Dashboard / My courses / Electrical Fundamentals / TUTORIALS / Week 3 Quiz / Preview

Started on	Monday, 4 March 2024, 7:17 PM
State	Finished
Completed on	Monday, 4 March 2024, 7:17 PM
Time taken	14 secs
Marks	$0.00 / 20.00$
Grade	$\mathbf{0 . 0 0}$ out of $10.00(\mathbf{0 \%})$
$\left.\begin{array}{ll}\text { Question } \mathbf{1} \\ \text { Not answered } \\ \text { Marked out of } 1.00 & \\ \hline\end{array}\right)$	

1. The value of $A C$ voltage shown on the name plate of an appliance is the:
a. (d) r.m.s. value
b. (a) average value
c. (b) peak value
d. (c) instantaneous value

Your answer is incorrect.

The correct answer is:
(d) r.m.s. value

Question 2

Not answered
Marked out of 1.00

1. The value of $A C$ voltage that has the same heating effect as the equivalent value of $D C$ voltage is the:
a. (a) rms value.
b. (d) peak to peak value.
c. (b) peak value.
d. (c) average value.

Your answer is incorrect.

The correct answer is:
(a) rms value.

Question 3

Not answered
Marked out of 1.00

1. For one complete cycle of an AC supply, the current flow:
a. (c) will flow in one direction then reverses direction.
b. (d) reaches a maximum in one direction then falls to zero.
c. (a) will remain constant in magnitude.
d. (b) will flow in one direction only.

Your answer is incorrect.
The correct answer is:
(c) will flow in one direction then reverses direction.

1. The standard unit of frequency is the:
a. (c) period (T)
b. (a) Hertz (Hz)
c. (d) cycle per second (CPS)
d. (b) Volt (V)

Your answer is incorrect.

The correct answer is:
(a) Hertz (Hz)

Question 5

Not answered
Marked out of 1.00

1. A sinusoidal wave has a maximum value of 340 volts. Determine the instantaneous value of voltage at angles of: (a) 45°
(A sinusoidal wave has a frequency of 400 Hz .. Determine the period for this frequency.
a. $(120 \mathrm{~V})(5 \mathrm{mS})$
b. $(240 \mathrm{~V})(2.5 \mathrm{mS})$
c. $(200 \mathrm{~V})(3 \mathrm{mS})$

Your answer is incorrect.
The correct answer is:
(240V) (2.5mS)

Question 6

Not answered
Marked out of 1.00

1. When measuring the phase difference with a CRO., the CRO.
a. (a) must be able to show two waveforms.
b. (c) time base must be re-calibrated.
c. (d) must be set to DC input.
d. (b) needs to have a high sensitivity.

Your answer is incorrect.

The correct answer is:
(a) must be able to show two waveforms.

Question 7

Not answered
Marked out of 1.00

Phasors are quantities which vary in:

a. (b) magnitude and direction only
b. (c) magnitude, direction and time
c. (a) magnitude and time only
d. (d)
(a) direction only
(d) direction only

Your answer is incorrect.
The correct answer is:
(b) magnitude and direction only

Question 8

Not answered
Marked out of 1.00

Two sinusoidal waves with a frequency of 50 Hz are displayed on a CRO. If the horizontal displacement between the waveforms is measured to be 3.5 mS , determine the phase angle between the two waveshapes
a. 30 degree
b. 90 degreec. 63 degreed. 45 degree

Your answer is incorrect.

The correct answer is:
63 degree

Question 9

Not answered
Marked out of 1.00

1. The resultant of two or more voltages differing in phase angle may be determined by:
a. (d) numerical additionb. (b) averaging the voltage values
c. (c) phasor addition
d. (a) algebraic addition

Your answer is incorrect.

The correct answer is:
(c) phasor addition

Question 10

Not answered
Marked out of 1.00

240 volt, 50 Hz single phase motor draws 18 A from the supply at a lagging phase angle of 400 . A capacitor connected across the motor draws 7 A at a leading phase angle of 90°. , determine the current drawn from the supply
a. 25 A
b. 14.5 Ac. 20 Ad. 10 A

Your answer is incorrect.

The correct answer is:
14.5A

Question 11

Not answered
Marked out of 1.00

1. The opposition to current flow in a purely capacitive circuit is known as \qquad and is measured ina. (b) resistance, ohms
b. (c) capacitive reactance, farads
c. (d) impedance, farads
d. (a) capacitive reactance, ohms

Your answer is incorrect.
The correct answer is:
(a) capacitive reactance, ohms

Question 12

Not answered
Marked out of 1.00

The phase angle (f) between voltage and current in a purely capacitive circuit is:
a. (a) 180 electrical degrees.
b. 1 .
(d) 0 electrical degrees.The phase angle (f) between voltage and current in a purely capacitive circuit is:
(c) 45 electrical degrees.
(c) 0 electrical degreec. (b) 90 electrical degrees.

Your answer is incorrect.

The correct answer is:
(b) 90 electrical degrees.

Question 13

Not answered
Marked out of 1.00

Adding extra capacitance to a purely capacitive circuit will cause the phase angle (f) between voltage and current to:
a.
(b) decrease.b. (d) become maximum.c. (a) increase.d. (c) remain unchanged.

Your answer is incorrect.

The correct answer is:
(a) increase.

Determine the current taken by a 390 mF capacitor when connected to a $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.
a. (39.4A)b. $(29.4 \mathrm{~A})$
c. $(49.4 \mathrm{~A})$

Your answer is incorrect.
The correct answer is:
(29.4A)

Question 15

Not answered
Marked out of 1.00

In a parallel resonant circuit, circuit impedance is a \qquad and circuit current is a \qquad -.a. (b) minimum, minimumb. (d) minimum, maximumC. (a) maximum, maximumd. (c) maximum, minimum

Your answer is incorrect.
The correct answer is:
(c) maximum, minimum

Question 16

Not answered
Marked out of 1.00

1. Adding extra capacitance to a leading R.L.C. parallel circuit will cause the phase angle (f) between voltage and current to:a. (c) become maximum.b. (b) increase.c. (a) remain unchanged.
d. (d) decrease.

Your answer is incorrect.
The correct answer is:
(b) increase.

Question 17

Not answered
Marked out of 1.00

In a parallel L.C. circuit, the component with the largest \qquad will determine the phase angle for the circuit.
a. (b) voltageb. (d) resistancec. (a) current
d. (c) reactance

Your answer is incorrect.
The correct answer is:
(c) reactance

1. An L.C. parallel circuit is connected to a single phase $240 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. If the current through the capacitor 12 A , and the current through the inductor is 16 A at a phase angle of 60° lagging, determine the:
(a) impedance of the inductor;
(b) resistance of the inductor;
(c) impedance of the capacitor;
(d) current drawn from the supply;)
(e) circuit impedance;
a. $(25$ ohm $)(8.5$ ohm $)(20$ ohm $)(8.2 A)(30.3$ ohm $)$
b. (35 ohm) (17.5 ohm) (50 ohm) (8.2A) (29.3 ohm)
c. $(15$ ohm $)(7.5$ ohm $)(20$ ohm $)(8.2 A)(29.3$ ohm $)$

Your answer is incorrect.
The correct answer is:
(15 ohm) (7.5 ohm) (20 ohm) (8.2A) (29.3 ohm)

Question 19

Not answered
Marked out of 1.00

An 80 ohm resistor connected in parallel with a 33 mF capacitor is connected to a $250 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Determine by phasor diagram the current drawn from the supply and the circuit phase angle using a scale of $1 \mathrm{~mm}=0.05 \mathrm{~A}$.
a. $6 \mathrm{~A}, 20$ degree
b. 4A, 40 Degree
c. 2A 40 Degree

Your answer is incorrect.
The correct answer is:
4A, 40 Degree

Question 20

Not answered
Marked out of 1.00

1. The opposition to current flow in any ac circuit containing \qquad and reactive components is known as \qquad and is measured in ohms.
a. (c) resistive, impedance
b. (a) capacitive, reactance
c. (d) inductive, impedance
d. (b) inductive reactance

Your answer is incorrect.
The correct answer is:
(c) resistive, impedance

- Week 2 Quiz

Jump to...

