- 1. The value of AC voltage shown on the name plate of an appliance is the:
 - (a) average value
 - (b) peak value
 - (c) instantaneous value
 - (d) r.m.s. value
- 2. The value of AC voltage that has the same heating effect as the equivalent value of DCvoltage is the:
 - (a) rms value.
 - (b) peak value.
 - (c) average value.
 - (d) peak to peak value.
- 3. For one complete cycle of an AC supply, the current flow:
 - (a) will remain constant in magnitude.
 - (b) will flow in one direction only.
 - (c) will flow in one direction then reverses direction.
 - (d) reaches a maximum in one direction then falls to zero.
- 4. The standard unit of frequency is the:
 - (a) Hertz (Hz)
 - (b) Volt (V)
 - (c) period (T)
 - (d) cycle per second (CPS)

A.C. Principles

.

5. A sinusoidal wave has a maximum value of 340 volts. Determine the instantaneous value of voltage at angles of:

(a) 45° (240V)

(A sinusoidal wave has a frequency of 400 Hz.. Determine the period for this frequency. (2.5mS)

		dra
Tutorial 1		A.C. Principles
1.	 When measuring the phase difference with a CRO., the CRO. (a) must be able to show two waveforms. (b) needs to have a high sensitivity. (c) time base must be re-calibrated. (d) must be set to DC input. 	7A at a lead ing pha se angl e of
2.	 Phasors are quantities which vary in: (a) magnitude and time only (b) magnitude and direction only (c) magnitude, direction and time (d) direction only 	90 ⁰ . Usi ng a scal e of 1m
3.	Two sinusoidal waves with a frequency of 50 Hz are displayed on a CRO. If the horizontal displacement between the waveforms is measured to be 3.5 mS, determine the phase angle between the two waveshapes (63°)	m = 0.2 A, dete rmin e the
1.	Current phasors are represented by an arrow with a/an_head, whilst voltage phasors arerepresented by an arrow with a/an_head. (a) closed, open (b) open, open (c) open, closed (d) closed, closed	curr ent dra wn fro m the
2.	The resultant of two or more voltages differing in phase angle may be determined by: (a) algebraic addition (b) averaging the voltage values (c) phasor addition (d) numerical addition	sup ply, and the resu Itant circ uit
3.	A 240 volt, 50Hz single phase motor draws 18A from the supply at a lagging phase angle of 40^{0} . A capacitor connected across the motor	pha se angl

e. [14.5A @ 18.5⁰ lag]

and _____

- 1. The opposition to current flow in a purely capacitive circuit is known as __and is measured in ___
 - $(a) \ \ \text{capacitive reactance, ohms}$
 - (b) resistance, ohms
 - (c) capacitive reactance, farads
 - (d) impedance, farads
- 2. The phase angle (ϕ) between voltage and current in a purely capacitive circuit is:
 - (a) 180 electrical degrees.
 - (b) 90 electrical degrees.
 - (c) 45 electrical degrees.
 - (d) 0 electrical degrees.

- 3. Adding extra capacitance to a purely capacitive circuit will cause the phase angle (ϕ) betweenvoltage and current to:
 - (a) increase.
 - (b) decrease.
 - (c) remain unchanged.
 - (d) become maximum.
 - 4. Determine the capacitive reactance of a 47μ F capacitor when connected to a 32V, 50Hz supply.(67.7 Ω)]
 - 5. Determine the current taken by a 390μ F capacitor when connected to a 240V, 50Hz supply.(29.4A)
 - 6. A capacitor takes 3A when connected to a 240V, 50Hz supply. Determine:
 - (a) the capacitive reactance of the capacitor; (80Ω)
 - (b) the capacitance of the capacitor. $(39.8\mu F)$
 - 1. Adding extra inductance to an R.L. series circuit will cause the phase angle (ϕ) between voltageand current to:
 - (a) remain unchanged.
 - (b) increase.
 - (c) become maximum.
 - (d) decrease.
 - 2. The opposition to current flow in any ac circuit containing ____and reactive components is known as _____and is measured in ohms.
 - (a) capacitive , reactance
 - (b) inductive reactance
 - (c) resistive, impedance
 - (d) inductive, impedance
 - 1. In a parallel resonant circuit, circuit impedance is a___, and circuit current is a____.
 - (a) maximum, maximum
 - (b) minimum, minimum
 - (c) maximum, minimum
 - (d) minimum, maximum
 - 2. Adding extra capacitance to a leading R.L.C. parallel circuit will cause the phase angle (ϕ)

between voltage and current to:

- (a) remain unchanged.
- (b) increase.
- (c) become maximum.
- (d) decrease.

- 3. In a parallel L.C. circuit, the component with the largest will determine the phase anglefor the circuit.
 - (a) current
 - (b) voltage
 - (c) reactance
 - (d) resistance
 - 4. An L.C. parallel circuit is connected to a single phase 240V, 50Hz supply. If the current through the capacitor 12A, and the current through the inductor is 16A at a phase angle of 60⁰ lagging, determine the:
 - (a) impedance of the inductor; (15Ω)
 - (b) resistance of the inductor; (7.5Ω)
 - (c) impedance of the capacitor; (20Ω)
 - (d) current drawn from the supply; (8.2A) (1mm = 0.2A)
 - (e) circuit phase angle. (13.1⁰ lag)
 - (f) circuit impedance; (29.3Ω)
 - 5. An 80 Ω resistor connected in parallel with a 33 μ F capacitor is connected to a 250V, 50Hz supply. Determine by phasor diagram the current drawn from the supply and the circuit phase angle using a scale of 1mm = 0.05A. (4A; $\phi = 40^{\circ}$ lead)

1. 240 volt, 50Hz single phase motor draws 18A from the supply at a lagging phase angle of 400. A capacitor connected across the motor draws 7A at a leading phase angle of 90° . Using a scale of 1mm = 0.2A, determine the current drawn from the supply, and the resultant circuit phase angle. [14.5A @ 18.5^o lag]