A.C. Principles

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. The value of $A C$ voltage shown on the name plate of an appliance is the:
(a) average value
(b) peak value
(c) instantaneous value
(d) r.m.s. value
2. The value of $A C$ voltage that has the same heating effect as the equivalent value of DCvoltage is the:
(a) rms value.
(b) peak value.
(c) average value.
(d) peak to peak value.
3. For one complete cycle of an AC supply, the current flow:
(a) will remain constant in magnitude.
(b) will flow in one direction only.
(c) will flow in one direction then reverses direction.
(d) reaches a maximum in one direction then falls to zero.
4. The standard unit of frequency is the:
(a) Hertz (Hz)
(b) Volt (V)
(c) period (T)
(d) cycle per second (CPS)
5. The term frequency of an AC supply is defined as the:
(a) number of cycles completed in one minute.
(b) number of cycles completed in one second.
(c) time required to complete one cycle.
(d) the amount of a cycle completed in one second.

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. The standard_(a)__of the AC supply in Australia is 50 Hz , and this means that there are50_(b).
7. \qquad will continuously change its direction of current flow with time.
8. With reference to a sinusoidal waveform, define what is meant by the following terms:
(a) period;
(b) form factor;
(c) peak value;
(d) average value;
(e) peak to peak value; and
(f) instantaneous value.
9. The ratio of the peak value of voltage to the rms value of voltage is known as the_(a) \qquad , and for a sinusoidal waveform has a value of_(b) \qquad .
10. The ratio of the rms value of voltage to the average value of voltage is known as the __(a) \qquad , and for a sinusoidal waveform has a value of \qquad (b) \qquad -.

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple.
11. A sinusoidal wave has a maximum value of 340 volts. Determine the instantaneous value ofvoltage at angles of:
(a) $45^{0}(240 \mathrm{~V})$
(b) $105^{0}(328.4 \mathrm{~V})$
(c) $260^{\circ}(334.8 \mathrm{~V})$
(d) $330^{\circ}(-170 \mathrm{~V})$
12. A sinusoidal wave has a frequency of 400 Hz .. Determine the period for this frequency.(2.5 mS)
13. A sinusoidal wave has a maximum value of 500 volts. For this wave, determine:
(a) the rms value; (353.6V)
(b) the peak to peak value; (1000V)
(c) the average value. (318.5V)
14. Determine the frequencies for the following periodic times:
(a) 0.02 seconds $(50 \mathrm{~Hz})$
(b) 0.0833 seconds $(12 \mathrm{~Hz})$
(c) 1 millisecond $(1000 \mathrm{~Hz})$
(d) 0.05 milliseconds $(20 \mathrm{kHz})$

The following questions refers to Table 1 and the graph shown on page 4. Add page 4 to your submitted tutorial solution.
15. Complete the sin value row of Table 1 by determining the sine values for the angles asshown.
16. If the maximum voltage of the waveform is 120 V , complete the voltage value row of Table 1 by determining the instantaneous values of voltage for the angles shown using your calculated sin values.
17. Carefully plot the results on the graph supplied, completing your waveform using either French curves or a flexicurve. Do not finish your waveform in freehand!
18. On your completed waveform, label the following:
(a) the peak value,
(b) the peak to peak value,
(c) the periodic time,
19. Draw and label straight lines where you would expect to find the:
(a) the rms value,
(b) the average value.
20. From your waveform, determine the value of voltage
at:(a) $\quad 20^{\circ}(41 \mathrm{~V})$
(b) $100^{0}(118 \mathrm{~V})$
(c) $220^{\circ}(-077 \mathrm{~V})$
(d) $140^{\circ}(77 \mathrm{~V})$

Degrees	0	15	30	45	60	75	90	105	120	135	150	165	180
Sin Value													
Voltage Value													
Degrees	195	210	225	240	255	270	285	300	315	330	345	360	
Sin Value													
Voltage Value													

Table 1

Sinusoidal Waveforms

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. When measuring the phase difference with a CRO., the CRO.
(a) must be able to show two waveforms.
(b) needs to have a high sensitivity.
(c) time base must be re-calibrated.
(d) must be set to DC input.
2. Phasors are quantities which vary in:
(a) magnitude and time only
(b) magnitude and direction only
(c) magnitude, direction and time
(d) direction only
3. If one waveform leads another, then it will pass through \qquad and maximum values \qquad the other waveform.
(a) zero; before
(b) zero; after
(c) zero; simaltaneously with
4. In practice, when representing AC quantities by phasor diagram, the phasors are usually drawnto scale to represent:
(a) rms values
(b) instantaneous values
(c) maximum values
(d) average values
5. The term phase angle is defined as the:
(a) angle used to determine the instantaneous value of voltage or current.
(b) the angular displacement between two waveforms of the same frequency.
(c) the angular displacement between two waveforms of different frequencies.
(d) the number of degrees into a cycle where the peak value is reached.

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. Two waveshapes are said to be \qquad when they pass through their zero points or peak valuessimultaneously.
7. To represent a voltage quantity in a phasor diagram, an arrow with a/an_(a)_head is used, whilst a current quantity is represented by an arrow with a/an \qquad (b)__ head. Draw an example of a voltage phasor representing $100 \mathrm{~V}(1.0 \mathrm{~mm}=2.5 \mathrm{~V})$, and an example of a current phasor representing 24A (1.0mm = 0.3A).
8. If two waveshapes do not pass through the same changes at the same time, they are said to be
\qquad
9. To determine the frequency of a sinewave from a CRO., you would read the_(a)___axis and use the the setting of the __(b)__switch.
10. Briefly describe how you could determine:
(a) if two waveshapes are in phase;
(b) if two waveshapes are out of phase;
(c) if out of phase, which one leads or lags the other.
11. Phasors are normally drawn to scale to represent __quantities.
12. The relationship between frequency and periodic time states that frequency is toperiodic time. This can be written mathematically as \qquad (b)
13. Phasors are said to rotate in a/an \qquad direction.
14. Briefly describe how you could prove that the rms value of a sinewave is 0.707 of the peak peakvalue of a sinewave. Accompany your answer with a clearly labelled diagram.

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple.
15. A display of a sinusoidal waveform on a CRO. is 2.8 divisions high and 8 divisions long. If the VOLTS/DIV is set to 10 V , and the SWEEP TIME/DIV is set to 1 mS , determine:
(a) the peak value of voltage (28 V)
(b) the expected rms value of voltage (19.8V)
(c) the frequency of the waveform $(125 \mathrm{~Hz})$
16. Two sinusoidal waves with a frequency of 50 Hz are displayed on a CRO. If the horizontal displacement between the waveforms is measured to be 3.5 mS , determine the phase anglebetween the two waveshapes (63°)
17. Draw a phasor diagram to represent a voltage V 1 of 240 V and a second voltage V 2 of 180 V , such that V 1 leads V 2 by 50°. Use a scale of $1.0 \mathrm{~mm}=2.0 \mathrm{~V}$, and make V 1 the reference.
18. Draw a phasor to represent a current $I 1$ of 2.5 A , a second current $I 2$ of 3 A and a third current I 3 of 1.75 A , drawn to scale of $1.0 \mathrm{~mm}=25 \mathrm{~mA}$. I 1 leads I 2 by 30°, and I 3 lags I 2 by 45°. Use 12 as your reference phasor.
19. The diagram of figure 1 represents two sinusoidal waveforms of the same frequency. If the VOLTS/DIV switch is set to 10 V , and the SWEEP TIME/DIV switch is set to 5 mS , determine:
(a) the peak values of voltage for waveforms V 1 and V 2 ; ($\mathrm{V} 1 \mathrm{pk}=30 \mathrm{~V}$; $\mathrm{V} 2 \mathrm{pk}=36 \mathrm{~V}$)
(b) the peak to peak values of voltage for waveforms V1 and V2; (V1pk-pk=60V; $\mathrm{V} 2 \mathrm{pk}-\mathrm{pk}=72 \mathrm{~V}$)
(c) the expected rms values of the two waveforms; (V1=21.2V;V2=25.5V)
(d) the frequency of the waveforms; $(20 \mathrm{~Hz})$
(e) the phase angle between the two waveforms; (57.6 ${ }^{\circ}$)
(f) if V1 leads or lags V2.
(g) draw a phasor diagram to represent the two voltages, using a scale of $1.0 \mathrm{~mm}=$ 0.2 V .

Figure 1

Phasor Quantities

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. Current phasors are represented by an arrow with a/an \qquad head, whilst voltage phasors arerepresented by an arrow with a/an_head.
(a) closed, open
(b) open, open
(c) open, closed
(d) closed, closed
2. The resultant of two or more voltages differing in phase angle may be determined by:
(a) algebraic addition
(b) averaging the voltage values
(c) phasor addition
(d) numerical addition
3. To find the phasor difference of two phasor quantities, the method to use is:
(a) tip to tail.
(b) tip to tip.
(c) tail to tail.
(d) non existent.
4. If a phasor is used to show a \qquad quantity, it will be drawn above the \qquad reference line.
(a) lagging, horizontal
(b) leading, horizontal
(c) leading, vertical
(d) lagging, vertical
5. The resultant of two voltages, having the same phase angle but different numerical values can bedetermined by:
(a) numerical addition
(b) numerical subtraction
(c) phasor subtraction
(d) algebraic addition

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. When adding phasor quantities, the method used is described as __(a)__ to __(b)__, but when subtracting phasor quantities, the method used is described as_(c) to_(d)_.
7. Phasor addition or subtraction is used to add or subtract quantities which are differing in .
8. When solving for series circuits using phasor diagrams, the reference to use is circuit_(a)_, whilst for parallel circuits, the reference to use is circuit_(b)_. These references are used because they are_(c) to all parts of their respective circuits.
9. Briefly explain why it is important for phasors to be drawn accurately and to scale.
10. If a phasor quantity leads the reference phasor, it is drawn \qquad (a) __ the reference, and if a phasor quantity lags the reference phasor, it is drawn_(b) the reference.
11. List three advantages of using phasor diagrams for phasor addition or subtraction over using waveform diagrams for waveform addition or subtraction.

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
12. Using a scale of $1 \mathrm{~mm}=1.0$ volts, determine the resultant of the voltages Va and Vb in the diagram of figure 1 by phasor diagram. Clearly label all voltages and angles on your diagram. [120V @ 17° lag]
13. A heating element is connected in parallel to a $240 \mathrm{volt}, 50 \mathrm{~Hz}$ single phase motor. The current drawn by the heating element is 10A, and is in phase with the supply voltage, whilst the current drawn by the motor is 7 A , and lags the supply voltage by 70°. Using a scale of $1 \mathrm{~mm}=0.1 \mathrm{~A}$, determine the current drawn from the supply, and the resultant circuit phase angle. [14A @ 28° lag]
14. A capacitor is connected in series with a resistor. The voltage across the capacitor is 190 volts leading by 90°, and the voltage across the resistor is 147 volts, and is in phase with the circuit

Figure 1
current. Using a scale of $1 \mathrm{~mm}=2.0 \mathrm{~V}$, determine the value of voltage connected across the supply, and the resultant circuit phase angle. [240V @ 52° lead]
15. A 240 volt, 50 Hz single phase motor draws 18 A from the supply at a lagging phase angle of 40°. A capacitor connected across the motor draws 7 A at a leading phase angle of 90°. Using a scale of $1 \mathrm{~mm}=0.2 \mathrm{~A}$, determine the current drawn from the supply, and the resultant circuit phase angle. [14.5A @ 18.5° lag]
16. For the circuit of figure 2, determine the value and phase angle for the branch current 12 . Use a scale of $1 \mathrm{~mm}=0.05 \mathrm{~A}$. [4.5A @ 90° lead].

Figure 2
$\longrightarrow\left[\begin{array}{ll} \\ \hline\end{array}\right.$

Resistance \& Capacitance in AC Circuits

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. The phase angle (ϕ) between voltage and current in a purely resistive circuit is:
(a) 180 electrical degrees.
(b) 90 electrical degrees.
(c) 45 electrical degrees.
(d) 0 electrical degrees.
2. The opposition to current flow in a purely capacitive circuit is known as \qquad and is measuredin
(a) capacitive reactance, ohms
(b) resistance, ohms
(c) capacitive reactance, farads
(d) impedance, farads
3. The phase angle (ϕ) between voltage and current in a purely capacitive circuit is:
(a) 180 electrical degrees.
(b) 90 electrical degrees.
(c) 45 electrical degrees.
(d) 0 electrical degrees.
4. Adding extra resistance to a purely resistive circuit will cause the phase angle (ϕ) betweenvoltage and current to:
(a) increase.
(b) decrease.
(c) remain unchanged.
(d) become maximum.
5. The capacitive reactance of a capacitor is inversely proportional to the \qquad and \qquad value.
(a) supply frequency, capacitance
(b) supply current, capacitance
(c) supply frequency, supply voltage
(d) supply voltage, capacitance
6. Adding extra capacitance to a purely capacitive circuit will cause the phase angle (ϕ) betweenvoltage and current to:
(a) increase.
(b) decrease.
(c) remain unchanged.
(d) become maximum.

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
7. The power dissipation in an AC circuit is known as the__(a)__ power, and for a capacitivecircuit is equal to \qquad (b) \qquad .
8. In a purely resistive circuit, the circuit current and the circuit voltage are \qquad .
9. If extra resistance is added to a purely resistive circuit, the equivalent circuit resistance can befound by.
10. In a purely capacitive circuit, the circuit current and the circuit voltage are_(b) \qquad , and thecurrent(b) \qquad the voltage by \qquad (c) \qquad .
11. The capacitive \qquad (a) \qquad of a capacitor is measured in ohms because it_(b) \qquad current flow.
12. A capacitor "looks" like an \qquad (a) circuit to a DC supply once it is charged, but "looks" like a \qquad (b) \qquad circuit to an AC supply due to the charge and discharge \qquad (c) \qquad that are continuously flowing.
13. A purely resistive $A C$ circuit can be treated in the same manner as a_(a) \qquad circuit. This is because the phase angle (ϕ) in a resistive circuit is_(b) \qquad .

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
14. A circuit of 20Ω resistance draws 16 A when connected to an $A C$ supply. Determine:
(a) the voltage applied to the circuit, (320V)
(b) the power consumed by the circuit, (5.12 kW)
15. A heating element is connected to a 240 volt, 50 Hz supply. If the rating of the heater is 1.5 kW , determine the current flowing in the circuit. (6.25A)
16. Determine the capacitive reactance of a $47 \mu \mathrm{~F}$ capacitor when connected to a $32 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.(67.7 $)$]
17. Determine the current taken by a $390 \mu \mathrm{~F}$ capacitor when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.(29.4A)
18. A capacitor takes 3 A when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine:
(a) the capacitive reactance of the capacitor; (80Ω)
(b) the capacitance of the capacitor. $(39.8 \mu \mathrm{~F})$
19. A capacitor takes 6 A when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine how much current thecapacitor will take if it is reconnected to a $115 \mathrm{~V}, 400 \mathrm{~Hz}$ supply. (23A)
20. For the circuit of figure 1 , determine:
(a) the resistances of R1 and R2; $(4.8 \Omega ; 3.43 \Omega)$
(b) the current taken from the supply; (12A)
(c) the equivalent resistance of the circuit; (2 2)
(d) the power dissipated by each resistive (120W; 168W)
(e) the total power dissipated by the circuit, (288W)
(f) draw the phasor diagram for the circuit.

Figure 1
21. For the circuit of figure 2, determine:
(a) the capacitive reactances of C 1 and C 2 ; (56.8 ; 81.6 Ω
(b) the capacitances of C 1 and C 2 ; $(56 \mu \mathrm{~F} ; 39 \mu \mathrm{~F})$
(c) the current taken from the supply; (7.16A)
(d) the equivalent capacitive reactance of the circuit; (33.5)

(e) the equivalent capacitance of the circuit ($95 \mu \mathrm{~F}$);
(f) the total power dissipated by the circuit, (OW)

Figure 2
(g) draw the phasor diagram for the circuit.

Inductance in AC Circuits

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. The phase angle (ϕ) between voltage and current in a purely inductive circuit is:
(a) 0 electrical degrees.
(b) 45 electrical degrees.
(c) 90 electrical degrees.
(d) 180 electrical degrees.
2. The opposition to current flow in a purely inductive circuit is known as \qquad and is measuredin \qquad
(a) resistance, ohms
(b) inductive reactance, ohms
(c) inductive reactance, henries
(d) impedance, henries
3. Adding extra inductance to a purely inductive circuit will cause the phase angle (ϕ) betweenvoltage and current to:
(a) increase.
(b) decrease.
(c) remain unchanged.
(d) become maximum.
4. Inductors (such as ballasts) are used to control current in AC circuits as they:
(a) have a low power loss.
(b) have a good power factor.
(c) are cheaper than resistors.
(d) have a low value of reactance.
5. The inductive reactance of a inductor is \qquad to the supply frequency and \qquad to the circuit inductance value.
(a) proportional, inversely proportional
(b) proportional, proportional
(c) inversely proportional, inversely proportional
(d) inversely proportional, proportional

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. The power dissipation for an inductive circuit is equal to \qquad (a) . This is because the energyis returned to the supply when the_(b) collapses.
7. Inductive reactance is an example of \qquad Law "in action".
8. In a purely inductive circuit, the circuit current and the circuit voltage are __(b) \qquad , and the current \qquad (b) the voltage by \qquad (c) . This is due to the \qquad (d) \qquad that is continuously generated in the inductor.
9. The inductive __ (a)__ of an inductor is measured in \qquad (b) \qquad because it opposes current flow.
10. An "ideal" inductor has \qquad (a) resistance, whilst a practical inductor has_(b) \qquad .
11. As the frequency of a supply connected to an ideal coil increases, the \qquad (a) \qquad (b) \qquad of the coil increases.

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
12. When connected to a $24 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, an ideal inductor draws 1.2 A . Determine the reactance of the inductor. (20Ω)
13. If a coil of negligible resistance has an inductance of 0.05 henry, determine its inductive reactance if connected to a:
(a) 50 Hz supply, (15.7Ω)
(b) 33 Hz supply, and (10.4Ω)
(c) 1 kHz supply. (314 $)$
14. A coil of negligible resistance draws 0.5 A when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determinethe inductance of the coil. (1.53H)
15. An ideal 153 mH inductor is rated to be used on a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply, but instead is connected toa $200 \mathrm{~V}, 400 \mathrm{~Hz}$ supply. Determine the current flowing in the inductor for both of these conditions. (@50Hz: 5A; @400Hz: 0.52A)
16. A coil of negligible resistance draws 1 A when connected to a $32 \mathrm{~V}, 120 \mathrm{~Hz}$ supply.
(a) Determine how much current it will draw from a $415 \mathrm{~V}, 50 \mathrm{hz}$ supply. (31.1A)
(b) Draw a phasor diagram for each of the operating conditions. Pick a suitable scale for eachdiagram, noting the scales you have used next to your phasor diagrams.

R.L \& R.C Series AC Circuits

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. The phase angle (ϕ) between voltage and current in an R.L. series circuit is between:
(a) 0° and 90° lagging.
(b) 0° and 90° leading.
(c) 90° and 180° lagging.
(d) 90° and 180° leading.
2. Adding extra inductance to an R.L. series circuit will cause the phase angle (ϕ) between voltageand current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
3. The opposition to current flow in any ac circuit containing \qquad and reactive components isknown as \qquad and is measured in ohms.
(a) capacitive, reactance
(b) inductive reactance
(c) resistive, impedance
(d) inductive, impedance
4. Adding extra resistance to an R.C. series circuit will cause the phase angle (ϕ) between voltageand current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
5. If the inductive reactance and resistance of an R.L. series circuit are equal, the circuit phaseangle will be:
(a) 45° lead
(b) 45° lag
(c) 30° lead
(d) $60^{\circ} \mathrm{lag}$

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. To decrease the phase angle in an R.L. series circuit, either_(a)___the circuit resistance, or
\qquad (b) \qquad the circuit inductance.
7. In an impedance triangle for an R.L. series circuit, the circuit resistance is_(a)__ with the reference, the circuit__(b)___will___(c)__the reference, whilst the circuit impedance is the
\qquad (d) \qquad . Accompany your answer with a diagram to show the relationships for a series R.L. circuit.
8. The circuit phase angle for an R.C. circuit is between_(a)___and (b)__, and the currentwil (c) \qquad the voltage.
9. To increase the phase angle in an R.C. series circuit, either_(a)___the circuit resistance, or
\qquad (b) \qquad the circuit \qquad (c) \qquad .
10. Increasing the supply frequency to an R.L. series circuit will cause the circuit phase angle to
\qquad .
11. Decreasing the supply frequency to an R.C. series circuit will cause the circuit phase angle to
\qquad .
12. When using an impedance triangle to solve for series R.L or R.C circuits, the phase angle ismeasured between the circuit \qquad (a))___and the circuit(b) \qquad

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
13. Determine the impedance of a series R.L circuit consisting of a 220Ω resistor and a 1.59 H idealinductor when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (546Ω)
14. If a 120Ω resistor is connected in series with 0.75 H ideal inductor, determine how much currentwill flow if connected to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (1.57A)
15. Determine the impedance if the 220Ω resistor of Q 12 is now connected in series with a $22 \mu \mathrm{~F}$ capacitor when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (263ת)
16. A 560Ω resistor is connected in series with a $5.68 \mu \mathrm{~F}$ capacitor. Determine the current flowing in this circuit if connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (303mA)
17. An R.L. series circuit draws 0.333 A when connected to a $32 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine the value of the circuits resistance and inductance if the circuit phase angle is measured to be 60° lag. ($\mathrm{R}=48 \Omega$; $\mathrm{L}=265 \mathrm{mH}$)
18. When connected to a $200 \mathrm{~V}, 400 \mathrm{~Hz}$ supply, an R.C. series circuit draws 2 A . If the circuit phase angle is found to to 45°, determine the value of the circuits resistance and capacitance. ($\mathrm{R}=70.7 \Omega$; $\mathrm{C}=5.6 \mu \mathrm{~F}$)
19. When connected to a 50 Hz supply, an R.L. series circuit draws 0.4 A . If the voltage drop acrossthe resistor is 16 V , and the voltage drop across the ideal inductor is 12 V , determine:
(a) the voltage applied to the circuit by phasor diagram using a scale of $1 \mathrm{~mm}=0.2 \mathrm{~V}$; (20V)
(b) the circuit phase angle. ($37^{\circ} \mathrm{lag}$)
(c) the resistance of the resistor; (40Ω)
(d) the reactance of the inductor; (30Ω)
(e) the circuit impedance; (50Ω)
(f) the inductance of the inductor; $(95.5 \mathrm{mH})$
(g) the minimum power rating for the resistor. (6.4W)
20. When connected to a 50 Hz supply, an 80Ω resistor connected in series with a $33 \mu \mathrm{~F}$ capacitor draws a current of 2 A . Determine by phasor diagram the voltage applied to the circuit and the circuit phase angle using a scale of $1 \mathrm{~mm}=2 \mathrm{~V} .\left(250 \mathrm{~V} ; \phi=50^{\circ} \mathrm{lead}\right)$

Series R.L.C Circuits

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. If the circuit phase angle in an R.L.C. series circuit is between 0° and 90° lagging, then the \qquad is higher than the \qquad .

-

4. Series resonance occurs when:
(a) $X_{L}=Z$
(b) $X_{C}=Z$
(c) $X_{L}=X_{C}$
(d) $X_{L}+X_{C}=R$
5. As the voltage drops in a series R.L.C. circuit are \qquad , they are added by \qquad .
(a) out of phase, phasor addition
(b) in phase, phasor addition
(c) out of phase, numerical addition
(d) in phase, numerical addition

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. To decrease the phase angle in a series R.L.C. circuit, either \qquad (a) the circuit effective reactance, or \qquad (b) __ the circuit resistance.
7. At series resonance, the circuit impedance is a \qquad (a) value, and the circuit current is a - (b) \qquad value.
8. If resonance occurs in a power series R.L.C. circuit, the \qquad (a) a)__ across the reactive components can become \qquad (b) \qquad .
9. Increasing the supply frequency to a series R.L.C. circuit with a leading phase angle will cause the inductive reactance to \qquad the capacitive reactance to \qquad (b) \qquad , and the circuit phase angle to \qquad (c) .
10. Decreasing the supply frequency to a lagging R.L.C. series circuit will cause the circuit phase angle to \qquad .
11. When a series circuit is operating at resonant frequency, \qquad (a) a) reactance equals \qquad (b) \qquad , and impedance equals \qquad (b) and the circuit current is \qquad (c) \qquad

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
12. A 27Ω resistor is connected in series with a 250 mH inductor and a $33 \mu \mathrm{~F}$ capacitor. If connected to a 50 Hz supply, determine the impedance of the circuit. (32.4Ω)
13. Determine the supply current if a 50Ω resistor is connected in series with an inductor with a reactance of 60Ω and a capacitor with a reactance of 80Ω when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (4.46A)
14. A 200 mH inductor is connected in series with a $100 \mu \mathrm{~F}$ capacitor and an unknown resistor. Determine the value of the unknown resistor if the circuit draws 5A when connected to a 240 V , 50 Hz supply. (36.6 $)$
15. For the circuit of figure 1 , determine the:
(a) reactance of the inductor (235.6Ω)
(b) reactance of the capacitor (159Ω)
(c) impedance of the circuit (280.6Ω)

Figure 1
(d) current flowing in the circuit $(1.48 \mathrm{~A})$
(e) voltage drop across the inductor $(348 \mathrm{~V})$
(f) voltage drop across the capacitor (235 V)
(g) voltage drop across the resistor (399 V)
(h) circuit phase angle $\left(15.8^{\circ} \mathrm{lag}\right)$
16. If the circuit of figure is connected to a variable frequency power supply, determine the resonant frequency of the circuit. (41 Hz)
17. When connected to a 50 Hz supply, an 560Ω resistor connected in series with a 2.71 H ideal inductor and a $5 \mu \mathrm{~F}$ capacitor draws a current of 400 mA . Determine by phasor diagram the voltage applied to the circuit and the circuit phase angle using a scale of $1 \mathrm{~mm}=2 \mathrm{~V}$. ($240 \mathrm{~V} ; 21^{\circ} \mathrm{lag}$)

Parallel A.C. Circuits

Please note the following requirements in relation to tutorial work -

- All tutorial work is to be completed on ruled A4 pad paper, with multiple pages stapled together. Write on one side only of the answer sheets, and all work is to be completed in ink.
- In the case of multiple choice type questions, the question number and corresponding answer letter are to be written on the answer sheet.
- In the case of short answer type questions, the question and part number with your word or phrase choice is to be written on the answer sheet.
- All relevant equations and working are to be shown in the case of calculation type questions.

SECTION A

In the following statements one of the suggested answers is best. Place the identifying letter of your choice on your answer sheet.

1. The phase angle (ϕ) between voltage and current in an R.C. parallel circuit is between:
(a) 0° and 90° lagging.
(b) 0° and 90° leading.
(c) 90° and 180° lagging.
(d) 90° and 180° leading.
2. Adding extra inductance to an R.L. parallel circuit will cause the phase angle (ϕ) betweenvoltage and current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
3. In a parallel resonant circuit, circuit impedance is a \qquad and circuit current is a \qquad .
(a) maximum, maximum
(b) minimum, minimum
(c) maximum, minimum
(d) minimum, maximum
4. Adding extra capacitance to a leading R.L.C. parallel circuit will cause the phase angle (ϕ) between voltage and current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
5. In a parallel L.C. circuit, the component with the largest \qquad will determine the phase anglefor the circuit.
(a) current
(b) voltage
(c) reactance
(d) resistance

For the following questions, complete the statements on your answer sheet with the word or phrase you think fits best.
6. To decrease the phase angle in an R.L. parallel circuit, either_(a)___the circuit resistance, or
\qquad (b) ___the circuit inductance.
7. Increasing the frequency of the supply to an R.L.C. parallel circuit will cause the resistivecurrent to_(a) \qquad the inductive current to \qquad (b) and the capacitive current to (c) \qquad
8. The circuit phase angle for an R.L. parallel circuit is between_(a) \qquad and \qquad (b) \qquad , and thecurrent will_(c) the voltage.
9. To increase the phase angle in an R.C. parallel circuit, either_(a)___the circuit resistance, or
\qquad (b) \qquad the circuit \qquad (c) \qquad .
10. Increasing the supply frequency to an R.L. parallel circuit will cause the circuit phase angle to
\qquad .
11. Decreasing the supply frequency to an R.C. parallel circuit will cause the circuit phase angle to
\qquad .
12. At parallel resonance, the circulating_(a)__ between the reactive components can be ___(b) \qquad

SECTION B

The following problems are to be solved with the aid of a calculator. Any working for a problem is to be fully shown. Where a problem involves calculating for circuit conditions, a neat and fully labelled circuit diagram (if not provided) is to accompany the question. Answers are to be expressed in the appropriate multiple or sub-multiple. Any question solved by phasor diagram should be drawn accurately to scale on 5 mm graph paper attached to your solution.
13. For the circuit of figure 1 , if the capacitive reactance is 25Ω, the inductive reactance is 30Ω and the resistance is 10Ω, determine
(a) the impedance, current and phase angle for the capacitive branch; ($25 \Omega, 8 \mathrm{~A}, 90^{\circ}$ lead)
(b) the impedance, current and phase angle for the inductive branch; ($31.6 \Omega, 6.33 \mathrm{~A}, 71.5^{\circ} \mathrm{lag}$)

200 V
50 Hz
Suppl
y
(c) the supply current and circuit phase angle; $\left(2.83 \mathrm{~A}, 45^{\circ}\right.$ lead) $(1 \mathrm{~mm}=0.1 \mathrm{~A}$
(d) the circuit impedance. (70.6)
14. For the circuit of figure 1 , if the capacitor is $25 \mu \mathrm{~F}$, the inductor is 250 mH and the resistance is 15Ω, determine:
(a) the capacitive current and phase angle; (1.57A, 90° lead)
(b) the inductive current and phase angle; ($2.5 \mathrm{~A}, 79^{\circ} \mathrm{lag}$)
(c) the supply current and circuit phase angle; ($\left.1 \mathrm{~A}, 61.6^{\circ} \mathrm{lag}\right)(1 \mathrm{~mm}=25 \mathrm{~mA})$
(d) the circuit impedance (200 $)$
15. If a 120Ω resistor is connected in parallel with 382 mH inductor with a resistance of 35Ω, determine how much current will flow if connected to a $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. (5.4A)
$(1 \mathrm{~mm}=50 \mathrm{~mA})$
16. An L.C. parallel circuit is connected to a single phase $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the current through the capacitor 12 A , and the current through the inductor is 16 A at a phase angle of 60° lagging, determine the:
(a) impedance of the inductor; (15
(b) resistance of the inductor; (7.5ת)
(c) impedance of the capacitor; (20ת)
(d) current drawn from the supply; (8.2A) $(1 \mathrm{~mm}=0.2 \mathrm{~A})$
(e) circuit phase angle. ($13.1^{\circ} \mathrm{lag}$)
(f) circuit impedance; (29.3)
17. An 80Ω resistor connected in parallel with a $33 \mu \mathrm{~F}$ capacitor is connected to a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine by phasor diagram the current drawn from the supply and the circuit phase angle using a scale of $1 \mathrm{~mm}=0.05 \mathrm{~A}$. $\left(4 \mathrm{~A} ; \phi=40^{\circ}\right.$ lead $)$

