Dashboard / My courses / Electrical Fundamentals / TUTORIALS / Week 7 Quiz / Preview

Started on	Tuesday, 5 March 2024, 12:08 PM
State	Finished
Completed on	Tuesday, 5 March 2024, 12:08 PM
Time taken	11 secs
Marks	0.00/13.00
Grade	0.00 out of 10.00 (0 %)
Question 1	
Not answered	
Marked out of 1.00	

1. A DC generator converts _____energy to _____energy.

Your answer is incorrect.

The correct answer is:

(d) mechanical, electrical

Question 2		
Not answered		
Marked out of 1.00		

1. The principle by which emf's are generated in a DC generator is:

a. (a) electromagnetic induction. b. (d) chemical reaction. c. (b) Lenz's law . d. (c) self inductance.

Your answer is incorrect.

The correct answer is:

(a) electromagnetic induction.

Question 3	
Not answered	
Marked out of 1.00	

1. The function of the commutator in a DC generator is to:

🔵 а.	(a)	connect the AC generated in the windings directly to an external circuit.
🔘 b.	(b)	convert the AC generated in the windings to DC when connecting to an external circuit
○ c.	(-)	
	(d)	allow the generator to be converted to a motor.
	(a)	allow the generator to be converted to a motor.
🔘 d.		
	(c)	supply an external current to the armature to drive the generator.

Your answer is incorrect.

The correct answer is:

(b) convert the AC generated in the windings to DC when connecting to an external circuit.

Question 4
Not answered
Marked out of 1.00

1. The windings for the magnetic field system are mounted on the:

Your answer is incorrect.

The correct answer is:

(d) Pole cores.

Question 5	
Not answered	
Marked out of 1.00	

1. The value of the generated emf's in the armature conductors is ______to the field flux, and ______to the armature speed.

🔵 а.		
	(b)	Proportional, inversely proportional
O b.	(a)	Proportional, proportional
Ос.		
	(d)	inversely Proportional, inversely proportional
🔘 d.		
	(c)	inversely Proportional, proportional

Your answer is incorrect.

The correct answer is:

(a) Proportional, proportional

Question 6
Not answered
Marked out of 1.00

1. To increase the output of a generator you could either_____the field current or

_____ the armature speed.

🔘 а.

	(c)	increase, increase
	(c)	increase, increase
) b.	(a)	decrease, decrease
С.		
	(d)	decrease, increase
🔵 d.	(b)	increase, decrease

Your answer is incorrect.

The correct answer is:

(c) increase, increase

(c) increase, increase

Question 7		
Not answered		
Marked out of 1.00		

1. The relationship between current, magnetic flux and the force applied to a conductor within a generator can be determined by:

🔵 а.		
	(d)	Faraday's left hand rule.
🔘 b.	(a)	Fleming's right hand rule.
○ c.	(c)	Faraday's right hand rule.
○ d.	(b)	Fleming's left hand rule.

Your answer is incorrect.

The correct answer is:

(a) Fleming's right hand rule.

Question 8	
Not answered	
Marked out of 1.00	

A single conductor of 150mm length is rotated through a field flux of 0.8T at a velocity of 10m/s. Determine the emf induced in the conductor.

🔵 а.	15V
🔘 b.	12V
○ c.	8V
🔘 d.	10V

Your answer is incorrect. The correct answer is: 12V

Question 9	
Not answered	
Marked out of 1.00	

Determine the flux density of the magnetic field required to generate 12.6V in a conductor with an effective length of 2m which moves through the magnetic field at

90 degree with a uniform velocity of 10.5m/s. (0.6T)

🔵 а.	2T
🔘 b.	0.6T
○ c.	0.3T
○ d.	1T
Your an	swer is incorrect.

The correct	answer	is:
0.6T		

Question 10	
Not answered	
Marked out of 1.00	

A generator is wound with 6 series connected coils, each wound with 40 turns. If the length of the armature is 200mm, the density of the flux is 1.25 Tesla and the armature rotates with a velocity of 2m/s, determine the generated output voltage of the generator.

a. 240Vb. 120Vc. 480V

Your answer is incorrect.

The correct answer is: 240V

05/0

03/2024, 12:08	Week 7 Quiz: Attempt review
Question 11	
Not answered	
Marked out of 1.00	
1. A self-excited shunt generator relies	; on for its initial magnetic flux.

🔵 а.		
	(c)	Field flashing
) b.		
	(b)	Residual magnetism
○ c.	(a)	Separate excitation

Your answer is incorrect.

(d) Good luck

The correct answer is:

(b) Residual magnetism

Question 12	
Not answered	
Marked out of 1.00	

1. The generator type which is used for certain welding applications would be a

_____ type.

🔘 а.		
	(c)	shunt
) b.		
	(b)	cumulatively compounded
○ c.	(a)	Differentially compounded
🔘 d.	(d)	Series

Your answer is incorrect.

The correct answer is: Differentially compounded (a)

Question 13
Not answered
Marked out of 1.00

1. A separately excited generator has an effective flux of 8mWb and is operated at a speed of 292 rpm. If the machine constant is 12, determine the:

(a) generated voltage;

(b) no-load terminal voltage.

a. 14v, 14vb. 28V, 20V

oc. 28V, 28V

Your answer is incorrect.

The correct answer is: 28V, 28V

- Wk 6 Quiz

Jump to ...