, Luciano Lavagno 7,†, Mihai T. Lazarescu 7,*,†, Gabriel Mujica 4,†,
George Papadopoulos 6,†, Jorge Portilla 4,†, Luis Redondo 8,†, Daniele Riccio 5,†, Teresa Riesgo 4,†,
Daniel Rodriguez 8,†, Giuseppe Ruello 5,†, Vasilis Samoladas 2,†, Tsenka Stoyanova 1,†,
Gerasimos Touliatos 1,†, Angela Valvo 3,† and Georgia Vlahoy 2,†

1 Applied Electronics Laboratory, Department of Electrical & Computer Engineering,
University of Patras Campus of Rion, Patras 26500, Greece; cantonop@ece.upatras.gr (C.A.);
koubias@ece.upatras.gr (S.K.); tsstoyanova@ece.upatras.gr (T.S.); tuliatos@ceid.upatras.gr (G.T.)

2 Telecommunication Systems Institute, TUC Campus, Kounoupidiana, Chania 73100 Greece;
as_katerina@yahoo.gr (K.A.); vsam@softnet.tuc.gr (V.S.); jvlahou@gmail.com (G.V.)

3 INTECS S.p.A., Via Giacomo Peroni 130, Rome 00131, Italy; sarah.chiti@intecs.it (S.C.);
luca.donofrio@intecs.it (L.D.); simone.gianfranceschi@intecs.it (S.G.); angela.valvo@intecs.it (A.V.)

4 Centro de Electrónica Industrial, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal, 2,
Madrid 28006, Spain; danping.he@upm.es (D.H.); gabriel.mujica@upm.es (G.M.);
jorge.portilla@upm.es (J.P.); teresa.riesgo@upm.es (T.R.)

5 Università degli Studi di Napoli Federico II, Dip. di Ingegneria Elettrica e delle Tecnologie
dell’Informazione, via Claudio 21, Napoli 80125, Italy; iodice@unina.it (A.I.);
daniele.riccio@unina.it (D.R.); ruello@unina.it (G.R.)

6 Industrial Systems Institute—ISI/R.C. “ATHENA”, PSP Bldg., Stadiou Strt., Platani, Patras 26504, Greece;
koulamas@isi.gr (C.K.); papadopoulos@isi.gr (G.P.)

7 Politecnico di Torino, dip. Elettronica e Telecomunicazioni, corso Duca degli Abruzzi 24, Torino 10129, Italy;
luciano.lavagno@polito.it

8 Métodos y Tecnología de Sistemas y Procesos S.L. C/Santa Leonor 65, Edif. C, Pl.4ª, Madrid 28037, Spain;
lredondo@mtp.es (L.R.); daniel.rodriguez@mtp.es (D.R.)

* Correspondence: mihai.lazarescu@polito.it; Tel.: +39-011-090-4111; Fax: +39-011-090-4099
† These authors contributed equally to this work.

Academic Editor: Davide Brunelli
Received: 3 March 2016; Accepted: 23 May 2016; Published: 2 June 2016

Abstract: In this article we present the main results obtained in the ARTEMIS-JU WSN-DPCM project
between October 2011 and September 2015. The first objective of the project was the development
of an integrated toolset for Wireless sensor networks (WSN) application planning, development,
commissioning and maintenance, which aims to support application domain experts, with limited
WSN expertise, to efficiently develop WSN applications from planning to lifetime maintenance.
The toolset is made of three main tools: one for planning, one for application development and
simulation (which can include hardware nodes), and one for network commissioning and lifetime
maintenance. The tools are integrated in a single platform which promotes software reuse by
automatically selecting suitable library components for application synthesis and the abstraction of
the underlying architecture through the use of a middleware layer. The second objective of the project
was to test the effectiveness of the toolset for the development of two case studies in different domains,
one for detecting the occupancy state of parking lots and one for monitoring air concentration of
harmful gasses near an industrial site.

Sensors 2016, 16, 804; doi:10.3390/s16060804 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 804 2 of 40

Keywords: wireless sensor networks; simulation; Internet of Things; design flow; assisted deployment

1. Introduction

Wireless sensor networks (WSN) are employed in a wide range of applications and application
domains, and are the subject of considerable research efforts and technological advances to expand their
applicability. WSNs were among the enabling technologies of the Internet of Things (IoT) paradigm
since it was coined more than 15 years ago [1], and consolidated and expanded their application
domains as the IoT paradigm evolved.

However, the spread of WSN-based solutions is still limited by several factors, such as technical
complexity, perceived reduced reliability and overall cost. The development of efficient WSN
applications requires different and complementary views, but competency separation between the
typical stakeholders and the engineering disciplines concurring in the WSN domain is not yet mature,
which leads to significant inefficiencies. For instance, WSN design and planning can be effort- and
risk-intensive, because they require detailed consideration of connectivity, coverage, cost, network
longevity, and service quality. In addition, predicting WSN performance before its real deployment is
very challenging, which leads to costly trial-and-error procedures.

The aim of the ARTEMIS-JU funded project “WSN Deployment, Planning, and Commissioning &
Maintenance” (WSN-DPCM) presented in this article was to build an integrated platform to support
the system integrators to design, develop, test, deploy and maintain WSN applications. The project
acknowledged from the beginning that the technical work of system integrators relies heavily on
existing hardware and software components and should focus on application-specific parts, as shown
in Figure 1.

Sensors 2016, 16, 804 2 of 40

Keywords: wireless sensor networks; simulation; Internet of Things; design flow; assisted
deployment

1. Introduction

Wireless sensor networks (WSN) are employed in a wide range of applications and application
domains, and are the subject of considerable research efforts and technological advances to expand
their applicability. WSNs were among the enabling technologies of the Internet of Things (IoT)
paradigm since it was coined more than 15 years ago [1], and consolidated and expanded their
application domains as the IoT paradigm evolved.

However, the spread of WSN-based solutions is still limited by several factors, such as technical
complexity, perceived reduced reliability and overall cost. The development of efficient WSN
applications requires different and complementary views, but competency separation between the
typical stakeholders and the engineering disciplines concurring in the WSN domain is not yet mature,
which leads to significant inefficiencies. For instance, WSN design and planning can be effort- and
risk-intensive, because they require detailed consideration of connectivity, coverage, cost, network
longevity, and service quality. In addition, predicting WSN performance before its real deployment
is very challenging, which leads to costly trial-and-error procedures.

The aim of the ARTEMIS-JU funded project “WSN Deployment, Planning, and Commissioning
& Maintenance” (WSN-DPCM) presented in this article was to build an integrated platform to
support the system integrators to design, develop, test, deploy and maintain WSN applications. The
project acknowledged from the beginning that the technical work of system integrators relies heavily
on existing hardware and software components and should focus on application-specific parts, as
shown in Figure 1.

Figure 1. WSN-DPCM toolset helps system integrators to focus on customer requirements by hiding
most structural and implementation details of WSN platform components.

Figure 1. WSN-DPCM toolset helps system integrators to focus on customer requirements by hiding
most structural and implementation details of WSN platform components.

Sensors 2016, 16, 804 3 of 40

Thus the primary design objectives of the WSN-DPCM platform were:

‚ A modular design with components that perform well-defined tasks and communicate through
well-defined interfaces and data models, in order to simplify the maintenance and evolution of
the platform in line with the fast evolution pace of WSN research and technology;

‚ To be accessible to application domain experts while allowing experienced developers to optimize
the designs as much as possible;

‚ To reuse open or closed source IP blocks in order to increase the reliability of WSN projects, to
reduce the development effort, and to foster commercial exploitation of the platform;

‚ To allow the developers to focus on application-specific requirements and implementation of the
WSN application by reducing the effort needed to select and adapt the existing components to the
application, as well as to reduce the effort to plan, commission, troubleshoot and maintain the
WSN during its lifetime.

In order to meet these aims, the WSN-DPCM platform includes several useful capabilities, such
as radio frequency (RF) simulation, network simulation with hardware-in-the-loop (HiL) capabilities,
topology optimization, automatic software synthesis, monitoring, debugging, as described in the rest
of the article.

The effectiveness of the WSN-DPCM toolset is tested in two case studies in different domains.
The first is a WSN-based system to monitor the occupancy state of parking lots, of which a prototype
has been tested in the parking of the Universidad Politécnica de Madrid (UPM), Spain [2,3]. The second
case study is a WSN-based solution for monitoring air concentration of harmful gases near an industrial
site, of which a prototype has been tested at the INTECS premises near Pisa, Italy [4,5]. Note that both
case studies refer to outdoor deployment scenarios. In fact, the proposed toolkit is primarily intended
for outdoor WSN applications especially because the ray tracing-based RF simulation is effective to
simulate outdoor electromagnetic field propagation. For indoor environments a simple heuristic path
loss one-slope model may be used, but with significantly lower prediction accuracy [6].

The rest of the paper is organized as follows: Section 2 briefly reviews the state of the art. Section 3
presents the WSN-DPCM toolset architecture and the typical application design flow. Section 4 details
the main tools of the platform. In Section 5 the two use cases of the project are presented, and
concluding considerations are made in Section 6.

2. Related Work

The main advancement of the WSN-DPCM platform with respect to the state of the art is that it
provides a complete integrated toolset for WSN design and management, which is a highly desired
feature [7]. Existing WSN frameworks such as ProFuN TG [8] or GOAT [9] provide a full set of tools
to support network simulation, application-logic design and network monitoring. However, their
features and scope are focused on specific segments of network development and maintenance, and
do not aggregate or enable support for the whole WSN tool chain, from development to deployment
and maintenance.

Almost every WSN framework and operating system provides integrated simulation support.
Recent surveys of simulation tools for WSN [10–13] list dozens of tools, including instruction-level
simulators for popular microprocessor families, RF connectivity simulators, mobility simulators,
protocol-level simulators, etc. Operating system-based simulators, like TOSSIM [14] and COOJA [15],
provide good support for code written for the respective platforms, and are often coupled with
hardware-level emulators for popular architectures, for instruction-level simulation. Such tools are
best suited to develop and test low-level components, such as routing protocols. Several of the
available tools, such as Castalia [16], MiXiM [17] and NesCT [18] are extensions built on top of the
general-purpose discrete-event simulator OMNeT++ [19]. These tools provide higher-level abstraction
of the WSN and in general can scale to larger networks and longer simulated periods.

Sensors 2016, 16, 804 4 of 40

An important original feature of the WSN-DPCM toolset is a site-specific RF simulation using a
new ray tracing-based RF simulator that is customized for WSN applications and considers in detail
the surrounding environment and main obstacles. Many wireless network simulation tools, such as
OMNeT++ [19] and TOSSIM [14], currently rely on very simple, heuristic propagation models that do
not account for the details of the surrounding environment. On the other hand, the electromagnetic
propagation prediction tools that account for complex outdoor environment [20–23] are tailored for
radio and television broadcasting, cellular telephony systems or Wi-Fi, and have not been employed
for WSN planning.

Several high-level programming abstractions and design automation have been proposed to
improve application development productivity. Shimizu et al. [24] propose application decomposition
at network-, group- and node-level and a Domain-Specific Modeling Language optimized for each
level. Application development using this model is restricted mainly to optimization of several
parameters. REMORA [25] is an advanced component-based design framework that uses C-like
behavioral models wrapped in an XML-based abstraction of, e.g., services, interfaces and events.
The run-time overhead is low, but the approach cannot handle arbitrary behavioral code or hardware
specifications. Song et al. [26] demonstrated a model-based hardware-software co-design framework
based on widely used tools like Mathworks Simulink [27] and Stateflow [28]. They provide a high-level
graphical application entry based on abstract concurrent models, node-level simulation, automatic
generation of network simulation models (including hardware-in-the-loop) and implementation
models for popular embedded OSs. However, the developer is required to manually define and
connect all modules that compose the application.

In HiL testing, the program under test runs on the physical sensor nodes with some assistant
middleware. For example, TOSSIM simulates the sensor network by replacing low-level components
and introducing a discrete event queue. Developers can test the program before the TinyOS application
is deployed. However, TOSSIM cannot reveal if the length of a message is set to be less than its intended
size or it cannot reveal problems stemming from the duration of tasks, since the tasks in TOSSIM are
executed instantaneously. Moreover, it has not a general mechanism in order to accurately estimate
the power consumption of the sensor nodes. In [29] a solution aiming to alleviate the requirement that
not all TinyOS programs run on physical nodes is proposed, because that increases costs excessively
while being inconvenient, so they allow only one physical node to exist which can be configured to be
a neighbor of any virtual node. Thus, the potential faults which cannot be captured by pure simulation
testing tools can be captured through the interaction between the physical node and other virtual
nodes. Another advantage of their work is that the power consumption of a node in a large WSN can
be estimated through the use of low-cost digital multimeters. Some considerations not taken under
account on that work include the signal gains that currently are designated by the user and the fact
that power consumption estimation may be improved.

In [30] a hybrid simulation framework for WSN application development is proposed, that
interconnects a virtual network with a physical network and then allows one to simulate the network as
a whole. The authors created a novel model-based hybrid simulation framework for WSN applications,
introducing the notion of hybrid simulation. They exploit HiL extensions in order to link some of
the simulated WSN nodes with hardware-dependent features. Thus, by using Hy-Sim users can
build a hybrid network consisting of virtual and real nodes and then simulate it as a whole. Actually,
Hy-Sim supports the existence of purely virtual nodes, of purely physical nodes, but also of partially
simulated nodes. The latter can have access to real sensors in order to complete part of their operations.
Moreover, Hy-Sim allows nodes to have access to a real channel and even have access to data coming
from real sensors.

Although there have been contributions in the literature regarding the optimization of the
wireless sensor networks from the point of view of planning and simulation technologies, there
is still a shortage of methodologies and frameworks to carry out the in-field deployment, configuration
and performance assessment of the overall system application. In [31], the authors proposed an

Sensors 2016, 16, 804 5 of 40

embedded initialization and maintenance mechanism in which a flooding-based synchronization
strategy is adopted to configure discovery and expiration time windows into which nodes can perform
neighbor search and link assessment. Operational modes are triggered by dedicated points of the
network, such as sink and root nodes, from which the mode changing process is realized. In order to
enhance the flooding process and wake-up calls, techniques such as Trickle [32] are also considered.
Another maintenance system to be embedded into the sensor nodes has been proposed in [33],
which intends to provide maintenance services during the operational stage of the WSN by defining
system coherency state policies. Such maintenance policies mainly rely on triggering conditions when
encountering sensing failures and communication coverage failures, particularly considering protocol
coherent states, which are organized as Global view of coherent states (system-wise, such as time
synchronization requirements), and Local view of coherent state (node-wise, such as neighborhood
awareness). The maintenance engine collects the coherent requirements and states, and then floods
the list of protocols for the maintenance service to the network. Other works, such as the one
proposed in [34], make use of Deployment Support Networks (DSN), which are wireless network
temporarily installed alongside the actual WSN during the deployment process. The main target of this
infrastructure is to provide two different radio communication capabilities, one for passive listening
of network traffic and one for debugging channel connections through DSN nodes to distribute the
gathered information to a nearby sink point, from which the deployment analysis will be performed.
Therefore, such a debugging implementation relies on a passive monitoring system based on the
deployment of additional network platforms.

3. WSN-DPCM Architecture and Design Flow

The WSN-DPCM toolset flow was designed to reduce the application development and
deployment effort and the time-to-market for new WSN applications. It enables software-assisted
engineering and provides most of its integrated capabilities as services over the Internet.

Its operation flow is correlated with the DPCM data model, which holds all information items
used by the different tools of the Platform as input/output, from the creation of a new Project to online
monitoring of the designed WSN network in a real-life environment. Model entities can be created,
modified or deleted throughout a toolset session. The hierarchy of the model is shown in Figure 2.
It comprises the following main entity types:

‚ PROJECT—project description and attributes. It includes references to the USER and the list of
PLAN entities defined for the Project.

‚ PLAN—deployment plan definition and attributes. It includes references to SIM entities as a
result of the simulations executed over the plan specification, the CONNECTIVITY matrix entity
as attachment and all references to the definition entities of the node types considered by a
particular deployment.

‚ USER—contact information and credentials of the project’s user.
‚ CONNECTIVITY MATRIX—structured file in JSON format that contains the communication

properties and transmission values estimated by the simulation of the radio links between each
pair of nodes.

‚ NIDDEF—type definition entity for network interface devices (NID, e.g., gateways). It contains
all details that characterize a NID type structurally (type identifier, nature, functional blocks,
parameters etc.) and functionally (properties, configuration choices, etc.). This specification is
correlated with the embedded code generated for this particular type of node.

‚ ROOTDEF—type definition entity for sink node devices, similar to the NIDDEF entity. It can
contain node programming software when the code synthesis phase is completed.

‚ NODEDEF—type definition entity for regular leaf node devices, similar to the NIDDEF and
ROOTDEF entities. It can contain node programming software when the code synthesis phase
is completed.

‚ SIM—RF simulation entity that contain its configuration attributes and results for the
targeted nodes.

Sensors 2016, 16, 804 6 of 40
Sensors 2016, 16, 804 6 of 40

Figure 2. Diagram of the data model hierarchy and the multiplicities among its entities.

The platform is based on three main tools, the Planning Tool, the Development Tool and the
Commissioning & Maintenance Tool, and supporting components, Library of components and the
Middleware, each consisting of integrated services that are accessible through a local/web GUI
(WebTop Environment) and/or RESTful services (Figure 3).

Figure 3. Overview of the WSN-DPCM Toolset communication and typical development flow.

The WebTop Environment is a web desktop application that requires no local installation and
acts as a unique entry point to the toolset through user authentication. It provides the main user
interface to the WSN-DPCM toolset, all visualization support needed by its tools and other
information, as well as the controls needed to advance through the development flow. As shown in
Figure 3, it has control interfaces with each of the main platform tools in order to control their
execution (e.g., start, stop, status) and data interfaces with the Project Repository of the platform in
order to check the advance status of the various development stages, as reported by the tools.

The Planning Tool (PT) provides the developer with a graphical input interface for the
deployment field map, for the definition of WSN node types and their positions in the field, and for
other platform tools that need to analyze various aspects of node deployment (e.g., RF propagation,
signal strength and coverage strength, optimal topology and connectivity). It has a control interface
with the WebTop Environment and a data interface with the Project Repository of the platform to
save new projects or retrieve older ones.

Figure 2. Diagram of the data model hierarchy and the multiplicities among its entities.

The platform is based on three main tools, the Planning Tool, the Development Tool and the
Commissioning & Maintenance Tool, and supporting components, Library of components and the
Middleware, each consisting of integrated services that are accessible through a local/web GUI
(WebTop Environment) and/or RESTful services (Figure 3).

Sensors 2016, 16, 804 6 of 40

Figure 2. Diagram of the data model hierarchy and the multiplicities among its entities.

The platform is based on three main tools, the Planning Tool, the Development Tool and the
Commissioning & Maintenance Tool, and supporting components, Library of components and the
Middleware, each consisting of integrated services that are accessible through a local/web GUI
(WebTop Environment) and/or RESTful services (Figure 3).

Figure 3. Overview of the WSN-DPCM Toolset communication and typical development flow.

The WebTop Environment is a web desktop application that requires no local installation and
acts as a unique entry point to the toolset through user authentication. It provides the main user
interface to the WSN-DPCM toolset, all visualization support needed by its tools and other
information, as well as the controls needed to advance through the development flow. As shown in
Figure 3, it has control interfaces with each of the main platform tools in order to control their
execution (e.g., start, stop, status) and data interfaces with the Project Repository of the platform in
order to check the advance status of the various development stages, as reported by the tools.

The Planning Tool (PT) provides the developer with a graphical input interface for the
deployment field map, for the definition of WSN node types and their positions in the field, and for
other platform tools that need to analyze various aspects of node deployment (e.g., RF propagation,
signal strength and coverage strength, optimal topology and connectivity). It has a control interface
with the WebTop Environment and a data interface with the Project Repository of the platform to
save new projects or retrieve older ones.

Figure 3. Overview of the WSN-DPCM Toolset communication and typical development flow.

The WebTop Environment is a web desktop application that requires no local installation and acts
as a unique entry point to the toolset through user authentication. It provides the main user interface
to the WSN-DPCM toolset, all visualization support needed by its tools and other information, as well
as the controls needed to advance through the development flow. As shown in Figure 3, it has control
interfaces with each of the main platform tools in order to control their execution (e.g., start, stop,
status) and data interfaces with the Project Repository of the platform in order to check the advance
status of the various development stages, as reported by the tools.

The Planning Tool (PT) provides the developer with a graphical input interface for the deployment
field map, for the definition of WSN node types and their positions in the field, and for other platform
tools that need to analyze various aspects of node deployment (e.g., RF propagation, signal strength
and coverage strength, optimal topology and connectivity). It has a control interface with the WebTop
Environment and a data interface with the Project Repository of the platform to save new projects or
retrieve older ones.

Sensors 2016, 16, 804 7 of 40

An important PT analysis is radio coverage of the nodes based on their positions in the application
field, their radio characteristics and field features. This analysis is controlled from the user interface
of the Planning Tool. The results are graphically overlaid on the application field map and detailed
information is also available in textual form for each node in the field. The tool uses the results of radio
simulation to calculate the node connectivity matrix, which is saved in the Project Repository for later
use by the Network Simulator within the Development Tool.

The deployment plans designed by the PT tool are live elements that can be adapted and refined
using the feedback from simulation analysis or the deployment reports produced by Platform tools
and systems. In general, the DPCM toolset considers an iterative approach to solution prototyping
using the proposed work flow (Figure 3) through sequences of planning, simulation, synthesis,
deployment, monitoring activities, by updating the data models to the new environment and
prototype requirements.

The Development Tool (DT) allows the developer to produce the application-specific software
to program the WSN nodes and to simulate their behavior in the field using network simulation,
either purely in software or including real hardware nodes (hardware-in-the-loop simulation: HiL) to
increase result accuracy. HiL is a technique increasingly considered in the development and testing of
embedded systems, where the main goal is to test the embedded system itself instead of an abstract
model. The complexity of the real plant under control is embodied in the simulation, while the
designed system must be tested using realistic simulation conditions in a virtual environment. HiL
is a kind of real-time simulation where the input and output signals of the simulator show the time
dependent values as they are in the real process.

The tool maintains a control interface with the WebTop Environment over which it can be started
and can communicate the completion status for its internal development steps (e.g., application
synthesis, network simulation). It has also a data interface with the Project Repository of the platform
to save new projects and results (e.g., node application specifications, simulation results) and to retrieve
older ones.

As shown in Figure 3, DT interfaces with the Planning Tool mainly to extract the list of requested
node types and their features from the network plans saved by PT in the Project Repository or the node
connectivity matrix. For each node type, DT automatically creates a development project skeleton for
which it provides several node-level application development flows. For application domain experts,
the tool offers a guided, graphical flow based on state charts, which requires just basic programming
skills. Nevertheless, experienced programmers can use other input methods, which allow them a finer
control over node program development. Regardless of the input method of the application-specific
business logic, DT provides automatic synthesis of the necessary software and hardware to support
the application requirements using a library of hardware and software components, with or without
the support of an embedded operating system or middleware. The synthesis process aims to hide
most implementation details that are not explicitly addressed by the application specification (e.g.,
some low-level sensor implementations, OS tasks, interfaces) and to facilitate software reuse, allowing
this way the developers to focus on application-specific issues.

The Commissioning and Maintenance Tool (CMT) assists the developer in the preparation of the
nodes for field deployment, during the actual field deployment operations, and for monitoring and
debugging after deployment for long-term maintenance.

For node preparation for in-field deployment, the CMT uses the programming images and
configurations saved in the Project Repository by the Development Tool for all nodes, and the node
type and field position saved in the repository by the Planning Tool. Once deployed in the field and
activated, the actual operation conditions of the nodes are collected by the CMT and can be compared
with the results of the radio and network simulations saved in the Project Repository to correct and
optimize various network parameters. The CMT is in sync with the deployment specification, being
able to reconfigure itself automatically whenever a new Plan is generated or modified, or the firmware
images are changed, reconfigured or regenerated.

Sensors 2016, 16, 804 8 of 40

The Middleware (MW) provides an abstraction layer for node resources, software and
network services, and communication capabilities within the network. This layer allows to write
implementation-independent applications to increase software reuse and development productivity.
It can interface with the Development Tool to support application synthesis and its embedded support
is used at run-time by the CMT to monitor the operation of the network.

A typical application development using the WSN-DPCM platform starts by authenticating the
developer with the platform, through the Webtop-based UI (see the lower part of Figure 3). The UI
helps the developer to follow the platform development flow by activating only the commands that
meet all conditions to be executed. For instance, at the begin of a new project only the Planning Tool
can be activated to allow the developer to input, e.g., the deployment field map, the definition of the
node types and their positions in the application field. Afterwards, the developer can run a simulation
of the RF propagation to estimate the number and quality of RF communication links. If these are not
satisfactory, the developer can revisit the map and node properties and make the necessary changes to
fulfill all quality criteria.

Once a field plan is approved and saved in the Project Repository (PR), the UI activates the
next development step in the flow, the Development Tool. This tool collects node data and network
connectivity from the plan. Node types are automatically extracted and for each of them the tool creates
a project template that can be used by the developer to subsequently specify all node characteristics
and the application it needs to run. For each of these projects, the developer can run the application
synthesis engine whose output are software for node programming, hardware specification and
network simulation model. The latter can be used together with the connectivity matrix generated by
the RF simulator in the Planning Tool to perform pure software network simulation or mixed, with
hardware nodes in the loop. If the synthesis or simulation results are not suitable, the developer can
iteratively change the node specifications or the simulation parameters within the Development Tool,
or can go back to the Planning Tool, e.g., to change network composition or topology.

When node development is completed and saved in the Project Repository, the UI enables the next
development step, the Commissioning and Maintenance Tool. This tool extracts the node programming
software, configurations and hardware specifications from the repository and use them to program
deployment-ready nodes. Moreover, it uses the field map and node locations from the plan generated
by the Planning Tool to program the CMT interface for long-term network monitoring and to program
the Hand-held devices that will be used during network deployment and for in-field debugging. If the
data collected in the field are not satisfactory, the developer can go back to the Planning or Development
tools to make the necessary amendments to the network plan, or node or application specifications.

If the environment (i.e., the scenario in which sensors are deployed) changes, the RF simulation
and the connectivity matrix can be run again for all nodes in the updated scene. If only some nodes
changed, the simulation can be run just for those nodes to save computation time (see Section 4.1.2).
If the connectivity matrix changes, the network simulation of the Development Tool may need to be
run again to check the suitability of the new network. However, if new node types are added or either
the node or application specifications change, then it is necessary to re-run the synthesis engine of the
Development Tool to update the simulation models, the node configuration and programming code,
and the hardware configuration.

The Commissioning and Maintenance Tool should also be updated with the new plan, software
and hardware components in order to correctly interface and interpret the field data during deployment
and the long-term network exploitation.

4. Main Tools of the WSN-DPCM Platform

The operation of the three main tools of the WSN-DPCM platform (Planning Tool, Development
Tool, and Commissioning & Maintenance Tool, see Figure 3) is controlled from a web-based platform,
while the operation of the underlying hardware and software components and services is abstracted
through a Middleware component, also developed within the project.

Sensors 2016, 16, 804 9 of 40

4.1. Tool for WSN Application Planning and RF Simulation

The Planning Tool consists of:

‚ An input interface that displays the map of the deployment field and allows WSN node selection
and positioning,

‚ A set of functional components for RF propagation simulation and node connectivity prediction.

Different types of nodes can be selected from those available in the repository and/or new ones
can be defined by the developer. Once selected, the nodes can be placed on the map with a click on the
desired position. The other functional components integrated in the PT are described in the following.

4.1.1. 3D Building Reconstruction

To improve the simulation accuracy, 3D reconstruction of physical environment is very desirable.
When environment description is not available or is too expensive, the developers need to build it
by themselves.

However, for many radio propagation experts the preparation of the environment model is
more challenging than analyzing the radio performance. Besides, most research results presented in
academic conferences reuse the same environment to analyze their work and cannot test the robustness
and accuracy for different environments.

For this purpose, the WSN-DPCM toolset includes a functional component that can automatically
reconstruct the third dimension from 2D images (Figure 4). It extends the algorithm proposed in [35]
and uses sub-sampling and random feature selection techniques for iterative learning from images. The
estimated confidence value of each class for each pixel can be reinterpreted as a probability distribution
using soft max transformation to calculate texture layout potentials.

Sensors 2016, 16, 804 9 of 40

4.1. Tool for WSN Application Planning and RF Simulation

The Planning Tool consists of:

 An input interface that displays the map of the deployment field and allows WSN node selection
and positioning,

 A set of functional components for RF propagation simulation and node connectivity prediction.

Different types of nodes can be selected from those available in the repository and/or new ones
can be defined by the developer. Once selected, the nodes can be placed on the map with a click on
the desired position. The other functional components integrated in the PT are described in
the following.

4.1.1. 3D Building Reconstruction

To improve the simulation accuracy, 3D reconstruction of physical environment is very
desirable. When environment description is not available or is too expensive, the developers need to
build it by themselves.

However, for many radio propagation experts the preparation of the environment model is more
challenging than analyzing the radio performance. Besides, most research results presented in
academic conferences reuse the same environment to analyze their work and cannot test the
robustness and accuracy for different environments.

For this purpose, the WSN-DPCM toolset includes a functional component that can
automatically reconstruct the third dimension from 2D images (Figure 4). It extends the algorithm
proposed in [35] and uses sub-sampling and random feature selection techniques for iterative
learning from images. The estimated confidence value of each class for each pixel can be reinterpreted
as a probability distribution using soft max transformation to calculate texture layout potentials.

Figure 4. Work flow of the 3D outdoor environment reconstruction.

The work flow of the method is shown in Figure 4. Meaningful object classes are recognized
through a machine learning mechanism, which consists of a training phase followed by an evaluation
phase. The training phase uses an image database through which the features of images are learned
and discriminated for the concerned types of objects. After an image is properly recognized, the
algorithm automatically assigns different volumetric information according to scale ratio and
empirical material for each object, as it can be seen in Figure 4.

4.1.2. RF Simulation and Connectivity Matrix

This component has two main functions within the WSN-DPCM platform: to allow the developer
to check node connectivity for a given placement in the application field and to generate the input data

Figure 4. Work flow of the 3D outdoor environment reconstruction.

The work flow of the method is shown in Figure 4. Meaningful object classes are recognized
through a machine learning mechanism, which consists of a training phase followed by an evaluation
phase. The training phase uses an image database through which the features of images are learned and
discriminated for the concerned types of objects. After an image is properly recognized, the algorithm
automatically assigns different volumetric information according to scale ratio and empirical material
for each object, as it can be seen in Figure 4.

4.1.2. RF Simulation and Connectivity Matrix

This component has two main functions within the WSN-DPCM platform: to allow the developer
to check node connectivity for a given placement in the application field and to generate the input

Sensors 2016, 16, 804 10 of 40

data for the topology reduction and network simulation components of the WSN-DPCM platform.
Its main features have been recently presented at a conference [36] and are here better detailed.

The component calculates the received signal strength for each node when each of the other nodes
in the network is transmitting (one at a time) using an electromagnetic solver, or RF tool. It receives as
input a digital description of the application scene and the technical specifications of the transmitting
antenna. The former is provided using a file in Keyhole Markup Language (KML) format that describes
the buildings, and a raster file that describes the topography of the terrain, i.e., the Digital Terrain
Model (DTM), if available. The format employed for building description simplifies data import from
various sources, such as local authorities, Google Earth or Google Maps, or reconstructions from aerial
photography using the component described in Section 4.1.1. Relative permittivity and conductivity of
building walls and terrain can be added to improve simulation accuracy, otherwise the simulator uses
sensible defaults based on area type (historical, residential, business district). The transmitting antenna
is described by its position, radiated power, pointing direction, radiation diagram and polarization.

The solver is based on a 3D space analysis similar to that described in [22,23] using a ray tracing
algorithm that considers direct, reflected and diffracted rays. In particular, reflections are computed
using Geometrical Optics (GO) and diffractions are evaluated using the Uniform Theory of Diffraction
(UTD). The user may also select a “fast mode” that only accounts for the direct and reflected rays, to
avoid most computational load which is due to diffracted rays.

The resulting electromagnetic field is provided on regular 2D grids (“layers”) located on surfaces
at well-defined heights above the ground (or above the roof, if the grid point is on top of a building).
Accordingly, a 3D map is obtained, which shows the field levels produced by the transmitting antenna
in the considered scene. The map is stored in geotiff format; it can be displayed by the WebTop user
interface (GUI) and optionally superimposed on a Google Earth image (as shown in Figure 5), and/or
it can be passed to the connectivity matrix module. The latter, based on the field maps produced by
the electromagnetic solver, computes and stores the field values radiated by each antenna (node) at the
locations of all other antennas (nodes) in a “connectivity matrix”. This matrix can be easily converted
in a binary matrix if receiver field threshold levels are defined. Non-zero elements of the matrix can be
displayed by the GUI as arcs connecting the corresponding nodes, as shown in Figure 6.

Sensors 2016, 16, 804 10 of 40

for the topology reduction and network simulation components of the WSN-DPCM platform. Its main
features have been recently presented at a conference [36] and are here better detailed.

The component calculates the received signal strength for each node when each of the other
nodes in the network is transmitting (one at a time) using an electromagnetic solver, or RF tool. It
receives as input a digital description of the application scene and the technical specifications of the
transmitting antenna. The former is provided using a file in Keyhole Markup Language (KML)
format that describes the buildings, and a raster file that describes the topography of the terrain, i.e.,
the Digital Terrain Model (DTM), if available. The format employed for building description
simplifies data import from various sources, such as local authorities, Google Earth or Google Maps,
or reconstructions from aerial photography using the component described in Section 4.1.1. Relative
permittivity and conductivity of building walls and terrain can be added to improve simulation
accuracy, otherwise the simulator uses sensible defaults based on area type (historical, residential,
business district). The transmitting antenna is described by its position, radiated power, pointing
direction, radiation diagram and polarization.

The solver is based on a 3D space analysis similar to that described in [22,23] using a ray tracing
algorithm that considers direct, reflected and diffracted rays. In particular, reflections are computed
using Geometrical Optics (GO) and diffractions are evaluated using the Uniform Theory of
Diffraction (UTD). The user may also select a “fast mode” that only accounts for the direct and
reflected rays, to avoid most computational load which is due to diffracted rays.

The resulting electromagnetic field is provided on regular 2D grids (“layers”) located on surfaces
at well-defined heights above the ground (or above the roof, if the grid point is on top of a building).
Accordingly, a 3D map is obtained, which shows the field levels produced by the transmitting
antenna in the considered scene. The map is stored in geotiff format; it can be displayed by the
WebTop user interface (GUI) and optionally superimposed on a Google Earth image (as shown in
Figure 5), and/or it can be passed to the connectivity matrix module. The latter, based on the field
maps produced by the electromagnetic solver, computes and stores the field values radiated by each
antenna (node) at the locations of all other antennas (nodes) in a “connectivity matrix”. This matrix
can be easily converted in a binary matrix if receiver field threshold levels are defined. Non-zero
elements of the matrix can be displayed by the GUI as arcs connecting the corresponding nodes, as
shown in Figure 6.

(a) (b)

Figure 5. 2D graphical display of the computed field radiated by one of the nodes (a) that can be
superimposed to Google Earth image of the area (b).
Figure 5. 2D graphical display of the computed field radiated by one of the nodes (a) that can be
superimposed to Google Earth image of the area (b).

Sensors 2016, 16, 804 11 of 40

Sensors 2016, 16, 804 11 of 40

Figure 6. Graphical representation of the connectivity matrix.

A typical use of this tool within the WSN-DPCM toolset starts from a 3D description of the scene
in which the developer places the motes based on the sensing requirements of the application. Then,
the developer selects a propagation model (fast, for quick but less accurate simulation, or standard,
for slower but more accurate simulation). The RF tool calls the solver and connectivity matrix
modules to compute the field levels generated by the transmitter of each node in the whole scene and
uses them to generate the connectivity matrix, as explained before. Based on these results, the
developer may iteratively refine node positions, optionally using the topology reduction tool (see
Section 4.1.3). Once the results are acceptable, the matrix is stored in the Platform Repository where
it can be retrieved by the network simulator (see Section 4.2.1) for further consistency and suitability
checks. If necessary, the whole procedure may be repeated.

We analyzed in detail the processing time and scalability of the algorithms both theoretically
and experimentally [37]. Computation time increases linearly with the number of nodes and with the
cube of the linear size of the scene. Fast mode computation time is one order of magnitude smaller
than standard mode. For example, fast mode processing of a scene of 1 km linear size ranges from
30 s for five nodes to 50 min for 500 nodes on a four core Intel(R) Xeon(R) CPU E5440 @ 2.83 GHz
with 3 GB RAM. In all cases, the computational load to generate the connectivity matrix is only a very
small fraction of the RF simulation, less than 0.2%.

4.1.3. Topology Reduction

The usefulness and added value of the PT towards network deployment definition is
significantly enhanced through a set of novel algorithms developed in the context of the WSN-DPCM
project that allow the developer to evaluate network connectivity and propose alternative
connectivity scenarios. It is noted that respective algorithms developed are based on RSSI values
provided by the RF simulator or real measurements acquired from a network deployment. To the
best of the authors’ knowledge, it is the first time that well-known graph theory algorithms have been
utilized to extract useful information about a network topology as well as to attempt to offer
alternative topologies.

Figure 6. Graphical representation of the connectivity matrix.

A typical use of this tool within the WSN-DPCM toolset starts from a 3D description of the scene
in which the developer places the motes based on the sensing requirements of the application. Then,
the developer selects a propagation model (fast, for quick but less accurate simulation, or standard,
for slower but more accurate simulation). The RF tool calls the solver and connectivity matrix modules
to compute the field levels generated by the transmitter of each node in the whole scene and uses them
to generate the connectivity matrix, as explained before. Based on these results, the developer may
iteratively refine node positions, optionally using the topology reduction tool (see Section 4.1.3). Once
the results are acceptable, the matrix is stored in the Platform Repository where it can be retrieved by
the network simulator (see Section 4.2.1) for further consistency and suitability checks. If necessary,
the whole procedure may be repeated.

We analyzed in detail the processing time and scalability of the algorithms both theoretically and
experimentally [37]. Computation time increases linearly with the number of nodes and with the cube
of the linear size of the scene. Fast mode computation time is one order of magnitude smaller than
standard mode. For example, fast mode processing of a scene of 1 km linear size ranges from 30 s
for five nodes to 50 min for 500 nodes on a four core Intel(R) Xeon(R) CPU E5440 @ 2.83 GHz with
3 GB RAM. In all cases, the computational load to generate the connectivity matrix is only a very small
fraction of the RF simulation, less than 0.2%.

4.1.3. Topology Reduction

The usefulness and added value of the PT towards network deployment definition is significantly
enhanced through a set of novel algorithms developed in the context of the WSN-DPCM project that
allow the developer to evaluate network connectivity and propose alternative connectivity scenarios.
It is noted that respective algorithms developed are based on RSSI values provided by the RF simulator
or real measurements acquired from a network deployment. To the best of the authors’ knowledge, it is
the first time that well-known graph theory algorithms have been utilized to extract useful information
about a network topology as well as to attempt to offer alternative topologies.

Sensors 2016, 16, 804 12 of 40

Network Connectivity Evaluation

Based on the connectivity matrix, these algorithms exploit graph theory in a novel approach that
allows the developer to identify critical characteristics of the network (assuming a specific topology
scenario) which can have a great impact on network performance and robustness. This effectively
allows the developer to modify the deployment accordingly until the topology satisfies all requirements.
Specifically, through these algorithms the developer is notified if the network is segmented (i.e., there is
a node or group(s) of nodes that cannot communicate with some other group(s) of nodes) or regarding
the existence of a critical node (i.e., a node that segments the network if it fails). Also, performance-wise
valuable indications are offered regarding the number of hops that separate each node from the nearest
(or the assigned) gateway. Furthermore, awareness on possible congested areas can be deduced
through the number of neighbors of a specific node.

In order to achieve the aforementioned objectives, we use two approaches. One is based on
Algebraic Graph Theory (AGT) to represent network topology as a graph and analyze it using linear
algebra and matrix theory [38]. The other approach is based on Depth First Search (DFS) [39] to obtain
accurate results on connectivity evaluation, on checking for network segmentation and for critical
nodes. The developed algorithms are presented and evaluated in [40]. In this paper, the topology
evaluation algorithms are tested in various network topology scenarios in MATLAB and manage to
identify in all cases: (1) if the network is fully connected or not; (2) if there are critical nodes; (3) for a
partitioned network which nodes are in each partition; and (4) if there are isolated nodes.

The developed tools have been fully integrated in WSN-DPCM Planning Tool, as shown in
Figure 7, in which a 2 km2 area has been covered using 20 nodes. In this case, the analysis results
show that the network is fully connected and has no critical nodes. Moreover, the average number of
neighbors is indicated (15 in this case), which, in combination with data traffic patterns, can reveal
possible congestion hot spots in the network. Also, all nodes are able to directly communicate with
the gateway, since no indication appears under the “Maximum number of hops to the ROOT” metric.
This case will be utilized in the following as a reference scenario to present approaches able to suggest
alternative topologies.

Sensors 2016, 16, 804 12 of 40

Network Connectivity Evaluation

Based on the connectivity matrix, these algorithms exploit graph theory in a novel approach that
allows the developer to identify critical characteristics of the network (assuming a specific topology
scenario) which can have a great impact on network performance and robustness. This effectively
allows the developer to modify the deployment accordingly until the topology satisfies all
requirements. Specifically, through these algorithms the developer is notified if the network is
segmented (i.e., there is a node or group(s) of nodes that cannot communicate with some other
group(s) of nodes) or regarding the existence of a critical node (i.e., a node that segments the network
if it fails). Also, performance-wise valuable indications are offered regarding the number of hops that
separate each node from the nearest (or the assigned) gateway. Furthermore, awareness on possible
congested areas can be deduced through the number of neighbors of a specific node.

In order to achieve the aforementioned objectives, we use two approaches. One is based on
Algebraic Graph Theory (AGT) to represent network topology as a graph and analyze it using linear
algebra and matrix theory [38]. The other approach is based on Depth First Search (DFS) [39] to obtain
accurate results on connectivity evaluation, on checking for network segmentation and for critical
nodes. The developed algorithms are presented and evaluated in [40]. In this paper, the topology
evaluation algorithms are tested in various network topology scenarios in MATLAB and manage to
identify in all cases: (1) if the network is fully connected or not; (2) if there are critical nodes; (3) for a
partitioned network which nodes are in each partition; and (4) if there are isolated nodes.

The developed tools have been fully integrated in WSN-DPCM Planning Tool, as shown in
Figure 7, in which a 2 km2 area has been covered using 20 nodes. In this case, the analysis results
show that the network is fully connected and has no critical nodes. Moreover, the average number of
neighbors is indicated (15 in this case), which, in combination with data traffic patterns, can reveal
possible congestion hot spots in the network. Also, all nodes are able to directly communicate with
the gateway, since no indication appears under the “Maximum number of hops to the ROOT” metric.
This case will be utilized in the following as a reference scenario to present approaches able to suggest
alternative topologies.

(a) (b)

Figure 7. WSN-DPCM Integrated Network Evaluation Algorithms results: graphical (a) and statistics (b).

Alternative Reduced Topology Indication

To further enhance PT features, a more experienced developer can set specific parameters or
requirements. In this respect, another group of algorithms was designed, implemented and

Figure 7. WSN-DPCM Integrated Network Evaluation Algorithms results: graphical (a) and statistics (b).

Alternative Reduced Topology Indication

To further enhance PT features, a more experienced developer can set specific parameters or
requirements. In this respect, another group of algorithms was designed, implemented and integrated
in the context of the WSN-DPCM project that is able to suggest alternative routes or parameters in

Sensors 2016, 16, 804 13 of 40

order to meet specific requirements. All the above form a group of valuable and easy to use tools that
are missing in the state of the art environments.

Starting from the initial network that is usually created with maximum transmission power,
we perform link reduction by targeting the following parameters: predefined number of neighbors,
predefined n-connected topology and transmission power reduction. These approaches and mainly
their relative integration effort in WSN-DPCM Planning Tool are described next. It is noted that the
core algorithms have been presented and evaluated in [41] under various cases of controllable network
topological scenarios in MATLAB.

K-ROUTE: MST-based link reduction algorithm [38]. Given a connected, undirected graph,
a spanning tree of that graph is a sub-graph comprising a tree that connects all vertices. A graph can
have many different spanning trees. We can also assign a weight to each edge, which is a number
representing how unfavorable this edge is, and use this to compute the sum of the weights of the
edges in that spanning tree. A minimum spanning tree (MST), or minimum weight spanning tree,
is then a spanning tree with weight less than or equal to the weight of every other spanning tree.
If each edge has a distinct weight, then the MST is unique. From a more abstract point of view, any
undirected graph has a minimum spanning forest, which is a union of minimum spanning trees for its
connected components.

Figure 8 shows the effect of the respective integrated algorithm to the same topology scenario
assuming a requirement of 2-route connected graph. So effectively, and with respect to Figure 7
topology, in this case initially the optimal minimum spanning tree is identified (i.e., the MST with
the minimum cost edges which represents the most robust connections). Then, the identified MST is
excluded and the second best MST topology is identified. Finally, the two identified MST topologies
are merged to provide the final alternative topology. As indicated, the number of links and average
neighbors are significantly reduced (from 166 to 38 and from 15 to 4), which can enhance networks
efficiency and resource conservation. However, as expected, the number of hops to ROOT nodes is also
increased (from 0 to 6), which indicates the need for multi-hop communication and routing protocols.

Sensors 2016, 16, 804 13 of 40

integrated in the context of the WSN-DPCM project that is able to suggest alternative routes or
parameters in order to meet specific requirements. All the above form a group of valuable and easy
to use tools that are missing in the state of the art environments.

Starting from the initial network that is usually created with maximum transmission power, we
perform link reduction by targeting the following parameters: predefined number of neighbors,
predefined n-connected topology and transmission power reduction. These approaches and mainly
their relative integration effort in WSN-DPCM Planning Tool are described next. It is noted that the
core algorithms have been presented and evaluated in [41] under various cases of controllable
network topological scenarios in MATLAB.

K-ROUTE: MST-based link reduction algorithm [38]. Given a connected, undirected graph, a
spanning tree of that graph is a sub-graph comprising a tree that connects all vertices. A graph can
have many different spanning trees. We can also assign a weight to each edge, which is a number
representing how unfavorable this edge is, and use this to compute the sum of the weights of the
edges in that spanning tree. A minimum spanning tree (MST), or minimum weight spanning tree, is
then a spanning tree with weight less than or equal to the weight of every other spanning tree. If each
edge has a distinct weight, then the MST is unique. From a more abstract point of view, any
undirected graph has a minimum spanning forest, which is a union of minimum spanning trees for
its connected components.

Figure 8 shows the effect of the respective integrated algorithm to the same topology scenario
assuming a requirement of 2-route connected graph. So effectively, and with respect to Figure 7
topology, in this case initially the optimal minimum spanning tree is identified (i.e., the MST with the
minimum cost edges which represents the most robust connections). Then, the identified MST is
excluded and the second best MST topology is identified. Finally, the two identified MST topologies
are merged to provide the final alternative topology. As indicated, the number of links and average
neighbors are significantly reduced (from 166 to 38 and from 15 to 4), which can enhance
networks efficiency and resource conservation. However, as expected, the number of hops to ROOT
nodes is also increased (from 0 to 6), which indicates the need for multi-hop communication and
routing protocols.

(a) (b)

Figure 8. WSN-DPCM K-Route Link Reduction Integrated Algorithm (power in dBm): graphical
results (a) and statistics (b).

Figure 8. WSN-DPCM K-Route Link Reduction Integrated Algorithm (power in dBm): graphical
results (a) and statistics (b).

Sensors 2016, 16, 804 14 of 40

N-NEIGHB: Neighbor-based link reduction algorithm. The algorithm attempts to ensure a specific
number of neighbors. Actually, the minimum number of nodes is bounded, hence for some nodes the
number of neighbors could be slightly increased.

The process starts from the node with the smallest number of neighbors. The first n-neighbors
with the strongest RSS are added in the new neighbor table for this node. The algorithm continues by
processing all nodes in ascending order of their number of neighbors. Before adding a new neighbor
to the table, its number of neighbors is checked. If this number is equal or larger than required, this
neighbor is discarded and the next neighbor in the list is evaluated. If all neighbors of a node have
more than the required number of neighbors, but this node has not reached the required number of
neighbors, then the first n-neighbors with the strongest RSS are added in the nodes neighbor table
even through these neighbors exceed the required number of neighbors.

Figure 9 shows an example integrated in WSN-DPCM planning tool. Comparing the extracted
metrics with the respective measurements shown in Figure 7, it is shown that the proposed algorithm
enables the developer to find the optimum trade-off between the number of neighbors/links and the
number of hops to the ROOT node.

Sensors 2016, 16, 804 14 of 40

N-NEIGHB: Neighbor-based link reduction algorithm. The algorithm attempts to ensure a
specific number of neighbors. Actually, the minimum number of nodes is bounded, hence for some
nodes the number of neighbors could be slightly increased.

The process starts from the node with the smallest number of neighbors. The first n-neighbors
with the strongest RSS are added in the new neighbor table for this node. The algorithm continues
by processing all nodes in ascending order of their number of neighbors. Before adding a new
neighbor to the table, its number of neighbors is checked. If this number is equal or larger than
required, this neighbor is discarded and the next neighbor in the list is evaluated. If all neighbors of
a node have more than the required number of neighbors, but this node has not reached the required
number of neighbors, then the first n-neighbors with the strongest RSS are added in the nodes
neighbor table even through these neighbors exceed the required number of neighbors.

Figure 9 shows an example integrated in WSN-DPCM planning tool. Comparing the extracted
metrics with the respective measurements shown in Figure 7, it is shown that the proposed algorithm
enables the developer to find the optimum trade-off between the number of neighbors/links and the
number of hops to the ROOT node.

(a) (b)

Figure 9. WSN-DPCM N-Neighbor Link Reduction Integrated Algorithm (power in dBm): graphical
results (a) and statistics (b).

TxPR: Transmission power-based link reduction algorithm. Instead of transmitting with the
maximal power, the nodes can collaboratively reduce their transmitted power and define network
topology by forming neighbor relations with specific criteria. In a homogeneous network (all sensor
nodes are similar), the most important centralized topology construction algorithms that build the
reduced topology by controlling the transmission power of the nodes are those who solve the two
well-known problems: the Critical Transmission Range (CTR) problem and the Range Assignment
(RA) problem. CTR finds the minimal communication range for all nodes in the network while
preserving network connectivity and RA finds the optimal transmission power for each individual
node. For efficiency reasons, the implementations have been merged and integrated in the previous
two algorithms, K-Route and N-Neighbor. The result is indicated in the metrics next to “Node
Suggested Power” label. Therefore, the developer is informed on link reduction possibilities and

Figure 9. WSN-DPCM N-Neighbor Link Reduction Integrated Algorithm (power in dBm): graphical
results (a) and statistics (b).

TxPR: Transmission power-based link reduction algorithm. Instead of transmitting with the
maximal power, the nodes can collaboratively reduce their transmitted power and define network
topology by forming neighbor relations with specific criteria. In a homogeneous network (all sensor
nodes are similar), the most important centralized topology construction algorithms that build the
reduced topology by controlling the transmission power of the nodes are those who solve the two
well-known problems: the Critical Transmission Range (CTR) problem and the Range Assignment
(RA) problem. CTR finds the minimal communication range for all nodes in the network while
preserving network connectivity and RA finds the optimal transmission power for each individual
node. For efficiency reasons, the implementations have been merged and integrated in the previous
two algorithms, K-Route and N-Neighbor. The result is indicated in the metrics next to “Node

Sensors 2016, 16, 804 15 of 40

Suggested Power” label. Therefore, the developer is informed on link reduction possibilities and
energy conservation effects of each option, to help finding the best deployment for a specific scenario
and requirements.

4.2. Tool for WSN Application Development and Simulation

The main functions of the Development Tool within the WSN-DPCM platform are:

‚ To support the design of top-level application-specific behavior and properties at node level;
‚ To synthesize node hardware and software using the top-level application specifications and

library components;
‚ To generate simulation code and perform network simulations;
‚ To generate and compile node programming code;
‚ To generate application-specific configuration for nodes and for the Commissioning and

Maintenance Tool.

Figure 10 shows the typical Development Tool flow. It starts with the input of the
application-specific behavior, which can range from manual input of source code to automated code
generation from model-based design (MBD) abstractions, such as state charts [42], metaprogramming
approaches [43], UML-based or ad-hoc high-level modeling flows [24,44,45].

Sensors 2016, 16, 804 15 of 40

energy conservation effects of each option, to help finding the best deployment for a specific scenario
and requirements.

4.2. Tool for WSN Application Development and Simulation

The main functions of the Development Tool within the WSN-DPCM platform are:

 To support the design of top-level application-specific behavior and properties at node level;
 To synthesize node hardware and software using the top-level application specifications and

library components;
 To generate simulation code and perform network simulations;
 To generate and compile node programming code;
 To generate application-specific configuration for nodes and for the Commissioning and

Maintenance Tool.

Figure 10 shows the typical Development Tool flow. It starts with the input of the
application-specific behavior, which can range from manual input of source code to automated code
generation from model-based design (MBD) abstractions, such as state charts [42], metaprogramming
approaches [43], UML-based or ad-hoc high-level modeling flows [24,44,45].

Figure 10. Main stages of semi-automated Development Tool flow.

Behavioral input is captured in a specific view of the top-level component, which also includes
all metadata needed by the subsequent phase of the flow, the automated hardware-software system
synthesis. The same component format is used for all library components and can include more than
one view, e.g., behavioral source code or binary, simulation models for various abstraction levels and
simulation environments. Regardless of their format and abstraction level, these views are always
handled as black boxes by the synthesis engine, which relies only on the metadata for its operation.

For the WSN-DPCM flow we developed a project generator that uses the network defined by
the WSN planner using the Planning Tool to extract the distinct node types. For each type, the
generator creates a synthesis project skeleton, which includes all node specifications already present
in network planning and allows the developer to add behavioral code (e.g., using a high-level state
chart interface) and other constraints.

Figure 10. Main stages of semi-automated Development Tool flow.

Behavioral input is captured in a specific view of the top-level component, which also includes
all metadata needed by the subsequent phase of the flow, the automated hardware-software system
synthesis. The same component format is used for all library components and can include more than
one view, e.g., behavioral source code or binary, simulation models for various abstraction levels and
simulation environments. Regardless of their format and abstraction level, these views are always
handled as black boxes by the synthesis engine, which relies only on the metadata for its operation.

For the WSN-DPCM flow we developed a project generator that uses the network defined by the
WSN planner using the Planning Tool to extract the distinct node types. For each type, the generator
creates a synthesis project skeleton, which includes all node specifications already present in network
planning and allows the developer to add behavioral code (e.g., using a high-level state chart interface)
and other constraints.

Sensors 2016, 16, 804 16 of 40

These are saved in the format of top-level components that drive the second phase of the flow
shown in Figure 10, which is fully automated. In this phase, the synthesis engine of the tool receives as
input the top-level component(s) and processes their metadata (such as requires, provides, conflicts).
These properties are the starting point for the synthesis process, which iteratively attempts to find all
subsets of its library of components that do not have unsatisfied requirements and, at the same time,
satisfy all constraints of the top-level and all other components included in the solution.

Library components (Figure 11) are central for system synthesis engine operation in order to:

‚ Store the behavior and requirements of the node-level WSN application modeled as a top-level
component by the developer;

‚ Define the library blocks that can be instantiated by the system synthesis tool;
‚ Interface with OS or middleware services when necessary;
‚ Provide simulation models, at different levels of abstraction;
‚ Provide the target code that implements their behavior to program the nodes;
‚ Provide code generators that can be run during system synthesis to check if the component can be

configured for the specific requirements of the current solution, or to build specialized code stubs
based on the actual parameters of the current solution (e.g., for API translation and component
code configuration).

Sensors 2016, 16, 804 16 of 40

These are saved in the format of top-level components that drive the second phase of the flow
shown in Figure 10, which is fully automated. In this phase, the synthesis engine of the tool receives
as input the top-level component(s) and processes their metadata (such as requires, provides,
conflicts). These properties are the starting point for the synthesis process, which iteratively attempts
to find all subsets of its library of components that do not have unsatisfied requirements and, at the
same time, satisfy all constraints of the top-level and all other components included in the solution.

Library components (Figure 11) are central for system synthesis engine operation in order to:

 Store the behavior and requirements of the node-level WSN application modeled as a top-level
component by the developer;

 Define the library blocks that can be instantiated by the system synthesis tool;
 Interface with OS or middleware services when necessary;
 Provide simulation models, at different levels of abstraction;
 Provide the target code that implements their behavior to program the nodes;
 Provide code generators that can be run during system synthesis to check if the component can

be configured for the specific requirements of the current solution, or to build specialized code
stubs based on the actual parameters of the current solution (e.g., for API translation and
component code configuration).

Figure 11. Top-level application specification component and library component structure includes
different views (darker on the bottom and handled as black boxes by the synthesis engine) and
metadata expressing component requirements and capabilities.

Figure 12 shows a simplified representation of just a few metadata properties for both library
components (bottom) and the top-level specification component (top-left). Metadata specifications of
the top-level component drive the beginning of the system synthesis process. As other library
components are instantiated in the partial solution, their metadata requirements will drive future
searches of the tool together with the still unsatisfied specifications of the top-level component. For
the whole duration of the synthesis, the top-level component and its metadata are considered
mandatory, while the library components can be instantiated and removed from solution as needed
to satisfy design requirements.

A solution is found when all component requirements are satisfied. Once found, the solution is
saved along with the actual values for all configuration parameters and can be further examined or
modified by the developer. The solver will resume the search by progressively removing the
components from the current solution and replacing them with alternatives, if any.

For each generated solution, the synthesis tool can create simulation projects, as shown in the
next steps of the flow in Figure 10. They are set up to run on external simulators and can be at various
level of abstraction. Basically, this is done by extracting and configuring into the simulation projects
the suitable simulation views of the components of the solution.

Figure 11. Top-level application specification component and library component structure includes
different views (darker on the bottom and handled as black boxes by the synthesis engine) and metadata
expressing component requirements and capabilities.

Figure 12 shows a simplified representation of just a few metadata properties for both library
components (bottom) and the top-level specification component (top-left). Metadata specifications
of the top-level component drive the beginning of the system synthesis process. As other library
components are instantiated in the partial solution, their metadata requirements will drive future
searches of the tool together with the still unsatisfied specifications of the top-level component. For the
whole duration of the synthesis, the top-level component and its metadata are considered mandatory,
while the library components can be instantiated and removed from solution as needed to satisfy
design requirements.

A solution is found when all component requirements are satisfied. Once found, the solution
is saved along with the actual values for all configuration parameters and can be further examined
or modified by the developer. The solver will resume the search by progressively removing the
components from the current solution and replacing them with alternatives, if any.

For each generated solution, the synthesis tool can create simulation projects, as shown in the
next steps of the flow in Figure 10. They are set up to run on external simulators and can be at various
level of abstraction. Basically, this is done by extracting and configuring into the simulation projects
the suitable simulation views of the components of the solution.

Sensors 2016, 16, 804 17 of 40

Besides the behavioral models, the components and the constraints of the solution can include a
bill of materials (e.g., compatible nodes, RF and transducer characteristics) or software dependencies
on specific compilation toolchains or underlying operating system (OS) features (if any).

Finally, the same mechanism is used to generate projects that can be compiled with the target
tools to create WSN node programs. These projects are typically generated in the format expected by
the target tools, which most often is a make-based project.

Sensors 2016, 16, 804 17 of 40

Besides the behavioral models, the components and the constraints of the solution can include a
bill of materials (e.g., compatible nodes, RF and transducer characteristics) or software dependencies
on specific compilation toolchains or underlying operating system (OS) features (if any).

Finally, the same mechanism is used to generate projects that can be compiled with the target
tools to create WSN node programs. These projects are typically generated in the format expected by
the target tools, which most often is a make-based project.

Figure 12. Simplified example of metadata and synthesis.

The solutions generated by the tool can be used as they are, or the developer can optimize them
either by changing the specification and rerunning the synthesis, or by manually editing the
generated projects. Either way, the developer can use simulations to validate and evaluate solutions
and improvements.

Figure 10 also shows the typical interfaces of the Development Tool with the Middleware, the
Planning Tool and the Commissioning and Maintenance Tool within the WSN-DPCM platform. The
Development Tool is designed modular, reuses existing projects as much as possible and provides
well-defined clean interfaces to simplify the update or replacement of its components, or the addition
of new ones to support specialized development flows.

4.2.1. Network Simulation

The goal of the Network Simulator component is to design and execute whole-network
simulations of WSN applications, with minimum developer effort. It supports the estimation of
network-wide performance metrics via discrete-event simulation (e.g., end-to-end network latency),
at the level of local network neighborhood (e.g., packet loss at link level), or at the level of individual
nodes (e.g., per-node power consumption or buffer overruns).

The tool plays an integral part in at least two locations in the design flow. During network
design, it can assist decisions regarding node number and placement in the deployment field, for
different WSN topologies. During node-level application development, the tool can provide guidance
for selection and parameterization of alternative node-level functions, for example the choice of
routing protocol and related parameters, or tuning of periodic tasks. Additionally, the tool supports
Hardware-in-the-Loop (HiL) simulation.

Figure 12. Simplified example of metadata and synthesis.

The solutions generated by the tool can be used as they are, or the developer can optimize
them either by changing the specification and rerunning the synthesis, or by manually editing the
generated projects. Either way, the developer can use simulations to validate and evaluate solutions
and improvements.

Figure 10 also shows the typical interfaces of the Development Tool with the Middleware,
the Planning Tool and the Commissioning and Maintenance Tool within the WSN-DPCM platform.
The Development Tool is designed modular, reuses existing projects as much as possible and provides
well-defined clean interfaces to simplify the update or replacement of its components, or the addition
of new ones to support specialized development flows.

4.2.1. Network Simulation

The goal of the Network Simulator component is to design and execute whole-network
simulations of WSN applications, with minimum developer effort. It supports the estimation of
network-wide performance metrics via discrete-event simulation (e.g., end-to-end network latency),
at the level of local network neighborhood (e.g., packet loss at link level), or at the level of individual
nodes (e.g., per-node power consumption or buffer overruns).

The tool plays an integral part in at least two locations in the design flow. During network
design, it can assist decisions regarding node number and placement in the deployment field, for
different WSN topologies. During node-level application development, the tool can provide guidance
for selection and parameterization of alternative node-level functions, for example the choice of
routing protocol and related parameters, or tuning of periodic tasks. Additionally, the tool supports
Hardware-in-the-Loop (HiL) simulation.

Sensors 2016, 16, 804 18 of 40

Creating a network simulation is more than executing a WSN system model. There are at least
two additional tasks, which can require non-negligible effort for large networks:

‚ In order to test a WSN system under different scenaria, the user must provide a simulation of the
“environment”, which includes generation of values sensed at the motes, and exceptional events,
such as random node failures.

‚ A simulation may produce copious amounts of output, which requires statistical analysis and
graphical visualization, in order to be useful to the user.

In WSN-DPCM, our aim was to improve on the state of the art in network simulation, well beyond
previous work, along the following lines:

‚ Accuracy: it is important to use high-quality, accurate simulation models and algorithms, in order
to trust the simulation results.

‚ Versatility: our tool should allow complex environment simulation, sophisticated result
post-processing, seamless integration with HiL, etc. In contrast, many frameworks offer restricted
facilities in this respect.

‚ Correctness: the user should trust that the results reflect the actual behavior of the simulated
WSN, and are not due to incorrect simulation setup.

‚ Reduced effort: the effort needed to create a simulation should be minimal.
‚ Smooth learning curve: learning to use the network simulator should not require extensive effort.

To achieve high accuracy, we employed the Castalia library of components, which runs on the
OMNeT++ simulation engine. Castalia is a mature, well-tested and widely used library, regarded as
one of the best available. We adapted Castalia’s basic models to suit the requirements of WSN-DPCM
and we augmented its model library with additional models for routing and radio devices.

Castalia is highly versatile, allowing arbitrary environment models to be added to the simulation,
and providing detailed output. However, exposing the WSN-DPCM user to Castalia would have
severe drawbacks, in terms of correctness, effort and learning curve.

‚ Castalia’s simulation models are very detailed; however, this comes at the price of having to
configure hundreds, or even thousands of model parameters in a large simulation.

‚ The coding of the environment simulation must be done in C++, which is problematic, because
(a) it may be hard to debug and (b) requires familiarity with the Castalia and OMNeT++ API,
steepening the learning curve.

For these reasons, the underlying Castalia/OMNeT++ implementation is completely opaque to
the user.

Overview of the Network Simulation Tool

To set up a new simulation, the user creates a new Network Simulation Descriptor (NSD).
Each NSD contains a complete specification that directs the tool to synthesize and execute simulations.
NSD objects are composed and edited using a dedicated editing GUI. In particular, an NSD contains:

‚ A reference to a PLAN, and all its sub-objects (as shown in Figure 2),
‚ A simulation model for the environment that is used to generate sensor measurements and other

“environment” events at simulation time,
‚ The sequence of result analysis and visualization operations to be performed on simulation output,
‚ Simulation-related parameters (length of simulation period, statistics collection granularity,

HiL configuration etc.).

Once created, an NSD document can be used to execute new simulations at any time, by a
“one-click” operation via the WebTop GUI. When a new simulation is launched on a given NSD,
the tool performs the following steps:

Sensors 2016, 16, 804 19 of 40

1. The PLAN object is imported and information is extracted. This information comprises of
WSN topology (location and type of nodes), the Connectivity Matrix, and the components and
parameters defining each node type (NODEDEF and ROOTDEF objects). This information,
together with other parts of the NSD, is compiled into a Platform Independent Model (PIM).

2. The PIM is validated, checking its consistency. If any inconsistencies are found, a detailed report
is generated for the user and the simulation is aborted. Inconsistencies at this level are probably
due to some user error (e.g., some NODEDEF has missing information). Also, the validation may
create a number of warnings, which alert the user that something seems strange (e.g., routing
seems misconfigured), but warnings alone do not abort the simulation.

3. The PIM is transformed to a Platform Specific Model (PSM). The PSM contains objects which
describe the OMNeT++/Castalia simulation to be created. The transformation utilizes a library
of Castalia-specific simulation models for the hardware and software components that define
each node type (e.g., sensor types, radio chips, MAC and routing protocols, power consumption
models, etc.).

4. The PSM is validated and if it is found to be inconsistent, a detailed report is generated and the
process is aborted. A failure at this point is probably because of some problem in the tool (e.g.,
something wrong in the library of simulation models).

5. Based on the PSM, OMNeT++/Castalia code is generated, and compiled. Then, the simulation is
executed by a suitable runtime manager.

6. The data output by the simulation is post-processed (including user-defined statistical processing)
and a number of plots are created. These are sent to the WebTop GUI, in order to be presented to
the user and the simulation terminates.

Supporting Environment Simulation with VectorL

In order to allow the user to specify simulation models for the environment, while hiding the
underlying Castalia-based implementation, we designed a simple but expressive domain-specific
language, VectorL. A more extensive discussion of VectorL appears in [46]. In a nutshell, there are
three salient features of VectorL:

‚ Environment simulation models are typically models of physical systems. In order to code
such models concisely, VectorL syntax looks very similar to vector calculus. Variables in a
VectorL program are multidimensional arrays of reals, integers or booleans (scalar variables are
semantically equivalent to 0-dimensional arrays). Complex values and strings are not currently
supported, but may be supported in the future. In order to avoid looping constructs, which result
in error-prone code, all VectorL expression operators are vectorized, similar to languages such as
MatLab, R, yorick or Python/Numpy.

‚ At a higher level, VectorL programs are formed as collections of Event-Condition-Action (ECA)
rules. Actions are sequences of statements. Assignment statements update the execution state, emit
statements dispatch new events at a future simulation time and conditional statements implement
conditional flow. When an event is dispatched, all actions for this event are executed.

‚ A program comprises of a collection of modules, allowing code reuse and testing. For example, in
an air-quality simulation concerning three pollutants, the simulation model for each pollutant can
be coded in a separate module, and the overall environment simulation includes all three modules.

A simple VectorL simulation model is shown in Figure 13, which models a small, 2-spot parking
lot, with four cars arriving. Three arrays (lines 5–7) hold the data per car, i.e., arrival and departure
times and parking spot occupied per car—in a more practical model, these data would be generated on
the fly by random variables. It is assumed that there is a distance sensor located at each parking spot,
measuring a distance of 3.2 m when the spot is free, and a distance of 0.55 m when the spot is occupied
by a car. The current state for each parking spot sensor is maintained in an array (line 12). For each car,

Sensors 2016, 16, 804 20 of 40

two events are emitted; a carArrives event, handled in lines 17–25, and a carDeparts event, handled in
lines 27–29.

During a simulation, when a mote located at a parking spot reads its distance sensor, the value
stored at the corresponding position of array spotSensor is returned.

Overall, environment simulation models are much easier to implement and test in VectorL than
in C++. A web-based graphical integrated development environment (IDE) is used for VectorL code
entry and editing. In this IDE, VectorL programs can be tested and debugged. VectorL programs are
included into NSDs and are compiled into C++ when a simulation is generated.

Sensors 2016, 16, 804 20 of 40

For each car, two events are emitted; a carArrives event, handled in lines 17–25, and a carDeparts
event, handled in lines 27–29.

During a simulation, when a mote located at a parking spot reads its distance sensor, the value
stored at the corresponding position of array spotSensor is returned.

Overall, environment simulation models are much easier to implement and test in VectorL than
in C++. A web-based graphical integrated development environment (IDE) is used for VectorL code
entry and editing. In this IDE, VectorL programs can be tested and debugged. VectorL programs are
included into NSDs and are compiled into C++ when a simulation is generated.

Figure 13. A simple VectorL program.

Post-Processing Simulation Output

The network simulation tool provides a powerful yet intuitive method to determine the
post-processing of events, based on a relational database. The output results from a simulation are
collected into base tables. The user can declare derived tables (equivalent to relational views) by
applying filtering, join, union and aggregation. Various types of graphical views can also be defined
on tables (base, as well as derived). Supported graphical views include all kinds of traditional plots
(histograms, line graphs, etc.), as well as displaying on the WebTop map view of the simulated
network. The users do not need to be familiar with relational databases, or to write SQL code to define
derived tables and graphical views; this is done in the NSD editor using a suitable GUI.

Hardware-in-the-Loop Mode

The network simulation tool is typically accessed as a web service, fully integrated with the rest
of the WSN-DPCM platform. It is also possible to run the tool as a standalone program on a user’s
workstation or laptop. Standalone execution is useful for simulations that involve hardware in the
loop, which is connected to the local machine. When HiL is required in a simulation, the NSD must

Figure 13. A simple VectorL program.

Post-Processing Simulation Output

The network simulation tool provides a powerful yet intuitive method to determine the
post-processing of events, based on a relational database. The output results from a simulation
are collected into base tables. The user can declare derived tables (equivalent to relational views) by
applying filtering, join, union and aggregation. Various types of graphical views can also be defined
on tables (base, as well as derived). Supported graphical views include all kinds of traditional plots
(histograms, line graphs, etc.), as well as displaying on the WebTop map view of the simulated network.
The users do not need to be familiar with relational databases, or to write SQL code to define derived
tables and graphical views; this is done in the NSD editor using a suitable GUI.

Hardware-in-the-Loop Mode

The network simulation tool is typically accessed as a web service, fully integrated with the rest
of the WSN-DPCM platform. It is also possible to run the tool as a standalone program on a user’s
workstation or laptop. Standalone execution is useful for simulations that involve hardware in the
loop, which is connected to the local machine. When HiL is required in a simulation, the NSD must

Sensors 2016, 16, 804 21 of 40

be edited to specify the simulated network location which is simulated using the hardware. HiL
functionality is orthogonal to all other aspects of the simulation.

4.2.2. Hardware-in-the-Loop Simulation

One approach to hardware-in-the-loop simulation is to use input signals coming from the
simulation to drive the embedded system under test, thus extracting the output signals from the real
setting. Through HiL developed extensions, the simulation environment (i.e., OMNeT++/ Castalia)
interacts with the real WSN environment (hardware as well as communication channel) to accurately
incorporate in the simulation process some aspects of the wireless communication that are difficult
(or even impossible) to model mathematically.

In the context of the project, we focused on two notoriously challenging to simulate aspects of
WSN, namely the wireless transmission medium quality and the processing delay introduced by the
hardware. HiL testing tools for WSN are anticipated to consist of dozens of physical sensor nodes.

For this purpose, we extended the OMNeT++/Castalia framework to support the interaction with
real WSN nodes and support HiL components by issuing adequate commands towards the hardware
as well as receiving respective feedback regarding the performance/behavior of the hardware, which is
then integrated into the simulation process. Using the WSN-DPCM network simulation GUI, the user
is able to select whether the plugged-in real sensors are to be considered (effectively activating the
HiL features) or not. In this context, the developed HiL Simulation Component is able to connect
with the hardware nodes running a modified version of the application firmware that includes the
interface for data and command exchange with the simulator at simulation run-time. More specifically,
the HiL component issues commands and data which are to be conveyed to the actual mote through
DT-MW functions. These commands will effectively instruct the hardware to perform well defined
and beforehand known operations and collect the respective measurements. The information on
operation execution and on respective measurements are then conveyed back to the HiL component,
which incorporates them in the simulation process. An abstract view of the interaction flow of the HiL
component with the real hardware is shown in Figure 14.

Sensors 2016, 16, 804 21 of 40

be edited to specify the simulated network location which is simulated using the hardware. HiL
functionality is orthogonal to all other aspects of the simulation.

4.2.2. Hardware-in-the-Loop Simulation

One approach to hardware-in-the-loop simulation is to use input signals coming from the
simulation to drive the embedded system under test, thus extracting the output signals from the real
setting. Through HiL developed extensions, the simulation environment (i.e., OMNeT++/ Castalia)
interacts with the real WSN environment (hardware as well as communication channel) to accurately
incorporate in the simulation process some aspects of the wireless communication that are difficult
(or even impossible) to model mathematically.

In the context of the project, we focused on two notoriously challenging to simulate aspects of
WSN, namely the wireless transmission medium quality and the processing delay introduced by the
hardware. HiL testing tools for WSN are anticipated to consist of dozens of physical sensor nodes.

For this purpose, we extended the OMNeT++/Castalia framework to support the interaction with
real WSN nodes and support HiL components by issuing adequate commands towards the hardware
as well as receiving respective feedback regarding the performance/behavior of the hardware, which
is then integrated into the simulation process. Using the WSN-DPCM network simulation GUI, the
user is able to select whether the plugged-in real sensors are to be considered (effectively activating
the HiL features) or not. In this context, the developed HiL Simulation Component is able to connect
with the hardware nodes running a modified version of the application firmware that includes the
interface for data and command exchange with the simulator at simulation run-time. More
specifically, the HiL component issues commands and data which are to be conveyed to the actual
mote through DT-MW functions. These commands will effectively instruct the hardware to perform
well defined and beforehand known operations and collect the respective measurements. The
information on operation execution and on respective measurements are then conveyed back to the
HiL component, which incorporates them in the simulation process. An abstract view of the
interaction flow of the HiL component with the real hardware is shown in Figure 14.

Figure 14. Interaction flow between the HiL Component and the hardware node.

We use of the “system()” function to implement the forward channel, which can execute a
command with optional command-line arguments in a shell on a UNIX-like operating system. We
executed the Java program responsible for the communication with the motes, along with the
required arguments. The reverse channel is implemented using a named pipe.

Figure 14. Interaction flow between the HiL Component and the hardware node.

We use of the “system()” function to implement the forward channel, which can execute a
command with optional command-line arguments in a shell on a UNIX-like operating system. We
executed the Java program responsible for the communication with the motes, along with the required
arguments. The reverse channel is implemented using a named pipe.

Sensors 2016, 16, 804 22 of 40

As a proof of concept, we have considered two HiL Simulation Components which tackle aspects
notoriously challenging to model in a WSN simulation. The first aspect concerns the hardware
processing delay, which in most simulation environments is omitted in the overall delay evaluation.
In that respect, for each WSN node the user is able to define which parts of the software stack will be
simulated and which will be executed by the available hardware. Therefore, based on specific codes
issued to the hardware, the user effectively selects one or more modules of the software stack of a node,
to be simulated or executed on the real hardware. In Figure 15, a possible configuration is presented.

Sensors 2016, 16, 804 22 of 40

As a proof of concept, we have considered two HiL Simulation Components which tackle aspects
notoriously challenging to model in a WSN simulation. The first aspect concerns the hardware
processing delay, which in most simulation environments is omitted in the overall delay evaluation.
In that respect, for each WSN node the user is able to define which parts of the software stack will be
simulated and which will be executed by the available hardware. Therefore, based on specific codes
issued to the hardware, the user effectively selects one or more modules of the software stack of a
node, to be simulated or executed on the real hardware. In Figure 15, a possible configuration
is presented.

Figure 15. Processing Delay HiL Scenario.

Figure 16. Wireless Medium HiL Scenario.

Figure 15. Processing Delay HiL Scenario.

Sensors 2016, 16, 804 22 of 40

As a proof of concept, we have considered two HiL Simulation Components which tackle aspects
notoriously challenging to model in a WSN simulation. The first aspect concerns the hardware
processing delay, which in most simulation environments is omitted in the overall delay evaluation.
In that respect, for each WSN node the user is able to define which parts of the software stack will be
simulated and which will be executed by the available hardware. Therefore, based on specific codes
issued to the hardware, the user effectively selects one or more modules of the software stack of a
node, to be simulated or executed on the real hardware. In Figure 15, a possible configuration
is presented.

Figure 15. Processing Delay HiL Scenario.

Figure 16. Wireless Medium HiL Scenario. Figure 16. Wireless Medium HiL Scenario.

Sensors 2016, 16, 804 23 of 40

In this case, the user has chosen the routing and the MAC layer of a virtual node to be executed
by a physical node, instead of being simulated, while for the second node, the user has chosen only
the routing layer. The second approach aims to accurately capture and integrate in the simulation
environment the dynamics and unpredictable characteristics of the wireless channel. The above
scenario is schematically shown in Figure 16, which allows one to accurately measure the real RSSI
and BER, and thus to take into consideration an objective notion of communication link quality.

4.2.3. Middleware

The WSN-DPCM Middleware is responsible for the definition of the common abstractions and the
realization of their interfaces for components of functionality typically existing in WSN-based systems.
The main objective is to enable high level compositions over heterogeneous embedded programming
platforms, promoting portability and reconfigurability, as well as interoperability based on mappings
to international standards and industry driven specifications. It defines a core component execution
framework which includes design-time configurable inter-component communications, execution
scheduling and resource monitoring mechanisms. Based on this and on common interfaces, it provides
implementations of components for HAL, Network and Platform layers, hiding the lower-level details
(hardware and OS drivers), implementing the available networking and distribution mechanisms, and
offering interoperable services to local or network applications. Middleware component abstractions
are provided as UML/SysML block descriptions of leaf Function Blocks (executable code) and
Assemblies (connectable compositions of other blocks/assemblies with input and output ports,
as shown in Figure 17). A component developer, who typically is an expert programmer, has to
implement the interfaces of the component to the configuration and runtime sub-systems, and provide
SysML block descriptions with all attributes required by the defined WSN-DPCM UML Profile [47].

Sensors 2016, 16, 804 23 of 40

In this case, the user has chosen the routing and the MAC layer of a virtual node to be executed
by a physical node, instead of being simulated, while for the second node, the user has chosen only
the routing layer. The second approach aims to accurately capture and integrate in the simulation
environment the dynamics and unpredictable characteristics of the wireless channel. The above
scenario is schematically shown in Figure 16, which allows one to accurately measure the real RSSI
and BER, and thus to take into consideration an objective notion of communication link quality.

4.2.3. Middleware

The WSN-DPCM Middleware is responsible for the definition of the common abstractions and
the realization of their interfaces for components of functionality typically existing in WSN-based
systems. The main objective is to enable high level compositions over heterogeneous embedded
programming platforms, promoting portability and reconfigurability, as well as interoperability
based on mappings to international standards and industry driven specifications. It defines a core
component execution framework which includes design-time configurable inter-component
communications, execution scheduling and resource monitoring mechanisms. Based on this and on
common interfaces, it provides implementations of components for HAL, Network and Platform
layers, hiding the lower-level details (hardware and OS drivers), implementing the available
networking and distribution mechanisms, and offering interoperable services to local or network
applications. Middleware component abstractions are provided as UML/SysML block descriptions
of leaf Function Blocks (executable code) and Assemblies (connectable compositions of other
blocks/assemblies with input and output ports, as shown in Figure 17). A component developer, who
typically is an expert programmer, has to implement the interfaces of the component to the
configuration and runtime sub-systems, and provide SysML block descriptions with all attributes
required by the defined WSN-DPCM UML Profile [47].

Figure 17. Middleware sensor assembly example.

Every assembly (its .uml model) can be fed in the developed Xmi2x WSN-DPCM parser, which
generates the instantiations, links and configuration files ready to be inspected or manually added to
a previously generated device source code tree, or ready to be compiled alone as a relocatable generic
binary that can be dynamically loaded into a running device.

The middleware run-time environment provides C and NesC bindings of the various block
interfaces and implementations, as they also appear in the toolset repository, based on the
corresponding Block, Parameter and Variant argument models of IEEE 2145-1, but with identification
tags mapped restricted in size and semantics, in order to comply with the OMA LWM2M addressing

Figure 17. Middleware sensor assembly example.

Every assembly (its .uml model) can be fed in the developed Xmi2x WSN-DPCM parser, which
generates the instantiations, links and configuration files ready to be inspected or manually added to a
previously generated device source code tree, or ready to be compiled alone as a relocatable generic
binary that can be dynamically loaded into a running device.

The middleware run-time environment provides C and NesC bindings of the various block
interfaces and implementations, as they also appear in the toolset repository, based on the
corresponding Block, Parameter and Variant argument models of IEEE 2145-1, but with identification
tags mapped restricted in size and semantics, in order to comply with the OMA LWM2M addressing

Sensors 2016, 16, 804 24 of 40

scheme (type ID/object ID/parameter ID). It defines its own build environment, which combines
and abstracts the underlying operating environments (Contiki [48], TinyOS [49], ChibiOS [50] and
RIOT [51]). This combined environment along with the captured booting process also allows one to
selectively combine the interleaved execution of two run-to-completion schedulers, either over bare
hardware or inside a RIOT or ChibiOS thread, thus allowing the coexistence of blocks with internal
implementations in either OS.

In order to simplify the remote access to various block parameters (ports), the middleware
provides also high level implementations of Java APIs in order to be used by Java-enabled gateways
and configuration and monitoring clients such as the CMT Hand-held, abstracting all the MW functions
as set/get accesses to a selected block instance or port, following the OMA addressing scheme, as
shown in Figure 18. The Java APIs offer direct network access either to the WSN, through an additional
C/NesC programmable embedded interface, or to the web side of a gateway.

Sensors 2016, 16, 804 24 of 40

scheme (type ID/object ID/parameter ID). It defines its own build environment, which combines and
abstracts the underlying operating environments (Contiki [48], TinyOS [49], ChibiOS [50] and RIOT
[51]). This combined environment along with the captured booting process also allows one to
selectively combine the interleaved execution of two run-to-completion schedulers, either over bare
hardware or inside a RIOT or ChibiOS thread, thus allowing the coexistence of blocks with internal
implementations in either OS.

In order to simplify the remote access to various block parameters (ports), the middleware
provides also high level implementations of Java APIs in order to be used by Java-enabled gateways
and configuration and monitoring clients such as the CMT Hand-held, abstracting all the MW
functions as set/get accesses to a selected block instance or port, following the OMA addressing
scheme, as shown in Figure 18. The Java APIs offer direct network access either to the WSN, through
an additional C/NesC programmable embedded interface, or to the web side of a gateway.

Figure 18. High level MW component remote management API (Hand-held java library).

4.3. Tool for Network Commissioning and Maintenance

The Commissioning & Maintenance Tool (CMT) [52–54] plays a significant role in overseeing
deployed WSN networks and providing the WSN-DPCM platform with network feedback
information in real-time. The data collected enable online inspection and offline analysis procedures
aiming to both refine network setup and to validate the overall deployment assumptions and design
decisions from the operational and behavioral points of view.

The CMT is mainly devoted to the operation of WSN-based networks, but it equally offers a
valuable support for network deployers, testers and maintainers during installation, setup and
commissioning operations of a deployment. More in depth, CMT assists the developer to prepare the
nodes for field deployment, during the actual field deployment operations, and for node operation
monitoring and debugging after deployment, for long-term maintenance. It uses the programming
images and configurations generated by the Development Tool for network node types and profiles,
and the deployment model provided by the Planning Tool. Once the WSN is deployed in the field
and activated, the actual operating conditions of the nodes are collected by the CMT and can be
compared with the results of the RF and network simulations to correct and optimize various
network parameters.

The CMT is integrated with other platform systems through RESTful web services. That is also
the case for the integration with the middleware, which provides run-time access to network data
including network traffic, sensor measurements and nodes status at various levels. Furthermore, the
communication with the Project Repository is also based on a RESTful API, which provides access to
all deployment-related data models and simulation parameters that are considered within the
development and planning phases by the Planning Tool and the Development Tool. Thus, the
communication and synchronization with the Platform relies on concrete data model items, used as
input, which are retrieved from the Project Repository on session start-up and during its regular
operation. Given its nature, the CMT systems need to obtain the high-level design specifications of
the Project and the network Plan for the deployment to be assisted. Through model entities, the CMT
systems are able to configure internally and gain insight about the composition of the network in

Figure 18. High level MW component remote management API (Hand-held java library).

4.3. Tool for Network Commissioning and Maintenance

The Commissioning & Maintenance Tool (CMT) [52–54] plays a significant role in overseeing
deployed WSN networks and providing the WSN-DPCM platform with network feedback information
in real-time. The data collected enable online inspection and offline analysis procedures aiming to both
refine network setup and to validate the overall deployment assumptions and design decisions from
the operational and behavioral points of view.

The CMT is mainly devoted to the operation of WSN-based networks, but it equally offers
a valuable support for network deployers, testers and maintainers during installation, setup and
commissioning operations of a deployment. More in depth, CMT assists the developer to prepare the
nodes for field deployment, during the actual field deployment operations, and for node operation
monitoring and debugging after deployment, for long-term maintenance. It uses the programming
images and configurations generated by the Development Tool for network node types and profiles,
and the deployment model provided by the Planning Tool. Once the WSN is deployed in the field and
activated, the actual operating conditions of the nodes are collected by the CMT and can be compared
with the results of the RF and network simulations to correct and optimize various network parameters.

The CMT is integrated with other platform systems through RESTful web services. That is also
the case for the integration with the middleware, which provides run-time access to network data
including network traffic, sensor measurements and nodes status at various levels. Furthermore,
the communication with the Project Repository is also based on a RESTful API, which provides
access to all deployment-related data models and simulation parameters that are considered within
the development and planning phases by the Planning Tool and the Development Tool. Thus, the
communication and synchronization with the Platform relies on concrete data model items, used
as input, which are retrieved from the Project Repository on session start-up and during its regular
operation. Given its nature, the CMT systems need to obtain the high-level design specifications of
the Project and the network Plan for the deployment to be assisted. Through model entities, the CMT
systems are able to configure internally and gain insight about the composition of the network in

Sensors 2016, 16, 804 25 of 40

terms of number and types of nodes comprised, their spatial distribution, connectivity, communication
protocol attributes, supported data categories, parameters and services, among many others.

On the other hand, the CMT keeps relevant data collected in database historical registers over
time for offline inspection and analysis. However, it is also able to produce valuable output in the
shape of visual graphs and online reports, which are automatically uploaded to the Project Repository
as essential feedback elements to drive potential refinements/corrections of the deployment plans,
network designs and even node firmware adaptations. As described in the following sections, the Tool
is heterogeneous in nature and comprises a variety of software systems:

‚ A hand-held device (CMT-HH) for network deployment and in-field monitoring; it provides an
on-site GUI accessible to application domain experts (tablet-like touch screen device).

‚ A client-side web application that provides an off-site GUI for engineers to perform long-term
monitoring, control and easy inspection of WSN network from a standard web browser.

‚ Server-side services that enable the communication with the WSN-DPCM platform systems
and modules, and other mission-critical functions (data analysis and housekeeping, consistency
checks, among others).

The main capabilities and functional objectives of the CMT within the WSN-DPCM Platform are:

‚ WSN real-time data and metrics monitoring.
‚ Off-line analysis and statistics over collected network data.
‚ UI data visualization (graphical & textual).
‚ WSN nodes and control through network commands.
‚ Software-aided support for WSN deployment validation.
‚ Support for in-field WSN commissioning and maintenance.

Besides the monitoring and network control functions offered by the tool, text presentation and
visualization services represent very useful methods for CMT operators to figure out, commission
and troubleshoot undesired behaviors, such as incorrect network operation/behavior due to data
inconsistencies, communication problems or erroneous device setups and configurations during
network deployment and regular operation.

4.3.1. Hand-Held Device for Network Deployment and in-Field Monitoring

During the development cycle of a WSN-based application, in-field configuration and
performance assessment of wireless sensor nodes by means of integrating well-defined commissioning
and debugging techniques during deployment can significantly reduce the verification and final
release of the system. Moreover, for platform developers this stage represents a key validation and/or
refinement opportunity for the previous development phases regarding modeling, simulation and code
generation processes. This is the main reason why a new on-site commissioning mechanism is proposed
and integrated in the WSN-DPCM toolset. It supports a comprehensive deployment methodology for
network/node parametrization, installation and configuration, as well as in-field runtime behavioral
analysis on the actual hardware and software elements that compose the sensor devices to be deployed.
In order to carry out this approach, a CMT Hand-held device (CMT-HH) [52–54] has been implemented
as part of the toolset, which integrates several heterogeneous technologies into a unique HW-SW
platform. The main target of the CMT-HH is to provide deployers with expert/non-expert capabilities
that help them accomplish the deployment activities in an efficient, optimized and automated way.

The system architecture of the CMT-HH is composed of two main elements upon which the
deployment tool technologies are integrated. On the one hand, a smart device that supports the
Android operating system is considered as the mobile component to perform the on-site deployment
and commissioning activities. On the other hand, the sensor node platform is integrated with the
aforementioned device by using a common interface connection between both components in the form

Sensors 2016, 16, 804 26 of 40

of a USB-host mode configuration, in order to provide the CMT-HH with the wireless communication
interface to the sensor network deployment (such as the IEEE 802.15.4-based connection), as shown in
Figure 19. This low-level communication interface serves as the over-the-air debugging channel to
carry out the in-field node/network configuration, monitoring and analysis tasks.

Based on this approach, the CMT-HH includes the HW-SW components shown in Figure 19,
in which the main elements of the proposed platform are highlighted. First of all, the CMT-HH
integration with the WSN-DPCM toolset follows a model-based approach, by means of using the
common Project Repository via a web service interface scheme. The CMT-HH retrieves two main
structured models as input to determine the in-field deployment strategies as well as the system
preparation, which are represented as JSON objects.

Sensors 2016, 16, 804 26 of 40

communication interface to the sensor network deployment (such as the IEEE 802.15.4-based
connection), as shown in Figure 19. This low-level communication interface serves as the
over-the-air debugging channel to carry out the in-field node/network configuration, monitoring and
analysis tasks.

Based on this approach, the CMT-HH includes the HW-SW components shown in Figure 19, in
which the main elements of the proposed platform are highlighted. First of all, the CMT-HH
integration with the WSN-DPCM toolset follows a model-based approach, by means of using the
common Project Repository via a web service interface scheme. The CMT-HH retrieves two main
structured models as input to determine the in-field deployment strategies as well as the system
preparation, which are represented as JSON objects.

Figure 19. Overall HW-SW structure of the Hand-held device for the Commissioning and
Maintenance Tool.

One is the network/application model, where the functional blocks in the node are defined
(sensor and actuator elements, properties and configurable parameters, hardware device features,
among others) as well as network information regarding node positioning, communication
parameters and node type for topology definition. This model is the result of planning and
development stages of the application development. An object-oriented approach is followed to
configure the internal deployment model of the tool from the basis of the aforementioned network
model retrieving. Sensor node definition is established by functional block instantiation and
parameters that outline the node platform implementation (such as, for instance, sensor and property
configurations that can be accessed and modified at runtime). As explained in following paragraphs,
this component instantiation follows an object/parameter addressing scheme to establish a coherent
block interface with the middleware-based node embedded components.

The other is the radio connectivity model, which estimates the connectivity between sensor
nodes so that strategies for improving the communication coverage can be applied accordingly (in
combination with node placement information and configuration properties). This connectivity
model is generated through simulation during the planning stage of the toolset. The basic information
that is used to build the network connectivity scheme is on the one hand the bidirectional link metrics
between pair-points (particularly considering RSSI and LQI parameters), and, on the other hand, the
radio communication configurations such as TX power modes and wireless channel assessment. This
connectivity scheme is subsequently analyzed and compared with the actual performance of the
sensor nodes under deployment/maintenance, by means of generating a real connectivity scheme in

Figure 19. Overall HW-SW structure of the Hand-held device for the Commissioning and
Maintenance Tool.

One is the network/application model, where the functional blocks in the node are defined
(sensor and actuator elements, properties and configurable parameters, hardware device features,
among others) as well as network information regarding node positioning, communication parameters
and node type for topology definition. This model is the result of planning and development stages
of the application development. An object-oriented approach is followed to configure the internal
deployment model of the tool from the basis of the aforementioned network model retrieving. Sensor
node definition is established by functional block instantiation and parameters that outline the node
platform implementation (such as, for instance, sensor and property configurations that can be accessed
and modified at runtime). As explained in following paragraphs, this component instantiation
follows an object/parameter addressing scheme to establish a coherent block interface with the
middleware-based node embedded components.

The other is the radio connectivity model, which estimates the connectivity between sensor
nodes so that strategies for improving the communication coverage can be applied accordingly
(in combination with node placement information and configuration properties). This connectivity
model is generated through simulation during the planning stage of the toolset. The basic information
that is used to build the network connectivity scheme is on the one hand the bidirectional link metrics
between pair-points (particularly considering RSSI and LQI parameters), and, on the other hand, the
radio communication configurations such as TX power modes and wireless channel assessment.
This connectivity scheme is subsequently analyzed and compared with the actual performance

Sensors 2016, 16, 804 27 of 40

of the sensor nodes under deployment/maintenance, by means of generating a real connectivity
scheme in accordance with the runtime node configuration process. As shown in Figure 20a, both
simulation and real connectivity maps can be overlapped so that deployers can study the influence
of on-site factors and/or installation modifications on the overall performance of the wireless sensor
deployment, in addition to deployment methodology sequence outcome. This representation allows
the provision of parameters regarding isolated nodes, redundant communication areas and critical
points of the network.

Sensors 2016, 16, 804 27 of 40

accordance with the runtime node configuration process. As shown in Figure 20a, both simulation
and real connectivity maps can be overlapped so that deployers can study the influence of on-site
factors and/or installation modifications on the overall performance of the wireless sensor
deployment, in addition to deployment methodology sequence outcome. This representation allows
the provision of parameters regarding isolated nodes, redundant communication areas and critical
points of the network.

Figure 20. General view of Hand-held top-level interface in Commissioning and Maintenance Tool.
(a) Network connectivity and node correlation scheme layers; (b) Runtime node functional
components management; (c) Data aggregation and on-site monitoring/commanding.

Four main elements can be distinguished within the system implementation of the CMT-HH,
which also define the system functional flow once the internal data management system is supplied
with the aforementioned input models.

First, an in-field deployment methodology built upon run-time optimization algorithms, so that
the users are provided with the most effective configuration and installation routine for the wireless
sensor nodes to be deployed in the target scenario. This optimization engine focuses on identifying
on the one hand the best deployment sequence to assure the cohesion of the network with an
optimized power and resource consumption during the configuration routine; and, on the other
hand, to find key-strategy-points of the WSN with which the network topology scheme is achieved
with a minimum control packet dissemination cost.

Second, an on-site comparative analysis of the actual wireless communication performance of
the sensor network with the theoretical simulation models generated at planning stage. Apart from
the network/node link correlation schemes based on connectivity metrics and radio module
parameter reconfiguration to improve the overall networking map, an experimental evaluation of
multi-hop communication mechanisms can also be realized based on routing protocol information
provided by the sensor platform during deployment considering the monitoring and computation of
metrics such as packet loss rate and retransmission counts, as well as routing metrics for path evaluation.

Figure 20. General view of Hand-held top-level interface in Commissioning and Maintenance Tool.
(a) Network connectivity and node correlation scheme layers; (b) Runtime node functional components
management; (c) Data aggregation and on-site monitoring/commanding.

Four main elements can be distinguished within the system implementation of the CMT-HH,
which also define the system functional flow once the internal data management system is supplied
with the aforementioned input models.

First, an in-field deployment methodology built upon run-time optimization algorithms, so that
the users are provided with the most effective configuration and installation routine for the wireless
sensor nodes to be deployed in the target scenario. This optimization engine focuses on identifying on
the one hand the best deployment sequence to assure the cohesion of the network with an optimized
power and resource consumption during the configuration routine; and, on the other hand, to find
key-strategy-points of the WSN with which the network topology scheme is achieved with a minimum
control packet dissemination cost.

Second, an on-site comparative analysis of the actual wireless communication performance of the
sensor network with the theoretical simulation models generated at planning stage. Apart from the
network/node link correlation schemes based on connectivity metrics and radio module parameter
reconfiguration to improve the overall networking map, an experimental evaluation of multi-hop
communication mechanisms can also be realized based on routing protocol information provided by

Sensors 2016, 16, 804 28 of 40

the sensor platform during deployment considering the monitoring and computation of metrics such
as packet loss rate and retransmission counts, as well as routing metrics for path evaluation.

Third, run-time functional sensor node reconfigurations that allow to modify specific properties
to improve wireless network performance, especially to reduce power consumption (such as the
sensor sampling rate and transmission period, sleep mode configurations, transmission power) and
network/application debugging tasks. This capability is supported by the Java-based middleware
interface functions to access the implemented embedded components of the sensor nodes from the
CMT-HH tool, in accordance with the input network model definition. Considering the node objet,
block instantiation and parameter identification, a particular functional component of the target sensor
node can be addressed and configured at runtime, as shown in Figure 20b, where different block
instances and node component parameters can be accessed, updated and monitored. This abstraction
layer has been integrated as a two-side interface between the upper debugging and evaluation layers
and the USB-host hardware controller of the mobile device.

Fourth, automatic and dynamic generation of the output models related to system performance
assessment and analysis/optimization process carried out during deployment activities, to provide a
comprehensive feedback for the toolset based on data gathered in the real environment scenario.

After field deployment, CMT-HH provides output models associated with the underlying
information obtained during in-field testing, debugging and optimization process and whose reports
can be used to enhance the simulation models and planning strategies. Furthermore, deployers are
provided with direct data processing visualization entities as shown in Figure 20c, where runtime
WSN monitoring and statistical data aggregation is produced based on the over-the-air connection of
the on-site tool and the sensor nodes under commissioning.

4.3.2. Application Server and Network Long-Term Monitoring and Maintenance Tool

Accompanying and complementing in-field deployment activities, an off-site application for
network commissioners and network maintainers was developed to simplify remote, long-term
commissioning of operative networks.

Sensors 2016, 16, 804 28 of 40

Third, run-time functional sensor node reconfigurations that allow to modify specific properties
to improve wireless network performance, especially to reduce power consumption (such as the
sensor sampling rate and transmission period, sleep mode configurations, transmission power) and
network/application debugging tasks. This capability is supported by the Java-based middleware
interface functions to access the implemented embedded components of the sensor nodes from the
CMT-HH tool, in accordance with the input network model definition. Considering the node objet,
block instantiation and parameter identification, a particular functional component of the target
sensor node can be addressed and configured at runtime, as shown in Figure 20b, where different
block instances and node component parameters can be accessed, updated and monitored. This
abstraction layer has been integrated as a two-side interface between the upper debugging and
evaluation layers and the USB-host hardware controller of the mobile device.

Fourth, automatic and dynamic generation of the output models related to system performance
assessment and analysis/optimization process carried out during deployment activities, to provide a
comprehensive feedback for the toolset based on data gathered in the real environment scenario.

After field deployment, CMT-HH provides output models associated with the underlying
information obtained during in-field testing, debugging and optimization process and whose reports
can be used to enhance the simulation models and planning strategies. Furthermore, deployers are
provided with direct data processing visualization entities as shown in Figure 20c, where runtime
WSN monitoring and statistical data aggregation is produced based on the over-the-air connection
of the on-site tool and the sensor nodes under commissioning.

4.3.2. Application Server and Network Long-Term Monitoring and Maintenance Tool

Accompanying and complementing in-field deployment activities, an off-site application for
network commissioners and network maintainers was developed to simplify remote, long-term
commissioning of operative networks.

Figure 21. Overall software architecture and interfaces of the Commission and Maintenance Tool
server component.

Continuous monitoring and visibility over network data and events are key aspects taken into
account by the CMT server modules and applications [52–54]. Together with the ability to change
node behavior through remote partial reconfiguration, the ability to analyze network throughput are
essential features for the validation process of a deployment and, even more, for corrective and
preventive maintenance of long-lasting WSN networks.

CMT server modules retrieve from Project Repository different models generated in various
phases of design and planning for deployment of the network and use them for automatic self-

Figure 21. Overall software architecture and interfaces of the Commission and Maintenance Tool
server component.

Continuous monitoring and visibility over network data and events are key aspects taken into
account by the CMT server modules and applications [52–54]. Together with the ability to change
node behavior through remote partial reconfiguration, the ability to analyze network throughput
are essential features for the validation process of a deployment and, even more, for corrective and
preventive maintenance of long-lasting WSN networks.

Sensors 2016, 16, 804 29 of 40

CMT server modules retrieve from Project Repository different models generated in various
phases of design and planning for deployment of the network and use them for automatic
self-configuration. This capability allows a perfect alignment of the virtual and the physical worlds in
a WSN deployment.

The support offered by the CMT Server comprises a variety of modules that are integrated with
and/or make use of key WSN-DPCM platform services and systems. Figure 21 shows an architectural
view of the CMT Tool and its interfaces.

Sensors 2016, 16, 804 29 of 40

configuration. This capability allows a perfect alignment of the virtual and the physical worlds in a
WSN deployment.

The support offered by the CMT Server comprises a variety of modules that are integrated with
and/or make use of key WSN-DPCM platform services and systems. Figure 21 shows an architectural
view of the CMT Tool and its interfaces.

Figure 22. General view of the top-level interface of the Commissioning and Maintenance Tool Web
Application.

At application-user level, the CMT Server suite provides an administrative web application UI
(Figure 22), accessible from the Toolset run-time environment, which allows to remotely monitor and
control the operation of the network for long-term analysis and maintenance. This web-accessible
tool does not require specific expertise to be used by the people in charge with network deployment,
while also providing the expert users with extended information on the network. Among the most
important features provided are:

 Data formatting and visualization procedures: Data from Sensors, Network Diagnostics
(routing, RSSI/LQI), Node Diagnostics (battery level, status of operation), Communication
metrics (packets TX/RX/dropped, congested links), Hand-held reported information.

 Support for remote reconfiguration of network nodes.
 Event/data logging and online data charts generation. Data reports export options.
 Configurable baseline of data inspection rules, associated to alarms and notifications.

Figure 22. General view of the top-level interface of the Commissioning and Maintenance Tool
Web Application.

At application-user level, the CMT Server suite provides an administrative web application UI
(Figure 22), accessible from the Toolset run-time environment, which allows to remotely monitor and
control the operation of the network for long-term analysis and maintenance. This web-accessible
tool does not require specific expertise to be used by the people in charge with network deployment,
while also providing the expert users with extended information on the network. Among the most
important features provided are:

‚ Data formatting and visualization procedures: Data from Sensors, Network Diagnostics (routing,
RSSI/LQI), Node Diagnostics (battery level, status of operation), Communication metrics (packets
TX/RX/dropped, congested links), Hand-held reported information.

‚ Support for remote reconfiguration of network nodes.
‚ Event/data logging and online data charts generation. Data reports export options.
‚ Configurable baseline of data inspection rules, associated to alarms and notifications.

Sensors 2016, 16, 804 30 of 40

At a service level, the CMT Server enables a set of services to access the WSN-DPCM Platform
Project Repository on the cloud (data models proxy service) and to collect real-time network telemetry
data (sensor measurements, network status, node status parameters etc.) The interaction model with
the WSN-DPCM platform follows a model-driven approach, founded in web service communication
APIs. These interactions include:

‚ Model files retrieval from cloud-based Project Repository.
‚ Information exchanges with the Middleware run-time layer (data parameters, ACKs, data/

command requests), data consistency checks and storage.
‚ Collection and storage of deployment reports from CMT hand-held (HH) devices.
‚ Proxy service for the HH devices (digested network model download).

To sum up, all CMT support services and in-field/off-site solutions combined represent a reliable
set of software-based utilities provided by the WSN-DPCM toolset to assist network deployers and
maintainers in the tedious task of installing, setting up, validating and optimizing a running WSN
network, and to reduce the number of iterations with respect to the traditional trial-and-error approach.

5. Use Cases

The usefulness of the WSN-DPCM Toolset was evaluated within the project through creation,
planning, simulation and deployment of two WSN-based demonstrator prototypes.

An Outdoor Parking Demonstrator [2,3] was implemented as a WSN installed in a parking lot
which is able to detect free parking slots and to guide the drivers in real time to them.

An Air Quality Demonstrator [4,5] was realized by deploying a WSN near an industrial site close
to a city to monitor in real-time atmospheric concentration of several dangerous gasses or particles:
LPG, Natural Gas, Carbon Monoxide, Coal Gas, Liquefied Gas and Dust.

5.1. Assisted Parking

This outdoor demonstrator [37,55] aims to provide a smart parking implementation in which the
users can reserve, manage and monitor the state of the available car slots in the application scenario,
so that a more efficient control of the parking space is carried out by using a wireless sensor network
created through the proposed WSN-DPCM toolset.

Sensors 2016, 16, 804 30 of 40

At a service level, the CMT Server enables a set of services to access the WSN-DPCM Platform
Project Repository on the cloud (data models proxy service) and to collect real-time network
telemetry data (sensor measurements, network status, node status parameters etc.) The interaction
model with the WSN-DPCM platform follows a model-driven approach, founded in web service
communication APIs. These interactions include:

 Model files retrieval from cloud-based Project Repository.
 Information exchanges with the Middleware run-time layer (data parameters, ACKs,

data/command requests), data consistency checks and storage.
 Collection and storage of deployment reports from CMT hand-held (HH) devices.
 Proxy service for the HH devices (digested network model download).

To sum up, all CMT support services and in-field/off-site solutions combined represent a reliable
set of software-based utilities provided by the WSN-DPCM toolset to assist network deployers and
maintainers in the tedious task of installing, setting up, validating and optimizing a running WSN
network, and to reduce the number of iterations with respect to the traditional trial-and-error
approach.

5. Use Cases

The usefulness of the WSN-DPCM Toolset was evaluated within the project through creation,
planning, simulation and deployment of two WSN-based demonstrator prototypes.

An Outdoor Parking Demonstrator [2,3] was implemented as a WSN installed in a parking lot
which is able to detect free parking slots and to guide the drivers in real time to them.

An Air Quality Demonstrator [4,5] was realized by deploying a WSN near an industrial site close
to a city to monitor in real-time atmospheric concentration of several dangerous gasses or particles:
LPG, Natural Gas, Carbon Monoxide, Coal Gas, Liquefied Gas and Dust.

5.1. Assisted Parking

This outdoor demonstrator [37,55] aims to provide a smart parking implementation in which
the users can reserve, manage and monitor the state of the available car slots in the application
scenario, so that a more efficient control of the parking space is carried out by using a wireless sensor
network created through the proposed WSN-DPCM toolset.

Figure 23. Application scenario for the smart parking demonstrator. Figure 23. Application scenario for the smart parking demonstrator.

Sensors 2016, 16, 804 31 of 40

The target scenario for the deployment of the WSN-based demonstrator was a car park space of
the Escuela Técnica Superior de Ingenieros Industriales (ETSII) as shown in Figure 23, which is an
engineering school that belongs to the Universidad Politécnica de Madrid (UPM), in Spain.

The overall architecture of the proposed WSN for monitoring and controlling the smart parking
demonstrator is shown in Figure 24.

Sensors 2016, 16, 804 31 of 40

The target scenario for the deployment of the WSN-based demonstrator was a car park space of
the Escuela Técnica Superior de Ingenieros Industriales (ETSII) as shown in Figure 23, which is an
engineering school that belongs to the Universidad Politécnica de Madrid (UPM), in Spain.

The overall architecture of the proposed WSN for monitoring and controlling the smart parking
demonstrator is shown in Figure 24.

Figure 24. WSN infrastructure for the Smart parking demonstrator scenario.

The prototype comprised a WSN with 14 nodes and one root device. The hardware elements
that composed the deployment are based on the following items:

 Sensor nodes: the Inetsis platform was used as the sensor devices for measuring and processing
the occupancy of the car slots in the parking scenario. They have a TelosB-like design including
IEEE 802.15.4 radio communication modules and a low-power MCU for local processing.

 Gateway device: it includes the low-rate communication protocol for gathering run-time
information from the WSN and provides a remote connection to the distributed sensors by using
Ethernet/Wi-Fi communication. An embedded PC was installed with a sensor node connected
as the root of the network.

 Server: the server side refers to a distributed array of different machines that provide the
WSN-DPCM support services as well as the remote commissioning capabilities of the system. In
addition to these, the top-level user application services are also provided regarding parking
reservation and monitoring capabilities.

 CMT-HH: The Hand-held device was used to carry out the deployment, configuration and
in-field performance evaluation of the sensor network at the target area.

Regarding software implementation, several elements can be distinguished within the
developed prototype as outputs of the WSN-DPCM toolset application development.

First, the embedded software that runs on the sensor platforms was obtained from the
integration of the middleware functional blocks, as a result of code generation during the
development stage of the system.

Secondly, the capabilities of the CMT-HH were used to analyze and optimize the in-field
deployment of the sensor network considering the generated planning and simulation models for
this particular scenario, in addition to providing run-time on-site verification of sensor
implementation and communication capabilities. CMT-HH, Gateway and CMT Server sides included
the corresponding middleware interfaces to properly interact with the distributed nodes in real time.

Last but not least, in order to provide a user-level smart parking application, additional elements
were implemented to emphasize the usability of the demonstrator from the user perspective. In this

Figure 24. WSN infrastructure for the Smart parking demonstrator scenario.

The prototype comprised a WSN with 14 nodes and one root device. The hardware elements that
composed the deployment are based on the following items:

‚ Sensor nodes: the Inetsis platform was used as the sensor devices for measuring and processing
the occupancy of the car slots in the parking scenario. They have a TelosB-like design including
IEEE 802.15.4 radio communication modules and a low-power MCU for local processing.

‚ Gateway device: it includes the low-rate communication protocol for gathering run-time
information from the WSN and provides a remote connection to the distributed sensors by using
Ethernet/Wi-Fi communication. An embedded PC was installed with a sensor node connected as
the root of the network.

‚ Server: the server side refers to a distributed array of different machines that provide the
WSN-DPCM support services as well as the remote commissioning capabilities of the system.
In addition to these, the top-level user application services are also provided regarding parking
reservation and monitoring capabilities.

‚ CMT-HH: The Hand-held device was used to carry out the deployment, configuration and in-field
performance evaluation of the sensor network at the target area.

Regarding software implementation, several elements can be distinguished within the developed
prototype as outputs of the WSN-DPCM toolset application development.

First, the embedded software that runs on the sensor platforms was obtained from the integration
of the middleware functional blocks, as a result of code generation during the development stage of
the system.

Secondly, the capabilities of the CMT-HH were used to analyze and optimize the in-field
deployment of the sensor network considering the generated planning and simulation models for this
particular scenario, in addition to providing run-time on-site verification of sensor implementation and
communication capabilities. CMT-HH, Gateway and CMT Server sides included the corresponding
middleware interfaces to properly interact with the distributed nodes in real time.

Sensors 2016, 16, 804 32 of 40

Last but not least, in order to provide a user-level smart parking application, additional elements
were implemented to emphasize the usability of the demonstrator from the user perspective. In this
context, the car parking space was controlled using a designed Android application for Smartphones,
in which the users can reserve specific slots as well as to monitor the occupancy state and availability of
the places in real-time. As shown in Figure 25, such capabilities were supported using a communication
infrastructure composed of a parking management server that retrieved information from the CMT
Server, and then provided web-based services to the users of the parking application.

Sensors 2016, 16, 804 32 of 40

context, the car parking space was controlled using a designed Android application for Smartphones,
in which the users can reserve specific slots as well as to monitor the occupancy state and availability
of the places in real-time. As shown in Figure 25, such capabilities were supported using a
communication infrastructure composed of a parking management server that retrieved information
from the CMT Server, and then provided web-based services to the users of the parking application.

Figure 25. Underlying structure of the smart parking user application.

The design of the service network for this real-world application scenario was entirely done
using the WSN-DPCM Platform’s services and tools. The creation, deployment and validation of the
demonstrator is carried out following the end-to-end scenario flow shown in Figure 26, in which the
proposed toolset capabilities are comprehensively applied to obtain the target WSN application,
considering an iterative process for system refinement and implementation enhancement through
simulation and testing procedures.

Figure 26. Overall end-to-end flow of the demonstrator implementation by using the DPCM toolset.

In the first phase is created the project entity which encompasses the application objectives and
constraints to start the planning and development of the WSN. The input information required also

Figure 25. Underlying structure of the smart parking user application.

The design of the service network for this real-world application scenario was entirely done
using the WSN-DPCM Platform’s services and tools. The creation, deployment and validation of
the demonstrator is carried out following the end-to-end scenario flow shown in Figure 26, in which
the proposed toolset capabilities are comprehensively applied to obtain the target WSN application,
considering an iterative process for system refinement and implementation enhancement through
simulation and testing procedures.

Sensors 2016, 16, 804 32 of 40

context, the car parking space was controlled using a designed Android application for Smartphones,
in which the users can reserve specific slots as well as to monitor the occupancy state and availability
of the places in real-time. As shown in Figure 25, such capabilities were supported using a
communication infrastructure composed of a parking management server that retrieved information
from the CMT Server, and then provided web-based services to the users of the parking application.

Figure 25. Underlying structure of the smart parking user application.

The design of the service network for this real-world application scenario was entirely done
using the WSN-DPCM Platform’s services and tools. The creation, deployment and validation of the
demonstrator is carried out following the end-to-end scenario flow shown in Figure 26, in which the
proposed toolset capabilities are comprehensively applied to obtain the target WSN application,
considering an iterative process for system refinement and implementation enhancement through
simulation and testing procedures.

Figure 26. Overall end-to-end flow of the demonstrator implementation by using the DPCM toolset.

In the first phase is created the project entity which encompasses the application objectives and
constraints to start the planning and development of the WSN. The input information required also

Figure 26. Overall end-to-end flow of the demonstrator implementation by using the DPCM toolset.

Sensors 2016, 16, 804 33 of 40

In the first phase is created the project entity which encompasses the application objectives and
constraints to start the planning and development of the WSN. The input information required also
includes the target area to be covered by the smart parking, as well as the surrounding buildings for a
more realistic RF simulation of the application environment. For this, the 3D reconstruction engine
is applied to automatically generate the building information. Moreover, the type of parameters to
be measured is defined, considering the sensors for vehicle detection such as ultrasonic or infrared
light intensity.

The second phase comprises the creation and management of the network plan, upon which
nodes equipped with sensor detectors will be located in the parking slots of the target area, also
defining the gateway placement information. Based on this, simulations are triggered in order to
improve node positioning and configuration settings, taking into account RF and network connectivity
simulation as well as topology reduction.

During the third phase, the network simulation synthesis and software synthesis are performed
alongside the HiL simulation to collect information related to communication and measurement delay
for car detection, in addition to sensing and radio coverage evaluation. Then, the application code is
generated by synthesis in accordance with the outcomes of the aforementioned process, so that the
corresponding node firmware can be produced.

The field deployment, installation and configuration tasks represent the next phase which is
supplied with the network models and functional components that compose the overall system
implementation, based on the outcomes of the previous stages. The deployment model encompasses
the placement and installation of 14 sensor nodes plus the inclusion of two more nodes for routing
purposes as a result of the simulation optimization stage. Then, based on the location coordinates,
network connectivity scheme and deployment methodology, the installation and configuration process
is assisted by means of the CMT-HH, while the operational release is finally verified by the CMT web
application, which registers and presents the output models of the in-field commissioning activities for
further system optimization and feedback analysis.

As a summary of the application implementation of the smart parking demonstrator based on
the DPCM toolset, during the planning phase RF connectivity and topology-related services were
extensively used and decisively contributed to the successful deployment carried out in later stages of
the demonstrator-building process.

Likewise, all deployed nodes were equipped with MW modules which simplified the setup
activities by providing remote reconfiguration capabilities. Furthermore, the embedded MW
support proved particularly useful in the adaption of nodes configuration and their behavior during
deployment and maintenance phases.

The Network Simulator also played an important role in inspecting the functional profile of the
design, before allocating personnel and resources to in-field activities. The results of such simulations
comprised communication and topology aspects and operative aspects of embedded software, and
helped optimizing design decisions taken iteratively through design-and-simulate cycles. During the
installation phase, CMT tools used the deployment models and artifacts produced to place nodes and
configure them according to design specifications, as well as to analyze and verify the performance
and operability of the whole network.

Overall, the support and assistance provided by the WSN-DPCM tools and services helped
reduce the number of iterations in design, thus accelerating and simplifying the transition from a
virtual, simulated network to a real, fully-functional solution, compliant with demonstrator and
user requirements.

5.2. Air Quality Monitoring

The Air Quality Demonstrator [37,55,56] was deployed in the industrial zone of the city of Pisa
(Italy) in agreement with the local authorities. The main goal was to collect concentration measurements
on harmful gases such as Carbon Monoxide, Coal Gas, Liquefied Gas, LPG, Natural Gas, Town Gas.
The sensors were installed in the area to monitor gases concentration (see Figure 27).

Sensors 2016, 16, 804 34 of 40

WSN data acquisition for environmental monitoring is challenging, especially for open natural
fields. These usually require high reliability and long maintenance-free operation while the nodes can
be exposed to variable and extreme climatic conditions.

The main network components are one server to save data and provide end user services;
one gateway to collect field data; and eight sensors to measure air quality (sensor nodes, see Figure 28).

Sensors 2016, 16, 804 34 of 40

WSN data acquisition for environmental monitoring is challenging, especially for open natural
fields. These usually require high reliability and long maintenance-free operation while the nodes
can be exposed to variable and extreme climatic conditions.

The main network components are one server to save data and provide end user services; one
gateway to collect field data; and eight sensors to measure air quality (sensor nodes, see Figure 28).

Figure 27. Application scenario for the air quality monitoring demonstrator.

Figure 28. Main components of the network.

The main purpose of the server is to receive, store, and provide access to field data. It bridges
the low power communication segments with latency-energy trade-offs, and the fast and ubiquitous
end-user field data access. It provides interfaces for reading sensor nodes values. A central software

Figure 27. Application scenario for the air quality monitoring demonstrator.

Sensors 2016, 16, 804 34 of 40

WSN data acquisition for environmental monitoring is challenging, especially for open natural
fields. These usually require high reliability and long maintenance-free operation while the nodes
can be exposed to variable and extreme climatic conditions.

The main network components are one server to save data and provide end user services; one
gateway to collect field data; and eight sensors to measure air quality (sensor nodes, see Figure 28).

Figure 27. Application scenario for the air quality monitoring demonstrator.

Figure 28. Main components of the network.

The main purpose of the server is to receive, store, and provide access to field data. It bridges
the low power communication segments with latency-energy trade-offs, and the fast and ubiquitous
end-user field data access. It provides interfaces for reading sensor nodes values. A central software

Figure 28. Main components of the network.

The main purpose of the server is to receive, store, and provide access to field data. It bridges
the low power communication segments with latency-energy trade-offs, and the fast and ubiquitous

Sensors 2016, 16, 804 35 of 40

end-user field data access. It provides interfaces for reading sensor nodes values. A central software
engine controls the server operation and the access to the main database. It is written in Java and has
low-level layers written in C and runs on a Linux operating system. The sensor nodes are connected to
the central gateway using an XBee RF Modules interface.

The main role of the gateway node is to collect, process, and forward to server the field data
received from the sensor nodes. The gateway software is composed of: a first component, used to
manage high level interface like the REST interface and the relative JSON messages; a controller, that
contains the core functions of the gateway (collect data, manage topology, send message, manage
component interaction); a second component, used to manage the sensors interactions. The gateway
hardware equipment is a Panda Board Rev A2.

First, the Planning Tool was used to simulate 13 deployment plans in order to optimize different
aspects, especially node types and positions. In fact, using the PT RF simulation tool and its topology
services (Connectivity Matrix, Topology Evaluation and Reduction) we discovered without any in-field
tests that some nodes were isolated from the gateway either because they were obscured by buildings,
or because they were deployed at an inadequate height or too far away from the gateway. Each
deployment plan simulation, including RF simulation, connectivity matrix evaluation and topology
analysis, required about 7 min (most of the time being spent for RF simulation) for this scenario with
ten nodes and a linear size of about two km, by using a four core Intel(R) Xeon(R) CPU E5440 @
2.83 GHz with 3 GB RAM. Accordingly, all this phase only required about two hours and a half, also
including the time needed by the operator to provide input data and to read the simulation results.

At the end of this process, we obtained two deployment plan candidates for implementation and
proceeded with the use of the Development Tool for node hardware-software synthesis and network
simulation. Since we were interested to use ChibiOS real-time embedded operating system for this
experiment, we modeled and added to the Development Tool library a suitable set of components for
this OS. Moreover, several DT library components were designed to model the sensors that we have
selected for this application mainly for hardware requirements, configuration parameters and interfaces.
Additionally, to support middleware-like services, we have added to DT library components with
blocks that were designed to communicate with the application server and allow run-time retrieving
and setting of specific values for in-field node monitoring and configuration.

With these supporting elements, we used the Development Tool to explore several node variants
and their network-level effects. For instance, by changing the sensing requirements in the specifications
of the nodes we obtained different node software suitably configured for programming (e.g., with the
node IDs from the planning) and also hardware specifications that make sure that the node is capable
to support the operation and sensing functions at run-time in each of those configurations. For each of
these, the DT generated also the models for network simulation. From these simulations we discovered
that the packet transmission rate achieved with the selected schedule was not suitable. Thus, we
iteratively refined the planning and the requirements until the network operation proved satisfactory.

In the end, the sensor node that we selected was composed of:

‚ A Nucleo Development Board, NUCLEO-F401RE, which enables to build and evaluate the
prototype with the STM32 F4 family of high performance microcontrollers in an embedded application;

‚ An Xbee Zigbee Shield that allows an Arduino board to communicate wirelessly using Zigbee;
‚ A Digi International XBP24BZ7SIT-004, which is an embedded RF module that provides low-cost,

low-power, wireless connectivity using the ZigBee PRO Feature;
‚ A MOSFET Power Controller to switch a battery supply on and off;
‚ A Grove-Gas Sensor (MQ9-MQ5) that is useful for gas leakage detecting since it can detect Carbon

Monoxide, Coal Gas, Liquefied Gas, LPG, Natural Gas, Town Gas;
‚ A Grove-Temp & Humi Sensor, which is a temperature and humidity sensor that provides a

pre-calibrated measurement.

Sensors 2016, 16, 804 36 of 40

For proper operation, both node types need batteries, solar panels, a communication module, and
antennas for in-field and long-range communications. Figure 29 shows one sensor, with its solar panel.

Network planning and application development took about two days of work. After this, the
physical deployment of ten nodes in the field took two more days of work, in which two engineers
went by car, sometimes in poor weather conditions and, for some nodes, on rough terrain. We can
estimate that a trial-and-error approach, in which we would have to physically install more than ten
configurations and topologies, would have probably required more than one week just for the physical
deployment of the network, and an additional week to perform in-field tests and optimization. Thus,
the use of the WSN-DPCM platform saved us significant time and costs.

Sensors 2016, 16, 804 36 of 40

For proper operation, both node types need batteries, solar panels, a communication module,
and antennas for in-field and long-range communications. Figure 29 shows one sensor, with its
solar panel.

Network planning and application development took about two days of work. After this, the
physical deployment of ten nodes in the field took two more days of work, in which two engineers
went by car, sometimes in poor weather conditions and, for some nodes, on rough terrain. We can
estimate that a trial-and-error approach, in which we would have to physically install more than ten
configurations and topologies, would have probably required more than one week just for the
physical deployment of the network, and an additional week to perform in-field tests and
optimization. Thus, the use of the WSN-DPCM platform saved us significant time and costs.

Figure 29. One of the nodes (enclosed in the white box) with its solar panel.

Using the middleware-like services embedded in the node software by DT synthesis according
to node specifications, the CMT was able to connect at run-time to node software. The CMT enabled
us to perform monitoring operations directly from our desk, with no need of in-field tests. This way
we were able to continuously monitor the operation of the WSN deployed in the field through CMT
interfaces to check that our WSN was properly operating.

6. Conclusions

We presented the WSN-DPCM integrated toolset for WSN application planning, development,
commissioning and maintenance, which has been specified, designed and implemented within a UE
ARTEMIS-JU project. The toolset aids and assists the application-domain experts, may have limited
WSN expertise, in the task of efficiently developing WSN applications from planning to lifetime
maintenance. The main benefits of the WSN-DPCM toolset at platform level are:

 Reduction of trial-and-error WSN deployments, thanks to the extensive multi-level simulation
support (RF simulation, network simulation).

 MDA-based automatic system synthesis and code generation, through reusability of software
and hardware components from extensible libraries.

 Simplification of the design, deployment and maintenance phases of real-life deployments by
using a software-assisted approach.

 Middleware support for abstraction from the complexity of WSN environments composed of a
multitude of embedded platform technologies.

Figure 29. One of the nodes (enclosed in the white box) with its solar panel.

Using the middleware-like services embedded in the node software by DT synthesis according
to node specifications, the CMT was able to connect at run-time to node software. The CMT enabled
us to perform monitoring operations directly from our desk, with no need of in-field tests. This way
we were able to continuously monitor the operation of the WSN deployed in the field through CMT
interfaces to check that our WSN was properly operating.

6. Conclusions

We presented the WSN-DPCM integrated toolset for WSN application planning, development,
commissioning and maintenance, which has been specified, designed and implemented within a UE
ARTEMIS-JU project. The toolset aids and assists the application-domain experts, may have limited
WSN expertise, in the task of efficiently developing WSN applications from planning to lifetime
maintenance. The main benefits of the WSN-DPCM toolset at platform level are:

‚ Reduction of trial-and-error WSN deployments, thanks to the extensive multi-level simulation
support (RF simulation, network simulation).

‚ MDA-based automatic system synthesis and code generation, through reusability of software and
hardware components from extensible libraries.

‚ Simplification of the design, deployment and maintenance phases of real-life deployments by
using a software-assisted approach.

‚ Middleware support for abstraction from the complexity of WSN environments composed of a
multitude of embedded platform technologies.

Sensors 2016, 16, 804 37 of 40

The benefits of the proposed toolset have been evaluated using two case-studies in two different
WSN application domains: one that detects the occupancy state of parking places and one that detects
the presence of concentration of potentially harmful agents in the atmosphere. These applications
have been chosen to exercise the toolset for the design of typical WSN application elements, such as
different network topologies (cooperative short-range mesh networking for parking and star-based
long-range for air quality), for design space exploration to instrument the nodes with the proper types
of sensors and optimize their operation, and for optimal field deployment simulation and in-field
support. The importance of node and network optimization, remote monitoring and troubleshooting
is also different. The network in the parking deployment has a more complex structure but the cost of
service is lower, while the network for the air quality application is simpler, but the reliability of the
nodes and the network is more important because they are more costly to service during exploitation.

The toolset integrates in a unified framework several of the existing state of the art tools together
with new productivity-enhancing tools developed during the project. The resulting framework
supports well typical WSN development flows and is accessible to most application domain experts.
The toolset allows the developer to efficiently focus on the application-specific elements by automating
much of the time-consuming details that are not directly relevant for the application. Moreover,
the modular structure of the framework and of the main composing tools simplify its maintenance
and extension with new tools and IPs, either proprietary or open, for its continuous evolution and
customization for specific needs.

Last but not least, the proposed framework is built around the concept of complete, end-to-end
WSN application project, which simplifies the passage of data between the tools that support the
various design phases, iterative exploration of different design variants and their comparison, as well
as comparison and optimization of field results with respect to design specification and simulations.

Acknowledgments: This work has been supported, within the UE FP7, by the ARTEMIS-JU under the project
“WSN-DPCM: WSN Development, Planning and Commissioning & Maintenance Toolset”; JU Grant Agreement
number: 269389.

Author Contributions: Christos Antonopoulos, Stavros Koubias, Tsenka Stoyanova, Gerasimos Touliatos
contributed with the design, implementation, integration and testing of the HiL extensions of the WSN-DPCM
Network Simulator, the tools related to network topology evaluation as well as alternative reduce topology
algorithms and the respective presentation in the article. Katerina Asimogloy, Georgia Vlahoy and Vasilis Samoladas
contributed to the integration of the network simulator in the development tool and the WSN-DPCM platform,
they designed and developed the VectorL language and tools for the specification of the simulation environment,
and their presentation in the article. Sarah Chiti, Simone Gianfranceschi and Angela Valvo contributed to the
design, implementation and testing of the Planning Tool, to its integration in the platform and to the writing of
the article. Luca D'Onofrio contributed to the design and implementation of the air quality demonstrator and to
its presentation in the article. Gabriel Mujica, Danping He, Jorge Portilla and Teresa Riesgo contributed to the
design and implementation of the Commissioning and Maintenance Tool-Hand-Held Device, the 3D building
reconstruction engine for the Planning Tool, their integration within the overall platform and the evaluation of the
toolset through the implementation of the WSN-based smart parking demonstrator, including the presentation of
the contributions in the article. Antonio Iodice, Daniele Riccio and Giuseppe Ruello contributed to the design,
implementation and testing of the RF simulation and connectivity matrix tool, to its integration in the platform
and to the writing of the article. Christos Koulamas and George Papadopoulos contributed to the specification
of the WSN-DPCM platform, the design and integration of the Middleware in the WSN-DPCM platform, the
design and implementation of the smart parking demonstrator and to the writing of the article. Luciano Lavagno
and Mihai Lazarescu contributed to the specifications of the platform, the design of the Development Tool
framework, GUI, synthesis engine, library of components, their integration in the WSN-DPCM platform, and
their presentation in the article. L. Redondo and D. Rodriguez contributed to the design specification of the
Commissioning & Maintenance tool, the validation activities over the WSN-DPCM platform and the writing of
this article. D. Rodriguez also contributed to implementing and testing the CMT tool, and to its integration in
the global toolset. Antonio Iodice and Mihai Lazarescu coordinated the writing of the article. Luis Redondo and
Daniel Rodriguez coordinated the reported research.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2016, 16, 804 38 of 40

References

1. Ashton, K. That ‘Internet of Things’ thing. RFID J. 2009, 22, 97–114.
2. Outdoor Parking Demonstrator. Available online: http://wsn-dpcm.eu/index.php?option=com_

content&view=article&id=56:outdoor-parking-demonstrator&catid=34:demonstrator&
amp;Itemid=37 (accessed on 14 April 2016).

3. Smart Parking Demonstrator Brochure. Available online: http://wsn-dpcm.eu/images/PDF/deliverables/
dpcm_d8.11_smartparkingbrochure_v1.0.pdf (accessed on 14 April 2016).

4. Environmental Quality Demonstrator. Available online: http://wsn-dpcm.eu/index.php?option=
com_content&view=article&id=57:environmental-quality-demonstrator&catid=34:
demonstrator&Itemid=37 (accessed on 14 April 2016).

5. Environmental Quality Demonstrator Brochure. Available online: http://wsn-dpcm.eu/images/PDF/
deliverables/dpcm_d8.11_airqualitybrochure_v1.0.pdf (accessed on 14 April 2016).

6. Lähteenmäki, J. Indoor Propagation Models; COST-231 Final Report. Cap. 4.7; Office for Official Publications
of the European Communities: Luxembourg, Luxembourg, 1999.

7. Apala, R. Planning and analysis tool for large scale deployment of wireless sensor network. Int. J. Next
Gener. Netw. 2009, 1, 29–36.

8. Elsts, A.; Bijarbooneh, F.H.; Jacobsson, M.; Sagonas, K. ProFuN TG: A Tool for Programming and Managing
Performance-Aware Sensor Network Applications. In Proceedings of the IEEE 40th Local Computer
Networks Conference Workshops (LCN Workshops), Clearwater Beach, FL, USA, 26–29 October 2015;
pp. 751–759.

9. Barrachina, S.; Adame, T.; Bel, A.; Bellalta, B. GOAT: A Tool for Planning Wireless Sensor Networks.
In Proceedings of the 8th International Workshop, MACOM 2015, Helsinki, Finland, 3–4 September 2015.

10. Singh, C.P.; Vyas, O.P.; Tiwari, M.K. A Survey of Simulation in Sensor Networks. In Proceedings of the
International Conference on Computational Intelligence for Modelling Control and Automation, Vienna,
Austria, 10–12 December 2008; pp. 867–872.

11. Imran, M.; Said, A.M.; Hasbullah, H. A survey of simulators, emulators and testbeds for wireless sensor
networks. In Proceedings of the 2010 International Symposium on Information Technology, Kuala Lumpur,
Malaysia, 15–17 June 2010; pp. 897–902.

12. Korkalainen, M.; Sallinen, M.; Kärkkäinen, N.; Tukeva, P. Survey of Wireless Sensor Networks Simulation
Tools for Demanding Applications. In Proceedings of the 5th International Conference on Networking and
Services, Valencia, Spain, 20–25 April 2009; pp. 102–106.

13. Fahmy, H. Wireless Sensor Networks: Concepts, Applications, Experimentation and Analysis; Springer:
Science+Business Media, Singapore, 2016.

14. Levis, P.; Lee, N.; Welsh, M.; Culler, D.E. TOSSIM: Accurate and scalable simulation of entire TinyOS
applications. In Proceedings of the SenSys, Los Angeles, CA, USA, 5–7 November 2003; pp. 126–137.

15. Osterlind, F.; Dunkels, A.; Eriksson, J.; Finne, N.; Voigt, T. Cross-Level Sensor Network Simulation with
COOJA. In Proceedings of the 1st IEEE International Workshop on Practical Issues in Building Sensor
Network Applications, Tampa, FL, USA, 14–16 November 2006.

16. Pediatitakis, D.; Tselishchev, Y.; Boulis, A. Performance and scalability evaluation of the Castalia wireless
sensor network simulator. In Proceedings of the 3rd International ICST Conference on Simulation Tools and
Techniques, Malaga, Spain, 16–18 March 2010.

17. Köpke, A.; Swigulski, M.; Wessel, K.; Willkomm, D.; Haneveld, P.T.K.; Parker, T.E.V.; Visser, O.W.; Lichte, H.S.;
Valentin, S. Simulating wireless and mobile networks in OMNeT++ the MiXiM vision. In Proceedings of
the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and
Systems & Workshops (Simutools ’08), Brussels, Belgium, 3–7 March 2008.

18. OMNeT++ Community. NesCT for the OMNeT++. Available online: http://nesct.sourceforge.net/ (accessed
on 25 May 2016).

19. Varga, A. The OMNeT++ discrete event simulation system. In Proceedings of the European Simulation
Multiconference (ESM ’2001), Prague, Czech Republic, 6 June 2001.

20. EdxPro. Available online: http://edx.com/products/edx-signalpro/ (accessed on 14 April 2016).
21. WinProp: Software Tool for the Planning of Radio Communication Networks (Terrain, Urban, Indoor &

Tunnel). Available online: http://www.awe-communications.com/ (accessed on 14 April 2016).

http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=56:outdoor-parking-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=56:outdoor-parking-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=56:outdoor-parking-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/images/PDF/deliverables/dpcm_d8.11_smartparkingbrochure_v1.0.pdf
http://wsn-dpcm.eu/images/PDF/deliverables/dpcm_d8.11_smartparkingbrochure_v1.0.pdf
http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=57:environmental-quality-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=57:environmental-quality-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/index.php?option=com_content&view=article&id=57:environmental-quality-demonstrator&catid=34:demonstrator&Itemid=37
http://wsn-dpcm.eu/images/PDF/deliverables/dpcm_d8.11_airqualitybrochure_v1.0.pdf
http://wsn-dpcm.eu/images/PDF/deliverables/dpcm_d8.11_airqualitybrochure_v1.0.pdf
http://nesct.sourceforge.net/
http://edx.com/products/edx-signalpro/
http://www.awe-communications.com/

Sensors 2016, 16, 804 39 of 40

22. Franceschetti, G.; Iodice, A.; Riccio, D.; Ruello, G. A tool for planning electromagnetic field levels in urban
areas. In Proceedings of the IEEE Antennas and Propagation Society International Symposium, Monterey,
California, USA, 20–25 June 2004; Volume 3, pp. 2211–2214.

23. Franceschetti, G.; Imperatore, P.; Iodice, A.; Riccio, D. Radio-coverage parallel computation on multi-processor
platforms. In Proceedings of the European Microwave Conference, Rome, Italy, 29 September–1 October
2009; pp. 1575–1578.

24. Shimizu, R.; Tei, K.; Fukazawa, Y.; Honiden, S. Model driven development for rapid prototyping and
optimization of wireless sensor network applications. In Proceedings of the 2nd Workshop on Software
Engineering for Sensor Network Applications, Honolulu, HI, USA, 22 May 2011; pp. 31–36.

25. Taherkordi, A.; Loiret, F.; Abdolrazaghi, A.; Rouvoy, R.; Le-Trung, Q.; Eliassen, F. Programming sensor
networks using REMORA component model. In Proceedings of the Distributed Computing in Sensor
Systems, Santa Barbara, CA, USA, 21–23 June 2010; pp. 45–62.

26. Song, Z.; Lazarescu, M.T.; Tomasi, R.; Lavagno, L.; Spirito, M.A. High-level internet of things applications
development using wireless sensor networks. In Internet of Things; Springer International Publishing: Cham,
Switzerland, 2014; pp. 75–109.

27. Mathworks Simulink. Available online: http://www.mathworks.com/help/simulink/ (accessed on
25 May 2016).

28. Mathworks Stateflow. Available online: http://www.mathworks.com/help/toolbox/stateflow/ (accessed
on 25 May 2016).

29. Li, W.; Zhang, X.; Tan, W.; Zhou, X. H-TOSSIM: Extending TOSSIM with Physical Nodes. Wirel. Sens. Netw.
2009, 1, 324–333. [CrossRef]

30. Mostafizur, M.; Mozumdar, R.; Tranchero, M.; Lavagno, L.; Tomasi, R.; Olivieri, S. Hy-Sim: Model based
Hybrid Simulation framework for WSN application development. In Proceedings of the Simulation Works,
Malaga, Spain, 15–19 March 2010.

31. Meier, A.; Woehrle, M.; Weise, M.; Beutel, J.; Thiele, L. NoSE: Efficient Maintenance and Initialization of
Wireless Sensor Networks. In Proceedings of the 6th Annual IEEE Conference on Sensor, Mesh and ad hoc
Communications and Networks (SECON ’09), Rome, Italy, 22–26 June 2009; pp. 1–9.

32. Levis, P.; Patel, N.; Culler, D.; Shenker, S. Trickle: A self-regulating algorithm for code propagation and
maintenance in wireless sensor networks. In Proceedings of the First Symposium Networked Systems
Design and Implementation (NSDI ’04), San Francisco, CA, USA, 29–31 March 2004; pp. 15–28.

33. Cao, Q.; Stankovic, J.A. An in-Field-Maintenance Framework for Wireless Sensor Networks. In Proceedings
of the 4th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS ’08),
Santorini Island, Greece, 11–14 June 2008; pp. 457–468.

34. Ringwald, M.; Römer, K.; Vitaletti, A. Passive inspection of sensor networks. In Proceedings of the 3rd IEEE
International Conference on Distributed Computing in Sensor Systems (DCOSS ’07), Sante Fe, NM, USA,
18–20 June 2007; pp. 205–222.

35. Breiman, L. Additive Logistic Regression: A statistical view of boosting. Ann. Stat. 2000, 28, 374–377.
36. Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. A radio-frequency tool for planning wireless sensor networks.

In Proceedings of the 2014 Euro Med Telco Conference (EMTC), Naples, Italy, 12–15 November 2014.
37. WSN DPCM Project, Report D7.5—Toolset Evaluation/Validation. Available online: http://www.wsn-

dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed on 25 May 2016).
38. Biggs, N. Algebraic Graph Theory; Cambridge University Press: Cambridge, UK, 1993.
39. Tarjan, R. Depth-first search and linear graph algorithms. SIAM J. Comput. 1972, 1, 146–160. [CrossRef]
40. Stoyanova, T.L.; Antonopoulos, C.; Dimova, R.; Koubias, S.; Papadopoulos, G. Evaluation and Managing

Sensor Network Connectivity trough a Set of Graph Theory Methods. In Proceedings of the 4th International
Black Sea Conference on Communications and Network, Varna, Bulgaria, 6–9 June 2016.

41. Stoyanova, T.L.; Antonopoulos, C.; Dimova, R.; Koubias, S.; Papadopoulos, G. Topology Reduction at the
Physical Layer for Wireless Sensor Networks. In Proceedings of the 4th International Black Sea Conference
on Communications and Network, Varna, Bulgaria, 6–9 June 2016.

42. Mülder, A.; Nyßen, A. TMF meets GMF. Eclipse Mag. 2011, 3, 74–78.
43. Mottola, L.; Picco, G.P. Programming Wireless Sensor Networks: Fundamental Concepts and State of the Art.

ACM Comput. Surv. 2011, 43, 19:1–19:51. [CrossRef]

http://www.mathworks.com/help/simulink/
http://www.mathworks.com/help/toolbox/stateflow/
http://dx.doi.org/10.4236/wsn.2009.14040
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://dx.doi.org/10.1137/0201010
http://dx.doi.org/10.1145/1922649.1922656

Sensors 2016, 16, 804 40 of 40

44. Doddapaneni, K.; Ever, E.; Gemikonakli, O.; Malavolta, I.; Mostarda, L.; Muccini, H. A Model-driven
Engineering Framework for Architecting and Analysing Wireless Sensor Networks. In Proceedings of the
Third International Workshop on Software Engineering for Sensor Network Applications, SESENA ’12,
Zurich, Switzerland, 2–9 June 2012; pp. 1–7.

45. Paulon, A.; Fröhlich, A.; Becker, L.; Basso, F. Model-driven development of WSN applications. In Proceedings
of the 2013 III Brazilian Symposium on Computing Systems Engineering (SBESC), Niteroi, Brazil,
4–8 December 2013; pp. 161–166.

46. Asimoglou, A. VectorL: A Macroprogramming Language for Testing Wireless Sensor Network Applications.
Master’s Thesis, Technical University of Crete, Chania, Greece, 2015.

47. DPCM UML Profile v1.0. Available online: http://www.isi.gr/dpcm/dpcm.profile.uml (accessed on
25 May 2016).

48. Dunkels, A.; Gronvall, B.; Voigt, T. Contiki—A lightweight and flexible operating system for tiny networked
sensors. In Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks,
Tampa, FL, USA, 16–18 November 2004; pp. 455–462.

49. Levis, P.; Madden, S.; Polastre, J.; Szewczyk, R.; Whitehouse, K.; Woo, A.; Gay, D.; Hill, J.; Welsh, M.;
Brewer, E.; et al. TinyOS: An operating system for sensor networks. In Ambient Intelligence; Publisher:
Springer Berlin Heidelberg, Germany, 2005; pp. 115–148.

50. ChibiOS real-time embedded operating system. Available online: http://www.chibios.org/ (accessed on
25 May 2016).

51. Baccelli, E.; Hahm, O.; Günes, M.; Wählisch, M.; Schmidt, T.C. RIOT OS: Towards an OS for the Internet
of Things. In Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Turin, Italy, 14–19 April 2013; pp. 79–80.

52. WSN DPCM Project, Report D2.3—Platform Architecture Definition. Available online: http://www.wsn-
dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed on 25 May 2016).

53. WSN DPCM Project, Report D6.1—Commissioning & Maintenance Tool Design. Available online:
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed
on 25 May 2016).

54. WSN DPCM Project, Report D6.4—Commissioning & Maintenance Tool Prototype. Available online:
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed
on 25 May 2016).

55. WSN DPCM Project, Report D7.1—Demonstrator Requirements & Validation Plan. Available online:
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed
on 25 May 2016).

56. WSN DPCM Project, Report D7.3—Fully Implemented Demonstrators: Parking Demonstrator. Available online:
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41 (accessed on
25 May 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

View publication statsView publication stats

http://www.isi.gr/dpcm/dpcm.profile.uml
http://www.chibios.org/
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://www.wsn-dpcm.eu/index.php?option=com_content&view=article&id=58&Itemid=41
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/
https://www.researchgate.net/publication/303777563

	Introduction
	Related Work
	WSN-DPCM Architecture and Design Flow
	Main Tools of the WSN-DPCM Platform
	Tool for WSN Application Planning and RF Simulation
	3D Building Reconstruction
	RF Simulation and Connectivity Matrix
	Topology Reduction

	Tool for WSN Application Development and Simulation
	Network Simulation
	Hardware-in-the-Loop Simulation
	Middleware

	Tool for Network Commissioning and Maintenance
	Hand-Held Device for Network Deployment and in-Field Monitoring
	Application Server and Network Long-Term Monitoring and Maintenance Tool

	Use Cases
	Assisted Parking
	Air Quality Monitoring

	Conclusions

