[bookmark: _Hlk792491]Student workbook
[bookmark: _GoBack]Database Cluster
ICTDBS403 Create basic databases
ICTPRG402 Apply query language
ICTSAD501 Model data objects

[image:]

[image:][image: C:\Users\ttsang.000\AppData\Local\Microsoft\Windows\INetCache\Content.Word\TAFE NSW NEW WARATAH LOCKUP NOV 2017 CMYK.png]

TAFE NSW would like to pay our respect and acknowledge Aboriginal and Torres Strait Islander Peoples as the Traditional Custodians of the Land, Rivers and Sea. We acknowledge and pay our respect to the Elders, both past and present of all Nations.
Version:	20191219
Date created:	20 October 2019
Date modified:	13 January 2020
For queries contact: 	Technology and Business Services SkillsPoint
© TAFE NSW 2020
RTO Provider Number 90003 | CRICOS Provider Code: 00591E
This resource can be found in the TAFE NSW Learning Bank.
The content in this document is copyright © TAFE NSW 2020 and should not be reproduced without the permission of TAFE NSW. Information contained in this document is correct at time of printing: 13 January 2020. For current information please refer to our website or your teacher as appropriate.

Contents
Icon legends	6
Getting started	7
What will I learn by completing this workbook?	7
Topic 1: Analysing the requirements for a database	9
Overview	10
Defining organisational information requirements	11
Analysing business data to understand operations	11
Data analysis techniques	12
Video: System theory of organisations	16
Video: Systems boundary and environment	16
Video: What is system context and system boundary in requirements engineering	17
Video: Drawing the context diagram	17
Video: Systems documentation - part three creating a context diagram	18
Video: Business requirements document overview	18
Video: Requirements definition	19
Video: Write functional requirements—traditional, agile, outsourcing	19
Activity 1.1: Little athletics requirement report	20
Topic 2: Understanding database environments	22
Overview	23
Client/Server environments	24
Video: How does the internet work?	25
Video: How does the world wide web work?	26
Principles of open platforms	26
Video: Open source versus closed source software	28
Video: What is an API?	28
Characteristics of a data source	29
Video: Understanding flat file databases	31
Video: An introduction to NoSQL databases	31
Video: What is NoSQL and how are NoSQL databases different?	32
Video: What is cloud computing?	32
Video: Overview of storage as a service	32
Video: Introduction to XML	32
Video: Hierarchical databases	33
Video: Understanding hierarchical databases	33
Server security concepts	33
Video: Security and data protection in a Google data centre	34
Data mining	35
Video: What is data mining?	36
Video: Data mining	36
Validation procedures and processes	36
Best practice communication, and accessibility, for audiences with special needs	37
Video: Video introduction to web accessibility and W3C standards	38
Topic 3: Creating a data model	39
Overview	40
Data modelling	41
Video: Data modelling an introduction	41
Video: Introduction to data modelling	42
Creating an entity relationship diagram	46
Functions and features of data modelling techniques	48
Video: What is Data Flow Diagram (DFD)?	52
Video: Entity Relationship Diagram (ERD) tutorial part one and two (using LucidChart)	53
Activity 3.1: Create an ERD	54
Normalisation	54
Normalisation rules and processes	56
Video: Database normalisation—introduction	59
Video: Database normalisation—first normal form	60
Video: Database normalisation—second normal form	60
Video: Database normalisation—third normal form	61
Activity 3.2: Outline the steps in database design, modelling and implementation	62
Video: Table columns and data types	78
Courier company governance database—Data dictionary	79
Video: ERD connecting a bridge table to another bridge table	84
Activity 3.3: Little athletics	84
Creating entities and attributes	86
Video: Connecting to SQL server using SSMS—part one	87
Video: Apply forward engineering in SQL Power Architect	88
Video: Creating, altering and dropping a database	88
Video: Creating and working with tables	89
Video: Logical database design and E-R diagrams	91
Video: Test data generation in SQL	91
Video: Creating large tables with random data	92
Requirements for a data model	92
Relational database keys	95
Video: Concept of keys in database management systems	98
Video: Clustered vs. non-clustered index structures in SQL server	98
Video: CMU database systems—concurrency control theory	100
Video: MySQL advanced—timestamps, dates and ordering part one	100
Data types	101
Structured data types	104
Additional resources	105
Topic 4: Creating the database	106
Overview	107
Query-related terminologies	109
Activity 4.1: Creating a database	112
Activity 4.2: Create the Little Athletics database	129
Topic 5: Using structured query language (SQL)	130
Overview	131
Conventions for formatting SQL	132
Video: Difference between rank dense rank and row number in SQL	174
Video: Cast and convert functions in SQL server	174
Video: Group by in SQL server	175
Appendices	176
Websites	176
LinkedIn learning videos	177
Image attributions	178

[bookmark: _Toc29554521]Icon legends
	Icon
	Description

	[image:]
	Practice activity
Learning activities help you to gain a clear understanding of the content in this resource. It is important for you to complete these activities, as they will enhance your learning. The activities will prepare you for assessments.

	[image:]
	Collaboration
You will have opportunities to collaborate with others during your study. This could involve group activities such as mini projects or discussions that will enable you to explore and expand your understanding of the content.

	[image:]
	Self-check
An activity that allows you to check your learning progress. The self-check activity gives you the opportunity to identify areas of learning where you could improve. If you identify these, you could review the relevant content or activities.

	[image:]
	Resources (required and suggested)
Additional resources throughout this workbook such as chapters from textbooks, online articles, videos etc. These are supplementary resources, which will enhance your learning experience and may help you complete the unit.

	[image:]
	Assessment task
At different stages throughout the workbook, after you have completed the readings and activities, you may be prompted to complete one or more of your assessment tasks.

	[image:]
	Video
Videos will give you a deeper insight into the content covered in this workbook. If you are working from a printed version, you will need to look these up using the URL provided.

[bookmark: _Toc29554522]Getting started
[bookmark: _Toc29554523]What will I learn by completing this workbook?
Most information systems rely on a database for the storage of data that is to be used by the system. The database is a critical component of the information system and as a developer, your knowledge and understanding of how databases are used in information systems are vital.
Relational Database Management Systems are the most commonly used systems to support the management of data used by information systems.
By completing this unit you will learn about:
Relational Database Management Systems (RDMS)
how they can be designed, developed and used to provide information to information systems.
Each topic includes opportunities to check your progress and understanding as well as activities that will help you to complete the formal assessments.
[bookmark: _Hlk10115583]There are five topics to complete within this workbook. They are:
Analysing the requirements for a database.
Understanding database environments.
Creating a data model.
Creating the database.
Using structured query language (SQL).

To complete this workbook, you will require:
a personal computer with access to the internet
headphones for listening to online tutorial material and videos
data modelling software such as SQL Power Architech, Lucid Chart or Vertabelo
· a Relational Database Management System (a database server) installed on your computer. Preferable SQL Server.
· a development tool such as SQL Server Management Studio for writing, and executing SQL code on the database server.
a portable drive for backing up your learning material and any activities you complete for this topic.
Alright, let’s get started!
[bookmark: _Toc518640492]

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

Document title: Cl_Database_SW_1of1
Resource ID: ICT_19_013_Cl_Database_SW_1of1	Page 2 of 184
© TAFE NSW 2020
[bookmark: _Toc29554524]Topic 1: Analysing the requirements for a database

[bookmark: _Toc29554525]Overview
Organisations such as hospitals, government departments, universities, banks, insurance companies, and just about every other business that operates in today's society, rely on data to perform their activities.
In this topic you will learn about the following:
The importance of defining the Information requirements of an organisation so that those requirements are addressed by the data model developed to provide that information.
Data analysis techniques used to develop an understanding of the operations of the organisation.
Methods used to gather the information and data which is to be analysed.
The importance of defining the scope and boundaries of the database system is also addressed by this topic, so that you, the developer knows where the limits of the system are.
When you’ve completed this topic you will understand how to analyse business data to understand the operations of the business, what a system is and how to define the boundaries of a system, and how to develop a written requirement report describing the functional requirements of the database.

[bookmark: _Toc29554526]Defining organisational information requirements
Relational Database Management Systems (RDMS) are used by most organisations to processes the data they collect turning it into information. They will use this information to make business or operational decisions to benefit the organisation.
It is important that the analyst understands how to define what information that the database is supposed to produce for the organisation.
[bookmark: _Toc29554527]Analysing business data to understand operations
Relational Database Management Systems (RDBMS) are used extensively throughout the modern world to assist organisations to execute their operations. RDBMS allows organisations to collect, store, process and analyse data, turning it into information, which they can use to define the decisions required for successful business operations.
It is important therefore, that the database is designed to meet the organisation’s specific operations and more precisely the business rules of the particular organisation. In other words, the veracity of an information system will be profoundly determined by how closely its database reflects the operations of the organisation.
Data analysis techniques are used to develop an understanding of the business operations and business rules of an organisation in order to define the structure (or schema) of the database.

[bookmark: _Toc29554528]Data analysis techniques
Reasons for data analysis
Data analysis is the collection and organisation of data to enable the discovery of information from the data. The information is used to develop a model of a database that will serve to implement and enforce the business rules of an organisation and support the execution of their business. Data analysis provides answers to questions, the solutions to problems and the detection of important information.
The reasons for data analysis can be described as follows:
inferring unknown information
developing models to aid in forecasting and prediction of future behaviour
identifying patterns within the data and hence any anomalies within the patterns
verifying or disproving assumptions or hypothesis
detecting faults within processes.
However, it must be stressed that the primary reasons for data analysis in the realms of database design are to establish the nature of the data and how the data is to be used.
Types of data analysis
There are many different data analysis techniques, and the decision to use one technique over another will be determined by the need for the analysis.
The need for the data analysis may be:
either confirmatory or exploratory
either qualitative or quantitative
either descriptive or inferential
either prescriptive or predictive.
The need will determine which analysis techniques will be used.
Data analysis, in most instances, is an iterative process and not necessarily sequential. The two factors which will contribute most to the success of the data analysis are the quality of the data, and the method used.
Data analysis techniques can be either quantitative or qualitative.

Quantitative analysis:
provides data that can be counted or expressed numerically
can be used with statistical analysis to determine things like averages, medians, standard deviations, etc. or can be used in mathematical computations
can be represented visually in tables and graphs
is either:
· discrete, represented numerically as a whole number (integer) (e.g. most families have two cars)
· continuous, represented numerically as a decimal value (e.g. a company’s profit margin is set at 22.5%).
is limited in:
· the types of predictions it can be used to make
· that it can help identify a problem but not how to solve it
· it can help rank problems but not to prioritise the development of the solutions
· supporting decision making without the inclusion of qualitative data analysis.
Qualitative analysis:
uses descriptive words and language rather than numbers to explain, describe, and characterise the subject being investigated
provides more insightful meaning to quantitative/numerical findings
can help define known problems
can provide ideas for further investigation and possible intervention strategies to solve problems
proves more useful when combined with quantitative analysis to provide a deeper understanding of the data.

Methods of gathering information
There are several methods that can be used to gather information and data that can be analysed qualitatively to aid in the design of a relational database.
Table 1 Overview of methods
	Method
	Overview

	Focus groups.
	Focus groups are an effective method for qualitative data collection and involve the bringing together of a group of people with specific knowledge about the information being sought.
In an interactive group setting the participants are asked specific questions about a particular topic by an experienced group moderator and the participants are permitted to interact with other group members in an effort to identify, clarify and define their attitudes and opinions about the topic.

	Interviews.
	Interviews are conducted to elicit specific information and will take a question-and-answer format which can be either open-ended or closed-ended. Closed-ended questions will have a specific answer while open-ended questions will allow the respondent to elaborate on their answer.
Interviews are often the first method of information gathering to be used on a new project. However, they are resource-intensive and expensive to implement. A one-on-one interview can result in a more meaningful engagement than when working with a larger group. It is most useful to interview stakeholders that have the most expertise and the greatest influence on the processes that are being studied.

	Observation.
	Observation involves studying users in their working environment to identify process flow, inefficient steps, pain points, and improvement opportunities. Observation provides real-time, detailed insights into the information being gathered and avoids the analyst being told misinformation.
Observation is a good way to confirm the accuracy of information gathered by other methods and can be passive, in that the observer does not interact with the person(s) being observed, or active in that the observer can interrupt and ask questions of the process during the observation. Observation is time-consuming and should be targeted to clarify ambiguities.

	Document analysis.
	This method is commonly used to initiate the gathering of requirements and involves the gathering of information from existing documents and other related sources of relevant information. It could include statistics based records, invoices, sales figures, customer lists, product lists, performance reports, minutes from meetings, etc.
Document analysis involves minimal interaction with people, and it is often necessary to have assumptions confirmed by an expert. Combined with other information-gathering methods, it can produce an accurate view of the desired information because much of the information gathering will already have been included in the existing organisational documentation.

	[image:]	Watch
[bookmark: _Toc29554529]Video: System theory of organisations
This video explores provides an introduction to systems theory of organisations, and its component parts, which grew out of open systems theory or general systems theory (duration 10:53).
[image:]
https://www.youtube.com/watch?v=1L1c-EKOY-w&feature=youtu.be
[bookmark: _Toc29554530]Video: Systems boundary and environment
In this video they start to present models for understanding systems within the context of the broader environment within which they must operate and interact with other systems (duration 06:14).
[image:]
https://www.youtube.com/watch?v=8FgsrzfIt0A&feature=youtu.be

[bookmark: _Toc29554531]Video: What is system context and system boundary in requirements engineering
A short explanation of the system, system context and boundaries in requirements engineering (duration 05:51).
[image:]
https://www.youtube.com/watch?v=ejfAB0eUfoc&feature=youtu.be
[bookmark: _Toc29554532]Video: Drawing the context diagram
In this video, we use standard data flow diagramming notation to create a context diagram. We are using Draw.io to create a context diagram using a food-ordering example modified from Visual Paradigm (duration 10:51).
[image:]
https://www.youtube.com/watch?v=yOBMhvKRM2E&feature=youtu.be

[bookmark: _Toc29554533]Video: Systems documentation - part three creating a context diagram
In this video of the systems documentation tutorial, we will show you how to create the context diagram (08:20).
[image:]
https://www.youtube.com/watch?v=IklEoggJda8&feature=youtu.be
[bookmark: _Toc29554534]Video: Business requirements document overview
The business requirements document is a template that is used to document software requirements (duration 06:22).
[image:]
https://www.youtube.com/watch?v=Q4xFImKTqqM&feature=youtu.be

[bookmark: _Toc29554535]Video: Requirements definition
In this video you will learn the process overview in the NASA design definition process and how to optimize the design (duration 01:38:51).
[image:]
https://www.youtube.com/watch?v=J_y2I09rj_I
[bookmark: _Toc29554536]Video: Write functional requirements—traditional, agile, outsourcing
Write functional requirements is an excerpt from Requirements: The Masterclass LiveLessons-Traditional, Agile, Outsourcing video training course (duration 11:40).
[image:]
https://www.youtube.com/watch?v=T1GKQtG5b2A&feature=youtu.be

	[image:] 	Practice activity
[bookmark: _Ref29366343][bookmark: _Toc29554537]Activity 1.1: Little athletics requirement report
Develop a written requirement report corresponding to the following description of the ‘Little Athletics’ organisation’s operations.
You have been commissioned by Little Athletics to build an information system to help manage the day-to-day operations of the organisation regarding their athletics carnivals. Little Athletics provides opportunities for young people to compete in athletics carnivals at various locations around Australia. You have met with the senior management of the organisation and with some of the carnival organisers and officials, and have determined the following requirements for their new system.
1. Athletes
The organisers would like to store contact information for each of the competitors at their carnivals so that they can inform them of upcoming events. When an athlete decides that they’re going to compete in an event, they’ll notify the organisers, and the athlete’s entry into the event will be recorded in the system. Organisers need to know the athlete’s full name, address, date of birth, gender, email, two phone numbers; home and mobile and the events in which they will compete. Most athletes will compete in more than one event. The competitors' date of birth will determine which age group they can compete in.
Carnivals (often referred to as ‘Meets’)
Details of each carnival must be emailed to the competitors at least two months prior to the carnival. Carnivals may be held for two or three days or could span a week if they’re a state or national carnival. The details include the location of the Carnival, the start date and the end date.

Events
A carnival will host multiple events in the various disciplines. The types of events include, but are not limited to, high jump, 100m, 200m, 400m, 800m and 1500m running events, long jump, shotput, discus, hurdles etc. The organisers would like to be able to record a competitor’s result for their entry into an event, the type of event entered, the placing in that event and the competitor’s time/distance/height achieved. The result is recorded as a numeric value. In addition to tracking the Athlete’s event entry results, Little Athletics keeps track of the National record for each type of Event. When a competitor breaks a record, the new record (time/distance/height achieved) is recorded for that event type.
Age Groups
Events are organised by age groups. The age groups begin at under 6’s and continue through to under 17’s in yearly increments. i.e. U6’s, U7’s, U8’s, U9’s, etc. Competitors must compete in their own age group only. They can not compete in an older age group (and definitely not in a younger one).

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: _Toc29554538]Topic 2: Understanding database environments

[bookmark: _Toc29554539]Overview
In this topic you will develop an understanding of the environments in which relational database management systems operate.
You will learn about the following:
The relationship between a database server, a web server, the internet, and the clients that consume the information that is provided by the database server.
How the internet works and the basic principles of open platforms. There are many sources of data that can be used by organisations to conduct their business, you will learn about these and the theoretical concepts that underpin the security of the data.
The importance of validation and best practices for communicating with and providing access to audiences with special needs.
We are on the brink of a revolution in the use of data and never before has humanity accumulated the volume of data which we are currently consuming. You will be introduced to data mining which has risen to become the new frontier for the opportunity in today’s world.
In this topic you will be required to read the reading material and watch each of the video tutorials listed.
When you’ve completed this topic you will have developed an understanding of relational database management system environments and the factors that contribute to the operation of such systems.

[bookmark: _Toc29554540]Client/Server environments
The client/server model is an application structure which separates the work to be done between the provider of a service, the servers, and the consumers or requestors of the service, the clients. The communication between the two, server and client, will usually be conducted over a network (the Internet), on different hardware.
Both the server and the client are computers running either server software or client software respectively. The Internet is dependent on the client-server model and relies on it for the everyday activities of web servers and clients in what we commonly refer to as the world-wide-web.
In the web server, web client relationship, the web server will often host a web server software application such as Microsoft’s Internet Information Server (IIS) or Apache Web Server. The web client will, in most cases, host browser software such as Microsoft Edge, Internet Explorer, Google Chrome, Mozilla Firefox or Safari to name but a few available browsers. The two, server and client, could literally be oceans apart but connected to the internet.
When someone enters an internet address (URL) into a web browser, they’re requesting information from a web server at that address. The client browser sends the request (which includes the client’s return address) to the internet where its destination is assessed and the request forwarded through the internetworked servers of the internet until it reaches the destination web server.
The web server then generates the response (usually in the form of HTML, CSS, etc.) and sends the response back through the internet to the client’s return address where the client browser interprets the response and ‘marks-up’ the HTML, CSS, JavaScript, etc. to display the web page to the user.
[image:]
[bookmark: _Ref27722993][bookmark: _Ref27722981]Figure 1 The client/server environment of the Internet
	[image:]	Watch
[bookmark: _Toc29554541]Video: How does the internet work?
The YouTube videos you watch originate on a data server that may be thousands of kilometres away. Watch these videos to learn about how the client/server relationship works on the Internet, and how data can travel thousands of kilometres to reach its destination so accurately and so quickly (duration 08:58 and 07:03).
[image:]
https://youtu.be/x3c1ih2NJEg

[bookmark: _Toc29554542]Video: How does the world wide web work?
[image:]
https://youtu.be/XjpAnPM5bo0
[bookmark: _Toc29554543]Principles of open platforms
A platform is something that can be worked on and built on to. Open platforms therefore serve as a staging point for further development by others.
Open platforms in computing describe software which is developed on open standards that are fully documented and published for anyone to access and use. The open standards allow for the software to be used in ways which may not have been foreseen (or intended) by the original programmers.
This openness is most often achieved by:
the publishing of Open Platform Application Programming Interfaces (API), allowing third parties to develop additional functionality which can be integrated into the original software
providing open scope, allowing the software to be used in ways which were never planned
providing open source, allowing the source code to be studied, modified and distributed (there are varying degrees to which a platform will be open source)
allowing for open usage, including open development, open provision and open operation
allowing for open adaptability, which means the software platform’s existing functionality can be modified by modifying the source code itself.

Some of the more popular open platform browsers include Firefox, Chromium, Waterfox, Basilisk, Pale Moon, Brave Browser, and Dooble. Chromium is the platform upon which Microsoft Edge was built.
Some of the more popular open platform databases include PostgreSQL, MySQL, MongoDB, MariaDB, and SQLite.

	[image:]	Watch
[bookmark: _Toc29554544]Video: Open source versus closed source software
In this video, you’ll learn more about the differences between open-source software and closed-source software (duration 02:28).
[image:]
https://youtu.be/2q91vTvc7YE
[bookmark: _Toc29554545]Video: What is an API?
What exactly is an API? Finally learn for yourself in this helpful video from MuleSoft, the API experts (duration 03:24).
[image:]
https://youtu.be/s7wmiS2mSXY

[bookmark: _Toc29554546]Characteristics of a data source
There are several possible sources of data for an information technology system. These include the following.
Table 2
	Data source
	Overview

	Flat files
	Typically a flat file data source will comprise one or more files of data stored as character data (or plain text). The individual attributes of data are usually separated from each other using a comma (comma-separated values CSV) or a tab character. Flat files are difficult to work with because they can result in huge amounts of redundant data and consequently data anomalies can occur. Also, systems that rely on flat files as their data source lack the functionality and data management support provided by Relational Database Management Systems and require the programmer to have a more intimate knowledge of the physical locations of the data required for processing by the system.

	Relational databases
	Relational Database Management Systems provide functionality that simplifies much of the hard work required to define, collect, store, securely access, and manipulate the data required by information systems. A relational database is a shared and integrated structure which stores both user data and meta-data. The meta-data is used to integrate and manage the user data, and describe the characteristics of the user data, and how it is related. Relational databases are the most common data source used by information systems.

	NoSQL databases
	NoSQL databases originally derive their name for being not only SQL or non-relational, which means that in certain circumstances SQL can also be used with a NoSQL database. They are non-relational which means that they don’t use tables in the same way that relational databases do. NoSQL databases are suited to big data applications and real-time web apps. There are several types of NoSQL databases, these include document databases, column databases, Key Value Store, etc. NoSQL database does not have a pre-defined schema (or data model) like relational databases, so they are able to handle unstructured data.

	Cloud
	The term ‘cloud’ or ‘cloud computing’ has evolved out of the common use of the image of a cloud representing the Internet in diagrams that depict computing functions that interact with the Internet. Cloud data sources are usually databases that run on a cloud platform and access to the database is provided as a service to the data consuming applications. The database platforms offered include Relational Database Management Systems, such as Microsoft Azure SQL Databases, and NoSQL platforms such as MongoDb.

	XML files
	XML is the acronym for eXtensible Markup Language. XML is a prolific data source in use today because it provides the ability to store both the structure of the data (i.e. the schema or meta-data) and the data itself in human-readable plain text. This facilitates the easy exchange of data between organisations that want to share their data but which operate disparate platforms. Unlike HTML which has a limited set of pre-defined tags, XML is ‘extensible’ because it allows users to define their own tags and tag attributes, thus allowing them to define the structure of the data.

	Hierarchical
	Hierarchical data sources are most often implemented as hierarchical databases and have an upside-down tree structure in which every table has a single parent. Only one-to-many relationships are supported in hierarchical databases making them somewhat limited in their capabilities. Hierarchical databases were developed in the early days of data storage when information processing systems moved from paper-based systems to computerised systems.

	Network
	Network databases were developed to allow more complex relationships than their Hierarchical predecessor provided. The network model was developed to allow each record to have more than one parent, however it was still limited to implementing only one to many relationships. Network databases are not used very much today because of inherent limitations such as an inability to run ad-hoc queries on the data and difficulty in restructuring the data, they have consequently been replaced by relational databases.

	[image:]	Watch
[bookmark: _Toc29554547]Video: Understanding flat file databases
Understand the core concepts every IT professional should know to start working with databases.
LinkedIn Learning video Understanding flat file databases (duration 02:19).
[bookmark: _Toc29554548]Video: An introduction to NoSQL databases
This is a beginners guide to NoSQL databases(duration 15:40).
[image:]
https://youtu.be/uD3p_rZPBUQ

[bookmark: _Toc29554549]Video: What is NoSQL and how are NoSQL databases different?
NoSQL is a popular database storage method. It keeps data as key-value pairs. The advantages and disadvantages of NoSQL compared with RDBMS are discussed here, using the Cassandra architecture as an example (duration 27:00).
[image:]
https://youtu.be/xQnIN9bW0og
[bookmark: _Toc29554550]Video: What is cloud computing?
Cloud computing is everywhere these days, but not everyone knows exactly what it is.
LinkedIn learning video What is cloud computing? (duration 03:24).
[bookmark: _Toc29554551]Video: Overview of storage as a service
LinkedIn learning video Overview of storage as a service (duration 02:58).
[bookmark: _Toc29554552]Video: Introduction to XML
LinkedIn learning video Introduction to XML (duration 01:29).

[bookmark: _Toc29554553]Video: Hierarchical databases
The history of data modelling (duration 01:33).
[image:]
https://youtu.be/Rk5S3VWhuZw
[bookmark: _Toc29554554]Video: Understanding hierarchical databases
LinkedIn learning video Understanding hierarchical databases (duration 01:30).
[bookmark: _Toc29554555]Server security concepts
Database server security can be defined as those actions and procedures that are undertaken to safeguard the availability, integrity, and confidentiality of the most important asset of an information system, data. Security of data requires an all-of-organisation approach which is comprehensive and secures all of the processes and systems surrounding the data. Both digital and physical systems must be secured, including the hardware, software applications, network and network devices, both internal and external users of the data, company procedures and the data itself.
Availability is an important goal of security and requires that the data should be available to authorised people for authorised purposes. Availability depends on protecting the system against service disruption from any possible cause.
The integrity of the data in an information system requires that the data be free of errors or anomalies. Much of the data’s integrity will be dependent, initially, on how well the database schema has been modelled and then on the integral functionality of the Relational Database Management System that hosts the data. However, the ongoing adherence to the organisation’s security policies by users must be vigilantly maintained to ensure the continued integrity of the data.

It’s not reasonable for example, that an employee accesses the data from within the organisation using a USB stick or flash drive that may have previously been corrupted with malware. Or for an employee to access systems from outside of the organisation using an unsecured or unencrypted network connection. The integrity of the data must be secured against all possible avenues of corruption.
Confidentiality requires the application of authentication and authorisation policies and procedures to ensure that the people accessing the data are authenticated, i.e. they are who they say they are, and that they’re authorised to access the data for authorised purposes.
Confidentiality aims to prevent the disclosure of data that would violate the privacy rights of individuals and of the organisation itself. These privacy rights include safeguarding against the disclosure of personal information as well as organisational business intelligence and intellectual property rights.
Organisations are obligated by law to meet statutory requirements regarding the confidentiality and safeguarding of personal as well as organisational data.
	[image:]	Watch
[bookmark: _Toc29554556]Video: Security and data protection in a Google data centre
This video tour of a Google data centre highlights the security and data protection that is in place at their data centres (duration 07:00).
[image:]
https://youtu.be/cLory3qLoY8

[bookmark: _Toc29554557]Data mining
With the explosive growth of the Internet and its related technologies there has also been an unprecedented growth in the collection of data. Every time you use the world wide web, or tap-on to public transport, or pay for your groceries with your credit card, or make a phone call, or interact with a digital information system in any way, data about your interaction with that system is being stored on a server somewhere for you and for everyone else in the world.
Add to that, the accumulation of industrial data gathered by sensors in cars, sensors in roads and public transport systems, in aircraft, sensors in manufacturing machines and robots, at cash registers in retail outlets, and you begin to appreciate the scale of this data gathering revolution. This is an unprecedented accumulation of masses of data.
Data mining is the term given to the analysis of this data in the hope that previously undiscovered and unknown information can be unearthed. This new and previously unknown information can then be used in the decision making processes of the organisations that hold the data.
Traditionally, data has been used in a reactive manner. That is a problem or opportunity is first defined and then the data is processed and analysed in order to find a solution to the problem or to exploit the opportunity. Data mining, on the other hand, takes a more proactive approach in that data mining tools search masses of data (data warehouses) looking for anomalies, inconsistencies, patterns and possible relationships that were previously unknown.
Once discovered, problems or opportunities that have been hidden in the data become apparent and can be used in the policy and decision making processes of the organisation. Data mining is used extensively in a whole-of-government approach where government departments share their data to uncover welfare fraud or to analyse the efficiency of government services to the community. The insurance industry also uses data mining extensively to detect fraudulent claims and to accurately assess insurance risks.

	[image:]	Watch
[bookmark: _Toc29554558]Video: What is data mining?
NJIT School of Management professor Stephan P Kudyba describes what data mining is and how it is being used in the business world (duration 03:22).
[image:]
https://youtu.be/R-sGvh6tI04
[bookmark: _Toc29554559]Video: Data mining
LinkedIn learning video Data mining (duration 04:39).
[bookmark: _Toc29554560]Validation procedures and processes
Validation is the process of confirming that the implemented system meets the specified requirements and the needs of the stakeholders. Validation can be internal or external. Internal validation assumes that the stakeholder’s goals were expressed correctly in the definition of the requirements. If the system meets the requirements specification then it is said to be validated internally.
External validation occurs by asking the stakeholders if the system meets their needs. In most cases external validation is performed by user acceptance testing. Once all of the users or stakeholders have indicated that the system meets their needs, external validation has been achieved.

[bookmark: _Toc29554561]Best practice communication, and accessibility, for audiences with special needs
Accessibility is an important consideration when designing every aspect of communication for a computing system. This can include communications that occur during the analysis phase to identify required information from all stakeholders, including those with special needs, by designing feedback forms and questionnaires or conducting focus groups in an accessible way. Accessibility must also be considered at the user-interface end of the computing spectrum where it is import to identify who audiences with special needs could be.
There are also factors of inclusion which affect accessibility and should take into account the following considerations:
accessibility for people with disabilities
access to and quality of hardware, software, and Internet connectivity
computer literacy and skills
economic situation
education
geographic location
culture
age, including older and younger people
language.
Best practice accessibility strategies include the following:
provide perceivable information and user interface:
· provide text alternatives
· provide captions and other alternatives for multimedia
· ensure that content can be presented in different ways
· ensure that content is easier to see and hear.
provide an operable user interface and navigation:
· ensure that functionality is available from a keyboard
· ensure that users have enough time to read and use the content
· ensure that content does not cause seizures and physical reactions
· provide mechanisms for users to easily navigate, find content, and determine where they are
· ensure the users can use different input modalities beyond the keyboard.
understandable information and user interface:
· provide text that is readable and understandable
· ensure that content appears and operates in predictable ways
· ensure that users are helped to avoid and correct mistakes
robust content and reliable interpretation:
· ensure that content is compatible with current and future user tools.
	[image:]	Watch
[bookmark: _Toc29554562]Video: Video introduction to web accessibility and W3C standards
Making the web accessible benefits individuals, businesses, and society. International web standards define what is needed for accessibility. (duration 04:00).
[image:]
https://youtu.be/20SHvU2PKsM
Introduction to Web Accessibility http://www.w3.org/WAI/fundamentals/accessibility-intro/
This work is published and licensed under a Creative Commons Attribution 4.0 International License.

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: _Toc29554563]Topic 3: Creating a data model

[bookmark: _Toc29554564]Overview
This topic will develop your understanding and skills in data modelling. Data modelling is critical to your development as a programmer or analyst programmer because you may often be required to develop the data model for the system being built. This is especially true if you work in a small to medium-sized enterprise.
You will learn about the following:
The terminology used in data modelling, how to interpret the business rules and information requirements of an organisation so that you can build a data model.
The different types of model that are most commonly used, such as the Entity Relationship Diagram (ERD), and the various symbols used in Entity Relationship Diagrams and their meaning.
An understanding of how good table structures can be achieved by applying the rules, principles and processes of normalisation.
Developing an understanding of the sequence of steps you should take to develop your model, what entities and attributes are, and how to analyse the different types of relationships between the entities in your model.
The functions and features of different data types that are used in databases and how to develop a data dictionary for your data model. You will use modelling software to develop and implement your data model, and learn about the different types of keys that are used in relational databases.
The use of timestamps, type hierarchies and structured data types, and the purpose of user-defined functions.
In developing your model you will apply appropriate naming conventions and understand the importance and use of database identifiers and how they impact the usability of the database.
It is important that you carefully read and understand the material in this topic and that you use modelling software (such as SQL Power Architect) to develop the model for the Courier Company Governance System that is described in this topic.
 Complete each of the practice activities in this topic paying particular attention to the video tutorials and the completion of the data modelling practice activity for the Little Athletics organisation.

[bookmark: _Toc29554565]Data modelling
Data modelling is the practice used to transition from real-world processes and objects to their implementation as a database on a computer system. Databases must be designed to meet the very specific operations of an organisation, however the database designers, application programmers and end-users all have a very different understanding of the data. This can result in designs that don’t reflect the actual operations of an organisation and can fail to meet the information requirements of the users and fail to safeguard the integrity requirements of the data.
Database designers, therefore, strive to obtain a clear and precise description and understanding of the data and its use by the organisation. Data modelling condenses the complexities of the organisation’s processes, business rules, and data down to a level of abstraction which identifies the entities and models the relationships between those entities. The data model is a logical model of the database, since it depicts the things for which data are being stored and how those things are related to each other. The data model can be used to confirm with the users that the database will meet their needs, and to communicate to the database developers the logical structure of the database that is to be implemented.
	[image:]	Watch
[bookmark: _Toc29554566]Video: Data modelling an introduction
Introduction to normalization and database design (duration 55:21).
[image:]
https://youtu.be/tR_rOJPiEXc

[bookmark: _Toc29554567]Video: Introduction to data modelling
LinkedIn learning video Introduction to data modelling (duration 02:12).
Data modelling terminology
Table 3 Terminology explanations
	Terminology
	Explanation

	Entity
	During analysis an entity is something (a person, place, thing, event, or transaction, etc.) for which you want to store data in the database. When the database is implemented (created) the entities will have become tables. Entities can be either concrete or abstracted. For example, in a banking system, a customer (concrete) is something you want to store data about. A transaction, like a funds transfer (abstracted), is also something you would want to store data about. The term entity is used in data modelling because it encompasses both the concrete and the abstracted things that you might want to store data about. As a rule-of-thumb you can define something like an entity for your data model if there is more than one of it and it has attributes which you want to store in your database.

	Attribute
	During the analysis stage an attribute is a property or characteristic of an entity. When the database is implemented (created) the attributes will have become columns in a table. For example, two attributes of a customer would be their first name and last name. Two attributes of a funds transfer would be the transfer date and the transfer amount. Non-prime attributes are attributes which are not part of the primary key of a table.

	Relationship
	A relationship describes how entities are connected with each other. For example, a customer could conduct fund transfers, so a relationship exists between customer and fund transfer and could be described as follows: a customer can make many fund transfers and a fund transfer is for only one customer. In data modelling this type of relationship is defined as a one-to-many (1:M). In the relational data model there are three types of relationship: one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N). (M:N is the standard notation, however, (M:M) is also acceptable and quite commonly used).

	One-to-one relationship
	New employees must provide the HR department with details of just one bank account into which their weekly pay is deposited and each account must belong to only one employee. So, a bank account belongs to one employee and an employee’s pay goes into only one bank account. So, the relationship ‘EMPLOYEE’s pay goes into BANK ACCOUNT’ is considered 1:1.

	One-to-many relationship
	New employees are assigned a job role by the HR department. Each employee is required to perform only one job role, however each job role has many employees that are assigned that job role. So, the relationship ‘EMPLOYEE is assigned a JOB ROLE’ is considered 1:M.

	Many-to-many relationship
	An Employee can be assigned to multiple projects and each project could have several employees assigned to it. An employee is assigned to many projects and a project has many employees assigned to it. So, the relationship ‘EMPLOYEE is assigned to PROJECT” is considered M:N.

	Connectivity
	When considering the type of relationship that exists between entities, i.e. 1:1, 1:M, or M:N, you are interested in how many of one entity is related to the other entity and vice versa. This is referred to as the connectivity and expressed as one of the three types of relationship; 1:1, 1:M, or M:N.

	Cardinality
	Is an indication of the minimum and the maximum number of instances of one entity related to one instance of the other entity and can be expressed as one of the following:
(0,1)—min of 0 and max of 1
(1,1)—min of 1 and max of 1
(0,M)—min of 0 and max of M
(1,M)—min of 1 and max of M
(0,6)—min of 0 and max of 6 (or any other value defined by the business rules)
(1,6)—min of 1 and max of 6 (or any other value defined by the business rules).

	Optionality
	Optionality is closely associated to cardinality and describes whether an entity’s relationship participation is mandatory or optional. Optionality is usually indicated in both the Chen and the Crow’s Foot model by a small O adjacent to the optional entity (you will learn about the Chen and Crow’s Foot models later on).

	Primary key
	Generally speaking, a primary key is an attribute or set of attributes which contain a value that is unique to the entity to which it belongs. A primary key uniquely identifies any given row in a table. Each instance of the entity must have the primary key attribute and its value cannot be null. Each entity must have a primary key. Each entity can only have one primary key, though that key can be comprised of multiple attributes.

	Foreign key
	A foreign key is an attribute that references the primary key of a related entity. The value of the foreign key must match one of the values of the primary key of the related entity or the foreign key value can be null.

	Alternate key
	An alternate key is an attribute (or set of attributes) that could have been used as the primary key but was not. An alternate key is like a primary key in that its value must be unique and it cannot be null. Alternate keys are applied to a table in the database in the form of a unique index defined on the column(s) that make up the alternate key.

	Composite entity
	Though we have defined the fact that there are three types of relationships, one of which is the many-to-many (M:N) relationship, in the relational data model you can not implement a M:N relationship without first converting it to two 1:M relationships. This conversion is achieved by introducing a composite entity (also known as a bridging entity or an associative entity). Composite entities are used to implement M:N relationships.

	Composite primary key
	A composite primary key is a primary key comprising more than one attribute. Composite primary keys will, more often than not, be utilised in composite entities.

	Redundancy
	There are two types of redundancy; controlled and uncontrolled. Uncontrolled redundancy is the unnecessary and uncontrolled duplication of data. That is, when the same data are stored unnecessarily in different places. This could take the form of duplication of values within a multivalued column, duplication of columns of data within a table, duplication of rows (records) of data, and duplication of tables of data. Avoiding redundancy is the primary goal of data integrity. Redundancy leads to data anomalies which can affect the integrity of the information extracted from the database because of the inconsistencies that may exist.
Controlled redundancy is the necessary and controlled duplication of data that occurs in the values stored in Foreign Key attributes. When you implement a 1:M relationship, the foreign key always goes in the many tables. So, the foreign key may contain multiple values that reference the same primary key on the one side of the relationship. This is controlled redundancy.

	Strong or identifying relationships
	A relationship is said to be a strong or identifying relationship when the foreign key that implements the relationship is also part of the primary key of the table. Remember that the foreign key always goes in the table on the ‘many’ side of the relationship. Strong relationships are denoted by a solid relationship line joining the two tables. A strong identifying relationship means that the entity on the many sides of the relationship is existence dependent (it’s a weak entity). i.e. it can not exist without a related record on the one side of the relationship.

	Weak or non-identifying relationships
	A relationship is said to be weak or non-identifying when the foreign key that implements the relationship is not part of the primary key of the table. Weak relationships are denoted by a dashed relationship line joining the two tables. A weak non-identifying relationship means that the entity on the many side of the relationship is not existence dependent (it’s a strong entity). i.e. it can exist without a related record on the ‘one’ side of the relationship.

[bookmark: _Toc29554568]Creating an entity relationship diagram
Identifying entities, attributes, data types and relationships of data
Business rules
When database designers conduct an analysis of an organisation in an attempt to develop a data model, they will first try to identify the entities for which data is required, the attributes of the entities, and the nature of the relationships that exist between the entities. Their analysis will help them understand the nature of the organisation’s data and how and when that data is used. However, this is insufficient to provide the analyst with a thorough understanding of how the organisation conducts its business (or operations). Database designers must also understand the business rules of the organisation. The term business rules relate not only to business organisations, but also to educational institutions, government departments, charity organisations, hospitals or any type of organisation that requires the use of a database.
A business rule is a statement that describes an organisational policy, procedure, or principle. Business rules must be clear, brief, exact, and unambiguous. The business rules must be documented, they must be current, and they must reflect the actual operations of the organisation. The business rules also help define the scope of the database design by defining exactly which operations of the organisation’s business should be implemented in the database. The database model will reflect exactly how the organisation conducts its business and hence will reflect precisely the business rules of the organisation. Consider the following example of the business rules for the city’s Courier Company governance system.

Identifying suitable business data
Business rules —courier company governance
The local government authority of a large city requires a database to manage information about the city’s courier companies, the drivers they employ and the vehicles each company owns. The authority is responsible for the governance of the courier driver’s vehicle accreditations and company vehicle ownership.
There are several courier companies operating within the jurisdiction of the local government authority. For each company the Australian Business Number (ABN), company name and phone number of its head office are required. No two companies have the same name.
Several types of vehicle are owned by the courier companies and for each type of vehicle the fuel type, fuel capacity, and the vehicle's range are required. In addition, drivers must be accredited to drive any of the types of vehicle and this must be recorded in the system. Driver accreditations expire after six months and the drivers must be re-accredited by completing vehicle-specific training before they’re permitted to drive.
Each driver works for only one courier company. Smaller companies may have only one driver (owner operated) but the larger companies employ many drivers.
For each driver their full name and phone number are to be stored along with their driver’s licence number and the types of vehicles they’re accredited to drive. Most drivers are accredited to drive more than one type of vehicle.
The local government authority must also be able to produce reports listing the following details of each vehicle owned by the courier companies:
• Vehicle registration number
• Vehicle type
• Owning Courier Company (each vehicle is owned by only one company)
• Date of Manufacture
• Date of Last Maintenance.

[bookmark: _Toc29554569]Functions and features of data modelling techniques
Builders use blueprints or plans that have been prepared by architects and engineers, to model the structures that they’re going to build. Fortunately for us, there is no ambiguity about the information that is communicated to the builder through the plans, simply because the designers and the builder agree upon the meaning of the abstracted symbols that are used on the plans.
Similarly, data models use abstracted symbols to represent the various aspects of the structure of the database that is to be built. There are many data modelling techniques used to design databases. The most common are Data Flow Diagrams (DFD) and Entity Relationship Diagrams (ERD).
Data flow diagrams
Data flow diagrams are used during the analysis stage of system development. Data flow diagrams contribute to the development of the logical representation of the data model by providing information about the availability of data at any particular point during the processing of the data. Since this course is will concentrate on the development and implementation of databases, and not so much on analysis, we will not spend too much time on understanding the development and use of data flow diagrams.

[image:]
[bookmark: _Ref27735413]Figure 2 Example of a data flow diagram
Entity Relationship Diagrams (ERD)
Chen ERD
Entity Relationship Diagrams (ERD) are used extensively to model databases. The two types of ERDs that are in use today are the Chen model and the Crow’s Foot model. In the early days of the relational data paradigm, the Chen Entity Relationship Diagram, developed by Peter Chen in 1976, was used to model the logical structure of relational databases.
The Chen model (since an entity relationship diagram is a data model, you will use the terms ERD and data model, or model, interchangeably) depicts entities as rectangles, relationships as diamonds, and attributes as ovals.

[image: https://documents.lucidchart.com/documents/4db436a8-f229-4b28-9f7b-2db2fe69ff19/pages/0_0?a=1785&x=60&y=-27&w=1320&h=867&store=1&accept=image%2F*&auth=LCA%20f3fafdddccc1c6f68f1597c2acd14981152c63c6-ts%3D1574040929]
[bookmark: _Ref27735823]Figure 3 Example of a Chen Entity Relationship Diagram (ERD) which includes the attributes
Though the Chen model stipulates the use of ovals to represent attributes, it is quite common to omit the attributes from the model and focus the design process on identifying the entities, the relationships that exist between the entities, and the connectivity of the relationships (i.e. the types of relationship).
More recently, the Crow’s Foot Entity Relationship Diagram has been used to portray more specific detail about where the attributes of the model reside, i.e. which entities the attributes belong to. The following example demonstrates the use of a Chen ERD without the attributes included in the model.
This is a common practice which aims to reduce the complexity of the model by excluding the attributes from the diagram, only to be added at a later date when the model is further developed, usually using a Crow’s Foot diagram.

[image:]
[bookmark: _Ref27735958]Figure 4 Example of a Chen Entity Relationship Diagram (ERD) without the attributes
Crow’s Foot ERD
The Crow’s Foot ERD is a model that was first introduced by Gordon Everest in an article titled ‘Basic Data Structure Models Explained With a Common Example’ in 1976. The Crow’s Foot ERD represents entities as boxes containing the attributes and indicating which attributes are in the Primary Keys and which are the Foreign Keys. Relationships are indicated by a connecting line which has, at the many ends, what looks like a crow’s foot.
[image:]
[bookmark: _Ref27736423]Figure 5 Crow's foot example
The Crow’s Foot ERD is the more contemporary model and is used more widely to model relational databases. Though the Chen model is often used to develop the ‘first draft’ of the model, where the emphasis is on identifying the entities and their relationships, the concern for the location of the attributes can be dealt with in the second draft which is usually where a Crow’s Foot model is used.

[image:]
[bookmark: _Ref29454341][bookmark: _Ref27736587]Figure 6 Example of a Crow’s Foot ERD indicating the meaning of the cardinality symbols used
	[image:]	Watch
[bookmark: _Toc29554570]Video: What is Data Flow Diagram (DFD)?
This video is about the Data Flow Diagram (DFD). What is DFD? How DFD works? How to draw a DFD in Visual Paradigm? (duration 04:25).
[image:]
https://youtu.be/ztZsEI6C-mI
You can also locate this video and more information at Visual Paradigm.

[bookmark: _Toc29554571]Video: Entity Relationship Diagram (ERD) tutorial part one and two (using LucidChart)
Learn how to create an Entity Relationship Diagram in this tutorial. This video provides a basic overview of ERDs and then gives step-by-step training on how to make an ER diagram with correct cardinality (duration part one 06:57 and part two 13:50).
[image:]
https://youtu.be/QpdhBUYk7Kk
[image:]
https://youtu.be/-CuY5ADwn24

	[image:] 	Practice activity
[bookmark: _Toc29554572]Activity 3.1: Create an ERD
Using the LucidChart diagramming software on the web, reproduce the Crow’s Foot ERD indicated in Figure 6 Example of a Crow’s Foot ERD indicating the meaning of the cardinality symbols used Exclude the items indicated in red.
[bookmark: _Toc29554573]Normalisation
Normalisation is the process of developing good table structures in order to control data redundancies and avoid the creation of anomalies in the data. Though there are many developers that don’t understand the benefits of normalisation and tend to think that de-normalised data structures are easier to use, the opposite is in fact the case. Normalised databases are much less complicated and much easier to use and more accurately reflect the business rules and operations of the organisation.
The aim of normalisation is to ensure that each table in the database is designed to conform to the following principles:
Each table is representative of ‘one thing’. For example, the DRIVER table should contain only data specific to drivers. The VEHICLE table should contain only data specific to vehicles.
Data should not be duplicated unnecessarily. That is, all data items should be stored in only one location. This ensures that if the data must be updated (or deleted) it can confidently be located in one location only.
The determination (finding) of each non-prime attribute of a table is achieved through the use of the primary key. The entire primary key (where a composite primary key is in use) and no other attributes other than the primary key.
That there are no insert, update, or delete anomalies in all tables in the database which will compromise the consistency and integrity of the data.

A note on functional dependence and determination.
The rules of normalisation rely on the concepts of functional dependence and determination. You represent the functional dependence A determines B’ as A → B.
The following definitions can be used to describe these concepts.
Table 4 Definitions of concepts.
	Concept
	Description

	Functional Dependence
	Attribute A determines Attribute B. i.e. If Attribute A will always return a single value for Attribute B whenever the value of Attribute A is used to search the table, then you can say that Attribute A determines Attribute B; A → B.
For example in the DRIVER table in Figure 6, Licence_No → LastName i.e. Licence_No can be used to determine LastName.
Attribute A is known as the determinant attribute and Attribute B is known as the dependent attribute. In this example Licence_No is the determinant attribute and LastName is the dependent attribute.

	Full Functional Dependence (Composite Keys)
	If all attributes of the composite key AB determine attribute C then attribute C is said to be fully functionally dependent on AB. i.e. C can’t be determined by only part of the primary key AB; AB → C.

The idea is, that if you used one attribute value to search a table for another attribute value, one and only one value will be returned.

[bookmark: _Toc29554574]Normalisation rules and processes
Normalisation rules
Table 5 1NF rule
	First Normal Form (1NF)

	A table is in First Normal Form (1NF) if:
All attributes that make up the primary key are defined.
Each field contains a single value. That is, at the intersection of each row and column there is only one value, not a set of values.
There are no repeating groups. That is, columns representing the same domain of values are not repeated. For example, in an ORDER table you don’t want columns PRODUCT1, PRODUCT2, PRODUCT3, etc. These are repeating groups.
Each attribute of the table can be determined (found) using the primary key.

Table 6 2NF rule
	Second Normal Form (2NF)

	A table is in Second Normal Form (2NF) if:
If it meets the requirements of First Normal Form (1NF).
and
No attribute can be determined (found) by only part of the primary key. This is referred to as a partial dependency.
It is possible for a table to be in 2NF and still contain non-prime attributes which determine other non-prime attributes. This is referred to as a transitive dependency.

Table 7 3NF rule
	Third Normal Form (3NF)

	A table is in Third Normal Form (3NF) if:
If it meets the requirements of Second Normal Form (2NF)
and
No attribute can be determined (found) by any other non-prime attribute.
For most business-related transactional databases, 3NF is sufficient. However, there may be occasions where higher levels of normalisation will be required. We will consider the Boyce-Codd Normal Form and Fourth Normal Form (4NF).

Table 8 BCNF rule
	Boyce-Codd Normal Form (BCNF)

	Boyce-Codd Normal Form is a special case of 3NF. It applies only if the table has more than one candidate key, i.e. more than one column that could have been selected to be the Primary Key. In the COURIER_COMPANY table of the Courier Company governance system in Figure 6 Example of a Crow’s Foot ERD indicating the meaning of the cardinality symbols used, there are two candidate keys, the ABN which is unique to each company and the company name which is also unique to each company.
A table is in Boyce-Codd Normal Form (BCNF) if:
Every determinant in the table is a candidate key.
That is, every attribute that could be used to determine the singular value of any other attribute must be a candidate key.

Table 9 4NF rule
	Fourth Normal Form (4NF)

	A table is in Fourth Normal Form (4NF) if:
It is in 3NF
and
it has no multivalued dependencies.

[bookmark: _Toc27651932]Normalisation processes
Achieving First Normal Form (1NF)
Step 1: Eliminate all repeating groups
This can be achieved by determining that each entity will represent a single distinct ‘thing’ for which you want to store data, and that each entity will become a table. Be sure you don’t confuse entities with attributes.
Step 2: Identify the primary keys
Determine which attribute(s) uniquely identify each instance of the entity.
Step 3: Identify all the dependencies
Identify the attributes which are dependent on other attributes. Paying particular attention to the attributes which are dependent on only part of the primary key (partial dependencies), and those attributes which are dependent on other non-prime attributes (transitive dependencies).
Achieving Second Normal Form (2NF)
Step 1: Remove any partial dependencies by making a new table.
Place each determinant in the new table as that table’s primary key.
Step 2: Relocate each dependant attribute to the new table.
Place each attribute that had been dependent on only part of the primary key into the new table.
Achieving Third Normal Form (3NF)
Step 1: Remove any transitive dependencies by placing them in a new table.
Move the determinant non-prime attribute into the new table making it the Primary Key of the new table.
Step 2: Move the corresponding dependent attributes into the new table.
Achieving Boyce-Codd Normal Form (BCNF)
Step 1: Ensure that any transitive dependencies that still exist involve a determinant that is a candidate key. If not, repeat step one of Achieving Third Normal Form (3NF) above.

Achieving Fourth Normal Form (4NF)
Step 1: Ensure that all attributes are dependent on the primary key and independent of each other.
Step 2: Ensure that tables do not contain any rows that have two or more multivalued facts about the entity that the table represents.
	[image:]	Watch
[bookmark: _Toc29554575]Video: Database normalisation—introduction
This is the first in a series of videos about database normalisation. It defines database normalisation and outlines the benefits of normalising a database. It also includes definitions of the first three normal forms of a relational database (duration 03:43).
[image:]
https://youtu.be/y03oYWDLu0Q

[bookmark: _Toc29554576]Video: Database normalisation—first normal form
This video is part of a series about database normalisation. It explains how to transform a database into first normal form by working through an example. It covers the criteria for the first normal form including ensuring that a table does not contain composite or multi-valued attributes and that a table does not contain any repeating groups of attributes (duration 07:26).
[image:]
https://youtu.be/jgUeOjImOOw
[bookmark: _Toc29554577]Video: Database normalisation—second normal form
This video is part of a series about database normalisation. It explains how to transform a database, which is already in the first normal form, into second normal form by working through an example (09:20).
[image:]
https://youtu.be/9L10Q1nAfyg

[bookmark: _Toc29554578]Video: Database normalisation—third normal form
This video is part of a series about database normalisation. It explains how to transform a database, which is already in second normal form, into third normal form by working through an example (08:29).
[image:]
https://youtu.be/_K7fcFQowy8

	[image:] 	Practice activity
[bookmark: _Toc29554579]Activity 3.2: Outline the steps in database design, modelling and implementation
In this activity, you will be developing the design of the data model.
Step 1: Define the business rules.
For this activity you will review the business rules defined for the courier company governance system to determine their impact on the data model for the database as indicated below.
Business rules—courier company governance
The local government authority of a large city requires a database to manage information about the city’s courier companies, the drivers they employ and the vehicles each company owns. The authority is responsible for the governance of courier driver vehicle accreditations and company vehicle ownership.
There are several courier companies operating within the jurisdiction of the local government authority.
For each company the Australian Business Number (ABN), company name and phone number of its head office is required.
No two companies have the same name.
Several types of vehicle are owned by the courier companies and for each type of vehicle the fuel type, fuel capacity, and the vehicle’s range are required.
Each vehicle is owned by only one company.
In addition, drivers must be accredited to drive any of the types of vehicle and this must be recorded in the system.
Driver accreditations expire after six months and the drivers must be re-accredited by completing vehicle-specific training before they’re permitted to drive.
Each driver works for only one courier company.
Smaller companies may have only one driver (owner operated) but the larger companies employ many drivers.
For each driver their full name and phone number are to be stored along with their driver’s licence number and the types of vehicles they’re accredited to drive.
Most drivers are accredited to drive more than one type of vehicle.
The local government authority must also be able to produce reports listing the following details of each vehicle owned by the courier companies:
Vehicle registration number
Vehicle Type
Owning Courier Company
Date of Manufacture
Date of last maintenance.
Step 2: Identify the entities required for the model.
In this step you will analyse the business rules and identify the entities. The entities will be the things you want to store data for. In this process you will try to ignore the attributes of the entities. Use the following rules as a guide to identifying the entities:
1. An entity will be something of which there is usually more than one instance. For example there are many courier companies.
1. An entity will have attributes (data) which you will need to use. For the courier company you must know its ABN, company name, and phone number.
After a thorough reading of the business rules you have identified the following entities:
Courier company
Vehicle
Vehicle type
Driver.
Note: An important note about types of things. The world is full of types of things. Types of cars, types of aeroplanes, types of students, types of animals, types of books, etc. Types are a fundamental mechanism for categorising the world as you know it. In relational database modelling you will often need to store data about types of things in contrast to storing data about instances of things (though you will usually want to do this as well). This is because the data that relates to one type will be shared by all instances of that type. So to avoid uncontrolled redundancy you store a single record of the shared data in the type table and reference that record from a foreign key in the instance table. For example, the Vehicle Type entity will have the attributes Description, Accreditation Required, Fuel Type, Fuel Capacity, and Range. The values for these attributes will be the same for all instances of that Vehicle Type.
Step 3: First draft ERD
Begin the development of a first draft model using the Chen notation and determine:
which entities are related to each other
the connectivity and cardinality of the relationships.
From the following business rules you can determine that driver and courier company are related:
Each driver works for only one courier company.
Smaller companies may have only one driver (owner operated) but the larger companies employ many drivers.
When you analyse this relationship you can determine that ‘a Driver works for only one Courier Company’ and ‘a Courier Company may employ many Drivers’. Furthermore, you can determine that ‘a driver works for a minimum of one and a maximum of one Courier Company’ and that ‘a courier company employs a minimum of one and a maximum of many Drivers’. So the relationship is mandatory and your model will reflect this as follows.
[image:]
[bookmark: _Ref28595520]Figure 7 The 1:M relationship between driver and courier company.
From the following business rules you can determine that a courier company and vehicle are related:
Several types of vehicle are owned by courier companies.
Each vehicle is owned by only one company.
When you analyse this relationship you can determine that ‘a courier company can own many vehicles’ and ‘a vehicle is owned by one courier company’. Furthermore, you can determine that ‘a Courier Company can own a minimum of one and a maximum of many vehicles’ and that ‘a Vehicle is owned by a minimum of one and a maximum of one Courier Company’. So the relationship is mandatory and your model will reflect this as follows.
[image:]
[bookmark: _Ref28595847]Figure 8 The vehicle entity has now been added to the model
From the following business rule you can determine that vehicle and vehicle type are related:
Several types of vehicle are owned by the courier companies and for each type of vehicle the fuel type, fuel capacity, and the vehicle’s range are required.
When you analyse this relationship you can determine that ‘a vehicle is a minimum of one and a maximum of one vehicle types’ and ‘a vehicle type can have a minimum of zero and a maximum of many vehicles that are of that type’.
In this case the association of vehicle to vehicle type is optional, because you might not have an instance of a particular vehicle type owned by any of the courier companies. Your model will reflect this as follows.
[image:]
[bookmark: _Ref28596161]Figure 9 The vehicle type entity has now been added to the model
From the following business rules you can determine that driver and vehicle type are related:
Drivers must be accredited to drive any of the types of vehicle and this must be recorded in the system.
For each driver their full name and phone number are to be stored along with their driver’s licence number and the types of vehicles they’re accredited to drive.
Most drivers are accredited to drive more than one type of vehicle.
When you analyse this relationship you can determine that ‘a driver may be accredited to drive many vehicle types’ and ‘a vehicle type can have many drivers that are accredited to drive that type’.
So you have established that a many-to-many (M:N) relationship exists between vehicle type and driver.

Initially, you will model the relationship between driver and vehicle type as M:N, however you will have to convert the relationship to two one-to-many (1:M) relationships by converting the relationship into a composite entity. You cannot implement an M:N relationship without first converting it to two 1:M relationships. Your model now looks as follows.
[image:]
[bookmark: _Ref28596543]Figure 10 Driver and vehicle type identified as being in an M:N relationship
You cannot implement an M:N relationship as such. You must first convert it to two 1:M relationships. In this case, the is accredited relationship will become a separate entity, which you’ll name ‘accreditation’. This will become the many entity in both relationships either side of it.
This method is used to implement all many-to-many relationship, i.e. convert the relationship into a composite entity and implement two one-to-many relationships either side of the new composite entity with the composite entity being the many entity in both new relationships. Now, let’s implement that in your model.

[image:]
[bookmark: _Ref28596885]Figure 11 Implementation of the composite entity (ACCREDITATION) converting the M:N relationship to two 1:M relationships
You can now assess the cardinality of the relationship between driver, accreditation, and vehicle type as follows; ‘a driver can have a minimum of one and a maximum of many accreditations’ and ‘an accreditation is for a minimum of one and a maximum of one driver’. On the other side you have ‘an accreditation is for a minimum of one and a maximum of one vehicle types’ and ‘a vehicle type can have a minimum of zero and a maximum of many accredited drivers’. So accreditation is optional to vehicle type. This means that there may not be an accredited driver in the database for a particular vehicle type. That completes the first draft of your model, with the Chen ERD for the courier company governance database. Your model now looks as follows.
[image: https://documents.lucidchart.com/documents/d7c3be47-3d8d-48f9-87b8-36e0f7612f85/pages/0_0?a=1717&x=363&y=693&w=741&h=585&store=1&accept=image%2F*&auth=LCA%2043f7e1d985056b9ab63200418d8e1293fd980f3b-ts%3D1574040078]
[bookmark: _Ref28598192]Figure 12 The cardinality and optionality of the relationships either side of ACCREDITATION entity complete

Step 4: Second draft ERD
Begin the development of the second draft of the model using a Crow’s Foot ERD.
There are many CASE tools that you can use to develop the Crow’s Foot ERD. Vertabelo.com hosts a very good data modelling application which you can try. For this step however, you will use a tool named SQL Power Architect.
There are several tutorials on YouTube that describe the use of SQL Power Architect. Here are a few to help you get started.
Tutorial data modelling in SQL Power Architect:
· Part 1—Installation
· Part 2—Creating a physical model
· Part 3—Next steps in creating a physical model
Data modelling using SQL Power Architect (2 of 3)
Add each of the five entities to the Crow’s Foot Model. At this point in your development of the database, you have begun to define the physical model, so you will begin to refer to the entities as TABLES and the attributes as COLUMNS.
As you define each of your tables you will add columns to the tables, you will also decide on the data types to be used for the columns. With each of the tables added your model now looks as follows.
[image:]
[bookmark: _Ref28599700]Figure 13 Each of the tables added to the Crow’s Foot model (no columns or data types have been defined yet)

Step 5: Define the primary keys
The composite entities will implement many-to-many relationships. Since all drivers in your system must have a driver’s licence, and the driver’s licence is a natural attribute of Driver, and the driver’s licence number is unique to each driver, it makes an excellent primary key for the Driver table.
Newer driver’s licence numbers are eight numeric characters long, while older licence numbers are six alpha-numeric characters long. To accommodate this difference you will use a data type of NVARCHAR(8) for the driver’s licence.
[image:]
[bookmark: _Ref28599661]Figure 14 The DRIVER table with primary key column and its data type defined
Similarly for the courier company table, the Australian Business Number (ABN) is a unique, natural attribute which all courier companies must have. So you will use it for the primary key. An ABN is 11 numeric characters long, the first two digits designated by the Australian Tax Office (ATO) as checksum digits. So, you may want to apply the ATO’s ABN generating/checking algorithm to the values stored in your database. You’ll use the BIGINT data type.
[image:]
[bookmark: _Ref28599879]Figure 15 The COURIER_COMPANY table with primary key column and its data type defined
For the vehicle table you will use the vehicle registration number (number plate), since all vehicles must be registered and must have a registration number and that number is unique to each vehicle. Vehicle registration numbers are alpha-numeric and can be either five or six alphanumeric characters long. You will use NVARCHAR(6) for the data type of the vehicle table’s primary key.
[image:]
Figure 16 The VEHICLE table with Primary Key column and its data type defined
For the Vehicle Type table you will use a surrogate primary key. A surrogate primary key is a primary key which is not a natural attribute of the entity, but rather is usually generated by the system (an auto-generated primary key). Surrogate primary keys are usually integers.
[image:]
[bookmark: _Ref28600130]Figure 17 The VEHICLE_TYPE table with surrogate primary key column defined as an Integer
Step 6: Implement the relationships between the related entities
Since you have defined the primary keys you can now implement the relationships between the related entities by defining the foreign keys on the many side of all 1:M relationships. Implement any 1:1 relationships by joining on primary key to primary key.
You will begin with the relationship between the DRIVER table and the COURIER_COMPANY table.
The DRIVER table is the many table in the relationship, so it will have the foreign key in it. The relationship will be a weak (or non-identifying) relationship because the foreign key that implements the relationship is not part of the DRIVER table’s primary key. Your model now looks like the following:
The relationship between DRIVER and COURIER_COMPANY implemented.[image:]
[bookmark: _Ref28600347]Figure 18 The relationship between DRIVER and COURIER_COMPANY implemented
Next you will implement the 1:M relationship between COURIER_COMPANY and VEHICLE. Again the relationship will be a weak (non-identifying) relationship.
In SQL Power Architect when implementing a relationship, select the ‘new non-identifying’ relationship button (on the right side of the screen) and click the ‘one’ table first and the ‘many’ table second.

Your model now looks like the following.
[image:]
[bookmark: _Ref28600519]Figure 19 The relationship between COURIER_COMPANY and VEHICLE implemented
Next, you will implement the 1:M relationship between VEHICLE and VEHICLE_TYPE. Again, this will be a weak relationship. You model now looks like the following.
[image:]
[bookmark: _Ref28600639]Figure 20 The relationship between VEHICLE and VEHICLE_TYPE implemented

Step 7: Implement the relationships to the composite entities
Finally it’s time to implement the two 1:M relationships to the bridging table ACCREDITATION (the composite entity). You will first implement the relationship between ACCREDITATION and VEHICLE_TYPE.
In determining the primary key of the bridging table you initially assign the two foreign keys of the tables being bridged as the bridging table’s primary key. This creates a composite primary key. This means that the relationships will be strong or identifying relationships. Your model now looks as follows.
[image:]
[bookmark: _Ref28600867]Figure 21 The relationship between ACCREDITATION and VEHICLE_TYPE implemented

Next you can implement the relationship between DRIVER and ACCREDITATION and it too will be a strong, identifying relationship with the driver’s Licence_No foreign key being part of the ACCREDITATION table’s primary key. Your model now looks as follows.
[image:]
[bookmark: _Ref28601060]Figure 22 The relationship between DRIVER and ACCREDITATION implemented
Functions and features of data types and their application
Your model for the courier company governance system above, is not complete yet. But let’s take a little time-out from its development to think about, and understand data types a little better.
Computers are fundamentally a collection of digital switches which can be either on = 1 or off = 0. Hence the use of the binary numbering system to represent values in computer systems. Computer memory stores binary values (as collections of bits, or binary digits, 0 or 1). Storing whole numbers can be done using their binary equivalent, but when you want to store characters other than numbers you assign the character a numeric value which can be represented as a binary value.
For example the decimal value assigned to the uppercase letter A is 65 which can be represented as the binary value 01000001 (this one byte; 8 bits to a byte). In the real world, numbers can be infinitely large or the difference between two numbers can be infinitely small. Computers however, have a finite amount of memory for storing values, both the upper limit of the largest number that can be represented and the lower limit of the smallest number that can be represented are finite.
Also, it is sometimes sufficient to store a reasonable approximation of a value. For example, storing your weight as 85.6 kg is good enough. You don’t need to store your weight to any higher precision than that for most practical purposes. So why do you have to define the data types of the things you want to store in your computer system?

Firstly, the system must know how much memory to set aside for the storage of data. For example in Microsoft SQL Server, the data type int (integer) can store whole numbers in the range -2,147,483,648 through to +2,147,483, 647 and uses 4 bytes of memory.
Secondly, the system must know which operations are permitted on the data. For example, it doesn’t make sense for us to subtract 1 from the word ‘elephant’. i.e. elephant − 1 = error. So the data type chosen for any particular attribute should reflect the possible operations that you anticipate performing on that attribute.
Thirdly, data types determine the range of possible values that can be stored as mentioned earlier for the int data type. So your choice of data type for any particular attribute (column) should be determined by the range of possible values you want to store.
Finally, data types determine the precision of the values that can be stored.
So, your choice of data type for any particular attribute will be based on those factors.
The following table describes some of the functions, features and usage of SQL Data Types. Note that not all data types are listed here, and not all platforms support the data types listed here. Your data type usage will be specific to the platform that you’re developing for.

Table 10 Features and functions of data types
	Category
	Data type
	Features/Function

	Numeric
	BIT
	 Ranges from 0 to 1

	
	TINYINT
	Ranges from 0 to 255

	
	SMALLINT
	Ranges from -32,768 to 32,767

	
	INT
	Ranges from -2,147,483,648 to 2,147,483,648

	
	BIGINT
	Ranges from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

	
	DECIMAL
	Ranges from -10^38 +1 to 10^38 -1

	
	NUMERIC
	Ranges from -10^38 +1 to 10^38 -1

	
	FLOAT
	Ranges from -1.79E + 308 to 1.79E + 308

	
	REAL
	Ranges from -3.40E + 38 to 3.40E + 38

	
	MONEY
	Ranges from -922,337,203,685,477.5808 to 922,337,203,685,477.5807

	
	SMALLMONEY
	Ranges from - 214,748.3648 to 214,748.3647

	Date/Time
	DATE
	Date in the format YYYY-MM-DD 0001-01-01 through 9999-12-31

	
	TIME
	Stores date in the format YYYY-MM-DD

	
	DATETIME
	Stores date and time information in the format YYYY-MM-DD HH:MI:SS

	
	TIMESTAMP
	Stores number of seconds passed since the Unix epoch (‘1970-01-01 00:00:00’ UTC)

	
	YEAR
	Year stored in 2 digit or 4 digit format. Range 1901 to 2155 in 4-digit format. Range 70 to 69, representing 1970 to 2069 in 2-digit format

	Character
	CHAR(size)
	Fixed length with maximum length of 8,000 characters

	
	VARCHAR(size)
	Variable-length character data with maximum length of 8,000 characters

	
	VARCHAR(MAX)
	Variable-length character data with provided max characters (up to 2GB)

	
	TEXT
	Variable length character data with maximum length of 2,147,483,647

	Unicode Character
	NCHAR(size)
	Fixed-length Unicode characters with maximum length of 4,000 characters

	
	NVARCHAR(size)
	Variable length character data with a maximum length of 4,000 characters

	
	NVARCHAR(MAX)
	Variable-length Unicode character data with a maximum length up to 2GB

	
	NTEXT
	Variable-length Unicode character data with a maximum string length of 2^30 - 1 (1,073,741,823) bytes.

	Binary
	BINARY(size)
	Fixed-length binary data with maximum length of 8,000 bytes

	
	VARBINARY(size)
	Variable-length binary data with maximum length of 8,000 bytes

	
	VARBINARY(MAX)
	Variable-length binary data with provided max bytes (2^31-1 bytes)

	
	IMAGE
	Variable-length binary data with maximum size of 2GB

	Miscellaneous
	CLOB
	Up to 2GB of character large objects

	
	BLOB
	Binary Large Objects, usually variable-length binary data from 0 through to 2GB (2^31-1)

	
	XML
	For storing XML data

	
	JSON
	For storing JSON data

Note: Where (size) is not specified, most database platforms will default to a size of 1. Where the data type is defined as a variable such as VARCHAR(size) and NVARCHAR(size) any values entered that exceed the specified size will be truncated. i.e. if you define a column as VARCHAR(10) and you insert the value (this is more than 10 characters) the data will be truncated (chopped off) and only the first 10 characters will be inserted, ‘this is mo’ (inclusive of the spaces).
So, variable-length does NOT mean that the column will grow to accommodate larger values. In fact, variable-length indicates that the column will shrink if you enter fewer characters than the specified size, removing any trailing spaces which would cause us grief if they end up in your database.
Step 8: Assign attributes
Identify all of the other attributes of the entities and their data types and assign them as columns to their respective table in the Crow’s Foot ERD.
At this point you can develop a data dictionary to assist in identifying and assigning the additional columns (attributes) required in the database. Knowing which tables your model requires, you can now proceed to identify the columns required by each of the tables and assign the columns to their respective tables.
A data dictionary will assist this process by allowing us to articulate the names of the tables, the names of the columns of each table, the data types required for each column, the format of the data, the range of possible values, whether the column’s data is required or not (nullable), whether each column is a primary key, foreign key or alternate key, and the names of tables which are referenced by the foreign keys.
After thoroughly reviewing the business rules for the courier company governance database, you have identified the following additional columns (attributes) and have determined which table each column should be assigned to, and the data type that should be used for each.

	[image:]	Watch
[bookmark: _Toc29554580]Video: Table columns and data types
View this video on table columns and data types to understand how you choose the data types that should be used for each column (duration 03:09).
[image:]
https://youtu.be/Zpi2GLJgJzI
The following table depicts the completed data dictionary for the courier company governance database.
[image:]

[bookmark: _Toc29554581]Courier company governance database—Data dictionary
Table 11 The data dictionary for the courier company governance database
	Table name
	Attribute name
	Contents
	Data type
	Format
	Range
	Required
	FK or PK AK
	FK Referenced table

	DRIVER
	Licence_No
	Driver's Licence Number
	NVARCHAR(8)
	9999XX or 99999999
	9999(A-Z)(A-Z)
	Y
	PK
	

	
	FirstName
	Driver's first name
	NVARCHAR(30)
	Xxxxxx
	
	Y
	
	

	
	LastName
	Driver's last name
	NVARCHAR(30)
	Xxxxxx
	
	Y
	
	

	
	Phone
	Driver's contact phone number
	NCHAR(10)
	9999999999
	
	
	
	

	
	EmployingCompanyABN
	Driver's employer's ABN
	BIGINT
	99 999 999 999
	
	Y
	FK
	COURIER_ COMPANY

	COURIER_COMPANY
	ABN
	Courier Company's Australian Business Number
	BIGINT
	99 999 999 999
	
	Y
	
	

	
	CompanyName
	Courier Company's Name
	NVARCHAR(50)
	Xxxxxx
	100-999
	Y
	AK
	

	
	CompanyName
	Courier Company's Name
	NVARCHAR(50)
	Xxxxxx
	100-999
	Y
	AK
	

	VEHICLE_TYPE
	VehicleType_ID
	Vehicles Type Identification Number
	INTEGER
	999999999
	
	Y
	PK
	

	
	FuelType
	Vehicle's Fuel Type
	NVARCHAR(30)
	Xxxxxx
	
	Y
	
	

	
	FuelCapacity
	Vehicle's Fuel Capacity
	SMALLINT
	999
	
	Y
	
	

	
	Range
	Vehicle's Range on a full tank of fuel
	SMALLINT
	9999
	
	Y
	
	

	
	Registration_No
	Verhicles RMS Registration Number
	NVARCHAR(6)
	XXX 999
	
	Y
	PK
	

	VEHICLE
	OwningCompanyABN
	ABN of the Vehicle's Owning Courier Compy.
	BIGINT
	99 999 999 999
	
	Y
	FK
	COURIER_ COMPANY

	
	VehicleType_ID
	Vehicles Type Identification Number
	INTEGER
	999999999
	
	Y
	FK
	VEHICLE TYPE

	
	DateOfManufacture
	Vehicles Build Date
	DATE
	99/99/9999
	
	Y
	
	

	
	DateOfLastMaintenance
	Vehicles last maintenance
	DATE
	99/99/9999
	
	
	
	

	
	VehicleType_ID
	Vehicle's Type Identification Number
	INTEGER
	999999999
	
	Y
	PK, FK
	VEHICLE TYPE

	ACCREDITATION
	Licence_No
	Driver's Licence Number
	NVARHCAR(8)
	XXX 999
	
	Y
	PK, FK
	DRIVER

	
	ExpiryDate
	Accreditation Expiry Date
	DATE
	99/99/9999
	
	Y
	PK
	

	
	VehicleType_ID
	Vehicles Type Identification Number
	INTEGER
	999999999
	
	Y
	PK
	

PK = Primary Key
FK = Foreign Key
AK =Alternate Key
NCHAR = Fixed-length Unicode Character Data NVARCHAR = Variable-length Unicode Character Data

After adding the additional columns to your model, it should now look as follows.
[image:]
[bookmark: _Ref28606723]Figure 23 The additional non-key columns (attributes) added to their respective tables (entities)
Step 9: Reconcile the differences between data
At this stage you can compare the ERD with the data dictionary to ensure that you have implemented the model correctly. You should check that:
the model is normalised to Fourth Normal Form (4NF)
primary keys are implemented and are normalised to Fourth Normal Form (4NF)
foreign keys are implemented and establish the correct relationships between tables
all other required attributes and their data types are included as specified by the data dictionary.
There are still a few issues that you can deal with to improve your model. The first is the names of the foreign key columns. Specifically ABN in the DRIVER table is not very meaningful, and would be better named ‘EmployingCompanyABN’.
Similarly, ABN in the vehicle table is not very meaningful and would be better named ‘OwningCompanyABN’. Implement the changes to the foreign key columns in DRIVER and VEHICLE.

Your model should now look as follows.
[image:]
[bookmark: _Ref28607015]Figure 24 The foreign key columns in DRIVER and VEHICLE given more meaningful names
The second issue that you should consider is the nature of the CompanyName attribute in the COURIER_COMPANY table. The business rules indicate that ‘no two companies have the same name.’ Which effectively means that values in CompanyName are unique.
You can use this to your advantage to improve the performance of the database. Since you are most likely going to use the CompanyName to search the COURIER_COMPANY table, and that table will rarely be modified, you should define the CompanyName column as an alternate key. You can do this by defining a unique (non-clustered) index on the CompanyName column.
To do this in SQL Power Architect:
1. Right mouse click on the COURIER_COMPANY table and select ‘New Index…’.
1. Click to select the ‘Unique’ checkbox.
1. Then click to select the CompanyName column below.
1. Click OK.
See the following image.

[image:]
[bookmark: _Ref28607405]Figure 25 Defining a Unique non-clustered index on the CompanyName column
Your model should now look as follows.
[image:]
[bookmark: _Ref28607543]Figure 26 CompanyName column defined as an alternate key by applying a unique non-clustered index to it
Finally, there is one more issue that you must consider in your model. That is the primary key of the ACCREDITATION table, which is the bridging table. According to the business rules, DRIVERS must be ACCREDITED to drive any particular vehicle type.
You are recording this fact in the ACCREDITATION table by combining the driver’s licence with the vehicle type as the primary key of the ACCREDITATION table.
However, accreditations expire, and the drivers must be re-accredited every six months. This means that you would want to record the fact that a driver is accredited to drive a particular vehicle type more than once.
The difference between these two facts is the expiry date. To overcome this limitation you can add the ExpiryDate to the primary key of the ACCREDITATION table. Implement this change. Your model is now complete and should look as follows.
[image:]
[bookmark: _Ref28607848]Figure 27 ExpiryDate added to the primary key of the ACCREDITATION table

	[image:]	Watch
[bookmark: _Toc29554582]Video: ERD connecting a bridge table to another bridge table
This video tutorial discusses the situation where you might have a bridging table linking to another bridging table (duration .04:40).
[image:]
https://youtu.be/uKd01Ouw_b8
	[image:] 	Practice activity
[bookmark: _Ref29366525][bookmark: _Toc29554583]Activity 3.3: Little athletics
Produce a data dictionary and Crow’s Foot Entity Relationship Diagram (ERD) corresponding to the following problem description.
You have been commissioned by Little Athletics to build an information system to help manage the day-to-day operations of the organisation regarding their athletics carnivals. Little Athletics provides opportunities for young people to compete in athletics carnivals at various locations around Australia. You have met with the senior management of the organisation and with some of the carnival organisers and officials, and have determined the following requirements for their new system.

1. Athletes
The organisers would like to store contact information for each of the competitors at their carnivals so that they can inform them of upcoming events. When an athlete decides that they’re going to compete in an event, they’ll notify the organisers, and the athlete’s entry into the event will be recorded in the system. Organisers need to know the athlete’s full name, address, date of birth, gender, email, two phone numbers; home and mobile and the events in which they will compete. Most athletes will compete in more than one event. The competitors' date of birth will determine which age group they can compete in.
Carnivals (often referred to as ‘Meets’)
Details of each carnival must be emailed to the competitors at least two months prior to the carnival. Carnivals may be held for two or three days or could span a week if they’re a state or national carnival. The details include the location of the Carnival, the start date and the end date.
Events
A carnival will host multiple events in the various disciplines. The types of events include, but are not limited to, high jump, 100m, 200m, 400m, 800m and 1500m running events, long jump, shotput, discus, hurdles etc. The organisers would like to be able to record a competitor’s result for their entry into an event, the type of event entered, the placing in that event and the competitor’s time/distance/height achieved. The result is recorded as a numeric value. In addition to tracking the Athlete’s event entry results, Little Athletics keeps track of the National record for each type of Event. When a competitor breaks a record, the new record (time/distance/height achieved) is recorded for that event type.
Age Groups
Events are organised by age groups. The age groups begin at under 6’s and continue through to under 17’s in yearly increments. i.e. U6’s, U7’s, U8’s, U9’s, etc. Competitors must compete in their own age group only. They cannot compete in an older age group (and definitely not in a younger one).

[bookmark: _Toc29554584]Creating entities and attributes
Implementing the model
Database platforms
Most Relational Database Management Platforms attempt to comply with the International Standards Organisation (ISO) standard (ISO/IEC 9075-2:2016(en) for Structured Query Language (SQL).
However, not all platforms adhere strictly to the prescribed standards and there will usually be minor differences between one implementation of SQL and the next. Microsoft’s SQL Server, for example, uses a ‘Microsoft version’ of SQL which they’ve named Transact-SQL (or T-SQL for short).
One of T-SQL’s peculiarities is that Microsoft has made the use of the semi-colon at the end of statements, optional. Not such a big deal, since it doesn’t take to much effort to always include the semi-colon at the end of statements in any SQL that you write if you think you might run that code on a platform other than Microsoft’s SQL Server.
The point is, that the differences between one implementation of SQL and the next are usually minor, and code that runs successfully on one platform, but not on another will usually require only minor changes to make it compatible with the new platform. That said, you will attempt to implement the courier governance database using standard SQL which is platform-independent, however, you cannot guarantee that the code will execute successfully on every platform without minor changes.
For your courier governance database you will use SQL Server 2017.
Development tools and environments
The most appropriate environment for SQL Server development is SQL Server Management Studio (SSMS). You will use SSMS 2017 because in this version of the development environment Microsoft have maintained the use of the database diagramming functionality which has been dropped from subsequent versions of SSMS.

	[image:]	Watch
[bookmark: _Toc29554585]Video: Connecting to SQL server using SSMS—part one
The video tutorial describes how to connect to a SQL server database server using SQL Server Management Studio (SSMS) (duration .09:40).
[image:]
https://youtu.be/ZNObiptSMSI
Using SQL DDL
Using the Crow’s Foot ERD as a guide, use SQL DDL to create the code to build each of the tables in the database, defining each column and its data type for the table
There are three ways that you can create a new database in most development environments.
1. Use a case tool, such as SQL Power Architect to generate (forward engineer) the SQL to create the database, tables, constraints, and indexes, etc. from a predefined model.
Use the graphical user interface (GUI) elements of a development environment such as SSMS to select and ‘click’ the various menu options that allow you to create the database, tables, constraints, and indexes, etc.
Use SQL in a script to create the database, tables, constraints, and indexes etc. and execute the script file on a database server.
While creating each of the tables ensure that you:
define the primary key and foreign key constraints
define any unique indexes to implement the alternate keys.
	[image:]	Watch
[bookmark: _Toc29554586]Video: Apply forward engineering in SQL Power Architect
Watch apply forward engineering in SQL Power Architect for some hints on how to generate the SQL from a data model (duration 01:46).
[image:]
https://youtu.be/OU9oFIayX2c
[bookmark: _Toc29554587]Video: Creating, altering and dropping a database
Watch the video tutorial creating, altering and dropping a database—part two for details on how to use GUI elements and how to write SQL to create a database using SSMS (duration 15:16).
[image:]
https://youtu.be/TuxuHHacIWU

[bookmark: _Toc29554588]Video: Creating and working with tables
Watch the video tutorial creating and working with tables—part three for details on how to create tables and define primary and foreign key constraints on the tables (duration 20:07).
[image:]
https://youtu.be/JLeaM8pK8dE
Testing the database
Often database developers and programmers underestimate the importance of test data during the implementation stage of database development. Test data is used for both positive testing to confirm that aspects of the database perform as expected, and negative testing to test the capacity of the database to handle unexpected and extraordinary inputs. Poorly designed test data may not enable the discovery of problems with the database.
Test data should be created before testing begins. It can be generated by any combination of the following methods.
1. Manually, by either using the database server client software to enter data directly into the tables, or by writing SQL Data Definition Language (DDL) statements (INSERT statements) to be executed as a script to insert the data to their respective tables.
Creating a mass copy of data which is in the production environment (an existing live system which has real data it in) and duplicating that data in the test database environment.
Creating a mass copy of data from decommissioned legacy systems and moving the data to the new test database environment.
Generating test data using automated tools.

Often the creation of test data from existing databases, be they production databases or legacy databases, will require a migration process, where the data must be prepared for the test database environment. This may include ensuring that the test data meets the schema of the test database, particularly its datatypes.
There are several types of test that can be performed on a relational database. These include the following:
White box testing is a technique designed to test queries that are known and that have been written to meet the information requirements of the organisation that owns the database.
· The test data should test as many relationships as possible, and should include testing aggregation of the data to produce aggregated information.
· The test data and the tests themselves should also test the creation of new records, particularly in tables related both in 1:M and M:N relationships (utilising a bridging table). The deletion of data and the updating of data should also be thoroughly tested to ensure that the business rules regarding updates and deletes have been implemented correctly.
· Negative testing should also be performed using invalid data types, invalid parameter values and invalid joins and various invalid combinations of test data.
Performance testing should be conducted to ensure that the database provides information at the rate that’s expected by the accessing applications. For example, information produced by a database for a website should be available in the pages of the site within the specified time requirements, otherwise customers will go elsewhere. Performance testing should also be conducted under the anticipated loads that the database should expect to encounter during its normal operational lifetime.
Security testing should also be conducted to ensure the security of the data. Security testing should encompass the following aspects of data security:
· Ensure that the confidentiality of the data is maintained.
· Ensure that the integrity of the data is maintained. This will require checking the database design and the data model to ensure that it meets the requirements of the relational data model and the rules of normalisation.
· Authentication and authorisation of access to the data. Testing should ensure the people or systems accessing the data are authenticated, i.e. they’re confirmed to be who they say they are. Testing should also confirm that the various roles that have been defined to access the data are authorised to access that data.

Black box testing should be conducted to test user stored procedures, functions, triggers, and insert, update, and delete actions.
	[image:]	Watch
[bookmark: _Toc29554589]Video: Logical database design and E-R diagrams
This video explores logical database design (a pre-cursor to physical database design) and demonstrates the use of Entity Relationship (E-R) diagrams (duration 32:22).
[image:]
https://youtu.be/ZBgXb66Ckz0
[bookmark: _Toc29554590]Video: Test data generation in SQL
This tutorial explains how can you generate test data for tables within one minute using only SQL queries (duration 21:25).
[image:]
https://youtu.be/Lf8m9lXNPnc

[bookmark: _Toc29554591]Video: Creating large tables with random data
In this video they discuss the inserting of a large amount of random data into SQL server tables for performance testing (duration 17:17).
[image:]
https://youtu.be/RizVYigF4GI
[bookmark: _Toc29554592]Requirements for a data model
Database identifiers and their impact on database usability
Identifiers are names given to database objects. Database objects include servers, databases, and objects such as tables, columns, constraints (primary and foreign key constraints), indexes, triggers, stored procedures, functions (both user-defined and system functions), rules, views, and user-defined types.
Identifiers form part of the meta-data used by the Relational Database Management System (RDBMS) to manage data.
Most database objects require an identifier, however, identifiers are optional for some objects (such as constraints) since the RDMS will generate an identifier if one is not specified.
There are generally two types of identifiers, regular and delimited.
Regular identifiers in RDMS are similar to identifiers used in programming languages such as C, C++, C#, Java, etc. in that they must follow the naming rules specified by the particular environment. Delimited identifiers are identifiers that do not comply with the environment’s naming rules and must be delimited using delimiters such as double quotes “ “, square brackets [], or back-ticks ` `, to name but a few common delimiters, by surrounding the identifier with the delimiting character.

Identifiers will, more often than not, be used in system messages and error messages to indicate the name of the object of interest or the name of the object which is causing an error. Consequently, developers should use identifier names that are meaningful to the database environment and meaningful to the business environment for which the database is used to improve the usability of the database.
Naming conventions appropriate to database design
Conventions are an informal standard that is applied to some aspect of common interaction between people. In data modelling and database design, database developers and programmers have agreed upon certain naming conventions, in the hope that adhering to the conventions will make communication and understanding easier with regard to databases. The purpose of naming conventions is to:
allow additional useful information to be inferred by the regular use of a naming convention and by the name used
include information about how different database objects may be connected to each other
ensure uniqueness of names to avoid name clashes
allow distinction between user-defined names of objects and system-defined identifiers and keywords
assist in error checking and debugging by providing names that infer the ‘source’ of the error.
More often than not, the data structures and data that support an information system will out-live the applications that access that data. The relational data model has been around for a long time because it does what it does exceptionally well. It is not uncommon for information systems, over time, to have their data-accessing applications re-written and replaced while the data structures and data remain intact and are re-used with a new front-end.
So, the naming conventions used should account for the longevity of the database and consider that the names actually represent a contract between the database environment and the accessing software applications, and hence are not easily changed once they’ve been decided upon.

Table and entity names in the singular
It is understood that each table represents an entity. For example, in a database with a CUSTOMER table, it is understood that by convention the CUSTOMER table represents an entity set and that it is a collection of customer’s. That is, each record in the table represents a single CUSTOMER. You should always name tables using the ‘singular’
Column names in the singular
Similarly, columns represent a single value. In fact, one of the cardinal sins of database modelling is a ‘multi-valued’ attribute. Each column should store the data value of a single attribute of the entity. Examples of multi-valued attributes include the full name or address. Full name can be decomposed to the attributes first_name, middle_initial and last_name, while address could be decomposed to street_number, street_name, suburb, post_code, state. Decomposing multi-valued attributes has an important effect on how efficiently you can search the table.
The following are general naming conventions that should be adhered to:
use schema names for table’s prefix, e.g. schemaName.table_name
primary Key suffixed with _Id, e.g. customer_id
foreign Key suffixed with _Ref, e.g. customer_ref
no spaces or dashes ‘-‘ in database object names (identifiers), i.e. schemas, tables, columns, constraints, etc
constraint object names:
· primary Key – tableName_pk
· foreign Key – child_tableName_parent_tableName_fk
SQL keywords and other system identifiers should all be UPPERCASE.

[bookmark: _Toc29554593]Relational database keys
The following table describes the functions and features of keys, e.g. unique keys, composite keys, primary keys and primary indexes.
Table 12 Definition of key types
	Key Type
	Definition
	Function and features

	Super key
	Is a table column, or a combination of columns (within the same table), that uniquely identifies each row in a table.
	Defined at design time as the initial step in selecting a primary key for a table. Not implemented in the database.

	Candidate key
	Is a minimal super key. That is, it can’t be further reduced to produce another super key.
	Defined at design time as the second step in identifying possible primary keys for a table. Some entities may have more than one unique attribute that could be the primary key. These attributes are candidate keys until a choice is made.

	Primary key
	Is a candidate key that has been chosen by the database designer to uniquely identify all other column values in any given row of a table.
	Uniquely identifies each row of a table and can’t contain null values. Each table must have a primary key to ensure entity integrity and to enhance data access performance.

	Composite key
	Is a key made up of more than one column and is used as the primary key in composite entities (or bridging entities) or in existence dependant entities where the relationship with the parent entity is a strong identifying relationship.
	Uniquely identifies each row of a table and can’t contain null values. Is comprised of more than one column.

	Alternate key
	Is a candidate key that was not chosen by the database designer to be the primary key but which can have a unique index (non-clustered) applied to it.
	Some entities have more than one attribute that uniquely identifies them. For example, a COMPANY entity may have an Australian Business Number (ABN) and a Company Name that is both unique. One would be chosen as the primary key, the other would be chosen as an alternate key.

	Secondary key
	Is a column, or combination of columns which is likely to return a match when used to search a table.
	Is used for retrieval purposes only and is not guaranteed to be unique and might be null.

	Foreign key
	A column or combination of columns in one table whose values either reference the values in the primary key of another table or are null (enforcing referential integrity).
	Foreign keys are used to implement relationships between tables. The foreign key will always be in the table that is on the many side of a one-to-many relationship.

	Surrogate key
	Is a primary key whose values are ‘automatically’ generated by the RDMS each time a new record is inserted to the table.
	Surrogate keys are used where the entity does not have a natural primary key. i.e. an attribute which is unique and which all instances of the entity possess.

	Clustered index
	An index in which the rows of the data pages of the index are physically stored in order. Each table can have only one clustered index because there can only be one set of ‘ordered’ data. The order is based on the key values, so the structure of the index is integral to the data pages.
	Used to improve data searching and retrieval performance. Clustered indexes are organised in a similar manner to a phone book. In a phone book the index is defined on the surname and the surnames are in order through the book (note: in RDMS surnames should not be used as the primary key). By default, primary keys have a clustered index created on them by the RDMS (though this can be user-determined).

	Non-clustered index
	An index whose structure is physically separated from the data pages and in which the data pages may be out of order. The key of a non-clustered index uses ‘row-pointers’ to locate the desired data page.
	Used to improve data searching and retrieval. Non-clustered indexes are organised in a similar manner to a textbook. The index at the rear of the book is a structure which is physically separated from the data pages, but each key of the index has a pointer (page number) which indicates the page on which the data resides. The index key itself is ordered but the data in the pages are out of order.

Indexes can have both a positive and negative impact on database performance. When an index is defined on a table, each time records are either inserted, deleted, or if the indexed columns are updated, the database must re-build the index, resulting in a performance hit.
Indexes are beneficial on large tables (with lots of rows) where the data is relatively static (few inserts, updates or deletes) and which are searched often. Indexing should optimise the read performance of the table with benefits that outweigh the write performance of the table.

	[image:]	Watch
[bookmark: _Toc29554594]Video: Concept of keys in database management systems
This video covers the different types of DBMS keys like a super key, candidate key, primary key, foreign key, alternate key, composite and compound key and surrogate key with complete explanation and example (duration 09:15).
[image:]
https://youtu.be/p3yJZH8_bsc
[bookmark: _Toc29554595]Video: Clustered vs. non-clustered index structures in SQL server
Clustered and non-clustered indexes share many of the same internal structures, but they're fundamentally different in nature. Watch Microsoft Certified IT Professional Jon Seigel explain the similarities and differences of clustered and non-clustered indexes (duration 08:03).
[image:]
https://youtu.be/ITcOiLSfVJQ

Timestamps
In most systems the TIMESTAMP data type is used primarily for concurrency control. Concurrency control is the process of monitoring and controlling the simultaneous operations that are being performed on a database to ensure that the operations do not conflict with each other. Concurrent operations are those operations that are overlapping.
For read operations multiple, concurrent, reads can be performed without any problem, however, for write operations if a record is being written-to (updated) by more than one user, then there’s a concurrency control requirement and a timestamp is used to maintain control of the various ‘versions’ of the row being edited.
The timestamp itself is a unique identifier which is system generated, using the system clock to generate its value. However, it is not really a time which can be associated with a clock, but rather a unique binary number that indicates the row version, or the order in which the transactions (or operations) were performed on the row. Each time the row is modified, the timestamp value is modified.
For this reason, a timestamp is not a good column data type to use as part of a primary key. Any foreign keys that reference a primary key with a timestamp column would also have to be updated each time a row in the parent table is modified. The primary key’s index would also have to be updated when a timestamped primary key table has one of its rows modified.
The value of the timestamp column will always be incremented with any update performed on the table.

	[image:]	Watch
[bookmark: _Toc29554596]Video: CMU database systems—concurrency control theory
An introduction to database systems concurrency control theory (duration 01:17:05).
[image:]
https://youtu.be/r0nI_yV9KCo
[bookmark: _Toc29554597]Video: MySQL advanced—timestamps, dates and ordering part one
his is the beginning of a three-part video tutorial series, where we teach you about timezones, date intervals and date functionality using MySQL (duration 07:42).
[image:]
https://youtu.be/bs2pFytphcw

[bookmark: _Toc29554598]Data types
The relational data model has survived for as long as it has because of its flexibility and its profound utility. When it was conceived, it was developed to also support the implementation of relationships between entities which are hierarchical. For example, hierarchical data structures that are commonly stored in relational databases include the following:
organisational hierarchies
filing systems
project tasks that are divided into sub-tasks
taxonomies of animals, such as mammals
the navigational links between the pages of a web site.
In cases where such hierarchical relationships exist, the relationships can be either one-to-one or one-to-many. In either case the relationship is an identifying relationship in which the child entities are existence dependent on the parent entity. That is to say, the child entity can’t exist without the existence of the parent.
Consider the following business rules describing the hierarchical structure of employees within an organisation.
Everyone that works for the organisation is considered an employee. All employees have their pay paid into one bank account. This includes the Chief Executive Officer (CEO) who is paid a salary, while other departmental staff are paid by the hour, according to their job type.
The system must also record the CEO’s period of tenure (start date and end date). The organisation has several departments including, but not limited to, sales, human resources, operations, and security, with each department having only one manager. All department managers report to the Chief Executive Officer (CEO).
The manager of each department is also paid a salary and is responsible for the management of only one department. Each department staff member (excluding the CEO) works in only one department though each department could have several staff members working for it.

[bookmark: _Ref29482419]Figure 28 Organisation chart
In this scenario, the super-type entity is the EMPLOYEE since everyone is an employee. The three sub-types are the chief executive officer (CEO), department manager, and staff. In this case the EMPLOYEE entity is also the root-type because each of the sub-types is an EMPLOYEE.

[bookmark: _Ref28684226][bookmark: _Ref29482513]Figure 29 The super type/sub type relationship
The relationships between the super-type (EMPLOYEE) and each of the sub-types (CEO, department manager, and staff) is one-to-one. Each of the sub-types has distinct attributes which don’t apply to all instances of the super-type (EMPLOYEE). As an example, the CEO has a salary and a tenure start and end date.
The department managers have a salary and a department for which they are responsible. The department staff have a job-type and an hourly rate based on that job-type. So, the general rule for implementing one-to-one relationships is as follows.
Where two entities are related in a one-to-one relationship the entities should be combined into a single entity, except where both:
the relationship is a super-type/sub-type relationship
the sub-types have additional attributes that the super-type does not have.
Consider the business rule in this scenario, ‘all employees have their pay paid into one bank account’; it can be reasonably assumed that each bank account belongs to only one employee. So the relationship between employee and their bank account is also one-to-one. However, it is NOT a super-type/sub-type relationship because employees are not bank accounts and vice-versa.
Consequently the employee’s bank account details (BSB number, account number, and account name) can be combined into the EMPLOYEE entity.
Here’s the relational data model for the implementation of this scenario.
[image:]
[bookmark: _Ref28684630]Figure 30 The Crow’s Foot ERD implementing the hierarchy

[bookmark: _Toc29554599]Structured data types
Where columns in a database are known to have the same domain of possible values you can create a structured data type for those columns that combines the underlying native datatypes of each column into a new, single User Defined Type (UDT).
A User Defined Type can be based on a single predefined system data type or it can be a structured type which is a UDT that is comprised of a list of attribute definitions utilising multiple predefined system types. For example, in the EMPLOYEE table in Figure 30 The Crow’s Foot ERD implementing the hierarchy, you could combine the three columns for the bank account details into a single user-defined type
The following example could be implemented on IBM’s DB2 platform, however it should be noted that not all platforms allow multi-attribute user-defined types.
CREATE TYPE BANKACCDETAIL_udt AS (BankBSB_No CHAR(6), BankAcc_No VARCHAR(20), BankAccName VARCHAR(250))
Having defined the type, it can then be used as the type for a column in the creation of the table as follows.
CREATE TABLE employee (Emp_Id INTEGER PRIMARY KEY, FirstName VARCHAR(30), Surname VARCHAR(50), Street VARCHAR(50), Suburb VARCHAR(50), PostCode CHAR(4), BankAccDetail BANKACCDETAIL_udt)
[image:]
[bookmark: _Ref28684978]Figure 31 Example of the use of a user-defined data type

Structured types or user-defined types are always based on the underlying predefined system-supplied data types which makes their relationships hierarchical. The underlying system-supplied data types are the root-types, with the next UDT in the hierarchy being the super-type and subsequent inheriting UDT being the sub-types.
UDTs can be used to define the type for a column, as described above, the type for an entire table (or view), or they can be used to define an attribute of another structured type. Once set up, user-defined types are as easy to use as the DBMS predefined types, however they are a lot harder to set up than is described in the example provided above, the details of which are beyond the scope of this course.
Reference types
In SQL a reference type is a scalar type that acts as a pointer to a row of a base table that is a typed table. To put it more simply, a reference type is a pointer to a UDT’s value.
User-defined function
In the context of the use of structured data types and user-defined types in SQL, user-defined functions serve to implement ‘methods’ in the structured data type. So you can use a user-defined function as part of the definition of a structured data type, to process some (or all) of the values contained in the constituent attributes of the structured data type to derive a new value. The derived value is the return value of the user-defined function. This is often referred to as a derived attribute.
	[image:]	Resources
[bookmark: _Toc11228378][bookmark: _Toc29554600]Additional resources
Review the following readings for a more detailed understanding of user-defined types, reference types, user-defined functions and type hierarchies:
user-defined types
reference types

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: _Toc29554601]Topic 4: Creating the database

[bookmark: _Toc29554602]Overview
Now you’ve arrived at the point where it’s time to actually implement the database that you’ve so painstakingly modelled.
In this topic you will learn about:
various relational database platforms available and the development tools that you can use to write the code to create and manipulate the database
the most dominant and persistent language used in information technology for querying databases, Structured Query Language or SQL, the terminology of the language, and the data definition language elements of SQL that you will use to create a relational database
how to write the SQL code to create the database, its tables, the constraints in the database, and how to insert data into the tables
The activities throughout this resource will assist you in your learning. These activities do not form a part of your final assessment however they will contribute to your understanding of the topic area.
This topic takes a more practical approach to your learning and it is important that you write all of the code included in this topic to create the Courier Company Governance System database. It is most important that you practice writing SQL code if you want to be a programmer. Do not just copy and paste the code.
Most importantly, take the time to implement (build) the Little Athletics database in Activity 4.2: Create the Little Athletics database as this will give you an opportunity to practice what you have been learning and to assess the veracity of the Little Athletics database data model that you have designed.

Using tools in building queries
There is a myriad of Relational Database Management Systems (RDBMS) available for the development and hosting of relational databases. Most, if not all, of these platforms provide their own environments or tools for building SQL queries.
The following table lists some of the more popular relational database environments and their associated tools for building queries.
Table 13 Overview of environments/tools
	Platform
	Environment/Tool

	Microsoft SQL Server
	SQL Server Management Studio (SSMS)

	Microsoft Access
	Microsoft Access - Query Builder or Query Editor

	MySQL
	phpMyAdmin or MySQL Workbench

	Oracle Database
	Oracle SQL Developer

	IBM Db2
	IBM Data Studio

	PostgreSQL
	pgAdmin

	SQLite
	SQLiteStudio

For this course you will use Microsoft SQL Server and SQL Server Management Studio (SSMS).

[bookmark: _Toc29554603]Query-related terminologies
Table 14 List of terminologies
	Terminology
	Meaning

	ad hoc query
	A question requiring information from the database that is formulated on the spur-of-the-moment.

	Aggregate Function
	A SQL function used to group values from multiple rows into a single (aggregated) row with a value of some significate meaning such as the average AVG() of the values of the grouped rows. Aggregate functions include average AVG, maximum MAX(), minimum MIN(), COUNT(), and SUM().

	Alias
	A name given to a column or table in an SQL query which is not its original name.

	AND
	A SQL logical operator used to indicate that both operands either side of it must be true.

	ANSI
	American National Standards Institute – The body governing the standardisation of SQL.

	AVG
	An aggregate function of SQL that derives the average of a column or domain of values within a column.

	BETWEEN
	A SQL arithmetic operator used to determine whether a value is ‘between’ a range of values.

	COMMIT
	A SQL command that commits data changes to permanent storage in the database.

	CONSTRAINT
	A limitation on data enforced by the RDBMS. There are various forms of constraints including Primary Key, Foreign Key, Check, NOT NULL, Unique, Default, and Index.

	COUNT
	An aggregate function of SQL used to return the number of records for a given column containing values (not nulls).

	CREATE …
	A SQL command used for creating databases and tables.

	Data Definition Language (DDL)
	The elements of SQL that are used to define the Database structure.

	Data Manipulation Language (DML)
	The elements of SQL that are used to SELECT, INSERT, UPDATE, and DELETE data.

	DELETE
	A SQL command that deletes rows from a table according to specified criteria.

	Derived Attribute
	An attribute which does not physically exist in a table but is derived by processing the values of other attributes (columns) and system values. e.g. Age can be derived from CurrentDate − DateOfBirth.

	DISTINCT
	A SQL clause used to remove duplicated values from a query result set.

	DROP
	A SQL command that deletes database objects.

	EXISTS
	A Boolean operator that returns True if a subquery returns any rows.

	GROUP BY
	A SQL clause used in conjunction with aggregate functions to group values into ‘summary’ rows for aggregation.

	HAVING
	A SQL clause used to filter aggregated columns.

	IN
	A SQL logical operator to determine whether a value exists within a list of other values.

	INNER JOIN
	A SQL query operation that retrieves records from two tables where the values of the Primary Key of one table equal the values of the Foreign Key of the other table.

	Inner Query
	A query nested inside another query, often referred to as a subquery.

	INSERT
	A SQL command used to insert a new row of data into a table.

	IS NULL
	A SQL logical operator used to check if a field contains a value.

	LEFT OUTER JOIN
	A SQL query operation that retrieves all of the records from the table defined on the left side of the join operation and only the matching records from the table on the right side of the operation.

	LIKE
	A SQL operator used to find records using a pattern match and wild-card characters to check if a pattern of characters exists within a longer string of characters.

	MAX
	A SQL aggregate function that returns the maximum value of a given column.

	MIN
	A SQL aggregate function that returns the minimum value of a given column.

	NOT
	A SQL logical operator used to reverse the value of a given predicate.

	NULL
	A special SQL marker used to indicate the state of an attribute as ‘not containing a value’.

	OR
	A SQL logical operator used to indicate that only one of the operands either side of it must be true.

	ORDER BY
	A SQL clause used for specifying the order of a SELECT query’s result set as either ascending or descending.

	OUTER JOIN
	A SQL join operation the retrieves all records from both tables being joined regardless of a match or not.

	Query
	A SQL statement requesting data or performing a task on the database.

	Result set
	The data row returned by a query.

	Record
	Synonymous with a single row of a table.

	RIGHT OUTER JOIN
	A SQL query operation that retrieves all of the records from the table defined on the RIGHT side of the join operation and only the matching records from the table on the left side of the operation.

	SELECT
	A SQL command that retrieves the data from a specified list of columns.

	SUM
	A SQL aggregate function that sums the values of a given column.

	UNION
	A SQL clause that combines the results of two queries into a single result set.

	UPDATE
	A SQL command used to change the values of existing data in one or more rows of a table.

	[image:] 	Practice activity
[bookmark: _Toc29554604]Activity 4.1: Creating a database
Use DDL to create a database
For this activity you will use SQL Server Management Studio (SSMS) to write the SQL script/code to create the courier company governance system database.
First watch the following video tutorial on connecting to SQL Server using SSMS, what is SQL Server Management Studio and different authentication methods used to connect to SQL Server (duration 09:40).
[image:]
https://youtu.be/ZNObiptSMSI

Create database syntax
The following describes the syntax for the most basic CREATE DATABASE statement. Elements enclosed in square brackets are optional to the statement.
CREATE DATABASE database_name
[CONTAINMENT = { NONE | PARTIAL }]
[ON
 [PRIMARY] <filespec> [,...n]
 [, <filegroup> [,...n]]
 [LOG ON <filespec> [,...n]]
]
[COLLATE collation_name]
[WITH <option> [,...n]]
[;]
Throughout this activity you will write SQL code in SSMS to create a database, its tables, and its data. Since you are learning how to write SQL to create a database, you’re likely to make errors in your script, which you will have to correct and then re-execute your script to re-create the database.
If you have executed your script at least once, it is likely that the database and some of the tables already exist on the server, and so any subsequent execution of your script will cause an error similar to.
Msg 1801, Level 16, State 3, Line 9
Database 'CourierCompanyGovernance' already exists. Choose a different database name.
To circumvent this problem, you will include code to delete any database objects that may already exist, before you re-create the database each time you execute your script.
Let’s begin. In SSMS click the ‘New Query’ button to open a new query editor tab. This is where you’ll write your SQL to create the database.

This video tutorial describes the creation of databases using SSMS (duration 15:16).
[image:]
https://youtu.be/TuxuHHacIWU
[image:]
[bookmark: _Ref29300877][bookmark: _Ref29300782]Figure 32 The Courier Company Governance System ERD (Data Model)
You will use Figure 32 above as a guide to writing the SQL code to create the database.

In the SSMS editor type the following code, including the comments but ignoring the line numbers to the left.
1 --	Two dashes denote that what follows is a single line comment.
2 --	Comments are ignored by the query parser.
3 /*	A forward slash followed by an asterisk denotes the beginning of a
4 	block comment. This is the traditional C style comment. The end of a block
5 	comment is denoted by an asterisk followed by a forward slash.
6 */
7 -- ===
8 --		This script creates the Courier Company Governance Database
9 --		Author:	Peter Panagopoulos
10 --		Date:		09/12/2019
11 --		Version:	1.0
12 -- ===
13 USE master;
14 GO
15 IF EXISTS (SELECT name
16 			FROM	master.dbo.sysdatabases
17 			WHERE	name = N'CourierCompanyGovernance'
18)
19 DROP DATABASE CourierCompanyGovernance;
20 GO
21 CREATE DATABASE CourierCompanyGovernance;
22 GO
23 USE CourierCompanyGovernance;
24 GO
Save the script file with an appropriate name (CreateCourierCompanyGovernanceDB.sql) in a location where you’ll be able to retrieve it later.
Lines one to six are comments about comments (coloured green). SQL keywords are coloured blue.
Lines seven to 12 are comments documenting the purpose of the script, it’s author, the date that it was created, and the version.
Line 13 connects the query editor to the MASTER database.
The MASTER database contains all of the meta-data for the user databases on the server. Line 14 is a GO statement that tells the server to execute all statements above it that have not yet been executed so that their action is committed to the server.
Lines 15 to 22 check the sysdatabases table of the MASTER database for a database named ‘CourierCompanyGovernance’ and if it EXISTS it is DROPed (deleted) and then re-created.
Line 21 actually creates the database.
Line 23 instructs the server to connect the text editor to (use) the CourierCompanyGovernance database so that all the following statements are executed on that database.

You must transcribe the script accurately. The majority of errors made by people are transcription errors.
Double-check what you have typed (character by character) before you execute your script. If you believe it is correct you can execute the script by clicking the ‘Execute’ button. The courier company governance database now exists on the server. In SSMS, select the ‘Databases’ node in the ‘Object Explorer’ and refresh the node. Expand the ‘Databases’ node in the ‘Object Explorer’. You should now see the ‘CourierCompanyGovernance’ database listed.
However, it does not contain any tables, or any data. You can now add more code to the script to create the tables.
Use DDL to create the tables
Create table syntax
The following describes some of the options of the syntax for the basic CREATE TABLE statement. Elements enclosed in square brackets are optional to the statement.
-- Simple CREATE TABLE Syntax (common if not using options)
CREATE TABLE
 { database_name.schema_name.table_name. | schema_name.table_name | table_name }
 ({ <column_definition> } [,...n])
[;]
<column_definition> ::=
column_name <data_type>
<column_constraint> ::=
[CONSTRAINT constraint_name]
{ { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [
 WITH FILLFACTOR = fillfactor
 | WITH (< index_option > [, ...n])
]
 [ON { partition_scheme_name (partition_column_name)
 | filegroup | "default" }]

 | [FOREIGN KEY]
 REFERENCES [schema_name .] referenced_table_name [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]

 | CHECK [NOT FOR REPLICATION] (logical_expression)
}
The first table that you will create is the DRIVER table. The CREATE TABLE statement allows you to define the name of the table, the names of each of the columns in the table, the data types and nullability of the columns, the primary key for the table, and any indexes that might exist in the table.
You could also define any other constraints that are in the table, such as a foreign key or check constraints, however, you will add these constraints after all of the tables have been created using the ALTER TABLE statement later.

This video tutorial describes the creation of tables using SSMS (duration 20:07).
[image:]
https://youtu.be/JLeaM8pK8dE
Add the following CREATE TABLE statement to the end of your script to create the DRIVER table.
Add the following CREATE TABLE statement to the end of your script to create the DRIVER table.
CREATE TABLE DRIVER (
 Licence_No 	NVARCHAR(8),
 FirstName 	NVARCHAR(30) NOT NULL,
 LastName 	NVARCHAR(30) NOT NULL,
 Phone 	NCHAR(10) NOT NULL,
 EmployingCompanyABN BIGINT NOT NULL,
 CONSTRAINT DRIVER_pk PRIMARY KEY (Licence_No)
);
GO

Save the script file. Your script should now look as follows.
1 --	Two dashes denote that what follows is a single line comment.
2 --	Comments are ignored by the query parser.
3 /*	A forward slash followed by an asterisk denotes the beginning of a
4 	block comment. This is the traditional C style comment. The end of a block
5 	comment is denoted by an asterisk followed by a forward slash
6 */
7 -- ===
8 --		This script creates the Courier Company Governance Database
9 --		Author:	Peter Panagopoulos
10 --		Date:		09/12/2019
11 --		Version:	1.0
12 -- ===
13 USE master;
14 GO
15 IF EXISTS (SELECT name
16 			FROM	master.dbo.sysdatabases
17 			WHERE	name = N'CourierCompanyGovernance'
18)
19 DROP DATABASE CourierCompanyGovernance;
20 GO
21 CREATE DATABASE CourierCompanyGovernance;
22 GO
23 USE CourierCompanyGovernance;
24 GO
25 CREATE TABLE DRIVER (
26 Licence_No 	NVARCHAR(8),
27 FirstName 	NVARCHAR(30) NOT NULL,
28 LastName 	NVARCHAR(30) NOT NULL,
29 Phone 	NCHAR(10) NOT NULL,
30 EmployingCompanyABN BIGINT NOT NULL,
31 CONSTRAINT DRIVER_pk PRIMARY KEY (Licence_No)
32);
33 GO
Lines 25 to 32 create the DRIVER table, and its constituent columns. The CONSTRAINT defining the primary key (line 31) imposes limitations (constraints) on the Licence_No column which require it to be unique and not null.
The meta-data name for the primary key object is DRIVER_pk and is used by the server to identify the primary key object for this table, it is not however the primary key. The primary key of the table is the Licence_No column.

Now, you can continue and create the COURIER_COMPANY table. Add the following CREATE TABLE statement to the end of your script to create the COURIER_COMPANY table.
CREATE TABLE COURIER_COMPANY (
 ABN			BIGINT,
 CompanyName		NVARCHAR(50) NOT NULL,
 Phone		NVARCHAR(10) NOT NULL,
 CONSTRAINT COURIER_COMPANY_pk PRIMARY KEY (ABN)
)
CREATE UNIQUE NONCLUSTERED INDEX COURIER_COMPANY_idx ON COURIER_COMPANY(CompanyName);
GO
Save the script file. Your script should now look as follows.
1 --	Two dashes denote that what follows is a single line comment.
2 --	Comments are ignored by the query parser.
3 /*	A forward slash followed by an asterisk denotes the beginning of a
4 	block comment. This is the traditional C style comment. The end of a block
5 	comment is denoted by an asterisk followed by a forward slash
6 */
7 -- ===
8 --		This script creates the Courier Company Governance Database
9 --		Author:	Peter Panagopoulos
10 --		Date:		09/12/2019
11 --		Version:	1.0
12 -- ===
13 USE master;
14 GO
15 IF EXISTS (SELECT name
16 			FROM	master.dbo.sysdatabases
17 			WHERE	name = N'CourierCompanyGovernance'
18)
19 DROP DATABASE CourierCompanyGovernance;
20 GO
21 CREATE DATABASE CourierCompanyGovernance;
22 GO
23 USE CourierCompanyGovernance;
24 GO
25 CREATE TABLE DRIVER (
26 Licence_No 	NVARCHAR(8),
27 FirstName 	NVARCHAR(30) NOT NULL,
28 LastName 	NVARCHAR(30) NOT NULL,
29 Phone 	NCHAR(10) NOT NULL,
30 EmployingCompanyABN BIGINT NOT NULL,
31 CONSTRAINT DRIVER_pk PRIMARY KEY (Licence_No)
32);
33 GO
34 CREATE TABLE COURIER_COMPANY (
35 ABN			BIGINT,
36 CompanyName		NVARCHAR(50) NOT NULL,
37 Phone		NVARCHAR(10) NOT NULL,
38 CONSTRAINT COURIER_COMPANY_pk PRIMARY KEY (ABN)
39)
40 CREATE UNIQUE NONCLUSTERED INDEX COURIER_COMPANY_idx ON COURIER_COMPANY(CompanyName);
41 GO

You may recall that the candidate keys for the COURIER_COMPANY table are the company’s Australian Business Number (ABN), because it is unique and every courier company that operates must have an ABN (so it can not be null), and the company name because it too is unique and all the companies that operate must have a Company Name (so, it too, can not be null).
The decision was made to use the ABN as the primary key of the COURIER_COMPANY table, however, the company name will often be used to search this table so it has been designated an alternate key.
 Alternate keys are implemented by creating a unique, usually non-clustered, index on the alternate key column.
Line 40 indicates the definition of the index.
Go ahead and create the remaining three tables, VEHICLE, VEHICLE_TYPE, and ACCREDITATION by adding the following CREATE TABLE statements to the end of your script file.
CREATE TABLE VEHICLE (
 Registration_No		NVARCHAR(6),
 OwningCompanyABN		BIGINT NOT NULL,
 VehicleType_ID		INT NOT NULL,
 DateOfManufacture		DATE NOT NULL,
 DateOfLastMaintenance	DATE NOT NULL,
 CONSTRAINT VEHICLE_pk PRIMARY KEY (Registration_No)
);
GO
CREATE TABLE VEHICLE_TYPE (
 VehicleType_ID	INT,
 FuelType		NVARCHAR(30) NOT NULL,
 FuelCapacity	SMALLINT NOT NULL,
 [Range]		SMALLINT NOT NULL,
 CONSTRAINT VEHICLE_TYPE_pk PRIMARY KEY (VehicleType_ID)
);
GO
CREATE TABLE ACCREDITATION (
 VehicleType_ID	INT,
 Licence_No		NVARCHAR(8),
 ExpiryDate		DATE,
 CONSTRAINT ACCREDITATION_pk PRIMARY KEY (VehicleType_ID, Licence_No, ExpiryDate)
);
GO

Save the script file. Your script should now look as follows,
1 --	Two dashes denote that what follows is a single line comment.
2 --	Comments are ignored by the query parser.
3 /*	A forward slash followed by an asterisk denotes the beginning of a
4 	block comment. This is the traditional C style comment. The end of a block
5 	comment is denoted by an asterisk followed by a forward slash
6 */
7 -- ===
8 --		This script creates the Courier Company Governance Database
9 --		Author:	Peter Panagopoulos
10 --		Date:		09/12/2019
11 --		Version:	1.0
12 -- ===
13 USE master;
14 GO
15 IF EXISTS (SELECT name
16 			FROM	master.dbo.sysdatabases
17 			WHERE	name = N'CourierCompanyGovernance'
18)
19 DROP DATABASE CourierCompanyGovernance;
20 GO
21 CREATE DATABASE CourierCompanyGovernance;
22 GO
23 USE CourierCompanyGovernance;
24 GO
25 CREATE TABLE DRIVER (
26 Licence_No	NVARCHAR(8),
27 FirstName	NVARCHAR(30) NOT NULL,
28 LastName	NVARCHAR(30) NOT NULL,
29 Phone	NCHAR(10) NOT NULL,
30 EmployingCompanyABN BIGINT NOT NULL,
31 CONSTRAINT DRIVER_pk PRIMARY KEY (Licence_No)
32);
33 GO
34 CREATE TABLE COURIER_COMPANY (
35 ABN			BIGINT,
36 CompanyName		NVARCHAR(50) NOT NULL,
37 Phone		NVARCHAR(10) NOT NULL,
38 CONSTRAINT COURIER_COMPANY_pk PRIMARY KEY (ABN)
39)
40 CREATE UNIQUE NONCLUSTERED INDEX COURIER_COMPANY_idx ON COURIER_COMPANY(CompnayName);
41 GO
42 CREATE TABLE VEHICLE (
43 Registration_No		NVARCHAR(6),
44 OwningCompanyABN		BIGINT NOT NULL,
45 VehicleType_ID		INT NOT NULL,
46 DateOfManufacture		DATE NOT NULL,
47 DateOfLastMaintenance	DATE NOT NULL,
48 CONSTRAINT VEHICLE_pk PRIMARY KEY (Registration_No)
49);
50 GO
51 CREATE TABLE VEHICLE_TYPE (
52 VehicleType_ID	INT,
53 FuelType		NVARCHAR(30) NOT NULL,
54 FuelCapacity	SMALLINT NOT NULL,
55 [Range]		SMALLINT NOT NULL,
56 CONSTRAINT VEHICLE_TYPE_pk PRIMARY KEY (VehicleType_ID)
57);
58 GO
59 CREATE TABLE ACCREDITATION (
60 VehicleType_ID	INT,
62 Licence_No		NVARCHAR(8),
63 ExpiryDate		DATE,
64 CONSTRAINT ACCREDITATION_pk PRIMARY KEY (VehicleType_ID, Licence_No, ExpiryDate)
65);
66 GO
Lines 42 to 66 create the columns, and the primary keys for the VEHICLE, VEHICLE_TYPE and ACCREDITATION tables. The next step is to create the foreign key constraints to implement the relationships between the tables.
Use DDL to create the constraints
The following describes some of the more basic options of the syntax for the ALTER TABLE statement. With the ALTER TABLE statement you can do things like change the name of a column, its data type and other properties, you can ADD a new column, or a CONSTRAINT, or you can DROP (delete) constraints and columns from the table.
ALTER TABLE { database_name.schema_name.table_name | schema_name.table_name | table_name }
{
 ALTER COLUMN column_name
 {
 [type_schema_name.] type_name
	 ...
| ADD
 	{
<table_constraint>
	 ...
[CONSTRAINT constraint_name]
 ...
 FOREIGN KEY
 (column [,...n])
 REFERENCES referenced_table_name [(ref_column [,...n])]
The foreign key constraints in your data model are the mechanism by which you implement the one-to-many relationships between the tables in your database. A foreign key column is placed in the many table of two related tables, and its values reference the values of the primary key column in the table on the one side of the relationship. The term constraint means a limitation or restriction.
So, the limitation or restriction that the database server applies to the foreign key column is that no values can be inserted into the foreign key column if a corresponding value does not exist in the referenced primary key.

An error will occur if this is attempted. Foreign key constraints are how the database enforces the concept of referential integrity. That is:
each foreign key value must reference an existing and valid value in the primary key of the referenced table, or the foreign key value can be null.
So, using the data model for your courier company governance system depicted in Figure 32, you can use the many sides of each relationship line[image: https://documents.lucidchart.com/documents/54abc8d1-01f8-4363-bc58-52d78be77769/pages/0_0?a=257&x=590&y=831&w=79&h=57&store=1&accept=image%2F*&auth=LCA%20708cc98e3af367ef8e63ccac449528c9349bf5e8-ts%3D1573983662] to identify which table has the foreign key column in it
Now add the following foreign key constraints to the end of your script.
ALTER TABLE VEHICLE ADD CONSTRAINT VEHICLE_TYPE_VEHICLE_fk FOREIGN KEY (VehicleType_ID) REFERENCES VEHICLE_TYPE (VehicleType_ID);
GO
ALTER TABLE DRIVER ADD CONSTRAINT COURIER_COMPANY_DRIVER_fk FOREIGN KEY (EmployingCompanyABN) REFERENCES COURIER_COMPANY (ABN);
GO
ALTER TABLE VEHICLE ADD CONSTRAINT COURIER_COMPANY_VEHICLE_fk FOREIGN KEY (OwningCompanyABN) REFERENCES COURIER_COMPANY (ABN);
GO
ALTER TABLE ACCREDITATION ADD CONSTRAINT DRIVER_ACCREDITATION_fk FOREIGN KEY (Licence_No) REFERENCES DRIVER (Licence_No);
GO
ALTER TABLE ACCREDITATION ADD CONSTRAINT VEHICLE_TYPE_ACCREDITATION_fk FOREIGN KEY (VehicleType_ID) REFERENCES VEHICLE_TYPE (VehicleType_ID);
GO
Save the script file. Your script should now look as follows.
1 --	Two dashes denote that what follows is a single line comment.
2 --	Comments are ignored by the query parser.
3 /*	A forward slash followed by an asterisk denotes the beginning of a
4 	block comment. This is the traditional C style comment. The end of a block
5 	comment is denoted by an asterisk followed by a forward slash
6 */
7 -- ===
8 --		This script creates the Courier Company Governance Database
9 --		Author:	Peter Panagopoulos
10 --		Date:		09/12/2019
11 --		Version:	1.0
12 -- ===
13 USE master;
14 GO
15 IF EXISTS (SELECT name
16 			FROM	master.dbo.sysdatabases
17 			WHERE	name = N'CourierCompanyGovernance'
18)
19 DROP DATABASE CourierCompanyGovernance;
20 GO
21 CREATE DATABASE CourierCompanyGovernance;
22 GO
23 USE CourierCompanyGovernance;
24 GO
25 CREATE TABLE DRIVER (
26 Licence_No	NVARCHAR(8),
27 FirstName	NVARCHAR(30) NOT NULL,
28 LastName	NVARCHAR(30) NOT NULL,
29 Phone	NCHAR(10) NOT NULL,
30 EmployingCompanyABN BIGINT NOT NULL,
31 CONSTRAINT DRIVER_pk PRIMARY KEY (Licence_No)
32);
33 GO
34 CREATE TABLE COURIER_COMPANY (
35 ABN			BIGINT,
36 CompanyName		NVARCHAR(50) NOT NULL,
37 Phone		NVARCHAR(10) NOT NULL,
38 CONSTRAINT COURIER_COMPANY_pk PRIMARY KEY (ABN)
39)
40 CREATE UNIQUE NONCLUSTERED INDEX COURIER_COMPANY_idx ON 41 COURIER_COMPANY(CompanyName);
41 GO
42 CREATE TABLE VEHICLE (
43 Registration_No		NVARCHAR(6),
44 OwningCompanyABN		BIGINT NOT NULL,
45 VehicleType_ID		INT NOT NULL,
46 DateOfManufacture		DATE NOT NULL,
47 DateOfLastMaintenance	DATE NOT NULL,
48 CONSTRAINT VEHICLE_pk PRIMARY KEY (Registration_No)
49);
50 GO
51 CREATE TABLE VEHICLE_TYPE (
52 VehicleType_ID	INT,
53 FuelType		NVARCHAR(30) NOT NULL,
54 FuelCapacity	SMALLINT NOT NULL,
55 [Range]		SMALLINT NOT NULL,
56 CONSTRAINT VEHICLE_TYPE_pk PRIMARY KEY (VehicleType_ID)
57);
58 GO
59 CREATE TABLE ACCREDITATION (
60 VehicleType_ID	INT,
61 Licence_No		NVARCHAR(8),
62 ExpiryDate		DATE,
63 CONSTRAINT ACCREDITATION_pk PRIMARY KEY (VehicleType_ID, Licence_No,
64 ExpiryDate)
65);
66 GO
67 ALTER TABLE VEHICLE ADD CONSTRAINT VEHICLE_VEHICLETYPE_fk FOREIGN KEY (VehicleType_ID)
68 REFERENCES VEHICLE_TYPE (VehicleType_ID);
69 GO
70 ALTER TABLE DRIVER ADD CONSTRAINT DRIVER_COURIERCOMPANY_fk FOREIGN KEY
71 (EmployingCompanyABN) REFERENCES COURIER_COMPANY (ABN);
72 GO
73 ALTER TABLE VEHICLE ADD CONSTRAINT VEHICLE_COURIER_COMPANY_fk FOREIGN KEY
74 (OwningCompanyABN) REFERENCES COURIER_COMPANY (ABN);
75 GO
76 ALTER TABLE ACCREDITATION ADD CONSTRAINT ACCREDITATION_DRIVER_fk FOREIGN KEY
77 (Licence_No) REFERENCES DRIVER (Licence_No);
78 GO
79 ALTER TABLE ACCREDITATION ADD CONSTRAINT ACCREDITATION_VEHICLETYPE_fk FOREIGN KEY 80 (VehicleType_ID) REFERENCES VEHICLE_TYPE (VehicleType_ID);
81 GO
Lines 67 to 80 define the foreign key constraints for the database. Note that the naming convention used for the names of the foreign key objects (e.g. VEHICLE_VEHICLETYPE_fk) is foreignKeyTable_referencedTable_fk.

Use DML to populate the tables with data
You are now ready to populate the database with some test data. There are many ways that test data can be imported to the database.
These include performing a bulk import from another location, such as a CSV file, using queries to shape the data that exists in another database so that it matches the structure of the destination database, writing a program to create random test data and importing that into the database, or importing the data line by line. For this activity you will import the data using the following INSERT statements.
Copy and paste the following statements to the end of your script.
SET DATEFORMAT YMD;
USE CourierCompanyGovernance;
GO
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (17948738949, 'Lockwood Couriers & Taxi Trucks', '0295676789');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (32874653678, 'Abc Express', '0287465367');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (37067463537, 'GoParcel', '0284765367');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (53004085616, 'A1 Freight', '0238476378');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (57087489589, 'Go-Go Errands', '0294653678');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (72034374637, 'A2B Couriers & Taxi Trucks', '0376578398');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (73023003457, 'Budget Courier Systems', '0237678956');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (79834510388, 'Rocket Couriers', '0298765463');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (89653008761, 'Barnetts Couriers', '0287645786');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (90131456438, 'Bluewater Couriers', '0294765367');
INSERT COURIER_COMPANY (ABN, CompanyName, Phone) VALUES (91876578373, 'Bestever Transport', '0387647584');
GO
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('1593PD', 'Donald', 'White', '0294765367', 91876578373);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('2765GF', 'Joh', 'Smith', '0297465367', 17948738949);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('28476653', 'Yu', 'Shoiwheng', '0294756456', 91876578373);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('3173BC', 'Mary', 'Dilberry', '0247564778', 79834510388);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('43567482', 'Nina', 'Johanse', '0294845748', 17948738949);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('4433JK', 'David', 'Livingsto', '0294564536', 79834510388);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('57463289', 'Marium', 'Hashemi', '0295847858', 91876578373);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('57463576', 'Barry', 'Brow', '0348473647', 79834510388);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('7465SW', 'Peter', 'Anderto', '0392837272', 17948738949);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('75849857', 'Sharo', 'Branso', '0347637748', 91876578373);
INSERT DRIVER (Licence_No, FirstName, LastName, Phone, EmployingCompanyABN) VALUES ('84756748', 'Andrew', 'Davidso', '0376564653', 91876578373);
GO
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (1001, 'Petrol', 40, 600);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (1002, 'Petrol', 40, 600);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (1003, 'Diesel', 50, 900);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (1004, 'Hybrid/Petrol', 20, 1200);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (1005, 'Hybrid/Petrol', 30, 1500);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2001, 'Diesel', 80, 600);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2002, 'Diesel', 100, 800);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2003, 'Diesel', 120, 1200);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2004, 'Hybrid/Diesel', 50, 800);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2005, 'Hybrid/Diesel', 80, 1200);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (2006, 'Hybrid/Diesel', 80, 1400);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (3001, 'Diesel', 110, 900);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (3002, 'Diesel', 120, 1000);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (3003, 'Diesel', 120, 1100);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (8001, 'Diesel', 210, 1500);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (8002, 'Diesel', 250, 1800);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (8003, 'Diesel', 300, 900);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (12001, 'Diesel', 800, 2400);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (12002, 'Diesel', 1200, 3000);
INSERT VEHICLE_TYPE (VehicleType_ID, FuelType, FuelCapacity, Range) VALUES (12003, 'Diesel', 1200, 3500);
GO
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (1002, '2765GF', '2020-01-01');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (1002, '7465SW', '2020-03-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (1003, '2765GF', '2020-01-01');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (1003, '7465SW', '2020-03-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (2003, '2765GF', '2020-01-01');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (2003, '7465SW', '2020-03-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (2004, '3173BC', '2020-05-16');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (2004, '4433JK', '2020-03-03');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (2004, '57463576', '2020-04-18');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (3003, '2765GF', '2020-01-01');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (3003, '3173BC', '2020-05-16');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (3003, '43567482', '2020-06-10');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (3003, '7465SW', '2020-03-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (8001, '4433JK', '2020-03-03');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12001, '1593PD', '2020-06-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12001, '57463289', '2020-03-04');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12001, '75849857', '2019-12-26');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12002, '1593PD', '2020-06-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12003, '28476653', '2020-04-05');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12003, '75849857', '2019-12-30');
INSERT ACCREDITATION (VehicleType_ID, Licence_No, ExpiryDate) VALUES (12003, '84756748', '2019-12-28');
GO
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('ADB435', 17948738949, 1002, '2018-02-01', '2019-07-04');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('AWQ763', 17948738949, 2003, '2017-07-12', '2019-06-15');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('DSF743', 79834510388, 2004, '2016-09-08', '2019-06-05');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('EGD783', 17948738949, 3003, '2019-09-04', '2019-09-04');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('FHT326', 79834510388, 8001, '2008-12-01', '2019-06-08');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('IOU645', 17948738949, 1003, '2017-10-07', '2019-09-12');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('JHF674', 91876578373, 12002, '2007-01-09', '2019-07-05');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('NGJ946', 79834510388, 3003, '2009-10-23', NULL);
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('POR621', 79834510388, 2004, '2016-09-08', '2019-06-05');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('TRT757', 91876578373, 12001, '2019-04-07', '2019-11-10');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('UTY327', 79834510388, 2004, '2016-09-08', '2019-06-05');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('VIV443', 79834510388, 8001, '2008-12-01', '2019-06-09');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('YDF742', 91876578373, 12003, '2003-06-14', '2019-09-11');
INSERT VEHICLE (Registration_No, OwningCompanyABN, VehicleType_ID, DateOfManufacture, DateOfLastMaintenance) VALUES ('YRN737', 17948738949, 1002, '2019-04-03', NULL);
Note the first line of the statements above ‘SET DATEFORMAT YMD;’ tells the server that any dates that are included in the data to be inserted are in the format Year Month Day.
	[image:] 	Practice activity
[bookmark: _Ref29483140][bookmark: _Toc29554605]Activity 4.2: Create the Little Athletics database
Using the information requirements report you developed in topic one Activity 1.1: Little athletics requirement report and the Relational Data Model you developed in Activity 3.3: Little athletics database, write the SQL code to create the Little Athletics database, its tables, and its constraints (primary key, foreign key, unique indexes, etc.).
Also develop some test data to populate the tables, and write the SQL commands to insert the test data to the appropriate tables.

[image:]

Document title	Version 1.0	Page 1 of 3
Disclaimer: Printed copies of this document are regarded as uncontrolled. Please check http:// to ensure this is the latest version.

© 2011 Department of Education and Communities, TAFE NSW eLearning Hub | Version: 0.0 | Created: dd/mm/2011

[bookmark: _Toc11228372][bookmark: _Toc29554606]Topic 5: Using structured query language (SQL)

[bookmark: _Toc11228373][bookmark: _Toc29554607]Overview
In this topic you will learn the following:
Writing SQL code to query databases. You will begin with the most basic queries selecting data from a single table, learning how to specify the columns that you want to list, the rows to be included and the order in which the results are displayed.
Developing more complex queries selecting data from multiple tables, using logical operators and arithmetic operators to build expressions that will determine the information to be provided by the queries.
How to use aggregate functions, formatting functions and date and time functions to perform more complex operations on the data to extract the desired information.
Again, as in topic four, this topic takes a more hands-on practical approach to your learning. It is therefore, very important that you write all of the code included in this topic to query the Courier Company Governance System database.
Again, it can not be stressed enough how important it is to your development as a programmer that you practice writing the code and that you do not just copy and paste the code.
The activities throughout this resource will assist you in your learning. These activities do not form a part of your final assessment however they will contribute to your understanding of the topic area.

Data sources
Since you have chosen structured query language (SQL) as the preferred language for this course, the data source will be a relational database. In fact, to learn SQL you will continue to use the courier company governance system database that you have been developing throughout your student workbook.
[bookmark: _Toc29554608]Conventions for formatting SQL
SQL is not case sensitive, and the commonly observed conventions are as follows:
SQL keywords, generally coloured blue in SQL Server Management Studio (SSMS), are written in UPPERCASE.
Place the individual clauses of a query on a new line.
SELECT
FROM
WHERE
GROUP BY
HAVING
ORDER BY;
In SQL server’s version of SQL (Transact SQL or T-SQL) the semicolon is optional, however, try to include it, just in case you migrate your code to another platform.
Try to format the layout of your SQL queries so that columns in the SELECT clause, tables in the FROM clause, filtering criteria in the WHERE clause, etc. are placed in a columnar format as follows.
SELECT	attribute1,
	attribute2,
	attribute3,
	attribute4
FROM	table1,
	table2,
	table3
WHERE	table1.attribute1 = table2.attribute2
AND	table2.attribute3 = table3.attribute4
AND	(attribute5 = 'a value' 		AND	attribute6 = 9999)
OR	(attribute7 = 'another value'	OR	attribute8 = 0000);
Note in the above example the logical operators ANDs and ORs are indented or stacked on top of each other (inside the parenthesis).

Write SQL to select from a single table
Displaying all columns
The most commonly written query is one that SELECTS all of the columns in the table and displays all of the data.
The next query displays all of the columns from the DRIVER table. The asterisk (*) indicates list ALL of the columns.
The SELECT clause is the clause in which you specify which columns you’d like to return data for.
The FROM clause specifies which table(s) to get the data from. Note that the columns are returned in the same order in which they’re defined in the DRIVER table.
SELECT *
FROM	DRIVER;
Licence_No FirstName LastName Phone EmployingCompanyABN
---------- ---------- ---------- ---------- ------------
1593PD Donald White 0294765367 91876578373
2765GF John Smith 0297465367 17948738949
28476653 Yu Shoiwheng 0294756456 91876578373
3173BC Mary Dilberry 0247564778 79834510388
43567482 Nina Johansen 0294845748 17948738949
4433JK David Livingston 0294564536 79834510388
57463289 Marium Hashemi 0295847858 91876578373
57463576 Barry Brown 0348473647 79834510388
7465SW Peter Anderton 0392837272 17948738949
75849857 Sharon Branson 0347637748 91876578373
84756748 Andrew Davidson 0376564653 91876578373

Choosing the columns to be displayed
You can specify the order in which you want the columns listed by specifying the columns in the SELECT clause in the order in which you want them listed, as demonstrated in the next query.
SELECT	FirstName,
	LastName,
	Licence_No,
	EmployingCompanyABN,
	Phone
FROM	DRIVER;

FirstName LastName Licence_No EmployingCompanyABN Phone
---------- ---------- ---------- -------------------- ----------
Donald White 1593PD 91876578373 0294765367
John Smith 2765GF 17948738949 0297465367
Yu Shoiwheng 28476653 91876578373 0294756456
Mary Dilberry 3173BC 79834510388 0247564778
Nina Johansen 43567482 17948738949 0294845748
David Livingston 4433JK 79834510388 0294564536
Marium Hashemi 57463289 91876578373 0295847858
Barry Brown 57463576 79834510388 0348473647
Peter Anderton 7465SW 17948738949 0392837272
Sharon Branson 75849857 91876578373 0347637748
Andrew Davidson 84756748 91876578373 0376564653
The next query demonstrates that you don’t have to list all the columns of the table.
SELECT	FirstName,
	LastName,
	Phone
FROM	DRIVER;

FirstName LastName Phone
---------- ---------- ----------
Donald White 0294765367
John Smith 0297465367
Yu Shoiwheng 0294756456
Mary Dilberry 0247564778
Nina Johansen 0294845748
David Livingston 0294564536
Marium Hashemi 0295847858
Barry Brown 0348473647
Peter Anderton 0392837272
Sharon Branson 0347637748
Andrew Davidson 0376564653

Specifying the records to be displayed using the WHERE clause
Often you will want to select data based on some criteria, such as a person’s last name. The next query demonstrates the use of the WHERE clause to specify which records you want to return.
The single quotes (‘) are required around the value of LastName (‘Branson’) because the LastName column is defined as character data.
SELECT	*
FROM	DRIVER
WHERE	LastName = 'Branson';
Licence_No FirstName LastName Phone EmployingCompanyABN
---------- ---------- --------- ---------- --------------------
75849857 Sharon Branson 0347637748 91876578373
When using numeric data, single quotes are not required. The next query returns data for all vehicle types that have a fuel capacity of 120 litres; note the absence of the single quotes.
SELECT	VehicleType_ID,
		FuelType,
		FuelCapacity,
		[Range]
FROM	VEHICLE_TYPE
WHERE	FuelCapacity = 120;
VehicleType_ID FuelType FuelCapacity Range
-------------- --------- ------------ ------
2003 Diesel 120 1200
3002 Diesel 120 1000
3003 Diesel 120 1100

Dealing with NULL values
The next query lists all the columns and all the rows from the VEHICLE table. You’ll notice that the last column, DateOfLastMaintenance, has two records that are NULL.
This tells us that those two vehicles, NGJ946 and YRN737, have not yet received any maintenance. How would you list only the details of vehicles that have not received any maintenance yet?
SELECT	*
FROM	VEHICLE;
Registration_No OwningCompanyABN VehicleType_ID DateOfManufacture DateOfLastMaintenance
--------------- -------------------- -------------- ----------------- ---------------------
ADB435 17948738949 1002 2018-02-01 2019-07-04
AWQ763 17948738949 2003 2017-07-12 2019-06-15
DSF743 79834510388 2004 2016-09-08 2019-06-05
EGD783 17948738949 3003 2019-09-04 2019-09-04
FHT326 79834510388 8001 2008-12-01 2019-06-08
IOU645 17948738949 1003 2017-10-07 2019-09-12
JHF674 91876578373 12002 2007-01-09 2019-07-05
NGJ946 79834510388 3003 2009-10-23 NULL
POR621 79834510388 2004 2016-09-08 2019-06-05
TRT757 91876578373 12001 2019-04-07 2019-11-10
UTY327 79834510388 2004 2016-09-08 2019-06-05
VIV443 79834510388 8001 2008-12-01 2019-06-09
YDF742 91876578373 12003 2003-06-14 2019-09-11
YRN737 17948738949 1002 2019-04-03 NULL
Most databases will support the IS NULL operation rather than = NULL in the WHERE clause, as demonstrated in the next query. IS NULL is the standard for SQL.
SELECT *
FROM	VEHICLE
WHERE	DateOfLastMaintenance IS NULL;
Registration_No OwningCompanyABN VehicleType_ID DateOfManufacture DateOfLastMaintenance
--------------- -------------------- -------------- ----------------- ---------------------
NGJ946 79834510388 3003 2009-10-23 NULL
YRN737 17948738949 1002 2019-04-03 NULL

The next query lists all the details of vehicles that have been maintained using IS NOT NULL in the WHERE clause.
SELECT	Registration_No,
	OwningCompanyABN,
	VehicleType_ID,
	DateOfManufacture,
	DateOfLastMaintenance
FROM	VEHICLE
WHERE	DateOfLastMaintenance IS NOT NULL;
Registration_No OwningCompanyABN VehicleType_ID DateOfManufacture DateOfLastMaintenance
--------------- -------------------- -------------- ----------------- ---------------------
ADB435 17948738949 1002 2018-02-01 2019-07-04
AWQ763 17948738949 2003 2017-07-12 2019-06-15
DSF743 79834510388 2004 2016-09-08 2019-06-05
EGD783 17948738949 3003 2019-09-04 2019-09-04
FHT326 79834510388 8001 2008-12-01 2019-06-08
IOU645 17948738949 1003 2017-10-07 2019-09-12
JHF674 91876578373 12002 2007-01-09 2019-07-05
POR621 79834510388 2004 2016-09-08 2019-06-05
TRT757 91876578373 12001 2019-04-07 2019-11-10
UTY327 79834510388 2004 2016-09-08 2019-06-05
VIV443 79834510388 8001 2008-12-01 2019-06-09
YDF742 91876578373 12003 2003-06-14 2019-09-11
Listing records with more complex expressions
You can combine expressions in the WHERE clause using the logical operators AND and OR. The next query lists the date of manufacture and the date of last maintenance (which is NULL) of the vehicle with registration number YRN737, because you want to know if it’s old enough to have received a service yet.
SELECT	DateOfManufacture,
	DateOfLastMaintenance
FROM	VEHICLE
WHERE	DateOfLastMaintenance IS NULL
AND	Registration_No = 'YRN737';
DateOfManufacture DateOfLastMaintenance
----------------- ---------------------
2019-04-03 NULL

The next query lists the details of all VEHICLE_TYPEs. What if you wanted to list the details of vehicle types that have a range of 1,200 km and either use a Hybrid/Petrol fuel type or have a fuel capacity of 80 litres?
Those records are highlighted in the result set below.
SELECT	*
FROM	VEHICLE_TYPE;
VehicleType_ID FuelType FuelCapacity Range
-------------- -------------- ------------ ------
1001 Petrol 40 600
1002 Petrol 40 600
1003 Diesel 50 900
1004 Hybrid/Petrol 20 1200
1005 Hybrid/Petrol 30 1500
2001 Diesel 80 600
2002 Diesel 100 800
2003 Diesel 120 1200
2004 Hybrid/Diesel 50 800
2005 Hybrid/Diesel 80 1200
2006 Hybrid/Diesel 80 1400
3001 Diesel 110 900
3002 Diesel 120 1000
3003 Diesel 120 1100
8001 Diesel 210 1500
8002 Diesel 250 1800
8003 Diesel 300 900
12001 Diesel 800 2400
12002 Diesel 1200 3000
12003 Diesel 1200 3500
Combining the logical operators AND and OR in the next query provides the information that you require.
Note the square brackets around the column [Range]. SQL Server requires you to use the square brackets as delimiting characters, in this case because Range is a keyword in the Microsoft .Net Framework.
SELECT	*
FROM	VEHICLE_TYPE
WHERE	[Range] = 1200
AND	FuelType = 'Hybrid/Petrol'
OR	FuelCapacity = 80;

VehicleType_ID FuelType FuelCapacity Range
-------------- -------------- ------------ ------
1004 Hybrid/Petrol 20 1200
2001 Diesel 80 600
2005 Hybrid/Diesel 80 1200
2006 Hybrid/Diesel 80 1400

When combining complex expressions using the logical operators AND and OR, SQL evaluates the expressions according to the following rules:
Operations inside the parentheses are prioritised
then all ANDs
then all ORs.
Now, if you add parentheses around the fuel type and fuel capacity, the logic of the query changes and produces a different result set as demonstrated in the next query below.
SELECT	*
FROM	VEHICLE_TYPE
WHERE	[Range] = 1200
AND	(FuelType = 'Hybrid/Petrol' OR FuelCapacity = 80);

VehicleType_ID FuelType FuelCapacity Range
-------------- -------------- ------------ ------
1004 Hybrid/Petrol 20 1200
2005 Hybrid/Diesel 80 1200
So, the two questions being asked are as follows:
The query without the parentheses is asking ‘list all the details of vehicle types that have a range of 1200 km and a fuel type of Hybrid/Petrol. Also list any other vehicle types that have a fuel capacity of 80 litres regardless of the range and fuel type.’
The query with the parentheses is asking ‘list all the details of vehicle types that have a range of 1200 km and either a fuel type of Hybrid/Petrol or a fuel capacity of 80 litres.’
The difference is quite subtle however the two result sets demonstrate this critical difference.

Other logical operators IN, BETWEEN, and LIKE
The next query lists all the details of the courier companies in the database.
SELECT	*
FROM	COURIER_COMPANY;
ABN CompanyName Phone
------------ -------------------------------- ----------
17948738949 Lockwood Couriers & Taxi Trucks 0295676789
32874653678 Abc Express 0287465367
37067463537 GoParcel 0284765367
53004085616 A1 Freight 0238476378
57087489589 Go-Go Errands 0294653678
72034374637 A2B Couriers & Taxi Trucks 0376578398
73023003457 Budget Courier Systems 0237678956
79834510388 Rocket Couriers 0298765463
89653008761 Barnetts Couriers 0287645786
90131456438 Bluewater Couriers 0294765367
91876578373 Bestever Transport 0387647584
In a production database, the list of companies would be much longer, and retrieving the details of a company with go in the company name would be difficult if you had to manually check the list.
The solution is to use the LIKE operator. The LIKE operator searches each string of characters in each field (and row) of the specified column, looking for a pattern match. This is a very expensive database operation in terms of resources used, so this operation should be used sparingly. The next query demonstrates the use of the LIKE operator in conjunction with the wildcard character %.
SELECT	*
FROM	COURIER_COMPANY
WHERE	CompanyName LIKE '%go%';
ABN CompanyName Phone
------------ ------------- ----------
37067463537 GoParcel 0284765367
57087489589 Go-Go Errands 0294653678
The preceding wildcard character % stipulates the selection of records with any number of any other characters preceding the pattern go. The trailing wildcard character % stipulates the selection of records with any number of any other characters following the pattern go. The LIKE operator can only be used with character data, it can’t be used with numeric data.

The next query selects drivers that have ‘r’ as the second letter in their last name using the underscore ‘_’. The underscore matches exactly any single character.
SELECT	*
FROM	DRIVER
WHERE LastName LIKE '_r%';
Licence_No FirstName LastName Phone EmployingCompanyABN
---------- ---------- --------- ---------- --------------------
57463576 Barry Brown 0348473647 79834510388
75849857 Sharon Branson 0347637748 91876578373
If you were asked ‘give me a list of vehicle types that have a minimum fuel capacity of 40 litres and a maximum fuel capacity of 100 litres’ you could use the BETWEEN operator to produce the list, as shown in the next query.
SELECT	VehicleType_ID,
		FuelCapacity
FROM	VEHICLE_TYPE
WHERE	FuelCapacity BETWEEN 40 AND 100;
VehicleType_ID FuelCapacity
-------------- ------------
1001 40
1002 40
1003 50
2001 80
2002 100
2004 50
2005 80
2006 80
Notice that the BETWEEN operator is inclusive of the boundary values and is the same as ‘WHERE	FuelCapacity >= 40 OR FuelCapacity <= 100’.
You can also use the BETWEEN operator with character data as the next query demonstrates with the listing of names that are between the letters A and B.
SELECT	FirstName,
	LastName
FROM	DRIVER
WHERE	LastName BETWEEN 'A' AND 'B';
FirstName LastName
--------- ---------
Peter Anderton

What happened to the last names that start with a B? Well B is less than Ba, Bb, Bc, Bd, etc. So, since your last names have trailing characters after the first letter B, if you wanted to include those last names such as Brown and Branson, you would have to make the boundary value bigger than Br.
So Bs would work, though Bz would be better, because then you’d include all possible letters for the second character of the last name as the next query demonstrates.
SELECT	FirstName,
	LastName
FROM	DRIVER
WHERE	LastName BETWEEN 'A' AND 'Bz';
FirstName LastName
--------- ---------
Barry Brown
Peter Anderton
Sharon Branson
Suppose you wanted to list the first names and last names of drivers with the following driver’s licence numbers: 1593PD; 28476653; 4433JK; 75849857; 84756748. You could write a query like the following.
SELECT	*
FROM	DRIVER
WHERE	Licence_No = '1593PD'
OR 	Licence_No = '28476653'
OR 	Licence_No = '4433JK'
OR 	Licence_No = '75849857'
OR 	Licence_No = '84756748';
Licence_No FirstName LastName Phone EmployingCompanyABN
---------- --------- ---------- ---------- --------------------
1593PD Donald White 0294765367 91876578373
28476653 Yu Shoiwheng 0294756456 91876578373
4433JK David Livingston 0294564536 79834510388
75849857 Sharon Branson 0347637748 91876578373
84756748 Andrew Davidson 0376564653 91876578373

Or you could write a query like the next query where IN allows the comparison of column values to a list.
SELECT	*
FROM	DRIVER
WHERE	Licence_No IN ('1593PD', '28476653', '4433JK', '75849857', '84756748');
Licence_No FirstName LastName Phone EmployingCompanyABN
---------- --------- ---------- ---------- --------------------
1593PD Donald White 0294765367 91876578373
28476653 Yu Shoiwheng 0294756456 91876578373
4433JK David Livingston 0294564536 79834510388
75849857 Sharon Branson 0347637748 91876578373
84756748 Andrew Davidson 0376564653 91876578373
Using the ORDER BY clause to sort results
The ORDER BY clause is used for specifying the column(s) by which the sort order of the result set is defined. The relational database model stipulates that the order of the records is not important. Physically, the order in which data is written to disk could be random or it could be ordered by the primary key.
So, the order of any SELECT statement might vary each time the query is executed. To avoid this problem, you can use the ORDER BY clause to specify the order in which you want the results listed, as demonstrated in the next query that lists the vehicles from oldest to newest.
SELECT	*
FROM	VEHICLE
ORDER BY DateOfManufacture;
Registration_No OwningCompanyABN VehicleType_ID DateOfManufacture DateOfLastMaintenance
--------------- -------------------- -------------- ----------------- ---------------------
YDF742 91876578373 12003 2003-06-14 2019-09-11
JHF674 91876578373 12002 2007-01-09 2019-07-05
FHT326 79834510388 8001 2008-12-01 2019-06-08
VIV443 79834510388 8001 2008-12-01 2019-06-09
NGJ946 79834510388 3003 2009-10-23 NULL
POR621 79834510388 2004 2016-09-08 2019-06-05
DSF743 79834510388 2004 2016-09-08 2019-06-05
UTY327 79834510388 2004 2016-09-08 2019-06-05
AWQ763 17948738949 2003 2017-07-12 2019-06-15
IOU645 17948738949 1003 2017-10-07 2019-09-12
ADB435 17948738949 1002 2018-02-01 2019-07-04
YRN737 17948738949 1002 2019-04-03 NULL
TRT757 91876578373 12001 2019-04-07 2019-11-10
EGD783 17948738949 3003 2019-09-04 2019-09-04

Ascending is the default sort direction. You can also specify more than one column to sort by. For example, you can sort in descending order for the fuel capacity; then within the individual groups of fuel capacities, you can sort the range in ascending order, as indicated in the next query.
SELECT	*
FROM	VEHICLE_TYPE
ORDER BY FuelCapacity DESC, [Range] ASC;
VehicleType_ID FuelType FuelCapacity Range
-------------- -------------- ------------ ------
12002 Diesel 1200 3000
12003 Diesel 1200 3500
12001 Diesel 800 2400
8003 Diesel 300 900
8002 Diesel 250 1800
8001 Diesel 210 1500
3002 Diesel 120 1000
3003 Diesel 120 1100
2003 Diesel 120 1200
3001 Diesel 110 900
2002 Diesel 100 800
2001 Diesel 80 600
2005 Hybrid/Diesel 80 1200
2006 Hybrid/Diesel 80 1400
2004 Hybrid/Diesel 50 800
1003 Diesel 50 900
1001 Petrol 40 600
1002 Petrol 40 600
1005 Hybrid/Petrol 30 1500
1004 Hybrid/Petrol 20 1200
If you list the vehicle types from the VEHICLE table, you’ll get a lot of repetition of the VehicleType_ID, which may be unnecessary. The next query lists all the VehicleType_IDs in the database, including the duplicates.
SELECT VehicleType_ID
FROM VEHICLE
ORDER BY VehicleType_ID;

VehicleType_ID

1002
1002
1003
2003
2004
2004
2004
3003
3003
8001
8001
12001
12002
12003
If you want to list the individual vehicle types that you have in the database, rather than the number of each vehicle type, you can use the DISTINCT keyword to eliminate the duplicated values as demonstrated in the next query.
SELECT	DISTINCT VehicleType_ID
FROM	VEHICLE
ORDER BY VehicleType_ID;
VehicleType_ID

1002
1003
2003
2004
3003
8001
12001
12002
12003
Write SQL to select from multiple tables
One of the primary goals of relational database theory is to avoid data duplication. Relational databases are quite good at achieving this goal because they allow us to separate the data into tables, with each table representing one thing, and then providing a way to relate the tables to each other.
So, in the Courier Company Governance System database, the details of each vehicle type, the fuel type, the fuel capacity, and the range are stored only once for each vehicle type in the VEHICLE_TYPE table, rather than being stored for every vehicle in the VEHICLE table, thus avoiding duplication.
SQL allows us to select data from multiple tables by including the list of tables in the FROM clause. However, if you write a query such as the next query, you’ll get a lot of (what appear to be meaningless) records listed (which we won’t list here because the listing will be too long).
Try it and see.
SELECT *
FROM	COURIER_COMPANY,
	DRIVER;
The query above returns 121 rows. Table COURIER_COMPANY has 11 records in it and table DRIVER, coincidentally, also has 11 records in it. 11 × 11 = 121. So, what did the database server do when it executed the above query? It has taken each record from one table and matched it to each of the records in the other table, producing a somewhat meaningless ‘Product’ (multiplication) of the two tables.
A more meaningful combination of the two tables would be to match the records from the COURIER_COMPANY table to the records in the DRIVER table only if the DRIVER EmployingCompanyABN value equals (=) the COURIER_COMPANY ABN value. You can do this joining operation (or equality operation) in the WHERE clause of the query. We’re effectively joining the two tables based on the values stored in the primary key and the foreign key (the two keys that relate the tables to each other).
[image:]
[bookmark: _Ref29373597]Figure 33 Joining the DRIVER table and the COURIER_COMPANY table

The next query lists all the columns and rows from the DRIVER and COURIER_COMPANY tables, joining the tables in the WHERE clause on the foreign key and the primary key. Note that the order of join is not important because the expression doesn’t change if the operands switch sides, i.e. ‘WHERE ABN = EmployingCompanyABN’ is the same as ‘WHERE EmployingCompanyABN = ABN’.
SELECT *
FROM	DRIVER,
	COURIER_COMPANY
WHERE	EmployingCompanyABN = ABN;
Licence_No FirstName LastName Phone EmployingCompanyABN ABN CompanyName Phone
---------- --------- ---------- ---------- -------------------- ----------- ------------------------------- ----------
1593PD Donald White 0294765367 91876578373 91876578373 Bestever Transport 0387647584
2765GF John Smith 0297465367 17948738949 17948738949 Lockwood Couriers & Taxi Trucks 0295676789
28476653 Yu Shoiwheng 0294756456 91876578373 91876578373 Bestever Transport 0387647584
3173BC Mary Dilberry 0247564778 79834510388 79834510388 Rocket Couriers 0298765463
43567482 Nina Johansen 0294845748 17948738949 17948738949 Lockwood Couriers & Taxi Trucks 0295676789
4433JK David Livingston 0294564536 79834510388 79834510388 Rocket Couriers 0298765463
57463289 Marium Hashemi 0295847858 91876578373 91876578373 Bestever Transport 0387647584
57463576 Barry Brown 0348473647 79834510388 79834510388 Rocket Couriers 0298765463
7465SW Peter Anderton 0392837272 17948738949 17948738949 Lockwood Couriers & Taxi Trucks 0295676789
75849857 Sharon Branson 0347637748 91876578373 91876578373 Bestever Transport 0387647584
84756748 Andrew Davidson 0376564653 91876578373 91876578373 Bestever Transport 0387647584
The join will only produce results if there are matched rows. That is, it will only show results if there are drivers in the DRIVER table whose ‘EmployingCompanyABN’ exists in the ‘COURIER_COMPANY’ table. Those courier companies that have no drivers will not be listed.
The next query shows those courier companies (CompanyName) whose ABN is not in the driver table. That is, this is a listing of companies that have no drivers.
SELECT	CompanyName
FROM	COURIER_COMPANY
WHERE	ABN NOT IN (SELECT EmployingCompanyABN
		 FROM	DRIVER
);
CompanyName

Abc Express
GoParcel
A1 Freight
Go-Go Errands
A2B Couriers & Taxi Trucks
Budget Courier Systems
Barnetts Couriers
Bluewater Couriers

Qualifying column names
When the database server prepares a query for execution, it will parse (read) each of the column names listed in the SELECT clause and check each of the tables in the FROM clause for the existence of each column.
The parser will continue to scan all the tables in the FROM clause, even after it finds the column. Searching through all the tables can affect the performance of the query, particularly on large databases.
And it can also result in an ambiguous column name error if the column name is found in more than one table. The solution to both problems is to always qualify the names of the columns with the name of the table that the column is in. This is done using the ‘.’ dot notation by specifying tableName.columnName.
The next query demonstrates the qualification of column names with the names of the tables that the column is in, listing the first names, last names, and company name (employer) of all the drivers.
SELECT	DRIVER.FirstName,
	DRIVER.LastName,
	COURIER_COMPANY.CompanyName
FROM	DRIVER,
	COURIER_COMPANY
WHERE	DRIVER.EmployingCompanyABN = COURIER_COMPANY.ABN;
FirstName LastName CompanyName
-------------------- --------------------------------
Donald White Bestever Transport
John Smith Lockwood Couriers & Taxi Trucks
Yu Shoiwheng Bestever Transport
Mary Dilberry Rocket Couriers
Nina Johansen Lockwood Couriers & Taxi Trucks
David Livingston Rocket Couriers
Marium Hashemi Bestever Transport
Barry Brown Rocket Couriers
Peter Anderton Lockwood Couriers & Taxi Trucks
Sharon Branson Bestever Transport
Andrew Davidson Bestever Transport

Using aliases
Now that you’ve qualified each column name with the names of the tables that the columns are in, you’ve increased the amount of typing that you have to do. You can use aliases to shorten the table names using the AS keyword in the FROM clause. Using an alias in a SELECT query doesn’t permanently change the actual underlying table name.
The next query is functionally the same as the previous query except that it uses aliases for the table names. You will use aliases for the remaining queries in this course.
SELECT	d.FirstName,
	d.LastName,
	c.CompanyName
FROM	COURIER_COMPANY AS c,
	DRIVER AS d
WHERE	d.EmployingCompanyABN = c.ABN;
FirstName LastName CompanyName
--------- ---------- ---------------------------------
Donald White Bestever Transport
John Smith Lockwood Couriers & Taxi Trucks
Yu Shoiwheng Bestever Transport
Mary Dilberry Rocket Couriers
Nina Johansen Lockwood Couriers & Taxi Trucks
David Livingston Rocket Couriers
Marium Hashemi Bestever Transport
Barry Brown Rocket Couriers
Peter Anderton Lockwood Couriers & Taxi Trucks
Sharon Branson Bestever Transport
Andrew Davidson Bestever Transport
Suppose that you want to list the driver’s licence number, first name, last name, the name of the company that employs the driver, the vehicle type IDs that the driver is accredited to drive, the registration number of those vehicles types and the names of the companies that own the vehicles. Use the ERD Figure 32 to figure out how to traverse the joins from table to table, primary key to foreign key.

The query uses the ORDER BY clause to sort the results by the driver’s licence number. Note from the result set produced that most of the drivers are accredited to drive more than one type of vehicle.
1 SELECT	d.Licence_No,
2 	d.FirstName,
3 	d.LastName,
4 	c.CompanyName AS Employer,
5 	v.VehicleType_ID,
6 	v.Registration_No,
7 	c.CompanyName AS VehicleOwner
8 FROM	DRIVER AS d,
9 	COURIER_COMPANY AS c,
10 	VEHICLE AS v,
11 	VEHICLE_TYPE AS vt,
12 	ACCREDITATION AS a
13 WHERE	d.EmployingCompanyABN = c.ABN
14 AND	c.ABN = v.OwningCompanyABN
15 AND	v.VehicleType_ID = vt.VehicleType_ID
16 AND	vt.VehicleType_ID = a.VehicleType_ID
17 AND	a.Licence_No = d.Licence_No
18 ORDER BY d.Licence_No;
Let’s take a closer look at the WHERE clause of the query above using the data model to help understand it better.
Line 13 joins the DRIVER table and the COURIER_COMPANY table on:
‘WHERE d.EmployingCompanyABN = c.ABN’
[image:]
[bookmark: _Ref29381457]Figure 34 The data model relationship of the ABN in both tables
[image:]
[bookmark: _Ref29381569]Figure 35 The data model relationship of the ABN in both tables

Line 15 then joins the COURIER_COMPANY table to the VEHICLE table on:
‘AND v.VehicleType_ID = vt.VehicleType_ID’
[image:]
[bookmark: _Ref29381717]Figure 36 The product of the VEHICLE and VEHICLE_TYPE tables
Line 16 then joins the VEHICLE_TYPE to the ACCREDITATION table on:
‘AND 	vt.VehicleType_ID = a.VehicleType_ID’
[image:]
[bookmark: _Ref29381931]Figure 37 The product of the VEHICLE_TYPE and ACCREDITATION tables
Line 17 joins the ACCREDITATION table to the DRIVER table on:
‘AND 	a.Licence_No = d.Licence_No’
[image:]
[bookmark: _Ref29382062]Figure 38 The product of the ACCREDITATION and DRIVER tables

Below is the listing from the query discussed above.
Licence_No FirstName LastName Employer VehicleType_ID Registration_No VehicleOwner
---------- ---------- ---------- -------------------------------- -------------- --------------- -------------------------------
1593PD Donald White Bestever Transport 12002 JHF674 Bestever Transport
1593PD Donald White Bestever Transport 12001 TRT757 Bestever Transport
2765GF John Smith Lockwood Couriers & Taxi Trucks 1002 ADB435 Lockwood Couriers & Taxi Trucks
2765GF John Smith Lockwood Couriers & Taxi Trucks 2003 AWQ763 Lockwood Couriers & Taxi Trucks
2765GF John Smith Lockwood Couriers & Taxi Trucks 3003 EGD783 Lockwood Couriers & Taxi Trucks
2765GF John Smith Lockwood Couriers & Taxi Trucks 1003 IOU645 Lockwood Couriers & Taxi Trucks
2765GF John Smith Lockwood Couriers & Taxi Trucks 1002 YRN737 Lockwood Couriers & Taxi Trucks
28476653 Yu Shoiwheng Bestever Transport 12003 YDF742 Bestever Transport
3173BC Mary Dilberry Rocket Couriers 2004 DSF743 Rocket Couriers
3173BC Mary Dilberry Rocket Couriers 3003 NGJ946 Rocket Couriers
3173BC Mary Dilberry Rocket Couriers 2004 POR621 Rocket Couriers
3173BC Mary Dilberry Rocket Couriers 2004 UTY327 Rocket Couriers
43567482 Nina Johansen Lockwood Couriers & Taxi Trucks 3003 EGD783 Lockwood Couriers & Taxi Trucks
4433JK David Livingston Rocket Couriers 2004 DSF743 Rocket Couriers
4433JK David Livingston Rocket Couriers 8001 FHT326 Rocket Couriers
4433JK David Livingston Rocket Couriers 2004 POR621 Rocket Couriers
4433JK David Livingston Rocket Couriers 2004 UTY327 Rocket Couriers
4433JK David Livingston Rocket Couriers 8001 VIV443 Rocket Couriers
57463289 Marium Hashemi Bestever Transport 12001 TRT757 Bestever Transport
57463576 Barry Brown Rocket Couriers 2004 DSF743 Rocket Couriers
57463576 Barry Brown Rocket Couriers 2004 POR621 Rocket Couriers
57463576 Barry Brown Rocket Couriers 2004 UTY327 Rocket Couriers
7465SW Peter Anderton Lockwood Couriers & Taxi Trucks 1002 ADB435 Lockwood Couriers & Taxi Trucks
7465SW Peter Anderton Lockwood Couriers & Taxi Trucks 2003 AWQ763 Lockwood Couriers & Taxi Trucks
7465SW Peter Anderton Lockwood Couriers & Taxi Trucks 3003 EGD783 Lockwood Couriers & Taxi Trucks
7465SW Peter Anderton Lockwood Couriers & Taxi Trucks 1003 IOU645 Lockwood Couriers & Taxi Trucks
7465SW Peter Anderton Lockwood Couriers & Taxi Trucks 1002 YRN737 Lockwood Couriers & Taxi Trucks
75849857 Sharon Branson Bestever Transport 12001 TRT757 Bestever Transport
75849857 Sharon Branson Bestever Transport 12003 YDF742 Bestever Transport
84756748 Andrew Davidson Bestever Transport 12003 YDF742 Bestever Transport

Using an expression to filter a sequence, based on a predicate or a condition
You can filter the results of a query by specifying a predicate (or a condition) that evaluates to TRUE or FALSE. For example, the next query produces a listing that will only include records if it is TRUE that the driver’s FirstName is David and the driver’s LastName is Livingston.
SELECT	d.FirstName,
	d.LastName,
	c.CompanyName AS Employer,
	v.VehicleType_ID
FROM	DRIVER AS d,
	COURIER_COMPANY AS c,
	VEHICLE AS v,
	VEHICLE_TYPE AS vt,
	ACCREDITATION AS a
WHERE	d.EmployingCompanyABN = c.ABN
AND	c.ABN = v.OwningCompanyABN
AND	v.VehicleType_ID = vt.VehicleType_ID
AND	vt.VehicleType_ID = a.VehicleType_ID
AND	a.Licence_No = d.Licence_No
AND	(d.FirstName = 'David' AND	d.LastName = 'Livingston')
ORDER BY v.VehicleType_ID;
FirstName LastName Employer VehicleType_ID
---------- ----------- ---------------- --------------
David Livingston Rocket Couriers 2004
David Livingston Rocket Couriers 2004
David Livingston Rocket Couriers 2004
David Livingston Rocket Couriers 8001
David Livingston Rocket Couriers 8001

Using an expression to filter the subset of a sequence, based on a predicate or a condition
You can further filter the sequence by applying another predicate. In this case we’ll apply the predicate ‘AND v.VehicleType_ID = '8001'’ in the next query below.
SELECT	d.FirstName,
	d.LastName,
	c.CompanyName AS Employer,
	v.VehicleType_ID
FROM	DRIVER AS d,
	COURIER_COMPANY AS c,
	VEHICLE AS v,
	VEHICLE_TYPE AS vt,
	ACCREDITATION AS a
WHERE	d.EmployingCompanyABN = c.ABN
AND		c.ABN = v.OwningCompanyABN
AND		v.VehicleType_ID = vt.VehicleType_ID
AND		vt.VehicleType_ID = a.VehicleType_ID
AND		a.Licence_No = d.Licence_No
AND		(d.FirstName = 'David' AND	d.LastName = 'Livingston')
AND		v.VehicleType_ID = '8001'
ORDER BY v.VehicleType_ID;
FirstName LastName Employer VehicleType_ID
---------- ---------- --------------- --------------
David Livingston Rocket Couriers 8001
David Livingston Rocket Couriers 8001

Using an expression to perform calculations on numeric values
You can perform calculations on numeric values stored in a table by using a mathematical expression that also evaluates to a numeric result. For example, if you wanted to calculate the approximate litres of fuel consumption per 100 km for each vehicle type, you could write a query such as the following.
SELECT vt.VehicleType_ID,
	vt.FuelType,
	vt.FuelCapacity,
	vt.[Range],
	vt.FuelCapacity / ([Range] / 100) AS [Approx. Litres Of Fuel Per 100 kms]
FROM	VEHICLE_TYPE AS vt
ORDER BY [Approx. Litres Of Fuel Per 100 kms];
VehicleType_ID FuelType FuelCapacity Range Approx. Litres Of Fuel Per 100 kms
-------------- -------------- ------------ ------ --------------------------------
1004 Hybrid/Petrol 20 1200 1
1005 Hybrid/Petrol 30 1500 2
1003 Diesel 50 900 5
2006 Hybrid/Diesel 80 1400 5
2004 Hybrid/Diesel 50 800 6
2005 Hybrid/Diesel 80 1200 6
1001 Petrol 40 600 6
1002 Petrol 40 600 6
3003 Diesel 120 1100 10
2003 Diesel 120 1200 10
3001 Diesel 110 900 12
3002 Diesel 120 1000 12
2002 Diesel 100 800 12
2001 Diesel 80 600 13
8002 Diesel 250 1800 13
8001 Diesel 210 1500 14
8003 Diesel 300 900 33
12001 Diesel 800 2400 33
12003 Diesel 1200 3500 34
12002 Diesel 1200 3000 40
This is an approximation because, if you consider the first row of the result set and do a manual calculation, the answer is not 1 (as indicated):
20 ÷ (1200 ÷ 100) = 1.66666…
The reason for this is that FuelCapacity and Range are stored in the table as SMALLINTs (whole numbers) and you’re dividing the Range by 100, which is also interpreted by the database server as an INTEGER.
So, the result produced is rounded down to the nearest INTEGER. If you want a more accurate measure of fuel consumption, you should modify the expression so that the result is produced as a DECIMAL. This can be done by dividing the Range by 100.00 (instead of 100). So, in the next query the expression becomes:
FuelCapacity ÷ (Range ÷ 100.00) = Litres of fuel per 100 km.

SELECT vt.VehicleType_ID,
	vt.FuelType,
	vt.FuelCapacity,
	vt.[Range],
	vt.FuelCapacity / ([Range] / 100.00) AS [Litres Of Fuel Per 100 kms]
FROM	VEHICLE_TYPE AS vt
ORDER BY [Litres Of Fuel Per 100 kms];
VehicleType_ID FuelType FuelCapacity Range Litres Of Fuel Per 100 kms
-------------- -------------- ------------ ------ --------------------------
1004 Hybrid/Petrol 20 1200 1.66666666666666
1005 Hybrid/Petrol 30 1500 2.00000000000000
1003 Diesel 50 900 5.55555555555555
2006 Hybrid/Diesel 80 1400 5.71428571428571
2004 Hybrid/Diesel 50 800 6.25000000000000
2005 Hybrid/Diesel 80 1200 6.66666666666666
1001 Petrol 40 600 6.66666666666666
1002 Petrol 40 600 6.66666666666666
2003 Diesel 120 1200 10.00000000000000
3003 Diesel 120 1100 10.90909090909090
3002 Diesel 120 1000 12.00000000000000
3001 Diesel 110 900 12.22222222222222
2002 Diesel 100 800 12.50000000000000
2001 Diesel 80 600 13.33333333333333
8002 Diesel 250 1800 13.88888888888888
8001 Diesel 210 1500 14.00000000000000
8003 Diesel 300 900 33.33333333333333
12001 Diesel 800 2400 33.33333333333333
12003 Diesel 1200 3500 34.28571428571428
12002 Diesel 1200 3000 40.00000000000000
Now that’s probably a little too accurate. You can format the output of the column displaying the fuel consumption in many ways. In this case you’ll use the CAST() function (rather than the FORMAT() function) because you’re sorting the results based on the actual numeric value.
The FORMAT() function would be easier to use but would convert the output to character data and disrupt the sort order. The next query demonstrates the use of the CAST() function.
Note the specification of the size of the DECIMAL type of (5,2). This stipulates a decimal value with five significant figures and two decimal places (e.g. 999.99).

SELECT vt.VehicleType_ID,
	vt.FuelType,
	vt.FuelCapacity,
	vt.[Range],
	CAST((vt.FuelCapacity / ([Range] / 100.00)) AS DECIMAL(5,2)) AS [Litres Of Fuel Per 100 kms]
FROM	VEHICLE_TYPE AS vt
ORDER BY [Litres Of Fuel Per 100 kms] ;
VehicleType_ID FuelType FuelCapacity Range Litres Of Fuel Per 100 kms
-------------- ------------- ------------ ------ --------------------------
1004 Hybrid/Petrol 20 1200 1.67
1005 Hybrid/Petrol 30 1500 2.00
1003 Diesel 50 900 5.56
2006 Hybrid/Diesel 80 1400 5.71
2004 Hybrid/Diesel 50 800 6.25
2005 Hybrid/Diesel 80 1200 6.67
1001 Petrol 40 600 6.67
1002 Petrol 40 600 6.67
2003 Diesel 120 1200 10.00
3003 Diesel 120 1100 10.91
3002 Diesel 120 1000 12.00
3001 Diesel 110 900 12.22
2002 Diesel 100 800 12.50
2001 Diesel 80 600 13.33
8002 Diesel 250 1800 13.89
8001 Diesel 210 1500 14.00
8003 Diesel 300 900 33.33
12001 Diesel 800 2400 33.33
12003 Diesel 1200 3500 34.29
12002 Diesel 1200 3000 40.00

Using an expression to extract a specific value by position
Often you will want to select data based on its ranking or position in a range of values. For example, you might want to know which is the fifth most fuel-efficient vehicle type in your database. You can use the DENSE_RANK() function to rank values according to their position in an ordered list.
The next query uses the DENSE_RANK() function to rank the vehicle types according to the fuel consumption.
SELECT	VehicleType_ID,
	FuelType,
	FuelCapacity,
	[Range],
	CAST(FuelCapacity / ([Range] / 100.00) AS DECIMAL(5,2)) AS [FuelConsumption],
DENSE_RANK() OVER (ORDER BY (CAST(FuelCapacity / ([Range] / 100.00) AS DECIMAL(5,2))) ASC) AS RankedConsumptionValue
FROM	VEHICLE_TYPE;
VehicleType_ID FuelType FuelCapacity Range FuelConsumption RankedConsumptionValue
-------------- ------------- ------------ ------ --------------- ----------------------
1004 Hybrid/Petrol 20 1200 1.67 1
1005 Hybrid/Petrol 30 1500 2.00 2
1003 Diesel 50 900 5.56 3
2006 Hybrid/Diesel 80 1400 5.71 4
2004 Hybrid/Diesel 50 800 6.25 5
2005 Hybrid/Diesel 80 1200 6.67 6
1001 Petrol 40 600 6.67 6
1002 Petrol 40 600 6.67 6
2003 Diesel 120 1200 10.00 7
3003 Diesel 120 1100 10.91 8
3002 Diesel 120 1000 12.00 9
3001 Diesel 110 900 12.22 10
2002 Diesel 100 800 12.50 11
2001 Diesel 80 600 13.33 12
8002 Diesel 250 1800 13.89 13
8001 Diesel 210 1500 14.00 14
8003 Diesel 300 900 33.33 15
12001 Diesel 800 2400 33.33 15
12003 Diesel 1200 3500 34.29 16
12002 Diesel 1200 3000 40.00 17

You can use a Common Table Expression (CTE) to extract a specific value by its position. For example, if you wanted to know which vehicle type had the fifth best fuel consumption figures (the vehicle type highlighted in green above) you could write a CTE query that utilises the DENSE_RANK() function as demonstrated in the query below.
1 WITH RankedFuelConsumption AS
2 (
3 SELECT VehicleType_ID,
4 	 FuelType,
5 	 FuelCapacity,
6 	 [Range],
7 	 CAST(FuelCapacity / ([Range] / 100.00) AS DECIMAL(5,2)) AS [FuelConsumption],
8 DENSE_RANK() OVER (ORDER BY (CAST(FuelCapacity / ([Range] / 100.00) AS
9 DECIMAL(5,2))) ASC) AS RankedConsumptionValue
10 FROM	VEHICLE_TYPE
11)
12 SELECT	VehicleType_ID,
13 	FuelType,
14 	FuelCapacity,
15 	[Range],
16 	FuelConsumption
17 FROM	RankedFuelConsumption
18 WHERE	RankedFuelConsumption.RankedConsumptionValue = 5;
VehicleType_ID FuelType FuelCapacity Range FuelConsumption
-------------- -------------- ------------ ------ ----------------
2004 Hybrid/Diesel 50 800 6.25
Line one defines the name of the Common Table Expression (CTE) to be used later in line 17 as a table. Lines three to 10 define the actual CTE.
You can think of a CTE as a virtual table, that will have the columns listed in the SELECT list of lines three to nine. In this case, it also uses the DENSE_RANK() function in lines nine and 10 to rank the derived and ordered fuel consumption values.
Line seven is included purely for the purpose of displaying the actual fuel consumption value in the output and is used in line 16.

Using aggregate functions
You can list the lowest fuel consumption by using the MIN() aggregate function as demonstrated in the query below.
SELECT MIN(CAST((vt.FuelCapacity / ([Range] / 100.00)) AS decimal(5,2))) AS [Lowest Fuel Consumption Ltrs/100 kms]
FROM	VEHICLE_TYPE AS vt;
Lowest Fuel Consumption Ltrs/100 kms

1.67
The next query lists the highest fuel consumption value using the MAX() aggregate function.
SELECT MAX(CAST((vt.FuelCapacity / ([Range] / 100.00)) AS decimal(5,2))) AS [Highest Fuel Consumption Ltrs/100 kms]
FROM	VEHICLE_TYPE AS vt;
Highest Fuel Consumption Ltrs/100 kms

40.00
You can count the number of distinct vehicle types using the COUNT() function as demonstrated in the next query.
SELECT COUNT(DISTINCT VehicleType_ID) AS NoOfVehicleTypes
FROM	VEHICLE_TYPE;
NoOfVehicleTypes

20
The next query counts the number of drivers in the DRIVER table, again using the COUNT() function.
SELECT COUNT(*) AS NoOfDrivers
FROM	DRIVER;
NoOfDrivers

11

The GROUP BY clause
If you wanted to know how many vehicle accreditations each driver has, you could join the DRIVER and ACCREDITATION tables and list the VehicleType_IDs for each vehicle the driver is accredited to drive, as indicated in the query below.
SELECT	d.Licence_No,
	d.FirstName,
	d.LastName,
	a.VehicleType_ID
FROM	DRIVER AS d,
	ACCREDITATION AS a
WHERE	d.Licence_No = a.Licence_No
ORDER BY d.LastName;
Licence_No FirstName LastName VehicleType_ID
---------- --------- ---------- --------------
7465SW Peter Anderton 1002
7465SW Peter Anderton 1003
7465SW Peter Anderton 2003
7465SW Peter Anderton 3003
75849857 Sharon Branson 12001
75849857 Sharon Branson 12003
57463576 Barry Brown 2004
84756748 Andrew Davidson 12003
3173BC Mary Dilberry 2004
3173BC Mary Dilberry 3003
57463289 Marium Hashemi 12001
43567482 Nina Johansen 3003
4433JK David Livingston 2004
4433JK David Livingston 8001
28476653 Yu Shoiwheng 12003
2765GF John Smith 1002
2765GF John Smith 1003
2765GF John Smith 2003
2765GF John Smith 3003
1593PD Donald White 12001
1593PD Donald White 12002
You can see that Peter Anderton is accredited to drive four different vehicle types, Sharon Branson two, Barry Brown one, and so on. You’ll also notice that the values in each of the three columns of the highlighted rows are all the same.
So, if you apply the COUNT() function to the VehicleType_ID column and you collapse the values of the other three columns (using the GROUP BY clause) into a single row (which you can do because the values are the same for each row) you can list a single row for each driver with a count of how many vehicles they’re accredited to drive.
The GROUP BY clause is used in conjunction with aggregate functions to group rows that have the same values in each column.

Note: The general rule for the use of the GROUP BY clause is that any columns in the SELECT clause that are not being aggregated MUST be included in the GROUP BY clause. The next query demonstrates this rule.
SELECT		d.Licence_No,
		d.FirstName,
		d.LastName,
		COUNT(a.VehicleType_ID) AS NoOfVehicleAccreditations
FROM		DRIVER AS d,
		ACCREDITATION AS a
WHERE		d.Licence_No = a.Licence_No
GROUP BY 	d.Licence_No,
		d.FirstName,
		d.LastName
ORDER BY 	d.LastName,
NoOfVehicleAccreditations DESC;
Licence_No FirstName LastName NoOfVehicleAccreditations
---------- ---------- ----------- -------------------------
7465SW Peter Anderton 4
75849857 Sharon Branson 2
57463576 Barry Brown 1
84756748 Andrew Davidson 1
3173BC Mary Dilberry 2
57463289 Marium Hashemi 1
43567482 Nina Johansen 1
4433JK David Livingston 2
28476653 Yu Shoiwheng 1
2765GF John Smith 4
1593PD Donald White 2
Using the HAVING clause
Suppose you wanted to list the details of only those drivers that have more than two vehicle accreditations. The next query demonstrates the use of the HAVING clause to filter a subset of a sequence using a predicate.
SELECT		d.Licence_No,
		d.FirstName,
		d.LastName,
		COUNT(a.VehicleType_ID) AS NoOfVehicleAccreditations
FROM		DRIVER AS d,
		ACCREDITATION AS a
WHERE		d.Licence_No = a.Licence_No
GROUP BY 	d.Licence_No,
		d.FirstName,
		d.LastName
HAVING		COUNT(a.VehicleType_ID) > 2
ORDER BY 	d.LastName,
		NoOfVehicleAccreditations DESC;
Licence_No FirstName LastName NoOfVehicleAccreditations
---------- --------- --------- -------------------------
7465SW Peter Anderton 4
2765GF John Smith 4
The HAVING clause is used to filter the results produced by aggregated data or functions.
The query below demonstrates the use of the AVG() aggregate function (average) to return the average age of the vehicles in the VEHICLE table.
SELECT	AVG(DATEDIFF(year, v.DateOfManufacture, GETDATE())) AS AverageVehicleAge
FROM	VEHICLE AS v
AverageVehicleAge

5
Now, let’s count how many vehicles each courier company owns in the next query below.
SELECT		c.ABN,
		c.CompanyName,
		COUNT(v.Registration_No) AS NoOfVehiclesOwned
FROM		COURIER_COMPANY AS c,
		VEHICLE AS v
WHERE		c.ABN = v.OwningCompanyABN
GROUP BY	c.ABN,
		c.CompanyName
ORDER BY	NoOfVehiclesOwned DESC;
ABN CompanyName NoOfVehiclesOwned
----------- ------------------------------- -----------------
79834510388 Rocket Couriers 6
17948738949 Lockwood Couriers & Taxi Trucks 5
91876578373 Bestever Transport 3

Using an expression to perform an operation on date and time values
The next query lists the details of those drivers whose accreditations were due to expire between the 25th December 2019 and the 1st January 2020 inclusive.
SELECT	d.Licence_No,
	d.FirstName,
	d.LastName,
	a.VehicleType_ID,
	a.ExpiryDate
FROM	DRIVER AS d,
	ACCREDITATION AS a
WHERE	d.Licence_No = a.Licence_No
AND	a.ExpiryDate BETWEEN '2019-12-25' AND '2020-01-01';
Licence_No FirstName LastName VehicleType_ID ExpiryDate
---------- ---------- --------- -------------- ----------
2765GF John Smith 1002 2020-01-01
2765GF John Smith 1003 2020-01-01
2765GF John Smith 2003 2020-01-01
2765GF John Smith 3003 2020-01-01
75849857 Sharon Branson 12001 2019-12-26
75849857 Sharon Branson 12003 2019-12-30
84756748 Andrew Davidson 12003 2019-12-28
The next query derives the approximate age (years) of each vehicle using the DATEDIFF() function to determine the difference between the vehicle's date of manufacture and the current date (using the GETDATE() function).
SELECT	v.Registration_No,
	v.DateOfManufacture,
	DATEDIFF(year, v.DateOfManufacture, GETDATE()) AS VehicleAgeYears
FROM	VEHICLE AS v;
Registration_No DateOfManufacture VehicleAgeYears
--------------- ----------------- ---------------
ADB435 2018-02-01 1
AWQ763 2017-07-12 2
DSF743 2016-09-08 3
EGD783 2019-09-04 0
FHT326 2008-12-01 11
IOU645 2017-10-07 2
JHF674 2007-01-09 12
NGJ946 2009-10-23 10
POR621 2016-09-08 3
TRT757 2019-04-07 0
UTY327 2016-09-08 3
VIV443 2008-12-01 11
YDF742 2003-06-14 16
YRN737 2019-04-03 0

The GETDATE() function returns the current system date. The DATEDIFF() function returns the difference between two dates – a start date and an end date – and has the following syntax:
DATEDIFF(datepart, startdate, enddate)
The DATEDIFF() function can also calculate the difference between two time values as well. For example, the difference in seconds between two given times could be determined as follows:
DATEDIFF(second, starttime, endtime)
A more accurate determination of the age can be achieved by calculating the difference in days and then dividing by 365.0 to return a decimal value, as demonstrated in the next query below.
SELECT	v.Registration_No,
	v.DateOfManufacture,
	(DATEDIFF(day, v.DateOfManufacture, GETDATE()) / 365.0) AS VehicleAgeYears
FROM	VEHICLE AS v;
Registration_No DateOfManufacture VehicleAgeYears
--------------- ----------------- ----------------
ADB435 2018-02-01 1.873972
AWQ763 2017-07-12 2.432876
DSF743 2016-09-08 3.273972
EGD783 2019-09-04 0.284931
FHT326 2008-12-01 11.049315
IOU645 2017-10-07 2.194520
JHF674 2007-01-09 12.945205
NGJ946 2009-10-23 10.156164
POR621 2016-09-08 3.273972
TRT757 2019-04-07 0.695890
UTY327 2016-09-08 3.273972
VIV443 2008-12-01 11.049315
YDF742 2003-06-14 16.520547
YRN737 2019-04-03 0.706849

Now that’s too accurate. Use the FORMAT() function in the next query to format the output to two decimal places.
SELECT	v.Registration_No,
	v.DateOfManufacture,
 FORMAT((DATEDIFF(day, v.DateOfManufacture, GETDATE()) / 365.0), '###.##') AS
 VehicleAgeYears
FROM	VEHICLE AS v;
Registration_No DateOfManufacture VehicleAgeYears
--------------- ----------------- ---------------
ADB435 2018-02-01 1.87
AWQ763 2017-07-12 2.43
DSF743 2016-09-08 3.27
EGD783 2019-09-04 .28
FHT326 2008-12-01 11.05
IOU645 2017-10-07 2.19
JHF674 2007-01-09 12.95
NGJ946 2009-10-23 10.16
POR621 2016-09-08 3.27
TRT757 2019-04-07 .7
UTY327 2016-09-08 3.27
VIV443 2008-12-01 11.05
YDF742 2003-06-14 16.52
YRN737 2019-04-03 .71
You can list the day of the week that the vehicles were manufactured using the DATENAME() function. The DATENAME() function returns character data and has the following syntax.
DATENAME(datepart, date)
This is demonstrated in the next query.
SELECT	v.Registration_No,
	v.DateOfManufacture,
	DATENAME(dw, v.DateOfManufacture) AS DayOfTheWeekBuilt
FROM	VEHICLE AS v;
Registration_No DateOfManufacture DayOfTheWeekBuilt
--------------- ----------------- -----------------
ADB435 2018-02-01 Thursday
AWQ763 2017-07-12 Wednesday
DSF743 2016-09-08 Thursday
EGD783 2019-09-04 Wednesday
FHT326 2008-12-01 Monday
IOU645 2017-10-07 Saturday
JHF674 2007-01-09 Tuesday
NGJ946 2009-10-23 Friday
POR621 2016-09-08 Thursday
TRT757 2019-04-07 Sunday
UTY327 2016-09-08 Thursday
VIV443 2008-12-01 Monday
YDF742 2003-06-14 Saturday
YRN737 2019-04-03 Wednesday

The next query lists details of vehicles that received their maintenance on a Sunday.
SELECT	v.Registration_No,
	v.OwningCompanyABN,
	v.VehicleType_ID,
	v.DateOfLastMaintenance
FROM	VEHICLE AS v
WHERE	DATENAME(dw, DateOfLastMaintenance) = 'Sunday';
Registration_No OwningCompanyABN VehicleType_ID DateOfLastMaintenance
--------------- ----------------- -------------- ---------------------
TRT757 91876578373 12001 2019-11-10
VIV443 79834510388 8001 2019-06-09
You can format the output of date and time values listed in your query. There are many ways that you can achieve this. The first technique is to use the CONVERT() function, which provides some pre-defined styles for date and time output. The syntax for the CONVERT() function is as follows.
CONVERT(data_type [(length)], expression [, style])
The next query converts the driver’s accreditation expiry date to the British/French date format of dd/mm/yyyy using a style value of 103.
SELECT	d.Licence_No,
	d.FirstName,
	d.LastName,
	a.VehicleType_ID,
	CONVERT(NVARCHAR, a.ExpiryDate, 103) AS AccreditationExpiryDate
FROM	DRIVER AS d,
	ACCREDITATION AS a
WHERE	d.Licence_No = a.Licence_No
AND	(d.Licence_No = '43567482'
OR	d.LastName = 'Livingston');
Licence_No FirstName LastName VehicleType_ID AccreditationExpiryDate
---------- --------- ------------------------- ------------------------
4433JK David Livingston 2004 03/03/2020
43567482 Nina Johansen 3003 10/06/2020
4433JK David Livingston 8001 03/03/2020

You can also use the FORMAT() function to control the output format of date and time values from your queries. The next query outputs the date in the format WeekdayName, MonthName dd, yyyy.
SELECT	d.Licence_No,
	d.FirstName,
	d.LastName,
	a.VehicleType_ID,
	FORMAT(a.ExpiryDate, 'dddd, MMMM dd, yyyy') AS AccreditationExpiryDate
FROM	DRIVER AS d,
	ACCREDITATION AS a
WHERE	d.Licence_No = a.Licence_No
AND	(d.Licence_No = '43567482'
OR	d.LastName = 'Livingston');
Licence_No FirstName LastName VehicleType_ID AccreditationExpiryDate
---------- --------------------- -------------- ------------------------
4433JK David Livingston 2004 Tuesday, March 03, 2020
43567482 Nina Johansen 3003 Wednesday, June 10, 2020
4433JK David Livingston 8001 Tuesday, March 03, 2020
Using an expression to perform an operation on text values
You could achieve the same result (in a somewhat more convoluted way) using the DATENAME() function to extract the parts of a date value and then use the character concatenation operator (+) to build an expression that formats the date in the desired format.
You can also control the format of the driver’s name as demonstrated in the next query. Note the apostrophe (‘) in the alias for the [Driver’s Name]. Using an apostrophe for anything other than denoting character data (strings) in any code is courting catastrophe.
SELECT	d.Licence_No,
	d.LastName + ', ' +	d.FirstName AS [Driver's Name],
	a.VehicleType_ID,
	DATENAME(dw, a.ExpiryDate) + ', ' +
	DATENAME(MONTH, a.ExpiryDate) + ' ' +
	DATENAME(dd, a.ExpiryDate) + ', ' +
	DATENAME(year, a.ExpiryDate) AS AccreditationExpiryDate
FROM	DRIVER AS d,
	ACCREDITATION AS a
WHERE	d.Licence_No = a.Licence_No
AND	(d.Licence_No = '43567482'
OR	d.LastName = 'Livingston');
Licence_No Driver's Name VehicleType_ID AccreditationExpiryDate
---------- ------------------ -------------- ------------------------
4433JK Livingston, David 2004 Tuesday, March 3, 2020
43567482 Johansen, Nina 3003 Wednesday, June 10, 2020
4433JK Livingston, David 8001 Tuesday, March 3, 2020

You can use conditional statements such as the CASE statement (often referred to in programming languages as a SELECT CASE or sometimes a SWITCH statement) to apply conditional control over the display of data. For example, the value of the VehicleType_ID in the VEHICLE_TYPE table has semantic values as follows.
	‘1- - -’ = One Tonne Utility.
	‘2- - -’ = Two Tonne Utility.
	‘3- - -‘ = Three Tonne Tipper Truck.
	‘8- - -‘ = Eight Tonne Single Axle Pantech Truck.
	’12- - - ‘ = Twelve Tonne Articulated Semi-Trailer.
Since this has not been included in your table, you can write SQL to include this information using a CASE statement demonstrated in the next query. The syntax for the CASE statement is as follows.
CASE input_expression
 WHEN when_expression THEN result_expression [...n]
 [ELSE else_result_expression]
END

SELECT	v.VehicleType_ID,
		CASE
			WHEN v.VehicleType_ID LIKE '1___'
				THEN	'One Tonne Utility'
			WHEN v.VehicleType_ID LIKE '2___'
				THEN	'Two Tonne Utility'
			WHEN v.VehicleType_ID LIKE '3___'
				THEN	'Three Tonne Tipper Truck'
			WHEN v.VehicleType_ID LIKE '8___'
				THEN	'Eight Tonne Single Axle Pantech Truck'
			WHEN v.VehicleType_ID LIKE '12___'
				THEN	'Twelve Tonne Articulated Semi-Trailer'
			ELSE		'Unknown Vehicle Type'
			END AS VehicleTypeDescription,
	v.FuelType,
	v.FuelCapacity,
	v.[Range]
FROM	VEHICLE_TYPE v
VehicleType_ID VehicleTypeDescription FuelType FuelCapacity Range
-------------- ------------------------------------- ------------- ------------ ------
1001 One Tonne Utility Petrol 40 600
1002 One Tonne Utility Petrol 40 600
1003 One Tonne Utility Diesel 50 900
1004 One Tonne Utility Hybrid/Petrol 20 1200
1005 One Tonne Utility Hybrid/Petrol 30 1500
2001 Two Tonne Utility Diesel 80 600
2002 Two Tonne Utility Diesel 100 800
2003 Two Tonne Utility Diesel 120 1200
2004 Two Tonne Utility Hybrid/Diesel 50 800
2005 Two Tonne Utility Hybrid/Diesel 80 1200
2006 Two Tonne Utility Hybrid/Diesel 80 1400
3001 Three Tonne Tipper Truck Diesel 110 900
3002 Three Tonne Tipper Truck Diesel 120 1000
3003 Three Tonne Tipper Truck Diesel 120 1100
8001 Eight Tonne Single Axle Pantech Truck Diesel 210 1500
8002 Eight Tonne Single Axle Pantech Truck Diesel 250 1800
8003 Eight Tonne Single Axle Pantech Truck Diesel 300 900
12001 Twelve Tonne Articulated Semi-Trailer Diesel 800 2400
12002 Twelve Tonne Articulated Semi-Trailer Diesel 1200 3000
12003 Twelve Tonne Articulated Semi-Trailer Diesel 1200 3500
Note the use of the underscore (_) with the LIKE logical operator above. The underscore denotes a place holder for which any single character can be substituted. Each string in the query above contains three underscores.
You can use an inline IIF statement (an Immediate IF) to return either of two arguments based on the results of the evaluation of a Boolean expression. The syntax for the IIF is as follows.
IIF (Boolean_expression, actionIFTrue, actionIFFalse)

If you wanted to check that the expiry date of the driver’s accreditations is not due for at least 14 days and display a message accordingly, you could use an IIF as indicated in the next query.
SELECT d.Licence_No,
			d.FirstName,
			d.LastName,
			a.ExpiryDate,
	IIF (DATEDIFF(DAY, '2019-12-18', a.ExpiryDate) <= 14, 'Accreditation due to expire within two weeks!', 'Not Due to expire.') AS AccreditationStatus
	FROM	ACCREDITATION a,
			DRIVER d
	WHERE	a.Licence_No = d.Licence_No
Licence_No FirstName LastName ExpiryDate AccreditationStatus
---------- ---------- ----------- ---------- ---
2765GF John Smith 2020-01-01 Accreditation due to expire within two weeks!
7465SW Peter Anderton 2020-03-05 Not Due to expire.
2765GF John Smith 2020-01-01 Accreditation due to expire within two weeks!
7465SW Peter Anderton 2020-03-05 Not Due to expire.
2765GF John Smith 2020-01-01 Accreditation due to expire within two weeks!
7465SW Peter Anderton 2020-03-05 Not Due to expire.
3173BC Mary Dilberry 2020-05-16 Not Due to expire.
4433JK David Livingston 2020-03-03 Not Due to expire.
57463576 Barry Brown 2020-04-18 Not Due to expire.
2765GF John Smith 2020-01-01 Accreditation due to expire within two weeks!
3173BC Mary Dilberry 2020-05-16 Not Due to expire.
43567482 Nina Johansen 2020-06-10 Not Due to expire.
7465SW Peter Anderton 2020-03-05 Not Due to expire.
4433JK David Livingston 2020-03-03 Not Due to expire.
1593PD Donald White 2020-06-05 Not Due to expire.
57463289 Marium Hashemi 2020-03-04 Not Due to expire.
75849857 Sharon Branson 2019-12-26 Accreditation due to expire within two weeks!
1593PD Donald White 2020-06-05 Not Due to expire.
28476653 Yu Shoiwheng 2020-04-05 Not Due to expire.
75849857 Sharon Branson 2019-12-30 Accreditation due to expire within two weeks!
84756748 Andrew Davidson 2019-12-28 Accreditation due to expire within two weeks!

	[image:]	Watch
[bookmark: _Toc11228379][bookmark: _Toc29554609]Video: Difference between rank dense rank and row number in SQL
This video discusses the similarities and difference between RANK, DENSE_RANK and ROW_NUMBER functions in SQL Server (duration 04:42).
[image:]
https://youtu.be/MZTSHDFuCUk
[bookmark: _Toc29554610]Video: Cast and convert functions in SQL server
In this video you will learn, converting one data type to another using cast() and convert() functions (duration 17:25).
[image:]
https://youtu.be/8GHUfb5k-a8

[bookmark: _Toc29554611]Video: Group by in SQL server
In this video you will learn about, grouping rows using GROUP BY, filtering groups and difference between WHERE and HAVING clause in SQL server (duration 17:43).
[image:]
https://youtu.be/FKSSOpQe5Jc

[bookmark: _Toc29554612][bookmark: _Hlk10184735]Appendices
[bookmark: _Toc29554613]Websites
Table 15 Website URL
	Reference
	URL

	Basic Data Structure Models Explained With a Common Example
	https://www.researchgate.net/publication/291448084_BASIC_DATA_STRUCTURE_MODELS_EXPLAINED_WITH_A_COMMON_EXAMPLE

	Visual Paradigm
	https://www.visual-paradigm.com/tutorials/data-flow-diagram-dfd.jsp

	LucidChart diagramming software on the web
	https://www.lucidchart.com/pages/

	Vertabelo.com
	https://www.vertabelo.com/

	SQL Power Architect
	http://www.bestofbi.com/downloads/architect/1.0.8/SQL-Power-Architect-Setup-Windows-jdbc-1.0.8.jar

	Tutorial data modelling in SQL Power Architect
	Part 1—Installation https://www.youtube.com/watch?v=O9JB1pUmzts
Part 2 —Creating a physical model https://www.youtube.com/watch?v=JMY5BxcpCu8
Part 3—Next steps in creating a physical model https://www.youtube.com/watch?v=6bQAEdXhCJM

	Data modelling using SQL Power Architect (2 of 3)
	https://youtu.be/hHBSMGr6yDg

	User-defined types
	https://crate.io/docs/sql-99/en/latest/chapters/27.html#type-predicate

	Reference types
	https://crate.io/docs/sql-99/en/latest/chapters/12.html

[bookmark: _Toc29554614]LinkedIn learning videos
	Reference
	URL

	Understanding flat file databases
	https://www.linkedin.com/learning/database-foundations-core-concepts/understanding-flat-file-databases?u=57684225

	What is cloud computing?
	https://www.linkedin.com/learning/introduction-to-cloud-computing-for-it-pros/what-is-cloud-computing?u=57684225

	Overview of storage as a service
	https://www.linkedin.com/learning/introduction-to-cloud-computing-for-it-pros/overview-of-storage-as-a-service?u=57684225

	Introduction to XML
	https://www.linkedin.com/learning/microsoft-sql-server-2016-essential-training/introduction-to-xml?u=57684225

	Understanding hierarchical databases
	https://www.linkedin.com/learning/database-foundations-core-concepts/understanding-hierarchical-databases?u=57684225

	Data mining
	https://www.linkedin.com/learning/big-data-in-the-age-of-ai/data-mining?u=57684225

	Introduction to data modelling
	https://www.linkedin.com/learning/filemaker-relational-database-design/introduction-to-data-modeling?u=57684225

[bookmark: _Toc29554615]Image attributions
Table 16 Copyright and attributions
	Image
	Page #
	Attribution

	Cover
	1
	© Getty Images copied under licence
Credit: Colin Anderson Productions pty ltd
Creative #: 532029221

	Topic 1 cover
	9
	© Getty Images copied under licence
Credit: Thomas Barwick Creative #:481347421Credit: Thomas Barwick Creative #:481347421

	Topic 2 cover
	22
	© Getty Images copied under licence
Credit: Laurence Dutton Creative #: 885690024

	Figure 1 The client/server environment of the Internet
	25
	© TAFE NSW 2019

	Topic 3 cover
	39
	© Getty Images copied under licence
Credit: Maskot Creative #: 1159379063Credit: Maskot Creative #: 1159379063

	Figure 2 Example of a data flow diagram
	49
	© TAFE NSW 2019

	Figure 3 Example of a Chen Entity Relationship Diagram (ERD) which includes the attributes
	50
	© TAFE NSW 2019

	Figure 4 Example of a Chen Entity Relationship Diagram (ERD) without the attributes
	51
	© TAFE NSW 2019

	Figure 5 Crow's foot example
	51
	© TAFE NSW 2019

	Figure 6 Example of a Crow’s Foot ERD indicating the meaning of the cardinality symbols used
	52
	© TAFE NSW 2020

	Figure 7 The 1:M relationship between driver and courier company.
	64
	© TAFE NSW 2020

	Figure 8 The vehicle entity has now been added to the model
	65
	© TAFE NSW 2020

	Figure 9 The vehicle type entity has now been added to the model
	66
	© TAFE NSW 2020

	Figure 10 Driver and vehicle type identified as being in an M:N relationship
	67
	© TAFE NSW 2020

	Figure 11 Implementation of the composite entity (ACCREDITATION) converting the M:N relationship to two 1:M relationships
	68
	© TAFE NSW 2020

	Figure 12 The cardinality and optionality of the relationships either side of ACCREDITATION entity complete
	68
	© TAFE NSW 2020

	Figure 13 Each of the tables added to the Crow’s Foot model (no columns or data types have been defined yet)
	69
	© TAFE NSW 2020

	Figure 14 The DRIVER table with primary key column and its data type defined
	70
	© TAFE NSW 2020

	Figure 15 The COURIER_COMPANY table with primary key column and its data type defined
	70
	© TAFE NSW 2020

	Figure 17 The VEHICLE_TYPE table with surrogate primary key column defined as an Integer
	71
	© TAFE NSW 2020

	Figure 18 The relationship between DRIVER and COURIER_COMPANY implemented
	71
	© TAFE NSW 2020

	Figure 19 The relationship between COURIER_COMPANY and VEHICLE implemented
	72
	© TAFE NSW 2020

	Figure 20 The relationship between VEHICLE and VEHICLE_TYPE implemented
	72
	© TAFE NSW 2020

	Figure 21 The relationship between ACCREDITATION and VEHICLE_TYPE implemented
	73
	© TAFE NSW 2020

	Figure 22 The relationship between DRIVER and ACCREDITATION implemented
	74
	© TAFE NSW 2019

	Figure 23 The additional non-key columns (attributes) added to their respective tables (entities)
	80
	© TAFE NSW 2019

	Figure 24 The foreign key columns in DRIVER and VEHICLE given more meaningful names
	81
	© TAFE NSW 2019

	Figure 25 Defining a Unique non-clustered index on the CompanyName column
	82
	© TAFE NSW 2019

	Figure 26 CompanyName column defined as an alternate key by applying a unique non-clustered index to it
	82
	© TAFE NSW 2019

	Figure 27 ExpiryDate added to the primary key of the ACCREDITATION table
	83
	© TAFE NSW 2019

	Figure 28 Organisation chart
	102
	© SmartArt graphic TAFE NSW 2020

	Figure 29 The super type/sub type relationship
	102
	© SmartArt graphic TAFE NSW 2020

	Figure 30 The Crow’s Foot ERD implementing the hierarchy
	103
	© TAFE NSW 2019

	Figure 31 Example of the use of a user-defined data type
	104
	© TAFE NSW 2019

	Topic 4 cover
	106
	© Getty Images copied under licence
Credit: 10'000 Hours Creative #: 1084167640

	Figure 32 The Courier Company Governance System ERD (Data Model)
	114
	© TAFE NSW 2019

	Topic 5 cover
	130
	© Getty Images copied under licence
Credit: mirsad sarajlic Creative #: 1154381413

	Figure 33 Joining the DRIVER table and the COURIER_COMPANY table
	146
	© TAFE NSW 2019

	Figure 34 The data model relationship of the ABN in both tables
	150
	© TAFE NSW 2019

	Figure 35
	150
	© TAFE NSW 2019

	Figure 36 The product of the VEHICLE and VEHICLE_TYPE tables
	151
	© TAFE NSW 2019

	Figure 37 The product of the VEHICLE_TYPE and ACCREDITATION tables
	151
	© TAFE NSW 2019

	Figure 38 The product of the ACCREDITATION and DRIVER tables
	151
	© TAFE NSW 2019

CEO

Sales Manager

HR Manager

Operations Manager

Security Manager

Sales Staff Members

 Operations Staff Members

HR Staff Members

Security Staff Members

Employee

Department Manager

CEO

Staff Member

image35.jpg

image36.jpeg

image37.jpg

image38.png

image39.png

image40.png

image41.png

image42.png

image43.jpg

image44.jpg

image1.jpg

image45.jpg

image320.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image303.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image46.jpg

image47.jpg

image48.jpg

image2.jpeg

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image304.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image66.jpg

image67.png

image68.png

image69.png

image70.png

image71.png

image72.jpg

image321.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image73.jpg

image305.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image74.jpg

image75.jpg

image76.jpg

image77.jpg

image78.jpg

image79.jpg

image80.jpg

image81.jpg

image82.jpg

image83.jpg

image84.png

image85.png

image6.png

image28.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image86.jpg

image87.jpeg

image7.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image322.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image88.png

image89.png

image323.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image90.jpg

image7.png

image91.jpeg

image92.png

image93.png

image94.png

image95.png

image96.png

image97.png

image306.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image98.jpg

image9.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image99.jpg

image100.jpg

image8.png

image11.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image9.png

image13.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image10.png

image15.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image11.png

image17.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image12.jpg

image13.jpeg

image30.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image14.jpg

image15.jpg

image16.jpg

image17.jpg

image18.jpg

image19.jpg

image20.jpg

image21.jpg

image32.svg

.MsftOfcThm_Accent1_Fill {
 fill:#007E65;
}

image22.jpg

image23.jpeg

image24.png

image300.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image25.jpg

image26.jpg

image27.jpg

image28.jpg

image29.jpg

image30.jpg

image31.jpg

image301.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image32.jpg

image33.jpg

image302.svg

.MsftOfcThm_Accent1_Stroke {
 stroke:#007E65;
}

image34.jpg

image3.jpeg

image4.jpg

image5.png

