1. The value of $A C$ voltage shown on the name plate of an appliance is the:
(a) average value
(b) peak value
(c) instantaneous value
(d) r.m.s. value
2. The value of $A C$ voltage that has the same heating effect as the equivalent value of DCvoltage is the:
(a) rms value.
(b) peak value.
(c) average value.
(d) peak to peak value.
3. For one complete cycle of an AC supply, the current flow:
(a) will remain constant in magnitude.
(b) will flow in one direction only.
(c) will flow in one direction then reverses direction.
(d) reaches a maximum in one direction then falls to zero.
4. The standard unit of frequency is the:
(a) Hertz (Hz)
(b) Volt (V)
(c) period (T)
(d) cycle per second (CPS)
5. A sinusoidal wave has a maximum value of 340 volts. Determine the instantaneous value ofvoltage at angles of:
(a) $45^{\circ}(240 \mathrm{~V})$
(A sinusoidal wave has a frequency of 400 Hz .. Determine the period for this frequency. (2.5 mS)

Tutorial 1	A.C. Principleps

1. When measuring the phase difference with a CRO., the CRO.
(a) must be able to show two waveforms.
(b) needs to have a high sensitivity.
(c) time base must be re-calibrated.
(d) must be set to DC input.
se
2. Phasors are quantities which vary in:
angl
e of
(a) magnitude and time only
(b) magnitude and direction only 90°. Usi
(c) magnitude, direction and time ng a
(d) direction only
e of
1 m
$\mathrm{m}=$
3. Two sinusoidal waves with a frequency of 50 Hz are displayed on a 0.2 CRO. If the horizontal displacement between the waveforms is A, measured to be 3.5 mS , determine the phase angle between the two waveshapes $\left(63^{\circ}\right)$
dete
rmin
4. Current phasors are represented by an arrow with a/an_head, whilst voltage phasors arerepresented by an arrow with a/an__head.

(a) closed, open	dra
(b) open, open	wn
(c) open, closed	fro
(d) closed, closed	m
(he	

2. The resultant of two or more voltages differing in phase angle may be determined by:
(a) algebraic addition
(b) averaging the voltage values
(c) phasor addition
(d) numerical addition
the
sup
3. A 240 volt, 50 Hz single phase motor draws 18 A from the supply at a lagging phase angle of 40°. A capacitor connected across the motor
\qquad
4. The opposition to current flow in a purely capacitive circuit is known as __and is measuredin \qquad
(a) capacitive reactance, ohms
(b) resistance, ohms
(c) capacitive reactance, farads
(d) impedance, farads
5. The phase angle (ϕ) between voltage and current in a purely capacitive circuit is:
(a) 180 electrical degrees.
(b) 90 electrical degrees.
(c) 45 electrical degrees.
(d) 0 electrical degrees.
6. Adding extra capacitance to a purely capacitive circuit will cause the phase angle (ϕ) betweenvoltage and current to:
(a) increase.
(b) decrease.
(c) remain unchanged.
(d) become maximum.
7. Determine the capacitive reactance of a $47 \mu \mathrm{~F}$ capacitor when connected to a $32 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.(67.7 $)$]
8. Determine the current taken by a $390 \mu \mathrm{~F}$ capacitor when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.(29.4A)
9. A capacitor takes 3 A when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine:
(a) the capacitive reactance of the capacitor; (80Ω)
(b) the capacitance of the capacitor. $(39.8 \mu \mathrm{~F})$
10. Adding extra inductance to an R.L. series circuit will cause the phase angle (ϕ) between voltageand current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
11. The opposition to current flow in any ac circuit containing \qquad and reactive components is known as \qquad and is measured in ohms.
(a) capacitive, reactance
(b) inductive reactance
(c) resistive, impedance
(d) inductive, impedance
12. In a parallel resonant circuit, circuit impedance is a \qquad , and circuit current is a \qquad .
(a) maximum, maximum
(b) minimum, minimum
(c) maximum, minimum
(d) minimum, maximum
13. Adding extra capacitance to a leading R.L.C. parallel circuit will cause the phase angle (ϕ)
between voltage and current to:
(a) remain unchanged.
(b) increase.
(c) become maximum.
(d) decrease.
14. In a parallel L.C. circuit, the component with the largest \qquad will determine the phase anglefor the circuit.
(a) current
(b) voltage
(c) reactance
(d) resistance
15. An L.C. parallel circuit is connected to a single phase $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the current through the capacitor 12A, and the current through the inductor is 16 A at a phase angle of 60° lagging, determine the:
(a) impedance of the inductor; (15Ω)
(b) resistance of the inductor; (7.5Ω)
(c) impedance of the capacitor; (20 $)$
(d) current drawn from the supply; $(8.2 \mathrm{~A})(1 \mathrm{~mm}=0.2 \mathrm{~A})$
(e) circuit phase angle. $\left(13.1^{0} \mathrm{lag}\right)$
(f) circuit impedance; (29.3 $)$
16. An 80Ω resistor connected in parallel with a $33 \mu \mathrm{~F}$ capacitor is connected to a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine by phasor diagram the current drawn from the supply and the circuit phase angle using a scale of $1 \mathrm{~mm}=0.05 \mathrm{~A} .\left(4 \mathrm{~A} ; \phi=40^{\circ}\right.$ lead $)$
17. 240 volt, 50 Hz single phase motor draws 18 A from the supply at a lagging phase angle of 400 . A capacitor connected across the motor draws 7A at a leading phase angle of 90°. Using a scale of $1 \mathrm{~mm}=0.2 \mathrm{~A}$, determine the current drawn from the supply, and the resultant circuit phase angle.
[14.5A @ $18.5^{\circ} \mathrm{lag}$]
