

[bookmark: _Toc511220124]Project Assessment: Develop and test an application
Trainer & Assessor Marking Guide
Criteria
Unit code, name and release number
ICTPRG403 Develop data-driven applications (1)
ICTPRG410 Build a user interface (1)
ICTPRG404 Test applications (1)
This unit sits in all the qualifications below. This assessment is not to be amended
Qualification/Course code, name and release number
[bookmark: Qualification]ICT40518 - Certificate IV in Programming (1)

[image:]

Document title: Cl_Programming_2_MG_Pro_1of3		Page 58 of 59
Resource ID:TBS_19_017_Cl_Programming_2_MG_Pro_1of3
Version:	20200108
Date created:	8 January 2020
Date modified:	13 January 2020

For queries, please contact:
Technology and Business Services SkillsPoint
Location: Ultimo
© 2020 TAFE NSW, Sydney
RTO Provider Number 90003 | CRICOS Provider Code: 00591E
This assessment can be found in the: Learning Bank
The contents in this document is copyright © TAFE NSW 2020, and should not be reproduced without the permission of the TAFE NSW. Information contained in this document is correct at time of printing: 17 January 2020. For current information please refer to our website or your teacher as appropriate.

Assessment instructions
Table 1 Assessment instructions
	Assessment details
	Instructions

	Instructions for the trainer and assessor
	This is a project based assessment and will be assessing the student on their knowledge and performance of the unit.
This assessment is in two parts:
Research
Develop an order management system.
The assessment also contains:
Assessment Checklist 1-2
Observation Checklist 1-2.
On completion of this assessment, students are required to submit the following to the assessor for marking:
Part 1: Research
· This completed document
Part 2: Develop an order management system
· OMS project code
· This completed document.
Model answers, sample responses or a criteria for each question are provided below.
Use these to support your judgement when determining a satisfactory result.
The student’s product must implement the required criteria and demonstrate the skills and knowledge indicated in this marking guide in order to deem it satisfactory. However, if a student submits code or information other than indicated below, and in the professional opinion of the assessor it is appropriate and meets the intent of the criteria, it may be considered correct.
The assessment feedback page must be signed by both the student and the assessor so the student displays that they have received, understood and accepted the feedback.
Complete the assessment feedback to the student and ensure you have taken a copy of the assessment prior to it being returned to the student.
Ensure the student’s name appears on the bottom of each page of the submitted assessment.
All items in the Assessment and Observation Checklists must be marked Satisfactory for the student to satisfactorily complete the assessment.

	About this marking guide
	All tasks and activities must responded to correctly in order to satisfactorily complete this assessment event.
Assessors will need to make a judgement call as to whether each answer/response meets the criteria based upon the:
· Rules of Evidence:
· Validity – does the answer address the assessment question and does the evidence reflect the four dimensions of competency?
· Sufficiency – is the answer sufficient in terms of length and depth?
· Currency – has the work been done so recently as to be current?
· Authenticity – is this work the student’s own authentic work?
· Principles of Assessment:
· Fairness – individual student’s needs are considered in the assessment process
· Flexibility – assessment is flexible to the individual student
· Validity – any assessment decision is justified, based on the evidence of performance of the student
· Reliability – evidence presented for assessment is consistently interpreted and assessment results are comparable irrespective of the assessor conducting the assessment
· Dimensions of Competency
· Task skills
· Task Management Skills
· Contingency Planning Skills
· Job Role Environment Skills

	Assessment conditions
	Assessment conditions will be safe and replicate the workplace. Noise levels, production flow, interruptions and time variances must be typical of those experienced in the programming and software field of work.
Assessment may be undertaken in normal classroom conditions, which is assumed to be noisy and similar to workplace conditions, or within the workplace. This may include phones ringing, people talking and other interruptions.
If the classroom is too quiet, the assessor must ensure there are disruptions and noise, similar to the workplace.

	Student must provide
	· USB drive or other storage method with enough free space to save work to.

	Assessor must provide
	An integrated development environment (IDE)
Word processing software
Internet access
Code to be tested (student’s code verified by assessor)
Code to be tested (student’s code verified by assessor)
Coding standard as listed in instructions
Specific licensed tools for the platform you are using (API):
· Visual Studio 2019 (or higher)
· SQL Server + Management Studio 2017 (or higher)
Database management system software and files:
· Database Script (DB_Script.sql)
· Database test data (DB_Test_Data_Script.sql)

	Due date and time allowed
	Indicative time to complete assessment:
In class: Four hours
Out of class: 16 hours.

	Assessment location
	Parts 2.4 and 2.10 will be completed in the classroom. All other parts will be completed both in and outside of the classroom.
The student may access their referenced text, learning notes and other resources.

	Supervision
	All other parts are an unsupervised, take-home assessment.
If you are unable to verify the authenticity of the student’s submission you will need to gather additional evidence to confirm that the assessment task was completed by the student. This may include oral questioning, comparison with in-class work samples, or observation.
If additional verification is carried out, assessor questions and student responses must be recorded in the feedback section of the assessment instrument.

	Reasonable adjustment
	If a student has a permanent or temporary condition that may prevent them from successfully completing the assessment event(s) in the way described, the student can approach you to request ‘reasonable adjustment’ for the assessment. If this happens, you may take the following actions:
For out of class activities, you may grant an extension to the submission date or offer to combine this activity with verbal questioning, depending on the condition of the student.
For in-class activities, adjustments can be made in line with the reasonable adjustment required and may include extra time and adjustment of the simulated work environment to meet physical requirements.
Any reasonable adjustments offered and undertaken, must be recorded in the feedback section of the assessment instrument.

[bookmark: _Toc25746375]

Part 1: Research
[bookmark: _Ref22543483][bookmark: _Ref22543904]To complete this part of the assessment, you are required to research technologies, techniques and best practices available for the development of a multi-layer data application.
Table 2 - Technologies, techniques and best practices lists the topics that you are required to research. For each topic, document the main points discovered in your research using approximately 50 – 150 words for each topic.
Provide references for all sources of information provided in your research using the format of Harvard referencing.
[bookmark: _Ref29976625]Table 2 - Technologies, techniques and best practices
	Research - Technologies, techniques and best practices
(approximately 50 – 150 words for each research topic)

	A. Relational Database Management System (RDBMS)

	RDBMS stands for "Relational Database Management System." An RDBMS is a DBMS (Database Management System) designed specifically for relational databases.
A relational database refers to a database that stores data in a structured format, using rows and columns which are stored in related tables. The relationship between the tables is defined with a primary and foreign key. The relational structure makes it possible to run queries across multiple tables at once.
While a relational database describes the type of database an RDMBS manages, the RDBMS refers to the database program itself. It is the software (that typically runs as a service) and is responsible for managing connections and actions performed against a database. A client application establishes a connection with the RDBMS to perform operations against a database being managed by the RDBMS. A single instance of an RDBMS can have many databases attached.
(Christensson P. , 2017)

	B. Structured Query Language (SQL)

	Stands for "Structured Query Language," and can be pronounced as either "sequel" or "S-Q-L." It is a query language used for accessing and modifying information in a database. Some common SQL commands include "insert," "update," and "delete." The language was first created by IBM in 1975 and was called SEQUEL for "Structured English Query Language." Since then, it has undergone a number of changes, many coming from Oracle products.
Today, SQL is commonly used for Web database development and management. Though SQL is now considered to be a standard language, there are still a number of variations of it, such as T-SQL and MySQL. By using a scripting language like PHP, SQL commands can be executed when a Web page loads. This makes it possible to create dynamic Web pages that can display different information each time they load.
(Christensson P. , 2007)

	C. Object-Oriented Design (OOD), including its features

	Object Oriented Design OOD is a development principle and methodology that lowers the representational gap between software and real world problems. Further to this OOD encourages re-use of code (objects) and coherent design of software in order to achieve robust, yet flexible code. Artefacts such as Class diagrams and sequence diagrams provide a clear overview of how the software is structured and association between object (coupling). Additional concepts such as encapsulation, data protection, inheritance, interfaces and polymorphism can be applied in order to adhere to good practices and programming principles for the development of software. OOD can be applied to any object-oriented programming language e.g. Java, C#, C++ etc… and is language agnostic. There are three main categories (Creational, Structural, and Behavioural) of design patterns that can be applied for common problems faced when developing software.

	D. The function of the Data Access Layer in a multi-layer application model (DAL)

	 Data access layer (DAL) in computer software is a layer of a computer program which provides simplified access to data stored in persistent storage of some kind, such as an entity-relational database. This acronym is prevalently used in Microsoft environments.
Applications using a data access layer can be either database server dependent or independent. If the data access layer supports multiple database types, the application becomes able to use whatever databases the DAL can talk to. In either circumstance, having a data access layer provides a centralized location for all calls into the database, and thus makes it easier to port the application to other database systems (assuming that 100% of the database interaction is done in the DAL for a given application).
(Wikipedia, 2019)

	E. The features of multi-layer applications

	Presentation, application processing, and data management functions are physically separated. They enable developers to create flexible and reusable applications. Software is scalable and has extra dimensions of functionality.

	F. Application Programming Interface (API) for connecting to a data source, with a focus on the different data providers, core components, responsibilities and function provided

	ADO.NET is an Application Programming Interface (API) developed and released by Microsoft for programmatically interacting with a data source, such as a database, XML file etc… ADO.NET has classes available for most of the different data provider’s such as MS-SQL, Oracle, MySQL etc…
The main classes and associated responsibilities in ADO.Net are:
· Connection (establishing and managing a connection with a data source)
· Command (executing a command such as select, insert, update and delete)
· Data Reader (stores and provides access to in-memory datasets retrieved from and external data source)

	G. The anatomy of a connection string and best practices for referencing sensitive configuration data

	The main parts of a connection string are:
· The data source e.g. server, services or endpoint
· The database (which database to connect to)
· Credentials (which method of authentication to use e.g. username/password, integrated)
Information on how to connect different APIs with Data Sources is available at https://www.connectionstrings.com/

	H. Best practices for handling any exceptions that may occur when accessing a data source

	Many different types of errors can occur when programmatically connecting and interacting with a data source from an application, the most common errors include:
· Network access errors
· Concurrency errors
· Invalid SQL command/syntax
In all cases all code that programmatically connects with a data source should be wrapped in a try catch, finally block and the end-user should be appropriately notified.
It is best practice to catch a SqlException in order to log the specific details of why the exception was raised. The logic should also be in a using code block to ensure all objects are correctly disposed

	I. A strategy for working with and managing disconnected data

	A DataSet is an in-memory data store that can hold numerous tables. DataSets only hold data and do not interact with a data source. It is an adapter that manages connections with the data source and gives us disconnected behaviour. The adapter opens a connection only when required and closes it as soon as it has performed its task. Best practices for working with external data sources is to connect as late as possible and disconnect as soon as possible in order to not consume a connection so other clients cannot connect. After the dataset has been retrieved from the data source it is stored as an in-memory dataset which can be read, modified and tracked. Any changes made to the disconnected data are tracked so it can be synced with the data source at a later time. It is important that concurrency is considered and handled correctly when syncing disconnected data with the original data source. Further to this when interacting with a data source the ACID principle should be applied. Further information on ACID can be viewed at https://database.guide/what-is-acid-in-databases/

	J. The Software Development Lifecycle (SDLC)

	See https://www.techopedia.com/definition/22193/software-development-life-cycle-sdlc for information on the Software Development Lifecycle

	K. Developing and conducting tests for small-size applications, with a focus on the following:
· The role of testing in the SDLC
· Types of tests
· Testing tools
· Test plans, test cases, test data and test progress reports
· Unit test framework
· The benefits of testing
· Testing standards
· Common terms used in the role of testing.

	Software Development Lifecycle
Phase 1: Requirement collection and analysis
Phase 2: Feasibility study
Phase 3: Design
Phase 4: Coding
Phase 5: Testing
Phase 6: Installation/Deployment
Phase 7: Maintenance
- - - - - Phase 5: Testing - - - - -
Once the software is complete, and it is deployed in the testing environment. The testing team starts testing the functionality of the entire system. This is done to verify that the entire application works according to the customer requirement. During this phase, QA and testing team may find some bugs/defects which they communicate to developers. The development team fixes the bug and send back to QA for a re-test. This process continues until the software is bug-free, stable, and working according to the business needs of that system.
- - - - - Types of Testing - - - - -
· Unit Testing. It focuses on smallest unit of software design. It checks if actual and expected result from executing a unit of code are the same
· Integration Testing. The objective is to take unit tested components and build a program structure that has been dictated by design. It checks if separate components of a system interface correctly. The components can be another class, assembly or another system etc... The main goal of integration tests is to ensure the integration of the components works as expected.
· Regression Testing. checks if any new or modified code works as expected and no errors have been introduced
· Smoke Testing.
· Alpha Testing.
· Beta Testing.
· System Testing.
· Stress or Load Testing tests how the system performs under heavy loads such as a high number of concurrent users by measuring available memory and CPU activity etc.
Visual Studio includes many testing tools including:
· Test Explorer: used to create, manage and run unit tests.
· IntelliTest: automatically generates unit tests and test data.
· Code Coverage: reports on how much of the code base is being tested.
· Microsoft Fakes: Creates stubs and shims (fakes) to isolate and test code
· Coded UI: create and managed automated user interface (UI) tests
Test Plan: A test plan can be defined as a document that defines the scope, objective, and approach to test the software application. The test plan is a term and a deliverable.
Test Strategy: Test strategy is a set of guidelines that explain the test design and determine how testing needs to be done.
Test Case: Now, there is one school of thought that a test case is a term used in the manual testing environment and test script is used in an automation environment. This is partly true, because of the comfort level of the testers in the respective fields and also on how the tools refer to the tests (some call test scripts and some call them to test cases). So in effect, test script and test case both are steps to be performed on an application to validate its functionality whether manually or through automation.
Test Procedure: It is nothing but the test life cycle. There are 10 steps in the Testing Life Cycle.
· Effort Estimation
· Project Initiation
· System Study
· Test plan
· Design Test Case
· Test Automation
· Execute Test Cases
· Report Defects
· Regression Testing
· Analysis and Summary Report
Test Suite: The test suite is a container that has a set of tests which help the testers in executing and reporting the test execution status. It can take any of the three states i.e. Active, in progress and completed.
Test Progress: Once the process of testing is completed, the testing team prepares various documents that help communicate the simple and complicated activities, processes, methodologies, etc., related to the process of testing, to the other members as well as the stakeholders of the project. Test progress/summary report is one such document prepared by the team, which offers critical details about the testing cycle as well as the status of the test results.
(softwaretestinghelp, 2019) (professionalqa, 2019) (Kritka, 2019)
Benefits
The main benefits of testing are quality assurance the reduced costs. Testing identifies errors so they can be fixed before code is deployed to production. Errors in production can be costly as it is harder to resolve an error that is in production which may have resulted in incorrect processes and/or information from which important business decisions have been made.
Standards
Testing standards ensure quality by defining requirements that must be maintained during the testing process; this includes rules that must be followed when planning, creating, executing and documenting tests.
Common terms used in testing include:
Acceptance Criteria: what is required for the software be accepted as satisfactory?
Actual and Expected: comparing the actual and expected result of a process to test for errors
Black box: testing a unit of functionality without inspecting the internal workings.
Coverage: how much of the code is covered by tests.
Debug: inspecting code as it is being executed

	L. Techniques for gathering the requirements for a user interface (UI)

	See https://usabilitygeek.com/requirements-gathering-user-experience-pt1/ for information on available techniques

[bookmark: _Toc25746380]

[bookmark: _Toc28079064][bookmark: _Ref22545708][bookmark: _Toc28079066][bookmark: _Hlk27646418]Part 2: Develop an order management system
Scenario
XYZ & Co. has requested your services for developing a multi-layer data-driven desktop application. They need an Order Management System (OMS) so their employees can record and manage custom orders of their available stock items.
XYZ & Co. has already been working with a consultant and provided you with the client requirements for the product as listed below.
[bookmark: _Ref25746754][bookmark: _Toc28079068][bookmark: _Hlk27654603]Download and unzip the resource folder (Cl_Programming_2_AE_Pro_1of3_SR1.zip) to access files referred to within the assessment.
For the assessor: download and unzip the marking guide folder (Cl_Programming_2_MG_Pro_1of3_SR1.zip) to access marking guide files.
Product description
The OMS will be used for recording and managing customer orders and tracking stock item levels.
1. Adding a new order
A typical scenario of use starts when a customer contacts XYZ & Co and places an order. At this point an employee of XYZ & Co will start to enter the details of the order into the system. When a new order is created, a unique identifier is generated and assigned to the order. The current date and time is also captured and associated with the order. If at any time the employee cancels entering the order, any data relating to the Order that has already been saved to the database must be deleted.
2. Adding order line items
The employee will then add the order line items by selecting a stock item, entering the quantity and clicking the ‘Add Item’ button. The employee will follow this process for every order line item.
If the quantity entered for a stock item is higher than what is currently available in stock a warning must be displayed. Validation is also required to ensure a value greater than zero is entered for the quantity.
When an order is first created it is flagged as ‘New’ indicating order line items are still being added. After all of the items have been added the employee will ‘Submit’ the order, this will result in the order being flagged as ‘Pending’. An order can be pending for any period of time but most orders are processed within 2 – 3 business days.
It is also required that order items can be deleted from an order whilst it is flagged as ‘New’.
3. [bookmark: _Hlk27654824]Viewing and processing orders
When the application is launched, the employee will be presented with a view that lists all of the orders in a data grid.
Each row will display the unique identifier (Id), date/time, number of line items, total and the current state of the order (New, Pending, Complete or Rejected).
The employee will then be able to select one of the orders and navigate to the ‘Order Details’ view, which will display the order details including the line items (SKU, Name, Price, Quantity and Total).
If the order is flagged as ‘Pending’ a ‘Process’ button will be visible so the order can be processed When an order is processed the quantity of each item ordered is checked against the quantity currently in stock. If there is enough items in stock for the quantity ordered of all line items, the quantity ordered is decremented from the stock available and the order it is flagged as ‘Complete’. If there is not enough stock available at the order is flagged as ‘Rejected’, see Figure 1 - Order State Flow Diagram.
[image:]
[bookmark: _Ref22548320]Figure 1 - Order State Flow Diagram
4. [bookmark: _Hlk27655125]Stock items
Each stock item has a unique identifier (SKU), name, price and current stock level (number of items currently in stock). When an order is processed the number of items in stock is decremented accordingly.
5. [bookmark: _Hlk27655192]Navigation
A diagram depicting the navigation between the different views in the application is shown in Figure 2 - Application Navigation.
[image:]
[bookmark: _Ref22554077]Figure 2 - Application Navigation
5.1 - Launch Application
· The application automatically navigates to the [Orders View].
· All Orders in the system are displayed as rows in a data grid.
· Each row has a link for navigating to the [Order Details View] for the selected row.
5.2 - Add Order (New)
· The application navigates to the [Add Order View].
· Initially there are no Order Line Items.
· A Unique Identifier is generated, assigned to the Order and displayed.
· The current Date and Time is captured, recorded and displayed.
· The Total for the Order is displayed, initially it is $0.00 as there are no Order Line Items
· When an Order is first created it is flagged as New
5.3 - Add Order Line Item
· The application navigates to the [Add Order Item View]
· A list of Stock Items are displayed as rows in a data grid.
· The employee is able to select a Stock Item by clicking on the related row in the data grid.
· A Textbox is displayed for entering the desired order Quantity of the selected Stock Item
· A button with the value [Add Item] is displayed. When a Stock Item has been selected and a valid Quantity for the Order Line Item has been entered clicking the [Add Item] button will create a new Order Line Item and add it to the Order.
· If a Stock Item was selected and a valid Quantity entered the application navigates back to the [Add Order View] after the [Add Item] button has been clicked:
· The new Order Line Item is displayed in a data grid as rows with the columns Stock Item’s Unique Identifier (SKU), Stock Item’s Name (Item), Quantity, Price, Total. See Table 3 - Order Item Data Grid [Add Order View].
· The Order Total is updated to include the Total for the new Order Line Item
· If the Quantity is greater than the current Stock Level, a warning is displayed but the new Order Line Item is still created.
· Info: There are currently not enough items in stock. Requested X, In stock: X. This order might be rejected if there is not enough stock on hand when the order is being processed.
· Note: X represents the quantity ordered and quantity currently in stock
· If no Stock Item was selected, no quantity or an invalid quantity was entered, a message will be displayed:
· Info: Please select a Stock Item
· Info: Please enter the Quantity
· Info: The Quantity must be greater than zero
[bookmark: _Ref22630184]Table 3 - Order Item Data Grid [Add Order View]
	SKU
	Item
	Price
	Quantity
	Total

	3
	Chair
	$50.00
	3
	$150.00

5.4 – Submit Order (New > Pending)
· After all the required Order Line Items have been added to the Order, the Order is submitted. This is done by clicking the [Submit] button located on the [Add Order View].
· After the [Submit] button has been clicked the state of the Order changes from New to Pending and the application navigates back to the [Orders View].
· The details of the Pending Order will be displayed as a row in the data grid along with a [Details] button for navigating to the [Order Details View] of the selected Order, see Table 4 - Order Row (Orders View).
· [bookmark: _GoBack]Note: At any time an Order can be Cancelled; if this is done any data related to the order that has been saved in the database must be deleted.
[bookmark: _Ref22716839]Table 4 - Order Row (Orders View)
	Id
	DateTime
	Items
	Total
	State
	

	52
	10/7/2019 10:21:33 PM
	3
	$640.00
	Pending
	Details

5.5 –Order Details View
· On clicking the [Details] button for a selected Order the application navigates to the [Order Details View].
· The [Order Details View] is similar to the [Add Order View] with one exception, there is no option for adding new Order Items. The Order Number, Date & Time, Total, State and Order Line Items (SKU, Description, Quantity, Price and Total) are visible.
· If the Order is Pending a [Process] button is displayed
· If the Order is Complete or Rejected no button is displayed
· After the [Process] button has been clicked the following process occurs:
· The Quantity of each Order Line Item is checked against the amount In Stock for the related Stock Item.
· If there is enough items In Stock for ALL items ordered, the Order State is changed to Complete.
· If there is not enough Stock for ANY of the items, the Order State is changed to Rejected.
· It is also possible to navigate back to the [Orders View] from the [Order Details View] by clicking the [Orders] navigation button available in the [Order Details View].
Technical specifications
The architecture listed below must be used for the application. This includes one Windows Presentation Foundation (WPF) project, three class libraries and required assembly references.
· OrderManagementSystem (Solution)
· Domain (Class library)
· DataAccess (Class library)
· Controllers (Class library)
· UI (WPF).
Development principles and practices
· All coding must comply with the coding standards as described at C# Coding Standards and Naming Conventions.
· All methods must have internal XML documentation as illustrated below in Figure 3: C# Internal XML comments (example); further information is available at Recommended Tags for Documentation Comments (C# Programming Guide).
[image:]
[bookmark: _Ref29984870]Figure 3: C# Internal XML comments (example)

[bookmark: _Toc25746382]Task 1: User interface requirements
[bookmark: _Ref22719484]Document the requirements for the application presentation layer (user interface) according to the Product description from the client. List the requirements for each user interface (view) of the application in Table 5 - User Interface Requirements.
Each record must include an itemised list containing the following views:
· Responsibilities: What function(s) is the view responsible for providing?
· Components: What components are required? E.g. button
· Actions: What actions can the end-user perform? E.g. process order
· Events: What events can occur? E.g. button clicked
· Inputs/outputs: What input data is required and what output data is visible?
A minimum of four rows is required; add additional rows to the table if required.
[bookmark: _Ref29983291]Table 5 - User Interface Requirements
	View
	Requirements

	Orders View
	· Responsibilities:
A. Display all existing orders including each order’s Id, date/time, number of items, total, state
· Components:
A. Data Grid View for displaying the orders
B. Button for navigating to Add Order view [Add Order]
C. Buttons for navigating to Order Details view for each order [Details]
· Actions:
A. Add Order button Click
· Event 1: navigate to Add Order view
B. Details button Click
· Event 1: navigate to Order Detail view for selected order
· Events:
· Inputs/Outputs:
A. Output list of Orders

	Add Order View
	· Responsibilities:
A. Provides interface for creating a new Order record
· Components:
A. Labels for Order Id, Date/Time, Order Total and Order State
B. Button for navigating to Add Order Item view [Add Item]
C. Button for cancelling the creation of a new order [Cancel]
D. Button to Submit order [Submit]
E. Data Grid View for Order Line Items
· Actions:
A. Add Item button Click
· Event 1: navigate to Add Order Item view
B. Cancel button Click
· Event 1: delete new order and any associated order item records from database
· Event 2: navigate to Orders view
C. Submit button click
· Update Order status to Pending
· Events:
· Inputs/Outputs:
A. Output Order Id, State, Date/Time and Total
B. Output list of Order line items including SKU, Item name, Quantity, Price and line total.

	Add Order Line Item View
	· Responsibilities:
A. Provides interface for adding line items to an order
· Components:
A. Labels for line item quantity
B. Textbox for entering quantity value
C. Button for adding the line item [Add Item]
D. Data Grid view for displaying and allowing selection of an available stock item
· Actions:
A. Data Grid View select Row
· Event 1: Selects the stock item
B. Add item button Click
· Event 1: Validate a stock item has been selected
· Event 2: Validate the value entered for quantity
· Event 3: Add a update (if stock item is already included in order) line item
· Event 4: Navigate back to Add Order view
· Events:
· Inputs/Outputs:
A. Output: stock items including SKU, Item name, Price and amount in stock.
B. Input: Data Grid, select row to input selected stock item
C. Input: Textbox, input value for line item quantity

	Add Order Details View
	· Responsibilities:
A. Displays information on order including Id, Date/Time, State and Total
B. Display the order’s line items including SKU, item name, quantity, price and line item total
C. Provide interface for processing an order to:
· Check available stock
· Update order state to complete or rejected pending stock available
· Update stock levels (decrement) is the order is successfully processed to be complete
· Components:
A. Labels for Order Id, Date/Time, State and Total
B. Button for Processing order [Process]
C. Button for navigating back to Orders view [Orders]
D. Data Grid view for displaying order line items
· Actions:
A. Process button Click
· Event 1: Check if there is sufficient stock items for the order
· Event 2: Update order state to either rejected or complete
· Event 3: Update stock item levels is order is successfully processed
· Event 4: Navigate back to Orders view
· Events:
· Inputs/Outputs:
A. Output: order items including SKU, item name, price, quantity and line item total.
B. Output: labels for order id, date/time, state and total

[bookmark: _Toc25746383]Task 2: User interface technology and programming language
Identify an appropriate application development language to use for building the user interface. Explain why you have chosen this language and how it will meet current and/or future needs (approximately 50-100 words).
	User interface technology and programming language

	For this application eXtensible Application Markup Language (XAML) has been selected for developing the user interface (UI). XAML is a declarative markup language used for developing views for Windows Presentation Foundation (WPF) applications. XAML implements the Model View View Model MVVM paradigm and allows for both one-way and two-way data binding between the view and the model. Associating one or more events with actions such as a button click is also possible for implementing complex or custom logic. Further information on XAML is available at https://docs.microsoft.com/en-us/dotnet/desktop-wpf/fundamentals/xaml

[bookmark: _Toc25746384][bookmark: _Ref29983363]Task 3: User interface prototype
Develop a prototype of the user interface for all the views identified and documented in Task 1, using the selected language from Task 2. Remember, a prototype is not a fully functioning application and is a tool used to demonstrate the form and function proposed for the finished application. Paste screenshots of the prototype screens in the space provided below.
	User Interface - Prototypes

	Prototype: Orders View
[image:]
*Initial view with no orders

	
*Action – click [Add Order] button

	Prototype: Add Order View
[image:]
*New Order Id, Date/Time, State and Total is displayed.

	
*Action: click [Add Item] button to navigate to Add Order Item view

	Prototype: Add Order Item View
[image:]
*Initial view: displays all stock items, including SKU, name, price and stock level, in data grid view

	

*Actions: 1. Select stock item (row), 2. Enter quantity, 3. Click [Add Item] button

	Prototype: Add Order View
[image:]
*Updated and now displays order line item, Chair X 4 @ $25 each = Total $100

	Prototype: Add Order Item View
[image:]
*Add order item validation: quantity validation, value entered must be greater than zero

	[image:]
*Add order item validation: a stock item (data grid view row) must be selected

	Prototype: Add Order View

*Action: click [Submit] button, after all required order line items (stock item and quantity) have been added to the order, clicking the submit button changes the state of the order to Pending from New.

	Prototype: Orders View

*Action: click [Details] button for an order to view the Order details. Once a new order has been created and submitted it can be seen in the Orders view data grid view.

	Prototype: Order Detail View

*Action: click [Process] button which triggers the following chain of events. 1. Checks if there is enough stock to meet the quantity for each order line item 2a. If there is enough stock the stock level for each item is decremented and the state of the order is changed to complete. 2b. If there is NOT enough stock for ALL order line items the state is changed to rejected.

	

*Note: the state of order #17 has been updated to Complete and the [Process] button is no longer visible as the order has already been processed.

	Prototype: Orders View
[image:]
*Note: the state of order #17 has been updated to Complete.

	Prototype: Add Order Item View

*Note: a quantity of 5 has been entered but the stock level for the selected stock item (chair) is 4 i.e. there is not enough in stock for the entered quantity.

	[image:]
*Note: when this occurs a notification is displayed warning that the order might be rejected when processed if the stock item level is not incremented prior to processing the order.

	Prototype: Add Order Detail View

*Note: when an order has been rejected the state is displayed as Rejected in the order detail view

	Prototype: Add Orders View

*Orders view displaying one complete and one rejected order in the data grid view.

[bookmark: _Toc25746385]Task 4: Review prototype
[bookmark: _Ref22736330]You now need to review the prototype with the client in a role play, and consult with them on the design.
· For face-to-face students, your assessor will observe the role play and complete Observation Checklist 1.
· For online students, make an appointment with your assessor for an online meeting.
Assessors are to observe the student’s role play via an online meeting such as Skype or Adobe Connect.
See Observation Checklist 1 for more specific information on this task
Role play participants:
· Client – arrange for another person to act as the client
· Developer (this is you).
The role of the client in this task:
Allow the student to greet you first, and respond appropriately (e.g. shake hands). The student undertaking the role of the database developer needs to pose questions and provide answers using information from the scenario.
The assessor in the role of the client needs to provide responses in the context of the scenario.
After presenting the prototype, document any feedback, editing or actions required in Table 6 - Prototype review. Add additional rows as required.
[bookmark: _Ref29983223]Table 6 - Prototype review
	Date
	Comments
	Signature (client)
	Actions (student)

	1/2/2020
	There is no way to cancel and navigate from the Add Order view back to the Orders view.
	Client Signature
	Add functionality and navigation required to cancel the process of adding a new order

	
	
	
	

*Assessor required to provide feedback to the candidate based on prototypes created for Task 3. An example entry has been provided. Add/remove rows as needed to ensure all required feedback from the review is included.
[bookmark: _Toc25746386]Task 5: Develop domain
Create a class library project and write code for all the relevant classes included in the project. The domain cannot contain any data persistence logic; all responsibilities for persistence must be included in the data access layer. See Figure 4 - Domain (class diagram) for a suggested design of the domain classes. Ensure all code is fully documented using XML code documentation comments for class members such as methods and properties.
[image: U:\Skills Point\Programming 2\ICT40518_ICTPRG403.1_ICTPRG404.1_ICTPRG410.1_V1\Project Code 20191028\Programming 2 Project\OrderManagementSystem\DomainClassDiagram.png]
[bookmark: _Ref23245636]Figure 4 - Domain (class diagram)
Ensure all classes, methods, properties and enum has been implemented to achieve required functionality. Encourage application of state machine design pattern for managing the state of an order along with design principles of encapsulation, single responsibility, command query separation, polymorphism etc… See completed example project code for further reference.
[bookmark: _Toc25746387]Task 6: Develop data access layer
Create a class library project responsible for inserting, updating, deleting and retrieving data from the database.
To achieve this, you will need to select and reference an Application Programming Interface (API) for connecting with a database. Document the API and database connectivity details using internal XML comments in the relevant classes.
Use the provided SQL script DB_Script.sql to create the database. Executing this script will create a database named OrderManagementDb, which contains all the database tables, stored procedures and initial data for Stock Items.
Create and manage the connection string to connect to the database.
When developing the data access layer, implement the provided stored procedures as appropriate.
NOTE: dbo.sp_UpsertOrderItem will either insert a new Order Item or update the Quantity of an existing one. Use this procedure to add the same Stock Item to an Order twice. Instead of creating two Order Line Items, update the Quantity for the existing Order Item.
See Table 7 - Incorrect (there are two order items for the same stock item) and Table 8 - Correct (instead of creating a new item the quantity for the existing item has been incremented i.e. 2 + 3 = 5) as an example.
[bookmark: _Ref23231603]Table 7 - Incorrect (there are two order items for the same stock item)
	SKU
	Item
	Price
	Quantity
	Total

	1
	Table
	$100.00
	2
	$200.00

	1
	Table
	$100.00
	3
	$300.00

[bookmark: _Ref23231605]Table 8 - Correct (instead of creating a new item the quantity for the existing item has been incremented i.e. 2 + 3 = 5)
	SKU
	Item
	Price
	Quantity
	Total

	1
	Table
	$100.00
	5
	$500.00

[image:]
Figure 5 - Stored Procedures
The responsibilities of the data access layer include:
· Orders
· InsertOrderHeader() : OrderHeader
· GetOrderHeader(int id) : OrderHeader
· GetOrderHeaders() : IEnumerable<OrderHeader>
· UpsertOrderItem(OrderItem orderItem)
· UpdateOrderState(OrderHeader order)
· DeleteOrderHeaderAndOrderItems(int orderHeaderId)
· DeleteOrderItem(int orderHeaderId,int stockItemId)
· Stock Items
· GetStockItems() : IEnumerable<StockItem>
· GetStockItem(int id) : StockItem
· UpdateStockItemAmount(OrderHeader order).
Ensure connection string has been correctly defined in the .config file and referenced using ConfigurationManager.
Recommended classes are OrderRespository and StockItemRepository for implemented data access logic. Ensure signature for all methods is correct and provided stored procedures are executed. All instances of disposable object such as SqlConnection and SqlCommand are declared and instantiated in a using code block so they are properly disposed and all data access is nested in try/catch block for proper handling of data access exceptions. See example code of completed project for further reference.
[bookmark: _Toc25746388]Task 7: Develop application logic layer
Create a class library for the application logic layer (controllers). The application layer is responsible for controlling the application flow and passing messages (commands, queries, domain objects) between the data access and User Interface layers. See Figure 6 - Application Architecture (layers and responsibilities) for an overview of the application architecture.
The responsibilities of the application logic layer include:
· Orders
· GetOrderHeaders() : IEnumerable<OrderHeader>
· CreateNewOrderHeader() : OrderHeader
· UpsertOrderItem(int orderHeaderId, int stockItemId, int quantity) : OrderHeader
· SubmitOrder(int orderHeaderId) : OrderHeader
· ProcessOrder(int orderHeaderId) : OrderHeader
· DeleteOrderHeaderAndOrderItems(int orderHeaderId)
· DeleteOrderItem(int orderHeaderId, int stockItemId)
· Stock Items
· GetStockItems() : IEnumerable<StockItem>.
[image:]
[bookmark: _Ref23245752]Figure 6 - Application Architecture (layers and responsibilities)
Recommended classes are OrderController and StockItemController. Encourage application of Singleton design pattern for each controller. Verify method signatures match requirements and all functionality is implemented correctly.

[bookmark: _Toc25746389]Task 8: Build user interface
Build the user interface (presentation layer) with the required functionality, as determined by the prototype from Task 3: User interface prototype.
NOTE: Be sure to handle any exceptions from the lower layers in the application architecture e.g., data access layer. Use try/catch blocks and display an appropriate message for any exceptions that may occur.
Verify the user interface meets the form and function of specification and prototype. Encourage use of dynamic widths and heights of layout.
[bookmark: _Toc25746390]Task 9: Test application
For this task, you are required to design, develop and execute tests for the application.
Part A – Test plan
Develop a test plan for the application and document the plan in Table 9 - Test plan.
The test plan must include:
· Scope
· Test objectives
· Roles and responsibilities
· Test types
· Unit Test
· Scripted UI Test
· Deliverables
· Testing tools.
[bookmark: _Ref23246120]Table 9 - Test plan
	Item
	Description

	Scope
	Test requirements and conditions in scope
· Create New Order Header
· Should Have Id Generated
· Order State Should Be New
· Get Order Headers
· Should Get Orders
· Delete Order
· Should Not Exist
· Add Order Item
· Should Create Order Item
· Order Should Have Order Items
· Order Item Total Should Be Updated Correctly
· Adding Duplicate Stock Item Should Increment Quantity
· Order Total Should Be Updated Correctly
· Remove Order Item
· Order Total Should Be Updated Correctly
· Submit Order
· Order With No Order Items Cannot Be Submitted
· Order State Should Change To Pending
· Cannot Submit Pending Order
· Cannot Submit Complete Order
· Cannot Submit Rejected Order
· Process Order
· Order State Should Change To Complete
· Order State Should Change To Rejected
· Cannot Complete New Order
· Cannot Reject New Order
· Cannot Complete Completed Order
· Cannot Complete Rejected Order
· Cannot Reject Rejected Order
· Cannot Reject Completed Order
· Create Order
· Invalid State

Test requirements and conditions not in scope
· Add new stock item
· Remove stock item
· Authentication/Authorisation

	Test objectives
	Test: 01 - Add Order (objectives)
· Confirm a new row has been inserted in the OrderHeaders database table.
· Confirm Identity Specification is working correctly for the Order Id
· Confirm the initial/default value of OrderStateId is 1 (New)
· Confirm a new instance of OrderHeader has been created
· Confirm the OrderHeader instance variables Id, OrderState, OrderStateId and DateTime are correct
Test: 02 - Add Order Item (objectives)
· Confirm a new row has been inserted in the OrderLineItems database table.
· Confirm the correct Order Id has been entered as a foreign key
· Confirm the correct StockItem Id has been entered as a foreign key
· Confirm concatenate primary key is correct
· Confirm the OrderLineItem Total is correctly calculated from StockItem price and line item quantity
· Confirm validation for quantity entered is greater than zero
· Confirm validation for stock item selected
· Confirm notification is displayed when quantity is higher than current stock level for selected stock item
Other test objectives include but are not limited to:
· Removing order items
· Submitting and order
· Processing and order (complete or reject)
· Etc…

	Roles and responsibilities
	· Test leader
· Understanding Test Requirements
· Contributing in Test Plan Preparation
· Deriving Test Scenarios
· Documenting Test Cases
· Managing testers and progress
· High level reporting
· Test developer
· Collecting Test Data
· Executing Test Cases
· Reporting Defects and Tracking Defects
· Documenting Test Metrics/Results
Other roles that can be provided include but are not limited to:
· Test manager
· QA analyst

	Test types
	· User interface testing with scripts
· Unit Tests
· Automated Coded UI tests
· Regression tests
· Black-box testing

	Deliverables
	· Test plan
· Test scripts
· Test progress report
· Test coverage report

	Testing tools
	The main tool used will be Visual Studio:
· Test Explorer
· Unit Tests
· IntelliTest
· Code Coverage

[bookmark: _Ref29983472]Part B – Test cases
Develop a minimum of two test cases for the application. Each test case must include the following:
· Test Case Identifier (Test #), name and description
· Priority (Low/Med/High)
· Test type/technique
· Test data and expected results
· Status (Pass/Fail)
· Steps taken.
NOTE: Use Table 10 - Test case 1 and Table 11: Test case 2 provided below for each test case.
[bookmark: _Ref29983399]Table 10 - Test case 1
	Test #
	Name and description
	Priority

	7
	Test: Add Order Item, adding duplicate stock item should increment quantity or existing item
Confirm adding a line item for a stock item that is already included in the order results in the quantity of the existing line item being incremented rather than a second line item for the same stock item being created.
	Medium

	Test Type

	Unit Test (Unit Test Project)

	Test Data
	Expected
	Actual
	Pass/Fail

	· StockItem (Id = 1, Name = Table)
· Quantity = 3
	6
	
	

	Steps

	1
	Invoke OrderController CreateNewOrderHeader and pointer to reference new OrderHeader instance

	2
	Invoke StockItemController GetStockTimes.First() and pointer to reference retrieved instance of StockItem

	3
	Invoke OrderController UpsertOrderItem providing Order Id, StockItem Id and Quantity

	4
	Invoke OrderController UpsertOrderItem a second time with the same arguments

	5
	Retrieve and reference first line item in Order

	6
	Assert the quantity of the line item is equal to quantity times 2

[bookmark: _Ref29915587]Table 11: Test case 2
	Test #
	Name and description
	Priority

	1
	
	

	Test type/technique

	

	Test data
	Expected
	Actual
	Pass/Fail

	
	
	
	

	Steps

	1
	

	2
	

	3
	

	4
	

	5
	

	6
	

Example test case provided, ensure a minimum of two test cases have been completed and meet the requirements as provided in example. See test plan for a list of test cases that are in scope and can be used for completed test case template.
Part C – Test framework
[bookmark: _Ref22739343]Identify the test framework that you will use for testing the application, explaining why you have chosen this compared to other options (approximately 100-150 words).
Table 12 – Test Framework
	Test Framework

	All testing will be conducted using the Microsoft.VisualStudio.TestTools framework. This framework includes tools for Coded UI, Unit, Regression, and automated tests.
The framework supports unit testing in Visual Studio. Use the classes and members in the Microsoft.VisualStudio.TestTools.UnitTesting namespace when you are coding unit tests. You can also use them when you are refining a unit test that was generated from code. Attributes used to establish a calling order
A code element decorated with one of the following attributes is called at the moment you specify. For more information, see Anatomy of a unit test.
Attributes for assemblies
AssemblyInitialize and AssemblyCleanup are called right after your assembly is loaded and right before your assembly is unloaded.
· AssemblyInitializeAttribute
· AssemblyCleanupAttribute
Attributes for classes
ClassInitialize and ClassCleanup are called right after your class is loaded and right before your class is unloaded.
· ClassInitializeAttribute
· ClassCleanupAttribute
Attributes for test methods
· TestInitializeAttribute
· TestCleanupAttribute
Attributes used to identify test classes and methods
Every test class must have the TestClass attribute, and every test method must have the TestMethod attribute. For more information, see Anatomy of a unit test.
· TestClassAttribute
· TestMethodAttribute
*Summary of testing framework taken from https://docs.microsoft.com/en-us/visualstudio/test/using-microsoft-visualstudio-testtools-unittesting-members-in-unit-tests?view=vs-2019. Use this as a guide for the parameters of information that can be provided for a satisfactory answer.

Part D –Automated testing
Prepare test algorithm
Document the steps of a test algorithm for one of the unit tests used for testing the application. Provide the steps of the algorithm in Error! Reference source not found.Table 13 - Test algorithm (pseudo-code).
* Example for testing Order Item total is calculated correctly provided below. Algorithm for any related test such as add order, process order etcetera… is satisfactory.
[bookmark: _Ref29983425]Table 13 - Test algorithm (pseudo-code)
	Step
	Logic and Condition

	1
	Create a new instance of OrderHeader

	2
	Retrieve existing instance of StockItem (Id:1,Name:Table,Price:$100)

	3
	Add a new OrderItem to the OrderHeader by invoking OrderController UpsertOrderItem method passing in the Order Id, StockItem Id and Quantity of three as arguments

	4
	Retrieve the new instance of OrderItem from the OrderHeader object by selecting the First OrderItem where the OrderItem StockItem Id equals 1

	5
	Calculate the correct OrderItem Total by multiplying the quantity (3) and StockItem price and assign result to decimal variable

	6
	Assert the calculated total and Order Item total are equal

	7
	If equal pass, if not equal fail

Implement the test algorithm
Write a script that implements your algorithm to test the application.
Execute the test script
Document and analyse the results of the script in the test case document from Part B – Test cases. Include one or more screenshots of the test being run.
Part E – User interface testing
Using the second test case, perform a physical test of the UI. Document and analyse the results of the UI testing in the test case document from Part B – Test cases. Include one or more screenshots of the test being run.
Part F – Errata (bugs and fixes)
Document any errors (bugs) found during the development and/or testing of the application along with actions taken to resolve them and the status (has the error/bug been fixed). You must ensure that any errors are fixed so that your UI meets requirements.
*See below for example model answers for recording identified bugs, actions taken and current status.
Table 14 - Errata (bugs and fixes)
	#
	Description
	Actions
	Date/Time
	Status

	1
	Double clicking a Stock Item from the data grid view in the Add Order Item view results in the application crashing.
System.InvalidOperationException: 'A TwoWay or OneWayToSource binding cannot work on the read-only property 'Name' of type 'Domain.StockItem'.'
	Discovered the problem was due to the StockItem class property setters being private (read-only) which caused the exception when attempting MVVM binding. Updated the Data Grid View property Is Read Only to true which resolved the problem.
	30/11/2019
	Fixed

	1
	Double clicking an Order from the data grid view in the Orders view results in the application crashing.
System.InvalidOperationException: 'A TwoWay or OneWayToSource binding cannot work on the read-only property 'Total' of type 'Domain.OrderHeader'.'
	Discovered the problem was due to the OrderHeader class property setters being private (read-only) which caused the exception when attempting MVVM binding. Updated the Data Grid View property Is Read Only to true which resolved the problem.
	30/11/2019
	Fixed

Part G – Test progress
Document the progress of the application testing including all activities undertaken or to be undertaken, expected completion time, relevant notes and status.
Table 15 - Test progress report
	Test #
	Name and description
	Expected Completion Date / Time
	Notes
	Status

	7
	Add Order Item, adding duplicate stock item should increment quantity or existing item
	15/12/2019
	Test Case Conducted and passed
	Pass

*Example model entry for documenting test progress provided above as guideline for satisfactory answer.
Task 10: Obtain sign-off
Once your UI is complete and functional, you need to obtain client sign-off in a role play.
· For face-to-face students, your assessor will observe the role play and complete Observation Checklist 2.
· For online students, make an appointment with your assessor for an online meeting.
Assessors are to observe the student’s role play via an online meeting such as Skype or Adobe Connect.
See Observation Checklist 2 for more specific information on this task
Role play participants:
· Client – arrange for another person to act as the client
· Developer (this is you).
The role of the client in this task:
Allow the student to greet you first, and respond appropriately (e.g. shake hands). The student undertaking the role of the database developer needs to pose questions and provide answers using information from the scenario.
The assessor in the role of the client needs to provide responses in the context of the scenario.
Discuss the UI with the client and obtain their sign-off, completing Table 16 – Completed UI sign-off.
[bookmark: _Ref29829568]Table 16 – Completed UI sign-off
	Date
	Comments
	Signature (client)

	
	
	

[bookmark: _Toc28079078]Assessment Checklist 1
The following checklist will be used by your assessor to mark your performance against the assessment criteria of Part 1. Use this checklist to understand what skills and/or knowledge you need to demonstrate in your submission. All the criteria described in the Assessment Checklist must be met. The assessor may ask questions while the submission is taking place or if appropriate directly after the task/activity has been submitted.
Sample answers are listed under each task.
Table 17: Assessment Checklist 2
	TASK/STEP #
	Instructions
	S
	U/S
	Assessor Comments

	1
	Researches and investigates techniques
	
	
	Report must include valid references

	2
	Interprets complex technical documents
	
	
	Answers must be a satisfactory interpretation, as outlined in sample answers

Assessment Checklist 2
The following checklist will be used by your assessor to mark your performance against the assessment criteria of Part 2. Use this checklist to understand what skills and/or knowledge you need to demonstrate in your submission. All the criteria described in the Assessment Checklist must be met. The assessor may ask questions while the submission is taking place or if appropriate directly after the task/activity has been submitted.
Sample answers are listed under each task.
Table 18: Assessment Checklist 2
	TASK/STEP #
	Instructions
	S
	U/S
	Assessor Comments

	1.1
	Gathers and documents the user interface (UI) requirements from the scenario, following relevant protocols
	
	
	

	1.2
	Formulates the content flow (inputs/ outputs)
	
	
	

	1.3
	Defines the UI actions
	
	
	

	1.4
	Itemises the UI events
	
	
	

	2.1
	Determines and documents the appropriate development language
	
	
	

	3.1
	Designs the UI components
	
	
	

	3.2
	Builds a prototype UI using the determined language
	
	
	

	5.1
	Documents code using appropriate format
	
	
	

	5.2
	Ensures application deals with disconnected data
	
	
	

	6.1
	Determines the data access API
	
	
	

	6.2
	Creates and manages a connection string
	
	
	

	6.3
	Connects to the data source
	
	
	

	6.4
	Queries data from the data source
	
	
	

	6.5
	Retrieves data from the data source
	
	
	

	6.6
	Inserts/updates data
	
	
	

	6.7
	Documents the database connectivity
	
	
	

	6.8
	Manages data integrity
	
	
	

	6.9
	Manages exceptions
	
	
	

	8.1
	Builds the UI with required functionality
	
	
	

	9.1
	Develops a test plan according to requirements
	
	
	

	9.2
	Identifies testing types and testing tools
	
	
	

	9.3
	Defines and designs two test cases to cover test requirements
	
	
	

	9.4
	Analyses and identifies test data using different test case design techniques
	
	
	

	9.5
	Selects and evaluates a unit test framework
	
	
	

	9.6
	Design and documents an accurate algorithm for testing in an appropriate format
	
	
	

	9.7
	Algorithm uses basic mathematical equations
	
	
	

	9.8
	Implements the algorithm in the test procedures
	
	
	

	9.9
	Tests the UI for completeness, consistency and functionality, according to requirements
	
	
	

	9.10
	Accurately records the test results in an appropriate format
	
	
	

	9.11
	Analyses test results
	
	
	

	9.12
	Iterates the UI build until it meets requirements
	
	
	

	9.13
	Creates test progress reports based on recorded results in an appropriate format
	
	
	

Observation Checklist 1
The Observation Checklist will be used by you to mark the students’ performance in any of the previous three event types. Use this Checklist to understand what skills the student is required to demonstrate in Part 2 Task 4. This Checklist outlines the Performance Criteria, Performance Evidence and Assessment Conditions you will be marking the student on. All the criteria must be met. The student’s demonstration will be used as part of the overall evidence requirements of the unit. You may ask questions while the demonstration is taking place or if appropriate directly after the task/activity has been completed.
Table 19 Observation Checklist
	Task #
	Task/Activity Performed
	S
	U/S
	Assessor Comments
(Describe the student’s ability in demonstrating the required skills and knowledge)

	1
	Reviews UI prototype with client
	
	
	Student must show the UI and its features

	2
	Participates in conversation relevant to own role
	
	
	Student must discuss the UI prototype and respond as necessary

	3
	Initiates and takes the lead where appropriate
	
	
	Student should be confident and lead the conversation, not wait for the client.

Observation Checklist 2
The Observation Checklist will be used by you to mark the students’ performance in any of the previous three event types. Use this Checklist to understand what skills the student is required to demonstrate in Part 2 Task 10. This Checklist outlines the Performance Criteria, Performance Evidence and Assessment Conditions you will be marking the student on. All the criteria must be met. The student’s demonstration will be used as part of the overall evidence requirements of the unit. You may ask questions while the demonstration is taking place or if appropriate directly after the task/activity has been completed.
Table 20 Observation Checklist
	Task #
	Task/Activity Performed
	S
	U/S
	Assessor Comments
(Describe the student’s ability in demonstrating the required skills and knowledge)

	1
	Obtains and documents client sign-off for completed UI
	
	
	Student to ask for approval and have document ready for sign-off

	2
	Participates in conversation relevant to own role
	
	
	Student must discuss the UI prototype and respond as necessary

	3
	Initiates and takes the lead where appropriate
	
	
	Student should be confident and lead the conversation, not wait for the client.

	4
	Follows relevant protocols
	
	
	General business protocols may include shaking hands, professional manner and language

	5
	Meets expectations with own role
	
	
	UI must work as outlined

Document title	Version 1.0	Page 1 of 48
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image1.png

