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AQA A-level Mathematics Year 2 is available as a Whiteboard eTextbook and Student eTexthook.

Whiteboard eTextbooks are online interactive versions of the printed textbook that enable teachers to:
e Display interactive pages to their class

e Add notes and highlight areas

e Add double-page spreads into lesson plans

Student eTextbook are downloadable versions of the printed textbooks that teachers can assign to
students so they can:

e Download and view on any device or browser

e Add edit and synchronise notes across two devices

e Access their personal copy on the move

Important notice: AQA only approve the Student Book and Student eTextbook. The other resources
referenced here have not been entered into the AQA approval process.

To find out more and sign up for free trials visit: www.hoddereducation.co.uk/dynamiclearning
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Integral A-level Mathematics online resources

Our eTextbooks link seamlessly with Integral A-level Mathematics online resources, allowing you to
move with ease between corresponding topics in the eTextbooks and Integral.

These online resources have been developed by MEI and cover the new AQA A-level Mathematics
specifications, supporting teachers and students with high quality teaching and learning activities that
include dynamic resources and self-marking tests and assessments.

Integral A-level Mathematics online resources are available by subscription to enhance your use of this
book. To subscribe to Integral visit www.integralmaths.org
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The core content of this digital textbook has been approved by AQA for use with our
qualification. This means that we have checked that it broadly covers the specification and
that we are satisfied with the overall quality. We have also approved the printed version of this
book. We do not however check or approve any links or any functionality. Full details of our
approval process can be found on our website.

We approve print and digital textbooks because we know how important it is for teachers
and students to have the right resources to support their teaching and learning. However, the
publisher is ultimately responsible for the editorial control and quality of this digital book.

Please note that when teaching the AQA A-level Mathematics course, you must refer to
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befting the most from fhis book

Mathematics is not only a beautiful and exciting subject in its own right but also one that underpins many
other branches of learning. It is consequently fundamental to our national wellbeing.

This book covers the remaining content of A Level Mathematics and so provides a complete course for the
second of the two years of Advanced Level study. The requirements of the first year are met in the first book.

Between 2014 and 2016 A level Mathematics and Further Mathematics were very substantially revised, for
first teaching in 2017. Major changes include increased emphasis on

m  Problem solving

m  Proof

m  Modelling
m  Working with large data sets in statistics.

This book embraces these ideas. The first section of Chapter 1 is on problem solving and this theme is
continued throughout the book with several spreads based on the problem solving cycle. In addition a large
number of exercise questions involve elements of problem solving; these are identified by the @ icon
beside them. The ideas of mathematical proof and rigorous logical argument are also introduced in
Chapter 1 and are then involved in suitable exercise questions throughout the book.The same is true of
modelling; the modelling cycle is introduced in the first chapter and the ideas are reinforced through the
rest of the book.

The use of , including graphing software, spreadsheets and high specification calculators,
is encouraged wherever possible, for example in the Activities used to introduce some of the topics
in Pure mathematics, and particularly in the analysis and processing of large data sets in Statistics.
Places where ICT can be used are highlighted by a icon. A large data set is provided at the end
of the book but this is essentially only for reference. It is also available online as a spreadsheet
(www.hoddereducation.co.uk/AQAMathsYear2) and it is in this form that readers are expected to store

and work on this data set, including answering the exercise questions that are based on it. These are found
at the end of each exercise in the Statistics chapters and identified with a purple bar. They illustrate, for
each topic, how a large data set can be used to provide the background information.

Throughout the book the emphasis is on understanding and interpretation rather than mere routine
calculations, but the various exercises do nonetheless provide plenty of scope for practising basic
techniques. The exercise questions are split into three bands. Band 1 questions (indicated by a green bar)
are designed to reinforce basic understanding. Band 2 questions (yellow bar) are broadly typical of what
might be expected in an examination: some of them cover routine techniques; others are designed to
provide some stretch and challenge for readers. Band 3 questions (red bar) explore round the topic and
some of them are rather more demanding. Questions in the Statistics chapters that are based on the large
data set are identified with a purple bar. In addition, extensive online support, including further questions,
is available by subscription to MEI’s Integral website, http://integralmaths.org.

In addition to the exercise questions, there are five sets of questions, called Practice questions, covering
groups of chapters. All of these sets include identified questions requiring problem solving B,
mathematical proof m, and modellingm.There are some multiple choice
questions preceding each of these sets of practice questions to reflect those in the AQA papers.

This book follows on from A Level Mathematics for Year 1 (AS) and most readers will be familiar with

the material covered in it. However, there may be occasions when they want to check on topics in the
earlier book; the parts entitled Review allow them to do this without having to look elsewhere. The five
short Review chapters provide a condensed summary of the work that was covered in the earlier book,
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including one or more exercises; in addition there are nine chapters that begin with a Review section and
exercise, and then go on to new work based on it. Confident readers may choose to miss out the Review
material, and just refer to these parts of the book when they are uncertain about particular topics. Others,
however, will find it helpful to work through some or all of the Review material to consolidate their
understanding of the first year work.

There are places where the work depends on knowledge from earlier in the book and this is flagged up in
the margin in Prior knowledge boxes. This should be seen as an invitation to those who have problems with
the particular topic to revisit it earlier in the book. At the end of each chapter there is a summary of the new
knowledge that readers should have gained.

Two common features of the book are Activities and Discussion points. These serve rather different
purposes. The Activities are designed to help readers get into the thought processes of the new work that
they are about to meet; having done an Activity, what follows will seem much easier. The Discussion points
invite readers to talk about particular points with their fellow students and their teacher and so enhance

their understanding. Callout boxes and Note boxes are two other common features. Callout boxes provide
explanations for the current work. Note boxes set the work in a broader or deeper context. Another feature is
a Caution icon @), highlighting points where it is easy to go wrong.

The authors have taken considerable care to ensure that the mathematical vocabulary and notation are used
correctly in this book, including those for variance and standard deviation, as defined in the AQA specification for
A-level Mathematics. In the paragraph on notation for sample variance and sample standard deviation (page 327),
it explains that the meanings of ‘sample variance’, denoted by %, and ‘sample standard deviation’, denoted by s, are
defined to be calculated with divisor (n — 1). In early work in statistics it is common practice to introduce these
concepts with divisor # rather than (n — 1). However there is no recognised notation to denote the quantities so
derived. Students should be aware of the variations in notation used by manufacturers on calculators and know
what the symbols on their particular models represent.

When answering questions, students are expected to match the level of accuracy of the given information. However,
there are times when this can be ambiguous. For example “The mass of the block is 5 kg’ could be taken to be an
exact statement or to be true to just 1 significant figure. In many of the worked examples in this book such statements
are taken to be exact. A particular issue arises with the value of g, the acceleration due to gravity. This varies from

place to place around the world. Unless stated otherwise questions in this book are taken to be at a place where, to

3 significant figures, it is 9.80 ms™. So, providing that other information in the question is either exact or given to

at least 3 significant figures, answers based on this value are usually given to 3 significant figures. However, in the
solutions to worked examples it is usually written as 9.8 rather than 9.80. Examination questions often include a
statement of the value of ¢ to be used and candidates should not give their answers to a greater number of significant
figures; typically this will be 3 figures for values of ¢ of 9.80 ms? and 9.81 ms=, and 2 figures for 9.8 ms~ and 10 ms™.

Answers to all exercise questions and practice questions are provided at the back of the book, and also online
at www.hoddereducation.co.uk/AQAMathsYear2. Full step-by-step worked solutions to all of the practice
questions are available online at www.hoddereducation.co.uk/AQAMathsYear2. All answers are also available
on Hodder Education’s Dynamic Learning platform.

Finally a word of caution. This book covers the content of Year 2 of A Level Mathematics and is designed

to provide readers with the skills and knowledge they will need for the examination. However, it is not the
same as the specification, which is where the detailed examination requirements are set out. So, for example,
the book uses the data set of cycling accidents to give readers experience of working with a large data set, but
this is not the data set that will form the basis of any examination questions. Similarly, in the book cumulative
binomial tables are used in the explanation of the output from a calculator, but such tables will not be
available in examinations. Individual specifications will also make it clear how standard deviation is expected
to be calculated. So, when preparing for the examination, it is essential to check the specification.

Catherine Berry and Roger Porkess

*Please note that the marks stated on the example questions are to be used as a guideline only, AQA have
not reviewed and approved the marks.
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Prior knowledge

This book builds on work from AS/Year 1 A level Mathematics. AS worlk is reviewed either
in sections at the start of chapters, or in separate review chapters in this Year 2 A level
Mathematics book.

The order of the chapters has been designed to allow later ones to use and build on work in earlier
chapters. The list below identifies cases where the dependency is particularly strong.

The Statistics and Mechanics chapters are placed in separate sections of the book for easy reference, but it
is expected that these will be studied alongside the Pure mathematics work rather than after it.

The work in Chapter 1: Proof pervades the whole book. It builds on the work on problem solving
and proof covered in Chapter 1 of AS/Year 1 Mathematics.

Chapter 2: Trigonometry builds on the trigonometry work in Chapter 6 of AS/Year 1
Mathematics.

Review: Algebra 1 reviews the work on surds, indices, exponentials and logarithms from
Chapters 2 and 13 of AS/Year 1 Mathematics.

Chapter 3: Sequences and series requires some use of logarithms, covered in Review: Algebra 1.

Review: Algebra 2 reviews the work on equations, inequalities and polynomials from Chapters 3,
4 and 7 of AS/Year 1 Mathematics.

Chapter 4: Functions begins with a review of the work on transformations covered in Chapter 8
of AS/Year 1 Mathematics.

Chapter 5: Differentiation begins with a review of the work on differentiation covered in
Chapter 10 of AS/Year 1 Mathematics.

Review: The sine and cosine rules reviews the work on triangles covered in part of Chapter 6
of AS/Year 1 Mathematics.

Chapter 6: Trigonometric functions builds on the work in Chapter 2, and uses ideas about
functions from Chapter 4.

Chapter 7: Further algebra starts with a review of the work on the binomial expansion from
Chapter 9 of AS/Year 1 Mathematics. It also builds on work on the factor theorem and algebraic
division, covered in Review: Algebra 2.

Chapter 8: Trigonometric identities builds on the work in Chapter 2 and Chapter 6.

Chapter 9: Further differentiation builds on the work in Chapter 5. It also requires the use of
radians, covered in Chapter 2.

Chapter 10: Integration starts with a review of the work on integration covered in Chapter 11
of AS/Year 1 Mathematics. It follows on from the differentiation work in Chapter 9, and also
requires the use of radians, covered in Chapter 2, and partial fractions, covered in Chapter 7.

Review: Coordinate geometry reviews the work in Chapter 5 of AS/Year 1 Mathematics.

Chapter 11: Parametric equations uses trigonometric identities covered in Chapter 6 and
Chapter 8.You should also recall the equation of a circle, covered in Review: Coordinate
geometry, and be confident in the differentiation techniques covered in Chapter 5 and Chapter 9.

Chapter 12:Vectors builds on the vectors work in Chapter 12 of AS/Year 1 Mathematics.
Chapter 13: Differential equations uses integration work covered in Chapter 10.

Chapter 14: Numerical methods requires some simple differentiation and knowledge of how
integration relates to the area under a graph.

vii
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m  Review: Working with data reviews the work in Chapters 14 and 15 of AS/Year 1 Mathematics.

m  Chapter 15: Probability starts with a review of the probability work in Chapter 16 of AS/Year 1
Mathematics.

m  Chapter 16: Statistical distributions starts with a review of the work on the binomial distribution
covered in Chapter 17 of AS/Year 1 Mathematics. It involves use of probability covered in
Chapter 15.

m  Chapter 17: Statistical hypothesis testing starts with a review of the work on hypothesis testing
covered in Chapter 18 of AS/Year 1 Mathematics. It requires use of the Normal distribution
covered in Chapter 16.

m  Chapter 18: Kinematics starts with a review of the work on kinematics covered in Chapters 19 and
21 of AS/Year 1 Mathematics.You should be confident in working with vectors in two dimensions
(reviewed in Chapter 12) and in working with parametric equations (Chapter 11).

m  Chapter 19: Forces and motion starts with a review of the work on force covered in Chapter 20 of
AS/Year 1 Mathematics. It requires the use of vectors in two dimensions (reviewed in Chapter 12).

m  Chapter 20: Moments of forces uses work on force covered in Chapter 19, and the use of vectors in
two dimensions (reviewed in Chapter 12).

m  Chapter 21: Projectiles uses trigonometric identities from Chapter 6 and Chapter 8, and work on
parametric equations from Chapter 11. It also requires use of vectors in two dimensions (reviewed in
Chapter 12).

m  Chapter 22: A model for friction uses work on force and moments covered in Chapters 19 and 20,
as well as vectors in two dimensions (reviewed in Chapter 12).
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Mathematics teaches
us to solve puzzles.
You can claim to be a
mathematician if, and
only if, you feel that you
will be able to solve a
puzzle that neither you,
nor anyone else, has
studied before. That is
the test of reasoning.
W. W. Sawyer (1911-2008)

Proof

b a

Figure 1.1

=» How can you deduce Pythagoras’ theorem (¢*> = @ + b?) by finding two ways
of expressing the area of the central square?



Problem solving

1 Problem solving

Mathematical problem solving sometimes involves solving purely mathematical
problems, and sometimes involves using mathematics to find a solution to a ‘real-
life’ problem.

The problem solving cycle in Figure 1.2 shows the processes involved in
solving a problem.

1 Problem specification
and analysis

Y

4 Interpretation 2 Information collection

A

3 Processing and
representation

Figure 1.2

In purely mathematical problems, the same cycle can often be expressed using
different words, as in Figure 1.3.

1 Problem specification
and analysis

Y

4 Proving or disproving 2 Trying out some cases
the conjecture to see what is happening

A

3 Forming a conjecture [«

Figure 1.3

Forming a conjecture
Rob is investigating what happens when he adds the terms of the sequence

2,1, L 41
”274’8’

He says:

m  ‘However many terms I add, the answer is always less than 4.

m  ‘If T add enough terms, I can get as close to 4 as I like’
A statement that

These statements are conjectures. They are Rob’s theories. ¢ has not yet been
proved is called
a conjecture.




A conjecture may or may not be true, but once you have made a conjecture you
obviously want to know whether it is true. If it is, you will want to convince

/Discussion points 7\ other people, and that means you must prove it.

= How can Rob use Rob draws the diagram in Figure 1.4.

the diagram to prove 5
his conjectures? 3
=» How would he make 1 °
the arguments 2
watertight? -
> oz o
2 2 3
o
T -

1

2
Discussion point Figure 1.4

=» Explain why
Goldbach’s
conjecture does not
apply to all integers.

Here is a well-known conjecture that no one has managed to prove yet.

Every even integer greater than 2 can be written as the sum of two prime
numbers.

Most people believe it is true and many have tried to prove it, but so far without
success.

Rob’s conjectures can be shown geometrically, but many other conjectures need
algebra. Proving a conjecture always requires rigorous, logical argument.

Discussion point

=>» Explain why the

converse statement Here are some symbols and words that are very useful in this:

‘nisaprimenumber | m  The symbol = means ‘leads to’ or ‘implies’ and is very helpful when you
= n=5"is not true. want to present an argument logically, step by step.

You can say that the statement

n=5=mnisa prime number. - ‘n=15"is a sufficient condition for
the statement ‘nis a prime number’.

Discussion point
P B You can write the symbol = the other way round, as <=. In that case, it

=* Explain why the means ‘is implied by’ or ‘follows from’.

converse statement . .
2n 1S even <= n 1s even.

2niseven = nis _ _ .
even’ is not true. This statement could also be written in the form

You can say that the statement
niseven = 2nis even. € 2pniseven’isa necessary condition

for the statement ‘n is even’.

m In situations where both the symbols = and < give true statements, the
two symbols are written together as <.You can read this as ‘implies and is

implied by’ or ‘is equivalent to’. L ey

‘nis an even number’ is a

n is an even number <> 1? is an even ¢—— necessary and sufficient
condition for the statement
number.

‘n? is an even number’.
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Problem solving

Is the statement ‘n is odd < #»® is odd’ true or
false?

In each case, write one of the symbols =, <=
or & between the two statements A and B.

il A:PQRS is a rectangle.
B: PQRS has two pairs of equal sides.

lil  A:The point P is inside a circle centre O,
radius 3.

B:The distance OP is less than 3.

il A:pisa prime number greater
than 2.

B:pis odd.

ivi Ai(x=3) (x—4)>0
B:x>4

Samir writes:

AB is parallel to CD = ABCD is a
parallelogram.

(i) Is Samir correct? Explain your answer.
lil  Write down the converse of Samir’s
statement. Is the converse true?
Winnie lives in a village in rural Africa; it is
marked P on the diagram in Figure 1.5.

T
R river
P
Q
Figure 1.5

Each day she goes to a river which flows
due east. She fills a bucket with water at R
and takes it to her grandmother who lives in
a nearby village, Q. Winnie wants to know
where to fill the bucket so that she has the
shortest distance to walk.

Referred to a coordinate system with axes
east and north, P is the point (2, 3),

Q is (8, 1) and the equation of the river is
y=>5.

®

() Draw the diagram accurately on graph
paper, using equal scales for both axes.

(il Winnie thinks that the best point for R is
(5,5). Show that her conjecture is wrong.

(il Find the coordinates for the best position
of R. Explain carefully how you know
that this is indeed the case.

Place the numbers from 1 to 8 in a copy of the
grid in Figure 1.6 so that consecutive numbers
are not in adjacent cells (i.e. cells that have a
common edge or vertex).

Figure 1.6

If you can’t do it, explain why not.

If you can do it, state in how many ways it
can be done, justifying your answer.

Figure 1.7 shows a square of side 1m and four
circles.

The small red circle fits in the gap in the

middle.

N

Figure 1.7

/

Show that the diameter of the red circle is
(3v2 - 5)m.




O @ A game is played using a standard In this game, the ‘doubles’ count as squares
O dartboard. and the ‘trebles’ count as cubes.

@

A player has three darts and must score one
‘single’, one ‘double’ and one ‘treble’ to
make a total of 501.

() Find two ways in which a player can
finish (ignoring the order in which
the darts are thrown).

il Prove that there are no other possible
ways.

joold | J9ydey)

Figure 1.8

2 Methods of proof

Discussion point

Sarah challenges her classmates to find two consecutive numbers such that the
difference between their squares is even.

=» What answers do you think she will get?

You have probably found that Sarah’s challenge in the discussion point appears
to be impossible. You have formed the conjecture that the difference between
the squares of two consecutive numbers is always odd. The next step is to prove
that your conjecture is true, and then you will know for certain that Sarah’s
challenge is impossible.

Two of Sarah’s classmates decide to prove that her challenge is impossible.

Jamie writes:

For two consecutive numbers, one must be even and one must be

odd.
An even number squared. is even.
An odd number squared is odd.

The difference between an even number and an odd number is always
odd, so the difference between the square of an even number and the
square of an odd number must be odd.

So the difference between the squares of consecutive numbers must be
odd.



Methods of proof

Zarah writes:

Let the first number be n.
So the next number is n + 1.

The difference between their squares = (n + 1) — n? 2nis a multiple
=n2+2n+1-n* | of2 soitisan
=2n+1 even number. So

Discussion point 2n + 1 is an odd number, so the difference between 2n+1 must be
the squares of consecutive numbers is always odd. ¢——— an odd number.

=>» Which proof do you
prefer?

Jamie and Zarah have both proved the conjecture, in different ways.

You have now reached the stage where it is no longer always satisfactory to
assume that a fact is true without proving it, since one fact is often used to
deduce another.

There are a number of different techniques that you can use.

Proof by direct argument

Both Jamie’s proof and Zarah’s proof are examples of proof by direct argument,
or deductive proof. You start from known facts and deduce further facts, step by
step, until you reach the statement that you wanted to prove.

m Prove that the opposite angles of a cyclic quadrilateral are supplementary (add

up to 180°).

You may assume the result that the angle subtended by an arc at the centre of
a circle is twice the angle subtended by the same arc at the circumference.

Solution

Figure 1.9 shows a circle centre O and a
cyclic quadrilateral ABCD.

ZADC = x and ZABC = y.

The minor arc AC subtends angle x at the

Thase e SEiements / circumference of the circle, and angle p at the
use the result that you centre of the circle.

may assume, given in the
question. So p=2x

Figure 1.9

The major arc AC subtends angle y at the
circumference of the circle, and angle g at the centre of the circle.

So gq=2y.

Adding the two angles at O gives p + ¢ = 360°
= 2x + 2y = 360°
= x+y=180°.

The sum of the four angles of any quadrilateral is 360°, so the sum of each
pair of opposite angles of a cyclic quadrilateral is 180°.



Proof by exhaustion

For some conjectures it is possible to test all possible cases, as in Example 1.2.

m Prove that when a two-digit number is divisible by 9, reversing its digits also

gives a number that is divisible by 9.

Solution
There are only 10 two-digit numbers divisible by 9:
18,27, 36, 45, 54, 63, 72, 81, 90, 99.

joold | J9ydey)

Reversing each of these gives the following:

81,72, 63,54, 45, 36,27, 18, 09, 99.

P_ These numbers are also divisible by 9, so the conjecture has been proved.
ACTIVITY 1.1
Prove the result from ~N
S.Xample 1.2 using Discussion points
irect proof.
Prove the corresponding => Is it true that reversing the digits of a two-digit number that is divisible by 9
result for a three-digit always gives a two-digit number that is divisible by 97
number. =>» How is this question different from the one in Example 1.2?
q p
k It is important to be precise about wording.

Proof by contradiction

In some cases it is possible to deduce a result by showing that the opposite is
impossible, as in the following examples.

m Prove that the sum of the interior angles x and y for a pair of parallel lines, as

shown in Figure 1.10,1s 180°.

P A/ B
y
X
Q /C D
Figure 1.10
Solution

If the conjecture is
false, then either
x+y<180°or
x+ y>180°. Look
at these two cases
separately. Q Jc p ———

) Assume that x + y < 180° as shown in Figure 1.11.

Figure 1.11



Methods of proof

It has now been shown
that assuming that
either x + y <180° or
x+y>180° leads to a
contradiction, so the only
remaining possibility is
that x + y = 180°.

Example 1.4

In this case the lines AB and CD, when extended, will meet at a point E,
where

ZBED =180° —x — y. 44— Using the sum of the angles in a triangle.

This means that AB and CD are not parallel.

Similarly, assuming that x + y > 180°, as shown in Figure 1.12, will give
angles (180° — x) and (180° — y), with a sum of (360° — (x + y)).

Figure 1.12

360° — (x + y) < 180°, so now AP and CQ when extended will meet at a
point R, showing that AP and CQ are not parallel.

—p  Consequently, x + y = 180°.

Prove that ~/2 is irrational.

Solution

. . m
Assume that /2 is rational, so /2 = o where m and n have no common
factor.

2
m_

2
n

=20 =m’ @

Squaring = 2 =

2n” is a multiple of 2 = 2#” is even
= m’ is even

= m 1S even.

S 2p < As m is even, it can be expressed

as 2p, where pis an integer.

In equation (1) this gives
2n* = (2p)* = 4p°

=n =2p

2p? is a multiple of 2 = 2p” is even
= 1’ is even
= n 1S even.

You have now shown that both m and # are even numbers, which
contradicts the assumption that m and n have no common factor.

Consequently, v/2 is not rational, so it must be irrational.



m Prove that there are an infinite number of prime numbers.

Solution

Suppose there are a finite number of prime numbers: 2,3, 5, ..., p,.

Letg=(2X3X5X...X Pn) + 1. ¢— qisformed by multiplying
; together all the prime numbers
Is ¢ prime? in the list and then adding 1.

m If ¢ is prime, then it is 2 new prime number, not in the original list.

m If ¢ is not prime, then it has a prime factor.
2 cannot be a factor of ¢, because ¢ is one more than a multiple of 2.
3 cannot be a factor of ¢, because ¢ is one more than a multiple of 3.
Similarly, none of the primes in the list can be a factor of g.
So if ¢ is not prime, then it must have a prime factor which is not in the list.
So there is another prime number that is not in the list.

joold | J9ydey)

So, whether ¢ is prime or not, there is another prime number not in the
list. This contradicts the original assertion that there are a finite number of
prime numbers.

Disproof by the use of a counter-example

Sometimes you may come across a conjecture that looks as if it might be true,
but is in fact false. Always start by checking the result for a few particular values,
to try to get a ‘feel’ for what is happening. Next, if you think that it is true, you
could try to prove it using any of the methods discussed earlier. If you seem to
be getting nowhere, then finding just one case, a counter-example, when it
fails is sufficient to disprove it.

Example 1.6 Hassan says that 1003 is a prime number.

Is Hassan correct? Either prove his conjecture, or find a counter-example.

Solution
Checking for prime factors of 1003:
2 is not a factor of 1003
3 is not a factor of 1003

5 is not a factor of 1003.

However, it turns out that 17 is a factor of 1003:
17 X 59 = 1003

Hassan is wrong.
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Methods of proof

In questions 1—12 a conjecture is given. Decide whether

it is true or false. If it is true, prove it using a suitable
method and name the method. If it is false, give a

counter-example.

0]

@ QO @® ® @6

®

W)

Numbers raised to the power 4 only end in the
digits 0,1, 4,5 and 6.

2"+ 3 is prime for n > 1.

(a+ b)Y — (a—b)’ = 4ab , where aand b are
real numbers.

The triangle with sides of length <21 + 1, n
and (n + 1) 1s right-angled.

No square number ends in 8.

The number of diagonals of a regular polygon
with n sides is < n.

The sum of the squares of any two consecutive
integers is an odd number.

J3 is irrational.

If T'is a triangular number (given by

T = tn(n + 1) where n is an integer), then

) 9T +1 is a triangular number

(il 8T +1 is a square number.

(il A four-digit number formed by writing
down two digits and then repeating them
is divisible by 101.

(il A four-digit number formed by writing
down two digits and then reversing them
is divisible by 11.

The value of (n* + n+ 11) is a prime number

for all positive integer values
of n.

The tangent to a circle at a point P is
perpendicular to the radius at P.

() The sum of the squares of any five
consecutive integers is divisible by 5.

(i) The sum of the squares of any four
consecutive integers is divisible by 4.

For any pair of numbers x and v,

2(x* 4+ y%) is the sum of two squares.

(i Prove that n’ — n is a multiple of 6 for all
positive integers #.

(il Hence prove that n* + 11n is a multiple
of 6 for all positive integers #.

Prove that no number in the infinite sequence
10, 110, 210, 310, 410, ...

can be written in the form 4" where a is an
integer and # is an integer = 2.

Prove that if (a,b,c) and (A,B,C)

are Pythagorean triples then so is

(a4 — bB, aB + bA,cC).

Which positive integers cannot be written as
the sum of two or more consecutive numbers?
Prove your conjecture.

An integer N is the sum of the squares of two

different integers.

(il Prove that N is also the sum of the
squares of two integers.

li) State the converse of this result and either

prove it is true or provide a counter-
example to disprove it.



LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

> understand and use the structure of mathematical proof, proceeding from
given assumptions through a series of logical steps to a conclusion

> use methods of mathematical proof:
O proof by deduction
O proof by exhaustion

> proof by contradiction including

O proof of the irrationality of \2
O proof of the infinity of primes

joold | J9ydey)

O application to unfamiliar proofs.
> disproof by counter example.

KEY POINTS

1 = means ‘implies’, ‘if ... then ...", ‘therefore ...’
< means ‘is implied by’, ‘follows from’
& means ‘implies and is implied by’, ‘is equivalent to’.
2 The converse of A= Bis A < B.
3 If A& B, Ais anecessary condition for B.
If A= B, Ais a sufficient condition for B.
4 The methods of proof are
m proof by direct argument
m proof by exhaustion
m proof by contradiction.
5 Methods of disproof are
m disproof by direct argument
m disproof by the use of a counter-example.

FUTURE USES

You will need to use problem solving and proof throughout this book.

1"
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Trigonomelry

Look at situations fm_m This compass has two scales: the inner scale shows degrees and the outer

all angles, and you will scale shows angular mils. There are 6400 angular mils in 360 degrees.

become more open. Mils are used by the military, in navigation and in mapping because they are
Dalai Lama (1935-) more accurate than degrees.

=> Anpilot flies one degree off course. How far from the intended position is
the aeroplane after it has flown 10km?

1 Radians

Have you ever wondered why angles are measured in degrees, and why there are
360° in one revolution?

There are various legends to support the choice of 360, most of them based in
astronomy. One of these is that the shepherd-astronomers of Sumeria thought
that the solar year was 360 days long; this number was then used by the ancient
Babylonian mathematicians to divide one revolution into 360 equal parts.



Degrees are not the only way in which you can measure angles. Some
calculators have modes which are called ‘rad’ and ‘gra’ (or ‘grad’); if yours is
one of these, you have probably noticed that these give different answers when
you are using the sin, cos or tan keys. These answers are only wrong when the
calculator mode is different from the angular measure used in the calculation.

The gradian (mode ‘gra’ or ‘grad’) is a unit which was introduced to give a means
of angle measurement which was compatible with the metric system.There are
100 gradians in a right angle, so when you are in the gradian mode, sin 100 = 1, just
as when you are in the degree mode, sin90 = 1. Gradians are largely of historical
interest and are only mentioned here to remove any mystery surrounding this
calculator mode.

By contrast, radians are used extensively in mathematics because they simplify
many calculations. The radian (mode ‘rad’) 1s sometimes referred to as the
natural unit of angular measure. If, as in Figure 2.1, the arc AB of a circle centre
O is drawn so that it is equal in length to the radius of the circle, then the angle
AOB is 1 radian, about 57.3°.

B

r | 1 radian

Figure 2.1
You will sometimes see 1 radian written as 1¢, just as 1 degree is written 1°.

Since the circumference of a circle is given by 27, it follows that the angle of a
complete turn is 27 radians.

360° = 2n radians
Consequently

180° = 1t radians

90° = g radians

60° = % radians

45° = % radians
i

30° = g radians

To convert degrees into radians you multiply by %

1380

To convert radians into degrees you multiply by —

Anawouobii] 7z sardeyn
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Radians

If an angle is a simple
fraction or multiple
of 180° and you wish
to give its value in
radians, it is usual

to leave the answer

as a fraction of m, for
i

exampleg.

When an angle is

given as a multiple of

it is assumed to be
in radians.

Angular mils (see
page 12] are derived
from the milliradian

[ﬁth of a radian).

There are approximately
6283 milliradians in
360° (2n X 1000) and
this number is rounded
to make 6400 angular
mils, which is a more
convenient unit for
navigation.

(1) Express in radians (@) 30° (b) 315° (c) 29°.
1) Express in degrees ) b 8n c¢) 1.2 radians.
p g 12 3
Solution
- o_ _n _T
@) (@ 30°=30x 180 3
o _ n _ Tn
(b) 315°=315X 180 = 1

() 29°=29 X 7g5=0.506 radians (to 3 s..).

. s o
i) @ 75=13x 22 =15

©) B =BT 180 g0

(© 1.2 radians = 1.2 X % = 68.8° (to 3 s.£).

Trigonometry and radians

You can use radians when working with trigonometric functions.

Remember that the x—y plane is divided into four quadrants and that angles are
measured from the x-axis (see Figure 2.2).

Anticlockwise angles are
positive.

T

/ 2 Clockwise angles are
0 negative.

\an angle of 34_n radians /

T > or+135° T
x

> |3

=Y

an angle of — % radians

or —30°

Figure 2.2



You can extend the definitions for sine, cosine and tangent by drawing a unit
circle drawn on the x—y plane, as in Figure 2.3.

The point P can be anywhere

on the unit circle.
YA

P(x, y) g
1]
o
1 -
y D
4
0 N
(¢} x “x 5'
(=]
o
=}
o
3
D
~
<
Figure 2.3
For any angle (in degrees or radians):
sinf =y, cosf =x, tanf = Y and tanf = M, cos # 0.
x cosf

Graphs of trigonometric functions

The graphs of the trigonometric functions can be drawn using radians.

The graph of y = sinf is shown in Figure 2.4.

Period is 27t radians.
Rotational symmetry A y=sin@
of order 2 about the
origin.
Oscillates between » 0.5 -
—land1, so
-1 <sinf<1. L L L L >
_2n _3m - _T 0 T T 3n 2n 6
2 2 2 2
70 -
,1 -
Figure 2.4
The graph of y = cos6 is shown in Figure 2.5.
y
Period is 27t radians. 0
Symmetrical about
y-axis. P
Oscillates between
—1and 1, so | | | |
—l<cosf<1. —2n _3m - T T T 3n 2n '6’
2 2 2 2
05 |
71 —
Figure 2.5

15
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Radians

Period s m redlemns. The graph of y = tan6 is shown in Figure 2.6.

Rotational symmetry of

- y
order 2 about the origin. 0

® Asymptotes at i%, )
L
5

If you wish to find the
value of, say, sin 1.4¢

I Useth
or cos 12_ use e

\

S

a
o
=

|

a
.|

Na
o Y <Y AN

a
- - = = - Wl - -

ks

S

a

Y

‘rad’ mode on your
calculator. This will give Figure 2.6
the answers directly -

_ The diagrams in Figure 2.7 can be used to help you remember the sign of sin 6,
in these examples,

09854 and cosf and tan 6 in each of the four quadrants.
0.9659...
You could convert the 1
angles into degrees (by 2nd quadrant Ist quadrant S A
18 O] Only sin @ positive All positive e
multiplying by ——) but 15 15
PYIng By n > € called
this is an ipefficient ” a CAST
metho_d. Itis much better Only tan 8 positive | Only cos @ positive diagram.
t t into the habit of T C
& ge. In 9 5 . ol 3rd quadrant 4th quadrant
working in radians.
Figure 2.7
(1 What other angle in the range 0 < 6 < 27 has @ In Figure 2.8, ABC is an equilateral triangle.
the same cosine as L ? AB =2cm. D is the midpoint of BC.
Express the following angles in radians, leavin
p gang g A
your answers in terms of T where appropriate. Exact means you
i) 45° i) 90° should leave your
° . ° answer in surd
(i) 120 livi 75 2em form (e.g. 2) or
(v} 300° (vi) 23° as a fraction, so
i) 450° iill - 209° you probably don't
need to use your
(i 150° K 7.20 B - P calculator
(3@ Express the following angles in degrees, using a
suitable approximation where necessary. Figure 2.8
I (ii) ‘% (il Find the exact lengths of
10 4 a) BD (b) AD.
. . U
(i) 2 radians (iv 9 (il Write down each of these angles in
v) 3m v A4m radians.
3 () ABD () BAD
(vi) 0.5 radians (viii) 577T
 Im (-
7



(i) Hence find the exact values of the @ Draw the graph of y =sinx for
following. O=sx<2n

(a) sinZ (b) cos I Use your graph to find two values of x, in
3 radians, for which sinx = 0.6.

(c) tan n )
6 You can use a graphical calculator

or graphing software.

(e)] cos

ala wlAa
=1

Draw the graphs of y = sinx and
y = cosx on the same pair of axes for
0=<x=<2n

(5) By drawing a suitable right-angled triangle,

prove that
Use your graphs to solve the equation
(i) sin% = g (ii) cos% = g SINX = COSX.

x () (® Write down the smallest positive value of
(i) tang = 1 O k, where k 1s in radians, to make each of the
@

Anawouobii] 7z sardeyn

following statements true.
(& Match together the expressions with the same () sin(x— k) = —sinx
value. ]
li) cos(x — k) =sinx
Do not use your calculator.
(i) tan(x — k) =tanx

. W= +

coss?7T cos (—%) tan%Tn sin% tanz%ﬂ (i) cos (k = ) cos (k + )

(i) Given that sinx = sin577T where
. 97 57 . 27 111 0<x< %,ﬁnd X.

COSTU SII’IT tan(— T) SII’IT COS T

lil Given that cosy = €0s (—2%) where

NG

J2 4 n<y<2n,findy
2 2 5

DO —

liii) Given that tan kn =tan(—5?r[)

where 0 < k < %,ﬁnd k.

2 Circular measure

The length of an arc of a circle

From the definition of a radian (see p. 13), an angle of 1 radian at the centre of a
circle corresponds to an arc of length r (the radius of the circle).

Similarly, an angle of 2 radians corresponds to an arc length of 2r and, in general,
an angle of 6 radians corresponds to an arc length of 0r, which is usually written
r@ (Figure 2.9).

arc length 6

0

Figure 2.9

17
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Circular measure

The area of a sector of a circle

A sector of a circle is the shape enclosed by an arc of the circle and two radii
(Figure 2.10).

A minor sector is smaller

A major sector is larger
than a semicircle.

than a semicircle.

minor major sector
sector

Figure 2.10

The area of a sector is a fraction of the area of
the whole circle. The fraction is found by writing
the angle 6 as a fraction of one revolution, i.e. 21t

(Figure 2.11). So the area of the shaded sector is

o of the area of the whole circle

_ 6 2_ 12
—Zanr—er

Figure 2.11

[©

ACTIVITY 2.1

You can work out the length of an arc and the area of a sector using degrees
instead of radians, but it is much simpler to use radians. Copy and complete
Table 2.1 to show the formulae for arc length and sector area using radians and

degrees.
Table 2.1
Radians Degrees
Angle o° a° (O! — 0% %)
Arc length
Area of sector

A chord divides a circle into two regions called segments.

minor segment

N

4 major segment

Figure 2.12




m (1) Calculate the exact arc length,

(6}
perimeter and area of a sector
2m . 6cm NS 6cm
of angle 3 and radius 6 cm. o
A 3 B
(®)
>
[}
©
~
D
=
Figure 2.13 :
(i) Calculate the area of the segment bounded by the chord AB and the 5
arc AB. o
=}
3
Solution )
<
1) Arc length = 10 Draw a sketch if
one is not given in
=6X 2?” the question.
= 4n cm
Perimeter =41+ 6 + 6 — DI i tonadd
on the two radii.
= (4n + 12) cm
Area = %720
=%X62X2?T[:12ncm2
(i) 0
6cm 6em
27
3
A B
Figure 2.14

Area of segment = area of sector AOB — area of triangle AOB

Area of a triangle = % X base X height
2n

Using OA as the base, the height of the triangle is 6sin 3

Area of triangle AOB = % X 6 X 6sin 2?“4_ In general, the el of a
triangle is % absin C,

sinz—1T = sinZ = ﬁ \=123:< A3 where a and _bare two
3 3 2 2 sides and Clis the angle
From part (i), the area of =93 between them.

the sector is 12mcm?. i

Area of segment = 121 — 94/3 = 22 cm?to 3 s.f.

19
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Circular measure

An arc, with angle U ofa circle, has length
21 cm. What is the Tadius of the circle?

For each sector in Figure 2.15 find
(a) the arc length  (b) the perimeter

(c) the area.

(i)

(i) 4

Figure 2.15

Each row of Table 2.2 gives dimensions of
a sector of a circle of radius rcm.

The angle subtended at the centre of the
circle is 6 radians, the arc length of the
sector is scm and its area is A cm?.

Copy and complete the table.

Table 2.2
r(cm) | 6 (rad) | s (cm) | A (cm?)
4 2
I I
3 2
5 10
. 1.5
2m
T 41

In a cricket match, a particular cricketer
generally hits the ball anywhere in a sector
of angle 100°. If the boundary (assumed
circular) is 80 yards away, find

(i) the length of boundary which the
fielders should patrol

(il the area of the ground which the
fielders need to cover.

(5) The perimeter of the sector in

Figure 2.16 1s (57 + 12) cm.

A

Figure 2.16

Find the exact area of

i)  the sector AOB

(il the triangle AOB

(il the shaded segment.

A circle, centre O, has two radii OA and
OB.The line AB divides the circle into
two regions with areas in the ratio 3:1.The
angle AOB is 6 (radians).

Show that

0 —sinf = %

@ (i) Show that the perimeter of the shaded

segment in Figure 2.17 is r(@ + 2sin %)

Figure 2.17

li) Show that the area of the shaded

segment is %72(0 — sinf).



The silver brooch illustrated in Figure 2.18 is
in the shape of an ornamental cross.

Figure 2.18

The dark shaded areas represent where the
metal is cut away. Each is part of a sector of a

circle of angle % and radius 1.8 cm.

The overall diameter of the brooch is 4.4 cm,
and the diameter of the centre is 1 cm. The
brooch is 1 mm thick.

Find the volume of silver in the brooch.

In the triangle OAB in Figure 2.19,
OA = 3m, OB = 8m and angle AOB = s

12°
A
not to scale
3m
\ 7
(6] B
8m

Figure 2.19
Calculate, correct to 2 decimal places
(il the length of AB

(il the area of triangle OAB.

The plan of an ornamental garden in
Figure 2.20 shows two circles, centre O,
with radii 3m and 8m.

Q

B
X
12'

Q

not to scale

Figure 2.20

Grass paths of equal width are cut
symmetrically across the circles.

The brown areas represent flower beds.
BQ and AP are arcs of the circles.

Triangle OAB is the same triangle as
shown in Figure 2.19.

Given that angle POA = % , calculate the
area of

il sector OPA

i) sector OQB

i) the flower bed PABQ.

@) () Pind the area of the shaded segment in

Figure 2.21.

5
on B
6 O 4cm

Figure 2.21

lil  Figure 2.22 shows two circles, each
of radius 4 cm, with each one passing
through the centre of the other.

A

Figure 2.22

Calculate the shaded area.

(2 Figure 2.23 shows the cross-section of

three pencils, each of radius 3.5 mm, held
together by a stretched elastic band.

Find
(i)  the shaded area

li) the stretched
length of the
band.

Figure 2.23

Andwouobil] z io1deyn
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Small-angle approximations

3 Small-angle approximations

Figure 2.24 shows the graphs of y =60, y =sinf and y = tan 6 on the same axes,

forOS0$%.

YA In this graph, @ is measured
B in radians, and the same scale

. y=tan6 y=90 is used on both axes.
1+ y=sin6

L >

T
(0] 5 [

Figure 2.24

From this, you can see that for small values of 6, where 6 is measured in radians,
both sin @ and tan 6 are approximately equal to 6.

To prove this result, look at Figure 2.25. PT is a tangent to the circle, radius
r units and centre O.

T
Q
) rtan 6
0Ll - P
Figure 2.25 6 must be in radians for this

formula to work!

Area of sector OPQ = %I’ZG —

Area of triangle OPQ = %72 sing ¢ Area of triangle is 3 absin C.

Area of triangle OPT = %rz tanf

Using % X base x height.

Discussion point

= Why does 6 need to When 6 is very small, these three areas are very close in size.

[

r

Figure 2.26

So 1179 = 14%sinf = %X r X rtanf

1
2 2
sinf = tan6

l

U
>
u



L tEcHNoLOGY

Use a graphic calculator or graphing software to draw y =6, y =sinf and
y=tan6 on the same axes, for 0 < 6 < 0.2 radians. Notice how close the graphs
are (you can also see this by looking at Figure 2.24). This suggests that for

small values of 6, sin@ = 0 and tanf = 6.

The small-angle approximation for cos 6

The result for cos can be derived by considering a right-angled triangle drawn
on a unit circle (Figure 2.27). The angle 6 is small and in radians.

The length of the arc
PQis1 X0 =20as

Q/ the radius is 1 unit.

OP is the radius which
is1,soRP=1—cos@.

Anawouobii] 7z sardeyn

Figure 2.27
In the right-angled triangle PQR, PQ = 6 when 6 is small. ¢— 4 | length
Using right-angled trigonometry of the arc is
approximately
— cosd = - = OR = cosf the hypotanuse
Discussion points of triangle
) R .
=» What do you think and sinf = —1Q = RQ =sinf PQR.
's meant by the Pythagoras’ th ives PQ?=PR*+RQ’ Expand bracket
. =PR? xpand brackets.
expression ‘very ythagoras’ theorem gives PQ Q p
good’ here? 0° = (1 - cosf) + sin’ 6
=» Quantify this 0> = 1—2cosf + cos” 0 +sin” 0
by calculating 0> =1—2cosf + 1 — sin?0+cos26=1,

the maximum

t 2cos0 = 2 — 6* see p 137.
percentage error.

2
N cosh =1 — % 4¢— Make cos0 the subject. ‘

All of these approximations are very good for —0.1 < 6 < 0.1 radians.

23
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Small-angle approximations

This means ‘the limit as

M
(i1)

Find an approximation for cos@ — cos26 when 6 and 26 are both small.

Hence find

0 tends to zero'.

> i cosf — cos26
1 4 911)1’3 02 .

Solution

M

When 6 and 26 are both small
2
cosf = 1— %
and
2
cos260 = 1 — (20)
2
= 1-26°

Using these approximations, when 6 is small

_ 6° 2
cosf) —cos260 = (l = 7)— (1 - 20 )
- 30
2
(i) cos) — cos20 _ 36°
0° 26°
Check this result by
] substituting in values of
2 (in radians) starting with
Hence [y €080 = cos20 _ 3 44— | #=0.2and decreasing in
pae 92 =9 steps of 0.02.
() (O When 6 is small, find approximate ® (i) Find an approximate expression for
expressions for the following. sin 26 + tan 30 when 6 is small enough
(il  Otan® for 30 to be considered as small.
il 1—cos@ (il  Hence find
i) cos26 ljm $in.20 + tan 30 26 + tan 30
0—0 0
liv) sinf + tan® @ () Find an approximate expression for
(2 When 6 is small enough for 6° to be 1= cos8 when 6 is small.
ignored, find approximate expressions for (il Hence find
the following. lim L — cosf
(i 0sin6 020 405in6
1—cosf
il cos@cos26
i Otanf
" T=cos20

cos40 — cos 260
sin46 — sin 260

(iv)



(i) Find an approximate expression for

1 — cos460 when 0 is small enough for [%/ I~
40 to be considered as small. <Iem

(il Find an approximate expression for

b
tan’26 when 6 is small enough for 26 ) \S fom
to be considered as small. 9
[
liil Hence find T
D
1—cos460 =
60 tanz 20 (c) E =
Use a trial and improvement method to N 5'
find the largest value of 0 correct to 2 5 8
decimal places such that 6 = sinf = tanf =
where 6 is in radians. /_ \ 3
A C B C'_'D._
Use small-angle approximations to find the <
smallest positive root of
cosx +sinx + tanx = 1.2 ' o>
Why can’t you use small-angle
approximations to find a second root to this ©
equation? Figure 2.28
There are regulations in fencing to ensure
that the blades used are not too bent. Suppose that a blade AB is bent to form
For épées, the rule states that the blade an arc of a circle of radius r, and that AB
must not depart by more than 1 cm from SubtendS an angle 20 at the centre O Of the
the straight line joining the base to the circle. Then with the notation of Figure
point (see Figure 2.28a). For sabres, the 2.28¢, the épée bend is measured by CD,
corresponding rule states that the point and the sabre bend by BE.
must not be more than 4cm out of line, i.e. (i) Show that CD =r (1 — cos#).
away from the tangent at the base of the (i) Explain why angle BAE = 6.

blade (see Figure 2.28b). lii) Show that BE = 2r sin?0.

liv) Deduce that if 0 is small, BE = 4CD
and hence that the rules for épée and
sabre amount to the same thing.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

> work with radian measure, including use for arc length and area of sector

> understand and use the standard small angle approximations of sine, cosine
and tangent

O sinf=0
92
O cosf=1— =
O tanf0=0
> know and use exact values of sin and cos for 0, %,%,%,%, n and multiples
thereof

> know and use exact values of tan for 0,%,%,%, 7t and multiples thereof.

25
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Small-angle approximations

KEY POINTS
1 2nradians =360°

To convert degrees into radians you multiply by ﬁ

To convert radians into degrees you multiply by 180

i’
2 Table 2.3
g° 0° 30° 45° 60° 90°
- n n T n
radians 0 6 4 3 P
. 1 V2 V3
sind " 2 2 > !
V3 V2 1
cosf 1 5 > 5 0
tan 6 0 @ 1 J3 undefined
3
y =sin @
Period is 2x radians. Rotational symmetry of
order 2 about the origin. Oscillates between
—land1l,so-1<sinf<1.
B | |
| 2 | |
| | |
| | |
| | |
I I
I I I
I I I
\ /
3 7 b
2 2
|
-1
|
|
|
T
y = tan 0 o
Period is %radians. Rotational o to? o ) .
symmetry of order 2 about the Period is 27 radians. Symmetrical
origin. Asvmptotes at +. £ ... about y-axis. Oscillates between
gin. Asymp —2'=2 —land1,s0—-1<<cosf<1.
FUTURE USES L
4 A f tor= 1
m  You will often need reaota sef or onl 0
¢ ) : Arc length = 10 ,
o use radians in
the trigonometry
work in Chapters 6 =
and 8. = 4T
m  Radians are also lgure 2.
important when 5 For small angles where —0.1 < 0 < 0.1 radians, you can use the following
you differentiate approximations.
and integrate sinf = 0
trigonometric tan® = 0
functions (covered in 0~ 1 0>
Chapters 9 and 10). e ey




Seeing that there

is nothing that is

so troublesome to
mathematical practice,
nor that doth more molest
and hinder calculations,
than the multiplications,
divisions, square and
cubical extractions of
great numbers ... | began
therefore to consider in
my mind by what certain
and ready art | might
remove these hindrances.

John Napier (1550-1617),
the inventor of logarithms

Review: Algebra |

1 Surds and indices
Surds

Sometimes you need to simplify expressions

containing surds. <«

Remember

 (x)Y =«
m Ly = ey

A surd is a number
involving a root (such
as a square root) that
cannot be written as a
rational number.

Addition, subtraction and multiplication follow the same rules as any other

algebraic manipulation.

®  Addition: 2+ +B-4/3)=5-3/3

m  Subtraction:  (2+/3)—(3-4/3)=-1+53
®  Multiplication: Q2 +3)3—4v3) = 6+ 33 — 83 — 433

6 — 533 — 124 Notice that in

this case the final
=—-6-5J3

When dividing by a surd you need to rationalise the
denominator as shown in Example R.1 overleaf.

term is a rational
number.

27



Surds and indices

Example R.1

L1 tECHNOLOGY

Most calculators will
simplify expressions
involving surds for you.
You can use a calculator
to check your work.

Example R.2

28

Simplify the following by rationalising the denominator.

0 = G 2=
243 1++/3

Solution

(1) % = % X % «——— Multiply top and bottom by /3.

T o | 233 =2x3=6

= ee——— 6 is a rational number.

(1))  To rationalise this denominator you can make use of the result

(a+b)(a—1b)=a — b

2-3 _ 2-3 % 1-4/3 ) Multiplying top and

1+3 1+43 1-3 bottom by (1 — +/3).
_2=V3)(1-+3)
1+ V31 -3)

_2-3-23+3

= 1= 3 4 The denominator
is now rational.

_5-33
- —2
_3J/3-5
- 2
Indices
The rules for manipulating indices are: Add the indices.
m  Multiplication: a" xa" = a"" —
m  Division: a" +a" = a"" 4————— Subtract the indices.
m  Power of a power: (@' = a™
. 0 _
= Power zero: a =1 Multiply the indices.
m  Negative indices: a" = %
a
m  Fractional indices: a% =14
Simplify the following.
@ @ex7y (i) 16x"y”
Solution

G  (2x7)Y =2 x («7) () /16x"y° =16 X y/x*)°

=8x~° =4x7y°



(D Simplify the following. @ Simplify the following, writing your answers in
i (4 +2J3)+ (2 -3J3) the form x".
i 2+ 32) - (3 - 242) i X =
i) (3 — 2\/5)2 i xf+ g
(i) (3 — 24/2)(3 + 2/2) (i) (x7) i
(@ Simplify the following by rationalising the (iv) \/x_8 {-‘;
denominator. Nem =7
(- i 5=5 S =
V3 V5 ® Simplify the following.
(iii) M vy 2> (i) 2962)/3 X 3x3y2

3-42 35 -4

(® Evaluate the following, i) Ay’ X fx’y’

1
. 2—5 .. 3
{I] [II] 27 [|||] 12x6y5 +4x2y3

i) 257 (iv) (16)7 i (1+ ) + 2x(1 + x)°

2 Exponentials and logarithms

Exponentials

Exponent is another name for power or index: for example, when you write
x = a", ais the base and n can be referred to using any of the names power,

index or exponent.

A function of the form y = a*, where a is positive and x is the variable, is called
an exponential function.

YA
yoa All exponential functions have
similar graphs:
m all have the negative x-axis as
an asymptote
1 m all pass through the point (0,1)
_/ N m all have a positive gradient at
0 x every point.

Figure R.1
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Exponentials and logarithms

For more on inverse
functions see page 83.

Logarithms
Alogarithm is the inverse of an index:
x =d" & n=log, x for a (the base) > 0 and x > 0.
YA

All logarithmic functions have
similar graphs:

m all have the negative y-axis as
an asymptote

(¢ m all pass through the point (1,0)
m all have a positive gradient at
every point.
Figure R.2

When using the same scale on both axes, the graphs of y = a" and y = log, x
are reflections of each other in the line y = x.This is because log, x and a” are
inverse functions.

YA

v =log,x

o
=Y

,
.
.
.,
.
.
.
.
.
.

Figure R.3

The rules of logarithms are derived from those for indices:

m  Multiplication: logxy = logx + logy
m  Division: log (%) = logx — logy
m  Powers: logx" = nlogx

m  Logarithm of 1: log1 =0

m  Reciprocals: log (%) = —logy

B Roots: logt/x = %logx

m  Logarithm to its own base: log,a =1

Any positive number can be used as the base for a logarithm, but the two most
common bases are 10 and the irrational number 2.71828..., which is denoted
by the letter e. Logarithms to base e are written as In and on your calculator you
will see that, just as log and 10" are inverse functions and appear on the same
button, so are In and e”.



Example R.3

Solve the equation 3" = 2, giving your answer correct to 3 significant figures.

Solution

Taking logarithms of both sides:

¥ =25 log¥ —log2 e [oucanusels: g
= xlog3 = log2 -3

- ‘= log 2 {E

log 3 o

=0.631 (3 s.f.) o

Example R.4

The number of people infected with a disease varies according to the
formula

N — 200(6—040%)

where N is the number of people infected and ¢ is the time in weeks from
the first detection of the disease.

@) How many people had the disease when it was first detected?

(i)  How many months did it take until there were only 10 people
infected?

Solution
()  Initially, = 0.
Substituting this into N' = 200(e """} gives N = 200.
(i) When N = 10,
10 = 200(e™""*)

=  0.05=e""

= —0.04¢ = In(0.05)

= t = 74.8933

So it took around 18 months for only 10 people to be infected.

Reducing to linear form

Logarithms are particularly useful when trying to find an equation to fit
experimental data, since this often involves an exponential relationship, such as
y = kx" or y = a X b". Equations of this form can be written in linear form,

which makes it easier to plot a graph and estimate its equation.
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Exponentials and logarithms

Example R.5

LrecHNoLoGY

Use a spreadsheet or
graphing software to
verify that the equation
y=1.26 X "% is a good
fit for the original data.

32

In an experiment, Yuen obtains the data in Table R.1.

Table R.1
t 1 2 3 4 5 6
b4 1.3 3.4 6.2 9.8 13.3 17.5

Yuen thinks that the relationship between y and ¢ is given by an equation of
the form y = kt".

) Show that if Yuen is correct, then plotting logy against logt will give
an approximately straight line graph.

(i)  Plot this graph and use it to estimate the values of n and k.

Solution
@) Taking logarithms of both sides:

_ " Logarithms to base 10 have
logy = logkt l been used here, but any base

= logk + logt" can be used.

= logk + nlogt

= nlogt + logk

This is of the form y = mx + ¢, so plotting a graph of logy against
logt should give a straight line with gradient n and vertical axis
intercept logk.

(i)  TableR.2

t 1 2 3 4 5 6
b4 1.3 3.4 6.2 9.8 13.3 17.5
logt 0 0.301 0.478 0.602 0.699 0.778

logy 0.114 0.531 0.792 0.991 1.124 1.243

2
1.5
Ry}
L—"
e e
KT
L —4
0.5 femm
o
O 01 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1
log t
Figure R.4

Gradient of graph = 1.5so n = 1.5.
Intercept = 0.1

= logk = 0.1

= k= 10" = 1.26 (3sf.)



If the relationship is of the form y = a X b, then taking logs of both sides gives

logy = log(a X b")
= loga + logb®

= loga + xlogb ¢

Compare this with y =mx + c.

In this case you would plot logy against x to obtain a straight line with gradient

log b and intercept loga.

(1) Write the following expressions in the form @
log x where x is a number.

(il log3+ log6 — log?2
(ii) %log‘) + 2log4

i) log1+ log2 —log3
(2) Write the following expressions in terms of
log x.
i) logx* — 2logx
il 3logx + logx’
(iii) log(\/;)3

(3@ Solve the following equations.

il 10*" =5 il 107 =6
i) e =5 iv) e =1
Solve the following equations, giving exact
g ¢q gving
solutions.
(i) log(x+1) =5
(i) log(x +2) + log(x —2)=0
i) In(x+3)=4

(v In(x+2)+ In(x =2)=10
(5) Make x the subject of the following formulae.
i) a=log (x—0b)
i) e™* =5
(6 The number N of bees in a hive is given
by N = 200e"" where ¢ is the number of days
since observations began.
(i How many bees were in the hive initially?
(il  Sketch the graph of N against ¢.
(i) What is the population of the hive after
30 days?
(iv) How good do you think this model is?
Explain your answer.

During a chemical reaction, the concentration
C (kgm™) of a particular chemical at time ¢
minutes is believed to be given by an equation
of the form C = p X ¢'.The data in Table R.3
are obtained.

Table R.3

t 0 1 2 3 4 5 6

C |1.32]1.23/095|0.76 | 0.62 ] 0.51 | 0.38

(il Explain why, if this relationship is correct,
plotting a graph of log C against ¢ will
give an approximate straight line.

(il Plot the graph and use it to estimate the
values of p and q.

The data in Table R.4 are obtained in an
experiment.

Table R.4
r 1.2 2.3 2.8 3.2 3.9
s 5.4 7.6 8.3 9.0 9.8

The relationship between r and s is believed to
be of the form s = kr".

(il Explain why, if this relationship is correct,
plotting a graph of logs against logr will
give an approximate straight line.

(il Plot the graph and use it to estimate the
values of k and n.

| e1qably mairay
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Exponentials and logarithms

KEY POINTS

1

The laws of indices
m+n

B g" Xa' =a
. am + aﬂ — am_n
. (am )Vl — am”

m g0 =1

- 1
B = =2
- a - m

= =

® g =(/;
() = x
7 =y

When simplifying expressions containing square roots you need to
m make the number under the square root as small as possible
m rationalise the denominator if necessary.

A function of the form a” is described as exponential.

A logarithm is the inverse of an index:

S ad =«x

y = log, x

The laws of logarithms to any base
m logxy = logx + logy

] log(%) = logx — logy
m logl=0

B Jogx" = nlogx

L] log(%)= —logy

1
s logi/x =logx" = %logx

m log,a=1

The function e*, where e is the irrational number 2.71828..., is called the

exponential function.
log_x is called the natural logarithm of x and is denoted by In .

Logarithms may be used to discover the relationship between variables in

two types of situation.

B y=kx" & logy=mnlogx+ logk

Plotting log y against log x gives a straight line where n is the gradient

and logk is the y-axis intercept.

m y=ki* & logy=xloga+logk

Plotting log y against x gives a straight line where loga is the gradient

and logk is the y-axis intercept.
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Population, when
unchecked, increases
in a geometrical

ratio. Subsistence
increases only in an
arithmetical ratio. A
slight acquaintance with
numbers will show the
immensity of the first
power in comparison
with the second.

Thomas Malthus (1766-1834)

Sequences and series

N

-

-

\

i -

3

A
10
%2043
- 8 2024
£ 2011
:Si 6 1999
'5 019087
2 4 01974
2 ©196(
£ 2 *-1930
1800
[ ]
VA 1 1 ) e [ I e I
0 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050

Year

Figure 3.1 Human population, 1600-2050 a.o. (projections shown by red crosses)

famous statement that is quoted on the left?

What was the approximate world population when Malthus made his

Look at the graph and comment on whether things are turning out the way
he predicted. What other information would you find helpful in answering this
question?

Y

35



36

Definitions and notation

1 Definitions and notation

(. . . N
Discussion point

A

PIZZA TAKE-AWAY

Sunday 12-8
Monday closed

Tuesday to Friday
= 12-10
Saturday 11-11

AVONFORD SAVINGS

DOUBLE
your ££
every
10 years

Figure 3.2

=» Each of the following sequences is related to one of the pictures in Figure 3.2.
(i) 5000, 10000, 20000, 40000, ...
(ii) 8,0,10,10,10,10,12,8,0,...
(iii) 5, 3.5,0,-3.5,-5,-3.5,0,35,5,3.5, ...
liv) 20, 40, 60, 80, 100, ...
=» For each of these sequences:
(a) identify which picture it goes with
(b) give the next few numbers in the sequence
(c) describe the pattern of numbers
(d) decide whether the sequence will go on for ever, or come to a stop.

J

A sequence is an ordered set of objects with an underlying rule. Each of the
numbers or letters is called a term of the sequence. It can be finite or infinite.

Examples of sequences are:
m 1,357, ..

111
B 4816

ALl OO

®  Monday, Tuesday, Wednesday, ...




(0 m——

ACTIVITY 3.1

Look at the series for

1

1 and for sin x.

How many terms
would you expect
to need in each

of these to give a
result accurate to
2 decimal places?
See how good your
estimates are by
adding terms on
your calculator.

When writing the terms of a sequence algebraically, it is usual to denote the
position of any term in the sequence by a subscript, so a general sequence may
be written as

ay,0,,05,0,, ...

In this case the general term could be written as a,.

For the sequence 1,3,5,7, ...,
the 3rd term is 5= (2 X 3) — 1
the 4th term is 7 = (2 X 4) — 1.

Continuing this pattern, the general term a, is written as 2k — 1.

Series

When the terms of a sequence are added together, like
1+3+5+7+...

the resulting sum is called a series. The process of adding the terms together is
called summation and is indicated by the symbol X (the Greek letter sigma),
with the position of the first and last terms involved given as limits.

k=5 5

5
a, or just as Zak or even zak.
k=1 k=1 1

You can write a, + a, +a, +a, + a5 as

If all the terms of a sequence are to be added, the sum may be written as z a,.

A sequence may have an infinite number of terms, in which case it is called an
infinite sequence and the corresponding series is called an infinite series.

For example This series has a
1+ 5x + 102> + 102 + 5x* + x° = (14 x)°¢——— finite number of
terms (6).
1 1 1 —
4(1 —3ts—7*t ) =T Both of these series have an
3 5 infinite number of terms.
and x — 2+ 2 — ... =sin x
3! 50 1\

x is measured in radians.

Defining sequences

Definitions which give the value of g directly are called deductive definitions
(position to term). Alternatively, there is an inductive definition (term to
term), where each term is defined by relating it to the previous one. Look

at the sequence 5, 8, 11, 14, ... . This sequence, and many others, can be
written algebraically in more than one way. Try out the following formulae for

yourself.
B g, =2+3k fork‘=1,2,3,...
B a =5+3k-1 fork=123,...

B 4 =5;4a, =4, +3

This formula has the advantage
that it contains both the number
5, which is the first term, and the
number 3, which is the difference
between the terms.

In this case, substitutingk = 1givesa, =a, +3=5+3 = 8§,
substitutingk = 2 givesa, = a, +3 = 8+ 3 =11, etc.

$9149s pue sacuanbag ¢ uaydey)
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Definitions and notation

A sequence is defined deductively by a, = 3k — 1 for k = 1,2,3,... .

) Worite down the first six terms of the sequence, and describe the
sequence.
k=6
(i)  Find the value of the series zak.
k=1
Solution

@) Substituting k=1,2,3,... 6ina, = 3k — 1 gives
a, =3(1)—-1=2
a, =32)—-1=5
a, =3(3)—1=38
a, =34)—-1=11
. =35 —-1=14
a, = 3(6)—-1=17

So the sequence is 2, 5, 8, 11, 14, 17, which starts with 2 and then
adds 3 each time.

k=6

(i1) a, =a, ta, ta; ta, +a;+a,
k=1

=2+5+8+11+14+17
=57

Arithmetic sequences

A sequence in which consecutive terms differ by the addition of a fixed (positive
or negative) number is described as arithmetic. This number is called the
common difference.

The general form of an arithmetic sequence is a,a + d,a + 2d,a + 3d, ..., where
the first term is a and the common difference is d.

Thus the sequence 5 8 11 14 ... is arithmetic with a = 5 and d = 3.
+3 +3 +3

You will look at arithmetic sequences in more detail later in the chapter.

Geometric sequences

A sequence in which you find each term by multiplying the previous one
by a fixed number is described as geometric; the fixed number is called the
common ratio.

. B 2 3
The general form of a geometric sequence is a, ar, ar’, ar’, ... ,where the first
term is a and the common ratio is r.

Thus the sequence 10 20 40 80 ... is a geometric sequence with a = 10
andr = 2. 2o X



It may be written algebraically as

a, =5X 2k for k= 1,2,3, ... (deductive definition)

oras a, =10; a,, = 2a, fork=1,2,3,... (inductive definition).
m Find the common ratio for the geometric sequence 2, —4, 1 —.L g
g q 1T 258 T3 [
S
o
) =
Solution w
The first term, a = 2 and the second term ar = —%. Hence g
e £
- o
a S
_1 o
=2 0
2 )
=
: 1 o
= common ratio = ——. "

4

(]
=
o
(7]

Geometric sequences are also dealt with in more detail later in the chapter.

Periodic sequences

A sequence which repeats itself at regular intervals is called periodic. In the case
of the pizza take-away in Figure 3.2, the number of hours it is open each day
forms the sequence

a =8, a, =0, a,=10, a, =10, a, =10, a =10, a, =12,
(Sun) (Mon) (Tues) (Wed) (Thurs) (Fr1) (Sat)
a, =8, a,=0,...
(Sun) (Mon)
There is no neat algebraic formula for the terms of this sequence but you can
see that a; = a,, a, = a, and so on.
In general, this sequence can be written as
Aoy = 4, fork=1,2,3,...
This sequence is periodic with period 7 since each term is repeated after seven terms.

A sequence for which

for k=1,2,3,... (for a fixed integer p)

Aeyp = %

is periodic. The period is the smallest positive value of p for which this is true.

Increasing and decreasing sequences

A sequence is increasing if each term of the sequence is greater than the term
immediately preceding it.

For example

m 2,5,8,11,... is an increasing arithmetic sequence with a common difference of 3.

B 2,6,18,54, ... is an increasing geometric sequence with a common ratio of 3.
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Definitions and notation

The terms get closer and
closer to zero without
ever getting there.
However small a number
you can think of, there
comes a point when all
the subsequent terms
are closer to zero.

1,4,9, 16, ... is the increasing sequence of the squares of positive integers.
0.9, 0.909, 0.90909, 0.90909009, ... is an increasing sequence which converges

to 10 .
11

Similarly a sequence is decreasing if each term of the sequence is less than the
term immediately preceding it.

For example

1
2
— This sequence converges to zero.

9,5,1,-3, ... is a decreasing arithmetic sequence with a common difference

of —4.This sequence diverges. ¢— The terms become increasingly large negatively so
they do not converge.

, %, %, %, ... 1s a decreasing geometric sequence with a common ratio of %

Multiplying an
expression for a, by
(-1)*ensures that the
signs of the terms
alternate between
positive and negative. It
is a very useful device.

40

1234 icani i i -k
5+5 3 5+ 18 an increasing sequence with general term a, = T
This sequence converges to 1.

A sequence is defined by g, = (—1)k fork=1,2,3,...

@) Write down the first six terms of the sequence and describe its

pattern in as many ways as you can.

5
(i)  Find the value of the series 2 a,.
2

(i)  Describe the sequence defined by b, = 5 + (—1)* x 2 fork=1,2,3,...

Solution
G a4 = =-1
a, = (-1’ =1
a, = (-1)° = -1
a, = (1" =1
a, = (-1)° = -1
a, = (-1)° =1

The sequence is =1, +1,-1,+1, -1, +1, ... .
It is periodic with period 2.

It 1s also geometric with first term —1 and common ratio —1.

5

(11) Zak =a, +a, +a, +as

= (+1) + (1) + 1) + (-1)
=0



(Discussion point R

Identify some more
examples of each

of these types of
sequence: arithmetic,
geometric, periodic,
increasing and
decreasing. Try to find

fit into more than one
category, and for each
of your sequences

\deflne a, )

some examples that 7

(i) b =5+(-1)x2=3
b, =5+ (-1)>x2=7
by =5+(-1)’x2=3
b, =5+(-1)"'x2=7

and so on, giving the sequence 3,7, 3,7, ... which is periodic with

period 2.

Sequences with other
patterns

There are many other possible
patterns in sequences. Figure 3.3
shows a well-known children’s toy
in which blocks with a square
cross-section are stacked to make a

tower. The smallest square shape has
sides 1 cm long, and the length of the
sides increase in steps of 1 cm.

The areas of these squares, in cm?,
form the sequence

12,2%,3%, 4%, 5% ...
or1,4,9,16,25, ... Figure 3.3
This is the sequence of square numbers and it does not fit any of the patterns

described so far. If you subtract each term from the next, however, you will find
that the differences form a pattern.

Sequence 1 4 9 16 25 ...

Difference 3 5 7 9 ...

These differences form an arithmetic sequence with common difference 2.
The next difference in the sequence will be 9 + 2 =11, and so the next term in
the areas sequence will be 25 + 11 = 36, which is indeed 6%

Looking at the differences between the terms often helps you to spot the pattern
within a sequence. Sometimes you may need to look at the diftferences between
the differences, or go even further.

() () Write down two things that these sequences i 8,7,6,5,...
have in common: il 4.1,3.9,3.7,3.5, ...
a =14, =-aanda =1,a, =3-a, liv) 3,6,12,24, ...
(2 For each of the following sequences, write ) 64,32, 16,8, ...
down the next four terms (assuming the same Ml 1,-2.4,-8, ...

pattern continues) and describe its pattern as

fully as you can.
i 7,10,13,16, ...

wii) 2,2,2,5,2,2,2,5,2,2,2,5, ...
iii) 1,3,5,3,1,3,5,3, ...

$9149s pue sacuanbag ¢ uaydey)
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Definitions and notation

(@) Write down the first four terms of each of the

sequences defined deductively below. In each
case, k takes the values 1,2, 3, ... .

M a, =2k+1

i) a, =3X 2k

i) a, = 2k + 2"
1

vl a, = z

W a, =5+ (-1

Write down the first four terms of each of the
sequences defined inductively below.

() ap, =a, +3;a =12

(i) Gy = —a; a =-5

fii] Geer = 3 @ =72

W a,, =a, +2k+14a =1

W d, = aya =44, =6

.
Find the value of the series Z a, in each of the

following cases. 1
) a, =2+5k

i a, =3x2"

il a, = 12

v a, =2+ (-1

Vv ., = 3a,,a =1

Express each of the following series in the
n
form 2 a,, where n is an integer and 4, is an

1 .
algebraic expression for the kth term of the
series.

M 1+2+3+...+10

i) 21+22+23+...+30

(i) 210 +220 + 230 + ... + 300

livi 211 +222+233 + ... + 310

(v} 190+ 180+ 170 + ... + 100

Find the value of each of the following.

5

(i) Zk
1
20

19
TN IEDWS
1 1

5

iy (k= 5k)

0

OO0

®

10

i X = (k= 1))

1

10

W 217 = (k= 1))
1

The Fibonacci sequence is given by 1, 1, 2, 3,

58, ....

() Write down the sequence of differences
between the terms of this sequence, and
comment on what you find.

lil  Write down the next three terms of the
Fibonacci sequence.

liil  Write down the sequence formed by the

a
: k+1 .
ratio of one term to the next, —, > using

k

decimals. What do you notice about it?
The terms of a sequence are defined by
a, =4+ (-1 x2.

(i)  Write down the first six terms of this
sequence.

lil  Describe the sequence.

(il What would be the effect of changing the
sequence to

@ a =4+ (-2)"
0 @ =4+ (1)

A sequence of numbers ¢, 1,,1t,, ... 1s formed
by taking a starting value of ¢, and using the
result

oy =1 —2 fork=1,2,3, ...
W Ife = V2, calculate t,t and t,.

Show that t, = 2, and write down the

value of toor

li) Ift, =2 ,show that all the terms of the
sequence are the same.
Find the other value of ¢, for which all the
terms of the sequence are the same.

liil Determine whether the sequence
converges, diverges or is periodic in the
cases where
@ t =3 b =1

V5 -1

@ =5 [MEI]




(D) Throughout time there have been many attempts [l Which of these would you expect to

to find a series that will calculate T, two of which converge more quickly? Why?
are the following; li) Use a spreadsheet to find out how many
n 1 . 1 1 (James Gregory 1671 terms (.)f ea.ch are neede.d tg give an
7 375 77 10d Gottfried Licbnitz approximation to T which is correct to
1674) (a) one d.p.
(b)  two d.p.

2
%:l+i+%+%+m (c) three d.p.

P2y (d) fourd
our d.p.
(Leonhard Euler 1748) P

2 Arithmetic sequences and series

When the terms of an arithmetic sequence, or arithmetic progression, are added
together, the result is called an arithmetic series.

$9149s pue sacuanbag ¢ uaydey)

The following conventions will be used:

firstterm, a, = a
number of terms=n
last term, a, = [

common difference = d
the generalterm = a, i.e. the term in the kth position.

For the arithmetic sequence 5, 8, 11, 14, 17, 20,
a=5,n=6,l=20and d=3.

To find an expression for the general term, look at how the terms are formed:

a =a =5

a, =a+d =543 =8

a, =a+2d =5+2(3) =11
The 4th term is the first —b>a, =a+3d =5+3(3) =14
(e cormmon iference . g=a+tdd  =540) =17

In each case, the number of differences that are added is one less than the
position number of the term you are finding. This gives rise to the formula

a, =a+(k—1)4d.
For the last term this becomes
l=a+ (n—-1)4d.

These are both general formulae which apply to any arithmetic sequence.
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Arithmetic sequences and series

Example 3.4

How many terms are there in the arithmetic sequence 14, 18,22, ... , 162?

Solution

This is an arithmetic sequence with first term a = 14, last term [ = 162 and
common difference d = 4.

Using the result [ = a + (n — 1)d gives
162 =14 + 4(n — 1)
— 148 = 4(n — 1)
= 37 =n-1
= n=238

There are 38 terms.

Find the 25th term in the arithmetic sequence 7,4, 1, ... .

Solution

In this case a = 7 and d = —3 (negative since the terms are decreasing).
Using the result a, = a + (k — 1)d gives

ay =7+ (25 = 1) X (=3)
=—65
The 25th term is —65.

Historical note \

When Carl Friedrich Gauss (1777-1855] was at school he was always quick to

answer mathematical questions. One day his teacher, hoping for half an hour

of peace and quiet, told his class to add up all of the whole numbers from 1 to
100. Almost at once the 10-year-old Gauss announced that he had done it and
that the answer was 5050.

Gauss had not, of course, added the terms one by one. Instead he wrote the
series down twice, once in the given order and once backwards, and added the
two together:

S= 14+ 2+ 3+ ... +98 + 99 + 100
§S=100+ 99+ 98+ ... +3 + 2 + 1
Adding,

285=101+101+101 +... + 101 + 101 + 101

Since there are 100 terms in the series,

28 =100 x 101
= S = 5050.
The numbers 1,2, 3, ... , 100 form an arithmetic sequence with common

difference 1. Gauss’ method gives rise to a formula which can be used to find

Qesum of any arithmetic sequence.




The sum of the terms of an arithmetic sequence

It is common to use the letter S to denote the sum of the terms of a sequence.
When there is any doubt about the number of terms that are being summed,
this is indicated by a subscript: S, indicates 4 terms and S indicates n terms.

Example 3.6 Find the sum of the arithmetic series 10 + 7 + 3 + ... + (=20).

Solution

This arithmetic series has a first term of 10 and a common difference of —3.
Using the formula [ = a + (n — 1)d,
—20=104+ (n — 1)(-3)
= =30 = (n — 1)(-3)
= 10=n-1

$9149s pue sacuanbag ¢ uaydey)

so there are 11 terms.
Writing down the series both forwards and backwards gives

S= 10+ 7 +..+(-17)+ (-20)
and S=(=20)+(-17)+...+ 7 + 10

Adding gives 2S = (=10) + (=10) + ... + (-=10) + (=10)

Since there are 11 terms this gives
28=(-10) x 11
= § = -55.

Obviously it would be rather tedious to have to do this each time, so this
method is generalised to give a formula for the sum of # terms of the arithmetic
sequence that has a first term a and a common difference d:

S= 4] +  [a+d| +o+ [a+ (=2)d)+ [a+ (n—1)d]
= TECHNOLOGY S=la+n—-1d + [a+@n—-2)d] +...+ [a+d] + [a]
Use a spreadsheet to

generate an arithmetic 28=[2a+ (n—1d +[2a+(n—1d] +...+[2a+ n—1)d] +[2a+ (n—1)d]
sequence and to
calculate the sum of the
terms. Verify that the 1 _
formula gives the same §= 511[241 + (n = 1]
answers.

Since there are n terms it follows that

This result may also be written as

l:a+(n—1)di5the _;S:ln(a+l)
last term. 2 .
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Example 3.7

Example 3.8

() () Are the following sequences arithmetic? If so,

Arithmetic sequences and series

sequence.

Solution

The arithmetic sequence 2, 1%, 1%, 1, ... has 60 terms. Find the sum of the

This is an arithmetic series of 60 terms with first term 2 and common

difference (—%)

Using S = %n[Za + (n — 1)d] gives

s:%[4+59><(

= —470.

1

3

)]

Catherine has just completed her degree and her starting salary with her

first employer is £21 000 per annum. She has been promised an increase of
L1200 each year for the first five years and then a salary review at that point.

(1) What is her salary in her fifth year?

(i)  What will her total earnings be after five years?

Solution

(1) Using a, = a, + (k — 1)d,
a, = 21000 + 4(1200)

= 25800.

Catherine’s salary is £25 800.

(i) Using S=in(a+l),

total salary = 3(21 000 + 25 800)

= £117000.

Her total earnings are £117 000.

state the common difference and the tenth term.
i) 5,8,11,14,...

i) 1,4,8,12, ...
i) 5,2,-1,—4, ...
v 3,7,11,15, ...
v =1,2,3,4,...
vl 2,3.5,5,6.5, ...

The first term of an arithmetic sequence is =10
and the common difference is 4.

(i)  Find the twelfth term.

(il The last term is 102. How many terms are
there?

®

@

The first term of an arithmetic sequence is 3,
the common difference is —2 and the last term
is =71. How many terms are there?

The first term of an arithmetic sequence is =5
and the sixth term 1s 10.

(i)  Find the common difference.
(i) Find the sum of the first 20 terms.

The kth term of an arithmetic sequence is
given by g = =7 + 4k.
(i)  Find the common difference.

(il  Write down the first four terms of the
sequence.

(i) Find the sum of the first 15 terms.



The sixth term of an arithmetic sequence is
twice the third term and the first term is 3.

) Find the common difference.
(i) Find the sum of the first 100 terms.
In an arithmetic sequence, the third term
is 7 and the common difference is 2.
()  Find the sum of the first ten terms.
(il  After how many terms does the sum equal
528?
() Find the sum of all the odd numbers from
49 to 149 inclusive.
(i) Find the sum of all the even numbers
from 50 to 150 inclusive.
(i) Explain how you could deduce the answer
to (i) from the answer to (i).

A ball rolls down a slope. The distances it

travels in successive seconds are 4 cm, 12 cm,

20cm, 28 cm, ... .

How many seconds elapse before it has

travelled a total of 36 metres?

In an arithmetic sequence the 8th term is

twice the 4th term and the 20th term is 40.

(il Find the first term and the common
difference.

(il  Find the sum of the terms from the 10th
to the 20th inclusive.

50m of adhesive tape is wound onto a reel of

circumference 12cm. Owing to the thickness

of the tape, each turn takes 0.5 mm more tape

than the previous one.

How many complete turns are needed?

OO0

A piece of string 10m long is to be cut into

pieces, so that the lengths of the pieces form

an arithmetic sequence. The lengths of the

longest and shortest pieces are 1m and 25 cm

respectively.

(i How many pieces are there?

(il If the same string had been cut into
20 pieces with lengths that formed an
arithmetic sequence, and if the length of
the second longest had been 92.5 cm, how
long would the shortest piece have been?

The sum of the first n terms of a

sequence is S where S, = 2n* — n.

(il Prove that the sequence is arithmetic,
stating the first term and the common
difference.

(i) Find the sum of the terms from the 3rd to
the 12th inclusive.

(i) Rewrite the formula

S

n

Tn[2a+ (n = 1d] in the form

S, = pn’ + qn, where p and q are
constants, stating the values of p and ¢ in
terms of a and d.

(il Explain why the nth term of the sequence
is given by § — S _,and hence find a
formula for the nth term in terms of p and
q.

(i) Show that any sequence where S is of
the form pn® + gn is arithmetic and find
the first term and common difference in
terms of p and q.

3 Geometric sequences and series

When the terms of a geometric sequence, or geometric progression, are added
together, the result is called a geometric series.

You need to know how
to use logarithms.
These are covered in

Review: Algebra (1) on
page 30.

firstterma, = a
common ratio =r

number of terms=n

The following conventions will be used:

the general term =a, i.e. the term in the kth position.
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Geometric sequences and series

For the geometric sequence 3, 6, 12,24, 48,

a=3,r=2and n=>5.

To find an expression for the general term, look at how the terms are formed:

a =a =3
a, = ar = 3x2 =6
a, = ar’ = 3 x 2 =12
a, = ar’ = 3x2° =24
a. = ar' = 3 x2* =48

In each case, the power of r is one less than the position number of the term, for

example a, = ar’. This can be written deductively as

k=1
a, = ar (the general term).

The last term is

n—1
a = ar

n

These are both general formulae which apply to any geometric sequence.

Example 3.9

Example 3.10

Find the eighth term in the geometric sequence 5, 15, 45, 135, ... .

Solution

In the sequence the first term a = 5 and the common ratio r = 3.

The kth term is given by a, = ar*™".

= a, = 5% 3’
=10935

How many terms are there in the geometric sequence

0.2,1,5,25 ... ,390625?

Solution

The last (nth) term of a geometric sequence is given by a, = a X r

n—1

In this case,a = 0.2 and r= 5, so

0.2 x 5" = 390 625

5t = 22002 = 1953125
= T 02 =
= log R log1953 125 ¢—— You can solve the equation
by taking logarithms of both

= (1 — 1)log5 = log1953 125 sides. Alternatively, you can

log 1953125 use trial and improvement
= n—1=———-= to solve the equation.

log5

= n=10

There are 10 terms.



The sum of the terms of a geometric sequence

The next example shows you how to derive a formula for the sum of a

geometric sequence.

Find the value of 2+ 6 + 18 + 54 + ... + 1062 882.

()

=3

o

=

Solution 3

w

This is a geometric series with first term 2 and a common ratio of 3. wn

D

Let S=2+4+6+18+54+ ...+ 1062882 ©O) =

D

Multiplying by the common ratio 3 gives =

(1]

3S=6+18+54 + ... + 1062882 + 3188646 ® g

Subtracting ) from (2) =

)

38= 6+18+54+ ...+ 1062882 + 3188646 o

- S= 2+ 6+18+54+...+1062882 g'

= 28=-2+ 0+ 0+ 0+ +0 + 3188646

= 25 =3188644
= S=1594322

Applying this to the general geometric series to give a formula for the sum:

S=a+ar+ar’ +...+ar""' ®

Multiplying by the common ratio r gives
1S =ar+ar’+a’ + .. +ar" @
Subtracting (D) from (2) as before gives
(r=1S=—-a+ar

n
=dar —a

=a@" = 1)
5 - doD

The sum of n terms is usually written as S, and that for an infinite sum as Sor S_..
For values of r between —1 and +1, the sum of n terms is usually written as:

S, = M- y This means that you are working with
L=r positive numbers inside the brackets.

LrEcHNoLOGY

Use a spreadsheet to generate a geometric sequence and to calculate the sum of
the terms. Verify that the formula gives the same answers.
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Geometric sequences and series

m A geometric sequence has terms 4, 8, 16, ... 1024.

(i)  How many terms are there in the sequence?

(i)  Find the sum of the terms in this sequence.

Solution

@) nth term = ar"”'

=  4x2""'=1024 ¢— a=4,r=2and nthterm=1024.

= 2" = 256
= log2"™" = log256
= (n — 1)log2 = log256

_ log 256
= n—1= Tog 2

= n—1=28
There are 9 terms in the sequence.

—1<r<1is sometimes ) §= M
written as [r] < 1. |r| is the r—1
modulus of 7 (or mod ) _ 42" - 1)
and is the absolute value 2 -1
or magnitude of r. = 2044

For example, [-11=1,

|- =L and1n1=1. Infinite geometric series

So if the magnitude of
the common ratio is less
than 1 then the sequence

In the general geometric series a + ar + ar® + ..., the terms become
progressively smaller in size if the common ratio, r, is between —1 and +1.

converges. For—1 <r<1,+" — 0 as n — o0 and so the formula for the sum of a
geometric series,
S = a(l—1+")
Discussion point " L=
= What happens to an may be rewr;tten for an infinite Zeries as
infinite series if r =+1 S = T—; S. = -7

orr=-1?

For an infinite series to have a finite sum, the value of r must be such that —1< r <1.

You saw this example in

Find the sum of the infinite series 2 + 1+ % + % + é +....

Chapter 1, on page 2. Solution
This series is geometric with a =2 and r = % so the sum is given by
S=-% wherea=2and r = L.
1—7r 2
2
S =
1
1-5
_2
1
2
=4



Discussion point

You saw a diagram like
Figure 3.4 on page 3.

=» How does it illustrate
Example 3.137

S
—_

ol

ESE
-
0|~
H;

Figure 3.4

Example 3.14

The first term of a geometric progression 1s 20 and the sum to infinity is 13% .

Find the common ratio.

Solution
_a
S_l—r
1 _ 20
= 131 = 7=
= D(1-r=20
= 1—r:20><4—30
-3
2
= r=-1

LrEcHNoOLOGY

Use a spreadsheet to
generate this sequence
and the sum of the
series. How quickly does
it converge? Try some
other geometric series

for which =1 <r< 1.

The log of any number
less than 1 is negative,
so you need to reverse

The first three terms of an infinite geometric sequence are 2, 1.6 and 1.28.
(1) State the common ratio of the sequence.
(i)  Which is the first term of the sequence with a value less than 0.5?

(1)  After how many terms will the sum be greater than 9?

Solution
@) a=2 and ar = 1.6
= r=0.8

(i)  The nth term =2 x 0.8""".

2x087"'<05
0.8""' <025

= log0.8""" < log0.25

= (n—1)log0.8 < log0.25

U

the inequality since you
are dividing by a negative
amount.

+ log0.25
= (n=1> log0.8
= (n—1) > 6.21...
= n>721.. nis a number of
terms so it must be
So it 1s the E}&h term. a whole number. -
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Geometric sequences and series

2(1 - 0.8")

Gi) S, = <r—qg = 100 - 08
10(1 - 0.8") > 9
1-0.8" > 09
0.1> 0.8’

log0.1 > log0.8"
log0.1 > nlog0.8

Logarithms have been
used in this solution
but since the numbers
are small, it would also log0.1 < n 4 log 0.8 is negative so
have been reasonable to log0.8 reverse the inequality.
find the answer using a

trial and improvement
method.

LU

U

= n>10.31...

The sum will be greater than 9 after 11 terms.

(o . . )
Discussion point

You need to be very careful when dealing with infinite sequences.
Think about the following arguments:

(i) S=1-2+4-8+16-32+64— ...
= S=1-2(1-2+4-8+16-32..)

= S§=1-2S
=35 =1
_ 1
S=3

(ii) S=1+(2+4)+(-8+16)+ (-32+64) + ...
= S=1+2+8+16...

So S diverges towards +co.
(iii) S=1-2)+4-8)+ (16 -32) + ...
= S=-1-4-16-...

So S diverges towards —.

=» What is the sum of the series: is it %,+OO,—OO or something else?

. J

Modelling using sequences and series

Compound interest is an example of geometric growth: investing /100 at a rate

of interest of 4% p.a. compounded annually will yield £100 X 1.04 after one

year, £,100 X 1.04* after two years and so on. In this example it is the geometric
N sequence that is important; the series has no practical relevance.

-
Discussion point
Although population growth may be thought to follow a similar pattern, the

7 annual percentage rate is unlikely to be constant, since it is affected by many
external factors.

=» What factors are
likely to affect the
annual percentage
rate for population

Radioactive decay can also be modelled by a geometric sequence, as shown in
growth? )

the next example.




Example 3.16

(1D Are the following sequences geometric? If so,

A sample of radioactive material is decaying. Initially, the sample contains N

nuclei. The probability that any nucleus will decay in the course of one year

is p. What is the expected number of nuclei remaining after y years?

Solution

At the end of the first year N, X p nuclei will have decayed.

Number remaining, N, =N, — N, p

Similarly, after the second year, N, = N,(1 — p)

= N,(1 - p)>.

Continuing this, the expected number of nuclei remaining after y years is

N,1=p).

state the common ratio and the sixth term.

i 5,10,20,40, ...

i 1,-1,1,-1,1,...
i) 2,4,6,8, ...

v 1,1.1,1.11,1.111, ...
Mo6,3,1%, 3,

vl 2,-4,8,-16, ...

Write down the fifth term, the common ratio
and the nth term of the following geometric
progressions.

i 3,-6,12,...

o 2,11,
i) a,ab,ab®, ...

Which of the following geometric series
converge? For each one that converges, find
the sum to infinity.

(i)  First term 8 and common ratio —%

li)  First term 4 and second term 2

i) First term 0.1 and second term 1

(iv) First term 3 and sixth term %

(v)  First term 4 and common ratio —1

Explain why the geometric series with a = 1
and r = -1 does not converge.

(i) Find how many terms there are in the
geometric sequence 2,4, 8, ... 2048.

(il  Find the eighth term of this sequence.

(i) Find the sum of all the terms of this
sequence.

For each of the geometric sequences below,

(a) find the common ratio and the
number of terms

(b) find the sum of the sequence.
(il 5,10,20,... 10240
i 2,6,18,... 118098
i) 8,—4,2, ..., ~ 7096

The value of a car when new is £10000 and
each year its value depreciates by 15%. Use
logarithms to find how many complete years it
will be before the car is worth less than £500.

The fifth term of a geometric sequence of

positive numbers is 48 and the ninth term is 768.

(i)  Find the common ratio.
(i) Find the first term.
(i) Find the sum of the first ten terms.

liv) How many terms are needed if the sum is
greater than a million?

The first three terms of an infinite geometric
sequence are 9, 6 and 4.

(i)  Find the common ratio.

(il Find the position of the first term in the
sequence that is less than 1.

il After how many terms is the sum greater
than 25?

(v Find the sum to infinity of the terms of
the sequence.

$9149s pue sacuanbag ¢ uaydey)
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Geometric sequences and series

A geometric series has first term 20 and
common ratio r. Find how many terms of the
series are required for the sum to be within

1 X 107° of the sum to infinity in each of the
following cases.

i) r=0.8

i) r=-0.8

Find the sum to n terms of each of the
following series.

i x+x+x"+ ...

i T—y+y =y + ..

i) 1—2a+4a” —8a’ + ...

The first three terms of an arithmetic

sequence, a, a + d and a + 2d, are the same

as the first three terms g, ar, and ar® of a
geometric sequences. (@ # 0).

Show that this is only possible if r= 1 and
d=0.

A tank is filled with 20 litres of water. Half the
water is removed and replaced with antifreeze
and thoroughly mixed. Half this mixture is
then removed and replaced with antifreeze.
The process continues.

() Find the first five terms in the sequence of
amounts of water in the tank at each stage.

(il After how many operations is there less
than 5% of water remaining in the tank?

(il Find the first five terms of the sequence of
amounts of antifreeze in the tank at each
stage.

(iv) Is either of these sequences geometric?
Explain your answer.

A pendulum is set swinging. Its first oscillation
is through an angle of 30° and each succeeding
oscillation is through 95% of the angle of the
one before it.

(il After how many swings 1s the angle through
which it swings less than 1°?

(il What is the total angle it has swung
through at the end of its tenth oscillation?

(il What is the total angle it has swung
through before it stops?

The first two terms of a geometric sequence

are sinf and tan 6 where 0 < 6 < %

(i)  State the common ratio.

(i) When 0 = % , find the sum of the first

five terms, leaving your answer in surd
form.

A second series has first term tan 6 and second

term sin@ where 0 < 0 < %

(il Find the sum to infinity of this series
n . .
when 0 = 3 leaving your answer in surd

form.
A third series has first term sec @ and second

term cos@ where 0 < 0 < %

(iv) Find the sum to infinity of this series.
(v) Is it possible for this sum to equal 17

Figure 3.5 shows the steps involved in
constructing a snowflake pattern.

(a) (b)
(c) (d)
Figure 3.5

(a)  This shows an equilateral triangle
with each side of length 9 cm.

(b) Here each side is trisected and the
centre section replaced with an
equilateral triangle.

() The procedure is repeated for each of
the six small triangles around (b).

(d) This construction is repeated until
you have an infinite sequence.

(il Calculate the length of the perimeter of the
figure for the first five steps, starting with the
original equilateral triangle.

(il What happens to the length of the
perimeter as the number of steps increases?

lii) Does the area of the figure increase
without limit? Justify your answer.



LEARNING OUTCOMES

When you have completed this chapter, you should be able to:
> work with sequences including:
O those given by a formula for the nth term
those generated by a simple relation of the form x = f(x,)
increasing sequences
decreasing sequences
periodic sequences
> understand and use sigma notation for sums of series
> understand and work with arithmetic sequences and series, including:

© O O O

O the formula for the nth term term
> the sum to nterms
> understand and work with geometric sequences and series, including:
O the formula for the nth term
O the formula for the sum of a finite geometric series
O the formula for the sum to infinity of a convergent geometric series
O theuseof IrI<1
O modulus notation
> use sequences and series in modelling.

KEY POINTS

1 Asequence is an ordered set of numbers, a4,,4,,4;, ..., a,...,d,, where 4, is
the general term. It may be finite or infinite.

2 Aseries is the sum of the terms of a sequence:

k=n
g +a, +a,+...+ta =Y
k=1

3 In an arithmetic sequence, a,,, = g, + d where d is a fixed number called the
common difference.

4 In a geometric sequence, 4,,, = ra, where ris a fixed number called the
common ratio.

5 Ina periodic sequence, a,,, = a, for a fixed integer, p, called the period.
6 Inan oscillating sequence the terms rise above and fall below a middle value.

7 For an arithmetic sequence with first term a, common difference d and n
terms:

m the kthterm, a, = a + (k — 1)d
m thelastterm, [ = a+ (n — 1)d
m the sum of the terms, S, = %n(a +1) = %n[Za + (n — 1)d].
8 For a geometric sequence with first term a, common ratio rand n terms:
m the kthterm, q, = ar*™!

= the lastterm, a, = ar"”'

= the sumof the terms, § = a(” = 1) _a(l=1")

(r=1) -7

9 For an infinite geometric series to converge, -1 <r< 1.

In this case, the sum of all the terms is given by S, = =7

$9149s pue sacuanbag ¢ uaydey)

55



Review: Algebra ¢

1 Equations and inequalities

Quadratic functions and equations
A quadratic equation is any equation which can be ]
1 9 Y equation w L recHNoLOGY

written in the form ax® + bx + ¢ = 0 with 4 # 0.

There are a number of ways of solving these: Your calculator may have
an equation solver which
m  Factorising: 3x> —8x+4 =0 can be used to find the
= 3% — by —2x 4+ 4 =0 roots of a quadratic
equation. You can use
= 3x(x—2)—2(x—-2)=0 this to check answers.
= Bx=2)(x=2)=0 3x4=12
2 Find two numbers that multiply to give 12
= x=3 or x=2 and add to give —8. These are —6 and —2.

m  The quadratic formula: The roots of the general quadratic

This formula
2
=b* b” ~ 4ac \Mj— is derived
a

equation ax” + bx + ¢ = 0 are given by x =

using the

In the quadratic formula, the expression b* — 4ac is referred to gfr:hcl):ti?]f
as the d.iscriminant, since it discriminates between the types | 4 s%uarg.
of solutions:
o If b* — 4ac > 0 then the square root can be found and

Algebra is generous; she there are two distinct roots.

often gives more than is o If b — 4ac = 0 then both roots of the equation are equal.

asked from her. o If b* — 4ac < 0 there is no real value of the square root, so there are no

Jean le Rond d’Alembert real roots.

(1717-1783) m  Drawing a graph: The roots of the equation x* + 2x — 5 = 0 Iv?llfor:@thc’d
can be found by drawing the graph of y = x> + 2x — 5and «— give avery
finding the x coordinates of the points where it crosses the approximate
X—axis. solution.

m  Using your calculator: Some calculators have the facility to solve quadratic
equations. If you have such a calculator, make sure you know how to use it. It
will be helpful for checking your answers. However, the three methods given
above are all important and you must be able to carry them out without a
calculator.

Completing the square

Example R.1 shows how the method of completing the square can be used to find
the line of symmetry of a quadratic curve and the coordinates of its turning point.




Example R.1 Find the coordinates of the turning point and the equation of the line of

symmetry for the curve y = 2x> — 4x — 7 and hence sketch the curve.

Solution

y=2x> —4x -7 = y=2[x> —2x] -7

The least value of this 2
is when the squared term =y =2fx - 2x+ 1; =7 | add 1 to make

is zero, i.e. when x = 1 = y=2(x -1 1] -7 x* - 2xinto a

andy = =9 perfect square,
\ = yp=2x-1>-9 and subtract 1

to compensate.

Z e1gaby mainay

So there is a minimum turning point at (1,-9).
When the coefficient
of x”is negative,
the procedure is the
same, but in this case
there is a maximum
turning point.
This method can
also be used to
sketch the graph of
a quadratic function

which does not cross
the x-axis.

The line of symmetry passes through the turning point, and so it is the line
x = 1.

When x =0, y =—7, so the graph passes 9A
through (0, =7).

L] teCHNOLOGY

Your calculator may
have an equation solver Figure R.1
which can be used to
solve simultaneous
equations. You can use
this to check answers.

Sometimes an equation needs to be re-written to form a quadratic equation
before you can solve it.

ExompLy— Solve the equation 5*+5*—6 =0

Solution
This is a quadratic equation in disguise. 5% = (5%)?
Let y=5" ¢ GP+5-6=p+y—6

Soy*+y—-6=0

= y=-3ory=2 ¢ which has no solutions.
y= 2 = 5=2 5¥is always positive.
So log5* =log?2
x log5 =log?2
=082 _ 431 (3s.£)
log5
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Equations and inequalities

Simultaneous equations

The elimination method is suitable for solving two linear simultaneous equations.

Example R.3

(i)  Solve the simultaneous equations ~ 3x — 2y = 17
7x — 3y = 28

(i)  Check your answer.

Solution
You might prefer to write y Q) 9x — 6y = 51 ¢ Multiply the first quation by_?) and
the equations in the the second by 2 to give equations
opposite order before 14x — 6y = 56 ¢—————— with the same coefficient of j.
subtracting. —Sx =-5
— \ Subtract.
x =1
Substituting x = 1 into either of the original equations gives y = —7.

The solution is x =1, y =—7.

1 Substitute x = 1, y = —7 into 7x — 3y = 28.

(1)
Substitute your answers / LHS = (7X1) = (3 x=7) =7 = (-21)
into the other one of the =28

original equations you _ .
were given as a check = RHS as required

that your values are
correct.

The substitution method is used to solve simultaneous equations for which
one is linear and the other is quadratic, although it may be used to solve two
linear simultaneous equations.

To find the point(s) of intersection of two curves or lines you need to solve their
equations simultaneously, using one of these two methods.

Example R.4 Find the points of intersection of the line x — y = 1 and the curve

x® +2y° =17.

Solution Replace x
Make x the subject of the first equation: x = y + 1 D 7L
Substitute into the second equation: (y + 1)* +2y° =17
Expand and simplify: Y 2y + 142y =17

= 3> +2y =16 =0
= 3y —6y+8y—-16=0
= 3y(y—2)+8(y—2)=0
= By +8)(y—-2)=0
=y= —% ory =2
Substituting each value in turn into the original linear equation gives the

points of intersection as (3, 2) and (—%,—%).



Inequalities

The rules for solving inequalities are similar to those for solving equations, but if
you multiply both sides of an inequality by a negative number, then you need to
change the direction of the inequality.

When dealing with quadratic inequalities, the easiest method is to sketch the
associated graph.

Example R.5 5
Solve x™ + 6x+2 = x + 8.

Solution

Collect terms on one side.

X’ +6x+2=x /
= X +5x-6=0 Factorise.
= (x+6)(x—1) = O
A This curve cuts the
Sketch the graph of x-axis when x = —6
y=(x+6)(x—1 I and when x = +1.

/:v

o /1
You need the region

K| where y =0

This may also be Figure R.2
expressed as

(s = =) U e =1 The solutionis x < —6 or x = 1.

Notice that the points where x = —1 and x = 6 are marked with a solid circle

in Figure R.2, to show that these values are included in the solution set. If you
were asked to solve x* + 6x + 2 > x + 8 then the values —6 and +1 would not be
included in the solution set and you would show those points using an open circle.

Inequalities may also be used to define regions, as in Example R.6.

Example R.6 o ) )
Sketch the curve y = x” + 5x — 6 and indicate by shading the region where

y=x>+5x—6.

Solution
y=x"+5x—6=(x+6)(x—1)
YA
The curve cuts the x-axis at x = —6 and
x = 1, and cuts the y-axis at y = —6.
-6 X For all the points on the graph
—‘6\ itself, the y coordinate is equal
to the value of x> + 5x — 6.
\ For all the points in the shaded region,
the y coordinate is greater than the
value of x* + 5x — 6.
Figure R.3

Z e1gaby mainay
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Equations and inequalities

The region where y = x” + 5x — 6 includes the shaded region and the
curve itself, so the curve is drawn with a solid line in Figure R.3. If the
inequality had been > and not = then the curve would have been drawn

with a broken line.

Review exercise R.1

(D Solve the following equations by factorising.
il x> —-8x+12=0
il & +1la+30=0
il 16 — x> =0
v 2p° +5p+2=0
M 4 +3-7=0
Vil 3x® = 14x -8
(2 Solve the following equations by using the

quadratic formula, giving your answers correct

to 2 d.p.
il x+x—-8=0
il 2x* —=8x+5=0
(il x* +x =10
(® Write in the form a(x + b)> + c.
() 3a?—12x+7
i) 2x*+6x+5
(i) 5+ 8x — &7
(@) Find the equation of the line of symmetry
and the coordinates of the turning point for
the following curves and sketch their graphs,
including the line of symmetry.
il y=x"+4x-8
il y=2x>+8x-3
il y=4+2x -«
(B) Solve the following pairs of simultaneous
equations using the elimination method.

il 3x—-2y=6
5x + 6y = 38
(i) 3x+2y=12
4x +y =11
i) 4x — 3y =2
S5x =7y =9

©®

Solve the following pairs of simultaneous
equations using the substitution method.

i x =2y
x® —y* +xy =20
i) x+y=5
xt +yt =17
(i) 2x—y+3=0
y? = 5x% =20

Express the following inequalities using set
notation and illustrate them on number lines.

(i) 2<x<4

(ii) —1l=x=-7

i) x=0o0r x <—4

In each case draw a sketch of the associated
curve and identify the interval(s) on the x-axis

where the inequality is true. Illustrate the
interval(s) on number lines.

il x*—2x—-8>0

i) 24+x—-x"=0

(il 6x> —13x +6 < 0

i Sketch the curve y = 2x> + x — 1 and

the line y = 2x + 9 on the same axes
and find their points of intersection.

(il On your graph, shade the region for
which y > 24> + x =1 and y < 2x + 9.

Solve the following equations.
() x*=5x*+4=0

i) 4x*—13x*+3=0

il 2x—13J/x +15=0
Solve the following equations.
[ 3=4xX3+3=0

i) 3X2*+5%x2*=2=0
i) 6X7*+7x7"=3=0



2 Polynomials

Adding and subtracting polynomials

B’ +2x° —x+ )+ (> +5x—6)=3x" +x° +2x° —x+5x+4 — 6

Collect like terms. b= 4x° +2x° +4x -2

(Ba® +2x7 —x+4) = (x> +5x —6) =3x" —x’ +2x° —x —5x+4+6

=2x" +2x° — 6x + 10

Multiply each Mu"tlplylng p0lyn0mial5

term in the first > (x+2)(x7 +3x —4) = x(x" + 3x —4) + 2(x” + 3x — 4)
polynomial by each

term in the second. =x +3x" —4x+2x" +6x—8

Z e1gaby mainay

=x’+5x*+2x—8

Dividing polynomials

You can divide one polynomial by another to give a lower order polynomial.

Example R.7

Divide (2x° — 5x° — 7x + 12) by (x — 3).

Solution
. . x X 202 =2x°
Method 1: By inspection l
v
2x° = 5x° = 7x 4+ 12 = (x — 3)(2x° + ax — 4) -3x-4=12
=(x—3)2x" +x —4)
(2x° —=5x° = Tx +12) + (x — 3) = 2x° + x — Work out the
coefficient of the
Method 2: Long division middle term by
) thinking about the
2x" +x — 4 terms in x°.
x— 3)2x3 —5x% —Tx + 12
2x° — 6x”
x> —Tx
x® = 3x
—4x +12
—4x +12

04— | There is no remainder.
QRx’ —5x" —Tx+12)+(x —3)=2x> +x — 4

The factor theorem

The factor theorem is given by:
f(a) = 0 & (x — a)is a factor of f(x).

The factor theorem is useful in solving polynomial equations.
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Polynomials

Example R.8 (1) Show that x = —1 is a root of the equation x> — 4x° + x +6 = 0

and hence solve the equation.

(i)  Sketch the graph of y = x° — 4x” + x + 6.

Solution
() flx)=x" —4x> +x + 6
f(-1) = (-1 —4(=1)* + (-1 +6
=-1-4-1+4+6
=0

So x = —lisaroot of f(x) = 0,and hence (x + 1) is a factor of f(x).

2 =4 +x+6=0 The factorising is done
by inspection here,
2 _ — 0 ——
= (x+ D" =54 +6)=0 but it could be done by
=S (x+Dx-2)(x—-3)=0 long division instead.
The roots of the equation are x = —1,x = 2,x = 3.
(i)  The graph crosses the x-axis at x = =1, x = 2, x = 3.

The graph crosses the y-axis at y = 6.

9 A

6

1 O 2AN_/> 3
Figure R.4
@D ) Add Bx® —2x +4) to (x° + x — 3). (® Sketch the following polynomial curves.
il Add (5x* +2x> —x = 1) to i y=&-Dkx+2)(x-3)
(x> +2x° —x — 3). i) y=x"(x—23)
(il Subtract (2x> — 3x + 4) from i)y = x(2 = x)(x + 3)
(x> + 3x = 2). @ () Show that x = —2 is a root of the

equation 2x” + 7x° + 4x — 4 = 0 and
hence solve the equation.

lil  Sketch the graph of
y=2x" +7x° + 4x — 4.

(iv) Subtract (3x’ — 7x + 2) from
(6x + 7x> — 10x + 3).
@ () Multiply 2x* — 3x + 4)by (x + 3).
il Multiply (x> + 2x + 1) by (x> — 2x + 1).
(il Divide (x* + 2x* — x — 2) by (x — 1).
(iv) Divide (2x> — 5x° — 11x — 4) by (2x + 1).



(5 Find the equation of the curve shown in (® Solve the following cubic equations.

Figure R.5. Give your answer in the form i) 4x> =8> +x+3=0
3 2
y =ax” +bx” + o +d. il 3’ —2x% —19% — 6 = 0
74 (7 Leanne is dividing x* — 16 by x + 2.

She draws this table. g
X g
X Xt E
= 1\ o 3 X +2 16 'E
D
Copy and complete the table and hence write =3
04 down the result of dividing x* — 16 by x + 2. o
N

Figure R.5

KEY POINTS

1

For the quadratic equation ax” + bx + ¢ = 0, the discriminant is given by
b — 4ac.
m |[f the discriminant is positive, the equation has two real roots.
If the discriminant is a perfect square, these roots are rational and the
equation can be factorised.
m |[f the discriminant is zero, the equation has a repeated real root.
m If the discriminant is negative, the equation has no real roots.
Quadratic equations can be solved by
m factorising, in cases where the discriminant is a perfect square
—b £ b’ — 4ac
2a ’
The vertex and the line of symmetry of a quadratic graph can be found by
completing the square.

Simultaneous equations may be solved by

m substitution

m elimination

m drawing graphs.

Linear inequalities are dealt with like equations but if you multiply or divide by
a negative number, you must reverse the inequality sign: < reverses to > and
= to=.

When solving a quadratic inequality, it is helpful to start by sketching a graph.
The order, or degree, of a polynomial in x is the highest power of x which
appears in the polynomial.

The factor theorem states that if (x — a) is a factor of a polynomial f(x) then
f(a) = 0and ais a root of the equation f(x) = 0.

m using the quadratic formula x =
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Still glides the stream
and shall forever glide;
The form remains, the
function never dies.

William Wordsworth
(1770-1850)

64

Funcrions

Sometimes auto-tuning is used to improve a vocal track by correcting notes
which are off-key.

The pitch of a musical note depends on the frequency of the sound wave.

=»> How would the sound wave need to be transformed to change the pitch of
a note?

Review: Graphs and transformations

Graphs of polynomial functions

The order of any polynomial function is the highest power of the variable, so
f(x) = 3x> — 41s of order 2 and f(x) = 5x — «x°” is of order 3, etc.

The graph of a polynomial function of order # can have up to # — 1 turning
points, although often not all of these materialise. The general shape of a
polynomial curve is as in Figure 4.1.



neven n odd

[ tECHNOLOGY

Graphing software or a .

. . coefficient of NN
graphical calculgtor is " positive . \/
useful for exploring the NN
shapes of curves and
for checking sketches.
However, you should be N
familiar with the different coefficient of ot ~“ ,\

7

types of curves covered X" negative
in this review section, so
that you can recognise
and sketch them without
using technology.

Figure 4.1

suoldung v Ja1dey)

If a polynomial function f(x) can be factorised, then each factor will give a root
of the associated polynomial equation f(x) = 0. If there is a repeated factor then
this will correspond to a repeated root.

Exainplekt:] (@ () Solve x(x = 2)(x + 4) = 0. Remember that in a sketch, the

(b) Sketch y = x(x — 2)(x + 4). graph does not need to be drawn
to scale, but it should show the

(ii) (a) Solve (x + 1)*(5 — x) = 0. main features, such as the points
) where the curve crosses the
(b) Sketch y = (x +1)°(5 — x). coordinate axes.
Solution
(1) (@ x(x—=2)(x+4)=0= x=0,20r 4.
(b) YA

Y = X(x - 2)(x + 4) Cubic with +ve x3 term.
Crosses x-axis at—4, 0
and 2.

/~4 0 2 X

Figure 4.2

() (@) (x+1)°5-x)=0= x = -1 (repeated) or x = 5.
(b) YA

Cubic with —ve x3 term.
Crosses x-axis at
y=(x+1)%5-x) 5 and touches at—1.

Crosses y-axis at 5
(when x = 0).

Y

N
Q
\
/
x

Figure 4.3
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Review: Graphs and transformations

Reciprocal functions have the form f(x)

/Discussion point

=» Figure 4.4 shows
curves of the form

for

1
Yy =
X

the cases n=1and
n="2. Describe the
shapes of the curves
for other positive
integer values of n.

In both cases kis

the constantof ——

proportionality.

~

For both these functions, the
linesx =0and y =0 are
asymptotes for the curve.
The curve approaches an
asymptote ever more closely,

Graphs of reciprocal functions

-4 = 4
= x,f(x) xz,etc.

Asymptotes are usually shown
on a sketch using a dotted line
but in this case the asymptotes
are already there as the
coordinate axes.

but never actually reaches it.

YA YA

Figure 4.4

Proportional relationships and their graphs

Two variables x and y are said to be (directly) proportional if y = kx where k

is a constant. They are inversely proportional if y = -

The relationship y = kx" can be described by saying that y is proportional to x".
In the same way, the statement ‘y is inversely proportional to x", is represented

by the equation y = —.
X

Exponential and logarithmic functions

An exponential function is a function of the form y = a*, where a > 0, which
has the variable as the power. (An alternative name for ‘power’ is ‘exponent’.)
All exponential functions (a # 0) have graphs that have a similar shape.

m  They all cross the y-axis at the point (0,1).

m  They all have the x-axis as an asymptote.

YA y=¢

Notice that the function

y=05%iey=(3),
can also be written as
y=27%

(0}

Figure 4.5



Although there are many exponential functions, the function y = e, where
e is an irrational number approximately equal to 2.718, is referred to as the
exponential function; the curve y = e” has the special property that for any
value of x the value of y is the same as the gradient of the curve.

A relationship of the form y = e, where k > 0,is described as exponential

growth. If k£ < 0 the relationship is described as exponential decay.

Just as exponential graphs for a positive index are all very similar, so are the
graphs of the logarithm function for different bases.

y = logy sx

Figure 4.6

The logarithm function is the inverse of the exponential function.

In general the inverse of y = a” is

YA
written as y = log, x but there are two y=¢
special cases: ,
. .. Sy=x
Theinverse of y = e*is y = log, x 7
which is more often written as e
Yy = Inx. /// y=Inx
- 7
The inverse of y = 10% is 7
y = log,, x which is often written / P
justas y = logx. ol >
4 X
4
7
//
7/
Figure 4.7
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Review: Graphs and transformations

Transformations of graphs

A transformation is a relationship that is used in curve sketching. You can use
stretches, translations and reflections to transform the graph of any function.

Table 4.1
T ECHNOLOGY Function Transformation

Use graphing software flx) > f(x — 1) + s [t

to explore these Transladon | ¢

transformations.
f(x) = af (x) One-way stretch, parallel to y-axis, scale factor a
f(x) — f(ax) One-way stretch, parallel to x-axis, scale factor %
f(x) > —f(x) Reflection in x-axis
f(x) = f(=x) Reflection in y-axis

Example 4.2 Starting with the curve y = cos x, show how transformations can be used to

sketch the curves

(1) y=cos3x (1) y = cos(%) () y = cos(x - %) (iv) y = cosx — 2

Solution

(1)  The curve with equation y = cos3x is obtained from the curve with
equation y = cosx by a stretch of scale factor % parallel to the x-axis.

y = cos 3x has a period
of ZT” instead of 2.

CH\
/ o T 27 \;x
2 2!
=l

Figure 4.8

2
stretch of scale factor 2 in the x direction.

(i)  The curve of y = cos(ﬁ) is obtained from that of y = cosx by a

y = cos (%) has a period
of 47 instead of 27.

o s T 3t 2w Sm 31 7 4 X
2 2 2 Pl
-1 Y = cos X

Figure 4.9




(i)  The curve of y = cos(x = %) is obtained from that of y = cosx

by a translation of

o WA

(@)
>
S
Y T
= COS(XK—— ~
/ J (x-3) y = cos x (1)
ey
m m m N
) T TT 31 271 ST 31T 7T 47T X EI
2 2 2 2 =
2]
_1 =
o
=]
Figure 4.10 n

@v)  The curve of y = cosx — 2 is obtained from that of y = cosx by a

0
translation of [ 2].

Y
o I TT 31 271 St 31 71T 47T X
2 2 2 2
/ Yy =cosx—2
2

Figure 4.11

Review exercise

(1) Sketch the following curves. (3 Sketch, using the same scale on both axes, the

following sets of curves.
0 y=(x+1D2x —1)(x = 3)

() y=2-x)2+x)(3+x)
i)y = (x+1)7°(x — 3)° il y=1y=2"andy=23"

() y=x,y=¢ andy=Inx

@ Sketch the following pairs of curves on the (@) Sketch, on the same axes, the following sets of

same axes, taking care to clearly label each Curves.

h of the pair.
Braphl of the part il y=x>,y=x"+3andy = (x+3)

(i) yZ%andyZ% (i) y=sinx,y =sinx — 2 and

1 1 =sin(x—£)
i) y=-—%andy=—7 Y 2
X X
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Review: Graphs and transformations

(B Each part of Figure 4.12 shows the curve (6 A new moisturiser is being marketed in cubical
y = (x — 2)*(x + 1) (in red) and one jars which have different sizes: 30 ml, 50 ml and
other curve which has been obtained from 100ml. The price £ C is directly proportional
y = (x — 2)*(x + 1) by one of the following to the height of the jar and the price of the
transformations: translation, stretch or 50ml jar is £36.
reﬂecFion. In each case write down the (il Find the height of the 30ml jar.
equation of the blue curve and state the (i) Find the price of the 30ml jar.

relationship between the two curves. ] . )
(i) Find the price of the 100ml jar.

i YA liv) Sketch a graph to show the relationship
between price and volume.
@ The cost £,C of my electricity bill varies

inversely with the average temperature 6°C
over the period of the bill. One winter, when

3 0 > the average temperature was 8°C, my bill was
/ / £365 for the 3-month period.

) () How much would I expect to pay in the
i A summer, when the average temperature is
20°C?

i) Sketch a graph to show the relationship
between temperature and electricity cost.
5 - li) How realistic is this model?
A curve has the equation f(x) = 1 + Inx.

(i)  Sketch the curve.

(il Find the exact coordinates of the point
where the curve crosses the x-axis.

(iii)

2

A

i) Verify that the curve meets the line y = x
at the point (1, 1).

(® () On asingle set of axes, sketch the curves
y=¢" —1 and y = 2¢™", indicating any
asymptotes.

(il Find the exact coordinates of the point of

(iv) )

following curves.
x ) y=sin2x

i) y= sin(x + %)

1

Y,

2

O

YA intersection of these two curves.

Starting with the curve y = sinx, show how
transformations can be used to sketch the

(6]
4

Figure 4.12



1 The language of functions

A mapping is any rule which associates
two sets of items, which are referred to
as the object and image or the input
and output.

mapping image

(output)

For a mapping to make sense or to have  Figyre 4.13
any practical application, the inputs and
outputs must each form a natural collection or set.

The set of possible inputs is called the domain of the mapping and the set of
possible outputs is called the range of the mapping.

suoldung v Ja1dey)

Mappings

In mathematics, many (but not all) mappings can be expressed using algebra. A
mapping can be one-to-one, one-to-many, many-to-one or many-to-many.

Here are some examples of mathematical mappings.

(@) Domain: integers Range: integers
One-to-one l Objects Images
-1 > 3
0 > 5
1 > 7
2 > 9
3 > 11
General rule:  x > 2x+5
(b) Domain: integers Range: real numbers
Objects Images
One-to-many |—» 19
e 5
o
 ) 2.52
3 M 2.99
T
General rule: Rounded whole numbers —— Unrounded numbers
(©) Domain: real numbers Range: real numbers
yi-1lsys<i1
Many-to-one [— Objects Images
0
45 0
90 0.707
135 1
180
General rule:  x° > sin x°

Al



72

The language of functions

In some texts you will
see 0 excluded from N.

(d) Domain: quadratic Range: real numbers
equations with real roots
Many-to-many — Objects Images
X —4x+3=0 0
x>—x=0 1
¥*=3x+2=0 2
i —b —Jb” — 4ac

General rule: ax®>+bx+c¢=0 = —5
:: b+ b — 4ac

2a

Functions

Mappings which are one-to-one or many-to-one are of particular importance,
since in these cases there is only one possible image for any object. Mappings
of these types are called functions. For example, x — x* and x — cos x are
both functions, because in each case for any value of x there is only one possible
output.

The mapping of rounded whole numbers on to unrounded numbers is not a
function since, for example, the rounded number 5 could map to any unrounded
number between 4.5 and 5.5.

There are several different but equivalent ways of writing a function. For example,
the function which maps x on to x* can be written in any of the following ways:

flx) = &
fx—s 2 —] Read this as ‘f maps x on to x*".

It can also be written as y = x? but this is not using function notation.

A function y = f(x) may be defined for all values of x or only for a restricted
set of values.

Strictly, when a function is written it should always be accompanied by its
domain. When you write this, it is often helpful to use one of the following
symbols to denote different types of numbers:

Z" is the set of counting numbers: 1,2, 3, ... .

N is the set of natural numbers: 0, 1,2, 3, ... .

Z is the set of integers: ... =3,-2,-1,0,1,2,3, ... .

3

Q i1s the set of rational numbers, i.e. fractions such as -3

and %, together
with everything in Z.

m  Ris the set of real numbers, i.e. irrational numbers such as 7t and /2,
together with everything in Q.

If a function is written without its domain, the domain is usually taken to be the
real numbers.

It is often helpful to represent a function graphically, as in the following example,
which illustrates the importance of knowing the domain.



Example 4.3 Sketch the graph of y = 3x + 2 when the domain of x is given by

) xeR ¢ This means ‘xis in the set of real numbers'.
() xeR" 4—
@) «xeN.

This means ‘x is in the set of positive real numbers'.

Solution YA

(i) When x € R, all values of y are possible. The
range is therefore R, also.

suoldung v Ja1dey)

Yy=3x+2,xeR

o x
Figure 4.14
(ii) When x € R, so that x is restricted y A
to positive values, all the values of y
are greater than 2, so the range is
y>2. y=3x+2, xeR*

The open circle
shows that (0, 2) is
not part of the line.

o X

Figure 4.15

(i) When x € N, the range is the set of points 74

{2,5,8, ...}.These are all of the form
3x + 2 where x is a natural number
(0,1,2,...). This set can be written
neatly as {3x+ 2 : x € N}.

® y=3x+2,xeN

o X

Figure 4.16

73



74

The language of functions

These two mappings
are functions.

) VA

When you draw the graph of a mapping

m  the x coordinate of each point is an input value

m the y coordinate is the corresponding output value.

Table 4.2 shows this for the mapping x — %%, or y = &%, and Figure 4.17 shows
the resulting points on a graph.

Table 4.2
Input (x) Output (y)  Point plotted
-2 4 (-2,4)
-1 1 “1,1)
0 0 (0,0)
1 1 (1,1)
2 4 (2,4)

If the mapping is a function, there is a unique value of y for every value of x

YA

4

3

s}

1

1
2 10 1 2 x
Figure 4.17

in the domain. Consequently the graph of a function is a simple curve or line
going from left to right, with no doubling back.

Figure 4.18 illustrates some different types of mapping.

(a) One-to-one

y=2x+1

LY

These two mappings
are not functions as
in each case there are
two possible values

of y corresponding
to some or all values

of x.

(c) One-to-many

— ¥ A
/ y:izx
\?\

Figure 4.18

(b) Many-to-one

YA

y=x-x

(0}

(d) Many-to-many

LY

YA
5 y=%\25-x2
-5 0 5 x
-5




Activity 4.1
o should have

emphasised to
you the importance
of performing the
transformations in the
correct order. It is a
good idea to check
your results using a
graphical calculator
or graphing software
whenever possible.

Using transformations to sketch the curves of
functions

In the review section you used translations and one-way stretches to relate the
equation of a function to that of a standard function of the same form.This then
allowed you to sketch the curve of your function.

It is possible to combine translations and stretches, but you must be careful over
the order in which these are applied, as you will see in Activity 4.1.

F

ACTIVITY 4.1

Copy the triangle in Figure 4.19 and, for each of parts [i] to Y
(v], perform the transformations in both of the orders given.
In each case comment on whether the end results are the
same or different.
(i) (a) Translate the triangle by [3] and then stretch the ~ ©I 2 X
0 Figure 4.19

image with a scale factor of 2 parallel to the x-axis.
(b) Stretch the triangle with a scale factor of 2 parallel to the x-axis and

then translate the image by 3 .
0

(ii) (@) Translate the triangle by [3] and then stretch the image with a
scale factor of 2 parallel to the y-axis.
(b) Stretch the triangle with a scale factor of 2 parallel to the y-axis and

then translate the image by [(3)]

(iii)(a) Translate the triangle by (3) and then stretch the image with a

scale factor of 2 parallel to the x-axis.

(b) Stretch the triangle with a scale factor of 2 parallel to the x-axis and

then translate the image by 0 .
3

(ivl(a) Translate the triangle by [O] and then stretch the image with a
3

scale factor of 2 parallel to the y-axis.
(b) Stretch the triangle with a scale factor of 2 parallel to the y-axis and

then translate the image by [2]

(v) (@) Stretch the triangle with a scale factor of 2 parallel to the x-axis and
then stretch the image with a scale factor of 3 parallel to the y-axis.

(b) Stretch the triangle with a scale factor of 3 parallel to the y-axis and
then stretch the image with a scale factor of 2 parallel to the x-axis.

suoldung v Ja1dey)
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The language of functions

Example 4.4

Starting with the curve y = cosx, show how transformations can be used to
sketch the following curves.

76

(1) y=2cos3x (1)

y = cos(Zx - %)

Solution
(1)
gA The curve with equation
1 Y = cos 3x Y =cosx y = cos 3x is obtained
from the curve with
equation y = cos x by
a stretch of scale factor %
o T L 31 21 X parallel to the x-axis.
2 2 There will therefore be
1 one complete oscillation
B of the curve in 2t
(instead of 2m).
YA
2 y = 2cos 3x
The curve of y = 2cos 3x
is obtained from that of
y = cos 3x by a stretch of
scale factor 2 parallel to
> the y-axis. The curve
© g U 57“ 7:" X | therefore oscillates
Y = ¢0s 3X | petween y =2 and
-1 y =2 (instead of
between y=1and y=—1).
-2
Figure 4.20
(i)
Y = cos(x = —T-L>
/1“ 4 3 The curve with equation
Yy =cosX y=cos(x—%)
/ = is obtained from the curve
o T T 31 21 “x with equation y = cos x
2 2 b
by a transation of | 3 |
-1 0

N

\0
PlA
3

Figure 4.21

o
d
N
3
Y

The curve of
= o L

y = cos (Z.X - )

is obtained from that of
= -

y = cos (x 3 )

by a stretch of scale factor L
parallel to the x-axis.




Example 4.5 (i)  Write the equation y = 1 + 4x — x” in the form y = a[(x + p)* + q].

(i)  Show how the graph of y = 1 + 4x — x”can be obtained from
the graph of y = x? by a succession of transformations, and list the

transformations in the order in which they are applied.

()]

(1)  Sketch the graph. =

=

- 8

Solution ~

@) If1+4x— 7 = d(x + p) +q] a

=]

then —x” + 4x + 1 = ax” + 2apx + a(p” + q)- a

o

Comparing coefficients of x*: a=-1. 3

Comparing coeflicients of x: 2ap = 4, giving p = —2.

Comparing constant terms : a(p*+ q) = 1, giving g = 5.

The equation is y = —[(x — 2)> — 5].

(i)  The curve y = x* becomes YA
the curve y = (x —2)> =5 by y =2
applying the translation

2
[ 5] as shown in Figure 4.22.

y = (x-2)*-5
0 X
(2,-9)
/Discussion point \ Figure 4.22
=> In Example 4.5, _ 5
you could write The curve y = (= 2)* =5 91 (2,5)
the equation becomes the curve y = (x-2)*-5
y=1+4x—x" y=—[(x—2)>=5] by
in the form . applying a reflection in
y=5-02-x). the x-axis (see Figure 4.23).

Describe a
different set of
transformations,
suggested by this
form, which would
map y = x’to
y=1+4x—x".

xY

y =-[(x-2)*-5]
=1 + 4x-%*

Figure 4.23

(i)  The blue curve in Figure 4.23 shows the graph.
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The language of functions

() (O Describe each of the mappings in Figure 4.24

as either one-to-one, many-to-one, one-to-

many or many-to-many, and say whether it

represents a function.

(iii)

(v)

(ii)

YY

YY

(vi)

69
=
58

Figure 4.24
For each of the following mappings:
g mapping

(ii)

(iii)

(iv)

(v)

(a) write down a few examples of inputs
and corresponding outputs

(b) state the type of mapping
(one-to-one, many-to-one, etc.).

Words — number of letters they

contain

Side of a square in cm — its perimeter

in cm

Natural numbers — the number of

factors (including 1 and the number
itself)

x—>2x—5

x = Jx

(@ For each of the following mappings:

(ii)

(iii)

(iv)

(a) state the type of mapping (one-to-
one, many-to-one, etc.)

(b) suggest suitable domains and ranges.

The volume of a sphere in cm® — its
radius in cm

The volume of a cylinder in cm® — its
height in cm

The length of a side of a regular hexagon
in cm — its area in cm’

x =X

down the values of
(@) £0) ® f{7) [ f£(=3).

(il A function is defined by
g:(polygons) — (number of sides).
What are the following:

(a)  g(triangle) (b) g(pentagon)
() g(decagon)

@) () A function is defined by f(x) = 2x — 5. Write

il The function t maps Celsius temperatures

on to Fahrenheit temperatures.It is

defined by t: C — 25 4 32 Find

5
(@ t0) ) t28) [ t(=10)
(d) the value of C when t(C) = C.

Find the range of each of the following
functions.

(You may find it helpful to draw the graph
first.)

i fx)=2-3x x=0

i) y=x>+2 xe {0,1,2,3,4}
(i) f:x—>x"—4 xelR

liv] y=tand 0° <6 <90°

Tt L
— el ==

(v) =cosx
v §<%s7y

Find the range of each of the following
functions.

(You may find it helpful to draw the graph
first.)

M frx—2 xe {-1,0,1,2}

m]ﬂ@:lfz xeR
X

i) fx)=Yx=3+3 x=3

The mapping f'is defined by

flx) = x> 0=sx=<
(x) = 3 3sx <
The mapping g is defined by
22 O0=sux =<
gx) =1 3, 2<«x=<

Explain why fis a function and g is not.

- W

= N



Starting with the graph of y = &2, state the
transformations which can be used to sketch
each of the following curves. Specify the
transformations in the order in which they are
used and, where there is more than one stage
in the sketching of the curve, state each stage.

In each case state the equation of the line of

symmetry.
i y=(kx=2) il y=3(x—2)7
(i) y=3x>—6x—2

Figure 4.25 shows a sketch of the graph of
y = f(x), where f{x) = &2 + 4x.

YA
y=1(x)

S

3>
>
X

(=2.-4)

Figure 4.25

Draw separate sketches of the following
functions.

In each case describe the transformations from

y = f(x).

M y=flx)—2 il y=1f{x-2)
(i) y=2fx)+3 (v y=12x)+3
v y=23f{x—-2)

Figure 4.26 shows a sketch of the graph of
y = f(x), where f{x) = 6x — x°.

YA
(3,9
y=1fx)
0 6 \ ;x
Figure 4.26

Use this graph to sketch the following curves
on separate diagrams.

In each case indicate clearly where the graph
crosses the x-axis and the coordinates of its
highest point.

@

il y=fx—2)
(i) y=2f(x)

i) y=2fx—2)

; —f
(iv) y—f(z)

The circle with equation x* + y* =1 is stretched
with scale factor 3 parallel to the x-axis and with

scale factor 2 parallel to the y-axis. g
Sketch both curves on the same graph, and -
write down the equation of the new curve. (It o
is an ellipse.) ;
Figure 4.27 shows the graph of y = f(x). n
=2
YA a2
N a1 =
=2
y=1w) @
T E—
0 1 2 *
Figure 4.27
Sketch the graph of each of these functions.
i y=1f2x) i) y=flx—1)
(i) y=2fx—1) (v y=3fx)
vy =1{3x) vi) y=1£3x—1)

Starting with the curve y = cosx, state how
transformations can be used to sketch these
curves.

) y=3cosx
i) y=cos(3x + 30°)

For each of the following curves:

i) y=cos3x—1

(a) sketch the curve

(b) 1identify the curve as being the same
as one of the following:
y = fsinx, y = *cosx or
y = Ttanx.

il y=cos(—x) li) y=tan(—x)

lii) y=sin(m—x) (iv)] y=tan(n — x)

(v] y=sin(—x)
[l Write the expression x* — 6x + 14 in

the form (x — a)> + b where a and b are
numbers which you are to find.

il Sketch the curves y = x? and
y =x% — 6x + 14 and state the
transformation which maps y = x? on to
y == 6x + 14.

(i) The curve y = x> — 6x + 14 is reflected in
the x-axis. Write down the equation of
the image.
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Composite functions

Starting with the graph of y = 2, state the In Figure 4.29, y = f(x) is the curve
transformations which can be used to sketch y=In(2x + 1) and y = g(x) is its reflection in
y=2x-1-x% the line x = 2.

Specify the transformations in the order in

which they are used.

State the equation of the line of symmetry.
(@ In Figure 4.28, y = f(x) is a translation of the

curve y = x*(x — 2) and curve

y = g(x) is the reflection of y = f(x) in the

X-axis.

Write down the equations of the two curves.

YA

YA

=Y

y=1x) y=g)

Figure 4.29

Write down the equation of y = g(x).

Figure 4.28

=Y

2 Composite functions

It is possible to combine functions in several different ways, and you have already
met some of these. For example, if f(x) = x? and g(x) = 2x, then you could write

f(x) + g(X) =x>+2x. — Here, two functions are added.

Similarly if f(x) = x and g(x) = sinx, then

f(x).g(x) = xsinx.  4—— Here, two functions are multiplied.

Sometimes you need to apply one function and then apply another, so that the
output of the first function is the input for the second one.

You are then creating a composite function or a function of a function.

Example 4.6

New parents are bathing their baby for the first time. They take the
temperature of the bath water with a thermometer which reads in Celsius,
but then have to convert the temperature to degrees Fahrenheit to apply the
rule for correct bath water temperature taught to them by their own parents.

At one o five
He’ll cook alive
But ninety four
Is rather raw.

Write down the two functions that are involved, and apply them to readings of
i) 30°C (i) 38°C (iii) 45°C.



Solution

The first function converts the Celsius temperature C into a Fahrenheit
temperature, F.

F=2C43
5
The second function maps Fahrenheit temperatures on to the state of the

bath.

F <94 too cold

94 < F <105 all right

F = 105 too hot
This gives

@) 30°C — 86°F — too cold
(i)  38°C — 100.4°F — all right
@) 45°C — 113°C — too hot.

In this case the composite function would be (to the nearest degree)

C < 34°C too cold
35°C < C < 40°C all right
C = 41°C too hot.

In algebraic terms, a composite function is constructed as

nput x _f, output f(x) Read this as 'g of f of x.’

input f(x) g, output g[f(x)] (or gf(x))
Thus the composite function gf(x) should be performed from right to left: start
with x then apply f and then g.

To indicate that fis being applied twice in succession, you could write ff{x) but you
would usually use £?(x) instead. Similarly g*(x) means three applications of g.

In order to apply a function repeatedly its range must be completely contained
within its domain.

Order of functions

It is often the case that the order of the individual functions in a composite
function matters.

For example, if f(x) = x* and g(x) = x + 1, then

f3)=9 g(9) =10 so gf(3) = 10
g(3) =4 f(4) =16 so fg(3) = 16.

suoldung v Ja1dey)
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- Composite functions

More generally,

X _f, X2 —
square add 1

So gflx) =x*+ 1.

To find an expression for fg(x) you must apply g first. In the example above, this
would give:

f
g 2
X add 1 v+ 1) square (x+1)

andso  fg(x) = (x + 1)~
Clearly this is not the same result.

Figure 4.30 illustrates the relationship between the domains and ranges of the
functions f and g, and the range of the composite function gf.

g

f domain of g < range of g

range of gf

Figure 4.30

of

Notice that the range of f must be completely contained within the domain of g.

Example 4.7

Given that f{x) = 2x, g(x) = %, and h(x) = %, find the following.

(1) fg(3) (i) gh(2) (1i1) gf(x) (iv) hfg(x)
Solution
®  fg3) = f[g3)] (i)  gh(2) = g[h(2)]
= £0O) =(3)
=18 _1
=4
i) g (x) = g[tlx)] (v)  fg(x) = f[g(x)]
= g(2x) = f(x?)
= (2x)2 — 2x2
= 4x°
So hfg(x) = h(2x?)
1
o 2x2



Inverse functions

Look at the mapping x — x + 2 with domain and range the set of integers.

Domain Range
-1 -1
0\0
1\1
2 \2
\3

4
x > x + 2

The mapping is clearly a function, since for every input there is one and only
one output, the number that is two greater than that input.

This mapping can also be seen in reverse. In that case, each number maps on
to the number two less than itself: x — x — 2. The reverse mapping is also a
function because for any input there is one and only one output. The reverse
mapping is called the inverse function, f™'.

Function: fix—>x+2 x e’
Inverse function: flix—>x—-2 x e’

For a mapping to be a function that also has an inverse function, every object in
the domain must have one and only one image in the range, and vice versa. This
can only be the case if the mapping is one-to-one.

So the condition for a function f to have an inverse function is that, over the
given domain and range, f represents a one-to-one mapping. This is a common
situation, and many inverse functions are self-evident as in the following
examples, for all of which the domain and range are the real numbers.

fix—>x—-1; flix—>x+1
g:ix > 2x; g‘ﬁx—)%x
hix— % htx — U
(A . . )
Discussion points
Some of these mappings (below] are functions that have inverse functions, and
others are not.
=>» Decide which mappings fall into each category, and for those that do not
have inverse functions, explain why.
=» For those that have inverse functions, how can the functions and their
inverses be written down algebraically?
(i) Temperature measured in Celsius — temperature measured in Fahrenheit.
(i) Marks in an examination — grade awarded.
(iii) Distance measured in light years — distance measured in metres.
(ivl Number of stops travelled on the London Underground — fare.
. J
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Composite functions

You can decide whether an algebraic mapping is a function, and whether it has an
inverse function, by looking at its graph. The curve or line representing a one-to-one
mapping does not double back on itself, has no turning points and covers the full

domain. Figure 4.31 illustrates the functions f, g and h given on the previous page.

YA YA YA

y =1 y=gx) y=h)

Figure 4.31

Now look at f{x) = 2 for x € R (Figure 4.32).You can see that there are two
distinct input values giving the same output: for example (2) = f(—2) = 4. When
you want to reverse the effect of the function, you have a mapping which for a
single input of 4 gives two outputs, —2 and +2. Such a mapping is not a function.

1{x) A f(x) = x*
............ 4..--.--.------
2 0 2 x

Figure 4.32

If the domain of f(x) = x° is restricted to R" (the set of positive real numbers),
you have the situation shown in Figure 4.33.This shows that the function which
is now defined is one-to-one. The inverse function is given by f'(x) = Jx | since
the sign means ‘the positive square root of”.

f=1(x)="x
VA has a single
input value.

/ f(x) =x% x e R*
=1 (x)=x
has a single
output value.

=

<Y

Figure 4.33



L tEcHNOLOGY P
e ACTIVITY 4.2

You can use graphing
software or a graphical
calculator.

It is often helpful to restrict the domain of a function so that its inverse is

also a function. When you use the inverse sin (i.e. sin™' or arcsin) key on your
calculator the answer is restricted to the range —90° to 90°, and is described as
the principal value. Although there are infinitely many roots of the equation
sinx = 0.5 (...,=330°,-210°, 30°, 150°, ...), only one of these, 30°, lies in the
restricted range of —90° to 90° and this is the value your calculator will give you.

The graph of a function and its inverse

For each of the following functions, work out the inverse function, and draw the
graphs of both the original and the inverse on the same axes, using the same
scale on both axes.

i) flx)=a%x € RY i) flo)=2x (i) flx)=x+2 [(iv] flx)=x>+2
Look at your graphs. What pattern can you see emerging?

Try out a few more functions of your own to check your ideas.

Make a conjecture about the relationship between the graph of a function and
that of its inverse.

You have probably realised by now that the graph of the inverse function is the
same shape as that of the function, but reflected in the line y = x.To see why this
is so, think of a function f(x) mapping a on to b; (a, b) is clearly a point on the
graph of f(x). The inverse function, {™'(x), maps b on to 4, and so (b, a) is a point
on the graph of {~!(x).

The point (b, a) is the reflection of the point (g, b) in the line y = x.
This is shown for a number of points in Figure 4.34.

YA
A(0,4) yEx
C(-4,2)
B(-1,1)
A'(#, 0)
“x
B/(1,+1)
C'(2,—4
Figure 4.34

This result can be used to obtain a sketch of the inverse function without having
to find its equation, provided that the sketch of the original function uses the
same scale on both axes.

Finding the algebraic form of the inverse function

To find the algebraic form of the inverse of a function f(x), you should start by
changing notation and writing it in the form y= ... .

suoldung v Ja1dey)
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Composite functions

Since the graph of the inverse function is the reflection of the graph of the
original function in the line y = x, it follows that you may find its equation by
interchanging y and x in the equation of the original function.You will then
need to make y the subject of your new equation. This procedure is illustrated in
Example 4.8.

Example 4.8

Find f~'(x) when f(x) = 2x + 1.

Solution
The function f(x) is given by y=2x+1
Interchanging x and y gives x=2y+1
x =1
Rearranging to make y the subject: Y ="
So £1(o0) = 1

Sometimes the domain of the function f will not include the whole of R.
When any real numbers are excluded from the domain of £, it follows that they
will be excluded from the range of ', and vice versa.

f
domain of f and /+\ range of
range of ! ~ and domain of !

f—l

Figure 4.35

Example 4.9

Find {'(x) when f(x) = 2x — 3 and the domain of fis x = 4.

Solution
Domain Range
Function: y = 2x — 3 x =4 y=5
Inverse function: x =2y — 3 x=5 y=4

Rearranging the inverse function to make Y

y the subject: y = f(x) )
_ X aF 3 /,'H' =X
=2

The full definition of the inverse function (4, 5) / »

is therefore - y=f"(x

(54
x+3 #

f7(x) = 5 for x = 5.
You can see in Figure 4.36 that the inverse
function is the reflection of a restricted 0 a >
part of the line y = 2x — 3. X
Figure 4.36



Example 4.10 () Sketch the graph of y = f(x) where f(x) = x>+ 2,x = 0.

Sketch the graph of the inverse function on the same axes.
(i)  Find {7'(x) algebraically.
(i)  Find f(7) and f7'f(7). What do you notice?

()]
=3
<
Solution o
L4
. o)
i -
@D Yy y=foo -
Y= x S
=
=
=2
(2]
y=Ff"x
oL >
X
Figure 4.37
(11) Domain Range
Function: y = x* + 2 x=0 y=2
Inverse function:x =y? +2  x =2 y=0

Rearranging the inverse function to make y its subject:
v =x— 2.

This gives y = ++/x — 2, but since you know the range of the inverse
function to be y = 0 you can write:

y = ++/x — 2 orjust y = Jx = 2.
The full definition of the inverse function is therefore:
f1(x) = Jx — 2 for x = 2.
@) f{7)=7*+2=51
7)) =f'(51)=51-2=7

Applying the function followed by its inverse brings you back to the
original input value.

Part (iii) of Example 4.10 illustrates an important general result. For any
function f(x) with an inverse ' (x), {'f{x) = x. Similarly ff '(x) = x. The effects
of a function and its inverse can be thought of as cancelling each other out.
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Composite functions

Example 4.11

Find the inverse of the function f(x) = 10%, and sketch f{x) and f~'(x) on the
same diagram.

Solution
y=10" y=x

The function f(x) is given by y = 10*. 94

,
.
,
.
,
,
.
,
,
1 ,
o
,
.
,
,
,
,
7
,

Interchanging x and y, the inverse function
is given by

x =107

y = log, x

This can be written as log, x =y, so
the inverse function is

t7'(x) = log,, x.

The function and its inverse function are
shown in Figure 4.38.

Figure 4.38

The arcsin function is /~ N\
the inverse of the sin Discussion points

function. It is written as Many calculators have a function and its inverse on the same key, for example

sin™'. Similarly arccos . .y . .
and arctan are the log and 107, J and a2 sin and arcsin, In and e*.

inverse functions of cos
and tan respectively.
These are covered in
more detail in Chapter 6.

(i) With some calculators you can enter a number, apply x*> and then J ,and
come out with a slightly different number. How is this possible?

(i) Explain what happens if you find sin 199° and then find arcsin of the answer.

(M  Simplify In e
(2 The functions fand g are defined by
f{x) = »* and g(x) = 2x + 1. (l x—>x+4 (il x—>x+38

v x—Jx +4

(6 Express the following in terms of the functions
fix — /x and g1 x — x + 4.

Find each of the following. (i) x—= Jx +8

88

0 £(2) (i) g2) i) gf(2) (iv) fg(2)

(3 The functions f, g and h are defined by
f(x) = x%, g(x) = 2x and h(x) = x + 2.
Find each of the following, in terms of x.

0 fg (i) gt (i) fh (iv) hf
(vl g (i) h?

Find the inverses of the following functions.

0 fix) =2x+7 (il flx)=4—-x
The function f'is defined by

flx) = (x — 2)*+ 3 for x = 2.

(il Sketch the graph of f(x).

(i On the same axes, sketch the graph
of f™!(x) without finding its equation.

The functions f and g are defined by

f(x) = sinx and g(x) = cosx where x is

measured in radians.

(il Find the smallest positive value of 8 so
that f(x) = g(x + 9).

(i)  Find the smallest positive value of ¢ so
that g(x) = f(x + ¢).

The functions £, g and h are defined by

f(x) = »°, g(x) = 2x and h(x) = x + 2. Find each

of the following, in terms of x.

(i) fgh (i) ghf (i) (fh)?



(9 Find the inverses of the following functions.

0 ) = 5

il fix)=x*—3forx =0

The functions f, g and h are defined by

fo)=—2- g =x

h(x) =v2 — «x.

[l For each function, state any real values of x
for which it is not defined.

(i) Find the inverse functions f~!
and h™".

il Explain why g™' does not exist when the
domain of g isR.

(i) Suggest a suitable domain for g so that g™
does exist.

(v) Is the domain for the composite function
tg the same as for the composite function

gf?

Give reasons for your answer.

@) A function f'is defined by:

fix—1 x e R x#0.
Find ~
i f2(x) (i) £3(x)
il £7(x) liv) £7%(x).

Two functions are defined as f(x) = x* and
gx) =+ 4x— 1.

(il Find a and b so that
g(x) =f(x+a) + b.

lil Show how the graph of y = g(x) is related
to the graph of y = f(x) and sketch the
graph of y = g(x).

lii) State the range of the function g(x).

liv) State the least value of ¢ so that g(x) is
one-to-one for x = c.

(v)  With this restriction, sketch y = g(x) and
y =g (x) on the same axes.

()l Write 2x> — 4x + 1 in the form
a(x —1)> + b where a and b are to be
determined.

il  Sketch the graph of
y = 2x° — 4x + 1, giving the equation of
its line of symmetry and the coordinates
of its vertex.

The function f'is defined by
f:x — 2x° — 4x + 1 and has as its domain
the set of real numbers.

il Find the range of f.

(iv) Explain, with reference to your sketch,
why f has no inverse with its given
domain and suggest the largest domain of’
positive values of x for which f(x) has an
inverse.

(v}  For this domain, sketch f(x) and f~'(x) on
the same axes together with their line of
symmetry.

(vil Find the exact value of the coordinates of
the point where
flx) = £ (x).

The functions f(x) and g(x) are defined by

f{x) = o% and g(x) = 2x — 1 for all real values of x.

(il State the ranges of f(x) and g(x) and
explain why f(x) has no inverse.

(il  Find an expression for g™'(x) in terms of x
and sketch the graphs of y = g(x) and
y = g”!(x) on the same axes.

(il Find expressions for gf(x) and fg(x) and
solve the equation gf{x) = fg(x).
Sketch the graphs of y = gf(x) and
y = tg(x) on the same axes to illustrate
your answer.

(iv) Find the range of values of a such that the
equation f(x + a) = g*(x) has no solution.

N
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- The modulus function

(Discussion points )

=» What is the value of
g(3) and g(=3)?

=» What is the value of

3+3[, 3-3,
3| + |3 and
3 + =317

X

90

3 The modulus function

Look at the graph of y = f(x), where f(x) = x (Figure 4.39).

YA
y=fx)=x

<Y

Figure 4.39
The function f{x) is positive when x is positive and negative when x is negative.
Now look at Figure 4.40, the graph of y = g(x), where g(x) = |x|.

YA
Y=g =1x|

LY

Figure 4.40

The function g(x) is called the modulus of x. g(x) always takes the positive
numerical value of x. For example, when x = =2, g(x) = 2, so g(x) is always
positive. The modulus is also called the magnitude of the quantity.

Another way of writing the modulus function g(x) is
glx) =x forx =0
g(x) =—x for x < 0.

The graph of y = g(x) can be obtained from the graph of y = f(x) by replacing
values where f(x) is negative by the equivalent positive values. This is the
equivalent of reflecting that part of the line in the x-axis.



Example 4.12 Sketch the graphs of the following on separate axes.

® y=l-x
(i) y=|1-x]|
@) y=2+|1-x]| =
=3
. Q
Solution =
@) y =1 — x is the straight line through (0,1) o ;
and (1,0). -
c
=2
1 y=1-x ‘.'._'..
o
. 5
ol 1 X @
Figure 4.41
(i) y= |1 — x| is obtained by reflecting YA
the part of the line for x > 1 in the
x-axis, because that part is below the
x-axis and so is negative. ) y = I 1 xl
o = X
Figure 4.42
YA
@) y=2+ |1 — x| is obtained from
Figure 4.41 by applying the
0 3
translation [2] y=2+1 -«
(2, 2)
(Discussion point )
Look back at the graph L >
of y = |x| in Figure 4.40. © e X
=» How does thi§ show Figure 4.43
that |x| <2is
equivalent to
_2 < x < 27 g . . "
ﬂ Inequalities involving the modulus sign
You will often meet inequalities involving the modulus sign.
Example 4.13 Solve the following.
i) Ix+3] <4
(i) [2x—1]>9
(i) 5— [x—2| >1
-
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The modulus function

The solution
represents two

separate intervals,

so it cannot be
written as a single
inequality.

Solution

() |x+3] <4 © —4<x+3<4 \
(=1

T=x=<1

It is helpful to sketch the
graph to check that your
solution looks right.

@@ |2x-1]>9 & 2x—-1<-9 or

) & 2x<-8

or

&S x<—4orx>5

yA
AN
y=a
y = |2x -1
olz X

Figure 4.45

(i) 5-|x—2]>1 & 4> |x—2|

=
=

=

yA
\ y

yA /
4
/9=
Yy = |x + 3’
~5 0 X
Figure 4.44
2x—1>9
2x > 10

[x—2] <4
—4<x-2<4
2<x<6

/

y=4
y=|x -2
0 X

Figure 4.46



Example 4.14 Express the inequality =2 < x < 6 in the form |x — a| < b, where a and b are

Solving these simultaneously gives a=2,b=4,s0 |x — 2| < 4.

to be found.
Solution
[x—a| <b & —b<x—-—a<b 9
& a-b<x<a+tb S
Comparing this with —2 < x < 6 gives L
o)
c
a+b=6. a
=
o
S
n

Sketch the graph to
check your solution.

Figure 4.47

Example 4.15 @) Sketch the graphs of y = |x + 2| and y = 2x + 1 on the same axes.

(1)  Hence solve the inequality |x + 2| < 2x+ 1.

Solution
@) yA

The solution of the
inequality is the
region for which the
y=2x+1 red graph lies below

the blue graph.
-2 / [9)
Figure 4.48

(i)  From the graph, the critical point is where the line y = 2x + 1 meets
the line y = x + 2. Solving these equations simultaneously:

<Y

2x+1=x+2
= x=1

From the graph, the region required is given by x > 1.
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The modulus function

Express =3 < x < 3 using modulus notation. il -1<x<6

Sketch each of the following graphs on a il 9.9 <x<10.1

separate set of axes. il 05<x<75

i y=|x+2| (7) Sketch each of the following graphs on a
i) y=]2x—3]| separate set of axes.

i) y=|x| +1 i y=|x+2] -2

Solve the following inequalities. i) y=]2x+5| -4

M Jx+3] <5 il y=3+ |x—2|

i Jx=2] =2 (il Sketch the graphs of y = |x + 3| and
il |x—5|] >6 y =3x — 1 on the same axes.

i |x+1] =2 lil Hence solve |x+ 3| <3x—1.
Express each of the following inequalities in @ () Sketch the graphs of y = |x— 3| and
the form | x —a| < b, where a and b are to be y=3x+ 1 on the same axes.

found. lil Hence solve |x—3| <3x+ 1.

il -1<x<3 Insert one of the symbols =, <, or &, if
il 2<x<8 appropriate, between these pairs of statements.
il 2<x<4 o a=p al = |b]

i) |x=3] >4 (x—3)>>16

Solve the following inequalities. il 2x<|x—1] (27 < (x—1)

i 2x=3] <7 @ Solve |x| > 2x—1.

i [3x—2] <4 @ Solve |2x+ 1| > |x — 2] by first sketching
i) |2x+3] >5 appropriate graphs.

(iv) |3x+2| =8 3 Solve |3x—1| < |2x+ 3].

Express each of the following inequalities in the
form |x —a| < b, where a and b are to be found.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

> understand the effect of simple transformations, and combinations of
transformations,

O on the graph of f(x)
O in sketching associated graphs
- y=aflx)
-y=flxl+a
- y=flx+a)
-y =flax)
> understand and use:
O composite functions
O inverse functions and their graphs
> sketch curves defined by simple equations involving the modulus function
> use functions in modelling:
O consideration of limitations of the model
O consideration of refinements of the model.




KEY POINTS

1 Mappings and functions
m A mapping is any rule connecting input values (objects) and output values

(images). o

It can be many-to-one, one-to-many, one-to-one or many-to-many. 3

m A many-to-one or one-to-one mapping is called a function. It is a mapping T

for which each input value gives exactly one output value. 2

m The domain of a mapping or function is the set of possible input values N

(values of xJ. T

m The range of a mapping or function is the set of output values. g

2 Transformations of the graphs of the function y = f(x) 2"

S

Table 4.3 «
Function Transformation

. t
f(x) = f(x — t) + s | Translation [s]

f(x) = af (x) One-way stretch, parallel to y-axis, scale factor a
f(x) — f(ax) One-way stretch, parallel to x-axis, scale factor%
f(x) = —f(x) Reflection in x-axis
f(x) > f(—x) Reflection in y-axis

When two transformations are combined, the order in which they are carried
out matters if they are both in the same direction.

3 Composite functions
A composite function is obtained when one function (say g) is applied to the
output from another function (say f). The notation used is g[f(x)] or gf(x).
4 Inverse functions
m For any one-to-one function f(x), there is an inverse function £ (x).
m The curves of a function and its inverse are reflections of each other in the
line y = x.
To illustrate this it is essential that the same scale is used on both axes.
5 The modulus function
m The modulus of x, written | x|, means the positive value of x.
m The modulus function is:
x| = x, forx =0
[ x| =—x, for x < 0.
m To sketch the modulus function, any part of the graph of the function that
is below the x-axis is reflected in the x-axis.

FUTURE USES

You will use the language and concepts of functions and transformations
throughout this book, particularly when you meet some new trigonometric
functions in Chapter 6.
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Almost everything

that distinguishes the
modern world from
earlier centuries is
attributable to science,
which achieved its most
spectacular triumphs in
the seventeenth century.

A. W. Bertrand Russell
(1872-1970)

Differenfiafion

P

In the hourglass in the photo, the volume of sand in the bottom bulb is I/, and
the height of sand in the bottom bulb is /.
dr

The rate of change of the volume of sand in the bottom bulb is given by TR
av,
dh -’

=» What information is given by %—Z X dh,

dt’

=» What information is given by % and by



Review: Differentiation

m  The gradient of a curve at a point is
given by the gradient of the tangent
at the point.

m  The gradient of the tangent at a point
A on a curve is given by the limit
of the gradient of chord AP as P
approaches A along the curve.

tangent
m  The gradient function of a curve is
the rate of change of y with respect
. d Figure 5.1

to x and can be written as <L g

dx

m  This is also called the derived function or derivative.

uonenualayig g ladey)

m In function notation, the derivative of f (x) is written as £ (x).

y = kx" = % = nkx""

y= () +gx) = L= () + g/ ()

4 ﬂ_4x3

For example, y=x" = Ix -
1 d 3
y=x?2 2%:—%962-

Finding tangents and normals

You can use differentiation to find the equation of a tangent or a normal to a
curve at any point.

A curve has equation y = x* — 20x + 1.
1) Find the gradient of the curve at the point where x = 2.
(1))  Find the equation of the tangent to the curve at this point.

(i)  Find the equation of the normal to the curve at this point.

Solution
(i) y=x"—20x+1
= % = 4x> — 20 4— First differentiate to find the gradient function.

d
Atx = 2, d_o): =4(2)° =20 ¢— Find the gradient when x = 2.

=12

Therefore the gradient of the curve at the point where x = 2 is 12.

->
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Review: Differentiation

(i) When x =2,y = (2)' —20(2) + 1 ¢——— Find the y coordinate

— -3 when x = 2.

Equation of tangent is
y—(-23)=12(x —2) 4— Usingy—y, = m (x = x,).
12x —y— 47 = 0.

(iii)  Gradient of normal is —. ¢—— Using m, = ——.

Equation of normal is
y = (=23) = —5(x = 2)

= 12y + x + 274 = 0.

Increasing and decreasing functions,

So when a function
is increasing it has
positive gradient,
and when it is
decreasing it has
negative gradient.

and stationary points

—— A function is increasing for a < x < b if f'(x) > 0 for a < x < b,
and it is decreasing for a < x < b if f’(x) < 0 for a < x < b.

. .. d
At a stationary point L,

> dx Maximum Minimum
.. 0
One method for determining the
nature of a stationary point is to look + = = +
at the sign of the gradient on either
0

side of it.

Another method for determining the nature of the stationary point is to
2

. . . .. d S
consider the sign of the second derivative, d—};, which is the rate of change of
X

Y with respect to x.
dx

2
m If d—}; > 0, the point is a minimum. If the second derivative is positive at
X

the turning point then it means that the gradient function is increasing — it
goes from being negative to zero and then positive.
d’y .. . L .
m If el < 0, the point is a maximum. If the second derivative is negative at

the turning point then it means that the gradient function is decreasing — it
goes from being positive to zero and then negative.
d’y
m If ci 0, it is not possible to use this method to determine the nature of
X

the stationary point.




A function f (x) is given by f(x) = x” — 3x% — 9x + 20.

(1) Find the turning points of the curve y = f(x), and determine their
nature.

(1))  Sketch the curve.

(1)  State the range of values of x for which the function is increasing.

Solution

First differentiate. —— (1) 3—9}2 =3x" —6x—9

Turning point el =
urning points are wnere dx = U.

3x2—6x—9=0/

uonenualayig g ladey)

=3(x=-3)(x+1)=0 Substitute x values
into the equation of the
= x =23 x=-1 curve to find y values.

Whenx=3,y=33—3x32—9X3+20:—7./
When x = —1, y = (1)’ — 3(=1)* = 9(=1) + 20 = 25.

The turning points are (3,—7) and (—1,25).

Differentiate again to find

dzy
9Y _ ey ¢ ¢——— jain
doc? 6x — 6 the second derivative.

2
Acx =392 — 1050 — &
dx Substitute x values into_g

o dx
to see if turning points are

maximum points or minimum

Therefore (3,—7) is 2 minimum.

2 .
At x = —1, j—{ =-12<0 points.
28

Therefore (—1,25) is a maximum.
(i) YA

Maximum

(1, 25)

y-intercept
20\ | (0, 20)

<Y

/ ’ \/
Minimum

(3, -7)

Figure 5.2

(iii)  From the sketch, f (x) is increasing for x < —1, x > 3.
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- Review: Differentiation

Differentiation from first principles

YA
Q(x + A, f(x + h))
e+ h) — £(x)
P(x, ) h
0 >
Figure 5.3

f(x+h)—f(x)

- .
The derivative of y = f(x) is defined as the limit of the gradient of the chord as
h tends to 0.

The gradient of the chord PQ in Figure 5.3 is given by

h—0

This can be written formally as f”(x) = lim (W) .

This can also be expressed as dy _ lim Oy ) where 8y is a small change in y and

dx Bxﬁﬂ(ax

dx is a small change in x.

Differentiate y = x° — 5x from first principles.

Solution

= lim
h—0

x+h - 5( x+h))—(x2—5x)
h

h

= lim
h—0

(x + 2xh + h* — 5x — 5h — x° +5x)
(2xh+h2—5h)

= lim(2x — 5+ h)

h—0

=2x—-5



Review exercise

(D Find the gradient of each of the following

curves at the point given.
i y=x"=2x+1, (3,4)
i) y=5x"—6x+7, (1,6)

il y = 2% = =, (1,1)

After f seconds, the number of thousands
of bacteria, N, is modelled by the equation
N =201’ =8¢ + 50t + 3.

Find the rate of change of the number of
bacteria with respect to time after

10 seconds.

Find the equations of the tangent and normal
to the curve y = x(2 — x) at the point on the
curve where the gradient of the curve is —4.

., dy d’y . .
Find Ic and @ in the following

cases.
XZ
i y=3x"- 5
i) y=2x" =547
i) y=2\/;—x2+%

Differentiate y = x> — 3x + 2 from first
principles.

Sketch the gradient function of the curve in
Figure 5.4.

YA

=Y

-6 -5 -4 -3 2 -10

-20

Figure 5.4

In each case, find the set of values of x for
which y is increasing.

() y=2-—4x—x"
i) y= x — 48x

i) y =" —x°

@0

[ Ps J©

., d d’y . .
Find % and d_x)zl in the following
cases.

iy =x(2x” - 4)

iy = 107 = 3w
Y X’

Given that y = 3x — x°

d’y

dx®

(il find the coordinates of any stationary points
and identify their nature

. dy
(i) find ax and

liii) sketch the curve.

Find the equation of the normal to the curve

y = 2 + 4/x at the point where x = 4.
Jx

Find the coordinates of the turning point of
the curve y = 2x/x — 9x + 6,x = 0, and
determine its nature.

Given that y = ax” + bx” + 15x — 2 and that
1= dy _

when x=1,y = 17 and I o 24

() find aand b

il show that the curve has no stationary points.
Given that y = 3x* — 2x°

d d?
(i) find % and ﬁ

(il find the coordinates of any stationary points
and identify their nature

i) sketch the curve.

Find the values of ¢ for which the line
y = 5x + ¢ is a tangent to the curve

x3 XZ
y=7—7—x+4-

A rectangular sheet of cardboard measures

24 cm by 15 cm. Equal squares of side xcm are
removed from each corner of the rectangle.
The edges are then turned up to make an open
box of volume Vem’.

Find the maximum possible volume of the box
and the corresponding value of x.

uonenualayig g ladey)
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- The shape of curves

1 The shape of curves

Stationary points of inflection

Figure 5.5 shows the curve y = x> —3x2 +3x + 1.

YA

10
. . . 8
Discussion point )
=» What can you say 4
about the curve at 5
the point (1,2)? y

-1 /o 1 2 3x
/3
Figure 5.5

To understand the behaviour of the curve better, look at the first and second
derivatives.

y=x3—3x2+3x+1:>ﬂ=3x2—6x+3

dx
At th int (1,2 ﬂ—3—6+3
e point (1,2), I -
=0
So the gradient is zero at this point. ¢—— You can see this from the graph.
2
L AN
dx
d2
At the point (1,2), =% = 6 - 6
dx”
=0

So the second derivative is also zero at this point.

You can see from the graph that the gradient is positive on both sides of (1, 2).
You can verify this by working out the gradient of the curve at a point just to
the left of (1, 2) and a point just to the right of (1,2).

dy

Atx =09, S-= 3(0.9) = 6(0.9) + 3 > 0.
_ dy _ 2
At x =11 5==3(L1)° = 6(L.1) +3> 0.

The point (1, 2) is neither a maximum point nor a minimum point. It is a
stationary point of inflection.

Having located stationary points, you can use the method of finding the gradient
of the curve close to, and on either side of, the stationary point to identify
whether a stationary point is a point of inflection.
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If a stationary point is a point of inflection then the gradient will be either

m  positive just before and positive just after
the stationary point, as in Figure 5.6 %>0
X
T g
=
dy =
Stationary point d_>0 §=}
of inflection: X 2
dx 7 dx® =
=
Figure 5.6 2
igure 5. a
. .. =)
®  or negative just before and negative just p =
after the stationary point, as in Figure 5.7. d—y <0 2-_
X o
% l ;
dy . :
4 <0 Stationary point
dx of inflection:
dy_, &y _
dx 0, dx® ¢
Figure 5.7
Example 5.4 .
You are given that y = 3x° — 5x° — 2.
(1) Find the stationary points on the curve.

(1)  Identify the nature of the stationary points.

(1)  Sketch the curve.

Solution

d
i =3x° =52’ =2 = L =15 — 155
@ 7 dx : :
Stationary points

At stationary points,15x4 —15x°> = 0 ¢—— are where j_a}: = 0.

= 1557 (x> =1) = 0
= 155> (x + 1)(x _ 1) = () 4—— Solve the equation.
= x=0,1-1
5 3
Substitute x values into When x =0, y=3(0) -5(0) -2=-2.
the original equation Wi o = 1, y = 3(1)5 _ 5(1)3 —2=—4

to find y coordinates of
stationary points. When x = =1, y = 3(=1)° = 5(=1)’ =2 = 0.

Stationary points are (0, —2),(1, —4) and (-1, 0).
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The shape of curves

) dy \ , dzyk/s’\ Finc_i th_e second
@ g = 15x" — 15x" = i 60x” — 30x derivative.
X
d’y Substitute your x
Atle, F=30>0 — dgy
X .
values into —5.
e} (1,—4) is 2 minimum. dx
dZ
At x = —1, d—{=—30<0
X
so (=1,0) is a maximum. So you must use the.method of
finding the gradient just before and
2 just after the point to determine
At x =0, d_}; = 0./ whether it is a maximum, a
dx minimum or a point of inflection.
At x = =0.1, j—z = 15(=0.1)" = 15(=0.1)’
v Gradient is
= —0.1485 < 0. negative just
d before the point.
At x = 0.1, =L~ 15(0.1)" = 15(0.1)*

Gradient is
negative just
after the point.

v
= —0.1485 < 0.

The gradient is negative just before and just

after the point, so (0,—2) is a point of inflection.

(111)

Point of
inflection at
Maximum Ip|(0,-2)
(_17 0)
1 /
1] 2 %

-2 10/

Minimum

(1’ _4)

Figure 5.8
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Concave and convex curves

[©

ACTIVITY 5.1

The section of curve shown in Figure 5.9 has a gradient that is initially positive.
The gradient is increasing as x increases.

Figure 5.9

(i) Sketch sections of curves with the following properties:

(a) gradient is initially negative and gradient is increasing (i.e. becoming
less negative or going from negative to positive)

(b) gradient is initially positive and gradient is decreasing

(c) gradient is initially negative and gradient is decreasing (i.e. becoming
more negative).

(ii) Describe the shape of:
(a) the two curves (including Figure 5.9) with increasing gradient
(b) the two curves with decreasing gradient.

uonenualayig g ladey)

When the gradient is increasing, the rate of change of the gradient is positive:

dy)

d(

d 2

al —dy>0,

dx dx?

When the gradient is decreasing, the rate of change of the gradient is negative:

dy
d(dXJ_dzy 0
& g oY

2

. .. d .
A section of curve with d—g > ( is concave upwards (or convex downwards).

X
If you join the points at the two ends of the curve with a straight line then the

curve is under the line, as in Figure 5.10.

/Discussionpoint A k or /

=» Asection of curve has | Figure 5.10
d2
—)2} = O at all . ) dZY )

dx A section of curve with el < 0 is concave downwards (or convex upwards).

; X
S:J):Jn:ist;sﬂ:i\t,)ve\/\i/to’?u{d If you join the points at the two ends of the curve with a straight line then the

Justify your answer. curve is above the line, as in Figure 5.11.
\<_ \ ) /

Figure 5.11
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The shape of curves

Find the set of values of x for which the curve y = x” — 6x” + 6x — 5 is
concave upwards.

Solution

y=x"—6x"+6x-5

d
= L= 12546 €] 2,
X Differentiate twice to find —7.
d2 / dx
=L -6x-12
dx
d2
The curve is concave upwards when d—)zl >0 Substitute your
X

2

d
6x —12 >0 4/ expression for q g
X

6x > 12¢—_
x > 2

Solve the inequality.

The curve is concave upwards when x > 2.

You have already met stationary points of inflection. However, a point of
inflection does not have to be a stationary point. More generally, a point of
inflection is a point at which a curve goes from being concave upwards to

concave downwards, or vice versa. So a point of inflection is a point at which
2

3 g goes from being positive to being negative, or from being negative to being
X 2

d’y

positive. At the point of inflection itself, Frcie 0. \
X

Discussion point

2

d
The statement ‘Point A is a point of inflection = d—)z/ = 0 at point A’ is true.
) x

d
=» Is the converse statement ‘d—g = 0 at point A= point A is a point of
x

inflection’ also true?

dZ
dx); =0
dzy d2y
—< =
dx” 0 — A dx® =0
Figure 5.12

In Figure 5.12, on the left the gradient is decreasing; the curve is concave

downwards. On the right the gradient is increasing; the curve is concave
2

upwards. d—g goes from negative to positive, and in between there is a point

X
where it is zero. This is a point of inflection. However, it is clear from the
diagram that the gradient of the curve is not zero at this point, and therefore it is
a non-stationary point of inflection.



Example 5.6

LI TECHNOLOGY

Use graphing software
to draw this curve. Add
a point to the curve and
construct a tangent
through this point. Move
the point along the
curve. What happens to
the tangent as it passes
through the point of
inflection?

You are given that y = x”° — 6x° + 15x — 10.

(1) Find the coordinates of the point at which the second derivative is
zero, and show that it is a point of inflection.

(i)  Find the gradient of the curve at the point of inflection.
(1))  Show that the curve has no turning points.
(iv)  Find the coordinates of the point where the curve crosses the x-axis.

(v)  Sketch the curve.

Solution
() y=x" —6x> +15x — 10
%=3x2—12x+154— _ _ _ _d?
X Differentiate twice to find —5-.
d’ *
= d—Z = 6x — 12
8
At the point of inflection,
&y
dx’

Substitute the x value into the
6x —12 =0 original equation to find the y
coordinate of point of inflection.

x =2 /

When x = 2,y = (2)° = 6(2)* +15(2) = 10 = 4.
2

The point where % = 01is (2,4).
X

To show that this is a point
d’y 2

— — “
At x = 1.9, doc? =6x19-12<0. of inflection, evaluated—};
dx
2 A atapoint just before and a

d
Atx=21 - Y — 6x21-12> 0. | pointjustafter (2, 4).
X

Therefore the curve goes from being concave downwards to concave
upwards at (2, 4), and so it is a point of inflection.

dy

(i) Whenx=2,7"= 3(2)° —12(2) + 15 = 3.
The gradient of the curve is 3 at the point of inflection.
dy _ o
(1i1) 3 =3 —12x +15
2
- =0¢—m— , :
2 E3sails S At a turning point, % = 0.
= x*—4x+5=0 x

b> —4ac = (-4 —4x1x5
—1=

Since the discriminant of the quadratic is negative, it has no real
solutions. So the curve has no turning points.

uonenualayig g ladey)
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The shape of curves

(iv)

(v)

x> = 6x° + 15x — 10 = 04 The curve crosses the x-axis when y = 0.

f(x)=x" —6x> +15x — 10
\ Using the factor theorem

f(o) = —104¢— x = Ois not a root. to solve the cubic equation.

f(1) =0 ¢«— x = 1isaroot.

Because the curve has no turning points it only crosses the x-axis in
one place. So the curve crosses the axis at (1,0).

You know that the curve has a non-stationary point of inflection at
(2, 4) and that it has no turning points.

You also know that the curve crosses the y-axis at (0,—10), and the
Xx-axis at (1,0).

YA .
Curve is concave

upwards for x > 2

10

Curve is concave
downwards for x < 2

Point of inflection

at (2, 4)

(0] w,/i\ 2 5
Curve crosses

x-axis at (1, 0)

<Y

-10

»

Curve crosses
y-axis at (0, —10)

Figure 5.13

Example 5.7

You are given that y = x* — 2x°.

(1) Find the coordinates of the stationary points of the curve and
determine their nature.
(1))  Find the coordinates of the point at which the second derivative is
zero, and show that it is a point of inflection.
(1)  Sketch the curve.
Solution
. dy
_ 4 5.3 QY _ 43 g2
(@) y=x —2x = Ix 4x” — bx . '
453 —6x2 =0 ¢ Stationary points are
dy
5 where — = (.
2x2(2x —3) =0 dx
x =0,x = %



je O

When x
When x =

y=0. Substituting x values into
_ _27 the original equation.
Y= ""7¢ -

The curve has stationary points at (0,0) and (%, —%) .

2 &

dy 3 2 d’y © B To determine the nature (2]
dx — A - ot = dx® 12x7 —12x of the stationary points =
find the second derivative. T
3 d’y 2
When x = 2, —=9>0
2 da’ , a
O
therefore (%, —%) is a minimum point. | Since )2/ = 0, you must =
(]
dzy use the method of looking o
When x = 0, — = 0.4\ at the gradient at a point 3
dx just before and a point just E
dy . after the stationary point o
When x = —0.1, B = i < 0. to determine its nature. =
dy 7
When x = 0.1, I - 15 < 0.

The gradient is negative before and after the stationary point, so (0, 0)

is a stationary point of inflection.
.. d’
(ii) Y~ 12 — 124
dx
12x% —12x = 0 You already know that
there is a stationary point
of inflection at x = 0.

12x(x —2’)'?’(')'/

=S x=0x=1 To check that there is a point of
The curve changes , inflection at x = 1, you must
from being concave When x = 0.9 d’y _ ~27 . dzy

downwards to being

dx 25 look at the sign of @ ata
anlrigale Lginls 2l point just before and a point
just after x = 1.

- i
x =1 \Whenx=l.l, @=%>0.
So x = 1 is a non-stationary point of inflection.

When x =1, y=-1

It is important to so the coordinates of the non-stationary point of inflection are (1,—1).

remember that not all

points of inflection are 94
stationary points.
To show that a non- = Stationary point of
stationary point is a inflection at (0, 0)
point of inflection, it is 2
not enough to show i./
d? >
that )2/ = 0 at the -1 0] 1 3 X
Cdx -1
point: you must show 2
2 e . -
_ d*y Minimum
that the sign of —3 point at
d.x_ Non-stationary point (i _ﬂ)
changes from positive to of inflaction at (1, —1) 2,716
negative, or vice versa,

at the point. Figure 5.14
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SN0

The chain rule

Explain the difference between a stationary
point of inflection and a non-stationary point

of inflection.

Find the set of values of x for which the
following curves are concave downwards.
il y=x —9x" +6x—1

il y=x"+21x"> —24x+9

il y=-2x"+3x" —x—2

Find the set of values of x for which the
following curves are concave upwards.
i y=x"+x —19x — 41

il y=x"—12x" —11x + 5

i) y=—x"+2x +7x —17

For each of the following, find the coordinates
and nature of any stationary points and sketch

the curve.

il y=-x"+3x"-3x-3

iy =8x" +12x% + 6x + 2

i) y=-x" —6x> —12x

Find the set of values of x for which the
following curves are concave upwards.

iy =ux" —d4x’ 18" + 1w + 1
iy = =" +2x" +124° +5x = 7
Given that y = & — x°

d’y

2

i) find ﬂ and
dx dx

(ii)

(iii)

(iv)

(v)

find the coordinates of the stationary
points and determine their nature

show that there is a point of inflection
and find its coordinates

find the gradient of the curve at the point
of inflection

sketch the curve.

@ Given that y = 4x° — «*

(i)

(ii)
(iii)

find the stationary points on the curve
and determine their nature

sketch the curve

find the coordinates of the non-stationary
point of inflection.

(8 Given thaty = 3x" —8x” + 6x° — 3
Y

(i)

(ii)
(iii)

find the stationary points on the curve
and determine their nature

sketch the curve

find the coordinates of the non-stationary
point of inflection.

(9 Find the coordinates of all the turning
points and points of inflection of the curve
y = 3x” — 25x” + 60x, and sketch the curve.

2 The chain rule

(i) y =

N

/Discussion point

=» How would you differentiate these expressions?
i y=(x*+1)
(i) y=(x*+1)"

Jx?t +1

(iv] y = (x2 + 1)_1

You can differentiate the first two expressions by expanding the brackets,
although in the case of part [ii) this would be very tedious! However, you
cannot use this approach in parts (iii] and (iv]. Instead you need to think of the
expression as a composite function, that is, a ‘function of a function’.

You can separate out the two functions, and use the notation u for the first

function to be applied.

1

In the case of part (iii),u = x> + 1and y = u?.



: ACTIVITY 5.2

Copy and complete Table 5.1.

Table 5.1
y =f(x) " y =f(u)
This row shows an 1 1
example. ~b y = tan(_s) u=—|y=tanu
X X

4
0 y=(x"+3
You will learn to Y ( )

differentiate functions | @) y = sin(x2 - 4)
involving exponentials,

logarithms and (i) y = ™"
trigonometric functions ) 5
in Chapter 9. () y = ln(x - Zx)

uonenualayig g ladey)

You can differentiate composite functions such as these using the chain rule.

In the review section you saw that

dy y It is important to remember that while ﬁ means
1 X
dx lim (g)’ ¢ “8y divided by dx’, ﬂ is not a fraction but a notation

dx—0

X
for the rate of change of y with respect to x.

where 8y is a small change in y and dx is a small change in x.

Think about the hourglass shown at the beginning of the chapter. A small
change in time, 8¢, leads to a small change in the height of sand in the bottom
bulb, 8/, and to the volume of sand in the bottom bulb, 8 1.

You can see that

Just simple algebra, as
these terms are ‘real’ y OV _ 3V  dh
fractions. 3t ~ dh T Bt

Taking the limit as ¢ tends to zero gives us the relationship

w_dav
This result is known as dt — dh dt
the chain rule.

This is usually written using the variables x, y and u:

Although at first glance dy dy _ du
this may look obvious, —_—) dx = au X dx
you must remember
that these terms are not
actually fractions.

Example 5.8

@) Differentiate y = (x3 - 3)2
(a) by expanding the brackets
(b) by using the chain rule.

(i)  Show that the two methods give the same result.
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The chain rule

Solution

(a) y = (x3 — 3)2

=x"—6x"+9
SN N T S
dx
(b) Letu=x"—3,theny = u’. ¢—
W _
du
=2(x* - 3)
du _
dx
By the chain rule
dy _dy  du
dx = du ” dx
dy 3 2
o = 2(x" =3) x 3«
= 6x° (x3 = 3)
6x” (x* = 3) = 6x° — 18x> €

(x3 = 3)(x3 - 3) 4—— First expand the brackets.

Now differentiate.

. 3 2
Expressing y = (x = 3)
as a function of a function.

Zu\

2
3%" 4—— Differentiating u

Differentiating y
with respect to u.

with respect to x.

Expanding the answer to (i) (b).

Therefore the two methods do give the same result.

Example 5.9

1

Differentiate y = (xz + 1)5.

Solution

1 4

Let u = x> +1,then y = u2.

Exp

ressing y = (x2 o 1)% as a

function of a function.

dy

1
du ~ 2"~ 4——— Differentiating y with respect to u.

Since the question was in terms of y and

— 1 / x not u, your answer must also be given in
terms of x.

du

a=2x‘\

Differentiating u with respect to x.

chain rule
dy _dy  du
dx = du ” dx
dy 1
— = ——— X 2«x
de o 1
X




In the following example you need to find the gradient at a point, so you must
first find the gradient function.You could do this by expanding (x“’ - 2)4, but it
is much quicker to use the chain rule.

ExaglEbAll Find the gradient of the curve y = (x3 - 2)4 at the point where x = 1. 9
Q
©

' o
Solution S
s ' First express this composite =
Let u =x" —2,then y =u". ¢ function as a function of a function. o
=
d oD
a = 3
=)
3 3 =0
= 4(x - 2) 4———1 Remember to rewrite in terms of x. Q
=
Q _ 2 =]
Ix = 3x
By the chain rule
dy _dy  du
dx  du " dx

This is the gradient function of
d s the curve. You must now find
= é = 4(x3 — 2) X 3x> the gradient at x = 1.

= 12x* («* = 2)’

Substituting x = 1 into
. dy _ dy _ 2 3 d _ _
the expression for I —Px=1 = - 12(1) ((1) - 2) =12x-1=-12

Therefore the gradient of the curve y = (x3 = 2)4 at the point where
x =115 —12.

With practice, you may find that you can do the necessary substitution mentally,
and just write down the answer, leading to the result below. If you have any
doubt, however, you should write down the full method.

(Discussion point h

The general rule for differentiating a composite function can be written as
d ’ ’
y = g(f(x) = 45 = g (f(x) x '(x).

=» Put this rule into words.

=¥» Do you find this rule helpful compared with using g_y = ﬂ % du 5

\ x du " dx )
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The chain rule

(1) Which of these two functions would you
differentiate using the chain rule? Explain your
answer.

)

flx) = 2x(1 + x)°

flx) = 2(1 + x)°

To differentiate each of the following
functions, decide whether you

A must use the chain rule

B could use the chain rule

¢ would not use the chain rule.

If you choose B or C, describe an alternative
method for differentiating the function.

(i)
(ii)

(iii)

y = (2x = 5)'

y=ux" —3x+2
_ 1

! x' +3

Use the chain rule to differentiate the
following functions.

i y=0CBx+2)"
iy = (2% +6)
li) y=+6x—2
, 3
y = (x‘ - 2)
[l By first expanding the brackets,
dy

find =£.

ind —- s
(il Now use the chain rule to find L.

(iii

J

dx

Show that your answers to (i) and (i) are
equal.

Figure 5.15 shows the curve

6
y = (4x2 - 3) .
YA
40
20
(6] 1 :X
Figure 5.15

Find the gradient of the curve at the point
where x = 1.

(ii)

Figure 5.16 shows the curve y = +/6x — 8.

YA
10

8

6
4
2

=Y

0 2 4 6 8 10
Figure 5.16

Find the gradient of the curve at the point
where x = 2.

(i) Figure 5.17 shows the curve y = — 1 .
x+2
YA
2
~ 0 2 >
-2

Figure 5.17

Find the gradient of the curve at the point
where x = —1.

Figure 5.18 shows the curve y = (3x — 5)°.

V)
10

\

Y

—_
[\S)
w

-10

Figure 5.18

(i)
(ii)

(iii)

Use the chain rule to find j—y

X
Find the equation of the tangent
to the curve at the point where x = 2.
Show that the equation of the normal to
the curve at the point where x = 1 can be
written in the form 36y + x + 287 = 0.



() Given that x = (\/? - 1)4,ﬁnd (31—9;

li) Given that z = 1 + y, find d—Z
\y dy

dp

lii) Given that p = ﬁ,ﬁnd O

Given that y = (2x — 1)*

i) find %

(il  find the coordinates of any turning points
and determine their nature

liii sketch the curve.

Given that y = (x2 - x - 2)4
. dy

i) find I

(il find the coordinates of any turning points
and determine their nature

liiil sketch the curve.

The graph of y = (x3 - %+ 2)3 is shown in
Figure 5.19.

Figure 5.19

. . . . dy

(i) Find the gradient function i

(il Verify, showing your working clearly, that
when x = —1 the curve has a stationary
point of inflection and that when x = 0
the curve has a maximum.

(il The curve has a minimum when x = a.
Find a and verify that this corresponds to
a minimuim.

(iv) Find the gradient at (1,8) and the equation
of the tangent to the curve at this point.

Some students on an expedition reach the
corner of a large rectangular area of heathland,
which is 4km long and 2km wide. They need
to reach the opposite corner as quickly as
possible as they are behind schedule.

4km

<

>
>

start —>»

2km

A

finish

Figure 5.20

They estimate that they could walk along the
edges of the heath at 5kmh™ and across the
heath at 4kmh™".

Giving your answers to the nearest minute,
how long will it take the students to cross the

heath if
(il they walk along the edges of the heath

(il they cross the heath diagonally from start
to finish?

The students decide to walk some of the

way along the longer edge, and then cross
diagonally to the finish point, in such a way as
to make their time as small as possible.

il To the nearest metre, how far along the
edge should they walk and, to the nearest
minute, how long does it take them to
reach the finish point?

uonenuatayig g leideyn

115



116

Connected rates of change

Once again, although
this may look obvious,
you must remember
that these terms are not
actually fractions.

3 Connected rates of change

The relationship between gy and 9x

X dy
P

ACTIVITY 5.3

d
li) Differentiate y = x”to find °¥

dx

(i) Rearrange to make x the subject, and find dx in terms of y.

(iii) Rearrangey = x” to make x the subject.

d
(iv] Write down the relationship between °r and g—; for y = x°.

dx
(v)] Repeat this process with other functions suchas y = xz,y = x*and

y = 2x. Does the relationship you wrote down for (iv] seem to be a general

rule?
The general rule connecting dy and dx is
dx dy
(Discussion point
dy . ; dx .
dx is the rate of change of y with respect to x, and == is the rate of change of
X Y

x with respect to y. In Figure 5.21 the line y = 2x is drawn in two different ways,
first with the axes the normal way around, and then with the axes interchanged.

=» How does this demonstrate the result dx = L?
dy dy
K dx
YA XA
4 4
3 3
o} o]
1 1
4 _ Ax -4 _ 4y
1
o) o}
3 3
4 4

Figure 5.21



Finding connected rates of change

The chain rule makes it possible to differentiate with respect to a variable that

does not feature in the original expression. For example, the volume 7 of a

spherical balloon of radius ris given by I’ = %nﬂ Differentiating this with
dr

respect to r gives the rate of change of volume with radius, T = 4
r

However, you might be more interested in finding the rate of change of volume
with time, t.

To find this, you would use the chain rule:

v _dv  dr
dr ~ dr T dt
— a2 dr
= 4mr xdt

You have now differentiated 17 with respect to f.

The radius rcm of a circular ripple
made by dropping a stone into

a pond is increasing at a rate of
8cms™.

At what rate is the area Acm?
enclosed by the ripple increasing
when the radius is 25 cm?

Figure 5.22
Solution
When r = 25, % = 8. ¢—— Information given in the question.
t
A = > €—1 Theripple is a circle.

dA

A _ 5

ar r
You want to know %, the rate of change of area with respect to time.

dA dA  dr Use the chain rule to link the

You know that LS8 & o— :
dt dr O dr information you have to what

you are trying to find out.

dA _, . dr
o) dt_zmxdt'
Whenr=25and%=8, %:an25x8:1260.

The area is increasing at a rate of 1260 cm?s™ (3 s.f.).

uonenuatayig g leideyn
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The product and quotient rules

Given that ﬂ = %, write down 9%.
dx 3 dy
Given that ﬂ =6 and dx _ =2, find
dx dt
the following.
U i—’; i % i %

, dy _ 1 dz _ _ dy _ 4
Given that E P T 1 and i
find the following.

(i) ﬂ (ii) d—x (iii) d_Z
dz dt dt

Given that A = 5x> and 9% _ 1 find the
. dt 2
following.
o 44
dx

(il An expression for (ii—‘;l in terms of x.

(i) The value ofc(li—‘;1 when x = 6.

The lengths of the sides of a square are
increasing at a rate of 2cms™.

Find the rate at which the area of the square
is increasing when the square has sides of
length 4 cm.

L Ps 1

The force, F newtons, between two magnetic
1

les is gi by the f laF = —,
poles is given by the formula 20072

where r m is their distance apart.

Find the rate of change of the force when the
poles are 0.2m apart and the distance between
them is increasing at a rate of 0.03ms™.

The area of a circular oil slick is increasing at a
constant rate of 4m?s.

Find the rate of increase of the radius when
the area is 1007t m>.

The volume, IV'm?, of water in a container is
given by the expression IV = 8h*, where hm
is the depth of water in the container. The
volume of water in the container is increasing
at a rate of 2m’ per hour.

Find the rate of increase of the depth of water

in the container when }; = 6.

The lengths of the sides of a cube are
increasing at the rate of 0.1 cms™.

Find the rate of increase of the volume of the
cube when the outer surface area is 24 cm®.
The volume of a sphere is decreasing at a rate
of 60mm?s~'. Find the rate of decrease of the
surface area when the volume is 800 mm?®.

The radius of a circular fungus is increasing at
a uniform rate of 0.5 cm per day. At what rate
is the area increasing when the radius is 1 m?

4 The product and quotient rules

The product rule

6

Figure 5.23 shows the curve y = 20x(x — 1)

\_J

Figure 5.23

by
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If you wanted to find the gradient function, jy , for the curve, you could
X
expand the right-hand side then differentiate it term by term, but this is long

and tedious.

There are other functions like this, made up of the product of two or more
simpler functions, which you cannot expand. One such function is

1
y=(x+1)2(2x - 3)".
Clearly you need a technique for differentiating functions that are products of
simpler ones, and a suitable notation with which to express it.

When differentiating products, the most commonly used notation involves
writing y = uv, where u and v are functions of x.

1
In the example above, u = (x + 1)2 and v = (2x — 3)".

uonenualayig g ladey)

ACTIVITY 5.4
Jack says that if y = uv, % = S—Z g—;
Use the function y = x” X x° to show that Jack is wrong.
(i) Simplify the function and differentiate to find ?

X
(i) Identify u and v, and find 9% and 92

dx dx

(iii) Confirm that, in this case, g—z # g—; X S—Z

To find the rule to differentiate products, you can look at the change in area of a
rectangle with increasing sides (see Figure 5.24).

ov

< >
< > <>

Figure 5.24

The original (blue) rectangle has an area of y = uv.

When you make a small increase to u# and to v, the increase in the area of the
rectangle is given by the sum of the areas of the red, green and yellow rectangles:

0A = udv + vdu + dudv.

Because both 8u and 8v are small, the yellow rectangle has a very small area. So

Divide through by 8x. ———» 86_1;1 = ”g_; + Ug_z + 8”2_;'
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The product and quotient rules

Taking the limit as dx, du and dv tend to zero leads to

da _  dv
dx dx
This result is called _
the product rule. > y=uw

du

Va-

dy _ v, du

dx = dx dx

First identify # and v. ——)

Differentiate u and v,
using the chain rule if
necessary.

If y = 4 does
v

du
ﬂ = d_'x7
dx dv-’
dx
7
Use the function y = x_3
-

to investigate.

ACTIVITY 5.5

You might find it easier

to see this if you put

brackets around the v:
—1 -1

v o= (v) .

/dx_

Differentiate y = 20x(x — 1)°.

Solution
u = 20x v=(x-1)
du _ dv _ 5
N E_ZO a—()(x—l)

Using the product rule
dy dv du

=u-—+v—

dx dx dx

dy
dx

20x X 6(x —1)° + (x = 1)° x 20

To simplify the answer, look for common factors. In this case both terms
contain 20 and (x — 1)’

dy _ 5 ¢ Factorise by taking these
= dx A =1 [6x +(x - 1)] common factors out.

dy 5
= a—ZO(x—l) (7x = 1)

The quotient rule

Suppose you want to differentiate a function that is the quotient of two simpler

3x7+12. You can write this in the form y = u
: v
(x - 2)

where u and v are functions of x. In this example, # = 3x + 1 and

v = (x2 - 2)2.

functions, for example y =

. . . . u —
To find the rule to differentiate quotients, you can rewrite y = LAy = "

and use the product rule.

. . . . 1 .
Because v is a function of x, to differentiate v, you must use the chain rule.

d(V_]) _ %
X



u v

du | _edv
dx dx
So y= u_ dy = du + (_V—z Q)u | Applying the product 9
v dx dx dx rule. %
~
(Discussion point ) 1du u dv g
You have already seen Twvdye P dx -
that when using the o
product rule, it does not du _dv , , ¢=th
matter which function _ Vdx ~"dx ¢——— Puttingfractions overa =
you Cau u and Wh|ch . - 1}2 common denominator. :?D'.
=>» Does it matter which du dv 2.._
function you call u dy Vix  "dx g
and which v when dx =
using the quotient v

&
I
S
&
|
<
&
V' N

rule?
du dv This result is called the
< y = % = L =_9X O9X quotient rule.

2
Given that y = X" +1

, find j—y using the quotient rule.
X

3x —1
Solution
u=x>+1 v =3x—1 ¢ Firstidentify wand v.
du _ dv _
-— = 2x —=3 i ]
dx dx ¢——| Differentiate u and v.

Using the quotient rule
du dv

W =t

ﬂ dx dx
dx 1/2

dy  (Bx—1)x2x—(x*+1)x3
dx (3x — 1)’

Expand the brackets in

ﬂ = G = ae =8 =& the numerator.

=
€55 (3x = 1)’ —

— dy _3x*-2x-3 ilnnsﬁvp\)ll;y to get the final
dx (Gx—1)F 1 :
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The product and quotient rules

:ACTIVITY 5.6

x> +1
You could have differentiated y =

3x —1 by

rewriting itas y = (xz + 1)(3x -1
and using the product rule.

Verify that this method gives you the same answer as Example 5.13.

() (O Copy and complete Table 5.2 to show how you would differentiate the following functions.

Table 5.2 This row shows an example.
Function Product rule, quotient u v
rule or neither?
_ et 1) . ‘(1 6 3
= m Quotient u = (x + ) v=x3x—1

i y= (x2 - 1) (x3 + 3)2

iy = (2% = 3)
_Ax+1
(iii) y = 5

X

liv] y= x*x =2

(2 Use the product rule to differentiate the @ () Figure 5.25 shows the curve
following functions.
y = x+1
i y=x>(2x - 1) %+ 2
i y=(x+1)Jx -1 Find the gradient at the point (O, %)
i)y = Jx(x = 3)’ ’A
(3 Use the quotient rule to differentiate the
following functions. 2
2
Y — | >
3x =1 . 6 4 2/ 0 2°x
i p= U2
Y= x3 2
li) Y= —=
1 -
Jx +1
Figure 5.25
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lil Figure 5.26 shows the curve

y=+1)’(Vx-2), x=0.

3x
2x — 3°

(® Figure 5.28 shows the curve y =

YA
Find the gradient at the point (1, - 8). 6
[ =
YA Q
30 ©
o
20 2 =
10 =
> > =
0 2 6 x -4 2 0 2 4 x =
- - ®
20 2
-30 o
» =
o
Figure 5.26 Figure 5.28 =
il Figure 5.27 shows the curve . dy
(i Find —.
Vx +1 o
Y= X = -1 (il Find the equation of the tangent to the

curve at the point where x = 1.

. . . 2
Find the gradient at the point (3’ 5)' il Find the equation of the normal to the

YA curve at the origin.

6 (iv) Find the coordinates of the point where
the normal to the curve at the origin cuts

4 the curve again.

(@ Figure 5.29 shows the curve

2
_ x> —2x -5
>~ y 2x + 3
-1 (6] 1 2 X
y
Figure 5.27 41
2

Given that y = (x + 1)(x — 2)’

o
=
\
B
|
(3]
@)
i
=Y

(il find the coordinates of the turning points

—6
of the curve y = (x + 1)(x — 2)* and 4
determine their nature
Fi 5.29
liii) sketch the curve. gure
d d?
() PFind <. (i) Find )2’
dx X

li) Find the coordinates of the
turning points of the curve

X’ —=2x-5
Y= "o+ 3
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The product and quotient rules

[ Ps ] Find the coordinates and nature of the turning (i) Find the coordinates of P and verify that
points of the curve y = x° (x — 3)*, and sketch it is a minimum point.
the curve. @ livy The point Q is the intersection of the
normal at A and the tangent at P. The
(9 The graph of the functiony = \/;296 1 is point R is the intersection of the normal

at A and the normal at P.
undefined for x < 0 and x = 1.

P is a stationary point.

YA A function is given by

Find the area of triangle PQR.

F(x) = xv9 — 247, OSxS#-

(i)  Find the coordinates of the maximum
° point on the curve y = f(x).

(il What is the gradient of the curve at the

<Y

0 origin?
i) What is the value of y when x = %\/57
‘What is the gradient of the curve at this
point?
Figure 5.30 (iv) Sketch the curve.
d
i Find 2-.

(i) Find the gradient of the curve at the point
A with coordinates (9, 9),
and show that the equation of the normal
atAls y = —4x + 45.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:
> understand and use the second derivative:
O as the rate of change of gradient
O and its connection to convex and concave sections of the curve
O for finding points of inflection
> differentiate using:
O the product rule
O the quotient rule
O the chain rule
> differentiate to solve problems using:
O connected rates of change
O inverse functions.
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KEY POINTS

2
1 When d—); > 0, a curve is concave upwards.
X

S~

d?
When —Y < (), a curve is concave downwards.

—

Figure 5.31

2 At a point of inflection, a curve changes between from being concave upwards

to being concave downwards, or vice versa.
2

uonenualayig : g Jaideyy

%
L = 0.

Some points of inflection are also stationary points, where % = 0.

3 Chain rule:ﬂ dY X — du

de — du ” dx

dy dv du

4  Product rule: y = 2L — = o

roductrule: y = up = ¥ udx-H/dx

N TR

. _u ay _ dx dx

5 Quotlentrule:y—v = dx_—vz
dx _ 1
6 dy ~ dy
dx

FUTURE USES

You will apply these techniques for differentiation to a wider range of functions in
Chapter 9.
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Multiple Choice Questions: Chapters 1to 5

(@ Which, of the following, is not implied by the statement ‘n is an integer’:
A 2n+1isodd
B 10ni1s even
C 4n+ 6 1s a multiple of 4
D 6nis a multiple of 3

(@ Which of the following is not true for an arithmetic sequence?
A It increases/decreases in equal steps
B Its sum converges to a limit
C Its sum tends to infinity (positive or negative)

D TItis a linear sequence

(® Which of the following is equivalent to —1 < x < 3?

A fx-1] <2
B |x+1| <4
C |x+1] <2
D |x-1] <2

1
@ Which of the following would be used when differentiating y = (1 — = )°

using the chain rule?

1

= 0 = -

A y=uu p
B —1—t16u=l
Y ) x
1
= 6 = — —
C y=u,u=1 "

_1

D y=o.u=x
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(@ Figure 1 shows a sector of a circle with radius rcm. The angle subtended at
the centre of the circle is 6 radians.

Figure 1

The perimeter of the sector is 3 cm.

| Sonewsayjew aind suoljsanb adijoedd

(i)  Show that the area of the sector is %r -7’ cm?. [3 marks]
(i) Find the value of 8 when the area of the sector is a maximum,
justifying your answer. [4 marks]
@ (i) Find the value of the y coordinate on each of the curves
y = cosxand y = cos(x - %) + 0.5 when x = —% and
when x = —%. [2 marks]

(il Give the coordinates of one point with positive x coordinate

n
where the curves y = cosx and y = cos(x - 8) + 0.5 cross.  [2 marks]
il Describe a transformation that maps the curve y = cosx on

to the curve y = cos(x - %) + 0.5. [2 marks]

4

® You are given that y = (x2 - 1)

2

() Show that % = 8(x* — 1)*(7x” = 1). [4 marks]
x
(i) State the set of values of x for which y = (x* — 1)415 concave
downwards. [2 marks]
@ You are given that f(x) = 9;4__:15
()  Find ff(x). Hence write downf ™' (x). [4 marks]

lil Deduce the equation of a line of symmetry of the

graph y = f(x). [1 mark]

i) Write f(x) in the form a + % where a, b and c are integers.
[2 marks]

(iv) Starting with the curve y = l, write down a sequence of
transformations that would result in the curve y = f(x). [3 marks]
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Practice questions:

Pure mathematics 1

(B® Figure 2 shows a spreadsheet with the information about day length on

different dates in a town in northern England. The day length is the time

between sunrise and sunset. It is given in hours and minutes in column

C and in hours in decimal form in column D. Some of the rows in the

spreadsheet are missing and some of the cells have not been completed.

The graph in Figure 3 was drawn by the spreadsheet; it shows the number

of hours of daylight plotted against day number for the whole year.

A B C D
1 Day number Date Actual day length | Actual day length
(%) (hours:mins) (y hours)
2 0 31 Dec 07:40 7.666667
3 1 1 Jan 07:41 7.683333
4 2 2 Jan 07:42 7.7
5 3 3 Jan 07:43 7.716667
154 152 1 June 16:24 16.4
155 153 2 June 16:26 16.43333
21 June 16:45
21 Dec 07:35
Figure 2
A
2 20
g 15
=
2 10 —T T~
) | —
=
25
7
=] >

Day number

Figure 3

(i)

(ii)

(iii)

0
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 X

A model of the form y = a — bcosx® is suggested for the length

y hours of day x.

m The shortest day is 21st December.

m The longest day is 21st June.

Find values of a and b consistent with this information.

Compare the length of day which the model predicts for
21st June with the actual day length.

Explain why each of the two following transformations of

the graph of y = a — bcosx® would make it a better model
for day length.

(a) Stretch parallel to x-axis.
(b) Translation parallel to x-axis.

[5 marks]

[3 marks]

[2 marks]



o (® A three term arithmetic sequence has a non-zero common
difference. Prove by contradiction that the three terms, in the same
order as for the arithmetic sequence, cannot form a geometric

sequence. [5 marks]

@ @ A geometric sequence has first term 1. The product of the first
9 terms is 262 144.

Find the possible values for the sum of the first 9 terms. [6 marks]

m Figure 4 shows the curve y = x* — 1.5x% + 3.

| Sanewsaylew aind suoijsanb adinoeay

Figure 4

The curve has points of inflection at A and B.The tangents and normals
to the curve at points A and B are shown. The tangents intersect at C.
The normals intersect at D.

(i)  Find the coordinates of A and B. [5 marks]
(i) Show that ACBD is a square. [5 marks]
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Review: The sine and cosine rules

1 Working with triangles

In a right-angled triangle, for 0° < 6§ < 90°, the trigonometric functions are

. opposite 90°—0

sing = —2PPosite

hypotenuse o

\({Qo opposite
adjacent

cosf = —IACIE

hypotenuse

0

opposite adjacent
tanf = SP—

AL jeot Figure R.1

Also  sinf = cos (90° — 0)

and  cosf =sin (90° - 6).

Here is a reminder of the general formula for
the area of a triangle, and the sine and cosine
rules, which can be used for any triangle ABC.

b
a
Area
When people thought the | PP A
Earth was flat, they were Area of a triangle = %absinC
wrong. When people ¢ 5
thought the Earth was
spherical, they were The cosinerute Figure R.2
wrong. But if you think For an unknown side: a =b"+¢ = 2bccos A
that thinking the Earth is ., Always check for
herical is iust For an unknown anale: cos A = b +c —a the ambiguous case
1 e’_.’ca_ B wr_ong gie: 2bc when you are given
as thinking the Earth is two sides and a
flat, then your view is ”?“‘t”?du‘:ed aggle
0 OoT a triangle ana are
wronger than both of T_h?_S:I_f](:Z‘_f_’L_J!.(_E _____________________________ using the sine rule
them put together. _ g b g | to find one of the
Isaac Asimov (1920-1992) Foran unknown side: 577 = SnB ~ sinC R
) . . cases 0 and 180°— 0
For an unknown ang[e; sin A =] sin B =] sinC can both be correct
g b & answers.
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Example R.1 Two hikers set off from point A.

Some time later Ben has walked 8 km on a bearing of 065° to point B.
Carla has walked 6km on a bearing of 135° to point C.

The points A, B and C are on level ground.
Find

(1) the distance between Ben and Carla

(i) the bearing of Carla from Ben at that time.

Solution

180° —65°=115°

Always start with
a diagram. Fill in
all the information
you know from the
question ...

135°—65°=70°

7

... and check to

see if there are any
angles you can work
out straight away.

S3)NJ UIS0 pUE dUIS By M3IADY

Figure R.3

(i)  You know two sides and the angle between them and you want to
find the third side, so use the cosine rule.

BC? = AB® + AC* — 2 X AB X BC X cos A
=8 +6>—2X8X6 X cos70°
= 67.16...

= BC =8.195... ¢—— Keep the answer stored in your calculator.
= 8.20km (to 3 s.f.)
Ben and Carla are 8.20km (to 3 s.f.) apart.

(i)  You need to find 6 first before you can work out the bearing.

You know three sides and need to find an angle — so you could use
the cosine rule again. Or you could use the sine rule.

sinf _ sin70°
6 ~ 8.195... ¢ Use the exact value

65in70° calculated in part (1).
8.195...
= 0 =43.5° (to3s.f)

So the bearing is 360° — 115° — 43.5° = 201.5°.

Discussion point
=» Check that using the
cosine rule would
give you the same
answer.

= sinf = = 0.687...
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Example R.2

(a)

(i)

(ii)

= 2.52cm’
(D For each triangle in Figure R.5 find i)y 12¢m X
the angle 6 (b) the area. 39°
(i) X
11m X
&m 920
\0 V4
12m b
il ¢
(iv)
Zem 9cm
108°
) O
A B Figure R.6
Figure R.5 (3 A tower 60m high stands on the top of a hill.
(@ Find the length x in each triangle in Figure R.6. From a point on the ground at sea level, the
7 lem angles of elevation of the top and bottom of
? 399557 ¢ the tower are 49° and 37° respectively.
x 42em Find the height of the hill.
R (4) Find the angle 0 in Figure R.7.
Z L Tx
x M
3x
5.3cm P 5x
T2 toge N
X Figure R.7

Working with triangles

Solution

Find the area of triangle ABC.

Area of a triangle = %ab sSinC & |

C
N~
30°
3.6em 2.8cm
A B
Figure R.4

You know two sides and the angle between
them, so you can use the general formula
for the area of a triangle.

% X 3.6 X 2.8 X sin30°




In triangle ABC,AB = 8cm, BC = 7cm and
angle CAB = 56°.

Find the possible sizes for the angle BCA.
Three points A, B and C lie in a straight line
on level ground with B between A and C.

A vertical mast BD stands at B and is
supported by wires, two of which are along the
lines AD and CD.

Given that ZDAB = 55°, ZDCB = 42° and
AC = 85m, find the lengths of the wires AD
and CD and the height of the mast.

A yacht sets off from A and sails 3km on a
bearing of 045° to a point B. It then sails 1km on
a bearing of 322° to a point C.

Find the distance AC.

The lengths of the hands of a clock are 7 cm
and 10 cm.

Find the distance between the tips of the hands
at 8 p.m.

®

X,Y, and Z are three points on level ground.
PointY is 2km from X on a bearing of 117°,
and Z is 5km from X on a bearing of 204°.

Find
i) ZLYXZ
(i) the distance YZ.

A triangle has sides of length 3 cm, 8 cm and
7 cm.

Find the exact area of the triangle.

The area of triangle ABC is 12+/3 cm?.
AB = 6cm and AC = 8§ cm. Angle BAC
1s acute.

Figure R.8

Find the exact perimeter of the triangle.

S9)NJ dUIS0D pue dUIS Y| M3IA3Y
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Problem solving

Triples o

Look at the triangle in Figure 1. A
You can use Pythagoras’ theorem to
show that it is right angled. 17
8
8+ 15> =172
Alternatively you can use the cosine rule B c
on angle B. 15
Figure 1
2 2 2
cosB=3 A+ =170 _ o o p_ope

2X8x%15

The sides of the triangle are all integers and so the set {8, 15, 17} is called a
Pythagorean triple. There are formulae for generating them, for example

{2n,n* — 1,n* + 1} where n is an integer greater than 1.
A

Your first question is:

How can you be certain that this
generator works?

Now look at the triangle in Figure 2.

B
In this case the angle B is given by Figure 2
2, 2 _ 42
_C+d b 25+64-49 _ 40 _ 1 e
cosB = e = 5353 —80—zandsoB 60°.

The set {8,7,5} forms a different sort of triple, giving an angle of 60° rather
than a right angle. This set of integers is a 60° triple.

Equilateral triangles obviously give rise to these triples, for example
{5, 5,5} but there are others too.

Your second question is:
How can you find these other 60° triples?

1 Problem specification and analysis

At the moment the problem is somewhat open-ended. Some preliminary
ideas will help to tie it down.
If {a, b, ¢} is a 60° triple with angle B = 60°, the cosine rule gives
2 2 2
¢ +a —b 1

cosB= ————-—=+.
2ca 2

After a few lines of algebra this can be rearranged as the equation
(b+c—a)b—c+a)=ac.

So multiplying (b + ¢ — a) by (b — ¢ + a) gives ac.

There are three options for analysing this. The first two are

a Set(b+c—a)=a andso (b—c+a) = c,or vice versa.

¢ L

b Set(b+c¢—da)=naandso (b—c+a)= -, where 1 is an integer greater
than 1.

These two will provide the basis for your investigation and information

collection.



2 Information collection

The first question Start by setting up a spreadsheet for the first 100
Pythagorean triples generated by {2n, n* — 1,n* + 1} for n = 2. Use an extra
column to check that the generator works for all these values of n.

You should find that it does work for these 100 Pythagorean triples but to be
certain you should also prove it algebraically.

The second question Show that option a for the analysis of 60° triples
always gives you equilateral triangles.

Now prove that eliminating ¢ between the equations in option b leads to the

n2+n+1j

equation b = a( 51

Use this to find the 60° triple generator with a = 2n + 1.

sajdia] Huiajos wayqodd

Set this up on a spreadsheet.
3 Processing and representation

For the first question, the essential processing and representation have been
done on the spreadsheet.You may choose to copy the listing of Pythagorean
triples from the spreadsheet into another document. However, this task is not
complete without an algebraic proof that the generator works.

For the second question, the first task is essentially algebra.

The next task begins with algebra and then goes into a spreadsheet. Again
you may wish to copy the spreadsheet listing into another document. This list
is of 60° triples and you will want to check if you have listed them all.

A way of checking is to notice B’
that, apart from the equilateral
triangles, each triple has a partner
triangle.

You can see this in Figure 3
for the blue {8,7,5} triangle.

Fitting it into the equilateral
triangle of side 8 reveals its red
partner triangle with a triple of
{8,7,3}.

So you now have a possible check
of whether your generator has Figure 3
caught all the 60° triples.

4 Interpretation

At this stage you will want to tie up any loose ends, particularly if you have
found that your generator missed some of the 60° triples.

In the Problem specification and analysis section, you were told there are
three options but were only given two of them to work on, a and b.
Now it is time to investigate option c.

c Set (b+c—a)=%aandso(b—c+a)=%cwheremandnareboth

integers greater than 1.
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Working with triangles

KEY POINTS
1 For any triangle ABC

e (sine rule)
sinA sinB sinC b
m a =b+ —2bccosA (cosine rule) @
m area= %bcsinA.
c
B
2 Table R.1 Summary of the use of the sine and cosine rules
Triangle You know You want Use
3 sides Any angle Cosine rule
2 2 2
b +¢ —a
v v cosA = TP a—
v
2 sides + included angle 3rd side
> =07+ = 2bccos A

—1 angles in a triangle, you can use ‘angles
sum to 180°” to find the third angle!

2 angles + 1 side Any side Sine rule
a b
o sinA ~ sinB
_} .
4
2 sides + 1 angle Any angle
sinA _ sinB
v a b
>
v
Don’t forget that once you know two Check for the ambiguous
case: sometimes 180°— 0

is also a solution.




One must divide one’s
time between politics
and equations. But our
equations are much
more important to me,
because politics is
for the present, while
our equations are for
eternity.

Albert Einstein (1879-1955)

Trigonomeftric funcrions

=» How does the photo here of a time lapse of the sun’s position in the sky show
how the sine and cosine functions can model real life situations?

=» Where else do you encounter sine and cosine waves in real life?

1 Reciprocal trigonometric functions

As well as the three main trigonometric functions, sin, cos# and tan 0, there
are three more which are commonly used. These are their reciprocals — cosecant
(cosec), secant (sec) and cotangent (cot), defined by

1 1 1 p Use the 3rd letter

cos i

—— secf =— . cotf = = U ] of ea;h reciprocal
sinf cosf tan sinf function to
) . ] - remind you which
Each of these is undefined for certain values of 6. For trigonometric

example, cosec 6 is undefined for 6 = 0°, 180°, 360°, ... function it is
paired with.

cosech =

since sin 0 is zero for these values of 6.

Figure 6.1 overleaf shows the graphs of these functions. Notice how all three of the
functions have asymptotes at intervals of 180°.
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Reciprocal trigonometric functions

Y =cosx

-360°

Y =cosecx
'

—_
o)

YA

y=tanx

3

g : — »
-360° 180° 0° x
| | -1
; ; y =cotx
Figure 6.1

Discussion point

=» Use the diagram
of the unit circle in
Figure 6.2 to explain
why these identities

are true.

For any angle (in degrees or radians):

sinf = y, cosf = x, tanf = %
You have already met the identities
sinf

B tanf = ,
cosf

for cosf # 0,

B sin’0+cos’f = 1.

L 5
360° X

The asymptotes for y = tan 8 have

been omitted for clarity.

Figure 6.2

=Y




Using the definitions of the reciprocal functions two alternative trigonometric
forms of Pythagoras’ theorem can be obtained.

. . 2 29 =
You will use this identity (@)  Start with sin6 + cos’f = 1.

in mechanics, when you -2 2
use the equation of the Divide both sides by cos?6: zt)nszz + zzzzg = coiz 7
trajectory of a projectile

to find the angle of
projection.

= tan’0 + 1 =sec?0.

v

(i)  Start with sin?f + cos?0 = 1.

- 2 2
coth = L — cosb Divide both sides by sin*6: Siﬁzz peos b 1

tanf  sinf s sin”f  sin” 0
\:>_1/‘+cot2 0 = cosec’6.

These three trigonometric identities are called the Pythagorean identities, as
they are all derived from Pythagoras’ theorem.

suoljdpuny oLdwouobLly 9 Jsydeyn

sin’f + cos*6 = 1; tan?0 + 1 = sec?0; 1 + cot?0 = cosec?.

T 1

If you can’t remember the second and third identities, you can easily
work them out from the first one, as shown above.

Questions involving reciprocal functions are usually most easily solved by
considering the related function, as in the following example.

Example 6.1 Find cosec 120° leaving your answer in surd form.

Solution

o 1
cosec 120 = =555 ¢ sin120° =sin (180° — 120°) = sin 60°

NG

=1+ -5 41 ltis easier to write it like this rather than
dealing with a ‘triple-decker” fraction.
2 _2J3

=ﬁ= 3

Example 6.2 Given that secf = —2 and 0 is reflex, find the exact value of

3
(1)  sin6 (i)  coté.
A reflex angle is between 180° and 360°.
Solution
1) sech=—2= cosh=-2 ¢— secl = 1
3 5 cosf 5
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Reciprocal trigonometric functions

Use the identity sin”6 + cos* 0 = 1.
= sin’f =1—-cos’ 6

= sin°f=1- (%)2

So sin20=1—i=1—g

: _ 16 _ 1+ 4
So sinf = i,lﬁ = ig

Use the CAST diagram to work out the correct sign for sin.

q0°
\
S A
cos @ is negative so @ must
lie in either the 2nd or the GEE f\ o
3rd quadrant. 0 o
But @ is reflex, so @ is in the T c
3rd quadrant.
270°
Figure 6.3 .
1 sin 0
coth = and tan = —.
tan 6 cos 6
Hence sin § = —%.
S ke dhe ddlemid e_cosﬁ
(11) se the identity cott) = =g
_4
= coth=—2=4% 4. 3 _ _4o._5_4
B e
@ (® Without using a calculator, write the following
in exact form.
1 il (a) sin135° (b) cos135°
() cot135° (d) sec135°
0 ] li) (a) sin(=150)° (b) sec150°
] ]
Worite down, in terms of 6, the lengths of the @ tan150 (d) cosec150
two shorter sides of this triangle. i) (a) tan420° (b)  cos(—420)°
) (c) sin420° (d) cot(—420°)
(iv) (a) cos?210° (b) sin%210°
X (c) cot?(=210°  (d) sec?210°
@) In triangle ABC, angle A = 90° and
f . secB=2.
1 () Find the angles B and C.
Find the length of the hypotenuse of this (il Find tan B.

triangle in terms of 0.

(i)  Show that 1 + tan®> B = sec’ B.



(® In triangle LMN, angle M =90° and cot N = 1. (D Starting with the graph of y = secx, state the
(il Find the angles L and N. transformations which can be used to sketch

(il Find sec L, cosec L and tan L. each of the following curves.

(il Show that 1 + tan®’ L = sec®L. ) y=-—2secx
(6) Malini is 1.5m tall. (il y=-sec2x
At 8 p.m. one evening her shadow is 6 m long. (i) y=2+sec (=)
livl y= 2S€C%

v y= —sec(x+ 30)
i) y=2—secx

(3 Sketch the graphs of the following functions
for 0 < x < 360°.

Figure 6.4 il f(x) =2+ secx
Given that the angle of elevation of the sun at li) f(x) = —cotx

that moment is « i) f(x) = cosec2x

(i) show that cota = 4 (iv)  f(x) = sec(x + 30°)

il find a. Figure 6.5 shows f(x) = sinx and
g(x) = a+ bcosecex for 0° < x < 360°.

suoljouny dudwouobil] 9 sardeyn

(7) Find the domain and range of

(i) flx) =secx
’ T/ VI
il f{x) = cosecx
(i) f(x) = cotux. ?
3 1 (1)
Given that cosf = > and 6 is acute, find the ol ™
exact value of O /77N 90° | 1357 | 180NG25N270° 315° 15407 %
(il sinf (il tan@. -1 / \ IR =
; (LT
(9 Given that cotf = 3 and 6 is reflex, find the -2 | [ |
exact value of , | |
il cosf .
lil cosecH. Figure 6.5
Given that cosecf = k and 0 is acute, show that
\/le2—1 (i)  Find the values of g, b and c.
(il cosf = L lil  Use the graph to solve f(x) = g(x).
1 liil How many roots does the equation
il tan’f = ——. _
L2 —1 f(2x) = g(x) have?

(D For each of the following functions Explain your reasoning.

(a) find the range, expressing each answer as
an inequality

(b) state the period

(c) sketch the graph for 0° < x < 360°.
il f{x) =sec3x
i) f(x)

(i) f{x) = cosecx — 3
f(

3cotx

X

= X
x)—3+sec3

(iv)
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Working with trigonometric equations and identities

2 Working with trigonometric
equations and identities

Inverse trigonometric functions

The functions sine, cosine and tangent are all many-to-one mappings, so their
inverse mappings are one-to-many. So the problem ‘find sin 30°” has only one
solution, 0.5, but ‘solve sin@ = 0.5 has infinitely many roots.You can see this

from the graph of y = sin6 (Figure 6.6).

-360 —-180° o/ 30° 80° 3609

-1 y=sinf

Figure 6.6
In order to define inverse functions for sine, cosine and tangent, a restriction
has to be placed on the domain of each so that it becomes a one-to-one

mapping. The restricted domains are listed in Table 6.1.

142

Table 6.1
Function Restricted domain (degrees) Restricted domain(radians)
. U T

y = sinf -90° < 6 < 90° —§$0$§

y = cosf 0° < 6 < 180° 0<s6<n
Remember that - -
tan+90° is y | y=rtanf —90° < 6 < 90° —5 < 0 < 5
undefined.

Table 6.2

Function Inverse

sinx arcsinx or sin”'x or invsinx

cosx arccosx or cos™!' x or invcos x

tanx arctan x or tan’l X Oor invtanx

When you use your calculator to find arcsin 0.5 it will return just one answer —
this value is called the principal value and it lies in the restricted domain.
To solve a trigonometric equation, you need to find all the roots in a given

range.



Notice that the inverse
functions have been
drawn using reflection
in the line y = x. This is
only possible if the same
scale is used on both
axes, so the angle must
be plotted in radians

rather than degrees.

Figure 6.7 shows the graph of each trigonometric function over its restricted

domain, and that of its corresponding inverse function.

by
y = arccos x
ok
y=x
yl— 'l'
n| y=arcsinx _ -
2 :'y:x 2
1F ) . 1
g y=sinx
1 1 1 1 1 1
_n _ (0] X _ T X
5 1 1 5 1 -
~7/ -1} N
o y=cosx
: _np
2
Y
y=x
x|
2 -
L’ y = arctan x
—_— Z
L L
_I (6] s X
2 2
o x|
e 2
y=tanx
Figure 6.7

Solving trigonometric equations

Example 6.3

Solve the following.

(i) sinx=0.5for 0° < x < 360°

Qi) sin(@ +40°) = 0.5 for 0° < 6 < 360°
Solution

®) sinx = 0.5

From your calculator: x = 30°.

‘A This is the principal value.

From the graph of y = sinx then a second root is

x = 180° — 30° = 150°.
Sox =30° or «x = 150°.

suoljdpuny oLdwouobLly 9 Jsydeyn
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Working with trigonometric equations and identities

(i)  sin(@ +40°) = 0.5 y = sin(f + 40°) is a translation of

y = sin 6 by the vector (_%O).

I
1 = f o

y = sin(0 + 40°)

y=sinb
y=0.5

o q0° 180° 270° 3 0";9
-1
) You need to change the interval to
Figure 6.8 0° +40° < 6+ 40° < 360° + 40°.

v
Let x = 6 + 40° so sinx = 0.5 for 40° < x < 400°.
Using part (i), x = 30° or x = 150°.
30° is out of range, so the second root is 30° + 360° = 390°.

0+ 40° =150° = O = 110° & Subtract 40° from each
value of x to find the

corresponding value of 6.

or @+40°=390° = @ =350°%"

Example 6.4

Solve cos26 = g for 0° < 0 < 360°.
Solution
First sketch the graph.

yjf‘ y = cos 26 y=cos 6

v 7N
/‘9

/
\

[ q 180° % 360° 6
y = cos 20 is a one-way
=ik stretch, scale factor % parallel
to the @ axis. So there are four
Figure 6.9 roots, not two.
Let x =20 so cosx = 72 and 0° < x < 720°.
Find the principal value y T ledlator: x = 45° \ Change the interval to
from your calculator. rom your calculator: x = 45°. 2X 0°<=2X%X 6 < 2% 360°
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From the graph of y = cosx a second root is x = 360° — 45° = 315°.

— (o] o o o
Slnce x = 26. halve each So x=457,315% 405%,675° < — Add 360° to these two x values until

x value to find the roots | — and 0 = 22.5°, 157.5°, 202.5°,337.5°. | You have ff,’”“d allthe ro%ts in the
for 6. interval 0° < x < 720°.

Sometimes you will need to use one or more trigonometric identities to help
you solve an equation.

Example 6.5 Find values of 0 in the interval 0 < 6 << 360° for which sec?6 = 4 + 2tan 6.

suoljdpuny oLdwouobLly 9 Jsydeyn

SOlUtlon YA
Replace sec? 6 with First you need to obtain an equation 34 -
tan®0 + 1. containing only one trigonometric
function.
Now you have a q“adrati\ sec20 = 4 + 2tan 0
equation in tan 6, so 5
rearrange so it equals 0. > = tan’f + 1 =4 + 2tan 6 o
/:> tan’0 — 2tanf — 3 =0
You can factorise this = (tan® - 3)(anf + 1) =0 1 i
in the same way as
x> —2x—3 = tanf = 3 or tanf = —1.
=& =3) (et ). anf=3 = §=71.6°
From your calculator. or 6=71.6°+ 180° =251.6°.
— _ — _ 4RO
See Figure 6.10 o=t =0 45 Figure 6.10
or 0=-45°+180°=135° Don’t worry that this is out of range -
or 0 =135°+ 180° = 315° you still use it to find the other roots.
Add 180° to find other /
s, The values of 6 are 71.6°, 135°,251.6°, 315°.
Using trigonometric identities
You can use the identities
sin’f + cos’0 =1, tan?0 + 1 = sec?0, 1 + cot?0 = cosec?0
_ sinf _ cosf
tanf = 030’ cotf = 0

to prove that other identities are true.
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Example 6.6

() () Why is the restricted domain for the cosine ®
function between 0° and 180° while the sine

Working with trigonometric equations and identities

Solution

Prove the identity cotf + tanf = secf cosec.

It 1s sensible to work with one side of the identity at a time.

Working with the LHS: ¢ Left-Hand Side

cotf + tanf =

—) =

Right-Hand Side T

cosf) | sinf . .

- ¢ Rewrite using sin and cos.
sinf = cosf 050

cos’ 0 sin” @ Use cott = sinp and
cos?sm@ v51n0cosl9 nf <inf
cos 0 + sin” 0 ~ cosf-

cosfsin6
1

RHS

cosfsinf \
secf cosecf 1

as required.

Usesin’6 + cos’ 6 = 1.

= sec X cosecl

cosBsinf

and tangent functions have restricted domains

between —90° and 90°?

Solve the following equations
for 0° < x < 360°.

_ R NN )
(i) cosx= 5 (i) sinx = 5
(i) tanx = \/3 (iv] cosx = —g
. 3 ]
(v] sinx= - (vi] tanx = —\/3
Write down the number of roots for each of @

the following equations.
i) cosx=0.4
for 0° < x < 360°
i) sinx=-0.4
for 0° < x < 360°
i) tanx =-0.4
for 0° < x < 180°
liv) cos2x =-0.4
for 0° < x < 360°
v 2sinx=-0.4
for =360° < x < 360°
(vi) tan(x —30°) =-0.4
for =360° < x < 360°

(4) Write down the domain and range of the

following functions, where x is in radians.
(i) flx) = arccosx
li) f(x) = arcsinx
i) f(x) = arctanx

(i)
(i)
(v)

Solve the following equations for
0° < & < 360°.

cosecx =1 li] secx=2
cotx =4 liv)] secx=-3
cotx =—1 (vi] cosecx=-2

(® Prove each of the following identities.

(i)

(ii)
(iii)
(iv)

cotBsinf = cosf

cos’0 — sin’0 = 2cos’0 — 1

sec’d — cosec’d = tan’6 — cot’6

Solve the following equations for

0° < x < 360°.

(i)
(ii)
(iii)
(iv)
(v)

(vi)

COSX = secx

COSECX = secx

2sinx = 3cotx
cosec’x + cot?’x =2
3sec’x — 10tanx =0

1+ cot?’x = 2tan’x

Prove each of the following identities.

(i)

(ii)

(iii)

(iv)

(v)

sec’d + cosec’d = sec’d cosec’
2
@nf=1 _5n% -1
tan’0 + 1
cosf
1 — sinf

1 1
1—sin9+l+sin

= secl + tanf

— 2
9 = 2sec’d

sec’'d — tan’0 = sec’d + tan’0



o Make sure you put

your calculator into

3 Solving equations involving radians

You can solve trigonometric equations in radians in a similar way to solving
them in degrees. Sometimes the roots can be given in exact form in terms of 7,

radians mode. as in the next example.

Example 6.7

Solution

So you need to find all
the roots in the interval

0<x<4n. 1

You might find it helpful
to think in degrees.

— Let x = 20, then secx =2. ¢——— Remember thatsecx =

Solve sec260 =2 for 0 < 0 < 2n giving your answers as multiples of m.

COSX °

—1 —
cosx = = x = 60° — = 0r27‘[—%=5%
or 360° —60° = 300°.
T _In
So X =F+2n = ; ,
3 13\ Keep adding 2m until you have found all
and 2% 4o = U the roots for x in the interval 0 < x < 4.
3 3
5t 7n 1ln Halve all of the values for x that
So 9=22R % L —
6’6°6" 6 are in range to find 6.
() (O Find the exact values of (@ Solve the following equations for
. T ) s n<0<nm
(il secy (i)~ cosecy
(i) sinf=0.2 i) cosf=0.74
T _ B
liii) cotz v} sece (i) tan® =3 liv] 4sinf =—1
5n _ 51 v) 3+cos0=26 (vii 2tanf0+1=0
(v) COSCC? (vi) COtT
5 @) Solve the following equations for
(vii) secTTt (viii) cosec?T” 0<6<2m
. Tn (il sin20=0.6
(ix) cot—
4 i) 3cos(@—1)=0.9
(2 Solve the following equations for (il 2cot20=5
0 < 0 < 2nr, giving your answers as multiples
of (iv) Sin(Z@ - E) = ﬁ
. 2 2
i) cosO = g (i) tanf =1 (v) \/gtan(g) -1=0
(i) sin@ = % (iv) cosech = -2 il /3 cosec(m — 6) = 2
7 _ 1 (B Solve the following equations for
v sec =—v2 (v cotl = 7 0<0<n
) sin’@ = %
il cos’f = %

suoljdpuny oLdwouobLly 9 Jsydeyn
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Solving equations involving radians

(i) tan’@=1

i) (tan@ — /3)(3tan® +/3) = 0
v 4cos’@—-1=0
(vi) 2cos’6 + cosf@ —1=0

(vi) 3cos’0 + 2sinf =3

(viiil tan®0 — 5secf+ 7 = 0

Solve (1 — cosx)(1 + secx) = sinx for
Osx<2n

Solve cos@ =1+ secl for0 < 6 < 2.
2

(i) Show that Lq_l = cos’#.

cosec” 6

4cosec’d — 4 B

=3

OO0
®@Q ©

(i) Hence solve
2
cosec 6

for0 <0 <2n.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

understand and use the definitions of:

>
o secant O arcsin
o cosecant O arccos
O cotangent O arctan
> know the relationships of secant, cosecant, cotangent, arcsin,
arccos, arctan to sine, cosine and tangent
> understand the graphs of secant, cosecant, cotangent, arcsin,
arccos, arctan
> understand the domains and ranges of secant, cosecant,
cotangent, arcsin, arccos, arctan
> understand and use:
5 sin®0+ cos’6 =1
5 1+ tan’0 =sec’0
O 1+ cot’ @ = cosec’f
> solve simple trigonometric equations in a given interval, expressed
in radians, including:
O quadratic equations in sin, cos, tan
o equations involving multiples of the unknown angle
» construct proofs involving trigonometric functions and identities.
KEY POINTS
1 The reciprocal trigonometric functions are
cosec0=m; sec0=m; cot0=m = 5no |
2 sin’0 + cos’0 = 1; tan’0 + 1 = sec?0;
sin 6
1 + cot?0 = cosec?0 tanf = ——
cos
3 Table 6.3
Restricted domain | Restricted domain | Inverse
Function (degrees) (radians) function
y = sinf -90° < 0 < 90° —% <0< % arccos 0
y = cosf 0° < 0 < 180° 0s6<n arcsin
— o o T U
y = tan@ -90° < 0 <90 —5 < 0 < 5 arctan 6




The curve is
symmetrical about
x=90° or

T
x=7 radians, so

0,=180° -0,

orf,=mn—10,

91 + 360° and
0, 360°

0, £ 2mand
0, £2n

-1

Principal value is 0° << 6 << 180°

0<0=<n

The curve is
symmetrical about
the y-axis, so

0,=—0

2 1

0, +360° and
0.+ 360°

01 + 2 and
0, %2n

or

5) %//ﬁo

Principal value is =90°< 6 < 90°
Tt n
—§<0<2

0 +180°
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At the age of twenty-one
he wrote a treatise upon
the Binomial Theorem. ...
On the strength of it, he
won the Mathematical
Chair at one of our
smaller universities.

Sherlock Holmes on
Professor Moriarty, in ‘The
Final Problem’ by Sir Arthur
Conan Doyle (1859-1930)

Further algebra

)

=» How would you find ~/101 correct to 3 decimal places without using a
calculator?

One possibility, using a pen and paper, would be to use trial and improvement;
another is that there is a structured method, which is rather like long division.

In the days before calculators and computers, some people needed to develop
a very high degree of skill in mental arithmetic, particularly those whose work
often called for quick reckoning. Some, like bookmakers, still do. There are
also those who have quite exceptional innate skills. Shakuntala Devi (pictured
above), born in 1929 in India, was known as ‘the human calculator’ because of
her astonishing ability to perform complex calculations mentally. In 1977 she
gave the 23rd root of a 201-digit number in 50 seconds.

While most mathematicians do not have Shakuntala Devi’s high level of talent
with numbers, they do acquire a sense of when something looks right or
wrong. This often involves finding approximate values of numbers, such as
J101, using methods that are based on series expansions, and these are the
subject of the first part of this chapter.
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ACTIVITY 7.1

~]

Using your calculator, write down the values of \/1.02, \/1.04, \/1.06. ..., giving
your answers correct to 2 decimal places. What do you notice?
Use your results to complete the following, giving the value of the constant k.

1

JI.02 = (1+0.02)% = 1+ 0.02k
1

JI.04 = (1+ 0.04)2 = 1+ 0.04k

What is the largest value of x such that /1 + x = 1 + kx is true for the same
value of k?

Review: Pascal’s triangle and the
binomial expansion

You have already met the binomial expansion, initially using Pascal’s triangle to

elgabje Jayying £ Jo1deys

expand expressions of the form (x + y)".

The coefficients in this type of expansion are called the binomial coefficients.
They form Pascal’s triangle.

(1 Each number
1 1 is obtained by
adding the two
1 2 1 numbers above it
1 3 3/ 1
1 4 6 4 1
1 5 10 10 5 1

Example 7.1

(i) Expand (x + 1)* using the coefficients from Pascal’s triangle.

(i) Extend the result in (i) to write down the expansion of (x + y)*.

Solution

You use the row starting . . .
1,4, ... since the power of (1) From Pascal’s triangle, the coefficients are 1,4, 6, 4, 1.

xin(x + 1)"is 4.

(x+ D' =1x* + 4x° + 60> + 45 + 1 . _
'\ The first term, taking

the x from all four
(i) The expansion of (x + y)* uses the same row brackets, is x* and

of coefficients as in (i), but as the powers of x thereafter the powers
of x decrease

decrease, powers of y are introduced.

(x + y)4 =x'+ 4x3y] + 6x2y2 + 4x]y3 + y4

Notice that the sum of the powers in each term is 4.
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- Review: Pascal’s triangle and the binomial expansion

When expanding an expression of the form (1 + x)", Pascal’s triangle becomes

progressively larger and more tedious row by row, as the value of n increases.
n!is ‘n factorial’, where

=1, 21=1x2, The coefficients for the expansion of (x + y)" can be found using the formula
31=1X2X3, "
nl=1xX2xX3x% ni- n! ( ) is also sometimes written as C or "C’
X, U‘r!(n—r)!‘ !
Special case: 0!=1
n ol Using this notation, (x + )" can be written as
:[,j Dk
o e A bt
:(nJ:(n)zl 0 1 2 3 n—1 n
0 n

,C, gives the number of ways of choosing r objects from #.

Pt T
[ teCHNOLOGY

This is covered in more detail in Chapter 16 on probability distributions.

Most calculators have a

button for C.

Example 7.2

Find the term in x* in the expansion of (2x — 3)’.

Solution
7
. . 4 b _ 70 _7X6Xx5 _
The binomial coefficient of x* is given by (4} = I3 - 3xox1 = 35.
_ 7 _ 4 3 4
“l3)° (2%)"(=3)" ¢ Be careful with signs.
Term in x*
= 35 X 16x* X (=27)
= —15120x"
(D ()  Write out Pascal’s triangle as far as the (#) Write down the term indicated in the
row starting 1,6, ... . binomial expansion of each of the following
(i) Add up the numbers in each row. functions.
What do you notice? ) (1 - 2x)°3rd term
(i)  What would be the sum of the numbers in i) (2 = x)*,3rd term
the row starting 1,12, ... ? (i) (3 = 2x)°, 4th term
(2 Expand each of the following as a series of XV
ascending powers of x. () Find the binomial expansion of (1 - E) up to
i 1+ x) and including the term in x*.
i 1+ 2x)
(il (1-2x)°
@ (il Expand each of the following as a series

of ascending powers of x.
&) (1+2x)* b (1-x)

(i) Hence find the first three terms in the
expansion of [(1 + 2x)(1 — x)]".
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ACTIVITY 7.2

Show that this form of
the binomial expansion
(right) gives the correct
result for (1 + x)*.

Explain why it results
in an expansion which
terminates after the
term in x*.

/Discussion point \

=» Explain why the
binomial coefficient

n
(2) can be written

nn —1)

as and the

binomial coefficient

n
(:J can be written

as

nn —1)(n—2)
1X2x%x3

\

[©

1 The general binomial expansion

n |
In general, the binomial coefficient ( ) = can be written as
r

rln —r)!
nXm-=—NX..Xn-—r+1)
r! ‘

So the binomial expansion of (1 + x)" can be written as

(HTsz nin=Dn=2) 5

. n
1+ x)" =14 nx+ o 3] x7 + ...

+

This form of the binomial expansion can also be used to find the expansion of
(1 4+ x)" if n is a negative number or a fraction. However, in such cases there will
be an infinite number of terms.

You will have seen in Activity 7.3 that for x = 0.1, taking the first three terms of
the binomial expansion gives a good approximation, but for x = 10 it does not.

ACTIVITY 7.3

(i) Use the formula above to find the first three terms of
@) (1+ x)% (b) (14 x)7

(ii) Substitute x = 0.1 into each of your expansions in (i) to find approximate
values for
) V1 b) .

(iii) Use a calculator to check that these answers are approximately correct.
(ivl What happens if you substitute x = 10 into the expansions to try to find
approximate values for J11 and #?

When x is a small number, the terms in x” get smaller and smaller as n gets larger,
and so taking just the first few terms means that you are only disregarding small
numbers. This is not the case when x is a larger number.

In fact, the binomial expansion when # is negative or fractional is valid only
for |x| < 1.

This gives the general binomial theorem:

n(n — 1)x2 +n(n -Dn-2) 3

1+x)" =1+nx+ o 30 X7+ ...
- Dn-=2)...(n—r+1) |
NLCRE RS PCRIEY W

This is valid when n is any real number, provided that |x| < 1.

elgabje Jayying £ Jo1deys
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The general binomial expansion

Example 7.3 Expand (1 — x) 7 as a series of ascending powers of x up to and including the

term in x°, stating the set of values of x for which the expansion is valid.

Solution

CESINICES L

(1+x)"=l+nx+n

Replacing n by —2 and x by (—x) gives

A+ ()2 = 1+ (2)(=x) + T2 e 4

(=2)(=3)(=4)
2! 3!

(=x)’ + ...

T

It is important to put brackets round the term —x
which leads to since, for example, (—x)? is not the same as —x2.

when |—x| <1

(1—x)7 =1+2x+3x" +4x°  when |x| <1.

T

In this case the infinite series can be written in sigma notation as z '

r=1

Sometimes you need to rewrite an expression so that it is in the form (1 + x)"
before using the binomial expansion. This is shown in the next example.

Example 7.4 1

Find the first three terms of a series expansion for and state the values

of y for which the expansion is valid. 2ty
Solution
1 -1
-1
= 2|:1 + ZD Take out a factor of 2, but
2 remember that the index
=i still applies to this 2.
=2 (1 " 1)
2
=il
-4(+4
You only need to go as far as the x?

Using the binomial expansion term since the question asks for

the first three terms.
n(n — 1)£2
31 587 9F ooy

A+x) =14+nx+

replacing # by —1 and x by % gives

. -(=2)(y\
Remember to put 2+’ = %|:1 + (—1)(%) + E02) )2(! )(%) + :|
brackets rouznd the term 4
Voo (2) 2 2 iy, ” ; y
§smce(2) T ~2(1_§+T valid when 5| < 1
= 1 zl—z+ﬁ when |y| <2
2+y 2 4 8 Y ’
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Example 7.5 For each of the functions below

Ascending powers (a) write down the first three terms in the binomial expansion as a
means starting with the

constant term (the x"
term), then the term in x, (b) state the values of x for which your expansion is valid,
then the term in x?, etc.

series of asceRding powers of x,

(c) substitute x = 0.1 in both the function and its expansion and
calculate the percentage error, where

percentage error = absolute error 109,
true value

@ (1+x) () /(1 + x2)

Solution
Q) @ (1+x)°

+ (-3)x +7( )2(. ) L

1— 3x + 6x° (first three terms)

elgabje Jayying £ Jo1deys

i

(b) The expansion is valid for |x| < 1.

o _ . 44— _ 1000
(c) Substituting x = 0.1, the true value is 1.1 = 1331

The approximate value is 1 — 3(0.1) + 6(0.1)> = 0.76

1000
= absolute error = 0.76 — 1331
= 0.008 685

. 0.008 685
Relative error = — 55— X 100% = 1.16% (to 3 s.f.).

(i) () Writing /(1 + x%) as (1 + xz)%

1+ x*) = 1+%x2+( 2)(= 2)( Y +.
This example shows
how quickly this

2 4

approximation may =1+ % - % (first three terms)
converge to the true . ) . 5

value. (b) The expansion is valid for [x°| <1 =|x| < 1.

(c) Substituting x = 0.1, the true value is +1.01.

The approximate value is 1 + 0.01 _ 0.0001

5 3 - 1.004 9875
= absolute error = +1.01 —1.0049875

= 0.000000 062

Discussion point

=» What helps to make
the convergence so
rapid?

Relative error = 0.000000062 x 100% = 6.17 X 10°%

+/1.01
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The general binomial expansion

Example 7.6 v
(1) Write v4 + 3x in the form q" (1 + %) .

(i1) Hence find the first three terms in the expansion of /4 + 3x, stating the
values of x for which the expansion is valid.

Solution
@ &+ 3x= 4(“%)

1
=4%(1+3—")2

)
)
x
= 2(1 + T)
1 Only the first
. 3|2 1(3x), B)(=3)(3x) |
i 2(1 + —) = 2[1 + —(—) - =2) +... | threeterms
) 2 2\ 4 2! 4 are required.
3x 1)( 97
=2|:1+?+(_§)(W)+ i|
=24 %Tx - 96i4 (first three terms)
Expansion valid when 3796 <1
= |x|< %
Example 7.7 Find 4, b and ¢ such that
1 =~ a+bx+cx’

(1—=2x)(1+ 3x)

and state the values of x for which the expansion is valid.

Solution
1 — M =i =i
A= 200 % 3%) — (1—-2x) (1+ 3x)
Using the binomial expansion:

(1-2x)" =1+ (-1)(-2x) + #(—2@2 + ...

for [-2x|< 1,i.e. |x[< 1

and
(1+3x)" =1+ (-1)(3x) + H;ﬁ@x)z +...
Each bracket involves for |3x| < 1,i.e. |x| < %
an infinite series, but
when you multiply out y = (1- 2x) (1 +3x)" = (14 2x +4x” +..)(1 = 3x +9x° +...)
you can ignore any terms =1+2x +4x" —3x — 62 +9x” + ...
which are higher than

~1—-x+7x> (ignoring higher powers of x),

quadratic.

givinga=1,b=—1and c=7.

Both the restrictions are satisfied if |x| < % , which is the stricter restriction.
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The binomial expansion may also be used when the first term is the variable.

For example

-1
(x + 2)"" may be writtenas (2 + x)”' = 2" (1 + ﬁ)

and (2x — 1) = [(=1)(1 = 2x)]”

(=D7(1 - 2x)"
—(1=2x)"

2

(1) Expand each of the following as a series of
ascending powers of x up to and including the
term in x°, stating the set of values of x for which
the expansion is valid.

i (1+x) (i)
(il (1-2x)7
(2 Expand each of the following as a series of

(14 2x)~

ascending powers of x up to and including the
term in 2, stating the set of values of x for which
the expansion is valid.
1
[ (1+x)?
1 1
i) (1+ x)* v (1+x)*
(@ Expand each of the following as a series of
ascending powers of x up to and including
the term in &%, stating the set of values of x for
which the expansion is valid.

-2 =2
(i) (1+ﬁ) m1(1+§ﬁ)

1
M (14 x)?

3 3

(i) @—%gy

(@) For each of the expressions below

(a) write down the first three non-zero
terms in their expansions as a series of
ascending powers of x

(b) state the values of x for which the
expansions is valid

(c) substitute x = 0.1 in both the function
and its expansion and calculate the
percentage error, where

absolute error
true value

1+ 2x)™

percentage error = X 100%.

I (1+x)7 (i)

i) 1= x?

(i)

(iii)

(i)

(iii)

(ii)

Write down the expansion of (1 — x)°.
Find the first three terms in the
expansion of (1 + x)™ in ascending
powers of x. For what values of x is this
expansion valid?

elgabje Jayying £ Jo1deys

3
When the expansion is valid, (1-x)

can
1+ x)*

be written as
1+ ax + bx” + higher powers of x.
Find the values of a and b.

L - 1(1 + 5) ’
N 4
Write down the first three terms in the
binomial expansion of

Show that

(1 + %) *in ascending powers of x,

stating the range of values of x for which
this expansion is valid.

Find the first three terms in the

expansion of 20-%) i, ascending
X

powers of x, for small values of x.

Write down the first three terms in the

1
A+ 221 + x)

binomial expansion of in

ascending powers of x.

For what values of x is this expansion
valid?

Find a quadratic approximation for

3—x)(1+x)

and state the values of x for
(4 = x)

which this is a valid approximation.
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Simplifying algebraic expressions In the next section you
will learn an alternative

way of approaching this

question.
"¢
(9 The expansion of (a + bx)~ may be () @ () Find the first three4terr2ns in the binomial
, 1.3 : __a*ix
approximated by FRETRA o’ O expansion of Qx - D2+ 1)
(i) Find the values of the constants a, b and c. @ i) For what range of values is the expansion

(il For what range of values of x is the valid?
expansion valid? @ ) Write \J7 in the form a\/g where

. . N ais an integer and b < 1.
Find a cubic approximation for 8

-2
(x + D> + 1)

values of x for which the expansion is valid.

(il Use this to find an approximate value
, stating the range of for \/7.

liil Comment on how good the
approximation is.

@ () Find a quadratic function that () Rearrange /x — 1, where x > 1, ina
approximates to ;2 for form where the binomial expansion can
(1 = 3x) be used.
values of x close to zero. (il  Using the first four terms of the
lil  For what values of x is the approximation expansion, find an approximation
valid? for +/15 to 3 decimal places.

2 Simplifying algebraic expressions

. .t . .
If f(x) and g(x) are polynomials, the expression ﬁ is an algebraic fraction
and so it is a rational expression. There are many occasions in mathematics
when a problem reduces to the manipulation of algebraic fractions, and the rules

are exactly the same as those for numerical fractions.

Simplifying fractions

To simplify a fraction, you look for a factor common to both the numerator (top
line) and the denominator (bottom line) and cancel by it. Remember that when
you cancel in this way, you are dividing the top and bottom of the fraction by
the same quantity.

For example, in arithmetic

15 _5Xx3_3
20 5x4 4 4— Dividing top and bottom by 5.

and in algebra

6a _ 2X3Xa _ 2
o " 3xX3Xaxa_ 3a 4— Dividing top and bottom by 3a.

Notice how you must factorise both the numerator and denominator before
cancelling, since it is only possible to cancel by a common factor. In some
cases this involves putting brackets in.

2a+4 _  2a+2) 2

F_4 @rD@-2 @-2
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Multiplying and dividing fractions

Multiplying fractions is shown here.

Multiply the numerators and multiply
10a , 9ab _ 10a X 9ab 4——— the denominators.

X =
3p* 7 25 3bh* X 25

_2X5Xax3x3Xaxb | Look for common
3XbXbX5X%X5 h factors to cancel.
_2XaxX3Xa |
- bx5 A Divide top and
642 bottom by 3 X 5 X b.
T 5

As with simplifying, it is often necessary to factorise any algebraic expression first.

a2+3a+2x 12 _(a+1)(a+2)>< 3X 4
9 a+1 3%x3 (a+1)

4(a + 2)

3

Dividing by a fraction is the same as multiplying by the reciprocal of the fraction,

just as dividing by 2 is the same as multiplying by % - 4
For example: Dividing by ==
0 4 0 (x+1) is equivalent to
. — ol . x+ 1
21 a1l x+ D -1 X 7 < multiplying by o
o 12(x+ 1)
T Ax + D) ¢ Divide top and bottom
_ 3 by 4(x + 1).
S (x -1

Addition and subtraction of fractions

To add or subtract two fractions they must be replaced by equivalent fractions,
both of which have the same denominator.

For example, in arithmetic

2,1_8 .3 _11
3tFTIZT2ZTO
Similarly, in algebra
2, x _8x Bx _llx
3 4 12 7 12 1 Notice how you only need
2 1 _ 8 + 3 _ 11 12x here, not 12x2.

R + _— = =
L T v e e
You must take particular care when the subtraction of fractions introduces a sign
change. For example:

4x -3 2x+1 _ 24x—3)-32x+1)

6 4 12
_ 8x —6—6x—3
12
_ 2x — 9
12

elgabje Jayying £ Jo1deys
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Simplifying algebraic expressions

Notice how, in addition and subtraction, the new denominator is the lowest
common multiple of the original denominators. When two denominators have
no common factor, their product gives the new denominator. For example:
2, 3 _20=2+3y+3)
y+3 y-2 (y+3-2)

_2y—4+3y+9
S+ -2
_ 5y +5
S+ -2
__Sy+h
C(+3IAG -2

It may be necessary to factorise denominators in order to identify common
factors, as shown here.

26 3 2b 3 (a+b)isa
a—b> a+b (a+b)a—b) (a+b) l common factor.
b - 3(a—b)
" (a+b)a—b)
_ 5b—23a
CEDICED

Algebraic division

Example 7.8 Divide 2x% — 2x — 12 by x + 2.

Solution
2
The division can be written as 2X_—= 2% =12
x+ 2
R 2Ux? — x — 6 There is a numerical factor
% = % R Y e s
_ 2(x = 3)(x + 2) | You can now factorise

Prior knowledge S 2 the numerator
You need to know the =2(x=3) ©——__ | Nowyou can divide top
factor theorem and be and bottom by (x + 2).
confident in algebraic
division. This is covered
in Review: Algebra (2) Sometimes factorising the numerator is not as straightforward, as in the
(page 61). following example.
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Example 7.9

3 2
Simplify 2% = ix_ txo 6

) The factor theorem says that
Solution when (x — a) is a factor of f{(xx) then f{a) = 0.

Start by using the factor theorem to check if (x — 2) is a factor of
2x° = 3x” +x — 6.
Substituting x = 2 gives 2(2)° —=3(2)*+2-6=0
so (x — 2) is a factor.
Using algebraic division or inspection gives

257 = 3x" +x— 6 = (x —2)(2x° + x + 3)

2x° —3x’ +x—6 _ (x—2)(2x° + x +3)
S0 —2 = x—2

X Divide top and
=2x>+x+3 4——— bottom by (x — 2).

elgabje Jayying £ Jo1deys

A proper algebraic fraction is a fraction where the order (highest power) of the
numerator (top line) is strictly less than that of the denominator (bottom line).
The following, for example, are proper fractions:

2 5x =1 7x )
T+x x2-3" (x+1D(x—2)

Examples of improper fractions are

2x ; i 2
e (which can be written as 2 s 1)
and
x’ 4

—5 (which can be writtenas x + 2 + P 2).

Example 7.10 ) x4

(1) Write

in the form .
x+2 a+x+2

x+1

5 can be sketched by starting

(i) Hence show how the graph of y =
with the graph of y = 1

x.

Solution
) x+1_(x+2)—1
x+2  x+2

_x+2 1

Tx+2 x+2
Alternatively this could
be done using long =1 = 1
division. x+2 -
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Simplifying algebraic expressions

(1) Starting with the graph of y = %, the graph of y = x——}-Z is obtained

-2
using a translation of [ O]'

YJ

Figure 7.1

Next reflect this in the x-axis to give y = —

J

Cy

x+2°

Figure 7.2

. . 0} .. .
Finally, a translation of [ 1} will give the graph of y = 1 — PR

Figure 7.3
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Describe the transformation that transforms
y = l il’ltO y = L
X x =3

Simplify the following algebraic fractions.

N G 2 [ C el VA (x - 1)
R N CE )
(x — 1) (x +2)

i a3 2x-0 vV Z+2)x-1
Simplify the following algebraic fractions.
x> =9
x* —9x +18
4x° = 25
4x% + 20x + 25
a = b
24> + ab — b’
Worite each of the expressions as a single
fraction in its simplest form.

U A
x , x+1

3 4

Write each of the following expressions as a
single fraction in its simplest form.

(i)

(ii)

(iii)

(iii) +

(I S
x'—4 x—2

(ii) 2 _ 3
b +2b+1 b+1
2 a—2

(iii)

a+2 28 +a—6
Simplify the following algebraic fractions.

(i 457 + 6x+ 2 (i) 2x7 + 3x% + x
x+1 x+1
(i) 2ax” + 3ax + 2a
x+1

Simplify the following algebraic fractions.
1 1 1

-2 xtxT2

1 1 1
3-a a 3+a

o1 1 1

(iii) 7 =) + = 1)2

Write each of the following in the form

(i)

(ii)

+

y=a+ % and hence sketch the graph in

each case.
(i =S =3 o dx+2
Y x+1 Y x =2
i) = Ox=3
L |

Write each of the following in the

c
form ax+b+m.

oo 2x7+3x+5 ., 3x +x—6
i == (i =
x+1 x+ 2
(i) x> —6x+7
x—1

3 2
Write 3x” +2x" —5x—4

in the form
x+ 2

ax® + bx + c +

x+2°
Use transformations to sketch the graph

2 — 3x

of y = , starting with the graph

ofyZ%.

3 Partial fractions

[©

ACTIVITY 7.4
(i)  Write 3x2+ T+ 352

as a single fraction.

(ii) Find the first three terms in the binomial expansions of both the original
expression and the single fraction.

(iii) Which did you find easier?

You probably discovered in Activity 7.4 that, when using a binomial expansion,

it is easier to work with two or more separate fractions than with a single more

complicated one.

elgabje Jayying £ Jo1deys
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Partial fractions

Example 7.11

There are other situations where it is useful to be able to split a fraction into two

or more simpler ones. For example, in Chapter 10 you will learn to integrate an

expression such as (EEDED) by first writing it as a +22x) - a _& Sk
1

(14 2x)(1+ x)

is called expressing the algebraic fraction in partial

The process of taking an expression such as and writing it in

1
1+ x)
fractions, and you will now look at how this can be done.

2
the form T+ 2% — (

It can be shown that, when a proper algebraic fraction is decomposed into its
partial fractions, each of the partial fractions will be a proper fraction.

When finding partial fractions you must always assume the most general numerator
possible, and the method for doing this is illustrated in the following examples.

Type 1: Denominators of the form (ax + b)(cx + d)

Discussion point

=>» How could you have
worked out these
values for A and B?

Example 7.12

4+ x . .
Express (D) as a sum of partial fractions.
Solution 3 3 The numerators must be
A 4+ x A B constants, so thgt these
ssume T+ 2)(2 - ) = Tex + 5 — x are proper fractions.

Multiplying both sides by (1 + x)(2 — x) gives
4+x=A2-x)+Bll+x) ¢—

A=1and B=2 ¢ These values for A and
4 + x 1 2 B make the identity

1+ x)(2-x) = 1+ x 2 _ true for all values of x.

This is an identity: it is
true for all values of x.

So

In general you would need to use a structured method to find the constants 4 and
B rather than hope that you could guess them correctly. There are two possible
methods, and the following example will use each of these methods in turn.

X . .
Express CEPIEES) as a sum of partial fractions.
Solution
x __ A B Multiply through by
Lt -3~ -2 T w-3 ¢ | x-2)x-23)
= x = A(x —3)+ B(x — 2)

Method 1: Substitution

= 2=A(-1)+ B(0) You can substitute any

= A=_D > two_values of X, but_ the
easiest to use in this

= 3=A(0)+ B(1) case are x =2 and x = 3,

since each makes the
value of one bracket in
the identity equal to zero.

Substituting x = 2

Substituting x = 3
= B=3

x _ 3 2
o TG -3Tx-3 1.2




V. : : N Method 2: Equating coefficients
Discussion point

x = A(x — 3)+ B(x — 2)
In each of these
methods the identity (=) = x=Ax-3A+ Bx-2B Write the right-hand side as a polynomial
was later replaced by = x=(A+B)x-34-2B “in x, and then compare coefficients.

an equality (=).

Equating the constant terms: 0 = -34 — 2B i

=» Why was this done? > These_ are _s,lmultaneous
W Equating the coefficients of x: 1 = A+ B equations in A and B.
Solving these simultaneous equations gives A = —2 and B = 3, as before.

In some cases it is necessary to factorise the denominator before finding the

partial fractions.

elgabje Jayying £ Jo1deys

Example 7.13

2 . .
Express 5 as a sum of partial fractions.
-x

Solution
Let 2= 2 isi i
4— 22 2+ x)(2 - x) 4—— Factorising the denominator.
_ A B
T VEE:

Multiplying both sides by (2 + x)(2 — x) gives
2= A2 —x)+ B(2 + x).

Substituting x = 2 gives 2 = 4B,so B = %

Substituting x = -2 gives 2 =4A4,s0 A = %

Using these values:

2 __ 3 3
C+002-x_ (C+x) T 2=x
_ 1 1
=32 +x 22— %)

In the next example there are three factors in the denominator.

Example 7.14

11x + 1
x+ D(x = D2x + 1)

Express as a sum of partial fractions.

Solution

11x +1 A B C
Let —
b EFDE-DCx+D) Tx+1 T x—1"2x+1

Multiplying both sides by (x + 1)(x — 1)(2x + 1) gives
TMx+1= Alx —1D2x + 1)+ B(x + )2x + 1) + C(x + 1)(x — 1)
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- Partial fractions

In this form, both
the numerators are
constant.

Substituting x = 1 gives 12 = 6B, so0 B= 2.
Substituting x = —1 gives =10 = 24, s0 A = 5.

Substituting x = —1 gives —4.5 = %, so C=6.

Using these values:

1x +1 __ 2 5 6
(x+Dx-DRx+1)  x—-1 x+1 2x+1

Type 2: Denominators of the form (ax + b)(cx + d)?

The factor (cx + d)? is of order 2, so it would have an numerator of order 1 in
the partial fractions. However, in the case of a repeated factor, there is a
simpler form.

: 4x +5
Consider 2 1 1)2
This can be written as Z(ZLW

2x +1)

_22x+1) 3
T ex+1)7 2x+1y

2 . _ 3
Cx+1) " @2x+1)

X +
In the same way, any fraction of the form (f:ch)z can be written as
A B

(@ +d) " (o + dy

When expressing an algebraic fraction in partial fractions, you are aiming to find
the simplest partial fractions possible, so you would want the form where the
numerators are constant.

Example 7.15

Substituting another
value of x, or equating
the coefficients of a
different term would
give a third equation but
it would involve all three
of A, Band C.

166

Express m as a sum of partial fractions.
Solution
Let x+1 __ A B C

F-Dx-2F G- x-2  x-27
Multiplying both sides by (x — 1)(x — 2)* gives

x+1= A(x—2) + Bx — 1)(x — 2) + C(x — 1)
Substitutingx=1 = 2= A(-1)° = A=2
Substitutingx =2 = 3=C
Equating coefficients of x> = 0= A+B = B=-2
This gives

x+1 2 2 __3
(x=D(x=27 x=-1 x=2" (xy-2y




©

3 L2
Simplify =7y T ¥+ 5

il Write x(x;—l) in the form

% + xl3 1
li)  Write xE ) in the form % + x]il
i) Write m in the form

xf 1 + xli 1

Express each of the following as a sum of
partial fractions.

U 3 (i) —2

(x — D(x +2) (x = 2)(x + 3)
lii) —— L

(x = 3)(x +4)

Express each of the following as a sum of
partial fractions.

(i) 3
(x =2)2x —1)
(ii) 8
(x =3)3x—1)
(iii) L
(x —4)(4x - 1)

Express each of the following as a sum of
partial fractions.

_ 2 N 2
(i) 5 i) ————
x~ = 2x x"—4x+3
(iii) 2;
x°—6x+8

Express each of the following as a sum of
partial fractions.
5—-2x
(x — 1’ (x + 2)
. S
(1-3x)(1-x)°

(i)

(i)

Express each of the following as a sum of
partial fractions.
2x =2
1+ x)(1+ 2x)(1 + 3x)
2x — 2

1+ x)2+x)3+ x)
Express each of the following as a sum of
partial fractions.

Tx+ 3
x(x = D(x+1)

32 —4x
x(2 = x)(2 + x)

(i)

(ii)

(i)
(ii)

> as a sum of

I S
(1-=3x)(1-x)
partial fractions.

(i)  Express

(il Hence find the first three terms in the
4

binomial expansion of (1 — 3x)(1 — x)°

il For what values of x is the expansion
valid?
6x — 8

(¥ + ) (x + 1)

Ax+B+ C
x+1 x+1

i)  Write in the form

lil Hence find the first three terms in the
binomial expansion of
6x — 8
(% + 1) (x + 1)

x for which the expansion is valid.

, stating the values of

2x” —3x + 4
(1)
A B C
(x_1)+(x—1)2 +(x—l)3
(i) Hence find the first three terms in the
binomial expansion of
2x% = 3x + 4
(1)
x for which the expansion is valid.

il Write in the form

, stating the values of

~]

elgabje Jayying £ Jo1deys

167



Partial fractions

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:
> extend the binomial expansion to any rational n
> use the binomial expansion with any rational n for approximation

> be aware that the expansion is valid for ‘%x <1

> simplify rational expressions by:
O factorising and cancelling
o algebraic division (linear expressions only)

> decompose rational functions into partial fractions (denominators not more
complicated than squared linear terms and with no more than 3 terms,
numerators constant or linear).

KEY POINTS

1 The general binomial expansion for n € R is
n(n27 1) 24 n(n — 1;(11 —2) e
In the special case when n € N, the series expansion is finite and valid for all n.
When n ¢ N, the series expansion is non-terminating (infinite) and valid only
if x| < 1. )
2 Whenn ¢ N, (a + x)" should be written as a" (1 4 %) before obtaining the
binomial expansion.
3 When multiplying algebraic fractions, you can only cancel when the same
factor occurs in both the numerator and the denominator.
4 When adding or subtracting algebraic fractions, you first need to find a
common denominator.
5 A proper algebraic fraction with a denominator which factorises can be
decomposed into a sum of proper partial fractions.
6 The following forms of partial fractions should be used:
px +q _ A + B
(ax + b)(ex+d) ~ ax+b ox+d
pxtq A " B n C
(ax + b)(ex +d)?  ax+b  oc+d  (ox+d)Y

1+x)" =1+nx+ + ...

FUTURE USES

Partial fractions are often useful in integration. You will use them in Chapter 10.
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Music, when soft voices
die, vibrates in the

memory —

Percy Bysshe Shelley
(1792-1822)

Trigonomeftric idenfifies

Many waves can be modelled as a sine curve. Estimate the wavelength and the
amplitude in metres of the wave in the picture above (see Figure 8.1).

y(m) A
ar —T y=asin bx
amplitude
: : 7 P\

—a -

[ <«— wavelength——— >

Figure 8.1

=» Use your estimates to suggest values of a and b which would make
y = asin bx a suitable model for the curve.

=» Do you think a sine curve is a good model for the wave?
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Compound angle formulae

. The photograph on the previous page shows just one of the countless examples
Prior knowledge "
_____________________ of waves and oscillations that are part of the world around us. Because such

You need to be able phenomena are often modelled by trigonometric (and especially sine and cosine)

to use the general functions, trigonometry has an importance in mathematics far beyond its origins

emLlE ol Uit @5 in right-angled triangles.

a triangle (%ab sinC)

and use exact values 1 Compound angle formUlae

of sin, cos and tan for
common angles such as

60° or% radians. You

also need to be able to
solve a trigonometric
equation and use small-
angle approximations -
sez Review: Tlhe S'nec’j You should be able to find the solution to Activity 8.1 using the suggested
el (St tLss, method, but replacing 60° by, for example, 35° would make it more difficult to
Chapter 2 and Chapter 6. . . .
find an accurate value for 6. In this chapter you will meet some formulae which

ACTIVITY 8.1 ) :

Hint: Try drawing graphs and
Find an acute angle 6 such that searching for a numerical
sin (6 + 60°) = cos (0 — 60°). / solution.

help you to solve such equations more efficiently.

It is tempting To find an expression for sin (6 + 60°), you would use the compound angle
0 to think that formula

sin (8 + 60°) sin (6 + @) =sinf cos P + cosOsin P. (915 132 CEC (G [
should equal
sin @ + sin 60°, but this This is proved below in the case when 6 and ¢ are acute angles. It is, however,

s e the cse Bon true for all values of the angles. It is an identity.

example, putting

0 = 30° gives

sin (6 + 60°) = 1, but
sinf + sin60° = 1.366.

Figure 8.2 Area of a triangle =% ab sin C.
For the triangle in Figure 8.2 ‘/
area of A ABC = area of AADC + area of ADBC
h = acos@ from ABDC. v v _
¢ %ab sin(f + @) = %[)l’l sinf + %ah sin @ I = beost from AADC.

= %ab sin(0 + @) = 5 b(acos@)sint + %a(bcos 0)sin @

= %ab sin(0 + @) = 5absinf cos@ + %a[)cosﬁsin(p
Dividing through by% ab gives
sin(0 + @) = sinf cos P + cosOsin @ @

This is the first of the compound angle formulae (or expansions), and it can be
used to prove several more. These are true for all values of 6 and ¢.

; Replacing ¢ by —¢ in ) gives The graph of y=sin@
The graph of y=cos¢ is . . v ¥ | has rotational symmetry
symmetricalabout the sin(f) — @) = sin6 cos(—@) + cos O sin(—¢) about the origin so
¥ SN
y-axis so cos (=) =cosg. = sin(f — ¢) = sinflcos — cosOsin @ SIBCO)ES SSing:
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_ ACTIVITY 8.2

?1:;900 _ A)=cosA 1 lr(;eerstirz;:ili;r;]c;ri compound angle formulae. Work through this activity in

and | - 5

cos (90° — A) = sin A. (i) To find an expansion for cos (6 — @) replace 6 by (90° — ) in the
expansion of sin (0 + ¢).

(ii] To find an expansion for cos (6 + @) replace ¢ by (—¢) in the expansion of

cos (0 — @).

Hint: Divide the top (iii) To find an expansion for tan (8 + @), write tan (6 + @) as

and bottom lines b ;

cosf cos@ to give ;/n P Zlons((g -_: g;)) and use the expansions of sin (6 + ¢) and cos (0 + ¢).

expansion in terms of . . . )

tanf and tan@. (iv] To find an expansion for tan (6 — ¢) in terms of tan 6 and tan@, replace ¢

by (—¢) in the expansion of tan (0 + ¢).
2 Are your results valid for all values of 8 and ¢? Test your results with
0 =60°, ¢=30°.

Check that your results work for angles in radians.

saljljuapl ol3dwouobll] g aaydeyn

The four results obtained in Activity 8.2, together with the two previous results,
form the set of compound angle formulae.

sin(0 + @) = sinf cosP + cosOsin @
( ) = sinfcos) — costsin @
cos(0 + @) = cosflcos@ — sinfsin @
( ) = costlcos@ + sinflsin @

tan(6 + ¢) = tan0 + tan ¢

= T-tnfang (0 +¢) = 90°,270°, ...

_ tanf —tan¢
"~ 1+ tanftang

tan(0 — ¢) (O — ¢) # 90°, 270°, ...

You can now solve Activity 8.1 more easily. To find an acute angle 8 such that
sin (6 + 60°) = cos (6 — 60°),

expand each side using the compound angle formulae.

Expand the left-hand side:

sin (6 + 60°) = sin 6 cos 60° + cos #sin 60°

= %sin@-k@cos@ Q)

Expand the right-hand side:
cos (0 — 60°) = cos 6 cos 60° + sin @ sin 60°

= %c050+gsin0 ®
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Compound angle formulae

o e @il vinei Equating M and 2 gives

divide b
you divide by a %Sing_,_gcosg = %c050+§sin0

trigonometric
function — you must
always check that the So sin@ + /3 cosf = cosh + \/3sin@ ¢—— Multiply each term by 2.
function ishnot equal = 3cos8 — cosf = /3sinf — sinf
to zero, otherwise you Collect like terms.
will miss some of the = (V3 —1)cosf = (/3 — 1)sin@ — |
root}: to the equalt(tion. = cosf = sinf  €———— Divide each side by (\/5 —1).
In this case you know
that cos 6 is not equal You need to rewrite the equation so it is terms of just one trigonometric ratio so
to zero (since cosf you can solve it.
is not equal to sin € cosh = sin®
when cosf = 0) so Gino - _
you are safe to divide = 1= g 4&— Divide each side by cos 0.
by it. Example 8.3 on

= 1=tan6 in0

page 175 is another 0 450 \ Use tanf = zlonse
illustration of this. = 0=

Since an acute angle (6 < 90°) was required, this is the only root.

Example 8.1 Simplify cos @ cos36 — sin 0sin 36.

Solution

The formula which has the same pattern of coscos — sinsin is
cos(f) + ¢) = cost cos — sinfsin @
Using this, and replacing ¢ by 36, gives

cos ) cos 36 — sin 0sin 360 = cos (0 + 36)
= cos40

Example 8.2

3

Find an approximate expression for cos(E - 9) for small values of 0.

Solution
Expanding gives

cos(% — 0) = cosZcosf + sinLsin6

3 3 Use exact values
_1 N for cos & and
—2c050+ 251n0w T3
sin 3.

So when 6 is small

2

cosf = 1— 0 and sinf ~ § — For small angles

2 in radians

B _ 0>\, 3
cos(——@) = (1__2 )+2 (7]

3 2

+ 20 0

=

3

&

N|—
=
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(D Use the compound angle formulae to expand

each of the following expressions.

(i) sin(@+45° (i) sin(45°—6)
(i) cos(@—45°) (iv] cos(f + 45°)
(v} tan(0 +45°) (v tan(45° - 0)

(2) Match together the equivalent expressions.

cos 0 cos 36 — sin 6 sin 30
sin26 cos O — cos20sin 0
cosBcosf — sinfsin
cosBcosf + sinfsin O
sin26 cos O + cos20sin 6
sin

1

sin 36

cos 40 cos 20 + sin 40 sin 20
cosf cosf — sinfsinf
cos 40

cos 20

Use the compound angle formulae to find the
exact value of each of the following.

(il sin120°cos60° + cos 120°sin 60°
i) sin120°cos 60° — cos 120°sin 60°
(i) cos120°cos60° + sin 120°sin 60°
liv] cos120°cos60° — sin 120°sin 60°

(il By writing 75° as 45° + 30° find the exact
values of

(a) sin75° (b) cos75° (c) tan75°

(il By writing 15° as 45° — 30° find the exact
values of

(a) sin15° (b) cos15° (c) tan15°

Use the compound angle formulae to write
each of the following as surds.

(il sin165° (i) cos105°

(i) tan285°

Solve the following equations for values of 8 in
the range 0° < 6 < 180°.

il cos(60°+ 6) =sinf

(i) sin(45° — 6) = cos6

(i) tan (45° + 6) = tan (45° — 0)
(iv) 2sinf = 3cos (6 — 60°)
(v) sin€ = cos (6 + 120°)

Solve the following equations for values of 6 in
the range 0 < 0 < m.

Give your answers as multiples of m where
appropriate.

(i) sm(@ + %) = cosf

(ii) cos( %) (9 — %)
liii) 2cos (0 - %) = cos (0 + %)
(i)  Prove that

sin (A + B) +sin(A — B)
lil Hence solve

sin(G + %) + sin(@ - E) = \/g

for 0 < 0 < 2n.

Prove the following identities.

= 2sin A cos B.

)  cos(A+ B)+ cos(A— B) =2cosAcosB
- 4 B = sin(A + B)
Votnd+anb = cos Acos B

When 6 is small enough for 6° to be ignored,
find approximate expressions for the following.

() 2COS(% + 0)

(il sin(a + 0)sin O where a is not small
i tan(% - 0)

(il When 6 is small enough for 6° to be

ignored, find approximate expressions for
the following.

(a) sinﬂ[sin(% + 0) — sin%i|

(b 1 —cos26

il Hence find
; sinO[sin(% + 0) — sin%i|
eli% 1— cos26

saljljuapl ol3dwouobll] g aaydeyn
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Double angle formulae

(2 A particle moves such that its displacement, @
d metres, from a fixed point O at time ¢

seconds is given by

d= Bt

2T
() Find the displacement at t = 0.
(i) Show thatd = sin(

ECOSE

! for 0 < r < 60.

(iii)

ﬁ - k) and find

the smallest positive value of k.

il Find the exact times that the particle is at O.

(iv)

(iv) State the maximum displacement of the

particle from O. Find the exact time that

(v)

the particle is furthest from O.

(v) Is the particle ever —1 metres from O? (i
Explain your reasoning clearly. (ii)

(vi) Sketch the curve

g= Pt

5 sinﬁ

fDiscussion points

=> As you work through
these proofs, think
about how you can
check the results.

=» |s a check the same

as a proof?

{
cos5 for 0 < t < 60.

Use a compound angle formula to write
down an expression for sin (x + h).
Rewrite your answer to part (i) using
small-angle approximations for sink and
cosh where h is small.

Use your answer to part (i) to write down

in(x + h) — sinx
7 .

. sin(x + h) — sinx
State lim ( h)
h—0

. S
an expression for

Explain the significance of your answer to
part (iv].
Simplify tan(% + 0) when 6 is small.

Use the binomial expansion for (1 + 0)~!
to find a quadratic approximation for

tan(% + (9) when 6 is small.

2 Double angle formulae

Substituting ¢ = 0 in the relevant compound angle formulae leads immediately
to expressions for sin 26, cos 26 and tan 26, as follows.

(1) Starting with sin(f + @) = sinfcos@ + cossin¢

when ¢ = 0, this becomes

sin(0 + 0) = sin0 cosf + costsin 6

giving sin260 = 2sin 6 cos .

(i) Starting with cos(f + @) = cosfcos¢ —sinfsin@ ,

when ¢ = 0, this becomes

cos(0 + 0) = cosfcosh — sinfsin

giving cos26 = cos’ 6 — sin® 6.

Using the Pythagorean identity cos*6 + sin*6 = 1, two other forms for

cos26 can be obtained.
cos26 = (1 —sin?6) — sin*6
cos26 = cos’f — (1 — cos’0)

= cos20 =1 —2sin%6
= co0s20 =2cos’0 — 1

These alternative forms are often more useful since they contain only one

trigonometric function.
(iii) Starting with tan(f + @) =

when ¢ = 6 this becomes

tan(d + 6) = tan6 + tan6

1— tanftanf

2tan6

giving tan260 = m

tant + tan ¢
1—tanftan¢

(6 + @) #90°,270° ... ,

0 # 45°,135°, ...°



sin260 = 2sin @ cos O

c0s260 = cos’0 — sin20< You will need to decide
cos20 = 1 — 2sin%6 which of the three
formulae for cos20 is
cos20 =2cos’0 — 1 best for each situation.
an20 = —2200 g 450 1350
1—tan~ 6

Compound angle and double angle formulae are used

B in solving trigonometric equations and proving identities

m  to help you rewrite trigonometric functions into a form that you can
integrate or into a more convenient form for differentiation

®  in modelling, for example finding the standard formula for the range of a
projectile in mechanics. ¢——

See Chapter 21.

Example 8.3 Solve the equation sin26 = sinf for 0° < 6 < 360°.

Solution

saljljuapl ol3dwouobll] g aaydeyn

sin20 =sin@ ¢ Use sin20 =2sin 6 cos?H.
= 2sinfcosf =sinf ¢—7 |

= 2sinfcosf —sinf =0 —

Gather terms on one side.

Factorise.
Do not divide by —>=  inf(2cos§ — 1) =0
sin 0, otherwise . 1
= S =5
you will lose the SIS U eR e S,
roots to sinf = 0. sinf=0 = 6=0° (principal value) or 180° or 360° (see Figure 8.3).
YA
ir y =sin 6
0 1800\/3@@;9
_1 -
Figure 8.3

cos =5 = 6=060° (principal value) or 300° (see Figure 8.4).

9A
y =cos b

0 eo* \\/som 300° B
._l —

Figure 8.4
The full set of roots for 0° < 0 << 360° is 6 = 0°, 60°, 180°, 300°, 360°.
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Example 8.4

L

Double angle formulae

When an equation contains cos 20, you will save time if you take care to choose

the most suitable expansion.

Since you are Solution

Solve 2 + cos20 =sinf for 0 < 0 < 2m.

asked for roots Using cos20 = 1 — 25in’6 gives 4 Using this form gives an

in the range - .
0 <60 < 2n,you 2+ (1 —25in°0) = sin6

need to give the = 2sin’f + sinf — 3 =0
ts in radians.
FOOR I adians = (2sinf +3)(sinf — 1) =0
= sin0=—%

or sinf = 1.

Figure 8.5 shows that the principal value 6 =

0=<60<2m.

YA
1 ,,,,,,,,,

equation in sin 6 only.

(not valid since —1 < sinf < 1)

n

2

Q

NI (==
<
a
<Y

is the only root for

Figure 8.5
® D  Simplify (4 Solve the following equations for
il 1—2sin’40° 0° < 6 < 360°.

li) sin40°cos40° i) 2sin20 = cos@

o li) tan20 =4tan6

(i) —2tan20”_ o

1— tan” 20° li) cos20 +sinf =0
@ Simpli 1+ cos20 (v tanBOtan260 =1
implify sin 20 v] 2cos20 =1+ cosf

@ Do not use a calculator in this question. (B Solve the following equations for

G

iven that sinf = % find the exact values of 0
|

a)l cos@ (b)  tan® (c]) sin 20
(d cos26 e} tan?26

W.

angle.

(ii)
(iii)
(iv)
(v)

hen 0 is (i) an acute angle and (i) an obtuse

<60 <nm.

sin260 = 2sin 0
tan260 = 2tan 6

cos20 — cosf =0
1+ cos260 =sin26
sin40 = cos20 ¢—————

Hint: Write the
expression as
an equation

in 26.




(® By first writing sin 36 as sin (20 + 6), express

) [1 — cosf
i =0 = +,.|——=
sin 36 in terms of sin 6. v sinz6 == 2

—_

Hence solve the equation sin36 = sin 6 for V) (sin%@ + cos%@)z =1+ sinf
0=<0<2n
@ Solve cos30 =1 —3cosh for 0° < 6 < 360°. ® [ Show that tan(% + G)tan(% - 0) =1.
Prove the following identities.

) (il Given that tan26.6° = 0.5, solve tan = 2

(i) w = cos20 without using your calculator. Give 6 to 1
1+ an”6 decimal place, where 0° < 6 < 90°.

(il cos'@ —sin* = cos20

tan0(3 — tan’ 6)

(iii) 5
1—3tan” 0

= tan 360

You need to be able to

use transformations

to sketch trigonometric o

functions - see ACTIVITY 8.3

Chapter 6. Use graphing software to plot y = asin@ + bcos@ for three different sets of
values of a and b. What shape is the resulting curve?

rior knowledge | 3 The forms rcos (0 £ ), 7sin (6 £ )

saljljuapl ol3dwouobll] g aaydeyn

For each of your three curves, find values of r and a such that

i) y=rsin(@+a) (i) y=rcos(f+a)

give the same curve.

You probably noticed that expressions of the form asin€ + bcos 6 are the
same shape as the sine and cosine graphs, but they have been translated and
stretched. This suggests that expressions of this form can be written in the form

rcos(@ + ) or rsin(0 + ) where r and « are constants.

For example, to find a single expression for 4sin@ + 3 cos 6, you can match it to
the expression

This is because the
rsin (0 + &) = r(sinf cosa + cosBsina). ¢—— expansion of rsin (0 + a)

It is then possible to find the values of r and a. 2z Sl'é i i 7t e,

cos @ in the second term
4sinf + 3cosB = r(sinf cosa + cosfsin @) and a plus sign in between
them.

Equating coeflicients of sinf): 4 = rcosa
Equating coefhicients of cos@: 3 =rsina.

You can now draw a right-angled triangle (Figure 8.6) to help you find the
values for r and a.

sin o=

=]

Note that the symbol
\/_ means ‘the positive

4 square root of". This is
4 ¢—— cos a=7 consistent with r being the
hypotenuse of the triangle
Figure 8.6 and so positive.

In this triangle, the hypotenuse, r,is v/4> + 3 = 5.
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The forms rcos (0 = ), rsin (0 + )

The angle « is given by

You only need to work
out one of these; they

each give the same value | So the expression becomes

for a.
4sinf + 3cosB = 5sin (0 + 36.9°).

LN ISN]

si*na=% and cgsa=% and t$ana=— = a =36.9°.

- - - ~N The steps involved in this procedure can be generalised
Discussion point to write -

Describe the
transformations which

map y = sinx on to where ¢

asinf + bcosf = rsin (0 + &)

a

y=>5sin(0 + 36.9°). .
Figure 8.7
W P = VT and

: b a b
SN = —— cost = ———— tana = —
Jai +b? Jat +b? a

[©

ACTIVITY 8.4 Notice that the expansion of
(i) Write y=4sinf + 3 cosf as a cosine cos(0 — B)

function. m starts with cos@ ...

Start by rewriting 4sin@ + 3 cos6 as w and has a plus sign in the

3cosf + 4sinf and use the expansion middle ...

of cos(0 — B). B ... just like the expression
(ii) Explain using transformations why 3cosf +4sinf.

the equation you found in part (i)

and y=5sin(f 4+ 36.9°) give the same graph.

The value of r will
always be positive, but

. The method used in Activity 8.4 can be generalised to give the result
cosa and sina may be

positive or negative, acosf + bsin@ = rcos (6 — «)

depending on the values It is a good idea to sketch a right-angled
of a and b. In all cases, where triangle to help you work out rand a.

it is possible to find

an angle « for which r=~a’ + b* and

—180° < < 180°.

. b a b
siIo = — cosa = — tana = —
r r a

You can derive alternative expressions of this type based on other compound
angle formulae if you wish a to be an acute angle, as is done in the next
example.

Example 8.5

1) Express J3sin6 — cosf in the form rsin (6 — @), where r> 0 and

Notice that the range yOo<a<l

of a is given in radians. 2

This is telling you to work (i)  State the maximum and minimum values of v/3 sin® — cos#.
the whole question in

radians. (1)  Sketch the graph of y = J3sin — cosh for 0 < 6 < 2n.

(iv)  Solve the equation J35in0 — cos@ =1 for 0 < 6 < 2n.
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Solution

@) rsin (0 — @) = r(sinf cosar — cos@sina) € Expand rsin (6 — ).

= (rcosa)sin@ — (rsina) cos 6

Compare the expansion ) _ (ycosa)sin@ — (rsina) cosf = /3 sinf — cosf
with /3 sin@ — cos#.

rcosa =+/3 and rsina =1

Draw a right-angled triangle to help you find r and a.

Make sure you label the sides correctly ...

r=,J03)2+12 —r

1
sin @ = — so the ‘opposite’is 1 ...
14— 7 pp

3
...and cosa = gso the ‘adjacent’ is /3.

saljljuapl ol3dwouobll] g aaydeyn

Figure 8.8

From the triangle in Figure 8.8

A

1
r=~3+1=2 and tanazﬁ = a=

Substitute rand & into
rsin (0 — o).

so  /3sinf — cosh = 25in(0 — %) 4“—

(i)  The sine function oscillates between 1 and —1, so ZSin(O = E)

6

oscillates between 2 and —2.

Maximum value = 2.
Minimum value = —2.

@iii)) The graph of y = 2sin (0 = %) is obtained from the graph of

1

y =sin 6 by a translation of | 6 | and a stretch of scale factor 2

0

parallel to the y-axis, as shown in Figure 8.9.

=7

Figure 8.9
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The forms rcos (0 = ), rsin (0 + )

(iv)  The equation J3sinf — cosh =11is equivalent to

2sin(0 — %) =1

= sin(@ = %) = %
Find all the values of x in
- ’ the interval
Letx=(0—€)andsolvesmx=7. O—%$0$2n—%.

Solving sinx = % gives x = % (principal value)

or x =7 — % = 5?7[ (from the graph in Figure 8.10).

)\

ol = _n “x
© "¢
Add % to each x value
. to find the values of 6.
Figure 8.10 l

Sincexz(ﬂ—%),then 0=%+%=% or 9=%T+%=Tt.

The roots in the interval 0 < 0 < 2m are 0 = % and 7.

o Make sure you don’t miss out any roots.
m To solve sin (6 — ) = ¢ for 0 < 6 < 2n by first solving sinx = ¢,
you need to find all possible values of x in the interval
Otasx<2n+a.
» Find all possible values of x in the new interval before working out

the corresponding values of 0.

Using these forms

There are many situations that produce expressions that can be tidied up using
these forms. They are also particularly useful for solving equations involving both
the sine and cosine of the same angle.

The fact that acos @ + bsin€ can be written as rcos (0 — &) is an illustration

of the fact that any two waves of the same frequency, whatever their amplitudes,
can be added together to give a single combined wave, also of the same frequency.
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(D For each triangle in Figure 8.11, find the (B Express each of the following in the form
exact value of r and the angle o, where a is in (a) rcos(f + a), where r> 0 and
degrees. n
(i (i O<a<y

(b) rsin (0 — o), where r > 0 and

2 / = 0<a<7y.
a i) cosf —sinf
V5 i il ~/3cosf — sinf
Figure 8.11 (& Express each of the following in the form

rcos (0 — a), where r> 0 and —180° < & < 180°.
) cos® —~/3sinf

(i) 22 cosf — 2/25in6
i) sin® + /3 cosf

(@ Expand each of the following.
il /3 cos(® — 30°)
(il /3 cos(f + 30°)

saljljuapl ol3dwouobll] g aaydeyn

(i) /3sin(@ — 30°) liv 5sinf + 12cosf
(v f3sin(6 + 30°) W sing = /3 cosf
(3@ For each of the following functions find Wil 2sinf — 2 cosf
(a) the maximum and minimum values @ () Express 5cosf — 12sin6 in the form
(b) the smallest positive value of x for which rcos (0 + @), where r> 0 and 0° < & <90°.
the function is a maximum. li) ~ State the maximum and minimum values

of 5cosf — 12sin6.

i f(x) = 2cos(x - E) .
3 li) Sketch the graph of y = 5cos6 — 12sin 6

W f N2 ( n) for 0° < 6 < 360°.
, _ LI
} ) N3 liv) Solve the equation 5cosf — 12sinf = 4
1 - for 0° = 0 < 360°.
(iii) —sin(@ + 3)
V2 i Express 3sin@ — /3 cosf in the form
(iv) 1 rsin (0 — o), where r>0and0<a<%.
2+ /2sin(6 + 2
3 (i)~ State the maximum and minimum values
@ (i) Express each of the following in the form of 35in® — /3 cos® and the smallest
rcos (6 — a), where r> 0 and 0° < a < 90°. positive values of 6 for which they occur.
(a) cosO +sin@ (il Sketch the graph of y = 3sinf — /3 cosf
(b) 3cos@ + 4sinf for 0 < 0 < 2.
i) Express each of the following in the form liv]Solve the equation
rsin (0 — a), where r> 0 and 0° < @ < 90°. 3sinf — /3 cos = /3 for 0 < 0 < 2.

(a) sin@ — cos@
(b) 3sin@ — 4 cosB
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- The forms rcos (0 = ), rsin (0 + )

@ 1

(ii)

(iii)

(iv)

Summary exercise

Express cosf + V25in8 in the form

rcos (0 — o), where r> 0 and

0° < a <90°.

State the maximum and minimum values
of cos® + /2 sin® and the smallest

positive values of 6 for which they occur.

Sketch the graph of y = cos + J25in6
for 0° < 6 < 360°.
State the maximum and minimum values

of
1

3+ cosf + /2 sinf

and the smallest positive values of 0 for
which they occur.

(i)

(ii)

(iii)

(iv)

Express 25in 26 + 3 cos 26 in the form
rsin (20 + «), where r > 0 and

0° <a <90°.

State the maximum and minimum values
of 2sin 26 + 3 cos 26 and the smallest
positive values of 8 for which they occur.
Sketch the graph of y = 25in 26 + 3 cos 26
for 0° < 6 < 360°.

Solve the equation 2sin26 + 3 cos26 = 1
for 0° < 6 < 360°.

The previous exercises in this chapter and in Chapter 6 have each concentrated on just one technique at a time.
However, you will often have to choose the correct technique from the many that you have met.

In this exercise you will need to select appropriate formulae and techniques.

(D Simplify each of the following.

(i)
(ii)
(iii)
(iv)
(v)
(vi)
(vii)

(viii)

25sin 36 cos 30
cos’360 — sin®360
cos>360 + sin®360

1—2sin2§

2
sin (0 — a) cosa + cos (0 — o) sina
3sinf cosO

sin 260
2sinf

cos20 — 2 cos*6

(2 Express

(i)
(ii)

(cosx — sinx)? in terms of sin 2x

2 cos’x — 3sin’x in terms of cos2x.

(3 Prove that

(i)
(ii)
(iii)

(iv)

1 — cos26
1+ cos26

cosec26 + cot260 = coth
2sin?(0 + 45) —sin20 =1

4t1 - ¢
ﬁ where ¢t =tan6.

= tan’ 0

tan40 =

@) Solve the following equations.

i) sin(0 + 40°) = 0.7
for 0° < 6 < 360°

(il 3cos’0+5sinf—1=0
for 0° < 6 < 360°

(jii) 2605(0 - %) =1

for-ns6<n
(iv) cos(45° —0) = 25sin (30° + 6)
for —180° < 0 < 180°
(v] cos26 + 3sinfh =2
for0 <60 < 2n
(vi) cosf 4+ 3sinfh =2
for 0° < 0 < 360°
(vi) sec’@ —3tanf —5=0
for 0° < 6 < 180°



LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

Y Y Y Y

\

\/

use formulae for sin (A + B), cos (A + B) and tan (A + B)
understand geometrical proofs of these formulae
understand and use double angle formulae

understand and use expressions for acos 6 + bsin 6 in the equivalent forms of
rcos (6 + o) or rsin (6 + o

solve quadratic equations in sin, cos and tan of an unknown angle
construct proofs involving trigonometric functions and identities.

KEY POINTS

1

Compound angle formulae
sin(f) + @) = sinf cos@ + cossin @

sin(f) — @) = sinf) cos — cossin @
cos(f) + @) = cost cos — sinfsin @

cos() — @) = costl cos® + sin 0 sin @

_ tan® + tan¢ o o
tan(0+¢)—m (0+¢)¢90,270,
tan(f — ¢) = 2200 — tan¢ (0 = ¢) # 90°, 270°, ...

" 1+ tanftang

2 Double angle formulae
sin260 =2sinf cos O
c0s20 = cos?6 — sin?6
cos20 =1—2sin%60
cos20 =2cos?0 — 1
an20 = 2200 4 4so y350
1— tan" 6
3 Ther aform
asinf + bcosf =rsin (0 + ) where r=+a +b
asinf — bcosf =rsin (0 — ) _a
acosB + bsinf =rcos (0 — ) cosa =7
acos — bsinf =rcos (0 + a) )
sSin@ = 7
,
b
a
a
Figure 8.12

saljljuapl ol3dwouobll] g aaydeyn
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Nothing takes place
in the world whose
meaning is not that
of some maximum or
minimum.

Leonhard Euler (1707-1783)

Further differenfiation

Many physical systems, such as a simple pendulum or swing or a mass on an
elastic spring, can be modelled as having displacement-time graphs which
have a sine wave shape.

Displacement

Figure 9.1

To be able to perform calculations involving velocity and acceleration for these
systems, you need to be able to differentiate the sine function.

=»> Think of some other situations in which it would be useful to be able to
differentiate functions other than polynomials.




L tECHNOLOGY

Use graphing software
to verify this result.

You can prove this result
using the chain rule.

Example 9.1

du dy x and y as a function of u.
. . . T =2x, —-=¢
Discussion point dx du \
Differentiate both functions.

=» What is the derivative dy — dy x du \

of the gt.eneraf%x) dorde The chain rule

expressione 7 = Dxe"

= 2xe” 1 ¢ Rewrite in terms of x.

1 Differentiating exponentials
and logarithms

Differentiating exponential functions

The exponential function y = e* has the important property that its gradient at
any point is equal to the y coordinate of that point.

o dy
y=e :>a—e ’

This result can be extended to functions of the form y = "

) d !
y=ekx=>d—3;=keek“

You can use the chain rule to differentiate more complicated exponential
expressions.

Differentiate y = e* .

Solution

Since this is a composite function you use the chain rule to differentiate.

2
u=x"—=1, y=e" ¢——— Write down u as a function of

Differentiating logarithmic functions

To differentiate y = Inx, you can use the fact that the inverse of Inx is ™.

y=lnx = x=c¢€' ¢ Rearrange.

N dx _

dy Usi dy _ 1
sing — = —

dy _ 1 dv - dx

= d.X' - ey X dy
d

= d_a): = % < Rewrite in terms of x.

UOIBIUAIAHIP JaYLINg 4 Jaydey)
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Differentiating exponentials and logarithms

To differentiate y = Inkx, where k is a constant, you can use log rules.

y = Inkx = Ink + Inx
dy _ d(Ink) N d(Inx)

dx dx dx
KDiscussion point A ;
. . Y _g4 L

Thf glralgle.nt function for = - 0%+ X In kis a constant so
]2’ = “n f IS th]t(al:ame q '\_/ differentiating it gives 0.
or all values of k. - d_y:l
=» What does this tell XX

you about the graphs

of these functions? y=Ihx = % —

You can use the chain rule to differentiate more complicated natural logarithmic
expressions.

W 7
_ dy _
y—lnlexzb'a—

Example 5.2 Differentiate y = ln(x3 - 4x).

Solution

Since this is a composite function you use the chain rule to differentiate.

u=x"—4x, y=Inu ¢——— Write down u as a function of

du a4 ﬂ 1 x, and y as a function of u.
dx > du wu
\ Differentiate both functions.
d _dy  du
Discussion point & = du " A T e hain rute
2
=» What is the derivative = %
of In(f(x))?
_ 3’ -4

4—— Rewrite in terms of x.

- 3
x° —4x

Differentiating y = a* and y = a*

To differentiate y = a”, where a is any positive constant, you can use logarithms
to rearrange to make x the subject.

y=da = Iny= ln(ax) 4¢—— Take natural logs of both sides.
= Iny = xlna ¢————— Use log rules.

Iny 1
= x = Tna = Tna X lny
Differentiate both sides,
= 3—3; = ﬁ X % 4—— remembering thatﬁ is just a
constant.
__ 1
~ ylna



dy
SO a

ylna

= ¢°lng 4— Rewrite in terms of x.

Now that you can differentiate y = a*, you can differentiate y = 4" using the
chain rule.

Let y=a",u = kx.
By the chain rule,

dy _dy  du
dx — du 7 dx
= j—y =a"lnaxk
X
= ka™ Ina

Y:akx :%:kakxlna

UOIBIUAIAHIP JaYLINg 4 Jaydey)

Example 9.3 Inx

Differentiate y =

P

Solution
Using the quotient rule,

du 1 Remember that with the quotient
u=lnx = a0 = 7 rule umust be the numerator ...

dv

v=2" = e 2*In2 ¢4—— ... and v must be the denominator.
Jdu_ v
dy _ “dx~ "dx ¢———— Thequotient rule
dx VZ
2% X% — Inx X2 In2

()

1 2
=X > ¢ Dividing top and bottom by 2.
1 — xIn2lnx
= DX “— Multiplying top and bottom by x.
® (1) Differentiate the following functions. (3 Differentiate the following functions.
M y=e" il y = In(8x)
[”] y — ex2+3x+] [”] y — 11’1(.’)6'2 + 1)
(@ Differentiate the following functions. i) y = ln(\/; )

W y=7 i) y=7"
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Differentiating exponentials and logarithms

Differentiate the following functions.

Inx X

i y=wxe*™ ) y=5 i)y =
X (S

For each of the following, find the value of the
gradient of the curve at the given point.

)y = 2x’e" at the point (1,%)

iy = (e + 1)3 at the point ((,8)

(il y = Inv/x? — 1at the point (3,3ln2)

2
The graph of y = xe” is shown in Figure 9.2.

YA
) ™
P
Figure 9.2
. . dy dzy
(i) Flnd a and @

li) Find the coordinates of the minimum
point, P.

il Find the coordinates of the point of
inflection.

(il Find the coordinates of the point of

intersection of the curves y = In(4x — 1)

and y = In(2x + 3).
(il Find an equation for the tangent to the
curve y = In(2x + 3) at this point.
i) Sketch the two curves on the same axes.
The graph of f (x) = xln(xz) is shown in
Figure 9.3.
o) A

Figure 9.3

=Y

(il Describe and justify any symmetries of the

graph.

(i) Find f’(x) and f”(x).

(il Find the coordinates of any turning points.
The curve y = In(3x — 2)° crosses the x-axis
at the point (a,0).

(il Find the value of a.

lil  Find an equation of the normal to the
curve at this point.

Figure 9.4 shows the curve with equation
y=x"=3x+Inx+2,x >0.

YA
2
L >
o 2 X
2
Figure 9.4
. .o dy d’y
() Find I and 1

(il Find the coordinates of the two turning
points and use calculus to show their
nature.

Sketch the curve y = %, giving the

coordinates of the turning point and the
equations of any asymptotes.

The equation for the Normal distribution is
usually given in statistics as

1
#(2) = \/E

The Normal curve is thus given by y = ¢(z)
with z on the horizontal axis and y on the
vertical axis.

(il Use calculus to prove that y = ¢(z) has
(a) a maximum when z =10
(b) no other turning points

(c) non-stationary points of inflection
when z = £1.

(il Mark the maximum point and the points
of inflection on a sketch of the Normal
curve.



2 Differentiating trigonometric
functions

Prior knowledge c

_____________________ ACTIVITY 9.1

You need to be familiar Differentiating sinx and cosx
with angles measured
in radians. This is
covered in Chapter 2.

Figure 9.5 shows the graph of y = sinx, with x measured in radians, together
with the graph of y = x. You are going to sketch the graph of the gradient
function for the graph of y = sinx.

y=sinx

N I
UOIBIUAIAHIP JaYLINg 4 Jaydey)

Figure 9.5

Draw a horizontal axis for x, marked from —2m to 27, and a vertical axis for the
gradient, marked from —1 to 1, as shown in Figure 9.6.

dy
A

1_

=Y

21 - 0 1 2n

Figure 9.6

First, look for the values of x for which the gradient of y = sinx is zero. Mark
zeros at these values of x on your gradient graph.

Decide which parts of y = sinx have a positive gradient and which have a
negative gradient. This will tell you whether your gradient graph should be above
or below the y-axis at any point.

Look at the part of the graph of y = sinx near x = 0 and compare it with the
graph of y = x. What do you think the gradient of y = sinx is at this point?
Mark this point on your gradient graph. Also mark on any other points with plus
or minus the same gradient.

Now, by considering whether the gradient of y = sinx is increasing or
decreasing at any particular point, sketch in the rest of the gradient graph.

The gradient graph that you have drawn should look like a familiar graph. What
graph do you think it is?

Now sketch the graph of y = cosx, with x measured in radians, and use it as
above to obtain a sketch of the graph of the gradient function of y = cosx.
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Differentiating trigonometric functions

/Discussion point

=> Would this still be
true of the gradient
functions if x
was measured in
degrees instead of
in radians? (Hint:
Is the gradient of
y =sinxatx =0
still the same as the

\_ gradient of y = X?)/

ACTIVITY 9.2
By writing tan x in
terms of sinx and
cosx, and using the
quotient rule, show that
y = tanx

d
= < _ sec” x.

dx

Activity 9.1 showed you that the graph of the gradient function of y = sinx
resembled the graph of y = cosx.You will also have found that the graph of the
gradient function of y = cosx looks like the graph of y = sinx reflected in the
x-axis to become y = —sinx.

Activity 9.1 suggests the following results:

Yy = smx e = COSX

o W
Yy = COsX dx_ Sin x

You can prove the result for y = sinx Qe b, sinGx+ £))

using differentiation from first

principles. P (x, sin x) 5
The gradient of the chord PQ in \
Figure 9.7 1is sin(x + Z) — sinx.

Taking the limit as the points P and Figure 9.7

Q move closer together gives

. )=
y =sinx = ﬂ — hm[SH’l(X h) smx)

dx h—0 h

Using the compound angle formula,

sin(A + B) = sin Acos B + cos Asin B

sin(x + h) = sinxcosh + cosxsinh

Therefore

— | Ashissmall, you can replace
sin(x + h) = (sinx)(l - %hz) + (cosx)h 4 sinhand cosh by their small-
angle approximations:

sinh =h, cosh=1-— %hz

= sin(x + h) = sinx — 4 h’sinx + hcosx

L . . [sin(x + h) —sinx .
Substituting this into % = }E}r{{ ( h) ) gives
dy ] sinx—%hzsinx+hcosx—5inx
-+ = lim
dx h—0 l/l
d —L1%sinx + hcosx
= & = [jm| 2
d.’X,‘ h—0 h
= dy = lim(—lhsinx + cosx) = cosx
dx S0\ 2
The result You will do this in question 11
y ) of Exercise 9.2.
y = cosx = dx = —smnx

can also be proved using differentiation from first principles in a similar way.

Activity 9.2 leads to the following result:

d
y = tanx = d_o); = sec’ x



Example 9.4 Differentiate y = sin3x.

Solution
Using the chain rule, ¢«———— ¢in3x is a function of a function.
_ du _
u=23%x = I = 3
Ly
y = sinu g, = cosu
dy _du dy
dx = dx * du
dy
= —— = 3cosu = 3cos3x
dx

Using the chain rule as in Example 9.4 on the more general expression
y = sinkx gives

UOIBIUAIAHIP JaYLINg 4 Jaydey)

o d
ACTIVITY 9.3 T = kcosks.
Find the derivatives of d
the general expression Similarly, y = coskx = d_Y = —ksinkx
sin(f (x)) and the x
eneral expression
gos(f(x)).p and y = tankx = % = ksec” kx.

Example 9.5 Differentiate y = x” cosx.

Solution
Using the product rule,
_ 2 du _
u=x = dx 2x
V= cosx = g—; = —sinx
dy _ dv, du

dx dx dx

2 .
—x~sinx + 2xcosx

Example 9.6 Differentiate y = tan(x3 - 1).

Solution
Using the chain rule,

u=x>—1, y=tanu

ﬂ_d)/ du

dx = du ” dx

:sec2ux3x24\ d
u=x"—1= % =352

= 3x’sec’ (x3 — 1)
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Differentiating trigonometric functions

(D Differentiate the following functions with
respect to x.

i) y=2cosx + sinx
i) y = 5sinx — 3cosx
lii) y = 3tanx — 2x
(2 Differentiate the following functions with
respect to x.

) y=tan3x

(ii) = sin(ﬁ)
W)

(i) y = cos(—6x)

(3 Use the chain rule to differentiate the
following functions with respect to x.

N y= sin(xZ)
[”] )/ — etanx
i) y = In(cosx)

(4) Use the product rule to differentiate the
following functions with respect to x.

il y=xtanx
il y=e"cosx
lii) y = sinxcosx
(B) Use the quotient rule to differentiate the
following functions with respect to x.

(i) _ sinx

T ox
; _ e
iy = CcoS X
_ X+ cosx
WY E Ty

(6 Use an appropriate method to differentiate
each of the following functions.

i) y = +/sin3x

[”] cos2x

y=¢
i)y = AR
tan x

(@ Verify the following results.
dy

il y=cotx = I = —cosec’x
i) y=secx = dy _ secx tanx
dx
dy
(i) y = cosec x = dx —cosec xcotx

Figure 9.8 shows the curve y = xcosx.
YA
2

<Y

-2 o 2

Figure 9.8
(il Differentiate y = xcosx.

(il  Find the gradient of the curve y = xcosx
at the point where x = n.

(il Find the equation of the tangent to the
curve y = xcosx at the point where
X =T

(iv) Find the equation of the normal to the
curve y = xcosx at the point where
X =T

(9 Figure 9.9 shows the curve y = sinx + cos2x.

YA
2+
ANV AVAW
-4 -2 0 2 4 x
N
Figure 9.9 s
(i) Find % and %

(il Find the coordinates of the three turning
points in the range 0 < x < 7, giving
your answers to 3 decimal places where
appropriate.

(il Use calculus to show the nature of these
turning points.

(iv) Find the coordinates of the two points of
inflection in the range 0 < x < 7, giving
your answers to 3 decimal places.



e The tangent to the curve y = tan2x at the

OO0

point where x = & meets the y-axis at the
point A, and the x-axis at the point B. Show
2

that the area of triangle OAB, is %
square units.
By using differentiation from first principles,
prove that

y = cosx = d_o); = —sinx
using the following steps.
(il For y = cos(x + h), write an

expression for % as a limit as

X
tends to zero.

(il  Use the compound angle expression for
cos(A + B) to expand cos(x + h).

il Use your answer to (i) and the small-
angle approximations for sin/ and cosh to

. . dy
rewrite your expression for I from
X

(i), and simplify your answer.

(i) Find the limit as & tends to zero.

(1 A curve has the equation y = 3x — 2cosx,

0<x=<2Z.

2
(il Find the coordinates of the point on this
curve where the normal is parallel to the
line 4y + x = 0.
(il The tangent to the curve at this point
meets the y-axis at the pointY. Find the
exact value of the distance OY.

3 Implicit differentiation

All the functions you have differentiated so far have been of the form y = f(x).
However, many functions, for example X+ y3 = xy, cannot be written in this
way at all. Others can look clumsy when you try to make y the subject.

An example of this is the circle x* + y2 = 4, illustrated in Figure 9.10,

which is much more easily recognised in this form than in the equivalent

form y = +v/4 — 7.

V)

2

Figure 9.10

[\S)
NG .

LY

A function which is not given in the form y = f(x) is called an implicit
function, and to differentiate it you use implicit differentiation. Implicit
differentiation uses the chain rule to differentiate term by term with respect
to x, using the product and quotient rules where necessary.

An example of an implicit function that you would differentiate in this way is

¥’ + xy = 2.As you go through the expression differentiating term by term, the

first term that you need to differentiate with respect to x is y°.

UOIBIUAIAHIP JaYLINg 4 Jaydey)
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Implicit differentiation

Using the chain rule,

d(yE) B d(ysj y dy Differentiate y* with respect to y.
dx — dy dx
dy
2_
=3 g

So to differentiate a function of y with respect to x, you differentiate with

respect to y and multiply by % Of course, this technique can be extended to
other variables.

[©

ACTIVITY 9.4

Write down

li) the derivative of x” with respect to x

(ii) the derivative of 2y5 with respect to x
(iii) the derivative of —2” with respect to x
(iv) the derivative of 3z — 6 with respect to y
(v) the derivative of 2x* with respect to z.

Example 9.7

The equation of a curve is given by y* + xy = 2.

(1) Find an expression for % in terms of x and y.
X

(i)  Hence find the gradient of the curve at (1,1).

Solution

(1)  Differentiate both sides of the equation term by term, remembering
to use the product rule to differentiate xy.

%(}ﬁ) 4 dix(xy) =0 To differentiate xy by
/ the product rule:
d d - du _
3y2—y+ x—y+y =0 HEX T !
dy : dx dx
To make I the subject, dv dy
collect up the terms R ﬂ(32+ )__ V=Y = 9% dx
that have it as a factor Toge\Y TX)=7Y
on to one side of your
equation. ﬂ __ 7
dx  3y° +
.. dy -1 1
G) At (1,1), =341 "%

Turning points

As you already know, turning points occur where dy 0.

dx
dy
dx
values of x directly, but it will give a relationship between x and y. You can then
solve this simultaneously with the equation of the curve to find the coordinates
of the turning points.

‘When working with an implicit function, putting = 0 will not usually give

194



Example 9.8 Find the turning points on the curve x° + 4xy + y° = —48 .

Solution
X’ +dxy +y° = —48
dy dy _ ¢ Differentiate both sides
= 2x+ (4}} * 4’“&) g =0 of the equation.
At th . . dy
t the turning points, dx 0 It is not necessary to rearrange
= 2x+4y =0 for% at this point.
= x =2y

To find the coordinates of the turning points, solve x* + 4xy + y> = —48
and x = —2y simultaneously.

(_2)’)2 + 4(—2)’))/ +y®> = —48 4—— Substituting for x.
= -3y = -48

UOIBIUAIAHIP JaYLINg 4 Jaydey)

= y- =16
= y =4

x = —2y so the coordinates of the turning points are (—8, 4) and (8, —4).

() (O Differentiate the following with respect to x. (B Find the gradient of the curve xy’ = 5Iny at
iy the point (O, 1).
i 4 (® il Find the gradient of the curve
! y_2 x® 4+ 3xy +y° = x + 3yat the
il 2 4y point (2,~1).

(@ Differentiate the following with respect to x. (i) Hence find the equation of the tangent to

. the curve at this point.

(i) . .
T_ e_ () Find the equations of the tangent and
li) sin(3y - 2) normal to the curve y’e” — 2x” = 4 at the
(iii) ln(y2 + 2) point (O, 2).
(@ Differentiate the following with respect to x. Given that y = sin”'x, show that % = colsy
(il xe’
) . . . dx
il sinxcosy () writing x = siny and finding ay
il x’ (i) writing siny = x and using implicit
sin y differentiation.
@) For each of thedfollowing functions, find an (il Show further that (cil_y can be written
expression for Y in terms of y and x. as 1 X
dx

(1-)

il xy+x+y=9
i) e +xy’ =2

lii) cosx + cosy =1
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Implicit differentiation

(9 Use both methods of question 8 to show that, (@ A curve has equation sinx + siny = 1 for

dy _

if y = tan"'x, then =L

Osx=s=nlsysn

= 2: . . ,
dv 1+« (il Differentiate the equation of the curve
Find the coordinates of all the stationary points

on the curve x” + y* + xy = 3.

with respect to x and hence find the
coordinates of any turning points.

A curve has the equation (x — 6)(y + 4) = 2. (i) Find the y coordinates of the points where
(il By using the product rule, find an x =0andx = 7.

expression for £ in terms of x and y. (il The curve y = sinx is symmetrical in the
(il Find the equation of the normal to the line x = %

curve at the point (7, —2).

il Find the coordinates of the point where
the normal meets the curve again.

Use this to write down the equations
of two lines of symmetry of the curve
snx +siny=L,0=sx<nm0<y<nmn

liv) Sketch the curve.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

>

>

understand and use differentiation from first principles for sinx and cosx
differentiate:

5 e*and ™ and related sums, differences and constant multiples

O sinkx, coskx, tankx and related sums, differences and constant multiples
understand and use the derivative of Inx

differentiate simple functions defined implicitly for first derivative only.

KEY POINTS
_ dy _ 1
1 y=lhx = I x
o dy s
2 y=¢ > I = ©
3 y=ax:>g—3:=ax1na
4 y=sinx=>—Y=cosx
dx
dy .
y = cosx = - = —sinx
y = tanx = % = sec’ x
o -~ d d dy
5 Implicit differentiation, for example: d—x[f(y)] = —Y[f(y)] X s




The mathematical
process has a reality and
virtue in itself, and once
discovered it constitutes
a new and independent
factor.

Winston Churchill (1876-1965)

Infeqration

=» How would you estimate the volume of water in a sea wave?

So far, all the functions you have integrated have been polynomial functions.
However, you sometimes need to integrate other functions. For example, you
might model a sea wave as a sine wave, so finding the volume of water in the
wave might involve integrating a sine function.
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Review: Integration

Review: Integration

Indefinite and definite integration

Integration is the inverse of differentiation; that is

dY_ " _ X
i ey |

where ¢ is an arbitrary constant.

n+1

+ ¢, n# -1,

Indefinite integration results in a function of x together with an arbitrary
constant. The notation used is

n+1

n+1

J.x” dx = +c.

Definite integration involves limits on the integral sign which are substituted
into the integrated function, giving a number as the answer:

b xn+1 b bn+l _ an+1
Lx de[ lz P n# -1

Example 10.1 Find the following integrals.

: 2 . 2
@) J-x dx (i1) fo x” dx
Solution
(i) sz e = %3 e The outcome from indefinite integration is a
function of x and an arbitrary constant.

(11) Jj x” dx

1l
1
w7,
| |
(=) (8%)

3 0
-3 3
= 9 4—— The outcome from definite integration is a number.

Sometimes you may need to rewrite an expression before you can integrate it, as
in the next example.




Example 10.2

2
Find J w dx.
X

Solution
(x +1)° 24 2x +1 =
J—4 dx = J‘% dx )
x x T
— 2 4 0y )4 2
= I(X tix o t+x ) X 4—— Write as a sum of powers of x. -
=i -2 -3 ©
X 25¢ A | . —
1 ) 3 4— Integrate term by term. %
S, 2
X x 3x (Y]
=3
o
=}

The area under a curve

Definite integration can be used to find areas bounded by a curve and the x-axis.

Example 10.3 (1) Sketch the curve y = —x? + 5x — 4, and shade the region bounded by

the curve, the x-axis, and the lines x = 2 and x = 5.

(i)  Find the area of the shaded region.

o When integrating Solution

to find an area, . ,

you must be (1) y=-x +5x—4
caref}ﬂ if some of the . = —(x® — 5x + 4)
area is below the x-axis. (% — 1)(x — 4)

The graph crosses the coordinate axes at (1, 0), (4, 0) and (0, —4).

Since the coefficient of x” is negative, the graph is M shaped.

. YA
You_must find areas of N
regions above and below
the x-axis separately.
(0] 1 2 4 5 ;x
When integrating to find
the area, this part of the
integral will come out as
negative, because it is
below the x-axis.
-4
Figure 10.1
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Be particularly
0 careful if you

are using the
Integration command
on your calculator.
Enter the area above

and below the axes
separately.

This is negative because
the region is below the
x-axis. Area of region

ig 11
IS T

- Review: Integration

(i)  Area above the x-axis

Substitute in upper and lower

4
= j (—x2 +5x—4)dx
2 limits and subtract.

x° . 5x° !
= [‘7 o 4’“}2

[ 4 5x4° 2> 5x2°
—(—?4' > —4X4)—(—?+ 5 —4X2(—

= % 4——— Area of region above the axis is %
Area below the x-axis
= (—x2 + 5x — 4) dx
3 2 S
X 5x
-5+ % -]
R
3 2 3 2
:(—%+5X25 —4x5)—(—%+5x24 —4><4)

Example 10.4

; — 10 4 11 — 31
Total area of shaded region = Ste =%

Finding the equation of a curve from its
gradient function

The function <L is the gradient function of a curve, and integrating it gives the

dx

equation of a family of curves.

dy 2

A curve has gradient function G = 7 x = 0.
(1) Integrate % to find an expression for y.

(i)  Sketch three members of the family of solution curves.

(1)  Find the equation of the particular curve that passes through the
point (1, 3).



() ﬂ — Zx%‘— Rewrite the equation in index form.
dx
()
5 2
=y=2X + ¢
—3+1 Q
1 <
2 Usin
=Sy=2X xT +c g o
2 dy n x"“ =
This is the general i T X =>y=n+1+c, n# —1 =
equation of the family ) = 4x2 + ¢ . | _
of solution curves. Inthiscase n + 1 = -5t 1 = 5 3
®
Q
(i)  Figure 10.2 shows three members of the family of solution curves. o
=
=

YA y = 4Vx+2

Yy = 44k

2
O/L r
-4
Figure 10.2
Substitute coordinates into
(i) Whenx =1,y = 3,50 ¢ the general equation.

3=41+¢ 4——— Rearrange to find

the value of c.

Substitute the value L )y s =3_4=—

of cinto the general

equation to get the Therefore the particular equation is y = 4/x — 1.
particular equation.

Review exercise

ntegrate the following functions with respect ntegrate the following functions with respect
Integ he following functi ith resp Integ he following functi ith resp
to x. to X.
1247 i 4x® +1 0 2Jx G S i) 3x%x
(i) 2x —x* + 3x° ~ o
(@) Evaluate the following definite integrals.

(i) J':(iz - 2\/5) dx

X

(2 Evaluate the following definite integrals.
. 2 3 .. 3 3
(i) L 2x” dx (i) J‘U (x + x 2) dx

(iii) J._Oz(3x5 - 2x + 1) dx (i) I11(y;}; 2) dy
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- Finding areas

. d
(B) A curve has gradient function d_a): =2x -1

(il Find the general equation of the family of
solution curves.

(il Sketch three members of the family of
solution curves.

(i) Find the equation of the particular curve
that passes through the
point (—-2,7).

4 1

x Jx

point with coordinates (1,—2). Find the

equation of the curve.

d
A curve has gradient function d_g; =
and passes through the

Find the following indefinite integrals.

2
: 1 . 2t —
(i) J(y+;) dy i) j(tf\/;) dr
f/(x) = 3x> — 4x + 1 and f(0) = —4. Find
f(x).
Sketch the curve y = —x* + x + 2, and

find the area bounded by the curve and
the x-axis.

@

@)

Sketch the curve y = 2x° — 3x + 1, and

find the area bounded by the curve and

the x-axis.

) Factorise x° + 3x% — x — 3.

i)  Sketch the curve y = x” + 35> — x — 3
and shade the two regions bounded by
the curve and the x-axis.

lii)  Find the total area of the shaded
regions.

A curve has equation y = Jx, x = 0.

(il Find the equation of the normal to the
curve at the point A, where x = 1.

(il The normal in (i) meets the x-axis at
point B. Find the coordinates of B.

il Show on the same sketch the curve and
the normal, and mark points A and B on

your sketch.

(iv) Find the area bounded by the curve, the
x-axis and the line segment AB.

1 Finding areas

Integration as the limit of a sum

You can estimate the area under a curve by dividing it up into rectangular strips.
For example, the area under the curve y = 16 — x” between x = 0 and x = 4 is

shown on Figure 10.3.

V)

Figure 10.3

2Y



[ts area is approximately equal to the total area of the four rectangles in

Figure 10.4.
YA
1
(w)
=5
)
o
~
D
; =
—
c
p £ =)
(g
D
Q
=
)
=3
Discussion points S
P Figure 10.4 =]
=» How good is this
approximation? The height of each of the rectangles can be found by substituting the
=» How could you appropriate x value into the equation of the curve. For example, when
improve the x=0,y=16— 0% = 16.

approximation?

So the area under the curve is approximately equal to

(1x16)+ (1x15)+ (1x12) + (1 x 7) = 50 square units.

This method can be generalised, as illustrated in Figures 10.5 and 10.6. Each
strip has height y and thickness 8x and so its area is given by 84 = y X dx.
The total area of the region is thus given by

281‘1 = Zny.

All strips All strips

A /
/
4 A
y=1{x)
/ -
= \
[§) a b x -
ox
Figure 10.5 Figure 10.6

For any given region, the greater the number of strips the thinner they become
and the more accurate will be the estimate.You can keep on increasing the
number of strips, approaching the situation where there is an infinite number of
infinitesimally thin strips and the area is exact.

In this limiting situation 8x is written as dx and the X symbol is replaced by the

integral sign, J.
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Finding areas

This can be written formally as

x=b
Area = lim (z yﬁx}

dx—0

b x=h
The definite integral J y dx is defined as ahmo[ZYij'

The area between a curve and the y-axis

So far you have calculated areas between curves and the x-axis.You can also use
integration to calculate the area between a curve and the y-axis.

Figure 10.7 shows the area between the line y = «7, the y-axis and the line y = 4.

YA

o
<Y

Figure 10.7

Instead of strips of width dx and height y, you now sum strips of width 8y and
length x (see Figure 10.8).

YA

In such cases, the
integral involves
dy and not dx.

It is therefore
necessary to 0
write x in terms

of y wherever

it appears. The Figure 10.8
integration is then
said to be carried
out with respect to
y instead of x. J“‘

The limits of the )
integration are y
values rather than
x values.

LY

y=4
The shaded area can be written as mao (Z xﬁy} which is equal to the integral
=005

To carry out the integration, you need to express x in terms of y. In this case,

2 2
Yy=XT = x =y
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4
/Discussion points So the shaded area = JO xdy

=?» Find the area 41
between the curve = '[O y*dy
and the x-axis. > 3 4

=» How can you use this = [5}’ J

to check the answer

3
here for the area = % X 42 — ()
between the curve 16 .

K and the y-axis? / = -3 square units.

Finding the area between two curves

In the review section at the beginning of this chapter, you were reminded how to
use integration to find the areas of regions between curves and the x-axis, including
regions below the x-axis, and of regions partly above and partly below the x-axis.

uoneabaju] g| J21deys

These ideas will now be extended to find the area between two curves.

el LD (1) Find the points of intersection of the line y = x + 1 and the curve
y = (x =1y

(i)  Sketch the line and the curve on the same axes.

(i)  Find the area under the line y = x + 1 between the x values found in (i).

(iv)  Find the area under the curve y = (x — 1)° between the x values
found in (i).

(v)  Find the difference between your answer to (iii) and your answer to (iv).
‘What area does this represent? Shade the region on your sketch.

Solution

. 2 Solve the equations
@ x+l=uo"—2x+14 simultaneously to find

= 22 = B = () where.the line and the
curve intersect.

= x(x—-3)=0

= x=0,x=3

Substitute the x values When x = 0.y = 1
; . . > > Y o
into either equation to When x = 3,y = 4.

find the y values.

The line and the curve intersect at the points (0, 1) and (3, 4).

(i1)

Figure 10.9 -
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Finding areas

the line.

i) J-a(x +1)dx = |:x_ N xi|3 Integrate the equation of
0

= (% 4k 3) — () 4—— Substitute in the limits.

—_

5
2 You don’t actually

need to use

The area under the line is % square units. 4— integration in this
case but can find the

answer as the area of

: 3 3 ’ a trapezium.
Integrate the equation of (1v) -[o (x2 = 2% 4 1)dx = |:% - x4 x:| >
the curve. > 0

Substitute in the

— (27 _ _ —
~\3 9+3) v limits.

3

The area under the curve is 3 square units.

(v)  The difference between these two areas is % square units.
This is the area of the region enclosed by the line and the
curve, as shaded in Figure 10.10.

9A
4t |beocsccccooszoczcossmcsomos=g y=x+1

y=(x -1y Region enclosed
by line and curve.
1 T
0 1 5 X
Figure 10.10

Instead of integrating each equation separately and then subtracting to find the
area enclosed, it is usually more efficient to subtract the equations of the two
curves first and then integrate.

Area of region enclosed

b
= J. (equation of top curve - equation of bottom curve) dx
a

where a and b are the x coordinates of the points of intersection of the two curves.
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SR (i) Find the points of intersection of the curve y = x* — 4x + 3 and the

curve y = 3 + 4x — x°.

(i) Sketch the curves on the same axes, shading the area enclosed by the
two curves.

(111) Find the area of the shaded region. %
1=

Solution Splve the equations_ i
() %= dx+3 =3+ 4x—x" € unorethe w0 curves. °
2% — 8x = 0 intersect. ?Dn-
2x(x—4)=0 E
x=0,x=4 g

Substitute x values into
When x = 0,y = 3. ‘ either equation to find y
When x = 4,y = 3. values.

The points of intersection are (0, 3) and (4, 3).

(11) 9y
(0, 3) (4, 3)
o % \ *

Figure 10.11

(111) Area of shaded region

4
= '[ (equation of top curve - equation of bottom curve)dx
0

= [((3+ 4% = 5°) = (+* = 4+ 3)) dx «—]| the equations of

the curves and

p simplify.
= J- (8x = 2x2)dx
0
2:°
= [4x2 = %:| 4—— Then integrate.
0
“(axar o 2X8 ) (42 2X0
a 3 3
— 64
- 3
The area enclosed between the curves is % square units.
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Finding areas

In Example 10.6, notice that part of the shaded area is below the x-axis.
However, the function that you are integrating (which is the distance between
the blue curve and the red curve) is always positive, so you do not need to split
the calculation up into different parts.

Discussion points

=>» What would happen if you tried to calculate the shaded area by first finding
the area under the blue curve, and then subtracting the area under the red

curve?

=» How could you find the shaded area by splitting it up?

Exercise 10.1

() (O Figure 10.12 shows the line y = 2 and the
curve y = x° + 1, which intersect at

the points (-1, 2) and (1, 2).
\ YA /

Y

Figure 10.12

Find the area of the region enclosed by the
line and the curve.

Figure 10.13 shows the region between the
line y = 3x + 1, the y-axis and the line y = 7.

YA
7

y=3x+1

<Y

(0]

Figure 10.13

(i)  Show that the area of the shaded region
7
can be written as _[1 %(y —1)dy.
li)  Evaluate this integral to find the area.

lii) Find the area of the shaded region using
the formula for the area of a triangle, and
check that this is the same answer as for
part (ii.



() Find the points of intersection of the
curve y = x” and the line y = 9.

(il Sketch the curve and the line on the
same axes.

i) Find the area bounded by the curve and
the line.

() Find the points of intersection of the
curve 6x — x” and the line y = 5.

(il Sketch the curve and the line on the
same axes.

(il Find the area bounded by the curve and
the line.

() Find the points of intersection of the
curve y = 4x — x” and the line y = x.

(il  Sketch the curve and the line on the
same axes.

(il Find the area bounded by the curve and
the line.

Figure 10.14 shows the curve y = x* — 1

and the line y = 3, which intersect at the

points (=2, 3) and (2, 3).

YA
y=x"-1

(-2,3) (2,3)

y=

Y

A%

Figure 10.14

(i) Find the areas of the regions labelled A, B
and C.

(il  Deduce the area between the line and the
curve.

(il Explain why the area between the line

2
and the curve is given by -[—2 (4 — x%)dx.

(iv) Evaluate this integral and verify that your
answer 1s the same as that for {ii).

(7) Find the area of the region bounded by the
curve y = +/x — 1, the y-axis, the x-axis and
the line y = 2.

YA

2
(6]
Figure 10.15
(il Find the points of intersection of
the curve y = x> — 4x and the line
y =3—2x.
li) Sketch the curve and the line on the

same axes.

lii) Find the area bounded by the curve and
the line.

(® Figure 10.16 shows the curves y = x” and
y = 8 — x°, which intersect at the points

(2,4) and (-2, 4).

Yy

(2.4

/ = 0
Figure 10.16

Find the area enclosed by the two curves.

(i) Find the points of intersection of the
curves y = x° +3and y = 5 — x°.

(i) Sketch the two curves on the same axes.

(il Find the area bounded by the two curves.

uoneabaju] g| J21deys
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Finding areas

Q0
@0
L Ps J©

curve.

The curve y = 3x — x° meets the line
y = 6 — 2x at the points P and Q.

(i)  Sketch the curve and the line on the same

axes.

il Find the exact length of the straight line PQ.
(il Find the area enclosed by the line and the

curve.

@ Figure 10.17 shows the curve y = 4 + 3x — x°.
The area under the curve between x = 0 and

x = 4 is to be estimated.

YA

y=4+3x—x

Find the area of the region enclosed by the
2

curve y = —x~ — 1 and the curve y = —2x".

Find the area of the region enclosed by the

curve y = x° — 16 and the curve y = 4x — x°.

Sketch the curve with equation y = x° + 1
and the line y = 4x + 1, and find the total area
of the two regions enclosed by the line and the

Figure 10.17

[l An initial estimate is made using the two
rectangular strips in the diagram. Find the

total area of the two rectangles.

lil Looking at the diagram, can you say

Y

whether the area from (i) is smaller

or larger than the true area? Or is
impossible to say?
Explain your answer.

it

lii) Find an approximation for the area under
the curve between x = 0 and x = 4 using
four rectangular strips.

(iv) Find an approximation for the area using
eight rectangular strips.

(v)  Use integration to find an exact value for
the area, and comment on your answer.

Figure 10.18 shows the curves y = (x — 2)’
and y = 4 + 4x — x°.

YA
A y=(x-27
4
y=4+4x -
| |~ .
/ o 2 4\ x
Figure 10.18

Samir wants to find the approximate area of
the region enclosed by the two curves. Samir
has divided the region into 8 rectangular strips
as shown in Figure 10.19; the first one has zero
height and so is a straight line.

(il Find the total area of the 8 strips shown in
the diagram.

lil Repeat the process using 16 strips.

lii) Find the exact area of the region by
integration.

(ivy Comment on your results.

The area enclosed by the curve y = 10x — X2
and the curve y = x° + 3x — 4 lies partially
above and partially below the x-axis.

Find the ratio of the area above the x-axis to

the area below the x-axis.



2 Integration by substitution

Suppose you want to find J. (5x — 1)3dx.

One approach is to start by expanding the brackets and then integrate term by
term, but this is time consuming. A more efficient approach is to use the method

of integration by substitution.

Because you already know how to integrate Iu3du, you can use the substitution
u = 5x — 1 to transform the integral into one that you can do.This approach is

shown in Example 10.7.

Example 10.7

You are now integrating
with respect to a new

() Find | (5x - 1) dx.

(i)  Check your answer by differentiation.

Solution
@) Use the substitution # = 5x — 1. ¢6——

First use this substitution to replace dx.

You will change the
integral involving the

variable x into an integral
involving the variable u.

variable, and you must
replace every x, including

the dx, with your new
variable.

Finally rewrite

N Ee du _

» u = 5x 1:>dx—5
du _5 = ge=1ldu
dx 5

du

Note that P is not really a fraction, but it is usual to treat it like

one in this situation in order to find what to substitute for dx.

Now replace the other
terms involving x with

terms involving u.

Integrate.

in terms of x.

JGx=1ydx = [ (5x = 1)° x Ldu
= J.%usdu ¢
= 2—10u4 +c <
> = LG5 —1)" +¢

(i)  To differentiate %(Sx —1)" you use the chain rule, 3
x

y = 25 (5% — 1)

“:5x_1:>E 5
d
— 1 4 Y _ 1
Y = ool :a §u3
%=%u3><5
= (5x = 1)°

So the integral found in (i) is correct.

dy _dy
T du T dx

uoneabaju] g| J21deys
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- Integration by substitution

/Discussion points\
=» Where did the 5g 1N

Example 10.7 come
from?

=> How could you
have found this
number without
doing integration by
substitution?

[©

Integration of (ax + b)" by recognition

You have probably noticed that you can integrate any function of the type
(ax + b)" by using the substitution u = ax + b. With experience and practice,
you may feel no need to write down all the working, and you may be able
to go straight to the answer. This process is sometimes called recognition

or inspection. Remember that you can always check your answer by
differentiation.

You will see shortly that recognition is possible for other types of integral.
However, if you are in doubt you should use the substitution method.

ACTIVITY 10.1

(i) Integrate the following functions.
(a) (2x + 3)°
(b) (5 — 3x)’
(c) V14 2x

(ii) What is the general result for J. (ax + b)"dx?

Example 10.8

212

Evaluate the following definite integral, giving your answer to 2 decimal places.

J‘;(Zx — 1)’ dx

Solution

First integrate the
function.

[ (2= 1) dv = |:2—>1<3(2x - 1)3}1_1 —

—[1 37
= [E(Zx -1 ]_14— Then simplify.

— (11)3) — (1(—3)%) 4 Now substitute in
- (3(1) ) (6( 3) ) A the limits.

= 4.67 2 d.p)

Integrating other functions by substitution

The method of integration by substitution can be used to integrate many other
types of function as well as those of the form (ax + b)". With experience, you
will be able to see how to choose a suitable substitution to use.



Example 10.9 .
(¥)

(1))  Use differentiation to check your answer.

Use the substitution u = x? + 3 to find J.x(xz + 3)5 dx.

Solution o
@) First use the given substitution to replace dx. i
~
u=x>+5= % = 2x L
X —
d 1 Substi f e
au _ 2y = dx = ——du u .stltute or =
dx 2x dx first to see 5-
B if anythin
5 5 2 5 1 I y g Q
Ix(x + 3) dx = Ix(x + 3) X ﬂdu 4—— cancels. E
s
=]

= J‘%(xz + 3)5 duy ¢—— Cancel and simplify.

Now replace
the other terms

= J%usdu4—

involving x with
terms involving u.

— 1
— =
Integrate o4 +¢

Finally rewrite 1.2 6
in terms of x. #_ﬁ(x +3) G
(11) To differentiate %(xz + 3)6 , use the chain rule, j—g}: = % X g—;’;
u=x"+3= S—Z = 2x
d
1,6 Y _ 1,5
dy _ 1,5
E = 2.'>C X ji/l
= x(x2 + 3)

So the integral found in (i) is correct.

Integration of this ‘reverse chain rule’ type can always be done by using the
appropriate substitution. Notice that in Example 10.9, x(x2 + 3) can be written

as % X 2x X (xz + 3)5, and that 2x is the derivative of x> + 3. Any function of
the form k X f’(x) X [f(x)]", where k is a constant, can be integrated using the
substitution u = f(x).

Alternatively, as you become more familiar with this type of integration, you
may find that you are able to do it by recognition, by seeing what function
would differentiate to the given one by using the chain rule.

Definite integration by substitution

When doing definite integration by substitution, you must remember that the
limits you are given are values of x. When you rewrite the integral in terms of
the variable u, you must also replace the limits with values of u.
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Integration by substitution

Example 10.10

- - . 2
Use an appropriate substitution to evaluate J x°Ax” + 1 dx.
0

Solution

x’is a multiple of the

Use the substitution u = x° + 1, ¢——— o 3
derivative of x~ + 1.

u=x"+1= & = 3x°
dx
G — 5 = gl = —
dx 3x
2 x=2 2
J' A 1 dw :J‘ 52 /xs I % 12du “ First replace dx
0 x=0 3x in the normal way
and simplify the
5 [ .3 expression.
_ J‘ x + du
Avoid confusion by writing the
Sulbsiiiuta s values <:When x=0,u=1 limits as “x =..." until you have
i = 5° changed them to values of u.
intou = x° + 1. When x = 2,4 = 9. g

f \/x+ Jl%d“
5

= du

1

s 7
_ u> | Integrate with
- 3" respect to u.

_3 X3 1

AT
_| 2u?

9
L 1

) Since your limits are
9 &4 values, substitute
them into the function
= 2 of u.

An alternative method for definite integration by substitution involves leaving
the limits as x values, and instead rewriting the integrated function in terms of x
before substituting in the limits.

[©

ACTIVITY 10.2

(i) Use the substitution shown in Example 10.10 to find the indefinite integral

J‘xZ\/x3 + 1 dx, expressing your answer in terms of x.
2
(ii) Use your answer from [i) to evaluate JO x°vx’ +1 dx, and check that your

answer is the same as that given in Example 10.10.




Exercise 10.2
O © W

Use the substitution y = x — 7
to find [ (x = 7)"dx.

(i)  Use the substitution y = 2x — 7
to find [(2x - 7)'dx.

lii) Use the substitution u = 5x — 7

to find [ (5x —7)"dx.

Check your answers by differentiation.

Integrate the following functions.

i (x=2) i (2x +3)’
(i) (1 - 6x)°

Check your answers by differentiation.

Evaluate the following definite integrals.

U J.(:(Zx —1)'dx

(i) _[13(4 — x)’ dx

(i) J:(l - 3x)’ dx

Figure 10.19 shows the curve y = (3x — 1)3.

YA
10

y=0x-1)

O,
/.
Figure 10.19

Find the area of the region bounded by the
curve, the x-axis, and the lines x = 0.6 and
x =1

Integrate the following functions.

1
i) ~x+3 (ii) (33(3 + 1)2
(iii) 1
i x 1

Check your answers by differentiation.

d
m@ A curve has gradient function ol

1
dx = J2x +3
and passes through the point (0,2\/5 )
Find the equation of the curve.
Find the area of the shaded region in Figure 10.20
(il by treating it as an area between the line
y = 2and the curve y = /x + 1

lil by treating it as an area between the curve

y = ~Jx + 1 and the y-axis.

YA
y=Ax+1
o)
0 3 "X

Figure 10.20

Evaluate szz (x3 - 4)3 dx using the

substitution u = x° — 4.

Integrate the following functions using either
recognition or a suitable substitution.

0 ox(=1)" W w1

3

(iii) (1 _ x4)2
Using a suitable substitution, or otherwise, find
the exact value of the following:
X
J.O m dx
i) Expand (2x + 1) and hence find
I(Zx + 1)*dx.
(i) Find J(Zx + 1)*dx using substitution or
recognition.
(il Show that the coeflicients of each power
of x are the same in the answers to parts (i)
and (ii).
(iv) Comment on the constant terms in the
two answers.

uoneabaju] g| J21deys
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Integrating other functions

Y)
3

2

\

x (il Explain from the equation why y is

Figure 10.21 shows the curve y = ﬁ

X2 =1 undefined for -1 < x < 1.
(il Explain from the equation why
the value of y cannot be between —1
and 1.
(il Find the exact value of the area of the
region bounded by the curve, the x-axis
and the lines x = =3 and x = 2.

-3 2 -l

-2

-3

Figure 10.21

Prior knowledge

You should be

confident in working

with radians (covered

in Chapter 2), and
you should know

how to differentiate

trigonometric

functions (covered in

Chapter 9).

=Y

3 Integrating other functions

Integrating trigonometric functions

'

ACTIVITY 10.3

In this activity, x is measured in radians.

1

ACTIVITY 10.4

Use integration by
substitution, with

u = kx, to confirm the

results shown here.

Differentiate the following with respect to x.

(i) sinx (i) cosx (iii) tanx

Use your answers to question 1 to write down the following indefinite
integrals.

(i) Icosx dx (ii) Isinx dx (iii) Jseczxdx
Now differentiate the following with respect to x.
(i) sin4x (i) cosbx (iii) tanb5x

Use your answers to question 3 to write down the following indefinite
integrals.

(i) Jcos4xdx (iii) jsinSxdx (iii) J‘sec25xdx

The results from Activity 10.3 can be generalised to the following standard
results, where k and ¢ are constants.

Jsinkx dx = —%coskx + ¢
Jcoskx dx = %sinkx +c

Jsec2 kxdx = %tankzx + ¢




Example 10.11 Find the following indefinite integrals.

(1) J sin 2x dx
(i1) IsecZ 3x dx

S

Solution -
©

o

@) jsin2x dx = —%COS 2x + c 4——— Check your answer by differentiating. -
o

(i1) jsecz 3xdx = %tan?)x +¢ \ Bermamilber That §
= tanx = ﬂ = sec’x g

Y dx ’ =

Q

=3

o

=

Definite integration with trigonometric functions

When doing definite integration with trigonometric functions, it is important to
remember that the limits are always in radians, not degrees.

Example 10.12

Evaluate Jon sin(%) dx.

Solution

T (x _ 1 <\
_[ Sln(z) dx = [—;COS(E)} 4— First integrate the function.

x T
= _2COS(§):| & Then simplify.

T
= (_2 COSE) — (—2¢0s0) ¢— Now substitute in the limits.

=(2X%x0)—-(=2x1)

Using trigonometric identities

Sometimes you can use a trigonometric identity to rewrite an integral in a form
that makes it easy to integrate.
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- Integrating other functions

Example 10.13
B Find jtanz xdx.

ACTIVITY 10.5 Solution T ————
27 _ 2
1 Differentiate the J.tanzxdx _ j(seczx — 1)dx / sec’x = 1+ tan” x-
following with : .
respect to x. = tar;x —x+c _The integral of sec”x
i) e* (i) e is tan x.

2 Use your answers to
question 1 to write

downthe following | Integrating exponential functions

indefinite integrals.
9 The results from Activity 10.5 can be generalised to the following standard result,

(i) J.ex dx where k and ¢ are constants.
e 3x
(i) Je dx J.elex dy = %elex iy

Example 10.14

Find J‘ e dx.

Solution

je—Zx de = —Le 40 4 CheFk your answer
2 by differentiating.

Using substitution with exponential and
trigonometric functions

Example 10.15

Use the substitution # = cosx to find Jsinxcosz x dx.

Solution
Use the substitution u = cosx. Substitute
< ) 1 for dx first
dx —sinx = dx :_sinxdu to see what

/ cancels.
du

° 2 - 2
J.SII’IXCOS xdx = J‘SII’IXCOS x X —

sin x

= I—cosz xdu

= I—uz du
w3

== G i
Y Remember to write

3 your final answer

CcOS™ X !

=—T+c 4—— interms of x.
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Notice that in Example 10.15, sinx is the derivative of cosx, so you can think of

. 2
SIN X COS™ X as

a constant X the derivative of cosx X a function of cosx.

This shows you that the substitution u = cosx will be helpful.

This integral is of the ‘reverse chain rule’ type; differentiating the answer directly
by the chain rule gives the original function. Integrals of this form can be found
by using substitution as shown in Example 10.15. Alternatively, as you become
more familiar with this type of integration, you may be able to do them by

recognition.

In the next example, the expression to be integrated follows a similar pattern.

Example 10.16

T

2 inx
Evaluate fn cosx ™ dx .
3

sinx

cosx is the derivative of sinx, and e™ " is
a function of sin x, so the substitution
1 =sin x will be helpful.

Solution
Use the substitution ¥ = sinx.
%zcosxzdxz 1 du
dx Ccos X
z . x=1 . 1
J.nz cosx e dx = J‘ :cosx e —— du
z x=2 COS X
1
h L - L L
When x g U =sin| g 5
=L =gl =
When x = 5 U sm(2) 1.
= 1.
J- cosx e™* colsx du = J.1 ™ du Swap your limits from
6 2 x values to u values.
] u
= Ile du
2
o 1
],
a 1
=e —e?

P

ACTIVITY 10.6

Find general expressions for the following.

(i) J.f'(x)ef(x) dx

i) [ £7(x)(f (x)) dw

uoneabaju] g| J21deys
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Exercise 10.3

VRO,
@)

Integration involving the natural logarithmic function

Find [sin2x dx ?

Integrate the following functions with respect
to x.

M e ) e i) ¥

Integrate the following functions with respect

to x.

(i) sinbx

(il cos(2x + 1)
(i) sin(1 — 3x)

Integrate the following functions with respect
to X.

(i) cosx —sinx

(i) e +e”

(i) 3sinx — e

Evaluate the following definite integrals, giving
your answers in exact form.

us

(i J.: sec” xdx
(i} Jloé(l — cosx) dx
(i) Jze%x o

0

Find the following integrals using the given
substitution.

(i) Jxex2+3dx, u=x>+3
(ii) Jsinxcos4xdx, U = COSX

2
X

Figure 10.22 shows the curve y = xe ™" .

{

Figure 10.22

(il Find the coordinates of the turning points
of the curve, leaving your answers in terms
of e, and verify their nature.

(il  Find the area of the region bounded
by the curve, the x-axis, and the lines
x = =1 and x = 1. Give your answer to 3
significant figures.

Using either a suitable substitution or

recognition, find the following integrals.

(i) Jsinx e dx
(ii) Jex (ex — 5)7 dx

Figure 10.23 shows the curve y = xe*.

LY

y=xe‘2

Figure 10.23

(il Find the coordinates of the points of
intersection of the straight line y = 3x
and the curve y = xe™

(il Find the total area of the regions bounded
by the curve and the line.

(il Use the double angle formula to express
cos” x in terms of cos 2x.

i) Hence find Icos2x dx.

(i) Use a similar approach to find Jsinzx dx.

() Show that sin’ x = sinx — sinx cos’ x.

(il  Hence find Isin3x dx.

4 Integration involving the natural
logarithmic function

KDiscussion points

J.% dx, x > 0?

=» Differentiate In 2x, In 5x and In 9x with respect to x.
=» What do your results tell you about different possible answers for the integral

=» How can one integral have more than one answer?
\-) Why is this integral restricted to positive values of x? )

~




In these discussion points, you have

seen that J.l dx = Inx +cforx > 0,
where the restriction to x > 0 is
because logarithms are undefined for
negative numbers.

In Figure 10.24, region A is bounded
by the curve y = % and the x-axis

between x = —b and x = —a.

The area of region A is clearly a
real area, and it must be possible to
evaluate it. Region A is below the
x-axis, and therefore the result by
integration will be negative.

It looks as though the area of region A
is the same as that of region B. Here is
a proof that this is indeed the case.

. _ *ﬂl
Area of region A = Jlb p
Substituting u = —x:
x==b=>u=10
X=—a=>u=a
%Z—lﬁ dx = —du.
dx
onA=—["L(=
Area of region A = J.b —u( du)
= —["L 4
bu
= —(Ina — Inb)
= Inb — Ina

= area of region B.

Figure 10.24

=)

The minus sign at the

dx. € frontis because the

area is below the x-axis,
and so the result of

the integration will be
negative.

Therefore the restriction that x > 0 may be dropped and the modulus sign
introduced, so that the integral is written

J.ldlen |x| + ¢
X

Example 10.17

1
4 -x

Find the exact value of I7
5

Solution

.“574ix &

—[nj4-x]]

dx.

~(In|] =3] =1n| -1)
—((ln3) — (lnl))

This makes the top line the derivative
of the bottom line, so you can integrate

7 =]l
= —L 7 —x dx ¢ by recognition. Alternatively, you could

use the substitution u = 4 — x.

Because you were asked for
the exact value, leave your

~In3 ¢

answer as a logarithm.

uoneabaju] g| J21deys
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- Integration involving the natural logarithmic function

The arbitrary constant

When the result of integration is in the form of natural logarithms, it is often
helpful to have the arbitrary constant written as a natural logarithm as well,

¢ = Ink,where k > 0.The rules of logarithms then allow you to write the
integral as a single term, as shown below.

J.l dx = In|x|+c
X

r Since c = Ink.
(Discussion points A — |

= In|x|+Ink
=>» Why is the restriction = In(|x|xk) 4 Using the log rule
k > 0 needed? loga + logh = logab
=¥ Can every value of = In(|x|x|k]|)
¢ be written in the _ Ask > 0, k =|k|
form Ink, k > 0? = In [kx|

\ : The result above then becomes

J‘%dx = In kx| where k > 0

Integrals of the form jff((j)) dx

Example 10.18

2
Findjlx = dx, 1—-x" > 0.
- X

Solution

Use the substitution u = 1 — x°.

du _ 5.2 -1
i 3x =>dx—_3x2du
2
X _ X 1
J — dx_-[l—x3 ><_3x2du
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The integral in Example 10.18 is of the ‘reverse chain rule’ type. It can be written as

Jl—x3 - 3.’.1__33;

and so is of the form Jm dx because —3x” is the derivative of 1 — x°.
Integrals of this form can be found by using the substitution u = f(x).

Alternatively, the integral can be found by recognition using

Jf(x) x =1In|f(x)|+¢

Prior knowledge

You need to know how
to find partial fractions.
This is covered in
Chapter 7.

Example 10.19

uoneabaju] g| J21deys

Using partial fractions

Many integrals leading to natural logarithmic functions need first to be
expressed in suitable form, for example using partial fractions.

1) Express in partial fractions.

x—1
(x +3)(x+1)
x—1

(1)  Express your answer to (ii) as a single logarithm.

Solution
. x—1 A B
(i)  Let GG D) -~ +3 7541
x—=1 _ A(x+1)+ B(x + 3)
(x+3)(x+1) " (x+3)(x+1)
Then x—1= A(x + 1)+ B(x + 3) ¢ Equating
numerators.

Substituting x = —1:
2B=-2 = B=-1

Substituting x = —=3:

DA=-4 => A=2
24 4 Using partial

x—1 2 1 fractions from (i).

So = -
(x+3)(x+1) x+3 «x+1 /

g x—1 _ 2 1
(1) Jm dx = j(—x 3 %+ 1) dx Replacing ¢
with In k.

N

=2ln|x+3|-Injx+1]|+¢

() 2ln|x + 3|-In|x + 1|+c= 2In|x + 3|=In|x + 1| +1nk

v
Since (x + 3)° must be =In(x+3) —In|x+1| +Ink
greater than or equal to 2 Combining terms
zero, the modulus signs = In M 4— using the laws of
aren’t necessary. |x + 1] logarithms.
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Integration involving the natural logarithmic function

Example 10.20

Solution
Let (;::13)2 - (xf 0" e 51)2
_ A(x+1)+ B
(x +1)°
Then x+3=A(x+1)+B
Substituting x = —1:
2=8B

Comparing coeflicients of x:
1=A

x+3 _ 1, 2
(x+1)7  (x+1)  (x+1)

x+3 1 2
'[(x:'rl) j[( ) (x + 1)

=In|x+ 1| 2(x + 1)

=Injx+1|—

2
x+1+c

)

aF €

Partial fractions
with a repeated
factor.

Notice that the
second term is a
power of —2 rather
than a power of -1,
so integrating it
does not resultin a
logarithmic function.

[©

ACTIVITY 10.7

In Example 10.20, instead of using partial fractions with a repeated factor,
x+1+2  x+1

2

x—+3 can be expressed as

Show that this gives the same result.

(x +1) (x+17°  (x+1)

(x+1)7




Example 10.21 . 3

Show that J, 722 71)

Solution
x—3

A B Writing in partial

Let  F (v +1)
_ A(x + 1)+ B(x + 2)

Then: x—3

Substituting x = —2:

—5=-4

Substituting x = —1:
-4 =B
x =3

PR fractions.

(x+2)(x+1)
A(x + 1)+ B(x + 2)

= A=5

5 4

So (x+2)(x+l) -

J (x+2)(x+l)

x+2 x+1

_ [Y_5 d
_Io(x+2 x+l)x

Integrating each
term separately.

=[5ln]x +2|-4ln|x + 1]] |

= (5In3—4In2) — (5In2 — 4In1)
Using rules of

= (In243 — In16) — (In32 — 0) ¢—— logarithms.

Rewriting as a single natural

1n(243)
512 €

logarithm using rules of logarithms.

Exercise 10.4

() (O Integrate the following functions with respect
to x, where x > 0 in each case.

. 2 N 1 1
(i) ™ (ii) o (iii) T
(2 Find the following integrals.
. 1 ) 1
(i) jx ) dx (ii) J.—Z - dx

(iii) Jﬁ dx

(@ Evaluate each of the following, giving your
answer as a single logarithm.

(i) IO }_de (ii) J.__3 1 dx

2 X 7x+ 1

(iii) j -— dx

(@) Use the substitution u = x> + 1 to find

22—xdx.
x“+1

(3) Use the substitution u = 2 + x° to find

IU 2x 5 dx, giving your answer as a
12+ x°
single logarithm.
(® Find the following integrals.
3x°

de il J#dx

(7 Evaluate each of the following, giving your
answer as a single logarithm.

. 2 2 - 0 2x°
(i) L N dx i) -[—11 g dx
Find the following integrals.
) 1 . 1
(i) Jm dx (i) jm dx
3x+ 3
(iii) jm dx

uoneabaju] g| J21deys
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(9 Evaluate the following definite integrals, giving

©)

Integration involving the natural logarithmic function

your answers in exact form.

1

(i) J.o m dx

4 Tx — 2
i, (x—1702x+3)

i) JZ dx + 1
0 (x 4+ 2)(2x + 1)

Sketch the curve y = % + 1 for positive

values of x, showing clearly on your sketch any
asymptotes to the curve. Find, in exact form,
the area of the region enclosed by the curve,
the x-axis and the lines x = 1 and x = 3,and
indicate this region on your sketch.

) 3
Given that y = T-x
(il write down the equations of the
asymptotes of the curve
li) sketch the curve

(il find the exact value of the area bounded
by the curve, the x-axis and the lines
x =-2and x = —1.

. 3 : :

il Express T+ 90=20 in partial
fractions.

i Find [ 5 d decimal

(il Fin -[0 m x to 5 decima
places.

X

Figure 10.25 shows the curve ) =

1+ e*

Figure 10.25

(il Write down the coordinates of the point
where the curve crosses the y-axis.

(il  Describe the behaviour of y as x — oo
and as x — —oo.

(il Find the area of the region bounded by
the curve, the coordinate axes and the line
x = 1, giving your answer to 3 significant
figures.

Find the following integrals.

®

| 1 0 [ex
[|] J.x2 _1 dx [”] J‘xZ _1 dx
2
X
) d
iii sz 1 X
Figure 10.26 shows the curve y = % )
0 <x < 2m.
y M _ _sinx
2 +cosx
0 P\/
Figure 10.26

() Find the coordinates of the point M
and use calculus to verify that it is a
maximum point.

(i) The area under the curve between
x =0 and x = 7 can be approximated by
the area of the triangle OMP.

Find this area and explain why this will
give an underestimate.

il Hence estimate the total area of the
region bounded by the curve and the
x-axis for 0 < x < 2m.

(iv) Find the exact value of the total area
bounded by the curve and the x-axis and
compare this with your answer to [iii).

() Find jiz dx.

X
2
Selena tries to evaluate '[ 4% dx. Her work is
4y

shown here.

[gae[-2], <352

Selena says, “This cannot be right because iz

is positive for all values of x”

lil  Sketch the curve y = iz and explain
X

why Selena’s answer cannot represent the
area under the curve between x = —4 and
x=2.

(i) Is it possible to evaluate this area? Explain
your answer.

(iv) Selena has broken a general rule for
definite integration. State this rule in your
own words.



b Further integration by substitution

You already know how to use integration by substitution in cases where the process
is the reverse of the chain rule, and the integration can alternatively be done by
recognition. However, the method of substitution is used for other cases as well.

(®)
S to integrate ~—> 5
uppose you want to integrate =———.

ppose 'y g T —1 ]
The numerator is not the derivative of the denominator, and therefore the ‘_?‘
. ) £/ (x) . =
integral is not of the form J o) dx, and cannot be done by recognition. o
5
However it can still be integrated by using the substitution u# = 2x — 1. o
(=]
First use the substitution to replace dx, in the normal way. o
~
du 1 o

—=2=dx=-du
dx 2 S

x _ X 1
2% — 1 dx = .[2x -1 X jd“ In these cases, there
is often nothing that
= lJ‘ X du cancels out.
2J2x -1
u+1

— You must then rewrite
2 .
both 2x — 1 and x in
(” '5 1) terms of u, and replace
1 x -1 all the x terms.
.[Zx —q du ZJ i du

Simplifying, and splitting
J u the fraction into two
’ 1 / separate terms, then
= Zj.(l + ;) du gives you a function of
u that you are able to
= %(1,, +1n|u |) +c integrate.

Finally you must remember to write your final answer in terms of x.

[525g de = J@x =)+ dnj2x — 1] +¢

Example 10.22 By using a suitable substitution, find jxvx -2 dx.

Solution
Letu=x—2. ¢ By making the substitution
b # = x — 2, you can turn this
du =1 = d = dls integral into one you
dx can do.

U=x—-2=x=u+2
J.x\/x—Z dx = jx\/x—Z du ¢——
=I(u+2)\/t_tdu
3 1
I(u2+2u2)du

22 4 2
=cu’+3u° +c

Because dx = du.

Rewrite in

= 2(x—2 + 4 (x -2 +¢ <
5 3 terms of x.
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Further integration by substitution

[©

ACTIVITY 10.8

Show that the solution in Example 10.22 can be written as

2(x—2) (Bx+4)+c

[©

ACTIVITY 10.9

For each of the following integrals

(a) write down a suitable substitution to use to perform the integration,
(b) use your substitution to integrate the function and

(c) check your answer by differentiation.

(i) jﬁ dx (i) jx\/z T x dx

Exercise 10.5

() (O Find the following integrals using the given

substitution.

2
(i) J.(xil) dx, u=x+1

(i) Ix\/Zx +1dx, u=2x+1

(@ Evaluate the following definite integrals using
the given substitution.

. b x -y
(i) L(x—l)3 dx, u =x—1

. 1 3
(ii) J:l6x(3x —1) dx, u=3x—-1

(® For each of the following functions

(a) write down a suitable substitution to use
to integrate the function with respect to x

(b) integrate the function.

X

(i) m (il Sxvx+4

_—x
2x +1

@) A curve has gradient function

dy_ ax xi—%-

(iii)

dx = 2x+ 1’

(i)  Use the substitution u = 2x + 1 to find
the general equation of the family of
solution curves.

(il Find the equation of the particular curve
for which y = 3 — In5 when x = 2.

Figure 10.27

(il The curve has a vertical asymptote at
x = a.Write down the value of a.

li) Find the coordinates of the turning point
of the curve and determine its nature.

(i) Find the area of the region bounded by
the curve, the x-axis and the line x = —1.

(® Find the integral J.IHTx(l + Inx) dx using the

substitution u = 1+ Inx.

X

(@ Figure 10.28 shows the curve y = ﬁ
J( )

) ]

Figure 10.28

(il The curve has a vertical asymptote at
x = k.Write down the value of k.




(i) Find the coordinates of the turning point O (il Use the substitution x = 2tanu to show

of the curve, giving the y coordinate to o
3 significant figures, and determine its

that J. dx can be written as J%du

_1
4+x°
®

nature. (il Hence find the exact value of
il Find, to 3 significant figures, the area of 2
the region bounded by the curve, the J.” 4 + 52 dx.
x-axis and the line x = 2. o )
@ Th th eradient functi @ () Use the substitution x = 3sinu to show
dy © curve i grdient funchion that J‘édx can be written as Jldu.
I = x(2x + 1)v/2x + 1 passes through the V9 — 2

point (O,g—g).

(i) Hence find the exact value of

3
. . 3 1
Find the equation of the curve. Jz — dx.
09 — x?

(® Using the substitution u = 1 — sinx, evaluate

02 . .
J‘ sin2x+/1 — sinx dx, glving your answer to
0.1

3 significant figures.

[ mr———

ACTIVITY 10.10

(i) By first
differentiating
x cosx, find

stinx dx.

(ii) By first
differentiating
xe™, find

J‘erzx dx.

6 Integration by parts

Suppose you want to integrate the function x cosx .The function to be integrated is
clearly a product of two simpler functions, x and cosx , so your first thought may be
to look for a substitution to enable you to perform the integration. However, there are
some functions which are products but which cannot be integrated by substitution.
This is one of them. You need a new technique to integrate such functions.

The technique of integration by parts is based on the reverse of the product

rule. You can see from the working below that in the case of J.xcosxdx, you
can start by differentiating xsin x.

Differentiate the function xsinx by the product rule:

d(xsinx) :
T dx XCOSX + sInx
. . . Integrating d(sinx)
Now integrate both sides with respect to x: 44— ol
. . ‘undoes’ the differentiation.
xsinx = J.xcosxdx + J-smxdx

R earranging this gives
chosxdx = xsinx — jsinxdx

= xsinx + cosx + ¢

The method above of reversing the product rule and rearranging, can be generalised
into the method of integration by parts, which can be used even when you are not

told the function to differentiate (as you were in Example 10.22 and in Activity 10.10).

The general result for integration by parts

Using the product rule to differentiate the function uv:

dlw) _ dv , du

dx — Tdx dx
Integrating both sides:
_ dv du
uy = J-ua dx + J-va dx

uoneabaju] g| J21deys
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Integration by parts

Rearranging gives
dv _ o (. du
J.ua dx = uv J.de dx
This is the formula you use when you need to integrate by parts.

To integrate xcosx using this formula, you split it into the two functions, x

dv

and cosx.To fit the formula, you call one of these functions # and the other s
When deciding which is which, you should consider the following.

m  To work out the right-hand side of the formula, you need to find v.
dv

dx’

m  When you apply the formula, you will need to be able to integrate the

Therefore, you must be able to integrate

function V%.Therefore u should be a function which becomes simpler
X

when you differentiate.

Example 10.23 . :
4 Find J.xe“ dx.

Solution
X becomes simpler when
u=x = % =1 ¢ you differentiate, but e”
d * stays as €”. So choose
av = o = = & u = X.
dx

o dv du :
Substituting into jua dx = uv — J‘Va dx gives

Jxex dx = xe™ — jex dx

=xe* —e' +¢

ACTIVITY 10.11

dv _
7 dx
(i)  Apply the integration by parts formula, using Anna’s choices for u and %
(i) Explain how you know that Anna has made a bad choice.

Anna wants to integrate stinx dx by parts. She chooses u = sinx X.

Example 10.24 Find Jxlnx dx.

Solution

You might have
expected to take u = x
in Example 10.24, as

. . dv
You are not able to integrate Inx, so you cannot make this R
Therefore Inx must be u.

this is a function which b=l = du_ 1
gets simpler when SR
differentiated. However, dv _ o
in this case, since you dx 2

cannot integrate Inx
easily, you need to take

u=lInx.
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Substituting into ju% dx = wv — jv% dx gives

jxlnx dx

x” x° 1
TIHDC = J.T X ; dx

2
_x lnx  f[x
=i

_lenx_x_2+
-T2 e

Definite integration by parts

When you use the method of integration by parts on a definite integral, you
must remember that the term wuv has already been integrated, and so should be
written in square brackets with limits, and evaluated accordingly.

uoneabaju] g| J21deys

bodv _ b b du
Lua dx = [uv], — J.aua dx
Example 10.25 )
Evaluate J xe " dx.
0
Solution
_ du _
u=x = I = 1
dv . —x .
- Dv=-e
b b
Substituting into L ug—z dx = [m/]'; - L Vg_z dx gives

J‘:xef" dx = I:—xefx ]z - J‘:(—eﬁ) dx
= I:—xefx :li + JOZ e dx
T[]
= (-2¢7 = 0) + (=e” +1)
=1-3¢"

Using integration by parts twice

Sometimes it is necessary to use integration by parts twice (or more) to integrate
a function successfully.
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Integration by parts

Example 10.26

Find J.xzex dx.

Solution You are able to integrate
d either function, so
g= st = Y 9. < choose u to be the
dx function that becomes
o . . simpler when you
dx e = v=e differentiate.

. dv _ _ du .
Substituting into J. uadx = uv J VIx dx gives
J.xzex dx = xe* — I 2xe” dx
To find Ierx dx use integration by parts again:

du

u=2x=>a=2
%=ex:>v=ex

Substituting into Iug—; dx = wv — jyj—z dx gives

J.erx dx = 2xe* — J.Ze" dx
= 2xe* —2e" +¢
So szex dx = x%e” — (erx - ZCx) + ¢

x%e® — 2xe* + 2e* + ¢

Using integration by parts to integrate In x

At first glance, you would think that you cannot integrate In x by parts because
it is not the product of two functions. However, by writing Inx as the product
of 1 and Inx, you can still use this method.

Jlnx dx = fl X Inx dx

You cannot integrate In x,
_ du 1 X
u=Inx = 5— == ¢——— soyoumust makeit u and
dx «x v
not —.
dv _ 1 = v=x dx
dx

. dv _  (.du .
Substituting into J‘ua dx = wv .[v ax dx gives

Jlnxdx =xlnx — Ix X % dx

= xlnx — Il dx

=xlnx—x+¢



Exercise 10.6

e (1) Find J xcos2xdx by using the integration by @®

parts formula,
dv _ . [ du
J.ua dx = wv J.de dx,
with # = x and dv _ cos2x.
1 dx
Evaluate Jll(Zx — 1) e” dx by using the ®
integration by parts formula,

b dy _ b b du
L e dx = [w] — L Y x dx,

withu=2x—land(cil—v=€x.
X

Use integration by parts to integrate the
following functions with respect to x.

i) xe™ i) xln3x

Evaluate the following definite integrals.
1
(i) JO xe “dx
(i) Jo (x + 1)sinxdx
Find J 2x(x — 2)4 dx
(il by using integration by parts

(il by using the substitution u = x — 2.

Figure 10.29 shows the curve y = (2 — x)e ™"

y=@-e’

Y

[0
Figure 10.29

(i) Find the coordinates of the points where
the graph of y = (2 — x)e " cuts the x
and y-axes.

(il Use integration by parts to find the area
of the region between the x-axis, the

y-axis and the graph y = (2 — x)e™". ®

(]  Sketch the graph of y = xsinx from
x =0 to x =m.

(il Find the area of the region bounded by
the curve and the x-axis.

Find the area bounded by the curve y = In3x,
the x-axis and the line x = 1.

(il Use integration by parts to find the area of
the blue region in Figure 10.30.

YA
y=Inx

/

Figure 10.30

1
T

LY

(il Show that the area of the red region can
be written as J.O] e’dy, and find this area in
exact form.

il Add together your answers to (i) and (i)
and explain your answer.

Find the following indefinite integrals.
(i) J.xz sin 2x dx
(ii) J‘xzefx dx

Given the curve y = x’Inx, x > 0

(il find the coordinates of the point where
the curve crosses the x-axis

(il find the exact coordinates of the turning
point of the curve and determine its
nature

liiil sketch the curve

(iv) find the exact area of the region bounded

by the curve, the x-axis and the line x = 2.

Given that | = J.e" sinx dx
(il use integration by parts to show that

I =e'sinx —e cosx — I

(il hence find J‘ex sin x dx.

uoneabaju] g| J21deys
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Integration by parts

Summary exercise

You have now met several different methods of integration, some of which involve substitution. So when you need the
answer to an integral, you have to select the best method, and you often have to decide on an appropriate substitution.

In this exercise there are 30 questions; having studied this chapter, you should be able to do all of them. However, they are in
tandom order and so you will have to make decisions for yourself about the best method and what substitutions fo make (if any).

@ [ dx @ [x-2)(x-3)dx @ [(2x+5)"dx
x2 . 3 1
@ _[xe dx ® Jcosx(l + sinx)” dx ® jm dx
) jxcos3xdx Ix21_4dx ® Ixfzdx
j(x+3)2 dx a j(x3 +4)(x3 —4)dx ® JlnSx dx
Jsecz xtanxdx % ®) J.cosxesm dx

1+ tan” x) dx
J( )

®@ ®

J.sinxcosx dx

x—9)
I(x—3)(x—5)

® O

Jor+ s J(1+ sec”x) @ [2=la
@ [[(sinx +cosx)” + (sinx —cosx)’ Jdx @ [x%™ dx [ein2e g,
@ [l +17 dx [ Inx da @ [IEE
J2ras Jeoss +sina g, [GETS PN

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

> integrate, e, = sin kx, cos kx, and related sums, differences and constant
multiples

> use definite integrals to find the area between two curves
> understand and use integration as the limit of a sum
> carry out simple cases of integration by substitution including:

O finding a suitable substitution that leads to a function that can be
integrated

O understanding it as the inverse process of the chain rule
> carry out simple cases of integration by parts including:
O more than one application of the method
O understanding it as the inverse process of the product rule
> integrate using partial fractions that are linear in the denominator.
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KEY POINTS

b x=b
1 The definite integral J y dx is defined as lim (Zy Sx].
a dx—0 py

(@)
=
2 The area between a curve and the %
y-axis between y = aand y = b is YA o
: b 4 -
given by L xdy: o
b —
=]
~
D
/ F:
a o
=4
/ > o
/ 0 “x =]
Figure 10.31

3 The area between two curves can be found by subtracting the equations of
the curves and integrating between the limits.

4 Many functions can be integrated through knowledge of differentiation, for
example

jex dx = e + ¢
Jsinx dx = —cosx + ¢

jcosx dx =sinx + ¢

J‘%dlen|x|+c =In |kx|

5 Substitution is often used to change a non-standard integral into a standard one.

6 In some cases, integration by substitution is the reverse of the chain rule.
In these cases, the integration can also be done by recognition.

7 One important type of integral that can be done by recognition is those of the
£ (x)
f(x)

j(f,(x)de=ln |E(x)| +¢ =In [RE ()]

form , for which

f(x)
8 Some products may be integrated by parts using the formula

jug—z dx = uv — jvg—z dx.

FUTURE USES

You will use all these integration techniques in Chapter 13.
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- Multiple Choice Questions: Chapters 6 to 10

©O) (1+§) is expanded in a series of ascending powers of x.

Which of the following shows the full set of values for which it is valid?

A

B
C

D

1 1
<<=

1
2

1
=x=<=
\x\z

(@ The solutions to cos 20 + cos® = 0 are the same as the solutions to which of
the following;:

A

B
C
D

2co0s’0 — cosO+1=0
2c0s’0 + cosO+1=0
2c0s’0 — cosO—1=0
2c0s?0 + cosO—1=0

(® Differentiate y*> with respect to x. Which of the following is your answer?

A

B

C

D

2 dy
Y dx

dy
2y
de
dy
dx
5 dy
dx

Y

@ Which of the following substitutions would be suitable for finding

]
A

o O

X
dx?

x—5

w=x

u=—
X

u=x-—>5

u=x+5



PRACTICE QUESTIONS: PURE MATHEMATICS 2

@ () Figure 1 shows the graph of y = %.The two shaded regions have the same area.

0y

0|
Figure 1
Find the value of a. [4 marks]
@ (@ Figure 2 shows two curves. One is y = 4 sin x — 3 cos x and the other is
y = 5sin x.
YA

YN

R 7

|
/ T n 3n
2 2
Figure 2
(i) Identify which curve is which, justifying your answer. [1 mark]
(il Describe precisely the translation that maps f(x) = 4 sin x —3 cos x on
to g(x) = 5 sin x. [4 marks]
® () Write down the first 6 terms of the binomial expansion of (1 —x)72,in
their simplest form, in increasing powers of x. [3 marks]

(il By substituting x = 0.1, show that the decimal expansion
of 1§7 begins 1.23456... . [2 marks]
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Practice questions: Pure mathematics 2

o @ @ Figure 3 shows a triangle OAB inscribed in a circle of radius r, centre O.
M is the midpoint of AB. Angle AOM is « radians.

A

Figure 3

By considering the area of triangle OAB in two different ways, prove that
sin2a = 2sin cosA. [5 marks]

o (® (i) Prove the identity sec’ § + cosec® 6 = +20 [3 marks]
sin
lil Hence or otherwise find all the roots of the equation
sec? 6 + cosec’ @ = 4 in the range 0 < 6 < 2. [3 marks]
(® Figure 4 shows the curve with equation x%y + 2y — 4x = 0.
YA
o e
Figure 4
i)  Show that ﬂ = ﬂ [3 marks]
dx 24+ x°
lil Hence find the coordinates of the maximum point on the curve. [4 marks]
) . x—2 . .
@ ) Write CECEE) as partial fractions. [3 marks]
) . . B x =2
Figure 5 shows the curve with equation y = CEDICEO)
VA
N\
I I \\A Ly
_ 2 o 2 4 x

Figure 5

li) Find the area of the shaded region enclosed by the curve
and the axes. [5 marks]
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Figure 6 shows the curve y = x sin x and the line y = x. At the point P, the
line y = x is a tangent to y = x sin x.

YA
P

o
=
L)
a
=2
a
D
Q
c
D
0
=2
(=}
> =
> T
c

Figure 6
: o
(i) Verify that P is the point with coordinates (g, %) [4 marks] §
-
lil Find the exact value of the area of the shaded region. [5 marks] g
(® () By using your calculator, or otherwise, draw the graph of g
=
= —= + forx = 0. [1 mark] o
5+e N

A particular social media platform defines a ‘regular user’ as someone who
accesses the platform at least once every day. It currently has one million

regular users. It models its future number of regular users, P (measured in
t

-, where ¢ is measured in months.

5+e
lil According to this model, find the value of t when the platform

millions), by the equation P =

is experiencing its fastest rate of growth. [7 marks]

i) Prove that according to this model P never reaches a
value of 7. [3 marks]
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Be sure you put your feet
in the right place, then
stand firm.

Abraham Lincoln
(1809-1865)
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Review: Coordinare geomelry

1 Line segments

For a line segment AB between the points A (x,, y,) and B (x,, y,) then

YA

B (x,, ;)

)

=Y

(o)

Figure R.1

m  the gradient of AB is Y2~ V1

Xy =X

The midpoint of two values
is their mean point.

m  the midpoint is (xl -|2-x2, Vi "2‘ Yz]‘/

m  the distance AB is \/(xz —x)H (= y). Using Pythagoras

Parallel and perpendicular lines

m
ny
Figure R.2
For perpendicular lines, m, = _mi and likewise, m, =

2

The equation of a straight line

theorem.

m,and m1, are
the negative

1 / reciprocals of

_ each other.

The general equation of a straight line with y intercept (0, ¢) and gradient m is

y = mx + c.

The gradient, m, of the line joining (x , y,) and (x, y) is given by

m:)’_)/1

X =X,

=y =y =mx =) ¢

This is a very useful
form of the equation
of a straight line.




Example R.1 The line L, passes through the points A (0,2) and B (4, 10).

(i)  Theline L, is perpendicular to L, and passes through the midpoint of
AB. Find the equation of the line L,. Give your answer in the form
ax + by +c¢=0.

(i)  Find the area of the triangle bounded by the lines L, and L, and the g
X-axis. o
3
Solution S
o
a
M) YA 5’
Ly -
D
Two perpendicular lines B(4, 10) ‘3
will only be at right g
angles in a diagram if you N M Alwa
> ys start by (1]
use the same scale for — drawing a diagram. 5‘
both axes.
Ao, 2)
Ly
c ) D\ X
Figure R.3
: - = Y8 " ¥a o :
Gradient of L, =m, = . — x Gradient is difference in y
B A | coordinates divided by difference
_10-2 in x coordinates. It doesn’t matter
T 4 —(0 ¢ which point you use first, as long as
=2 you are consistent.

The gradient of the line perpendicular to L, is the negative reciprocal
of the gradient of L.

= gradient of L, is 3 4——— Check:2x-1=_1v

2
+ +
Midpoint M of AB = (x/\ 5 X i Ya 5 YB)
_(0+4 2+10)
“\ 2 2
= (2, 6)

: 1
So L, passes through M (2, 6) and has gradient —5.
Therefore its equation is

Y=y = m(x — xl) 4 ltis usually easier to
1 use this form of the

Make sure you give your Y ;(*=2) equation of a straight
answer in the correct = 2y =12 =—x+2 line.

form. In this case the _ : :
question asks for the y S2y+x-14=0 Multiply both sides by
form ax + by + c= 0. 2 to clear the fraction.

241



Line segments

(i) M has coordinates (2, 6) so the vertical height of the triangle is 6.4—|

The base i1s the distance CD.
Use the formula:

From part (i), L
1 C is the point where the line L, | 4rez of a triangle = % x base x height.

has gradient 2 and y
intercept (0, 2).

\ crosses the x-axis.
Line L, has equation y = 2x + 2.

When y=0then 2x = -2 = x = —1.

4 )
Discussion point

D is the point where the line L,, 2y + x — 14 = 0, crosses the x-axis.
Wh =0 th —14 = = 14.
ey X 4=0=x 4 Cis 1 unit to the

Hence the distance CD is 14 + 1 =15. ¢—— leftof O and D is
14 units right of O.

=>» Use a different
method to calculate
the area of the
triangle.

Area of triangle = % X 15 X 6 = 45 square units.

The intersection of two lines

The coordinates of the point of intersection of any two lines (or curves) can be
found by solving their equations simultaneously.

You often need to find where a pair of lines intersect in order to solve problems.

X
___eempierz |

Example R.2 Find the point of intersection of the lines y = 2x — 1 and 2y — 3x = 4.
Solution
2(2x — 1) = 3x =4 4— Substitute y = 2x — 1 into 2y — 3x = 4.
4x —2-3x=4
x=06

y=11 « Substitute x = 6 into either of

the original equations to find y.

The point of intersection is (6, 11).

" (D For each of the following pairs of points A and (® Find the equation of each of the following

B calculate lines.

(a) the gradient of AB i) gradient 2, passing through (0, 3)

(b} the midpoint of AB lil gradient %, passing through (3, 0)

() the exact distance AB. i) gradient —%, passing through (3, -3)
il A(52)and B (3,4) liv) passing through (1, 2) and (=3, 0)
i) A (2,5 and B (4,3) (v)  passing through (=1, 2) and (-3, 3)
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i) A (=5,2) and B (3,—4)
liv] A (=2,5)and B (-4, 3)

Find the gradient of each of the following lines.

il y=3x+5 (i) 2x+y=5
i) 2x+3y=5 (v 2y—-5x—-3=0

Find the coordinates of the point of
intersection of each of the following pairs of
lines.

i)l y=2x—1landy=3x—-4

i) 2x4+3y=5andy=2x+7

i) y=2x=6and2y+x-7=0

liv] 4x—=2y—=5=0and3y—-2x+3=0



Example R.3

The point (3, =5) lies on the line
2x + 3y + k=0, where k is a constant.
Find the value of k.

(il Prove that the points A (1,4),B (5,7) and
C (2,11) form a right-angled triangle.

(il Find the area of the triangle.

(il Prove that the points A (0, 4), B (4, 2),
C (5,—1) and D (-3, 3) form an isosceles
trapezium.

T

In an isosceles trapezium the two

non-parallel sides are equal in length.

(il Find the coordinates of the point where

the diagonals of the trapezium intersect.
The line 3x + 4y = 15 cuts the axes at the points
A and B. Find the distance AB.

The line L has equation kx + 3y + 8 = 0.
The point (2,—4) lies on the line L.

(i)  Find the value of k.

(il  Find the equation of the line
perpendicular to L that passes through the
point on L where x = 5. Give your answer
in the form ax + by + ¢=0.

2 Circles

A and B have coordinates (-5, 1) and

(1, 5) respectively. Find the equation of the
perpendicular bisector of AB.

The line L is parallel to 2x + 5y = 1 and passes
through the point (-1, 2). Find the coordinates

of the points of intersection of L with the axes.

Find the area of the triangle bounded by the

lines 3y =2x+ 3,2y + 3x =15 and 5y + x = 5.

The point A has coordinates (3, —5).The point
B lies on the line y = 2x — 5.The distance AB
is /17. Find the possible coordinates of B.

A and B are the points with coordinates

(-1, 6) and (5, 2) respectively. The line L is the
perpendicular bisector of AB. Find the area of
the triangle bounded by the line L, the y-axis
and the line through AB.

The equation of a circle

The general equation of a circle with centre (a, b) and radius r is

(x—a?’+(y—b?=7r

Complete the square on
the terms involving x ...

Solution

The expanded equation in

Find the centre and radius of the circle x> + y* + 4x — 8y — 5 = 0.

You need to rewrite the equation so it is in the form (x — a)> + (y — b)>* =~

x’+4x+y -8y —-5=0

Example R.3 highlights
some of the important
characteristics of the

equation of a circle. In
particular:

centre (a4, b),
the coefficients of x?
and y* are equal

there is no xy term.

(x+2)° —4+(y—4) —16 —5 = 0 & the square on the

(x+2)°+(y—4) =25

(x—a?+@y-b?=r

... then complete

terms involving .

Comparing this with the general equation for a circle with radius r and

you have a =—2,b =4 and r= 5, so the centre is (-2, 4) and the radius is 5.
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Circles

Circle theorems

The circle theorems illustrated here are often useful when solving problems.

Zan

point.

The tangent to a
circle at a point
is perpendicular
to the radius
through that

N

Figure R.4

The angleina
semicircle is a
right angle.

T

The perpendicular
from the centre of
a circle to a chord
bisects the chord.

Example R.4

To find the equation of

A circle passes through the points (1, 9), (7,9) and (7, 5).

Find
(i)  the coordinates of the centre of the circle
(i)  the equation of the circle.
Solution
@) YA
«—
0 X
Figure R.5
So the centre is at (HT7, ()ZLS) = (4,7).
(i1)

Draw a sketch
to help you.

Use the theorem that the
perpendicular from the
centre of a circle to a chord
bisects the chord.

The radius of a circle is the distance between the centre and any
point on the circumference.

a circle you need the
centre and the square of
the radius.

=3 +2°
=13

= (x =47 +(y -7 =13

P =7 —-47+0© -7




Notice that the word
‘curve’ is sometimes used
to describe a straight
line. So this includes the
intersection of a curve
and a straight line.

yThe intersection of two curves

The same principles apply to finding the intersection of two curves, but it is
only in simple cases that it is possible to solve the equations simultaneously using
algebra (rather than a numerical or graphical method).

Example R.5

Find the coordinates of the points of intersection of the circle

(x =5 + (y+2)° = 16 and the line y = 7 — .

Solution

Substituting y = 7 — x into (x — 5)° + (y + 2)° = 16 gives
(x =57 +(7 —x+2)°=16

=

=

=
=

(x =57+ (9 — x)* =16
= x° —10x + 25+ 81 — 18x + x° = 164 the brackets.
2x* = 28x +90 =0 «——— Simplify.

So x=5and y=2
or x=9and y=-2.

So the coordinates are (5,2) and (9, —2).

Multiply out

x> —14x +45=0

(x =5)(x—9)=0 &——

4

Factorise.

Don’t forget to use

A |

y =7 — xtofindthey
coordinates.

» (1) Find the centre and radius of each of the

tollowing circles.

i (x=3)°+(@—-1)*=25

i (x=3°+(y+1°=5

i) (x+37 +(y+17° =25
(x=1)*+(y+37*=5

(2) Find the equation of the circle with centre

(5, —2) and radius 4.

(@ Find the equation of the circle with centre

(=3, 4) and radius 9.

Give your answer in the form

i tax+y +by+c=0.

() The points A and B have coordinates (-2, 5)

and (4, 7) respectively. AB forms the diameter

of a circle.

(iv)

Find the equation of the circle.

(i)  The equation of a circle, C, is
xP = 8x+y +2y+7=0.
Show that the equation of C
can be written in the form
(x+a)y +(y+b)’ =c
li) Find the centre and radius of the circle.

Find the coordinates of the points of intersection
of the circle (x — 5)° + (y + 2)° = 9 and the
line y = x — 10.

The line y = 2x + 3 intersects the circle

(x + 1) + (y — 2)* = 2 at the points A and B.
The distance AB is av/b where b is an integer.
Find the value of a and the value of b.

Find the coordinates of the points of intersection
of the circle (x + 2)* + (y — 1)* = 15and the
line 2x + y = 2.

Give your answers in surd form.

A1}2W096 3)RUIPI00) MIIADY
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(9 The line y = x + k forms a tangent to the circle

Circles

(x +2)° + (y = 1)> = 50.

Find the possible values of k.

The points P (-2,-1), Q (8,-9) and R (7, 0)
lie on the circumference of a circle, C.

(il Show that PQ forms the diameter of the
circle.

(il  Find the equation of the circle, C.

il Find the exact coordinates of the points
where C crosses the axes.

The points A (3, 6) and B (5, 2) lie on the
circumference of a circle.

YA

AQ3,6)

Figure R.6

i)  Show that the centre of the circle lies on
the line 2y = x + 4.

(il Given that the centre of the circle also lies
on the line y = 3, find the equation of the
circle.

(2 The equation of the circle shown in Figure R.7

is (x — 3)> + (y — 4)° = 20.

Figure R.7
The circle intersects the line y = 6 at the points
A and B.The tangents at A and B meet atT.

Find the perimeter of the quadrilateral ACBT.
Give your answer in the form a+/b where a and
b are integers.

Find the coordinates of the point of
intersection of the circles
x4y —8x+2y+13=0

¥ H(y-27=9

Find also the distance between their centres.



KEY POINTS

1
2

The equation of a straight line is y = mx + c.

When the points A and B have coordinates (x,, y,) and (x,, y,) respectively,
then
m the gradient of AB is REEmDiN
Sty = &)
= the midpoint of AB is(x1 er Y2 1 er y?)
m the distance AB between the two points is \/(x2 —x) + (=)
Two lines are parallel when their gradients are equal.
Two lines are perpendicular when the product of their gradients is —1.
The equation of a straight line may take any of the following forms:
m line parallel to the y-axis: x=a
m line parallel to the x-axis: y=b
m line through the origin with gradient m: y = mx
m line through (0, ¢) with gradient m: y = mx + ¢
m line through (x, y,) with gradient m: y —y, = m(x - x,)
The equation of a circle
m  with centre (0, 0) and radius ris x* + y*=r?
m with centre (g, b) and radius ris (x — a)? + (y — b)>=r*.
Circle theorems
The
4 perpendicular
~ from the
(0] centre of a
circletoa
chord bisects
the chord.
The
angleina
semicircle
is a right .
- — The _tangent toa C|_rcle at
a point is perpendicular
to the radius through
that point.
Figure R.8
To find the points of intersection of two curves (or lines), you solve their

equations simultaneously.
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Problem solving =]k

a Figures 1 and 2 show a male robin and a nest containing a robin’s egg. The egg
has the distinctive shape of many birds’ eggs.

Figure 1 A male robin Figure 2 A robin’s egg

Sally is starting a business reproducing replica eggs made out of wood. She has a
machine that will produce eggs of any shape but first the equation of the desired
shape has to be entered. Sally will then paint the eggs by hand. She wants to
know the equation of a typical egg shape and how it can be adapted to allow for
differences between species.

1 Problem specification and analysis

The problem has been specified but before you can make any progress you
need to know more about the shapes of eggs. The diagrams in Figure 3 show
the outlines of several different egg shapes.

Figure 3

248



Shape A is a sphere and this is the most basic shape. So use the equation of a

circle, centre (0, 0) with radius 1 as a starting point. Spherical eggs are laid by
many animals, for example turtles, but not by birds. So the equation needs to
be adapted; two parameters, denoted here by a and k, are involved.

In shape B the sphere has been made longer and thinner. This is a feature of
many eggs allowing the animal to have a narrower oviduct. It is particularly
pronounced in fast flying birds. The equation of this shape can be obtained
by applying stretches of scale factors a and % in the x and y directions.

In shape C the egg is asymmetrical. This is a feature of almost all birds’ eggs;
it means that if the egg is disturbed, it rolls around in a circle rather than
rolling out of the nesting area. To achieve this transformation the right hand
side of the equation for y is multiplied by a factor of (1 + kx) where kis a
positive number less than 1. Some birds, for example owls and ostriches, have
eggs like this.

In shape D both transformations are applied at the same time. This gives the
common egg shape and for suitable values of the parameters, a and k, a full
range of birds’ egg shapes can be obtained.

Information collection
Notice that you will need a graphical calculator or graphing software.
You are advised to work in three stages.

Start by identifying the equation for shape B.This will involve the parameter
a and you will need to find suitable values to give it to produce a variety of
elongated but symmetrical shapes.

Then go back to the equation for the circle and apply the transformation
needed for shape C.This involves the parameter k and you will need to find
suitable values for it.

Then work with an equation that incorporates both transformations, giving
shape D.

Processing and representation

A good way to present your work is to set up a display of, say, about 12 egg
shapes, stating the different pairs of values for the parameters a and k that you
have used.

You may be able to make this into a poster.

Interpretion

Your display will include the egg shapes for a variety of birds. To complete
the task, match up your shapes with those typical of different species; you can
easily find the information you need online.

Sally will need this information to paint realistic patterns on her eggs for
different bird species.

sbb3 Huinjos wajqold
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Parametric equalions

A mathematician, like
a painter or poet, is a
maker ofpatterns. If =» How could you find an equation for the path that this ride takes its riders on?
his patterns are more Figure 11.1 shows a simplified version of the ride in the picture.
permanent than theirs it (a) ) »
is because they are made turned through
with ideas.

angle 36.
G. H. Hardy (1877-1947)

Fairground rides are scary because the ride follows a complicated path.

4m

9 2m

® >
o
o

At the start

Some time later

Figure 11.1

The rider’s chair is on the end of a rod AP of length 2m which is rotating about A.
The rod OA is 4m long and is itself rotating about O. The gearing of the
mechanism ensures that the rod AP rotates twice as fast relative to OA as the

rod OA does. This is illustrated by the angles marked on Figure 11.1(b), at a time
when OA has rotated through an angle 6.



This example involves
trigonometric functions
so @ is used as the
parameter. Otherwise,
tis often used as a
parameter. You can,

of course, use any
letter you like as the
parameter.

L tecHNoLoey

Find out how to

draw curves given
parametrically on any
graphing software
available to you.
Investigate how a point
moves around the curve
as the value of 6 varies.

Discussion point

=» At what points of the
curve do you think
the ride will be the
scariest? Why?

At this time, the coordinates of the point P, taking O as the origin (Figure 11.2),
are given by

x=4cos + 2cos30
y=4sin0 + 2sin 30

YA
P
2 2sin360
A 360
R
4sind 2cos360
[ >
(0] 4cosf X
Figure 11.2

These two equations are called parametric equations of the curve. They do not
give the relationship between x and y directly in the form y = f(x) but use a third
variable, 6, to do so. This third variable is called the parameter.

To plot the curve, you need to substitute values of # and find the corresponding

values of x and y.

Thus 0=0° = x=4+2=6
y=0+0=0

0=30° = x=4x0.866+0=3464
y=4X05+2x1=4

Point (6,0)

Point (3.46,4)

and so on.

Joining points found in this way reveals the curve to have the shape shown in
Figure 11.3.

0=240°, 300°
9=210° “4 0=330°

Figure 11.3

suonenba s13awedeyg || J23deys
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Graphs from parametric equations

Prior knowledge

You need to be able to
sketch the graph of a
curve (see the review
section in Chapter 4).

1 Graphs from parametric
equations

Parametric equations are very useful in situations such as this, where an
otherwise complicated equation may be expressed more simply in terms of
a parameter. In fact, there are some curves which can be given by parametric
equations but cannot be written as Cartesian equations (in terms of x and

y only).

Example 11.1 is based on a simpler curve.

36

A curve has the parametric equations x = 2f, y = e

(1) Find the coordinates of the points corresponding to t=1,2,3,-1,-2
and —3.

(i)  Plot the points you have found and join them to give the curve.

(1))  Explain what happens as f = 0 and as t — .

Solution Substituting ¢ into x = 2f gives
(1) tl=3l—=2=1] 11213 / the x coordinates ...
X |=6|—4|-2] 246 ... and substituting f into
y | 4] 9]36]36|9 |4 |¢— y= %givesthe y coordinates.

The points required are (=6, 4), (—4,9), (-2, 36), (2,36), (4,9) and (6, 4).

(i)  The curve is shown in Figure 11.4.

9A t=1

20 |-

10

Figure 11.4
(i) Ast— 0, x—> 0and y — . So the y-axis is an asymptote for the curve.

As t— ©, x = ®and y — 0. So the x-axis is an asymptote for the curve.



m A curve has the parametric equations x = %, y = > — £.

(1)  Find the coordinates of the points corresponding to values of ¢ from
—2 to +2 at half-unit intervals.

(1))  Sketch the curve for =2 < ¢ < 2.

(1)  Are there any values of x for which the curve is undefined?

Solution
@ t | -2 |-15 -1 | =05 0 | 05 1 /15
x 4 | 225 1] 025 | 0 | 025 1 |225

y | 6 |—-1.875 0 0.375| 0 |—=0.375| 0 |1.875 6

suonenba sinawelded || Jardey)

@
4L ;
The curve is
symmetrical
2 about the x-axis.
o 4 X
L1 tECHNOLOGY 2r
——
You can use a graphical 4
calculator or graphing
software to sketch x = t%is positive for all
parametric curves e values of f so x is never
but, as with Cartesian less than 0.

curves, you need to be

careful when choosing o .
the range. (i) The curve in Figure 11.5 is undefined for x < 0.

Exercise 11.1

In this exercise you should sketch the curves by hand. Use a graphical calculator or graphing software to check your results.

Figure 11.5

() @ A curve has parametric equations x = 3 cos 6, (B) For each of the following curves
y = 3 sin 6. Use graphing software to sketch (a) copy and complete the table of values
the graph.

(2 A curve has parametric equations x = 2t f * L
y = ¢ . Find the Cartesian coordinates of the —2
point where t = —1 —1.5

(® A curve has the parametric equations -1
x=3t+1,y=2F—t -0.5
(i) Find the coordinates of the point with 0

parameter 05

@ t=1 (® =2 [(J t=-1 1
(il  What is the value of the parameter f at the 5

point (=8, 21)? :

@) A curve has the parametric equations 2

x = t?, y = 3t% Find the coordinates of the
point where
M t=1 ) x=27 (i) y=12.
253
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(i)

(iii)

Graphs from parametric equations

(b)  sketch the curve.

x =2t i) x=1¢2
y==t y==r
x=1>

y=£—t

(6 For each of the following pairs of parametric
equations

(i)

(ii)

(i)

(a) copy and complete the table of values

0 x y
0°
30°
60°
90°
120°
150°
180°
210°
240°
270°
300°
330°
360°

(b) sketch the curve

(c) state the values of x and y for which
the curve is defined.

x = cos20

y =sin’0

x =sin*0
y=1+2sin0
x = 2sin%0
y=3cosf

(@ A curve has the parametric equations
x=1t%y=t"

(i)

(ii)
(iii)

Find the coordinates of the points
corresponding to f = -2 to t =2 at half-
unit intervals.

Sketch the curve for =2 < r < 2.

Why is it not quite accurate to say this
curve has equation y = x??

A curve has the parametric equations
x =2cosech, y=2cotf.

i)  Sketch the curve.

(il For which values of x is the curve
undefined?

For each of the following pairs of parametric
equations

(a) sketch the curve

(b) state the equations of any asymptotes.
3
() x=tan0 i x =117
y = tan20 t
r=1
A curve has the parametric equations
x =¢', y =sint, where t is in radians.
(il Find, to 2 decimal places, the coordinates
of the points corresponding to values of ¢

from —2 to +2 at half—unit intervals.

lil  What can you say about the values of x
for which the curve is defined?

li) Sketch the curve for -2 << t << 2.

liv) Predict how this graph would continue if
all values of ¢ were considered (that is,
t<-2andt>2).

A student is investigating the trajectory of a

golf ball being hit over level ground. At first

she ignores air resistance, and this leads her to

an initial model given by x = 40¢, y = 30¢ — 57,

where x and y are the horizontal and vertical

distances in metres from where the ball is hit,
and ¢ is the time in seconds.

(il Plot the trajectory on graph paper for
t=0,1,2,...,until the ball hits the
ground again.

(il  How far does the ball travel horizontally
before bouncing, according to this model?

The student then decides to make an

allowance for air resistance to the horizontal

motion and proposes the model x = 40t — ¢,

y =30t — 5¢%

il Plot the trajectory according to this model
using the same axes as in part [i).

(v By how much does this model reduce the
horizontal distance the ball travels before
bouncing?



(2 The path traced out by a marked point on the () Find the coordinates of the points
rim of a wheel of radius a when the wheel is corresponding to values of € from 0 to 67

rolled along a flat surface is called a cycloid. at intervals of %
(il  Sketch the curve for 0 < 6 < 6m.
A P/A=arcP A il What do you notice about the curve?

(3 The curve with parametric equations
x=acos’ 0
y = asin®6
is called an astroid.
(il Sketch the curve.

(il  On the same diagram sketch the curve

> x =acos"f
P x .
0 y = asin" 6
Figure 11.6 forn=1,2,3,4,5,6.
‘What happens if n = 0?
Figure 11.6 shows the wheel in its initial position, (il What can you say regarding the shape and
when the lowest point on the rim is P, and position of the curve when n = 7 and

when it has rotated through an angle 0 (radians).

In this position, the point P has moved to P,

with parametric equations given by
x=0OA—-PB=a6—asinb
y=AC—-BC =a-acos#.

(a) niseven
(b) nis odd?

2 Finding the equation by
Prior knowledge eliminating the parameter

You need to be able to
solve simultaneous
equations - see
Review: Algebra (2).

For some pairs of parametric equations, it is possible to eliminate the parameter
and obtain the Cartesian equation for the curve. This is usually done by
making the parameter the subject of one of the equations, and substituting this

expression into the other.

w Eliminate ¢ from the equations x = ¢* — 2£%, y = %

Solution
Yy = % =t=2y

— Make t the subject of one equation ...

Substituting this in the equation x = * — 2¢? gives

x = (2y)° — 2(2y)? 4— ... then substitute into the other equation.
So x=8y’— 8y

Sometimes it is not straightforward to make the parameter the subject of one
of the equations. In the next example you will see two different methods of
eliminating the parameter.

suonenba sinawelded || Jardey)
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Finding the equation by eliminating the parameter

Example 11.4

The parameter f has

1

The parametric equations of a curve are x = + SY=t—o
Eliminate the parameter by
(1) first finding x + y

(1)  first squaring x and y.

Solution
@) Adding the two equations gives
x+ty=2t or t= x;—y'

Substituting for ¢ in the first equation (it could be either one) gives

been eliminated, but
the equation is not in its
neatest form.

Prior knowledge

You need to be able
to use trigonometric
identities. These are
covered in Chapters 6
and 8.

256

_xty 2
T2 +x+y'

v

Multiplying by 2(x + y) to eliminate the fractions:
2x(x+y)=(x+y)7>+4
= 2x2+2xy=x>+2xy+y>+4
= xi-yi=4

(1))  Squaring gives

1
x2=t+2+ z YA
1
2 2 _ 1
yr=t>=2+ 2 o
Subtracting gives
x2 _ y2 = 4 >
Using graphing s
software to sketch -5 -4 -3 - -1_2 1 3 4 5X
x?— y? =4 gives the
curve shown in -4
Figure 11.7. e

Figure 11.7

Trigonometric parametric equations

When trigonometric functions are used in parametric equations, you can use
trigonometric identities to help you eliminate the parameter.

The next examples illustrate this.



m Eliminate 0 from x =4 cos6, y = 3sinf.

Solution
The identity which connects cos6 and sin @ is
cos’0 +sin’f =1 @

x=4cos = cosl =

y=3sinf = sinf =

Substituting these in (D) gives

5 This looks similar to the equation of a

suonenba sinawelded || Jardey)

2
x Yy _ circle, x>+ 2= 1.
(&) +(4) =1.
This is usually written as This curve is
5 5 y A |called an ellipse.
A A 3]
. . . 16 * 9
Discussion point
i To find where the curve crosses the axes,
=» Whattransformations bsti i x = 0 and th — 0
map the unit circle substitute in x = 0 and then y = 0: — 5 g

When y=0,x” = 16 = x = +4.
Whenx=0,y> =9 = y=13.

x2+ y2=1 on to this
ellipse?

The curve is shown in Figure 11.8.
Figure 11.8

The double angle formulae giving cos20 in terms of either sinf or cos@ are also
useful when converting from parametric to Cartesian equations. Remember:

cos20 =1 —2sin?0 and cos20 = 2cos*6 —1.

Example 11.6 Eliminate 6 from y = cos20, x =sin + 2.

/Discussion point

Use graphing software
to sketch these curves.

(i) y=cos26, cos26 =1 — 2sin?6.
x=sinf+2

i) y=1—=2(x—2)?

=» Why are they not

exactly the same?
§ The parametric equation of a circle

The circle with centre (0, 0)

Solution

The relationship between cos26 and sin 0 is

Now x — 2 =sinf

SO y=1-2(x—2)>~

Prior knowledge

You need to know the
Cartesian equation of x* +y? = 16.
a circle - see Review:
Coordinate geometry.

The circle with centre (0, 0) and radius 4 units has the equation
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Finding the equation by eliminating the parameter

b

=» How would your
answers to
Activity 11.1 change
if the parametric
equations described
the position of an
object at time ¢?

iscussion points

What happens when

tis replaced by 2¢?

O Aciiviey 111
showed that the
parametric equations
for a curve are not
unique and also that
the shape of the curve
depends on the range
of values chosen for t.

N

Alternatively, using the triangle OAB and
the angle 6 in Figure 11.9, you can write

the equations A
x=4cosf 4
y=4sinf. 4sinf

0

Generalising, a circle with centre
(0, 0) and radius r has the parametric

Y
/4

4! 4cos0 B 4
-4

equations
x=rcosf
y=rsin6. Figure 11.9

<

The general point P has coordinates
(@ + rcos@, b + rsinf).

The circle with centre (a, b)

Translating the centre of the circle to
the point (a, b) gives the circle in
Figure 11.10 with the parametric
equations

x=a+rcosf

y=">b+rsin6.

Figure 11.10

Converting from a Cartesian equation to
parametric equations

P

ACTIVITY 111

(i) Match together the parametric equations that describe the same curve.

x =2+ 5sint x =5cost x =2+ 5cos2t
y=3+5cost y=>5sint y =23+ 5sin2¢
x = 5cos2t x=23+5sint x=2+5cost
y = 5sin2¢ y=2+5cost y=3+5cost
x=3+5cos%t x=2+55in%t x=5cos%t
y=2+5sinit y=3+5sin k¢ y=>5sin4t
x =2+ 5sint x =2+ 5cost x=2—5cost
y=23+5sint y=3+5sint y=3—>5sint
(ii) For each set of parametric equations you found in part (i], investigate the
curve for
(a) Osts% b) 0<t<n ) 0<t<2n

What effect does changing the interval for the parameter have on the curve?




Example 11.7

(1) Find parametric equations to describe the curve y =

1 < x < 4 when

@ x=t (b

X =c.

= for
14+ x°

(i)  Explain why you can’t use (b) to describe the curve for all values of x.

Solution
GV

Substituting x = t into y = —=— gives y = T 2
t

6 A
Use graphing software
to sketch the following

curves.

iscussion point

| :t’ =
(i) x=ty i

Since x = tand 1 < x < 4 then ¢ is also between 1 and 4, so the

parametric equations are

x=t Y 5 forl st < 4.

T 1+t

If you use a value of ¢
2 — | outside of this range

you will get a different
section of the curve.

gives

(b) Substitut;ng x=c¢ ir;to y=17
Y= z = 2t
1+ (e’) 1+e

Since x = e then ¢ = lnx.

When x=1thent=1n1=0.

Make f the subject so you
can find the values of the
parameter corresponding

to0) = x < 4.
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; When x = 4 then t = 1n4.
1+ e

=» What do you notice? x=¢, y= % for0 <t < In4.
1+e
@)  Since f=Inx the parameter is only defined for x > 0.

Exercise 11.2

(D Match together these Cartesian and parametric

(i) x=¢,y = . .
So the parametric equations are

(@ Find parametric equations to describe the line

equations. y=5—2xfor 0 < x < 4 when
xy =9 X = 2t i) x=2t i) x=u-—1
y=1-¢ @) A circle has equation
x=1—t¢ (x =32+ (y+1)>=16.
y=1=~ x = 3t Find parametric equations to describe the
y= 3 circle given that
x=2t2 ‘ il x=3+4cost.
= 61
! x—l i) x=23—4sint.
xy =3 _ ?it (5 Find the Cartesian equation of each of these
; curves from question 4 in Exercise 11.1. Write
4y = 4= = 12x down_ the. valufzs of x and y for which your
equation is valid.
y=(1-x)° il x=cos26 (i) x=sin%6
y =sin’0 y=1+42sinf
(2 Find the Cartesian equation of each of these i) x=2sin%0
curves from question 3 in Exercise 11.1. y=23cosf
) x=2t i) x=1¢2 i) x=12
y=1t y=1t y=1t>—t
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Finding the equation by eliminating the parameter

Sketch the circles given by the following
equations. Write down the Cartesian equation
of each curve.

il x=>5cosf
y=>5sin6

i) x=23cosf
y=3sinf

li) x=4+3cosf
y=1+3sinb

liv x=2cosf —1
y=3+2sinf

()  Sketch both of these curves on the same
axes.
(a) x=ty= %

(b) x=4t,y=%

(il  Find the Cartesian equation of each curve.

(il Comment on the relationship between
them.

Figure 11.11 shows the graph of
y=2x+1.

YA

<Y

0}
Figure 11.11

() Show that the point A (3, 7) lies on
y=2x+1.

(il Write down
(a)  the position vector of A

() a vector in the same direction as the
line.

A point P (x, y) lies on y = 2x + 1 at a distance
tfrom A (3,7).

(i) Find the position vector of P in terms of t.

(v Hence write down the parametric
equations of the line. Use ¢ as the
parameter.

®

A curve has parametric equations
x=(+1)72y=t—1.
(il Sketch the curve for 4 < ¢ < 4.

lil  State the equation of the line of symmetry
of the curve.

liil By eliminating the parameter, find the
Cartesian equation of the curve.

Find the Cartesian equation of each of these
curves from questions 6 and 7 in Exercise 11.1.

i) x=2cosecl (i) x=tan6

y=2cotf y = tan20

Figure 11.12 shows the circle with equation
(x —4)° + (y — 6)* = 25.

C i1s the centre of the circle and CP is a radius
of the circle which is parallel to the x-axis.

A is a variable point on the circle and ¢ is the
angle shown.

YA

=Y

(@)

Figure 11.12

(i)  Give the coordinates of C and P.

(il  Using t as the parameter, find the equation
of the circle in parametric form.

The point X has parameter f = % and

the point Y has parameter ¢ = o1

c
(il (a)  Find, in exact form, the coordinates

of X and the length of XY.

(b)  Does XY form a diameter of the
circle?



3 Parametric differentiation

You need to understand

the chain rule (covered To differentiate a function which is defined in terms of a parameter f, you need
in Chapter 5) and to to use the chain rule:
be able to differentiate
a variety of functions j—g}: = % X % 9
including those . %
involving trigonometric Since o
functions (covered in dr 1 -
Chapter 9). You also dx ~ dx -
need to be able to find dr )
the equation of the it follows that ﬂ
tangent or normal to a o
curve (see the review d ﬂ g
2 H ~
section in Chapter 5). % = % provided that % £0. E
dr (1)
2
c
o
A curve has the parametric equations x = t%, y = 2t. gl
"

(1) Find % in terms of the parameter f.
X

(i)  Find the equation of the tangent to the curve at the general point (¢7, 21).
(1)) Find the equation of the tangent at the point where ¢ = 3.

(iv)  Eliminate the parameter to find the Cartesian equation of the curve.
Hence sketch the curve and the tangent at the point where ¢t = 3.

Solution
. dx
— 42 v
@) x=t" = =2t
_ dy _
y=2= g =2

de ~ dx 2t f

dt
(i)  Using y — y, = m(x — x,) and taking the point (x,, y,) as (t*, 2¢), the
equation of the tangent at the point (2, 21) is

y—2t=%(x— t?)
= ty—2tP=x-12
= x—ty+t*=0.
(1)  Substituting ¢ = 3 into this equation gives the equation of the tangent
at the point where t = 3.
The tangent is x — 3y + 9 = 0.
(iv)  Eliminating ¢ from x = ¢, y = 2t gives
2
x = (%) or y’ = 4x.

This is a parabola with the x-axis as its line of symmetry.
The point where ¢ = 3 has coordinates (9, 6).
The tangent x — 3y + 9 = 0 crosses the axes at (0, 3) and (=9,0). 5
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- Parametric differentiation

The curve is shown in Figure 11.13.

Y (9, 6
2
3
L >
—q [2) q X
-6

Figure 11.13

Example 11.9 A curve has parametric equations x = 4 cos6, y = 3sinf.

(1) Find g—z at the point with parameter 6.

(i)  Find the equation of the normal at the general point (4 cos6, 3sin0).

(1) Find the equation of the normal at the point where 6 = %

Solution
i =4cos0 dx _ 4sin 6
(1) x=4cosh = 75 = —4sin

d
y=3sinf = d_g =3cosf

dy
ﬂ _df 3cosh

dx = dx ~ —4sin6

_ _Z’élorfg ¢—— This is the same as —%cotO.

(1)  The tangent and normal are perpendicular, so the gradient of the

normal is Find the negative reciprocal.
=1 cao- o 4sinf _ 4
& which i1s 3cosh — 3 tan@.
dx
Using y — y, = m(x — x,)
and (x,,y,) as The equation of the normal at the point (4 cos, 3sin6) is
(4cosB, 3sin6). T , 4
y — 3sinf = 3tan0(x — 4cosf)
= 3y —9sinf = 4xtanf — 16tan6 cosb tanfcosf = smg cosf
. AV cos
= 3y —9sinf = 4xtanf — 16sin6 = sin®
= 3y = 4xtanf — 7sin6

(i)  Substitute 6 = g into 3y = 4xtanf — 7sin6:

NG

By =4xx1-7-5 Remember tan - = 1

e
2

|

~

Multiply both sides by 2: . sin% -
6y = 8x — 742,
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Turning points

When the equation of a curve is given parametrically, you can distinguish
dy
dx’

between turning points by considering the sign of

Example 11.10 The path of a projectile at time ¢ seconds is modelled by the parametric
equations
x = 204/3¢
y = 20t — 5¢°

where x and y are measured in metres.

Find the maximum height, y metres, reached by the projectile and justify that
this height is 2 maximum.

Solution
x = 2043t :%=20\/§
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y = 20t — 5¢* :ﬂ=20—10t

dt
dy
dy _ dr _ 20-10¢

dx ~dx 2043
dt

0 You must be Turni . h dy 0
careful to ensure that Hrnng ponts occur when .- =
you take points which so 20-10t=0=t= 2.
are to the l‘eft anq right Ati=2 x =203 x2 = 403
of the turning point, ,
i.e. have x coordinates y=20X2-5x2"=20.
smaller and larger than To justify that this is a maximum you need to look at the sign of % either
those at the turning side of x = 40/3 = 69.3. *
point. These will not d
necessarily be points Att=19: x=658 (to the left); % = (.0288... (positive). 2
+ -
whose parameters are ; / \
smaller and larger than Att=21: x=72.7 (to the right); d—Y =—0.0288... (negative).
those at the turning *
point. Therefore the maximum height of the projectile is 20 metres at t = 2 seconds.
Exercise 11.3
(1) The equation of the tangent to a curve is (® A curve has the parametric equations
y — 4tx + 8 = 0. What is the equation at the x=(t+ 1) y=(t— 1) Find
. _1
point where ¢ = E? N dx N dy o dy
(2 For each of the following curves, find dr dr dx
(a) dx dy dy il (a) the coordinates of the point where
a _ 4 —£
dt T S t=3
i x=3¢2 (i) x=4r-1 (b)  the gradient of the curve at t =3
y=2¢ y=t (c)  the equation of the tangent at t = 3.
i) x=t+ %
—i-1
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Parametric differentiation

@) For each of the following curves, find dy in

dx

terms of the parameter.

() x=6-—cosf il x=3cosf
y=0+sin0 y=2sin0
lii) x=0sin6 + cosb
y=0cos0 —sinf

A curve has the parametric equations
t t

A DA Gl s

d
() (2 Find d_o): in terms of the parameter t.
d
(b)  Find d_Y when t=2.
X

(il (a)  Find the Cartesian equation of the
curve.

(b)  Find ﬂ in terms of x.

dx
il Show that both of your expressions for the
gradient have the same value at the point
where t = 2.

A ball is thrown from the top of a tower.
The trajectory of the ball at time  seconds is
modelled by the parametric equations

x = 20t, y = 50 + 20t — 5¢°

where x and y are measured in metres.

() Find the position of the ball when
t= 0.5 seconds.

(il Find the maximum height, y metres,

reached by the ball.

lii) At what time does the ball land? How far
from the base of the tower does the ball land?

(iv) Ilustrate the trajectory of the ball on a graph.
Figure 11.14 shows part of the curve with the

parametric equations y
_ 3t
X = 3
1+t
3t2 (6] X
r= 1+ ¢ Figure 11.14

() Find dy in terms of the parameter f.

dx

li) Find the exact coordinates of the
maximum point of the curve.

i) The curve intersects the line y = x at the
origin and at point P.
Find the coordinates of P and the distance
OP. What is the significance of the point P?

©

L Ps L)

A curve has the parametric equations
x=e+1,y=¢€

.o, dy .
() Find e 10 terms of the parameter f.

(il Find the equation of the tangent at the
point where

&) t=0 (b) t=1.
For each of the following curves

(a) find the turning points of the curve
and distinguish between them

(b) draw the graph of the curve.

i) x=8t+1
y=4t>-3

i) x = 3t
rEIe

A curve has the parametric equations
x =tan6, y =tan260. Find

dy

: _n

(i)  the value of Ix when 6 = G

(il the equation of the tangent to the curve at
the point where 6 = %

i) the equation of the normal to the curve at
the point where 6 = %

A curve has the parametric equations

x=t2,y=1—%fort>O.Find

(il the coordinates of the point P where the
curve cuts the x-axis

(il the gradient of the curve at this point

(i) the equation of the tangent to the curve at P

liv) the coordinates of the point where the
tangent cuts the y-axis.

A curve has the parametric equations

x = at?, y = 2at, where a is constant. Find

(il the equation of the tangent to the curve at
the point with parameter ¢

(il the equation of the normal to the curve at
the point with parameter ¢

il the coordinates of the points where the
normal cuts the x and y axes.

A curve has the parametric equations
x =cosl, y=cos20.
() Show that dy _ 4x.

dx

(il Find the coordinates of the stationary point
and identify its nature.
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The parametric equations of a curve are

x = at, y = =, where a and b are constant.
Find in terms of a4, b and ¢

o dy

[I] a

(il  the equation of the tangent to the curve at

the general point (at,%)

il the coordinates of the points X and Y
where the tangent cuts the x and y axes.

(iv) Show that the area of triangle OXY is
constant, where O is the origin.

A curve has parametric equations

x=0,y=©*-1)>

(il Prove algebraically that no point on the
curve is below the x-axis.

(il Find the coordinates of the points where the
curve touches the x-axis.

(i) Investigate the behaviour of the curve
where it crosses the y-axis.

liv) Sketch the curve.

A particle P moves in a plane so that
at time ¢ its coordinates are given by
x =4cost, y=3sint. Find

dy .
i <Lin terms of ¢

dx
(il the equation of the tangent to its path at

time ¢

L Ps 1O

il the values of t for which the particle is
travelling parallel to the line x + y = 0.

A circle has parametric equations
x=3+2cosf, y=3+ 2sin6.

()  Find the equation of the tangent at the
point with parameter 6.

(il Show that this tangent will pass through the

origin provided that sin0 + cos@ = —%.
il By writing sin@ + cos0 in the form
Rsin (0 + a), solve the equation

sinf + cos 0 :_% for 0 < 0 < 2m.

liv) Ilustrate the circle and tangents on a
sketch, showing clearly the values of 6
which you found in part iii.

The parametric equations of the circle with

centre (2, 5) and radius 3 units are

x=2+3cosf,y=>5+ 3sinf.
() Find the gradient of the circle at the point
with parameter 0.

(il Find the equation of the normal to the
circle at this point.

liil Show that the normal at any point on the
circle passes through the centre.

This is an alternative proof of the result
‘the tangent and radius are perpendicular’.

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

> understand and use the parametric equations of curves

» convert between Cartesian and parametric forms

> use parametric equations for modelling in a variety of contexts

> differentiate simple functions and relations defined parametrically, for first

derivative only

\/

use trigonometric functions to solve kinematics problems in context.

KEY POINTS

1

In parametric equations the relationship

between two variables is expressed by writing
both of them in terms of a third variable or
parameter.

To draw a graph from parametric equations, plot
the points on the curve given by different values of
the parameter.

Eliminating the parameter gives the Cartesian
equation of the curve.

4 The parametric equations of circles:
m centre (0,0) and radius ¥ x =rcos6,

y =rsin0
m centre (a, b) and radius ¥  x =a+ rcos#,
y=>b+rsinf
dy
dy _ dr - dx
I dx provided that o #0.
dt

suonenba s13awedeyg || J23deys
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Veclors

I can’t change the

direction of the wind, =» Isit possible to sail faster than the wind? How?
but | can adjust my sails

to always reach my 1 Ve Ct ors

destination.
Jimmy Dean (1928-2010) A.q.uantity which h'as size (magnitude) only is called a scalar. The mass of the
sailing boat (80kg) is an example of a scalar.

A quantity which has both size (magnitude) and direction is called a vector.
The velocity of the sailing boat is an example of a vector, as it has size
(e.g. 8 knots = 15kmh™") and direction (e.g. south-east, or on a course of 135°).

If the boat is out at sea, you might also want to include a component in the vertical
direction to describe it rising and falling in the swell. In that case, you would need
a three-dimensional vector. This chapter shows how you can use vectors in three
dimensions.

Notation

You can use an arrow to represent a vector:

Vectors have
= the length of the arrow represents the magnitude of the vector <« magnitude (size)

m the direction is the angle made with the positive x-axis. 4—| and direction.
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A two-dimensional vector can be represented in magnitude—direction form
(Figure 12.1) or in component form.

The vector is (5, 36.9°)

iandj are unit vectors in magnitude-direction
parallel to the x and form.
y-axes. —

Figure 12.1

Using trigonometry,
5c0s36.9° = 4
55in36.9° = 3.

4
So (5,36.9°) = 4i + 3j or [3]4— The vector is now in component form.

In general, for all values of 6:

rcosf
rsin®

(r,0) = [ ] = (rcosB)i + (rsinf)j.

Equal vectors and parallel vectors

In textbooks, a vector may be printed in bold, for example a or OA, or with an
arrow above it, OA.

When you write a vector by hand, it is E}ual to underline it, for example 4 or
OA, or to put an arrow above it, as in OA.

Equal vectors have the same magnitude and direction — the actual location of the
vector doesn’t matter. Both the red lines in Figure 12.2 represent the vector a.

b

Two vectors can be
a a equal even if they have
different locations.

\ C
b and c are not equal vectors as

they have opposite directions.
=—c.

Figure 12.2

SJ10)29A Z| 49)dey)
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Vectors

The negative of a vector has the same magnitude but the opposite direction.

You can multiply a vector by a scalar to form a parallel vector: the vectors a
and b are parallel when a = kb for some scalar (number) k.

a
/ /
2a has the same direction

—a
/ as the vector a but twice
4— the magnitude.
2a

Figure 12.3

These vectors
are all parallel.

Working with vectors

Points and position vectors

In two dimensions In three dimensions
A point has two coordinates, usually called x and y. A point has three coordinates, usually called x, y
and z.
P is the point 2
YA (4’ 3) A
4 . .
2 Q is the point
P 3, 4, 1).

3_ __________________
i 17/
2 E ! . O - I L 5

1 1
32 ~~\2‘{)3 Ay

1+ E 2 -1

Y
=

—
NS}
w
N -

j ijandkare
k / perpendicular
to each other.
i >
/
Figure 12.4 i

The position vector of point P in Figure 12.4, (ﬁ)),

4 Figure 12.5
is or 4i + 3j. A position vector is in a fixed The position vector of point Q in Figure 12.5, OQ,
place — it always starts at the
origin. 3

is|4|or3i+4j+k € k is the unit vector
1 parallel to the z axis.

Magnitude (or length) of a vector
You can use Pythagoras’ theorem to find the magnitude (sometimes called the

modulus) of a vector.

In two dimensions In three dimensions
|OF| = V4 + 3° |0Q| = V3* +4* +71°
=25 l =~26 || |are modulus signs.

=5 You say, ‘mod OQ'.
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Direction of a vector

In two dimensions In three dimensions
You can use trigonometry to find It 1s hard to define the direction of a

the direction of a vector in two vector in three dimensions so vectors
dimensions. are left in component form.

a=4i+3j

Figure 12.6

For the two-dimensional vector a in
Figure 12.6,

SJ10)29A Z| 49)dey)

tanf = %
So this vector is (5, 36.9°) .
- see page 267. — = 6 = 36.9° to the i direction.

Vector arithmetic

The resultant of two or more vectors is found by adding those vectors together.
You can add two vectors by adding the components.

You can also multiply a vector by a scalar (a number)

In two dimensions In three dimensions

For a=2i-3j and b=-i+2j, 2

For p = 0] and q=

&~ o o=

The resultant of a and b D= ,(21 _ 3) + (i +2) -1
isi-j. N
a—b=2i-3j—(-i+2j) 2 1
=2i-3j+i-2j R N .
q . -1 4
=3i-5 You could
You cpulc_i use column / 1=l 5 3 Use 1_] k
notation instead. 2
= 0l+| 6 notation
instead.
-1 12
5
=6
11

Unit vectors
A unit vector has magnitude 1.

To find the unit vector in the same direction as a given vector, divide that vector
by its magnitude.

i,jandkare
unit vectors

In two dimensions In three dimensions as they have
For a=2i-3j For q=1i+2j+4j magnitude 1.
The unit vector in the _ [»2 a2y _ ﬁ _
direction of a vector a is [ = V27 +(=3) V13 |q| = V1P +2° + 47 =21 J
denoted by &. A~ & g 3 . .. 1 . 2 . 4
—» a = —7=1-—F= = i+ + k
Ji3' s TN Y T
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Vectors

The vector of a line joining two points

g AB =-OA + OB

= OB - OA

(6]
Figure 12.7

In two dimensions In three dimensions

— 1 For OA =i-3j+2k
For OA = -
= and OB = 4i — j+ 4k
o AB = (4i — j+4k) - (i — 3j + 2k
and OB = ( J ) ( J )
- =3i+2j+2k
AB s ! 1\ You could You could
-1 -3 usei, j, k use cglumn
3 notation notation
:[ ] instead. instead.
2

- ~
Discussion point

=» Give some examples
of vector quantities
you meet in
mechanics.

W

Using vectors in mechanics

In mechanics, it is often useful to add vectors together. The sum of two or more
vectors 1s called the resultant.

The resultant of two

4 vectors is found by
— b :
L adding them together.
a p
)'/@+b
] resultant
Figure 12.8

For example, if Peter walks 2 km ecast and 4 km north followed by 5km east and
1km south his overall displacement in kilometres is

UG

You can also use vectors to represent the forces acting on an object. The resultant
of the forces is the single force that has the same effect as all the forces acting on
the object. When the resultant force is zero, the object is in equilibrium.

The effects of all the individual forces cancel each other out.
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m The unit vectors 1, j and k act in the directions shown in Figure 12.9.

Figure 12.9
Forces p and q are given, in newtons, by p = 41 — 6j — 7k and q = 61 — 9j + 2k.

(1) Find the resultant force, p + q, and show that it is parallel to 2i — 3j — k.

(1)) A particle is in equilibrium under the forces 3p, aq and bk.
Show that a =—2 and find the value of b.

SJ10)29A Z| 49)dey)

Solution
You might find it easier
to work with column 4 6 10
vectors. Y i) p+q= —6 |+|-9 |=|-15
=7 2 -5
10 2 10 2
—15 | and |3 | are parallel if | =15 |= A|=3 | for some scalar A.
-5 -1 -5 —1

Equating the i components gives

10 =24 and so A = 5.

Use the other two components to check this:
5x(3)=-15
5x(l)=-5

10 2
Since |15 |= 5 X |3 | then the vectors are parallel.
-5 =il
(1) ‘In equilibrium’ means the resultant force is zero, so
4 6 0 0
3|—6 |+a|-9[+b/0(=]|0
=7 2 1 0
12 6a 0 0
= =18 [+|-9a |+|0|=10
—21 2a b 0
Read across the top line So 12+ 6a=0 = a=—2 4— .. and then the middle line.
of both the vectors ...
and —18—=9a=0 = a=-2 as required.
SERUIS U B | g Tofindb: -21+2x(-2)+b=0 = b=25.

find b.
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Vectors

Exercise 12.1

() (O Write each vector in Figure 12.10 in terms

of the unit vectors 1 and j.

Figure 12.10

(2 Figure 12.11 shows several vectors.

>
b
e
P
e d
e &
N
N
Figure 12.11

()  Write each of these vectors in terms
of the vector a.
Which vector cannot be written in
terms of a?

(il Draw diagrams to show each of the

tollowing.
(&) a+f (b) a—f
) 2c+f d a+f+c

(3 Write each of the following vectors in
magnitude—direction form.

o 12 .o
(M 51+125 (i [5] (i) 51— 12j

w |2 w2
I\ 12 \% _5

(4) Find the magnitude of each of the
following vectors.

(M 3j+4k (i) 4i+2j+k
2 3

(i) |0 (iv) | 2
1 -1

(B) The vectors a, b and c are given by
a=3i—-k, b=i-2j+3k, c=-3i—j.
Find, in component form, each of the
following vectors.

()l a+b+c il b—a
il b+c (v 2a+b—3c
v c¢—2@-=b) i 3@—-b)+2(b+c)
® 1) Show that %i—%j+%k is a unit
vector.

(il Find unit vectors in the direction of
@) 2i—6j+3k b i+j+k
(@ Match together the parallel vectors.

6
a=|-2 b=i+4j+9
4
1
c=|2 d=3i-j+2k
3
3 -3
e=|—-1 f=|1
2 =2
—0.2
g=-91+3j- 6k h=|-04
—-0.6



X
Given that the vectors |—6 | and

4
-1
y | are parallel, find the value of x
—2

and the value of y.
(9 The vectors r and s are defined as
r=ai+(a+b)j and
s = (6 —b)i—(2a+3)j.
Given that r = s, find the values of a and b.

The force p, given in newtons,

—4i + 2j + k(21 — 3j) acts in direction 2i — 5j.
Find the value of k and the magnitude of p.

(@D The position vectors of the points A, B and
Carea=i+j—2k, b=06i-3j+k
and ¢ = —-2i + 2j respectively.

()  Find AC, AB and BC.
lil Show that ‘a +b- c‘ is not equal to
[a +[b] = c].

(2 Given forces F,F, and F, where
F =0Ci-jN,E = (3i + 2j)N and
F, = (-2i + 4j)N,
find

(il the resultant of F and F,
i) the resultant of F , F, and F,
(i) the magnitude and direction of F,

liv) the magnitude and direction of
(F,+F).

The resultant of the forces (51 + 7j) N,
(ai — 3j)N and (41 + bj)N is (31 — j)N.
Find the value of a and the value of b.

The following systems of forces act on an
object that is in equilibrium.

Find the value of a and the value of b in 9
each case. ﬁ
il (- j)N, (2i + 3j)N and (ai + bj)N 2
il (4i - 3j)N, (2i — 3j)N and o

(ai + bj)N g
il (1+2j)N, (-i—3j)N and i

(ai + bj)N =

In this question the origin is taken to be
at a harbour and the unit vectors i and j to
have lengths of 1km in the directions east
and north respectively.

A cargo vessel leaves the harbour and its
position vector t hours later is given by

r = 12ti + 16¢j.
A fishing boat is trawling nearby and its
position at time ¢ is given by
r,= (10 = 3ni + (8 + 41)j.
() How far apart are the two boats when
the cargo vessel leaves harbour?
lil How fast is each boat travelling?

(il What happens?

2 Using vectors to solve problems

You can use vectors in two and three dimensions to solve geometry problems.

Figure 12.12 shows triangle AOB. A
C is a point on AB and divides it in the ratio 2 : 3.

Find OC in terms of the vectors a and b.

(¢}

Figure 12.12

273



- Using vectors to solve problems

Imagine going on a )
vector ‘walk’ - walking Solution

fromOto Cisthe same  ———&F= _ Gx L A¢ Since C divides AB in the
as walking from O to A OC = OA + AC

= pwm ratio2:3,Cis%ofthe
and then from A to C. = 0OA+ £2AB
5 way along AB from A.

OA=a and AB=b-a

SO
OC=a+ %(b —a)
— 21, _ 2
=a-+ gb 5 a
_3 2
m Relative to an origin O, the position vectors of the points A, B and C are
given by
—2 1 13
OA=| 3|, OB=| 9| and OC=| 5]|.
-2 10 9

Use vectors to prove that angle ABC is 90°.

Solution
If angle ABC is 90° then triangle ABC is right-angled
Pythagoras’ theorem. ——p < |FB‘2 I | BC = ‘KZ‘Z
1 -2 3
AB=OB-OA=| 9|—| 3|=]| 6
10 —2 12

= |AB[ =3 +6° +12° = 189

13 1 12
9 10 =1l

13) (-2) (15
AC=0C-0OA=|5|-| 3|=| 2
9] |=2) lu

- A = [AC| =15 +2° +11> = 350

Discussion point

Find the position vector ‘Er v ‘ ﬁ:r = 189 + 161

of a fourth point D such = 350

that ABCD forms a — 2

parallelogram. = ‘ AC|
That 1s,

=» How many different R b s
answers are there? | AB| + ‘ BC| = ‘ AC|

so triangle ABC is right-angled and hence angle ABC is 90°, as required.
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Exercise 12.2

() @ (i} ABCD in Figure 12.13 is a rectangle.

A B
) Y
D C

Figure 12.13

Show that AB + BC + CD + DA = 0.
(il  Does the same result hold for any
quadrilateral? Justify your answer.

(@ In the regular hexagon in Figure 12.14,
OA =a,0B=band OC =c.

B C
b
A aL ) D
F E
Figure 12.14

(il Express the following vectors in terms
of a,b and c.

) EB () AC (] AE (4 ED
(i) Prove thata+c—b=0.
@ In the parallelogram in Figure 12.15,
OA =a,OC = c and M is the midpoint
of AB.

M
A PY B

(0}

e
a

Figure 12.15

(il Express the following vectors in terms
of aand c.
) CB b OB () AC (@) CA
) BO 1 AM [d OM () MC
(i) P is the midpoint of OB and Q is the
midpoint of AC.

Find OP and @.What theorem does
your result prove?

@ I_n_ghe cuboidi_nFigure 12.16, OA = p
OE =q and OG =r.

B C

o
M ]

A o
D =
(]
E =
—
PA g F o
<
D
(0] r G (2]
~
o
Figure 12.16 "

(il Express the following vectors in terms
of p,qand r.
) GE ) CF [ OB
@ OD () OC

(il The point M divides AD in the ratio
3:2.
Find OM in terms of p, q and r.

il Use vectors to prove that OC and BG
bisect each other.

(5) A quadrilateral has vertices A, B, C

and D at the points (1, 2,4), (3,5, 9),

(2,9, 15) and (=2, 3, 5) respectively.

Use vectors to find out what type of

quadrilateral ABCD is.

(® Relative to an origin O, the position vectors of
the points A, B and C are given by

2 ) -1
OA=|1,,0B=| 4|/and OC =] 2|
3 3 1

Find the perimeter of triangle ABC.

@ In Figure 12.17, OA = aand OB = b.
OA:OX =OB: OY = 3:2and
OA:0OP=0B:0Q =2:3.

Figure 12.17
(i)  Find P_Q in terms of a and b.

li) Prove that the vectors
AB ,XY and PQ are parallel.

(i) Find PQ : XY.
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- Using vectors to solve problems

Relative to an origin O, the position

vectors of the points A, B, C and D are

given by
3 5
OA=|1|, OB=| 5|,
5 13
8 6
OC=|2|andOD =|-2|.
7 -1

Use vectors to prove that ABCD is a
parallelogram.

Figure 12.18 shows a trapezium where
OA = p,OC = q and AB = 2q.

D and E are the midpoints of AC and OB
respectively.

2q

(6] q C

Figure 12.18

Use vectors to prove that DE = %q.

Relative to an origin O, the position

vectors of the points A, B and C are given

by

—2 0
OA=| 3|, OB=|7
5 3

3

and OC =|8|.

8

i’ Find OD such that ABCD is a
parallelogram with sides AB, BC, CD
and DA.

il Prove that ABCD is, in fact, a rectangle.

il X is the centre of the rectangle
ABCD.
Find OX.

@ In Figure 12.19,0A = a, OB = b,

BD = }a and the point C divides AB in
the ratio 2: 1.

o)

Figure 12.19

Prove that OCD is a straight line and find
the ratio OC:OD.

@ Relative to an origin O, the points P and

Q have position vectors

2 -1
OP=|6| and OQ=| 2|
4 -3
i The point M is such that PM = 3MQ.
Find the vector OM.

(il The point N lies on PQ such that PN:
NQ is 2: 3. Find the vector ON.

(3 Relative to an origin O, the position

vectors of the points P and Q given by
OP =3i+j+4k and

OQ =i+ 4 - 2k.

Find the values of a for which the
magnitude of PQ is 7.

Relative to an origin O, the points A and B

have position vectors a and b.
Prove that when a point C divides AB in

the ratio s:f then

— ¢ s
Oc_s+ta+s+tb

@ Relative to an origin O, the position

vectors of the points A, B, C and D are
given by

1 0
OA=|0| OB=|1

0 0

0 0
OC=|0| and OD=| 0].

1 -1

Is ABCD a quadrilateral? Justify your
answer.



LEARNING OUTCOMES

When you have completed this chapter, you should be able to:
> use vectors in three dimensions
> calculate the magnitude of a vector in three dimensions

> perform the algebraic operations of vector addition and multiplication by
scalars

> understand the geometrical interpretations of vector addition and
multiplication by scalars

> use vectors to solve problems in pure mathematics
> use vectors to solve problems in context such as forces.

KEY POINTS

1 Avector quantity has magnitude and direction.
2 A scalar quantity has magnitude only.
3 Vectors are typeset in bold, a or OA, or in the form OA. .
They are handwritten either in the underlined form a, or as OA.
4 Unit vectors in the x, y and z directions are denoted by i, j and k, respectively.
5 Avector in two dimensions may be specified in
m  magnitude-direction form, as (r, 6)

b

6 Avector in three dimensions is usually written in component form, as
a

a
m component form, as ai + bj or[ J

ai+bj+ckor|b|.
c

7 The resultant of two (or more) vectors is found by the sum of the vectors.
A resultant vector is usually denoted by a double-headed arrow.

8 The position vector OP of a point P is the vector joining the origin, O, to P.
9 The vector ABisb - a, where a and b are the position vectors of A and B.
10 The length (or modulus or magnitude) of the vector r is written as ror as |r|

r =di+bj+ck | =V +b+¢

11 A unit vector in the same directionasr = ai + bj is
a

. b .
+ .
\/c12+b21 \/a2+b2J

OEER

FUTURE USES

m  You will use vectors to represent displacement, velocity and acceleration in
Chapter 18.

m  You will use vectors to represent force in Chapter 19.

m  If you study Further Mathematics, you will learn about how vectors can be
used to solve problems involving lines and planes.

SJ10)29A Z| 49)dey)
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Differenfial equafions

The greater our
knowledge increases,
the more our ignorance
unfolds.

John F. Kennedy (1917-1963)

=> How long do you have to wait for a typical cup of coffee to be drinkable?
=»> How long does it take to go cold?
= What do the words ‘drinkable” and ‘cold’” mean in this context?

Newton’s law of cooling states that A
the rate of change of the temperature
of an object is proportional to the
difference between the object’s
temperature and the temperature of
its surroundings.

This leads to the equation

ar = —le(T - TO), where T'is the

dt

temperature of the object at time ¢,

T, is the temperature of the Figure 13.1
surroundings, and k is a constant of proportionality.
This is an example of a differential equation.
To be able to predict the temperature of the object at different times, you need
to solve the differential equation. In this chapter, you will learn how to solve
problems like this involving rates of change.

25 Temperature T’

Y
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1 First order differential equations

A differential equation is an equation involving at least one derivative.
The order of the differential equation is the order of the highest derivative
occurring in the equation.

/Discussion point )
=>» What is the order of each of the following differential equations?
Sody
(i) dx - e" +3
o dy d’y
(ii) 3@ - 4.’)6@ =y
i) 4x° = Bx% -2y
2
(iv) d—)zl = 4x°
x

N J

The solution to a differential equation that contains one or more arbitrary
constants is called a general solution, and represents a family of solution curves.
If you are given additional information, you can find a particular solution,
which represents one specific member of the family of solution curves.

Because an arbitrary constant comes into your solution each time you integrate,
the number of arbitrary constants in a general solution will be the same as the
order of the differential equation.

. . . . dy
The simplest differential equations are first order, of the form prvi f (x); they

X

can be solved by simply integrating with respect to x. You have actually already
solved some differential equations of this type, when you have used the gradient
function of a curve to find the general equation of the family of solution curves,
and in some cases the equation of a particular curve from this family.

1) Find the general solution of the differential equation dy = 2x.

dx
(1))  Find the particular solution that passes through the point (1, 2).

(1)  Sketch several members of the family of solution curves, and indicate
the particular solution from (ii) on your sketch.

Solution

4 dy _
@) I = 2x

= y= J.2x dx €——— Integrate both sides of the equation.
= y= x2 +c

The general solution is y = x° + c.

suonenba jenualayg ¢ J91deys
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First order differential equations

‘Rate of change’ by itself
means with respect to
time, f.

@) Whenx=1y=2
Substitute values into

2
=>2=1+¢ the general solution.

= c=1
The particular solution is y = x° + 1.

(1)  Figure 13.2 shows a set of solution curves. The particular solution
in (ii) is the red curve.

Figure 13.2

Forming differential equations

Differential equations are used to model rates of change. They open up new
opportunities to you, extending the situations that you can work with in both
pure and applied mathematics, but first you need to become familiar with the
vocabulary and notation you will need.

For example, the rate of change of temperature, T, with respect to distance, x,

1s written as d—T

dx

—» The rate of change of velocity is written as 4v This is also sometimes written

dt
as v; by convention a dot above a variable indicates its rate of change with
respect to time.

Some of the situations you meet in this chapter involve motion along a straight
line, and so you will need to know the meanings of the associated terms.

(6]

I I I I I I s Ly

-1 0 1 2 3 4 5 6 s
Figure 13.3

The position of an object (+5 in Figure 13.3) is its distance (or displacement)
from the origin O in the direction you have chosen to define as being positive.



> The rate of change of position of the object with respect to time is its velocity,

The term ‘speed’ . . . . .o
v, and this can take positive or negative values according to whether the object is

is sometimes used
informally to mean moving away from the origin or towards it.

locity al line.
velocity along a line Cdr

p =

dt
The rate of change of an object’s velocity with respect to time is called its
acceleration, a.

PR

dt
Velocity and acceleration are vector quantities but in one-dimensional motion
there is no choice in direction, only in sense (i.e. whether positive or negative).
Consequently, as you may already have noticed, the conventional bold type for
vectors is not used in this chapter.

m An object is moving through a liquid so that its acceleration is proportional

to its velocity at any given instant. When it has a velocity of 5ms™, the

suonenba jenualayg ¢ J91deys

. . . -2
velocity is decreasing at a rate of Tms™.

Find the differential equation to model this situation.

Solution
@ oc | This means ‘the rate of change of the
dt v velocity is proportional to the velocity’.
dv _
T kv

Use the additional information
When v = 5, dv 1,50 4« | given to find the value of k.

dt
—1 =5k Notice that because the velocity is decreasing,
the constant of proportionality, k, turns out to
= p=—1 be negative.
5
Therefore the differential equation is % = —%1/.

m A model is proposed in which the temperature within a star decreases with

respect to the distance, x, from the centre of the star at a rate which is
inversely proportional to the square of this distance.

(1)  Express this model as a differential equation.
(1)  Find the general solution of the differential equation.

(iii)  What happens when x = 0?
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Exercise 13.1

O]

L Ps J©

First order differential equations

Solution

@) In this example the rate of change of temperature is not with respect
to time but with respect to the distance from the centre of the star.

If T represents the temperature of the star and x the distance from
the centre of the star, the rate of change of temperature with respect

to distance may be written as

dT 1
Soax?

dT _ &k
A T

(i1) dr _ k
dx xz

= 7=

X

dr
dx -’

Because the rate of change is decreasing,
not increasing, k must be a negative
constant.

(1)  When x = 0 (at the centre of the star) the model predicts that the
temperature is infinitely large. So the model must break down near
the centre of the star, otherwise it would be infinitely hot there.

Given the differential equation dy = 3x°

dx
(i) find the general solution and sketch the

family of solution curves

(il find the particular solution for which
y = —1 when x = 1, and indicate this
solution on your sketch.

The differential equation dv _ 507

dt

models the motion of a particle, where v is
the velocity of the particle in ms™' and ¢ is the
time in seconds.

Explain the meaning of % and what the

differential equation tells you about the motion
of the particle.

The rate of increase in the number of bacteria
in a colony, N, is proportional to the number
of bacteria present.

Form a differential equation to model this
situation.

@) State which is the odd one out among the

following and give your reasons.

(il The rate of change of y with respect to x.
iy

dy

dx

(iv) The gradient of the curve in a graph of y

(iii)

against x.

Given the differential equation

dy _
E—Zx—4

() find the general solution and sketch the
family of solution curves

(il find the particular solution for which
y = 0 when x = 2, and indicate this
solution on your sketch.

After a major advertising campaign, an
engineering company finds that its profits are
increasing at a rate proportional to the square
root of the profits at any given time.

Form a differential equation to model this
situation.



A moving object has velocity yms. (2 The acceleration of a particle is inversely

When v = 0, the acceleration of the object proportional to ¢ + 2, where ¢ is the time,
is inversely proportional to the square root of measured in seconds. The particle starts from
its velocity. When the velocity is 4ms ', the rest with an initial acceleration of 1ms™.
acceleration is 2ms . (i

Find an expression for 4V 5 model the

Form a differential equation to model this motion. dr

situation. i) Show that the velocity of the particle after
A poker which is 80 cm long has one end in 6sis (6In2)ms™.

a fire. The temperature of the poker decreases @ The mass of a pumpkin ¢ weeks after it first forms

with respect to the distance from that end at is Mkg,. The rate of change of M is modelled by
a rate proportional to that distance. Halfway the quadratic graph in Figure 13.4.
along the poker, the temperature is decreasing

at a rate of 10°Ccm™.
Form a differential equation to model this
situation.

Given the differential equation (cil_y = —4e*
X

(i) find the general solution and sketch three
members of the family of solution curves

suonenba jenualag ¢| Jeideyn

Rate of change of M
o o o o

o
—
[\S)
w
N

5 6 7 8Timet
(il find the equation of the particular solution (weeks)

which passes through the point (In2,0). Figure 13.4

A cup of tea cools at a rate proportional to the (i

Represent this information in the form of
difference between the temperature of the tea

a differential equation.
and that of the surrounding air. Initially, the tea y . .
. o . . (il  Find the greatest mass of the pumpkin.
is at a temperature of 95°C and it is cooling ) i

at a rate of 0.5°Cs ™. The surrounding air is A spherical balloon is allowed to deflate.

at 15°C. The rate at which air is leaving the balloon

is proportional to the volume I of air left in
the balloon. When the radius of the balloon

. .o . 3
is 15cm, air is leaving at a rate of 8cm”s™ .

Model this situation as a differential equation.

A bonfire is held in a field. It burns a circle of
grass of radius 8 metres. After the fire is over,

the grass grows back from the circumference of Show that

the circle inwards. The radius, ¥ m, of the circle dd—lt/ = — 11221/57[.

without any grass decreases at a rate proportional S . .

to the square root of the time, f weeks, since the O ® quUId 18 bémg pouredlmto a large vertical
bonfire. One week after the bonfire, the grassis () circular cylinder of radius 40 cm at a constant

rate of 2000cm”s™, and is leaking out of a

hole in the base at a rate proportional to the
square root of the height of the liquid already
in the cylinder. Show that the rate of change of
the height of the liquid in the cylinder can be

growing back at a rate of 1.5 metres per week. O

() Form a differential equation to model this
situation.

il Solve the differential equation.

il Find how long it takes the grass to grow modelled by
back completely. dh 5
& =
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Solving differential equations by separating the variables

The height of a tree is h metres when the tree li) Form a differential equation for the tree’s
is t years old. For the first 10 years of the life of rate of growth for ¢ > 10, i.e. for the rest of
the tree dh _ 0.5. For the rest of the tree’ life, the tree’s life.

> dt

its rate of growth is inversely proportional to lii) Solve the differential equation you

obtained in part (i) to show that for ¢ > 10,

its age.
(il Describe the growth of the tree during its h=5+ SIn(%).
first 10 years. What is its height when it is ) ) o
10 years old? The tree dies when its height is 15m.

There is no sudden change in its rate liv) How old is the tree when it dies?

of growth when the tree is exactly (v)  Sketch the graph of h against ¢ for the
10 years old. lifetime of the tree.

2 Solving differential equations by
separating the variables

It 1s not difficult to solve a differential equation like % = 3x” — 2, because the
right-hand side is a function of x only. So long as the function can be integrated,
the equation can be solved.
Now look at the differential equation % =y

X
This cannot be solved directly by integration, because the right-hand side is a
function of y. Instead, a method called separating the variables is used. This is

shown in the next example.

Example 13.4 . dy

(1) Find the general solution of the differential equation I = y’,and

sketch three members of the family of solution curves.

(i)  Find the particular solution for which y = 1 when x = 0.

Solution

. 1 ay | Start by rewriting the equation so that
@) Y2 dx — 1 the right-hand side does not involve .

d
= J.iz gy = J 1dx 4¢—— Integrate both sides with respect to x.
y d.’X?

1 —
= .[_2 dy = j1dx Replace dy dax on the
Y dx

— —yl = x4+ left-hand side with dy.
= S “«— ;
Y= " F¢ Rearrange to make y the subject.

This is the general solution. Three members of the family of solution
curves are shown in Figure 13.5.
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Figure 13.5
(@) y=1whenx = 0,so0
1= -1 4——— Substitute values into y = — !
c X+
=c=-1
: o 1
The particular solution is y = po HC D Gl pe?
This is the blue curve in Figure 13.5.
. . dY 2 i _
Note that the first part of this process, going from P LN dy = | x dx,
Y

1s usually done in one step. You can think of this process as rearranging j—z as

though it were a fraction, to end up with all the y terms on one side and the
x terms on the other, and then inserting integration signs (dx and dy must both
end up in the top line).

In the next example, the function on the right-hand side of the differential
equation is a function of both x and y.

Find, for y > 0, the general solution of the differential equation % = xy.
Solution
1 dy _ Rearrange to make the right-hand side
ydx ~ X of the equation a function of x only.
1 _ . .
= J; dy = jx dx Integrate both sides with respect to x.

/ Since y > 0, you do not need to write |y‘
= Iny= %xz +c

suonenba jenualayg ¢ J91deys
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Solving differential equations by separating the variables

sx’+c
= ya=le2 \ Remember that the exponential function

is the inverse of the natural log function.

i
= A2t & where A =¢

Interpreting the solution

It is important to be able to interpret how the solution of a differential equation
relates to the original problem, including recognising that the model used may
have limitations.

Example 13.6 Rabbits are introduced to a remote island and the size of the population

increases. A suggested model for the number of rabbits, NN, after f years, is
given by the differential equation

dN

O TN
where k > 0.
(1) Find the general solution for N in terms of f and k.

(11)  Find the particular solution for which N = 10 when ¢ = 0.

(i)  What will happen to the number of rabbits when ¢ becomes very
large? Why is this not a realistic model for an actual population of
rabbits? What would you expect to happen to the graph of N against ¢
in a real population of rabbits as t becomes very large?

Solution
: 1
(@ JLan = [kas
_ | Since the number of rabbits must be

= Ma il = s e positive, writing [ N| is not necessary.
= N = Ae"

(11) N =10 when t = 0
=10 = Ae'
= A=10

So the particular solution is N = 10e".

(1)  As t becomes very large, N — oo.This is not a realistic model
because there would be limitations on how large an actual population
of rabbits would get, due to factors such as food and predators.

In a real population, the graph of N against f would flatten out
as t became very large.
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Exercise 13.2

O]
)

L Ps 1O

The differential equation

population growth. It has the general solution N =

dl?f = kN (1 — ¢N) is commonly used to model

ket
ﬁ. which has
CE;

the shape shown in Figure 13.6 for t = 0.

NA

The dotted line represents
the maximum population that
the environment can sustain.

(¢}

Figure 13.6

Tt

Make y the subject of In y = % 2, y>0
Find the general solution of each of the
following differential equations by separating
the variables, expressing y in terms of x.

(0 ﬂ - X
dX y2

. d

(ii) d_D):‘ = xy2

Find the particular solutions of each of the
following differential equations.

(i) % = xe !, given that y = 0
when x = 0

(ii) dy _ y” sinx, given that y = 1
dx ’

when x = 0

A mathematical model for the number of
bacteria, #, in a culture states that n is increasing
at a rate proportional to the number present.
At 10:00 there are 5000 bacteria and at 10:30
there are 7000.

At what time, to the nearest minute, does the
model predict 10000 bacteria?

An object is moving so that its velocity

v(= é) is inversely proportional to its

dt

displacement s from a fixed point. Its velocity
is 1ms ' when its displacement is 2m.

Form a differential equation to model the
situation. Find the general solution of your
differential equation.

A cold liquid is standing in a warm room. The
temperature of the liquid is 8°C, where 6 < 20;
it obeys the differential equation

de _ _

i 2(20-6)

where the time t is measured in minutes.

(il Find the general solution of this
differential equation.

(il Find the particular solution for which
0 =5 when t = 0.
(i) For this particular solution, sketch the graph

of temperature against time.

(iv) In this case, how long, to the nearest
second, does the liquid take to reach a
temperature of 18°C?

(v  What happens to the temperature of the
liquid in the long term?

Given that
ﬂ B x(y2 + 1)
dx y(x2 + 1)

and that y = 2 when x = 1,find yasa
function of x.

suonenba jenualag ¢| Jeideyn
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Solving differential equations by separating the variables

(i) Express —2x—1
Pres ("D (2x - 3)

fractions.

in partial

lil  Given that x = 2, find the general
solution of the difterential equation

(25 = 3)(x ~ DL = (2 = 1)y.

Water is stored in a tank, with a tap 5cm
above the base of the tank. When the tap is
turned on, the flow of water out of the tank is
modelled by the differential equation

dn _

dt
where hicm is the height of water in the tank,
and t is the time in minutes. Initially the height
of water in the tank is 105 cm.

=3y/(h —5)

(il Find an expression for / in terms of t.
(il Explain what happens when h = 5.

(i) Find, to the nearest second, how long it
takes the depth of water in the tank to fall
to a height of 40 cm.

A patch of oil pollution in the sea is
approximately circular in shape. When first
seen, its radius was 100 m and was increasing at
a rate of 0.5m per minute. At a time t minutes
later, its radius is r metres. An expert believes
that, if the patch is untreated, its radius will

increase at a rate which is proportional

1
to —.

(i Write down a differential equation
for this situation, using a constant of
proportionality, k.

(il  Using the initial conditions, find the
value of k. Hence calculate the expert’s
prediction of the radius of the oil patch
after 2 hours.

The expert thinks that if the oil patch is treated
with chemicals, then its radius will increase at a

D . 1

rate which is proportional to EICIY

il Write down a differential equation for this
new situation and, using the same initial
conditions as before, find the value of the
new constant of proportionality.

(iv) Calculate the expert’s prediction of
the radius of the treated oil patch after
2 hours.

@ () The acceleration of an object is inversely

proportional to its velocity at any given time,
and the direction of motion is taken to be
positive. When the velocity is 1ms™', the
acceleration is 3ms .

() Find a differential equation to model this
situation.

(il Find the particular solution to this
differential equation for which the initial

. . —1
velocity is 2ms™ .

il In this case, how long does the object take
to reach a velocity of 8ms™'?

To control the pests inside a large greenhouse,
600 ladybirds are introduced. After ¢ days there
are P ladybirds in the greenhouse. In a simple
model, P is assumed to be a continuous variable
satisfying the differential equation
dpr
dt
(il Solve the differential equation, with initial
condition P = 600 when t = 0, to express
P in terms of k and .

= kP, where k is a constant.

Observations of the number of ladybirds
(estimated to the nearest hundred) were as
shown in Table 13.1.

Table 13.1
t 0 150 250
P 600 1200 1500

(il Show that P = 1200 when ¢t = 150
implies that k = 0.00462. Show that this
is not consistent with the observed value
when ¢t = 250.

In a refined model, allowing for seasonal
variations, it is assumed that P satisfies the
differential equation

(31—1; = P(0.005 — 0.008 cos (0.021))

with initial condition P = 600 when ¢ = 0.

il Solve this differential equation to express
P in terms of t, and comment on how
well this fits with the data given in
Table 13.1.

(iv) Show that, according to the refined model,
the number of ladybirds will decrease
initially, and find the smallest number of
ladybirds in the greenhouse.
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The relationship between the price of

a commodity, p, and demand for the
commodity, ¢, is modelled by the differential
equation

dg _ _ 4

&~

where 7 is called the elasticity, and is a constant
for a given commodity in a particular set of

conditions.

(i) Find the general solution for g in
terms of p.

(il When a particular retailer increases the
price of a DVD from /15 to £20, the
demand falls from 100 a month to 80 a
month. For this case

(a) calculate the value of the elasticity

(b) find the particular solution of the
differential equation

(c) sketch the graph of demand against
price.
The rate of increase of a population is
modelled as being directly proportional to the
size of the population, P.

() Form a differential equation to describe
this situation.

(il  Given that the initial population is P,
and the initial rate of increase of the
population per day is twice the initial
population, solve the differential equation,
to find P in terms of P, and .

(iii)

(iv)

(v)

(ii)

Find the time taken, to the nearest minute,
for the population to double.

In an improved model, the population
growth is modelled by the differential
equation

dp _
s kP coskt

where P is the population, f is the time
measured in days and k is a positive
constant. Given that the initial population
is again P, and the initial rate of increase
of the population per day is again twice
the initial population, solve the second
differential equation to find P in terms of
P, and t.

Find the time taken, to the nearest minute,
for the population to double, using this
new model.

For each of the models, describe how the
population varies with time.

Show that the differential equation

dd_l:] = kN (1 — ¢N) has the general
kt
solution N = A—ekt.
14 Ace

Under this model, what is the limiting
value of the population size?
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Solving differential equations by separating the variables

LEARNING OUTCOMES

When you have completed this chapter, you should be able to:

>
>

>
>

construct simple differential equations in pure mathematics and in context

evaluate the analytical solution of simple first order differential equations
with separable variables including finding particular solutions

separate variables when it requires factorisation involving a common factor

interpret the solution of a differential equation in the context of solving a
problem:

O identifying limitations of the solution
O identifying links to kinematics.

KEY POINTS

1
2

Differential equations are used to model rates of change.

% is the rate of change of y with respect to x.
x

dz
dr

If the words ‘with respect to ..." are omitted, the change is assumed to be with
respect to time.

is the rate of change of z with respect to .

2
A differential equation involves derivatives such as dy and d_)g
dx dx

A first order differential equation involves a first derivative only.

Some first order differential equations may be solved by direct integration.
Some first order differential equations may be solved by separating the
variables.

A general solution is one in which the constant of integration is left in the
solution, and a particular solution is one in which additional information is
used to calculate the constant of integration.

A general solution may be represented by a family of curves, and a particular
solution by a particular member of that family.

FUTURE USES

If you study Further Mathematics you will learn to model further situations
using differential equations, and to solve a wider range of differential
equations.




It is the true nature of
mankind to learn from
his mistakes.

Fred Hoyle (1915-2001)

Numerical methods

A golfer doesn’t often hit a ball into the hole at the first attempt! Instead,
he or she will try to hit the ball as close to the hole as possible. After that,

successive attempts will usually be closer and closer to the hole, until the ball
finally lands in the hole.

=» Think of some other situations where you need to make a rough

approximation for your first attempt, and then gradually improve your
attempts.
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Solving equations numerically

P

1 Solving equations numerically

ACTIVITY 14.1

Which of the following equations can be solved
algebraically, and which cannot?
For the equations that can be solved algebraically,

Remember that exact
roots may be given
in terms of irrational

numbers like T, e or \/5

find the exact roots. <
For the equations that cannot be solved algebraically, use a graphical calculator
or graphing software to find approximate roots.

i) x>—4x+3=0 (i) x+10x+8=0 lii) x> =5x+3=0

ivi x>—x=0 (v " —4x=0

Although you could not solve the equations x> — 5x + 3 = 0 and e* — 4x = 0
algebraically, you were still able to find approximate values for the roots, and,
by zooming in more closely, you could have increased the accuracy of your
approximations.

Figure 14.1 shows the graph of y = e* — 4x.

From the graph, you can see that
there is one root between 0 and
1, and another between 2 and 3.

Zooming in more closely shows that
the first root is between 0 and 0.5,
and the second between 2 and 2.5.

(- . . )
Discussion points

Here is the same graph,
zoomed in further

(Figure 14.2).

=» What can you say
about each of the
roots now?

=» From Figure 14.2,
can you state the
roots correct to 1
decimal place?

— X

! !
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Figure 14.1
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=Y

2"

Figure 14.2



A root of an equation is a value which satisfies the equation. An equation may
have more than one root. For the equation xX¥+x—6=0,x=2isarootand
sois x =-3.

The solution of an equation is the set of all the roots. So the solution of the
equation x>+ x—6=0is x=2and x=-3.

An analytical method for solving an equation is an algebraic method which
gives exact values for the roots of the equation.

A numerical method for solving an equation does not give exact values for
the roots of the equation, but it can usually find an approximate value to any
required degree of accuracy.

Numerical methods permit you to solve many mathematical problems that
cannot be solved analytically. Methods like these do not give you an exact
answer, but by repeated application or refinement, they can usually give you a
solution to any degree of accuracy that you require.

®  Only use numerical methods when algebraic methods are not available.
If you can solve an equation algebraically (e.g. a quadratic equation), that is
usually the best method to use.

m  Before starting to use a calculator or computer software, always start by
drawing a sketch graph of the function whose equation you are trying
to solve. This will show you how many roots the equation has and their
approximate positions. It will also warn you of possible difficulties with
particular methods. When using a graphing calculator or graphing software
ensure that the range of values of x is sufficiently large to find all the roots.

m  Always give a statement about the accuracy of an answer (e.g. to 5 decimal
places, or £0.000 005). An answer obtained by a numerical method is
worthless without this.

m  The fact that at some point your calculator display reads, say, 1.6764705882
does not mean that all these figures are valid.

m  Your statement about the accuracy must be obtained from within the
numerical method itself. Usually you find a sequence of estimates of ever-
Increasing accuracy.

m  Remember that the most suitable method for one equation may not be the
most suitable for another.

Change of sign methods

Suppose you are looking for the roots of the equation f (x) = 0.This means that
you want the values of x for which the graph of y = f(x) crosses the x-axis.

As the curve crosses the x-axis, f (x) changes sign, so provided that f (x) is a
continuous function (its graph has no asymptotes or other breaks in it), once you
have located an interval in which f(x) changes sign, you know that that interval
must contain a root (Figure 14.3 overleaf).

—
N
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Solving equations numerically

YA 8y

f(x) =0 | *g—)’_g(X)
y = f(x ) =
// g()>0 ;\

L4 d .

e} )/\ x e} c T\{ o(d) <0
~
f(a)<0 So the root lies So the root lies
between a and b. between cand d.
Figure 14.3

0 Notice that |g(d)| <|g(c)|, but this does not mean that the root is closer
to d than c.

Example 14.1 @) Show that the equation e¢* — 4x = 0 has a root in the interval [2.1, 2.2].

(i) How would you use decimal search to find the root to 2 decimal places?

Solution The equation is already in the
@) f(x) =e" —4x ¢ required form of f(x) = 0.
Evaluate the function at f(2.1) = —-023...<0

the beginning and end of Don’t be tempted to leave out

the interval £(22)=0.22...>0 / this final sentence; it's an

important part of your answer

Since one of the values is positive and one is negative, and the function
is continuous, e” — 4x = 0 has a root in the interval [2.1, 2.2].

(i)  You would need to try the values £(2.11), £(2.12), £(2.13), etc., until you
reach a change of sign. This would tell you that the root is in the interval
[2.15,2.16]. You would then repeat the process by finding £(2.151),
£(2.152) etc., until you reach a change of sign. This would show that the
root is closer to 2.15 than to 2.16. So the root is 2.15 to 2 d.p.

Discussion points
=» Is decimal search an efficient method for solving an equation
(i) if you are programming a computer?

(ii) if you are doing it yourself on a calculator?
=> If you are doing it yourself on a calculator, is it possible to speed up the process?

Another change of sign method is called interval bisection. In this case, after
finding one interval containing the root, the interval is divided into two equal
parts — it is bisected.

TECH NOLOGY So to find the root of the equation e* — 4x = 0 that is in the interval |2, 3] (with
f(2) < 0 and £(3) > 0), you would start by taking the midpoint of the interval, 2.5.

The Table feature on a

scientific calculator is £(2.5)=2.18...>0 so the root is in the interval [2, 2.5].
useful for finding the
values of a function for Now take the midpoint of this interval, 2.25.

different values of x. £(2.25) = 0.48...> 0  so the root is in the interval [2, 2.25].
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Create a spreadsheet
like the one in

Figure 14.4. Use your
spreadsheet to find
the root correct to 8
decimal places.

KDiscussion point

=> What advantages
and disadvantages
does interval
bisection have,
compared with
decimal search?

~

The midpoint of this interval is 2.125.

£(2.125) = =0.12... < 0 so the root is in the interval [2.125, 2.25].

(D

Iscussion points
Figure 14.4 shows a spreadsheet that has been used to carry out interval
bisection to find the root of e* — 4x = 0O thatis in the interval [2, 3].
=» After how many iterations can you state the root correct to 1 decimal place?
2 decimal places? 3 decimal places?
ASSAON
Home Insert Page Layout Formulas Data Review
( 3
A B | C | D | E | F | G
1 Iteration X=a x=b X=m f(a) f(b) f(m)
2 1 2 3 2.5 —-0.610943901 8.085536923 2.182493961
3 2 2 2.5 225 —0.610943901 2.182493961 0.487735836
4 3 2 2.25 2.125 —0.610943901 0.487735836 —0.127102512
5 4 2.125 2.25 2.1875 —0.127102512 0.487735836 0.162902981
6 5 2.125 2.1875 2.15625 —0.127102512 0.162902981 0.013681785
7 6 2.125 2.15625 2.140625 —0.127102512 0.013681785 —0.057748562
8 7 2.140625 2.15625 2.1484375 —-0.057748562 0.013681785 —-0.02229497
9 8 2.1484375 2.15625 2.15234375 —0.02229497 0.013681785 —0.004372244
10 9  2.15234375 2.15625 2.154296875 —0.004372244 0.013681785 0.004638326
11 10 2.15234375 2.154296875 2.153320313 —0.004372244 0.004638326 0.000128934
12 11 2.15234375 2.153320313 2.152832031 —0.004372244 0.000128934 —0.002122681
Figure 14.4

Change of sign methods have the great advantage that they automatically
provide bounds (the two ends of the interval) within which a root lies, so the
maximum possible error in a result is known. Knowing that a root lies in the
interval [0.61, 0.62] means that you can take the root as 0.615 with a maximum
error of £0.005.

Determining the accuracy of your answer is an essential part of any numerical
method. As in this case, it must come out of the method itself; just rounding your
answer is not enough.

Problems with change of sigh methods

There are a number of situations which can cause problems for change of sign
methods if they are applied blindly, for example by entering the equation into
computer software without prior thought. In all cases you can avoid problems by
first drawing a sketch graph, so that you know what dangers to look out for.

The curve touches the x-axis

In this case there is no change of sign, so change of sign methods will not work
(see Figure 14.5).

N

Figure 14.5

—
N
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There are several roots close together
Where there are several roots close together, it is easy to miss a pair of them.
The equation

f(x) = x> —1.65x% + 0.815x — 0.105 = 0

has roots at 0.2, 0.7 and 0.75. A sketch of the curve of f(x) is shown in
Figure 14.6.

YA

=

0.2 / 0.7 0.75

Figure 14.6

In this case f{0) < 0 and f(1) > 0, so you know there is a root between 0 and 1.
A decimal search would show that {{0.2) = 0, so that 0.2 is a root.You would be
unlikely to search further in this interval.

Interval bisection gives £{0.5) > 0, so you would search the interval [0, 0.5] and
eventually arrive at the root 0.2, unaware of the existence of those at 0.7 and 0.75.

There is a discontinuity in f(x)
The curve y = x—7127 has a discontinuity at x = 2.7, as shown by the
asymptote in Figure 14.7.

YA

<Y

Figure 14.7

The equation = 0 has no root, but all change of sign methods will

_
x =27
converge on a false root at x = 2.7.

It is noticeable if you look at the size of f{x) as well as its sign because it will get
larger as you approach t