ashboard / My course	s / <u>Electrical Fundamentals</u> / <u>TUTORIALS</u> / <u>Week 5 Quiz</u> / <u>Preview</u>
Started on	Monday, 4 March 2024, 11:46 PM
State	Finished
Completed on	Monday, 4 March 2024, 11:46 PM
Time taken	13 secs
Marks	0.00/20.00
Grade	0.00 out of 10.00 (0 %)
Question 1	
Not answered	
Marked out of 1.00	

Magnetic properties state that like magnetic poles _____each other, whilst _____poles ____each other.

a. (d) repel, neutral, attract.
b. (a) repel, unlike, attract.
c. (c) repel, equal, attract.
d. (b) attract, unlike, repel.

Your answer is incorrect.

The correct answer is:

(a) repel, unlike, attract.

Question 2	
Not answered	
Marked out of 1.00	

The north pole of a magnet is said to be:

O a.	(a)	north repelling, repelling the earth's north magnetic pole.
O b.	(b)	north seeking, seeking the earth's north magnetic pole.
O c.	(c)	south seeking, seeking the earth's south magnetic pole.
O d.	(d)	north repelling, seeking the earth's south magnetic pole.

Your answer is incorrect.

The correct answer is:

north seeking, seeking the earth's north magnetic pole.

Question **3** Not answered Marked out of 1.00

A an example of a material which will have a magnetic field induced into it whilst under the influence of an adjacent magnet is:

a. (c) soft iron. O b. A an example of a material which will have a magnetic field induced into it whilst under the influence of an adjacent magnet r. (b) wood.

(b) wood. o. (d) aluminium.

Od. (a) copper.

Your answer is incorrect.

The correct answer is:

soft iron. (c)

Question 4			
Not answer			
Marked out	of 1.00		
		The c	opposition of a material to becoming magnetised is known as:
○ a.	(d)	inductance.	
O b.	(b)	reluctance.	
O c.		impedance.	
d.		resistance.	
O u.	(C)	resistance.	
Your an	swer is i	ncorrect.	
	rect ans		
(b)	reluct	ance.	
Question 5			
Not answer	ed		
Marked out	of 1.00		
		A piece of	will have a lower amount of residual flux when compared to a piece of
			when the magnetic influence is removed.
0.5	(d)	coft iron hand start	
О а.		soft iron, hard steel.	
O b.		soft iron, copper	
O c.		hard steel, copper.	
O d.	(a)	hard steel, soft iron.	
Your an	swer is i	ncorrect.	
	rect ans		
(d)		on, hard steel.	

Question 6		
Not answer	ed	
Marked out	of 1.00	
		Magnetic flux is measured in:
○ a.		
o a.	(b)	Teslas
b.		Magnetia fluvia maggurad in
		Magnetic flux is measured in:
	(a)	Webers.
	(a)	Webers.
○ c.	Henries.	
Your an	swer is inc	orrect.
The cor	rect answe	r is:
		Magnetic flux is measured in:
		(a) Webers.
-		
Question 7 Not answer	ed	
Marked out		
Potonti	ity is an in	dication of how much:
Retentiv	vity is all ii	dication of now much.
○ a.	residual r	nagnetism a material will lose.
O b.	magnetis	m is required to de-magnetise a material.
O c.	magnetis	m is required to magnetise a material.
O d.	residual	magnetism a material will have.
Your an	swer is inc	orrect.
The		
	rect answe	rr is: sm a material will have.
	J	

Question 8		
Not answer	ed	
Marked out	t of 1.00	
The flux	k produce	ed by a magnet is 10mWb. Determine the flux density if the area of the pole is 250 mm ²
О а.	20T	
b.		
O c.	40T	
Your an	iswer is inc	correct.
The cor	rect answ	ver is:
40T		
Question 9		
lot answer		
/larked out	t of 1.00	
a/an	_force exis	rent carrying conductors adjacent to each other have currents flowing through them in opposite directions, then ists between the two coils.
a.	(a)	attraction.
O b.	(d)	inductive.
O c.	(b)	repulsion.
O d.		
	(c)	magneto motive
Your an	swer is inc	correct.
The cor	rect answ	ver is:
(L.)	1.	
(b)	repuls	sion.

/2024, 23:47	Week 5 Quiz: Attempt review
Question 10	
Not answered	
Marked out of 1.00	
1. The mag	netic field around a copper conductor can be increased by:
a. (d)	all of the above
O b. (a)	winding the conductor into a co
O c. (c)	inserting an iron bar into the wound.
O d. (b)	increasing the current through the conductor
Your answer is	s incorrect.
The correct ar (b) ind	nswer is: Creasing the current through the conductor
(b) III	deasing the current through the conductor
Question 11 Not answered	
Marked out of 1.00	
A coil of 120 t	urns has a current of 250mA flowing through it. Determine the magneto motive force produced by the coil
a. 40AT	
a. 40ATb. 30AT	
c. 20AT	
d. 10AT	

Your answer is incorrect.

The correct answer is:

30AT

2024, 23:47	Week 5 Quiz: Attempt review
Question 12	
Not answered	
Marked out of 1.00	
Determine the current that must flow through a is determined to be 5 000At/Wb.	coil of 1500 turns to produce a flux of 15mWb. The reluctance of the magnetic circ
a. 0.05	
O b. 0.5	
○ c. 5	
Your answer is incorrect.	
The correct answer is: 0.05	
0.05	
Question 13	
Not answered	
Marked out of 1.00	
The lagging of changes in magnetic flux der	nsity behind changes in magnetising force is known as:
a.b) permitivity	
o b. d) reluctance	
c. a) eddy current loss	
Od. c) hysterisis	
Your answer is incorrect.	
The correct answer is:	
c) hysterisis	

Question 14		
Not answered		
Marked out of 1.00		

2. occurs when the flux density of a material cannot be increased further for increases in magnetising force.

a.

c) Retentivity

O b.

d) Saturation

c. a) Residual magnetism

d.

b) Coercive force

b) permitivity

Your answer is incorrect.

The correct answer is:

d) Saturation

3/2024, 23:47	Week 5 Quiz: Attempt review
Question 15 Not answered Marked out of 1.00	
1. Fleming's	Right Hand rule is used to determine the direction of the:
a. (b)	induced currents in a conductor
(c)	magnetic field around a single conductor
C. (d)	force exerted on a current carrying conductor
O d. (a)	magnetic field around a solenoid
Your answer is i	ncorrect.
The correct answ	wer is:
(b) induce	ed currents in a conductor
Question 16 Not answered Marked out of 1.00	
	he velocity of a conductor of 200mm length which is moving at a uniform speed through a magnetic field of 1.25 Tesla ght angles to produce a voltage of:
b. 20m/s	

c. 6m/s

Your answer is incorrect.

The correct answer is:

10m/s

/2024, 23:47	Week 5 Quiz: Attempt review
Question 17	
Not answered	
Marked out of 1.00	
Determine the flux density of a magnetic field to produce a voltage of 6V	ld if a conductor 25mm long cuts through the flux at right angles with a velocity of 15m/s
○ a. 20T	
○ b. 16T	
o. 10T	
Your answer is incorrect.	
The correct answer is:	
16T	
Question 18	
Not answered	
Marked out of 1.00	
A coil of 150 turns is lined by a flux of 300m	Wb. If the flux is reduced to 100mWb in 100mS, determine the voltage induced in the coil.
a. 150V	
O b. 200V	
o. 100V	
od. 300V	
Your answer is incorrect.	
The correct answer is:	
300V	

Question 1		
Not answe Marked ou		
viai kea oa	1.00	
1. T	he defle	ecting torque in an analogue meter is produced by.
○ a.		
	(d)	an air dashpot
	(d)	an air dashpot
O b.	(a)	springs
O c.		Lenz's law
O d.	(c)	the coil current
Your ar	nswer is	s incorrect.
The co		iswer is: coil current
Question 2		
Marked ou		
		scaled 0 to 150mA is used with the appropriate shunt to measure a full scale current of 25 amperes. If the scale reading eres what is the current flowing in the circuit?
a.	48A	
O b.	16A	
O c.	32A	
Your ar	nswer is	s incorrect.
The co	rrect ar	iswer is:
⊸ We	ek 4 Qı	uiz
Jump	to	