The guinea worm *Dracunculus medinensis* infects about 3.5 million people annually, mostly in Africa. (a) Here, the worm is wrapped around a stick so it can be extracted. (b) Infection occurs when people consume water contaminated by infected copepods, but this can easily be prevented by simple filtration systems. (credit: modification of work by CDC)

Phylum Arthropoda

The name "arthropoda" means "jointed legs" (in the Greek, "arthros" means "joint" and "podos" means "leg"); it aptly describes the enormous number of invertebrates included in this phylum. Arthropoda dominate the animal kingdom with an estimated 85 percent of known species included in this phylum and many arthropods yet undocumented. The principal characteristics of all the animals in this phylum are functional segmentation of the body and presence of jointed appendages. Arthropods also show the presence of an exoskeleton made principally of chitin, which is a waterproof, tough polysaccharide. Phylum Arthropoda is the largest phylum in the animal world, and insects form the single largest class within this phylum. Arthropods are eucoelomate, protostomic organisms.

Phylum Arthropoda includes animals that have been successful in colonizing terrestrial, aquatic, and aerial habitats. This phylum is further classified into five subphyla: Trilobitomorpha (trilobites, all extinct), Hexapoda (insects and relatives), Myriapoda (millipedes, centipedes, and relatives), Crustaceans (crabs, lobsters, crayfish, isopods, barnacles, and some zooplankton), and Chelicerata (horseshoe crabs, arachnids, scorpions, and daddy longlegs). Trilobites are an extinct group of arthropods found chiefly in the pre-Cambrian Era that are probably most closely related to the Chelicerata. These are identified based on fossil records ([link]).

Trilobites, like the one in this fossil, are an extinct group of arthropods. (credit: Kevin

Walsh)

Morphology

A unique feature of animals in the arthropod phylum is the presence of a segmented body and fusion of sets of segments that give rise to functional body regions called tagma. Tagma may be in the form of a head, thorax, and abdomen, or a cephalothorax and abdomen, or a head and trunk. A central cavity, called the hemocoel (or blood cavity), is present, and the open circulatory system is regulated by a tubular or single-chambered heart. Respiratory systems vary depending on the group of arthropod: insects and myriapods use a series of tubes (tracheae) that branch through the body, open to the outside through openings called spiracles, and perform gas exchange directly between the cells and air in the tracheae, whereas aquatic crustaceans utilize gills, terrestrial chelicerates employ book lungs, and aquatic chelicerates use book gills ([link]). The book lungs of arachnids (scorpions, spiders, ticks and mites) contain a vertical stack of hemocoel wall tissue that somewhat resembles the pages of a book. Between each of the "pages" of tissue is an air space. This allows both sides of the tissue to be in contact with the air at all times, greatly increasing the efficiency of gas exchange. The gills of crustaceans are filamentous structures that exchange gases with the surrounding water. Groups of arthropods also differ in the organs used for excretion, with crustaceans possessing green glands and insects using Malpighian tubules, which work in conjunction with the hindgut to reabsorb water while ridding the body of nitrogenous waste. The cuticle is the covering of an arthropod. It is made up of two layers: the epicuticle, which is a thin, waxy water-resistant outer layer containing no chitin, and the layer beneath it, the chitinous procuticle. Chitin is a tough, flexible polysaccharide. In order to grow, the arthropod must shed the exoskeleton during a process called ecdysis ("to strip off"); this is a cumbersome method of growth, and during this time, the animal is vulnerable to predation.

The characteristic morphology of representative animals from each subphylum is described below.

The book lungs of (a) arachnids are made up of alternating air pockets and hemocoel tissue shaped like a stack of books. The book gills of (b) crustaceans are similar to book lungs but are external so that gas exchange can occur with the surrounding water. (credit a: modification of work by Ryan Wilson based on original work by John Henry Comstock; credit b: modification of work by Angel

Schatz)

Subphylum Hexapoda

The name Hexapoda denotes the presence of six legs (three pairs) in these animals as differentiated from the number of pairs present in other arthropods. Hexapods are characterized by the presence of a head, thorax, and abdomen, constituting three tagma. The thorax bears the wings as well as six legs in three pairs. Many of the common insects we encounter on a daily basis—including ants, cockroaches, butterflies, and flies—are examples of Hexapoda.

Amongst the hexapods, the insects ([link]) are the largest class in terms of species diversity as well as biomass in terrestrial habitats. Typically, the head bears one pair of sensory antennae,

mandibles as mouthparts, a pair of compound eyes, and some ocelli (simple eyes) along with numerous sensory hairs. The thorax bears three pairs of legs (one pair per segment) and two pairs of wings, with one pair each on the second and third thoracic segments. The abdomen usually has eleven segments and bears reproductive apertures. Hexapoda includes insects that are winged (like fruit flies) and wingless (like fleas).

Art Connection

In this basic anatomy of a hexapod insect, note that insects have a developed digestive system (yellow), a respiratory system (blue), a circulatory system (red), and a nervous system

(red).

Which of the following statements about insects is false?

- a. Insects have both dorsal and ventral blood vessels.
- b. Insects have spiracles, openings that allow air to enter.
- c. The trachea is part of the digestive system.
- d. Insects have a developed digestive system with a mouth, crop, and intestine.

Subphylum Myriapoda

Subphylum Myriapoda includes arthropods with numerous legs. Although the name is hyperbolic in suggesting that myriad legs are present in these invertebrates, the number of legs may vary from 10 to 750. This subphylum includes 13,000 species; the most commonly found examples are millipedes and centipedes. All myriapods are terrestrial animals and prefer a humid environment.

Myriapods are typically found in moist soils, decaying biological material, and leaf litter. Subphylum Myriapoda is divided into four classes: Chilopoda, Symphyla, Diplopoda, and Pauropoda. Centipedes like *Scutigera coleoptrata* ([link]) are classified as chilopods. These animals bear one pair of legs per segment, mandibles as mouthparts, and are somewhat dorsoventrally flattened. The legs in the first segment are modified to form forcipules (poison claws) that deliver poison to prey like spiders and cockroaches, as these animals are all predatory. Millipedes bear two pairs of legs per diplosegment, a feature that results from embryonic fusion of adjacent pairs of body segments, are usually rounder in cross-section, and are herbivores or detritivores. Millipedes have visibly more numbers of legs as compared to centipedes, although they do not bear a thousand legs ([link]).

(a) The *Scutigera coleoptrata* centipede has up to 15 pairs of legs. (b) This North American millipede (*Narceus americanus*) bears many legs, although not a thousand, as its name might suggest. (credit a: modification of work by Bruce Marlin; credit b: modification of work by

Cory Zanker)

Subphylum Crustacea

Crustaceans are the most dominant aquatic arthropods, since the total number of marine crustacean species stands at 67,000, but there are also freshwater and terrestrial crustacean species. Krill, shrimp, lobsters, crabs, and crayfish are examples of crustaceans ([link]). Terrestrial species like the wood lice (*Armadillidium* spp.) (also called pill bugs, rolly pollies, potato bugs, or isopods) are also crustaceans, although the number of non-aquatic species in this subphylum is relatively low.

The (a) crab and (b) shrimp krill are both crustaceans. (credit a: modification of work by William Warby; credit b: modification of work by Jon

Sullivan)

Crustaceans possess two pairs of antennae, mandibles as mouthparts, and biramous ("two branched") appendages, which means that their legs are formed in two parts, as distinct from the uniramous ("one branched") myriapods and hexapods ([link]).

Arthropods may have (a) biramous (two-branched) appendages or (b) uniramous (onebranched) appendages. (credit b: modification of work by Nicholas W.

Beeson)

Unlike that of the Hexapoda, the head and thorax of most crustaceans is fused to form a cephalothorax ([link]), which is covered by a plate called the carapace, thus producing a body structure of two tagma. Crustaceans have a chitinous exoskeleton that is shed by molting whenever the animal increases in size. The exoskeletons of many species are also infused with calcium carbonate, which makes them even stronger than in other arthropods. Crustaceans have an open circulatory system where blood is pumped into the hemocoel by the dorsally located heart. Hemocyanin and hemoglobin are the respiratory pigments present in these animals.

The crayfish is an example of a crustacean. It has a carapace around the cephalothorax and the heart in the dorsal thorax area. (credit: Jane

Whitney)

Most crustaceans are dioecious, which means that the sexes are separate. Some species like barnacles may be hermaphrodites. Serial hermaphroditism, where the gonad can switch from producing sperm to ova, may also be seen in some species. Fertilized eggs may be held within the female of the species or may be released in the water. Terrestrial crustaceans seek out damp spaces in their habitats to lay eggs.

Larval stages—nauplius and zoea—are seen in the early development of crustaceans. A cypris larva is also seen in the early development of barnacles ([link]).

All crustaceans go through different larval stages. Shown are (a) the nauplius larval stage of a tadpole shrimp, (b) the cypris larval stage of a barnacle, and (c) the zoea larval stage of a green crab. (credit a: modification of work by USGS; credit b: modification of work by M^a. C. Mingorance Rodríguez; credit c: modification of work by B. Kimmel based on original work by Ernst

Haeckel)

Crustaceans possess a tripartite brain and two compound eyes. Most crustaceans are carnivorous, but herbivorous and detritivorous species are also known. Crustaceans may also be cannibalistic when extremely high populations of these organisms are present.

Subphylum Chelicerata

This subphylum includes animals such as spiders, scorpions, horseshoe crabs, and sea spiders. This subphylum is predominantly terrestrial, although some marine species also exist. An estimated 77,000 species are included in subphylum Chelicerata. Chelicerates are found in almost all habitats.

The body of chelicerates may be divided into two parts: prosoma and opisthosoma, which are basically the equivalents of cephalothorax (usually smaller) and abdomen (usually larger). A "head" tagmum is not usually discernible. The phylum derives its name from the first pair of appendages: the chelicerae ([link]), which are specialized, claw-like or fang-like mouthparts. These animals do not possess antennae. The second pair of appendages is known

as pedipalps. In some species, like sea spiders, an additional pair of appendages, called ovigers, is present between the chelicerae and pedipalps.

The chelicerae (first set of appendages) are well developed in the scorpion. (credit: Kevin

Walsh)

Chelicerae are mostly used for feeding, but in spiders, these are often modified into fangs that inject venom into their prey before feeding ([link]). Members of this subphylum have an open circulatory system with a heart that pumps blood into the hemocoel. Aquatic species have gills, whereas terrestrial species have either trachea or book lungs for gaseous exchange.

The trapdoor spider, like all spiders, is a member of the subphylum Chelicerata. (credit:

Marshal Hedin)

Most chelicerates ingest food using a preoral cavity formed by the chelicerae and pedipalps. Some chelicerates may secrete digestive enzymes to pre-digest food before ingesting it. Parasitic chelicerates like ticks and mites have evolved blood-sucking apparatuses. The nervous system in chelicerates consists of a brain and two ventral nerve cords. These animals use external fertilization as well as internal fertilization strategies for reproduction, depending upon the species and its habitat. Parental care for the young ranges from absolutely none to relatively prolonged care.

Link to Learning

Visit this <u>site</u> to click through a lesson on arthropods, including interactive habitat maps, and more.

Section Summary

Nematodes are pseudocoelomate animals akin to flatworms, yet display more advanced neuronal development, a complete digestive system, and a body cavity. This phylum includes free-living as well as parasitic organisms like *Caenorhabditis elegans* and *Ascaris* spp., respectively. They include dioeceous as well as hermaphroditic species. Nematodes also possess an excretory system that is not quite well developed. Embryonic development is external and proceeds via three larval stages. A peculiar feature of nematodes is the secretion of a collagenous/chitinous cuticle outside the body.

Arthropods represent the most successful phylum of animal on Earth, in terms of the number of species as well as the number of individuals. These animals are characterized by a segmented body as well as the presence of jointed appendages. In the basic body plan, a pair of appendages is present per body segment. Within the phylum, traditional classification is based on mouthparts, number of appendages, and modifications of appendages present. Arthropods bear a chitinous exoskeleton. Gills, trachea, and book lungs facilitate respiration. Sexual dimorphism is seen in this phylum, and embryonic development includes multiple larval stages.

Art Connections

[link] Which of the following statements about insects is false?

- a. Insects have both dorsal and ventral blood vessels.
- b. Insects have spiracles, openings that allow air to enter.
- c. The trachea is part of the digestive system.
- d. Insects have a developed digestive system with a mouth, crop, and intestine.

[link] C

Review Questions

The embryonic development in nematodes can have up to _____ larval stages.

- a. one
- b. two
- c. three
- d. five

D

The nematode cuticle contains _____.

- a. glucose
- b. skin cells
- c. chitin
- d. nerve cells

С

Crustaceans are _____.

- a. ecdysozoans
- b. nematodes
- c. arachnids
- d. parazoans

А

Flies are_____.

- a. chelicerates
- b. hexapods
- c. arachnids
- d. crustaceans

В

Free Response

Enumerate features of *Caenorhabditis elegans* that make it a valuable model system for biologists.

It is a true animal with at least rudiments of the physiological systems—feeding, nervous, muscle, and reproductive—found in "higher animals" like mice and humans. It is so small that large numbers can be raised in Petri dishes. It reproduces rapidly. It is transparent so that every cell in the living animal can be seen under the microscope. Before it dies (after 2–3 weeks), it shows signs of aging and thus may provide general clues as to the aging process.

What are the different ways in which nematodes can reproduce?

There are nematodes with separate sexes and hermaphrodites in addition to species that reproduce parthenogentically. The nematode *Caenorhabditis elegans* has a self-fertilizing hermaphrodite sex and a pure male sex.

Describe the various superclasses that phylum Arthropoda can be divided into.

The Arthropoda include the Hexapoda, which are mandibulates with six legs, the Myriapoda, which are mandibulates with many legs and include the centipedes and millipedes, the Crustacea, which are mostly marine mandibulates, and the Chelicerata, which include the spiders and scorpions and their kin.

Compare and contrast the segmentation seen in phylum Annelida with that seen in phylum Arthropoda.

Arthropods have an exoskeleton, which is missing in annelids. Arthropod segmentation is more specialized with major organs concentrated in body tagma. Annelid segmentation is usually more uniform with the intestine extending through most segments.

Footnotes

• <u>1</u> Stoll, N. R., "This wormy world. 1947," *Journal of Parasitology* 85(3) (1999): 392-396.

Glossary

Arthropoda

```
phylum of animals with jointed appendages
biramous
      referring to two branches per appendage
cephalothorax
      fused head and thorax in some species
chelicera
      modified first pair of appendages in subphylum Chelicerata
cuticle (animal)
      the tough, external layer possessed by members of the invertebrate class
      Ecdysozoa that is periodically molted and replaced
cypris
      larval stage in the early development of crustaceans
hemocoel
      internal body cavity seen in arthropods
hermaphrodite
      referring to an animal where both male and female gonads are present in the
      same individual
nauplius
      larval stage in the early development of crustaceans
Nematoda
      phylum of worm-like animals that are triploblastic, pseudocoelomates that
      can be free-living or parasitic
oviger
```

additional pair of appendages present on some arthropods between the chelicerae and pedipalps

pedipalp

second pair of appendages in Chelicerata

uniramous

referring to one branch per appendage

zoea

larval stage in the early development of crustaceans Superphylum Deuterostomia

By the end of this section, you will be able to:

- Describe the distinguishing characteristics of echinoderms
- Describe the distinguishing characteristics of chordates

The phyla Echinodermata and Chordata (the phylum in which humans are placed) both belong to the superphylum Deuterostomia. Recall that protostome and deuterostomes differ in certain aspects of their embryonic development, and they are named based on which opening of the digestive cavity develops first. The word deuterostome comes from the Greek word meaning "mouth second," indicating that the anus is the first to develop. There are a series of other developmental characteristics that differ between protostomes and deuterostomes, including the mode of formation of the coelom and the early cell division of the embryo. In deuterostomes, internal pockets of the endodermal lining called the archenteron fuse to form the coelom. The endodermal lining of the archenteron (or the primitive gut) forms membrane protrusions that bud off and become the mesodermal layer. These buds, known as coelomic pouches, fuse to form the coelomic cavity, as they eventually separate from the endodermal layer. The resultant coelom is termed an enterocoelom. The archenteron develops into the alimentary canal, and a mouth opening is formed by invagination of ectoderm at the pole opposite the blastopore of the gastrula. The blastopore forms the anus of the alimentary system in the juvenile and adult forms. The fates of embryonic cells in deuterostomes can be altered if they are experimentally moved to a different location in the embryo due to indeterminant cleavage in early embryogenesis.

Phylum Echinodermata

Echinodermata are so named owing to their spiny skin (from the Greek "echinos" meaning "spiny" and "dermos" meaning "skin"), and this phylum is a collection of about 7,000 described living species. Echinodermata are exclusively marine organisms. Sea stars ([link]), sea cucumbers, sea urchins, sand dollars, and brittle stars are all examples of echinoderms. To date, no freshwater or terrestrial echinoderms are known.

Morphology and Anatomy

Adult echinoderms exhibit pentaradial symmetry and have a calcareous endoskeleton made of ossicles, although the early larval stages of all echinoderms have bilateral symmetry. The

endoskeleton is developed by epidermal cells and may possess pigment cells, giving vivid colors to these animals, as well as cells laden with toxins. Gonads are present in each arm. In echinoderms like sea stars, every arm bears two rows of tube feet on the oral side. These tube feet help in attachment to the substratum. These animals possess a true coelom that is modified into a unique circulatory system called a water vascular system. An interesting feature of these animals is their power to regenerate, even when over 75 percent of their body mass is lost.

This diagram shows the anatomy of a sea

star.

Water Vascular System

Echinoderms possess a unique ambulacral or water vascular system, consisting of a central ring canal and radial canals that extend along each arm. Water circulates through these structures and facilitates gaseous exchange as well as nutrition, predation, and locomotion. The water vascular system also projects from holes in the skeleton in the form of tube feet. These tube feet can expand or contract based on the volume of water present in the system of that arm. By using hydrostatic pressure, the animal can either protrude or retract the tube feet. Water enters the madreporite on the aboral side of the echinoderm. From there, it passes into the stone canal, which moves water into the ring canal. The ring canal connects the radial canals (there are five in a pentaradial animal), and the radial canals move water into the ampullae, which have tube feet through which the water moves. By moving water through the unique water vascular system, the echinoderm can move and force open mollusk shells during feeding.

Nervous System

The nervous system in these animals is a relatively simple structure with a nerve ring at the center and five radial nerves extending outward along the arms. Structures analogous to a brain or derived from fusion of ganglia are not present in these animals.

Excretory System

Podocytes, cells specialized for ultrafiltration of bodily fluids, are present near the center of echinoderms. These podocytes are connected by an internal system of canals to an opening called the madreporite.

Reproduction

Echinoderms are sexually dimorphic and release their eggs and sperm cells into water; fertilization is external. In some species, the larvae divide asexually and multiply before they reach sexual maturity. Echinoderms may also reproduce asexually, as well as regenerate body parts lost in trauma.

Classes of Echinoderms

This phylum is divided into five extant classes: Asteroidea (sea stars), Ophiuroidea (brittle stars), Echinoidea (sea urchins and sand dollars), Crinoidea (sea lilies or feather stars), and Holothuroidea (sea cucumbers) ([link]).

The most well-known echinoderms are members of class Asteroidea, or sea stars. They come in a large variety of shapes, colors, and sizes, with more than 1,800 species known so far. The key characteristic of sea stars that distinguishes them from other echinoderm classes includes thick arms (ambulacra) that extend from a central disk where organs penetrate into the arms. Sea stars use their tube feet not only for gripping surfaces but also for grasping prey. Sea stars have two stomachs, one of which can protrude through their mouths and secrete digestive juices into or onto prey, even before ingestion. This process can essentially liquefy the prey and make digestion easier.

Link to Learning

Explore the <u>sea star's body plan</u> up close, watch one move across the sea floor, and see it devour a mussel.

Brittle stars belong to the class Ophiuroidea. Unlike sea stars, which have plump arms, brittle stars have long, thin arms that are sharply demarcated from the central disk. Brittle stars move by lashing out their arms or wrapping them around objects and pulling themselves forward. Sea urchins and sand dollars are examples of Echinoidea. These echinoderms do not

have arms, but are hemispherical or flattened with five rows of tube feet that help them in slow movement; tube feet are extruded through pores of a continuous internal shell called a test. Sea lilies and feather stars are examples of Crinoidea. Both of these species are suspension feeders. Sea cucumbers of class Holothuroidea are extended in the oral-aboral axis and have five rows of tube feet. These are the only echinoderms that demonstrate "functional" bilateral symmetry as adults, because the uniquely extended oral-aboral axis compels the animal to lie horizontally rather than stand vertically.

Different members of Echinodermata include the (a) sea star of class Asteroidea, (b) the brittle star of class Ophiuroidea, (c) the sea urchins of class Echinoidea, (d) the sea lilies belonging to class Crinoidea, and (e) sea cucumbers, representing class Holothuroidea. (credit a: modification of work by Adrian Pingstone; credit b: modification of work by Joshua Ganderson; credit c: modification of work by Samuel Chow; credit d: modification of work by Sarah Depper; credit e: modification of work by Ed Bierman)

Phylum Chordata

Animals in the phylum Chordata share four key features that appear at some stage of their development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail.

In some groups, some of these traits are present only during embryonic development. In addition to containing vertebrate classes, the phylum Chordata contains two clades of invertebrates: Urochordata (tunicates) and Cephalochordata (lancelets). Most tunicates live on the ocean floor and are suspension feeders. Lancelets are suspension feeders that feed on phytoplankton and other microorganisms.

Section Summary

Echinoderms are deuterostomic marine organisms. This phylum of animals bears a calcareous endoskeleton composed of ossicles. These animals also have spiny skin. Echinoderms possess water-based circulatory systems. A pore termed the madreporite is the point of entry and exit for water into the water vascular system. Osmoregulation is carried out by specialized cells known as podocytes.

The characteristic features of Chordata are a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail. Chordata contains two clades of invertebrates: Urochordata (tunicates) and Cephalochordata (lancelets), together with the vertebrates in Vertebrata. Most tunicates live on the ocean floor and are suspension feeders. Lancelets are suspension feeders that feed on phytoplankton and other microorganisms.

Review Questions

Echinoderms have _____.

- a. triangular symmetry
- b. radial symmetry
- c. hexagonal symmetry
- d. pentaradial symmetry

D

The circulatory fluid in echinoderms is _____.

- a. blood
- b. mesohyl
- c. water
- d. saline

С

Free Response

Describe the different classes of echinoderms using examples.

The Asteroidea are the sea stars, the Echinoidea are the sea urchins and sand dollars, the Ophiuroidea are the brittle stars, the Crinoidea are the sea lilies and feather stars, the Holothuroidea are the sea cucumbers.

Glossary

archenteron

primitive gut cavity within the gastrula that opens outwards via the blastopore

Chordata

phylum of animals distinguished by their possession of a notochord, a dorsal, hollow nerve cord, pharyngeal slits, and a post-anal tail at some point in their development

Echinodermata

phylum of deuterostomes with spiny skin; exclusively marine organisms enterocoelom

coelom formed by fusion of coelomic pouches budded from the endodermal lining of the archenteron

madreporite

pore for regulating entry and exit of water into the water vascular system water vascular system

system in echinoderms where water is the circulatory fluid

Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"Examples of critically endangered vertebrate species include (a) the Siberian tiger (*Panthera tigris*), (b) the mountain gorilla (*Gorilla beringei*), and (c) the Philippine eagle (*Pithecophega jefferyi*). (credit a: modification of work by Dave Pape; credit b: modification of work by Dave Proffer; credit c: modification of work by

"cuatrok77"/Flickr)

Vertebrates are among the most recognizable organisms of the animal kingdom. More than 62,000 vertebrate species have been identified. The vertebrate species now living represent only a small portion of the vertebrates that have existed. The best-known extinct vertebrates are the dinosaurs, a unique group of reptiles, which reached sizes not seen before or after in terrestrial animals. They were the dominant terrestrial animals for 150 million years, until they died out in a mass extinction near the end of the Cretaceous period. Although it is not known with certainty what caused their extinction, a great deal is known about the anatomy of the dinosaurs, given the preservation of skeletal elements in the fossil record.

Currently, a number of vertebrate species face extinction primarily due to habitat loss and pollution. According to the International Union for the Conservation of Nature, more than 6,000 vertebrate species are classified as threatened. Amphibians and mammals are the classes with the greatest percentage of threatened species, with 29 percent of all amphibians and 21 percent of all mammals classified as threatened. Attempts are being made around the world to prevent the extinction of threatened species. For example, the Biodiversity Action Plan is an international program, ratified by 188 countries, which is designed to protect species and habitats.

Chordates

By the end of this section, you will be able to:

- Describe the distinguishing characteristics of chordates
- Identify the derived character of craniates that sets them apart from other chordates
- Describe the developmental fate of the notochord in vertebrates

Vertebrates are members of the kingdom Animalia and the phylum Chordata ([link]). Recall that animals that possess bilateral symmetry can be divided into two groups—protostomes and deuterostomes—based on their patterns of embryonic development. The deuterostomes, whose name translates as "second mouth," consist of two phyla: Chordata and Echinodermata. Echinoderms are invertebrate marine animals that have pentaradial symmetry and a spiny body covering, a group that includes sea stars, sea urchins, and sea cucumbers. The most conspicuous and familiar members of Chordata are vertebrates, but this phylum also includes two groups of invertebrate chordates.

All chordates are deuterostomes possessing a notochord.

Characteristics of Chordata

Animals in the phylum Chordata share four key features that appear at some stage during their development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal tail ([link]). In some groups, some of these are present only during embryonic development.

The chordates are named for the notochord, which is a flexible, rod-shaped structure that is found in the embryonic stage of all chordates and in the adult stage of some chordate species. It is located between the digestive tube and the nerve cord, and provides skeletal support through the length of the body. In some chordates, the notochord acts as the primary axial support of the body throughout the animal's lifetime. In vertebrates, the notochord is present during embryonic development, at which time it induces the development of the neural tube and serves as a support for the developing embryonic body. The notochord, however, is not found in the postnatal stage of vertebrates; at this point, it has been replaced by the vertebral column (that is, the spine).

Art Connection

In chordates, four common features appear at some point during development: a notochord, a dorsal hollow nerve cord, pharyngeal slits, and a post-anal

tail.

Which of the following statements about common features of chordates is true?

- a. The dorsal hollow nerve cord is part of the chordate central nervous system.
- b. In vertebrate fishes, the pharyngeal slits become the gills.
- c. Humans are not chordates because humans do not have a tail.
- d. Vertebrates do not have a notochord at any point in their development; instead, they have a vertebral column.

The dorsal hollow nerve cord derives from ectoderm that rolls into a hollow tube during development. In chordates, it is located dorsal to the notochord. In contrast, other animal phyla are characterized by solid nerve cords that are located either ventrally or laterally. The nerve cord found in most chordate embryos develops into the brain and spinal cord, which compose the central nervous system.

Pharyngeal slits are openings in the pharynx (the region just posterior to the mouth) that extend to the outside environment. In organisms that live in aquatic environments, pharyngeal slits allow for the exit of water that enters the mouth during feeding. Some invertebrate chordates use the pharyngeal slits to filter food out of the water that enters the mouth. In vertebrate fishes, the pharyngeal slits are modified into gill supports, and in jawed fishes, into jaw supports. In tetrapods, the slits are modified into components of the ear and tonsils. Tetrapod literally means "four-footed," which refers to the phylogenetic history of various groups that evolved accordingly, even though some now possess fewer than two pairs of walking appendages. Tetrapods include amphibians, reptiles, birds, and mammals.

The post-anal tail is a posterior elongation of the body, extending beyond the anus. The tail contains skeletal elements and muscles, which provide a source of locomotion in aquatic species, such as fishes. In some terrestrial vertebrates, the tail also helps with balance, courting, and signaling when danger is near. In humans, the post-anal tail is vestigial, that is, reduced in size and nonfunctional.

Link to Learning

Click for a video discussing the evolution of chordates and five characteristics that they share.

Fishes

By the end of this section, you will be able to:

- Describe the difference between jawless and jawed fishes
- Discuss the distinguishing features of sharks and rays compared to other modern fishes

Modern fishes include an estimated 31,000 species. Fishes were the earliest vertebrates, with jawless species being the earliest and jawed species evolving later. They are active feeders, rather than sessile, suspension feeders. Jawless fishes—the hagfishes and lampreys—have a distinct cranium and complex sense organs including eyes, distinguishing them from the invertebrate chordates.

Jawless Fishes

Jawless fishes are craniates that represent an ancient vertebrate lineage that arose over one half-billion years ago. In the past, the hagfishes and lampreys were classified together as agnathans. Today, hagfishes and lampreys are recognized as separate clades, primarily because lampreys are true vertebrates, whereas hagfishes are not. A defining feature is the lack of paired lateral appendages (fins). Some of the earliest jawless fishes were the ostracoderms (which translates to "shell-skin"). Ostracoderms were vertebrate fishes encased in bony armor, unlike present-day jawless fishes, which lack bone in their scales.

Myxini: Hagfishes

The clade Myxini includes at least 20 species of hagfishes. Hagfishes are eel-like scavengers that live on the ocean floor and feed on dead invertebrates, other fishes, and marine mammals ([link]). Hagfishes are entirely marine and are found in oceans around the world, except for the polar regions. A unique feature of these animals is the slime glands beneath the skin that release mucus through surface pores. This mucus allows the hagfish to escape from the grip of predators. Hagfish can also twist their bodies in a knot to feed and sometimes eat carcasses from the inside out.

Pacific hagfish are scavengers that live on the ocean floor. (credit: Linda Snook,

NOAA/CBNMS)

The skeleton of a hagfish is composed of cartilage, which includes a cartilaginous notochord that runs the length of the body. This notochord provides support to the hagfish's body. Hagfishes do not replace the notochord with a vertebral column during development, as do true vertebrates.

Petromyzontidae: Lampreys

The clade Petromyzontidae includes approximately 35–40 or more species of lampreys. Lampreys are similar to hagfishes in size and shape; however, lampreys possess some vertebral elements. Lampreys lack paired appendages and bone, as do the hagfishes. As adults, lampreys are characterized by a toothed, funnel-like sucking mouth. Many species have a parasitic stage of their life cycle during which they are ectoparasites of fishes ([link]).

These parasitic sea lampreys attach to their lake trout host by suction and use their rough tongues to rasp away flesh in order to feed on the trout's blood. (credit:

USGS)

Lampreys live primarily in coastal and fresh waters, and have a worldwide distribution, except for in the tropics and polar regions. Some species are marine, but all species spawn in fresh water. Eggs are fertilized externally, and the larvae distinctly differ from the adult form, spending 3 to 15 years as suspension feeders. Once they attain sexual maturity, the adults reproduce and die within days.

Lampreys possess a notochord as adults; however, this notochord is surrounded by a cartilaginous structure called an arcualia, which may resemble an evolutionarily early form of the vertebral column.

Gnathostomes: Jawed Fishes

Gnathostomes or "jaw-mouths" are vertebrates that possess jaws. One of the most significant developments in early vertebrate evolution was the development of the jaw, which is a hinged structure attached to the cranium that allows an animal to grasp and tear its food. The evolution of jaws allowed early gnathostomes to exploit food resources that were unavailable to jawless fishes.

Early gnathostomes also possessed two sets of paired fins, allowing the fishes to maneuver accurately. Pectoral fins are typically located on the anterior body, and pelvic fins on the posterior. Evolution of the jaw and paired fins permitted gnathostomes to expand from the sedentary suspension feeding of jawless fishes to become mobile predators. The ability of gnathostomes to exploit new nutrient sources likely is one reason that they replaced most jawless fishes during the Devonian period. Two early groups of gnathostomes were the acanthodians and placoderms ([link]), which arose in the late Silurian period and are now extinct. Most modern fishes are gnathostomes that belong to the clades Chondrichthyes and Osteichthyes.

Dunkleosteous was an enormous placoderm from the Devonian period, 380–360 million years ago. It measured up to 10 meters in length and weighed up to 3.6 tons. (credit: Nobu

Tamura)

Chondrichthyes: Cartilaginous Fishes

The clade Chondrichthyes is diverse, consisting of sharks ([link]), rays, and skates, together with sawfishes and a few dozen species of fishes called *chimaeras*, or "ghost" sharks." Chondrichthyes are jawed fishes that possess paired fins and a skeleton made of cartilage. This clade arose approximately 370 million years ago in the early or middle Devonian. They are thought to be descended from the placoderms, which had skeletons made of bone; thus, the cartilaginous skeleton of Chondrichthyes is a later development. Parts of shark skeleton are strengthened by granules of calcium carbonate, but this is not the same as bone.

Most cartilaginous fishes live in marine habitats, with a few species living in fresh water for a part or all of their lives. Most sharks are carnivores that feed on live prey, either swallowing it whole or using their jaws and teeth to tear it into smaller pieces. Shark teeth likely evolved from the jagged scales that cover their skin, called placoid scales. Some species of sharks and rays are suspension feeders that feed on plankton.

Hammerhead sharks tend to school during the day and hunt prey at night. (credit: Masashi

Sugawara)

Sharks have well-developed sense organs that aid them in locating prey, including a keen sense of smell and electroreception, with the latter perhaps the most sensitive of any animal. Organs called ampullae of Lorenzini allow sharks to detect the electromagnetic fields that are produced by all living things, including their prey. Electroreception has only been observed in aquatic or amphibious animals. Sharks, together with most fishes and aquatic and larval amphibians, also have a sense organ called the lateral line, which is used to detect movement and vibration in the surrounding water, and is often considered homologous to "hearing" in terrestrial vertebrates. The lateral line is visible as a darker stripe that runs along the length of a fish's body.

Sharks reproduce sexually, and eggs are fertilized internally. Most species are ovoviviparous: The fertilized egg is retained in the oviduct of the mother's body and the embryo is nourished by the egg yolk. The eggs hatch in the uterus, and young are born alive and fully functional. Some species of sharks are oviparous: They lay eggs that hatch outside of the mother's body. Embryos are protected by a shark egg case or "mermaid's purse" ([link]) that has the consistency of leather. The shark egg case has tentacles that snag in seaweed and give the newborn shark cover. A few species of sharks are viviparous: The young develop within the mother's body and she gives live birth.

Shark embryos are clearly visible through these transparent egg cases. The round structure is the yolk that nourishes the growing embryo. (credit: Jek

Bacarisas)

Rays and skates comprise more than 500 species and are closely related to sharks. They can be distinguished from sharks by their flattened bodies, pectoral fins that are enlarged and fused to the head, and gill slits on their ventral surface ([link]). Like sharks, rays and skates have a cartilaginous skeleton. Most species are marine and live on the sea floor, with nearly a worldwide distribution.

This stingray blends into the sandy bottom of the ocean floor. (credit:

"Sailn1"/Flickr)

Osteichthyes: Bony Fishes

Members of the clade Osteichthyes, also called bony fishes, are characterized by a bony skeleton. The vast majority of present-day fishes belong to this group, which consists of approximately 30,000 species, making it the largest class of vertebrates in existence today.

Nearly all bony fishes have an ossified skeleton with specialized bone cells (osteocytes) that produce and maintain a calcium phosphate matrix. This characteristic has only reversed in a few groups of Osteichthyes, such as sturgeons and paddlefish, which have primarily cartilaginous skeletons. The skin of bony fishes is often covered by overlapping scales, and glands in the skin secrete mucus that reduces drag when swimming and aids the fish in osmoregulation. Like sharks, bony fishes have a lateral line system that detects vibrations in water.

All bony fishes use gills to breathe. Water is drawn over gills that are located in chambers covered and ventilated by a protective, muscular flap called the operculum. Many bony fishes also have a swim bladder, a gas-filled organ that helps to control the buoyancy of the fish. Bony fishes are further divided into two extant clades: Actinopterygii (ray-finned fishes) and Sarcopterygii (lobe-finned fishes).

Actinopterygii, the ray-finned fishes, include many familiar fishes—tuna, bass, trout, and salmon ([link]a), among others. Ray-finned fishes are named for their fins that are webs of skin supported by bony spines called rays. In contrast, the fins of Sarcopterygii are fleshy and lobed, supported by bone ([link]b). Living members of this clade include the less-familiar lungfishes and coelacanths.

The (a) sockeye salmon and (b) coelacanth are both bony fishes of the Osteichthyes clade. The coelacanth, sometimes called a lobe-finned fish, was thought to have gone extinct in the Late Cretaceous period, 100 million years ago, until one was discovered in 1938 near the Comoros Islands between Africa and Madagascar. (credit a: modification of work by Timothy Knepp, USFWS; credit b: modification of work by Robbie

Cada)

Section Summary

The earliest vertebrates that diverged from the invertebrate chordates were the jawless fishes. Fishes with jaws (gnathostomes) evolved later. Jaws allowed early gnathostomes to exploit new food sources. Agnathans include the hagfishes and lampreys. Hagfishes are eel-like scavengers that feed on dead invertebrates and other fishes. Lampreys are characterized by a toothed, funnel-like sucking mouth, and most species are parasitic on other fishes. Gnathostomes include the cartilaginous fishes and the bony fishes, as well as all other tetrapods. Cartilaginous fishes include sharks, rays, skates, and ghost sharks. Most cartilaginous fishes live in marine habitats, with a few species living in fresh water for part or all of their lives. The vast majority of present-day fishes belong to the clade Osteichthyes, which consists of approximately 30,000 species. Bony fishes can be divided into two clades: Actinopterygii (ray-finned fishes, virtually all extant species) and Sarcopterygii (lobe-finned fishes, comprising fewer than 10 extant species but which are the ancestors of tetrapods).

Review Questions

Members of Chondrichthyes differ from members of Osteichthyes by having a _____.

- a. jaw
- b. bony skeleton
- c. cartilaginous skeleton
- d. two sets of paired fins

Members of Chondrichthyes are thought to be descended from fishes that had ______.

- a. a cartilaginous skeleton
- b. a bony skeleton
- c. mucus glands
- d. slime glands

В

Free Response

What can be inferred about the evolution of the cranium and vertebral column from examining hagfishes and lampreys?

Comparison of hagfishes with lampreys shows that the cranium evolved first in early vertebrates, as it is seen in hagfishes, which evolved earlier than lampreys. This was followed by evolution of the vertebral column, a primitive form of which is seen in lampreys and not in hagfishes.

Why did gnathostomes replace most agnathans?

Evolution of the jaw and paired fins permitted gnathostomes to diversify from the sedentary suspension feeding of agnathans to a mobile predatory lifestyle. The ability of gnathostomes to utilize new nutrient sources may be one reason why the gnathostomes replaced most agnathans.

Glossary

```
Actinopterygii
      ray-finned fishes
ampulla of Lorenzini
      sensory organ that allows sharks to detect electromagnetic fields produced
      by living things
Chondrichthyes
      jawed fish with paired fins and a skeleton made of cartilage
gnathostome
      jawed fish
hagfish
      eel-like jawless fish that live on the ocean floor and are scavengers
lamprey
      jawless fish characterized by a toothed, funnel-like, sucking mouth
lateral line
      sense organ that runs the length of a fish's body; used to detect vibration in
      the water
Myxini
```

С

hagfishes Osteichthyes bony fish ostracoderm one of the earliest jawless fish covered in bone Petromyzontidae clade of lampreys Sarcopterygii lobe-finned fish swim bladder in fishes, a gas filled organ that helps to control the buoyancy of the fish Amphibians By the end of this section, you will be able to:

- Describe the important difference between the life cycle of amphibians and the life cycles of other vertebrates
- Distinguish between the characteristics of Urodela, Anura, and Apoda
- Describe the evolutionary history of amphibians

Amphibians are vertebrate tetrapods. Amphibia includes frogs, salamanders, and caecilians. The term amphibian loosely translates from the Greek as "dual life," which is a reference to the metamorphosis that many frogs and salamanders undergo and their mixture of aquatic and terrestrial environments in their life cycle. Amphibians evolved during the Devonian period and were the earliest terrestrial tetrapods.

Link to Learning

Watch this series of five Animal Planet videos on tetrapod evolution:

• 1: The evolution from fish to earliest tetrapod

Reptiles

By the end of this section, you will be able to:

- Describe the main characteristics of amniotes
- Explain the difference between anapsids, synapsids, and diapsids, and give an example of each
- Identify the characteristics of reptiles

• Discuss the evolution of reptiles

The amniotes —reptiles, birds, and mammals—are distinguished from amphibians by their terrestrially adapted egg, which is protected by amniotic membranes. The evolution of amniotic membranes meant that the embryos of amniotes were provided with their own aquatic environment, which led to less dependence on water for development and thus allowed the amniotes to branch out into drier environments. This was a significant development that distinguished them from amphibians, which were restricted to moist environments due their shell-less eggs. Although the shells of various amniotic species vary significantly, they all allow retention of water. The shells of bird eggs are composed of calcium carbonate and are hard, but fragile. The shells of reptile eggs are leathery and require a moist environment. Most mammals do not lay eggs (except for monotremes). Instead, the embryo grows within the mother's body; however, even with this internal gestation, amniotic membranes are still present.

Characteristics of Amniotes

The amniotic egg is the key characteristic of amniotes. In amniotes that lay eggs, the shell of the egg provides protection for the developing embryo while being permeable enough to allow for the exchange of carbon dioxide and oxygen. The albumin, or egg white, provides the embryo with water and protein, whereas the fattier egg yolk is the energy supply for the embryo, as is the case with the eggs of many other animals, such as amphibians. However, the eggs of amniotes contain three additional extra-embryonic membranes: the chorion, amnion, and allantois ([link]). Extra-embryonic membranes are membranes present in amniotic eggs that are not a part of the body of the developing embryo. While the inner amniotic membrane surrounds the embryo itself, the chorion surrounds the embryo and yolk sac. The chorion facilitates exchange of oxygen and carbon dioxide between the embryo and the egg's external environment. The amnion protects the embryo from mechanical shock and supports hydration. In mammals, membranes that are homologous to the extra-embryonic membranes in eggs are present in the placenta.

Art Connection

The key features of an amniotic egg are shown.

Which of the following statements about the parts of an egg are false?

- a. The allantois stores nitrogenous waste and facilitates respiration.
- b. The chorion facilitates gas exchange.
- c. The yolk provides food for the growing embryo.
- d. The amniotic cavity is filled with albumen.

Additional derived characteristics of amniotes include waterproof skin, due to the presence of lipids, and costal (rib) ventilation of the lungs.

Evolution of Amniotes

The first amniotes evolved from amphibian ancestors approximately 340 million years ago during the Carboniferous period. The early amniotes diverged into two main lines soon after the first amniotes arose. The initial split was into synapsids and sauropsids. Synapsids include all mammals, including extinct mammalian species. Synapsids also include therapsids, which were mammal-like reptiles from which mammals evolved. Sauropsids include reptiles and birds, and can be further divided into anapsids and diapsids. The key differences between the synapsids, anapsids, and diapsids are the structures of the skull and the number of temporal fenestrae behind each eye ([link]). Temporal fenestrae are post-orbital openings in the skull that allow muscles to expand and lengthen. Anapsids have no temporal fenestrae, synapsids have one, and diapsids have two. Anapsids include extinct organisms and may, based on anatomy, include turtles. However, this is still controversial, and turtles are sometimes classified as diapsids based on molecular evidence. The diapsids include birds and all other living and extinct reptiles.

Compare the skulls and temporal fenestrae of anapsids, synapsids, and diapsids. Anapsids have no openings, synapsids have one opening, and diapsids have two

openings.

The diapsids diverged into two groups, the Archosauromorpha ("ancient lizard form") and the Lepidosauromorpha ("scaly lizard form") during the Mesozoic period ([link]). The lepidosaurs include modern lizards, snakes, and tuataras. The archosaurs include modern crocodiles and alligators, and the extinct pterosaurs ("winged lizard") and dinosaurs ("terrible lizard"). Clade Dinosauria includes birds, which evolved from a branch of dinosaurs.

Art Connection

This chart shows the evolution of amniotes. The placement of Testudines (turtles) is currently still

debated.

Members of the order Testudines have an anapsid-like skull with one opening. However, molecular studies indicate that turtles descended from a diapsid ancestor. Why might this be the case?

In the past, the most common division of amniotes has been into the classes Mammalia, Reptilia, and Aves. Birds are descended, however, from dinosaurs, so this classical scheme results in groups that are not true clades. We will consider birds as a group distinct from reptiles for the purpose of this discussion with the understanding that this does not completely reflect phylogenetic history and relationships.

Characteristics of Reptiles

Reptiles are tetrapods. Limbless reptiles—snakes and other squamates—have vestigial limbs and, like caecilians, are classified as tetrapods because they are descended from four-limbed ancestors. Reptiles lay eggs enclosed in shells on land. Even aquatic reptiles return to the land to lay eggs. They usually reproduce sexually with internal fertilization. Some species display ovoviviparity, with the eggs remaining in the mother's body until they are ready to hatch. Other species are viviparous, with the offspring born alive.

One of the key adaptations that permitted reptiles to live on land was the development of their scaly skin, containing the protein keratin and waxy lipids, which reduced water loss from the skin. This occlusive skin means that reptiles cannot use their skin for respiration, like amphibians, and thus all breathe with lungs.

Reptiles are ectotherms, animals whose main source of body heat comes from the environment. This is in contrast to endotherms, which use heat produced by metabolism to regulate body temperature. In addition to being ectothermic, reptiles are categorized as poikilotherms, or animals whose body temperatures vary rather than remain stable. Reptiles have behavioral adaptations to help regulate body temperature, such as basking in sunny places to warm up and finding shady spots or going underground to cool down. The advantage of ectothermy is that metabolic energy from food is not required to heat the body; therefore, reptiles can survive on about 10 percent of the calories required by a similarly sized endotherm. In cold weather, some reptiles such as the garter snake brumate. Brumation is similar to hibernation in that the animal becomes less active and can go for long periods without eating, but differs from hibernation in that brumating reptiles are not asleep or living off fat reserves. Rather, their metabolism is slowed in response to cold temperatures, and the animal is very sluggish.

Evolution of Reptiles

Reptiles originated approximately 300 million years ago during the Carboniferous period. One of the oldest known amniotes is Casineria, which had both amphibian and reptilian characteristics. One of the earliest undisputed reptiles was Hylonomus. Soon after the first amniotes appeared, they diverged into three groups—synapsids, anapsids, and diapsids during the Permian period. The Permian period also saw a second major divergence of diapsid reptiles into archosaurs (predecessors of crocodilians and dinosaurs) and lepidosaurs (predecessors of snakes and lizards). These groups remained inconspicuous until the Triassic period, when the archosaurs became the dominant terrestrial group due to the extinction of large-bodied anapsids and synapsids during the Permian-Triassic extinction. About 250 million years ago, archosaurs radiated into the dinosaurs and the pterosaurs.

Although they are sometimes mistakenly called dinosaurs, the pterosaurs were distinct from true dinosaurs ([link]). Pterosaurs had a number of adaptations that allowed for flight, including hollow bones (birds also exhibit hollow bones, a case of convergent evolution). Their wings were formed by membranes of skin that attached to the long, fourth finger of each arm and extended along the body to the legs.

Pterosaurs, which existed from the late Triassic to the Cretaceous period (210 to 65.5 million years ago), possessed wings but are not believed to have been capable of powered flight.

Instead, they may have been able to soar after launching from cliffs. (credit: Mark Witton,

Darren Naish)

The dinosaurs were a diverse group of terrestrial reptiles with more than 1,000 species identified to date. Paleontologists continue to discover new species of dinosaurs. Some dinosaurs were quadrupeds ([link]); others were bipeds. Some were carnivorous, whereas others were herbivorous. Dinosaurs laid eggs, and a number of nests containing fossilized eggs have been found. It is not known whether dinosaurs were endotherms or ectotherms. However, given that modern birds are endothermic, the dinosaurs that served as ancestors to birds likely were endothermic as well. Some fossil evidence exists for dinosaurian parental care, and comparative biology supports this hypothesis since the archosaur birds and crocodilians display parental care.

Edmontonia was an armored dinosaur that lived in the late Cretaceous period, 145.5 to 65.6 million years ago. (credit: Mariana Ruiz

Villareal)

Dinosaurs dominated the Mesozoic Era, which was known as the "age of reptiles." The dominance of dinosaurs lasted until the end of the Cretaceous, the last period of the Mesozoic Era. The Cretaceous-Tertiary extinction resulted in the loss of most of the large-bodied animals of the Mesozoic Era. Birds are the only living descendants of one of the major clades of dinosaurs.

Link to Learning

Visit this site to see a <u>video</u> discussing the hypothesis that an asteroid caused the Cretaceous-Triassic (KT) extinction.

Modern Reptiles

Class Reptilia includes many diverse species that are classified into four living clades. These are the 25 species of Crocodilia, 2 species of Sphenodontia, approximately 9,200 Squamata species, and the Testudines, with about 325 species.

Crocodilia

Crocodilia ("small lizard") arose with a distinct lineage by the middle Triassic; extant species include alligators, crocodiles, and caimans. Crocodilians ([link]) live throughout the tropics and subtropics of Africa, South America, Southern Florida, Asia, and Australia. They are found in freshwater, saltwater, and brackish habitats, such as rivers and lakes, and spend most of their time in water. Some species are able to move on land due to their semi-erect posture.

Crocodilians, such as this Siamese crocodile (*Crocodylus siamensis*), provide parental care for their offspring. (credit: Keshav Mukund

Kandhadai)

Sphenodontia

Sphenodontia ("wedge tooth") arose in the Mesozoic era and includes only one living genus, *Tuatara*, comprising two species that are found in New Zealand ([link]). Tuataras measure up to 80 centimeters and weigh about 1 kilogram. Although quite lizard-like in gross appearance, several unique features of the skull and jaws clearly define them and distinguish the group from the squamates.

This tuatara from New Zealand may resemble a lizard but belongs to a distinct lineage, the Sphenodontidae family. (credit: Sid

Mosdell)

Squamata

Squamata ("scaly") arose in the late Permian, and extant species include lizards and snakes. Both are found on all continents except Antarctica. Lizards and snakes are most closely related to tuataras, both groups having evolved from a lepidosaurian ancestor. Squamata is the largest extant clade of reptiles ([link]). Most lizards differ from snakes by having four limbs, although these have been variously lost or significantly reduced in at least 60 lineages. Snakes lack eyelids and external ears, which are present in lizards. Lizard species range in size from chameleons and geckos, which are a few centimeters in length, to the Komodo dragon, which is about 3 meters in length. Most lizards are carnivorous, but some large species, such as iguanas, are herbivores.

This Jackson's chameleon (Trioceros jacksonii) blends in with its

surroundings.

Snakes are thought to have descended from either burrowing lizards or aquatic lizards over 100 million years ago ([link]). Snakes comprise about 3,000 species and are found on every continent except Antarctica. They range in size from 10 centimeter-long thread snakes to 10 meter-long pythons and anacondas. All snakes are carnivorous and eat small animals, birds, eggs, fish, and insects. The snake body form is so specialized that, in its general morphology, a "snake is a snake." Their specializations all point to snakes having evolved to feed on relatively large prey (even though some current species have reversed this trend). Although variations exist, most snakes have a skull that is very flexible, involving eight rotational joints. They also differ from other squamates by having mandibles (lower jaws) without either bony or ligamentous attachment anteriorly. Having this connection via skin and muscle allows for great expansion of the gape and independent motion of the two sides—both advantages in swallowing big items.

The garter snake belongs to the genus *Thamnophis*, the most widely distributed reptile genus

in North America. (credit: Steve Jurvetson)

Testudines

Turtles are members of the clade Testudines ("having a shell") ([link]). Turtles are characterized by a bony or cartilaginous shell. The shell consists of the ventral surface called the plastron and the dorsal surface called the carapace, which develops from the ribs. The plastron is made of scutes or plates; the scutes can be used to differentiate species of turtles. The two clades of turtles are most easily recognized by how they retract their necks. The dominant group, which includes all North American species, retracts its neck in a vertical S-curve. Turtles in the less speciose clade retract the neck with a horizontal curve.

Turtles arose approximately 200 million years ago, predating crocodiles, lizards, and snakes. Similar to other reptiles, turtles are ectotherms. They lay eggs on land, although many species live in or near water. None exhibit parental care. Turtles range in size from the speckled padloper tortoise at 8 centimeters (3.1 inches) to the leatherback sea turtle at 200 centimeters (over 6 feet). The term "turtle" is sometimes used to describe only those species of Testudines that live in the sea, with the terms "tortoise" and "terrapin" used to refer to species that live on land and in fresh water, respectively. The African spurred tortoise (*Geochelone sulcata*) lives at the southern edge of the Sahara Desert. It is the third largest tortoise in the world. (credit: Jim

Bowen)

Section Summary

The amniotes are distinguished from amphibians by the presence of a terrestrially adapted egg protected by amniotic membranes. The amniotes include reptiles, birds, and mammals. The early amniotes diverged into two main lines soon after the first amniotes arose. The initial split was into synapsids (mammals) and sauropsids. Sauropsids can be further divided into anapsids (turtles) and diapsids (birds and reptiles). Reptiles are tetrapods either having four limbs or descending from such. Limbless reptiles (snakes) are classified as tetrapods, as they are descended from four-limbed organisms. One of the key adaptations that permitted reptiles to live on land was the development of scaly skin containing the protein keratin, which prevented water loss from the skin. Reptilia includes four living clades: Crocodilia (crocodiles and alligators), Sphenodontia (tuataras), Squamata (lizards and snakes), and Testudines (turtles).

Art Connections

[link] Which of the following statements about the parts of an egg are false?

- a. The allantois stores nitrogenous waste and facilitates respiration.
- b. The chorion facilitates gas exchange.
- c. The yolk provides food for the growing embryo.
- d. The amniotic cavity is filled with albumen.

[link] D

[link] Members of the order Testudines have an anapsid-like skull with one opening. However, molecular studies indicate that turtles descended from a diapsid ancestor. Why might this be the case? [link] The ancestor of modern Testudines may at one time have had a second opening in the skull, but over time this might have been lost.

Review Questions

During the Mesozoic period, diapsids diverged into_____.

- a. pterosaurs and dinosaurs
- b. mammals and reptiles
- c. lepidosaurs and archosaurs
- d. Testudines and Sphenodontia

С

Squamata includes_____.

- a. crocodiles and alligators
- b. turtles
- c. tuataras
- d. lizards and snakes

D

Free Response

Describe the functions of the three extra-embryonic membranes present in amniotic eggs.

The chorion facilitates the exchange of oxygen and carbon dioxide gases between the embryo and the surrounding air. The amnion protects the embryo from mechanical shock and prevents dehydration. The allantois stores nitrogenous wastes produced by the embryo and facilitates respiration.

What characteristics differentiate lizards and snakes?

Lizards differ from snakes by having eyelids, external ears, and less kinematic skulls.

Glossary

amniote

animal that produces a terrestrially adapted egg protected by amniotic membranes

allantois

membrane of the egg that stores nitrogenous wastes produced by the embryo; also facilitates respiration

amnion

membrane of the egg that protects the embryo from mechanical shock and prevents dehydration

anapsid

animal having no temporal fenestrae in the cranium archosaur modern crocodilian or bird, or an extinct pterosaur or dinosaur

brumation

period of much reduced metabolism and torpor that occurs in any ectotherm in cold weather

Casineria

one of the oldest known amniotes; had both amphibian and reptilian characteristics

chorion

membrane of the egg that surrounds the embryo and yolk sac

Crocodilia

crocodiles and alligators

diapsid

animal having two temporal fenestrae in the cranium

Hylonomus

one of the earliest reptiles

lepidosaur

modern lizards, snakes, and tuataras

sauropsid

reptile or bird

Sphenodontia

clade of tuataras

Squamata

clade of lizards and snakes

synapsid

mammal having one temporal fenestra

temporal fenestra

non-orbital opening in the skull that may allow muscles to expand and lengthen

Testudines

order of turtles

Mammals

By the end of this section, you will be able to:

- Name and describe the distinguishing features of the three main groups of mammals
- Describe the proposed line of descent that produced mammals
- List some derived features that may have arisen in response to mammals' need for constant, high-level metabolism

Mammals are vertebrates that possess hair and mammary glands. Several other characteristics are distinctive to mammals, including certain features of the jaw, skeleton, integument, and internal anatomy. Modern mammals belong to three clades: monotremes, marsupials, and eutherians (or placental mammals).

Characteristics of Mammals

The presence of hair is one of the most obvious signs of a mammal. Although it is not very extensive on certain species, such as whales, hair has many important functions for mammals. Mammals are endothermic, and hair provides insulation to retain heat generated by metabolic work. Hair traps a layer of air close to the body, retaining heat. Along with insulation, hair can serve as a sensory mechanism via specialized hairs called vibrissae, better known as whiskers. These attach to nerves that transmit information about sensation, which is particularly useful to nocturnal or burrowing mammals. Hair can also provide protective coloration or be part of social signaling, such as when an animal's hair stands "on end."

Mammalian integument, or skin, includes secretory glands with various functions. Sebaceous glands produce a lipid mixture called sebum that is secreted onto the hair and skin for water resistance and lubrication. Sebaceous glands are located over most of the body. Eccrine glands produce sweat, or perspiration, which is mainly composed of water. In most mammals, eccrine glands are limited to certain areas of the body, and some mammals do not possess them at all. However, in primates, especially humans, sweat figures prominently in thermoregulation, regulating the body through evaporative cooling. Sweat glands are located over most of the body surface in primates. Apocrine glands, or scent glands, secrete substances that are used for chemical communication, such as in skunks. Mammary glands produce milk that is used to feed newborns. While male monotremes and eutherians possess mammary glands, male marsupials do not. Mammary glands likely are modified sebaceous or eccrine glands, but their evolutionary origin is not entirely clear.

The skeletal system of mammals possesses many unique features. The lower jaw of mammals consists of only one bone, the dentary. The jaws of other vertebrates are composed of more than one bone. In mammals, the dentary bone joins the skull at the squamosal bone, while in other vertebrates, the quadrate bone of the jaw joins with the articular bone of the skull. These bones are present in mammals, but they have been modified to function in hearing and form bones in the middle ear ([link]). Other vertebrates possess only one middle ear bone, the stapes. Mammals have three: the malleus, incus, and stapes. The malleus originated from the articular bone, whereas the incus originated from the quadrate bone. This arrangement of jaw and ear bones aids in distinguishing fossil mammals from fossils of other synapsids.

Bones of the mammalian inner ear are modified from bones of the jaw and skull. (credit:

NCI)

The adductor muscle that closes the jaw is composed of two muscles in mammals: the temporalis and the masseter. These allow side-to-side movement of the jaw, making chewing possible, which is unique to mammals. Most mammals have heterodont teeth, meaning that they have different types and shapes of teeth rather than just one type and shape of tooth. Most mammals are diphyodonts, meaning that they have two sets of teeth in their lifetime: deciduous or "baby" teeth, and permanent teeth. Other vertebrates are polyphyodonts, that is, their teeth are replaced throughout their entire life.

Mammals, like birds, possess a four-chambered heart. Mammals also have a specialized group of cardiac fibers located in the walls of their right atrium called the sinoatrial node, or pacemaker, which determines the rate at which the heart beats. Mammalian erythrocytes (red blood cells) do not have nuclei, whereas the erythrocytes of other vertebrates are nucleated.

The kidneys of mammals have a portion of the nephron called the loop of Henle or nephritic loop, which allows mammals to produce urine with a high concentration of solutes, higher than that of the blood. Mammals lack a renal portal system, which is a system of veins that moves blood from the hind or lower limbs and region of the tail to the kidneys. Renal portal systems are present in all other vertebrates except jawless fishes. A urinary bladder is present in all mammals.

Mammalian brains have certain characteristics that differ from other vertebrates. In some, but not all mammals, the cerebral cortex, the outermost part of the cerebrum, is highly folded, allowing for a greater surface area than is possible with a smooth cortex. The optic lobes, located in the midbrain, are divided into two parts in mammals, whereas other vertebrates possess a single, undivided lobe. Eutherian mammals also possess a specialized structure that links the two cerebral hemispheres, called the corpus callosum.

Evolution of Mammals

Mammals are synapsids, meaning they have a single opening in the skull. They are the only living synapsids, as earlier forms became extinct by the Jurassic period. The early non-mammalian synapsids can be divided into two groups, the pelycosaurs and the therapsids. Within the therapsids, a group called the cynodonts are thought to be the ancestors of mammals ([link]).

Cynodonts, which first appeared in the Late Permian period 260 million years ago, are thought to be the ancestors of modern mammals. (credit: Nobu

Tamura)

A key characteristic of synapsids is endothermy, rather than the ectothermy seen in most other vertebrates. The increased metabolic rate required to internally modify body temperature went hand in hand with changes to certain skeletal structures. The later synapsids, which had more evolved characteristics unique to mammals, possess cheeks for holding food and heterodont teeth, which are specialized for chewing, mechanically breaking down food to speed digestion and releasing the energy needed to produce heat. Chewing also requires the ability to chew and breathe at the same time, which is facilitated by the presence of a secondary palate. A secondary palate separates the area of the mouth where chewing occurs from the area above where respiration occurs, allowing breathing to proceed uninterrupted during chewing. A secondary palate is not found in pelycosaurs but is present in cynodonts and mammals. The jawbone also shows changes from early synapsids to later ones. The zygomatic arch, or cheekbone, is present in mammals and advanced therapsids such as cynodonts, but is not present in pelycosaurs. The presence of the zygomatic arch suggests the presence of the masseter muscle, which closes the jaw and functions in chewing.

In the appendicular skeleton, the shoulder girdle of therian mammals is modified from that of other vertebrates in that it does not possess a procoracoid bone or an interclavicle, and the scapula is the dominant bone.

Mammals evolved from therapsids in the late Triassic period, as the earliest known mammal fossils are from the early Jurassic period, some 205 million years ago. Early mammals were small, about the size of a small rodent. Mammals first began to diversify in the Mesozoic Era, from the Jurassic to the Cretaceous periods, although most of these mammals were extinct by

the end of the Mesozoic. During the Cretaceous period, another radiation of mammals began and continued through the Cenozoic Era, about 65 million years ago.

Living Mammals

The eutherians, or placental mammals, and the marsupials together comprise the clade of therian mammals. Monotremes, or metatherians, form their sister clade.

There are three living species of monotremes: the platypus and two species of echidnas, or spiny anteaters. The leathery-beaked platypus belongs to the family Ornithorhynchidae ("bird beak"), whereas echidnas belong to the family Tachyglossidae ("sticky tongue") ([link]). The platypus and one species of echidna are found in Australia, and the other species of echidna is found in New Guinea. Monotremes are unique among mammals as they lay eggs, rather than giving birth to live young. The shells of their eggs are not like the hard shells of birds, but are a leathery shell, similar to the shells of reptile eggs. Monotremes have no teeth.

(a) The platypus, a monotreme, possesses a leathery beak and lays eggs rather than giving birth to live young. (b) The echidna is another monotreme. (credit b: modification of work by

Barry Thomas)

Marsupials are found primarily in Australia, though the opossum is found in North America. Australian marsupials include the kangaroo, koala, bandicoot, Tasmanian devil ([link]), and several other species. Most species of marsupials possess a pouch in which the very premature young reside after birth, receiving milk and continuing to develop. Marsupials differ from eutherians in that there is a less complex placental connection: The young are born at an extremely early age and latch onto the nipple within the pouch.

The Tasmanian devil is one of several marsupials native to Australia. (credit: Wayne

McLean)

Eutherians are the most widespread of the mammals, occurring throughout the world. There are 18 to 20 orders of placental mammals. Some examples are Insectivora, the insect eaters; Edentata, the toothless anteaters; Rodentia, the rodents; Cetacea, the aquatic mammals including whales; Carnivora, carnivorous mammals including dogs, cats, and bears; and Primates, which includes humans. Eutherian mammals are sometimes called placental mammals because all species possess a complex placenta that connects a fetus to the mother, allowing for gas, fluid, and nutrient exchange. While other mammals possess a less complex placenta during gestation.

Section Summary

Mammals in general are vertebrates that possess hair and mammary glands. The mammalian integument includes various secretory glands, including sebaceous glands, eccrine glands, apocrine glands, and mammary glands. Mammals are synapsids, meaning that they have a single opening in the skull. A key characteristic of synapsids is endothermy rather than the ectothermy seen in other vertebrates. Mammals probably evolved from therapsids in the late Triassic period, as the earliest known mammal fossils are from the early Jurassic period. There are three groups of mammals living today: monotremes, marsupials, and eutherians. Monotremes are unique among mammals as they lay eggs, rather than giving birth to young. Eutherian mammals are sometimes called placental mammals, because all species possess a complex placenta that connects a fetus to the mother, allowing for gas, fluid, and nutrient exchange.

Review Questions

Eccrine glands produce _____.

- a. sweat
- b. lipids

- c. scents
- d. milk

A

Monotremes include:

- a. kangaroos
- b. koalas
- c. bandicoots
- d. platypuses

D

Free Response

Describe three unique features of the mammalian skeletal system.

The lower jaw of mammals consists of only one bone, the dentary. The dentary bone joins the skull at the squamosal bone. Mammals have three bones of the middle ear. The adductor muscle that closes the jaw is composed of two muscles in mammals. Most mammals have heterodont teeth.

Describe three characteristics of the mammalian brain that differ from other vertebrates.

In some mammals, the cerebral cortex is highly folded, allowing for greater surface area than a smooth cortex. The optic lobes are divided into two parts in mammals. Eutherian mammals also possess a specialized structure that links the two cerebral hemispheres, called the corpus callosum.

Glossary

apocrine gland

scent gland that secretes substances that are used for chemical communication

dentary

single bone that comprises the lower jaw of mammals

diphyodont

refers to the possession of two sets of teeth in a lifetime

eccrine gland

sweat gland

eutherian mammal

mammal that possesses a complex placenta, which connects a fetus to the mother; sometimes called placental mammals

heterodont tooth

different types of teeth that are modified for different purposes mammal

one of the groups of endothermic vertebrates that possesses hair and mammary glands

mammary gland

in female mammals, a gland that produces milk for newborns marsupial

one of the groups of mammals that includes the kangaroo, koala, bandicoot,

Tasmanian devil, and several other species; young develop within a pouch monotreme

egg-laying mammal

Ornithorhynchidae

clade that includes the duck-billed platypus

sebaceous gland

in mammals, a skin gland that produce a lipid mixture called *sebum* Tachyglossidae

clade that includes the echidna or spiny anteater

Birds

By the end of this section, you will be able to:

- Describe the evolutionary history of birds
- Describe the derived characteristics in birds that facilitate flight

The most obvious characteristic that sets birds apart from other modern vertebrates is the presence of feathers, which are modified scales. While vertebrates like bats fly without feathers, birds rely on feathers and wings, along with other modifications of body structure and physiology, for flight.

Characteristics of Birds

Birds are endothermic, and because they fly, they require large amounts of energy, necessitating a high metabolic rate. Like mammals, which are also endothermic, birds have an insulating covering that keeps heat in the body: feathers. Specialized feathers called down feathers are especially insulating, trapping air in spaces between each feather to decrease the rate of heat loss. Certain parts of a bird's body are covered in down feathers, and the base of other feathers have a downy portion, whereas newly hatched birds are covered in down.

Feathers not only act as insulation but also allow for flight, enabling the lift and thrust necessary to become airborne. The feathers on a wing are flexible, so the collective feathers move and separate as air moves through them, reducing the drag on the wing. Flight feathers are asymmetrical, which affects airflow over them and provides some of the lifting and thrusting force required for flight ([link]). Two types of flight feathers are found on the wings, primary feathers and secondary feathers. Primary feathers are located at the tip of the wing and provide thrust. Secondary feathers are located closer to the body, attach to the forearm portion of the wing and provide lift. Contour feathers are the feathers found on the body, and they help reduce drag produced by wind resistance during flight. They create a smooth, aerodynamic surface so that air moves smoothly over the bird's body, allowing for efficient flight.

Primary feathers are located at the wing tip and provide thrust; secondary feathers are located

close to the body and provide lift.

Flapping of the entire wing occurs primarily through the actions of the chest muscles, the pectoralis and the supracoracoideus. These muscles are highly developed in birds and account for a higher percentage of body mass than in most mammals. These attach to a blade-shaped keel, like that of a boat, located on the sternum. The sternum of birds is larger than that of other vertebrates, which accommodates the large muscles required to generate enough upward force to generate lift with the flapping of the wings. Another skeletal modification found in most birds is the fusion of the two clavicles (collarbones), forming the furcula or wishbone. The furcula is flexible enough to bend and provide support to the shoulder girdle during flapping.

An important requirement of flight is a low body weight. As body weight increases, the muscle output required for flying increases. The largest living bird is the ostrich, and while it is much smaller than the largest mammals, it is flightless. For birds that do fly, reduction in body weight makes flight easier. Several modifications are found in birds to reduce body weight, including pneumatization of bones. Pneumatic bones are bones that are hollow, rather than filled with tissue ([link]). They contain air spaces that are sometimes connected to air sacs, and they have struts of bone to provide structural reinforcement. Pneumatic bones are not found in all birds, and they are more extensive in large birds than in small birds. Not all bones of the skeleton are pneumatic, although the skulls of almost all birds are.

Many birds have hollow, pneumatic bones, which make flight

easier.

Other modifications that reduce weight include the lack of a urinary bladder. Birds possess a cloaca, a structure that allows water to be reabsorbed from waste back into the bloodstream. Uric acid is not expelled as a liquid but is concentrated into urate salts, which are expelled along with fecal matter. In this way, water is not held in the urinary bladder, which would increase body weight. Most bird species only possess one ovary rather than two, further reducing body mass.

The air sacs that extend into bones to form pneumatic bones also join with the lungs and function in respiration. Unlike mammalian lungs in which air flows in two directions, as it is breathed in and out, airflow through bird lungs travels in one direction ([link]). Air sacs allow for this unidirectional airflow, which also creates a cross-current exchange system with the blood. In a cross-current or counter-current system, the air flows in one direction and the blood flows in the opposite direction, creating a very efficient means of gas exchange.

Avian respiration is an efficient system of gas exchange with air flowing unidirectionally. During inhalation, air passes from the trachea into posterior air sacs, then through the lungs to anterior air sacs. The air sacs are connected to the hollow interior of bones. During exhalation, air from air sacs passes into the lungs and out the trachea. (credit: modification of work by L. Shyamal)

Evolution of Birds

The evolutionary history of birds is still somewhat unclear. Due to the fragility of bird bones, they do not fossilize as well as other vertebrates. Birds are diapsids, meaning they have two fenestrations or openings in their skulls. Birds belong to a group of diapsids called the archosaurs, which also includes crocodiles and dinosaurs. It is commonly accepted that birds evolved from dinosaurs.

Dinosaurs (including birds) are further subdivided into two groups, the Saurischia ("lizard like") and the Ornithischia ("bird like"). Despite the names of these groups, it was not the bird-like dinosaurs that gave rise to modern birds. Rather, Saurischia diverged into two groups: One included the long-necked herbivorous dinosaurs, such as Apatosaurus. The second group, bipedal predators called theropods, includes birds. This course of evolution is suggested by similarities between theropod fossils and birds, specifically in the structure of the hip and wrist bones, as well as the presence of the wishbone, formed by the fusing of the clavicles.

One important fossil of an animal intermediate to dinosaurs and birds is *Archaeopteryx*, which is from the Jurassic period ([link]). *Archaeopteryx* is important in establishing the relationship between birds and dinosaurs, because it is an intermediate fossil, meaning it has characteristics of both dinosaurs and birds. Some scientists propose classifying it as a bird, but others prefer to classify it as a dinosaur. The fossilized skeleton of *Archaeopteryx* looks like that of a dinosaur, and it had teeth whereas birds do not, but it also had feathers modified for flight, a trait associated only with birds among modern animals. Fossils of older feathered dinosaurs exist, but the feathers do not have the characteristics of flight feathers.

(a) *Archaeopteryx* lived in the late Jurassic Period around 150 million years ago. It had teeth like a dinosaur, but had (b) flight feathers like modern birds, which can be seen in this

fossil.

It is still unclear exactly how flight evolved in birds. Two main theories exist, the arboreal ("tree") hypothesis and the terrestrial ("land") hypothesis. The arboreal hypothesis posits that tree-dwelling precursors to modern birds jumped from branch to branch using their feathers for gliding before becoming fully capable of flapping flight. In contrast to this, the terrestrial hypothesis holds that running was the stimulus for flight, as wings could be used to improve running and then became used for flapping flight. Like the question of how flight evolved, the question of how endothermy evolved in birds still is unanswered. Feathers provide insulation, but this is only beneficial if body heat is being produced internally. Similarly,

internal heat production is only viable if insulation is present to retain that heat. It has been suggested that one or the other—feathers or endothermy—evolved in response to some other selective pressure.

During the Cretaceous period, a group known as the Enantiornithes was the dominant bird type ([link]). Enantiornithes means "opposite birds," which refers to the fact that certain bones of the feet are joined differently than the way the bones are joined in modern birds. These birds formed an evolutionary line separate from modern birds, and they did not survive past the Cretaceous. Along with the Enantiornithes, Ornithurae birds (the evolutionary line that includes modern birds) were also present in the Cretaceous. After the extinction of Enantiornithes, modern birds became the dominant bird, with a large radiation occurring during the Cenozoic Era. Referred to as Neornithes ("new birds"), modern birds are now classified into two groups, the Paleognathae ("old jaw") or ratites, a group of flightless birds including ostriches, emus, rheas, and kiwis, and the Neognathae ("new jaw"), which includes all other birds.

Shanweiniao cooperorum was a species of Enantiornithes that did not survive past the Cretaceous period. (credit: Nobu

Tamura) Career Connection

Veterinarian Veterinarians treat diseases, disorders, and injuries in animals, primarily vertebrates. They treat pets, livestock, and animals in zoos and laboratories. Veterinarians usually treat dogs and cats, but also treat birds, reptiles, rabbits, and other animals that are kept as pets. Veterinarians that work with farms and ranches treat pigs, goats, cows, sheep, and horses.

Veterinarians are required to complete a degree in veterinary medicine, which includes taking courses in animal physiology, anatomy, microbiology, and pathology, among many other courses. The physiology and biochemistry of different vertebrate species differ greatly.

Veterinarians are also trained to perform surgery on many different vertebrate species, which requires an understanding of the vastly different anatomies of various species. For example, the stomach of ruminants like cows has four compartments versus one compartment for non-ruminants. Birds also have unique anatomical adaptations that allow for flight.

Some veterinarians conduct research in academic settings, broadening our knowledge of animals and medical science. One area of research involves understanding the transmission of animal diseases to humans, called zoonotic diseases. For example, one area of great concern is the transmission of the avian flu virus to humans. One type of avian flu virus, H5N1, is a highly pathogenic strain that has been spreading in birds in Asia, Europe, Africa, and the Middle East. Although the virus does not cross over easily to humans, there have been cases of bird-to-human transmission. More research is needed to understand how this virus can cross the species barrier and how its spread can be prevented.

Section Summary

Birds are endothermic, meaning they produce their own body heat and regulate their internal temperature independently of the external temperature. Feathers not only act as insulation but also allow for flight, providing lift with secondary feathers and thrust with primary feathers. Pneumatic bones are bones that are hollow rather than filled with tissue, containing air spaces that are sometimes connected to air sacs. Airflow through bird lungs travels in one direction, creating a cross-current exchange with the blood. Birds are diapsids and belong to a group called the archosaurs. Birds are thought to have evolved from theropod dinosaurs. The oldest known fossil of a bird is that of *Archaeopteryx*, which is from the Jurassic period. Modern birds are now classified into two groups, Paleognathae and Neognathae.

Review Questions

A bird or feathered dinosaur is _____.

- a. Neornithes
- b. Archaeopteryx
- c. Enantiornithes
- d. Paleognathae

В

Which of the following feather types helps to reduce drag produced by wind resistance during flight?

- a. flight feathers
- b. primary feathers
- c. secondary feathers
- d. contour feathers

D

Free Response

Explain why birds are thought to have evolved from theropod dinosaurs.

This is suggested by similarities observed between theropod fossils and birds, specifically in the design of the hip and wrist bones, as well as the presence of a furcula, or wishbone, formed by the fusing of the clavicles.

Describe three skeletal adaptations that allow for flight in birds.

The sternum of birds is larger than that of other vertebrates, which accommodates the force required for flapping. Another skeletal modification is the fusion of the clavicles, forming the furcula or wishbone. The furcula is flexible enough to bend during flapping and provides support to the shoulder girdle during flapping. Birds also have pneumatic bones that are hollow rather than filled with tissue.

Glossary

Archaeopteryx transition species from dinosaur to bird from the Jurassic period contour feather feather that creates an aerodynamic surface for efficient flight down feather feather specialized for insulation Enantiornithes dominant bird group during the Cretaceous period flight feather feather specialized for flight furcula wishbone formed by the fusing of the clavicles Neognathae birds other than the Paleognathae Neornithes modern birds Paleognathae ratites; flightless birds, including ostriches and emus pneumatic bone air-filled bone primary feather feather located at the tip of the wing that provides thrust secondary feather feather located at the base of the wing that provides lift theropod dinosaur group ancestral to birds The Evolution of Primates By the end of this section, you will be able to:

- Describe the derived features that distinguish primates from other animals
- Explain why scientists are having difficulty determining the true lines of descent in hominids

Order Primates of class Mammalia includes lemurs, tarsiers, monkeys, apes, and humans. Non-human primates live primarily in the tropical or subtropical regions of South America, Africa, and Asia. They range in size from the mouse lemur at 30 grams (1 ounce) to the mountain gorilla at 200 kilograms (441 pounds). The characteristics and evolution of primates is of particular interest to us as it allows us to understand the evolution of our own species.

Characteristics of Primates

All primate species possess adaptations for climbing trees, as they all descended from treedwellers. This arboreal heritage of primates has resulted in hands and feet that are adapted for brachiation, or climbing and swinging through trees. These adaptations include, but are not limited to: 1) a rotating shoulder joint, 2) a big toe that is widely separated from the other toes and thumbs, which are widely separated from fingers (except humans), which allow for gripping branches, 3) stereoscopic vision, two overlapping fields of vision from the eyes, which allows for the perception of depth and gauging distance. Other characteristics of primates are brains that are larger than those of most other mammals, claws that have been modified into flattened nails, typically only one offspring per pregnancy, and a trend toward holding the body upright.

Order Primates is divided into two groups: prosimians and anthropoids. Prosimians include the bush babies of Africa, the lemurs of Madagascar, and the lorises, pottos, and tarsiers of Southeast Asia. Anthropoids include monkeys, apes, and humans. In general, prosimians tend to be nocturnal (in contrast to diurnal anthropoids) and exhibit a smaller size and smaller brain than anthropoids.

Evolution of Primates

The first primate-like mammals are referred to as proto-primates. They were roughly similar to squirrels and tree shrews in size and appearance. The existing fossil evidence (mostly from North Africa) is very fragmented. These proto-primates remain largely mysterious creatures until more fossil evidence becomes available. The oldest known primate-like mammals with a relatively robust fossil record is *Plesiadapis* (although some researchers do not agree that *Plesiadapis* was a proto-primate). Fossils of this primate have been dated to approximately 55 million years ago. Plesiadapiforms were proto-primates that had some features of the teeth and skeleton in common with true primates. They were found in North America and Europe in the Cenozoic and went extinct by the end of the Eocene.

The first true primates were found in North America, Europe, Asia, and Africa in the Eocene Epoch. These early primates resembled present-day prosimians such as lemurs. Evolutionary changes continued in these early primates, with larger brains and eyes, and smaller muzzles being the trend. By the end of the Eocene Epoch, many of the early prosimian species went extinct due either to cooler temperatures or competition from the first monkeys.

Anthropoid monkeys evolved from prosimians during the Oligocene Epoch. By 40 million years ago, evidence indicates that monkeys were present in the New World (South America) and the Old World (Africa and Asia). New World monkeys are also called Platyrrhini—a reference to their broad noses ([link]). Old World monkeys are called Catarrhini—a reference to their narrow noses. There is still quite a bit of uncertainty about the origins of the New

World monkeys. At the time the platyrrhines arose, the continents of South American and Africa had drifted apart. Therefore, it is thought that monkeys arose in the Old World and reached the New World either by drifting on log rafts or by crossing land bridges. Due to this reproductive isolation, New World monkeys and Old World monkeys underwent separate adaptive radiations over millions of years. The New World monkeys are all arboreal, whereas Old World monkeys include arboreal and ground-dwelling species.

The howler monkey is native to Central and South America. It makes a call that sounds like a

lion roaring. (credit: Xavi Talleda)

Apes evolved from the catarrhines in Africa midway through the Cenozoic, approximately 25 million years ago. Apes are generally larger than monkeys and they do not possess a tail. All apes are capable of moving through trees, although many species spend most their time on the ground. Apes are more intelligent than monkeys, and they have relatively larger brains proportionate to body size. The apes are divided into two groups. The lesser apes comprise the family Hylobatidae, including gibbons and siamangs. The great apes include the genera *Pan* (chimpanzees and bonobos) ([link]**a**), *Gorilla* (gorillas), *Pongo* (orangutans), and *Homo* (humans) ([link]**b**). The very arboreal gibbons are smaller than the great apes; they have low sexual dimorphism (that is, the sexes are not markedly different in size); and they have relatively longer arms used for swinging through trees.

The (a) chimpanzee is one of the great apes. It possesses a relatively large brain and has no tail. (b) All great apes have a similar skeletal structure. (credit a: modification of work by Aaron Logan; credit b: modification of work by Tim

Vickers)

Human Evolution

The family Hominidae of order Primates includes the hominoids: the great apes ([link]). Evidence from the fossil record and from a comparison of human and chimpanzee DNA suggests that humans and chimpanzees diverged from a common hominoid ancestor approximately 6 million years ago. Several species evolved from the evolutionary branch that includes humans, although our species is the only surviving member. The term hominin is used to refer to those species that evolved after this split of the primate line, thereby designating species that are more closely related to humans than to chimpanzees. Hominins were predominantly bipedal and include those groups that likely gave rise to our species—including *Australopithecus, Homo habilis*, and *Homo erectus*—and those non-ancestral groups that can be considered "cousins" of modern humans, such as Neanderthals. Determining the true lines of descent in hominins is difficult. In years past, when relatively few hominin fossils had been recovered, some scientists believed that considering them in order, from oldest to youngest, would demonstrate the course of evolution from early hominins to modern humans. In the past several years, however, many new fossils have been found, and it is clear that there was often more than one species alive at any one time and that

many of the fossils found (and species named) represent hominin species that died out and are not ancestral to modern humans.

This chart shows the evolution of modern humans.

Very Early Hominins

Three species of very early hominids have made news in the past few years. The oldest of these, *Sahelanthropus tchadensis*, has been dated to nearly 7 million years ago. There is a single specimen of this genus, a skull that was a surface find in Chad. The fossil, informally called "Toumai," is a mosaic of primitive and evolved characteristics, and it is unclear how this fossil fits with the picture given by molecular data, namely that the line leading to modern humans and modern chimpanzees apparently bifurcated about 6 million years ago. It is not thought at this time that this species was an ancestor of modern humans.

A second, younger species, *Orrorin tugenensis*, is also a relatively recent discovery, found in 2000. There are several specimens of *Orrorin*. It is not known whether *Orrorin* was a human

ancestor, but this possibility has not been ruled out. Some features of *Orrorin* are more similar to those of modern humans than are the australopiths, although *Orrorin* is much older.

A third genus, *Ardipithecus*, was discovered in the 1990s, and the scientists who discovered the first fossil found that some other scientists did not believe the organism to be a biped (thus, it would not be considered a hominid). In the intervening years, several more specimens of *Ardipithecus*, classified as two different species, demonstrated that the organism was bipedal. Again, the status of this genus as a human ancestor is uncertain.

Early Hominins: Genus Australopithecus

Australopithecus ("southern ape") is a genus of hominin that evolved in eastern Africa approximately 4 million years ago and went extinct about 2 million years ago. This genus is of particular interest to us as it is thought that our genus, genus *Homo*, evolved from a common ancestor shared with *Australopithecus* about 2 million years ago (after likely passing through some transitional states). *Australopithecus* had a number of characteristics that were more similar to the great apes than to modern humans. For example, sexual dimorphism was more exaggerated than in modern humans. Males were up to 50 percent larger than females, a ratio that is similar to that seen in modern gorillas and orangutans. In contrast, modern human males are approximately 15 to 20 percent larger than females. The brain size of *Australopithecus* relative to its body mass was also smaller than modern humans and more similar to that seen in the great apes. A key feature that *Australopithecus* had in common with modern humans was bipedalism, although it is likely that *Australopithecus* also spent time in trees. Hominin footprints, similar to those of modern humans, were found in Laetoli, Tanzania and dated to 3.6 million years ago. They showed that hominins at the time of *Australopithecus* were walking upright.

There were a number of *Australopithecus* species, which are often referred to as *australopiths*. *Australopithecus anamensis* lived about 4.2 million years ago. More is known about another early species, *Australopithecus afarensis*, which lived between 3.9 and 2.9 million years ago. This species demonstrates a trend in human evolution: the reduction of the dentition and jaw in size. *A. afarensis* ([link]) had smaller canines and molars compared to apes, but these were larger than those of modern humans. Its brain size was 380–450 cubic centimeters, approximately the size of a modern chimpanzee brain. It also had prognathic jaws, which is a relatively longer jaw than that of modern humans. In the mid-1970s, the fossil of an adult female *A. afarensis* was found in the Afar region of Ethiopia and dated to 3.24 million years ago ([link]). The fossil, which is informally called "Lucy," is significant because it was the most complete australopith fossil found, with 40 percent of the skeleton recovered.

The skull of (a) *Australopithecus afarensis*, an early hominid that lived between two and three million years ago, resembled that of (b) modern humans but was smaller with a sloped forehead and prominent

jaw. This adult female *Australopithecus afarensis* skeleton, nicknamed Lucy, was discovered in the mid

1970s. (credit: "120"/Wikimedia Commons)

Australopithecus africanus lived between 2 and 3 million years ago. It had a slender build and was bipedal, but had robust arm bones and, like other early hominids, may have spent significant time in trees. Its brain was larger than that of *A. afarensis* at 500 cubic centimeters, which is slightly less than one-third the size of modern human brains. Two other species, *Australopithecus bahrelghazali* and *Australopithecus garhi*, have been added to the roster of australopiths in recent years.

A Dead End: Genus Paranthropus

The australopiths had a relatively slender build and teeth that were suited for soft food. In the past several years, fossils of hominids of a different body type have been found and dated to approximately 2.5 million years ago. These hominids, of the genus *Paranthropus*, were muscular, stood 1.3-1.4 meters tall, and had large grinding teeth. Their molars showed heavy

wear, suggesting that they had a coarse and fibrous vegetarian diet as opposed to the partially carnivorous diet of the australopiths. *Paranthropus* includes *Paranthropus robustus* of South Africa, and *Paranthropus aethiopicus* and *Paranthropus boisei* of East Africa. The hominids in this genus went extinct more than 1 million years ago and are not thought to be ancestral to modern humans, but rather members of an evolutionary branch on the hominin tree that left no descendants.

Early Hominins: Genus Homo

The human genus, *Homo*, first appeared between 2.5 and 3 million years ago. For many years, fossils of a species called *H. habilis* were the oldest examples in the genus *Homo*, but in 2010, a new species called *Homo gautengensis* was discovered and may be older. Compared to *A. africanus*, *H. habilis* had a number of features more similar to modern humans. *H. habilis* had a jaw that was less prognathic than the australopiths and a larger brain, at 600–750 cubic centimeters. However, *H. habilis* retained some features of older hominin species, such as long arms. The name *H. habilis* means "handy man," which is a reference to the stone tools that have been found with its remains.

Link to Learning

Watch this video about Smithsonian paleontologist Briana Pobiner explaining the link between hominin eating of meat and evolutionary trends.

Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"An arctic fox is a complex animal, well adapted to its environment. It changes coat color with the seasons, and has longer fur in winter to trap heat.

(credit: modification of work by Keith Morehouse,

USFWS)

The arctic fox is an example of a complex animal that has adapted to its environment and illustrates the relationships between an animal's form and function. The structures of animals consist of primary tissues that make up more complex organs and organ systems. Homeostasis allows an animal to maintain a balance between its internal and external environments.

Animal Form and Function

By the end of this section, you will be able to:

- Describe the various types of body plans that occur in animals
- Describe limits on animal size and shape
- Relate bioenergetics to body size, levels of activity, and the environment

Animals vary in form and function. From a sponge to a worm to a goat, an organism has a distinct body plan that limits its size and shape. Animals' bodies are also designed to interact with their environments, whether in the deep sea, a rainforest canopy, or the desert. Therefore, a large amount of information about the structure of an organism's body (anatomy) and the function of its cells, tissues and organs (physiology) can be learned by studying that organism's environment.

Body Plans

Animals exhibit different types of body symmetry. The sponge is asymmetrical, the sea anemone has radial symmetry, and the goat has bilateral symmetry.

Animal body plans follow set patterns related to symmetry. They are asymmetrical, radial, or bilateral in form as illustrated in [link]. Asymmetrical animals are animals with no pattern or symmetry; an example of an asymmetrical animal is a sponge. Radial symmetry, as illustrated in [link], describes when an animal has an up-and-down orientation: any plane cut along its longitudinal axis through the organism produces equal halves, but not a definite right or left side. This plan is found mostly in aquatic animals, especially organisms that attach themselves to a base, like a rock or a boat, and extract their food from the surrounding water as it flows around the organism. Bilateral symmetry is illustrated in the same figure by a goat. The goat also has an upper and lower component to it, but a plane cut from front to back separates the animal into definite right and left sides. Additional terms used when describing positions in the body are anterior (front), posterior (rear), dorsal (toward the back), and ventral (toward the stomach). Bilateral symmetry is found in both land-based and aquatic animals; it enables a high level of mobility.

Limits on Animal Size and Shape

Animals with bilateral symmetry that live in water tend to have a fusiform shape: this is a tubular shaped body that is tapered at both ends. This shape decreases the drag on the body as it moves through water and allows the animal to swim at high speeds. [link] lists the maximum speed of various animals. Certain types of sharks can swim at fifty kilometers an hour and some dolphins at 32 to 40 kilometers per hour. Land animals frequently travel faster, although the tortoise and snail are significantly slower than cheetahs. Another difference in the adaptations of aquatic and land-dwelling organisms is that aquatic organisms are constrained in shape by the forces of drag in the water since water has higher viscosity than air. On the other hand, land-dwelling organisms are constrained mainly by gravity, and drag is relatively unimportant. For example, most adaptations in birds are for gravity not for drag.

Maximum Speed of Assoried Land Marine Animais		
Animal	Speed (kmh)	Speed (mph)
Cheetah	113	70
Quarter horse	77	48
Fox	68	42
Shortfin mako shark	50	31
Domestic house cat	48	30
Human	45	28
Dolphin	32–40	20–25
Mouse	13	8
Snail	0.05	0.03

Maximum Speed of Assorted Land Marine Animals

Most animals have an exoskeleton, including insects, spiders, scorpions, horseshoe crabs, centipedes, and crustaceans. Scientists estimate that, of insects alone, there are over 30 million species on our planet. The exoskeleton is a hard covering or shell that provides benefits to the animal, such as protection against damage from predators and from water loss (for land animals); it also provides for the attachments of muscles.

As the tough and resistant outer cover of an arthropod, the exoskeleton may be constructed of a tough polymer such as chitin and is often biomineralized with materials such as calcium carbonate. This is fused to the animal's epidermis. Ingrowths of the exoskeleton, called apodemes, function as attachment sites for muscles, similar to tendons in more advanced animals ([link]). In order to grow, the animal must first synthesize a new exoskeleton underneath the old one and then shed or molt the original covering. This limits the animal's ability to grow continually, and may limit the individual's ability to mature if molting does not occur at the proper time. The thickness of the exoskeleton must be increased significantly to accommodate any increase in weight. It is estimated that a doubling of body size increases body weight by a factor of eight. The increasing thickness of the chitin necessary to support this weight limits most animals with an exoskeleton to a relatively small size. The same principles apply to endoskeletons, but they are more efficient because muscles are attached on the outside, making it easier to compensate for increased mass.

Apodemes are ingrowths on arthropod exoskeletons to which muscles attach. The apodemes on this crab leg are located above and below the fulcrum of the claw. Contraction of muscles attached to the apodemes pulls the claw

closed.

An animal with an endoskeleton has its size determined by the amount of skeletal system it needs in order to support the other tissues and the amount of muscle it needs for movement. As the body size increases, both bone and muscle mass increase. The speed achievable by the animal is a balance between its overall size and the bone and muscle that provide support and movement.

Limiting Effects of Diffusion on Size and Development

The exchange of nutrients and wastes between a cell and its watery environment occurs through the process of diffusion. All living cells are bathed in liquid, whether they are in a single-celled organism or a multicellular one. Diffusion is effective over a specific distance and limits the size that an individual cell can attain. If a cell is a single-celled microorganism, such as an amoeba, it can satisfy all of its nutrient and waste needs through diffusion. If the cell is too large, then diffusion is ineffective and the center of the cell does not receive adequate nutrients nor is it able to effectively dispel its waste.

An important concept in understanding how efficient diffusion is as a means of transport is the surface to volume ratio. Recall that any three-dimensional object has a surface area and volume; the ratio of these two quantities is the surface-to-volume ratio. Consider a cell shaped like a perfect sphere: it has a surface area of $4\pi r^2$, and a volume of $(4/3)\pi r^3$. The surface-to-volume ratio of a sphere is 3/r; as the cell gets bigger, its surface to volume ratio decreases, making diffusion less efficient. The larger the size of the sphere, or animal, the less surface area for diffusion it possesses.

The solution to producing larger organisms is for them to become multicellular. Specialization occurs in complex organisms, allowing cells to become more efficient at doing fewer tasks. For example, circulatory systems bring nutrients and remove waste, while respiratory systems provide oxygen for the cells and remove carbon dioxide from them. Other organ systems have developed further specialization of cells and tissues and efficiently control body functions. Moreover, surface-to-volume ratio applies to other areas of animal development, such as the relationship between muscle mass and cross-sectional surface area in supporting skeletons, and in the relationship between muscle mass and the generation of dissipation of heat.

Link to Learning

Visit <u>this interactive site</u> to see an entire animal (a zebrafish embryo) at the cellular and subcellular level. Use the zoom and navigation functions for a virtual nanoscopy exploration.

Animal Bioenergetics

All animals must obtain their energy from food they ingest or absorb. These nutrients are converted to adenosine triphosphate (ATP) for short-term storage and use by all cells. Some animals store energy for slightly longer times as glycogen, and others store energy for much longer times in the form of triglycerides housed in specialized adipose tissues. No energy system is one hundred percent efficient, and an animal's metabolism produces waste energy in the form of heat. If an animal can conserve that heat and maintain a relatively constant body temperature, it is classified as a warm-blooded animal and called an endotherm. The insulation used to conserve the body heat comes in the forms of fur, fat, or feathers. The absence of insulation in ectothermic animals increases their dependence on the environment for body heat.

The amount of energy expended by an animal over a specific time is called its metabolic rate. The rate is measured variously in joules, calories, or kilocalories (1000 calories). Carbohydrates and proteins contain about 4.5 to 5 kcal/g, and fat contains about 9 kcal/g. Metabolic rate is estimated as the basal metabolic rate (BMR) in endothermic animals at rest and as the standard metabolic rate (SMR) in ectotherms. Human males have a BMR of 1600 to 1800 kcal/day, and human females have a BMR of 1300 to 1500 kcal/day. Even with insulation, endothermal animals require extensive amounts of energy to maintain a constant body temperature. An ectotherm such as an alligator has an SMR of 60 kcal/day.

Energy Requirements Related to Body Size

Smaller endothermic animals have a greater surface area for their mass than larger ones ([link]). Therefore, smaller animals lose heat at a faster rate than larger animals and require more energy to maintain a constant internal temperature. This results in a smaller

endothermic animal having a higher BMR, per body weight, than a larger endothermic animal.

The mouse has a much higher metabolic rate than the elephant. (credit "mouse": modification of work by Magnus Kjaergaard; credit "elephant": modification of work by "TheLizardQueen"/Flickr)

Energy Requirements Related to Levels of Activity

The more active an animal is, the more energy is needed to maintain that activity, and the higher its BMR or SMR. The average daily rate of energy consumption is about two to four times an animal's BMR or SMR. Humans are more sedentary than most animals and have an average daily rate of only 1.5 times the BMR. The diet of an endothermic animal is determined by its BMR. For example: the type of grasses, leaves, or shrubs that an herbivore eats affects the number of calories that it takes in. The relative caloric content of herbivore foods, in descending order, is tall grasses > legumes > short grasses > forbs (any broad-leaved plant, not a grass) > subshrubs > annuals/biennials.

Energy Requirements Related to Environment

Animals adapt to extremes of temperature or food availability through torpor. Torpor is a process that leads to a decrease in activity and metabolism and allows animals to survive

adverse conditions. Torpor can be used by animals for long periods, such as entering a state of hibernation during the winter months, in which case it enables them to maintain a reduced body temperature. During hibernation, ground squirrels can achieve an abdominal temperature of 0° C (32° F), while a bear's internal temperature is maintained higher at about 37° C (99° F).

If torpor occurs during the summer months with high temperatures and little water, it is called estivation. Some desert animals use this to survive the harshest months of the year. Torpor can occur on a daily basis; this is seen in bats and hummingbirds. While endothermy is limited in smaller animals by surface to volume ratio, some organisms can be smaller and still be endotherms because they employ daily torpor during the part of the day that is coldest. This allows them to conserve energy during the colder parts of the day, when they consume more energy to maintain their body temperature.

Animal Body Planes and Cavities

A standing vertebrate animal can be divided by several planes. A sagittal plane divides the body into right and left portions. A midsagittal plane divides the body exactly in the middle, making two equal right and left halves. A frontal plane (also called a coronal plane) separates the front from the back. A transverse plane (or, horizontal plane) divides the animal into upper and lower portions. This is sometimes called a cross section, and, if the transverse cut is at an angle, it is called an oblique plane. [link] illustrates these planes on a goat (a four-legged animal) and a human being.

Shown are the planes of a quadruped goat and a bipedal human. The midsagittal plane divides the body exactly in half, into right and left portions. The frontal plane divides the front and

back, and the transverse plane divides the body into upper and lower

portions.

Vertebrate animals have a number of defined body cavities, as illustrated in [link]. Two of these are major cavities that contain smaller cavities within them. The dorsal cavity contains the cranial and the vertebral (or spinal) cavities. The ventral cavity contains the thoracic cavity, which in turn contains the pleural cavity around the lungs and the pericardial cavity, which surrounds the heart. The ventral cavity also contains the abdominopelvic cavity, which can be separated into the abdominal and the pelvic cavities.

Vertebrate animals have two major body cavities. The dorsal cavity, indicated in green, contains the cranial and the spinal cavity. The ventral cavity, indicated in yellow, contains the thoracic cavity and the abdominopelvic cavity. The thoracic cavity is separated from the abdominopelvic cavity by the diaphragm. The thoracic cavity is separated into the abdominal

cavity and the pelvic cavity by an imaginary line parallel to the pelvis bones. (credit:

modification of work by NCI) Career Connections

Physical AnthropologistPhysical anthropologists study the adaption, variability, and evolution of human beings, plus their living and fossil relatives. They can work in a variety of settings, although most will have an academic appointment at a university, usually in an anthropology department or a biology, genetics, or zoology department.

Non-academic positions are available in the automotive and aerospace industries where the focus is on human size, shape, and anatomy. Research by these professionals might range from studies of how the human body reacts to car crashes to exploring how to make seats more comfortable. Other non-academic positions can be obtained in museums of natural history, anthropology, archaeology, or science and technology. These positions involve educating students from grade school through graduate school. Physical anthropologists serve as education coordinators, collection managers, writers for museum publications, and as administrators. Zoos employ these professionals, especially if they have an expertise in primate biology; they work in collection management and captive breeding programs for endangered species. Forensic science utilizes physical anthropology expertise in identifying human and animal remains, assisting in determining the cause of death, and for expert testimony in trials.

Section Summary

Animal bodies come in a variety of sizes and shapes. Limits on animal size and shape include impacts to their movement. Diffusion affects their size and development. Bioenergetics describes how animals use and obtain energy in relation to their body size, activity level, and environment.

Review Questions

Which type of animal maintains a constant internal body temperature?

- a. endotherm
- b. ectotherm

- c. coelomate
- d. mesoderm

А

The symmetry found in animals that move swiftly is _____.

- a. radial
- b. bilateral
- c. sequential
- d. interrupted

В

What term describes the condition of a desert mouse that lowers its metabolic rate and "sleeps" during the hot day?

- a. turgid
- b. hibernation
- c. estivation
- d. normal sleep pattern

С

A plane that divides an animal into equal right and left portions is _____.

- a. diagonal
- b. midsagittal
- c. coronal
- d. transverse

В

A plane that divides an animal into dorsal and ventral portions is _____.

- a. sagittal
- b. midsagittal
- c. coronal
- d. transverse

D

The pleural cavity is a part of which cavity?

- a. dorsal cavity
- b. thoracic cavity
- c. abdominal cavity
- d. pericardial cavity

Free Response

How does diffusion limit the size of an organism? How is this counteracted?

Diffusion is effective over a very short distance. If a cell exceeds this distance in its size, the center of the cell cannot get adequate nutrients nor can it expel enough waste to survive. To compensate for this, cells can loosely adhere to each other in a liquid medium, or develop into multi-celled organisms that use circulatory and respiratory systems to deliver nutrients and remove wastes.

What is the relationship between BMR and body size? Why?

Basal Metabolic Rate is an expression of the metabolic processes that occur to maintain an individual's functioning and body temperature. Smaller bodied animals have a relatively large surface area compared to a much larger animal. The small animal's large surface area leads to increased heat loss that the animal must compensate for, resulting in a higher BMR. A large animal, having less relative surface area, does not lose as much heat and has a correspondingly lower BMR.

Glossary

apodeme

ingrowth of an animal's exoskeleton that functions as an attachment site for muscles

asymmetrical

describes animals with no axis of symmetry in their body pattern basal metabolic rate (BMR)

metabolic rate at rest in endothermic animals

dorsal cavity

body cavity on the posterior or back portion of an animal; includes the cranial and vertebral cavities

ectotherm

animal incapable of maintaining a relatively constant internal body temperature

endotherm

animal capable of maintaining a relatively constant internal body temperature

estivation

torpor in response to extremely high temperatures and low water availability frontal (coronal) plane

plane cutting through an animal separating the individual into front and back portions

fusiform

animal body shape that is tubular and tapered at both ends

hibernation

torpor over a long period of time, such as a winter

midsagittal plane

plane cutting through an animal separating the individual into even right and left sides

sagittal plane

plane cutting through an animal separating the individual into right and left sides

standard metabolic rate (SMR)

metabolic rate at rest in ectothermic animals

torpor

decrease in activity and metabolism that allows an animal to survive adverse conditions

transverse (horizontal) plane

plane cutting through an animal separating the individual into upper and lower portions

ventral cavity

body cavity on the anterior or front portion of an animal that includes the thoracic cavities and the abdominopelvic cavities

Animal Primary Tissues

By the end of this section, you will be able to:

- Describe epithelial tissues
- Discuss the different types of connective tissues in animals
- Describe three types of muscle tissues
- Describe nervous tissue

The tissues of multicellular, complex animals are four primary types: epithelial, connective, muscle, and nervous. Recall that tissues are groups of similar cells group of similar cells carrying out related functions. These tissues combine to form organs—like the skin or kidney—that have specific, specialized functions within the body. Organs are organized into organ systems to perform functions; examples include the circulatory system, which consists of the heart and blood vessels, and the digestive system, consisting of several organs, including the stomach, intestines, liver, and pancreas. Organ systems come together to create an entire organism.

Epithelial Tissues

Epithelial tissues cover the outside of organs and structures in the body and line the lumens of organs in a single layer or multiple layers of cells. The types of epithelia are classified by the shapes of cells present and the number of layers of cells. Epithelia composed of a single layer of cells is called simple epithelia; epithelial tissue composed of multiple layers is called stratified epithelia. [link] summarizes the different types of epithelial tissues.

Different Types of Epithelial Tissues Description Location

Cell shape

Different Types of Epithelial Tissues							
Cell shape	Description	Location					
squamous	flat, irregular round shape	simple: lung alveoli, capillaries stratified: skin, mouth, vagina					
cuboidal	cube shaped, central nucleus	glands, renal tubules					
columnar	tall, narrow, nucleus toward base tall, narrow, nucleus along cell	simple: digestive tract pseudostratified: respiratory tract					
transitional	round, simple but appear stratified	urinary bladder					

Squamous Epithelia

Squamous epithelial cells are generally round, flat, and have a small, centrally located nucleus. The cell outline is slightly irregular, and cells fit together to form a covering or lining. When the cells are arranged in a single layer (simple epithelia), they facilitate diffusion in tissues, such as the areas of gas exchange in the lungs and the exchange of nutrients and waste at blood capillaries.

Squamous epithelia cells (a) have a slightly irregular shape, and a small, centrally located nucleus. These cells can be stratified into layers, as in (b) this human cervix specimen. (credit b: modification of work by Ed Uthman; scale-bar data from Matt

Russell)

[link]a illustrates a layer of squamous cells with their membranes joined together to form an epithelium. Image [link]b illustrates squamous epithelial cells arranged in stratified layers,

where protection is needed on the body from outside abrasion and damage. This is called a stratified squamous epithelium and occurs in the skin and in tissues lining the mouth and vagina.

Cuboidal Epithelia

Cuboidal epithelial cells, shown in [link], are cube-shaped with a single, central nucleus. They are most commonly found in a single layer representing a simple epithelia in glandular tissues throughout the body where they prepare and secrete glandular material. They are also found in the walls of tubules and in the ducts of the kidney and liver.

Simple cuboidal epithelial cells line tubules in the mammalian kidney, where they are

involved in filtering the blood.

Columnar Epithelia

Columnar epithelial cells are taller than they are wide: they resemble a stack of columns in an epithelial layer, and are most commonly found in a single-layer arrangement. The nuclei of columnar epithelial cells in the digestive tract appear to be lined up at the base of the cells, as illustrated in <u>[link]</u>. These cells absorb material from the lumen of the digestive tract and prepare it for entry into the body through the circulatory and lymphatic systems.

Simple columnar epithelial cells absorb material from the digestive tract. Goblet cells secret

mucous into the digestive tract lumen.

Columnar epithelial cells lining the respiratory tract appear to be stratified. However, each cell is attached to the base membrane of the tissue and, therefore, they are simple tissues. The nuclei are arranged at different levels in the layer of cells, making it appear as though there is more than one layer, as seen in [link]. This is called pseudostratified, columnar epithelia. This cellular covering has cilia at the apical, or free, surface of the cells. The cilia enhance the movement of mucous and trapped particles out of the respiratory tract, helping to protect the system from invasive microorganisms and harmful material that has been breathed into the body. Goblet cells are interspersed in some tissues (such as the lining of the trachea). The goblet cells contain mucous that traps irritants, which in the case of the trachea keep these irritants from getting into the lungs.

Pseudostratified columnar epithelia line the respiratory tract. They exist in one layer, but the arrangement of nuclei at different levels makes it appear that there is more than one layer. Goblet cells interspersed between the columnar epithelial cells secrete mucous into the

respiratory tract.

Transitional Epithelia

Transitional or uroepithelial cells appear only in the urinary system, primarily in the bladder and ureter. These cells are arranged in a stratified layer, but they have the capability of appearing to pile up on top of each other in a relaxed, empty bladder, as illustrated in [link]. As the urinary bladder fills, the epithelial layer unfolds and expands to hold the volume of urine introduced into it. As the bladder fills, it expands and the lining becomes thinner. In other words, the tissue transitions from thick to thin.

Art Connection

Transitional epithelia of the urinary bladder undergo changes in thickness depending on how

full the bladder is.

Which of the following statements about types of epithelial cells is false?

- a. Simple columnar epithelial cells line the tissue of the lung.
- b. Simple cuboidal epithelial cells are involved in the filtering of blood in the kidney.
- c. Pseudostratisfied columnar epithilia occur in a single layer, but the arrangement of nuclei makes it appear that more than one layer is present.
- d. Transitional epithelia change in thickness depending on how full the bladder is.

Connective Tissues

Connective tissues are made up of a matrix consisting of living cells and a non-living substance, called the ground substance. The ground substance is made of an organic substance (usually a protein) and an inorganic substance (usually a mineral or water). The principal cell of connective tissues is the fibroblast. This cell makes the fibers found in nearly all of the connective tissues. Fibroblasts are motile, able to carry out mitosis, and can synthesize whichever connective tissue is needed. Macrophages, lymphocytes, and, occasionally, leukocytes can be found in some of the tissues. Some tissues have specialized cells that are not found in the others. The matrix in connective tissues gives the tissue its density. When a connective tissue has a high concentration of cells or fibers, it has proportionally a less dense matrix.

The organic portion or protein fibers found in connective tissues are either collagen, elastic, or reticular fibers. Collagen fibers provide strength to the tissue, preventing it from being torn or separated from the surrounding tissues. Elastic fibers are made of the protein elastin; this fiber can stretch to one and one half of its length and return to its original size and shape. Elastic fibers provide flexibility to the tissues. Reticular fibers are the third type of protein

fiber found in connective tissues. This fiber consists of thin strands of collagen that form a network of fibers to support the tissue and other organs to which it is connected. The various types of connective tissues, the types of cells and fibers they are made of, and sample locations of the tissues is summarized in [link].

Connective Tissues								
Tissue	Cells	Fibers	Location					
loose/areolar	fibroblasts, macrophages, some lymphocytes, some neutrophils	few: collagen, elastic, reticular	around blood vessels; anchors epithelia					
dense, fibrous connective tissue	fibroblasts, macrophages,	mostly collagen	irregular: skin regular: tendons, ligaments					
cartilage	chondrocytes, chondroblasts	hyaline: few collagen fibrocartilage: large amount of collagen	shark skeleton, fetal bones, human ears, intervertebral discs					
bone	osteoblasts, osteocytes, osteoclasts	some: collagen, elastic	vertebrate skeletons					
adipose	adipocytes	few	adipose (fat)					
blood	red blood cells, white blood cells	none	blood					

Loose/Areolar Connective Tissue

Loose connective tissue, also called areolar connective tissue, has a sampling of all of the components of a connective tissue. As illustrated in [link], loose connective tissue has some fibroblasts; macrophages are present as well. Collagen fibers are relatively wide and stain a light pink, while elastic fibers are thin and stain dark blue to black. The space between the formed elements of the tissue is filled with the matrix. The material in the connective tissue gives it a loose consistency similar to a cotton ball that has been pulled apart. Loose connective tissue is found around every blood vessel and helps to keep the vessel in place. The tissue is also found around and between most body organs. In summary, areolar tissue is tough, yet flexible, and comprises membranes.

Loose connective tissue is composed of loosely woven collagen and elastic fibers. The fibers and other components of the connective tissue matrix are secreted by

fibroblasts.

Fibrous Connective Tissue

Fibrous connective tissues contain large amounts of collagen fibers and few cells or matrix material. The fibers can be arranged irregularly or regularly with the strands lined up in parallel. Irregularly arranged fibrous connective tissues are found in areas of the body where stress occurs from all directions, such as the dermis of the skin. Regular fibrous connective tissue, shown in [link], is found in tendons (which connect muscles to bones) and ligaments (which connect bones to bones).

Fibrous connective tissue from the tendon has strands of collagen fibers lined up in

parallel.

Cartilage

Cartilage is a connective tissue with a large amount of the matrix and variable amounts of fibers. The cells, called chondrocytes, make the matrix and fibers of the tissue. Chondrocytes are found in spaces within the tissue called lacunae.

A cartilage with few collagen and elastic fibers is hyaline cartilage, illustrated in [link]. The lacunae are randomly scattered throughout the tissue and the matrix takes on a milky or scrubbed appearance with routine histological stains. Sharks have cartilaginous skeletons, as does nearly the entire human skeleton during a specific pre-birth developmental stage. A remnant of this cartilage persists in the outer portion of the human nose. Hyaline cartilage is also found at the ends of long bones, reducing friction and cushioning the articulations of these bones.

Hyaline cartilage consists of a matrix with cells called chondrocytes embedded in it. The chondrocytes exist in cavities in the matrix called

lacunae.

Elastic cartilage has a large amount of elastic fibers, giving it tremendous flexibility. The ears of most vertebrate animals contain this cartilage as do portions of the larynx, or voice box. Fibrocartilage contains a large amount of collagen fibers, giving the tissue tremendous strength. Fibrocartilage comprises the intervertebral discs in vertebrate animals. Hyaline cartilage found in movable joints such as the knee and shoulder becomes damaged as a result of age or trauma. Damaged hyaline cartilage is replaced by fibrocartilage and results in the joints becoming "stiff."

Bone

Bone, or osseous tissue, is a connective tissue that has a large amount of two different types of matrix material. The organic matrix is similar to the matrix material found in other connective tissues, including some amount of collagen and elastic fibers. This gives strength and flexibility to the tissue. The inorganic matrix consists of mineral salts—mostly calcium salts—that give the tissue hardness. Without adequate organic material in the matrix, the tissue breaks; without adequate inorganic material in the matrix, the tissue bends.

There are three types of cells in bone: osteoblasts, osteocytes, and osteoclasts. Osteoblasts are active in making bone for growth and remodeling. Osteoblasts deposit bone material into the matrix and, after the matrix surrounds them, they continue to live, but in a reduced metabolic state as osteocytes. Osteocytes are found in lacunae of the bone. Osteoclasts are active in

breaking down bone for bone remodeling, and they provide access to calcium stored in tissues. Osteoclasts are usually found on the surface of the tissue.

Bone can be divided into two types: compact and spongy. Compact bone is found in the shaft (or diaphysis) of a long bone and the surface of the flat bones, while spongy bone is found in the end (or epiphysis) of a long bone. Compact bone is organized into subunits called osteons, as illustrated in [link]. A blood vessel and a nerve are found in the center of the structure within the Haversian canal, with radiating circles of lacunae around it known as lamellae. The wavy lines seen between the lacunae are microchannels called canaliculi; they connect the lacunae to aid diffusion between the cells. Spongy bone is made of tiny plates called trabeculae these plates serve as struts to give the spongy bone strength. Over time, these plates can break causing the bone to become less resilient. Bone tissue forms the internal skeleton of vertebrate animals, providing structure to the animal and points of attachment for tendons.

(a) Compact bone is a dense matrix on the outer surface of bone. Spongy bone, inside the compact bone, is porous with web-like trabeculae. (b) Compact bone is organized into rings called osteons. Blood vessels, nerves, and lymphatic vessels are found in the central Haversian canal. Rings of lamellae surround the Haversian canal. Between the lamellae are cavities called lacunae. Canaliculi are microchannels connecting the lacunae together. (c) Osteoblasts surround the exterior of the bone. Osteoclasts bore tunnels into the bone and osteocytes are found in the

lacunae.

Adipose Tissue

Adipose tissue, or fat tissue, is considered a connective tissue even though it does not have fibroblasts or a real matrix and only has a few fibers. Adipose tissue is made up of cells called adipocytes that collect and store fat in the form of triglycerides, for energy metabolism. Adipose tissues additionally serve as insulation to help maintain body temperatures, allowing animals to be endothermic, and they function as cushioning against damage to body organs. Under a microscope, adipose tissue cells appear empty due to the extraction of fat during the processing of the material for viewing, as seen in [link]. The thin lines in the image are the cell membranes, and the nuclei are the small, black dots at the edges of the cells.

Adipose is a connective tissue is made up of cells called adipocytes. Adipocytes have small

nuclei localized at the cell edge.

Blood

Blood is considered a connective tissue because it has a matrix, as shown in <u>[link]</u>. The living cell types are red blood cells (RBC), also called erythrocytes, and white blood cells (WBC), also called leukocytes. The fluid portion of whole blood, its matrix, is commonly called plasma.

Blood is a connective tissue that has a fluid matrix, called plasma, and no fibers. Erythrocytes (red blood cells), the predominant cell type, are involved in the transport of oxygen and

carbon dioxide. Also present are various leukocytes (white blood cells) involved in immune

response.

The cell found in greatest abundance in blood is the erythrocyte. Erythrocytes are counted in millions in a blood sample: the average number of red blood cells in primates is 4.7 to 5.5 million cells per microliter. Erythrocytes are consistently the same size in a species, but vary in size between species. For example, the average diameter of a primate red blood cell is 7.5 μ l, a dog is close at 7.0 μ l, but a cat's RBC diameter is 5.9 μ l. Sheep erythrocytes are even smaller at 4.6 μ l. Mammalian erythrocytes lose their nuclei and mitochondria when they are released from the bone marrow where they are made. Fish, amphibian, and avian red blood cells maintain their nuclei and mitochondria throughout the cell's life. The principal job of an erythrocyte is to carry and deliver oxygen to the tissues.

Leukocytes are the predominant white blood cells found in the peripheral blood. Leukocytes are counted in the thousands in the blood with measurements expressed as ranges: primate counts range from 4,800 to 10,800 cells per μ l, dogs from 5,600 to 19,200 cells per μ l, cats from 8,000 to 25,000 cells per μ l, cattle from 4,000 to 12,000 cells per μ l, and pigs from 11,000 to 22,000 cells per μ l.

Lymphocytes function primarily in the immune response to foreign antigens or material. Different types of lymphocytes make antibodies tailored to the foreign antigens and control the production of those antibodies. Neutrophils are phagocytic cells and they participate in one of the early lines of defense against microbial invaders, aiding in the removal of bacteria that has entered the body. Another leukocyte that is found in the peripheral blood is the monocyte. Monocytes give rise to phagocytic macrophages that clean up dead and damaged cells in the body, whether they are foreign or from the host animal. Two additional leukocytes in the blood are eosinophils and basophils—both help to facilitate the inflammatory response.

The slightly granular material among the cells is a cytoplasmic fragment of a cell in the bone marrow. This is called a platelet or thrombocyte. Platelets participate in the stages leading up to coagulation of the blood to stop bleeding through damaged blood vessels. Blood has a number of functions, but primarily it transports material through the body to bring nutrients to cells and remove waste material from them.

Muscle Tissues

There are three types of muscle in animal bodies: smooth, skeletal, and cardiac. They differ by the presence or absence of striations or bands, the number and location of nuclei, whether they are voluntarily or involuntarily controlled, and their location within the body. [link] summarizes these differences.

Types of Muscles								
Type of Muscle	Striations	Nuclei	Control	Location				
smooth	no	single, in center	involuntary	visceral organs				
skeletal	yes	many, at periphery	voluntary	skeletal muscles				
cardiac	yes	single, in center	involuntary	heart				

Smooth Muscle

Smooth muscle does not have striations in its cells. It has a single, centrally located nucleus, as shown in [link]. Constriction of smooth muscle occurs under involuntary, autonomic nervous control and in response to local conditions in the tissues. Smooth muscle tissue is also called non-striated as it lacks the banded appearance of skeletal and cardiac muscle. The walls of blood vessels, the tubes of the digestive system, and the tubes of the reproductive systems are composed of mostly smooth muscle.

Smooth muscle cells do not have striations, while skeletal muscle cells do. Cardiac muscle cells have striations, but, unlike the multinucleate skeletal cells, they have only one nucleus. Cardiac muscle tissue also has intercalated discs, specialized regions running along the plasma membrane that join adjacent cardiac muscle cells and assist in passing an electrical

impulse from cell to

cell.

Skeletal Muscle

Skeletal muscle has striations across its cells caused by the arrangement of the contractile proteins actin and myosin. These muscle cells are relatively long and have multiple nuclei along the edge of the cell. Skeletal muscle is under voluntary, somatic nervous system control and is found in the muscles that move bones. [link] illustrates the histology of skeletal muscle.

Cardiac Muscle

Cardiac muscle, shown in [link], is found only in the heart. Like skeletal muscle, it has cross striations in its cells, but cardiac muscle has a single, centrally located nucleus. Cardiac muscle is not under voluntary control but can be influenced by the autonomic nervous system to speed up or slow down. An added feature to cardiac muscle cells is a line than extends along the end of the cell as it abuts the next cardiac cell in the row. This line is called an intercalated disc: it assists in passing electrical impulse efficiently from one cell to the next and maintains the strong connection between neighboring cardiac cells.

Nervous Tissues

Nervous tissues are made of cells specialized to receive and transmit electrical impulses from specific areas of the body and to send them to specific locations in the body. The main cell of the nervous system is the neuron, illustrated in [link]. The large structure with a central nucleus is the cell body of the neuron. Projections from the cell body are either dendrites specialized in receiving input or a single axon specialized in transmitting impulses. Some glial cells are also shown. Astrocytes regulate the chemical environment of the nerve cell, and oligodendrocytes insulate the axon so the electrical nerve impulse is transferred more efficiently. Other glial cells that are not shown support the nutritional and waste requirements of the neuron. Some of the glial cells are phagocytic and remove debris or damaged cells from the tissue. A nerve consists of neurons and glial cells.

The neuron has projections called dendrites that receive signals and projections called axons that send signals. Also shown are two types of glial cells: astrocytes regulate the chemical environment of the nerve cell, and oligodendrocytes insulate the axon so the electrical nerve

impulse is transferred more efficiently. Link to Learning

Click through the *interactive review* to learn more about epithelial tissues.

Career Connections

PathologistA pathologist is a medical doctor or veterinarian who has specialized in the laboratory detection of disease in animals, including humans. These professionals complete medical school education and follow it with an extensive post-graduate residency at a medical center. A pathologist may oversee clinical laboratories for the evaluation of body tissue and blood samples for the detection of disease or infection. They examine tissue

specimens through a microscope to identify cancers and other diseases. Some pathologists perform autopsies to determine the cause of death and the progression of disease.

Section Summary

The basic building blocks of complex animals are four primary tissues. These are combined to form organs, which have a specific, specialized function within the body, such as the skin or kidney. Organs are organized together to perform common functions in the form of systems. The four primary tissues are epithelia, connective tissues, muscle tissues, and nervous tissues.

Art Connections

[link] Which of the following statements about types of epithelial cells is false?

- a. Simple columnar epithelial cells line the tissue of the lung.
- b. Simple cuboidal epithelial cells are involved in the filtering of blood in the kidney.
- c. Pseudostratisfied columnar epithilia occur in a single layer, but the arrangement of nuclei makes it appear that more than one layer is present.
- d. Transitional epithelia change in thickness depending on how full the bladder is.

[link] A

Review Questions

Which type of epithelial cell is best adapted to aid diffusion?

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

A

Which type of epithelial cell is found in glands?

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

В

Which type of epithelial cell is found in the urinary bladder?

- a. squamous
- b. cuboidal
- c. columnar
- d. transitional

D

Which type of connective tissue has the most fibers?

- a. loose connective tissue
- b. fibrous connective tissue
- c. cartilage
- d. bone

В

Which type of connective tissue has a mineralized different matrix?

- a. loose connective tissue
- b. fibrous connective tissue
- c. cartilage
- d. bone

D

The cell found in bone that breaks it down is called an _____.

- a. osteoblast
- b. osteocyte
- c. osteoclast
- d. osteon

С

The cell found in bone that makes the bone is called an _____.

- a. osteoblast
- b. osteocyte
- c. osteoclast
- d. osteon

A

Plasma is the _____.

- a. fibers in blood
- b. matrix of blood
- c. cell that phagocytizes bacteria
- d. cell fragment found in the tissue

В

The type of muscle cell under voluntary control is the _____.

a. smooth muscle

- b. skeletal muscle
- c. cardiac muscle
- d. visceral muscle

В

The part of a neuron that contains the nucleus is the

- a. cell body
- b. dendrite
- c. axon
- d. glial

A

Free Response

How can squamous epithelia both facilitate diffusion and prevent damage from abrasion?

Squamous epithelia can be either simple or stratified. As a single layer of cells, it presents a very thin epithelia that minimally inhibits diffusion. As a stratified epithelia, the surface cells can be sloughed off and the cells in deeper layers protect the underlying tissues from damage.

What are the similarities between cartilage and bone?

Both contain cells other than the traditional fibroblast. Both have cells that lodge in spaces within the tissue called lacunae. Both collagen and elastic fibers are found in bone and cartilage. Both tissues participate in vertebrate skeletal development and formation.

Glossary

canaliculus

microchannel that connects the lacunae and aids diffusion between cells cartilage

type of connective tissue with a large amount of ground substance matrix, cells called chondrocytes, and some amount of fibers

chondrocyte

cell found in cartilage

columnar epithelia

epithelia made of cells taller than they are wide, specialized in absorption connective tissue

type of tissue made of cells, ground substance matrix, and fibers cuboidal epithelia

epithelia made of cube-shaped cells, specialized in glandular functions epithelial tissue

tissue that either lines or covers organs or other tissues fibrous connective tissue

type of connective tissue with a high concentration of fibers

lacuna

space in cartilage and bone that contains living cells loose (areolar) connective tissue

type of connective tissue with small amounts of cells, matrix, and fibers; found around blood vessels

matrix

component of connective tissue made of both living and non-living (ground substances) cells

osteon

subunit of compact bone

pseudostratified

layer of epithelia that appears multilayered, but is a simple covering simple epithelia

single layer of epithelial cells

squamous epithelia

type of epithelia made of flat cells, specialized in aiding diffusion or preventing abrasion

stratified epithelia

multiple layers of epithelial cells

trabecula

tiny plate that makes up spongy bone and gives it strength

transitional epithelia

epithelia that can transition for appearing multilayered to simple; also called uroepithelial

Homeostasis

By the end of this section, you will be able to:

- Define homeostasis
- Describe the factors affecting homeostasis
- Discuss positive and negative feedback mechanisms used in homeostasis
- Describe thermoregulation of endothermic and ectothermic animals

Animal organs and organ systems constantly adjust to internal and external changes through a process called homeostasis ("steady state"). These changes might be in the level of glucose or calcium in blood or in external temperatures. Homeostasis means to maintain dynamic equilibrium in the body. It is dynamic because it is constantly adjusting to the changes that the body's systems encounter. It is equilibrium because body functions are kept within specific ranges. Even an animal that is apparently inactive is maintaining this homeostatic equilibrium.

Homeostatic Process

The goal of homeostasis is the maintenance of equilibrium around a point or value called a set point. While there are normal fluctuations from the set point, the body's systems will

usually attempt to go back to this point. A change in the internal or external environment is called a stimulus and is detected by a receptor; the response of the system is to adjust the deviation parameter toward the set point. For instance, if the body becomes too warm, adjustments are made to cool the animal. If the blood's glucose rises after a meal, adjustments are made to lower the blood glucose level by getting the nutrient into tissues that need it or to store it for later use.

Control of Homeostasis

When a change occurs in an animal's environment, an adjustment must be made. The receptor senses the change in the environment, then sends a signal to the control center (in most cases, the brain) which in turn generates a response that is signaled to an effector. The effector is a muscle (that contracts or relaxes) or a gland that secretes. Homeostatis is maintained by negative feedback loops. Positive feedback loops actually push the organism further out of homeostasis, but may be necessary for life to occur. Homeostasis is controlled by the nervous and endocrine system of mammals.

Negative Feedback Mechanisms

Any homeostatic process that changes the direction of the stimulus is a negative feedback loop. It may either increase or decrease the stimulus, but the stimulus is not allowed to continue as it did before the receptor sensed it. In other words, if a level is too high, the body does something to bring it down, and conversely, if a level is too low, the body does something to make it go up. Hence the term negative feedback. An example is animal maintenance of blood glucose levels. When an animal has eaten, blood glucose levels rise. This is sensed by the nervous system. Specialized cells in the pancreas sense this, and the hormone insulin is released by the endocrine system. Insulin causes blood glucose levels to decrease, as would be expected in a negative feedback system, as illustrated in [link]. However, if an animal has not eaten and blood glucose levels decrease, this is sensed in another group of cells in the pancreas, and the hormone glucagon is released causing glucose levels to increase. This is still a negative feedback loop, but not in the direction expected by the use of the term "negative." Another example of an increase as a result of the feedback loop is the control of blood calcium. If calcium levels decrease, specialized cells in the parathyroid gland sense this and release parathyroid hormone (PTH), causing an increased absorption of calcium through the intestines and kidneys and, possibly, the breakdown of bone in order to liberate calcium. The effects of PTH are to raise blood levels of the element. Negative feedback loops are the predominant mechanism used in homeostasis.

Blood sugar levels are controlled by a negative feedback loop. (credit: modification of work by Jon

Sullivan)

Positive Feedback Loop

A positive feedback loop maintains the direction of the stimulus, possibly accelerating it. Few examples of positive feedback loops exist in animal bodies, but one is found in the cascade of chemical reactions that result in blood clotting, or coagulation. As one clotting factor is activated, it activates the next factor in sequence until a fibrin clot is achieved. The direction is maintained, not changed, so this is positive feedback. Another example of positive feedback is uterine contractions during childbirth, as illustrated in [link]. The hormone oxytocin, made by the endocrine system, stimulates the contraction of the uterus. This produces pain sensed by the nervous system. Instead of lowering the oxytocin and causing the pain to subside, more oxytocin is produced until the contractions are powerful enough to produce childbirth.

Art Connection

The birth of a human infant is the result of positive

feedback.

State whether each of the following processes is regulated by a positive feedback loop or a negative feedback loop.

- a. A person feels satiated after eating a large meal.
- b. The blood has plenty of red blood cells. As a result, erythropoietin, a hormone that stimulates the production of new red blood cells, is no longer released from the kidney.

Set Point

It is possible to adjust a system's set point. When this happens, the feedback loop works to maintain the new setting. An example of this is blood pressure: over time, the normal or set point for blood pressure can increase as a result of continued increases in blood pressure. The body no longer recognizes the elevation as abnormal and no attempt is made to return to the lower set point. The result is the maintenance of an elevated blood pressure that can have harmful effects on the body. Medication can lower blood pressure and lower the set point in the system to a more healthy level. This is called a process of alteration of the set point in a feedback loop.

Changes can be made in a group of body organ systems in order to maintain a set point in another system. This is called acclimatization. This occurs, for instance, when an animal migrates to a higher altitude than it is accustomed to. In order to adjust to the lower oxygen levels at the new altitude, the body increases the number of red blood cells circulating in the blood to ensure adequate oxygen delivery to the tissues. Another example of acclimatization is animals that have seasonal changes in their coats: a heavier coat in the winter ensures adequate heat retention, and a light coat in summer assists in keeping body temperature from rising to harmful levels.

Link to Learning

Feedback mechanisms can be understood in terms of driving a race car along a track: watch a short video lesson on positive and negative feedback loops.

ntroduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"For humans, fruits and vegetables are important in maintaining a balanced diet. (credit: modification of work by Julie

Rybarczyk)

All living organisms need nutrients to survive. While plants can obtain the molecules required for cellular function through the process of photosynthesis, most animals obtain their nutrients by the consumption of other organisms. At the cellular level, the biological molecules necessary for animal function are amino acids, lipid molecules, nucleotides, and simple sugars. However, the food

consumed consists of protein, fat, and complex carbohydrates. Animals must convert these macromolecules into the simple molecules required for maintaining cellular functions, such as assembling new molecules, cells, and tissues. The conversion of the food consumed to the nutrients required is a multi-step process involving digestion and absorption. During digestion, food particles are broken down to smaller components, and later, they are absorbed by the body.

One of the challenges in human nutrition is maintaining a balance between food intake, storage, and energy expenditure. Imbalances can have serious health consequences. For example, eating too much food while not expending much energy leads to obesity, which in turn will increase the risk of developing illnesses such as type-2 diabetes and cardiovascular disease. The recent rise in obesity and related diseases makes understanding the role of diet and nutrition in maintaining good health all the more important.

Digestive Systems

By the end of this section, you will be able to:

- Explain the processes of digestion and absorption
- Compare and contrast different types of digestive systems
- Explain the specialized functions of the organs involved in processing food in the body
- Describe the ways in which organs work together to digest food and absorb nutrients

Animals obtain their nutrition from the consumption of other organisms. Depending on their diet, animals can be classified into the following categories: plant eaters (herbivores), meat eaters (carnivores), and those that eat both plants and animals (omnivores). The nutrients and macromolecules present in food are not immediately accessible to the cells. There are a number of processes that modify food within the animal body in order to make the nutrients and organic molecules accessible for cellular function. As animals evolved in complexity of form and function, their digestive systems have also evolved to accommodate their various dietary needs.

Herbivores, Omnivores, and Carnivores

Herbivores are animals whose primary food source is plant-based. Examples of herbivores, as shown in [link] include vertebrates like deer, koalas, and some bird species, as well as invertebrates such as crickets and caterpillars. These animals have evolved digestive systems capable of handling large amounts of plant material. Herbivores can be further classified into frugivores (fruit-eaters), granivores (seed eaters), nectivores (nectar feeders), and folivores (leaf eaters).

Herbivores, like this (a) mule deer and (b) monarch caterpillar, eat primarily plant material. (credit a: modification of work by Bill Ebbesen; credit b: modification of work by Doug

Bowman)

Carnivores are animals that eat other animals. The word carnivore is derived from Latin and literally means "meat eater." Wild cats such as lions, shown in [link]a and tigers are examples of vertebrate carnivores, as are snakes and sharks, while invertebrate carnivores include sea stars, spiders, and ladybugs, shown in [link]b. Obligate carnivores are those that rely entirely on animal flesh to obtain their nutrients; examples of obligate carnivores are members of the cat family, such as lions and cheetahs. Facultative carnivores are those that also eat non-animal food in addition to animal food. Note that there is no clear line that differentiates facultative carnivores from omnivores; dogs would be considered facultative carnivores.

Carnivores like the (a) lion eat primarily meat. The (b) ladybug is also a carnivore that consumes small insects called aphids. (credit a: modification of work by Kevin Pluck; credit

b: modification of work by Jon

Sullivan)

Omnivores are animals that eat both plant- and animal-derived food. In Latin, omnivore means to eat everything. Humans, bears (shown in <u>[link]</u>**a**), and chickens are example of vertebrate omnivores; invertebrate omnivores include cockroaches and crayfish (shown in <u>[link]</u>**b**).

Omnivores like the (a) bear and (b) crayfish eat both plant and animal based food. (credit a: modification of work by Dave Menke; credit b: modification of work by Jon

Sullivan)

Invertebrate Digestive Systems

Animals have evolved different types of digestive systems to aid in the digestion of the different foods they consume. The simplest example is that of a gastrovascular cavity and is found in organisms with only one opening for digestion. Platyhelminthes (flatworms), Ctenophora (comb jellies), and Cnidaria (coral, jelly fish, and sea anemones) use this type of digestion. Gastrovascular cavities, as shown in [link]a, are typically a blind tube or cavity with only one opening, the "mouth", which also serves as an "anus". Ingested material enters the mouth and passes through a hollow, tubular cavity. Cells within the cavity secrete digestive enzymes that break down the food. The food particles are engulfed by the cells lining the gastrovascular cavity.

The alimentary canal, shown in [link]b, is a more advanced system: it consists of one tube with a mouth at one end and an anus at the other. Earthworms are an example of an animal with an alimentary canal. Once the food is ingested through the mouth, it passes through the esophagus and is stored in an organ called the crop; then it passes into the gizzard where it is churned and digested. From the gizzard, the food passes through the intestine, the nutrients are absorbed, and the waste is eliminated as feces, called castings, through the anus.

(a) A gastrovascular cavity has a single opening through which food is ingested and waste is excreted, as shown in this hydra and in this jellyfish medusa. (b) An alimentary canal has two

openings: a mouth for ingesting food, and an anus for eliminating waste, as shown in this

nematode.

Vertebrate Digestive Systems

Vertebrates have evolved more complex digestive systems to adapt to their dietary needs. Some animals have a single stomach, while others have multi-chambered stomachs. Birds have developed a digestive system adapted to eating unmasticated food.

Monogastric: Single-chambered Stomach

As the word monogastric suggests, this type of digestive system consists of one ("mono") stomach chamber ("gastric"). Humans and many animals have a monogastric digestive system as illustrated in [link]ab. The process of digestion begins with the mouth and the intake of food. The teeth play an important role in masticating (chewing) or physically breaking down food into smaller particles. The enzymes present in saliva also begin to chemically break down food. The esophagus is a long tube that connects the mouth to the stomach. Using peristalsis, or wave-like smooth muscle contractions, the muscles of the esophagus push the food towards the stomach. In order to speed up the actions of enzymes in the stomach, the stomach is an extremely acidic environment, with a pH between 1.5 and 2.5. The gastric juices, which include enzymes in the stomach, act on the food particles and continue the process of digestion. Further breakdown of food takes place in the small intestine where enzymes produced by the liver, the small intestine, and the pancreas continue the process of digestion. The nutrients are absorbed into the blood stream across the epithelial

cells lining the walls of the small intestines. The waste material travels on to the large intestine where water is absorbed and the drier waste material is compacted into feces; it is stored until it is excreted through the rectum.

(a) Humans and herbivores, such as the (b) rabbit, have a monogastric digestive system. However, in the rabbit the small intestine and cecum are enlarged to allow more time to digest plant material. The enlarged organ provides more surface area for absorption of nutrients. Rabbits digest their food twice: the first time food passes through the digestive system, it collects in the cecum, and then it passes as soft feces called cecotrophes. The rabbit re-ingests these cecotrophes to further digest

them.

Avian

Birds face special challenges when it comes to obtaining nutrition from food. They do not have teeth and so their digestive system, shown in [link], must be able to process unmasticated food. Birds have evolved a variety of beak types that reflect the vast variety in their diet, ranging from seeds and insects to fruits and nuts. Because most birds fly, their metabolic rates are high in order to efficiently process food and keep their body weight low. The stomach of birds has two chambers: the proventriculus, where gastric juices are produced to digest the food before it enters the stomach, and the gizzard, where the food is stored, soaked, and mechanically ground. The undigested material forms food pellets that are sometimes regurgitated. Most of the chemical digestion and absorption happens in the intestine and the waste is excreted through the cloaca. The avian esophagus has a pouch, called a crop, which stores food. Food passes from the crop to the first of two stomachs, called the proventriculus, which contains digestive juices that break down food. From the proventriculus, the food enters the second stomach, called the gizzard, which grinds food. Some birds swallow stones or grit, which are stored in the gizzard, to aid the grinding process. Birds do not have separate openings to excrete urine and feces. Instead, uric acid from the kidneys is secreted into the large intestine and combined with waste from the digestive process. This waste is excreted through an opening called the

cloaca. Evolution Connection

Avian AdaptationsBirds have a highly efficient, simplified digestive system. Recent fossil evidence has shown that the evolutionary divergence of birds from other land animals was characterized by streamlining and simplifying the digestive system. Unlike many other animals, birds do not have teeth to chew their food. In place of lips, they have sharp pointy beaks. The horny beak, lack of jaws, and the smaller tongue of the birds can be traced back to their dinosaur ancestors. The emergence of these changes seems to coincide with the inclusion of seeds in the bird diet. Seed-eating birds have beaks that are shaped for grabbing seeds and the two-compartment stomach allows for delegation of tasks. Since birds need to remain light in order to fly, their metabolic rates are very high, which means they digest their food very quickly and need to eat often. Contrast this with the ruminants, where the digestion of plant matter takes a very long time.

Ruminants

Ruminants are mainly herbivores like cows, sheep, and goats, whose entire diet consists of eating large amounts of roughage or fiber. They have evolved digestive systems that help them digest vast amounts of cellulose. An interesting feature of the ruminants' mouth is that they do not have upper incisor teeth. They use their lower teeth, tongue and lips to tear and chew their food. From the mouth, the food travels to the esophagus and on to the stomach.

To help digest the large amount of plant material, the stomach of the ruminants is a multichambered organ, as illustrated in [link]. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break down cellulose and ferment ingested food. The abomasum is the "true" stomach and is the equivalent of the monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary to digest plant material in ruminants. The fermentation process produces large amounts of gas in the stomach chamber, which must be eliminated. As in other animals, the small intestine plays an important role in nutrient absorption, and the large intestine helps in the elimination of waste.

Ruminant animals, such as goats and cows, have four stomachs. The first two stomachs, the rumen and the reticulum, contain prokaryotes and protists that are able to digest cellulose fiber. The ruminant regurgitates cud from the reticulum, chews it, and swallows it into a third stomach, the omasum, which removes water. The cud then passes onto the fourth stomach, the abomasum, where it is digested by enzymes produced by the

ruminant.

Pseudo-ruminants

Some animals, such as camels and alpacas, are pseudo-ruminants. They eat a lot of plant material and roughage. Digesting plant material is not easy because plant cell walls contain the polymeric sugar molecule cellulose. The digestive enzymes of these animals cannot break down cellulose, but microorganisms present in the digestive system can. Therefore, the digestive system must be able to handle large amounts of roughage and break down the cellulose. Pseudo-ruminants have a three-chamber stomach in the digestive system. However, their cecum—a pouched organ at the beginning of the large intestine containing many microorganisms that are necessary for the digestion of plant materials—is large and is the site

where the roughage is fermented and digested. These animals do not have a rumen but have an omasum, abomasum, and reticulum.

Parts of the Digestive System

The vertebrate digestive system is designed to facilitate the transformation of food matter into the nutrient components that sustain organisms.

Oral Cavity

The oral cavity, or mouth, is the point of entry of food into the digestive system, illustrated in [link]. The food consumed is broken into smaller particles by mastication, the chewing action of the teeth. All mammals have teeth and can chew their food.

The extensive chemical process of digestion begins in the mouth. As food is being chewed, saliva, produced by the salivary glands, mixes with the food. Saliva is a watery substance produced in the mouths of many animals. There are three major glands that secrete salivathe parotid, the submandibular, and the sublingual. Saliva contains mucus that moistens food and buffers the pH of the food. Saliva also contains immunoglobulins and lysozymes, which have antibacterial action to reduce tooth decay by inhibiting growth of some bacteria. Saliva also contains an enzyme called salivary amylase that begins the process of converting starches in the food into a disaccharide called maltose. Another enzyme called lipase is produced by the cells in the tongue. Lipases are a class of enzymes that can break down triglycerides. The lingual lipase begins the breakdown of fat components in the food. The chewing and wetting action provided by the teeth and saliva prepare the food into a mass called the bolus for swallowing. The tongue helps in swallowing—moving the bolus from the mouth into the pharynx. The pharynx opens to two passageways: the trachea, which leads to the lungs, and the esophagus, which leads to the stomach. The trachea has an opening called the glottis, which is covered by a cartilaginous flap called the epiglottis. When swallowing, the epiglottis closes the glottis and food passes into the esophagus and not the trachea. This arrangement allows food to be kept out of the trachea.

Digestion of food begins in the (a) oral cavity. Food is masticated by teeth and moistened by saliva secreted from the (b) salivary glands. Enzymes in the saliva begin to digest starches and fats. With the help of the tongue, the resulting bolus is moved into the esophagus by

swallowing. (credit: modification of work by the National Cancer

Institute)

Esophagus

The esophagus is a tubular organ that connects the mouth to the stomach. The chewed and softened food passes through the esophagus after being swallowed. The smooth muscles of the esophagus undergo a series of wave like movements called peristalsis that push the food toward the stomach, as illustrated in [link]. The peristalsis wave is unidirectional—it moves food from the mouth to the stomach, and reverse movement is not possible. The peristaltic movement of the esophagus is an involuntary reflex; it takes place in response to the act of swallowing.

The esophagus transfers food from the mouth to the stomach through peristaltic

movements.

A ring-like muscle called a sphincter forms valves in the digestive system. The gastroesophageal sphincter is located at the stomach end of the esophagus. In response to swallowing and the pressure exerted by the bolus of food, this sphincter opens, and the bolus enters the stomach. When there is no swallowing action, this sphincter is shut and prevents the contents of the stomach from traveling up the esophagus. Many animals have a true sphincter; however, in humans, there is no true sphincter, but the esophagus remains closed when there is no swallowing action. Acid reflux or "heartburn" occurs when the acidic digestive juices escape into the esophagus.

Stomach

A large part of digestion occurs in the stomach, shown in [link]. The stomach is a saclike organ that secretes gastric digestive juices. The pH in the stomach is between 1.5 and 2.5. This highly acidic environment is required for the chemical breakdown of food and the extraction of nutrients. When empty, the stomach is a rather small organ; however, it can expand to up to 20 times its resting size when filled with food. This characteristic is particularly useful for animals that need to eat when food is available.

Art Connection

The human stomach has an extremely acidic environment where most of the protein gets digested. (credit: modification of work by Mariana Ruiz

Villareal)

Which of the following statements about the digestive system is false?

- a. Chyme is a mixture of food and digestive juices that is produced in the stomach.
- b. Food enters the large intestine before the small intestine.
- c. In the small intestine, chyme mixes with bile, which emulsifies fats.
- d. The stomach is separated from the small intestine by the pyloric sphincter.

The stomach is also the major site for protein digestion in animals other than ruminants. Protein digestion is mediated by an enzyme called pepsin in the stomach chamber. Pepsin is secreted by the chief cells in the stomach in an inactive form called pepsinogen. Pepsin breaks peptide bonds and cleaves proteins into smaller polypeptides; it also helps activate more pepsinogen, starting a positive feedback mechanism that generates more pepsin. Another cell type—parietal cells—secrete hydrogen and chloride ions, which combine in the lumen to form hydrochloric acid, the primary acidic component of the stomach juices. Hydrochloric acid helps to convert the inactive pepsinogen to pepsin. The highly acidic environment also kills many microorganisms in the food and, combined with the action of the enzyme pepsin, results in the hydrolysis of protein in the food. Chemical digestion is facilitated by the churning action of the stomach. Contraction and relaxation of smooth muscles mixes the stomach contents about every 20 minutes. The partially digested food and gastric juice mixture is called chyme. Chyme passes from the stomach to the small intestine. Further protein digestion takes place in the small intestine. Gastric emptying occurs within two to six hours after a meal. Only a small amount of chyme is released into the small intestine at a time. The movement of chyme from the stomach into the small intestine is regulated by the pyloric sphincter.

When digesting protein and some fats, the stomach lining must be protected from getting digested by pepsin. There are two points to consider when describing how the stomach lining is protected. First, as previously mentioned, the enzyme pepsin is synthesized in the inactive form. This protects the chief cells, because pepsinogen does not have the same enzyme functionality of pepsin. Second, the stomach has a thick mucus lining that protects the underlying tissue from the action of the digestive juices. When this mucus lining is ruptured, ulcers can form in the stomach. Ulcers are open wounds in or on an organ caused by bacteria (*Helicobacter pylori*) when the mucus lining is ruptured and fails to reform.

Small Intestine

Chyme moves from the stomach to the small intestine. The small intestine is the organ where the digestion of protein, fats, and carbohydrates is completed. The small intestine is a long tube-like organ with a highly folded surface containing finger-like projections called the villi. The apical surface of each villus has many microscopic projections called microvilli. These structures, illustrated in [link], are lined with epithelial cells on the luminal side and allow for the nutrients to be absorbed from the digested food and absorbed into the blood stream on the other side. The villi and microvilli, with their many folds, increase the surface area of the intestine and increase absorption efficiency of the nutrients. Absorbed nutrients in the blood are carried into the hepatic portal vein, which leads to the liver. There, the liver regulates the distribution of nutrients to the rest of the body and removes toxic substances, including drugs, alcohol, and some pathogens.

Art Connection

Villi are folds on the small intestine lining that increase the surface area to facilitate the absorption of

nutrients.

Which of the following statements about the small intestine is false?

- a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food.
- b. The inside of the small intestine has many folds, called villi.
- c. Microvilli are lined with blood vessels as well as lymphatic vessels.
- d. The inside of the small intestine is called the lumen.

The human small intestine is over 6m long and is divided into three parts: the duodenum, the jejunum, and the ileum. The "C-shaped," fixed part of the small intestine is called the duodenum and is shown in [link]. The duodenum is separated from the stomach by the pyloric sphincter which opens to allow chyme to move from the stomach to the duodenum. In the duodenum, chyme is mixed with pancreatic juices in an alkaline solution rich in bicarbonate that neutralizes the acidity of chyme and acts as a buffer. Pancreatic juices also contain several digestive enzymes. Digestive juices from the pancreas, liver, and gallbladder, as well as from gland cells of the intestinal wall itself, enter the duodenum. Bile is produced in the liver and stored and concentrated in the gallbladder. Bile contains bile salts which emulsify lipids while the pancreas produces enzymes that catabolize starches, disaccharides, proteins, and fats. These digestive juices break down the food particles in the chyme into

glucose, triglycerides, and amino acids. Some chemical digestion of food takes place in the duodenum. Absorption of fatty acids also takes place in the duodenum.

The second part of the small intestine is called the jejunum, shown in <u>[link]</u>. Here, hydrolysis of nutrients is continued while most of the carbohydrates and amino acids are absorbed through the intestinal lining. The bulk of chemical digestion and nutrient absorption occurs in the jejunum.

The ileum, also illustrated in [link] is the last part of the small intestine and here the bile salts and vitamins are absorbed into blood stream. The undigested food is sent to the colon from the ileum via peristaltic movements of the muscle. The ileum ends and the large intestine begins at the ileocecal valve. The vermiform, "worm-like," appendix is located at the ileocecal valve. The appendix of humans secretes no enzymes and has an insignificant role in immunity.

Large Intestine

The large intestine, illustrated in [link], reabsorbs the water from the undigested food material and processes the waste material. The human large intestine is much smaller in length compared to the small intestine but larger in diameter. It has three parts: the cecum, the colon, and the rectum. The cecum joins the ileum to the colon and is the receiving pouch for the waste matter. The colon is home to many bacteria or "intestinal flora" that aid in the digestive processes. The colon can be divided into four regions, the ascending colon, the transverse colon, the descending colon and the sigmoid colon. The main functions of the colon are to extract the water and mineral salts from undigested food, and to store waste material. Carnivorous mammals have a shorter large intestine compared to herbivorous mammals due to their diet.

The large intestine reabsorbs water from undigested food and stores waste material until it is

eliminated.

Rectum and Anus

The rectum is the terminal end of the large intestine, as shown in [link]. The primary role of the rectum is to store the feces until defecation. The feces are propelled using peristaltic movements during elimination. The anus is an opening at the far-end of the digestive tract and is the exit point for the waste material. Two sphincters between the rectum and anus control elimination: the inner sphincter is involuntary and the outer sphincter is voluntary.

Accessory Organs

The organs discussed above are the organs of the digestive tract through which food passes. Accessory organs are organs that add secretions (enzymes) that catabolize food into nutrients. Accessory organs include salivary glands, the liver, the pancreas, and the gallbladder. The liver, pancreas, and gallbladder are regulated by hormones in response to the food consumed.

The liver is the largest internal organ in humans and it plays a very important role in digestion of fats and detoxifying blood. The liver produces bile, a digestive juice that is required for the breakdown of fatty components of the food in the duodenum. The liver also processes the vitamins and fats and synthesizes many plasma proteins.

The pancreas is another important gland that secretes digestive juices. The chyme produced from the stomach is highly acidic in nature; the pancreatic juices contain high levels of bicarbonate, an alkali that neutralizes the acidic chyme. Additionally, the pancreatic juices contain a large variety of enzymes that are required for the digestion of protein and carbohydrates.

The gallbladder is a small organ that aids the liver by storing bile and concentrating bile salts. When chyme containing fatty acids enters the duodenum, the bile is secreted from the gallbladder into the duodenum.

Section Summary

Different animals have evolved different types of digestive systems specialized to meet their dietary needs. Humans and many other animals have monogastric digestive systems with a single-chambered stomach. Birds have evolved a digestive system that includes a gizzard where the food is crushed into smaller pieces. This compensates for their inability to masticate. Ruminants that consume large amounts of plant material have a multi-chambered stomach that digests roughage. Pseudo-ruminants have similar digestive processes as ruminants but do not have the four-compartment stomach. Processing food involves ingestion (eating), digestion (mechanical and enzymatic breakdown of large molecules), absorption (cellular uptake of nutrients), and elimination (removal of undigested waste as feces).

Many organs work together to digest food and absorb nutrients. The mouth is the point of ingestion and the location where both mechanical and chemical breakdown of food begins. Saliva contains an enzyme called amylase that breaks down carbohydrates. The food bolus travels through the esophagus by peristaltic movements to the stomach. The stomach has an extremely acidic environment. An enzyme called pepsin digests protein in the stomach. Further digestion and absorption take place in the small intestine. The large intestine reabsorbs water from the undigested food and stores waste until elimination.

Art Connections

[link] Which of the following statements about the digestive system is false?

- a. Chyme is a mixture of food and digestive juices that is produced in the stomach.
- b. Food enters the large intestine before the small intestine.
- c. In the small intestine, chyme mixes with bile, which emulsifies fats.
- d. The stomach is separated from the small intestine by the pyloric sphincter.

[link] B

[link] Which of the following statements about the small intestine is false?

- a. Absorptive cells that line the small intestine have microvilli, small projections that increase surface area and aid in the absorption of food.
- b. The inside of the small intestine has many folds, called villi.
- c. Microvilli are lined with blood vessels as well as lymphatic vessels.
- d. The inside of the small intestine is called the lumen.

[link] C

Review Questions

Which of the following is a pseudo-ruminant?

- a. cow
- b. pig
- c. crow
- d. horse

D

Which of the following statements is untrue?

- a. Roughage takes a long time to digest.
- b. Birds eat large quantities at one time so that they can fly long distances.
- c. Cows do not have upper teeth.
- d. In pseudo-ruminants, roughage is digested in the cecum.

В

The acidic nature of chyme is neutralized by _____.

- a. potassium hydroxide
- b. sodium hydroxide
- c. bicarbonates
- d. vinegar

С

The digestive juices from the liver are delivered to the _____.

- a. stomach
- b. liver
- c. duodenum
- d. colon

С

Free Response

How does the polygastric digestive system aid in digesting roughage?

Animals with a polygastric digestive system have a multi-chambered stomach. The four compartments of the stomach are called the rumen, reticulum, omasum, and abomasum. These chambers contain many microbes that break down the cellulose and ferment the ingested food. The abomasum is the "true" stomach and is the equivalent of a monogastric stomach chamber where gastric juices are secreted. The four-compartment gastric chamber provides larger space and the microbial support necessary for ruminants to digest plant material.

How do birds digest their food in the absence of teeth?

Birds have a stomach chamber called a gizzard. Here, the food is stored, soaked, and ground into finer particles, often using pebbles. Once this process is complete, the digestive juices take over in the proventriculus and continue the digestive process.

What is the role of the accessory organs in digestion?

Accessory organs play an important role in producing and delivering digestive juices to the intestine during digestion and absorption. Specifically, the salivary glands, liver, pancreas, and gallbladder play important roles. Malfunction of any of these organs can lead to disease states.

Explain how the villi and microvilli aid in absorption.

The villi and microvilli are folds on the surface of the small intestine. These folds increase the surface area of the intestine and provide more area for the absorption of nutrients.

Glossary

alimentary canal

tubular digestive system with a mouth and anus

anus

exit point for waste material

bile

digestive juice produced by the liver; important for digestion of lipids bolus

mass of food resulting from chewing action and wetting by saliva carnivore

animal that consumes animal flesh chyme mixture of partially digested food and stomach juices duodenum first part of the small intestine where a large part of digestion of carbohydrates and fats occurs esophagus tubular organ that connects the mouth to the stomach gallbladder organ that stores and concentrates bile gastrovascular cavity digestive system consisting of a single opening gizzard muscular organ that grinds food herbivore animal that consumes strictly plant diet ileum last part of the small intestine; connects the small intestine to the large intestine; important for absorption of B-12 jejunum second part of the small intestine large intestine digestive system organ that reabsorbs water from undigested material and processes waste matter lipase enzyme that chemically breaks down lipids liver organ that produces bile for digestion and processes vitamins and lipids monogastric digestive system that consists of a single-chambered stomach omnivore animal that consumes both plants and animals pancreas gland that secretes digestive juices pepsin enzyme found in the stomach whose main role is protein digestion pepsinogen inactive form of pepsin peristalsis wave-like movements of muscle tissue proventriculus glandular part of a bird's stomach rectum area of the body where feces is stored until elimination

roughage

component of food that is low in energy and high in fiber ruminant

animal with a stomach divided into four compartments

salivary amylase

enzyme found in saliva, which converts carbohydrates to maltose small intestine

organ where digestion of protein, fats, and carbohydrates is completed sphincter

band of muscle that controls movement of materials throughout the digestive tract

stomach

saclike organ containing acidic digestive juices

villi

folds on the inner surface of the small intestine whose role is to increase absorption area

Nutrition and Energy Production

By the end of this section, you will be able to:

- Explain why an animal's diet should be balanced and meet the needs of the body
- Define the primary components of food
- Describe the essential nutrients required for cellular function that cannot be synthesized by the animal body
- Explain how energy is produced through diet and digestion
- Describe how excess carbohydrates and energy are stored in the body

Given the diversity of animal life on our planet, it is not surprising that the animal diet would also vary substantially. The animal diet is the source of materials needed for building DNA and other complex molecules needed for growth, maintenance, and reproduction; collectively these processes are called biosynthesis. The diet is also the source of materials for ATP production in the cells. The diet must be balanced to provide the minerals and vitamins that are required for cellular function.

Food Requirements

What are the fundamental requirements of the animal diet? The animal diet should be well balanced and provide nutrients required for bodily function and the minerals and vitamins required for maintaining structure and regulation necessary for good health and reproductive capability. These requirements for a human are illustrated graphically in [link]

For humans, a balanced diet includes fruits, vegetables, grains, and protein. (credit:

USDA) Link to Learning

The first step in ensuring that you are meeting the food requirements of your body is an awareness of the food groups and the nutrients they provide. To learn more about each food group and the recommended daily amounts, explore this <u>interactive site</u> by the United States Department of Agriculture.

Everyday Connection

Let's Move! CampaignObesity is a growing epidemic and the rate of obesity among children is rapidly rising in the United States. To combat childhood obesity and ensure that children get a healthy start in life, first lady Michelle Obama has launched the Let's Move! campaign. The goal of this campaign is to educate parents and caregivers on providing healthy nutrition and encouraging active lifestyles to future generations. This program aims to involve the entire community, including parents, teachers, and healthcare providers to ensure that children have access to healthy foods—more fruits, vegetables, and whole grains—and consume fewer calories from processed foods. Another goal is to ensure that children get physical activity. With the increase in television viewing and stationary pursuits such as video games, sedentary lifestyles have become the norm. Learn more at www.letsmove.gov.

Organic Precursors

The organic molecules required for building cellular material and tissues must come from food. Carbohydrates or sugars are the primary source of organic carbons in the animal body. During digestion, digestible carbohydrates are ultimately broken down into glucose and used to provide energy through metabolic pathways. Complex carbohydrates, including

polysaccharides, can be broken down into glucose through biochemical modification; however, humans do not produce the enzyme cellulase and lack the ability to derive glucose from the polysaccharide cellulose. In humans, these molecules provide the fiber required for moving waste through the large intestine and a healthy colon. The intestinal flora in the human gut are able to extract some nutrition from these plant fibers. The excess sugars in the body are converted into glycogen and stored in the liver and muscles for later use. Glycogen stores are used to fuel prolonged exertions, such as long-distance running, and to provide energy during food shortage. Excess glycogen can be converted to fats, which are stored in the lower layer of the skin of mammals for insulation and energy storage. Excess digestible carbohydrates are stored by mammals in order to survive famine and aid in mobility.

Another important requirement is that of nitrogen. Protein catabolism provides a source of organic nitrogen. Amino acids are the building blocks of proteins and protein breakdown provides amino acids that are used for cellular function. The carbon and nitrogen derived from these become the building block for nucleotides, nucleic acids, proteins, cells, and tissues. Excess nitrogen must be excreted as it is toxic. Fats add flavor to food and promote a sense of satiety or fullness. Fatty foods are also significant sources of energy because one gram of fat contains nine calories. Fats are required in the diet to aid the absorption of fat-soluble vitamins and the production of fat-soluble hormones.

Essential Nutrients

While the animal body can synthesize many of the molecules required for function from the organic precursors, there are some nutrients that need to be consumed from food. These nutrients are termed essential nutrients, meaning they must be eaten, and the body cannot produce them.

The omega-3 alpha-linolenic acid and the omega-6 linoleic acid are essential fatty acids needed to make some membrane phospholipids. Vitamins are another class of essential organic molecules that are required in small quantities for many enzymes to function and, for this reason, are considered to be co-enzymes. Absence or low levels of vitamins can have a dramatic effect on health, as outlined in [link] and [link]. Both fat-soluble and water-soluble vitamins must be obtained from food. Minerals, listed in [link], are inorganic essential nutrients that must be obtained from food. Among their many functions, minerals help in structure and regulation and are considered co-factors. Certain amino acids also must be procured from food and cannot be synthesized by the body. These amino acids are the "essential" amino acids. The human body can synthesize only 11 of the 20 required amino acids; the rest must be obtained from food. The essential amino acids are listed in [link].

Water-soluble Essential Vitamins					
Vitamin	Function	Deficiencies Can Lead To	Sources		
Vitamin B ₁ (Thiamine)	Needed by the body to process lipids, proteins, and carbohydrates Coenzyme removes CO ₂ from organic compounds	Muscle weakness, Beriberi: reduced heart function, CNS problems			
Vitamin B ₂ (Riboflavin)	Takes an active role in metabolism, aiding in the conversion of food to energy	Cracks or sores on the outer surface of the lips (cheliosis); inflammation	Meat, eggs, enriched grains,		

Water-soluble Essential Vitamins				
Vitamin	Function	Deficiencies Can Lead To	Sources	
	(FAD and FMN)	and redness of the tongue; moist, scaly skin inflammation (seborrheic dermatitis)	vegetables	
Vitamin B3 (Niacin)	Used by the body to release energy from carbohydrates and to process alcohol; required for the synthesis of sex hormones; component of coenzyme NAD ⁺ and NADP ⁺		Meat, eggs, grains, nuts, potatoes	
Vitamin B5 (Pantothenic acid)	Assists in producing energy from foods (lipids, in particular); component of coenzyme A	Fatigue, poor coordination, retarded growth, numbness, tingling of hands and feet	Meat, whole grains, milk, fruits, vegetables	
Vitamin B ₆ (Pyridoxine)	The principal vitamin for processing amino acids and lipids; also helps convert nutrients into energy	Irritability, depression, confusion, mouth sores or ulcers, anemia, muscular twitching	Meat, dairy products, whole grains, orange juice	
Vitamin B7 (Biotin)	Used in energy and amino acid metabolism, fat synthesis, and fat breakdown; helps the body use blood sugar	Hair loss, dermatitis, depression, numbness and tingling in the extremities; neuromuscular disorders	Meat, eggs, legumes and other vegetables	
Vitamin B9 (Folic acid)	Assists the normal development of cells, especially during fetal development; helps metabolize nucleic and amino acids	Deficiency during pregnancy is associated with birth defects, such as neural tube defects and anemia	Leafy green vegetables, whole wheat, fruits, nuts, legumes	
Vitamin B ₁₂ (Cobalamin)	Maintains healthy nervous system and assists with blood cell formation; coenzyme in nucleic acid metabolism	Anemia, neurological disorders, numbness, loss of balance	Meat, eggs, animal products	
Vitamin C (Ascorbic acid)	Helps maintain connective tissue: bone, cartilage, and dentin; boosts the immune system	Scurvy, which results in bleeding, hair and tooth loss; joint pain and swelling; delayed wound healing	Citrus fruits, broccoli, tomatoes, red sweet bell peppers	
Fat-soluble Essential Vitamins				
Vitamin	Function	Deficiencies Can Lead To	Sources	
Vitamin A (Retinol)	Critical to the development of bones, teeth, and skin; helps	-	rk green leafy getables, yellow-	

Fat-soluble Essential Vitamins

Vitamin	Function	Deficiencies Can Lead To	Sources
	maintain eyesight, enhances the immune system, fetal development, gene expression	impaired immunity	orange vegetables fruits, milk, butter
Vitamin D	Critical for calcium absorption for bone development and strength; maintains a stable nervous system; maintains a normal and strong heartbeat; helps in blood clotting	Rickets, osteomalacia, immunity	Cod liver oil, milk, egg yolk
Vitamin E (Tocopherol)	Lessens oxidative damage of cells,and prevents lung damage from pollutants; vital to the immune system	Deficiency is rare; anemia, nervous system degeneration	Wheat germ oil, unrefined vegetable oils, nuts, seeds, grains
Vitamin K (Phylloquinone)	Essential to blood clotting	Bleeding and easy bruising	Leafy green vegetables, tea

A healthy diet should include a variety of foods to ensure that needs for essential nutrients are met. (credit: Keith Weller, USDA

ARS)

Minerals and Their Function in the Human Body

Mineral	Function	Deficiencies Can Lead To	Sources
*Calcium	bone and supports synthesis and	Osteoporosis, rickets, muscle spasms, impaired growth	Milk, yogurt, fish, green leafy vegetables, legumes

Minerals and Their Function in the Human Body

Mineral	Function	Deficiencies Can Lead To	Sources
*Chlorine	Needed for production of hydrochloric acid (HCl) in the stomach and nerve function; osmotic balance	Muscle cramps, mood disturbances, reduced appetite	
Copper (trace amounts)	Required component of many redox enzymes, including cytochrome c oxidase; cofactor for hemoglobin synthesis	Copper deficiency is rare	Liver, oysters, cocoa, chocolate, sesame, nuts
Iodine	Required for the synthesis of thyroid hormones	Goiter	Seafood, iodized salt, dairy products
Iron	Required for many proteins and enzymes, notably hemoglobin, to prevent anemia	Anemia, which causes poor concentration, fatigue, and poor immune function	Red meat, leafy green vegetables, fish (tuna, salmon), eggs, dried fruits, beans, whole grains
*Magnesium	Required co-factor for ATP formation; bone formation; normal membrane functions; muscle function	Mood disturbances, muscle spasms	Whole grains, leafy green vegetables
Manganese (trace amounts)	A cofactor in enzyme functions; trace amounts are required	Manganese deficiency is rare	Common in most foods
Molybdenum (trace amounts)	Acts as a cofactor for three essential enzymes in humans: sulfite oxidase, xanthine oxidase, and aldehyde oxidase	Molybdenum deficiency is rare	
*Phosphorus	A component of bones and teeth; helps regulate acid-base balance; nucleotide synthesis	Weakness, bone abnormalities, calcium loss	Milk, hard cheese, whole grains, meats
*Potassium	Vital for muscles, heart, and nerve function	Cardiac rhythm disturbance, muscle weakness	Legumes, potato skin, tomatoes, bananas
Selenium (trace amounts)	A cofactor essential to activity of antioxidant enzymes like glutathione peroxidase; trace amounts are required	Selenium deficiency is rare	Common in most foods
*Sodium	Systemic electrolyte required for many functions; acid-base balance; water balance; nerve function	Muscle cramps, fatigue, reduced appetite	Table salt
Zinc (trace amounts)	Required for several enzymes such as carboxypeptidase, liver alcohol dehydrogenase, and carbonic anhydrase	Anemia, poor wound healing, can lead to short stature	Common in most foods

Minerals and Their Function in the Human Body				
Mineral	Function	Deficiencies Can Lead To Sou		
*Greater than 200mg/	day required			
	Essential	Amino Acids		
Amino acids that must be consumed Amino acids anabolized by the				
isoleucine		alanine		
leucine		selenocysteine		
lysine		aspartate		
methionine		cysteine		
phenylalanine		glutamate		
tryptophan		glycine		
valine		proline		
histidine*		serine		
threonine		tyrosine		
arginine*		asparagine		

*The human body can synthesize histidine and arginine, but not in the quantities required, especially for growing children.

Food Energy and ATP

Animals need food to obtain energy and maintain homeostasis. Homeostasis is the ability of a system to maintain a stable internal environment even in the face of external changes to the environment. For example, the normal body temperature of humans is $37^{\circ}C$ (98.6°F). Humans maintain this temperature even when the external temperature is hot or cold. It takes energy to maintain this body temperature, and animals obtain this energy from food.

The primary source of energy for animals is carbohydrates, mainly glucose. Glucose is called the body's fuel. The digestible carbohydrates in an animal's diet are converted to glucose molecules through a series of catabolic chemical reactions.

Adenosine triphosphate, or ATP, is the primary energy currency in cells; ATP stores energy in phosphate ester bonds. ATP releases energy when the phosphodiester bonds are broken and ATP is converted to ADP and a phosphate group. ATP is produced by the oxidative reactions in the cytoplasm and mitochondrion of the cell, where carbohydrates, proteins, and fats undergo a series of metabolic reactions collectively called cellular respiration. For example, glycolysis is a series of reactions in which glucose is converted to pyruvic acid and some of its chemical potential energy is transferred to NADH and ATP.

ATP is required for all cellular functions. It is used to build the organic molecules that are required for cells and tissues; it provides energy for muscle contraction and for the transmission of electrical signals in the nervous system. When the amount of ATP is available in excess of the body's requirements, the liver uses the excess ATP and excess glucose to produce molecules called glycogen. Glycogen is a polymeric form of glucose and is stored in the liver and skeletal muscle cells. When blood sugar drops, the liver releases glucose from stores of glycogen. Skeletal muscle converts glycogen to glucose during intense

exercise. The process of converting glucose and excess ATP to glycogen and the storage of excess energy is an evolutionarily important step in helping animals deal with mobility, food shortages, and famine.

Everyday Connection

ObesityObesity is a major health concern in the United States, and there is a growing focus on reducing obesity and the diseases it may lead to, such as type-2 diabetes, cancers of the colon and breast, and cardiovascular disease. How does the food consumed contribute to obesity?

Fatty foods are calorie-dense, meaning that they have more calories per unit mass than carbohydrates or proteins. One gram of carbohydrates has four calories, one gram of protein has four calories, and one gram of fat has nine calories. Animals tend to seek lipid-rich food for their higher energy content.

The signals of hunger ("time to eat") and satiety ("time to stop eating") are controlled in the hypothalamus region of the brain. Foods that are rich in fatty acids tend to promote satiety more than foods that are rich only in carbohydrates.

Excess carbohydrate and ATP are used by the liver to synthesize glycogen. The pyruvate produced during glycolysis is used to synthesize fatty acids. When there is more glucose in the body than required, the resulting excess pyruvate is converted into molecules that eventually result in the synthesis of fatty acids within the body. These fatty acids are stored in adipose cells—the fat cells in the mammalian body whose primary role is to store fat for later use.

It is important to note that some animals benefit from obesity. Polar bears and seals need body fat for insulation and to keep them from losing body heat during Arctic winters. When food is scarce, stored body fat provides energy for maintaining homeostasis. Fats prevent famine in mammals, allowing them to access energy when food is not available on a daily basis; fats are stored when a large kill is made or lots of food is available.

Section Summary

Animal diet should be balanced and meet the needs of the body. Carbohydrates, proteins, and fats are the primary components of food. Some essential nutrients are required for cellular function but cannot be produced by the animal body. These include vitamins, minerals, some fatty acids, and some amino acids. Food intake in more than necessary amounts is stored as glycogen in the liver and muscle cells, and in fat cells. Excess adipose storage can lead to obesity and serious health problems. ATP is the energy currency of the cell and is obtained from the metabolic pathways. Excess carbohydrates and energy are stored as glycogen in the body.

Review Questions

Which of the following statements is not true?

- a. Essential nutrients can be synthesized by the body.
- b. Vitamins are required in small quantities for bodily function.

- c. Some amino acids can be synthesized by the body, while others need to be obtained from diet.
- d. Vitamins come in two categories: fat-soluble and water-soluble.

A

Which of the following is a water-soluble vitamin?

- a. vitamin A
- b. vitamin E
- c. vitamin K
- d. vitamin C

D

What is the primary fuel for the body?

- a. carbohydrates
- b. lipids
- c. protein
- d. glycogen

A

Excess glucose is stored as _____.

- a. fat
- b. glucagon
- c. glycogen
- d. it is not stored in the body

С

Free Response

What are essential nutrients?

Essential nutrients are those nutrients that must be obtained from the diet because they cannot be produced by the body. Vitamins and minerals are examples of essential nutrients.

What is the role of minerals in maintaining good health?

Minerals—such as potassium, sodium, and calcium—are required for the functioning of many cellular processes, including muscle contraction and nerve conduction. While minerals are required in trace amounts, not having minerals in the diet can be potentially harmful.

Discuss why obesity is a growing epidemic.

In the United States, obesity, particularly childhood obesity, is a growing concern. Some of the contributors to this situation include sedentary lifestyles and consuming more processed

foods and less fruits and vegetables. As a result, even young children who are obese can face health concerns.

There are several nations where malnourishment is a common occurrence. What may be some of the health challenges posed by malnutrition?

Malnutrition, often in the form of not getting enough calories or not enough of the essential nutrients, can have severe consequences. Many malnourished children have vision and dental problems, and over the years may develop many serious health problems.

Glossary

essential nutrient

nutrient that cannot be synthesized by the body; it must be obtained from food

mineral

inorganic, elemental molecule that carries out important roles in the body vitamin

organic substance necessary in small amounts to sustain life Digestive System Processes

By the end of this section, you will be able to:

- Describe the process of digestion
- Detail the steps involved in digestion and absorption
- Define elimination
- Explain the role of both the small and large intestines in absorption

Obtaining nutrition and energy from food is a multi-step process. For true animals, the first step is ingestion, the act of taking in food. This is followed by digestion, absorption, and elimination. In the following sections, each of these steps will be discussed in detail.

Ingestion

The large molecules found in intact food cannot pass through the cell membranes. Food needs to be broken into smaller particles so that animals can harness the nutrients and organic molecules. The first step in this process is ingestion. Ingestion is the process of taking in food through the mouth. In vertebrates, the teeth, saliva, and tongue play important roles in mastication (preparing the food into bolus). While the food is being mechanically broken down, the enzymes in saliva begin to chemically process the food as well. The combined action of these processes modifies the food from large particles to a soft mass that can be swallowed and can travel the length of the esophagus.

Digestion and Absorption

Digestion is the mechanical and chemical break down of food into small organic fragments. It is important to break down macromolecules into smaller fragments that are of suitable size

for absorption across the digestive epithelium. Large, complex molecules of proteins, polysaccharides, and lipids must be reduced to simpler particles such as simple sugar before they can be absorbed by the digestive epithelial cells. Different organs play specific roles in the digestive process. The animal diet needs carbohydrates, protein, and fat, as well as vitamins and inorganic components for nutritional balance. How each of these components is digested is discussed in the following sections.

Carbohydrates

The digestion of carbohydrates begins in the mouth. The salivary enzyme amylase begins the breakdown of food starches into maltose, a disaccharide. As the bolus of food travels through the esophagus to the stomach, no significant digestion of carbohydrates takes place. The esophagus produces no digestive enzymes but does produce mucous for lubrication. The acidic environment in the stomach stops the action of the amylase enzyme.

The next step of carbohydrate digestion takes place in the duodenum. Recall that the chyme from the stomach enters the duodenum and mixes with the digestive secretion from the pancreas, liver, and gallbladder. Pancreatic juices also contain amylase, which continues the breakdown of starch and glycogen into maltose, a disaccharide. The disaccharides are broken down into monosaccharides by enzymes called maltases, sucrases, and lactases, which are also present in the brush border of the small intestinal wall. Maltase breaks down maltose into glucose. Other disaccharides, such as sucrose and lactose are broken down by sucrase and lactase, respectively. Sucrase breaks down sucrose (or "table sugar") into glucose and fructose, and lactase breaks down lactose (or "milk sugar") into glucose and galactose. The monosaccharides (glucose) thus produced are absorbed and then can be used in metabolic pathways to harness energy. The monosaccharides are transported across the intestinal epithelium into the bloodstream to be transported to the different cells in the body. The steps in carbohydrate digestion are summarized in [link] and [link].

Digestion of carbohydrates is performed by several enzymes. Starch and glycogen are broken down into glucose by amylase and maltase. Sucrose (table sugar) and lactose (milk sugar) are broken down by sucrase and lactase,

respectively.

Digestion of Carbohydrates

Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Salivary amylase	Salivary glands	Mouth	Polysaccharides (Starch)	Disaccharides (maltose), oligosaccharides
Pancreatic amylase	Pancreas	Small intestine	Polysaccharides (starch)	Disaccharides (maltose), monosaccharides
Oligosaccharidases	Lining of the intestine; brush border membrane	Small intestine	Disaccharides	Monosaccharides (e.g., glucose, fructose, galactose)

Protein

A large part of protein digestion takes place in the stomach. The enzyme pepsin plays an important role in the digestion of proteins by breaking down the intact protein to peptides, which are short chains of four to nine amino acids. In the duodenum, other enzymes—trypsin, elastase, and chymotrypsin—act on the peptides reducing them to smaller peptides. Trypsin elastase, carboxypeptidase, and chymotrypsin are produced by the pancreas and released into the duodenum where they act on the chyme. Further breakdown of peptides to

single amino acids is aided by enzymes called peptidases (those that break down peptides). Specifically, carboxypeptidase, dipeptidase, and aminopeptidase play important roles in reducing the peptides to free amino acids. The amino acids are absorbed into the bloodstream through the small intestines. The steps in protein digestion are summarized in [link] and [link].

Protein digestion is a multistep process that begins in the stomach and continues through the

intestines.

Digestion of Protein

	Enzyme	Produced By	Site of Action	Substrate Acting On	End Products
Pepsin		Stomach chief cells	Stomach	Proteins	Peptides
•	Trypsin Elastase Chymotrypsin	Pancreas	Small intestine	Proteins	Peptides
Carbox	xypeptidase	Pancreas	Small intestine	Peptides	Amino acids and peptides
•	Aminopeptidase Dipeptidase	Lining of intestine	Small intestine	Peptides	Amino acids

Lipids

Lipid digestion begins in the stomach with the aid of lingual lipase and gastric lipase. However, the bulk of lipid digestion occurs in the small intestine due to pancreatic lipase. When chyme enters the duodenum, the hormonal responses trigger the release of bile, which is produced in the liver and stored in the gallbladder. Bile aids in the digestion of lipids, primarily triglycerides by emulsification. Emulsification is a process in which large lipid globules are broken down into several small lipid globules. These small globules are more widely distributed in the chyme rather than forming large aggregates. Lipids are hydrophobic substances: in the presence of water, they will aggregate to form globules to minimize exposure to water. Bile contains bile salts, which are amphipathic, meaning they contain hydrophobic and hydrophilic parts. Thus, the bile salts hydrophilic side can interface with water on one side and the hydrophobic side interfaces with lipids on the other. By doing so, bile salts emulsify large lipid globules into small lipid globules.

Why is emulsification important for digestion of lipids? Pancreatic juices contain enzymes called lipases (enzymes that break down lipids). If the lipid in the chyme aggregates into large globules, very little surface area of the lipids is available for the lipases to act on, leaving lipid digestion incomplete. By forming an emulsion, bile salts increase the available surface area of the lipids many fold. The pancreatic lipases can then act on the lipids more efficiently and digest them, as detailed in [link]. Lipases break down the lipids into fatty acids and glycerides. These molecules can pass through the plasma membrane of the cell and enter the epithelial cells of the intestinal lining. The bile salts surround long-chain fatty acids and monoglycerides forming tiny spheres called micelles. The micelles move into the brush border of the small intestine absorptive cells where the long-chain fatty acids and monoglycerides diffuse out of the micelles into the absorptive cells leaving the micelles behind in the chyme. The long-chain fatty acids and monoglycerides recombine in the absorptive cells to form triglycerides, which aggregate into globules and become coated with proteins. These large spheres are called chylomicrons. Chylomicrons contain triglycerides, cholesterol, and other lipids and have proteins on their surface. The surface is also composed of the hydrophilic phosphate "heads" of phospholipids. Together, they enable the chylomicron to move in an aqueous environment without exposing the lipids to water. Chylomicrons leave the absorptive cells via exocytosis. Chylomicrons enter the lymphatic vessels, and then enter the blood in the subclavian vein.

Lipids are digested and absorbed in the small intestine.

Vitamins

Vitamins can be either water-soluble or lipid-soluble. Fat soluble vitamins are absorbed in the same manner as lipids. It is important to consume some amount of dietary lipid to aid the absorption of lipid-soluble vitamins. Water-soluble vitamins can be directly absorbed into the bloodstream from the intestine.

Link to Learning

This <u>website</u> has an overview of the digestion of protein, fat, and carbohydrates.

Art Connection

Mechanical and chemical digestion of food takes place in many steps, beginning in the mouth

and ending in the rectum.

Which of the following statements about digestive processes is true?

- a. Amylase, maltase, and lactase in the mouth digest carbohydrates.
- b. Trypsin and lipase in the stomach digest protein.
- c. Bile emulsifies lipids in the small intestine.
- d. No food is absorbed until the small intestine.

Elimination

The final step in digestion is the elimination of undigested food content and waste products. The undigested food material enters the colon, where most of the water is reabsorbed. Recall that the colon is also home to the microflora called "intestinal flora" that aid in the digestion process. The semi-solid waste is moved through the colon by peristaltic movements of the muscle and is stored in the rectum. As the rectum expands in response to storage of fecal matter, it triggers the neural signals required to set up the urge to eliminate. The solid waste is eliminated through the anus using peristaltic movements of the rectum.

Common Problems with Elimination

Diarrhea and constipation are some of the most common health concerns that affect digestion. Constipation is a condition where the feces are hardened because of excess water removal in the colon. In contrast, if enough water is not removed from the feces, it results in diarrhea. Many bacteria, including the ones that cause cholera, affect the proteins involved in water reabsorption in the colon and result in excessive diarrhea.

Emesis

Emesis, or vomiting, is elimination of food by forceful expulsion through the mouth. It is often in response to an irritant that affects the digestive tract, including but not limited to viruses, bacteria, emotions, sights, and food poisoning. This forceful expulsion of the food is due to the strong contractions produced by the stomach muscles. The process of emesis is regulated by the medulla.

Section Summary

Digestion begins with ingestion, where the food is taken in the mouth. Digestion and absorption take place in a series of steps with special enzymes playing important roles in digesting carbohydrates, proteins, and lipids. Elimination describes removal of undigested food contents and waste products from the body. While most absorption occurs in the small intestines, the large intestine is responsible for the final removal of water that remains after the absorptive process of the small intestines. The cells that line the large intestine absorb some vitamins as well as any leftover salts and water. The large intestine (colon) is also where feces is formed.

Art Connections

[link] Which of the following statements about digestive processes is true?

- a. Amylase, maltase and lactase in the mouth digest carbohydrates.
- b. Trypsin and lipase in the stomach digest protein.
- c. Bile emulsifies lipids in the small intestine.
- d. No food is absorbed until the small intestine.

[link] C

Review Questions

Where does the majority of protein digestion take place?

- a. stomach
- b. duodenum
- c. mouth
- d. jejunum

A

Lipases are enzymes that break down _____.

- a. disaccharides
- b. lipids
- c. proteins
- d. cellulose

Free Response

Explain why some dietary lipid is a necessary part of a balanced diet.

Lipids add flavor to food and promote a sense of satiety or fullness. Fatty foods are sources of high energy; one gram of lipid contains nine calories. Lipids are also required in the diet to aid the absorption of lipid-soluble vitamins and for the production of lipid-soluble hormones.

Glossary

aminopeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of small intestine

carboxypeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of the small intestine

chylomicron

small lipid globule

chymotrypsin

pancreatic protease

digestion

mechanical and chemical break down of food into small organic fragments dipeptidase

protease that breaks down peptides to single amino acids; secreted by the brush border of small intestine

elastase

pancreatic protease

ingestion

act of taking in food

lactase

enzyme that breaks down lactose into glucose and galactose maltase

enzyme that breaks down maltose into glucose

sucrase

enzyme that breaks down sucrose into glucose and fructose trypsin

pancreatic protease that breaks down protein

Digestive System Regulation

By the end of this section, you will be able to:

- Discuss the role of neural regulation in digestive processes
- Explain how hormones regulate digestion

The brain is the control center for the sensation of hunger and satiety. The functions of the digestive system are regulated through neural and hormonal responses.

Neural Responses to Food

In reaction to the smell, sight, or thought of food, like that shown in [link], the first response is that of salivation. The salivary glands secrete more saliva in response to stimulation by the autonomic nervous system triggered by food in preparation for digestion. Simultaneously, the stomach begins to produce hydrochloric acid to digest the food. Recall that the peristaltic movements of the esophagus and other organs of the digestive tract are under the control of the brain. The brain prepares these muscles for movement as well. When the stomach is full, the part of the brain that detects satiety signals fullness. There are three overlapping phases of gastric control—the cephalic phase, the gastric phase, and the intestinal phase—each requires many enzymes and is under neural control as well.

Seeing a plate of food triggers the secretion of saliva in the mouth and the production of HCL

in the stomach. (credit: Kelly Bailey)

Digestive Phases

The response to food begins even before food enters the mouth. The first phase of ingestion, called the cephalic phase, is controlled by the neural response to the stimulus provided by food. All aspects—such as sight, sense, and smell—trigger the neural responses resulting in salivation and secretion of gastric juices. The gastric and salivary secretion in the cephalic phase can also take place due to the thought of food. Right now, if you think about a piece of chocolate or a crispy potato chip, the increase in salivation is a cephalic phase response to the thought. The central nervous system prepares the stomach to receive food.

The gastric phase begins once the food arrives in the stomach. It builds on the stimulation provided during the cephalic phase. Gastric acids and enzymes process the ingested materials.

The gastric phase is stimulated by (1) distension of the stomach, (2) a decrease in the pH of the gastric contents, and (3) the presence of undigested material. This phase consists of local, hormonal, and neural responses. These responses stimulate secretions and powerful contractions.

The intestinal phase begins when chyme enters the small intestine triggering digestive secretions. This phase controls the rate of gastric emptying. In addition to gastrin emptying, when chyme enters the small intestine, it triggers other hormonal and neural events that coordinate the activities of the intestinal tract, pancreas, liver, and gallbladder.

Hormonal Responses to Food

The endocrine system controls the response of the various glands in the body and the release of hormones at the appropriate times.

One of the important factors under hormonal control is the stomach acid environment. During the gastric phase, the hormone gastrin is secreted by G cells in the stomach in response to the presence of proteins. Gastrin stimulates the release of stomach acid, or hydrochloric acid (HCl) which aids in the digestion of the proteins. However, when the stomach is emptied, the acidic environment need not be maintained and a hormone called somatostatin stops the release of hydrochloric acid. This is controlled by a negative feedback mechanism.

In the duodenum, digestive secretions from the liver, pancreas, and gallbladder play an important role in digesting chyme during the intestinal phase. In order to neutralize the acidic chyme, a hormone called secretin stimulates the pancreas to produce alkaline bicarbonate solution and deliver it to the duodenum. Secretin acts in tandem with another hormone called cholecystokinin (CCK). Not only does CCK stimulate the pancreas to produce the requisite pancreatic juices, it also stimulates the gallbladder to release bile into the duodenum.

Link to Learning

Visit <u>this website</u> to learn more about the endocrine system. Review the text and watch the animation of how control is implemented in the endocrine system.

Another level of hormonal control occurs in response to the composition of food. Foods high in lipids take a long time to digest. A hormone called gastric inhibitory peptide is secreted by the small intestine to slow down the peristaltic movements of the intestine to allow fatty foods more time to be digested and absorbed.

Understanding the hormonal control of the digestive system is an important area of ongoing research. Scientists are exploring the role of each hormone in the digestive process and

developing ways to target these hormones. Advances could lead to knowledge that may help to battle the obesity epidemic.

Section Summary

The brain and the endocrine system control digestive processes. The brain controls the responses of hunger and satiety. The endocrine system controls the release of hormones and enzymes required for digestion of food in the digestive tract.

Review Questions

Which hormone controls the release of bile from the gallbladder

- a. pepsin
- b. amylase
- c. CCK
- d. gastrin

С

Which hormone stops acid secretion in the stomach?

- a. gastrin
- b. somatostatin
- c. gastric inhibitory peptide
- d. CCK

В

Free Response

Describe how hormones regulate digestion.

Hormones control the different digestive enzymes that are secreted in the stomach and the intestine during the process of digestion and absorption. For example, the hormone gastrin stimulates stomach acid secretion in response to food intake. The hormone somatostatin stops the release of stomach acid.

Describe one or more scenarios where loss of hormonal regulation of digestion can lead to diseases.

There are many cases where loss of hormonal regulation can lead to illnesses. For example, the bilirubin produced by the breakdown of red blood cells is converted to bile by the liver. When there is malfunction of this process, there is excess bilirubin in the blood and bile levels are low. As a result, the body struggles with dealing with fatty food. This is why a patient suffering from jaundice is asked to eat a diet with almost zero fat.

Glossary

cephalic phase

first phase of digestion, controlled by the neural response to the stimulus provided by food

cholecystokinin

hormone that stimulates the contraction of the gallbladder to release bile endocrine system

system that controls the response of the various glands in the body and the release of hormones at the appropriate times

gastric inhibitory peptide

hormone secreted by the small intestine in the presence of fatty acids and sugars; it also inhibits acid production and peristalsis in order to slow down the rate at which food enters the small intestine

gastric phase

digestive phase beginning once food enters the stomach; gastric acids and enzymes process the ingested materials

gastrin

hormone which stimulates hydrochloric acid secretion in the stomach intestinal phase

third digestive phase; begins when chyme enters the small intestine

triggering digestive secretions and controlling the rate of gastric emptying secretin

hormone which stimulates sodium bicarbonate secretion in the small intestine

somatostatin

hormone released to stop acid secretion when the stomach is empty Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"An athlete's nervous system is hard at work during the planning and execution of a movement as precise as a high jump. Parts of the nervous system are involved in determining how hard to push off and when to turn, as well as controlling the muscles throughout the body that make this complicated movement possible without knocking the bar down—all in just a few seconds. (credit: modification of work by Shane T. McCoy, U.S.

Navy)

When you're reading this book, your nervous system is performing several functions simultaneously. The visual system is processing what is seen on the page; the motor system controls the turn of the pages (or click of the mouse); the prefrontal cortex maintains attention. Even fundamental functions, like breathing and regulation of body temperature, are controlled by the nervous system. A nervous system is an organism's control center: it processes sensory information from outside (and inside) the body and controls all behaviors—from eating to sleeping to finding a mate.

Neurons and Glial Cells

By the end of this section, you will be able to:

- List and describe the functions of the structural components of a neuron
- List and describe the four main types of neurons

• Compare the functions of different types of glial cells

Nervous systems throughout the animal kingdom vary in structure and complexity, as illustrated by the variety of animals shown in [link]. Some organisms, like sea sponges, lack a true nervous system. Others, like jellyfish, lack a true brain and instead have a system of separate but connected nerve cells (neurons) called a "nerve net." Echinoderms such as sea stars have nerve cells that are bundled into fibers called nerves. Flatworms of the phylum Platyhelminthes have both a central nervous system (CNS), made up of a small "brain" and two nerve cords, and a peripheral nervous system (PNS) containing a system of nerves that extend throughout the body. The insect nervous system is more complex but also fairly decentralized. It contains a brain, ventral nerve cord, and ganglia (clusters of connected neurons). These ganglia can control movements and behaviors without input from the brain. Octopi may have the most complicated of invertebrate nervous systems—they have neurons that are organized in specialized lobes and eyes that are structurally similar to vertebrate species.

Nervous systems vary in structure and complexity. In (a) cnidarians, nerve cells form a decentralized nerve net. In (b) echinoderms, nerve cells are bundled into fibers called nerves. In animals exhibiting bilateral symmetry such as (c) planarians, neurons cluster into an anterior brain that processes information. In addition to a brain, (d) arthropods have clusters of nerve cell bodies, called peripheral ganglia, located along the ventral nerve cord. Mollusks such as squid and (e) octopi, which must hunt to survive, have complex brains containing millions of neurons. In (f) vertebrates, the brain and spinal cord comprise the central nervous system, while neurons extending into the rest of the body comprise the peripheral nervous system. (credit e: modification of work by Michael Vecchione, Clyde F.E. Roper, and

Michael J. Sweeney, NOAA; credit f: modification of work by

NIH)

Compared to invertebrates, vertebrate nervous systems are more complex, centralized, and specialized. While there is great diversity among different vertebrate nervous systems, they all share a basic structure: a CNS that contains a brain and spinal cord and a PNS made up of peripheral sensory and motor nerves. One interesting difference between the nervous systems of invertebrates and vertebrates is that the nerve cords of many invertebrates are located ventrally whereas the vertebrate spinal cords are located dorsally. There is debate among evolutionary biologists as to whether these different nervous system plans evolved separately or whether the invertebrate body plan arrangement somehow "flipped" during the evolution of vertebrates.

Link to Learning

Watch this video of biologist Mark Kirschner discussing the "flipping" phenomenon of vertebrate evolution.

How Neurons Communicate By the end of this section, you will be able to:

- Describe the basis of the resting membrane potential
- Explain the stages of an action potential and how action potentials are propagated
- Explain the similarities and differences between chemical and electrical synapses
- Describe long-term potentiation and long-term depression

All functions performed by the nervous system—from a simple motor reflex to more advanced functions like making a memory or a decision—require neurons to communicate with one another. While humans use words and body language to communicate, neurons use electrical and chemical signals. Just like a person in a committee, one neuron usually receives and synthesizes messages from multiple other neurons before "making the decision" to send the message on to other neurons.

Nerve Impulse Transmission within a Neuron

For the nervous system to function, neurons must be able to send and receive signals. These signals are possible because each neuron has a charged cellular membrane (a voltage difference between the inside and the outside), and the charge of this membrane can change in response to neurotransmitter molecules released from other neurons and environmental stimuli. To understand how neurons communicate, one must first understand the basis of the baseline or 'resting' membrane charge.

Neuronal Charged Membranes

The lipid bilayer membrane that surrounds a neuron is impermeable to charged molecules or ions. To enter or exit the neuron, ions must pass through special proteins called ion channels that span the membrane. Ion channels have different configurations: open, closed, and inactive, as illustrated in [link]. Some ion channels need to be activated in order to open and allow ions to pass into or out of the cell. These ion channels are sensitive to the environment and can change their shape accordingly. Ion channels that change their structure in response to voltage changes are called voltage-gated ion channels. Voltage-gated ion channels regulate the relative concentrations of different ions inside and outside the cell. The difference in total charge between the inside and outside of the cell is called the membrane potential.

Voltage-gated ion channels open in response to changes in membrane voltage. After activation, they become inactivated for a brief period and will no longer open in response to a

signal. Link to Learning

This video discusses the basis of the resting membrane potential.

The Central Nervous System By the end of this section, you will be able to:

• Identify the spinal cord, cerebral lobes, and other brain areas on a diagram of the brain

• Describe the basic functions of the spinal cord, cerebral lobes, and other brain areas

The central nervous system (CNS) is made up of the brain, a part of which is shown in [link] and spinal cord and is covered with three layers of protective coverings called meninges (from the Greek word for membrane). The outermost layer is the dura mater (Latin for "hard mother"). As the Latin suggests, the primary function for this thick layer is to protect the brain and spinal cord. The dura mater also contains vein-like structures that carry blood from the brain back to the heart. The middle layer is the web-like arachnoid mater. The last layer is the pia mater (Latin for "soft mother"), which directly contacts and covers the brain and spinal cord like plastic wrap. The space between the arachnoid and pia maters is filled with cerebrospinal fluid (CSF). CSF is produced by a tissue called choroid plexus in fluid-filled compartments in the CNS called ventricles. The brain floats in CSF, which acts as a cushion and shock absorber and makes the brain neutrally buoyant. CSF also functions to circulate chemical substances throughout the brain and into the spinal cord.

The entire brain contains only about 8.5 tablespoons of CSF, but CSF is constantly produced in the ventricles. This creates a problem when a ventricle is blocked—the CSF builds up and creates swelling and the brain is pushed against the skull. This swelling condition is called hydrocephalus ("water head") and can cause seizures, cognitive problems, and even death if a shunt is not inserted to remove the fluid and pressure.

The cerebral cortex is covered by three layers of meninges: the dura, arachnoid, and pia maters. (credit: modification of work by Gray's

Brain

The brain is the part of the central nervous system that is contained in the cranial cavity of the skull. It includes the cerebral cortex, limbic system, basal ganglia, thalamus, hypothalamus, and cerebellum. There are three different ways that a brain can be sectioned in order to view internal structures: a sagittal section cuts the brain left to right, as shown in [link]b, a coronal section cuts the brain front to back, as shown in [link]a, and a horizontal section cuts the brain top to bottom.

Cerebral Cortex

The outermost part of the brain is a thick piece of nervous system tissue called the cerebral cortex, which is folded into hills called gyri (singular: gyrus) and valleys called sulci (singular: sulcus). The cortex is made up of two hemispheres—right and left—which are separated by a large sulcus. A thick fiber bundle called the corpus callosum (Latin: "tough body") connects the two hemispheres and allows information to be passed from one side to the other. Although there are some brain functions that are localized more to one hemisphere than the other, the functions of the two hemispheres are largely redundant. In fact, sometimes (very rarely) an entire hemisphere is removed to treat severe epilepsy. While patients do suffer some deficits following the surgery, they can have surprisingly few problems, especially when the surgery is performed on children who have very immature nervous systems.

These illustrations show the (a) coronal and (b) sagittal sections of the human

brain.

In other surgeries to treat severe epilepsy, the corpus callosum is cut instead of removing an entire hemisphere. This causes a condition called split-brain, which gives insights into unique functions of the two hemispheres. For example, when an object is presented to patients' left visual field, they may be unable to verbally name the object (and may claim to not have seen an object at all). This is because the visual input from the left visual field crosses and enters the right hemisphere and cannot then signal to the speech center, which generally is found in the left side of the brain. Remarkably, if a split-brain patient is asked to pick up a specific object out of a group of objects with the left hand, the patient will be able to do so but will still be unable to vocally identify it.

Link to Learning

See <u>this website</u> to learn more about split-brain patients and to play a game where you can model the split-brain experiments yourself.

Each cortical hemisphere contains regions called lobes that are involved in different functions. Scientists use various techniques to determine what brain areas are involved in different functions: they examine patients who have had injuries or diseases that affect specific areas and see how those areas are related to functional deficits. They also conduct animal studies where they stimulate brain areas and see if there are any behavioral changes. They use a technique called transmagnetic stimulation (TMS) to temporarily deactivate specific parts of the cortex using strong magnets placed outside the head; and they use functional magnetic resonance imaging (fMRI) to look at changes in oxygenated blood flow in particular brain regions that correlate with specific behavioral tasks. These techniques, and others, have given great insight into the functions of different brain regions but have also showed that any given behavior or process generally involves neurons in multiple brain areas. That being said, each hemisphere of the mammalian cerebral cortex can be broken down into four functionally and spatially defined lobes: frontal, parietal, temporal, and occipital. [link] illustrates these four lobes of the human cerebral cortex.

The human cerebral cortex includes the frontal, parietal, temporal, and occipital

lobes.

The frontal lobe is located at the front of the brain, over the eyes. This lobe contains the olfactory bulb, which processes smells. The frontal lobe also contains the motor cortex, which is important for planning and implementing movement. Areas within the motor cortex map to different muscle groups, and there is some organization to this map, as shown

in [link]. For example, the neurons that control movement of the fingers are next to the neurons that control movement of the hand. Neurons in the frontal lobe also control cognitive functions like maintaining attention, speech, and decision-making. Studies of humans who have damaged their frontal lobes show that parts of this area are involved in personality, socialization, and assessing risk.

Different parts of the motor cortex control different muscle groups. Muscle groups that are neighbors in the body are generally controlled by neighboring regions of the motor cortex as well. For example, the neurons that control finger movement are near the neurons that control

hand movement.

The parietal lobe is located at the top of the brain. Neurons in the parietal lobe are involved in speech and also reading. Two of the parietal lobe's main functions are processing somatosensation—touch sensations like pressure, pain, heat, cold—and processing proprioception—the sense of how parts of the body are oriented in space. The parietal lobe contains a somatosensory map of the body similar to the motor cortex.

The occipital lobe is located at the back of the brain. It is primarily involved in vision—seeing, recognizing, and identifying the visual world.

The temporal lobe is located at the base of the brain by your ears and is primarily involved in processing and interpreting sounds. It also contains the hippocampus (Greek for "seahorse")—a structure that processes memory formation. The hippocampus is illustrated in [link]. The role of the hippocampus in memory was partially determined by studying one famous epileptic patient, HM, who had both sides of his hippocampus removed in an attempt to cure his epilepsy. His seizures went away, but he could no longer form new memories (although he could remember some facts from before his surgery and could learn new motor tasks).

Evolution Connection

Cerebral Cortex Compared to other vertebrates, mammals have exceptionally large brains for their body size. An entire alligator's brain, for example, would fill about one and a half teaspoons. This increase in brain to body size ratio is especially pronounced in apes, whales, and dolphins. While this increase in overall brain size doubtlessly played a role in the

evolution of complex behaviors unique to mammals, it does not tell the whole story. Scientists have found a relationship between the relatively high surface area of the cortex and the intelligence and complex social behaviors exhibited by some mammals. This increased surface area is due, in part, to increased folding of the cortical sheet (more sulci and gyri). For example, a rat cortex is very smooth with very few sulci and gyri. Cat and sheep cortices have more sulci and gyri. Chimps, humans, and dolphins have even more.

Mammals have larger brain-to-body ratios than other vertebrates. Within mammals, increased cortical folding and surface area is correlated with complex behavior.

Basal Ganglia

Interconnected brain areas called the basal ganglia (or basal nuclei), shown in [link]b, play important roles in movement control and posture. Damage to the basal ganglia, as in Parkinson's disease, leads to motor impairments like a shuffling gait when walking. The basal ganglia also regulate motivation. For example, when a wasp sting led to bilateral basal ganglia damage in a 25-year-old businessman, he began to spend all his days in bed and showed no interest in anything or anybody. But when he was externally stimulated—as when

someone asked to play a card game with him—he was able to function normally. Interestingly, he and other similar patients do not report feeling bored or frustrated by their state.

Thalamus

The thalamus (Greek for "inner chamber"), illustrated in [link], acts as a gateway to and from the cortex. It receives sensory and motor inputs from the body and also receives feedback from the cortex. This feedback mechanism can modulate conscious awareness of sensory and motor inputs depending on the attention and arousal state of the animal. The thalamus helps regulate consciousness, arousal, and sleep states. A rare genetic disorder called fatal familial insomnia causes the degeneration of thalamic neurons and glia. This disorder prevents affected patients from being able to sleep, among other symptoms, and is eventually fatal.

The limbic system regulates emotion and other behaviors. It includes parts of the cerebral cortex located near the center of the brain, including the cingulate gyrus and the hippocampus as well as the thalamus, hypothalamus and

amygdala.

Hypothalamus

Below the thalamus is the hypothalamus, shown in [link]. The hypothalamus controls the endocrine system by sending signals to the pituitary gland, a pea-sized endocrine gland that

releases several different hormones that affect other glands as well as other cells. This relationship means that the hypothalamus regulates important behaviors that are controlled by these hormones. The hypothalamus is the body's thermostat—it makes sure key functions like food and water intake, energy expenditure, and body temperature are kept at appropriate levels. Neurons within the hypothalamus also regulate circadian rhythms, sometimes called sleep cycles.

Limbic System

The limbic system is a connected set of structures that regulates emotion, as well as behaviors related to fear and motivation. It plays a role in memory formation and includes parts of the thalamus and hypothalamus as well as the hippocampus. One important structure within the limbic system is a temporal lobe structure called the amygdala (Greek for "almond"), illustrated in [link]. The two amygdala are important both for the sensation of fear and for recognizing fearful faces. The cingulate gyrus helps regulate emotions and pain.

Cerebellum

The cerebellum (Latin for "little brain"), shown in [link], sits at the base of the brain on top of the brainstem. The cerebellum controls balance and aids in coordinating movement and learning new motor tasks.

Brainstem

The brainstem, illustrated in [link], connects the rest of the brain with the spinal cord. It consists of the midbrain, medulla oblongata, and the pons. Motor and sensory neurons extend through the brainstem allowing for the relay of signals between the brain and spinal cord. Ascending neural pathways cross in this section of the brain allowing the left hemisphere of the cerebrum to control the right side of the body and vice versa. The brainstem coordinates motor control signals sent from the brain to the body. The brainstem controls several important functions of the body including alertness, arousal, breathing, blood pressure, digestion, heart rate, swallowing, walking, and sensory and motor information integration.

Spinal Cord

Connecting to the brainstem and extending down the body through the spinal column is the spinal cord, shown in [link]. The spinal cord is a thick bundle of nerve tissue that carries information about the body to the brain and from the brain to the body. The spinal cord is contained within the bones of the vertebrate column but is able to communicate signals to and from the body through its connections with spinal nerves (part of the peripheral nervous system). A cross-section of the spinal cord looks like a white oval containing a gray butterfly-shape, as illustrated in [link]. Myelinated axons make up the "white matter" and neuron and glial cell bodies make up the "gray matter." Gray matter is also composed of interneurons, which connect two neurons each located in different parts of the body. Axons and cell bodies in the dorsal (facing the back of the animal) spinal cord convey mostly sensory information from the body to the brain. Axons and cell bodies in the ventral (facing the front of the animal) spinal cord primarily transmit signals controlling movement from the brain to the body.

The spinal cord also controls motor reflexes. These reflexes are quick, unconscious movements—like automatically removing a hand from a hot object. Reflexes are so fast because they involve local synaptic connections. For example, the knee reflex that a doctor tests during a routine physical is controlled by a single synapse between a sensory neuron and a motor neuron. While a reflex may only require the involvement of one or two synapses, synapses with interneurons in the spinal column transmit information to the brain to convey what happened (the knee jerked, or the hand was hot).

In the United States, there around 10,000 spinal cord injuries each year. Because the spinal cord is the information superhighway connecting the brain with the body, damage to the spinal cord can lead to paralysis. The extent of the paralysis depends on the location of the injury along the spinal cord and whether the spinal cord was completely severed. For example, if the spinal cord is damaged at the level of the neck, it can cause paralysis from the neck down, whereas damage to the spinal column further down may limit paralysis to the legs. Spinal cord injuries are notoriously difficult to treat because spinal nerves do not regenerate, although ongoing research suggests that stem cell transplants may be able to act as a bridge to reconnect severed nerves. Researchers are also looking at ways to prevent the inflammation that worsens nerve damage after injury. One such treatment is to pump the body with cold saline to induce hypothermia. This cooling can prevent swelling and other processes that are thought to worsen spinal cord injuries.

A cross-section of the spinal cord shows gray matter (containing cell bodies and interneurons) and white matter (containing

axons).

Section Summary

The vertebrate central nervous system contains the brain and the spinal cord, which are covered and protected by three meninges. The brain contains structurally and functionally defined regions. In mammals, these include the cortex (which can be broken down into four primary functional lobes: frontal, temporal, occipital, and parietal), basal ganglia, thalamus, hypothalamus, limbic system, cerebellum, and brainstem—although structures in some of these designations overlap. While functions may be primarily localized to one structure in the

brain, most complex functions, like language and sleep, involve neurons in multiple brain regions. The spinal cord is the information superhighway that connects the brain with the rest of the body through its connections with peripheral nerves. It transmits sensory and motor input and also controls motor reflexes.

Review Questions

The _____ lobe contains the visual cortex.

- a. frontal
- b. parietal
- c. temporal
- d. occipital

D

The _____ connects the two cerebral hemispheres.

- a. limbic system
- b. corpus callosum
- c. cerebellum
- d. pituitary

В

Neurons in the _____ control motor reflexes.

- a. thalamus
- b. spinal cord
- c. parietal lobe
- d. hippocampus

В

Free Response

What methods can be used to determine the function of a particular brain region?

To determine the function of a specific brain area, scientists can look at patients who have damage in that brain area and see what symptoms they exhibit. Researchers can disable the brain structure temporarily using transcranial magnetic stimulation. They can disable or remove the area in an animal model. fMRI can be used to correlate specific functions with increased blood flow to brain regions.

What are the main functions of the spinal cord?

The spinal cord transmits sensory information from the body to the brain and motor commands from the brain to the body through its connections with peripheral nerves. It also controls motor reflexes.

Glossary

amygdala

structure within the limbic system that processes fear

arachnoid mater

spiderweb-like middle layer of the meninges that cover the central nervous system

basal ganglia

interconnected collections of cells in the brain that are involved in movement and motivation; also known as basal nuclei

basal nuclei

see basal ganglia

brainstem

portion of the brain that connects with the spinal cord; controls basic nervous system functions like breathing, heart rate, and swallowing

cerebellum

brain structure involved in posture, motor coordination, and learning new motor actions

cerebral cortex

outermost sheet of brain tissue; involved in many higher-order functions choroid plexus

spongy tissue within ventricles that produces cerebrospinal fluid cingulate gyrus

helps regulate emotions and pain; thought to directly drive the body's conscious response to unpleasant experiences

corpus callosum

thick fiber bundle that connects the cerebral hemispheres cerebrospinal fluid (CSF)

clear liquid that surrounds the brain and spinal cord and fills the ventricles and central canal; acts as a shock absorber and circulates material throughout the brain and spinal cord.

dura mater

tough outermost layer that covers the central nervous system frontal lobe

part of the cerebral cortex that contains the motor cortex and areas involved in planning, attention, and language

gyrus

(plural: gyri) ridged protrusions in the cortex

hippocampus

brain structure in the temporal lobe involved in processing memories hypothalamus

brain structure that controls hormone release and body homeostasis limbic system

connected brain areas that process emotion and motivation meninge

membrane that covers and protects the central nervous system occipital lobe

part of the cerebral cortex that contains visual cortex and processes visual stimuli

parietal lobe

part of the cerebral cortex involved in processing touch and the sense of the body in space

pia mater

thin membrane layer directly covering the brain and spinal cord proprioception

sense about how parts of the body are oriented in space

somatosensation

sense of touch

spinal cord

thick fiber bundle that connects the brain with peripheral nerves; transmits

sensory and motor information; contains neurons that control motor reflexes sulcus

(plural: sulci) indents or "valleys" in the cortex

temporal lobe

part of the cerebral cortex that processes auditory input; parts of the

temporal lobe are involved in speech, memory, and emotion processing thalamus

brain area that relays sensory information to the cortex ventricle

cavity within brain that contains cerebrospinal fluid

The Peripheral Nervous System

By the end of this section, you will be able to:

- Describe the organization and functions of the sympathetic and parasympathetic nervous systems
- Describe the organization and function of the sensory-somatic nervous system

The peripheral nervous system (PNS) is the connection between the central nervous system and the rest of the body. The CNS is like the power plant of the nervous system. It creates the signals that control the functions of the body. The PNS is like the wires that go to individual houses. Without those "wires," the signals produced by the CNS could not control the body (and the CNS would not be able to receive sensory information from the body either).

The PNS can be broken down into the autonomic nervous system, which controls bodily functions without conscious control, and the sensory-somatic nervous system, which transmits sensory information from the skin, muscles, and sensory organs to the CNS and sends motor commands from the CNS to the muscles.

Autonomic Nervous System

Art Connection

In the autonomic nervous system, a preganglionic neuron of the CNS synapses with a postganglionic neuron of the PNS. The postganglionic neuron, in turn, acts on a target organ. Autonomic responses are mediated by the sympathetic and the parasympathetic systems, which are antagonistic to one another. The sympathetic system activates the "fight or flight" response, while the parasympathetic system activates the "rest and digest"

response.

Which of the following statements is false?

- a. The parasympathetic pathway is responsible for resting the body, while the sympathetic pathway is responsible for preparing for an emergency.
- b. Most preganglionic neurons in the sympathetic pathway originate in the spinal cord.
- c. Slowing of the heartbeat is a parasympathetic response.
- d. Parasympathetic neurons are responsible for releasing norepinephrine on the target organ, while sympathetic neurons are responsible for releasing acetylcholine.

The autonomic nervous system serves as the relay between the CNS and the internal organs. It controls the lungs, the heart, smooth muscle, and exocrine and endocrine glands. The autonomic nervous system controls these organs largely without conscious control; it can continuously monitor the conditions of these different systems and implement changes as needed. Signaling to the target tissue usually involves two synapses: a preganglionic neuron (originating in the CNS) synapses to a neuron in a ganglion that, in turn, synapses on the target organ, as illustrated in [link]. There are two divisions of the autonomic nervous system that often have opposing effects: the sympathetic nervous system and the parasympathetic nervous system.

Sympathetic Nervous System

The sympathetic nervous system is responsible for the "fight or flight" response that occurs when an animal encounters a dangerous situation. One way to remember this is to think of the surprise a person feels when encountering a snake ("snake" and "sympathetic" both begin with "s"). Examples of functions controlled by the sympathetic nervous system include an accelerated heart rate and inhibited digestion. These functions help prepare an organism's body for the physical strain required to escape a potentially dangerous situation or to fend off a predator.

The sympathetic and parasympathetic nervous systems often have opposing effects on target organs.

Most preganglionic neurons in the sympathetic nervous system originate in the spinal cord, as illustrated in <u>[link]</u>. The axons of these neurons release acetylcholine on postganglionic neurons within sympathetic ganglia (the sympathetic ganglia form a chain that extends alongside the spinal cord). The acetylcholine activates the postganglionic neurons. Postganglionic neurons then release norepinephrine onto target organs. As anyone who has ever felt a rush before a big test, speech, or athletic event can attest, the effects of the

sympathetic nervous system are quite pervasive. This is both because one preganglionic neuron synapses on multiple postganglionic neurons, amplifying the effect of the original synapse, and because the adrenal gland also releases norepinephrine (and the closely related hormone epinephrine) into the blood stream. The physiological effects of this norepinephrine release include dilating the trachea and bronchi (making it easier for the animal to breathe), increasing heart rate, and moving blood from the skin to the heart, muscles, and brain (so the animal can think and run). The strength and speed of the sympathetic response helps an organism avoid danger, and scientists have found evidence that it may also increase LTP— allowing the animal to remember the dangerous situation and avoid it in the future.

Parasympathetic Nervous System

While the sympathetic nervous system is activated in stressful situations, the parasympathetic nervous system allows an animal to "rest and digest." One way to remember this is to think that during a restful situation like a picnic, the parasympathetic nervous system is in control ("picnic" and "parasympathetic" both start with "p"). Parasympathetic preganglionic neurons have cell bodies located in the brainstem and in the sacral (toward the bottom) spinal cord, as shown in [link]. The axons of the preganglionic neurons release acetylcholine on the postganglionic neurons, which are generally located very near the target organs. Most postganglionic neurons release acetylcholine onto target organs, although some release nitric oxide.

The parasympathetic nervous system resets organ function after the sympathetic nervous system is activated (the common adrenaline dump you feel after a 'fight-or-flight' event). Effects of acetylcholine release on target organs include slowing of heart rate, lowered blood pressure, and stimulation of digestion.

Sensory-Somatic Nervous System

The sensory-somatic nervous system is made up of cranial and spinal nerves and contains both sensory and motor neurons. Sensory neurons transmit sensory information from the skin, skeletal muscle, and sensory organs to the CNS. Motor neurons transmit messages about desired movement from the CNS to the muscles to make them contract. Without its sensorysomatic nervous system, an animal would be unable to process any information about its environment (what it sees, feels, hears, and so on) and could not control motor movements. Unlike the autonomic nervous system, which has two synapses between the CNS and the target organ, sensory and motor neurons have only one synapse—one ending of the neuron is at the organ and the other directly contacts a CNS neuron. Acetylcholine is the main neurotransmitter released at these synapses.

Humans have 12 cranial nerves, nerves that emerge from or enter the skull (cranium), as opposed to the spinal nerves, which emerge from the vertebral column. Each cranial nerve is accorded a name, which are detailed in [link]. Some cranial nerves transmit only sensory information. For example, the olfactory nerve transmits information about smells from the nose to the brainstem. Other cranial nerves transmit almost solely motor information. For example, the oculomotor nerve controls the opening and closing of the eyelid and some eye movements. Other cranial nerves contain a mix of sensory and motor fibers. For example, the glossopharyngeal nerve has a role in both taste (sensory) and swallowing (motor).

The human brain contains 12 cranial nerves that receive sensory input and control motor output for the head and

neck.

Spinal nerves transmit sensory and motor information between the spinal cord and the rest of the body. Each of the 31 spinal nerves (in humans) contains both sensory and motor axons. The sensory neuron cell bodies are grouped in structures called dorsal root ganglia and are shown in [link]. Each sensory neuron has one projection—with a sensory receptor ending in skin, muscle, or sensory organs—and another that synapses with a neuron in the dorsal spinal cord. Motor neurons have cell bodies in the ventral gray matter of the spinal cord that project to muscle through the ventral root. These neurons are usually stimulated by interneurons within the spinal cord but are sometimes directly stimulated by sensory neurons.

Spinal nerves contain both sensory and motor axons. The somas of sensory neurons are located in dorsal root ganglia. The somas of motor neurons are found in the ventral portion of

the gray matter of the spinal cord.

Section Summary

The peripheral nervous system contains both the autonomic and sensory-somatic nervous systems. The autonomic nervous system provides unconscious control over visceral functions and has two divisions: the sympathetic and parasympathetic nervous systems. The sympathetic nervous system is activated in stressful situations to prepare the animal for a "fight or flight" response. The parasympathetic nervous system is active during restful periods. The sensory-somatic nervous system is made of cranial and spinal nerves that transmit sensory information from skin and muscle to the CNS and motor commands from the CNS to the muscles.

Art Connections

[link] Which of the following statements is false?

- a. The parasympathetic pathway is responsible for relaxing the body, while the sympathetic pathway is responsible for preparing for an emergency.
- b. Most preganglionic neurons in the sympathetic pathway originate in the spinal cord.
- c. Slowing of the heartbeat is a parasympathetic response.
- d. Parasympathetic neurons are responsible for releasing norepinephrine on the target organ, while sympathetic neurons are responsible for releasing acetylcholine.

[link] D

Review Questions

Activation of the sympathetic nervous system causes:

- a. increased blood flow into the skin
- b. a decreased heart rate

- c. an increased heart rate
- d. increased digestion

С

Where are parasympathetic preganglionic cell bodies located?

- a. cerebellum
- b. brainstem
- c. dorsal root ganglia
- d. skin

В

_____ is released by motor nerve endings onto muscle.

- a. Acetylcholine
- b. Norepinephrine
- c. Dopamine
- d. Serotonin

A

Free Response

What are the main differences between the sympathetic and parasympathetic branches of the autonomic nervous system?

The sympathetic nervous system prepares the body for "fight or flight," whereas the parasympathetic nervous system allows the body to "rest and digest." Sympathetic neurons release norepinephrine onto target organs; parasympathetic neurons release acetylcholine. Sympathetic neuron cell bodies are located in sympathetic ganglia. Parasympathetic neuron cell bodies are located in sympathetic ganglia. Parasympathetic neuron cell bodies are located in sympathetic neuron. Activation of the sympathetic nervous system increases heart rate and blood pressure and decreases digestion and blood flow to the skin. Activation of the parasympathetic nervous system decreases heart rate and blood flow to the skin.

What are the main functions of the sensory-somatic nervous system?

The sensory-somatic nervous system transmits sensory information from the skin, muscles, and sensory organs to the CNS. It also sends motor commands from the CNS to the muscles, causing them to contract.

Glossary

acetylcholine

neurotransmitter released by neurons in the central nervous system and peripheral nervous system autonomic nervous system

```
part of the peripheral nervous system that controls bodily functions
cranial nerve
      sensory and/or motor nerve that emanates from the brain
norepinephrine
      neurotransmitter and hormone released by activation of the sympathetic
      nervous system
parasympathetic nervous system
      division of autonomic nervous system that regulates visceral functions
      during rest and digestion
sensory-somatic nervous system
      system of sensory and motor nerves
spinal nerve
      nerve projecting between skin or muscle and spinal cord
sympathetic nervous system
      division of autonomic nervous system activated during stressful "fight or
      flight" situations
Nervous System Disorders
By the end of this section, you will be able to:
```

• Describe the symptoms, potential causes, and treatment of several examples of nervous system disorders

A nervous system that functions correctly is a fantastically complex, well-oiled machine—synapses fire appropriately, muscles move when needed, memories are formed and stored, and emotions are well regulated. Unfortunately, each year millions of people in the United States deal with some sort of nervous system disorder. While scientists have discovered potential causes of many of these diseases, and viable treatments for some, ongoing research seeks to find ways to better prevent and treat all of these disorders.

Neurodegenerative Disorders

Neurodegenerative disorders are illnesses characterized by a loss of nervous system functioning that are usually caused by neuronal death. These diseases generally worsen over time as more and more neurons die. The symptoms of a particular neurodegenerative disease are related to where in the nervous system the death of neurons occurs. Spinocerebellar ataxia, for example, leads to neuronal death in the cerebellum. The death of these neurons causes problems in balance and walking. Neurodegenerative disorders include Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease and other types of dementia disorders, and Parkinson's disease. Here, Alzheimer's and Parkinson's disease will be discussed in more depth.

Alzheimer's Disease

Alzheimer's disease is the most common cause of dementia in the elderly. In 2012, an estimated 5.4 million Americans suffered from Alzheimer's disease, and payments for their

care are estimated at \$200 billion. Roughly one in every eight people age 65 or older has the disease. Due to the aging of the baby-boomer generation, there are projected to be as many as 13 million Alzheimer's patients in the United States in the year 2050.

Symptoms of Alzheimer's disease include disruptive memory loss, confusion about time or place, difficulty planning or executing tasks, poor judgment, and personality changes. Problems smelling certain scents can also be indicative of Alzheimer's disease and may serve as an early warning sign. Many of these symptoms are also common in people who are aging normally, so it is the severity and longevity of the symptoms that determine whether a person is suffering from Alzheimer's.

Alzheimer's disease was named for Alois Alzheimer, a German psychiatrist who published a report in 1911 about a woman who showed severe dementia symptoms. Along with his colleagues, he examined the woman's brain following her death and reported the presence of abnormal clumps, which are now called amyloid plaques, along with tangled brain fibers called neurofibrillary tangles. Amyloid plaques, neurofibrillary tangles, and an overall shrinking of brain volume are commonly seen in the brains of Alzheimer's patients. Loss of neurons in the hippocampus is especially severe in advanced Alzheimer's patient. Many research groups are examining the causes of these hallmarks of the disease.

One form of the disease is usually caused by mutations in one of three known genes. This rare form of early onset Alzheimer's disease affects fewer than five percent of patients with the disease and causes dementia beginning between the ages of 30 and 60. The more prevalent, late-onset form of the disease likely also has a genetic component. One particular gene, apolipoprotein E (APOE) has a variant (E4) that increases a carrier's likelihood of getting the disease. Many other genes have been identified that might be involved in the pathology.

Link to Learning

Visit this website for video links discussing genetics and Alzheimer's disease.

Unfortunately, there is no cure for Alzheimer's disease. Current treatments focus on managing the symptoms of the disease. Because decrease in the activity of cholinergic neurons (neurons that use the neurotransmitter acetylcholine) is common in Alzheimer's disease, several drugs used to treat the disease work by increasing acetylcholine neurotransmission, often by inhibiting the enzyme that breaks down acetylcholine in the synaptic cleft. Other clinical interventions focus on behavioral therapies like psychotherapy, sensory therapy, and cognitive exercises. Since Alzheimer's disease appears to hijack the normal aging process, research into prevention is prevalent. Smoking, obesity, and cardiovascular problems may be risk factors for the disease, so treatments for those may also help to prevent Alzheimer's disease. Some studies have shown that people who remain

intellectually active by playing games, reading, playing musical instruments, and being socially active in later life have a reduced risk of developing the disease.

Compared to a normal brain (left), the brain from a patient with Alzheimer's disease (right) shows a dramatic neurodegeneration, particularly within the ventricles and hippocampus. (credit: modification of work by "Garrando"/Wikimedia Commons based on original images by ADEAR: "Alzheimer's Disease Education and Referral Center, a service of the National Institute on

Aging")

Parkinson's Disease

Like Alzheimer's disease, Parkinson's disease is a neurodegenerative disease. It was first characterized by James Parkinson in 1817. Each year, 50,000-60,000 people in the United States are diagnosed with the disease. Parkinson's disease causes the loss of dopamine neurons in the substantia nigra, a midbrain structure that regulates movement. Loss of these neurons causes many symptoms including tremor (shaking of fingers or a limb), slowed movement, speech changes, balance and posture problems, and rigid muscles. The combination of these symptoms often causes a characteristic slow hunched shuffling walk, illustrated in [link]. Patients with Parkinson's disease can also exhibit psychological symptoms, such as dementia or emotional problems.

Although some patients have a form of the disease known to be caused by a single mutation, for most patients the exact causes of Parkinson's disease remain unknown: the disease likely results from a combination of genetic and environmental factors (similar to Alzheimer's disease). Post-mortem analysis of brains from Parkinson's patients shows the presence of Lewy bodies—abnormal protein clumps—in dopaminergic neurons. The prevalence of these Lewy bodies often correlates with the severity of the disease.

There is no cure for Parkinson's disease, and treatment is focused on easing symptoms. One of the most commonly prescribed drugs for Parkinson's is L-DOPA, which is a chemical that is converted into dopamine by neurons in the brain. This conversion increases the overall level of dopamine neurotransmission and can help compensate for the loss of dopaminergic neurons in the substantia nigra. Other drugs work by inhibiting the enzyme that breaks down dopamine.

Parkinson's patients often have a characteristic hunched

walk.

Neurodevelopmental Disorders

Neurodevelopmental disorders occur when the development of the nervous system is disturbed. There are several different classes of neurodevelopmental disorders. Some, like Down Syndrome, cause intellectual deficits. Others specifically affect communication, learning, or the motor system. Some disorders like autism spectrum disorder and attention deficit/hyperactivity disorder have complex symptoms.

Autism

Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Its severity differs from person to person. Estimates for the prevalence of the disorder have changed rapidly in the past few decades. Current estimates suggest that one in 88 children will develop the disorder. ASD is four times more prevalent in males than females.

Link to Learning

<u>This video</u> discusses possible reasons why there has been a recent increase in the number of people diagnosed with autism.

A characteristic symptom of ASD is impaired social skills. Children with autism may have difficulty making and maintaining eye contact and reading social cues. They also may have problems feeling empathy for others. Other symptoms of ASD include repetitive motor behaviors (such as rocking back and forth), preoccupation with specific subjects, strict adherence to certain rituals, and unusual language use. Up to 30 percent of patients with ASD develop epilepsy, and patients with some forms of the disorder (like Fragile X) also have intellectual disability. Because it is a spectrum disorder, other ASD patients are very functional and have good-to-excellent language skills. Many of these patients do not feel that they suffer from a disorder and instead think that their brains just process information differently.

Except for some well-characterized, clearly genetic forms of autism (like Fragile X and Rett's Syndrome), the causes of ASD are largely unknown. Variants of several genes correlate with the presence of ASD, but for any given patient, many different mutations in different genes may be required for the disease to develop. At a general level, ASD is thought to be a disease of "incorrect" wiring. Accordingly, brains of some ASD patients lack the same level of synaptic pruning that occurs in non-affected people. In the 1990s, a research paper linked autism to a common vaccine given to children. This paper was retracted when it was discovered that the author falsified data, and follow-up studies showed no connection between vaccines and autism.

Treatment for autism usually combines behavioral therapies and interventions, along with medications to treat other disorders common to people with autism (depression, anxiety, obsessive compulsive disorder). Although early interventions can help mitigate the effects of the disease, there is currently no cure for ASD.

Attention Deficit Hyperactivity Disorder (ADHD)

Approximately three to five percent of children and adults are affected by attention deficit/hyperactivity disorder (ADHD). Like ASD, ADHD is more prevalent in males than females. Symptoms of the disorder include inattention (lack of focus), executive functioning difficulties, impulsivity, and hyperactivity beyond what is characteristic of the normal developmental stage. Some patients do not have the hyperactive component of symptoms and are diagnosed with a subtype of ADHD: attention deficit disorder (ADD). Many people with ADHD also show comorbitity, in that they develop secondary disorders in addition to ADHD. Examples include depression or obsessive compulsive disorder (OCD). [link] provides some statistics concerning comorbidity with ADHD.

The cause of ADHD is unknown, although research points to a delay and dysfunction in the development of the prefrontal cortex and disturbances in neurotransmission. According to studies of twins, the disorder has a strong genetic component. There are several candidate genes that may contribute to the disorder, but no definitive links have been discovered. Environmental factors, including exposure to certain pesticides, may also contribute to the development of ADHD in some patients. Treatment for ADHD often involves behavioral therapies and the prescription of stimulant medications, which paradoxically cause a calming effect in these patients.

Many people with ADHD have one or more other neurological disorders. (credit "chart design and illustration": modification of work by Leigh Coriale; credit "data": Drs. Biederman and Faraone, Massachusetts General Hospital).

Career Connection

Neurologist Neurologists are physicians who specialize in disorders of the nervous system. They diagnose and treat disorders such as epilepsy, stroke, dementia, nervous system injuries, Parkinson's disease, sleep disorders, and multiple sclerosis. Neurologists are medical doctors who have attended college, medical school, and completed three to four years of neurology residency. When examining a new patient, a neurologist takes a full medical history and performs a complete physical exam. The physical exam contains specific tasks that are used to determine what areas of the brain, spinal cord, or peripheral nervous system may be damaged. For example, to check whether the hypoglossal nerve is functioning correctly, the neurologist will ask the patient to move his or her tongue in different ways. If the patient does not have full control over tongue movements, then the hypoglossal nerve may be damaged or there may be a lesion in the brainstem where the cell bodies of these neurons reside (or there could be damage to the tongue muscle itself).

Neurologists have other tools besides a physical exam they can use to diagnose particular problems in the nervous system. If the patient has had a seizure, for example, the neurologist can use electroencephalography (EEG), which involves taping electrodes to the scalp to record brain activity, to try to determine which brain regions are involved in the seizure. In suspected stroke patients, a neurologist can use a computerized tomography (CT) scan, which is a type of X-ray, to look for bleeding in the brain or a possible brain tumor. To treat patients with neurological problems, neurologists can prescribe medications or refer the patient to a neurosurgeon for surgery.

Link to Learning

<u>This website</u> allows you to see the different tests a neurologist might use to see what regions of the nervous system may be damaged in a patient.

Mental Illnesses

Mental illnesses are nervous system disorders that result in problems with thinking, mood, or relating with other people. These disorders are severe enough to affect a person's quality of life and often make it difficult for people to perform the routine tasks of daily living. Debilitating mental disorders plague approximately 12.5 million Americans (about 1 in 17 people) at an annual cost of more than \$300 billion. There are several types of mental disorders including schizophrenia, major depression, bipolar disorder, anxiety disorders and phobias, post-traumatic stress disorders, and obsessive-compulsive disorder (OCD), among others. The American Psychiatric Association publishes the Diagnostic and Statistical Manual of Mental Disorders (or DSM), which describes the symptoms required for a patient to be diagnosed with a particular mental disorder. Each newly released version of the DSM contains different symptoms and classifications as scientists learn more about these disorders, their causes, and how they relate to each other. A more detailed discussion of two mental illnesses—schizophrenia and major depression—is given below.

Schizophrenia

Schizophrenia is a serious and often debilitating mental illness affecting one percent of people in the United States. Symptoms of the disease include the inability to differentiate

between reality and imagination, inappropriate and unregulated emotional responses, difficulty thinking, and problems with social situations. People with schizophrenia can suffer from hallucinations and hear voices; they may also suffer from delusions. Patients also have so-called "negative" symptoms like a flattened emotional state, loss of pleasure, and loss of basic drives. Many schizophrenic patients are diagnosed in their late adolescence or early 20s. The development of schizophrenia is thought to involve malfunctioning dopaminergic neurons and may also involve problems with glutamate signaling. Treatment for the disease usually requires antipsychotic medications that work by blocking dopamine receptors and decreasing dopamine neurotransmission in the brain. This decrease in dopamine can cause Parkinson's disease-like symptoms in some patients. While some classes of antipsychotics can be quite effective at treating the disease, they are not a cure, and most patients must remain medicated for the rest of their lives.

Depression

Major depression affects approximately 6.7 percent of the adults in the United States each year and is one of the most common mental disorders. To be diagnosed with major depressive disorder, a person must have experienced a severely depressed mood lasting longer than two weeks along with other symptoms including a loss of enjoyment in activities that were previously enjoyed, changes in appetite and sleep schedules, difficulty concentrating, feelings of worthlessness, and suicidal thoughts. The exact causes of major depression are unknown and likely include both genetic and environmental risk factors. Some research supports the "classic monoamine hypothesis," which suggests that depression is caused by a decrease in norepinephrine and serotonin neurotransmission. One argument against this hypothesis is the fact that some antidepressant medications cause an increase in norepinephrine and serotonin release within a few hours of beginning treatment—but clinical results of these medications are not seen until weeks later. This has led to alternative hypotheses: for example, dopamine may also be decreased in depressed patients, or it may actually be an increase in norepinephrine and serotonin that causes the disease, and antidepressants force a feedback loop that decreases this release. Treatments for depression include psychotherapy, electroconvulsive therapy, deep-brain stimulation, and prescription medications. There are several classes of antidepressant medications that work through different mechanisms. For example, monoamine oxidase inhibitors (MAO inhibitors) block the enzyme that degrades many neurotransmitters (including dopamine, serotonin, norepinephrine), resulting in increased neurotransmitter in the synaptic cleft. Selective serotonin reuptake inhibitors (SSRIs) block the reuptake of serotonin into the presynaptic neuron. This blockage results in an increase in serotonin in the synaptic cleft. Other types of drugs such as norepinephrinedopamine reuptake inhibitors and norepinephrine-serotonin reuptake inhibitors are also used to treat depression.

Other Neurological Disorders

There are several other neurological disorders that cannot be easily placed in the above categories. These include chronic pain conditions, cancers of the nervous system, epilepsy disorders, and stroke. Epilepsy and stroke are discussed below.

Epilepsy

Estimates suggest that up to three percent of people in the United States will be diagnosed with epilepsy in their lifetime. While there are several different types of epilepsy, all are

characterized by recurrent seizures. Epilepsy itself can be a symptom of a brain injury, disease, or other illness. For example, people who have intellectual disability or ASD can experience seizures, presumably because the developmental wiring malfunctions that caused their disorders also put them at risk for epilepsy. For many patients, however, the cause of their epilepsy is never identified and is likely to be a combination of genetic and environmental factors. Often, seizures can be controlled with anticonvulsant medications. However, for very severe cases, patients may undergo brain surgery to remove the brain area where seizures originate.

Stroke

A stroke results when blood fails to reach a portion of the brain for a long enough time to cause damage. Without the oxygen supplied by blood flow, neurons in this brain region die. This neuronal death can cause many different symptoms—depending on the brain area affected—including headache, muscle weakness or paralysis, speech disturbances, sensory problems, memory loss, and confusion. Stroke is often caused by blood clots and can also be caused by the bursting of a weak blood vessel. Strokes are extremely common and are the third most common cause of death in the United States. On average one person experiences a stroke every 40 seconds in the United States. Approximately 75 percent of strokes occur in people older than 65. Risk factors for stroke include high blood pressure, diabetes, high cholesterol, and a family history of stroke. Smoking doubles the risk of stroke. Because a stroke is a medical emergency, patients with symptoms of a stroke should immediately go to the emergency room, where they can receive drugs that will dissolve any clot that may have formed. These drugs will not work if the stroke was caused by a burst blood vessel or if the stroke occurred more than three hours before arriving at the hospital. Treatment following a stroke can include blood pressure medication (to prevent future strokes) and (sometimes intense) physical therapy.

Section Summary

Some general themes emerge from the sampling of nervous system disorders presented above. The causes for most disorders are not fully understood—at least not for all patients—and likely involve a combination of nature (genetic mutations that become risk factors) and nurture (emotional trauma, stress, hazardous chemical exposure). Because the causes have yet to be fully determined, treatment options are often lacking and only address symptoms.

Review Questions

Parkinson's disease is a caused by the degeneration of neurons that release ______.

- a. serotonin
- b. dopamine
- c. glutamate
- d. norepinephrine

В

_____ medications are often used to treat patients with ADHD.

a. Tranquilizer

- b. Antibiotic
- c. Stimulant
- d. Anti-seizure

С

Strokes are often caused by _____.

- a. neurodegeneration
- b. blood clots or burst blood vessels
- c. seizures
- d. viruses

В

Free Response

What are the main symptoms of Alzheimer's disease?

Symptoms of Alzheimer's disease include disruptive memory loss, confusion about time or place, difficulties planning or executing tasks, poor judgment, and personality changes.

What are possible treatments for patients with major depression?

Possible treatments for patients with major depression include psychotherapy and prescription medications. MAO inhibitor drugs inhibit the breakdown of certain neurotransmitters (including dopamine, serotonin, norepinephrine) in the synaptic cleft. SSRI medications inhibit the reuptake of serotonin into the presynaptic neuron.

Glossary

Alzheimer's disease

neurodegenerative disorder characterized by problems with memory and thinking

attention deficit hyperactivity disorder (ADHD)

neurodevelopmental disorder characterized by difficulty maintaining attention and controlling impulses

```
autism spectrum disorder (ASD)
```

neurodevelopmental disorder characterized by impaired social interaction and communication abilities

epilepsy

neurological disorder characterized by recurrent seizures major depression

mental illness characterized by prolonged periods of sadness neurodegenerative disorder

nervous system disorder characterized by the progressive loss of neurological functioning, usually caused by neuron death

Parkinson's disease

neurodegenerative disorder that affects the control of movement schizophrenia

mental disorder characterized by the inability to accurately perceive reality; patients often have difficulty thinking clearly and can suffer from delusions

Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"This shark uses its senses of sight, vibration (lateral-line system), and smell to hunt, but it also relies on its ability to sense the electric fields of prey, a sense not present in most land animals. (credit: modification of work by Hermanus Backpackers Hostel, South

Africa)

In more advanced animals, the senses are constantly at work, making the animal aware of stimuli—such as light, or sound, or the presence of a chemical substance in the external environment—and monitoring information about the organism's

internal environment. All bilaterally symmetric animals have a sensory system, and the development of any species' sensory system has been driven by natural selection; thus, sensory systems differ among species according to the demands of their environments. The shark, unlike most fish predators, is electrosensitive—that is, sensitive to electrical fields produced by other animals in its environment. While it is helpful to this underwater predator, electrosensitivity is a sense not found in most land animals.

Sensory Processes

By the end of this section, you will be able to:

- Identify the general and special senses in humans
- Describe three important steps in sensory perception
- Explain the concept of just-noticeable difference in sensory perception

Senses provide information about the body and its environment. Humans have five special senses: olfaction (smell), gustation (taste), equilibrium (balance and body position), vision, and hearing. Additionally, we possess general senses, also called somatosensation, which respond to stimuli like temperature, pain, pressure, and vibration. Vestibular sensation, which is an organism's sense of spatial orientation and balance, proprioception (position of bones, joints, and muscles), and the sense of limb position that is used to track kinesthesia (limb movement) are part of somatosensation. Although the sensory systems associated with these senses are very different, all share a common function: to convert a stimulus (such as light, or sound, or the position of the body) into an electrical signal in the nervous system. This process is called sensory transduction.

There are two broad types of cellular systems that perform sensory transduction. In one, a neuron works with a sensory receptor, a cell, or cell process that is specialized to engage with and detect a specific stimulus. Stimulation of the sensory receptor activates the associated afferent neuron, which carries information about the stimulus to the central nervous system. In the second type of sensory transduction, a sensory nerve ending responds to a stimulus in the internal or external environment: this neuron constitutes the sensory receptor. Free nerve endings can be stimulated by several different stimuli, thus showing little receptor specificity. For example, pain receptors in your gums and teeth may be stimulated by temperature changes, chemical stimulation, or pressure.

Reception

The first step in sensation is reception, which is the activation of sensory receptors by stimuli such as mechanical stimuli (being bent or squished, for example), chemicals, or temperature. The receptor can then respond to the stimuli. The region in space in which a given sensory receptor can respond to a stimulus, be it far away or in contact with the body, is that receptor's receptive field. Think for a moment about the differences in receptive fields for the different senses. For the sense of touch, a stimulus must come into contact with body. For the

sense of hearing, a stimulus can be a moderate distance away (some baleen whale sounds can propagate for many kilometers). For vision, a stimulus can be very far away; for example, the visual system perceives light from stars at enormous distances.

Transduction

The most fundamental function of a sensory system is the translation of a sensory signal to an electrical signal in the nervous system. This takes place at the sensory receptor, and the change in electrical potential that is produced is called the receptor potential. How is sensory input, such as pressure on the skin, changed to a receptor potential? In this example, a type of receptor called a mechanoreceptor (as shown in [link]) possesses specialized membranes that respond to pressure. Disturbance of these dendrites by compressing them or bending them opens gated ion channels in the plasma membrane of the sensory neuron, changing its electrical potential. Recall that in the nervous system, a positive change of a neuron's electrical potential (also called the membrane potential), depolarizes the neuron. Receptor potentials are graded potentials: the magnitude of these graded (receptor) potentials varies with the strength of the stimulus. If the magnitude of depolarization is sufficient (that is, if membrane potential reaches a threshold), the neuron will fire an action potential. In most cases, the correct stimulus impinging on a sensory receptor will drive membrane potential in a positive direction, although for some receptors, such as those in the visual system, this is not always the case.

(a) Mechanosensitive ion channels are gated ion channels that respond to mechanical deformation of the plasma membrane. A mechanosensitive channel is connected to the plasma membrane and the cytoskeleton by hair-like tethers. When pressure causes the extracellular matrix to move, the channel opens, allowing ions to enter or exit the cell. (b) Stereocilia in the human ear are connected to mechanosensitive ion channels. When a sound causes the stereocilia to move, mechanosensitive ion channels transduce the signal to the

cochlear

nerve.

Sensory receptors for different senses are very different from each other, and they are specialized according to the type of stimulus they sense: they have receptor specificity. For example, touch receptors, light receptors, and sound receptors are each activated by different stimuli. Touch receptors are not sensitive to light or sound; they are sensitive only to touch or pressure. However, stimuli may be combined at higher levels in the brain, as happens with olfaction, contributing to our sense of taste.

Encoding and Transmission of Sensory Information

Four aspects of sensory information are encoded by sensory systems: the type of stimulus, the location of the stimulus in the receptive field, the duration of the stimulus, and the relative intensity of the stimulus. Thus, action potentials transmitted over a sensory receptor's afferent axons encode one type of stimulus, and this segregation of the senses is preserved in other sensory circuits. For example, auditory receptors transmit signals over their own dedicated system, and electrical activity in the axons of the auditory receptors will be interpreted by the brain as an auditory stimulus—a sound.

The intensity of a stimulus is often encoded in the rate of action potentials produced by the sensory receptor. Thus, an intense stimulus will produce a more rapid train of action potentials, and reducing the stimulus will likewise slow the rate of production of action potentials. A second way in which intensity is encoded is by the number of receptors activated. An intense stimulus might initiate action potentials in a large number of adjacent receptors, while a less intense stimulus might stimulate fewer receptors. Integration of sensory information begins as soon as the information is received in the CNS, and the brain will further process incoming signals.

Perception

Perception is an individual's interpretation of a sensation. Although perception relies on the activation of sensory receptors, perception happens not at the level of the sensory receptor, but at higher levels in the nervous system, in the brain. The brain distinguishes sensory stimuli through a sensory pathway: action potentials from sensory receptors travel along neurons that are dedicated to a particular stimulus. These neurons are dedicated to that particular stimulus and synapse with particular neurons in the brain or spinal cord.

All sensory signals, except those from the olfactory system, are transmitted though the central nervous system and are routed to the thalamus and to the appropriate region of the cortex. Recall that the thalamus is a structure in the forebrain that serves as a clearinghouse and relay station for sensory (as well as motor) signals. When the sensory signal exits the thalamus, it is conducted to the specific area of the cortex ([link]) dedicated to processing that particular sense.

How are neural signals interpreted? Interpretation of sensory signals between individuals of the same species is largely similar, owing to the inherited similarity of their nervous systems; however, there are some individual differences. A good example of this is individual tolerances to a painful stimulus, such as dental pain, which certainly differ.

In humans, with the exception of olfaction, all sensory signals are routed from the (a) thalamus to (b) final processing regions in the cortex of the brain. (credit b: modification of

work by Polina

Tishina) Scientific Method Connection

Just-Noticeable DifferenceIt is easy to differentiate between a one-pound bag of rice and a two-pound bag of rice. There is a one-pound difference, and one bag is twice as heavy as the other. However, would it be as easy to differentiate between a 20- and a 21-pound bag?

Question: What is the smallest detectible weight difference between a one-pound bag of rice and a larger bag? What is the smallest detectible difference between a 20-pound bag and a larger bag? In both cases, at what weights are the differences detected? This smallest detectible difference in stimuli is known as the just-noticeable difference (JND).

Background: Research background literature on JND and on Weber's Law, a description of a proposed mathematical relationship between the overall magnitude of the stimulus and the JND. You will be testing JND of different weights of rice in bags. Choose a convenient increment that is to be stepped through while testing. For example, you could choose 10 percent increments between one and two pounds (1.1, 1.2, 1.3, 1.4, and so on) or 20 percent increments (1.2, 1.4, 1.6, and 1.8).

Hypothesis: Develop a hypothesis about JND in terms of percentage of the whole weight being tested (such as "the JND between the two small bags and between the two large bags is proportionally the same," or ". . . is not proportionally the same.") So, for the first hypothesis,

if the JND between the one-pound bag and a larger bag is 0.2 pounds (that is, 20 percent; 1.0 pound feels the same as 1.1 pounds, but 1.0 pound feels less than 1.2 pounds), then the JND between the 20-pound bag and a larger bag will also be 20 percent. (So, 20 pounds feels the same as 22 pounds or 23 pounds, but 20 pounds feels less than 24 pounds.)

Test the hypothesis: Enlist 24 participants, and split them into two groups of 12. To set up the demonstration, assuming a 10 percent increment was selected, have the first group be the one-pound group. As a counter-balancing measure against a systematic error, however, six of the first group will compare one pound to two pounds, and step down in weight (1.0 to 2.0, 1.0 to 1.9, and so on.), while the other six will step up (1.0 to 1.1, 1.0 to 1.2, and so on). Apply the same principle to the 20-pound group (20 to 40, 20 to 38, and so on, and 20 to 22, 20 to 24, and so on). Given the large difference between 20 and 40 pounds, you may wish to use 30 pounds as your larger weight. In any case, use two weights that are easily detectable as different.

Record the observations: Record the data in a table similar to the table below. For the onepound and 20-pound groups (base weights) record a plus sign (+) for each participant that detects a difference between the base weight and the step weight. Record a minus sign (-) for each participant that finds no difference. If one-tenth steps were not used, then replace the steps in the "Step Weight" columns with the step you are using.

		,	
Step Weight	One pound	20 pounds	Step Weight
1.1			22
1.2			24
1.3			26
1.4			28
1.5			30
1.6			32
1.7			34
1.8			36
1.9			38
2.0			40

Results of JND Testing (+ = difference; - = no difference)

Analyze the data/report the results: What step weight did all participants find to be equal with one-pound base weight? What about the 20-pound group?

Draw a conclusion: Did the data support the hypothesis? Are the final weights proportionally the same? If not, why not? Do the findings adhere to Weber's Law? Weber's Law states that the concept that a just-noticeable difference in a stimulus is proportional to the magnitude of the original stimulus.

Section Summary

A sensory activation occurs when a physical or chemical stimulus is processed into a neural signal (sensory transduction) by a sensory receptor. Perception is an individual interpretation

of a sensation and is a brain function. Humans have special senses: olfaction, gustation, equilibrium, and hearing, plus the general senses of somatosensation.

Sensory receptors are either specialized cells associated with sensory neurons or the specialized ends of sensory neurons that are a part of the peripheral nervous system, and they are used to receive information about the environment (internal or external). Each sensory receptor is modified for the type of stimulus it detects. For example, neither gustatory receptors nor auditory receptors are sensitive to light. Each sensory receptor is responsive to stimuli within a specific region in space, which is known as that receptor's receptive field. The most fundamental function of a sensory system is the translation of a sensory signal to an electrical signal in the nervous system.

All sensory signals, except those from the olfactory system, enter the central nervous system and are routed to the thalamus. When the sensory signal exits the thalamus, it is conducted to the specific area of the cortex dedicated to processing that particular sense.

Review Questions

Where does perception occur?

- a. spinal cord
- b. cerebral cortex
- c. receptors
- d. thalamus

В

If a person's cold receptors no longer convert cold stimuli into sensory signals, that person has a problem with the process of ______.

- a. reception
- b. transmission
- c. perception
- d. transduction

D

After somatosensory transduction, the sensory signal travels through the brain as a(n) _____ signal.

- a. electrical
- b. pressure
- c. optical
- d. thermal

A

Free Response

If a person sustains damage to axons leading from sensory receptors to the central nervous system, which step or steps of sensory perception will be affected?

Transmission of sensory information from the receptor to the central nervous system will be impaired, and thus, perception of stimuli, which occurs in the brain, will be halted.

In what way does the overall magnitude of a stimulus affect the just-noticeable difference in the perception of that stimulus?

The just-noticeable difference is a fraction of the overall magnitude of the stimulus and seems to be a relatively fixed proportion (such as 10 percent) whether the stimulus is large (such as a very heavy object) or small (such as a very light object).

Glossary

kinesthesia

sense of body movement

mechanoreceptor

sensory receptor modified to respond to mechanical disturbance such as being bent, touch, pressure, motion, and sound

perception

individual interpretation of a sensation; a brain function

proprioception

sense of limb position; used to track kinesthesia

reception

receipt of a signal (such as light or sound) by sensory receptors receptive field

region in space in which a stimulus can activate a given sensory receptor receptor potential

membrane potential in a sensory receptor in response to detection of a stimulus

sensory receptor

specialized neuron or other cells associated with a neuron that is modified to receive specific sensory input

sensory transduction

conversion of a sensory stimulus into electrical energy in the nervous system by a change in the membrane potential

vestibular sense

sense of spatial orientation and balance

Somatosensation

By the end of this section, you will be able to:

- Describe four important mechanoreceptors in human skin
- Describe the topographical distribution of somatosensory receptors between glabrous and hairy skin
- Explain why the perception of pain is subjective

Somatosensation is a mixed sensory category and includes all sensation received from the skin and mucous membranes, as well from as the limbs and joints. Somatosensation is also known as tactile sense, or more familiarly, as the sense of touch. Somatosensation occurs all over the exterior of the body and at some interior locations as well. A variety of receptor types—embedded in the skin, mucous membranes, muscles, joints, internal organs, and cardiovascular system play a role.

Recall that the epidermis is the outermost layer of skin in mammals. It is relatively thin, is composed of keratin-filled cells, and has no blood supply. The epidermis serves as a barrier to water and to invasion by pathogens. Below this, the much thicker dermis contains blood vessels, sweat glands, hair follicles, lymph vessels, and lipid-secreting sebaceous glands ([link]). Below the epidermis and dermis is the subcutaneous tissue, or hypodermis, the fatty layer that contains blood vessels, connective tissue, and the axons of sensory neurons. The hypodermis, which holds about 50 percent of the body's fat, attaches the dermis to the bone and muscle, and supplies nerves and blood vessels to the dermis.

Mammalian skin has three layers: an epidermis, a dermis, and a hypodermis. (credit: modification of work by Don Bliss, National Cancer

Institute)

Somatosensory Receptors

Sensory receptors are classified into five categories: mechanoreceptors, thermoreceptors, proprioceptors, pain receptors, and chemoreceptors. These categories are based on the nature of stimuli each receptor class transduces. What is commonly referred to as "touch" involves more than one kind of stimulus and more than one kind of receptor. Mechanoreceptors in the skin are described as encapsulated (that is, surrounded by a capsule) or unencapsulated (a group that includes free nerve endings). A free nerve ending, as its name implies, is an unencapsulated dendrite of a sensory neuron. Free nerve endings are the most common nerve endings in skin, and they extend into the middle of the epidermis. Free nerve endings are

sensitive to painful stimuli, to hot and cold, and to light touch. They are slow to adjust to a stimulus and so are less sensitive to abrupt changes in stimulation.

There are three classes of mechanoreceptors: tactile, proprioceptors, and baroreceptors. Mechanoreceptors sense stimuli due to physical deformation of their plasma membranes. They contain mechanically gated ion channels whose gates open or close in response to pressure, touch, stretching, and sound." There are four primary tactile mechanoreceptors in human skin: Merkel's disks, Meissner's corpuscles, Ruffini endings, and Pacinian corpuscle; two are located toward the surface of the skin and two are located deeper. A fifth type of mechanoreceptor, Krause end bulbs, are found only in specialized regions. Merkel's disks (shown in [link]) are found in the upper layers of skin near the base of the epidermis, both in skin that has hair and on glabrous skin, that is, the hairless skin found on the palms and fingers, the soles of the feet, and the lips of humans and other primates. Merkel's disks are densely distributed in the fingertips and lips. They are slow-adapting, encapsulated nerve endings, and they respond to light touch. Light touch, also known as discriminative touch, is a light pressure that allows the location of a stimulus to be pinpointed. The receptive fields of Merkel's disks are small with well-defined borders. That makes them finely sensitive to edges and they come into use in tasks such as typing on a keyboard.

Art Connection

Four of the primary mechanoreceptors in human skin are shown. Merkel's disks, which are unencapsulated, respond to light touch. Meissner's corpuscles, Ruffini endings, Pacinian corpuscles, and Krause end bulbs are all encapsulated. Meissner's corpuscles respond to touch and low-frequency vibration. Ruffini endings detect stretch, deformation within joints, and warmth. Pacinian corpuscles detect transient pressure and high-frequency vibration.

Krause end bulbs detect cold.

Which of the following statements about mechanoreceptors is false?

- a. Pacini corpuscles are found in both glabrous and hairy skin.
- b. Merkel's disks are abundant on the fingertips and lips.
- c. Ruffini endings are encapsulated mechanoreceptors.

d. Meissner's corpuscles extend into the lower dermis.

Meissner's corpuscles, (shown in [link]) also known as tactile corpuscles, are found in the upper dermis, but they project into the epidermis. They, too, are found primarily in the glabrous skin on the fingertips and eyelids. They respond to fine touch and pressure, but they also respond to low-frequency vibration or flutter. They are rapidly adapting, fluid-filled, encapsulated neurons with small, well-defined borders and are responsive to fine details. Like Merkel's disks, Meissner's corpuscles are not as plentiful in the palms as they are in the fingertips.

Meissner corpuscles in the fingertips, such as the one viewed here using bright field light microscopy, allow for touch discrimination of fine detail. (credit: modification of work by "Wbensmith"/Wikimedia Commons; scale-bar data from Matt

Russell)

Deeper in the epidermis, near the base, are Ruffini endings, which are also known as bulbous corpuscles. They are found in both glabrous and hairy skin. These are slow-adapting, encapsulated mechanoreceptors that detect skin stretch and deformations within joints, so they provide valuable feedback for gripping objects and controlling finger position and movement. Thus, they also contribute to proprioception and kinesthesia. Ruffini endings also detect warmth. Note that these warmth detectors are situated deeper in the skin than are the cold detectors. It is not surprising, then, that humans detect cold stimuli before they detect warm stimuli.

Pacinian corpuscles (seen in [link]) are located deep in the dermis of both glabrous and hairy skin and are structurally similar to Meissner's corpuscles; they are found in the bone periosteum, joint capsules, pancreas and other viscera, breast, and genitals. They are rapidly adapting mechanoreceptors that sense deep transient (but not prolonged) pressure and high-frequency vibration. Pacinian receptors detect pressure and vibration by being compressed, stimulating their internal dendrites. There are fewer Pacinian corpuscles and Ruffini endings in skin than there are Merkel's disks and Meissner's corpuscles.

Pacinian corpuscles, such as these visualized using bright field light microscopy, detect pressure (touch) and high-frequency vibration. (credit: modification of work by Ed Uthman;

scale-bar data from Matt Russell)

In proprioception, proprioceptive and kinesthetic signals travel through myelinated afferent neurons running from the spinal cord to the medulla. Neurons are not physically connected, but communicate via neurotransmitters secreted into synapses or "gaps" between communicating neurons. Once in the medulla, the neurons continue carrying the signals to the thalamus.

Muscle spindles are stretch receptors that detect the amount of stretch, or lengthening of muscles. Related to these are Golgi tendon organs, which are tension receptors that detect the force of muscle contraction. Proprioceptive and kinesthetic signals come from limbs. Unconscious proprioceptive signals run from the spinal cord to the cerebellum, the brain region that coordinates muscle contraction, rather than to the thalamus, like most other sensory information.

Barorecptors detect pressure changes in an organ. They are found in the walls of the carotid artery and the aorta where they monitor blood pressure, and in the lungs where they detect the degree of lung expansion. Stretch receptors are found at various sites in the digestive and urinary systems.

In addition to these two types of deeper receptors, there are also rapidly adapting hair receptors, which are found on nerve endings that wrap around the base of hair follicles. There are a few types of hair receptors that detect slow and rapid hair movement, and they differ in their sensitivity to movement. Some hair receptors also detect skin deflection, and certain rapidly adapting hair receptors allow detection of stimuli that have not yet touched the skin.

Integration of Signals from Mechanoreceptors

The configuration of the different types of receptors working in concert in human skin results in a very refined sense of touch. The nociceptive receptors—those that detect pain—are located near the surface. Small, finely calibrated mechanoreceptors—Merkel's disks and Meissner's corpuscles—are located in the upper layers and can precisely localize even gentle touch. The large mechanoreceptors—Pacinian corpuscles and Ruffini endings—are located in the lower layers and respond to deeper touch. (Consider that the deep pressure that reaches those deeper receptors would not need to be finely localized.) Both the upper and lower layers of the skin hold rapidly and slowly adapting receptors. Both primary somatosensory cortex and secondary cortical areas are responsible for processing the complex picture of stimuli transmitted from the interplay of mechanoreceptors.

Density of Mechanoreceptors

The distribution of touch receptors in human skin is not consistent over the body. In humans, touch receptors are less dense in skin covered with any type of hair, such as the arms, legs, torso, and face. Touch receptors are denser in glabrous skin (the type found on human fingertips and lips, for example), which is typically more sensitive and is thicker than hairy skin (4 to 5 mm versus 2 to 3 mm).

How is receptor density estimated in a human subject? The relative density of pressure receptors in different locations on the body can be demonstrated experimentally using a two-point discrimination test. In this demonstration, two sharp points, such as two thumbtacks, are brought into contact with the subject's skin (though not hard enough to cause pain or break the skin). The subject reports if he or she feels one point or two points. If the two points are felt as one point, it can be inferred that the two points are both in the receptive field of a single sensory receptor. If two points are felt as two separate points, each is in the receptive field of two separate sensory receptors. The points could then be moved closer and re-tested until the subject reports feeling only one point, and the size of the receptive field of a single receptor could be estimated from that distance.

Thermoreception

In addition to Krause end bulbs that detect cold and Ruffini endings that detect warmth, there are different types of cold receptors on some free nerve endings: thermoreceptors, located in the dermis, skeletal muscles, liver, and hypothalamus, that are activated by different temperatures. Their pathways into the brain run from the spinal cord through the thalamus to the primary somatosensory cortex. Warmth and cold information from the face travels through one of the cranial nerves to the brain. You know from experience that a tolerably cold or hot stimulus can quickly progress to a much more intense stimulus that is no longer tolerable. Any stimulus that is too intense can be perceived as pain because temperature sensations are conducted along the same pathways that carry pain sensations

Pain

Pain is the name given to nociception, which is the neural processing of injurious stimuli in response to tissue damage. Pain is caused by true sources of injury, such as contact with a heat source that causes a thermal burn or contact with a corrosive chemical. But pain also can be caused by harmless stimuli that mimic the action of damaging stimuli, such as contact with capsaicins, the compounds that cause peppers to taste hot and which are used in self-defense pepper sprays and certain topical medications. Peppers taste "hot" because the protein receptors that bind capsaicin open the same calcium channels that are activated by warm receptors.

Nociception starts at the sensory receptors, but pain, inasmuch as it is the perception of nociception, does not start until it is communicated to the brain. There are several nociceptive

pathways to and through the brain. Most axons carrying nociceptive information into the brain from the spinal cord project to the thalamus (as do other sensory neurons) and the neural signal undergoes final processing in the primary somatosensory cortex. Interestingly, one nociceptive pathway projects not to the thalamus but directly to the hypothalamus in the forebrain, which modulates the cardiovascular and neuroendocrine functions of the autonomic nervous system. Recall that threatening—or painful—stimuli stimulate the sympathetic branch of the visceral sensory system, readying a fight-or-flight response.

Link to Learning

View this <u>video</u> that animates the five phases of nociceptive pain.

Hearing and Vestibular Sensation

By the end of this section, you will be able to:

- Describe the relationship of amplitude and frequency of a sound wave to attributes of sound
- Trace the path of sound through the auditory system to the site of transduction of sound
- Identify the structures of the vestibular system that respond to gravity

Audition, or hearing, is important to humans and to other animals for many different interactions. It enables an organism to detect and receive information about danger, such as an approaching predator, and to participate in communal exchanges like those concerning territories or mating. On the other hand, although it is physically linked to the auditory system, the vestibular system is not involved in hearing. Instead, an animal's vestibular system detects its own movement, both linear and angular acceleration and deceleration, and balance.

Sound

Auditory stimuli are sound waves, which are mechanical, pressure waves that move through a medium, such as air or water. There are no sound waves in a vacuum since there are no air molecules to move in waves. The speed of sound waves differs, based on altitude, temperature, and medium, but at sea level and a temperature of 20° C (68° F), sound waves travel in the air at about 343 meters per second.

As is true for all waves, there are four main characteristics of a sound wave: frequency, wavelength, period, and amplitude. Frequency is the number of waves per unit of time, and in sound is heard as pitch. High-frequency (≥ 15.000 Hz) sounds are higher-pitched (short wavelength) than low-frequency (long wavelengths; ≤ 100 Hz) sounds. Frequency is measured in cycles per second, and for sound, the most commonly used unit is hertz (Hz), or cycles per

second. Most humans can perceive sounds with frequencies between 30 and 20,000 Hz. Women are typically better at hearing high frequencies, but everyone's ability to hear high frequencies decreases with age. Dogs detect up to about 40,000 Hz; cats, 60,000 Hz; bats, 100,000 Hz; and dolphins 150,000 Hz, and American shad (*Alosa sapidissima*), a fish, can hear 180,000 Hz. Those frequencies above the human range are called ultrasound.

Amplitude, or the dimension of a wave from peak to trough, in sound is heard as volume and is illustrated in <u>[link]</u>. The sound waves of louder sounds have greater amplitude than those of softer sounds. For sound, volume is measured in decibels (dB). The softest sound that a human can hear is the zero point. Humans speak normally at 60 decibels.

For sound waves, wavelength corresponds to pitch. Amplitude of the wave corresponds to volume. The sound wave shown with a dashed line is softer in volume than the sound wave

shown with a solid line. (credit: NIH)

Reception of Sound

In mammals, sound waves are collected by the external, cartilaginous part of the ear called the pinna, then travel through the auditory canal and cause vibration of the thin diaphragm called the tympanum or ear drum, the innermost part of the outer ear (illustrated in [link]). Interior to the tympanum is the middle ear. The middle ear holds three small bones called the ossicles, which transfer energy from the moving tympanum to the inner ear. The three ossicles are the malleus (also known as the hammer), the incus (the anvil), and stapes (the stirrup). The aptly named stapes looks very much like a stirrup. The three ossicles are unique to mammals, and each plays a role in hearing. The malleus attaches at three points to the interior surface of the tympanic membrane. The incus attaches the malleus to the stapes. In humans, the stapes is not long enough to reach the tympanum. If we did not have the malleus and the incus, then the vibrations of the tympanum would never reach the inner ear. These bones also function to collect force and amplify sounds. The ear ossicles are homologous to bones in a fish mouth: the bones that support gills in fish are thought to be adapted for use in the vertebrate ear over evolutionary time. Many animals (frogs, reptiles, and birds, for example) use the stapes of the middle ear to transmit vibrations to the middle ear.

Sound travels through the outer ear to the middle ear, which is bounded on its exterior by the tympanic membrane. The middle ear contains three bones called ossicles that transfer the sound wave to the oval window, the exterior boundary of the inner ear. The organ of Corti, which is the organ of sound transduction, lies inside the cochlea. (credit: modification of work by Lars Chittka, Axel

Brockmann)

Transduction of Sound

Vibrating objects, such as vocal cords, create sound waves or pressure waves in the air. When these pressure waves reach the ear, the ear transduces this mechanical stimulus (pressure wave) into a nerve impulse (electrical signal) that the brain perceives as sound. The pressure waves strike the tympanum, causing it to vibrate. The mechanical energy from the moving tympanum transmits the vibrations to the three bones of the middle ear. The stapes transmits the vibrations to a thin diaphragm called the oval window, which is the outermost structure of the inner ear. The structures of the inner ear are found in the labyrinth, a bony, hollow structure that is the most interior portion of the ear. Here, the energy from the sound wave is transferred from the stapes through the flexible oval window and to the fluid of the cochlea. The vibrations of the oval window create pressure waves in the fluid (perilymph) inside the cochlea. The cochlea is a whorled structure, like the shell of a snail, and it contains receptors for transduction of the mechanical wave into an electrical signal (as illustrated in [link]).

Inside the cochlea, the basilar membrane is a mechanical analyzer that runs the length of the cochlea, curling toward the cochlea's center.

The mechanical properties of the basilar membrane change along its length, such that it is thicker, tauter, and narrower at the outside of the whorl (where the cochlea is largest), and thinner, floppier, and broader toward the apex, or center, of the whorl (where the cochlea is smallest). Different regions of the basilar membrane vibrate according to the frequency of the sound wave conducted through the fluid in the cochlea. For these reasons, the fluid-filled cochlea detects different wave frequencies (pitches) at different regions of the membrane. When the sound waves in the cochlear fluid contact the basilar membrane, it flexes back and forth in a wave-like fashion. Above the basilar membrane is the tectorial membrane.

Art Connection

In the human ear, sound waves cause the stapes to press against the oval window. Vibrations travel up the fluid-filled interior of the cochlea. The basilar membrane that lines the cochlea gets continuously thinner toward the apex of the cochlea. Different thicknesses of membrane vibrate in response to different frequencies of sound. Sound waves then exit through the round window. In the cross section of the cochlea (top right figure), note that in addition to the upper canal and lower canal, the cochlea also has a middle canal. The organ of Corti (bottom image) is the site of sound transduction. Movement of stereocilia on hair cells results in an action potential that travels along the auditory

Cochlear implants can restore hearing in people who have a nonfunctional cochlear. The implant consists of a microphone that picks up sound. A speech processor selects sounds in the range of human speech, and a transmitter converts these sounds to electrical impulses, which are then sent to the auditory nerve. Which of the following types of hearing loss would not be restored by a cochlear implant?

- a. Hearing loss resulting from absence or loss of hair cells in the organ of Corti.
- b. Hearing loss resulting from an abnormal auditory nerve.
- c. Hearing loss resulting from fracture of the cochlea.
- d. Hearing loss resulting from damage to bones of the middle ear.

The site of transduction is in the organ of Corti (spiral organ). It is composed of hair cells held in place above the basilar membrane like flowers projecting up from soil, with their exposed short, hair-like stereocilia contacting or embedded in the tectorial membrane above them. The inner hair cells are the primary auditory receptors and exist in a single row, numbering approximately 3,500. The stereocilia from inner hair cells extend into small dimples on the tectorial membrane's lower surface. The outer hair cells are arranged in three or four rows. They number approximately 12,000, and they function to fine tune incoming sound waves. The longer stereocilia that project from the outer hair cells actually attach to the tectorial membrane. All of the stereocilia are mechanoreceptors, and when bent by vibrations they respond by opening a gated ion channel (refer to [link]). As a result, the hair cell membrane is depolarized, and a signal is transmitted to the chochlear nerve. Intensity (volume) of sound is determined by how many hair cells at a particular location are stimulated.

The hair cells are arranged on the basilar membrane in an orderly way. The basilar membrane vibrates in different regions, according to the frequency of the sound waves impinging on it. Likewise, the hair cells that lay above it are most sensitive to a specific frequency of sound waves. Hair cells can respond to a small range of similar frequencies, but they require stimulation of greater intensity to fire at frequencies outside of their optimal range. The difference in response frequency between adjacent inner hair cells is about 0.2 percent. Compare that to adjacent piano strings, which are about six percent different. Place theory, which is the model for how biologists think pitch detection works in the human ear, states that high frequency sounds selectively vibrate the basilar membrane of the inner ear near the entrance port (the oval window). Lower frequencies travel farther along the membrane before causing appreciable excitation of the membrane. The basic pitch-determining mechanism is based on the location along the membrane where the hair cells are stimulated. The place theory is the first step toward an understanding of pitch perception. Considering the extreme pitch sensitivity of the human ear, it is thought that there must be some auditory "sharpening" mechanism to enhance the pitch resolution.

When sound waves produce fluid waves inside the cochlea, the basilar membrane flexes, bending the stereocilia that attach to the tectorial membrane. Their bending results in action potentials in the hair cells, and auditory information travels along the neural endings of the bipolar neurons of the hair cells (collectively, the auditory nerve) to the brain. When the hairs bend, they release an excitatory neurotransmitter at a synapse with a sensory neuron, which then conducts action potentials to the central nervous system. The cochlear branch of the vestibulocochlear cranial nerve sends information on hearing. The auditory system is very refined, and there is some modulation or "sharpening" built in. The brain can send signals

back to the cochlea, resulting in a change of length in the outer hair cells, sharpening or dampening the hair cells' response to certain frequencies.

Link to Learning

Watch an <u>animation</u> of sound entering the outer ear, moving through the ear structure, stimulating cochlear nerve impulses, and eventually sending signals to the temporal lobe.

Higher Processing

The inner hair cells are most important for conveying auditory information to the brain. About 90 percent of the afferent neurons carry information from inner hair cells, with each hair cell synapsing with 10 or so neurons. Outer hair cells connect to only 10 percent of the afferent neurons, and each afferent neuron innervates many hair cells. The afferent, bipolar neurons that convey auditory information travel from the cochlea to the medulla, through the pons and midbrain in the brainstem, finally reaching the primary auditory cortex in the temporal lobe.

Vestibular Information

The stimuli associated with the vestibular system are linear acceleration (gravity) and angular acceleration and deceleration. Gravity, acceleration, and deceleration are detected by evaluating the inertia on receptive cells in the vestibular system. Gravity is detected through head position. Angular acceleration and deceleration are expressed through turning or tilting of the head.

The vestibular system has some similarities with the auditory system. It utilizes hair cells just like the auditory system, but it excites them in different ways. There are five vestibular receptor organs in the inner ear: the utricle, the saccule, and three semicircular canals. Together, they make up what's known as the vestibular labyrinth that is shown in [link]. The utricle and saccule respond to acceleration in a straight line, such as gravity. The roughly 30,000 hair cells in the utricle and 16,000 hair cells in the saccule lie below a gelatinous layer, with their stereocilia projecting into the gelatin. Embedded in this gelatin are calcium carbonate crystals—like tiny rocks. When the head is tilted, the crystals continue to be pulled straight down by gravity, but the new angle of the head causes the gelatin to shift, thereby bending the stereocilia. The bending of the stereocilia stimulates the neurons, and they signal to the brain that the head is tilted, allowing the maintenance of balance. It is the vestibular branch of the vestibulocochlear cranial nerve that deals with balance.

The structure of the vestibular labyrinth is shown. (credit: modification of work by

NIH)

The fluid-filled semicircular canals are tubular loops set at oblique angles. They are arranged in three spatial planes. The base of each canal has a swelling that contains a cluster of hair cells. The hairs project into a gelatinous cap called the cupula and monitor angular acceleration and deceleration from rotation. They would be stimulated by driving your car around a corner, turning your head, or falling forward. One canal lies horizontally, while the other two lie at about 45 degree angles to the horizontal axis, as illustrated in [link]. When the brain processes input from all three canals together, it can detect angular acceleration or deceleration in three dimensions. When the head turns, the fluid in the canals shifts, thereby bending stereocilia and sending signals to the brain. Upon cessation accelerating or decelerating-or just moving-the movement of the fluid within the canals slows or stops. For example, imagine holding a glass of water. When moving forward, water may splash backwards onto the hand, and when motion has stopped, water may splash forward onto the fingers. While in motion, the water settles in the glass and does not splash. Note that the canals are not sensitive to velocity itself, but to changes in velocity, so moving forward at 60mph with your eyes closed would not give the sensation of movement, but suddenly accelerating or braking would stimulate the receptors.

Higher Processing

Hair cells from the utricle, saccule, and semicircular canals also communicate through bipolar neurons to the cochlear nucleus in the medulla. Cochlear neurons send descending projections to the spinal cord and ascending projections to the pons, thalamus, and cerebellum. Connections to the cerebellum are important for coordinated movements. There are also projections to the temporal cortex, which account for feelings of dizziness; projections to autonomic nervous system areas in the brainstem, which account for motion sickness; and projections to the primary somatosensory cortex, which monitors subjective measurements of the external world and self-movement. People with lesions in the vestibular area of the somatosensory cortex see vertical objects in the world as being tilted. Finally, the vestibular signals project to certain optic muscles to coordinate eye and head movements.

Link to Learning

Click through this <u>interactive tutorial</u> to review the parts of the ear and how they function to process sound.

Section Summary

Audition is important for territory defense, predation, predator defense, and communal exchanges. The vestibular system, which is not auditory, detects linear acceleration and angular acceleration and deceleration. Both the auditory system and vestibular system use hair cells as their receptors.

Auditory stimuli are sound waves. The sound wave energy reaches the outer ear (pinna, canal, tympanum), and vibrations of the tympanum send the energy to the middle ear. The middle ear bones shift and the stapes transfers mechanical energy to the oval window of the fluid-filled inner ear cochlea. Once in the cochlea, the energy causes the basilar membrane to flex, thereby bending the stereocilia on receptor hair cells. This activates the receptors, which send their auditory neural signals to the brain.

The vestibular system has five parts that work together to provide the sense of direction, thus helping to maintain balance. The utricle and saccule measure head orientation: their calcium carbonate crystals shift when the head is tilted, thereby activating hair cells. The semicircular canals work similarly, such that when the head is turned, the fluid in the canals bends stereocilia on hair cells. The vestibular hair cells also send signals to the thalamus and to somatosensory cortex, but also to the cerebellum, the structure above the brainstem that plays a large role in timing and coordination of movement.

Art Connections

[link] Cochlear implants can restore hearing in people who have a nonfunctional cochlear. The implant consists of a microphone that picks up sound. A speech processor selects sounds in the range of human speech, and a transmitter converts these sounds to electrical impulses, which are then sent to the auditory nerve. Which of the following types of hearing loss would not be restored by a cochlear implant?

- a. Hearing loss resulting from absence or loss of hair cells in the organ of Corti.
- b. Hearing loss resulting from an abnormal auditory nerve.
- c. Hearing loss resulting from fracture of the cochlea.
- d. Hearing loss resulting from damage to bones of the middle ear.

[link] B

Review Questions

In sound, pitch is measured in _____, and volume is measured in _____.

- a. nanometers (nm); decibels (dB)
- b. decibels (dB); nanometers (nm)
- c. decibels (dB); hertz (Hz)
- d. hertz (Hz); decibels (dB)

D

Auditory hair cells are indirectly anchored to the _____.

- a. basilar membrane
- b. oval window
- c. tectorial membrane
- d. ossicles

A

Which of the following are found both in the auditory system and the vestibular system?

- a. basilar membrane
- b. hair cells
- c. semicircular canals
- d. ossicles

В

Free Response

How would a rise in altitude likely affect the speed of a sound transmitted through air? Why?

The sound would slow down, because it is transmitted through the particles (gas) and there are fewer particles (lower density) at higher altitudes.

How might being in a place with less gravity than Earth has (such as Earth's moon) affect vestibular sensation, and why?

Because vestibular sensation relies on gravity's effects on tiny crystals in the inner ear, a situation of reduced gravity would likely impair vestibular sensation.

Glossary

audition

sense of hearing

basilar membrane

stiff structure in the cochlea that indirectly anchors auditory receptors cochlea

whorled structure that contains receptors for transduction of the mechanical wave into an electrical signal

incus

(also, anvil) second of the three bones of the middle ear

inner ear

innermost part of the ear; consists of the cochlea and the vestibular system labyrinth

bony, hollow structure that is the most internal part of the ear; contains the sites of transduction of auditory and vestibular information

malleus

(also, hammer) first of the three bones of the middle ear

middle ear

part of the hearing apparatus that functions to transfer energy from the tympanum to the oval window of the inner ear

organ of Corti

in the basilar membrane, the site of the transduction of sound, a mechanical wave, to a neural signal

ossicle

one of the three bones of the middle ear

outer ear

part of the ear that consists of the pinna, ear canal, and tympanum and which conducts sound waves into the middle ear

oval window

thin diaphragm between the middle and inner ears that receives sound waves from contact with the stapes bone of the middle ear

pinna

cartilaginous outer ear

semicircular canal

one of three half-circular, fluid-filled tubes in the vestibular labyrinth that monitors angular acceleration and deceleration

stapes

(also, stirrup) third of the three bones of the middle ear

stereocilia

in the auditory system, hair-like projections from hair cells that help detect sound waves

tectorial membrane

cochlear structure that lies above the hair cells and participates in the transduction of sound at the hair cells

tympanum

(also, tympanic membrane or ear drum) thin diaphragm between the outer and middle ears

ultrasound

sound frequencies above the human detectable ceiling of approximately 20,000 Hz $\,$

Vision

By the end of this section, you will be able to:

- Explain how electromagnetic waves differs from sound waves
- Trace the path of light through the eye to the point of the optic nerve
- Explain tonic activity as it is manifested in photoreceptors in the retina

Vision is the ability to detect light patterns from the outside environment and interpret them into images. Animals are bombarded with sensory information, and the sheer volume of visual information can be problematic. Fortunately, the visual systems of species have evolved to attend to the most-important stimuli. The importance of vision to humans is further substantiated by the fact that about onethird of the human cerebral cortex is dedicated to analyzing and perceiving visual information.

Light

As with auditory stimuli, light travels in waves. The compression waves that compose sound must travel in a medium—a gas, a liquid, or a solid. In contrast, light is composed of electromagnetic waves and needs no medium; light can travel in a vacuum ([link]). The behavior of light can be discussed in terms of the behavior of waves and also in terms of the behavior of the fundamental unit of light—a packet of electromagnetic radiation called a photon. A glance at the electromagnetic spectrum shows that visible light for humans is just a small slice of the entire spectrum, which includes radiation that we cannot see as light because it is below the frequency of visible red light and above the frequency of visible violet light.

Certain variables are important when discussing perception of light. Wavelength (which varies inversely with frequency) manifests itself as hue. Light at the red end of the visible spectrum has longer wavelengths (and is lower frequency), while light at the violet end has shorter wavelengths (and is higher frequency). The wavelength of light is expressed in nanometers (nm); one nanometer is one billionth of a meter. Humans perceive light that ranges between approximately 380 nm and 740 nm. Some other animals, though, can detect wavelengths outside of the human range. For example, bees see near-ultraviolet light in order to locate nectar guides on flowers, and some non-avian reptiles sense infrared light (heat that prey gives off).

In the electromagnetic spectrum, visible light lies between 380 nm and 740 nm. (credit: modification of work by

NASA)

Wave amplitude is perceived as luminous intensity, or brightness. The standard unit of intensity of light is the candela, which is approximately the luminous intensity of a one common candle.

Light waves travel 299,792 km per second in a vacuum, (and somewhat slower in various media such as air and water), and those waves arrive at the eye as long (red), medium (green), and short (blue) waves. What is termed "white light" is light that is perceived as white by the human eye. This effect is produced by light that stimulates equally the color receptors in the human eye. The apparent color of an object is the color (or colors) that the object reflects. Thus a red object reflects the red wavelengths in mixed (white) light and absorbs all other wavelengths of light.

Anatomy of the Eye

The photoreceptive cells of the eye, where transduction of light to nervous impulses occurs, are located in the retina (shown in <u>[link]</u>) on the inner surface of the back of the eye. But light does not impinge on the retina unaltered. It passes through other layers that process it so that it can be interpreted by the retina (<u>[link]</u>**b**). The cornea, the front transparent layer of the eye,

and the crystalline lens, a transparent convex structure behind the cornea, both refract (bend) light to focus the image on the retina. The iris, which is conspicuous as the colored part of the eye, is a circular muscular ring lying between the lens and cornea that regulates the amount of light entering the eye. In conditions of high ambient light, the iris contracts, reducing the size of the pupil at its center. In conditions of low light, the iris relaxes and the pupil enlarges.

Art Connection

(a) The human eye is shown in cross section. (b) A blowup shows the layers of the

retina.

Which of the following statements about the human eye is false?

- a. Rods detect color, while cones detect only shades of gray.
- b. When light enters the retina, it passes the ganglion cells and bipolar cells before reaching photoreceptors at the rear of the eye.
- c. The iris adjusts the amount of light coming into the eye.
- d. The cornea is a protective layer on the front of the eye.

The main function of the lens is to focus light on the retina and fovea centralis. The lens is dynamic, focusing and re-focusing light as the eye rests on near and far objects in the visual field. The lens is operated by muscles that stretch it flat or allow it to thicken, changing the focal length of light coming through it to focus it sharply on the retina. With age comes the loss of the flexibility of the lens, and a form of farsightedness called presbyopia results.

Presbyopia occurs because the image focuses behind the retina. Presbyopia is a deficit similar to a different type of farsightedness called hyperopia caused by an eyeball that is too short. For both defects, images in the distance are clear but images nearby are blurry. Myopia (nearsightedness) occurs when an eyeball is elongated and the image focus falls in front of the retina. In this case, images in the distance are blurry but images nearby are clear.

There are two types of photoreceptors in the retina: rods and cones, named for their general appearance as illustrated in <u>[link]</u>. Rods are strongly photosensitive and are located in the outer edges of the retina. They detect dim light and are used primarily for peripheral and nighttime vision. Cones are weakly photosensitive and are located near the center of the retina. They respond to bright light, and their primary role is in daytime, color vision.

Rods and cones are photoreceptors in the retina. Rods respond in low light and can detect only shades of gray. Cones respond in intense light and are responsible for color vision. (credit: modification of work by Piotr

Sliwa)

The fovea is the region in the center back of the eye that is responsible for acute vision. The fovea has a high density of cones. When you bring your gaze to an object to examine it intently in bright light, the eyes orient so that the object's image falls on the fovea. However, when looking at a star in the night sky or other object in dim light, the object can be better viewed by the peripheral vision because it is the rods at the edges of the retina, rather than the cones at the center, that operate better in low light. In humans, cones far outnumber rods in the fovea.

Link to Learning

Review the anatomical structure of the eye, clicking on each part to practice identification.

Transduction of Light

The rods and cones are the site of transduction of light to a neural signal. Both rods and cones contain photopigments. In vertebrates, the main photopigment, rhodopsin, has two main parts [link]): an opsin, which is a membrane protein (in the form of a cluster of α -helices that span the membrane), and retinal—a molecule that absorbs light. When light hits a photoreceptor, it causes a shape change in the retinal, altering its structure from a bent (*cis*) form of the molecule to its linear (trans) isomer. This isomerization of retinal activates the rhodopsin, starting a cascade of events that ends with the closing of Na⁺ channels in the membrane of the photoreceptor. Thus, unlike most other sensory neurons (which become depolarized by exposure to a stimulus) visual receptors become hyperpolarized and thus driven away from threshold ([link]).

(a) Rhodopsin, the photoreceptor in vertebrates, has two parts: the trans-membrane protein opsin, and retinal. When light strikes retinal, it changes shape from (b) a *cis* to a *trans* form. The signal is passed to a G-protein called transducin, triggering a series of downstream

events.

When light strikes rhodopsin, the G-protein transducin is activated, which in turn activates phosphodiesterase. Phosphodiesterase converts cGMP to GMP, thereby closing sodium channels. As a result, the membrane becomes hyperpolarized. The hyperpolarized membrane does not release

glutamate to the bipolar

cell.

Trichromatic Coding

There are three types of cones (with different photopsins), and they differ in the wavelength to which they are most responsive, as shown in [link]. Some cones are maximally responsive to short light waves of 420 nm, so they are called S cones ("S" for "short"); others respond maximally to waves of 530 nm (M cones, for "medium"); a third group responds maximally to light of longer wavelengths, at 560 nm (L, or "long" cones). With only one type of cone, color vision would not be possible, and a two-cone (dichromatic) system has limitations. Primates use a three-cone (trichromatic) system, resulting in full color vision.

The color we perceive is a result of the ratio of activity of our three types of cones. The colors of the visual spectrum, running from long-wavelength light to short, are red (700 nm), orange (600 nm), yellow (565 nm), green (497 nm), blue (470 nm), indigo (450 nm), and violet (425 nm). Humans have very sensitive perception of color and can distinguish about 500 levels of brightness, 200 different hues, and 20 steps of saturation, or about 2 million distinct colors.

Human rod cells and the different types of cone cells each have an optimal wavelength. However, there is considerable overlap in the wavelengths of light

detected.

Retinal Processing

Visual signals leave the cones and rods, travel to the bipolar cells, and then to ganglion cells. A large degree of processing of visual information occurs in the retina itself, before visual information is sent to the brain.

Photoreceptors in the retina continuously undergo tonic activity. That is, they are always slightly active even when not stimulated by light. In neurons that exhibit tonic activity, the absence of stimuli maintains a firing rate at a baseline; while some stimuli increase firing rate from the baseline, and other stimuli decrease firing rate. In the absence of light, the bipolar neurons that connect rods and cones to ganglion cells are continuously and actively inhibited by the rods and cones. Exposure of the retina to light hyperpolarizes the rods and cones and removes their inhibition of bipolar cells. The now active bipolar cells in turn stimulate the ganglion cells, which send action potentials along their axons (which leave the eye as the optic nerve). Thus, the visual system relies on change in retinal activity, rather than the absence or presence of activity, to encode visual signals for the brain. Sometimes horizontal cells carry signals from one rod or cone to other photoreceptors and to several bipolar cells. When a rod or cone stimulates a horizontal cell, the horizontal cell inhibits more distant photoreceptors and bipolar cells, creating lateral inhibition. This inhibition sharpens edges and enhances contrast in the images by making regions receiving light appear lighter and dark surroundings appear darker. Amacrine cells can distribute information from one bipolar cell to many ganglion cells.

You can demonstrate this using an easy demonstration to "trick" your retina and brain about the colors you are observing in your visual field. Look fixedly at [link] for about 45 seconds. Then quickly shift your gaze to a sheet of blank white paper or a white wall. You should see

an afterimage of the Norwegian flag in its correct colors. At this point, close your eyes for a moment, then reopen them, looking again at the white paper or wall; the afterimage of the flag should continue to appear as red, white, and blue. What causes this? According to an explanation called opponent process theory, as you gazed fixedly at the green, black, and yellow flag, your retinal ganglion cells that respond positively to green, black, and yellow increased their firing dramatically. When you shifted your gaze to the neutral white ground, these ganglion cells abruptly decreased their activity and the brain interpreted this abrupt downshift as if the ganglion cells were responding now to their "opponent" colors: red, white, and blue, respectively, in the visual field. Once the ganglion cells return to their baseline activity state, the false perception of color will disappear.

View this flag to understand how retinal processing works. Stare at the center of the flag (indicated by the white dot) for 45 seconds, and then quickly look at a white background,

noticing how colors appear.

Higher Processing

The myelinated axons of ganglion cells make up the optic nerves. Within the nerves, different axons carry different qualities of the visual signal. Some axons constitute the magnocellular (big cell) pathway, which carries information about form, movement, depth, and differences in brightness. Other axons constitute the parvocellular (small cell) pathway, which carries information on color and fine detail. Some visual information projects directly back into the brain, while other information crosses to the opposite side of the brain. This crossing of optical pathways produces the distinctive optic chiasma (Greek, for "crossing") found at the base of the brain and allows us to coordinate information from both eyes.

Once in the brain, visual information is processed in several places, and its routes reflect the complexity and importance of visual information to humans and other animals. One route takes the signals to the thalamus, which serves as the routing station for all incoming sensory impulses except olfaction. In the thalamus, the magnocellular and parvocellular distinctions remain intact, and there are different layers of the thalamus dedicated to each. When visual signals leave the thalamus, they travel to the primary visual cortex at the rear of the brain. From the visual cortex, the visual signals travel in two directions. One stream that projects to

the parietal lobe, in the side of the brain, carries magnocellular ("where") information. A second stream projects to the temporal lobe and carries both magnocellular ("where") and parvocellular ("what") information.

Another important visual route is a pathway from the retina to the superior colliculus in the midbrain, where eye movements are coordinated and integrated with auditory information. Finally, there is the pathway from the retina to the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is a cluster of cells that is considered to be the body's internal clock, which controls our circadian (day-long) cycle. The SCN sends information to the pineal gland, which is important in sleep/wake patterns and annual cycles.

Link to Learning

View this <u>interactive presentation</u> to review what you have learned about how vision functions.

Section Summary

Vision is the only photo responsive sense. Visible light travels in waves and is a very small slice of the electromagnetic radiation spectrum. Light waves differ based on their frequency (wavelength = hue) and amplitude (intensity = brightness).

In the vertebrate retina, there are two types of light receptors (photoreceptors): cones and rods. Cones, which are the source of color vision, exist in three forms—L, M, and S—and they are differentially sensitive to different wavelengths. Cones are located in the retina, along with the dim-light, achromatic receptors (rods). Cones are found in the fovea, the central region of the retina, whereas rods are found in the peripheral regions of the retina.

Visual signals travel from the eye over the axons of retinal ganglion cells, which make up the optic nerves. Ganglion cells come in several versions. Some ganglion cell axons carry information on form, movement, depth, and brightness, while other axons carry information on color and fine detail. Visual information is sent to the superior colliculi in the midbrain, where coordination of eye movements and integration of auditory information takes place. Visual information is also sent to the suprachiasmatic nucleus (SCN) of the hypothalamus, which plays a role in the circadian cycle.

Art Connections

[link] Which of the following statements about the human eye is false?

- a. Rods detect color, while cones detect only shades of gray.
- b. When light enters the retina, it passes the ganglion cells and bipolar cells before reaching photoreceptors at the rear of the eye.

- c. The iris adjusts the amount of light coming into the eye.
- d. The cornea is a protective layer on the front of the eye.

[link] A

Review Questions

Why do people over 55 often need reading glasses?

- a. Their cornea no longer focuses correctly.
- b. Their lens no longer focuses correctly.
- c. Their eyeball has elongated with age, causing images to focus in front of their retina.
- d. Their retina has thinned with age, making vision more difficult.

В

Why is it easier to see images at night using peripheral, rather than the central, vision?

- a. Cones are denser in the periphery of the retina.
- b. Bipolar cells are denser in the periphery of the retina.
- c. Rods are denser in the periphery of the retina.
- d. The optic nerve exits at the periphery of the retina.

С

A person catching a ball must coordinate her head and eyes. What part of the brain is helping to do this?

- a. hypothalamus
- b. pineal gland
- c. thalamus
- d. superior colliculus

D

Free Response

How could the pineal gland, the brain structure that plays a role in annual cycles, use visual information from the suprachiasmatic nucleus of the hypothalamus?

The pineal gland could use length-of-day information to determine the time of year, for example. Day length is shorter in the winter than it is in the summer. For many animals and plants, photoperiod cues them to reproduce at a certain time of year.

How is the relationship between photoreceptors and bipolar cells different from other sensory receptors and adjacent cells?

The photoreceptors tonically inhibit the bipolar cells, and stimulation of the receptors turns this inhibition off, activating the bipolar cells.

Glossary

candela

(cd) unit of measurement of luminous intensity (brightness)

circadian

describes a time cycle about one day in length

cone

weakly photosensitive, chromatic, cone-shaped neuron in the fovea of the retina that detects bright light and is used in daytime color vision

cornea

transparent layer over the front of the eye that helps focus light waves fovea

region in the center of the retina with a high density of photoreceptors and which is responsible for acute vision

hyperopia

(also, farsightedness) visual defect in which the image focus falls behind the retina, thereby making images in the distance clear, but close-up images blurry

iris

pigmented, circular muscle at the front of the eye that regulates the amount of light entering the eye

lens

transparent, convex structure behind the cornea that helps focus light waves on the retina

myopia

(also, nearsightedness) visual defect in which the image focus falls in front of the retina, thereby making images in the distance blurry, but close-up images clear

presbyopia

visual defect in which the image focus falls behind the retina, thereby making images in the distance clear, but close-up images blurry; caused by age-based changes in the lens

pupil

small opening though which light enters

retina

layer of photoreceptive and supporting cells on the inner surface of the back of the eye

rhodopsin

main photopigment in vertebrates

rod

strongly photosensitive, achromatic, cylindrical neuron in the outer edges of the retina that detects dim light and is used in peripheral and nighttime vision

superior colliculus

paired structure in the top of the midbrain, which manages eye movements and auditory integration

suprachiasmatic nucleus

cluster of cells in the hypothalamus that plays a role in the circadian cycle tonic activity

in a neuron, slight continuous activity while at rest

vision

sense of sight

Taste and Smell

By the end of this section, you will be able to:

- Explain in what way smell and taste stimuli differ from other sensory stimuli
- Identify the five primary tastes that can be distinguished by humans
- Explain in anatomical terms why a dog's sense of smell is more acute than a human's

Taste, also called gustation, and smell, also called olfaction, are the most interconnected senses in that both involve molecules of the stimulus entering the body and bonding to receptors. Smell lets an animal sense the presence of food or other animals—whether potential mates, predators, or prey—or other chemicals in the environment that can impact their survival. Similarly, the sense of taste allows animals to discriminate between types of foods. While the value of a sense of smell is obvious, what is the value of a sense of taste? Different tasting foods have different attributes, both helpful and harmful. For example, sweet-tasting substances tend to be highly caloric, which could be necessary for survival in lean times. Bitterness is associated with toxicity, and sourness is associated with spoiled food. Salty foods are valuable in maintaining homeostasis by helping the body retain water and by providing ions necessary for cells to function.

Tastes and Odors

Both taste and odor stimuli are molecules taken in from the environment. The primary tastes detected by humans are sweet, sour, bitter, salty and umami. The first four tastes need little explanation. The identification of umami as a fundamental taste occurred fairly recently—it was identified in 1908 by Japanese scientist Kikunae Ikeda while he worked with seaweed broth, but it was not widely accepted as a taste that could be physiologically distinguished until many years later. The taste of umami, also known as savoriness, is attributable to the taste of the amino acid L-glutamate. In fact, monosodium glutamate, or MSG, is often used in cooking to enhance the savory taste of certain foods. What is the adaptive value of being able to distinguish umami? Savory substances tend to be high in protein.

All odors that we perceive are molecules in the air we breathe. If a substance does not release molecules into the air from its surface, it has no smell. And if a human or other animal does not have a receptor that recognizes a specific molecule, then that molecule has no smell. Humans have about 350 olfactory receptor subtypes that work in various combinations to allow us to sense about 10,000 different odors. Compare that to mice, for example, which

have about 1,300 olfactory receptor types, and therefore probably sense more odors. Both odors and tastes involve molecules that stimulate specific chemoreceptors. Although humans commonly distinguish taste as one sense and smell as another, they work together to create the perception of flavor. A person's perception of flavor is reduced if he or she has congested nasal passages.

Reception and Transduction

Odorants (odor molecules) enter the nose and dissolve in the olfactory epithelium, the mucosa at the back of the nasal cavity (as illustrated in [link]). The olfactory epithelium is a collection of specialized olfactory receptors in the back of the nasal cavity that spans an area about 5 cm² in humans. Recall that sensory cells are neurons. An olfactory receptor, which is a dendrite of a specialized neuron, responds when it binds certain molecules inhaled from the environment by sending impulses directly to the olfactory bulb of the brain. Humans have about 12 million olfactory receptors, distributed among hundreds of different receptor types that respond to different odors. Twelve million seems like a large number of receptors, but compare that to other animals: rabbits have about 100 million, most dogs have about 1 billion, and bloodhounds—dogs selectively bred for their sense of smell—have about 4 billion. The overall size of the olfactory epithelium also differs between species, with that of bloodhounds, for example, being many times larger than that of humans.

Olfactory neurons are bipolar neurons (neurons with two processes from the cell body). Each neuron has a single dendrite buried in the olfactory epithelium, and extending from this dendrite are 5 to 20 receptor-laden, hair-like cilia that trap odorant molecules. The sensory receptors on the cilia are proteins, and it is the variations in their amino acid chains that make the receptors sensitive to different odorants. Each olfactory sensory neuron has only one type of receptor on its cilia, and the receptors are specialized to detect specific odorants, so the bipolar neurons themselves are specialized. When an odorant binds with a receptor that recognizes it, the sensory neuron associated with the receptor is stimulated. Olfactory stimulation is the only sensory information that directly reaches the cerebral cortex, whereas other sensations are relayed through the thalamus.

In the human olfactory system, (a) bipolar olfactory neurons extend from (b) the olfactory epithelium, where olfactory receptors are located, to the olfactory bulb. (credit: modification

of work by Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD,

cardiologist) Evolution Connection

PheromonesA pheromone is a chemical released by an animal that affects the behavior or physiology of animals of the same species. Pheromonal signals can have profound effects on animals that inhale them, but pheromones apparently are not consciously perceived in the same way as other odors. There are several different types of pheromones, which are released in urine or as glandular secretions. Certain pheromones are attractants to potential mates, others are repellants to potential competitors of the same sex, and still others play roles in mother-infant attachment. Some pheromones can also influence the timing of puberty, modify reproductive cycles, and even prevent embryonic implantation. While the roles of pheromones in many nonhuman species are important, pheromones have become less important in human behavior over evolutionary time compared to their importance to organisms with more limited behavioral repertoires.

The vomeronasal organ (VNO, or Jacobson's organ) is a tubular, fluid-filled, olfactory organ present in many vertebrate animals that sits adjacent to the nasal cavity. It is very sensitive to pheromones and is connected to the nasal cavity by a duct. When molecules dissolve in the mucosa of the nasal cavity, they then enter the VNO where the pheromone molecules among them bind with specialized pheromone receptors. Upon exposure to pheromones from their own species or others, many animals, including cats, may display the flehmen response (shown in [link]), a curling of the upper lip that helps pheromone molecules enter the VNO.

Pheromonal signals are sent, not to the main olfactory bulb, but to a different neural structure that projects directly to the amygdala (recall that the amygdala is a brain center important in emotional reactions, such as fear). The pheromonal signal then continues to areas of the hypothalamus that are key to reproductive physiology and behavior. While some scientists

assert that the VNO is apparently functionally vestigial in humans, even though there is a similar structure located near human nasal cavities, others are researching it as a possible functional system that may, for example, contribute to synchronization of menstrual cycles in women living in close proximity.

The flehmen response in this tiger results in the curling of the upper lip and helps airborne pheromone molecules enter the vomeronasal organ. (credit: modification of work by

"chadh"/Flickr)

Taste

Detecting a taste (gustation) is fairly similar to detecting an odor (olfaction), given that both taste and smell rely on chemical receptors being stimulated by certain molecules. The primary organ of taste is the taste bud. A taste bud is a cluster of gustatory receptors (taste cells) that are located within the bumps on the tongue called papillae (singular: papilla) (illustrated in [link]). There are several structurally distinct papillae. Filiform papillae, which are located across the tongue, are tactile, providing friction that helps the tongue move substances, and contain no taste cells. In contrast, fungiform papillae, which are located mainly on the anterior two-thirds of the tongue, each contain one to eight taste buds and also have receptors for pressure and temperature. The large circumvallate papillae contain up to 100 taste buds and form a V near the posterior margin of the tongue.

(a) Foliate, circumvallate, and fungiform papillae are located on different regions of the tongue. (b) Foliate papillae are prominent protrusions on this light micrograph. (credit a:

modification of work by NCI; scale-bar data from Matt

Russell)

In addition to those two types of chemically and mechanically sensitive papillae are foliate papillae—leaf-like papillae located in parallel folds along the edges and toward the back of the tongue, as seen in the [link] micrograph. Foliate papillae contain about 1,300 taste buds within their folds. Finally, there are circumvallate papillae, which are wall-like papillae in the shape of an inverted "V" at the back of the tongue. Each of these papillae is surrounded by a groove and contains about 250 taste buds.

Each taste bud's taste cells are replaced every 10 to 14 days. These are elongated cells with hair-like processes called microvilli at the tips that extend into the taste bud pore (illustrate in [link]). Food molecules (tastants) are dissolved in saliva, and they bind with and stimulate the receptors on the microvilli. The receptors for tastants are located across the outer portion and front of the tongue, outside of the middle area where the filiform papillae are most prominent.

Pores in the tongue allow tastants to enter taste pores in the tongue. (credit: modification of

work by Vincenzo Rizzo)

In humans, there are five primary tastes, and each taste has only one corresponding type of receptor. Thus, like olfaction, each receptor is specific to its stimulus (tastant). Transduction of the five tastes happens through different mechanisms that reflect the molecular composition of the tastant. A salty tastant (containing NaCl) provides the sodium ions (Na⁺) that enter the taste neurons and excite them directly. Sour tastants are acids and belong to the thermoreceptor protein family. Binding of an acid or other sour-tasting molecule triggers a change in the ion channel and these increase hydrogen ion (H⁺) concentrations in the taste neurons, thus depolarizing them. Sweet, bitter, and umami tastants require a G-protein coupled receptor. These tastants bind to their respective receptors, thereby exciting the specialized neurons associated with them.

Both tasting abilities and sense of smell change with age. In humans, the senses decline dramatically by age 50 and continue to decline. A child may find a food to be too spicy, whereas an elderly person may find the same food to be bland and unappetizing.

Link to Learning

View this <u>animation</u> that shows how the sense of taste works.

Smell and Taste in the Brain

Olfactory neurons project from the olfactory epithelium to the olfactory bulb as thin, unmyelinated axons. The olfactory bulb is composed of neural clusters called glomeruli, and each glomerulus receives signals from one type of olfactory receptor, so each glomerulus is specific to one odorant. From glomeruli, olfactory signals travel directly to the olfactory cortex and then to the frontal cortex and the thalamus. Recall that this is a different path from most other sensory information, which is sent directly to the thalamus before ending up in the cortex. Olfactory signals also travel directly to the amygdala, thereafter reaching the hypothalamus, thalamus, and frontal cortex. The last structure that olfactory signals directly travel to is a cortical center in the temporal lobe structure important in spatial, autobiographical, declarative, and episodic memories. Olfaction is finally processed by areas of the brain that deal with memory, emotions, reproduction, and thought.

Taste neurons project from taste cells in the tongue, esophagus, and palate to the medulla, in the brainstem. From the medulla, taste signals travel to the thalamus and then to the primary gustatory cortex. Information from different regions of the tongue is segregated in the medulla, thalamus, and cortex.

Section Summary

There are five primary tastes in humans: sweet, sour, bitter, salty, and umami. Each taste has its own receptor type that responds only to that taste. Tastants enter the body and are dissolved in saliva. Taste cells are located within taste buds, which are found on three of the four types of papillae in the mouth.

Regarding olfaction, there are many thousands of odorants, but humans detect only about 10,000. Like taste receptors, olfactory receptors are each responsive to only one odorant. Odorants dissolve in nasal mucosa, where they excite their corresponding olfactory sensory cells. When these cells detect an odorant, they send their signals to the main olfactory bulb and then to other locations in the brain, including the olfactory cortex.

Review Questions

Which of the following has the fewest taste receptors?

- a. fungiform papillae
- b. circumvallate papillae
- c. foliate papillae
- d. filiform papillae

D

How many different taste molecules do taste cells each detect?

- a. one
- b. five
- c. ten
- d. It depends on the spot on the tongue

Salty foods activate the taste cells by _____.

- a. exciting the taste cell directly
- b. causing hydrogen ions to enter the cell
- c. causing sodium channels to close
- d. binding directly to the receptors

A

All sensory signals except _____ travel to the _____ in the brain before the cerebral cortex.

- a. vision; thalamus
- b. olfaction; thalamus
- c. vision; cranial nerves
- d. olfaction; cranial nerves

В

Free Response

From the perspective of the recipient of the signal, in what ways do pheromones differ from other odorants?

Pheromones may not be consciously perceived, and pheromones can have direct physiological and behavioral effects on their recipients.

What might be the effect on an animal of not being able to perceive taste?

The animal might not be able to recognize the differences in food sources and thus might not be able to discriminate between spoiled food and safe food or between foods that contain necessary nutrients, such as proteins, and foods that do not.

Glossary

bipolar neuron

neuron with two processes from the cell body, typically in opposite directions

glomerulus

in the olfactory bulb, one of the two neural clusters that receives signals from one type of olfactory receptor

gustation

sense of taste

odorant

airborne molecule that stimulates an olfactory receptor

olfaction

sense of smell

A

olfactory bulb

neural structure in the vertebrate brain that receives signals from olfactory receptors

olfactory epithelium

specialized tissue in the nasal cavity where olfactory receptors are located olfactory receptor

dendrite of a specialized neuron

papilla

one of the small bump-like projections from the tongue

pheromone

substance released by an animal that can affect the physiology or behavior of other animals

tastant

food molecule that stimulates gustatory receptors

taste bud

clusters of taste cells

umami

one of the five basic tastes, which is described as "savory" and which may be largely the taste of L-glutamate

Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="free-response" title="Free Response"The process of amphibian metamorphosis, as seen in the tadpole-to-frog stages shown here, is driven by hormones. (credit "tadpole": modification of work by Brian

Gratwicke)

An animal's endocrine system controls body processes through the production, secretion, and regulation of hormones, which serve as chemical "messengers" functioning in cellular and organ activity and, ultimately, maintaining the body's homeostasis. The endocrine system plays a role in growth, metabolism, and sexual development. In humans, common endocrine system diseases include thyroid disease and diabetes mellitus. In organisms that undergo metamorphosis, the process is controlled by the endocrine system. The transformation from tadpole to frog, for example, is complex and nuanced to adapt to specific environments and ecological circumstances.

Types of Hormones

By the end of this section, you will be able to:

• List the different types of hormones

• Explain their role in maintaining homeostasis

Maintaining homeostasis within the body requires the coordination of many different systems and organs. Communication between neighboring cells, and between cells and tissues in distant parts of the body, occurs through the release of chemicals called hormones. Hormones are released into body fluids (usually blood) that carry these chemicals to their target cells. At the target cells, which are cells that have a receptor for a signal or ligand from a signal cell, the hormones elicit a response. The cells, tissues, and organs that secrete hormones make up the endocrine system. Examples of glands of the endocrine system include the adrenal glands, which produce hormones such as epinephrine and norepinephrine that regulate responses to stress, and the thyroid gland, which produces thyroid hormones that regulate metabolic rates.

Although there are many different hormones in the human body, they can be divided into three classes based on their chemical structure: lipid-derived, amino acid-derived, and peptide (peptide and proteins) hormones. One of the key distinguishing features of lipid-derived hormones is that they can diffuse across plasma membranes whereas the amino acid-derived and peptide hormones cannot.

Lipid-Derived Hormones (or Lipid-soluble Hormones)

Most lipid hormones are derived from cholesterol and thus are structurally similar to it, as illustrated in [link]. The primary class of lipid hormones in humans is the steroid hormones. Chemically, these hormones are usually ketones or alcohols; their chemical names will end in "-ol" for alcohols or "-one" for ketones. Examples of steroid hormones include estradiol, which is an estrogen, or female sex hormone, and testosterone, which is an androgen, or male sex hormone. These two hormones are released by the female and male reproductive organs, respectively. Other steroid hormones include aldosterone and cortisol, which are released by the adrenal glands along with some other types of androgens. Steroid hormones are insoluble in water, and they are transported by transport proteins in blood. As a result, they remain in circulation longer than peptide hormones. For example, cortisol has a half-life of 60 to 90 minutes, while epinephrine, an amino acid derived-hormone, has a half-life of approximately one minute.

The structures shown here represent (a) cholesterol, plus the steroid hormones (b) testosterone and (c)

estradiol.

Amino Acid-Derived Hormones

The amino acid-derived hormones are relatively small molecules that are derived from the amino acids tyrosine and tryptophan, shown in [link]. If a hormone is amino acid-derived, its chemical name will end in "-ine". Examples of amino acid-derived hormones include epinephrine and norepinephrine, which are synthesized in the medulla of the adrenal glands, and thyroxine, which is produced by the thyroid gland. The pineal gland in the brain makes and secretes melatonin which regulates sleep cycles.

(a) The hormone epinephrine, which triggers the fight-or-flight response, is derived from the amino acid tyrosine. (b) The hormone melatonin, which regulates circadian rhythms, is

derived from the amino acid

tryptophan.

Peptide Hormones

The structure of peptide hormones is that of a polypeptide chain (chain of amino acids). The peptide hormones include molecules that are short polypeptide chains, such as antidiuretic hormone and oxytocin produced in the brain and released into the blood in the posterior pituitary gland. This class also includes small proteins, like growth hormones produced by the pituitary, and large glycoproteins such as follicle-stimulating hormone produced by the pituitary. [link] illustrates these peptide hormones.

Secreted peptides like insulin are stored within vesicles in the cells that synthesize them. They are then released in response to stimuli such as high blood glucose levels in the case of insulin. Amino acid-derived and polypeptide hormones are water-soluble and insoluble in lipids. These hormones cannot pass through plasma membranes of cells; therefore, their receptors are found on the surface of the target cells.

The structures of peptide hormones (a) oxytocin, (b) growth hormone, and (c) folliclestimulating hormone are shown. These peptide hormones are much larger than those derived from cholesterol or amino

acids. Career Connection

EndocrinologistAn endocrinologist is a medical doctor who specializes in treating disorders of the endocrine glands, hormone systems, and glucose and lipid metabolic pathways. An endocrine surgeon specializes in the surgical treatment of endocrine diseases and glands. Some of the diseases that are managed by endocrinologists: disorders of the pancreas (diabetes mellitus), disorders of the pituitary (gigantism, acromegaly, and pituitary dwarfism), disorders of the thyroid gland (goiter and Graves' disease), and disorders of the adrenal glands (Cushing's disease and Addison's disease).

Endocrinologists are required to assess patients and diagnose endocrine disorders through extensive use of laboratory tests. Many endocrine diseases are diagnosed using tests that stimulate or suppress endocrine organ functioning. Blood samples are then drawn to determine the effect of stimulating or suppressing an endocrine organ on the production of hormones. For example, to diagnose diabetes mellitus, patients are required to fast for 12 to 24 hours. They are then given a sugary drink, which stimulates the pancreas to produce insulin to decrease blood glucose levels. A blood sample is taken one to two hours after the sugar drink is consumed. If the pancreas is functioning properly, the blood glucose level will be within a normal range. Another example is the A1C test, which can be performed during blood screening. The A1C test measures average blood glucose levels over the past two to three months by examining how well the blood glucose is being managed over a long time.

Once a disease has been diagnosed, endocrinologists can prescribe lifestyle changes and/or medications to treat the disease. Some cases of diabetes mellitus can be managed by exercise, weight loss, and a healthy diet; in other cases, medications may be required to enhance insulin release. If the disease cannot be controlled by these means, the endocrinologist may prescribe insulin injections.

In addition to clinical practice, endocrinologists may also be involved in primary research and development activities. For example, ongoing islet transplant research is investigating how healthy pancreas islet cells may be transplanted into diabetic patients. Successful islet transplants may allow patients to stop taking insulin injections.

Section Summary

There are three basic types of hormones: lipid-derived, amino acid-derived, and peptide. Lipid-derived hormones are structurally similar to cholesterol and include steroid hormones such as estradiol and testosterone. Amino acid-derived hormones are relatively small molecules and include the adrenal hormones epinephrine and norepinephrine. Peptide hormones are polypeptide chains or proteins and include the pituitary hormones, antidiuretic hormone (vasopressin), and oxytocin.

Review Questions

A newly discovered hormone contains four amino acids linked together. Under which chemical class would this hormone be classified?

- a. lipid-derived hormone
- b. amino acid-derived hormone
- c. peptide hormone
- d. glycoprotein

С

Which class of hormones can diffuse through plasma membranes?

- a. lipid-derived hormones
- b. amino acid-derived hormones
- c. peptide hormones
- d. glycoprotein hormones

A

Free Response

Although there are many different hormones in the human body, they can be divided into three classes based on their chemical structure. What are these classes and what is one factor that distinguishes them?

Although there are many different hormones in the human body, they can be divided into three classes based on their chemical structure: lipid-derived, amino acid-derived, and peptide hormones. One of the key distinguishing features of the lipid-derived hormones is that they can diffuse across plasma membranes whereas the amino acid-derived and peptide hormones cannot.

Where is insulin stored, and why would it be released?

Secreted peptides such as insulin are stored within vesicles in the cells that synthesize them. They are then released in response to stimuli such as high blood glucose levels in the case of insulin.

Glossary

amino acid-derived hormone hormone derived from amino acids lipid-derived hormone hormone derived mostly from cholesterol peptide hormone hormone composed of a polypeptide chain How Hormones Work By the end of this section, you will be able to:

- Explain how hormones work
- Discuss the role of different types of hormone receptors

Hormones mediate changes in target cells by binding to

specific hormone receptors. In this way, even though hormones circulate throughout the body and come into contact with many different cell types, they only affect cells that possess the necessary receptors. Receptors for a specific hormone may be found on many different cells or may be limited to a small number of specialized cells. For example, thyroid hormones act on many different tissue types, stimulating metabolic activity throughout the body. Cells can have many receptors for the same hormone but often also possess receptors for different types of hormones. The number of receptors that respond to a hormone determines the cell's sensitivity to that hormone, and the resulting cellular response. Additionally, the number of receptors that respond to a hormone can change over time, resulting in increased or decreased cell sensitivity. In up-regulation, the number of receptors increases in response to rising hormone levels, making the cell more sensitive to the hormone and allowing for more cellular activity. When the number of receptors decreases in response to rising hormone levels, called downregulation, cellular activity is reduced.

Receptor binding alters cellular activity and results in an increase or decrease in normal body processes. Depending on the location of the protein receptor on the target cell and the chemical structure of the hormone, hormones can mediate changes directly by binding to intracellular hormone receptors and modulating gene transcription, or indirectly by binding to cell surface receptors and stimulating signaling pathways.

Intracellular Hormone Receptors

Lipid-derived (soluble) hormones such as steroid hormones diffuse across the membranes of the endocrine cell. Once outside the cell, they bind to transport proteins that keep them soluble in the bloodstream. At the target cell, the hormones are released from the carrier protein and diffuse across the lipid bilayer of the plasma membrane of cells. The steroid hormones pass through the plasma membrane of a target cell and adhere to intracellular receptors residing in the cytoplasm or in the nucleus. The cell signaling pathways induced by the steroid hormones regulate specific genes on the cell's DNA. The hormones and receptor complex act as transcription regulators by increasing or decreasing the synthesis of mRNA molecules of specific genes. This, in turn, determines the amount of corresponding protein that is synthesized by altering gene expression. This protein can be used either to change the structure of the cell or to produce enzymes that catalyze chemical reactions. In this way, the steroid hormone regulates specific cell processes as illustrated in [link].

Art Connection

An intracellular nuclear receptor (NR) is located in the cytoplasm bound to a heat shock protein (HSP). Upon hormone binding, the receptor dissociates from the heat shock protein and translocates to the nucleus. In the nucleus, the hormone-receptor complex binds to a DNA sequence called a hormone response element (HRE), which triggers gene transcription and translation. The corresponding protein product can then mediate changes in cell

Heat shock proteins (HSP) are so named because they help refold misfolded proteins. In response to increased temperature (a "heat shock"), heat shock proteins are activated by release from the NR/HSP complex. At the same time, transcription of HSP genes is activated. Why do you think the cell responds to a heat shock by increasing the activity of proteins that help refold misfolded proteins?

Other lipid-soluble hormones that are not steroid hormones, such as vitamin D and thyroxine, have receptors located in the nucleus. The hormones diffuse across both the plasma membrane and the nuclear envelope, then bind to receptors in the nucleus. The hormone-receptor complex stimulates transcription of specific genes.

Plasma Membrane Hormone Receptors

Amino acid derived hormones and polypeptide hormones are not lipid-derived (lipid-soluble) and therefore cannot diffuse through the plasma membrane of cells. Lipid insoluble hormones bind to receptors on the outer surface of the plasma membrane, via plasma membrane hormone receptors. Unlike steroid hormones, lipid insoluble hormones do not directly affect the target cell because they cannot enter the cell and act directly on DNA. Binding of these hormones to a cell surface receptor results in activation of a signaling pathway; this triggers intracellular activity and carries out the specific effects associated with the hormone. In this way, nothing passes through the cell membrane; the hormone that binds at the surface remains at the surface of the cell while the intracellular product remains inside the cell. The hormone that initiates the signaling pathway is called a first messenger, which activates a second messenger in the cytoplasm, as illustrated in [link].

The amino acid-derived hormones epinephrine and norepinephrine bind to beta-adrenergic receptors on the plasma membrane of cells. Hormone binding to receptor activates a G-protein, which in turn activates adenylyl cyclase, converting ATP to cAMP. cAMP is a second messenger that mediates a cell-specific response. An enzyme called

phosphodiesterase breaks down cAMP, terminating the

signal.

One very important second messenger is cyclic AMP (cAMP). When a hormone binds to its membrane receptor, a G-protein that is associated with the receptor is activated; G-proteins are proteins separate from receptors that are found in the cell membrane. When a hormone is not bound to the receptor, the G-protein is inactive and is bound to guanosine diphosphate, or GDP. When a hormone binds to the receptor, the G-protein is activated by binding guanosine triphosphate, or GTP, in place of GDP. After binding, GTP is hydrolysed by the G-protein into GDP and becomes inactive.

The activated G-protein in turn activates a membrane-bound enzyme called adenylyl cyclase. Adenylyl cyclase catalyzes the conversion of ATP to cAMP. cAMP, in turn, activates a group of proteins called protein kinases, which transfer a phosphate group from ATP to a substrate molecule in a process called phosphorylation. The phosphorylation of a substrate molecule changes its structural orientation, thereby activating it. These activated molecules can then mediate changes in cellular processes.

The effect of a hormone is amplified as the signaling pathway progresses. The binding of a hormone at a single receptor causes the activation of many G-proteins, which activates adenylyl cyclase. Each molecule of adenylyl cyclase then triggers the formation of many molecules of cAMP. Further amplification occurs as protein kinases, once activated by cAMP, can catalyze many reactions. In this way, a small amount of hormone can trigger the

formation of a large amount of cellular product. To stop hormone activity, cAMP is deactivated by the cytoplasmic enzyme phosphodiesterase, or PDE. PDE is always present in the cell and breaks down cAMP to control hormone activity, preventing overproduction of cellular products.

The specific response of a cell to a lipid insoluble hormone depends on the type of receptors that are present on the cell membrane and the substrate molecules present in the cell cytoplasm. Cellular responses to hormone binding of a receptor include altering membrane permeability and metabolic pathways, stimulating synthesis of proteins and enzymes, and activating hormone release.

Section Summary

Hormones cause cellular changes by binding to receptors on target cells. The number of receptors on a target cell can increase or decrease in response to hormone activity. Hormones can affect cells directly through intracellular hormone receptors or indirectly through plasma membrane hormone receptors.

Lipid-derived (soluble) hormones can enter the cell by diffusing across the plasma membrane and binding to DNA to regulate gene transcription and to change the cell's activities by inducing production of proteins that affect, in general, the long-term structure and function of the cell. Lipid insoluble hormones bind to receptors on the plasma membrane surface and trigger a signaling pathway to change the cell's activities by inducing production of various cell products that affect the cell in the short-term. The hormone is called a first messenger and the cellular component is called a second messenger. G-proteins activate the second messenger (cyclic AMP), triggering the cellular response. Response to hormone binding is amplified as the signaling pathway progresses. Cellular responses to hormones include the production of proteins and enzymes and altered membrane permeability.

Art Connections

[link] Heat shock proteins (HSP) are so named because they help refold mis-folded proteins. In response to increased temperature (a "heat shock"), heat shock proteins are activated by release from the NR/HSP complex. At the same time, transcription of HSP genes is activated. Why do you think the cell responds to a heat shock by increasing the activity of proteins that help refold misfolded proteins?

[link] Proteins unfold, or denature, at higher temperatures.

Review Questions

A new antagonist molecule has been discovered that binds to and blocks plasma membrane receptors. What effect will this antagonist have on testosterone, a steroid hormone?

- a. It will block testosterone from binding to its receptor.
- b. It will block testosterone from activating cAMP signaling.
- c. It will increase testosterone-mediated signaling.
- d. It will not affect testosterone-mediated signaling.

What effect will a cAMP inhibitor have on a peptide hormone-mediated signaling pathway?

- a. It will prevent the hormone from binding its receptor.
- b. It will prevent activation of a G-protein.
- c. It will prevent activation of adenylate cyclase.
- d. It will prevent activation of protein kinases.

D

Free Response

Name two important functions of hormone receptors.

The number of receptors that respond to a hormone can change, resulting in increased or decreased cell sensitivity. The number of receptors can increase in response to rising hormone levels, called up-regulation, making the cell more sensitive to the hormone and allowing for more cellular activity. The number of receptors can also decrease in response to rising hormone levels, called down-regulation, leading to reduced cellular activity.

How can hormones mediate changes?

Depending on the location of the protein receptor on the target cell and the chemical structure of the hormone, hormones can mediate changes directly by binding to intracellular receptors and modulating gene transcription, or indirectly by binding to cell surface receptors and stimulating signaling pathways.

Glossary

adenylate cyclase

an enzyme that catalyzes the conversion of ATP to cyclic AMP down-regulation

a decrease in the number of hormone receptors in response to increased hormone levels

first messenger

the hormone that binds to a plasma membrane hormone receptor to trigger a signal transduction pathway

G-protein

a membrane protein activated by the hormone first messenger to activate formation of cyclic AMP

hormone receptor

the cellular protein that binds to a hormone

intracellular hormone receptor

a hormone receptor in the cytoplasm or nucleus of a cell phosphodiesterase (PDE)

enzyme that deactivates cAMP, stopping hormone activity plasma membrane hormone receptor

a hormone receptor on the surface of the plasma membrane of a cell

up-regulation

an increase in the number of hormone receptors in response to increased hormone levels

Regulation of Hormone Production

By the end of this section, you will be able to:

- Explain how hormone production is regulated
- Discuss the different stimuli that control hormone levels in the body

Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus elicits the release of a substance; once the substance reaches a certain level, it sends a signal that stops further release of the substance. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary signals the thyroid to release thyroid hormones. Increasing levels of these hormones in the blood then give feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland, as illustrated in [link]. There are three mechanisms by which endocrine glands are stimulated to synthesize and release hormones: humoral stimuli, hormonal stimuli, and neural stimuli.

Art Connection

The anterior pituitary stimulates the thyroid gland to release thyroid hormones T_3 and T_4 . Increasing levels of these hormones in the blood results in feedback to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland. (credit: modification of work by Mikael

Häggström)

Hyperthyroidism is a condition in which the thyroid gland is overactive. Hypothyroidism is a condition in which the thyroid gland is underactive. Which of the conditions are the following two patients most likely to have? Patient A has symptoms including weight gain, cold sensitivity, low heart rate and fatigue.

Patient B has symptoms including weight loss, profuse sweating, increased heart rate and difficulty sleeping.

Humoral Stimuli

The term "humoral" is derived from the term "humor," which refers to bodily fluids such as blood. A humoral stimulus refers to the control of hormone release in response to changes in extracellular fluids such as blood or the ion concentration in the blood. For example, a rise in blood glucose levels triggers the pancreatic release of insulin. Insulin causes blood glucose levels to drop, which signals the pancreas to stop producing insulin in a negative feedback loop.

Hormonal Stimuli

Hormonal stimuli refers to the release of a hormone in response to another hormone. A number of endocrine glands release hormones when stimulated by hormones released by other endocrine glands. For example, the hypothalamus produces hormones that stimulate the anterior portion of the pituitary gland. The anterior pituitary in turn releases hormones that regulate hormone production by other endocrine glands. The anterior pituitary releases the thyroid-stimulating hormone, which then stimulates the thyroid gland to produce the hormones T_3 and T_4 . As blood concentrations of T_3 and T_4 rise, they inhibit both the pituitary and the hypothalamus in a negative feedback loop.

Neural Stimuli

In some cases, the nervous system directly stimulates endocrine glands to release hormones, which is referred to as neural stimuli. Recall that in a short-term stress response, the hormones epinephrine and norepinephrine are important for providing the bursts of energy required for the body to respond. Here, neuronal signaling from the sympathetic nervous system directly stimulates the adrenal medulla to release the hormones epinephrine and norepinephrine in response to stress.

Section Summary

Hormone levels are primarily controlled through negative feedback, in which rising levels of a hormone inhibit its further release. The three mechanisms of hormonal release are humoral stimuli, hormonal stimuli, and neural stimuli. Humoral stimuli refers to the control of hormonal release in response to changes in extracellular fluid levels or ion levels. Hormonal stimuli refers to the release of hormones in response to hormones released by other endocrine glands. Neural stimuli refers to the release of hormones in response to neural stimulation.

Art Connections

[link] Hyperthyroidism is a condition in which the thyroid gland is overactive. Hypothyroidism is a condition in which the thyroid gland is underactive. Which of the conditions are the following two patients most likely to have? Patient A has symptoms including weight gain, cold sensitivity, low heart rate and fatigue.

Patient B has symptoms including weight loss, profuse sweating, increased heart rate and difficulty sleeping.

[link] Patient A has symptoms associated with decreased metabolism, and may be suffering from hypothyroidism. Patient B has symptoms associated with increased metabolism, and may be suffering from hyperthyroidism.

Review Questions

A rise in blood glucose levels triggers release of insulin from the pancreas. This mechanism of hormone production is stimulated by:

- a. humoral stimuli
- b. hormonal stimuli
- c. neural stimuli
- d. negative stimuli

A

Which mechanism of hormonal stimulation would be affected if signaling and hormone release from the hypothalamus was blocked?

- a. humoral and hormonal stimuli
- b. hormonal and neural stimuli
- c. neural and humoral stimuli
- d. hormonal and negative stimuli

В

Free Response

How is hormone production and release primarily controlled?

Hormone production and release are primarily controlled by negative feedback. In negative feedback systems, a stimulus causes the release of a substance whose effects then inhibit further release. In this way, the concentration of hormones in blood is maintained within a narrow range. For example, the anterior pituitary signals the thyroid to release thyroid hormones. Increasing levels of these hormones in the blood then feed back to the hypothalamus and anterior pituitary to inhibit further signaling to the thyroid gland.

Compare and contrast hormonal and humoral stimuli.

The term humoral is derived from the term humor, which refers to bodily fluids such as blood. Humoral stimuli refer to the control of hormone release in response to changes in extracellular fluids such as blood or the ion concentration in the blood. For example, a rise in blood glucose levels triggers the pancreatic release of insulin. Insulin causes blood glucose levels to drop, which signals the pancreas to stop producing insulin in a negative feedback loop.

Hormonal stimuli refer to the release of a hormone in response to another hormone. A number of endocrine glands release hormones when stimulated by hormones released by other endocrine organs. For example, the hypothalamus produces hormones that stimulate the anterior pituitary. The anterior pituitary in turn releases hormones that regulate hormone production by other endocrine glands. For example, the anterior pituitary releases thyroid-stimulating hormone, which stimulates the thyroid gland to produce the hormones T_3 and T_4 . As blood concentrations of T_3 and T_4 rise they inhibit both the pituitary and the hypothalamus in a negative feedback loop.

Glossary

hormonal stimuli

release of a hormone in response to another hormone humoral stimuli

control of hormone release in response to changes in extracellular fluids such as blood or the ion concentration in the blood

neural stimuli

stimulation of endocrine glands by the nervous system Endocrine Glands

By the end of this section, you will be able to:

- Describe the role of different glands in the endocrine system
- Explain how the different glands work together to maintain homeostasis

Both the endocrine and nervous systems use chemical signals to communicate and regulate the body's physiology. The endocrine system releases hormones that act on target cells to regulate development, growth, energy metabolism, reproduction, and many behaviors. The nervous system releases neurotransmitters or neurohormones that regulate neurons, muscle cells, and endocrine cells. Because the neurons can regulate the release of hormones, the nervous and endocrine systems work in a coordinated manner to regulate the body's physiology.

Hypothalamic-Pituitary Axis

The hypothalamus in vertebrates integrates the endocrine and nervous systems. The hypothalamus is an endocrine organ located in the diencephalon of the brain. It receives input from the body and other brain areas and initiates endocrine responses to environmental changes. The hypothalamus acts as an endocrine organ, synthesizing hormones and transporting them along axons to the posterior pituitary gland. It synthesizes and secretes regulatory hormones that control the endocrine cells in the anterior pituitary gland. The hypothalamus contains autonomic centers that control endocrine cells in the adrenal medulla via neuronal control.

The pituitary gland, sometimes called the hypophysis or "master gland" is located at the base of the brain in the sella turcica, a groove of the sphenoid bone of the skull, illustrated in [link]. It is attached to the hypothalamus via a stalk called the pituitary stalk (or infundibulum). The anterior portion of the pituitary gland is regulated by releasing or release-

inhibiting hormones produced by the hypothalamus, and the posterior pituitary receives signals via neurosecretory cells to release hormones produced by the hypothalamus. The pituitary has two distinct regions—the anterior pituitary and the posterior pituitary—which between them secrete nine different peptide or protein hormones. The posterior lobe of the pituitary gland contains axons of the hypothalamic neurons.

The pituitary gland is located at (a) the base of the brain and (b) connected to the hypothalamus by the pituitary stalk. (credit a: modification of work by NCI; credit b: modification of work by Gray's

Anatomy)

Anterior Pituitary

The anterior pituitary gland, or adenohypophysis, is surrounded by a capillary network that extends from the hypothalamus, down along the infundibulum, and to the anterior pituitary. This capillary network is a part of the hypophyseal portal system that carries substances from the hypothalamus to the anterior pituitary and hormones from the anterior pituitary into the circulatory system. A portal system carries blood from one capillary network to another; therefore, the hypophyseal portal system allows hormones produced by the hypothalamus to be carried directly to the anterior pituitary without first entering the circulatory system.

The anterior pituitary produces seven hormones: growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), melanin-stimulating hormone (MSH),

adrenocorticotropic hormone (ACTH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH). Anterior pituitary hormones are sometimes referred to as tropic hormones, because they control the functioning of other organs. While these hormones are produced by the anterior pituitary, their production is controlled by regulatory hormones produced by the hypothalamus. These regulatory hormones can be releasing hormones or inhibiting hormones, causing more or less of the anterior pituitary hormones to be secreted. These travel from the hypothalamus through the hypophyseal portal system to the anterior pituitary where they exert their effect. Negative feedback then regulates how much of these regulatory hormones are released and how much anterior pituitary hormone is secreted.

Posterior Pituitary

The posterior pituitary is significantly different in structure from the anterior pituitary. It is a part of the brain, extending down from the hypothalamus, and contains mostly nerve fibers and neuroglial cells, which support axons that extend from the hypothalamus to the posterior pituitary. The posterior pituitary and the infundibulum together are referred to as the neurohypophysis.

The hormones antidiuretic hormone (ADH), also known as vasopressin, and oxytocin are produced by neurons in the hypothalamus and transported within these axons along the infundibulum to the posterior pituitary. They are released into the circulatory system via neural signaling from the hypothalamus. These hormones are considered to be posterior pituitary hormones, even though they are produced by the hypothalamus, because that is where they are released into the circulatory system. The posterior pituitary itself does not produce hormones, but instead stores hormones produced by the hypothalamus and releases them into the blood stream.

Thyroid Gland

The thyroid gland is located in the neck, just below the larynx and in front of the trachea, as shown in <u>[link]</u>. It is a butterfly-shaped gland with two lobes that are connected by the isthmus. It has a dark red color due to its extensive vascular system. When the thyroid swells due to dysfunction, it can be felt under the skin of the neck.

This illustration shows the location of the thyroid

gland.

The thyroid gland is made up of many spherical thyroid follicles, which are lined with a simple cuboidal epithelium. These follicles contain a viscous fluid, called colloid, which stores the glycoprotein thyroglobulin, the precursor to the thyroid hormones. The follicles produce hormones that can be stored in the colloid or released into the surrounding capillary network for transport to the rest of the body via the circulatory system.

Thyroid follicle cells synthesize the hormone thyroxine, which is also known as T_4 because it contains four atoms of iodine, and triiodothyronine, also known as T_3 because it contains three atoms of iodine. Follicle cells are stimulated to release stored T_3 and T_4 by thyroid stimulating hormone (TSH), which is produced by the anterior pituitary. These thyroid hormones increase the rates of mitochondrial ATP production.

A third hormone, calcitonin, is produced by parafollicular cells of the thyroid either releasing hormones or inhibiting hormones. Calcitonin release is not controlled by TSH, but instead is released when calcium ion concentrations in the blood rise. Calcitonin functions to help regulate calcium concentrations in body fluids. It acts in the bones to inhibit osteoclast activity and in the kidneys to stimulate excretion of calcium. The combination of these two events lowers body fluid levels of calcium.

Parathyroid Glands

Most people have four parathyroid glands; however, the number can vary from two to six. These glands are located on the posterior surface of the thyroid gland, as shown in [link]. Normally, there is a superior gland and an inferior gland associated with each of the thyroid's two lobes. Each parathyroid gland is covered by connective tissue and contains many secretory cells that are associated with a capillary network.

The parathyroid glands are located on the posterior of the thyroid gland. (credit: modification

of work by NCI)

The parathyroid glands produce parathyroid hormone (PTH). PTH increases blood calcium concentrations when calcium ion levels fall below normal. PTH (1) enhances reabsorption of Ca^{2+} by the kidneys, (2) stimulates osteoclast activity and inhibits osteoblast activity, and (3) it stimulates synthesis and secretion of calcitriol by the kidneys, which enhances Ca^{2+} absorption by the digestive system. PTH is produced by chief cells of the parathyroid.

PTH and calcitonin work in opposition to one another to maintain homeostatic Ca^{2+} levels in body fluids. Another type of cells, oxyphil cells, exist in the parathyroid but their function is not known. These hormones encourage bone growth, muscle mass, and blood cell formation in children and women.

Adrenal Glands

The adrenal glands are associated with the kidneys; one gland is located on top of each kidney as illustrated in <u>[link]</u>. The adrenal glands consist of an outer adrenal cortex and an inner adrenal medulla. These regions secrete different hormones.

The location of the adrenal glands on top of the kidneys is shown. (credit: modification of

work by NCI)

Adrenal Cortex

The adrenal cortex is made up of layers of epithelial cells and associated capillary networks. These layers form three distinct regions: an outer zona glomerulosa that produces mineralocorticoids, a middle zona fasciculata that produces glucocorticoids, and an inner zona reticularis that produces androgens.

The main mineralocorticoid is aldosterone, which regulates the concentration of Na⁺ ions in urine, sweat, pancreas, and saliva. Aldosterone release from the adrenal cortex is stimulated by a decrease in blood concentrations of sodium ions, blood volume, or blood pressure, or by an increase in blood potassium levels.

The three main glucocorticoids are cortisol, corticosterone, and cortisone. The glucocorticoids stimulate the synthesis of glucose and gluconeogenesis (converting a non-carbohydrate to glucose) by liver cells and they promote the release of fatty acids from adipose tissue. These hormones increase blood glucose levels to maintain levels within a normal range between meals. These hormones are secreted in response to ACTH and levels are regulated by negative feedback.

Androgens are sex hormones that promote masculinity. They are produced in small amounts by the adrenal cortex in both males and females. They do not affect sexual characteristics and may supplement sex hormones released from the gonads.

Adrenal Medulla

The adrenal medulla contains large, irregularly shaped cells that are closely associated with blood vessels. These cells are innervated by preganglionic autonomic nerve fibers from the central nervous system.

The adrenal medulla contains two types of secretory cells: one that produces epinephrine (adrenaline) and another that produces norepinephrine (noradrenaline). Epinephrine is the primary adrenal medulla hormone accounting for 75 to 80 percent of its secretions. Epinephrine and norepinephrine increase heart rate, breathing rate, cardiac muscle contractions, blood pressure, and blood glucose levels. They also accelerate the breakdown of glucose in skeletal muscles and stored fats in adipose tissue.

The release of epinephrine and norepinephrine is stimulated by neural impulses from the sympathetic nervous system. Secretion of these hormones is stimulated by acetylcholine release from preganglionic sympathetic fibers innervating the adrenal medulla. These neural impulses originate from the hypothalamus in response to stress to prepare the body for the fight-or-flight response.

Pancreas

The pancreas, illustrated in [link], is an elongated organ that is located between the stomach and the proximal portion of the small intestine. It contains both exocrine cells that excrete digestive enzymes and endocrine cells that release hormones. It is sometimes referred to as a heterocrine gland because it has both endocrine and exocrine functions.

The pancreas is found underneath the stomach and points toward the spleen. (credit:

modification of work by NCI)

The endocrine cells of the pancreas form clusters called pancreatic islets or the islets of Langerhans, as visible in the micrograph shown in [link]. The pancreatic islets contain two

primary cell types: alpha cells, which produce the hormone glucagon, and beta cells, which produce the hormone insulin. These hormones regulate blood glucose levels. As blood glucose levels decline, alpha cells release glucagon to raise the blood glucose levels by increasing rates of glycogen breakdown and glucose release by the liver. When blood glucose levels rise, such as after a meal, beta cells release insulin to lower blood glucose levels by increasing the rate of glucose uptake in most body cells, and by increasing glycogen synthesis in skeletal muscles and the liver. Together, glucagon and insulin regulate blood glucose levels.

The islets of Langerhans are clusters of endocrine cells found in the pancreas; they stain lighter than surrounding cells. (credit: modification of work by Muhammad T. Tabiin, Christopher P. White, Grant Morahan, and Bernard E. Tuch; scale-bar data from Matt

Russell)

Pineal Gland

The pineal gland produces melatonin. The rate of melatonin production is affected by the photoperiod. Collaterals from the visual pathways innervate the pineal gland. During the day photoperiod, little melatonin is produced; however, melatonin production increases during the dark photoperiod (night). In some mammals, melatonin has an inhibitory affect on reproductive functions by decreasing production and maturation of sperm, oocytes, and reproductive organs. Melatonin is an effective antioxidant, protecting the CNS from free radicals such as nitric oxide and hydrogen peroxide. Lastly, melatonin is involved in biological rhythms, particularly circadian rhythms such as the sleep-wake cycle and eating habits.

Gonads

The gonads—the male testes and female ovaries—produce steroid hormones. The testes produce androgens, testosterone being the most prominent, which allow for the development of secondary sex characteristics and the production of sperm cells. The ovaries produce estradiol and progesterone, which cause secondary sex characteristics and prepare the body for childbirth.

	Endocrine Glands and then Associated Hormones	
Endocrine Gland	Associated Hormones	Effect
Hypothalamus	releasing and inhibiting hormones	regulate hormone release from pituitary gland; produce oxytocin; produce uterine contractions and milk secretion in females
	antidiuretic hormone (ADH)	water reabsorption from kidneys; vasoconstriction to increase blood pressure
Pituitary (Anterior)	growth hormone (GH)	promotes growth of body tissues, protein synthesis; metabolic functions
	prolactin (PRL)	promotes milk production
	thyroid stimulating hormone (TSH)	stimulates thyroid hormone release
	adrenocorticotropic hormone (ACTH)	stimulates hormone release by adrenal cortex, glucocorticoids
	follicle-stimulating hormone (FSH)	stimulates gamete production (both ova and sperm); secretion of estradiol
	luteinizing hormone (LH)	stimulates androgen production by gonads; ovulation, secretion of progesterone
	melanocyte-stimulating hormone (MSH)	stimulates melanocytes of the skin increasing melanin pigment production.
Pituitary (Posterior)	antidiuretic hormone (ADH)	stimulates water reabsorption by kidneys
	oxytocin	stimulates uterine contractions during childbirth; milk ejection; stimulates ductus deferens and prostate gland contraction during emission
Thyroid	thyroxine,	stimulate and maintain metabolism; growth and
	triiodothyronine	development
	calcitonin	reduces blood Ca ²⁺ levels
Parathyroid	parathyroid hormone (PTH)	increases blood Ca ²⁺ levels
Adrenal (Cortex)	aldosterone	increases blood Na ⁺ levels; increase K ⁺ secretion
	cortisol, corticosterone, cortisone	increase blood glucose levels; anti-inflammatory effects
Adrenal (Medulla)	epinephrine, norepinephrine	stimulate fight-or-flight response; increase blood gluclose levels; increase metabolic activities
Pancreas	insulin	reduces blood glucose levels
	glucagon	increases blood glucose levels
Pineal gland	melatonin	regulates some biological rhythms and protects CNS from free radicals
Testes	androgens	regulate, promote, increase or maintain sperm production; male secondary sexual characteristics
Ovaries	estrogen	promotes uterine lining growth; female secondary sexual characteristics
	progestins	promote and maintain uterine lining growth

Endocrine Glands and their Associated Hormones

Organs with Secondary Endocrine Functions

There are several organs whose primary functions are non-endocrine but that also possess endocrine functions. These include the heart, kidneys, intestines, thymus, gonads, and adipose tissue.

The heart possesses endocrine cells in the walls of the atria that are specialized cardiac muscle cells. These cells release the hormone atrial natriuretic peptide (ANP) in response to increased blood volume. High blood volume causes the cells to be stretched, resulting in hormone release. ANP acts on the kidneys to reduce the reabsorption of Na⁺, causing Na⁺ and water to be excreted in the urine. ANP also reduces the amounts of renin released by the kidneys and aldosterone released by the adrenal cortex, further preventing the retention of water. In this way, ANP causes a reduction in blood volume and blood pressure, and reduces the concentration of Na⁺ in the blood.

The gastrointestinal tract produces several hormones that aid in digestion. The endocrine cells are located in the mucosa of the GI tract throughout the stomach and small intestine. Some of the hormones produced include gastrin, secretin, and cholecystokinin, which are secreted in the presence of food, and some of which act on other organs such as the pancreas, gallbladder, and liver. They trigger the release of gastric juices, which help to break down and digest food in the GI tract.

While the adrenal glands associated with the kidneys are major endocrine glands, the kidneys themselves also possess endocrine function. Renin is released in response to decreased blood volume or pressure and is part of the renin-angiotensin-aldosterone system that leads to the release of aldosterone. Aldosterone then causes the retention of Na⁺ and water, raising blood volume. The kidneys also release calcitriol, which aids in the absorption of Ca²⁺ and phosphate ions. Erythropoietin (EPO) is a protein hormone that triggers the formation of red blood cells in the bone marrow. EPO is released in response to low oxygen levels. Because red blood cells are oxygen carriers, increased production results in greater oxygen delivery throughout the body. EPO has been used by athletes to improve performance, as greater oxygen delivery to muscle cells allows for greater endurance. Because red blood cells increase the viscosity of blood, artificially high levels of EPO can cause severe health risks.

The thymus is found behind the sternum; it is most prominent in infants, becoming smaller in size through adulthood. The thymus produces hormones referred to as thymosins, which contribute to the development of the immune response.

Adipose tissue is a connective tissue found throughout the body. It produces the hormone leptin in response to food intake. Leptin increases the activity of anorexigenic neurons and decreases that of orexigenic neurons, producing a feeling of satiety after eating, thus affecting appetite and reducing the urge for further eating. Leptin is also associated with reproduction. It must be present for GnRH and gonadotropin synthesis to occur. Extremely thin females may enter puberty late; however, if adipose levels increase, more leptin will be produced, improving fertility.

Section Summary

The pituitary gland is located at the base of the brain and is attached to the hypothalamus by the infundibulum. The anterior pituitary receives products from the hypothalamus by the

hypophyseal portal system and produces six hormones. The posterior pituitary is an extension of the brain and releases hormones (antidiuretic hormone and oxytocin) produced by the hypothalamus.

The thyroid gland is located in the neck and is composed of two lobes connected by the isthmus. The thyroid is made up of follicle cells that produce the hormones thyroxine and triiodothyronine. Parafollicular cells of the thyroid produce calcitonin. The parathyroid glands lie on the posterior surface of the thyroid gland and produce parathyroid hormone.

The adrenal glands are located on top of the kidneys and consist of the renal cortex and renal medulla. The adrenal cortex is the outer part of the adrenal gland and produces the corticosteroids, glucocorticoids, and mineralocorticoids. The adrenal medulla is the inner part of the adrenal gland and produces the catecholamines epinephrine and norepinephrine.

The pancreas lies in the abdomen between the stomach and the small intestine. Clusters of endocrine cells in the pancreas form the islets of Langerhans, which are composed of alpha cells that release glucagon and beta cells that release insulin.

Some organs possess endocrine activity as a secondary function but have another primary function. The heart produces the hormone atrial natriuretic peptide, which functions to reduce blood volume, pressure, and Na⁺ concentration. The gastrointestinal tract produces various hormones that aid in digestion. The kidneys produce renin, calcitriol, and erythropoietin. Adipose tissue produces leptin, which promotes satiety signals in the brain.

Review Questions

Which endocrine glands are associated with the kidneys?

- a. thyroid glands
- b. pituitary glands
- c. adrenal glands
- d. gonads

С

Which of the following hormones is not produced by the anterior pituitary?

- a. oxytocin
- b. growth hormone
- c. prolactin
- d. thyroid-stimulating hormone

A

Free Response

What does aldosterone regulate, and how is it stimulated?

The main mineralocorticoid is aldosterone, which regulates the concentration of ions in urine, sweat, and saliva. Aldosterone release from the adrenal cortex is stimulated by a decrease in

blood concentrations of sodium ions, blood volume, or blood pressure, or an increase in blood potassium levels.

The adrenal medulla contains two types of secretory cells, what are they and what are their functions?

The adrenal medulla contains two types of secretory cells, one that produces epinephrine (adrenaline) and another that produces norepinephrine (noradrenaline). Epinephrine is the primary adrenal medulla hormone accounting for 75–80 percent of its secretions. Epinephrine and norepinephrine increase heart rate, breathing rate, cardiac muscle contractions, and blood glucose levels. They also accelerate the breakdown of glucose in skeletal muscles and stored fats in adipose tissue. The release of epinephrine and norepinephrine is stimulated by neural impulses from the sympathetic nervous system. These neural impulses originate from the hypothalamus in response to stress to prepare the body for the fight-or-flight response.

Glossary

adrenal cortex

outer portion of adrenal glands that produces corticosteroids adrenal gland

endocrine glands associated with the kidneys

adrenal medulla

inner portion of adrenal glands that produces epinephrine and norepinephrine

alpha cell

endocrine cell of the pancreatic islets that produces the hormone glucagon anterior pituitary

portion of the pituitary gland that produces six hormones; also called adenohypophysis

atrial natriuretic peptide (ANP)

hormone produced by the heart to reduce blood volume, pressure, and Na^+ concentration

beta cell

endocrine cell of the pancreatic islets that produces the hormone insulin colloid

fluid inside the thyroid gland that contains the glycoprotein thyroglobulin endocrine gland

gland that secretes hormones into the surrounding interstitial fluid, which then diffuse into blood and are carried to various organs and tissues within the body

erythropoietin (EPO)

hormone produced by the kidneys to stimulate red blood cell production in the bone marrow

hypophyseal portal system

system of blood vessels that carries hormones from the hypothalamus to the anterior pituitary

islets of Langerhans (pancreatic islets)

endocrine cells of the pancreas

isthmus

tissue mass that connects the two lobes of the thyroid gland

leptin

hormone produced by adipose tissue that promotes feelings of satiety and reduces hunger

pancreas

organ located between the stomach and the small intestine that contains exocrine and endocrine cells

parafollicular cell

thyroid cell that produces the hormone calcitonin

parathyroid gland

gland located on the surface of the thyroid that produces parathyroid hormone

pituitary gland

endocrine gland located at the base of the brain composed of an anterior and posterior region; also called hypophysis

pituitary stalk

(also, infundibulum) stalk that connects the pituitary gland to the hypothalamus

nypotnalamus

posterior pituitary

extension of the brain that releases hormones produced by the hypothalamus; along with the infundibulum, it is also referred to as the neurohypophysis

thymus

gland located behind the sternum that produces thymosin hormones that contribute to the development of the immune system

thyroid gland

endocrine gland located in the neck that produces thyroid hormones thyroxine and triiodothyronine

Regulation of Body Processes

By the end of this section, you will be able to:

- Explain how hormones regulate the excretory system
- Discuss the role of hormones in the reproductive system
- Describe how hormones regulate metabolism
- Explain the role of hormones in different diseases

Hormones have a wide range of effects and modulate many different body processes. The key regulatory processes that will be examined here are those affecting the excretory system, the reproductive system, metabolism, blood calcium concentrations, growth, and the stress response.

Hormonal Regulation of the Excretory System

Maintaining a proper water balance in the body is important to avoid dehydration or overhydration (hyponatremia). The water concentration of the body is monitored by osmoreceptors in the hypothalamus, which detect the concentration of electrolytes in the extracellular fluid. The concentration of electrolytes in the blood rises when there is water loss caused by excessive perspiration, inadequate water intake, or low blood volume due to blood loss. An increase in blood electrolyte levels results in a neuronal signal being sent from the osmoreceptors in hypothalamic nuclei. The pituitary gland has two components: anterior and posterior. The anterior pituitary is composed of glandular cells that secrete protein hormones. The posterior pituitary is an extension of the hypothalamus. It is composed largely of neurons that are continuous with the hypothalamus.

The hypothalamus produces a polypeptide hormone known as antidiuretic hormone (ADH), which is transported to and released from the posterior pituitary gland. The principal action of ADH is to regulate the amount of water excreted by the kidneys. As ADH (which is also known as vasopressin) causes direct water reabsorption from the kidney tubules, salts and wastes are concentrated in what will eventually be excreted as urine. The hypothalamus controls the mechanisms of ADH secretion, either by regulating blood volume or the concentration of water in the blood. Dehydration or physiological stress can cause an increase of osmolarity above 300 mOsm/L, which in turn, raises ADH secretion and water will be retained, causing an increase in blood pressure. ADH travels in the bloodstream to the kidneys. Once at the kidneys, ADH changes the kidneys to become more permeable to water by temporarily inserting water channels, aquaporins, into the kidney tubules. Water moves out of the kidney tubules through the aquaporins, reducing urine volume. The water is reabsorbed into the capillaries lowering blood osmolarity back toward normal. As blood osmolarity decreases, a negative feedback mechanism reduces osmoreceptor activity in the hypothalamus, and ADH secretion is reduced. ADH release can be reduced by certain substances, including alcohol, which can cause increased urine production and dehydration.

Chronic underproduction of ADH or a mutation in the ADH receptor results in diabetes insipidus. If the posterior pituitary does not release enough ADH, water cannot be retained by the kidneys and is lost as urine. This causes increased thirst, but water taken in is lost again and must be continually consumed. If the condition is not severe, dehydration may not occur, but severe cases can lead to electrolyte imbalances due to dehydration.

Another hormone responsible for maintaining electrolyte concentrations in extracellular fluids is aldosterone, a steroid hormone that is produced by the adrenal cortex. In contrast to ADH, which promotes the reabsorption of water to maintain proper water balance, aldosterone maintains proper water balance by enhancing Na⁺ reabsorption and K⁺ secretion from extracellular fluid of the cells in kidney tubules. Because it is produced in the cortex of the adrenal gland and affects the concentrations of minerals Na⁺ and K⁺, aldosterone is referred to as a mineralocorticoid, a corticosteroid that affects ion and water balance. Aldosterone release is stimulated by a decrease in blood sodium levels, blood volume, or blood pressure, or an increase in blood potassium levels. It also prevents the loss of Na⁺ from sweat, saliva, and gastric juice. The reabsorption of Na⁺ also results in the osmotic reabsorption of water, which alters blood volume and blood pressure.

Aldosterone production can be stimulated by low blood pressure, which triggers a sequence of chemical release, as illustrated in [link]. When blood pressure drops, the renin-angiotensinaldosterone system (RAAS) is activated. Cells in the juxtaglomerular apparatus, which regulates the functions of the nephrons of the kidney, detect this and release renin. Renin, an enzyme, circulates in the blood and reacts with a plasma protein produced by the liver called angiotensinogen. When angiotensinogen is cleaved by renin, it produces angiotensin I, which is then converted into angiotensin II in the lungs. Angiotensin II functions as a hormone and then causes the release of the hormone aldosterone by the adrenal cortex, resulting in increased Na⁺ reabsorption, water retention, and an increase in blood pressure. Angiotensin II in addition to being a potent vasoconstrictor also causes an increase in ADH and increased thirst, both of which help to raise blood pressure.

ADH and aldosterone increase blood pressure and volume. Angiotensin II stimulates release of these hormones. Angiotensin II, in turn, is formed when renin cleaves angiotensinogen. (credit: modification of work by Mikael

Häggström)

Hormonal Regulation of the Reproductive System

Regulation of the reproductive system is a process that requires the action of hormones from the pituitary gland, the adrenal cortex, and the gonads. During puberty in both males and females, the hypothalamus produces gonadotropin-releasing hormone (GnRH), which stimulates the production and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) from the anterior pituitary gland. These hormones regulate the gonads (testes in males and ovaries in females) and therefore are called gonadotropins. In both males and females, FSH stimulates gamete production and LH stimulates production of hormones by

the gonads. An increase in gonad hormone levels inhibits GnRH production through a negative feedback loop.

Regulation of the Male Reproductive System

In males, FSH stimulates the maturation of sperm cells. FSH production is inhibited by the hormone inhibin, which is released by the testes. LH stimulates production of the sex hormones (androgens) by the interstitial cells of the testes and therefore is also called interstitial cell-stimulating hormone.

The most widely known androgen in males is testosterone. Testosterone promotes the production of sperm and masculine characteristics. The adrenal cortex also produces small amounts of testosterone precursor, although the role of this additional hormone production is not fully understood.

Everyday Connection

The Dangers of Synthetic Hormones

Professional baseball player Jason Giambi publically admitted to, and apologized for, his use of anabolic steroids supplied by a trainer. (credit: Bryce

Edwards)

Some athletes attempt to boost their performance by using artificial hormones that enhance muscle performance. Anabolic steroids, a form of the male sex hormone testosterone, are one of the most widely known performance-enhancing drugs. Steroids are used to help build muscle mass. Other hormones that are used to enhance athletic performance include erythropoietin, which triggers the production of red blood cells, and human growth hormone, which can help in building muscle mass. Most performance enhancing drugs are illegal for non-medical purposes. They are also banned by national and international governing bodies

including the International Olympic Committee, the U.S. Olympic Committee, the National Collegiate Athletic Association, the Major League Baseball, and the National Football League.

The side effects of synthetic hormones are often significant and non-reversible, and in some cases, fatal. Androgens produce several complications such as liver dysfunctions and liver tumors, prostate gland enlargement, difficulty urinating, premature closure of epiphyseal cartilages, testicular atrophy, infertility, and immune system depression. The physiological strain caused by these substances is often greater than what the body can handle, leading to unpredictable and dangerous effects and linking their use to heart attacks, strokes, and impaired cardiac function.

Regulation of the Female Reproductive System

In females, FSH stimulates development of egg cells, called ova, which develop in structures called follicles. Follicle cells produce the hormone inhibin, which inhibits FSH production. LH also plays a role in the development of ova, induction of ovulation, and stimulation of estradiol and progesterone production by the ovaries, as illustrated in [link]. Estradiol and progesterone are steroid hormones that prepare the body for pregnancy. Estradiol produces secondary sex characteristics in females, while both estradiol and progesterone regulate the menstrual cycle.

Hormonal regulation of the female reproductive system involves hormones from the

hypothalamus, pituitary, and ovaries.

In addition to producing FSH and LH, the anterior portion of the pituitary gland also produces the hormone prolactin (PRL) in females. Prolactin stimulates the production of milk by the mammary glands following childbirth. Prolactin levels are regulated by the hypothalamic hormones prolactin-releasing hormone (PRH) and prolactin-inhibiting hormone (PIH), which is now known to be dopamine. PRH stimulates the release of prolactin and PIH inhibits it.

The posterior pituitary releases the hormone oxytocin, which stimulates uterine contractions during childbirth. The uterine smooth muscles are not very sensitive to oxytocin until late in pregnancy when the number of oxytocin receptors in the uterus peaks. Stretching of tissues in the uterus and cervix stimulates oxytocin release during childbirth. Contractions increase in

intensity as blood levels of oxytocin rise via a positive feedback mechanism until the birth is complete. Oxytocin also stimulates the contraction of myoepithelial cells around the milk-producing mammary glands. As these cells contract, milk is forced from the secretory alveoli into milk ducts and is ejected from the breasts in milk ejection ("let-down") reflex. Oxytocin release is stimulated by the suckling of an infant, which triggers the synthesis of oxytocin in the hypothalamus and its release into circulation at the posterior pituitary.

Hormonal Regulation of Metabolism

Blood glucose levels vary widely over the course of a day as periods of food consumption alternate with periods of fasting. Insulin and glucagon are the two hormones primarily responsible for maintaining homeostasis of blood glucose levels. Additional regulation is mediated by the thyroid hormones.

Regulation of Blood Glucose Levels by Insulin and Glucagon

Cells of the body require nutrients in order to function, and these nutrients are obtained through feeding. In order to manage nutrient intake, storing excess intake and utilizing reserves when necessary, the body uses hormones to moderate energy stores. Insulin is produced by the beta cells of the pancreas, which are stimulated to release insulin as blood glucose levels rise (for example, after a meal is consumed). Insulin lowers blood glucose levels by enhancing the rate of glucose uptake and utilization by target cells, which use glucose for ATP production. It also stimulates the liver to convert glucose to glycogen, which is then stored by cells for later use. Insulin also increases glucose transport into certain cells, such as muscle cells and the liver. This results from an insulin-mediated increase in the number of glucose transporter proteins in cell membranes, which remove glucose from circulation by facilitated diffusion. As insulin binds to its target cell via insulin receptors and signal transduction, it triggers the cell to incorporate glucose transport proteins into its membrane. This allows glucose to enter the cell, where it can be used as an energy source. However, this does not occur in all cells: some cells, including those in the kidneys and brain, can access glucose without the use of insulin. Insulin also stimulates the conversion of glucose to fat in adipocytes and the synthesis of proteins. These actions mediated by insulin cause blood glucose concentrations to fall, called a hypoglycemic "low sugar" effect, which inhibits further insulin release from beta cells through a negative feedback loop.

Link to Learning

This animation describe the role of insulin and the pancreas in diabetes.

Types of Skeletal Systems

By the end of this section, you will be able to:

• Discuss the different types of skeletal systems

- Explain the role of the human skeletal system
- Compare and contrast different skeletal systems

A skeletal system is necessary to support the body, protect internal organs, and allow for the movement of an organism. There are three different skeleton designs that fulfill these functions: hydrostatic skeleton, exoskeleton, and endoskeleton.

Hydrostatic Skeleton

A hydrostatic skeleton is a skeleton formed by a fluid-filled compartment within the body, called the coelom. The organs of the coelom are supported by the aqueous fluid, which also resists external compression. This compartment is under hydrostatic pressure because of the fluid and supports the other organs of the organism. This type of skeletal system is found in soft-bodied animals such as sea anemones, earthworms, Cnidaria, and other invertebrates ([link]).

The skeleton of the red-knobbed sea star (*Protoreaster linckii*) is an example of a hydrostatic skeleton. (credit: "Amada44"/Wikimedia

Commons)

Movement in a hydrostatic skeleton is provided by muscles that surround the coelom. The muscles in a hydrostatic skeleton contract to change the shape of the coelom; the pressure of the fluid in the coelom produces movement. For example, earthworms move by waves of muscular contractions of the skeletal muscle of the body wall hydrostatic skeleton, called peristalsis, which alternately shorten and lengthen the body. Lengthening the body extends the anterior end of the organism. Most organisms have a mechanism to fix themselves in the substrate. Shortening the muscles then draws the posterior portion of the body forward. Although a hydrostatic skeleton is well-suited to invertebrate organisms such as earthworms and some aquatic organisms, it is not an efficient skeleton for terrestrial animals.

Exoskeleton

An exoskeleton is an external skeleton that consists of a hard encasement on the surface of an organism. For example, the shells of crabs and insects are exoskeletons ([link]). This skeleton type provides defence against predators, supports the body, and allows for movement through the contraction of attached muscles. As with vertebrates, muscles must cross a joint inside the exoskeleton. Shortening of the muscle changes the relationship of the two segments of the exoskeleton. Arthropods such as crabs and lobsters have exoskeletons that consist of 30–50 percent chitin, a polysaccharide derivative of glucose that is a strong but flexible material. Chitin is secreted by the epidermal cells. The exoskeleton is further strengthened by the addition of calcium carbonate in organisms such as the lobster. Because the exoskeleton is accellular, arthropods must periodically shed their exoskeletons because the exoskeleton does not grow as the organism grows.

Muscles attached to the exoskeleton of the Halloween crab (Gecarcinus quadratus) allow it

to move.

Endoskeleton

An endoskeleton is a skeleton that consists of hard, mineralized structures located within the soft tissue of organisms. An example of a primitive endoskeletal structure is the spicules of sponges. The bones of vertebrates are composed of tissues, whereas sponges have no true tissues ([link]). Endoskeletons provide support for the body, protect internal organs, and allow for movement through contraction of muscles attached to the skeleton.

The skeletons of humans and horses are examples of endoskeletons. (credit: Ross

Murphy)

The human skeleton is an endoskeleton that consists of 206 bones in the adult. It has five main functions: providing support to the body, storing minerals and lipids, producing blood cells, protecting internal organs, and allowing for movement. The skeletal system in vertebrates is divided into the axial skeleton (which consists of the skull, vertebral column, and rib cage), and the appendicular skeleton (which consists of the shoulders, limb bones, the pectoral girdle, and the pelvic girdle).

Link to Learning

Visit the <u>interactive body</u> site to build a virtual skeleton: select "skeleton" and click through the activity to place each bone.

Human Axial Skeleton

The axial skeleton forms the central axis of the body and includes the bones of the skull, ossicles of the middle ear, hyoid bone of the throat, vertebral column, and the thoracic cage (ribcage) ([link]). The function of the axial skeleton is to provide support and protection for the brain, the spinal cord, and the organs in the ventral body cavity. It provides a surface for the attachment of muscles that move the head, neck, and trunk, performs respiratory movements, and stabilizes parts of the appendicular skeleton.

The axial skeleton consists of the bones of the skull, ossicles of the middle ear, hyoid bone, vertebral column, and rib cage. (credit: modification of work by Mariana Ruiz

Villareal)

The Skull

The bones of the skull support the structures of the face and protect the brain. The skull consists of 22 bones, which are divided into two categories: cranial bones and facial bones. The cranial bones are eight bones that form the cranial cavity, which encloses the brain and serves as an attachment site for the muscles of the head and neck. The eight cranial bones are the frontal bone, two parietal bones, two temporal bones, occipital bone, sphenoid bone, and the ethmoid bone. Although the bones developed separately in the embryo and fetus, in the adult, they are tightly fused with connective tissue and adjoining bones do not move ([link]).

The bones of the skull support the structures of the face and protect the brain. (credit: modification of work by Mariana Ruiz

Villareal)

The auditory ossicles of the middle ear transmit sounds from the air as vibrations to the fluidfilled cochlea. The auditory ossicles consist of three bones each: the malleus, incus, and stapes. These are the smallest bones in the body and are unique to mammals.

Fourteen facial bones form the face, provide cavities for the sense organs (eyes, mouth, and nose), protect the entrances to the digestive and respiratory tracts, and serve as attachment points for facial muscles. The 14 facial bones are the nasal bones, the maxillary bones, zygomatic bones, palatine, vomer, lacrimal bones, the inferior nasal conchae, and the mandible. All of these bones occur in pairs except for the mandible and the vomer ([link]).

The cranial bones, including the frontal, parietal, and sphenoid bones, cover the top of the head. The facial bones of the skull form the face and provide cavities for the eyes, nose, and

mouth.

Although it is not found in the skull, the hyoid bone is considered a component of the axial skeleton. The hyoid bone lies below the mandible in the front of the neck. It acts as a movable base for the tongue and is connected to muscles of the jaw, larynx, and tongue. The mandible articulates with the base of the skull. The mandible controls the opening to the airway and gut. In animals with teeth, the mandible brings the surfaces of the teeth in contact with the maxillary teeth.

The Vertebral Column

The vertebral column, or spinal column, surrounds and protects the spinal cord, supports the head, and acts as an attachment point for the ribs and muscles of the back and neck. The adult vertebral column comprises 26 bones: the 24 vertebrae, the sacrum, and the coccyx bones. In the adult, the sacrum is typically composed of five vertebrae that fuse into one. The coccyx is typically 3–4 vertebrae that fuse into one. Around the age of 70, the sacrum and the coccyx may fuse together. We begin life with approximately 33 vertebrae, but as we grow, several vertebrae fuse together. The adult vertebrae are further divided into the 7 cervical vertebrae, 12 thoracic vertebrae, and 5 lumbar vertebrae ([link]).

(a) The vertebral column consists of seven cervical vertebrae (C1–7) twelve thoracic vertebrae (Th1–12), five lumbar vertebrae (L1–5), the os sacrum, and the coccyx. (b) Spinal curves increase the strength and flexibility of the spine. (credit a: modification of work by Uwe Gille based on original work by Gray's Anatomy; credit b: modification of work by NCI,

NIH)

Each vertebral body has a large hole in the center through which the nerves of the spinal cord pass. There is also a notch on each side through which the spinal nerves, which serve the body at that level, can exit from the spinal cord. The vertebral column is approximately 71 cm (28 inches) in adult male humans and is curved, which can be seen from a side view. The names of the spinal curves correspond to the region of the spine in which they occur. The thoracic and sacral curves are concave (curve inwards relative to the front of the body) and the cervical and lumbar curves are convex (curve outwards relative to the front of the body). The arched curvature of the vertebral column increases its strength and flexibility, allowing it to absorb shocks like a spring ([link]).

Intervertebral discs composed of fibrous cartilage lie between adjacent vertebral bodies from the second cervical vertebra to the sacrum. Each disc is part of a joint that allows for some movement of the spine and acts as a cushion to absorb shocks from movements such as walking and running. Intervertebral discs also act as ligaments to bind vertebrae together. The inner part of discs, the nucleus pulposus, hardens as people age and becomes less elastic. This loss of elasticity diminishes its ability to absorb shocks.

The Thoracic Cage

The thoracic cage, also known as the ribcage, is the skeleton of the chest, and consists of the ribs, sternum, thoracic vertebrae, and costal cartilages ([link]). The thoracic cage encloses and protects the organs of the thoracic cavity, including the heart and lungs. It also provides support for the shoulder girdles and upper limbs, and serves as the attachment point for the diaphragm, muscles of the back, chest, neck, and shoulders. Changes in the volume of the thorax enable breathing.

The sternum, or breastbone, is a long, flat bone located at the anterior of the chest. It is formed from three bones that fuse in the adult. The ribs are 12 pairs of long, curved bones that attach to the thoracic vertebrae and curve toward the front of the body, forming the ribcage. Costal cartilages connect the anterior ends of the ribs to the sternum, with the exception of rib pairs 11 and 12, which are free-floating ribs.

The thoracic cage, or rib cage, protects the heart and the lungs. (credit: modification of work

by NCI, NIH)

Human Appendicular Skeleton

The appendicular skeleton is composed of the bones of the upper limbs (which function to grasp and manipulate objects) and the lower limbs (which permit locomotion). It also includes the pectoral girdle, or shoulder girdle, that attaches the upper limbs to the body, and the pelvic girdle that attaches the lower limbs to the body ([link]).

The appendicular skeleton is composed of the bones of the pectoral limbs (arm, forearm, hand), the pelvic limbs (thigh, leg, foot), the pectoral girdle, and the pelvic girdle. (credit:

modification of work by Mariana Ruiz

Villareal)

The Pectoral Girdle

The pectoral girdle bones provide the points of attachment of the upper limbs to the axial skeleton. The human pectoral girdle consists of the clavicle (or collarbone) in the anterior, and the scapula (or shoulder blades) in the posterior ([link]).

(a) The pectoral girdle in primates consists of the clavicles and scapulae. (b) The posterior view reveals the spine of the scapula to which muscle

attaches.

The clavicles are S-shaped bones that position the arms on the body. The clavicles lie horizontally across the front of the thorax (chest) just above the first rib. These bones are fairly fragile and are susceptible to fractures. For example, a fall with the arms outstretched causes the force to be transmitted to the clavicles, which can break if the force is excessive. The clavicle articulates with the sternum and the scapula.

The scapulae are flat, triangular bones that are located at the back of the pectoral girdle. They support the muscles crossing the shoulder joint. A ridge, called the spine, runs across the back of the scapula and can easily be felt through the skin ([link]). The spine of the scapula is a good example of a bony protrusion that facilitates a broad area of attachment for muscles to bone.

The Upper Limb

The upper limb contains 30 bones in three regions: the arm (shoulder to elbow), the forearm (ulna and radius), and the wrist and hand ([link]).

The upper limb consists of the humerus of the upper arm, the radius and ulna of the forearm, eight bones of the carpus, five bones of the metacarpus, and 14 bones of the

phalanges.

An articulation is any place at which two bones are joined. The humerus is the largest and longest bone of the upper limb and the only bone of the arm. It articulates with the scapula at the shoulder and with the forearm at the elbow. The forearm extends from the elbow to the wrist and consists of two bones: the ulna and the radius. The radius is located along the lateral (thumb) side of the forearm and articulates with the humerus at the elbow. The ulna is located on the medial aspect (pinky-finger side) of the forearm. It is longer than the radius. The ulna articulates with the humerus at the elbow. The radius and ulna also articulate with the carpal bones and with each other, which in vertebrates enables a variable degree of rotation of the carpus (wrist), the five bones of the metacarpus (palm), and the 14 bones of the phalanges (digits). Each digit consists of three phalanges, except for the thumb, when present, which has only two.

The Pelvic Girdle

The pelvic girdle attaches to the lower limbs of the axial skeleton. Because it is responsible for bearing the weight of the body and for locomotion, the pelvic girdle is securely attached to the axial skeleton by strong ligaments. It also has deep sockets with robust ligaments to securely attach the femur to the body. The pelvic girdle is further strengthened by two large hip bones. In adults, the hip bones, or coxal bones, are formed by the fusion of three pairs of bones: the ilium, ischium, and pubis. The pelvis joins together in the anterior of the body at a joint called the pubic symphysis and with the bones of the sacrum at the posterior of the body.

The female pelvis is slightly different from the male pelvis. Over generations of evolution, females with a wider pubic angle and larger diameter pelvic canal reproduced more successfully. Therefore, their offspring also had pelvic anatomy that enabled successful childbirth ([link]).

To adapt to reproductive fitness, the (a) female pelvis is lighter, wider, shallower, and has a broader angle between the pubic bones than (b) the male

pelvis.

The Lower Limb

The lower limb consists of the thigh, the leg, and the foot. The bones of the lower limb are the femur (thigh bone), patella (kneecap), tibia and fibula (bones of the leg), tarsals (bones of the ankle), and metatarsals and phalanges (bones of the foot) ([link]). The bones of the lower limbs are thicker and stronger than the bones of the upper limbs because of the need to support the entire weight of the body and the resulting forces from locomotion. In addition to evolutionary fitness, the bones of an individual will respond to forces exerted upon them.

The lower limb consists of the thigh (femur), kneecap (patella), leg (tibia and fibula), ankle (tarsals), and foot (metatarsals and phalanges)

bones.

The femur, or thighbone, is the longest, heaviest, and strongest bone in the body. The femur and pelvis form the hip joint at the proximal end. At the distal end, the femur, tibia, and patella form the knee joint. The patella, or kneecap, is a triangular bone that lies anterior to the knee joint. The patella is embedded in the tendon of the femoral extensors (quadriceps). It improves knee extension by reducing friction. The tibia, or shinbone, is a large bone of the leg that is located directly below the knee. The tibia articulates with the femur at its proximal end, with the fibula and the tarsal bones at its distal end. It is the second largest bone in the human body and is responsible for transmitting the weight of the body from the femur to the foot. The fibula, or calf bone, parallels and articulates with the tibia. It does not articulate with the femur and does not bear weight. The fibula acts as a site for muscle attachment and forms the lateral part of the ankle joint.

The tarsals are the seven bones of the ankle. The ankle transmits the weight of the body from the tibia and the fibula to the foot. The metatarsals are the five bones of the foot. The phalanges are the 14 bones of the toes. Each toe consists of three phalanges, except for the big toe that has only two ([link]). Variations exist in other species; for example, the horse's metacarpals and metatarsals are oriented vertically and do not make contact with the substrate.

This drawing shows the bones of the human foot and ankle, including the metatarsals and the

phalanges. Evolution Connection

Evolution of Body Design for Locomotion on Land The transition of vertebrates onto land required a number of changes in body design, as movement on land presents a number of challenges for animals that are adapted to movement in water. The buoyancy of water provides a certain amount of lift, and a common form of movement by fish is lateral undulations of the entire body. This back and forth movement pushes the body against the water, creating forward movement. In most fish, the muscles of paired fins attach to girdles within the body, allowing for some control of locomotion. As certain fish began moving onto land, they retained their lateral undulation form of locomotion (anguilliform). However, instead of pushing against water, their fins or flippers became points of contact with the ground, around which they rotated their bodies.

The effect of gravity and the lack of buoyancy on land meant that body weight was suspended on the limbs, leading to increased strengthening and ossification of the limbs. The effect of gravity also required changes to the axial skeleton. Lateral undulations of land animal vertebral columns cause torsional strain. A firmer, more ossified vertebral column became common in terrestrial tetrapods because it reduces strain while providing the strength needed to support the body's weight. In later tetrapods, the vertebrae began allowing for vertical motion rather than lateral flexion. Another change in the axial skeleton was the loss of a direct attachment between the pectoral girdle and the head. This reduced the jarring to the head caused by the impact of the limbs on the ground. The vertebrae of the neck also evolved to allow movement of the head independently of the body.

The appendicular skeleton of land animals is also different from aquatic animals. The shoulders attach to the pectoral girdle through muscles and connective tissue, thus reducing the jarring of the skull. Because of a lateral undulating vertebral column, in early tetrapods, the limbs were splayed out to the side and movement occurred by performing "push-ups." The vertebrae of these animals had to move side-to-side in a similar manner to fish and reptiles. This type of motion requires large muscles to move the limbs toward the midline; it was almost like walking while doing push-ups, and it is not an efficient use of energy. Later

tetrapods have their limbs placed under their bodies, so that each stride requires less force to move forward. This resulted in decreased adductor muscle size and an increased range of motion of the scapulae. This also restricts movement primarily to one plane, creating forward motion rather than moving the limbs upward as well as forward. The femur and humerus were also rotated, so that the ends of the limbs and digits were pointed forward, in the direction of motion, rather than out to the side. By placement underneath the body, limbs can swing forward like a pendulum to produce a stride that is more efficient for moving over land.

Section Summary

The three types of skeleton designs are hydrostatic skeletons, exoskeletons, and endoskeletons. A hydrostatic skeleton is formed by a fluid-filled compartment held under hydrostatic pressure; movement is created by the muscles producing pressure on the fluid. An exoskeleton is a hard external skeleton that protects the outer surface of an organism and enables movement through muscles attached on the inside. An endoskeleton is an internal skeleton composed of hard, mineralized tissue that also enables movement by attachment to muscles. The human skeleton is an endoskeleton that is composed of the axial and appendicular skeleton. The axial skeleton is composed of the bones of the skull, ossicles of the ear, hyoid bone, vertebral column, and ribcage. The skull consists of eight cranial bones and 14 facial bones. Six bones make up the ossicles of the middle ear, while the hyoid bone is located in the neck under the mandible. The vertebral column contains 26 bones, and it surrounds and protects the spinal cord. The thoracic cage consists of the sternum, ribs, thoracic vertebrae, and costal cartilages. The appendicular skeleton is made up of the limbs of the upper and lower limbs. The pectoral girdle is composed of the clavicles and the scapulae. The upper limb contains 30 bones in the arm, the forearm, and the hand. The pelvic girdle attaches the lower limbs to the axial skeleton. The lower limb includes the bones of the thigh, the leg, and the foot.

Review Questions

The forearm consists of the:

- a. radius and ulna
- b. radius and humerus
- c. ulna and humerus
- d. humerus and carpus

A

The pectoral girdle consists of the:

- a. clavicle and sternum
- b. sternum and scapula
- c. clavicle and scapula
- d. clavicle and coccyx

С

All of the following are groups of vertebrae except _____, which is a curvature.

- a. thoracic
- b. cervical
- c. lumbar
- d. pelvic

D

Which of these is a facial bone?

- a. frontal
- b. occipital
- c. lacrimal
- d. temporal

С

Free Response

What are the major differences between the male pelvis and female pelvis that permit childbirth in females?

The female pelvis is tilted forward and is wider, lighter, and shallower than the male pelvis. It is also has a pubic angle that is broader than the male pelvis.

What are the major differences between the pelvic girdle and the pectoral girdle that allow the pelvic girdle to bear the weight of the body?

The pelvic girdle is securely attached to the body by strong ligaments, unlike the pectoral girdle, which is sparingly attached to the ribcage. The sockets of the pelvic girdle are deep, allowing the femur to be more stable than the pectoral girdle, which has shallow sockets for the scapula. Most tetrapods have 75 percent of their weight on the front legs because the head and neck are so heavy; the advantage of the shoulder joint is more degrees of freedom in movement.

Glossary

appendicular skeleton

composed of the bones of the upper limbs, which function to grasp and manipulate objects, and the lower limbs, which permit locomotion

articulation

any place where two bones are joined

auditory ossicle

(also, middle ear) transduces sounds from the air into vibrations in the fluid-filled cochlea

axial skeleton

forms the central axis of the body and includes the bones of the skull, the ossicles of the middle ear, the hyoid bone of the throat, the vertebral column, and the thoracic cage (ribcage)

carpus

eight bones that comprise the wrist

clavicle

S-shaped bone that positions the arms laterally

coxal bone

hip bone

cranial bone

one of eight bones that form the cranial cavity that encloses the brain and serves as an attachment site for the muscles of the head and neck

endoskeleton

skeleton of living cells that produce a hard, mineralized tissue located within the soft tissue of organisms

exoskeleton

a secreted cellular product external skeleton that consists of a hard encasement on the surface of an organism

facial bone

one of the 14 bones that form the face; provides cavities for the sense organs (eyes, mouth, and nose) and attachment points for facial muscles

femur

(also, thighbone) longest, heaviest, and strongest bone in the body

fibula

(also, calf bone) parallels and articulates with the tibia

forearm

extends from the elbow to the wrist and consists of two bones: the ulna and the radius

humerus

only bone of the arm

hydrostatic skeleton

skeleton that consists of aqueous fluid held under pressure in a closed body compartment

hyoid bone

lies below the mandible in the front of the neck

intervertebral disc

composed of fibrous cartilage; lies between adjacent vertebrae from the second cervical vertebra to the sacrum

lower limb

consists of the thigh, the leg, and the foot

metacarpus

five bones that comprise the palm

metatarsal

one of the five bones of the foot

patella

(also, kneecap) triangular bone that lies anterior to the knee joint pectoral girdle

bones that transmit the force generated by the upper limbs to the axial skeleton

phalange

one of the bones of the fingers or toes

pelvic girdle

bones that transmit the force generated by the lower limbs to the axial skeleton

radius

bone located along the lateral (thumb) side of the forearm; articulates with the humerus at the elbow

rib

one of 12 pairs of long, curved bones that attach to the thoracic vertebrae and curve toward the front of the body to form the ribcage

scapula

flat, triangular bone located at the posterior pectoral girdle

skull

bone that supports the structures of the face and protects the brain sternum

(also, breastbone) long, flat bone located at the front of the chest tarsal

one of the seven bones of the ankle

thoracic cage

(also, ribcage) skeleton of the chest, which consists of the ribs, thoracic vertebrae, sternum, and costal cartilages

tibia

(also, shinbone) large bone of the leg that is located directly below the knee ulna

bone located on the medial aspect (pinky-finger side) of the forearm vertebral column

(also, spine) surrounds and protects the spinal cord, supports the head, and

acts as an attachment point for ribs and muscles of the back and neck Introduction

class="introduction" class="summary" title="Sections Summary" class="art-exercise" title="Art Connections" class="multiple-choice" title="Multiple Choice" class="freeresponse" title="Free Response"Improvements in the design of prostheses have allowed for a wider range of activities in recipients. (credit: modification of work by Stuart

Grout)

The muscular and skeletal systems provide support to the body and allow for a wide range of movement. The bones of the skeletal system protect the body's internal organs and support the weight of the body. The muscles of the muscular system contract and pull on the bones, allowing for movements as diverse as standing, walking, running, and grasping items.

Injury or disease affecting the musculoskeletal system can be very debilitating. In humans, the most common musculoskeletal diseases worldwide are caused by malnutrition. Ailments that affect the joints are also widespread, such as arthritis, which can make movement difficult and—in advanced cases—completely impair mobility. In severe cases in which the joint has suffered extensive damage, joint replacement surgery may be needed.

Progress in the science of prosthesis design has resulted in the development of artificial joints, with joint replacement surgery in the hips and knees being the most common. Replacement joints for shoulders, elbows, and fingers are also available. Even with this progress, there is still room for improvement in the design of prostheses. The state-of-the-art prostheses have limited durability and therefore wear out quickly, particularly in young or active individuals. Current research is

focused on the use of new materials, such as carbon fiber, that may make prostheses more durable.

Joints and Skeletal Movement

By the end of this section, you will be able to:

- Classify the different types of joints on the basis of structure
- Explain the role of joints in skeletal movement

The point at which two or more bones meet is called a joint, or articulation. Joints are responsible for movement, such as the movement of limbs, and stability, such as the stability found in the bones of the skull.

Classification of Joints on the Basis of Structure

There are two ways to classify joints: on the basis of their structure or on the basis of their function. The structural classification divides joints into bony, fibrous, cartilaginous, and synovial joints depending on the material composing the joint and the presence or absence of a cavity in the joint.

Fibrous Joints

The bones of fibrous joints are held together by fibrous connective tissue. There is no cavity, or space, present between the bones and so most fibrous joints do not move at all, or are only capable of minor movements. There are three types of fibrous joints: sutures, syndesmoses, and gomphoses. Sutures are found only in the skull and possess short fibers of connective tissue that hold the skull bones tightly in place ([link]).

Sutures are fibrous joints found only in the

skull.

Syndesmoses are joints in which the bones are connected by a band of connective tissue, allowing for more movement than in a suture. An example of a syndesmosis is the joint of the

tibia and fibula in the ankle. The amount of movement in these types of joints is determined by the length of the connective tissue fibers. Gomphoses occur between teeth and their sockets; the term refers to the way the tooth fits into the socket like a peg ([link]). The tooth is connected to the socket by a connective tissue referred to as the periodontal ligament.

Gomphoses are fibrous joints between the teeth and their sockets. (credit: modification of

work by Gray's Anatomy)

Cartilaginous Joints

Cartilaginous joints are joints in which the bones are connected by cartilage. There are two types of cartilaginous joints: synchondroses and symphyses. In a synchondrosis, the bones are joined by hyaline cartilage. Synchondroses are found in the epiphyseal plates of growing bones in children. In symphyses, hyaline cartilage covers the end of the bone but the connection between bones occurs through fibrocartilage. Symphyses are found at the joints between vertebrae. Either type of cartilaginous joint allows for very little movement.

Synovial Joints

Synovial joints are the only joints that have a space between the adjoining bones ([link]). This space is referred to as the synovial (or joint) cavity and is filled with synovial fluid. Synovial fluid lubricates the joint, reducing friction between the bones and allowing for greater movement. The ends of the bones are covered with articular cartilage, a hyaline cartilage, and the entire joint is surrounded by an articular capsule composed of connective tissue that allows movement of the joint while resisting dislocation. Articular capsules may also possess ligaments that hold the bones together. Synovial joints are capable of the greatest movement of the three structural joint types; however, the more mobile a joint, the weaker the joint. Knees, elbows, and shoulders are examples of synovial joints.

Synovial joints are the only joints that have a space or "synovial cavity" in the

joint.

Classification of Joints on the Basis of Function

The functional classification divides joints into three categories: synarthroses, amphiarthroses, and diarthroses. A synarthrosis is a joint that is immovable. This includes sutures, gomphoses, and synchondroses. Amphiarthroses are joints that allow slight movement, including syndesmoses and symphyses. Diarthroses are joints that allow for free movement of the joint, as in synovial joints.

Movement at Synovial Joints

The wide range of movement allowed by synovial joints produces different types of movements. The movement of synovial joints can be classified as one of four different types: gliding, angular, rotational, or special movement.

Gliding Movement

Gliding movements occur as relatively flat bone surfaces move past each other. Gliding movements produce very little rotation or angular movement of the bones. The joints of the carpal and tarsal bones are examples of joints that produce gliding movements.

Angular Movement

Angular movements are produced when the angle between the bones of a joint changes. There are several different types of angular movements, including flexion, extension, hyperextension, abduction, adduction, and circumduction. Flexion, or bending, occurs when the angle between the bones decreases. Moving the forearm upward at the elbow or moving the wrist to move the hand toward the forearm are examples of flexion. Extension is the opposite of flexion in that the angle between the bones of a joint increases. Straightening a limb after flexion is an example of extension. Extension past the regular anatomical position is referred to as hyperextension. This includes moving the neck back to look upward, or bending the wrist so that the hand moves away from the forearm. Abduction occurs when a bone moves away from the midline of the body. Examples of abduction are moving the arms or legs laterally to lift them straight out to the side. Adduction is the movement of a bone toward the midline of the body. Movement of the limbs inward after abduction is an example of adduction. Circumduction is the movement of a limb in a circular motion, as in moving the arm in a circular motion.

Rotational Movement

Rotational movement is the movement of a bone as it rotates around its longitudinal axis. Rotation can be toward the midline of the body, which is referred to as medial rotation, or away from the midline of the body, which is referred to as lateral rotation. Movement of the head from side to side is an example of rotation.

Special Movements

Some movements that cannot be classified as gliding, angular, or rotational are called special movements. Inversion involves the soles of the feet moving inward, toward the midline of the body. Eversion is the opposite of inversion, movement of the sole of the foot outward, away from the midline of the body. Protraction is the anterior movement of a bone in the horizontal plane. Retraction occurs as a joint moves back into position after protraction. Protraction and retraction can be seen in the movement of the mandible as the jaw is thrust outwards and then back inwards. Elevation is the movement of a bone upward, such as when the shoulders are shrugged, lifting the scapulae. Depression is the opposite of elevation—movement downward of a bone, such as after the shoulders are shrugged and the scapulae return to their normal position from an elevated position. Dorsiflexion is a bending at the ankle such that the toes are lifted toward the knee. Plantar flexion is a bending at the ankle when the heel is lifted, such as when standing on the toes. Supination is the movement of the radius and ulna bones of the forearm so that the palm faces forward. Pronation is the opposite movement, in which the palm faces backward. Opposition is the movement of the thumb toward the fingers of the same hand, making it possible to grasp and hold objects.

Types of Synovial Joints

Synovial joints are further classified into six different categories on the basis of the shape and structure of the joint. The shape of the joint affects the type of movement permitted by the joint ([link]). These joints can be described as planar, hinge, pivot, condyloid, saddle, or ball-and-socket joints.

Different types of joints allow different types of movement. Planar, hinge, pivot, condyloid, saddle, and ball-and-socket are all types of synovial

joints.

Planar Joints

Planar joints have bones with articulating surfaces that are flat or slightly curved faces. These joints allow for gliding movements, and so the joints are sometimes referred to as gliding joints. The range of motion is limited in these joints and does not involve rotation. Planar joints are found in the carpal bones in the hand and the tarsal bones of the foot, as well as between vertebrae ([link]).

The joints of the carpal bones in the wrist are examples of planar joints. (credit: modification of work by Brian C.

Goss)

Hinge Joints

In hinge joints, the slightly rounded end of one bone fits into the slightly hollow end of the other bone. In this way, one bone moves while the other remains stationary, like the hinge of a door. The elbow is an example of a hinge joint. The knee is sometimes classified as a modified hinge joint ([link]).

The elbow joint, where the radius articulates with the humerus, is an example of a hinge joint. (credit: modification of work by Brian C.

Goss)

Pivot Joints

Pivot joints consist of the rounded end of one bone fitting into a ring formed by the other bone. This structure allows rotational movement, as the rounded bone moves around its own axis. An example of a pivot joint is the joint of the first and second vertebrae of the neck that allows the head to move back and forth ([link]). The joint of the wrist that allows the palm of the hand to be turned up and down is also a pivot joint.

The joint in the neck that allows the head to move back and forth is an example of a pivot

joint.

Condyloid Joints

Condyloid joints consist of an oval-shaped end of one bone fitting into a similarly ovalshaped hollow of another bone ([link]). This is also sometimes called an ellipsoidal joint. This type of joint allows angular movement along two axes, as seen in the joints of the wrist and fingers, which can move both side to side and up and down.

The metacarpophalangeal joints in the finger are examples of condyloid joints. (credit:

modification of work by Gray's Anatomy)

Saddle Joints

Saddle joints are so named because the ends of each bone resemble a saddle, with concave and convex portions that fit together. Saddle joints allow angular movements similar to condyloid joints but with a greater range of motion. An example of a saddle joint is the thumb joint, which can move back and forth and up and down, but more freely than the wrist or fingers ([link]).

The carpometacarpal joints in the thumb are examples of saddle joints. (credit: modification of work by Brian C.

Goss)

Ball-and-Socket Joints

Ball-and-socket joints possess a rounded, ball-like end of one bone fitting into a cuplike socket of another bone. This organization allows the greatest range of motion, as all movement types are possible in all directions. Examples of ball-and-socket joints are the shoulder and hip joints ([link]).

The shoulder joint is an example of a ball-and-socket

joint. Link to Learning

Watch this animation showing the six types of synovial joints.

Muscle Contraction and Locomotion By the end of this section, you will be able to:

- Classify the different types of muscle tissue
- Explain the role of muscles in locomotion

Muscle cells are specialized for contraction. Muscles allow for motions such as walking, and they also facilitate bodily processes such as respiration and digestion. The body contains three types of muscle tissue: skeletal muscle, cardiac muscle, and smooth muscle ([link]).

The body contains three types of muscle tissue: skeletal muscle, smooth muscle, and cardiac muscle, visualized here using light microscopy. Smooth muscle cells are short, tapered at each end, and have only one plump nucleus in each. Cardiac muscle cells are branched and striated, but short. The cytoplasm may branch, and they have one nucleus in the center of the cell. (credit: modification of work by NCI, NIH; scale-bar data from Matt

Russell)

Skeletal muscle tissue forms skeletal muscles, which attach to bones or skin and control locomotion and any movement that can be consciously controlled. Because it can be controlled by thought, skeletal muscle is also called voluntary muscle. Skeletal muscles are long and cylindrical in appearance; when viewed under a microscope, skeletal muscle tissue has a striped or striated appearance. The striations are caused by the regular arrangement of contractile proteins (actin and myosin). Actin is a globular contractile protein that interacts with myosin for muscle contraction. Skeletal muscle also has multiple nuclei present in a single cell.

Smooth muscle tissue occurs in the walls of hollow organs such as the intestines, stomach, and urinary bladder, and around passages such as the respiratory tract and blood vessels. Smooth muscle has no striations, is not under voluntary control, has only one nucleus per cell, is tapered at both ends, and is called involuntary muscle.

Cardiac muscle tissue is only found in the heart, and cardiac contractions pump blood throughout the body and maintain blood pressure. Like skeletal muscle, cardiac muscle is striated, but unlike skeletal muscle, cardiac muscle cannot be consciously controlled and is called involuntary muscle. It has one nucleus per cell, is branched, and is distinguished by the presence of intercalated disks.

Skeletal Muscle Fiber Structure

Each skeletal muscle fiber is a skeletal muscle cell. These cells are incredibly large, with diameters of up to 100 μ m and lengths of up to 30 cm. The plasma membrane of a skeletal muscle fiber is called the sarcolemma. The sarcolemma is the site of action potential conduction, which triggers muscle contraction. Within each muscle fiber are myofibrils— long cylindrical structures that lie parallel to the muscle fiber. Myofibrils run the entire length of the muscle fiber, and because they are only approximately 1.2 μ m in diameter, hundreds to thousands can be found inside one muscle fiber. They attach to the sarcolemma at their ends, so that as myofibrils shorten, the entire muscle cell contracts ([link]).

A skeletal muscle cell is surrounded by a plasma membrane called the sarcolemma with a cytoplasm called the sarcoplasm. A muscle fiber is composed of many fibrils, packaged into orderly

units.

The striated appearance of skeletal muscle tissue is a result of repeating bands of the proteins actin and myosin that are present along the length of myofibrils. Dark A bands and light I bands repeat along myofibrils, and the alignment of myofibrils in the cell causes the entire cell to appear striated or banded.

Each I band has a dense line running vertically through the middle called a Z disc or Z line. The Z discs mark the border of units called sarcomeres, which are the functional units of skeletal muscle. One sarcomere is the space between two consecutive Z discs and contains one entire A band and two halves of an I band, one on either side of the A band. A myofibril is composed of many sarcomeres running along its length, and as the sarcomeres individually contract, the myofibrils and muscle cells shorten ([link]).