	[image:]
[bookmark: _Hlk792491]Student workbook
Layout and style markup documents

[image: C:\Users\ttsang.000\AppData\Local\Microsoft\Windows\INetCache\Content.Word\TAFE NSW NEW WARATAH LOCKUP NOV 2017 CMYK.png]

[image:][image: C:\Users\ttsang.000\AppData\Local\Microsoft\Windows\INetCache\Content.Word\TAFE NSW NEW WARATAH LOCKUP NOV 2017 CMYK.png]

TAFE NSW would like to pay our respect and acknowledge Aboriginal and Torres Strait Islander Peoples as the Traditional Custodians of the Land, Rivers and Sea. We acknowledge and pay our respect to the Elders, both past and present of all Nations.
Version:	20191113
Date created:	13 October 2019
Date modified:	13 November 2019
For queries contact: 	Technology and Business Services SkillsPoint
© TAFE NSW 2019
RTO Provider Number 90003 | CRICOS Provider Code: 00591E
This resource can be found in the TAFE NSW Learning Bank.
The content in this document is copyright © TAFE NSW 2019 and should not be reproduced without the permission of TAFE NSW. Information contained in this document is correct at time of printing: 10 December 2019. For current information please refer to our website or your teacher as appropriate.

Contents
Icon legends	6
Getting started	7
What will I learn by completing this workbook?	7
Topic 1: Planning and designing a website	9
1.1 Overview	10
1.2 Reviewing the user requirements	10
Videos: Liaising with clients	11
Website audience	11
Additional resources on personas	12
Accessibility	12
Website content	12
Additional resources on content suitability	13
1.3 Planning the website	13
Additional resources on website planning	13
1.4 Designing the website	13
Designing a website	13
Additional resources on designing	14
Creating a site map	14
Activity 1.1: Create a simple sitemap	15
Creating a wireframe	15
Additional resources on layouts	17
Activity 1.2: Create a wireframe	17
1.5 Developing the testing approach	17
Additional resources on testing	18
Video: Usability testing	18
1.6 Choosing a markup language	18
Activity 1.3: Identify markup languages	19
Activity 1.4: Find a markup language to meet requirements	20
1.7 Standards and best practice	20
Web design standards	20
Additional resources on web design standards	20
HTTP and HTTPS	20
Additional resources on HTTPS	21
Topic 2: Creating the website structure	22
2.1 Overview	23
2.2 Text editing options	23
2.3 Web folder structure	24
2.4 HTML document structure	25
Introduction to HTML	25
Additional resources	25
Additional resources on HTML structure	26
Main sections of HTML	26
Activity 2.1 Create an HTML template file	27
Resources on HTML	28
Video: HTML Essential Training	28
Activity 2.2: Add structural elements to your template	29
Activity 2.3: Assign basic elements to user content	30
Topic 3: Styling websites	34
3.1 Overview	35
3.2 Basic structure of CSS	35
Additional resources on CSS layouts	36
Anatomy of a CSS style	36
Applying styles	37
Video: CSS Essential Training	38
Font hierarchy	38
Activity 3.1: Create a CSS template	39
Activity 3.2: Create basic styles	39
Resources on CSS design principles	40
3.3 CSS Box Model	40
Activity 3.3: Box model properties	42
3.4 Two-column layout	43
Activity 3.4: Flex box model	44
Additional resources on multi-column layout comparison	47
Topic 4: Adding website components	48
4.1 Overview	49
4.2 Tables	49
4.3 Forms	49
Video: Creating forms	50
4.4 Media	50
Activity 4.1: Add web page components	50
Topic 5: Testing websites	51
5.1 Overview	52
5.2 Requirements validation	52
5.3 Browser validation	52
Activity 5.1: Identify browser support	53
Additional resources on cross-browser validation techniques and tools	53
Activity 5.2: Perform cross-device validation	54
5.4 Web standards validation	54
Additional resources on checking accessibility	55
Activity 5.3: Identify need for accessibility, usability and inclusion	55
5.5 Troubleshooting HTML and CSS	55
Additional resources on troubleshooting	56
Video: Problem-solving techniques	56
5.6 Completing your website	56
Summary	57
Image attributions	58

[bookmark: _Toc11938723][bookmark: _Toc21091443][bookmark: _Toc26875872]Icon legends
	Icon
	Description

	[image:]
	Practice activity
Learning activities help you to gain a clear understanding of the content in this resource. It is important for you to complete these activities, as they will enhance your learning. The activities will prepare you for assessments.

	[image:]
	Collaboration
You will have opportunities to collaborate with others during your study. This could involve group activities such as mini projects or discussions that will enable you to explore and expand your understanding of the content.

	[image:]
	Self-check
An activity that allows you to check your learning progress. The self-check activity gives you the opportunity to identify areas of learning where you could improve. If you identify these, you could review the relevant content or activities.

	[image:]
	Resources (required and suggested)
Additional resources throughout this workbook such as chapters from textbooks, online articles, videos etc. These are supplementary resources, which will enhance your learning experience and may help you complete the unit.

	[image:]
	Assessment task
At different stages throughout the workbook, after you have completed the readings and activities, you may be prompted to complete one or more of your assessment tasks.

	[image:]
	Video
Videos will give you a deeper insight into the content covered in this workbook. If you are working from a printed version, you will need to look these up using the URL provided.

[bookmark: _Toc11938724][bookmark: _Toc21091444][bookmark: _Toc26875873]Getting started
[bookmark: _Toc20996088][bookmark: _Toc26875874]What will I learn by completing this workbook?
This workbook has been developed for the following units of competency:
ICTWEB414 Design simple web page layouts
ICTWEB429 Create a markup language document to specification
ICTWEB431 Create and style simple markup language documents.
Successfully completing these units of competency will give you the skills and knowledge to design web page layouts, create basic markup language documents, including web page components, and create cascading style sheets to define the structure and style of a website, using a text editor.
You’ll look at the different markup languages available for website development and cover the things a developer needs to consider when designing a website.
In this workbook, you’ll learn to:
determine user requirements
develop testing approaches and test cases
identify appropriate markup languages to meet the requirements
use HTML to structure a web page
use cascading style sheets (CSS) to layout and style a website
incorporate web page components
test and refine a website to meet users’ requirements.
Each topic includes opportunities to check your progress and understanding, as well as activities that will help you to complete the formal assessments.
The activities throughout this resource will assist you in your learning. These activities don’t form a part of your final assessment, however they’ll contribute to your understanding of each topic area.
Download and unzip the resource folder (Cl_LayoutStyleMarkupDocs_SW_1of1_SR1.zip), which you’ll need for some of the activities.

There are five topics to complete within this workbook. They are:
User requirements
Creating the website structure
Styling websites
Adding website components
Testing websites.
[bookmark: _Toc518640492]

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

Document title: Cl_LayoutStyleMarkupDocs_SW_1of1
[bookmark: _Hlk21851984]Resource ID: TBS_19_013_Cl_LayoutStyleMarkupDocs_SW_1of1	Page 3 of 60
© TAFE NSW 2019
[bookmark: Topic1][bookmark: _Toc26875875]Topic 1: Planning and designing a website

[bookmark: _Toc16750774][bookmark: _Toc21091445][bookmark: _Toc26875876]1.1 Overview
[bookmark: _Toc772771][bookmark: _Toc8128125]Research suggests that users often have little understanding of web technology, its capabilities, and how it impacts on the way they may operate. Also, many users have considerable difficulty specifying the requirements for a website they’re seeking to develop. Unrealistic expectations that users have regarding projects often arise because projects get started before the user requirements are determined. The biggest problems encountered on failed IT projects are as follows:
Misunderstood requirements and ‘scope creep’, which often cause an over-allocation in resources, additional cost or overdue deliverables
Incomplete requirements, which result in incomplete information about the system
New requirements being added during the development phase
Ambiguity regarding the functionality and objectives of certain requirements
Conflicting goals by different teams, e.g. the users may want one thing and the business requires another approach
Too many ‘nice-to-haves’ that wouldn’t actually be used.
At the commencement of many web development projects, conventional requirements (in the sense of this is what the user wants) often only address issues like general performance constraints, an overview of the site’s aims and architecture and decisions about technical platforms. Many content and informational requirements, such as the interface look and feel and content structure, only emerge after the design process has commenced.
[bookmark: _Toc21091446][bookmark: _Toc26875877]1.2 Reviewing the user requirements
As a web developer, you may have to help your user understand what they want and how this can be achieved with a website. Some ways to do this are to:
analyse the project brief from the user
prepare a list of open and closed questions for an interview
create a sitemap and wireframe
develop a testing approach and test cases.
Website design is an iterative process – there’s no point in having one client meeting, then going back with a finished website. It’s almost certain that the client won’t be satisfied, and you’ll have wasted a lot of time doing work that isn’t wanted.
Creating sitemaps and wireframes are good visual tools that should be reviewed with clients for further refinement and confirmation that you’ve understood their requirements.
[bookmark: _Toc8127037][bookmark: _Toc16750775]	[image:]	Watch
[bookmark: _Toc21091447][bookmark: _Toc26875878]Videos: Liaising with clients
The following video collection and course from LinkedIn Learning include information about communication strategies and managing clients, which you can use when you’re working on a website project. This includes using effective listening and questioning techniques, initial discussions with the client and reviewing their requirements. You can watch the whole course, or just the parts that you need:
Effective listening and questioning techniques (LinkedIn Learning 07:32 mins)
Freelance UX: Managing Clients (LinkedIn Learning 45:05 mins)
Communication Foundations (LinkedIn Learning 01:24 hrs).
[bookmark: _Toc26875879]Website audience
Determining how to meet your audience’s needs and expectations will help you to design and create the website.
Who are your website users?
What do your users want to do on your website, e.g. purchase goods, make bookings, find information, etc.?
How will accessibility be addressed, e.g. for vision-impaired users?
What about accessibility for users with slow connections?
Are there any business advantages in using features such as animation and sound?
Will the site need to be accessed using a range of devices, e.g. smartphones and tablets?
If your site requires third party plug-ins, how will the user find them?
A good way of representing a typical website audience is to create a persona. A persona is a fictional character, based on research or data and embodies characteristics of a typical customer of the business. They’re usually given a name, age and a description of what they do and how they interact with the business.
	[image:]	Resources
[bookmark: _Toc26875880]Additional resources on personas
Read the following webpage from usability.gov to learn more about personas:
Personas.
[bookmark: _Toc26875881]Accessibility
Making sure your site is usable and accessible to as many people as possible is important. Accessible and usable sites always guarantee higher search engine rankings.
When it comes to accessibility, there are also laws that, if not followed, can result in legal repercussions for your clients.
Learn about creating websites that work for everyone at the W3C Web Accessibility Initiative:
Accessibility, Usability, and Inclusion
Introduction to Web Accessibility
[bookmark: _Toc26875882]Website content
Your client will need to provide you with suitable content for the website. This may include written text, images, video or audio. It’s your job to evaluate the content that they provide to ensure that it’s suitable for the website.
Written text should be checked for spelling and grammar errors, as well as accuracy.
Images must be specific formats; the best formats for websites are jpg and png. If a client has supplied you with a Photoshop or Illustrator file, these will need to be converted into jpg or png.
Images also need to be relatively small sizes; users don’t want to download a 10mb image file each time they visit a website.
Copyright needs to be considered. Does the client have rights to the images and text that they’ve provided you with?
	[image:]	Resources
[bookmark: _Toc11228378][bookmark: _Toc26875883]Additional resources on content suitability
Read the following web pages for more information on
How to Optimize Images for Better Web Design & SEO
An Introduction to Copyright in Australia
[bookmark: _Toc26875884]1.3 Planning the website
It’s good practice to develop a project plan when developing a website. This could be as simple as a list of tasks with an estimated timeline. This enables you to keep on track and serves as a guide for your client to keep them informed.
	[image:]	Resources
[bookmark: _Toc26875885]Additional resources on website planning
Read the webpage The web design process in 7 simple steps, which will give you an insight into the planning process for developing websites.
[bookmark: _Toc21091448][bookmark: _Toc26875886]1.4 Designing the website
[bookmark: _Toc8128136]Once you know the goals and scope of a project, it's time to design the website, which includes creating a sitemap and a wireframe. These will give you a guide to your website’s organisation and outline for location of content.
[bookmark: _Toc26875887]Designing a website
Coming up with fresh ideas for a website design can be a tricky process. Using different ways of thinking can help you improve your designs.
	[image:]	Resources
[bookmark: _Toc26875888]Additional resources on designing
Read through the following webpages that discuss using different ways of thinking for designing:
Become A Better Designer Through Critical Thinking
Design Thinking and the Web Design Process.
[bookmark: _Toc21091449][bookmark: _Toc26875889]Creating a site map
A sitemap provides a visual representation of the site’s hierarchy and shows where each page fits into this hierarchy. (Note: this is not to be confused with an XML sitemap you create to help search engines index your website more efficiently.)
When drawing a site map to plan your site, you can be as simple or as complex as you need to be. It can be as simple as pencil and paper or a more complex version created in a graphics editor, such as Photoshop. An example is shown below:

[bookmark: _Ref24547751]Figure 1: Example of a sitemap
To start with, draw a box which represents the homepage near the top and label it.
Under the homepage box, draw a second level containing additional boxes for every major section of your site, beginning with the obvious sections for About and Contact. Beyond these, add boxes for the main sections of your website. These vary, but they might include Services, Products, FAQs, etc.
Draw lines between each box (web page) and the homepage to indicate that they should be linked directly from the homepage.
Under each section, add boxes (at a third level) for additional pages you need in each section and draw lines from those boxes to the section box. For example, under a Products box, you may want a box for each of the products or category of products that you sell.
For a large website, continue creating boxes at subsequent levels to represent web pages and draw lines to connect them to other pages until you have every page you want on your website organised and listed.
[bookmark: _Toc16750777]	[image:]	Collaboration
[bookmark: _Toc21091450][bookmark: _Toc26875890]Activity 1.1: Create a simple sitemap
Estimated duration: 15 minutes
Participate in a collaboration with other students in your class and create a simple sitemap for the following scenario:
You’re going to develop a small site for Australian Design Architects that will provide a showcase of their portfolio and express their progressive and environmentally-friendly design approach. There are many architectural sites online for you to get inspiration from but you need to be original. Too many of these sites employ ‘mystery meat navigation’. Critics point out that if their buildings were designed like their websites, you would open a door to find yourself staring at a 10-storey drop.
The main goal of this site is to show potential clients their portfolio of work, so don’t hide the content behind layers of navigation. You want to highlight completed projects, show plans, sketches, etc.
[bookmark: _Toc21091451][bookmark: _Toc26875891]Creating a wireframe
A wireframe is commonly used to lay out content and functionality on a page that considers user needs and user journeys. They’re used early in the development process to establish the basic structure of a page before visual design and content are added.
Wireframes are useful because they offer a stripped-down, visual experience made up of plain boxes and lines—no formatting, styling, or graphic design. If you can draw mostly straight lines, you've got what it takes.
They help to refine:
the structural layout for the items on each web page i.e. single column, two-column, etc.
the navigation text for the website – vertical or horizontal
placement of content on each web page – e.g. navigation, images, slideshows, headings, paragraph text, content links, etc.
the size and proportion of elements.
Some of the basic elements of a wireframe are as follows:
Navigation text
Images with a brief description
Heading hierarchy, paragraph text and content links (avoid design elements such as fonts and colours)
Shopping cart, account logins, contact form, Google map, social media items, etc.
[bookmark: _Toc16750778][bookmark: _Toc772777][bookmark: _Toc8128140][image:]
[bookmark: _Ref24547757]Figure 2: Example of a wireframe
	[image:]	Resources
[bookmark: _Toc26875892]Additional resources on layouts
Read through the following webpages that discuss designing a website layout:
Get the perfect website layout in 27 steps
Create a grid that adapts to all screens
960 grid system.
	[image:] 	Practice activity
[bookmark: _Toc21091452][bookmark: _Toc26875893]Activity 1.2: Create a wireframe
Estimated duration: 	30 minutes
Using the same scenario as you used for the site map activity, create a wireframe for the home page. This can be done with plain pen and paper or using a graphics editor such as Adobe XD or Photoshop.
[bookmark: _Toc21091453][bookmark: _Toc26875894]1.5 Developing the testing approach
Another part of the initial web design process is developing a test approach and test cases, based on the user requirements. These will then need to be refined with the user.
There are several different approaches that can be taken when testing websites, including the following:
Functionality: This includes checking for broken links, proper error messages, default field values etc.
Compatibility: Does the website work consistently with different browsers, operating systems, devices (e.g. mobiles, printers)?
Usability: This is a type of test that can be carried out by test users similar to the target audience of the website. Things that should be checked include spelling/grammatical errors in content, content (e.g. images, tables, charts) display correctly, consistency between webpages, correct navigation with website.
Interface: This is designed to test the interactions between the web server interfaces and the application server interfaces, e.g. if the website uses a database.
Security: This includes checking for login bypasses and entry into the website with invalid login details.
Performance/Load: This is particularly important for large websites – response time, maximum number of users, crash recovery.
A test case is a set of actions to be followed in your testing approach. These are essentially tasks on a testing checklist.
Organisations may have their own procedures for testing and documenting those test results so it’s important that you check this with your client.
	[image:]	Resources
[bookmark: _Toc21091454][bookmark: _Toc26875895]Additional resources on testing
Read the webpage Web Application Testing Checklist: Example Test Cases for Website from Guru99 to read about testing approaches and examples of test cases.
	[image:]	Watch
[bookmark: _Toc21091455][bookmark: _Toc26875896]Video: Usability testing
The following course from LinkedIn Learning includes detailed information about performing usability testing on a website. You can watch the whole course, or just the parts that you need:
UX Foundations: Usability Testing (LinkedIn Learning 01:29 hrs)
[bookmark: _Toc21091456][bookmark: _Toc26875897]1.6 Choosing a markup language
The key element in choosing an appropriate markup language will be the purpose of the website, according to the user requirements.
If you’re building a simple brochure-style website that displays straightforward information including graphics, some animation and maybe some sound, you would use HTML5. Most modern websites are constructed this way.
There will rarely be good reason to use anything other than HTML5 these days. Even if your users are stuck using older versions of IE, you can still use the latest version of HTML and implement some simple JavaScript solutions to ensure older browsers will understand your page structure.
There are, however, several other markup languages available, which are used for different purposes. These include:
dynamic hypertext markup language (DHTML)
standard generalised markup language (SGML)
virtual reality modelling language (VRML)
extensible hypertext markup language (XHTML)
extensible markup language (XML).
[bookmark: _Toc8127038][bookmark: _Toc16750780][bookmark: _Toc8127042]	[image:] 	Practice activity
[bookmark: _Toc21091458][bookmark: _Toc26875898]Activity 1.3: Identify markup languages
Estimated duration: 	30 minutes
Search the internet to find out what these markup languages are used for:
1. DHTML

2. SGML

3. XML

[bookmark: _Toc8127043][bookmark: _Toc16750782]	[image:]	Collaboration
[bookmark: _Toc21091460][bookmark: _Toc26875899]Activity 1.4: Find a markup language to meet requirements
Estimated duration: 	30 minutes
Using the previous scenario about Australian Design Architects, decide which markup language you’ll use to build a website for this client. Discuss this within your class.
[bookmark: _Toc26875900]1.7 Standards and best practice
[bookmark: _Toc26875901]Web design standards
Standards for the web are developed by the World Wide Web Consortium (W3C). The W3C website is the hub for web standards and includes technical guidelines, educational information and code-checking tools, such as validators, that allow developers to ensure their sites meet required web standards.
	[image:]	Resources
[bookmark: _Toc26875902]Additional resources on web design standards
Read through the W3C’s page on Web design and applications to learn more about web design standards.
You can look up many specifications for standards on W3C’s page All standards and drafts.
[bookmark: _Toc26875903]HTTP and HTTPS
Hypertext transfer protocol, or HTTP as it’s more commonly known, is a vital part of web development. It’s a method of transferring data from web servers to browsers, which enables your users to view your website.
HTTPS is a secure version of HTTP. Originally this was only used for sites that accepted payments or performed banking transactions, however browsers like Google Chrome are gradually enforcing the use of HTTPS. Initially they marked all HTTP sites as ‘not secure’, and will now start to block some content on websites not using the secure HTTPS.
	[image:]	Resources
[bookmark: _Toc26875904]Additional resources on HTTPS
Read through this webpage on HTTPS to gain further understanding of this protocol.

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: Topic2][bookmark: _Toc26875905]Topic 2: Creating the website structure

[bookmark: _Toc8127051][bookmark: _Toc21091461][bookmark: _Toc772794][bookmark: _Toc8128163][bookmark: _Toc16750788][bookmark: _Toc11938726][bookmark: _Hlk10184735][bookmark: _Toc26875906]2.1 Overview
When you have completed a sitemap and wireframe, and your client has approved them, it’s time to create the web pages. You’ll be using HTML5, which is the latest standard and became an official specification in 2014.
This topic will look at some HTML elements available for organising and displaying content and navigation in web pages.
You’ll learn to:
decide on your text editing options
set up a logical web folder structure
define HTML document structure
use semantically-correct elements in your documents
validate and troubleshoot your HTML documents.
[bookmark: _Toc21091462][bookmark: _Toc26875907]2.2 Text editing options
[bookmark: _Toc494100461][bookmark: _Toc772795][bookmark: _Toc8128164][bookmark: _Toc16750789]This unit requires you to create your markup without the automated generation of code. This is because hand coding gives you:
better control – many of the automatic code-generating editors write html that uses some proprietary code that isn’t understood in all browsers and devices
faster pages – editors often overcompensate for the amount of code needed to render pages properly; programs like Dreamweaver often result in larger file sizes and therefore slower downloads
speedier editing – editors often take a lot of memory and system resources, slowing your computer and the development process
more flexibility – editors are programmed to fix code they think is faulty so you may be unable to insert or edit existing code where you want.
There will always be a plain text editor available on all machines, whereas automatic code generators are often expensive and harder to obtain.
In Windows, Notepad is installed by default and there are also several free colour-coded editors you can use, such as Notepad++ and Sublime for both Macs and PCs. A colour-coded editor makes it easier to read and troubleshoot your code.

[bookmark: _Toc21091463][bookmark: _Toc26875908]2.3 Web folder structure
[bookmark: _Toc8128165][bookmark: _Toc16750790]Before creating your pages, you should organise your web folder structure. See the image below for a typical structure.
[image:]
[bookmark: _Ref24547761]Figure 3: Typical web folder structure
In this example, the name of the project is used for the top-level folder. Inside that folder, two folders are created – resources and www – and inside the www folder, an images folder. In larger projects, there will be several other folders, but for this purpose, you’ll be using this simpler structure.
In the resources folder, you’ll place all the files needed to develop the website, but which don’t need to be displayed in the browser as part of the finished site.
In the www folder, place your html, CSS and any JavaScript files – this is also referred to as the root folder. CSS and JavaScript files could also be placed into their own folders. In the images folder, place all the web-ready images for your site. Only the files and folders inside the www folder are uploaded to your online website. It’s important that all site files are stored together in one place.
It’s also very important to get in the habit of setting up a consistent project folder structure.
[bookmark: _Toc21091464][bookmark: _Toc26875909]2.4 HTML document structure
[bookmark: _Toc26875910]Introduction to HTML
HTML (Hypertext Markup Language) is a high-level set of rules used for describing the content of web pages. A markup language defines markup, or tags, that supplies structural and semantic information about the content of documents.
Semantic markup means that elements are used according to their intended purpose. It also requires that markup and presentation are separated, that is HTML is used for content, CSS is used for presentation. The tags are used to tell the browser about the content, for example H1 is the most important heading. HTML5 added structural elements such as header, footer and nav to ensure the markup was semantic.
	[image:]	Resources
[bookmark: _Toc26875911]Additional resources
Read the webpage What Is Semantic Markup And What Has It Got To Do With HTML5? To gain a better understanding of semantic markup.
Elements
HTML includes element types that represent paragraphs, hypertext links, lists, tables, images, etc.
An element has a start tag, content and an end tag. An element’s name appears in the start tag and the end tag. The coding pattern is as follows:
<tag attribute=”value”>text content</tag>
Tags are surrounded by angle brackets. They are generally in lower case but can be a combination of any case.
The attribute value should be enclosed by quotes. If the value includes a space, then it must be enclosed by quotes.
A closing tag is generally required although elements can be empty (e.g. img, br).
Attributes
Elements can have associated properties, called attributes and those attributes may have values. Any number of (legal) attribute/value pairs, separated by spaces, may appear in an element's start tag and may appear in any order.
Rules of HTML
The standard name for the home page of a site is index.
Never use spaces in your file names, they will not be read correctly. Instead run the words together, or use underscores or hyphens e.g. mypage.htm or my_page.htm.
Use only lowercase, alphabetic and numeric characters in file names.
HTML is not case sensitive, however it’s best to user lowercase only (as recommended by the W3C).
HTML is only sensitive to a single white space character in content (but not multiple spaces, carriage returns, tabs). To add additional white space, use , however it’s poor practice to layout content using spaces.
HTML elements should nest (opened and closed in the correct order), for example:
<center>this text is bolded and centred correctly</center>
US spelling is used, for example:
· center, not centre
· color, not colour.
	[image:]	Resources
[bookmark: _Toc26875912]Additional resources on HTML structure
Read the HTML5 Style Guide at W3Schools for the coding conventions and syntax for HTML5.
[bookmark: _Toc26875913]Main sections of HTML
There are three main sections to an HTML file:
1. DOCTYPE: Document Type Definition (DTD) – this must be the first line on all html documents. It serves two main purposes:
a. It tells the browser what standard the html page is based on
b. It allows you to validate the document according to that standard.
head: this tells the browser how to display the content. It includes the following:
c. The all-important title element – this should be unique to all pages and reflect that page’s content. It’s important for search engine optimisation (SEO) purposes and is displayed on the browser window tab
d. Meta tags for the character set and viewport, author details and possibly a brief description of the page’s contents
e. Link tags for external cascading style sheets and any JavaScript files.
body: this displays the content in the browser window with html tags applied (note: only the content between the body tags are displayed on the web page):
f. The page should be well-structured
g. The tags should be semantically-correct.
[bookmark: _Toc8127053]	[image:] 	Practice activity
[bookmark: _Toc21091465][bookmark: _Toc26875914]Activity 2.1 Create an HTML template file
Estimated duration: 	15 minutes
It’s a good idea to create a template file that contains standard structural HTML elements. You can reuse this template for other pages that you create, which will save you time and effort.
In this activity you’ll set up a basic HTML page using some structural elements.
Follow these steps to create a blank HTML file:
1. Open Notepad – a blank document will be created.
Select File > Save As.
Navigate to where all your HTML files will be stored when working through this resource.
Type template.html in the File name dialogue box. Note: when naming HTML files, you should follow these simple rules:
a. Make sure you include the suffix .html or .htm. Both work, but you need to decide early on which method you use or you may have problems with links failing later.
b. Give the file a meaningful name – the Home page is always called index (html or htm).
c. Don’t use spaces, punctuation or special characters, however hyphens and underscores are allowed.
d. Use all lowercase as some servers are case sensitive.
In the Save as type dialogue box select All Files and then Save.
[image:]
	[image:]	Resources
[bookmark: _Toc26875915]Resources on HTML
Work through the tutorials HTML Basic to HTML Paragraphs (inclusive) on W3Schools.
Other useful resources on HTML include the following:
HTML Dog
	[image:]	Watch
[bookmark: _Toc26875916]Video: HTML Essential Training
Chapter 4 of the following course from LinkedIn Learning discusses the syntax for structuring HTML documents, however the whole course is worthwhile to watch:
Ch 4. Structuring Content (HTML Essential Training) (LinkedIn Learning 01:05 hrs)
[bookmark: _Toc772797][bookmark: _Toc8128168][bookmark: _Toc16750793]	[image:] 	Practice activity
[bookmark: _Toc21091468][bookmark: _Toc26875917]Activity 2.2: Add structural elements to your template
Estimated time: 30 minutes
Open a new page in your text editor. Go to the HTML5 Introduction page on the W3Schools site. Copy and paste the HTML5 example text into your page.
Add the following structural elements between the opening and closing body tags of your template (i.e. <body> </body>):
<div id="wrapper">
<header>
</header>
<nav>
</nav>
<main>
</main>
<footer>
</footer>
</div>
Go to the W3C validator site and use the Validate by File Upload tab. Select Choose File, navigate to your file and then Check to have it validated. Your aim is to have no errors or warnings, like the screen shot below:
[image:]
[bookmark: _Ref24547766]Figure 4: A valid html page
If there are any error or warning messages, go back and fix the first error only and revalidate. An error early in the page can flow through to the rest of the page, giving inaccurate error messages about other elements. Repeat this process until the page is valid, as per Figure 4. Save this file as template.html - you now have a valid template to use for the rest of this workbook.
[bookmark: _Toc8127055][bookmark: _Toc16862005]	[image:] 	Practice activity
[bookmark: _Toc21091469][bookmark: _Toc26875918]Activity 2.3: Assign basic elements to user content
Estimated duration: 	60 minutes
[bookmark: _Toc21091470]Add content
1. Open your template.html file and Save As a new file e.g. index.html (you need to keep your blank, valid template.html file separate).
Copy the b and w photography folder to your disk space and set up the folder structure according to Figure 3.
Move the two .txt and two .pdf files into the resources folder.
Move the .jpg and .gif files into the images folder inside the www folder.
Copy the template.html, paste into your www folder and rename this file index.html.
Open Smidge Home Page Content.txt in your text editor and copy this text – Ctrl+A (to select all) then Ctrl+C to copy.
Switch to index.html and place cursor between the opening and closing <main> tags and paste the content (Ctrl+V).
Apply the correct codes to the content. The tags are <h1> and </h1>, <h2> and </h2>, and <p> and </p>.
Save the file and validate at W3C.
View in a browser and observe how the default presentation of the tags is displayed.
[image:]
[bookmark: _Ref24547770]Figure 5: Write correct codes for content
The code pattern for an image is:

Read the HTML Images page on W3Schools for a more detailed description of image attributes – src and alt are required, the rest are optional.
Go back to your text editor and place your cursor between the opening <header> tag and its closing tag, i.e. </header>
Type the coding to insert BWPhoto_logo.gif. You can get the height and width values by right clicking on the image, selecting Properties, then the Details tab.
Display the file in a variety of browsers.
Locate the image values for apple_concept.jpg then go back to your text editor and place your cursor above the Background sub-heading.
Insert coding to display apple_concept.jpg – make sure you include appropriate alt text.
Validate the file, then test in your browser.
[bookmark: _Toc21091471][bookmark: _Toc16862006]Develop navigation items
1. Copy the five navigation items from Smidge Home Page More.txt.
Paste them between the opening <nav> tag and the closing </nav> tag.
Apply list tags to the navigation items.
The coding for an unordered list is:

	Item 1
	Item 2
	Item 3

Read the HTML Lists page on W3Schools for more information.
Save the file.
[bookmark: _Toc16862007]Load index.html into a browser and observe how the default presentation for list items is displayed.
[bookmark: _Toc21091472]Develop footer items
1. Locate the three footer items in Smidge Home Page More.txt. Copy and paste these items between the opening <footer> tag and the closing </footer> tag.
[bookmark: _Toc16862008]Refresh the browser display (F5) and observe the changes applied to the footer items.
[bookmark: _Toc21091473]Apply link coding
1. Insert link coding for the navigation links in the following example - remember to set the target of the current page link with an id attribute and a suitable value.
Home</ a>
Read the HTML Links page on W3Schools for more information.
In the <footer>, only insert link coding for the second and third list items - the first list item is the copyright statement, which doesn’t have link coding applied to it.
Save the file and validate at W3C.
Refresh the browser display (F5) and observe the default display for links.

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: Topic3][bookmark: _Toc11228362][bookmark: _Toc26875919]Topic 3: Styling websites

[bookmark: _Toc8127070][bookmark: _Toc16862010][bookmark: _Toc21091474][bookmark: _Toc26875920]3.1 Overview
You have now structured and semantically-marked up your document. Now you need to apply appropriate styling for the layout and presentation of the web page content.
In this topic you will learn:
basic syntax and structure of Cascading Style Sheets (CSS)
how to apply these properties to your HTML
the important CSS Box Model
flex box, grid layout and multiple column pages.
[bookmark: _Toc16862011][bookmark: _Toc21091475][bookmark: _Toc26875921]3.2 Basic structure of CSS
CSS is a language for specifying how documents are presented to users — how they’re styled, laid out, etc. Web browsers apply CSS rules to a document to affect how they’re displayed.
The same HTML file can be rendered differently according to different CSS rules, to display on, for example, a computer screen, tablet, mobile phone, or printer. Different browsers may also render the same HTML files differently.
CSS makes it easy to specify the amount of white space between text lines, the amount of space lines are indented by, the colours used for the text and the backgrounds, the font size and style, and many other presentation details.
The term cascading in CSS refers to the priority given to different style rules applied to the same document. A web browser will give priority to style instructions in the following order:
Inline: by using the style attribute directly on the HTML elements you’re trying to style. This is a poor way to apply CSS, as it removes some of its main advantages – easier maintenance and smaller file sizes.
Internal: wrapping your CSS in <style> tags on each page. This can work for a single page website, but again removes its advantages in the same way as inline.
External: the most common and efficient way to apply CSS to a site. All the rules are stored in a separate text file with a .css suffix and linked to the HTML pages via a link tag in the <head> section of the document e.g.
<link rel=”stylesheet” href=”styles.css”>
Note: link is an empty element and therefore requires no closing tag. Placing this line of HTML in the head section of every page makes it much easier to consistently style and amend your website.
Browser default settings: if no specific styles are set, default settings will be used, for example, Times New Roman is the default font.
A CSS rule is formed from one of the following:
A set of properties, which has values set to update how the HTML content is displayed. For example, you want the element's width to be 50% of its parent element’s width, and its background to be red.
A selector, which selects the element(s) you want to apply the updated property values to. For example, you want to apply your CSS rule to all the paragraphs in your HTML document.
Go to the W3Schools CSS tutorial and read through the sections CSS Home to CSS Colors.
[bookmark: _Toc21091476]	[image:]	Resources
[bookmark: _Toc26875922]Additional resources on CSS layouts
The CSS Zen Garden website shows how the same HTML file can be displayed differently by only adjusting the CSS.
[bookmark: _Toc26875923]Anatomy of a CSS style
The CSS syntax is made up of three parts: a selector, a property and a value:
selector {
	property: value;
}
The selector is the HTML element, class or ID you want to style. The declaration block contains one or more declarations separated by semicolons. Each declaration includes a CSS property name and a value, separated by a colon. A CSS declaration always ends with a semicolon, and declaration blocks are surrounded by curly braces.
There are three types of selectors:
Element
This can be any HTML element. For example:
h1 {
font-size: 2em;
}
ID
ID selectors must be unique on a page. It’s identified as a hash symbol (#) combined with the ID name. ID names can’t start with a number. For example:
#wrapper {
width: 900px;
}
Class
A class selector lets you define a style that can be used for multiple elements. It’s denoted by a full stop (.) at the beginning of the class name. For example:
.lastpara {
margin-top: 20px;
}
[bookmark: _Toc26875924]Applying styles
Element styles are applied automatically, for example when you create a style for H1, all H1 headings will use the same style (unless manually changed by another style).
IDs and classes are applied manually to your elements. Remember that an ID must be unique within a page, however a class may be applied to multiple elements on the page.
To apply an ID to your html, add id=”IDName” to an element, for example:
<div id=”wrapper”>Here is some sample text</div>
To apply a class to your html, add class=”className” to an element, for example:
<p class=”lastpara”>Here is some sample text</p>
You can apply more than one class to an element by separating each with a space inside the quotes:
<p class=”lastpara pullquote”>Here is some sample text</p>
Note that the hash (for IDs) and full stop (for classes) are only shown in the CSS code. They’re not used when applying the styles to your html.
	[image:]	Watch
[bookmark: _Toc26875925]Video: CSS Essential Training
The following course from LinkedIn Learning goes into detail about CSS. You can watch the whole course, or just the parts that you need:
CSS Essential Training (LinkedIn Learning 04:28 hrs)
[bookmark: _Toc26875926]Font hierarchy
It’s customary to provide several different fonts in the font-family rule. This is because some end-users may not have your preferred font installed on their computers, for example:
body {
font-family: Helvetica, Calibri, Arial, sans-serif;
}
In this example, if Helvetica is installed on the user's computer, then Helvetica is the font that’s displayed. If Helvetica isn’t installed, then Calibri is displayed, and so on. This is referred to as a font stack. It’s important to remember that fonts take up different amounts of space on a web page.
Note: the different fonts are separated by commas.
[bookmark: _Toc16862012]	[image:] 	Practice activity
[bookmark: _Toc21091477][bookmark: _Toc26875927]Activity 3.1: Create a CSS template
Estimated duration: 	15 minutes
In this activity, you’ll create a basic CSS file to use as a template, which you can reuse for creating other CSS files. As you become more experienced with CSS, you can add more standard rules to your CSS template.
1. Open Notepad – a blank document will be created.
Select File > Save As.
Navigate to where all your files will be stored when working through this resource.
Type template.css in the File name dialogue box.
Add the following CSS rule:
body {
font-family: Helvetica, Calibri, Arial, sans-serif;
}
Save your file.
[bookmark: _Toc26875928]Activity 3.2: Create basic styles
Estimated time: 45 - 60 minutes
Open your validated b and w photography exercise from the previous topic and apply the following CSS rules. Put the styles into an external file (using your template.css file) and make sure you correctly link it to the HTML page. Test it in your browser after each rule to get a better idea of the changes they are making to your page.
1. Open your template.css file and Save As a new file e.g. bwphotostyles.css (keep your blank template.css file separate).
Set all the paragraphs to display at .8em in Helvetica, Arial, Geneva, or sans-serif font.
Write a style rule for the html element h1:
a. make the heading text the colour #00ccff
b. align the text to centre.
Write a style rule for an h2 using a blue background and white text.
c. What do you notice about the background?
d. Why does this happen?
Write a style rule that creates a class called note that would make any text it was applied to appear orange. Apply the class note to a couple of your paragraphs.
Write a style rule that creates a class called legal that would make any text it was applied to appear green.
Write a style rule that creates an id called legal that would make text appear grey and apply it to an existing element with a class called legal. What colour is the text?
Write a style rule that makes the first line of a paragraph appear red. Search online at W3Schools for the correct syntax of the pseudo element (:first-line).
Write a single style rule that makes both p and li elements appear green.
Write style rules for all the pseudo states of the (anchor) tag. Change the colour of the text in every state (link, visited, hover and active). Remember, the order that these are written in is important.
In the Save as type dialogue box select All Files and then Save.
	[image:]	Resources
[bookmark: _Toc26875929]Resources on CSS design principles
Read through the following web pages that outline some ways to write better CSS, which will help you when creating your own CSS:
A guide to writing better CSS
20 Tips For Writing Modern CSS.
[bookmark: _Toc16862013][bookmark: _Toc21091478][bookmark: _Toc26875930]3.3 CSS Box Model
Every element within a document is structured as a rectangular box inside the document layout. The size and layers of each box can be modified using some specific CSS properties. The relevant properties are as follows (from the outside in):
Margin
Border
Padding
Content.
[image:]
[bookmark: _Ref24547776]Figure 6: CSS Box Model
Take the following example property values applied to an element:
width: 900px;
padding: 10px;
border: 5px solid #cde;
margin: 10px;
To calculate the amount of space this element would take up on the page:
900px (width) + 10px + 10px (left and right padding) + 5px + 5px (left and right border) + 10px +10px (left and right margin) = 950px total width.
You can easily view the Box Model properties of any element on your page by opening the Developer Tools that are installed by default on all modern browsers. For example, in Chrome, press F12 for quick access. You’ll find a graphical representation of the element with numbers in pixels for each of the Box properties relevant to that element.
[bookmark: _Toc16862014]	[image:] 	Practice activity
[bookmark: _Toc21091479][bookmark: _Toc26875931]Activity 3.3: Box model properties
Estimated time: 60 minutes
Read the W3Schools CSS Borders page to get some more details about the CSS Box Model and its properties. Read through the sections from CSS Borders to CSS Box Model.
Make sure you understand the shortcut syntax for all these properties. When you’ve completed these, try the following exercises.
[bookmark: _Toc21091480]Create the structure
1. Copy the box model practice folder to your disk space.
Develop the standard web folder structure and move files into the correct folders.
Copy your html5 template and your CSS template to the www folder.
Rename the html file to index.html and rename the CSS file to box_model.css.
Open the files in your text editor and link your CSS file to the html file.
[bookmark: _Toc16862015][bookmark: _Toc21091481]HTML coding
1. Insert the text ‘W3C Box Model Practice’ between the <title> tags.
Insert a major heading with the text ‘W3C Box Model Practice’ between the <main> tags.
Place the cursor below the major heading and insert code for the motorcycle image and the windsurfing image - remember to include width, height and alt values.
Apply unordered list coding to the images for semantic correctness.
Insert an html comment tag immediately below the closing ul tag. Use the text ‘Creative commons images sourced from https://morguefile.com/’
Validate at W3C and test in your browsers.
[bookmark: _Toc16862016][bookmark: _Toc21091482]CSS coding
Refresh all browsers after each step [F5] and observe the changes in browser display.
1. The body tag has a font family hierarchy of Calibri, Arial, sans-serif
The wrapper id has a background colour of #e0e0e0, a width of 900 pixels and a margin rule of 30px auto auto auto
The major heading tag has a font size of 2em and a background colour of #d0cece
Add a CSS rule for the unordered list in the main tag – a display of flex and a justify content of space between
a. Identify the new positions of the images on the web page ______________
Amend the CSS rule to justify-content of space-around
b. Identify the change in position of the images on the web page __________
Insert a border rule for the images in the main tag - the values are 3px solid #000
c. Identify the change in display of the images __________________________
Add a margin rule for the images: 15px 0px 15px 0px
d. Are the margins added outside the image border, or inside the border? ___________
e. Write the shortcut for this margin rule in the space provided: ___________
Insert a padding rule for the images: 15px 15px 15px 15px
f. Is 15 pixels of padding added outside the image border, or the inside the border? __________
g. Write the shortcut for this padding rule in the space provided: _______________
[bookmark: _Toc16862017][bookmark: _Toc21091483][bookmark: _Toc26875932]3.4 Two-column layout
It wasn’t so long ago that web developers had to use a combination of Box Model properties, floats and positioning to get more complex multi-column layouts working. It also involved lot of hacks and workarounds to make sure it worked across different browsers.
Fortunately, improvements in browser support and standardisation of more advanced CSS properties has made this process easier.
The CSS Flexible Box Layout Module is one that makes it easier to design flexible responsive layout structure without using floats or positioning. It was designed as a one-dimensional layout model with powerful alignment capabilities, as well as a method that could offer space distribution between items in an interface.
[bookmark: _Toc16862018]	[image:] 	Practice activity
[bookmark: _Toc21091484][bookmark: _Toc26875933]Activity 3.4: Flex box model
Estimated time: 90 minutes
Go to the W3Schools CSS Flexbox Layout Module page and try out some of the examples to get a better understanding of the properties associated with this model. Now try the following two column layout exercise:
[image: _artwork]
[bookmark: _Ref24547560]Figure 7: Polywex paints sample website

Match the layout and presentation as closely as possible to the image using CSS.
Validate your files regularly at W3C and check the display of your files in a range of popular browsers.
[bookmark: _Toc16862019][bookmark: _Toc21091485]Specifications
1. Create the standard web folder structure and move files into the appropriate folder.
Evaluate widths of the artwork for the web page. You can get the height and width values by right clicking on the image, selecting Properties, then the Details tab
View the artwork and identify the name of the html file for this exercise. It is ___________.html
Open the html and CSS files in your preferred text editor and link them.
Add suitable title text between the <title> tags in the <head> section of the .html file; this text should briefly describe the content of the page and the site name.
Apply suitable structural coding and semantic coding between the <body> tags.
Insert the logo image – remember to include width, height and alt attributes.
Insert content images.
Apply coding for the content link trends.
Validate HTML before moving on.
[bookmark: _Toc16862020][bookmark: _Toc21091486]CSS
Apply the following CSS rules to develop this page for desktop screens:
1. The body tag
a. Determine the background colour from the artwork
b. Font family hierarchy is Helvetica, Calibri, Arial and a suitable default font
The 'wrapper' id
c. Width is 1000 pixels
d. Determine the background colour from the artwork
e. Apply suitable margins
The 'inner-wrapper' id
f. Apply suitable padding
The navigation tag
g. Apply a top margin of 12 pixels	
h. The font size is 23 pixels
The navigation unordered list tag
i. Display of flex
j. Justify content value for equal distribution across the web page
The navigation link tags
k. Text decoration to remove the underline
l. The default colour is #53341f
m. The current page colour of #cda470 - this is an id
n. The hover colour of #888
The main tag
o. Top margin is 26 pixels
p. Display of flex
The major heading tag
q. Font size is 22 pixels
r. Font weight is normal	
s. Colour is #cda470
The sub heading tag
t. Top margin is 15 pixels
u. Font size is 19 pixels
v. Font weight is normal
w. Colour is #53341f
The paragraph tag
x. Top margin is 15 pixels
y. Font size is 13 pixels
The link tag inside the main tag
z. Colour is #cda470
aa. Text decoration to remove the underline
ab. The hover effect displays an underline
The image tags inside the main tag
ac. Apply a suitable top margin
The footer tag
ad. Determine the width from the artwork
ae. Apply suitable margins
af. The font size is 11 pixels
ag. The colour is #Sd3619
The footer unordered list tag
ah. Display of flex
ai. Justify content value for even distribution across the footer width
The footer link tags
aj. Colour is #Sd3619
ak. Text decoration to remove the underline
al. The hover effect displays an underline.
[bookmark: _Toc16862021]	[image:]	Resources
[bookmark: _Toc21091487][bookmark: _Toc26875934]Additional resources on multi-column layout comparison
For a good comparison of the two most popular methods for laying out your web pages, spend some time going through this article:
Flexbox vs. CSS Grid: Which Should You Use and When?

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: Topic4][bookmark: _Toc11228372][bookmark: _Toc26875935]Topic 4: Adding website components

[bookmark: _Toc11228373][bookmark: _Toc26875936]4.1 Overview
So far you’ve set up the structure for a website, added basic content, including images, links and lists, and styled the website. There are several more components that can be added to a website, including forms, tables, and media such as video or audio.
In this topic you will learn about:
tables
forms
media.
[bookmark: _Toc26875937]4.2 Tables
Tables should only be used for displaying tabular data, for example, a timetable or a list of statistics. There was a time when tables were used for laying out content on a web page, however, with the advent of semantic elements, this practice is discouraged.
Read through the W3Schools site section on HTML Tables and follow the activities.
[bookmark: _Toc26875938]4.3 Forms
Forms are used on a website for capturing data, which is entered by the user. A business may want to collect information from website visitors, such as name and contact details, for many reasons. They’re often used on a Contact page to submit an enquiry, or to sign up for an email list. They’re also used when purchasing products and entering credit card information.
With forms you can allow users to submit text, dates, passwords, files and many other types of data. The data submitted through a form can be sent to another web page or stored in a database on the server. Sending form data to an email address is also possible, however, the user process isn’t very user friendly. It also leaves the email address open to spam, as it will be visible within the HTML code.
HTML forms are common places where security issues can happen. It’s very easy for attackers to exploit forms and attempt to inject data sent to a server database. All data entered into a form must be checked for validity.
Read through the W3Schools site section from HTML Forms through to HTML Input Attributes and follow the activities.
	[image:]	Watch
[bookmark: _Toc11228379][bookmark: _Toc26875939]Video: Creating forms
The following course from LinkedIn Learning covers how to create and style forms in depth, using HTML and CSS. You can watch the whole course, or just the parts that you need:
HTML & CSS: Creating Forms (LinkedIn Learning 02:30 hrs).
[bookmark: _Toc26875940]4.4 Media
HTML5 natively supports playing video and audio, without the use of a plugin. At this time, only specific formats of video and audio files are supported, however another option is to use an iframe element to play video from an online platform, like YouTube or Vimeo.
Read through the W3Schools site section from HTML Media through to HTML YouTube and follow the activities.
	[image:] 	Practice activity
[bookmark: _Toc877353][bookmark: _Toc11228380][bookmark: _Toc26875941]Activity 4.1: Add web page components
Estimated time: 45 - 60 minutes
Open your b and w photography exercise from the previous topic and add the following components:
1. Add a table with three rows and two columns and add dummy data.
Write a style rule for the table heading row using a blue background and white text.
Add a form to allow a user to submit a booking enquiry including their name, date of potential booking and a dropdown list of services to choose from.
Write a style rule for the label using a width of 50 pixels.
Add an element to embed a suitable YouTube video on photography.

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: Topic5][bookmark: _Toc26875942]Topic 5: Testing websites

[bookmark: _Toc16862022][bookmark: _Toc21091488][bookmark: _Toc26875943]5.1 Overview
Functional testing should happen throughout the website development process. It’s more effective to test individual components as they’re added, instead of replicating code and potential errors on to multiple pages.
Once the website is complete, you’ll then need to do a thorough test to make sure it meets industry standards and user requirements.
In this topic, you’ll learn to:
perform requirements validation
use tools to perform web standards validation
identify browser support
use tools to perform cross-browser validation.
[bookmark: _Toc8127071][bookmark: _Toc16862023][bookmark: _Toc21091489][bookmark: _Toc26875944]5.2 Requirements validation
A set of specifications for your website should be agreed on between you and your client. These specifications would be contained in a requirements document. Keep these in mind and check that your work complies with them as you develop your markup language documents.
These specifications could include:
the style or formatting of elements, such as text
style guidelines to fit in with organisation branding
the positions of elements on the page
the structure of the page
web browsers and devices that the web page must work on.
[bookmark: _Toc8127078][bookmark: _Toc16862025][bookmark: _Toc21091491][bookmark: _Toc26875945]5.3 Browser validation
Different browsers can interpret markup code in different ways. It’s important to be confident that your web pages will display correctly in all the browsers specified by the client. Browser popularity changes as new browsers come onto the market and older browsers or browser versions are no longer supported.
Topic 1 covered testing approaches and test cases, which you would now use to test your website in multiple browsers. The testing checklist developed becomes the documentation of your test results.
[bookmark: _Toc8127079][bookmark: _Toc16862026]	[image:] 	Practice activity
[bookmark: _Toc21091492][bookmark: _Toc26875946]Activity 5.1: Identify browser support
Estimated duration: 	30 minutes
1. Use a search engine to research current browser statistics. Statistics can vary from one site to another depending on the focus of people trying to access this content. Find out how well they support the latest HTML version and web standards. Discuss your results with the class.
For a professional web designer, these small differences can make or break a site design. There are many strategies that designers use in their markup to ensure consistent appearance across browsers and devices. You should view your web pages in different browsers to make sure your web pages are displayed consistently.
These days, many people worldwide access websites using mobile devices. Smartphones are currently the primary media used to access websites. It’s very important that your website should be responsive and run properly in all kinds of device resolutions.
[bookmark: _Toc8127080][bookmark: _Toc16862027]	[image:]	Resources
[bookmark: _Toc21091493][bookmark: _Toc26875947]Additional resources on cross-browser validation techniques and tools
[bookmark: _Toc16862028]Learn about cross-browser testing at What Is Cross Browser Testing And How To Perform It: A Complete Guide
There are many free and paid testing tools available to help you with web development. Most browsers have some great built in developer tools. F12 in Chrome takes you to a set of tools that can measure many aspects of your site’s development. For more detailed information, read Chrome DevTools.
[bookmark: _Toc8127083][bookmark: _Toc16862030]	[image:] 	Practice activity
[bookmark: _Toc21091494][bookmark: _Toc26875948]Activity 5.2: Perform cross-device validation
Estimated duration: 	30 minutes
Validate in different devices:
1. View your Polywex Paints web pages in at least three different device models using a browser emulator tool. Which devices did you use?

2. View your Polywex Paints web pages in different device orientations using your favourite browser emulator tool. Were there any differences in the way the pages displayed?

[bookmark: _Toc16862031][bookmark: _Toc21091495][bookmark: _Toc26875949]5.4 Web standards validation
The need to validate your web pages to ensure that the markup is correct, error-free and complies with accessibility standards has previously been discussed in this resource. The recommendations from the W3C are widely accepted as the international standards for web markup languages.
The easiest and most thorough way to check your pages is to use one of the free validation tools available on the internet or for download, such as the W3C Markup Validation Service. These will check your web page and show you a list of errors found on the page. W3C also has a CSS Validation Service.
You can also download accessibility toolbars that you can use to check your pages while they’re displayed in the browser. One of the best is an add-on for Chrome or Firefox; it’s quick and easy to install, and provides a lot of useful tools and shortcuts for evaluating your sites.
Other tools include those that check for accessibility for people who are colour blind, like the Colorblind Web Page Filter.
	[image:]	Resources
[bookmark: _Toc26875950]Additional resources on checking accessibility
The following web page from W3C discusses some ways to check your website for accessibility:
Easy Checks - A First Review of Web Accessibility.
[bookmark: _Toc8127072][bookmark: _Toc16862032]	[image:]	Collaboration
[bookmark: _Toc21091496][bookmark: _Toc26875951]Activity 5.3: Identify need for accessibility, usability and inclusion
Estimated duration: 	30 minutes
Discuss the differences between semantic and non-semantic content in your class. Why should you ensure that your HTML code is as semantic as possible?
[bookmark: _Toc26875952]5.5 Troubleshooting HTML and CSS
When testing your website, you will most likely produce errors in either your HTML and CSS (or both). Some troubleshooting methods include the following:
A simple thing to check is your syntax – these errors will generally be picked up by validators.
To identify problem code, temporarily remove sections of code (html or css) and replace smaller parts of it until the error appears.
Browser developer tools can often help.
You may also find it useful to use problem-solving processes such as brainstorming, design thinking, and mind mapping to determine possible solutions.
	[image:]	Resources
[bookmark: _Toc26875953]Additional resources on troubleshooting
Read through the webpage Handling common HTML and CSS problems, which is a useful resource for troubleshooting.
	[image:]	Watch
[bookmark: _Toc21521292][bookmark: _Toc26875954]Video: Problem-solving techniques
The following course from LinkedIn Learning discusses different problem-solving techniques. You can watch the whole course, or just the parts that you need:
Problem Solving Techniques (LinkedIn Learning 01:32 hrs).
[bookmark: _Toc26875955]5.6 Completing your website
Before you can hand over the completed website to your client, you must ensure that you correct any errors that have been identified in your testing. It’s also a good idea to demonstrate your website to the client to obtain their acceptance.

[bookmark: _Toc20996149][bookmark: _Toc26875956]Summary
You have now completed the resources for the cluster Layout and style markup documents. In this workbook you learned how to:
review user requirements
create a web page structure
format, style and lay out elements on a web page
add website components
test and validate web pages.

[bookmark: _Toc21091497][bookmark: _Toc26875957]Image attributions
Table 1: Image attributions
	Image
	Page #
	Attribution

	Cover
	1
	© Getty Images copied under licence

	Topic 1
	9
	© Getty Images copied under licence

	Figure 1: Example of a sitemap
	14
	© TAFE NSW

	Figure 2: Example of a wireframe
	16
	© TAFE NSW

	Topic 2
	22
	© Getty Images copied under licence

	Figure 3: Typical web folder structure
	24
	© TAFE NSW

	Figure 4: A valid html page
	30
	Available at https://validator.w3.org/
Reproduced under W3C Document License

	Figure 5: Write correct codes for content
	31
	© TAFE NSW

	Topic 3
	34
	© Getty Images copied under licence

	Figure 6: CSS Box Model
	41
	© TAFE NSW

	Figure 7: Polywex paints sample website
	44
	© TAFE NSW

	Topic 4
	48
	© Getty Images copied under licence

	Topic 5
	51
	© Getty Images copied under licence

	apple_concept
	b and w photography folder
	© TAFE NSW

	BWPhoto_logo
	b and w photography folder
	© TAFE NSW

	Windsurfer
	Box model practise folder
	https://commons.wikimedia.org/wiki/File:DSCF1252.JPG
Merryfrankster at English Wikipedia [Public domain]

	Motorcycle racing
	Box model practise folder
	https://commons.wikimedia.org/wiki/File:Motorcycle_racing.jpg
The original uploader was JoJan at English Wikipedia. [CC BY 2.0]

	Interiors 1a
	Polywex Paints folder
	Created by Medhat Ayad
Available at https://www.pexels.com/photo/apartmentbed-bedroom-book-shelves-439227/
Reproduced under Pexels licence

	Interiors 1b
	Polywex Paints folder
	Created by Rune Enstad
Available at https://unsplash.com/photos/UXFJ-6Zj27M
Reproduced under Unsplash licence

	Interiors 2a
	Polywex Paints folder
	Created by Mark McCammon
Available at https://www.pexels.com/photo/whitewooden-cupboards-2724749/
Reproduced under Pexels licence

	Interiors 2b
	Polywex Paints folder
	Created by Jean van der Meulen
Available at https://www.pexels.com/photo/photo-ofbedroom-1454806/
Reproduced under Pexels licence

Home
index.html

Services
services.html

About Us
about.html

Products
products.html

Product 1
product1.html

Product 2
product2.html

Contact Us contact.html

image23.gif

image24.png

image25.jpeg

image26.jpeg

image1.jpeg

image30.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image32.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image2.jpeg

image27.jpeg

image28.jpeg

image6.png

image7.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image7.png

image9.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image8.png

image11.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image9.png

image13.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image10.png

image15.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image11.png

image17.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image12.jpeg

image13.jpeg

image28.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image14.jpg

image15.jpeg

image16.jpeg

image17.jpg

image18.PNG

image19.png

image20.emf

image21.jpeg

image22.jpeg

image5.png

image3.jpeg

image4.jpg

