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The power factor of the capacitor is cos¢ and its loss angle
d=a-p.

Obviously, in addition to the value of the variable inductance L,
the values of the inductance 1, and resistance r,, of the pressure coil
circuit, of the resistance r, of the current coil and ' and « must be

known.
Rosa (Ref. (18) ) has described several null methods of measure-

ment’ of dielectric loss using wattmeters.
Electrostatic Wattmeter Method. This method has been used by
many investigators. Fig. 87 (a) shows the connections for the method
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as used by Rayner (Ref. (20)). Fig. 87 (b) gives the equivalent diagram
showing the instantaneous potentials v;, v,, etc., at various points;

r is a non-inductive resistance, _ ‘
The moving vane of the electrostatic instrument is connected to

a tapping point on the high voltage winding of a transformer from

which the supply is obtained. ' _ .
The sample of insulating material whose dielectric loss is to be

measured, is connected as shown and is provided with a guard ring

which is earthed. o
From the theory of the electrostatic wattmeter given in Chap. XX,

it can be shown that the mean torque of the wattmeter is propor-
tional to
P2]2

= (P rIh -

where P = dielectric power loss
I = r.m.s. value of the current
Then, if X is the constant of the instrument and D is the deflection,

we have
y2J2

r py TR
= (P + rI?) 5 KDD :
K n—
from which P2 - + 5 rl® ' . (108)
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1f the tapping point on the transformer winding is adjusted so
that n = 2, the second term becomes zero, and we have

P 250
r

This avoids the correction for the power loss in the resistance r.
The voltage used by Rayner in his measurements was 10,000 volis,
(b) Bripee MeTHODS, The Schering bridge method is now

the most widely used of all methods of measuring dielectric loss

and power factor. All bridge methods consist essentially of a
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Fig, 88. CoNNEOTIONS OF SCHERING BRIDGE

Wheatstone bridge network, the battery supply being replaced by
an a.c. supply at either power frequency or some higher frequeney.
The detector used depends upon the frequency, a vibration galvano-
meter being used for power frequency work and telephones for work
at higher frequencies, the latter being often of the order of 800 to
1,000 cycles per second.

Fig. 88 gives the connections of the Schering bridge, which can
be used with high or low voltages. C, is the capacitor whose power
factor is to be measured, R, being an imaginary resistance repre-
senting its dielectric loss component. €', is a standard air capacitor.
of the type described in Chapter II. R; and R, are non-inductive
resistors, the former being variable. (', is a variable capacitor
Earthed screens are provided in order to avoid errors due to inter-
capacitance between the high and low voltage arms of the bridge.
Instead of earthing one point on the network as shown in the figure,
the earth capacitance effect on the galvanometer and leads is elimin-
ated by means of a “Wagner earth” device (Ref. (22) ), which will be
described in a later chapter. V.G. is a vibration galvanometer of a
special design suited to the purpose. This must have a high current
sensitivity, since the impedances of arms 1 and 2 of the bridge are
usually very high. For the same reason, this method of measure-
ment involves only a small power loss. Since the impedances of
branches 3 and 4 are usually small compared with those of arms 1
and 2, the galvanometer and the resistances are at a potential of



CHAPTER IV
CAPACITORS, CAPACITANCE, AND DIELECTRICS

General Considerations. In Chapter I capacitance was defined with
reference to a number of conductors having different charges and
being at different potentials. Self- and earth-capacitances were also
discussed. Before proceeding to develop formulae for the capacit-
ances of various common arrangements of conductors encountered

in practice it may be well to give these matters a little further

consideration.
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Fig. 63. SysTEM oF CHARGED CoNDUCTORS NEAR TO
EArTH

Fig. 63 shows a general system of conductors in air, situated at
various distances from earth and from one another. If all these

conductors are at the same potential above earth, varying quantities.

of electric flux will pass from them to earth, these fluxes depending,
in each case, upon the size and shape of the conductor, and upon
its position relative to earth—i.e. upon the “earth capacitance” of
each conductor. No flux will pass from one conductor to another,
since they are all at the same potential above earth. The quantities
of positive electricity existing upon the various conductors will be
different, since their earth capacitances are different and their
potentials the same.

Suppose the capacitances of the various conductors to earth are
given by O,, Cy, O, etc. Suppose now that the conductors are
charged to different potentials V,, Vg, Vo, ete., above earth. In this
case, not only will some flux pass from each conductor to earth, but,
in addition, flux will pass hetween any one conductor and each of
the others in the system. Each of these inter-conductor fluxes will
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be proportional to the difference of potential of the conductors
between which it exists, and its direction will, of course, depend upon
which of the two conductors concerned is at the higher potential.
If conductor A4 is at a higher potential than any of the other con-
ductors, fluxes will flow from it, which may be represented by s,
Yi0s Vap» @0d 80 on, the second suffix letter indicating, in each case, -
the conductor to which the particular flux radiated from 4 flows.
If B is at the second highest potential, the fluxes radiating from it
are — Wg,, Wpos Yaps otc., and for conductor C, — gy, — Pep» Yep» ofC.,
assuming it to be the third highest in potential. As stated above

~ there will be, in each case, an earth flux which may be represented

by %as ¥as Yo» €bC. _
It may be supposed that a portion of the total charge of each

conductor is associated with each of the fluxes radiating from that
conductor. These portions of charge will, of course, be proportional
to the corresponding fluxes, and therefore will be proportional to
the differences in potential between the pairs of conductors. Repre-
genting these portions of charge, in the case of 4 by @,5, @0y @sp»

_ ete., and in the case of B by @,,, @0, @sp» €tC., and 8o on, we have for

the total charges on the various conductors

Q; —=] 04]?.1 + GLB{FL_ Fn} + Gmfva_ Vu) = Gm{]?a_ FD) + CRRCTE
Qp = CpVa + Coa(Vu= V) + Cae( V= Vi) + Cop(Vs—Vp) + . . -
Qu = gﬂvﬂ + Oﬂﬂ(vﬂ_ Va.) + GBG(VE- VB] ‘l" Oun(vn G FD) ']' AL S
: . : " ; . (81)

Thus, if there are n capacitors, each one has n component capa-
citances, including its earth capacitance.

In most cases in practice we are concerned with two (or it may be
‘three or four) conductors, which are so near together, compared
with their distances from other conductors and from earth, that the
capacitances due to the latter can be neglected. Thus, in the case of a
capacitor having two plates, 4 and B, near together, it is only the
capacitance C,; which is considered, and this is spoken of as the
capacitance of the capacitor. In the cases considered in the following
pages earth capacitances and inter-capacitances with conductors
other than those forming the arrangement under consideration, will
be neglected unless otherwise stated. The earth capacitance, and
intercapacitance with other conductors, may, however, be of con-
siderable importance if the capacitor is of small capacitance and large
dimensions. In the case of capacitors of capacitance +y microfarad
and over, earth capacitances are usually negligible.

Capacitance of Various Systems of Conductors. 1. CAPACITANCE OF
AN IsorATED SPHERICAL CoNDUCTOR. Suppose the spherical con-
ductor to be perfectly insulated and at an infinite distance from all
other conductors. Let its radius be R em. and let the medium
surrounding it have permittivity .
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If a charge of @ units of electricity be given to the sphere, the
intensity of the electric field at any point outside it is the same as it
would be if the charge were concentrated at the centre of the sphere.
Thus, the intensity at any point P, distant  em. from the centre of
the sphere, is, from Equation (1),

E:i

cx?

and the potential of the sphere is given by

o

_ Q . @
=] %R
R
.". The capacitance of the Q
isolated sphere = QiR " KR : : . (82)

If the sphere is in air, its capacitance in electrostatic c.g.s. units is
equal to its radius R, expresed in centimetres; or, in air,

R
¢ = 5> o0 faradsT

2, CaraCITANCE OF A SpHERICAL CoNpUcTOR INsipE A Cox-
ceENTRIC Horrow ConpucriNg SPHERE. Let the radii of the inner
and outer spheres be R, and R, cm. respectively, the latter being
the radius of the inner spherical surface of the outer sphere. Let
w be the permittivity of the medium between them.

If a charge of -+ @ units be given to the inner sphere a charge of
— @ units will be induced on the inner surface of the outer sphere.
Since, as shown in Chapter I, the intensity at any point inside a
hollow charged conductor is zero, the intensity at any point between
the two spheres will be that due to the inner sphere only. Taking
any point P, distant # cm. from the centre of the inner sphere, and,
as before, considering the charge on this sphere to be concentrated
at its centre, we have, for the intensity at P,

Q

)

Ep=

The potential difference between the spheres is given by

R, .
V= %.dﬂ:.-—*[—g]l
rx? KE g

R

* The potentials and capacitances here and in the rest of the chapter are
expressed in e.s.c.g.s. units but can be expressed in m.k.s. units i xo, the
permittivity of free space, is inserted (see Ch. II),

# This conversion to farads—by dividing by 9 X 10"—will be omitted in
the rest of the chapter.

1

l-: H"‘ —
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Lp_ @41 1
-"—:(Rﬁ‘m)

Hence, the capacitance of the arrangement is
@ Y 1)

v Q(l 1)“RﬂfﬁlL

K

R, R

3. CapaciTaNcE BETWEEN Two SPHERES AT A RELATIVELY
GrEAT DisTaNcE APART. In this case each sphere will have its own
“self-capacitance,” and also a mutual capacitance with the other
sphere. Suppose that the two spheres have equal and opposite

A B
(72 =
OA. 1 Ggl\‘?z

I
» D )

Fia. (4. Two CHARGED SPHERES

charges, and are at a relatively great distance apart, and infinitely
distant from all other bodies.*

Under these conditions, if the charges upon spheres A and B are
+ @ and — @ units, and their potentials ¥V, and ¥,, then the cap-
acitance between the spheres is

@
“=v-7,

Let the spheres have radii B, and R, cm. respectively, and let
their distance apart be D cm. in air (see Fig. 64). Then the potential

at the centre 0, of sphere 4 due to its own charge is Ri If the
second sphere is distant from sphere 4, the potential at l’i due to

the charge on B is — Q

D
Ly R _¢
i FI—E E‘
By similar reasoning -
__2 ., @
V= "R, =+ D

* The capacitance of o system of two charged spheres in the general case
has been fully investigated by Russell (Ref. (12} ).
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Thus the capacitance between the spheres
O Q@ Q _ 1
- yl“FEF;Q_,E_ _._Q_;_E _i ..2__|_i
R, D R, D T v IR H

or C

~ D(R, + R,))-2R,R,

If the medium is not air but has a permittivity «, then
. R,R,D .
e By S s s e [8d
D, + R)-2E.F, e
If the spheres are equal
x RD
C=30-B

where E is the common radius.

Russell (loc. ¢it.) gives the capacitance of the two spheres in parallel, i.e. when
connected by a thin wire so that they are at the same potential as

2R.R, D?
B (R,+R,- i =)m .. . . (sb)
(in air), using the symbols as above. If the spheres have equal radii R, then
c £ or Oy = 2xRD
P D4+ R P D+R

when in a medium of permittivity «.

For two equal spheres close together, the capacitance between the spheres is
given approximately by 2

R @ 1 R 2

electrostatic c.g.s. units in air, where R is the common radius and = the
nearest distance between them (= D — 2R).

4. CapacITANCE BETwEEN Two Conpucring PraTes. Consider
two equal conducting plates, placed parallel to one another, and at a
distance D cm. apart, this distance being small compared with the
dimensions of the plates, so that the fringing effect at the edges of

the plates can be neglected. Let the area of each plate (one pide’

only) be 4 sq.cm., and let the charges on the plates be + @ and
— @ electrostatic units,
From Chapter I the intensity at a point between the plates is

it where ¢ is the density of the charge and equalﬂ% . Then the

K
potential difference between the plates is

D
_ 470 _ 47QD
¥ kA dz= k. A

iy

Y -
R

it

wk
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Q Q kA

= == = : 1 : - 7

Thus, C=3= ZODjxAd = 4D {51
Suppose that instead of there being only one dielectric in between

the plates, there are several parallel layers of dielectrics of thick-

nesses D,, D,, D,, ete., and having permittivities «;, «, K3, ete.,

respectively, as in Fig. 65.
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Fig. 65. DIELECTRICS IN SERIES IN A PLATE
CAPACITOR

Surface 3

Then potential difference between surfaces (1) and (2) i8

DI
_ 47Q ,  4mwQ
Vs = iy d A P | By
0

while that between surfaces (2) and (3) is

4

and so on. Thus, the total potential difference V between the

parallel conducting plates is
V="Tup+ Vg+ Vag . . .
é%g(%+%+%+. . )
and the capacitance between the plates is therefore

Q A

4 w(&+%+%+...) .. (88)

Ky iy K3

Effect of Additional Plales. If two more similar plates are added,
one of which is connected to each of the existing plates (Fig. 66),
and the same dielectric placed between them, then the effective
area for the whole capacitor thus formed is 34, and the capacitance

Jrcd

is thus increased to oD




132 ELECTRICAL MEASUREMENTS

In general, since the use of N plates creates N — 1 spaces (each of
width D em.) the capacitance of such a capacitor with N plates is

v st L : ; . (89)

By this means the capacitance of a plate capacitor can be made
large whilst using plates with only a comparatively small surface
area.

Although these formulae must be considered as approximations,
if the plates are close together they are sufficiently accurate for most
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Fic. 66. Prare Caracrronr

practical purposes, even though the capacitor may be in the vicinity
of other conductors. '

5. CapaciTANCE BETWEEN Two LonNa, PARALLEL CONDUCTING
CyLiyDpERS. This problem can be resolved into two separate cases,
namely: (@) when the cylinders are at a distance apart which is
great compared with their diameters; (b) when they are compara-
tively close together.

In the former case it is considerably easier to calculate the capa-
citance between them than in the latter. This case will be considered

first.

Case (a).

Tig. 87 represents two long parallel conducting eylinders, perpendicular to
the plane of the paper, each of diameter d em. placed at a distance D em. apart
in air, D being great compared with d and the cylinders being at a great
distance from all other conductors.

Let 4+ @ and — Q units be the charges per centimetre axial length on 4 and
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B respectively. In this case it may be assumed that the charges are concen-
trated at the axes of the eylinders.
From Equation (4), the intensity at P, distant » from eylinder 4, due to

9
this cylinder is é which is the force (in dynes, if @ is in electrostatic units and

x in centimetres) upon unit charge placed at P. This force is in the direction
AB. Similarly, eylinder B would exert a force (of attraction) upon unit charge

at P of

= dynes, also in the direction 4B, Thus the total force upon unit

1
charge at Pis2Q (5 + 'ﬂle ) dynes in direction AB. The potential difference

e [~

AN an
|

o

Fia. 67. PARALLEL CYLINDERS

between the eylinders—which is the work done in moving unit charge from the
surface of one eylinder to the surface of the other—is

d
== 1 1
[EQ (& £ m)]dx = 2Q [log, z — log, (D - )]
2D -d
x-% = 4Q log, ——
i.e. potential difference between the cylinders
D-d
V = 4@ lﬂg,g %T » i i : . . . (QDJ
. The capacitance between the cylinders per centimeire axial length
_9_ 1
V 4log, E.Dd— d

If the permittivity of the medium between the cylinders is , then,
of course,

1-21 «
1012 log, , (%D - 1)

or, the capacitance per mile of two such parallel cylinders in air is
1-95

108 log,, (% . 1)

C =

farads per cm. length

farads . . : . (91)
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If D is great compared with d,
0= 190 farads per mile
- 2D
IUB lﬂglﬂ "a—

Case (b). When the cylinders are comparatively close together
the treatment of the problem differs from that of Case (a), owing to
the fact that the charges of 4+ @ and — ¢ cannot now be assumed to
be concentrated at the axes of the cylinders. The charges must
now be taken as concentrated along other axes, parallel to and in
the same plane as the axes of the cylinders, but displaced so that the
distance apart of the axes along which the charges are assumed to be
concentrated is now less than the distance D. To derive an expression
for the capacitance in this case the distribution of the electrostatic
field between the cylinders must first be considered.

When the cylinders are at a great distance apart, as in Case (a),
the lines of force of the electrostatic field radiate from the eylinders
uniformly in all directions, each line cutting the surfaces of the
cylinders perpendicularly. Since the potential of a point along any
one line of force decreases as the distance of the point from eylinder
4 is increased, a number of equipotential surfaces exist which are
in the form of cylinders concentric with the cylindrical conductors,
the lines of force cutting all of these cylinders perpendicularly.

If the cylindrical conductors are comparatively close together
these equipotential surfaces are still cylinders, but they are not
concentric with the Burfaces of the cylindrical conductors whose
capacitance is to be determined, nor are they concentric with one
another.

It can be shown* that the equations of the traces of these cylin-
drical equipotential surfaces in the plane of the paper are r, = Mr,
where 7, and r are the distances of any point on one of the circular
traces from the traces X and Y of the axes along which the charges
-+ @ and - @ may be assumed to be concentrated and from which
the lines of electrostatic force radiate (these lines of force being
circles, as in Fig. 68), and M is a constant which differs for different
traces. By giving M different values a series of circular traces is
obtained, as shown in the figure. When M = 1 the trace is a straight
line, this being the trace of a plane the potential of all points on
which is zero.

Now, since the surfaces of the cylindrical conductors are equi-
potential surfaces, the equations of whose traces in the plane of the
paper are given by the above relationship (r, = Mr), it follows that
the traces X and Y are not coincident with the axes of the conduct-
ing cylinders, but are displaced as shown in Fig. 68.

Calculation o! Capacitance. To calculate the positions of the axes whose
traces are X and Y, proceed as below.

* See T. F. Wall's Electricel Engineering, p. 46,
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Let the points X and ¥ be displaced inwards from the centres of the two
cireles which are the traces of the eylindrical conductors 4 and B by a distance
m in each case, and let their distance apart be i. Thenl = D —2m.

radiating from
axes whose traces
areXandV

Traces of
Lquipotential

\_Eg:'fm-?ns

Fig. 8. ErEcrrosTATIO FIELD BETWEEN CHARGED PARALLEL
CYLINDERS WHICH ARE NEAR TOQETHER

Since the surfaces of the cylindrical conductors are equipotential surfaces,
T the equation r; = Mr holds for their traces. Consider the point P (Fig. 69)
on the trace of cylinder 4 on a line through X perpendicular to the line X' Y.

/T T\
FA ﬁm-ﬁ-ﬂ
' -
N Y
e
0 :
l< D 5]
Fia. 69

2 .
Then (g) =m? + XP? and XP = M(PY), since for point P, ry = XP

and r = PY.
Also I* 4- XP?2 = PY?
=1
and m= —

i For the point §,

d
1"1=XJ5'=§—mandr=SY=L_(E_m)
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Since for all points on the circular trace of 4
r, = Mr
we have g— m =M [I— (g - m)] for point §
d

= —m

M= _2%2
_(¢
(fm}

Now I + XP: = P¥2 = (XP 2 P2

M a7 d 2
—-m
l- d—m)}

and (g)l =m* L XP3

o (g)l_m,z (E) e

<
d

I—E +'ﬂ'1

l

gy D -
Substituting m = 5= and solving for [ we have the solution

l = +/D*—d?

[ 3]

If d is small compared with D, we have I = D, as in Case (a).

Thus, to calculate the capacitance between the eylinders, the treatment is
exactly the same as that of Case (a), except that the charges + @ and — @
per centimetre axial length are considered concentrated along parallel axes
whose distance apart is now ! instead of D).

fW’E have then for the intensity of field at a point such as N (Fig. 69) distant
z from X

and the potential difference between the eylinders

ci- (4n)

2]
z-g-m
- (g-m)
= 44 ]uga—'?——
E—m
or, since l=vD'_g and %9m = D -1
vVDi—di - (d-D)
V=401 —
o, [v”ﬂhd’ - {d-—D}] ' 93

s PR
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Thus capacitance per centimetre axial length is
c=2_ 1

VT VD@ -@-D)
%8s | VDi—a + (d-D)

Rationalizing and simplifying, we have
1
O =

D+ VD:_d?
d:lnga[ * 7 ]

If the permittivity of the medium between the cylinders is x, we
have

¢ = - Ce
(D + VD? - d? ' L
4 log, g
or C = i farads per mile of double
108 log, (D + MIA= dﬂ) conductor in air
d

These capacitances are given in farads per mile, since the arrange-
ment of two long parallel conducting eylinders is chiefly met with in
overhead transmission lines where the most useful unit of length is
the mile. Formulae for the general case of two parallel cylindrical
conductors have been given by Russell (Ref. (13) ).

6. CapaciraNcE BETWEEN Two Coaxian CYLINDERS. An im-
portant case of this arrangement in practice is, of course, a concentric
cable.

Consider two long conducting concentric eylinders, the diameter
of the inner one being d cm. and the inner diameter of the outer
one being D em. Let 4 @ and — @ units be their charges per centi-
metre axial length. The lines of force of the electrostatic field will
be radial, and the equipotential surfaces will be cylindrical and
coaxial with the two conducting cylinders. The intensity of the
field at some point at a radial distance of x em. from the common

2Q)

axis of the cylinders will be — if the dielectric separating the
cylinders is air. €
Thus the potential difference between the cylinders is

D

—

2

20 D . d
% dw =29 [log, > ~log, §]

5] R

V=20 lugcgd
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The capacitance per centimetre length is
e 1
o= ®— 2 lo E
S8 g

The general expression for a length Icm., the dielectric having
a permittivity « 18

l
C=—7% (94)
2 log, T
or C= .. farads per mile
103 lﬂglﬂ, E

7. CAPACITANCE OF A SINGLE STRAIGHT CONDUCTOR PARALLEL TO
Earta, Method of Electric Images. This method is based upon the
imagination of an “image” of a conductor placed above the earth’s
surface, this image being of the same size and shape as the conductor
considered and lying as far beneath the surface of the earth as the
conductor considered is above the surface. The earth’s surface is
thus in the plane of zero potential for these two conductors—con-
sidering the image as being in actual fact a conductor placed at a
distance 2H from the original one, H being the height of this original
conductor above the earth.

Since the earth’s surface is at zero potential, the electrostatic

4 field from the charged conductor above

oy the earth, to the surface of the earth,
+Q\'ﬁc i has the same distribution as the field
onauetor which would exist between the conductor

H and the zero potential plane, in the case
of two conductors placed at a distance of
2H apart.

,mwmmmgggtb Fig. 70 shows the trace of a cylindrical

conductor 4 lying parallel to the earth’s
surface, and at a height A em. above the
H earth; A’ is its image. If conductor 4
has a charge of + @ units per em. axial
length, then the potential difference

Y —Qf Image between it and conductor A4’, -which is
A supposed to have — @ units per em. axial
Fig. 70. CYLINDRICAL length, is from Equation (90)
ConpucTon PARALLEL TO 4.H £ d
EarTi 2V = 4Q log, y

where d is the diameter of the conductors and is assumed small com-
- pared with H. V is the potential of 4 above that of the earth, and
is also the potential of 4’ below earth potential.
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4H —d
Thus V = 2Q log, g

and the capacitance per centimetre length of one conductor to earth
is -

- 2 . . " . (95
K= iH—d : L
210g,-—d—

where the dielectric has permittivity «.

The capacitance per mile of one conductor to earth in air is

therefore

3-89

108 logye 'LHd_ d

If d is small compared with H (as is usually the case when an over-
head line is considered) then

! 3-89
o__ 3890

108 logy, % 108 log;,
where r is the radius of the conductor in centimetres. _

If d is not small compared with H, the calculation of capacitance
must be based upon Equation (92) instead of Equation (90) as above.

8. CAPACITANCE BETWEEN Two Loxg, STRAIGHT CONDUCTORS,
PARALLEL TO THE EARTH AND To ONE ANOTEER. Consider two long
cylindrical conductors M and N parallel to earth and to one another,
their diameters being d cm. and their distance apart being D cm. Let
H be their height above earth and let M’ and N’ be their images
(Fig. 71). Suppose d small compared with H. . .

Let M and N have charges of 4 @ and — @ per centimetre axial
length respectively and M’ and N’ charges of — @ and -+ € units
per cm. length respectively. - R

Consider a point P on the horizontal line joining the centres of
M and N and distance z cm. from M. The intensity at P is d_ue fo
all four conductors M, N, M', and N’. Thus intensity at P in the

direction MN is—

C = farads per mile

farads per mile

2H

P

Due to M . : (?Q)
@
20
Due to IV . (D-m)
, 20 =29 x
Due to M’. ("PMJ' GOE{I) - ’\/4H2+EH. V4H2+m2
. —2Qw
~ 4H? 4 a2
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(v' @ —_;EQ T4 ﬁ)

_ —2Q(D-2)
=~ (D-2)° I 4H°

Due to N'.

Resultant intensity at P is

@+ 29 20« 2¢ (D - x)
x D—x 4H® 4+ a® (D-a)*+ 4H?

e —
iy p_ N
e 2oudle,
H
Forces acting o
wnit + cﬁ&rge
placed at P
53"!" fl',? /
RS Dueto _P Pueto
M N
Le to
H Dﬂﬁf;’a N{
&) N l (5)
_Q.__. i _:I_ 2
Fi1g. 71. Two CHARGED PARALLEL CONDUCTORS NEAR
T0 INARTH

and the potential difference between M and N is

D-r
3 20 20 20x 2Q (D - x)
V= (?+D~m-4HE+m2_{D—a:]2+4H2)dx

r
where r is the radius of the conducfors.
Integrating, we have

D-r 4H? + r*
V=20 [2 log, = + log, IFE T (D _ﬂ,_,] (96)
If D is great compared with 7,
D 4H?
V = 4@ lﬂgc —r" —I-‘ 2@ lﬂgﬂ m
The capacitance between the conductors is
- 1
== i 97

D
4log,? + 2 log, i T+ D?

|
ﬁ
%
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1 o
= i D 5H per cm. length in air
Ber \Vamr 1 D¢
1-95

or (= farads per mile

D/ 2H
10%logyo (m)

The capacitance of two parallel cylinders which are at a great

distance from earth was previously found to be

1-95 1-95

55 = farads per mile
103 ]'ﬂglﬂ ? 103 ]Dgl'ﬂ ";.-

" D being great compared with r.

A

wTa ¥ | |
s ._I_. Ca Cj‘ TQf CZ — 02' CS— QS I'
i

(@) (b)

Fia. 72. CAPACITORS IN SERIES AND TN PARALLEL

Thus the proximity of the earth introduces the term 2_H___
in the denominator, as shown above. V4H? + D?

The capacitance of a system of three or more conductors, parallel
and near to the earth, can be found by similar methods (Refs,
1), (), (8)).

Capacitors in Series and Parallel. (¢) Series. If a number of
capacitors are connected in series, as in Fig. 72 (a), a potential differ-
ence of ¥ being applied between the outer terminals, there will be
potential differences »,, v,, v;, ete., between the different pairs of

lates.
£ Let the capacitances of the capacitors (neglecting earth capacit-
ances) be ('}, C,, Cy, ete. If a quantity of electricity ¢ units is given
to the system of capacitors by means of a current which flows for a
short time through them until they are charged to the total potential
difference V, then

Q Q Q

NW=mg"UW=5 WW=F

and so on.
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If C is the capacitance of the whole system, the potential difference
for which is ¥, then i

Q
G=%or?=+§
Thus, since V=v,4+v+ v
8 8.9 .8
oo te gt
1 1 1 1
6=‘{Z+@+@+--- . . - (98)

(b) ParaLLiL. If a potential difference V is applied to a number
of capacitors connected in parallel (Fig. 72 (b) ), then the potential
difference across the plates of such capacitors is, in each case, V,
but the quantities of electricity given to the capacitors are now
different for the different capacitors. If these quantities are @,
QE! Qﬂ! Et'c" t'hen

_ @
n=7g O Q, = 9,04
1
vr—?—zor Q. = v,0C,
2
and so on.
But === = ¥

and the total quantity of electricity
Q=+ ++... =0V

where C is the total capacitance,

Thus OV = Cp, + Covp+ Cgvg + . - .
= V{0, + G+ Ci+ - + )
0=+ i v - ... (99)

Two-core Cable. In the case of multi-core cables generally, the
earth capacitances of the cores cannot be neglected. A two-core cable
consists essentially of two long parallel conductors embedded in
some insulating material, the whole being enclosed by an earthed,
conducting cylinder, as in Fig. 73(a). :

This arrangement is equivalent to the system of capacitors shown
in Fig. 73 (b). If the cores are represented by 4 and B, then U,y 18
the capacitance between cores and ' and Uy the earth capacitances
of the two conductors. We thus have €, and C} in series with one
another this series circuit being in parallel with C,5, the equivalent
arrangement being representedin Fig. 73(c). The capacitanceof C, and

C, in series is —2—2  and when thisis connected in parallel with
Cy + Gy L e, C,
C,, the total, or working, capacitance is Cyp + 5——5-
Cy+ Gy
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Three-core Cable. The capacitances which exist in the case of a
three-core cable are shown in Fig. 74 (@), in which (' is the intercore
capacitance, and C, the earth capacitance. Diagram (b) shows the

.Ea:-tﬁ
(&) (c)
I'rg. 73. CAPACITANCE OF A Two-corE CABLE

equivalent circuit of such a cable when used on a three-phase
system of line voltage &.

To facilitate calculations of the charging current per line it is

Fia, 74, CaraciTancE oF A THREE-corE CABLE

usual to resolve the system shown in diagram (b) into either an
equivalent mesh system, as in diagram (¢), or an equivalent star
gystem as in diagram (d). In the first case, the three capacitances C,
are replaced by three imaginary capacitances C',,, connected in mesh,
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in parallel with the inter-core capacitances ('}, and having such values
that the charging current per line is the same as that for the actual
cable. The magnitude of C,, is thus determined as follows—

The voltage to neutral (i.e. the voltage across each capacitor C|)
is B/4/3 and the charging current taken by each C,is (E/4/3) . w C,.

fqm'va lent Circuit

Co |Co JCo
Lquivalent Circuit
Co
G
G |G
Measurin
Creuit® G
-
(b)
fqm‘v&'ﬂ?ﬂa‘ Circuit

NNy

Measurin
ﬂ‘f'muffg Co |C; |Gy Co

()

Fra. 75. CaBLe CaricrranxceE MEASUREMENTS

In diagram (c) the current taken by each capacitor C,, is £ . w C,,
and the line current on this account is thus 1/3. £ .o C

me

For equivalence this line current must be equal to (E/4/3) . w C,.

E

Thus, V3.E.wC, = 3 . wCy
= Oﬂ
or Cm = ':';"'

Hence the total equivalent mesh system consists of three groups of

C, each in parallel with C,, i.e. three capacitances C, + %
connected in mesh. 3
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Diagram (d) shows the equivalent star system, in which the cap-
acitors C'; are replaced by three capacitors (';, each in parallel with
(', and of such values that the line currents are the same as for the
actual cable.

To determine the value of C,— -~

C,

1
Current taken by each capacitance C, = % )

Now, current taken by each eapacitance () (diagram (b) ) is Faw (0},
and the line current on this account = /3 . Ew(}.

For equivalence
E

w . mﬂ’, — \/3 Emcl or Gl = 301

So that the total equivalent star system consists of three groups
of capacitors in star, each consisting of () and €, in parallel, i.e.
three capacitances of €y + 3.

Measurements of Three-core Cable Capacitances. The values of the
capacitances €, and (J; for a given length of cable may be determined
by means of two tests. TFirst, the three cores are connected together
and the capacitance between them and the sheath measured (see
Fig. 75 («) ). The measured capacitance is obviously 3C,.

The second test may be of the capacitance between two cores,
the third being connected to the sheath (Fig. 75 (b)) or between
two cores connected together, and the sheath and third core con-
nected together (Fig. 75 (c) ).

In the former case the capacitance obtained by the measurement is

Co + C _ 3 Cy
2 +01_201+"§

In the latter case the measured value is 20, + 2C;.

The first test obviously enables C, to be determined and this
value, substituted in either of the expressions obtained above for
the two alternative methods of carrying out the second test, renders
C; caleulable.

Distributed Capacifance. In the foregoing paragraphs it has been
assumed in all cases that the surfaces of the conductors considered
have been assumed to be equipotential surfaces.

There are many important cases in practice when this is not so,
and in these cases the calculation of capacitance cannot be carried
out by the simple methods used above. In wire-wound solenoids we
have capacitance between adjacent turns, and layers, and all the
conductors in one layer are obviously not at the same potential.
The earth capacitances of the turns in the coil also are not all the
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same. In such coils we have what is referred to as “distributed
capacitance,”

The effect of such distributed capacitance is, in many cases, small
for low-frequency work, and an equivalent circuit, which represents
such a coil sufficiently accurately for most purposes, can then be
obtained by assuming the coil itself to be free from capacitance but as
having a simple capacitor connected in parallel with it, and also
having simple capacitors connected between parts of the coil and
earth. The latter represent the distributed earth capacitance, while
the former represents the distributed inter-turn capacitance.

V
U

~——>

.
f,—f___e_}ggooooooo
r-*HB 000000000
R
-l Llectrostatic Freld
) } : belween Jurns

) ) (shown fora few
Lurns only)
Y 5 60000000000
TH —B000006000 _ dj
‘J .

L
a
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Fia, 76, CAarACITANCE OF A Two-LAYER SOLENOID

If such a coil is to be used for very high frequency work, e.g.
radio frequency work, such approximate methods of representation
are not justifiable, since the distributed capacitance of the coil may,
at such frequencies, become of more importance than its inductance.

Capacitance of a Two-layer Solenoid. Fig. 76 represents a solenoid
of circular section, having two layers of insulated wire wound con-
tinuously so that, in effect, the layers are connected together at one
end as shown. If a steady potential difference V is applied to the
terminals (aa’) of the coil, then the potential difference between
layers will vary from V at the left-hand end of the coil to zero at
the right-hand end, and the electrostatic field between adjacent
turns will thus decrease from a maximum to zero, moving from left
to right. Morecroft (Principles of Radio Communication, Chap. II)
calculates the internal capacitance of such a coil by treating it as,
essentially, two coaxial conducting eylinders, whose capacitance, if
the layers of wire are close together compared with the diameter of
the coil, is given by the formula for flat plates, assuming at first that
the eylinders are equipotential surfaces.
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Thus, C = i% whers ' is the capacitance when the potential

difference is the same throughout the axial length of the cylinders,

A being the area of each cylindrical surface, « the permittivity of
the medium, and D the distance between the layers.
If R is the radius of the section of the solenoid (assumed the same
for both layers, since their distance apart is small) and L is their
wRL

axial length, then 4 =2nRL and C = S5 or capacitance per
xR

centimetre axial length 1s 3D "

Actually the potential difference between layers varies along the
axial length from V to zero. Assuming this variation to be according
to a straight line law, we have

Energy stored in axial length dx

c.”® kB ot
iW=——=3p-3" dx
where v is the potential difference between layers at any point of

axial distance & from the left-hand end (Fig. 76). Since % -

we have v = (1—%) V and

qw = B W(l-ﬂ)’dx

2D 2 L
. Total energy stored is

L
kRV? 2\?
W=f '—w—(l‘z)d“’
0

o _ KRV! |:_ L (1_ E)ﬂ]b _ kRVIL

4D 3 L) |, -12D
Thus, if " is the distributed capacitance (in e.s.u.) to be calculated
V2
W=¢C 5
.o ¥ kRV2L
" 2 12D
, kBL
or C'= 8D (100)
Morecroft (loc. cit.) gives the distributed capacitance for & solenoid
of N layers as 4 [N -1\?

6—(T.5700)
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lt-.rhere Cy is the capacitance between the outermost and innermost
ayers. ,

Breit (Physical Review, XVIII, p. 133 (1921) ) gives the capacit-
ance for a short single-layer solenoid in air as approximately 0-071
e.s.u., where [ is the length of one turn of wire on the solenoid.

Shielding and Guard Rings. In making measurements involving the
use of capacitors it is often desirable—and in some cases absolutely

necessary—to shield pieces of

cd d apparatus from the effect of
f\

e | Radius |I” Guard electrostatic fields which are

| Patca K1 é"ﬁ”ﬁ' external to the apparatus itself.

This is done by surrounding the

rﬂ apparatus by an earthed metal
O A Al A A P A A F sereen Whjeh m&y bE C'i thin

Flate B oy
) aluminium or copper sheet, or
Fre. 77. Guarp RiNg in the form of a wire mesh.
o Charges which may be induced
in 1_;(1;13 screen pass to earth and have no effect upon the apparatus
inside.

Guard rings are used in order to overcome the difficulty of calcu-
lating accurately the capacitance of a capacitor which has a fringing
electrostatic field at its edges. The distribution of such fringing
fields is somewhat uncertain and this renders exact calculations of
capacitance difficult.

In calculating the capacitance of a parallel plate capacitor in
previous paragraph it was assumed that the effect of the field at the
edge of the plate could be neglected. The simple formula obtained
1s rendered much more accurate by the use of a guard ring as shown
in Fig. 77. The guard ring consists of a metal plate of the same
thickness as the plate 4 which it surrounds, and from which it is
separated by a narrow and uniform air gap. This ring is usually of
the same outside dimensions as the opposing plate B of the cap-
acitor, and is, in use, at the same potential as the plate 4 which it
surrounds. Under these conditions the electrostatic field between
the plates is perpendicular to the plates even up to the extreme
edge of plate 4, the fringing field being now transferred to the
edges of the guard ring. The effective area of the plates to be used
in the capacitance formula is now taken, of course, as the area of
plate 4.

A formula which corrects for the width of the air
the guard ring (which gap should be of zero lﬂngthg?fpr?: E:v;:::cg}nﬁlmis‘t:gg
used) has been given by Maxwell and is
R
D + % . D—+R:Zi22d (1 + %) e.s. umits . . (102)

where the plate 4 (assumed circular) has a radius R cm., D being the distance
between the plates in centimetres, and d being the width of the air gap, the
dielectric being air.

Gsr
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When no guard ring is used, the edge effect can be taken into account in the
caleulation of capacitanee by a formula due to Kirchhoff. This formula is

G=%+hiﬂ[ﬂilﬂgs“im.£—_l_j—ls
+#lug,(l+i—}):|. ... (103)

where R is the radius of the circular plates of the capacitor, ¢ being the thick-
ness of the plates and D the distance between them, the dielectric being air.

In cylindrical capacitors the guard ring takes the form of two
cylinders, of the same diameter as the eylindrical electrode to which
they are adjacent, and placed one at each end of, and coaxial with,
this electrode. They are connected together and are, in use, charged
to the same potential as the electrode between them. Their use
was described in Chapter II in connection with high voltage air
capacitors,

Dielectrics. The broadest definition of a dielectric is, simply,
“an insulator.” More precisely, a dielectric is some medium in
which a constant electrostatic field can be maintained without
involving the supply of any appreciable amount of energy from
outside sources. The term ‘‘dielectric” is applied when an insulating
material is used to separate two neighbouring conductors such as
the plates of a capacitor. As will be seen later, dielectrics increase
the capacitance of a system of conductors as compared with the
capacitance of the same system of conductors existing in vacuo.
No dielectrics are at present known which, when placed between
two conductors, decrease the capacitance between them.

Three very important quantities in connection with any dielectric

are—

(a) Tts “‘dielectric strength.”
(b) Its “permittivity” or “dielectric constant.”
(¢) Its “dielectric loss angle” or power factor.

(@) DrerEcrric StrRENGTH. This may be defined as the ability
of a dielectric to withstand breakdown when a voltage is applied
to it. All insulating materials should, of course, have a very high
resistivity, so that only an extremely small current flows through
them when a voltage is applied. This is, however, an entirely
different property from dielectric strength. If a gradually increasing
voltage is applied between, say, the opposite faces of a slab of an
insulating material, the material becomes electrically strained, the
electrostatic field in it increasing in intensity with increasing
voltage. Eventually a value of the field intensity is reached at
which the material “breaks down,” i.e. the material is punctured
and is rendered useless for insulation purposes. This effect is ob-
served in the case of all insulating materials, although the magnitude
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of the field intensity, or “potential gradient,” for which it occurs
differs for different materials. In liquid or gaseous dielectrics the
breakdown is only temporary.

The dielectric strength is expressed in volts per millimetre or
per centimetre, or in kilovolts per centimetre, ete.

The true or intrinsic dielectric strength of solid materials can be
measured only if all discharges in the ambient medium are eliminated
and if the heating effect of the applied field is negligible. Such
intrinsic strengths are difficult to measure, but have been obtained
for a few good dielectrics and lie in the region of 5 x 10° V/em.
When the dielectric strength is measured in the conventional manner
between disc or sphere electrodes the breakdown is due to intense
local concentration of stress at the end of ionic discharges outside
the material, and values from 5 to 50 times lower than the intrinsic
value are obtained. It is these lower values which are quoted in
Table VII. The dielectric strength so measured is dependent on the
geometry of the electrodes, upon the nature of the ambient medium
(air or oil) and upon the thickness of the specimen, but no exact
laws can be quoted. If the time of a test is prolonged to days or
weeks in order to represent the useful life of the material, still lower
values of breakdown strength are obtained which depend either on
the erosion of microscopic holes through the material by ionic
bombardment or on electro-chemical changes in the structure of the
insulation. In low grade materials failure may be due to thermal
instability, resulting from the heat liberated by dielectric losses.

When the applied voltage is alternating, the frequency of the
supply affects the dielectric strength and, also, since the maximum
value of the voltage is responsible for the breakdown, the wave-form
of the voltage, as well as its r.m.s. value, is important. The shape
of the electrodes by means of which the voltage is applied is impor-
tant, since the distribution of the electrostatic field depends upon
this shape, which therefore affects the dielectric strength. The true
dielectric strength is the strength at breakdown when the electro-
static field is uniform.

Potential Gradient. In practice the potential gradient is an im-
portant matter., Consider the case of a single-core cable with a
conducting outer sheath. From page 6 we have for the field
intensity at a point, between two coaxial cylinders, and at a distance

z from their common axis ¥ = % where @ is the charge on the
inner conductor per centimetre axial length. Since the potential
between two points is given by [Edx, ¥ is the potential gradient at
any point. If R, is the radius of the core, and R, the internal radius
of the sheath, the potential gradient at the surface of the core is

, and at the internal surface of the sheath fﬂ ; the gradient

20
il R,
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in between these points varying as shown in Fig. 78 (¢). Now, if the
dielectric between the core and sheath consists of only one material,
of permittivity «, which is capable of withstanding, without break-
down, the maximum stress % at the core surface, then the outer
K i .

layers of dielectrie, approaching the sheath, will not be economically
used.

Graded Cables. To effect a more economical utilization of the
dielectric between the core and sheath, several different dielectrics,

E1 Ideal
F RN *:Actua!
20 20
}f;ﬁ; Kjﬁg
¥ +
—> Radius

(b)

Fias. 78. PoTENTIAL GRADIENT IN SINGLE-CORE CADLES

of permittivities «;, Ky, k3, etc., are used, these being arranged so
that their permittivities are in descending order as the radius
increases, Cables insulated in this way are referred to as “graded”
cables. Obviously, if the dielectric used could be varied continuously

" go that i varied inversely as the radius z, an absolutely uniform

potential gradient could be obtained, between core and sheath, as
shown in the dotted line in Fig. 78 (b). Actually the potential
adient varies in the manner shown in the full-line curve.
In the previous work the potential difference between two coaxial
cylinders of radii R, and B, was found to be

2Q .., B
V= 2 log, R
from which Q= ‘——VK—R . ; : . . (104)
2 log, =
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Substituting this value for ¢, we have for the potential gradient

at any radius x
BT y
E=— . . —— = .. (105)
5o, o z log, =2
5 gip

1

when only one dielectric, of permittivity «, is used.

Metal +oil
A ) Cylinders

i Dielectric

‘7(%:“55&1‘? Faper)

-

flang=

8

Fia. 79. CoNDENSER BUSHING

Another method of obtaining a uniform potential gradient be-
tween two coaxial eylinders is by the interposition of metal inter-
sheaths (consisting of cylindrical sheets of metal foil coaxial with
the two conductors) in the dielectric, between the charged con-
ductors. As an example of the use of such intersheaths, a *‘Con-
denser Bushing” will be considered.

Condenser Bushing. This is a type of bushing which is commonly
used for the terminals of high voltage transformers and switchgear.
Fig. 79 shows a conductor 4 which is charged to some high voltage
V. This conductor is insulated from the flange B (at earth potential,
say), by a condenser bushing consisting of some dielectric material
with metal-foil cylindrical sheaths of different lengths and radii
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embedded in it, thus splitting up what is essentially a capacitor,
having the high tension conductor and flange as its plates, into &
number of capacitors in series. The capacitances of the capacitors
formed by the metal-foil cylinders are given by the equation

wl

T g
>log, 2

! being the axial length of the capacitor and R, and R, the radii of
its cylindrical plates (assumed to be of negligible thickness in the

Solid Dielectric Solid Diefectric Solid Drelectric
Air i

z’/f/é

le—p—

k—p—s|

(al (5) (©)

Fig. 80. ErrrcT or Dierecrric THicgness UroN POTENTIAL
GRADIENT IN A PrATE CAPACITOR

case of the metal foil). If these capacitors all have the same capa-
citance, since  is the same for all (being the charge per centimetre
axial length of the high tension conductor), the potential differences
between their plates will be equal. They can be made to have the
same capacitance by suitably choosing the axial lengths of successive

sheets of foil together with the ratios of their radii % . If.the radial
1

spaces between successive sheets of foil are made equal and the
lengths adjusted to make the capacitances equal, the potential
gradient in the dielectric is uniform, but the edges of foil sheets lie on
a curve, thus giving unequal surfaces of dielectric between the edges
of successive sheets. This is undesirable from the point of view of
flashover by ‘‘creeping” along the surface’ If the differences be-
tween the lengths of successive sheets are made equal, the radial
potential gradient is not uniform. A compromise between the two
conditions is usually adopted.

Effect of Varying Thicknesses of Solid Dielectric upon the Polential
Gradient Between Parallel Plates. Fig. 80 shows the effect upon the
potential gradient of varying the thickness of a slab of solid dielectric
which is situated between the plates of a parallel plate capacitor,
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one plate being charged to a potential V volts and the other being
at earth potential. The remaining space is air.

If ¢ is the surface density of charge on the plates and « the per-
mittivity of the solid dielectric, we have—

Intensity in solid dielectric = e Ey

K
Intensity In air space =dgo=F ,
Thus whp =8,

Also, if d is the thickness of solid dielectric
Substituting for £, we have

244 y B D-a)=7
or Ey = 4

e R

Thus, increase of d increases the potential gradient in the air space,
as is shown in Fig. 80. Also, if « is much greater than 1, the poten-

(108)

tial gradient in the air space approaches the value D_Vd , Which

means that, in this case, the whole of the potential drop is across the
air space.

The high potential gradient so produced is very likely to cause
breakdown of the air in the case of a thin film of air included between
a solid dielectric and a conducting plate. The air then becomes
“ionized,” and the insulation will ultimately fail due to damage by
ionic bombardment.

The dielectric strengths of the most important insulating materials
are given in Table VII under the conditions of the conventional one-
minute dielectric strength test. The electrodes used in carrying out
tests of dielectric strength are usually flat plates with rounded edges
or smooth spheres of large diameter. In either case a fairly uniform
electrostatic field is obtained.

(b) PermirriviTy. This quantity is defined as the ratio
The capacitance of a capacitor having the material
considered as its dielectric

The capacitance of the same capacitor with air as
the dielectric

=

Strictly, the capacitance in the denominator should be that
obtained when a vacuum exists between the plates, since the
permittivity of a vacuum is unity, while that of air is about
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1-0006. Most gaseous dielectrics have permittivity of the same
order as that of air, while solid and liquid dielectrics have values of
x varying from about 2 upwards, as shown in Table VIIL.

TABLE VII
ProrerTiES 0F DIELECTRICS

Approx. Dielectric e
Dielectric Strength Pormittivity | (f b0 .o, epent
Volts/mm. where noted)
Bakelite : 20,000-25.000 5
Bitumen (Vulcanized) . - 14,000 45
Cotton Cloth (varnished) 2 3,000-4,000 4:5-55 2
Ebonite . 3 ; : 10,000-£0,000 2.8 001
Empire cloth r . : 10,000-20,000 g
Fibre . i . ; . 5,000 4-G
(lass (plate) . : . 5,000-12,000 B8-7 0008 (f = 800-1,000)
Guttapercha . . " 10,000-20,000 3-5
Hard rubber (loaded) . : 10,000-25,000 3-5-4-56 0-016
AMarble - : . . 6,000 B
Mica (Muscovite) . ’ A 4}, 000-150,000 4:5=T 0-0003
Mycalex . : - - G-7 0:002-0-005
Paper {dry) . : . : 4,000-10,000 1-9-2.0 0-005
Paraffin wax . . . 8,000 22 00003 { F = B00-1,000)
Polystyrene . . . ; 2.5-2-7 0-0002
Polythene . . . . 28 0-0001
Porcelain - . - - ; £,000-20,000 b6-0-5 0-005-001
Shellac . . . - 5,000-20,000 2.3-3-8 0-008
Sillea (fused transparent} i 38 0:0001-0:0003
Slate . ;i " x i 3,000 G-75
Steatite : . : . 41-0:5 0-002
Mineral Insulating oil . ; 25,000-30,000 2-26 0-0002
Water X : . . — 40-90
(decreases with
increase of
temperature)

Nore. Owing to the different qualities of the various materials and.to the
variations in results according to the conditions of the test (e.g. frequency,
and temperature) the above figures must be regarded as approximations only.
The properties of dielectries, including many of the recently introduced plastic
materials are given in Refs. (39) to (44).

(¢) DieLecTRIC Loss anD Powrr Facror. If a steady voltage
V is applied to the plates of a perfect capacitor a “charging current”
flows from the supply for a short time and gives to the capacitor a
certaln quantity @ of electricity, which is sufficient to produce a
potential difference between the capacitor plates of ¥ volts, When
this potential difference has been attained, the current ceases to
flow, the quantity of electricity ¢, which has been supplied, being
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given by Q@ = C'V where C' is the capacitance and is, of course, de-
pendent upon the permittivity of the dielectric. In a perfect
capacitor, therefore, the dielectric has only one electrical property,
namely that of permittivity, It is found that with all practical
‘ dielectrics the current does
not cease after a short time
as above, but dies away gradu-
ally over a long period of
time as shown in Fig. 81. This
means that dielectrics have
other properties beyond that of
permittivity.,

A very small “conduction”
current will, of course, flow
through the dielectric because

Current

fime of the fact that the resistance
Yia. 8. OrisciNe Comamen of the dielectric, though very
I¥ AN IMPERFECT CAPACITOR high, is not infinite. This does

not explain, however, the phe-
nomena observed in most dielectries, since the current is at first
larger than that due to plain conduection and also it is not a constant
current, but dies away gradually.

This second phenomenon is referred to as ‘“‘absorption” and
dielectrics in which it occurs are said to be ‘“‘absorptive.” All
dielectrics are absorptive to some degree. If an absorptive capacitor
after being charged, is discharged, the discharging connection being
removed after a short time, it is found that the potential difference
between the plates gradually rises again, i.e. the capacitor charges
itself. This is known as the “residual” effect. Absorption is explained
by assuming that there is a viscous movement of the molecules or
ions of a dielectric when the plates between which it is situated are
charged. In charging such a capacitor there are rapid electronic and
molecular movements which correspond to the initial charging
current. Thereafter there are slower molecular and ionic movements
which correspond to the absorption current. Finally, there is a
steady flow of ions which corresponds to the true conduction
current.

The capacitance of a capacitor may thus be divided into two com-
ponents, viz. the “geometric capacitance” and the “absorptive
capacitance.” In measuring the capacitance of a capacitor on direct
current, the time of charging is thus very important. The shorter the
charging time (provided this is long enough to charge the capacitor
to the potential difference applied), the nearer the measured capa-
citance approaches the “geometric” capacitance. Fig. 82 shows the
variation of the quantity of charge with time in an absorptive cap-
acitor. The measurement of resistance of dielectrics must also be
carried out, having regard to the time of application of the p.d., since
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the current for a given applied voltage varies with time as shown
above.

Dunsheath (Ref. (10) ) represents an absorptive capacitor sym-
bolically, as in Fig. 83. The capacitor C; represents the geometric
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capacitance, the resistance R, represents the pure conduction effect,

and C, and X, in series represents the absorption effect, In real

materials the behaviour can rarely be represented by a single circuit

R,C,. There is instead a whole spectrum of similar RC circuits in
arallel, with different values of RC',

TA
=l

"“90“ v
() ()

Fias, 84, Capacironrn Vecrorn DIAGRAMS

~ With alternating currents the absorption of the dielectric is
intimately connected with the loss of power in the dielectric. In
the case of air and most other gases, the losses are very small, and
such dielectrics may be regarded as almost perfect.

If a sinusoidal voltage is applied to a perfect capacitor, the
current which flows into the capacitor leads the voltage in phase
by 90°, as shown in the vector diagram in Fig. 84 (). If the voltage is

¥ =V 4z 5in 01
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the current in a perfect capacitor of capacitance C farads is

t = @C . V4, COB 0

Tts r.m.s. value is wC.V amps. where ¥V is the r.m.s. value of the
applied voltage. Owing to the dielectric loss, the current in capacitors
used in practice leads the voltage by some angle which is slightly
less than 90°, as in Fig, 84 (b). The angle ¢ is the “phase angle” of
the capacitor, the power factor being cos ¢. The angle 4, which
equals 90 — ¢, is called the “loss angle.” Obviously the power
factor may also be expressed as sin 0.

In a perfect capacitor ¢ = 90°, and therefore § = 0. The dielec-
tric loss in an imperfect capacitor is given by IV cos¢ or IV sin ¢
where I and V are r.m.s. values of current and voltage. Thus the

R loss in a perfect capacitor EE
IV sin 6 = 0, since 0 = 0

I~k A capacitor having dielectric loss can
-f—- +——— be represented, at any single frequency,

b ) ¢ by a perfect capacitor in parallel with

¢ “ a resistance as in Fig, 85, but the value
of the equivalent resistance in general
varies with frequency. The current I
in the capacitor can be split up into a
current I, in the resistance branch, in
phase with the voltage, and a current /. in the capacitor branch,
Jeading the voltage by 90°. These components are shown in Fig.
84 (b). Then |

Fig. 85. SyMmBoLIC
REPRESENTATION OF AN
IMPERFECT CAPACITOR

I.=wCV =1Icosd

where (' is the effective capacitance of the capacitor,

. I
e O = W co8 ﬁ
The dielectric loss P = IV sin 8
— Vsind X Eﬂ—j
cos §
= V?wC tan § watts . . . (107)

if C is in farads and V in volts.

The works referred to at the end of the chapter should be consulted
by those who wish to carry the study of dielectric loss further. Refs.
(15), (16), and (40) give the effect of frequency and of temperature
upon dielectric loss. W. H. F. Griffiths* has investigated the
question of losses in variable air capacitors.

* Experimental Wireless and The Wireless Engineer, Vol. VIII, No. 90,
March, 1931. Ry

i
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Measurement of Dielectric Loss and Power Factor. The two groups
of methods of measuring dielectric losses which have been used are—
(@) Wattmeter methods,

(b) Bridge methods.

The cathode-ray oscillograph has also been applied to such
measurements and is still used to investigate the dielectric properties
of non-linear materials which would give no balance in a bridge
circuit, One example of such a material is barium titanate.

(@) WarTMETER METHODS. These are now very seldom used and
will be described here only briefly.

ie

Fig. 86. WarrmeETER METHOD OF MEASURING DIELECTRIC
Loss Axp Power Facror

Fig. 86 shows the connection diagram for a dynamometer watt-
meter when used for this purpose. Owing to the very small power
loss and low power factor (usually less than 0-01) the wattmeter
must be very sensitive. A “null” method of use is preferable, the
wattmeter reading being made zero by adjustment of the variable
inductance L in the pressure coil circuit; this brings about a 90°
phase difference between I, and I,

Since the loss angle §, of the capacitor €' under test, is very small,
as is also the angle §, we may write

BV BV
tan f = 0B = DA PProx.
‘IETE
= Tl = wCr, approx.
Thus g = tan—wCr,
Again a = tan™! M , 80 that
b
¢d=90-a+p
= 90 - tan™! o, + L) -+ tan—! wCr,

L™
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l
== IU =

NI .
l B i
J R? + 7z 10 )\/ R? 4 Y
This also gives the value of the flux density at the centre, since the
core is air (4 = 1). Thus the flux threading the amall solenoid is

Coil I
N, turns

Fra. 100. MoTUAL-INDUCTANCE BErTweeN ConoEnThRio Coms

The mutual-inductance is thus é-ﬂ—ﬂ henries

1081
2 2
or _M - 2'” NINET

‘ 19'*4/122 + g

This is, however, only an approximate expression for the mutual
inductance, since the strength of field H only refers to the centre
point O of the solenoid and its intensity varies both axially and
radially.

Corrections. If the internal coil had negligible axial length, the mutual

inductance, corrected for radial variation of field strength, would be obtained
by multiplying M (above) by the expression (Ref. (12))

3 R*r? b Rér* B2
JeraltemalCe)

(127)

14
4

Correction for the axial length of the internal coil is obtained by subtracting
a quantity, given by the following expression, from the mutual-inductance
(Ref. (12))
6 /38
%3 _"NlNl;M ¢ 1./88 X1 %
98¢ G-3V3D  G+3v3E)

INDUCTANCE 183
where § = length of internal short eoil

and M ( 11 1/5— s and M indicate the mutual-inductances
2 2 E 2

G+3V52)

' between two circles, of radii R and r, at distances apart of

i 1 :
33 % : g) and (_2'! 4 % .: - %) respectively.

As the above two corrections (for axial and radial variation of field) tend
to neutralize one another, the difference between the final value of the mutual-
inductance and the approximate value originally obtained is usually quite
small—of the order of 1 in 1,000 for usual dimensions of a mutual-inductance
for ballistic galvanometer calibration.

If both % and Er are equal to V'3, and if the ratio is small, the corrections

' become unnecessary (Ref. (17) ).

The mutual-inductance when the short coil, instead of being
situated within the long coil at its centre, is situated at the centre
but outside, is obtained by the same method as above, but R and
are interchanged. :

Example. Calculate the mutual-inductance between two coaxial circular

Length of long coil = 80cm.
Radius of long coil = 4om.
No, of turns of long coil = 500
Length of short coil = 6cm.
Radius of short coil = 3om,
No. of turns of short coil = 150

Small coil placed inside, and at the centre of, the larger coil.
2 i
Then ann x 600 x 1650 x 3

10° 4/',_3“0'3
o

henries, or 332 microhenries (very nearly)

_ 332
10¢

6. Self-inductance of Circular Coils' of Rectangular Cross-
section of Winding. Consider a single-layer coil of axial length
I em, and radius of cross-section r cm., having N turns, with

a current of I amp. flowing in it. If ; is great, the magnetic intensity

within the coil is % == If no magnetic material is present, this
is also the flux density within the coil. Thus the flux inside the
solenoid is % : ﬁ—? % mr?, and the inductance is
' 2
L= 4—% henries (approx.) . . . (128)
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only a few volts above earth even when a high voltage supply (of the : Now, from Fig. 89, which shows the vector diagram for the capacitor
order of 100 kilovolts) is used, except in the case of breakdown of (C, and R, in parallel) when & voltage F is applied to it,
one of the capacitor arms I and IIL. e EeC, = wC, Ry
In use, the bridge is balanced by successive variation of B and y g /1 _-'G . V1+oCrR,?
C, until the vibration galvanometer indicates zero deflection. Then, By TG
at balance, .3 w*0,2R,*
R R or cos?d =
C,=0C;. ii cos?d = (. E" approx. . (109) i 5 e
8
since 4 is small, and Ewl,
t&ll 5 = R‘w . G‘ . . . . . (1101 I
where w = 27 X frequency
§ = the “loss angle” of the capacitor, sin J giving the || 5
power factor
C, = the effective parallel capacitance of the test capacitor
C, = the capacitance of the standard capacitor L
Theory. Consider first the impedances of the four arms of the bridge num- _ E B'g
bered I, II, III, and IV in Fig. 88. ",.'lfr"I
Arm I. Consider this arm as consisting of the effective parallel capacitance
of the capacitor whose power factor is to be obtained, in parallel with a Fig. 89. VEcror Dirgram FOR O; AND R, IN PARALLEL
resistance R,, as shown, the latter representing its loss component. ;
Total admittance of arm I = 3 + —-1— ‘ !i“'"'“'_
5 e :
wly |
1 . |
=5t 0l |
", Impedance of arm I = 2 = R, =z i
- 1 . ~ 1+joCR. ™ I
7, +eC ! Pt i e S s
" 1
- |
Arm I1. Impedance = o0, Zy i
Arm III. Impedance = R, = z, # |
Arm IV. Irnpadam:-a = mm = I _ b < ﬂ 'E;Jf?r T
Under balance conditions F1e. 90. Vecror Diisaram FoR ScHERING Brinee UNDER
< BALANCE CONDITIONS
2 T
- Substituting cos? § in the equation of real terms obtained above, we have
g R, w0, -3 ; cos? § C.R
0. - = = 1 c,R _ Uiy
e Ry(1 + jwCyR,) R, wCy Ry (1 Faetste : w*C2R, O,
1 + jwC R, 1 .- 0 C, cos?d
Rationalizing, we have . 1T 0,0 ,R Ry
Rll:l _j'mGIRI} —f “ - . - s
— 1 4-jwC,R From Fig. 90, showing the complete vector diagram for the bridge network
CRy(1 + w?CR*)  wC;R, ( . By) under balance c'cnditiuna, '
Equating real terins e,
R, _ O.R, y tan § = —l—‘ = wl,R,
1 4 w?C,*R,2 ' O, ! . R, :

)
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(which is the expression previously stated), and also

=
: tan g = tf{?i'l = mG},R,
SowC Ry = ﬁ
or R, = —wﬁi—m

Substituting R, in the expression for C,; gives

as previously stated.

Imperfect Capacitor as a Series Circuit. An alternative method to that of
representing an imperfect capacitor diagrammatically as a perfect capacitor
C,, in parallel with a resistance R, is to represent it as a perfect capacitor C,
in series with a resistance R,.

The impedances in the two cases are

—_—— = T the parallel representation
1 + jwC, R, 1 + w*C*R* e P
and R, — E;%; in the series representation.
-

By equating the real and imaginary terms in the two impedances we obtain
the relationships

Rl
R= 1 + w*C,’R,?
P = 3
and Grlz__l_l“m("lﬂl

wiC, 2

The vector diagram of Fig. 90 needs, perhaps, some explanation.
Vector OA represents the voltage applied to the bridge from the
supply transformer. OB is the volt drop V; across arm II which,
when no current flows in the vibration galvanometer branch (i.e.
under balance conditions), is equal in magnitude and phase to the
volt drop across arm I. Vector OC is the volt drop ¥, across arm III,
which is equal in magnitude and phase to that across arm IV. The
vector sum of OB and OC obviously gives the total bridge voltage
0OA. The current I, flowing in arms I and III is represented by vector
OE, while OG represents the current I, flowing in branches II and
IV. OF and OK represent the component parts of current I; when
split up between the capacitance '; and resistance £,. In the same
way 0D and OH represent the components of the current 7, when
similarly split up between R, and Cj.

The magnitudes of some of the vectors, e.g. OC, are exaggerated
for the sake of clearness. ¥, will, in reality, be very small compared
with 7, and V.

A direct-reading Schering bridge for the measurement of permit-
tivity and power factor of solid dielectrics at 1,600 cycles per sec.
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and voltages of 100-200 is manufactured by Messrs. H. W. Sullivan,
Ltd. This covers a range of capacitance up to 1,000 guF. _

The Cambridge Instrument Co. manufacture both low- and high-
tension Schering bridges.

Muirhead and Co., Ltd. make a Schering Bridge, with a Wagner
earth attachment (see p. 231) which is intended for the measurement
of power factor and permittivity of insulating materials in accor-
dance with the recommendations of Brilish Standard Spectfication
No. 234,

A portable high-voltage Schering bridge made by H. Tinsley and
Co. has with it a screened, loss-free air capacitor of 100 puF (within
-+ % per cent) and is for use at 11 kV. It may be used up to 150 kV
using a compressed-air capacitor of nominal capacitance 100 puF
having a power factor 2 0-0001 at 50 ecycles per sec. This requires
an air pressure of 250 to 300 Ib. per sq. in.

L. Hartshorn (Ref. (45) ) adopted the Schering bridge to the
measurement of very small capacitances (below 1 wuF) and the
Hartshorn form of the bridge is the best method of measuring
the permittivity and dielectric loss of sheet materials. B.S, 234 and
B.S. 903 give detailed specifications for its use for this purpose.

A very full diseussion of the Schering bridge, in its various forms,
is given in Hague's Alternating Current Bridge Methods.

Dielectric Loss Measurement by Cathode-ray Oscillograph. The
construction of the cathode-ray oscillograph is dealt with in Chap.
XV. For the present purpose it is sufficient to know that it consists
of a vacuum tube having, at one end, a filament which gives off a
stream of electrons in a thin beam, or pencil, when the tube is in
use. This beam passes two pairs of parallel plates, set at right
angles to one another, and is deflected by potential differences
applied to these pairs. A continuous path will be traced out by the
beam on the fluorescent screen of the tube if the p.d.’s are alternating.
This path will be a straight line if the p.d.’s are sinusoidal and are in
phase but will be an ellipse if they are not in phase. The area of
this ellipse is maximum—for any given maximum values of the two
potential differences—when they are 90° out of phase with one an-
other. Under these conditions, the semi-axes of the ellipse give the
maximum values of the two potential differences to scale, The elec-
tron beam, having negligible inertia, can immediately take up a
deflected position which is proportional, at any given time, to the
deflecting force.

When used for dielectric loss measurements, a potential difference
proportional to the applied voltage is applied to one pair of plates
and one proportional to the integral of current through the dielectric
to the other pair. This is obtained in the form of the p.d. across a
relatively larger capacitor in series with the sample.

It will be shown below that the area of the ellipse traced out by
the electron beam is then proportional to the power loss in the
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dielectric. If there is no power loss—as in the case of an air cap-
acitor—the p.d.’s applied to the plates are in phase with one another
and the path traced out is a straight line.

A record of the ellipse traced out in power loss measurements can
be obtained photographically.

J. P. Minton (Ref. (23)) used a cathode-ray oscillograph for
dielectric loss and power factor measurements. The full circuit
arrangements are given by Hartshorn (Ref. (16) ).

Fig- 91 shows a simpler arrangement than that of Minton which,

Transformenr
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Fic. 91 Fig. 92

MEASUREMENT oF Dierecrric Loss BY C.R. OSCILLOGRAPH

nevertheless, will serve to illustrate this method of dielectric loss
measurement.

(', is the dielectric sample and C' a loss-free capacitor of much
greater capacitance than C,. The resistor R, shown dotted, may be
used, if desired, for compensating the loss angle of C,. The C.R.
oscillograph plates X and Y are connected as shown. (If the voltage
on C, is low, an amplifier will be needed between C and the Y plates
since the method is inaccurate unless the voltage on C' is much less
than that on C,.)

In the theory of the method which is given below it is assumed that
the resistor R is omitted. The vector diagram may then be drawn
as in Fig. 92 which shows the voltage V, across C,, the current I,
through both C, and C' and the voltage ¥, across the latter.

The power loss in C, is V,I,sin 6. From the vector diagram, if
vy = V uax S0 @f then v; = Vi, sin (wf — 0).

The deflection produced by the Y plates is proportional to »; and
we may write

y deflection = & . V} paz Sin (0t — 0)

= ,I”m’sin (wt — &)
e .

i A1 =k R 15
o Tt ¥ b

’ D AT
R

Also, the x deflection

-
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= f§. Vo oz S0 w1
where « and f are proportionality constants.
Now the area of the ellipse traced out on the oscillograph screen is

o

A= |y.dx

rT

!
=.Ju o . w“.sm{mﬁ—d].ﬁ.V“mwﬁnswt.tﬂ

e PR
1
ffﬁp&cﬁ;n Fower fﬁ’fﬁi’-‘ﬂ for
Factor=cos@ Unity Power factor

Fig. 93. Forms or OsciLLOGRAMS OBTAINED WITH CATHODE
Ray OSCILLOGRAPH

(where T is the periodic time)

T
= of . L "&“”F“ mex | sin (wf — &) cos wt . dt

v

T
= a6 ; L, masV'2 mae [sin (2w¢ — 8) -+ sin d] dt
C 2 Jq

; _aff : 2
ie, .——G-.ISVE.sm[ﬁ. =

2T

gsince T = —
w

Thus the area of the ellipse is proportional to V., sin 0 which is
the dielectric loss.
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CHAPTER V
INDUCTANCE

Self-inductance. Whenever the number of lines of magnetic force
linking with a circuit changes, an e.m.f. is induced in the circuit;
this e.m.f. is given by

e=-N %
e = induced e.m.f.
N = number of turns with which the flux links

d¢ — rate of change of the interlinking flux in lines per
dt second -

where

The negative sign indicates that the direction of the e.m.f. is such
as to oppose the change in the flux.

If, now, the change in the flux is due to a change in the current
flowing in the circuit itself (by which current the inter-linking

magnetic flux is produced) and if, also, the reluctance of the path

of the magnetic flux is constant, then

¢=ki
where ¢ is the current in the circuit.
di
Thus, e=-Nk 7
di
or e=—N3:R—t X 10°8 volts
Since k = -? , the above expression can be written
P (Nf.-' X 10-5) B8 ol
1 dt
di
or e=-L 7 volts

where L is the “coefficient of self-induction” or, simply, the “in-
ductance” of the circuit. Obviously L is constant for any given
circuit, only if ¥ is constant—i.e. when no magnetic material is

present. If ¢ is expressed in amperes, é is in amperes per second,

and k is the flux produced by 1 amp. flowing in the circuit. Then L
is in henries. ]
4170

- induced in coil 1 when the rate of change of current in coil 2 is o7
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It follows from the above that the inductance of a circuit, in
henries, can be expressed in words as

Number of turns X flux produced per ampere
108

(When, as in an a.c. circuit, the flux per ampere is not constant, a
better definition for the inductance is given by the induced voltage
divided by the rate of change of current.)

Mutual-inductance., If two coils are close fogether and umit
current flows in one of them, then the number of “linkages” with
the other coil, of the magnetic flux due to this eurrent, is called
““ the coefficient of mutual-induction,” or simply the ‘mutual-
inductance’ between the coils. By ‘‘linkages” is meant the pro-
duct of lines of force and the number of turns on the coil.

If the current 7, in coil 1 varies, its rate of change being %, then

the e.m.f., e,, induced in the second coil is given by

a1y
&g = — Ma

where M is the mutual-inductance. |
If ¢, is in amperes, and M is the number of linkages with coil 2,
per ampere in coil 1, divided by 10%, then

e,=—.ﬂ:fd—ﬁlvolta

. (111)

If the current ¢, flows in coil 2 instead of coil 1, then the e.m.f.
dig
is given by ’
Y
g=-M 7 volts

it being assumed that M is the same in each case.

To determine the direction of the induced eamn.f. in coil 1 consider
the current in coil 2 to be increasing; then a self-induced e.m.f.
will be produced in coil 2, the direction of which is in opposition to
the direction of the current. Since the same flux which induces
this self-induced e.m.f. is also inducing the e.m.f. in coil 1, this
latter e.m.f. will also be in a direction opposing that of the current
in coil 2. If the circuit of coil 1 is closed, a current will flow, due to
the induced e.m.f. and in the same direction. This current reduces
the interlinking flux and thus reduces the self-inductance of coil 2.
Hence there is a mutual action between the coils.

. Mutual-inductance is measured, like self-inductance, in henries.
A mutual-inductance of 1 henry exists between lwo circusls when

.
Liope]

L=
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a rate of change of current of 1 amp. per second in one circusl induces
an e.m. f. of 1 volt in the other circuit.

Relations Between Self- and Mutual-inductance. Suppose that
two coils, having respectively &V, and NN, turns, are so close together
that the whole of the flux produced by a current in one coil links
with the other. Let this flux be ¢ when the current in coil 1 is .

Then the self-inductance of coil 1 is L; = N, E and the mutual

. . ¢ N,
inductance is M = N, T L.
Similarly, if 2, flows in cnﬂ12, its seli-inductance L, = N:qb and
_y&®_M .
M —_ N £2 — E—r: Lz-.-
Y
”ELl_ELE_ M
or M = Ll
M=«~LL. . . . . (12

As stated above, this relationship is true only when the whole of
the flux from one coil links with the other. In practice this condition
is not fulfilled, although if the coils are very close together it is

very nearly so. The ratio ﬁf is called the coefficient of coupling,
12
and is of importance, especially in radio work. If this ratio is nearly
unity, the circuits are said to be ‘‘close coupled,” while if it is con-
siderably less than unity they are said to be ‘‘loosely coupled.”
Seli-inductances in Series. If two coils, of self-inductances L,
and L, henries, are connected in series and the mutual-inductance
between the coils is M, then if the flux, produced by coil 2, linking
with coil 1, is in the same direction, at any instant, as the self-
produced flux of coil 1, then the effective self-inductance of coil 1
i8 L, + M. In the same way the effective self-inductance of coil 2
is L, + M, provided the self and mutual fluxes are in the same
direction at any instant. Thus the total self-inductance of the circuit

18
L=1L +L,+2M

Expressing this generally, to include the case when the mutual
and self-produced fluxes are in opposition at any instant, we have

L=F L5 L2M « . o« (118

Figs. 94 (a) and (b) show two coils connected in series, and with
the directions of current in them such that their magnetic effects are
(@) cumulative, (b) in opposition.

In the first case, L = L, + L, + 2M, and in the second case
L=1L,+ L,-2M. . '
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1. Inductance of Two Long, Parallel Cylinders. Consider two
long, parallel oylinders X and Y, each of radius of cross-section
R em, and carrying currents of I amp., in opposite directions as
shown in Fig. 95(a). Let thedistance between the axes of the cylinders

Self Flux

X CGurrent Dipections

]
!
i
!
!
!
!
]
1
I
I

(b)

Fig. 94 SELF-INDUCTANCES IN SERIES

be D em., and the surrounding medium be air. Suppose, also, that

the material of which the cylinders are made is non-magnetic.
The flux, produced by the currents, and to which the inductance

is due, is composed of two parts which must be treated separately.

-f}lé 2z | % ¥

w0t Yoot

@_‘_&' rections of Current , @

in Conductors
(a) - (®)
Tic. 95. InpucrawceE oF Two Lowg PArRALLEL CYLINDERS

These are (@) the flux surrounding the two conductors, and (b) the
flux which exists inside the conductors themselves. These will be

considered in order.
(@) The magnetic intensity at a distance » em, from a conductor

carrying I amperes is o7
Thus, the total intensity of field at a point P distant ! cm. from

: . 21 21 ; .
cylinder X and (D -1) ecm. from Y is T0i + 100D =i the addition




o
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of the intensities due to the two eylinders saparately being becauss
the currents in them are in opposite directions. The resultant
intensity is downwards, as shown in the fipure. Since the mediom
I:;Itwuau th; eylinders is air, the flux density B at P is also equal to
2
101 T 6D -1
Thus, the flux in a ring of very small radial width di and axial

length 1 em., the ring being of mean radius [om, and concentrio
with oylinder X (see Fig, 96 (b)) is

2Irl 1
erlﬂxl_m[]+ﬁ—_-i]d¢

The total lux between the cylinders per centimetre axial length is

2 ou Rt
R R

o7 D
= [lug. 1~log, (D - :;.]

D-R
R

ft

—i'ﬁ"Ei

o % log; % # R is small compared with D.
The flux surrounding each wire is one-half the total flux, i.e.

% log, % lines per em, axial length

No. of turnas > fAux per amp.
1ot 2 P the

inductanes of one conductor per centimetre axial length due to its
externs] flux alone is

Sinee inductanece in henries =

2, Dh .
1gs 108, 3; henries

{b} In considering the Aux existing inside each conductor, assume
that the current is distributed uniformly over the oross-section of
the conduoter. This assumption is justified if the supply frequenacy
in low. At high frequencies, the current flows almost entirely in the
outside “skin” of the conductor and in this case the flux inside the
conductor is negligibly small. The expression for induoctance derived
below, together with most of the succeeding expressions, gives
therefore the “low-frequency™ inducfance. Slight modifications,
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due to the negligible internal Aux, are required to convert them to
expresaions for “high-frequency ™ inductance.

" It 18 convenient to consider the conductor as being made up of
& very large number of filaments, all parallel to the axis and each
currying a small fraction of the
total conductor current I (see

Radia! Thickness

Fig. 96). of Ring dr
Consider an elemental ring of
radius r and radial widthdr s shown, :
:Ih?n the aurrent enslosed within Eﬁ?ﬁﬁ:g
this ring
f A= ﬂ w T — f I Fro. 96, CoRnErT DISTRIDTITON
L 1 ;2 o A C¥Lowpriosn CoNpuoTon

and the intemsity of the magnetic feld at rodiues r within the con-
ductor is
2]

—
T 10r
the permenbility of the conductor material being unity.

The flux in the elemental ring, of axial length 1 cm., radius r, and
radial width dr, is Bdr 2 1

Br. .o
=15 dr lines

This flux does not surround the whole conduetor eurrent; but only
the current §,. Beferring it to tha whole conductor, we have

dp=2rdr x5
by multiplying by % —the inverse ratio of the numbers of filamenta,
3 A 2ir
L W= 1om X mT= om

The total lux of tha insida of the eonductor, referred to the whole
conduetor,

R
B L. (Y
= RS — Ix1om 2o
a

flux
amp. ¥ 108

For one eonducior the induotance L is
2r n I 2 n 1
% rtm w%Etwm

= I = 100 = 10*

|?. =
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Tt is assumed in this formula that the circle is complete, i.e.
there i1s no gap in it, and that the wire is of non-magnetic material,

If a gap of length g em. is left in the circle, then

d? 8D a2
L= (1 = TE_.D) 2TI'D[( 14 aﬂl) O s E - 'E—E‘ —1'?5]
% 10 henries , (117)

If, instead of one circular turn, we have a circular coil of eircular eross-gection
and N turns, the self- induﬂt&nua of the coil is

2
L = 2nN*D [(1 e e e 1-15]
x 10 henries . . . (118)

where d is now the diameter of the section of the coil. The formula for a single
turn is obviously a special case of the coil when N = 1.
.Fnr high frequencies the formula, given by Grover {Raf (2)) for.a single -

turn, is
= 2nD [(1 - E‘) log, —d~

4. Mutual-inductance Between Two Concentric Circles. The
mutual-inductance between two concentric circles can be calculated
by integration, using the equation

H—h-tﬂ'amﬁ

= ]x-lﬂ“hannﬁa .. ()

Fig. 97 (a) shows two concentric circular wires of radii #, and 7,,
the outer of which carries a current of ¢ e.m. units. If the flux
threading the inner circle, due to the current in an element dl of
the outer circle, is calculated, then the total flux threading the inner
circle, when ¢ units of current flow in the outer, can be found by
integrating over the whole circumference of the latter. The mutual

inductance is then given h}' ® where ¢ is the total flux linking with
the inner circle.

It can be shown by mtegmtmn* that the flux linking with the
inner circle when a current of ¢ e.m. units flows in the outer is

4y {log, = o _ 2;

1— T2

if r, — r, is small and assuming the medium to have unit permeability.
Thus, the mutual inductance between the circles is given by

Al ‘:‘:'ﬂ'r-l i 1 8‘?"1
a

1 3

- 2} henries

the radii 7, and 7, being expressed in centimetres.
If, instead of being circles of one turn only, the coils had a number

* Bee Dryedale and Jolley, Elecirical Measuring Insiruments, Vol. 1.
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3. D 1 .o henries per cm. axial

The inductance per mile of one conductor is thus
| L = 0-0804 4 0-740 log,, % millihenries per mile (114)

2. Single Straight Wire Parallel to Earth

Let the axial length of the wire = [cm,
5 3y Tadius of wire — Rem.
»» » height of wire above earth = H cm.

Assume the wire to be of non-magnetic material and that the radius
of the wire is small compared with its length. Then, using the
method of images, imagine that an exactly similar conductor,
running parallel to the overhead one, is embedded in the earth at
a depth H em. immediately below the latter. If the embedded
conductor carries the same current as the overhead one, but in the
opposite direction, then the distribution of the magnetic field will
be the same as that of the single overhead conductor existing alone.

The distance between the overhead and imaginary embedded
conductor is 2H. We may, therefore, from the results of the previous
paragraph, state the inductance of the overhead conductor as

L = 0:0804 -+ 0-740 log,, % millihenries per mile

replacing D by 2H.
The inductance of a single straight cylindrical conductor, distant
from earth and other conductors, is given by

L =2l (lng, %‘i_ 0-75 ) millihenries
where [ — length of wire in centimetres
R = radius of wire in centimetres
it being assumed that the material of the wire is non-magnetic and
that the surrounding medium is also non-magnetic.
If the wire is of magnetic material the inductance is given by

L=2 (log,%-l + ﬁ) wilkikenties .. * . (115)

where u = permeability of the material of the wire.

3. A Single Circular Turn of Round Wire. The inductance for
continuous current and low frequencies is given by Rayleigh ‘and

Niven’s Formula (Ref. (1) ), i.e.—
=2nD| (1 @ 1 = 4 ~1-75 | % 10-® henries (116

-where D = mean diameter of the turn in centimetres

d = diameter of cross-section of the wire in centimetres

o N S
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It is assumed in this formula that the circle is complete, i.e.
there is no gap in it, and that the wire is of non-magnetic material.

If a gap of length g cm. is left in the circle, then
' g de 8D d2
L = ay; T o — e P
(1 “D) 21:13[( 1+ &D*) log, 7 + gz -1 ‘?E]
X 10" henries . (117)

Ii, instead of one cireular turn, we have a circular coil of circular cross-ssction
and N turns, the self-inductance of the coil is

‘ 2 D :
L = 2nND [(1 + 53 108 —Sd + zﬁdm - 1-?5]
X 10 henries . . . (L18)

where d is now the diameter of the section of the coil. The formula for a pingle
turn is obviously a special case of the coil when N = 1.

turn, is
d3 8D
L = 2nD [(1 - E’) log, = 2] X 107" henries . «  (119)

4. Mqtual—inductance Between Two Concentric Circles. The
mutual-inductance between two concentrie circles can be calculated
by integration, using the equation

H= ﬂ: sin 0
7

Fig. 97 (a) shows two concentric circular wires of radii ry and 7y,
the outer of which carries a current of 4 e.m. units. If the flux
threading the inner circle, due to the current in an element dl of
the outer circle, is calculated, then the total flux threading the inner
circle, when ¢ units of current flow in the outer, can be found by
integrating over the whole circumference of the latter, The mutual

inductance is then given by f where ¢ is the total flux linking with
the inner circle. ' : '

_ It can be shown by integration* that the flux linking with the
inner cirele when a current of ¢ e.m. units flows in the outer is

i {105;, e -22

ry—7g

if 7, — 1, is small and assuming the medium to have unit permeability.
Thus, the mutual inductance between the circles is given by

4
M= 11;1 { log, S bl 2} henries

1~ 7Tg

the radii r; and 7, being expressed in centimetres.
If, instead of being circles of one turn only, the coils had a number

* See Dryedale and Jolley, Electrical Measuring Insiruments, Vol. 1.

For high frequencies the formula, given by Grover (Ref (2)) for.a single -
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of turns, these turns being assumed to be coincident in space, then
- 2} henries . * (120)

d7rry 8r.
NN {lug. -

1~ Ty
No. of turns on outer coil
inner coil

M=

where N; =
N ke » 3

ma e

The length 7, — 7, may be expreased as the distance between tha -f._l._ :
circumferences of the coils. Since the assumption that the turms. =
‘on the coils are coincident in space is not usually justified even asan

approximation, a length E called the *‘geometrical mean distance,”

(b)

Fia. 97

first introduced by Maxwell, is used instead of r1 — 1. The mutual
inductance is then given by

__4aN,Ngry 8ry

A e T{ log, &

“ Geometrical Mean Distance” may be defined as follows. Consider
a point P external to a circuit. Let d,, dy, ds, efc., be distances from
P to various points on the circuit. Then, if an infinite number of
these distances be taken, the “geometrical mean distance” R is
given by

- 2} henries

R = 4/d,d.d, etc., where n_s.q
log, B'= limit. 5 111 Slog, d -

The factor R is used in many of the formulae for the calculation of
both mutual- and self-inductance. In the case of self-inductance,
R is the G.M.D. of the circuit from itself, or, in the case of a multi-
turn coil, of the turns from each other.

To find the self-inductance of the coil of N, turns, using Equation
(121), with the correct value of R we have
4 N2 _8n

L= —1g ik’g' 0°7788p ~

- A" L o g '
1 -

or

(121)

At
B |

" :-"..._'__;.,ﬁ
SRR

Wl

(i) L=
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The G.M.D. of a circular area from ifself is 0-7788 p where, in this

_ case, p is the radius of the cross-section of the coil (asaumed circular).

This expression, if compared with the expression given previously
(Equation (118) ) for the gelf-inductance of a similarly-shaped coil,
will be found to give the same result in any particular case, provided

p is small compared with r.
Example. Celculate the ae]f-mduuta.nca of & coil of mean diameter 20 cm,,

having 10 turns, whose cross-section is circular and of radius 1 cm. (Fig. 97(b)).
Then, using Equation (122), we havﬂ

4w X 100 x 10 I:l 2]
'{J'?TEE X 1

10°
= (-000033080 henries
log 8 x 20
490) 2

4000w [ 801 1 7
1o | soo X ¥3828 + 345 Z]

= 0-000033150 henries

Table V gives some of the more 1mp0rﬁa,nt geometrical mean
distances.

Some exact expressions for the geometrical mean distance in
several cases are given by Butterworth (Dictionary of Applied
Physics, Vol. II, p. 391). For the calculation of geometrical mean
distances, see Refs. (3), (4), and (12) at the end of the chapter.

If two circles are coaxial, but not concentric, and if the difference ry—ry
between their radii is not small compared with their radii then the formula

(ii) Using Equation (118),

2m x 100 X 20
T — [(1+

(Ref. (11) Jis Y 2 o
. AV, BV ity Ll 19 2 a ]
M= —5tt log. “[H'l “102a% Tt
1 31 ot 247 a8 ]E g 12
- |:2+ 16 %~ 5948 & -+ E{IEBJ‘ . + » |t henries (123)
where a¢ = D, Sl
LhLE
This equation may be written
M=M, Vi,
- where M, equals : o mulhphad by the expression in brackets.

Nottage (Ref. (5)) gives a table of values of M, for different values c-I .D :

where D, and D, are the least and greatest distances between the oircles

i 8 * {mFlg 98). M, vmmfmmzam,whan%—l to 50-16, whan%—ﬂﬁl

: f-‘ If the circles have approximately equal radu and the distance between them
fama.ll compared with their radius

1-{ M = i‘% (1.:.3, E;' 2) henries (124)
_u'ill tha distance (in centimetres) between the oircles.
L 3 1t . 3;3%'*\ -

iy, 'y
L
:
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5. Mutual Inductance Between Two Coaxial Circular Coils of

Rectangular Cross-section of Winding. From the previous para-
graph an approximate formula can be derived for the mutual

inductance between two coaxial circular coils of rectangular cross-
gection, i.e. )

M=Topenmes . . . 25)

where M, is the mutual inductance between the two central turns
of the two coils and can be obtained from Equation (123). N, and
N, are the numbers of turns on the two coils.

TABLE VIIL
GEOMETRICAL MEAN DISTANCES

e . e e e i e —— " L

Sh f Cirouit ; : Interpretation of
ape of Ciroui (eometrical Mean Distance (R) Symbols Used
Line from itself .| B = 0-223131 i = length of line
Rectangular area
from iteelf |, .| R = 0-2236 (a + b) (approx. expression) a and b = sidea of

Circular area from

itaelf . . o B = 0T788r

Annular ring from |log, R =

itaelf .

Ellipse from itself

Two parallel straight
lines . :

‘|log, R =

log, R =

luzl 1 --lug, (mE=1)% S
a4+ b y
3 0-25

log,
Dt 1 D?
Fl-:-g,.ﬂr+ 3 (1—F
log, (D* + B) + Egtdm"'

l

—

D

2
2

rectangle
r = radiua of circle
r, = external radius
r, = internal radius
b |
m=g
g and b = gpemi-axes
of ellipse

I = length of lines
D = distance bétween
linea

The accuracy of this formula is of the order of 1 per cent in most

practical cases.

Rayleigh’s Formula. This is a more exact formula than the above,
since it takes into account the dimensions of the cross-sections of
the coil windings to a greater degree.

Referring to Fig. 99, let the mutual-inductance between a circle

of radius », with centre X, passing through point @,, and a cirele of '
radius r,, centre Y, passing through o,, be given by Mo,a,. There will
be, in all, eight such mutual-induetances—four referred to coil 2 and
four referred to coil 1. ay, by, ¢,, and d, are the mid-points of the sides
of the section of coil 1 of which section o, is the centre point. The
pD!Ifl;B @y by, €, dy, and o, are similarly situated on the seotion of
coil 2.

L]
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Then, by Rayleigh’s formula, the mutual-inductance between the
coils is given by |

1
M= (Molan + Moyb, + Moye, + Mo,d, + Moy, + Mogb,

+ Moy, + Moyd, - EMD) ... (2
wﬁera M, is the mutual-inductance between the two central circles
i
p 2
5 Coil T

YV 07
T__a\n a, /,%4 G . 5 A
7 id’z
l

i3 7y .
7 iy Xl ¥ = v

-—G=
=

Fia. 98 Fia. 99, MUTUAL-INDUCTANCE
Brrwreny Coaxian Coms

of the coils (through points o, and 0,). The mutual-inductances
Mo,a,, etc., can be calculated as indicated in the previous paragraph.*
~ If instead of one of the coils being, as above, external to the other
and displaced axially from it, one of the coils is inside the other at
its centre, the coils being still coaxial, the mutual-inductance can
be calculated as below. This case refers particularly to the mutual-
inductance used in ballistic galvanometer work for calibration
purposes, where a small coil is fixed inside a long circular solenoid

as in Fig. 100,
Let [ = length of long solenoid in centimetres
R = radius of long solenoid in centimetres
r = radius of internal short solenoid
N, = No. of turns on outer solenoid

N, = No. of turns on inner solenoid :
If a current of I amp. flows in the outer solenoid, the magnetic

_ field strength at its centre is given by

‘o 4m NI
BT

* Other methods of caloulation of the mutusl-inductance between two such

cos 0

coils, dus to Lyle, and Nottage are given by the latter (Ref. (5) ).



