- 1. In a parallel circuit the supply current is equal to the:
 - (a) total power multiplied by the supply voltage
 - (b) sum of the branch currents
 - (c) supply voltage divided by the resistance of any one branch
 - (d) ratio of the branch currents
- 2. Connecting resistors in parallel produces the same general effect as:
 - (a) increasing the temperature of a metallic conductor
 - (b) increasing the cross-sectional area of a conductor
 - (c) increasing the length of a conductor
 - (d) decreasing the conductance of a conductor.
- 3. When three 10Ω resistors are connected in parallel to each other, the voltage drop across each is:
 - (a) one third of the supply voltage
 - (b) supply voltage divided by 10
 - (c) equal to the supply voltage
 - (d) supply voltage divided by 30.

- 4. The lowest value of resistance in any parallel combination of resistors is always:
 - (a) equal to the equivalent resistance of the combination.
 - (b) less than the equivalent resistance of the combination.
 - (c) dependent on voltage and current for its resistance.
 - (d) greater than the equivalent resistance of the combination.
- 5. Twenty five resistors each with a resistance of 100Ω are connected in parallel with each other. The equivalent resistance of the combination is:
 - (a) 100 Ω
 - (b) 2500 Ω
 - (c) 4 Ω
 - (d) 25 Ω
- 6. A parallel circuit is defined as a circuit with:
 - (a) more than one resistor
 - (b) more than one current path
 - (c) only one current path
 - (d) more than one supply voltage
- 7. If an extra parallel connected resistor is added to a circuit, the equivalent resistance of the circuit will:
 - (a) increase
 - (b) remain unchanged
 - (c) decrease
 - (d) cause the applied voltage to increase.
- 8. The voltage in a parallel circuit:
 - (a) is the same in all parts of the circuit
 - (b) decreases through the circuit from resistor to resistor
 - (c) greater than the supply voltage
 - (d) increases with increase resistance.

- 1. The voltages in the parallel section of a series-parallel circuit:
 - (a) are affected by the circuit equivalent resistance
 - (b) are difficult to determine
 - (c) are the same across the parallel components
 - (d) decrease through the circuit from component to component
- 2. If one resistor in the parallel section of a series-parallel circuit goes open circuit, the circuit power dissipation will:
 - (a) remain constant.
 - (b) decrease.
 - (c) increase.
 - (d) decrease to zero.
- 3. The power dissipation of any circuit:
 - (a) equal to the sum of the power dissipation of each resistor.
 - (b) equal to the product of the power dissipation of each resistor.
 - (c) equal to the supply voltage squared times the circuit equivalent resistance.
 - (d) depends on the circuit arrangement.

- 4. In the circuit of figure 12, the supply current is equal to the:
 - (a) value of branch currents.
 - (b) product of the branch currents.
 - (c) sum of the currents in each resistor.
 - (d) sum of the branch currents.

5. For the circuit of figure 14, determine the -

 R_2

- (d) power dissipated by each component (4408W, 863.3W, 647.47W)
- (e) total power dissipation (5915.6W)
- 1. The resistance of a conductor is said to be:
 - (a) proportional to its length.
 - (b) inversely proportional to its length.
 - (c) proportional to its cross-sectional area.
 - (d) inversely proportional to its resistivity.
- 2. If all other factors remain constant while the length of a conductor is halved, the resistance of the conductor is:
 - (a) doubled.
 - (b) squared
 - (c) halved
 - (d) quartered

- 2. The voltmeter sensitivity or the resistance of a voltmeter is given in terms of:
 - (a) volts per ohm
 - (b) ohms per volt
 - (c) volts per ampere
 - (d) ampere per volt.
- 3. An AVO-7 multimeter has a sensitivity of 500 ohms/volt. Determine the resistance of the meter when used on the:
 - (a) 25 V range
 - (b) 1000 V range.
- 4. Referring to figure 18. Determine the:

(a) voltage across R_2 figure 18

(b) voltage across R_2 if the voltmeter has a resistance of 20 $M\Omega$

5. Question 15 refers to figure 19, determine:

figure 19

- (a) the value of the current through Rsh.
- (b) the voltage drop across R_2
- (c) the power rating of R_1

(a) .

- 2. Which of the following cannot be used as a dielectric:
 - (a) air
 - (b) paper
 - (c) carbon
 - (d) polyester
- 3. Decreasing the plate area of a capacitor:
 - (a) increases its capacitance
 - (b) does not effect its capacitance
 - (c) decreases its capacitance
 - (d) increases its dielectric strength
- 4. The practical unit of capacitance is the:
 - (a) micro-coulomb
 - (b) milli-farad
 - (c) micro-farad
 - (d) farad.
- 5. An R-C circuit consists of a resistance of $120k\Omega$ and a capacitance of 36μ F.Determine the -
 - (a) time constant of the circuit (4.32 seconds)
 - (b) time taken for the capacitor to fully charge. (21.6 seconds)
- 6. An R-C circuit has an applied voltage of 24V. What is the voltage across the capacitorafter one time constant. (15.17V)
- 1. Two, 2 µF capacitors connected in parallel will have a total capacitance of:

- (a) 4 µF
- (b) 2 µF
- (c) 1 µF
- (d) $0.5 \,\mu F$

- 2. Two, 4 µF capacitors connected in series will have a total capacitance of:
 - (a) 8 μF(b) 4 μF
 - (c) 2 µF
 - (d) 0.25 µF.
- 3. Three capacitors having capacitances of 4, 6 and $12 \,\mu\text{F}$ are connected in series across a 120V supply. Calculate the
 - (a) equivalent capacitance $(2 \mu F)$
 - (b) total charge stored (0.00024C)
 - (c) charge stored on each capacitor (0.00024C)
- 4. Three capacitors are connected in series have an equivalent capacitance of $10 \,\mu\text{F}$. If two of them have capacitances of 30 and $60 \,\mu\text{F}$, determine the capacitance of the thirdcapacitor. ($20 \,\mu\text{F}$)
- 5. Determine the number of $4\,\mu\text{F}$ capacitors which must be connected in series to produce an equivalent capacitance of $0.25\,\mu\text{F}$. (16)