
Dashboard / My courses / Electrical Fundamentals / TUTORIALS / Week 8 Quiz / Preview

Started on	Tuesday, 5 March 2024, 12:54 PM
State	Finished
Completed on	Tuesday, 5 March 2024, 12:54 PM
Time taken	10 secs
Grade	0.00 out of 10.00 (0 %)
Question 1 Not answered	
Marked out of 1.00	

1. A DC motor converts _____energy to _____energy.

Your answer is incorrect.

The correct answer is: (a) electrical, mechanical

05/03/2024, 12:54

Question 2	
Not answered	
Marked out of 1.00	

1. To determine the forces acting on a current carrying conductor within a magnetic field, you would use:

🔾 а.		
	(b)	Lenz's law
🔘 b.	(a)	Flemming's right hand
Ос.		
	(d)	Flemming's left hand rule
○ d.		
	(c)	right hand conductor rule

Your answer is incorrect.

The correct answer is:

(d) Flemming's left hand rule

05/03/2024, 12:54

Question **3** Not answered Marked out of 1.00

1. The torque produced in a DC motor is _____ the main field flux.

and _____to the armature current.

a. (c) Inversely Proportional, Inversely proportional
 (c) right hand conductor rule

• b. Proportional Proportional

- (b) Proportional, proportional
- (b) Proportional, proportional
- (b) Lenz's law
- C. (a) Inversely Proportional, proportional
- d. (d) Proportional, Inversely proportional
 (d) Flemming's left hand rule

Your answer is incorrect.

The correct answer is:

Proportional Proportional

- (b) Proportional, proportional
- (b) Proportional, proportional
- (b) Lenz's law

Question 4	
Not answered	
Marked out of 1.00	

1. An increase in the load applied to a DC motor will cause the motor speed to ______ and the motor torque to______.

🔵 а.	(d)	Increase, decrease
🔘 b.	(b)	Decrease, decrease

- C. (c) decrease, increase
- O d. (a) Increase, increase

Your answer is incorrect.

The correct answer is:

(c) decrease, increase

Question 5	
Not answered	
Marked out of 1.00	

1. Whilst driving a load, a_____is generated in the armature conductors which

_____ the applied motor voltage.

🔵 а.	(c)	Mutual emf, opposes
🔘 b.	(d)	Mutual emf, increases
О с.	(a)	Counter emf, opposes
🔘 d.		
	(b)	Counter emf, increases

Your answer is incorrect.

The correct answer is:

(a) Counter emf, opposes

Question 6	
Not answered	
Marked out of 1.00	

A 150mm long conductor carries a current of 40A at right angles to a magnetic field with a flux density of 0.5T. Determine the force acting on the conductor.

🔵 а.	3N
) b.	2N
○ c.	1N

Your answer is incorrect.

The correct answer is: 3N

05/03/2024, 12:54

Question 7	
Not answered	
Marked out of 1.00	

1. An armature has a radius of 125mm, and an effective conductor length of 150mm under the field pole. If the main flux is 0.4T and the armature current is 100A, determine

- (a) the force acting on the conductor and
- (b) the torque developed on the conductor under the field poles.

🔘 a. 3N, 1.5 N-m

O b. 6N, 0.75 N-m

Oc. 3N 0.75N-m

Your answer is incorrect.

The correct answer is: 6N, 0.75 N-m

Question 8

Not answered Marked out of 1.00

1. An armature with a radius of 125mm is wound with 4 coils each of 100 turns. If the effective length of one half of a loop under the field poles is 200mm, the current in the conductors is 250A and the flux is 0.2T, determine the torque developed within the armature.

a. 2000 N-m

o b. 1000 N-m

○ c. 500N-m

Your answer is incorrect.

The correct answer is: 1000 N-m

Question **9** Not answered Marked out of 1.00

A DC motor has a machine constant of 20, a main flux of 0.015Wb and runs at 750rpm. Determine the emf generated within the armature conductors.

If this motor is connected to a 250V supply and has an armature circuit resistance of 0.15 ohm determine the amount of current flowing in the armature .

a. 450V, 167A

o b. 100V, 200A

🔘 c. 225V, 167A

Your answer is incorrect.

The correct answer is: 225V, 167A

Question **10** Not answered

Marked out of 1.00

). The motor shown in figure 12 has a field flux of 0.0125Wb, runs at 250rpm, and hasa machine constant of 8. For these conditions, determine the:

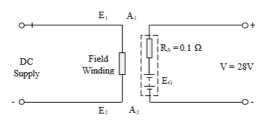


Figure 12.

- (a) Back emf;
- (b) Armature current;
- (c) developed torque;
- (d) armature circuit voltage drop.
- o a. 25V, 3A, 6N-m, 3V
- b. 25V, 30A, 3N-m, 3V
- c. 15V, 40A, 5N-m, 3V

Your answer is incorrect.

The correct answer is: 25V, 30A, 3N-m, 3V

Week 7 Quiz

Jump to ...