TUTORIAL - D.C. GENERATORS PART 1

NAME:

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets.
- All work is to be completed in ink.
- In the case of multiple choice type questions, the question number and answer letter are to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.
- All diagrams are to be drawn using appropriate drawing instruments. Drawings are not to be freehand.

Section A

In the following statements one of the suggested answers is best. Place the identifying letter on your answer sheet.

- 1. A DC generator converts _____energy to _____energy.
 - (a) electrical, mechanical
 - (b) electrical, electrical
 - (c) chemical, electrical
 - (d) mechanical, electrical
- 2. The principle by which emf's are generated in a DC generator is:
 - (a) electromagnetic induction.
 - (b) Lenz's law.
 - (c) self inductance.
 - (d) chemical reaction.
- 3. The function of the commutator in a DC generator is to:
 - (a) connect the AC generated in the windings directly to an external circuit.
 - (b) convert the AC generated in the windings to DC when connecting to an external circuit.
 - (c) supply an external current to the armature to drive the generator.
 - (d) allow the generator to be converted to a motor.

- 4. The windings for the magnetic field system are mounted on the:
 - (a) Armature.
 - (b) Commutator.
 - (c) Frame.
 - (d) Pole cores.
- 5. The value of the generated emf's in the armature conductors is ______to the field flux, and ______to the armature speed.
 - (a) Proportional, proportional
 - (b) Proportional, inversely proportional
 - (c) inversely Proportional, proportional
 - (d) inversely Proportional, inversely proportional
- 6. To increase the output of a generator you could either_____the field current or _____the armature speed.
 - (a) decrease, decrease
 - (b) increase, decrease
 - (c) increase, increase
 - (d) decrease, increase
- 7. The relationship between current, magnetic flux and the force applied to a conductor within a generator can be determined by:
 - (a) Fleming's right hand rule.
 - (b) Fleming's left hand rule.
 - (c) Faraday's right hand rule.
 - (d) Faraday's left hand rule.

Section B:

Blank spaces in the following statements represent omissions. Write the appropriate information.

8. The conductors for the field system of a generator are located in the_____.

Field poles

9. To connect the generated emf's to an external circuit, a _____ and carbon _____ are employed.

Commutator, Brush

10. The function of the ______ is to convert the ______ voltage generated within the armature conductors to the D.C. voltage available at the generator terminals.

Commutator AC

11. The generator field can be either ______excited or ______excited.

Separately Self

12. To determine the polarity of the induced emf's within the armature conductors you would use Flemming's_____hand rule.

Right

13. Maximum emf will be induced in the armature conductors when cutting the field flux at_____.

90 degree

14. If more turns are added to the armature conductors, the generated voltage will_____.

Increase

15. The emf induced into a conductor is proportional to the ______ of the magnetic field, the ______ of the conductor and the ______ of the conductor through the magnetic field.

Strength Speed

Section C:

See Teacher Solutiuon

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple.

- 16. A single conductor of 150mm length is rotated through a field flux of 0.8T at a velocity of 10m/s. Determine the emf induced in the conductor. (1.2V)
- 17. Determine the flux density of the magnetic field required to generate 12.6V in a conductor with an effective length of 2m which moves through the magnetic field at 90 with a uniform velocity of 10.5m/s. (0.6T)
- 18. A generator is wound with 6 series connected coils, each wound with 40 turns. If the length of the armature is 200mm, the density of the flux is 1.25 Tesla and the armature rotates with a velocity of 2m/s, determine the generated output voltage of the generator. (240V)
- 19. A separately excited generator has an effective field flux of 0.02T, and is spins at 400 rpm. If the machine constant is 12, determine the generated voltage. (96V)
- 20. For the diagram of figure 27, label the following:
 - (a) the frame
 - (b) the field coil
 - (c) the armature

(d) the field pole

Include the diagram with your answer sheet.

Figure 27.

TUTORIAL - DC GENERATORS PART 2

NAME:

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets.
- All work is to be completed in ink.
- In the case of multiple choice type questions, the question number and answer letter are to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.
- All diagrams are to be drawn using appropriate drawing instruments. Drawings are not to be freehand.

Section A

In the following statements one of the suggested answers is best. Place the identifying letter on your answer sheet.

- 1. If a generator is connected for a shunt configuration, the field connections would be a ______ resistance field connected in______ with the armature.
 - (a) High, series
 - (b) High, parallel
 - (c) Low, series
 - (d) Low, parallel
- 2. A self-excited shunt generator relies on ______ for its initial magnetic flux.
 - (a) Separate excitation
 - (b) Residual magnetism
 - (c) Field flashing
 - (d) Good luck
- 3. The generator type which is used for certain welding applications would be a _____ type.
 - (a) Differentially compounded
 - (b) cumulatively compounded
 - (c) shunt
 - (d) Series

Section B

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.

4. When the field current in a separately excited generator is zero, the output voltage is not zero due to_____.

Residual magnetism

5. If the speed of the prime mover driving a generator is reduced, the output voltage will

Decrease

6. Increasing the load on a generator causes the prime mover speed to ______ due to the ______ developed by the armature

current.

Decrease counter emf

7. As the load on a generator increases, the terminal voltage______. This is due to______ and the______ voltage drop.

Decrease Armature Reaction, Armature

8. The terminal voltage of a generator is the ______between the generated voltage and the ______voltage drop.

Difference, armature

9. The open circuit characteristic of a separately excited generator shows the ______ of the magnetic material used in core.

properties

10. For a self-excited generator to build up a generated emf, there must be ______ in the magnetic circuits of the machine.

Residual magnetism

11. Three types of self-excited generators are ______ connected, ______ connected.

Series, shunt, compound

Less, reaction ,armature, voltage drop

13. If the speed of the prime mover driving a self-excited generator is ______, then the small emf generated by ______ will not increase sufficiently to build up the required magnetic flux.

Low, armature The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple.

- 14. A separately excited generator has an effective flux of 8mWb and is operated at a speed of 292 rpm. If the machine constant is 12, determine the:
 - (a) generated voltage; (28V)
 - (b) no-load terminal voltage. (28V)
- 15. Determine the field flux required to produce a no-load voltage of 240V in a separately excited generator rotating at 600rpm with a machine constant of 15. (26.7mWb)
- 16. Determine the speed a prime mover must drive a generator under no load to produce a terminal voltage of 300V. The generator has an effective flux of 20mWb and a machine constant of 15. (1000rpm)
- 17. A generator has an armature resistance of 0.15Ω and a full load resistance of 25Ω . If the open circuit voltage is 250V, determine the terminal voltage at full load. (248.5V)
- 18. A separately excited generator has an effective field flux of 0.02Wb, a machine constant of 12 and spins at 400 rpm. If the generator has an armature circuit resistance of 0.15Ω and an armature current of 20A, determine the load voltage for this condition. (93V)
- 19. The generator shown in figure 36 has a machine constant of 10, and effective flux of 25mWb and is driven at 1000rpm. Determine the:
 - (a) Field current; (111 mA)
 - (b) Generated voltage; (250V)
 - (c) Armature current; (16. 54A)
 - (d) Terminal voltage (248V)
 - (e) Armature circuit voltage drop. (2V)

Figure 36.