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PrEFACE

The programmable logic controller, first introduced in 1969, has become an unqualified success. This 
computer-based device has become the industry standard, replacing the hard-wired electromechanical 
devices and circuits that had controlled the process machines and driven equipment of industry in the past.

Programmable logic controllers, or PLCs as they are referred to, vary in size and sophistication. 
When PLCs were first introduced, they typically used a dedicated programming device for entering 
and monitoring the PLC program. The programming device could only be used for programming a 
specific brand of PLC. These dedicated programmers, while user friendly, were very expensive and 
could not be used for anything except programming a PLC. With the increased use of the personal 
computer, software was designed that allowed a personal computer to be used for PLC program-
ming. While dedicated programming devices are still available, the most common programming 
 device used today is a personal computer running Windows®-based programming software.

Many electricians and/or technicians seem apprehensive about PLCs and their application in indus-
try. One of the purposes of this text is to explain PLC basics using a plain, easy-to-understand ap-
proach, so that electricians and technicians with no PLC experience will be more comfortable with 
their first exposure to programmable logic controllers.

Half the battle of understanding any programmable logic controller is to first understand the termi-
nology of the PLC field. This text covers terminology, as well as explaining the input/output sec-
tion, processor unit, programming devices, memory organization, and much more.

A chapter has been included to explain not only ladder diagrams but also Relay Ladder Logic, 
which is the programming language used in the majority of programmable controllers today.

Examples of basic programming techniques used with typical PLCs are discussed and illustrated, as 
are the commonly used commands and functions. There are a variety of PLCs on the market today, 
and it would be impossible to write a book that explains how they all work and are programmed. 
Instead, this book is intended to discuss PLCs in a somewhat general, or generic, sense and to cover 
the basic concepts of operation that are common to all. Many of the examples used in this text are 
based on the Allen-Bradley PLC-5, SLC 500, MicroLogix, and Logix5000 family of PLCs.

New to This Edition: Programming instructions along with examples of the Allen-Bradley 
Logic5000 controllers has have been included throughout this edition. This will help the reader 
gain an understanding of tag-based memory as well as the additional flexibility that comes with 
Logix5000 controllers. Two new chapters have been added to this edition, “Function Block Dia-
gram and Structured Text Programming” and “Sequential Function Chart Programming.” These 
programming languages are gaining in popularity with many programmers and manufacturers. 
Function block diagram programming is typically found in process control applications in which 
there is more data handling and calculations. Structured text programming is best used for complex 
mathematical operations or specialized array/table loop processing. Sequential function chart pro-
gramming is most often used with an application that is sequential in nature and has definable steps 
that would typically be executed in sequential order.
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Although this text only scratches the surface of available commands and other advanced program-
ming capabilities of the PLCs on the market today, the reader will gain a basic understanding of the 
most commonly used commands and how they work. A chapter, “PLC Programming  Examples,” will 
provide the reader with examples of PLC programming code/logic utilizing many of the instructions 
 covered in previous chapters. The examples are intended to help the reader gain a better understand-
ing of the various PLC instructions and how they can be combined to provide simple control logic 
solutions.

As with any new skill, a firm base of understanding is required before an electrician or technician 
can become proficient. After completing the text, the reader will possess a good foundation upon 
which additional PLC skills and understanding can be built.

The best teacher, of course, is experience, and the only way to really understand any given PLC is 
to work with that PLC. If a PLC is not available, the next best thing is a workshop or seminar spon-
sored by a local PLC distributor. If a workshop or seminar is not available, obtain as much literature 
and other information as possible from a local electrical distributor or PLC representative.

The PLC manufacturers are reducing prices as well as adding new features and program capabilities 
every day. With the rapid advancements in PLCs, the electrician without an electronics background 
need not feel intimidated. The manufacturers are doing everything possible to make the PLC easy 
to install, program, troubleshoot, and maintain.

INSTRUCTOR SITE

An Instruction Companion Website containing supplementary material is available. This site con-
tains an Instructor Manual with answers to the chapter review questions, testbank, image gallery of 
text figures, and chapter presentations done in PowerPoint. Contact Delmar Cengage Learning or 
your local sales representative to obtain an instructor account. 

Accessing an Instructor Companion Web site from SSO Front Door

1.  GO TO http://login.cengage.com and log in using the Instructor email address and  password. 

2.  ENTER author, title, or ISBN in the Add a title to your bookshelf search box, and CLICK 
on Search button.

3. CLICK Add to My Bookshelf to add Instructor Resources.

4. At the Product page, click on the Instructor Companion site link. 

NEW USERS

If you’re new to Cengage.com and do not have a password, contact your sales representative.
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What is a Programmable 
Logic Controller (PLC)?

ChaPter

1
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	several	advantages	of	a	programmable	logic	controller	(PLC)	over	hardwired	

relay systems.
•	 Identify	the	four	major	components	of	a	typical	programmable	logic	controller	and	
	describe	the	function	of	each.

•	 Define	the	term	discrete.
•	 Define	the	term	analog.
•	 Identify	different	types	of	programming	devices.

A	programmable	logic	controller	is	a	solid-state	system	designed	to	perform	the	logic	functions	previ-
ously	accomplished	by	components	such	as	electromechanical	relays,	drum	switches,	mechanical	tim-
ers/counters, etc., for the control and operation of manufacturing process equipment and machinery.

Even	though	the	electromechanical	relay	(control	relays,	pneumatic	timer	relays,	etc.)	has	served	well	
for	many	generations,	often,	under	adverse	conditions,	the	ever-increasing	sophistication	and	com-
plexity	of	modern	processing	equipment	requires	faster	acting,	more	reliable	control	functions	than	
electromechanical	relays	and/or	timing	devices	can	offer.	Relays	have	to	be	hardwired	to	perform	a	
specific	function,	and	when	the	system	requirements	change,	the	relay	wiring	has	to	be	changed	or	
modified.	In	extreme	cases,	such	as	in	the	auto	industry,	complete	control	panels	had	to	be	replaced	
since	it	was	not	economically	feasible	to	rewire	the	old	panels	with	each	model	changeover.

It	was,	in	fact,	the	requirements	of	the	auto	industry	and	other	highly	specialized,	high-speed	manu-
facturing	processes	that	created	a	demand	for	smaller,	faster	acting,	and	more	reliable	control	de-
vices.	The	electrical/electronics	 industry	responded	with	modular-designed,	solid-state	electronic	
devices.	These	early	devices,	while	offering	solid-state	reliability,	lower	power	consumption,	ex-
pandability,	and	elimination	of	much	of	the	hardwiring	also	brought	with	them	a	new	language.	The	
language	consisted	of	AND	gates,	OR	gates,	NOT	gates,	OFF	RETURN	MEMORY,	J-K	flip	flops,	
and so on.

What happened to simple relay logic and ladder diagrams? That is the question the plant engineers and 
maintenance	electricians/technicians	asked	the	solid-state	device	manufacturers.	The		reluctance	of	the	
end user to learn a new language and the advent of the microprocessor gave the industry what is now  
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known as the programmable logic controller (PLC).	The	first	program	mable	logic		controller	was	
	invented	in	1969	by	Richard	(Dick)	E.	Morley,	who	was	the	founder	of	the	Modicon	Corporation.

Internally	there	are	still	AND	gates,	OR	gates,	and	so	forth	in	the	processor,	but	the	design	engineers	
have	preprogrammed	the	PLC	so	that	programs	can	be	entered	using	RELAY	LADDER	LOGIC.	
While	RELAY	LADDER	LOGIC	may	not	have	the	mystique	of	other	computer	languages	such	as	
PASCAL,	FORTRAN,	and	C++,	it	is	a	high-level,	real-world,	graphic	language	that	is	understood	
by	most	electricians	and	technicians.	RELAY	LADDER	LOGIC	programming	is	the	most	common	
programming	language	used	today	but	other	programming	languages	such	as	Sequential	Function	
Chart,	Structured	Text,	and	Function	Block	languages	can	also	be	found.

The	National	Electrical	Manufacturing	Association	(NEMA)	defines	a	programmable	controller	as	follows:

A	programmable	controller	is	a	digital	electronic	apparatus	with	a	programmable	memory	for	
storing	instructions	to	implement	specific	functions,	such	as	logic,	sequencing,	timing,	count-
ing, and arithmetic to control machines and processes.

What	does	a	PLC	consist	of,	and	how	is	it	different	from	a	computer	system?	The	PLC	consists	of	
a	programming	device	(computer	or	handheld	programmer),	processor	unit,	power	supply,	and	an	
input/output	(I/O)	interface	such	as	the	computer	system	illustrated	in	Figure	1–1.	And	while	there	are	
similarities,	there	are	also	some	major	differences.

Figure 1–1	Comparison	of	a	Computer	System	and	a	PLC
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Note: An interface occurs when two systems come together and interact, or communicate. In the case 
of the PLC, the communication or interaction is between the inputs (limit switches, push buttons, sen-
sors, and the like), outputs (coils, solenoids, lights, and so forth), and the processor. This interface 
happens when any input or output voltage (AC or DC) or current signal is changed to or from a low- 
voltage DC signal that the processor uses internally for the decision-making process.

PLCs	are	designed	to	be	operated	by	plant	engineers	and	maintenance	personnel	with	limited	knowl-
edge	of	computers.	Like	the	computer,	which	has	an	internal	memory	for	its	operation	and	storage	of	a	
program,	the	PLC	also	has	a	memory	for	storing	the	user	program,	or	LOGIC,	as	well	as	a	memory	for	
controlling	the	operation	of	a	process	machine	or	driven	equipment.	But	unlike	the	computer,	the	PLC	
is	typically	programmed	in	RELAY	LADDER	LOGIC,	not	one	of	the	computer	languages.	It	should	
be stated,	however,	that	some	PLCs	will	use	other	forms	of	PLC	language,	such	as	Structured	Text,	
Sequential	Function	Chart,	and	Function	Block	to	program	the	PLC.	A	brief	description	of	Structured	
Text,	Sequential	Function	Chart,	and	Function	Block	programming	will	be	provided	in	later	chapters.

The	PLC	is	also	designed	to	operate	in	the	industrial	environment	with	wide	ranges	of	ambient	tem-
perature,	vibration,	and	humidity,	and	is	not	usually	affected	by	the	electrical	noise	that	is	inherent	
in most industrial locations.

Note: Electrical noise is discussed in Chapter 2.

Maybe	one	of	the	biggest,	or	at	least	most	significant,	differences	between	the	PLC	and	a	computer	
is	that	PLCs	have	been	designed	for	installation	and	maintenance	by	plant	electricians	who	are	not	
required	to	be	highly	skilled	electronics	technicians.	Troubleshooting	is	simplified	in	most	PLCs	
because	they	include	fault	indicators,	blown-fuse	indicators,	input	and	output	status	indicators,	and	
written	fault	information	that	can	be	displayed	on	the	programmer.

Although	the	PLC	and	the	personal	computer	are	different	in	many	ways,	the	personal	computer	is	
often	used	for	programming	and	monitoring	the	PLC.	Using	personal	computers	in	conjunction	with	
PLCs	will	be	discussed	in	later	chapters.

A	typical	PLC	can	be	divided	into	four	components.	These	components	consist	of	the	processor 
unit, the power supply, the input/output section	(interface),	and	the	programming device.

The	processor	unit	houses	the	processor,	which	is	the	decision-maker,	or	“brain”	of	the	system.	The	
brain	is	a	microprocessor-based	system	that	replaces	control	relays,	counters,	timers,	sequencers,	and	
so	forth,	and	is	designed	so	that	the	user	can	enter	the	desired	program	in	RELAY	LADDER	LOGIC.	
The	processor	then	makes	all	 the	decisions	necessary	to	carry	out	the	user	program,	based	on	the	
status	of	the	inputs	and	outputs	for	control	of	a	machine	or	process.	It	can	also	perform	arithmetic	
functions,	data	manipulation,	and	communications	between	the	local	I/O	section,		remotely	located	
I/O	sections,	and/or	other	networked	PLC	systems.	Figure	1–2	shows	Allen-Bradley	SLC-5/05	and	
PLC-5/20C,	and	LOGIX	5550	processor	units.

Note: Some manufacturers refer to the processor as a CPU or central processing unit.

The	power	supply	is	necessary	to	convert	120	or	240	volts	AC	voltages	to	the	low	voltage	DC	re-
quired	for	the	logic	circuits	of	the	processor,	and	for	the	internal	power	required	for	the	I/O	modules.	
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The	power	supply	can	be	a	separate	unit	as,	shown	in	Figure	1–3,	one	of	modular	design	that	plugs	
into	the	processor	rack,	as	shown	in	Figure	1–4,	or,	depending	on	the	manufacturer,	one	that	is	an	
integral part of the processor.

Note: The power supply does not supply power for the actual input or output devices them-
selves; it only provides the power needed for the internal circuitry of the input and output mod-
ules. DC power for the input and output devices, if required, must be provided from a separate 
source.

The	power	supply	can	be	broken	down	into	four	basic	parts	as	shown	in	Figure	1–5.	The	first	block,	
or	section,	of	 the	power	supply	consists	of	a	step-down	transformer.	The	step-down	  transformer 
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Figure 1–2	Allen-Bradley	SLC-5/05	and
PLC-5/20C,	and	LOGIX	5550	Processor	Units
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	reduces	 the	 voltage	 level	 of	 the	 incoming	 AC	 power.	 Many	 power	 supplies	 use	 a	 step-down	
 transformer that is also a constant voltage transformer. A constant voltage transformer maintains a 
constant	output	voltage,	even	if	the	incoming	power	is	fluctuating.	The	second	portion	of	the	power	
supply	is	the	rectifier	section,	and	contains	the	full	wave	bridge	rectifier(s)	to	convert	the	AC	sine	
wave	from	the	secondary	of	the	transformer	to	a	pulsating	DC	voltage	(shown	by	the	wave	form	
in	Figure	1–5).	The	pulsating	DC	voltage	must	 be	 further	 conditioned	before	 it	 can	be	used	by	
the	processor	and	I/O	modules.	The	third	section	of	the	power	supply,	the	filter	section,	uses	filter		 

Figure 1–5	Block	Diagram	of	a	Typical	Power	Supply
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Figure 1–4	Modular	(Plug-in)	Power	Supply
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Power	Supply
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devices	and/or	networks	to	filter	and	smooth	the	DC	voltage	coming	from	the	rectifier	section.	The	
final	section	of	the	power	supply	consists	of	a	voltage	regulator.	The	regulator’s	function	is	to	main-
tain	a	constant	DC	output	voltage,	even	if	the	incoming	AC	voltage	fluctuates	or	varies	due	to	load	
changes	or	line	disturbances.

The	size	or	amperage	rating	of	the	power	supply	is	based	on	the	size,	number,	and	type	of	I/O	modules	
that	are	to	be	used.	Power	supplies	are	normally	available	with	output	current	ratings	of	3–20	amps.

Note: Consider future needs and the possibility of expansion when initially sizing the power supply. 
It is cheaper in the long run to install a larger power supply initially than to try to add additional 
 capacity at a later date.

The	input/output	section	consists	of	input	modules	and	output	modules.	The	number	of	input	and	
output	modules	necessary	is	dictated	by	the	requirements	of	the	equipment	that	is	to	be	controlled	
by	a	PLC.	Figure	1–6	shows	an	input/output	section.	Modules	are	“plugged	in”	or	added	as	required.

Input	and	output	modules,	referred	to	as	the	I/O	(I	for	input	and	O	for	output),	are	where	the	real-
world	devices	are	connected.	The	real-world	input	(I)	devices	can	be	push	buttons,	limit	switches,	
analog	sensors,	pressure	switches,	selector	switches,	etc.,	while	the	real-world	output	(O)	devices	
can	be	hardwired	motor	starter	coils,	solenoid	valves,	indicator	lights,	po	sitioning	valves,	and	the	
like. The term real world	 is	used	 to	distinguish	actual	devices	 that	exist	and	must	be	physically	
wired	from	the	internal	functions	of	the	PLC	system	that	duplicate	the	function	of	relays,	timers,	
counters,	and	so	on,	even	though	none	physically	exists.	This	may	seem	a	bit	strange	and	hard	to	
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Figure 1–6	Inserting	a	32-Point	Input	Module	into	a	Modicon	I/O	Rack	
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understand	at	this	point,	but	the	distinction	between	what	the	processor	can	do	internally—which	
eliminates	the	need	for	all	the	previously	used	control	relays,	timers,	counters,	and	so	forth—will	be	
graphically	shown	and	readily	understandable	later	in	the	text.

Real-world	input	and	output	devices	are	of	two	types:	discrete	and	analog.	Discrete	I/O	devices	are		either	
ON	or	OFF,	open	or	closed,	while	analog	devices	have	a	range	of	possible	values.	Examples	of	discrete	
devices	are	limit	switches,	push	buttons,	motor	starter	coils,	and	indicator	lamps.	Examples	of	analog	
devices	are	pressure	sensors,	temperature	probes,	panel	meters,	variable	speed	drive	signals,	and	modu-
lating	valves.	When	reference	is	made	to	an	I/O	device,	the	terms	discrete input device, discrete output 
device, analog input device, and analog output device	are	commonly	used	to	describe	the	type	of	device.

A	reference	was	made	earlier	in	this	chapter	to	the	I/O	section	as	an	interface.	Although	not	a	com-
mon	reference,	 it	 is	an	accurate	one.	The	 I/O	section	contains	 the	circuitry	necessary	 to	convert	
input	voltages	of	120–240	V	AC	or	0–24	V	DC,	etc.,	from	discrete input devices	to	low-level	DC	
voltages	(typically	5	V)	that	the	processor	uses	internally	to	represent	the	status	or	condition	(ON 
or OFF ).	Similarly,	the	I/O	section	changes	low-level	DC	signals	from	the	processor	to	120–240	
V	AC	or	DC	voltages	required	to		operate	the	discrete output devices.	The	I/O	section	also	converts	
varying voltage or current signals from analog input devices	into	corresponding	decimal	values	by	
way	of	an	Analog-to-Digital	converter	 (ADC).	This	same	process,	but	 reversed	via	a	Digital-to-
Analog	converter	(DAC),	is	used	by	the	I/O	section	to	convert	decimal	values	into	corresponding	
voltage or current signals necessary to operate analog output devices.	The	field	signals	from	both	
digital	and	analog	devices	are	normally	isolated	from	the	low-level	logic	circuitry	of	the	processor	
by	means	of	optical	coupling.	This	is	a	brief	overview	of	the	I/O	section	and	its	function.	How	input	
and	output	 devices	 are	wired	 to	 I/O	modules,	 optical	 coupling,	 and	more	 information	 about	 the	
module	circuitry	itself	is	covered	in	Chapter	2.

The programming device is used to enter the desired program or sequence of operation into the 
PLC	memory.	The	program	is	entered	using	RELAY	LADDER	LOGIC,	or	one	of	the	other	PLC	
programming languages, and it is this program that determines the sequence of operation and ulti-
mate	control	of	the	process	equipment	or	driven	machinery.	The	programming	device	can	be	one	
of	two	types:	hand-held	or	personal	computer.	The	personal	computer,	or	PC,	is	the	most	common	
programming	device	used	today.	The	dedicated	hand-held	programmer	(Figure	1–7)	was	once	very	
popular	but	has	been	largely	replaced	with	portable	personal	computers.

A	personal	computer	(PC)	is	used	to	program	most	of	the	PLCs	on	the	market	today.	The	PLC	
programming	software	that	is	installed	on	the	PC	and	a	communications	cable	is	sometimes	all	
that	is	required	to	program	the	PLCs.	At	other	times	special	hardware	keys	and/or	communica-
tion	cards	are	required	to	be	installed	on	the	PC	for	it	to	work	successfully	as	a	programming	
device.	The	PC	provides	the	benefit	of		a	large	viewing	screen	that	allows	more	of	the	program	
to	be	viewed	at	one	 time	and	makes	 troubleshooting	and	memory	access	much	easier.	 It	also	
provides program storage, as well as runs all the various software packages we have come to 
depend	 on	 today,	 such	 as	 spreadsheets,	 word	 processing,	 and	 graphics.	 Figure	 1–8	 shows	 a	
laptop personal computer that, with the appropriate software, is used to program and monitor a 
programmable	logic	controller.

What	is	a	Programmable	Logic	Controller	(PLC)?  7
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Figure 1–7	Hand-Held	Programmer	

Figure 1–8	Laptop	Computer	Connected	to	a	
AB	MicroLogix	1000
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Chapter Summary
Programmable	logic	controllers	(PLCs)	have	made	it	possible	to	precisely	control	large	process	ma-
chines and driven equipment with less physical wiring and lower installation costs than is required 
with standard electromechanical relays, pneumatic timers, drum switches, and so on. The program-
mability	allows	for	fast	and	easy	changes	in	the	RELAY	LADDER	LOGIC	to	meet	the	changing	
needs	of	the	process	or	driven	equipment	without	the	need	for	expensive	and	time-	consuming	rewir-
ing.	Designed	to	be	“technician	friendly,”	the	modern	PLC	is	easier	to	program	and	can	be	used	by	
plant	engineers	and	maintenance	technicians	who	have	little	or	no	electronic	background.

Review Questions
	 1.	 List	the	four	main	components	of	a	programmable	logic	controller.
	 2.	 Define	the	term	interface.
	 3.	 Define	the	term	real world.
	 4.	 Define	the	term	discrete.
	 5.	 Explain	the	following	initials	or	acronyms:
	 	 DC	 ADC	 AC
	 	 CPU	 DAC	 PC
	 	 PLC	 NEMA	 I/O	
	 6.	 Define	the	term	analog.
	 7.	 List	the	two	types	or	styles	of	programming	devices.
	 8.	 RELAY	LADDER	LOGIC	is	a	high-level	graphic	computer	language.
	 	 T    F
	 9.	 What	is	the	major	advantage	of	a	PLC	system	over	the	traditional	hardwired	control	system?
	10.	 	Draw	a	block	diagram	and	label	the	main	components	of	a	typical	DC	power	supply.

What	is	a	Programmable	Logic	Controller	(PLC)?  9
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Understanding the  
Input/Output (I/O) Section

Chapter

2
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	the	I/O	section	of	a	programmable	controller.
•	 Identify	DIP	switches.
•	 Describe	how	basic	AC	and	DC	input	and	output	modules	work.
•	 Define	optical isolation	and	describe	why	it	is	used.
•	 Describe	the	proper	wiring	connections	for	input	and	output	devices	and	their	corre-
sponding	modules.

•	 Explain	why	a	hardwired	emergency-stop	function	is	desirable.
•	 Define	the	term	interposing.
•	 Describe	what	I/O	shielding	does.
•	 List	environmental	concerns	when	installing	PLCs.

I/O SectIOn

The	input/output	section,	or	I/O	section,	is	the	major	reason	that	PLCs	are	so	versatile	when	used	
with	process	machines	or	driven	equipment.	The	I/O	section	has	the	ability	to	change	virtually	any	
type	of	voltage	or	current	signal	into	a	logic-level	signal	(typically	5	V	DC)	that	is	compatible	with	
the	processor.	The	I/O	section	automatically	makes	the	conversions	necessary	for	the	processor	to	
interpret input signals and to activate output devices, even when the input and output devices are of 
various	voltage	and	current	levels.

A	DC	input	module,	for	example,	can	be	used	with	a	24	V	DC	proximity	switch	to	turn	on	a	240	V	
AC	motor	starter	coil	that	is	connected	to	an	AC	output	module.	The	conversion	and	interfacing	is	
all	accomplished	automatically	in	the	I/O	section	of	the	PLC,	and	it	is	the	ease	with	which	the	inter-
facing	is	accomplished	that	has	made	the	PLC	such	a	viable	tool	in	industrial	and	process	control.

The	input	modules	of	the	I/O	section	provide	the	status	(ON or OFF)	of	push	buttons,	limit	switches,	
proximity	switches,	and	the	like,	to	the	processor	so	decisions	can	be	made	to	control	the	machine	or	
process	in	the	proper	sequence.	Outputs,	such	as	motor	starter	coils,	indicator	lights,	and	solenoids	
are	interfaced	to	the	processor	through	the	output	section	of	the	I/O.	Once	a	decision	has	been	made	
by	the	processor,	a	signal	is	sent	to	the	output	section	to	control	the	flow	of	current	to	the	output	
device.	In	general,	the	status	of	the	inputs	are	relayed	to	the	processor	and,	based	on	the	logic	of	the	
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program	that	has	been	written,	a	decision	is	made	to	turn	the	outputs	to	ON or OFF.	All	of	the	dif-
ferent	types	and	levels	of	signals	(voltages	and	currents)	used	in	the	control	process	are	interfaced	
in	the	I/O	section.

The	I/O	section	generally	can	be	divided	into	two	categories:	fixed	I/O	and	modular	I/O.

Fixed I/O
PLCs	with	fixed	I/O	typically	come	in	a	complete	unit	that	contains	the	processor,	I/O	section,	and	
power	 supply.	The	 I/O	 section	contains	 a	fixed	number	of	 inputs	 and	outputs.	For	 example,	 the	
	Allen-Bradley	MicroLogix	PLCs	shown	in	Figure	2–1a	have	a	combination	of	digital	and/or	analog	
inputs	and	outputs	in	a	self-contained	base	unit.	Like	most	small	PLCs	the	Allen-Bradley		MicroLogic	
can	be	DIN-rail	or	panel	mounted.	Figure	2–1b	shows	the	DIN–rail	mounting		instructions	for	the	
GE	Fanuc	Micro	PLC.

Pivot the unit downward (for a unit being mounted right- 
side up) until the spring-loaded clip in the bottom of the 
unit clicks firmly into place.

Position the upper edge of the unit over the DIN rail, so 
that the rail is behind the tabs as shown above.

CLIP

DIN
RAIL

TABS

1 2

Figure 2–1b DIN	Rail	Mounting
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12   Technician’s	Guide	to	Programmable	Controllers

Small	 PLCs	 with	 fixed	 I/O	 typically	 have	 a	 discrete	 input	 and	 output	 section.	As	 discussed	 in	
	Chapter 1,	discrete-type	I/O	signals	are	ON or OFF	and	do	not	vary	in	level.	For	example,	when	a	
120	V	limit	switch	closes	or	is	ON,	the	signal	to	the	input	section	will	be	120	V,	and	the	signal	will	
be	0	V	when	the	switch	is	open	(OFF).	Many	manufacturers	offer	models	with	analog	inputs	and/or	
outputs.	In	addition,	expansion	I/O	units	can	be	added	to	their	fixed	I/O	PLCs.

While	these	PLCs	are	small	in	size,	they	are	big	on	features.	Most	include	full-feature	instruction	
sets that include timers, counters, sequencers, shift registers, word moves, data compare, and much 
more.	One	should	consult	the	specific	dealer	for	a	full	list	of	features.

As	the	cost	of	these	compact	units	has	decreased,	their	use	has	increased.	The	costs	are	so	competi-
tive	that	any	control	processes	that	use	only	a	small	number	of	relays	and/or	timers	can	now	be	ac-
complished	using	a	small	PLC.	The	use	of	a	small	PLC	not	only	saves	money,	but	also	gives	added	
reliability	and	flexibility.

Because	of	their	shape	and	size,	the	term	“shoebox”	or	“brick”	is	often	used	by	manufacturers	and	
users	alike	when	referring	to	PLCs	with	fixed	I/O.	Figure	2–3	shows	the	Modicon	Micro	and	the	
expandable	Modicon	A120.	Note	the	relative	size	compared	to	the	ballpoint	pen.

Modular I/O
Modular	I/O,	as	the	name	implies,	is	modular	in	nature,	more	flexible	than	fixed	I/O	units,	and	pro-
vides	added	versatility	when	it	comes	to	the	type	and	number	of	input	and	output	devices	that	can	be	

If	more	I/O	capability	is	required	or	different	voltages	are	needed,	expansion	units	with	various	I/O	
configuration	can	be	added.	Figure	2–2	shows	an	Allen-Bradley	SLC	500	fixed	I/O	controller	with	
an	optional	two-slot	expansion	chassis.

Image not available due to copyright restrictions
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Understanding	the	Input/Output	(I/O)	Section   13

connected	to	the	system.	The	various	types	of	input	and	output	modules	that	make	up	the	I/O	section	
are	housed,	or	installed,	in	an	I/O	rack	or	chassis.

The	I/O	rack	or	chassis	is	a	framework	or	housing	into	which	modules	are	inserted.	Figure	2–4a	
shows	three	different	sizes	of	racks.	Figure	2–4b	shows	the	rack	with	the	I/O	modules	installed	and	
the	processor	ready	for	installation.

Figure 2–3 Modicon	Micro	and	A120	PLCs
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Figure 2–4a I/O	Racks Figure 2–4b I/O	Rack	with	Processor	
and	I/O	Modules
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14   Technician’s	Guide	to	Programmable	Controllers

Racks	or	chassis	come	in	many	shapes	and	sizes,	and	typically	allow	4,	8,	12,	or	16	modules	to	be	
inserted.	Racks	that	contain	I/O	modules	and	the	processor	are	referred	to	as	local	I/O.	Racks	that	
contain	I/O	modules,	remote	I/O	communication	cards,	and	are	mounted	separ	ately	or	away	from	
the processor are referred to as remote	I/O.	An	advantage	of	remote	I/O	racks	is	that	they	can	be	
mounted	up	to	10,000	feet	away	from	the	processor.	The	number	of	remote	I/O	racks	that	a	proces-
sor	can	control	varies	with	each	manufacturer.	The	communication	between	the	remote	rack	and	the	
processor	is	accomplished	using	several	different	types	of	communication	methods.	These	methods	
include	coaxial	cable,	twin	axial	cable,	shielded-twisted	pair,	or	fiber	optics.	If	distance	or	electrical	
noise	are	considerations,	the	fiber	optic	communication	method	may	be	the	best	option.	Figure	2–5	
shows	a	local	rack	and	three	remote	I/O	racks.

Whether	local	or	remote,	racks	normally	have	jumpers	or	switches	that	have	to	be	set	or	configured	
in	order	for	the	racks	to	communicate	with	the	processor.	A	common	switch	used	for	rack	configu-
ration	is	referred	to	as	a	DIP	switch.	DIP	is	short	for	dual-in-line	package,	a	common	electronic	
package	design,	or	style,	for	use	on	printed	circuit	boards.	These	DIP	switches	are	either	ON or 
OFF,	and	when	set	in	the	proper	sequence,	are	used	to	assign	an	address	to	a	rack,	such	as	Rack	1,	
Rack	2,	Rack	3,	etc.	DIP	switches	are	also	used	to	set	fault	parameters	as	well	as	other	processor	
functions.	DIP-switch	 settings	will	be	 specified	by	 the	PLC	manufacturers	 and	are	 found	 in	 the	
	installation	manual.

Note: Under no circumstances should a pencil be used to change a DIP switch position. The graphite 
in the pencil tip can break off, causing the switch to short. Instead, use the tip of a ballpoint pen or 
other nonconducting pointed object to change switch positions.

DIP	switches	are	generally	mounted	on	a	printed	circuit	board	located	in	the	back	of	the	I/O	rack	or	
chassis.	This	printed	circuit	board	is	often	referred	to	as	the	backplane.	Figure	2–6	shows	a	back-
plane	printed	circuit	board	and	a	DIP	switch	group	assembly.

Within each rack, individual input and output device connections must have a distinct address 
so  the processor knows where the device is located, and in return, can send and receive signals, 

PLC-5/15

LOCAL
I/O CHASSIS

REMOTE
I/O 
CHASSIS

REMOTE
I/O 
CHASSIS

REMOTE
I/O 
CHASSIS

1771-ASB MODULES

Figure 2–5 Local	Rack	with	Processor	and	Three	Remote	I/O	Racks
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Understanding	the	Input/Output	(I/O)	Section   15

	enabling	the	processor	to	monitor	and/or	control	the	device.	Allen-Bradley,	for	example,	uses	the	
rack	number,	location	of	a	module	within	a	rack,	and	the	terminal	number	of	a	module	to	which	an	
input	or	output	device	is	connected	to	determine	the	device’s	address.	Addresses	and	addressing	of	
input	and	output	devices	will	be	covered	in	Chapter	4.

Also	mounted	on	the	backplane	of	the	I/O	rack	are	prewired	slots	or	connectors	into	which	the	in-
dividual	I/O	modules	are	inserted.	When	inserting	the	modules,	proper	alignment	is	assured	by	card	
guides	(also	referred	to	as	printed	circuit	board	guides)	that	are	mounted	on	the	top	and	bottom	of	
the	I/O	rack,	as	seen	in	Figures	2–4a	and	2–4b.

Input	and	output	modules	can	be	separated	into	three	basic	groups:	discrete	or	digital	input/output	
modules,	analog	input/output	modules,	and	specialized	modules.

DIScrete I/O MODuleS

Discrete	I/O	modules	are	types	of	modules	that	only	accept	digital	or	ON- and OFF-type	signals.	
These	modules	only	recognize	these	two	states	or	conditions	which,	again,	are	ON or OFF.	If	a	dis-
crete device, such as a limit switch, is connected to this type of module, the module determines the 
state,	or	position,	of	the	limit	switch,	and	communicates	the	state,	or	status,	to	the	processor.	If	the	
limit switch is open (OFF ),	the	module	indicates	to	the	processor	that	the	limit	switch	is	OFF.	This	
OFF	condition	is	stored	in	the	processor	memory	as	a	zero	(0).	Had	the	limit	switch	been	in	a	closed	
position, the module would have sent a signal to the processor indicating that the limit switch was 
ON,	or	closed.	The	ON	condition	would	have	been	stored	in	the	processor	memory	as	a	one	(1).	All	
information	stored	in	the	processor	memory	about	the	status	or	condition	of	discrete	I/O	devices	is	
always	in	ones	and	zeros.

Discrete	modules	are	 the	most	common	type	used	 in	a	majority	of	PLC	applications	and	can	be	
	divided	into	two	groups:	input	and	output.

Discrete Input Module
The discrete input module communicates the status of the various real-world input devices con-
nected to the module (ON or OFF)	to	the	processor.

OFF

I/O CHASIS
BACKPLANE SWITCH ASSEMBLY

ON

Figure 2–6 Backplane	and	I/O	DIP	Switches
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16   Technician’s	Guide	to	Programmable	Controllers

Note: The term real world is used to indicate that an actual device is involved. As you will learn 
later in the text, the PLC has the ability to provide timing and counting functions for a machine, even 
though the timers and counters exist only within the processor, and are not wired into the circuit as 
with real-world, or actual devices.

Once	the	real-world	input	device	is	connected,	an	open	or	closed	electrical	circuit	exists,	de	pending	
on	the	position	(open	or	closed)	of	the	device.	The	status	of	the	real-world	input	device	is	then	con-
verted	to	a	logic-level	DC	electrical	signal	by	the	input	module	and	sent	to	the	processor.

Discrete	input	modules	come	in	a	wide	range	of	voltages	for	various	applications.	Some	of	the	more	
common	voltage	modules	are	120	V	AC,	240	V	AC,	24	V	DC,	and	12–24	V	DC.	Some	manufactur-
ers	give	their	modules	an	AC/DC	rating	to	increase	their	flexibility	and	reduce	required	inventory.	
It	is	important	to	note,	however,	that	while	the	module	may	be	used	with	either	AC	or	DC	input	
voltages, the voltages cannot	be	intermixed	on	the	same	module.

Input	modules	can	be	purchased	with	a	wide	range	of	input	terminals	or	points,	which	determine	the	
number	of	individual	field	devices	that	can	be	connected	to	the	module.	Common	sizes,	depending	
on	the	manufacturer,	are	8,	16,	and	32	points.	Sixteen-	and	32-point	modules	are	often	referred	to	
as	high-density	modules	since	they	are	physically	the	same	size	as	an	8-point	module.	High-	density	
modules	usually	provide	lower	cost	per	point,	or	input	device,	but	are	also	more	difficult	to	wire.	
The	increased	difficulty	in	wiring	is	caused	by	the	closer	proximity	of	the	wiring	terminals	and	the	
increased	number	of	wires	in	the	wiring	harness.

Ac Discrete Input Module
Figure	2–7	shows	a	simplified	diagram	of	one	of	the	input	circuits	of	a	typical	AC	discrete	input	
module.	Resistors	are	used	to	drop	the	incoming	voltage;	then	a	bridge	rectifier	is	used	to	convert	
the	AC	input	voltage	to	DC.	Next,	a	filtering	circuit	is	used	to	condition	the	DC	and	guard	against	
electrical	noise.	Electrical	noise	can	cause	a	short-duration	DC	pulse	that	is	sometimes	interpreted	
by	the	processor	as	a	closed	signal.	This	false,	or	erroneous,	signal	could	be	interpreted	as	a	valid	
signal,	and	a	1	would	be	placed	in	memory	to	indicate	the	device	was	ON,	even	though	it	was	not.	
To	eliminate	the	possibility	of	faulty	operation	due	to	electrical	noise,	the	filter	section	of	the	mod-
ule	delays	an	actual	input	signal	from	being	sent	to	the	processor	for	15	to	25	milliseconds	(msec).	

INPUT DEVICE OPTICAL ISOLATION

TO PLC's
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Figure 2–7 Simplified	AC	Input	Module	Circuit	with	Indicator	Light
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The	filter	requires	that	the	AC	signal	be	not	only	of	a	specific	value	but	also	be	present	for	a	specific	
amount	of	 time	before	 the	module	views	 it	 as	a	 real	 signal	and	communicates	 the	 results	 to	 the	
	processor.	A	valid	signal	is	relayed	through	an	optically coupled circuit,	across	the	backplane	of	
the	I/O	rack	to	the	processor.

The	optically	coupled	circuit	uses	a	light	emitting	diode	(LED)	to	turn	ON,	or	forward	bias,	a	photo	tran-
sistor	to	complete	the	electrical	circuit	to	the	processor.	When	the	LED	is	turned	ON to indicate that the 
actual	input	device	has	closed,	the	light	from	the	LED	is	picked	up	by	the	photo	transistor,	which	makes	
the	transistor	conduct	or	switch	on,	completing	a	5	V	DC	logic	circuit,	and	the	status	of	the	input	is	com-
municated	to	the	processor.	This	form	of	optical	coupling	is	also	referred	to	as	optical isolation. By 
employing	optical	coupling,	or		isolation,	there	is	no	actual	electrical	connection	between	the	input	device	
and	the	processor.	This	eliminates	any	possibility	of	the	input	line	voltage,	i.e.	120	or	240	V	AC,	from	
coming	in	contact	with	and	damaging	the	low-voltage	DC	section	of	the	processor.	Optical	isolation	also	
protects	the	processor	from	electrical	noise,	voltage	transients,	or	spikes.	In	summary,	optical	isolation	
prevents	any	unwanted	voltage	from	the	I/O	section	from	reaching	the	logic	section	of	the	processor.

Individual	status	lights	are	provided	for	each	device	that	is	connected	to	an	input	terminal	(Figure 2–7).	
The	status	light	is	ON	when	the	input	device	is	closed	and	is	OFF when the input device is open.	
With the status lights showing the actual position of the various input devices connected to the input 
module,	they	make	a	valuable	troubleshooting	aid.	The	electrician	or	technician	need	only	look	at	the	
status	lights	on	the	input	module	to	determine	the	position,	or	status,	of	any	input	device.

A	typical	I/O	module	consists	of	two	parts:	a	printed	circuit	board	and	a	terminal	assembly.	The	
printed	circuit	board	plugs	 into	 a	 slot,	 or	 connector,	 in	 the	 I/O	 rack	and	contains	 the	 solid-state	
electronic	circuits	that	interface	the	I/O	devices	with	the	processor.	The	terminal	assembly	then	at-
taches	to	the	front	edge	of	the	printed	circuit	board,	which	may	or	may	not	have	a	protective	cover,	
depending	on	the	manufacturer.	Figure	2–8,	left	to	right,	shows	a	typical	16-point	AC	input	module,	
a	16-point	AC	output	module,	and	an	analog	input	module.

Figure 2–8 AC	Input	and	Output	Modules	and	Analog	Input	Module
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18   Technician’s	Guide	to	Programmable	Controllers

Figure	2–9	shows	how	the	input	module	(Figure	2–8)	is	installed	in	the	I/O	rack.

After	the	input	modules	have	been	installed	in	the	I/O	rack,	they	are	ready	to	have	one	side	of	each	
input	device	connected	to	their	terminals	or	wiring	arms	(Figure	2–10).

Figure 2–9 Installing	a	Module	in	an	I/O	Rack
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Figure 2–10 I/O	Module	Field	Wiring	Arm
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While each input device has two wires connected, only one wire is connected directly to the input 
module.	 The	 other	wire	 of	 each	 input	 device	 is	 connected	 to	 Line	 1	 (Figure	 2–11a).	 The	 same	
	connection	scheme	is	used	for	8-,	16-,	or	32-point	input	modules.	Figure	2–11b	shows	the	wiring	
connections	for	an	Allen-Bradley	16-point	input	module.

The	wires	from	the	individual	devices	are	referred	to	as	field	wiring,	since	the	wires	are	external	to	
the	PLC	and	are	connected	in	the	field.	On	larger	process	machines,	the	field	wiring	that	is	brought	
into	the	I/O	rack	consists	of	hundreds	of	wires.	The	basic	rule	is	that	one side	of	each	input	device	
is	wired	to	a	hot	conductor	(L1	for	AC	or	1	for	DC),	and	the	other	side	of the	device	is	wired	to	
an	input	terminal	on	the	input	module.	The	input	module	has	a	common	connection	for	the	neutral,	

COMMON

L2L1

Figure 2–11a Field	Wiring	for	AC	Module
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L1
Not Used
Not Used
Not Used
Input 00
Input 01
Input 02
Input 03
Input 04
Input 05
Input 06

Input 07
Input 10
Input 11
Input 12
Input 13
Input 14
Input 15
Input 16
Input 17

L2

(Actual wiring runs in this direction.)

L2

L1

Terminal A must be connected to L1 to balance 
the line in ungrounded applications or for 
additional filtering of noise in grounded systems.

Figure 2–11b Connections	for	an	Allen-Bradley	
16-Point	Input	Module
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or	grounded	potential	(L2),	for	AC	modules,	and	for	the	negative	(–)	for	DC	modules.	Consult	the	
	literature	that	comes	with	each	input	module	to	ensure	that	the	correct	wiring	connections	are	made.

Figure	2–12	shows	two	simplified	circuits.	In	the	first,	or	traditional	circuit,	the	input	device	(single-
pole	switch)	is	connected	to,	and	controls,	the	light.	In	the	PLC	circuit,	the	input	device	is	connected	
to	the	input	module	instead	of	the	light.	The	module	converts	the	120	V	AC	input	signal	to	5	V	DC,	
and communicates the status of the single-pole switch to the processor which, in turn, controls a 
light	that	is	connected	to	an	output	module.

L1 L2 L1

L2

PLC (B)

1

2

COMMON

TRADITIONAL
(A) 3

Figure 2–12 Traditional	Wiring	for	Single	Pole	Switch	(A)	Compared	to	PLC	Wiring	(B)

Dc Discrete Input Module
Figure	2–13	shows	a	simplified	diagram	for	a	typical	DC	input	module.	With	the	exception	of	the	
bridge	rectifier	used	in	the	AC	module,	the	principles	are	the	same.	Resistors	are	used	to	lower,	or	
drop,	the	incoming	voltage.	Filtering	circuits	condition	the	low-voltage	signal	and	add	an	additional	
delay	in	the	response	time.	This	period	of	delay	is	slightly	less	than	the	delay	used	in	the	AC	input	
module,	but	it	is	also	used	to	verify	that	the	signal	received	is	a	valid	signal	of	a	proper	duration,	and	
not	a	signal	caused	by	electrical	noise,	voltage	transients,	or	the	like.

Figure 2–13 Simplified	Circuit	for	DC	Input	Module	with	Indicator	Light

INPUT INDICATOR LED
(STATUS LIGHT) OPTICAL ISOLATION

TO PLC’s
CPU
MODULE

PHOTO TRANSISTOR

L
E
D

R

D

LED

R+

–

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding	the	Input/Output	(I/O)	Section   21

Optical	isolation	is	also	used	on	the	DC	input	module	to	isolate	the	processor	from	the	higher	volt-
age	of	the	input	devices.	When	the	LED	is	turned	ON	by	the	closing	of	the	input	device,	the	photo	
transistor	 conducts,	 and	 the	 status	 of	 the	 input	 device	 is	 communicated	 across	 the	backplane	of	
the	I/O	rack	to	the	processor.	Status	lights,	shown	in	the	diagram,	are	also	provided	for	each	input	
device	to	indicate	whether	the	input	device	is	open	or	closed.	Figure	2–14	shows	how	a	typical	DC	
input	module	is	wired.

COMMON

DC
(+)

DC
(–)

Figure 2–14 Field	Wiring	for	DC	Input	Module

Fast-responding Dc Input Modules
Fast-responding	DC	input	modules	are	used	when	 the	process	requires	fast-acting	sensors	 to	re-
spond	to	high-speed	and/or	high-volume	applications.	Encoders,	other	types	of	sensors	that	respond	
with	many	pulses	for	each	rotation	of	a	shaft,	or	proximity	switches	that	are	counting	parts	or	prod-
ucts	produced	by	high-speed	machines	are	all	examples	of	the	benefits	of	a	fast-responding	module.	
The	internal	operation	of	the	module	is	the	same	as	the	discrete	DC	input	module,	with	the	excep-
tion	of	the	delay	created	in	the	filtering	circuit.	The	fast-responding	module	has	only	a	1-msec	or	
less	delay.	With	this	short	time,	normal	mechanical	contact	devices	may	not	work	correctly	due	to	
the	contact	bounce	that	is	inherent	in	some	mechanical	switches	and	contacts.	The	contact	bounce	
is	counted	as	an	additional	 input	signal	and	processed	by	the	processor.	This	extra	count	has	an	
	obvious	adverse	affect	on	machine	operation	and	is	not	a	proper	application	of	this	type	of	input	
module.

Discrete	input	modules	come	in	a	variety	of	types	and	styles	that	fit	most	applications	requiring	an	
ON- or OFF-type	of	signal.	Allen-Bradley,	for	example,	manufactures	nearly	twenty	different	types	
of	discrete	input	modules.	Selecting	the	proper	module	for	any	given	application	is	relatively	easy	
when	the	voltage	level,	voltage	type,	current,	and	response	time	are	known.
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Discrete Output Modules
The	purpose	of	a	discrete	output	module	is	to	control	the	current	flow	to	real-world	devices	such	
as	motor	starter	coils,	pilot	lights,	control	relays,	and	solenoid	valves.	As	was	true	for	the	discrete	
input module, the discrete output module also works on a digital, or ON and OFF,	basis.	When	the	
processor	has	made	a	decision	to	turn	a	specific	device	ON,	the	processor	places	a	1	in	the	memory	
location assigned to that output device, and later in the process, the information is communicated 
by	way	of	the	backplane	of	the	I/O	rack	to	the	output	module,	and	the	required	real-world	device	
will	be	turned	ON.	Similarly,	when	the	processor	determines	that	a	device	needs	to	be	turned	OFF, 
a	0	is	placed	in	the	device’s	memory	location	and	the	device	will	be	turned	OFF.	The	output	mod-
ule	acts like	a	remote	control	switch	that	is	controlled	by	the	processor	for	turning	output	devices	
ON and OFF.

Output	modules	are	generally	classified	as	AC	and	DC.	Both	types	offer	a	wide	range	of	voltages,	
typical	for	the	input	modules	discussed	earlier.	Read	the	information	sheets	carefully	to	determine	
that	the	module	selected	is	appropriate	for	the	load	(output	device)	that	is	to	be	controlled.

Output	modules	 are	 sized	 by	 the	 number	 of	 output	 devices	 that	 can	 be	 connected	 to	 them.	The	
numbers	of	terminals,	or	points,	for	connecting	output	devices	are	typically	8,	16,	and	32.	Output	
modules have a current rating for each terminal or connection point, as well as an overall rating 
for	the	module.	The	individual	terminal	rating	indicates	the	maximum	current,	or	load,	that	can	be	
controlled.	This	rating	is	a	continuous	duty	rating.	A	surge	rating	is	usually	provided,	indicating	
the	maximum	current	that	can	be	controlled	and	the	length	of	time.	The	time	rating	may	be	given	in	
milliseconds	or	in	cycles.	A	typical	current	rating	for	a	120	V	AC	output	module	would	be:	1.5	am-
peres	maximum	continuous	duty,	with	a	surge	current	rating	of	4	amperes	for	8.3	msec	(1/2	cycle).

The	surge	current	rating	is	necessary	for	the	inrush,	or	“pull-in,”	current	that	is	present	when	motor	
starter	coils,	solenoids,	and	other	 inductive	 loads	are	 initially	energized.	Once	 the	 load	has	been	
energized,	the	“hold-in,”	or	“seal-in,”	current	is	much	less,	and	the	continuous	duty	rating	of	the	
module	is	sufficient.

Each	module	also	has	a	total	current	rating.	The	total	current	rating	must	be	determined	from	the	
manufacturer’s	literature,	not	by	simply	adding	the	ampere	rating	per	point.	To	further	clarify	this	
point,	consider	 the	rating	of	one	manufacturer’s	16-point	120	V	AC	output	module.	Each	point	
is	rated	for	2	amperes	continuous	duty,	yet	the	maximum	current	rating	for	the	module	is	only	8	
amperes.	Why	is	the	total	rating	not	2	amperes	times	16	points,	or	32	amperes?	The	answer	has	to	
do	with	the	way	the	module	dissipates	the	heat	generated	by	the	current	flow	in	the	module.	Nor-
mally,	no	fans	or	other	external	methods	of	cooling	are	used,	and	the	heat	that	is	generated	within	
the	module	is	dissipated	using	heat	sinks.	Heat	sinks	work	on	convection	alone,	and	this	limits	the	
amount	of	heat	that	they	can	effectively	dissipate.	The	total	current	rating	that	a	module	is	given,	
therefore,	 is	 determined	by	 the	 ability	of	 the	module	 to	dissipate	heat.	Thus,	 the	 lower	 current	
	rating	of	the	16-point	120	V	AC	module	shows	that	the	module	can	only	satisfactorily	dissipate	
the heat	from	8 amperes	of	continuous	current	flow,	not	the	full	32	amperes	that	would	be	pos-
sible	if	all	loads	were	operating	at	the	maximum	2	amperes	rating.	In	reality,	however,	how	likely	
is	it	that	all	16	loads	connected	to	the	module	would	be	on	and	operating	at	their	full		2-amperes	
	capacity?
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Subjecting	the	module	to	higher-than-rated	current	loads	creates	excess	heat	in	the	module.	This	
excess	heat	has	a	detrimental	affect	on	the	electronic	components	and	leads	to	shortened	operating	
life	and/or	component	failure.	The	ambient	temperature	that	the	I/O	operates	in	is	another	factor	that	
must	be	considered.	PLCs	are	normally	designed	to	operate	in	a	temperature	range	of	32°–140°F	or	
0°–60°C.	Operating	in	temperatures	above	these	limits	affects	the	module’s	ability	to	dissipate	heat	
and	can	lead	to	early	component	failure.

Another	PLC	manufacturer	rates	their	16-point,	120	V	AC	output	module	at	.5	amperes	per	point,	
but	starts	to	derate	the	current	level	when	more	than	50%	of	the	points	are	ON,	and/or	when	the	
temperature	exceeds	40°C.	With	each	manufacturer	 rating	 their	output	modules	differently,	 it	 is	
necessary	to	carefully	review	the	literature	when	specifying	modules.

Ac Output Module
The	internal	circuitry	for	one	point	of	a	typical	AC	output	module	is	shown	in	Figure	2–15.	The	AC	
output module usually consists of a Triac	(shown	in	the	figure).	However,	some	manufacturers	use	
a Silicon-Controlled Rectifier (SCR)	instead	of	a	Triac.	When	the	processor	determines	that	the	
output	is	to	be	turned	ON,	a	signal	is	sent	across	the	backplane	of	the	I/O	rack	and	the	LED	(light	
emitting	diode)	is	turned	ON.	The	light	from	the	LED	causes	the	photo	transistor	to	conduct,	which	
provides	current	for	the	gate	of	the	Triac.	This	portion	of	the	output	module	optically	isolates	the	
logic	section	of	the	processor	from	the	line	voltage	of	the	output	devices.

OUTPUT INDICATOR LED
(STATUS LIGHT)

GATE CONTROLLED INPUT

FROM PLC's
CPU MODULE

LED

PHOTO TRANSISTOR

TRIAC

LOADOPTICAL ISOLATION

R

C

MOV

FUSE

L1

L2

Figure 2–15 Typical	AC	Output	Module	Circuit

The Triac is used as an electronic switch to turn output devices ON and OFF.	The	Triac	itself	is	the	
equivalent	of	two	silicon-controlled	rectifiers	in	inverse	parallel	connection	with	a	common	gate.	
The gate controls the switching state (ON or OFF)	of	the	device.	Once	a	signal	is	applied	and	the	
break-over	voltage	point	is	reached	on	the	gate	(normally	1	to	3	V),	the	Triac	freely	conducts	in	
	either	direction,	completing	the	path	for	current	flow	to	the	output	device.

A	Triac	is	a	solid	block	of	crystalline	material	and	is	more	sensitive	to	applied	voltages	and	currents	
than	standard	relay	contacts.	Triacs	are	also	 limited	 to	a	maximum	peak	applied	voltage,	and,	 if	
this	value	is	exceeded,	a	“dielectric-type”	breakdown	can	result,	causing	a	permanent	short-	circuit	
condition.	A	snubber	circuit	that	consists	of	a	resistor	in	series	with	a	capacitor	and	a	metal	oxide	
varistor	(MOV)	is	used	to	protect	the	Triac	from	damage	from	electrical	noise	and	voltage	spikes.	
The		resistor	and	capacitor	form	an	RC	circuit	that	is	used	to	control	the	rate	at	which	voltage	builds	

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



24   Technician’s	Guide	to	Programmable	Controllers

up	in	the	circuit.	If	the	voltage	rises	too	fast,	the	capacitor	absorbs,	and	the	resistor	dissipates,	excess	
voltage.	The	metal	oxide	varistor	is	designed	to	break	down,	or	conduct,	at	certain	voltage	levels.	
In	a	120	V	AC	circuit,	the	peak	voltage	is	approximately	170	V.	The	MOV	would	typically	be	set	
to	break	down	at	190	V.	When	the	MOV	conducts,	 it	clips	the	excess	voltage	and	thus	prevents	
damage	to	the	module.

Triacs	constructed	of	a	solid	“block	of	material”	have	some	characteristics	that	are	not	found	with	
standard	relay	contacts.	The	Triac,	rather	than	having	ON and OFF states, actually has low and high 
resistance	levels,	respectively.	In	its	OFF	state	(high	resistance),	a	small	leakage	current	still	flows	
through	the	Triac.	This	leakage	current,	which	is	usually	only	a	few	milliamperes	or	less,	normally	
causes	no	problem.	When	 low-resistive	pilot	 lights	are	connected	 to	AC	output	modules,	a	 faint	
glow	of	the	filament	may	be	detectable,	even	when	the	module	is	OFF.	Similarly,	the	coils	of	some	
small	control	relays	or	solenoids	may	produce	a	detectable	hum	due	to	the	Triac	leakage	current,	
even though the Triac is technically OFF.	This	small	leakage	current	also	causes	false	readings	in	
some	digital	and	analog	meters.	Troubleshooting	techniques	for	triacs	are	covered	in	Chapter	21.

While	Triacs	are	capable	of	carrying	surge	currents	higher	 than	 their	continuous	current	 ratings,	
such	surges	must	be	of	short	duration	(1/2	to	1	cycle)	and	not	repetitive.	Exceeding	the	manufactur-
er’s	listed	surge	values	or	the	maximum	continuous	current	rating,	usually	referred	to	as	maximum	
RMS	on-state	current,	results	in	a	permanent	short	circuit.

After	an	output	module	is	installed	in	the	I/O	rack,	the	actual	real-world	output	devices	are	con-
nected.	Figure	2–16	shows	the	proper	termination	for	an	8-circuit	AC	output	module.	Each	output	
device	has	two	wires;	one	wire	from	each	output	device	is	wired	to	the	L2	potential.	The	other	wire	
from	each	device	is	wired	to	one	terminal	of	the	output	module,	as	shown	in	the	figure.	L1	is	then	
connected	to	a	common	terminal	on	the	module	to	supply	the	other	potential	for	the	output	devices.
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Figure 2–16 Field	Wiring	for	AC	Output	Module
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Figure	2–17	shows	two	simplified	circuits,	each	including	an	output	device.	In	the	first	circuit,	the	
output	is	wired	to	the	L2	potential,	and	the	single-pole	switch	is	used	to	control	the	L1	potential	to	
complete	the	circuit.	In	the	PLC	circuit,	the	output	is	again	wired	to	L2,	but	the	switch	is	replaced	
by	the	output	module,	which	is	wired	to	the	L1	potential.	Simply	stated,	the	output	module	may	be	
viewed	as	an	electronic	switch	that	is	controlled	by	the	PLC’s	processor.

OUTPUT
MODULE

L1L2L1

S1

L2

A B

Figure 2–17 Traditional	Wiring	for	an	Output	Device	(A),	Compared	to	PLC	Wiring	(B)

Output Fuses
In	order	to	prevent	damage	to	output	modules,	it	is	important	not	to	exceed	the	current	rating	or	to	
exceed	its	inrush	capability.	It	is	also	important	that	output	modules	be	protected	from	short	circuits	
and	ground	faults.	To	provide	protection	for	overcurrent,	short	circuits,	and	ground	faults,	output	
modules	are	always	fused.	The	number	of	fuses	used	varies	with	each	manufacturer.	Some	modules	
have	an	individual	fuse	for	each	output	terminal,	or	point,	others	have	one	fuse	for	each	8	outputs,	
while	 still	others	use	one	 fuse	 to	protect	all	16	points	on	 their	output	module.	Some	PLCs,	 like	
the Allen-Bradley	SLC	500,	do	not	come	with	internal	fuses,	and	fuses	must	be	added	to	protect	the	
outputs.	Some	newer	output	modules	have	internal	electronic	fusing	to	prevent	too	much	current	
from	flowing	though	the	module.

Most	PLCs	come	with	“blown-fuse”	indicators	to	show	that	a	fuse	has	blown.	Some	modules	have	
a	“blown-fuse”	indicator	for	each	output	terminal.	If	a	fuse	is	blown	on	output	terminal	6,	an	indica-
tor	lamp	at	terminal	6	will	be	lit	to	indicate	the	location	of	the	blown	fuse.	Other	modules	have	only	
one	“blown-fuse”	indicator	for	the	whole	module.	This	one	indicator	lamp	only	indicates	that	a	fuse	
has	blown;	it	does	not	indicate	its	location,	and	it	is	up	to	the	electrician	or	technician	to	determine	
the	blown	fuse(s).	When	individual	indicators	are	used	for	each	output	terminal,	 troubleshooting	
is	greatly	simplified.	Figure	2–18	shows	an	Allen-Bradley	AC	output	module	with	the	blown-fuse	
indicator	light	identified.

As	you	may	expect,	access	to	the	fuses	varies	with	the	manufacturer.	Some	modules	must	be	re-
moved	from	the	I/O	rack	and	a	cover	removed	before	the	fuses	can	be	changed,	while	other	modules	
provide	direct	access	to	the	fuses	on	the	front	edge	of	the	module.
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It	is	important	that	when	a	blown	fuse	is	removed,	its	replacement	fuse	be	of	the	same	voltage	rat-
ing,	amperage	rating,	interrupting	rating,	response	time,	and	physical	size	as	recommended	by	the	
manufacturer.

To	speed	troubleshooting	and	fuse	replacement,	many	plants	now	add	additional	fuses	to	each	out-
put	circuit.	Terminal	blocks	are	available	that	have	built-in	fuse	holders	and	individual	blown-fuse	
indicators.	A	separate	fuse	can	then	be	wired	in	series	with	each	output	device,	external	to	the	output	
module.	The	fused	terminal	blocks	are	then	mounted	in	a	convenient	location	for	easy	access	and	
troubleshooting.

Status lights
Status	 lights	are	provided	for	each	output	point	 to	 indicate	when	that	point	has	been	turned	ON.	
For	troubleshooting	purposes,	it	is	important	to	understand	how	these	status	lights	are	wired.	If	the	
power for the lights comes from the processor side of the module, an illuminated light indicates that 
the processor has sent a signal to turn ON the output attached to that	particular	point.	It	is	not an 
indication	that	current	is	flowing	to	the	output	device.	If	the	status	light	is	powered	from	the	actual	
output	power,	then	it	is	an	indication	that	the	output	is	turned	on.

Some	modules	have	two	status	lights.	One	is	referred	to	as	the	logic	light,	and	the	other	as	the	output	
light.	When	the	logic	lamp	is	lit,	it	indicates	that	the	logic	to	turn	on	the	output	device	has	been	sent	
from	the	processor.	When	the	output	light	is	lit,	it	indicates	that	there	is	a	path	for	current	flow	to	
the	output	device.

The	status	 lights	are	a	powerful	 troubleshooting	 tool,	but	 it	 is	 important	 to	understand	exactly	
what	the	status	lights	indicate,	and	not	to	read	more	information	into	them	than	they	are	able	to	
provide.
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Module Keying
Figure	2–19	shows	an	Allen-Bradley	120	V	AC	Input	module.	This	AC	Input	module	looks	just	like	
the	AC	or	DC	input	module	discussed	earlier	(Figure	2–8).	This	is	true	not	only	for	Allen-Bradley	
modules,	 but	 also	 for	 other	manufacturer’s	 products	 as	well.	 In	 all	 instances,	 the	manufacturers	
label	and/or	color	code	 the	 fronts	of	all	modules	 to	distinguish	between	 the	different	 types	 (AC	
input,	DC	output,	Analog,	and	so	on).	Most	manufacturers	have	designed	each	module	so	it	can	be	
keyed.	In	Figure	2–19,	item	6,	the	module	has	been	notched	in	two	places.	Installing	keying	bands	
on	the	Allen-Bradley	I/O	rack	backplane	connector	(Figure	2–20)	where	a	specific	module	is	to	be	
installed	prevents	any	module,	other	 than	the	 type	for	which	the	connector	 is	keyed,	from	being	
installed	in	that	connector	or	slot.	Figure	2–21	shows	a	close-up	view	of	what	the	keying	band	looks	
like	and	how	it	is	installed.	Each	type	of	module	has	a	unique	combination	of	notches.	This	feature	
prevents inadvertent or accidental replacement of the wrong type of module, say an input module, 
into	a	slot	that	is	already	wired	to	output	de	vices.	To	prevent	damage	and	downtime,	it	is	important	
that	the	keying	system	be	used.

1

1. Identi�cation label
2. Status indicators
3. Protective cover
4. Field wiring arm connects here
5. Labels identify user inputs
6. Slotted for I/O slot insertion only

2

4

6

3

5

Figure 2–19 Notched	AC	Input	Module
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Figure 2–20 Backplane	Connector	Keying	Diagram
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Some	manufacturers	have	an	electronic	keying	feature	that	automatically	compares	the		expected	
module	to	the	physical	module	before	I/O	communication	begins.	If	enabled,	electronic	key-
ing helps to prevent communication to a module that does not match the type and revision 
expected.

Dc Output Modules
DC	output	modules	are	basically	the	same	in	operation	as	AC	output	modules.	The	difference	is	the	
use	of	a	power	transistor	instead	of	a	Triac	for	the	control	of	output	current.	The	power	transistor	
has	a	quicker	switching	capability	than	the	Triac;	therefore,	the	response	time	for	DC	modules	is	
faster	than	for	AC	modules.	The	RC	circuit	and	MOV	used	in	the	AC	output	module	are	replaced	
with	a	diode	to	provide	protection	from	electrical	noise	and	spikes.	A	typical	DC	output	circuit	is	
shown	in	Figure	2–22.

DC	output	modules	are	available	in	ranges	from	12	to	240	V	DC	depending	on	the	manufacturer.	It	
is important to check to make sure that the module is appropriate for the voltage and current level of 
the	output	device	that	is	intended	for	connection	to	the	module.	DC	modules	will	be	fused	like	their	

OUTPUT INDICATOR LED
FROM PLC’s
CPU MODULE

LOAD

LED

PHOTO
TRANSISTOR

R

FUSE

+ DC

– DC

Figure 2–22 Simplified	DC	Output	Module	Circuit

KEYING BANDS
I/O CHASSIS BACKPLANE

CONNECTOR

Figure 2–21 Connector	Keying	Pin
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AC	counterparts	and	also	have	blown-fuse	indicators,	as	well	as	status	lights.	Figure	2–23	shows	
how	the	output	devices	are	wired	to	a	DC	output	module.

DC
(+)

+DC

DC
(–)

A

M

M

R

R

Figure 2–23 Field	Wiring	for	a	DC	Output	Module

Sourcing and Sinking
The terms sourcing and sinking	refer	to	the	manner	in	which	DC	devices	are	wired.	To	properly	
	interface	DC	devices	with	 the	 real	world,	 the	 difference	 between	 sourcing	 and	 sinking	must	 be	
understood.

Figure	2–24	is	an	example	of	a	sourcing	application.	The	positive	potential	is	connected	to	the	input	
module	and	the	negative	potential	is	connected	to	the	input	device.	Using	conventional	current	flow	
(1 to 2),	it	is	said	that	the	input	module	is	the	source	of	supply	for	the	real-world	input	device.	

SINKING
INPUT
DEVICE

24 V
DC

CONVENTIONAL
CURRENT FLOW

(+)

(–)

SOURCING
DC INPUT
MODULE

Figure 2–24 Input	Module	Sourcing	Application
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Stated	simply,	the	input	device	receives	current	from	the	input	module.	In	electronics,	if	a	device	
(input	module)	provides	current,	or	is	the	source	of	current,	it	is	said	to	be	sourcing.

Figure	2–25	is	an	example	of	a	sinking	application.	In	this	configuration,	the	positive	potential	is	
connected	to	the	input	device	and	the	negative	potential	is	connected	to	the	input	module.	In	this	
case,	using	a	conventional	current	flow	of	+	to	–,	the	input	device	is	said	to	be	providing	current	to	
the	input	module.	If	the	device	(input	module)	is	receiving	current,	it	is	said	to	be	sinking.

24 V
DC

(+)

(–)

SOURCING
INPUT
DEVICE

SINKING
DC INPUT
MODULE

CONVENTIONAL
CURRENT FLOW

Figure 2–25 Input	Module	Sinking	Application

LOAD

SOURCING
DC OUTPUT

MODULE

24 V
DC

(+)

(–)

Figure 2–26 Output	Module	Source	Capability

When	an	output	module	is	connected	positive,	as	shown	in	Figure	2–26,	and	provides	current	to	the	
real	world	(output	device),	the	module	is	referred	to	as	sourcing.

Figure	2–27	shows	an	output	module	wired	negative,	and	the	output	device	wired	positive.	When	the	
output	device	(real	world)	provides	the	current	to	the	module,	the	module	is	referred	to	as	sinking.

LOAD

SINKING
DC OUTPUT

MODULE

24 V
DC

(–)

(+)

Figure 2–27 Output	Module	Sink	Capability
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There is always a great deal of confusion surrounding sourcing and sinking as it applies to input 
and	output	modules	and	devices.	As	a	general	rule,	sinking	modules	are	used	with	output	modules	
when	interfacing	with	electronic	equipment	(TTL	or	CMOS	compatible),	while	sourcing	modules	
are	used	for	such	DC	loads	as	solenoids.	The	safest	way	to	make	sure	that	connections	to	DC	de-
vices	are	correct	is	to	select	a	module	that	works	for	the	application,	based	on	the	manufacturer’s	
specifications	and	wiring	diagram.

contact Output Modules
Contact	modules	have	electromechanical	relays	mounted	on	a	printed	circuit	board	that	is	inserted,	
or	plugged	into,	the	I/O	rack.	A	signal	from	the	processor	energizes	the	coil	of	the	electromechani-
cal	relay	which,	in	turn,	opens	or	closes	a	set	of	contacts.	Each	set	of	contacts	is	isolated	and	can	be	
ordered	normally	open	(N.O.)	or	normally	closed	(N.C.).	This	type	of	module	is	used	when	extra	
current	ratings	are	required	or	when	it	is	desirable	to	isolate	loads	of	different	voltages,	or	phases,	
from	the	same	source.	A	contact	output	module	is	also	used	when	the	leakage	current	of	a	standard	
AC	output	module	would	affect	the	control	process.

For	example,	a	contact	module	can	be	used	with	a	Variable	Speed	Drive	application.	Assume	that	
the	drive	has	been	programmed	for	multiple	speed	settings.	To	select	a	given	speed,	a	circuit	must	
be	completed	at	two	points	on	a	terminal	strip	mounted	on	the	drive.	One	set	of	contacts	is	used	for	
each	speed	setting.	As	the	drive	supplies	its	own	power,	all	that	is	needed	is	to	switch	the	control	
power	through	the	contacts	on	the	contact	module.	As	the	contacts	are	isolated,	there	is	no	possibil-
ity	that	the	power	from	the	PLC	system	can	damage	the	drive.

Interposing relay
When it is necessary to control loads larger than the rating of an individual output circuit, a standard 
control	relay,	which	has	a	small	inrush	and	sealed	current	value,	is	connected	to	the	output	module.	
The	contacts	of	the	control	relay,	which	are	generally	rated	at	10	amps,	can	then	be	used	to	control	
a	larger	load.	This	method	of	control	is	a	common	practice	for	NEMA	size	4	and	large	motor	start-
ers,	depending	on	the	rating	of	the	output	module.	When	a	control	relay	is	used	in	this	manner,	it	is	
called	an	interposing	relay	(Figure	2–28).

reed relay Output Module
The	reed	relay	type	output	module	is	used	when	dry	reed	relays	are	desirable.	They	may	be	used	
for	low-level	switching	(small	current–low	voltage),	multiplexing	analog	signals,	or	for	interfacing	
controls	with	different	voltage	levels.	The	voltage	range	of	the	reed	relay	contacts	is	normally	in	
the	range	of	0–24	V	AC	or	DC	with	a	current	rating	of	.1	ampere.	Reed	relay	output	modules	are	
cheaper	 than	normal	 solid-state	AC/DC	output	modules.	Reed	 relay	modules	 are	 available	with	
normally	open	(N.O.)	contacts,	normally	closed	(N.C.)	contacts,	or	a	combination	of	both	N.O.	and	
N.C.	contacts,	again	depending	on	the	manufacturer.

transistor-transistor logic (ttl) I/O Modules
TTL	input	modules	are	designed	to	be	compatible	with	other	solid-state	controls,	sensing	instru-
ments,	many	types	of	photoelectric	sensors,	and	some	5	V	DC	level	control	devices.	TTL	output	
modules	are	used	for	interfacing	with	discrete	or	integrated	circuit	(IC)	TTL	devices,	LED	displays,	
and	various	other	5	V	DC	devices.
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AnAlOg I/O MODuleS

Analog	input	modules	are	used	to	convert	analog	signals	(i.e.,	4–20	mA,	0–10	V	DC)	that	sense	
such	process	variables	as	 temperature,	pressure,	speed,	and	position	to	Binary	or	Binary-Coded	
Decimal	(BCD)	values,	depending	on	the	manufacturer,	for	use	by	the	PLC	logic	as	required.	The	
conversion  from	 analog	 to	 digital	 is	 accomplished	with	 an	 analog-to-digital	 converter	 (ADC).	
The	analog	output	module	changes	Binary	or	BCD	values	generated	in	the	PLC	logic	into	analog	
signals	using	a		digital-to-analog	converter	(DAC).	These	analog	output	signals	can	be	used	for	
controlling	variable	speed	controllers,	valve	positioners,	displays,	etc.	Binary	and	BCD	are	cov-
ered	in	Chapter	5.

Figure	2–29	shows	an	analog	input	module	and	how	a	two-wire	transmitter	is	wired.

Another	type	of	analog	input	module	is	the	Resistance	Temperature	Detector	(RTD)	input	module.	
The	module	senses	RTD	signals	and	converts	them	to	a	corresponding	temperature.	Figure	2–30	
shows	typical	wiring	for	an	RTD	device.

Note: PLC manufacturers are introducing new and special application modules almost daily. 
A few modules have been discussed in this chapter for a basic understanding only. The local 
PLC representative(s) should be contacted for full and complete list(s) of modules that is 
available.

Figure 2–28 Interposing	Relay
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SAFety cIrcuIt

The	NEMA	standard	for	programmable	controllers	recommends	that	consideration	be	given	to	the	
use	of	emergency-stop	functions	 that	are	 independent	of	 the	programmable	controller.	The	stan-
dard	reads	in	part:	“When	the	operator	is	exposed	to	the	machinery,	such	as	loading	or	unloading	a	
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Figure 2–31 Power	Distribution	with	Emergency	Stop	Relay	(ESR)	for	a	Grounded	AC	System
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	machine	tool,	or	where	the	machine	cycles	automatically,	consideration	should	be	given	to	the	use	
of an electromechanical override or other redundant means, independent of the controller, for starting 
or	interrupting	the	cycle.”

While	programmable	 logic	controllers	of	 today	are	rugged	and	dependable,	where	safety	 is	con-
cerned do not	depend	on	solid-state	devices	and	circuitry	of	the	PLC,	or	PLC	program.	The	NEMA	
recommendation	recognizes	the	importance	of	a	hardwired	emergency-stop,	or	E-Stop	(shown	in	
Figure	2–31),	to	remove	power	to	the	output	devices.	A	second	Emergency	Stop	Relay	(ESR)	con-
tact	is	typically	wired	to	a	PLC	input	module	so	that	the	program	logic	can	take	appropriate	action	
for	a	safe	restart	of	the	system.

It	is	also	worth	noting	that	solid-state	output	devices	usually	(though	not	always)	fail	shorted,	
rather than in an open	condition.	Because	they	fail	in	a	shorted	or	ON condition, an added safety 
hazard	is	possible	 if	a	hardwired	emergency	stop	(E-Stop)	 is	 not	 included	 as	 part	of	 the	PLC	
installation.

rAcK InStAllAtIOn

Before	installing	a	rack	or	chassis,	consideration	must	be	given	to	the	following:
•	 temperature
•	 dust
•	 vibration
•	 humidity
•	 field	wiring	distances
•	 troubleshooting	accessibility

The	ambient	 temperature	of	 the	proposed	location	should	not	be	 lower	 than	32°F	or	higher	 than	
140°F	(0°C	and	60°C).	Fans	are	normally	not	used	with	I/O	racks,	and	all	cooling	of	the	electrical	or	
electronic	components	is	accomplished	by	convection.	Convection	cooling	is	accomplished	when	
warm	air	caused	by	heat	in	the	components	rises	and	creates	a	movement	of	air.	This	movement	
of	air	draws	cool	air	in	through	the	bottom	of	the	rack	and	expels	warm	air	out	through	the	top.	To	
maintain	efficient	convection	cooling,	 it	 is	 important	 that	 the	 rack	be	 installed	correctly	and	not	
used	as	a	shelf	for	notebooks	or	other	material	that	would	impede	or	block	the	natural	flow	of	heat	
up	through	the	rack.

During	initial	installation	it	is	common	practice	to	cover	the	top	of	the	rack	to	prevent	any	scrap	
wire,	 stripped	 insulation,	 screws,	 and	 nuts	 from	 falling	 into	 the	 I/O	modules,	 power	 supply,	 or	
	processor,	which	could	cause	a	short	circuit	or	other	electrical	failure.	The	protective	cover	must	be	
removed	after	installation	to	assure	that	proper	cooling	can	take	place.

Under	adverse	conditions,	when	the	ambient	temperatures	exceed	the	manufacturers’	recommended	
maximums,	enclosure	fans,	ventilation	louvers,	or	air	condition	units	can	be	used.

When	the	temperature	is	expected	to	go	below	32°F,	a	thermostatically	controlled	heater	is	used	
inside	the	enclosure	to	prevent	condensation.
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Dust	can	also	cause	a	problem	in	the	I/O	rack	when	it	accumulates	on	the	electronic	components	of	
the	modules,	power	supply,	or	processor.	Accumulated	dust	prevents	the	components	from	dissipating	
heat	effectively.	A	dust-tight	enclosure	with	a	cover	and	gasket	can	be	used	to	prevent	problems	that	
dust	can	create.	It	is	important	to	remember	that	any	enclosure	used	to	house	PLC	components	must	
be	large	enough	to	allow	for	proper	air	circulation	and	heat	dissipation.	If	the		enclosure	is	too	small,	
the	heat	will	build	up	inside	the	enclosure	and	have	a	detrimental	effect	on	the	electrical	or	electronic	
components.	The	installation	manual	usually	specifies	the	minimum	size	of	enclosure	that	can	be	used.

Excessive	vibration	can	also	lead	to	early	component	failure.	It	is	important	to	mount	PLC	equip-
ment	on	solid,	nonvibrating	surfaces.	Vibration	effects	from	equipment	must	be	minimized	to	as-
sure	proper	longevity	for	the	equipment.

Humidity,	while	normally	not	a	problem,	must	be	considered	when	installing	a	PLC.		Allen-Bradley,	
for	example,	rates	their	PLCs	for	operation	in	a	humidity	range	of	5%–95%	(without	condensa-
tion).	Some	manufacturing	processes,	however,	create	high	humidity	(high	moisture	content)	con-
ditions.	Exposing	electronic	equipment	to	extremely	high	humidity	environments	over	an	extended	
period	of	time	can	reduce	component	life	and	affect	operation.	Evaluate	the	environment	carefully	
and	mount	equipment	in	an	area	that	minimizes	the	exposure	to	high	humidity	and	moisture.

While	it	is	important	that	the	controller	and	programming	unit	be	installed	or	mounted	in	a	control	
center	or	other	central	location,	the	use	of	remote	I/O	racks	allows	the	input	and	output	modules	to	
be	installed	close	to	the	actual	operating	equipment	(Figure	2–32).

By	mounting	the	I/O	rack	close	to	the	actual	equipment,	 the	amount	of	conduit,	cable,	and	other	
	associated	wiring	and	 labor	costs	will	be	decreased.	The	only	wiring	needed	 for	communication	
back	 to	 the	 processor	will	 be	 a	 shielded-twisted	 pair,	 twin	 axial	 cable,	 fiber	 optic	 cable,	 or	 the	
like.	By	having	 the	 input	 and	output	modules	 located	 close	 to	 the	 process	 or	 driven	 equipment,	
	troubleshooting	is	also	easier	and	more	efficient.	As	discussed	earlier	in	this	chapter,	each	input	and	
 output module has status lights that indicate whether an input or output device is ON or OFF.		Having	
this	capability	close	to	the	actual	equipment	shortens	troubleshooting	time	and	increases	production.

OPERATING EQUIPMENT

I/O RACK

1,000 FT. DISTANCE

PROCESSOR

Figure 2–32 Remote	I/O	Rack	Close	to	Operating	Equipment
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Before mounting the racks and other associated equipment, give careful consideration to location 
and	accessibility.	If	access	is	restricted	or	the	equipment	is	difficult	to	reach,	troubleshooting,	repair,	
and	maintenance	will	be	more	difficult	and	time	consuming.

electrIcAl nOISe (Surge SuppreSSIOn)

Electrical	noise	is	generated	whenever	inductive	loads	such	as	relays,	solenoids,	motor	starters,	and	
motors	are	operated	by	“hard	contacts”	such	as	push	buttons,	selector	switches,	and	relay	contacts.	
The	noise,	or	high	transient	voltages	(spikes),	is	caused	by	the	collapsing	magnetic	field	when	the	
inductive device is switched OFF.	The	level	of	the	voltage	spike	can	be	very	high	and	is	capable	
of	causing	erratic	operation	of	the	processor	and/or	output	module,	or	can	cause	permanent	damage	
to	 the	module.	The	 interference	caused	by	 these	voltage	spikes	and	 the	accompanying	electrical	
noise	is	often	called	Electromagnetic	Interference	(EMI).	There	are	several	steps	that	can	be	taken	
to	reduce	or	eliminate	the	effects	of	EMI.	Two	of	the	most	common	are	isolation	and		suppression.

Isolation	of	the	electrical	noise	is	accomplished	by	installing	an	isolation	transformer	for	the	PLC	
system	 (Figure	 2–33)	 to	 supply	 the	 power	 for	 the	 controller	 and	 the	 input	 circuits.	 The	 figure	

TO POWER SUPPLIES
AND INPUT CIRCUITS

H1 H4

H2H3

H2H3

X1 X2

X1 X2

H1 H4

TO OUTPUT CIRCUITS

ISOLATION/
CONSTANT-
VOLTAGE
TRANSFORMER

STEP-DOWN
TRANSFORMER

TO MOTOR
STARTERS

INCOMING
AC

L1

L2

L3

L1

L2

L3

1FU
DISC

2FU

3FU

Figure 2–33 Reducing	Electrical	Noise	with	an	Isolation	Transformer
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shows	a	constant	voltage	transformer,	but	a	standard	step-down	transformer	of	the	proper	size	also	
	effectively	isolates	electrical	noise.	

A	second	method	in	reducing	EMI	is	to	install	surge	suppression	networks	or	devices	on	the	individual	
motor	starters,	motors,	and	solenoids.	These	suppression	devices	can	consist	of	an	RC	circuit	(resistor/
capacitor),	an	MOV,	or	an	RC	combination	for	AC	loads	and	a	diode	for	DC	coils.	The	collapsing	
magnetic	field	of	the	inductive	device	is,	in	a	sense,	dissipated	by	the	suppression	network	and	reduces	
the	effects	of	EMI.	Figure	2–34	shows	typical	installations	of	the	various	types	of	suppression	devices.

The	type	of	surge	suppressor	to	use	depends	on	the	size	and	type	of	load.	An	equipment	representa-
tive	or	local	electrical	distributor	should	be	consulted	for	help	with	selection	and	application.

3-PHASE
MOTOR

3-PHASE SUPPRESSION

M

M

M

SUPPRESSION FOR
STARTERS UP TO SIZE 5

SUPPRESSION FOR
DC RELAYS

FREE-
WHEELING

DIODE

SUPPRESSION FOR
STARTERS UP TO SIZE 1

120V AC120V AC

DC

M M

M

(+) (–)

Figure 2–34 Typical	Suppression	Devices
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grOunDIng

With solid-state control systems, proper grounding helps eliminate the effects of electromagnetic 
induction.	Figure	2–35	shows	a	typical	installation	using	an	equipment	grounding	conductor	to	con-
nect	several	PLCs	and/or	I/O	racks	together.	The	equipment	grounding	conductor	is	attached	to	the	
metal	frame	of	the	PLC	and/or	I/O	rack	with	a	ground	lug.	A	detail	of	the	connection	is	shown	in	
Figure	2–36.

Note: Check local codes and manufacturers’ specifications to ensure proper installation.

EQUIPMENT GROUNDING
CONDUCTORS

POWER
SUPPLY

PC

PC
OR
I/O RACK

PC
OR
I/O RACK

PC
OR
I/O RACK

PC
OR
I/O RACK

PC
OR
I/O RACK

GROUND LUG

TO GROUNDING
ELECTRODE

SYSTEM

GROUNDING
ELECTRODE
CONDUCTOR

GROUND  BUS

Figure 2–35 Typical	Equipment	Grounding	Configuration

SCRAPE PAINT ON ENCLOSURE
WALL AND USE A STAR WASHER.

EQUIPMENT GROUNDING CONDUCTOR

STAR WASHER

NUT

GROUND LUG

ENCLOSURE WALL

SCRAPE PAINT BOLT

Figure 2–36 Detail	of	Grounding	Lug	Attachment	to	PLC
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I/O ShIelDIng

Certain	I/O	modules	such	as	TTL,	analog,	and	thermocouples	require	shielded	cable	to	reduce	the	
effects	of	electrical	noise.	The	cable	shield,	which	surrounds	the	cable	conductors,	shields	the	con-
ductors	from	electrical	noise.

When	installing	shielded	cable,	it	is	important	that	the	shield	only	be	grounded	at	one	end.	If	the	
shield	is	grounded	at	both	ends,	a	ground	loop	is	created,	which	can	introduce	ground	currents	that	
may	result	in	faulty	input	signals	and/or	operation	of	the	processor.

As	a	properly	grounded	I/O	rack	is	already	connected	to	earth	ground	through	an	equipment	ground-
ing	conductor,	the	shield	should	be	terminated	at	the	I/O	rack,	not	at	the	device	end.

Figure	2–37	shows	the	shield	of	a	shielded	cable	connected	to	the	I/O	rack	frame.

Figure	2–38	shows	a	shielded-twisted	pair	cable	connected	to	a	sensing	device	and	I/O	Rack.	In	the	
first	example	the	shield	is	connected	to	the	I/O	rack	frame	as	some	manufacturers	recommend.	An	
	alternative	method	is	shown	in	the	second	example.	In	this	method	terminal	blocks	are	used	within	
the	PLC	enclosure	to	connect	the	field	wiring	to	the	I/O	rack	wiring	and	a	third	terminal	block	is	

Figure 2–37 Cable	Shield	Connected	to	Grounded	I/O	Rack
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Understanding	the	Input/Output	(I/O)	Section   41

used	to	connect	the	shields	to	the	system	or	instrument	ground.	In	either	case	the	shields	are	to	be	
	connected	at	one	end	only,	preferably	the	I/O	rack	end.

Additional methods of noise reduction are as follows:
•	 Mount	equipment	in	metal	enclosures,	when	possible,	because	metal	helps	protect	
against	EMI.

•	 Separate	I/O	and	PLC	wiring	from	the	motor	and	other	large	loads	to	reduce	the	possi-
bility	of	induction	in	the	control	circuits.	This	is	usually	accomplished	by	installing	the	
control	wiring	in	one	raceway,	or	cable-tray,	and	the	power	circuits	in	another	raceway	
or	cable-tray	with	physical	distance	or	separation	between	the	two.

+

–
SENSING
DEVICE

I/O
RACK

TO SYSTEM
GROUND

SENSING
DEVICE

I/O
RACK

TO SYSTEM
GROUND

ENCLOSURE HOUSING
PLC AND TERMINAL BLOCKS

TO SYSTEM
OR INSTRUMENT

GROUND

Figure 2–38 Shields	Connected	to	Ground	at	One	End	Only

chapter Summary
The	 I/O	 rack	 houses	 the	 individual	 input	 and	 output	modules	 that	 are	 connected	 to	 real-world	
	devices.	The	input	modules	act	as	an	interface	between	the	actual	input	devices	and	the	processor,	
while	 the	output	modules	act	as	an	 interface	between	 the	actual	output	devices	and	 the	proces-
sor.	The	status	(ON or OFF)	of	the	input	devices	is	communicated	to	the	processor;	the	processor	
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42   Technician’s	Guide	to	Programmable	Controllers

makes a decision, and in turn communicates to the output modules to turn ON or OFF the output 
devices	that	are	connected	to	the	output	module.	The	processor	may	be	connected	to	the	I/O	rack	
by	way	of	interconnecting	cable(s),	through	a	bus	duct,	or	it	may	be	mounted	in	the	same	rack	as	
the	I/O.

The	I/O	section	is	divided	into	two	categories:	fixed	and	modular.	Discrete	I/O	modules	operate	on	
digital, or ON and OFF	signals,	whereas	analog	I/O	operates	on	a	variety	of	signal	levels	and	types.	
Input	and	output	modules	are	available	in	a	variety	of	voltages	and	normally	can	control	8,	16,	or	32	
individual	input	or	output	devices.	Optical	coupling,	or	isolation,	is	used	to	protect	the	low-	voltage	
(5	V	DC)	side	of	the	processor	from	the	line-voltage	input	and	output	signals	that	can	be	as	high	as	
240	V.

AC	 output	modules	 typically	 use	 Triacs	 for	 switching	ON and OFF	 the	 actual	 output	 devices.	
When in the high-resistive, or OFF	state,	Triacs	have	a	small	leakage	current	that	flows	through	the	
output	device.	When	Triacs	fail,	they	normally	fail	in	the	ON	condition.	Fuses	used	for	protection	
of	 	output	modules	are	carefully	selected	by	 the	manufacturer	 for	current	and	 time	characteristics,	
and	only	fuses	recommended	by	the	manufacturer	should	be	used	to	prevent	possible	damage	to	the	
equipment.

PLC	troubleshooting	is	simplified	by	the	addition	of	status	lights	on	the	I/O	modules.	The	lights	in-
dicate which inputs are ON or OFF and which outputs are ON or OFF.	Indicator	lights	also	indicate	
if	an	output	module	has	a	blown	fuse.	To	prevent	an	incorrect	module	from	being	installed	in	a	given	
rack	slot,	the	modules	are	often	keyed.

A	wide	variety	of	input	and	output	modules	are	available	that	fit	almost	any	application.	Care	must	
be	taken	to	ensure	that	the	module	has	the	correct	voltage,	current,	and	time	characteristics.	The	
	various	PLC	manufacturers	continue	 to	 introduce	 innovative	new	modules	 to	meet	 the	changing	
	requirements	of	automated	equipment	and	process	control.

Proper	 installation	 of	 PLC	 equipment	 requires	 that	 the	 environment	 (dust,	 heat,	 humidity,	 and	
	vibration)	be	considered,	as	well	as	the	physical	location	for	access	and	troubleshooting.	Reduction	
and/or	elimination	of	electrical	noise,	voltage	spikes,	voltage	variation,	and	the	like	is	necessary	to	
ensure	proper	operation	of	the	system.

review Questions
	 1.	 Describe	briefly	the	purpose	of	the	I/O	section.
	 2.	 State	two	reasons	for	employing	optical	isolation.
	 3.	 Draw	an	AC	input	module	with	four	input	devices,	show	all	necessary	electrical	connections,	

and	identify	potentials	L1	and	L2.
	 4.	 Draw	an	AC	output	module	with	four	output	devices,	show	all	necessary	electrical	connec-

tions,	and	identify	potentials	L1	and	L2.
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Understanding	the	Input/Output	(I/O)	Section   43

	 5.	 Triacs	are	susceptible	to	“dielectric-type”	breakdown	if	the	maximum	peak	voltage	level	is	
	exceeded.

	 	 T    F
	 6.	 Briefly	describe	why	a	hardwired	emergency-stop	circuit	is	recommended	for	PLC	instal-

lations.
	 7.	 Briefly	describe	the	function	of	an	interposing	relay.
	 8.	 I/O	modules	are	keyed	to	prevent	unauthorized	personnel	from	removing	them	from	the	I/O	rack.
	 	 T    F
	 9.	 Which	of	the	following	are	not	normally	sources	of	electrical	noise?
	 	 a.	solenoid
	 	 b.	relay
	 	 c.	indicator	lamp
	 	 d.	motor	starter
	 	 e.	motor
	 	 f.	overload	heaters
10.	To	ensure	maximum	benefit	of	shielding,	the	shield	of	a	shielded	cable	must	be	terminated	

and	grounded	at	both	ends.
	 	 T    F
	11.	E-Stop	refers	to
	 	 a.	extra	stop
	 	 b.	emergency-stop
	 	 c.	every	stop
	 	 d.	elevator	stop
	 	 e.	energy	stop
	12.	 	Electromagnetic	interference	(EMI)	can	be	reduced	with	the	proper	grounding	of	equipment.
	 	 T    F
	13.	Solid-state	output	devices	tend	to
	 	 a.	never	fail
	 	 b.	fail	in	the	open or OFF condition
	 	 c.	fail	in	the	shorted or ON condition
	 	 d.	not	be	affected	by	overload
	14.	List	three	environmental	considerations	when	installing	PLC	equipment.
	15.	What	type	of	tool	or	object	should	be	used	to	change	the	position	of	DIP	switches?
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Chapter

3
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	the	function	of	the	processor.
•	 Describe	a	typical	program	scan.
•	 Identify	the	two	distinct	types	of	memory.
•	 Describe	the	function	of	the	watchdog timer.
•	 Identify	various	memory	designs.
•	 Describe	the	two	types	of	programming	devices.
•	 Explain	the	terms	on-line and off-line	programming.

The processor unit houses the microprocessor, memory module(s), and the communications 
	circuitry	necessary	for	the	processor	to	operate	and	communicate	with	the	I/O	and	other		peripheral	
	equipment.	The	DC	power	 required	 for	 the	processor	 is	 provided	either	by	 a	power	 supply	 that	
is	 an	 integral	 part	 of	 the	 processor	 unit,	 or	 by	 a	 separate	 power	 supply	 unit,	 depending	 on	 the	
	manufacturer.	The	processor,	or	“brain,”	of	the	programmable	logic	controller	is	the	decision-maker	
that	controls	the	operation	of	the	equipment	to	which	it	 is	connected.	The	processor	controls	the	
operation	of	the	output	devices	that	are	connected	to	the	output	modules	based	on	the	status	of	the	
input	devices	and	the	program	that	has	been	entered	into	memory	(Figure	3–1).	The	processor	is	
often		referred	to	as	the	central	processing	unit	or	CPU.

PROGRAMMING
DEVICE

PROCESSOR
(CPU)
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MEMORY

POWER
SUPPLY

O
U
T
P
U
T

M
O
D
U
L
E

I
N
P
U
T

M
O
D
U
L
E

L2

M

Figure 3–1	Basic	PLC	Configuration
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Processor	Unit  45

Processors	are	available	that	control	as	few	as	8,	or	as	many	as	40,000,	real-world	inputs	and/or	out-
puts.	The	size	of	the	processor	unit	to	be	used	is	dependent	on	the	size	of	the	process(es)	or	driven	
equipment	to	be	controlled.	The	larger	the	number	of	input	and	output	devices	that	are	required	for	
the	process,	the	more	powerful	the	processor	must	be	to	properly	control	the	number	of	I/O	that	will	
be	connected.	One	PLC	can	control	more	than	one	machine	or	process	line	and	is	limited	only	by	
the	I/O	required,	physical	distance,	and	memory	capacity	of	the	PLC	used.

Note: It is difficult to discuss processor unit configuration due to the differences in PLC hardware 
from the various manufacturers. The discussion that follows is general and is not intended to cover 
all the PLCs on the market today. It should also be noted that when pictures are used to illustrate a 
given configuration or concept, one of a particular manufacturer’s models is illustrated; however, the 
manufacturer also has other models larger and/or smaller, and in different configurations.

The Processor

The	processor	may	be	a	 self-contained	unit,	or	may	be	modular	 in	design,	and	plug	directly	 into	
the	I/O	rack	as	shown	in	Figure	3–2.	Whatever	the	configuration,	the	processor	consists	of	a	micro-
processor, memory chips, circuits necessary to store and retrieve information from the memory, 
and communication circuits required for the processor to interface with the programmer and other 
peripheral	devices.	The	memory	and	communication	circuits	can	be	modules	separate	from	the	mi-
croprocessor	module.	The	actual	hardware	configuration	will	depend	on	the	PLC.

The microprocessor is the device that 
1.	Monitors	the	state	or	status	(ON or OFF )	of	the	input	devices.
2.	 Systematically	solves	the	logic	of	the	user	program.
3.	Controls	the	state	of	the	output	devices	(ON or OFF ).
4.	Communicates	with	other	devices	(operator	interface	terminals,	personal	computers,	etc.).
5.	Manages	memory	and	updates	timers,	counters,	and	internal	registers.

The	execution	or	completion	of	these	tasks	is	referred	to	as	the	processor	scan.

Image not available due to copyright restrictions
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46  Technician’s	Guide	to	Programmable	Controllers

When	the	PLC	is	powered	up	or	turned	ON,	the	processor	runs	an	internal	self-diagnostic,	or	self-
check,	prior	to	initiating	its	first	scan.	If	any	part	of	the	processor	system	is	not	functioning,	such	as	
a	faulty	memory,	improper	communication	with	the	I/O	section,	or	failure	in	a	remote	rack,	the	pro-
cessor fault light or other indicator light comes ON.	With	some	systems,	if	a	monitor	is	connected,	a	
written	explanation	or	fault	code	will	appear	on	the	screen.	Some	systems	use	status	words	to	indicate	
the	hardware	or	software	that	has	malfunctioned.	Status	words	can	be	included	in	the	program	so	
that	when	a	malfunction	is	detected,	an	alarm	will	sound	to	alert	the	operator	that	there	is	a	problem.

Once	the	processor	has	passed	the	self-diagnostic	check,	it	is	ready	to	go	to	work.	Figure	3–3	illus-
trates	a	typical	four-step	PLC	scan.	In	the	first	step	of	the	scan,	the	processor	determines	the	status	
of	the	input	devices.	It	does	so	by	looking	at	the	memory	locations	that	have	been	designated	for	
all	the	input	devices.	Remember,	as	stated	earlier	in	the	text,	the	actual	status	(ON or OFF ) of any 
input	device	is	stored	in	a	memory	location	as	either	a	1	or	a	0.	A	1	indicates	that	a	device	is	ON or 
closed,	while	a	0	indicates	that	the	input	device	is	OFF	or	open.	Based	on	the	1s	and	0s,	the	proces-
sor	determines	the	actual	condition	of	all	the	input	devices.

1.
DETERMINE STATUS
OF INPUT DEVICES

2.
INTERPRET LOGIC OF
PROGRAM (READ AND
SOLVE LADDER LOGIC)3.

UPDATE (TURN ON OR
OFF OUTPUT DEVICES)

4.
COMMUNICATION

AND HOUSEKEEPING

Figure 3–3	Typical	Processor	Scan

The	second	step	in	the	processor	scan	is	to	interpret	the	logic	of	the	program	that	has	been	written	
and	stored	in	the	processor	memory.	Based	on	the	program	requirement,	the	processor	will	turn	the	
required output devices ON or OFF,	which	is	the	third	step	in	the	processor	scan.	This	third	step	is	
referred to as updating	the	outputs.	This	updating	process	occurs	once	during	each	scan.	The	fourth	
step	of	the	scan	is	often	referred	to	as	housekeeping.	During	this	part	of	the	scan	the	processor	will	
perform	 any	 necessary	memory	management	 (housekeeping).	Memory	management	will	 include	
updating	timers	and	counters	as	well	as	internal	registers,	etc.	In	some	processors	during	this	part	of	
the	scan,	the	processor	will	communicate	with	any	connected	devices	(communications).	Some	PLCs	
today	have	two	processors,	one	that	interprets	the	logic	and	a	second	that	handles	the	I/O updates.

The	scan	is	continuous	and	the	four-step	process	is	repeated	over	and	over	every	few	milliseconds.	
To	summarize,	the	four	steps	of	the	scan	are:

1.	Determine	the	status	of	the	input	devices	(ON or OFF ).
2.	Read	and	solve	the	logic	of	the	program	(ladder	logic).
3.	Update	the	output	devices	(turn	ON or OFF ).
4.	Evaluate	communications	and	housekeeping	procedures.
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The	time	it	takes	to	complete	one	scan	will	vary	from	a	fraction	of	a	millisecond	to	50+		milliseconds.	
Scan	 time	 is	 dependent	 on	 many	 factors	 such	 as	 size	 and	 number	 of	 program	 tasks,	 program	
	instruction	types,	and	memory	used.	Some	manufacturers	allow	you	to	specify	the	percentage	of	
processors’	time	that	is	devoted	to	communication	and	background	functions,	which	also	impacts	
overall	scan	times.

Note:  As part of the processor’s internal self-diagnostic system, a watchdog timer is used. The 
watchdog timer is preset to an amount of time that is slightly longer than the scan time would be 
under normal conditions. At the start of each scan, the watchdog timer is turned ON and starts to 
 accumulate time. If the program is correct, the program scan will be completed prior to the time 
set on the watchdog timer, and at the end of each scan, the watchdog timer is reset to 0. If for some 
reason the program scan is not completed in the allotted time, indicating that there is a problem with 
the program, the watchdog timer will time out, which puts the processor into a faulted condition. The 
range of the timer is software selectable (adjustable) on many PLCs.

Normally,	before	any	output	devices	can	be	turned	ON or OFF, the processor has to scan the entire 
program	that	is	in	user	memory.	The	program	may	be	only	a	few	rungs	long	or	it	may	be	hundreds	of	
rungs	in	length,	depending	on	the	equipment	that	is	being	controlled.	Some	input	devices	operate	so	
fast	that	by	the	time	the	user	program	can	be	read	and	solved	and	outputs	updated,	the	input		device	
may have changed positions more than once since the processor originally determined its status at 
the	start	of	the	scan.	The	same	may	be	true	for	an	output	device	that	needs	to	be	updated	sooner	than	
a	regular	scan	will	allow.	To	solve	this	problem,	many	PLCs	have	special	program	instructions	that	
allow	critical	or	high-speed	input	and	output	devices	to	be	updated	sooner	than	would	be	possible	
under	normal	scan	conditions.	The	special	instructions	actually	interrupt	the	scan	when	it	is	reading	
the	program	and	allow	I/O	devices	to	be	updated	immediately.	

As	mentioned	earlier,	some	PLCs	have	two	processors,	one	that	interprets	the	logic	and	a	second	
that	handles	the	I/O	updates.	With	this	type	of	processor	the	I/O	is	being	updated	during	the	execu-
tion	of	the	program.	This	means	the	I/O	updates	asynchronous	to	the	execution	of	the	logic,	which	
improves	I/O	update	times.

Note: Additional information, and a more detailed discussion on how the processor scans the user 
program, are provided in Chapter 9.

The memory section of the processor consists of hundreds or thousands of locations where infor-
mation	 is	 stored.	 In	 the	 broadest	 sense,	 the	memory	 is	 divided	 into	 two	 classifications:	 user	 and	 
storage.	The	user memory is for the storage of the user program that contains the relay logic, or 
	instructions	that	control	the	driven	equipment	or	the	process.	The	storage memory is used to store 
information	such	as	input/output	status,	timer	or	counter	preset	and	accumulated	values,	and	in	ternal	
control	relays,	etc.,	which	is	necessary	for	the	processor	to	control	the	equipment	or	pro	cess.	The	ac-
tual	memory	structure	of	various	PLC	manufacturers	will	be	covered	in	Chapter	4,	while	the	purpose	
or	use	of	each	memory	is	covered	later	in	this	chapter.

Memory	chips	used	in	the	processor	can	be	separated	into	two	distinct	groups:	volatile and non-
volatile.	A	volatile	memory	is	one	that	loses	its	stored	information	when	power	is	removed.	Even	
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momentary	loss	of	power	erases	any	information	stored	or	programmed	on	a	volatile	memory	chip.	
A	nonvolatile	memory	has	the	ability	to	retain	stored	information	when	power	is	removed,	acciden-
tally	or	intentionally.	To	protect	a	volatile	memory,	backup	batteries	are	included	in	the	processor	
or	power	supply.	The	batteries	may	be	rechargeable	nickel	cadmium,	lead	acid,	or	nonrechargeable	
alkaline	or	lithium	types.

caution:	Extra	care	must	be	exercised	when	disposing	off	batteries,	 since	 they	are	classified	as	
	hazardous	waste.	Special	care	must	be	taken	with	lithium	batteries	because	they	may	explode	when	
exposed	to,	or	dropped	into,	water.

When	batteries	are	included,	they	may	be	located	in	the	processor,	or	in	the	power	supply,		depending	
on	the	PLC.	Wherever	they	are	located,	there	is	a	battery	indicator	light(s)	to	indicate	the	condition,	
or	state	of	charge,	of	the	batteries.	Common	indicator	lights	are	BAT OK and BAT LOW.	A simpler	
system	uses	one	light	to	indicate	that	the	battery	condition	is	normal.	When	the	light	goes	out,	it	is	
a	warning	that	the	batteries	need	to	be	replaced.

When	 the	 battery	 indicator	 light	 comes	 on	 (or	 goes	 out),	 indicating	 that	 the	 batteries	 need	 to	 be	
replaced,	the	memory	is	still	protected	for	a	minimum	of	two	weeks.	Depending	on	the	size	of	the	
memory	and	the	type	of	batteries	used,	in	many	cases	the	memory	remains	protected	for	one	year	
or	more	with	fully	charged	batteries.	In	reality,	rarely	is	the	power	interrupted	or	off	for	more	than	a	
few	hours.

The	type	of	batteries	used	and	the	number	required	will	vary	with	each	manufacturer.	Because	alka-
line	and	lithium	batteries	are	not	rechargeable	and	must	be	replaced	periodically,	care	must	be	taken	
to	always	replace	the	batteries	with	the	type	specified,	paying	special	attention	to	the	orientation	of	
each	battery	in	the	battery	holder	to	ensure	that	proper	polarity	is	maintained.	Some	batteries	are	
available	with	leads	that	simply	plug	into	a	connector	on	the	PLC.	Figure	3–4	shows	a	lithium	bat-
tery	with	leads	that	is	mounted	on	the	back	of	the	faceplate	cover,	and	is	used	to	backup	the	memory	
of	the	GE	Fanuc	PLC.

LITHIUM BATTERY (IC693ACC301)
MOUNTED ON BATTERY CLIPS
ON BACK OF BATTERY COVER

GUIDE TAB SHOULD
BE AWAY FROM
CIRCUIT BOARDS

BATTERY CABLE
CONNECTS TO
EITHER CONNECTOR

a44548

BATTERY

Figure 3–4	Lithium	Battery	with	Leads
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caution:	As	a	general	rule,	a	copy	is	made	of	the	current	program	prior	to	changing	the	batteries.	
This	copy	is	referred	to	as	a	“backup”	copy,	and	is	used	to	replace	the	original	program	if	for	some	
reason	the	program	in	memory	is	lost.	The	batteries	in	several	PLCs	can	be	changed	without	turning	
off	the	main	power.	The	processor	unit	of	the	GE	Fanuc	PLC,	shown	in	Figure 3–5,	uses	a	single	
lithium	battery	that	protects	the	volatile	memory.	Note	that	a	second	battery	connector	has	been	added	
and	wired	 in	parallel.	The	new	battery	 is	attached	 to	 the	second	connector	 in	order	 to	protect	 the	
memory	before	the	old	battery	is	removed.	Changing	batteries	is	one	of	the	few	maintenance	require-
ments	of	a	PLC.	Failure	to	change	the	batteries	in	a	timely	manner	may	have	serious	consequences	if	
a	backup	copy	of	the	program	is	not	made.	Common	sense	dictates	that	a	backup	copy	be	made	of	
every	PLC	program.

MeMory TyPes

No	attempt	will	be	made	to	explain	solid-state	memory	types	in	more	than	a	generalized	way	for	
basic	understanding.	Detailed	explanations	of	solid-state	memory	types	are	available	in	the	elec-
tronics	section	of	most	libraries.

The most common type of volatile memory is Random Access Memory (RAM).	Information	can	
be	written	into,	or	read	from,	a	RAM	chip,	and	it	is	often	referred	to	as	read/write	memory.	Informa-
tion	stored	in	memory	can	be	retrieved	or	read,	while	“write”	indicates	that	the	user	can	program	
or	write	information	into	the	memory.	Random	access	refers	to	the	ability	of	any	location	(address)	
in	the	memory	to	be	accessed	or	used.	RAM	is	used	for	both	the	user	memory	and	storage	memory	
in	many	PLCs.	Since	RAM	is	volatile,	it	must	have	battery	backup	to	retain	or	protect	the	stored	
	program.	Various	forms	of	RAM	include	MOS,	HMOS,	and	CMOS-RAM	(Complimentary	Metal	
Oxide	Semiconductor),	one	of	the	most	popular,	to	name	just	a	few.

CMOS-RAM	is	popular	because	it	has	a	very	low	current	drain	when	not	being	accessed	(15	m am-
peres),	and	the	information	stored	in	memory	can	be	retained	by	as	little	as	2	V	DC.	A	typical	fully	

Figure 3–5	Parallel	Battery	Connection	Used	with	GE	Fanuc	90-70	CPU
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charged	lithium	battery	is	rated	2.95	V	at	1.75	amperes/hour	and	normally	holds	or	protects	a	pro-
gram	for	60	days	or	longer.

Nonvolatile	memories	are	memories	that	retain	their	information	or	program	when	power	is	lost,	
and	do	not	require	battery	backup.	A	common	type	of	nonvolatile	memory	is	Read Only Memory 
(ROM).	“Read	only”	indicates	that	the	information	stored	in	memory	can	only	be	read,	and	can-
not	be	changed.	Information	in	ROM	is	placed	there	by	the	manufacturer	for	the	internal	use	and	
operation	of	 the	PLC,	and	 the	manufacturer	does	not	want	 the	 information	changed	or	altered.	
PLCs,	like	other	computer-based	systems,	undergo	constant	change.	When	changes	are	made	in	
the	way	a	system	operates,	or	when	new	features	are	added,	ROM	chips	can	be	replaced	to	up-
grade	the	PLC.

Other	types	of	nonvolatile	memory	are	PROM,	UVPROM,	EPROM,	EEPROM,	and	FLASH.	

prOM  Programmable	Read	Only	Memory	allows	initial	and/or	additional	information	to	be	written	
into	the	chip.	PROM	may	be	written	into	only	once	after	being	received	from	the	PLC	manufacturer,	
and	programming	is	accomplished	by	pulses	of	current.	The	current	melts	fusible	links	in	the	device,	
preventing	it	from	being	reprogrammed.	This	type	of	memory	is	used	to	prevent	unauthorized	program	
changes.

Note: Regardless of the memory type, the memory can also be protected by a key switch located on 
the front of the processor, or on the programming device. With the programmer “locked-out,” the 
program in the processor can be run but not changed. The key switch can also be used to lock the 
processor out completely and prevent it from running the program.

Another	popular	method	of	restricting	access	to	the	program	is	to	use	passwords.	Passwords	restrict	
access to the program to only those personnel who know the correct password and how to enter it 
using	the	programming	device.	Passwords	are	often	referred	to	as	“software”	locks,	whereas	key	
switches	are	referred	to	as	“hardware”	locks.

UVprOM–eprOM    Ultra Violet Programmable	 Read Only Memory is ideally suited when 
program	storage	is	to	be	semipermanent,	or	additional	security	is	needed	to	prevent	unauthorized	

Figure 3–6	Typical	UVPROM	or	EPROM	Memory	Chip
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	program	 changes.	The	UVPROM	 chip	 is	 also	 referred	 to	 as	EPROM (Erasable	Programmable	
Read Only Memory)	(Figure	3–6).	The	EPROM	chip	has	a	quartz	window	over	a	silicon	material	
that	contains	the	electronic	integrated	circuits.	This	window	is	normally	covered	by	an	opaque	ma-
terial,	but	when	the	opaque	material	is	removed	and	the	circuitry	exposed	to	ultraviolet	light,	the	
memory	content	can	be	erased.	Once	erased,	the	EPROM	chip	can	be	reprogrammed,	using	a	special	
programmer.	After	programming,	the	chip	window	must	once	again	be	covered	with	an	opaque	ma-
terial,	such	as	electrician’s	tape,	to	avoid	undesirable	alteration	of	the	memory.	

caution:	Special	care	and	handling	of	the	UVPROM,	or	for	that	matter	any	integrated	circuit	(IC)	
chip,	must	be	exercised	to	ensure	that	the	pins	do	not	become	dirty,	bent,	or	subjected	to	any	static	
electric	charges.

eeprOM  Electrically	Erasable	Programmable	Read	Only	Memory	is	also	referred	to	as	Double	
EPROM	and	E2PROM.	EEPROM	is	a	chip	that	can	be	programmed	using	a	standard	program-
ming  device	 and	 can	 be	 erased	 by	 the	 proper	 signal	 being	 applied	 to	 the	 erase	 pin.	 EEPROM	
is used	 	primarily	as	a	nonvolatile	backup	for	 the	user	program	in	RAM.	If	 the	user	program	in	
RAM	is	lost	or	erased,	a	copy	of	the	program	stored	on	an	EEPROM	chip	can	be	downloaded	into	
RAM.	It	is	common	on	some	PLCs	for	the	processor	to	load	the	program	from	the	E2PROM	chip	
into	RAM	memory	each	 time	 the	processor	 is	powered	up	or	after	a	power	 failure.	Figure	3–7	
shows	an 	EEPROM	memory	card	used	with	the	Modicon	984-120	Compact	PLC	to	store	the	user	
	program.	This	credit	card	size	device	offers	a	convenient	method	for	copying	and/or	loading	user	
programs.

FLaSh   Flash	memory	 is	a	nonvolatile	memory	chip	 that	can	be	electrically	erased	and	repro-
grammed.	 It	 is	 a	 specific	 type	 of	EEPROM	 that	 is	 erased	 and	 programed	 in	 large	 blocks.	 The	
	CompactFlash	memory	card	is	being	used	with	some	PLCs	on	the	market	today.

Figure 3–7	EEPROM	Memory	Card
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MeMory size

PLCs	are	available	with	memory	sizes	ranging	from	as	little	as	256	words	for	small	systems	up	to	
32 meg	(million)	for	 the	larger	systems.	Memory	size	is	usually	expressed	in	K	values:	2K,	4K,	
16K,	and	so	on.	K,	or	kilo,	which	usually	stands	for	1,000,	actually	represents	1,024	in	computer-
ese.	The	difference	between	a	standard	K	(1,000)	and	the	1,024K	value	used	with	processors	and	
computers	is	due	to	the	way	the	words	were	counted.	One	of	the	counting	or	numbering	systems	
used	with	PLCs	is	the	binary system.	The	binary	system	has	a	base	2,	as	contrasted	to	the	decimal	
system	we	use	every	day	 that	 is	base	10.	Base	10	represents	 the	numbers	0	 through	9,	which	 is	
10 digits.	The	binary	numbering	system	with	a	base	2	only	has	2	digits.	The	digits	are	1	and	0.	As	
with	the	decimal	system	that	has	place	values	(tens,	hundreds,	thousands),	the	binary	system	also	
has	place	values.	These	are	1,	2,	4,	8,	16,	and	so	on,	and	each	place	value	is	equal	to	twice	the	value	
of	the	previous	number.	Base	20	represents	the	number	1;	base	21	represents	2;	base	22 represents 
the	number	4	(2 3 2	5	4);	base	23	represents	the	number	8	(2 3 2 3 2	5	8);	and	so	on.	Counting	
in	this	fashion,	210	would	equal	1,024.	While	1,024	is	actually	larger	than	the	1,000	that	K	actually	
represents,	K	(with	a	value	of	1,024)	is	used	in	PLCs,	and	personal	computers	as	well.	This	also	
explains	the	reason	for	the	odd	memory	sizes	of	individual	memory	chips:	256	(1 3 28);	and	512	
(1 3 29).	A	memory	chip	of	256	words	would	be	¼K	and	512	words	would	be	1/2K.	A	PLC	with	a	
total	memory	of	64K	would	actually	have	65,536	words	of	memory	(64	times	1,024).	Words,	word	
structure,	and	numbering	systems	are	covered	in	Chapter	6.

While	it	is	common	for	PLCs	to	measure	their	memory	capacity	in	words,	it	is	important	to	know	
the	number	of	bits	in	each	word.	A	PLC	that	uses	8-bit	words	would	have	half	the	memory	ca-
pacity	of	a	PLC	that	uses	16-bit	words.	For	example,	the	PLC	that	uses	8-bit	words	has	65,536	
bits	of	storage	with	an	8K	word	capacity	(8 3 8 3 1024	5	65,536),	whereas	a	PLC	using		16-bit	
words	has	131,072	bits	of	storage	with	the	same	8K	memory	(16 3 8 3 1024	5	131,072).	It	
is	 important	 to	 know	 the	word	 size	of	 any	given	PLC	before	memory	 size	 can	be	 accurately	
	compared.

Note:  Personal computers and some PLC manufacturers, such as Simatic T.I., size memory in 
bytes, not words. A byte is 8 bits, or half of a 16-bit word. A 32-bit word would have 4 bytes. 

The	actual	size	of	the	memory	required	depends	on	the	application.	In	the	event	that	future	expan-
sion	is	planned,	there	are	two	options:	buy	a	PLC	with	more	memory	than	is	presently	necessary	to	
allow	for	future	expansion,	or	buy	a	PLC	that	meets	present	needs	and	add	memory	(upgrade)	when	
the	need	arises.	Depending	on	the	manufacturer,	adding	memory	may	be	as	simple	as	replacement	
of	 the	memory	module,	or	 it	may	require	 that	additional	memory	chips	be	added	 to	 the	existing	
memory	module.	Some	processors	have	no	provisions	for	memory	expansion	and	must	be	replaced	
if	the	memory	needs	to	be	increased.	

GuardinG aGainsT elecTrosTaTic discharGe (esd)

A	major	 cause	of	 failure	of	memory	chips	and	other	 sensitive	electronic	components	 is	 electro-
static	discharge.	ESD	is	simply	the	discharge	of	static	electricity.	Static	electricity	can	build	up	on	
the  surface of a workstation, on clothing, the carpet on the floor of the workplace, on plastic cups, 
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	styrofoam,	cellophane,	and	other	such	materials.	To	reduce	the	possibility	of	damage	from	ESD,	the	
following	precautions	should	be	taken:

1.	Use	nonstatic	floor	coverings.
2.	Handle	chips	correctly.
3.	Ground	the	work	surface.
4.	Wear	a	wrist	strap.

Grounding the work surface and wearing a wrist strap are the two most important precautions to 
take.	Be	sure	 to	put	on	 the	wrist	strap	before	starting	 to	handle	memory	chips.	Make	sure	 it	fits	
snugly, that the metal pad of the strap is touching your skin, and that the wrist strap ground wire is 
securely	fastened	to	ground.

Although	some	manufacturers	indicate	that	ESD	is	not	a	problem	with	their	products,	this	is	mis-
leading;	always	follow	the	ESD	precautions	when	handling	memory	chips	and	other	sensitive	elec-
tronic	components.

For	PLCs	in	which	the	memory	can	be	expanded	by	adding	volatile	RAM	chip(s)	to	the	memory	
module,	the	following	procedures	should	be	used:

1.	 Record	a	copy	of	the	current	user	program	on	disk.
2.	Remove	main	power	from	the	PLC.
3.	Remove	the	memory	module	and	take	to	a	clean	area.
4.	Carefully	remove	any	screws	necessary	to	gain	access	to	the	printed	circuit	board	where	

the	extra	RAM	sockets	are	located.	If	the	backup	battery	is	located	on	the	module,	discon-
nect	the	battery	before	removing	or	installing	memory	chip(s).

Note: The RAM chip(s) will come packaged in a conductive plastic bag (often referred to as a “static” 
bag). Within the bag, each RAM chip will be inserted into a conductive sponge-like material. The conduc-
tive, yet highly resistive, material is used to keep all the pins of the chip at the same electrical potential. 

caution:	When	working	with	RAM	chips,	do	not	handle	cellophane	covered	articles	such	as	ciga-
rette packages or candy wrappers, plastic, styrofoam, or other materials that can cause a static 
charge.	Do	not	install	the	chip	in	carpeted	or	contaminated	areas	where	pins	may	become	fouled.	
And	never	slide	the	RAM	chip	across	any	surface,	store	a	RAM	chip	in	a	non-conductive	plastic	
bag,	or	insert	the	chip	into	non-conductive	material.

The	volatile	RAM	chips	used	today	are	not	as	susceptible	to	damage	from	static	charges	as	they	
were	a	few	years	ago.	But	rather	than	just	removing	the	chip	from	the	conductive	material	and	in-
stalling	it	into	the	proper	socket,	the	following	precautions	still	should	be	used:

1.	Ground	all	tools	before	contacting	the	RAM	chip,	including	yourself.
2.	Wear	a	conductive	wrist	strap	that	has	a	minimum	200K	ohm	resistance	and	is	connected	

to	earth	ground	as	shown	in	Figure	3–8.
3.	Control	relative	humidity	at	40	percent	to	60	percent,	if	possible.

Remove	the	chip	from	the	conductive	foam.	Be	careful	to	touch	only	the	chip	base.	Do not touch 
the	pins.	Inspect	the	pins	for	proper	alignment.	If	any	pins	have	been	bent,	gently	straighten	them	
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using	needle-nose	pliers	that	have	been	grounded.	A	dot	or	notch	on	the	case	of	the	chip	is	used	for	
proper	orientation	of	the	chip	into	the	socket.	Grasp	the	chip	by	both	ends	and	gently	set	it	in	the	
socket.	Do not insert. Be sure the chip is positioned so the dot or notch of the chip matches the dot 
or	notch	on	the	socket.

Before attempting to insert the chip into the socket, check each pin to make sure it lines up 
pro	perly	with	the	corresponding	socket	point.	Make	any	necessary	pin	adjustments	as	outlined	
above.

When	pin	alignment	is	ensured,	insert	the	chip	into	the	socket.	Insertion	is	accomplished	by	pressing	
gently	on	the	case	of	the	chip	until	the	chip	is	fully	seated	into	the	socket.

Carefully	reassemble	the	memory	module,	remembering	to	reconnect	the	backup	battery	if	one	was	
mounted	on	the	module.	Reinstall	the	module	in	the	processor	and	reapply	power	to	the	system.	The	
user	program	can	now	be	reentered	into	the	processor	and	any	additional	user	program	can	be	added	
using	the	new	memory	chip(s).

MeMory sTrucTure

As	indicated	earlier,	the	processor	memory	is	divided	into	two	general	classifications:	user	memory	
and	storage	memory.

User	memory	contains	the	instructions	programmed	by	the	user.	The	instructions	are	entered	by	a	
programming	device.

Storage	memory	is	where	the	status	(ON or OFF )	of	all	input	and	output	devices	is	stored.	Numeric	
values of timers and counters (preset and accumulated), numeric values for arithmetic instructions, 
and	the	status	of	internal	relays	also	are	stored	in	this	memory.

While	the	information	presented	in	this	section	applies	generally	to	all	PLCs,	more	specific	infor-
mation	and	memory	structure	can	only	be	obtained	by	reviewing	the	specifications	and	literature	of	

ATTACH THIS END TO A 
GOOD EARTH GROUND

Figure 3–8	Wrist	Strap	Grounding	Device
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individual	manufacturers.	 In	 subsequent	 chapters,	 the	memory	 structure	of	 specific	PLCs	will	 be	
discussed	and	illustrated,	but	the	text	does	not	cover	all	the	PLCs	on	the	market	today.

ProGraMMinG deVices

A	programming	device	is	needed	to	enter,	modify,	and	troubleshoot	the	PLC	program,	or	to	check	
the	condition	of	 the	processor.	Once	 the	program	has	been	entered	and	 the	PLC	 is	 running,	 the	
programming	device	may	be	disconnected.	It	 is	not	necessary	for	 the	programming	device	 to	be	
connected	for	the	PLC	to	operate,	but	it	can	be	used	to	monitor	the	PLC	program	while	the	program	
is	running.

Programming	devices,	or	programmers	as	they	are	most	often	called,	come	in	two	types:	hand-held	
and	computer	(Figures	3–9,	3–10).

Figure 3–10	Laptop	ComputerFigure 3–9	Hand–Held	Programmer

hand-held ProGraMMers

Hand-held	programmers	are	smaller,	cheaper,	and	more	portable	than	personal	computer	program-
mers.	While	the	portability	is	a	real	plus,	the	hand-held	programmer	has	some	limitations.

Unlike	the	personal	computer	that	can	display	a	complete	circuit	network,	hand-held	programmers	have	
limited	display	capabilities.	Some	hand-held	programmers	display	a	rung	of	logic	with	up	to	four	hori-
zontal	lines,	while	others	only	display	one	line	or	one	element	at	a	time.	The	display	is	either	LED	or	
liquid	crystal.	Figure	3–11	shows	an	Allen-Bradley	hand-held	programmer	with	liquid	crystal	display.

The	hand-held	programmer	may	not	have	the	full	programming	features	of	the	personal	computer	
programmer,	and	requires	more	“keystrokes”	to	actually	enter	a	program.	Hand-helds	typically	have	
restricted	access	to	the	processor	memory.
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On	 the	 plus	 side,	 hand-held	 programmers	 are	 well	 suited	 for	 installations	 that	 require	 constant	
changes	in	circuit	requirements	because	they	are	lightweight	(normally	less	than	2	pounds),	portable,	
and	ruggedly	constructed.	It	is	much	easier	to	connect	the	hand-held	programmer	to	the	processor	for	
changing	program	parameters	or	for	troubleshooting	than	it	is	to	bring	out	the	large,	heavier	personal	
computer	programmer.

While	the	relatively	low	cost	of	hand-helds	makes	them	affordable	troubleshooting	tools,	it	takes	
more	time	to	go	through	the	program	one	contact	or	rung	at	a	time.	The	extra	time	is	the	trade-off	
for	the	lower	initial	cost	of	the	programming	device.

coMPuTer ProGraMMers

With	 software	 available	 for	 all	major	 brands	 of	 PLCs,	 the	 personal	 computer	 is	 the	most	 com-
mon	programming	device	used	today.	Personal	computers	are	available	in	the	small	laptop	variety	
(shown	in	Figure	3–10)	or	the	even	smaller	notebook	style.	These	small	computers	make	for	excel-
lent	programming	devices	because	of	their	portability.

The personal computer usually has a color monitor, and the monitor shows multiple rungs of program 
logic,	as	well	as	highlighting	the	circuit	elements	to	indicate	status.	The	computer	has	the	added	abil-
ity	to	interface	the	PLC	software	program	with	other	software	programs	for	“cut	and	paste”	program	
development	 and	 editing.	The	PLC	 software	 provides	 for	 documentation	 capabilities	 of	 the	PLC	
program.	The	documentation	may	be	in	the	form	of	labeling	each	element,	or	writing	rung	comments.	
Added	graphic	capabilities	are	also	normally	a	part	of	a	PLC	software	program.

	

Image not available due to copyright restrictions
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When	a	program	is	first	developed	and	edited,	it	is	done	in	the	program	mode	or	the	off-line	mode.
Off-line	indicates	that	the	program	has	not	yet	been	loaded	into	the	processor	memory.	The	program	
is not operational until it is loaded into the processor memory, and the processor is placed in the 
RUN	mode.	Once	the	program	has	been	checked,	the	program	is	loaded	into	the	processor	for	test-
ing	and	further	verification	and/or	modification.	Changes	that	are	made	after	the	program	has	been	
loaded into the processor are called on-line	programming.

caution: Making	changes	to	the	program	while	the	program	is	running	and	the	driven	equip-
ment	 is	 operational	 (on-line	 programming)	must	 only	be	done	by	 trained	personnel	who	not	
only	understand	the	PLC	program,	but	also	thoroughly	understand	the	driven	equipment	and/or	
process.

As mentioned earlier, the monitor of a personal computer shows multiple rungs of program 
logic,	 as	well	 as	 highlighting	 the	 circuit	 elements	 to	 indicate	 status.	When	 the	PLC	program	
has	been		downloaded	into	the	user	memory	of	the	PLC	processor,	the	processor	placed	in	the	
RUN mode, and the circuit activated, the computer monitor gives a visual display of the circuit 
condition.

Actual	circuit	condition	is	shown	on	the	computer	display	in	basically	two	ways:	some	PLCs	inten-
sify,	or	make	brighter,	all	contacts,	interconnecting	lines,	and	coils	that	are	passing	current	or	have	
power	flow;	others	intensify	or	use	reverse	video	to	indicate	which	contacts	and	coils	have	power	
flow.	Figure	3–12a	illustrates	how	a	circuit	appears	before	the	START	button	is	pushed	for	a	system	
that	intensifies	contacts,	interconnecting	lines,	and	coils.	Figure	3–12b	shows	the	computer	display	
after the START	button	is	pushed	and	the	holding	contacts	close.

Figure 3–12a	Display	Prior	to	START	Button	Being	Depressed	

Figure 3–12b	Display	After	START	Button	Is	Depressed	and	Holding	Contacts	Close
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The	terms	“passing	current”	or	“power	flow”	are	holdovers	from	hardwired	circuits.	In	fact,	there	is	
no	power	flow,	or	current	flow,	as	we	normally	think	of	it;	rather,	it	is	logic	continuity	or	logically	
true	statements.

Figure	 3–13a	 illustrates	 how	 a	 display	 using	 reverse	 video	 looks	 before	 the	 START	 button	 is	
pushed,	and	Figure	3–13b	shows	the	display	after	the	START	button	is	depressed	and	the	holding	
	contacts close.

Figure 3–13a	Reverse	Video	Display	Prior	to	START	
Button	Being	Depressed

Figure 3–13b	Reverse	Video	Display	After	START	Button
Is 	Depressed and 	Holding Contacts	Close

No	matter	which	method	is	used,	this	feature	of	the	programming	software	is	a	powerful	trouble-
shooting	 aid.	 By	 viewing	 the	 display	 on	 the	 computer	monitor,	 the	 electrician	 or	 technician	 can	
determine	which	contacts	are	closed	and	which	outputs	are	turned	on.

Note: An output coil that is intensified only indicates that the output module circuit is ON. It does not 
guarantee that the actual output device is ON. However, if the output device and associated wiring 
are complete, the output device will be ON anytime the output module circuit is ON.

To	provide	a	dependable	backup	of	the	program	in	case	the	memory	fails	or	is	inadvertently	cleared	
or	altered,	a	flash	drive,	CD	disk,	or	hard	drive	is	used	to	record	and/or	load	the	user	program.	In	
fact,	a	major	advantage	of	using	a	personal	computer	for	programming	is	the	ability	of	the	personal	
computer	to	store	the	program	on	disk	and/or	on	the	hard	drive.	If	for	some	reason	the		program	is	
lost,	the	restoration	of	the	program	is	simple.	Merely	copy	the	program	from	the	disk	to	the	processor	
memory.
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chapter summary
The processor contains the circuitry necessary to monitor the status (ON or OFF ) of all inputs 
and control the condition (ON or OFF )	of	all	outputs.	It	also	has	the	ability	to	solve	and	execute	
the individual program steps in the user program, has a memory for storing the user program 
and	other	numeric	 information,	and	has	 the	ability	 to	 retrieve	and	use	any	and	all	 information	
stored	in	memory.	The	memory	used	in	PLCs	is	of	two	distinct	groups:	volatile	and	nonvolatile.	
Volatile	memory	requires	a	battery	backup	to	prevent	the	program	from	being	lost	due	to	a	power	
failure;	nonvolatile	memory	holds	the	program	when	power	is	lost	or	turned	off.	Programs	can	be	
stored on various types of memory chips, as well as on disks or on the hard drive of a computer 
programmer.

The	programming	device,	or	programmer,	is	used	to	enter,	modify,	and	monitor	the	user	program.	
Which	type	of	programming	device	to	use	will	vary	with	each	application.	Contacts	and	coils	are	
either	intensified	or	displayed	in	reverse	video	to	indicate	power	flow	or	logic	continuity.	Program-
ming	the	PLC	is	not	difficult,	but	time	must	be	spent	to	become	familiar	with	the	specific	PLC	and	
its	programming	techniques.

review Questions
	 1.	 The	processor	is	often	referred	to	as	the	 	of	the	programmable	controller.
	 2.	 Briefly	describe	volatile memory.
	 3.	 Briefly	describe	nonvolatile memory.
	 4.	 1K	of	memory	is	actually
	 	 a.	1,000	words
	 	 b.	1,010	words
	 	 c.	1,024	words
	 	 d.	1,042	words
	 5.	 Calculate	the	actual	number	of	words	in	an	8K	memory.
	 6.	 The	most	common	type	of	volatile	memory	is
	 	 a.	PROM
	 	 b.	EAROM
	 	 c.	EEPROM
	 	 d.	RAM
	 7.	 Which	of	the	following	are	types	of	nonvolatile	memory?
	 	 a.	EEPROM
	 	 b.	PROM
	 	 c.	RAM
	 	 d.	EAROM
	 	 e.	FLASH
	 8.	 List	the	two	broad	categories	of	memory	(not	volatile	and	nonvolatile).
	 9.	 List	the	two	types	of	programming	devices.
	10.	What	is	meant	by	the	term	Reverse Video?
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	11.	What	is	a	watchdog timer?
	12.		What	special	precautions	should	be	taken	with	lithium	batteries?
	13.	 When	a	PLC	is	first	turned	ON,	it	will	run	a	self-diagnostic	or	self-check	test.
	 	 T	 	 	 	 F
	14.	 Describe	the	four	steps	of	a	typical	PLC	processor	scan.
	15.	 The	actual	scan	time,	or	time	it	takes	the	PLC	to	complete	a	four-step	scan,	decreases	as	the	

number	of	program	words	increases.
	 	 T	 	 	 	 F	
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4
Objectives

After completing this chapter, you should have the knowledge to:
•	 Identify	the	two	broad	categories	of	memory	and	describe	the	function	of	each.
•	 Identify	the	types	of	information	stored	in	each	category	of	memory.
•	 Define	the	term	byte.
•	 Define	the	acronym	bits.
•	 Define	holding registers.	
•	 Define	the	term	tag.
•	 Identify	the	different	data	types.
•	 Understand	the	difference	between	tasks,	programs,	and	routines.	

MeMory Words and Word Locations

For	the	programmable	controller	to	function	properly	and	control	a	process	or	driven	equipment,	it	
must	be	able	to	perform	the	user	program	repeatedly	and	accurately.	The	system	must	also	be	able	to	
perform	its	control	function	with	great	speed,	which	is	achieved	by	processing	all	information	in	binary	
signals.	The	key	to	the	speed	with	which	binary	information	can	be	processed	is	that	there	are	only	two	
states,	each	of	which	is	distinctly	different.	Binary	signals	fall	into	one	of	two	states,	which	are	1	and 0.	
The	1	and	0	can	represent	ON or OFF, true or false, voltage or no voltage, high or low, or any other 
two	conditions	depending	on	the	system.	There	is	no	in-between	state	or	condition,	and	when	informa-
tion is processed, the decision is either yes or no.	There	is	no	maybe, almost,	or	any	other	alternative.

As indicated in Chapter 3, the processor memory consists of hundreds or thousands of locations that 
are	referred	to	as	words.	Each	word	is	capable	of	storing	binary	data	in	the	form	of	binary	digits,	or	
bits (BInary digiTS).	A	binary	digit,	like	a	binary	signal,	can	only	be	a	1	or	a	0.	The	number	of	bits	
that	a	word	can	store	will	depend	on	the	system	or	PLC.	Words	can	be	made	up	of	32	bits,	16	bits,	or	
8	bits.	Figure	4–1	shows	a	16-bit	word.

If	a	memory	size	is	256	words,	then	it	can	actually	store	4,096	bits	of	information	using	16-bit	words	
(256	words	3	16	bits	per	word)	or	2,048	bits	using	an	8-bit	word	(256	words	3	8	bits	per	word).	

0 0 1 1 0 1 0 0 0 1 0 1 1 0 0 1

16-BIT WORD

Figure 4–1	16-Bit	Word ©
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When	comparing	memory	sizes	of	different	PLC	systems,	it	is	important	to	know	the	number	of	bits	
per	word	of	memory.	Bits	can	also	be	grouped	within	a	word	into	bytes.	A	byte	is	a	group	of	8	bits.

So	that	information	stored	in	each	word	can	be	located,	each	word	is	numbered	or	given	an	address.	
	Allen-Bradley	Logix	family	of	PLCs	use	tag-based	memory,	which	will	be	covered	later	in	this		chapter.	
Addressing words in the memory serves the same function as the addresses used for homes or apart-
ments.	Word	100,	for	example,	represents	a	specific	word	location	in	memory,	just	like	100 N.	Lincoln	
represents	the	address	of	an	apartment	building.	The	bits	in	word	100	are	found	by	referencing	a	given	
bit	number,	just	like	the	occupant	of	the	apartment	complex	is	found	by	a	given	apartment	number.

Since	a	bit	of	information	can	only	be	a	1	or	a	0	(ON or OFF ),	how	is	the	status	of	bits	within	a	
word	determined?	Words	that	store	the	status	of	individual	bits	for	input	devices	are	set	to	1	(ON ) or 
0 (OFF ), depending on the status (ON or OFF )	of	the	input	devices	that	the	bit	locations	represent.	
Other	bits	are	set	to	1	or	cleared	to	0	by	the	processor	in	response	to	the	logic	of	the	user	program,	
Relay ladder logic, or special instructions, which, in turn, control the status (ON or OFF ) of other 
bits	that	represent	output	devices.

A	simple	example	of	how	this	works	is	illustrated	in	Figure	4–2.

Figure 4–2	Relationship	of	Bit	Address	to	Input	and	Output	Devices
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Note: The example uses memory organization and addressing utilized by the Allen-Bradley PLC-5 
family. While the example is specific to Allen-Bradley, the concepts illustrated are common to all 
PLCs. Allen-Bradley uses an octal numbering system to address bit locations. Notice that the 16 bits 
are numbered 00 through 07 and 10 through 17. In the octal numbering system, the numbers 8 and 
9 are never used. The octal numbering system will be covered in detail in Chapter 5. 

Assume that when a given limit switch is closed, the closure will turn an indicator lamp ON.	The	
limit	switch	is	connected	to	an	input	module	in	the	I/O	rack,	while	the	indicator	lamp	is	connected	
to	 an	 output	module.	 Chapter	 2	 discussed	DIP	 switches	 that	were	 set	 in	 a	 prescribed	 sequence	
to	identify	the	I/O	rack	number	for	the	processor,	and	that	the	location	of	each	terminal	point	of	
each	I/O	module	within	the	rack	determined	the	address	of	a	given	device.	In	Figure	4–2,	the	limit	
switch	is	connected	to	terminal	12	on	an	input	module,	and	is	given	an	address	of	I:013/12.	This	
indicates	that	bit	12	of	input	image	table	word	013	stores	the	status	(ON-[1]	or	OFF-[0])	of	the	limit	
switch.	The	indicator	lamp	is	connected	to	terminal	06	of	an	output	module	and	is	given	an	address	
of	O:012/06.	This	address	indicates	that	bit	06	of	output	image	table	word	012	controls	the	status	
(ON-1	or	OFF-0)	of	the	lamp.

By	programming	a	simple	circuit	into	the	user	memory	of	the	processor	as	shown	at	the	bottom	of	
Figure	4–2,	the	processor	controls	the	indicator	lamp	using	the	logic	of	the	user	program.	The	logic	
states	that	if	contact	I:013/12	closes,	lamp	O:012/06	should	light,	or	go	ON.	When	power	is	applied	
to	the	processor,	the	processor	starts	its	scan	and	looks	at	bit	12	of	input	image	word	013	to	see	if	
the	bit	is	set	to	1	or	0.	If	the	limit	switch	is	open,	the	bit	will	be	set	to	0,	or	OFF.	If	the	limit	switch	
is	closed,	as	indicated	in	Figure	4–2,	the	input	module	sends	a	signal	to	the	processor,	and	bit	12	of	
input	image	word	013	will	be	set	to	1,	or	ON.

The	next	part	of	the	scan	solves	the	user	program.	The	logic	of	the	ladder	diagram,	or	user	program,	
indicates	that	when	contact	I:013/12	(bit	12	of	input	word	013)	is	closed,	or	ON, the indicator lamp 
O:012/06	should	be	turned	ON.	The	processor	reads	the	logic,	and	during	the	third	step	of	the	scan,	
sets	bit	06	of	output	word	012	to	1,	which	turns	the	lamp	connected	to	the	output	module	terminal	
06	ON.

The	address	I:013/12	also	tells	us	that	the	limit	switch	is	an	input	device,	and	is	wired	to	terminal	
12	of	module	group	3	of	rack	1.

Figure	4–3	illustrates	the	significance	of	each	letter/digit	or	group	of	digits	used	for	addressing	the	
Allen-Bradley	PLC-5	family	of	programmable	logic	controllers.

Figure 4–3	Allen-Bradley	PLC-5	Address	Format

:
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The	first	letter	is	used	to	indicate	the	type	of	file	(input,	output,	timer,	counter,	etc.).	The	letter	I	
represents	an	input	device,	and	the	letter	O	represents	an	output.	

The	next	two	digits	identify	the	rack	number.	One	rack	can	control	128	I/O	points.	Rack	numbers	
start	at	00.	A	rack	is	different	than	a	chassis.	The	chassis	is	the	physical	frame	that	actually	holds	the	
input	and	output	modules	that	make	up	a	rack.	Depending	on	the	density	of	the	I/O	modules	used,	a	
rack	may	require	a	16-slot	chassis	or	only	4	slots.	If	8-point	I/O	are	being	used,	it	will	take	16	slots	
of	8-point	I/O	modules	to	make	128	I/O	points	(8	3	16	5	128),	whereas	if	32-point	I/O	are	being	
used,	it	will	only	take	a	4-slot	chassis	to	make	a	rack	(32	3	4	5	128).

The	next	number	identifies	the	module	group	within	the	rack.	This	is	always	a	number	from	0 through	7.	
The	last	two	digits	identify	the	actual	terminal	number	to	which	the	device	is	wired.

Figure	4–4	reviews	the	concept	using	the	address	of	the	limit	switch	I:013/12.

Figure 4–4	Limit	Switch	Address	I:013/12

I: 013/12

I/O RACK NUMBER

INPUT

MODULE GROUP

TERMINAL NUMBER

The	letter	I	tells	us	that	the	address	represents	an	input	device.	The	next	two	digits,	01,	tell	us	that	
the	device	is	located	in	I/O	rack	number	01.	The	next	digit,	which	is	a	3,	further	identifies	the	loca-
tion	as	module	group	number	3.	The	last	two	digits,	1	and	2,	identify	the	actual	terminal	(12)	on	the	
input	module	to	which	the	limit	switch	is	connected.

Another	example	of	this	concept	is	shown	in	Figure	4–5.	The	limit	switch	address	I:013/12	gives	us	
a	hardware	location	for	an	input	device	in	rack	01,	module	group	3,	terminal	12.	This	same	address,	
I:013/12,	tells	us	that	the	status	(ON or OFF )	or	state	of	the	limit	switch	is	reflected	by	bit	12	of	
word	013	in	the	input	image	table.

This	 same	 addressing	 scheme	 gives	 us	 a	 hardware	 location	 for	 the	 indicator	 lamp	 addressed	
O:012/06.	The	letter	O	indicates	an	output	device.	The	next	two	digits,	01,	tell	us	that	the	I/O	rack	
location	 is	01.	The	next	digit	 identifies	 the	module	group	as	group	2.	The	 last	 two	digits	 locate	
	terminal	06	as	the	terminal	on	the	output	module	to	which	the	indicator	lamp	is	wired.	Again,	the	
address	O:012/06	also	locates	the	memory	word	and	bit	location	that	reflects	the	status	(ON or OFF) 
of	the	indicator	lamp,	as	shown	in	Figure	4–6.
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While	 the	 address	 system	 discussed	 is	 specific	 to	 the	 Allen-Bradley	 PLC-5	 family,	 most	 PLC	
	manufacturers	use	an	addressing	scheme	that	identifies	memory	word	locations,	and	may	also	give	
hardware	locations.

sLc 500 and MicroLogix addressing scheMe

Like	the	PLC-5	family,	the	SLC	500	and	MicroLogix	family	use	the	letter	I	for	an	input	address	and	
the	letter	O	for	an	output	address.

I	 5	external	input	device
O 5	external	output	device

A	typical	address	for	an	input	device	would	be	I:0.1/6.	The	I,	of	course,	indicates	that	this	is	the	
	address	for	an	input	device.	The	colon	(:)	is	called	an	element	delimiter.	This	means	that	the	colon	
separates	 the	 input	designator,	 I,	 from	the	rest	of	 the	address.	The	next	character,	 the	number	0,	
	indicates	the	slot	number	that	holds	the	actual	input	module.	The	slot	number	can	range	from	slot	0,	
adjacent	to	the	power	supply	in	the	first	chassis,	to	a	maximum	of	30.	

If	the	number	of	inputs	for	that	slot	is	more	than	16,	a	period	(.),	which	is	called	a	word	delimiter,	
would	be	used	after	the	slot	number.	The	forward	slash	(/)	is	called	the	bit	delimiter.	The	number	
that	follows	the forward	slash	is	the	bit	number	of	the	word	as	well	as	the	terminal	number	of	the	
I/O	module.	The	digit	6	indicates	the	terminal	number	where	the	input	device	is	wired.	Figure	4–7	
illustrates	the		addressing	scheme	for	the	SLC	500	and	the	MicroLogix	family.

I: 0.1/6

ELEMENT DELIMITER

FILE TYPE

I = INPUT
O = OUTPUT
T = TIMER
C = COUNTER
ETC.

WORD DELIMITER

BIT DELIMITER

BIT (TERMINAL) NUMBER

ELEMENT (SLOT) NUMBER

Figure 4–7	Allen-Bradley	SLC	500	and	MicroLogix	Addressing	Scheme

In	the	address	shown	in	Figure	4–7,	the	I	indicates	that	the	file	type	is	an	Input	file	and	also	in	dicates	
this	is	the	address	of	an	input	device.	The	0	after	the	colon(:),	which	is	the	element	delimiter,	indicates	
that	the	input	device	is	connected	to	slot	0.	The	period	(.)	after	the	slot	number	indicates	that	the	inputs	
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O:0
OUTPUTS 0–15

(16 TOTAL)

01234567
DATA FILE 0 — OUTPUT IMAGE

89101112131415

I:0

I:0.1

WORD 0

WORD 1

INPUTS 0–15

INVALID

01234567
DATA FILE 1 — INPUT IMAGE

SLC 500 FIXED CONTROLLER

24 INPUTS

16 OUTPUTS

89101112131415

INPUTS 16–23
(24 TOTAL)

Figure 4–8	SLC	500	with	40	Fixed	I/O

exceed	16	and	require	two	words	in	the	input	image	table.	The	number	1	indicates	that	this	is	word	1	
in	slot	0.	The	number	6	after	the	forward	slash	is	the	bit	number.	

Note: The SLC 500 and MicroLogix do not use the octal numbering system like the PLC-5 family, but 
instead use the decimal numbering system. 

The	SLC	500	controller	is	available	in	either	fixed	or	modular	I/O.	The	fixed	I/O	units	have	fixed	I/O	
of	20	(12	inputs	and	8	outputs),	30	(18	inputs	and	12	outputs),	and	40	(24	inputs	and	16	outputs).	

For	fixed	I/O	controllers,	all	of	the	I/O	are	in	slot	0.	Figure	4–8	shows	a	fixed	I/O	controller	that	has	24	
inputs	and	16	outputs.	Also	shown	are	the	input	and	output	image	tables	for	Data	File	0	(output)	and	
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Data	File	1	(input).	Note	that	for	24	inputs,	the	Input	Image	table	uses	two	words	for	slot	0.	All 16 bits	
of	word	0	(I:0)	are	used,	whereas	only	the	first	8	bits	of	word	1	(I:0.1)	are	used	(bits	0	through 7).	The	
unused	bits	of	word	1—bits	8	through	15—are	marked	invalid	and	are	not	available	for	use.

Figure	4–9	shows	an	SLC	500	modular	controller	 that	consists	of	a	 seven-slot	chassis	 intercon-
nected	to	a	ten-slot	chassis.	

POWER
SUPPLY

6543210

I/O I/O I/O I/O I/O I/O I/O I/O I/O I/OCPU
POWER
SUPPLY

SLOT
NUMBERS

10987

FUTURE 
EXPANSION

Figure 4–9	SLC	500	Modular	Controller	(Seven-Slot	Chassis	Connected	to	a	Ten-Slot	Chassis)

In	this	configuration,	slot	0	contains	the	CPU,	so	slot	0	becomes	an	invalid	I/O	slot	number.	The	
controller	is	configured	as	follows:
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  1  6  6

  2 32 None

  3 None 16

  4  8  8

  5 None 32

  6 16 None

  7 16 None

  8  8 None

  9 None 16

 10 None 16
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Figure	4–10	shows	Data	File	0	(the	output	image	table)	and	Data	File	1	(the	input	image	table)	as	
they	would	appear	for	the	mix	of	I/O	described	above.	Note	that	wherever	32-point	I/O	modules	are	
used,	the	data	table	will	require	two	16-bit	words.	Slot	2	has	a	32-point	input	module,	and	the	input	
image	table	shows	word	I:2	(word	0	for	inputs	0	through	15)	and	word	I:2.1	(word	1	for	inputs	0–15,	
which	are	actually	inputs	17	through	32).	Likewise,	where	32	outputs	are	used	in	slot	5,	the	output	
image	table	for	slot	5	shows	that	two	words	are	used:	O:5	and	O:5.1.

0:1

0:3

0:4

0:5

0:5.1

0:9

0:10

I:1

I:2

I:2.1

I:4

I:6

I:7

I:8

SLOT 1 
OUTPUTS 0–5
SLOT 3 
OUTPUTS 0–15
SLOT 4 
OUTPUTS 0–7
SLOT 5 WORD 0 
OUTPUTS 0–15
SLOT 5 WORD 1 
OUTPUTS 0–15
SLOT 9 
OUTPUTS 0–15
SLOT 10 
OUTPUTS 0–15

SLOT 1 
INPUTS 0–5
SLOT 2 WORD 0
INPUTS 0–15
SLOT 2 WORD 1 
INPUTS 0–15
SLOT  4 
INPUTS 0–7
SLOT 6 
INPUTS 0–15
SLOT 7 
INPUTS 0–15
SLOT 8 
INPUTS 0–7

01234567
DATA FILE 0 — OUTPUT IMAGE

89101112131415

01234567
DATA FILE 1 — INPUT IMAGE

89101112131415

INVALID

INVALID

INVALID

INVALID

INVALID

Figure 4–10	Output	and	Input	Image	Tables	for	the	SLC	500	Configuration	Shown	in	Figure	4–9

Note	that	slot	4	of	both	the	input	and	output	image	tables	has	8	inputs	and	8	outputs.	While	only	
8 bits	of	each	word	in	the	input	and	output	image	table	are	needed,	the	unused	bits	cannot	be	used	
for	any	other	programming,	as	indicated	by	the	word	invalid	on	the	image	tables.	

Figure	 4–11	 shows	 an	 SLC	 500	 seven-slot	 chassis	 connected	 to	 a	 four-slot	 chassis	 using	 an	
	Allen-Bradley	 1746-C9	 communications	 cable.	 The	 processor	 is	 installed	 in	 slot	 0	 of	 the	 first	
	chassis,	which	is	adjacent	to	the	power	supply.	Figure	4–11	shows	an	exploded	view	of	the	out-
put/input	module	installed	in	slot	3.	The	output/input	module	is	shown	with	the	door	that	covers	
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the		terminals	open.	The	inside	of	the	door	shows	a	pictorial	view	of	the	terminal	layout.	The first	
	vertical	row	of	terminal	screws	is	for	the	six	outputs	plus	an	AC	common	connection. The	second	
vertical	row	of	terminals	is	for	the	six	input	devices	and	an	AC	common	connection.	The	normally	
open	push	button	that	is	shown	would	have	an	address	of	I:3/0.	I	is	for	input,	the	3	indicates	that	
the	 input	device	 is	 installed	in	slot 3,	and	the	0	 indicates	 the	 input	device	 is	connected	to	 input	
terminal	0.	
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SLOT 0 1 2 3 4 5 6 SLOT 7 8 9 10

INPUT

OUT 0
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AC COM

AC COM

1746-C9
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Figure 4–11	SLC	500	Modular	Controller	with	Input	Device	Connected
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Figure	4–12	shows	the	same	seven-slot	chassis	connected	to	a	four-slot	chassis.	In	this	figure,	an	
output	device	(solenoid)	is	connected	to	one	terminal	of	a	16-point	output	module	that	is	installed	in	
slot	8.	As	before,	the	terminal	door	is	open	and	shows	the	layout	of	the	terminals.	The	first	terminal	
is	for	connecting	the	AC	power.	Notice	that	the	output	numbers	alternate	from	Out	0,	then	Out	1,	
Out 2,	and	so	on.	The	very	last	terminal	is	for	the	AC	common,	or	neutral	connection.	The	address	
for	the	solenoid	connected	as	shown	would	be	O:8/12.	The	O	indicates	an	output	device,	the	8	in-
dicates	that	the	module	is	installed	in	slot	8,	and	the	12	indicates	that	the	solenoid	is	connected	to	
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Figure 4–12	SLC	500	Modular	Controller	with	Output	Device	Connected
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output	terminal	12.	This	address	also	indicates	that	the	status	of	the	output	device	is	found	in	bit	12	
of	Output	Image	Table	word	8.

Figure	4–13	shows	an	analog	input	module	installed	in	slot	10.	The	exploded	view	of	the	module	
shows	a	 sensor	 connected	 to	 the	module	 at	 terminals	3	 and	4.	As	connected,	 the	 address	of	 the	
analog	sensor	is	I:10.1.	From	the	layout	on	the	terminal	door,	we	can	see	that	terminals	3	and	4	are	
identified	as	Input	11	and	Input	1–.	
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Figure 4–13	SLC	500	with	Analog	Input	Device	Connected
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Figure	4–14	shows	an	analog	output	module	installed	in	slot	6.	The	analog	output	in	this	illustration	
is	an	actuator	connected	to	terminals	6	and	7.	The	address	for	the	actuator	is	O:6.3.

MeMory organization

As	discussed	in	Chapter	3,	there	are	two	general	classifications	of	memory:	storage	memory	and	
user	memory	(Figure	4–15).

storage Memory
Storage memory is that portion of memory that will store information on the status of input and 
output	devices,	preset	and	accumulated	values	of	timers	and	counters,	internal	relay	equivalents,	nu-
merical	values	for	arithmetic	functions,	and	so	on.	The	entire	storage	memory	is	called	a	data	table,	
a	register	table,	or	other	names,	depending	on	the	PLC	manufacturer.	A	register	is	defined	as	an	area	
for	storing	information	(logic	or	numeric).	Although	the	names	or	titles	that	are	given	to	sections	or	
subsections	of	the	storage	memory	vary,	the	principles	involved	do	not.
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Figure 4–14	SLC	500	with	Analog	Output	Device	Connected
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For	example,	the	section	of	the	memory	that	stores	the	status	of	the	real-world	input	devices	may	
be	referred	to	as	an	input	image	table,	input	register,	input	status	table,	or	external	input	section.	No	
matter	what	name	is	used,	the	information	is	stored	in	the	same	way.	The	status	(ON or OFF ) of 
each	input	device	is	stored	as	either	a	1	or	a	0	(ON or OFF )	in	one	bit	of	a	memory	word.	When	the	
processor	is	executing	the	user	program	(ladder	diagram),	it	scans	the	input	device	status	stored	in	
the storage memory to determine which inputs are ON or OFF.

The	section	of	storage	memory	set	aside	for	output	status	may	be	referred	to	as	the	output	image	
table,	output	register,	output	status	table	or	external	output	section.	Again,	the	name	does	not	change	
the	function	of	this	section	of	the	storage	memory,	or	the	method	by	which	information	is	placed	
in	memory	for	control	of	the	actual	output	devices.	As	the	processor	executes	the	user	program,	it	
sends	binary	data	(1s	or	0s)	to	the	output	section	of	memory	to	control	the	output	devices.	Each	
output	device	is	represented	by	one	bit	of	a	memory	word.

Numeric	information	for	timer	or	counter	preset	and	accumulated	values,	arithmetic	functions,		sequencer	
functions,	data	manipulation,	etc.,	uses	a	part	of	the	storage	memory	that	is	called	data		registers	or	internal	
storage.	Information	is	entered	and	stored	in	this	part	of	memory	using	the	binary,	BCD,	or	hexadecimal	
numbering	systems	(the	various	numbering	systems	are	covered	in	Chapter	5).	The	numbering	system(s)	
used	depends	on	the	PLC	hardware	and	system	requirements.	The		storage	of	numeric	information	requires	
that	several	bits	of	one	word	be	used	to	represent	numbers.	In	a	practical	sense,	any	word	used	to	store	
numerical	information	is	not	available	for		additional	storage,	even	if	all	the	bits	of	the	word	are	not	used.

Internal	 relays	will	 replace	 the	numerous	control	 relays	used	 in	most	hardwired	control	 	circuits.	
Many	PLCs	have	a	portion	of	memory	set	aside	 just	 for	 internal	 relays.	The	concept	and	use	of	
internal,	or	dummy,	relays	is	covered	later	in	the	text.

User Memory
The	user	memory,	or	logic	memory	as	it	is	sometimes	called,	is	where	the	programmed	ladder		logic	
is	stored.	Within	the	user	memory,	words	are	set	aside	as	holding registers.	Holding	registers	typi-
cally	store	information	generated	and	used	by	the	processor	when	it	is	solving	the	user	program.	
Holding	registers	that	are	set	aside	to	store	intermediate	values	or	other	short-term	bits	of	informa-
tion are sometimes referred to as scratch areas or scratch pads.

USER
MEMORY

STORAGE
MEMORY

Figure 4–15	Two	Broad	Categories	of	Memory
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The	user	memory	accounts	for	most	of	the	total	memory	of	a	given	PLC	system.	A	system	with	an	
8K	memory	(8192	words)	typically	has	a	storage	memory	of	2K	or	less,	and	the	balance	of	memory	
(6K)	is	available	for	user	memory.

Once	the	user	program	has	been	entered	into	the	user	memory	by	a	programming	device,	the	pro-
grammable	controller	 is	 ready	 to	control	 the	process	or	driven	equipment	 in	accordance	with	 the	
user’s	logic.

aLLen-BradLey PLc-5 FiLe strUctUre

The	Allen-Bradley	PLC-5	processors	are	usually	programmed	with	a	personal	computer	and	software	
specific	to	the	PLC-5	family,	and	the	areas	of	memory	are	often	referred	to	as	files.	Although	there	are	
still	two	memory	sections	(storage	[data]	and	user	[program]),	the	PLC-5	memory	map,	or	structure,	
is	very	flexible	in	the	way	that	the	memory	can	be	allo	cated.	Figure	4–16	shows	the	PLC-5	default 
memory	structure.	Default	refers	to	the	initial	value,	setting,	or	configuration	prior	to	any	user	changes.

In	the	data	or	storage	memory	section	file	0	is	the	output	image	file.	This	file	has	32	words	of	16	bits	
each,	and	can	hold	the	status	of	512	real-world	output	devices	(32	3	16).	The	status	of	the	outputs	

OUTPUT IMAGE

INPUT IMAGE

STATUS (CLOCK FAULT TABLE, ETC.)

BIT (INTERNAL RELAYS)

TIMER

COUNTER

CONTROL (MATH, SEQUENCER)

INTEGER (WHOLE NUMBERS)

FLOATING POINT (DECIMAL NUMBER, E.G., 3.2)

ASSIGN FILE TYPE AS NEEDED

ASCII

RESERVED
USER OR

PROGRAM 
MEMORY

DATA OR
STORAGE 
MEMORY

MAXIMUM NUMBER
OF ELEMENTS

FILE
NUMBER DESIGNATION

MAIN (LADDER LOGIC)

SUBROUTING

FAULT ROUTINE

32

32

32

1000

100

1000

1000

100

1000

0

1

2

3

4

5

6

7

8

9-999

0

O

I

S

B

T

C

R

N

F

A

1

2

3

999

Figure 4–16	PLC-5	File	Structure
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(ON or OFF )	is	updated	once	each	scan.	On	some	PLC-5	models,	like	the	PLC-5/25,	the	size	of	the	
file	can	be	increased	to	accommodate	more	output	devices.	

File	1	is	the	input	image	file.	This	file,	like	file	0,	has	32	words	of	memory	and	can	store	the	status	of	
512	input	devices.	The	status	(ON or OFF)	of	the	input	devices,	like	the	output	image	file,	is		updated	
once	each	scan	and	can	be	increased	in	size	on	many	PLC-5	models.	

Both	files	0	and	1	use	the	octal	numbering	system,	and	the	memory	locations	(bits)	are	also	num-
bered	using	the	octal	numbering	system	(there	are	no	8s	or	9s	in	the	octal	numbering	system).	The	
digits	are	0–7,	10–17,	20–27,	and	so	forth.	

File	2	is	the	status,	or	S	file.	This	file	is	used	to	store	information	on	general	processor	status,	fault	
codes,	real-time	clock	and	calendar,	major	and	minor	fault	bits,	and	program	scan	times	in	msec.	
Information	from	this	file	is	used	or	incorporated	into	the	user	program.	The	size	of	this	file	changes	
depending	on	the	processor	that	is	being	used.

File	3	is	the	B,	or	bit	file,	and	is	used	primarily	for	internal	or	dummy	relays.	The	default	size	of	this	
file	is	one	word,	but	can	be	expanded	to	1000	words	if	needed.	All	addresses	from	this	file	must	start	
with	B3.	Another	B	or	bit	file	may	be	created	using	the	other	areas	of	the	memory.	A B10	file	could	
be	created	that	would	also	have	internal	or	dummy	relays.	The	addressing	B10	versus	B3	is	used	for	
organization	and	ease	of	identification.	The	B3	file	may	be	associated	with	one	piece	of	equipment,	
while	the	B10	file	could	be	associated	with	another	piece	of	equipment	and/or	operation.	Up	to	999	
files	can	be	created	 in	a	PLC	5/15	processor	memory,	as	 long	as	you	do	not	 try	 to	allocate	more	
memory	than	is	physically	available	in	the	processor.	The	B3	file	is	typical	of	the	remaining	files	in	
flexibility,	as	well	as	being	addressed	using	the	decimal	numbering	system.

File	4	is	the	T,	or	timer	file.	All	timer	addresses	must	start	with	T4	unless	new	timer	files	have	been	
created	(e.g.,	T9,	T10,	and	T11).	When	files	are	being	created,	 the	same	number	cannot	be	used	
twice.	If	file	10	is	used	as	a	B	file	(B10),	then	file	10	cannot	be	used	as	a	timer	file.	Each	timer	that	
is	programmed	uses	three	words	of	memory	from	its	timer	file.	

File	5	is	the	C,	or	counter	file.	All	counters	that	are	programmed	have	C5	as	the	start	of	their		addresses.	
Each	counter,	as	with	timers,	uses	three	words	of	the	counter	file	memory.

File	6	is	the	R,	or	control	file.	The	words	in	this	file	are	used	with	special	functions	like	sequencer,	
file	moves,	word	 to	file	moves,	 and	math	 functions.	File	7	 stores	whole	numbers	 (integers)	 and	
is	called	the	N,	or	integer	file.	The	integer	file	is	used	to	store	numeric	values	for	data	compare,	
	arithmetic	functions,	and	the	like.	For	storing	numbers	with	a	decimal	point,	or	floating	point,	file	8,	
the	F	file	is	used.	Files	9–999	can	be	used	or	assigned	as	needed.	They	may	be	used	to	expand	the	
size	of	binary,	timer,	and	counter	files,	etc.	

The	program	portion,	or	user	portion,	of	memory	 (Figure	4–16)	 is	used	 to	 store	 information	 that	
	relates	to	the	user	program,	or	for	information	that	is	needed	for	the	processor	to	operate.	File	0	is	
used	to	store	ASCII	information,	while	File	1	is	reserved	for	internal	use	by	the	processor.	File	2	is	
where	the	user	program	is	stored	in	relay	ladder	logic.	Files	3–999	are	for	storing	subroutines,	fault	
routines,	and	selectable	timed	interrupt	(STI)	as	they	are	needed.
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Figure	4–17	shows	the	data	file	structure	used	by	the	various	PLC-5	models.	Note	that	the	I/O	sec-
tion	varies	from	32	words	for	the	input	image	table	and	32	words	for	the	output	image	table	for	the	
PLC-5/10,	5/12,	5/15,	5/11,	5/20,	and	5/20E,	while	there	are	192	words	for	both	the	input	and	output	
image	tables	for	the	PLC-5/60,	5/60L,	and	5/80.

OUTPUT O 0 32 32 64 64 128 192 2/�le + 1/word 6/�le + 1/word
INPUT I 1 32 32 64 64 128 192 2/�le + 1/word 6/�le + 1/word
STATUS S 2 32 128 32 128 128 128 2/�le + 1/Word 6/�le + 1/word
BIT (BINARY) B 3-999 (3) 1000 2/�le + 1/word 6/�le + 1/word
TIMER T 3-999 (4) 1000 structures of 3 2/�le + 3/structure 6/�le + 3/structure
COUNTER C 3-999 (5) 1000 structures of 3 2/�le + 3/structure 6/�le + 3/structure
CONTROL R 3-999 (6) 1000 structures of 3 2/�le + 3/structure 6/�le + 3/structure
INTEGER N 3-999 (7) 1000 2/�le + 3/word 6/�le + 3/word
FLOATING POINT F 3-999 (8) 1000 2/�le + 2/�oat word 6/�le + 2/�oat word
ASCII A 3-999 1000 2/�le + 1/2 per 6/�le + 1/2 per
    character character
BCD D 3-999 1000 2/�le + 1/word 6/�le + 1/word
BLOCK TRANSFER1 BT  3-999  1000 structures of 6  6/�le + 6/structure
MESSAGE1 MG 3-999 585 structures of 56  6/�le + 56/structure
PID1 PD 3-999 399 structures of 82  6/�le + 82/structure
SFC STATUS1 SC  3-999  1000 structures of 3  6/�le + 3/structure
ASCI STRING1 ST 3-999 780 structures of 42  6/�le + 42/structure
EXTRA STORAGE  3-999

FILE
DESCRIPTION

PLC-5
MEMORY

*DATA TABLE FILES

data table

program

1enhanced PLC-5 processors only.

PLC
-5/10,
-5/12, 
-5/15

PLC
-5/11,
-5/20, 
-5/20E

PLC
-5/40,

-5/40E, 
-5/40L

PLC
-5/60,

-5/60L, 
-5/80

CLASSIC
PLC-5

PROCESSORS

ENHANCED
PLC-5

PROCESSORS
PLC
-5/25

MAXIMUM SIZE OF FILE (16-BIT WORDS) MEMORY USED MEMORY USED

PLC
-5/30

NUMBER
(Default

�le)

Figure 4–17	Data	Table	Map	File	Structure	for	the	PLC-5	Family

The	second	column	of	the	chart	shows	the	file	numbers	for	the	default	files.	Files	0,	1,	and	2	are	
fixed	and	cannot	be	changed.	Files	3–8,	however,	can	be	changed	from	the	default	settings	and	used	
as	required.	For	example,	if	one	wanted	to	use	file	3—the	binary	file—for	a	timer	file,	it	would	be	
necessary	to	delete	the	binary	file.	The	binary	file	is	deleted	from	the	data	table	map	screen	and	
then	used	as	a	timer	file.	Because	files	3–8	can	be	changed,	files	3–999	can	then	be	used	for	timer	
files,	counter	files,	and	the	like.	However,	it	is	much	easier	to	use	files	9–999	when	additional	files	
are	needed.

sLc 500 and MicroLogix FiLe strUctUre

When	a	PLC	program	for	either	the	SLC	500	or	the	MicroLogix	is	being	developed,	the	information	
needed	for	the	program	to	function	properly	is	created	and	stored	in	processor	files.	These	files	are	
classified	into	two	general	types:	Program	Files	(User)	and	Data	Files	(Storage).	

Program	files	typically	contain	controller	information	(type	of	processor,	I/O	configuration,	etc.),	
the	ladder	logic	program,	subroutine	programs,	and	interrupt	subroutines.	The	specific	program	files	
for	the	SLC	500	are	shown	in	the	tables	on	the	next	page.
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sLc 500 Program Files

System program file (file 0)  Used to store information about the  
processor and the I/O configuration.

Reserved file (file 1)  Reserved for internal use of the processor and is 
not user-accessible.

Main ladder program file (file 2)  Stores the instructions entered by the user that 
 determine controller operation.

Subroutine ladder program file (file 3–255)  Stores any subroutines not created in the main 
 ladder diagram.
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sLc 500 data Files

Output-O (file 0)  Stores the status, ON or OFF, of output devices 
wired to the controller.

Input-I (file 1)  Stores the status, open or closed, of the input 
 devices wired to the controller.

Status-S (file 2)  Stores controller operation information. This file is 
useful for troubleshooting controller and program 
operation.

Bit-B (file 3)  Stores the logic for internal or dummy relays.

Timer-T (file 4)  Stores the preset values, accumulated values, and 
status bits for timers.

Counter-C (file 5)  Stores the preset values, accumulated values, and 
status bits for counters.

Control-R (file 6)  Stores information on sequencers and shift registers.

Integer-N (file 7) Stores numeric values.

Floating Point-F (file 8)* Stores numbers with a decimal point or floating  
 point.

String-ST (user-defined file)*

ASCII-A (user-defined file)*

*This file applies to selected SLC 500 processors.
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MicroLogix	processors	have	the	same	program	files	as	the	SLC	500,	and	three	additional	files.	

MicroLogix Program Files

System program file (file 0)  Used to store information about the processor and the 
I/O configuration.

Reserved file (file 1)  Reserved for internal use of the processor and is not 
user-accessible.

Main ladder program file (file 2)  Stores the instructions entered by the user that 
 determine controller operation.

User error fault routine (file 3) File is executed when a recoverable fault occurs.

High-speed counter interrupt (file 4)   File is executed when a high-speed counter interrupt oc-
curs. Can also be used for a subroutine  ladder  program.

Selectable timed interrupt (file 5)  Executed when a selectable timed interrupt occurs. Can 
also be used for a subroutine ladder program.

Subroutine ladder program file (file 6–15)  Stores any subroutines that have been created in the 
main ladder diagram.

MicroLogix data Files

Output-O (file 0)  Stores the status, ON or OFF, of output devices wired 
to the controller.

Input-I (file 1)  Stores the status, open or closed, of the input devices 
wired to the controller.

Status-S (file 2)  Stores controller operation information. This file is use-
ful for troubleshooting controller and program operation.

Bit-B (file 3) Stores the logic for internal or dummy relays.

Timer-T (file 4)  Stores the preset values, accumulated values, and 
 status bits for timers.

Counter-C (file 5)  Stores the preset values, accumulated values, and 
 status bits for counters.

Control-R (file 6)  Stores information on sequencers and shift registers.

Integer-N (file 7) Stores numeric values.
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The	MicroLogix	programmable	controllers	use	both	volatile	RAM	and	nonvolatile	EEPROM	mem-
ory.	Program	data	downloaded	into	the	processor	from	a	programming	device	are	stored	first	in	the	
RAM	memory	and	then	copied	to	the	EEPROM	memory	where	they	are	stored	as	both	backup	data	
and	retentive	data.	It	is	important	to	remember	that	all	data	in	the	RAM	memory	are	lost	in	the	event	
of	a	power	failure,	whereas	information	stored	on	the	EEPROM	memory	is	not	affected	by	power	loss.

Logix MeMory

The	Allen-Bradley	 Logix	 family	 of	 PLCs	 have	 a	 processor	memory	 that	 is	 separated	 into	 two	
	isolated	sections	(Figure	4–18).	The	logic	and	data	memory	area	stores	the	program	code	(ladder	
logic)	and	tag	data.	The	I/O	memory	area	stores	 the	I/O	data,	force	tables,	message	buffers,	and	
produced/consumed	tags.	Tags	will	be	covered	later	in	this	section.	As	you	can	see	this	is	somewhat	
different	from	the	“Storage”	and	“User”	memory	discussed	earlier.	

The	Logix	CPU	in	Figure	4–18	executes	 the	user’s	program	code	and	messages.	The	backplane	
CPU	on	the	other	hand	communicates	with	the	I/O	modules	and	sends/receives	data	from	the	back-
plane.	The	backplane	CPU	also	operates	 independently	 from	 the	Logix	processor,	which	means	
the	I/O	information	is	being	updated	asynchronous	to	the	program	execution.	As	you	recall	from	
Chapter	3,	the	I/O	is	typically	updated	at	the	end	of	the	program	scan	in	a	single	CPU	controller.	In	
the	Logix	PLC,	the	I/O	is	being	continually	updated	by	the	backplane	CPU	since	it	operates	inde-
pendently	from	the	processor	executing	the	program.

Most	PLCs	typically	have	register-based	memory	as	discussed	earlier	in	this	chapter.	Logix	memory	
on	the	other	hand	is	a	tag-based	memory	that	is	common	to	users	that	have	a	computer	background.	
In	the	Logix	processor,	the	user	determines	the	memory	structures	and	can	adjust	these	to	match	the	
application.	A	user	can	create	tag	names	and	define	the	data	type	as	needed.	There	is	no	predefined	
memory	layout	as	is	typical	with	other	PLCs.

Produced/Consumed Tags

Program Source Code

Tag Data

RSLinx Tag Group List

Logic and Data Memory
Logix CPU

I/O Data

I/O Force Tables

Message Buffers

I/O Memory
Backplane CPU

Figure 4–18	Allen-Bradley	Logic	Memory
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For	example:	When	 the	user	configures	an	I/O	module	 (see	Figure	4–19)	 in	 the	Logix	PLC,	 the	
Logix	processor	 automatically	 creates	 and	configures	 the	necessary	 I/O	memory	 (tags)	 and	data	
types.	Each	I/O	tag	name	created	follows	this	format:

Location:SlotNumber:Type.MemberName.SubMemberName.Bit
•	 Location—Identifies	the	network	location	of	the	I/O	module,	Local	or	the	Adapter	
Name.	If	the	module	is	located	in	the	local	chassis	with	the	processor,	then	“Local”	is	
placed	in	the	location	field	of	the	tag.	If	the	I/O	module	is	located	remotely	from	the	
processor	chassis,	than	the	remote	adapter	or	bridge	name	is	placed	in	the	location	field.

•	 SlotNumber—Identifies	the	slot	number	of	the	I/O	module	in	its	chassis.
•	 Type—Type	of	data	being	addressed.	This	can	be	I	(input),	O	(output),	C	(configura-
tion),	or	S	(status).

Figure 4–19	Logix	I/O	Configuration
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•	 MemberName—Is	the	specific	data	from	the	I/O	module;	depends	on	what	type	of	data	
the	module	can	store.	For	a	digital	module,	a	“Data”	member	usually	stores	the	input	or	
output	bit	values.	For	an	analog	module,	a	Channel	member	(CH#)	usually	stores	the	
data	for	a	channel.

•	 SubMemberName	(optional)—Specific	data	related	to	a	MemberName.
•	 Bit	(optional)—Specific	point	on	the	I/O	module;	depends	on	the	size	of	the	I/O		module.

The	good	news	 is	 that	 the	Logix	processor	automatically	creates	 the	correct	 I/O	 tags	 (controller	
scope	tags)	for	the	modules	that	are	installed.

If	 you	notice	 in	Figure	4–19	 there	 are	 two	 I/O	modules	 that	have	been	configured,	 a	1756-IA16	
input	module	and	a	1756-OA16	output	module.	The	number	in	[	]	is	the	slot	number	location	of	the	
module.	When	the	I/O	tags	are	created	for	each	module,	they	are	created	in	the	controller	tag	area	of	
memory.	Figure	4–20	shows	the	tags	that	were	created	for	the	two	modules.	Notice	at	the	top	of	the	
tag	edit	screen	(right	pane)	under	“Tag	Name”	the	tags	created	for	each	module.	Just	as	previously	
described,	 the	 tag	name	begins	with	“Local”	because	each	module	 is	 located	 in	 the	 local	chassis	

Figure 4–20	Logix	I/O	Tags
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with	the	processor.	Next	is	the	slot	number	of	the	module	and	then	the	data	type.	Two	data	types	are	
shown	for	the	1756-IA16	input	module	and	three	are	shown	for	the	1756-OA16	output	module.	Can	
you	guess	the	data	types	for	each	module?	If	you	recall,	the	“C”	indicates	a	configuration	type	tag	
and	each	module	has	one.	The	“I”	indicates	an	input	data	type	tag	and	the	“O”	indicates	an	output	
data	type	tag.

Note: It is worth mentioning that the Logix family of controllers and their associated I/O modules 
have many features that most traditional PLCs do not. Some of those features include diagnostic in-
formation, time stamping, fuse blown indication, etc. This book makes no attempt to cover all of the 
features and capabilities. It is only intended to give the reader a basic understanding of the different 
memory and addressing methods used today. 

If	you	expand	the	“Local:1:I”	tag	in	Figure	4–20	by	clicking	on	the	“+”	sign	to	the	left	of	the	tag,	
you	will	see	all	of	the	input	data	tags	associated	with	the	1756-IA	input	module	located	in	slot	1	
of	the	local	chassis	(see	Figure	4–21).	Notice	that	there	are	two	input	tags.	One	is	a	fault	input	
tag	and	 the	other	 is	a	data	 input	 tag.	The	 fault	 tag	would	contain	 fault	 information	 	associated	

Figure 4–21	Input	Data	Tags	For	Input	Module	in	Slot	1

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Memory	Organization	  85

with that module and the data tag would contain the actual input status of the inputs wired to 
that module.	

If	we	again	expand	the	“Local:1:I.Data”	tag	we	will	see	all	of	 the	individual	 input	data	tags	for	
the	1756-IA	input	module	(Figure	4–22).	 It	 is	worth	noting	 that	 the	Logix	family	of	controllers	
are	based	on	32-bit	operations	and	store	all	data	in	a	minimum	of	4	bytes	or	32	bits	of	data.	That’s	
why	there	are	more	than	sixteen	data	tags	shown.	Only	the	first	16	are	actually	used	by	this	input	
module.	

If	you	were	to	address	the	first	input	wired	to	your	1756-IA16	input	module,	the	address	tag	would	
be	“Local:1:I.Data.0”.	

Figure 4–22	Individual	Input	Data	Tags	For	Each	Input	Point
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data types
The	Logix	family	of	controllers	supports	IEC	61131-3	atomic	data	types,	such	as	REAL,	BOOL,	
SINT,	INT,	DINT,	and	LINT.	The	controllers	also	support	compound	data	types,	such	as	predefined	
structures,	arrays,	and	user-defined	structures.	As	previously	mentioned,	the	Logix	controllers	read	
and	manipulate	32-bit	data	values	versus	the	16-bit	data	values	found	with	traditional	PLC	control-
lers.	Since	the	CPU	manipulates	32-bit	data	values,	the	minimum	memory	allocation	for	data	in	a	
tag	is	4	bytes	or	32	bits.	When	creating	a	tag	that	stores	data	that	are	less	than	4	bytes,	the	controller	
uses	what	is	needed	and	the	remainder	becomes	unused	memory,	as	was	the	case	with	1756-IA16	
input	module	data	tag	discussed	in	Figure	4–22.

The	data	type	of	a	tag	defines	the	amount	and	function	of	bits	and	bytes	(words)	of	memory	assigned	
to	the	tag.	The	predefined	data	types	(DINT,	BOOL,	etc.)	are	used	to	store	the	following	types	of	data:

•	 BOOL—a	memory	location	for	a	single	bit	where	1	=	on	and	0	=	off.
•	 INT—a	memory	location	for	storing	an	integer	value	between	–32,768	and	+32,78.
•	 DINT—a	memory	location	for	storing	a	base	integer	number	in	the	range	of	
–2,147,483,648	to	+2,147,483,647.	DINT	stands	for	double	integer	or	double	word	
(32 bits).

•	 SINT—a	memory	location	for	storing	a	short	integer	(8	bits)	number	in	the	range	of	
–128	to	+127.

•	 REAL—a	memory	location	for	a	32-bit	value	that	contains	a	mantissa	or	an	exponent	
(raised	by	a	power	of	10)	that	can	be	very	large	or	very	small.

Additional	 predefined	 data	 types	 are	 also	 available	 such	 as	 CONTROL,	 COUNTER,	 TIMER,	
	MESSAGE,	PID,	etc.	They	are	used	for	storing	and	controlling	data	associated	with	a	specific	func-
tion	such	as	timers,	counters,	and	data	manipulation	instructions.

You	should	use	DINT	data	 types	whenever	possible	as	 they	use	less	memory	and	execute	faster	
than	other	data	types.	They	should	be	used	for	most	numeric	values	and	array	indexes.	Arrays	will	
be	covered	later	in	this	chapter.	REAL	data	types	should	be	used	for	manipulating	floating-point	
analog	values.

SINT	and	INT	should	be	used	primarily	in	user-defined	structures	and	when	communicating	with	
external	devices	that	do	not	support	the	DINT	data	type.

It	is	best	to	group	BOOL	values	into	DINT	arrays	to	save	memory	and	to	make	the	bits	accessible	to	
some	specialized	program	instructions	such	as	File	Bit	Comparison	(FBC)	and	Diagnostic	Detect	(DDT).	

Keep	in	mind	that	the	minimum	memory	allocation	for	any	tag	is	32	bits	(DINT).	When	assigning	
data	types	such	as	BOOL,	INT,	and	SINT	to	a	tag,	the	Logix	controller	still	allocates	a	full	4	bytes	
(DINT	or	32	bits)	but	only	uses	part	of	it,	as	shown	in	Figure	4–23.

arrays
An	array	 allocates	 a	 contiguous	block	of	memory	 in	 the	 controller	 of	 the	 same	data	 type.	Each	
data	type	in	the	array	is	a	single	tag	and	each	tag	is	considered	to	be	one	element	in	the	array.	The	
	elements	 in	 the	array	occupy	memory	 in	order,	meaning	 the	array	starts	at	0	and	extends	 to	 the	
numbers	of	elements	in	the	array.
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Figure 4–23	DINT	Memory	Allocation

For	example,	the	array	in	Figure	4–24	is	a	one-dimensional,	ten-element	array	of	the	data	type	DINT.	

In	this	example,	the	array	is	named	“Recipe_1”	and	has	ten	elements	or	DINI	tags	assigned	to	the	
array.	Since	the	elements	in	the	array	occupy	memory	in	consecutive	order,	the	array	starts	with	tag	
Recipe_1[0]	and	ends	with	tag	Recipe_1[9].	
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Figure 4–24	Ten-Element	Array
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Since	the	Logix	controller	does	not	automatically	group	data	of	the	same	type	in	memory,	you	can	
use	arrays	to	help	group	data	of	the	same	type.	For	example,	in	Figure	4–25	there	is	a	15-element	
timer	 array	 that	was	 created	 called	 “Packing_Station_Timers.”	Now	all	 of	 the	 timers	 associated	
with	the	Packing	Station	logic	are	grouped	together.	Single-dimensional	arrays	like	this,	can	help	to	
organize	data	and	conserve	memory.	

Another	 example	 of	 a	 single-dimensional	 array	 is	 shown	 in	 Figure	 4–26.	 In	 this	 example,	 a	
BOOL	array	has	been	created	called	“Internal_Relays.”	The	array	size	is	32	bits	or	one	DINT	
data	type.	If	you	recall	a	BOOL	data	type	is	one	bit	(1	=	on	and	0	=	off)	and	if	you	were	to	have	
created	32	 individual	BOOL	tags	you	would	have	used	128	bytes	of	memory.	By	creating	an	
array	of	32	BOOL	tags	(one	DINT)	only	4	bytes	of	memory	was	used.	Note: BOOL arrays can 
only be used with bit instructions; if you need to use a file type instruction, then create a DINT 
array.

Arrays	can	be	one-,	 two-,	or	 three-dimensional	as	 illustrated	in	Figure	4–27.	A	three-dimensional	
array	might	store	information	such	as,	part	number,	color,	and	size.	As	you	can	see,	arrays	open	up	
all	sorts	of	possibilities	for	storing	specific	data	as	a	table	of	values.	

Figure 4–25	15-Element	Timer	Array
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Figure 4–26	32-Element	BOOL	Array
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Figure 4–27	One-,	Two-,	and	Three-Dimensional	Arrays

One-Dimensional
Array (X)

Two-Dimensional
Array (X, Y)

Three-Dimensional
Array (X, Y, Z)
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Note: Because of the many variations of creating and addressing arrays, the reader should consult 
the manufactures literature for information on configuring, addressing, and using arrays in the Logix 
family of PLC controllers.

tags
As	 discussed	 briefly	 at	 the	 beginning	 of	 this	 section,	 a	 tag	 is	 a	 text-based	 name	 for	 an	 area	 of	
memory	that	stores	data	in	the	controller.	Tags	are	the	basic	means	for	creating,	referencing,	and	
monitoring	data.	The	controller	stores	tags	in	memory	as	they	are	created.	When	a	tag	is	created,	
there	are	certain	parameters	that	must	be	defined:

•	 Scope
•	 Name
•	 Tag	Type
•	 Data	Type
•	 Style
•	 Description

Scope—defines	the	availability	of	a	tag	to	the	user	programs.	A	tag	can	be	designated	as	either	a	
controller-scoped	tag	or	a	program-scoped	tag.	Controller-scoped	tags,	such	as	I/O	tags	discussed	
earlier,	are	available	to	every	task	and	program	within	the	project,	whereas	program-scoped	tags	are	
available	only	to	the	program	with	which	they	are	associated.	

Name—the	tag	name	itself.	Tag	names	can	be	up	to	40	characters	long,	must	start	with	an	alphabetic	
character	or	an	underscore	[	_	],	and	cannot	end	with	an	underscore.	The	tag	name	can	contain	any	
combination	of	alphabetic	and	numeric	characters.	Spaces	are	replaced	with	underscores	when	you	
enter	in	a	tag	name.

Tag	Type—the	type	of	 tag:	Base,	Alias,	Produced,	or	Consumed.	Base	 tags	are	 tags	 that	store	a	
value	for	use	by	the	logic	within	the	project	and	are	the	actual	named	area	of	memory.	Alias	tags	
use	a	different	or	second	name	for	an	existing	tag’s	data	area	of	memory.	Alias	tags	are	commonly	
used	to	simplify	long	or	complex	naming	structures	such	as	I/O	tags	or	to	allow	programming	of	
the	logic	before	the	actual	I/O	drawings	are	complete.	When	the	value	of	a	base	tag	changes,	so	do	
all	alias	tags	that	reference	the	base	tag.	Figure	4–28	shows	an	alias	tag	(Start_Push_Button)	for	the	
first	input	point	of	the	1756-IA16	module	discussed	earlier.

A	produced	(broadcast)	tag	is	any	tag	that	is	shared	with	other	controllers	over	the	backplane,	Con-
trolNet™	network,	or	Ethernet/IP	network.	A	consumed	(receive)	tag	is	a	tag	that	holds	the	value	
of	a	produced	tag.

Data	Type—the	data	 type	of	 the	 tag,	which	can	be	either	a	predefined	data	 type	(DINT,	REAL,	
TIMER,	etc.)	or	a	user-defined	data	type.

Style—the	display	radix	for	the	data	type.	This	is	an	optional	feature	that	allows	the	user	to	change	
to	a	different	display	radix	such	as	decimal,	binary,	octal,	etc.	This	feature	is	only	available	with	
certain	data	types.
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tasks
The	Logix	controller	is	a	preemptive	multitasking	PLC	system,	meaning	that	only	one	task	(a	set	
of	one	or	more	programs)	can	be	active	at	a	time	but	has	the	ability	to	interrupt	the	active	task	and	
switch	to	a	different	task,	then	return.	A	task	contains	programs,	each	with	its	own	routines.	The	
routines	contain	the	executable	code.	Figure	4–29	shows	the	project	organization	and	how	tasks,	
programs,	and	routines	fit	together.	

A	task	triggers	the	execution	of	its	scheduled	programs.	Tasks	can	either	be	continuous,	periodic,	
or	event.	

Continues	 Task—a	 task	 that	 runs	 in	 the	 background	 anytime	 other	 operations	 such	 as	 periodic	
tasks	are	not	executing.	A	continuous	task	runs	all	 the	time	and	automatically	restarts	after	each	
completion.	A	project	does	not	require	a	continuous	task,	but	one	is	created	by	default	with	each	
new	project	and	can	be	deleted	or	modified	as	desired.	It	is	worth	noting	that	there	can	only	be	one	

Figure 4–28	Alias	Tag
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continuous	task	in	a	project.	A	continuous	task	is	always	interrupted	by	a	periodic	or	event	task	and,	
by	default,	has	the	lowest	priority.

Periodic	Task—a	task	that	is	triggered	at	a	repeated	time	interval.	Whenever	the	periodic	task	is	
triggered	by	the	controller,	it	interrupts	any	lower-priority	tasks,	executes	one	time,	and	returns	to	

Figure 4–29	Project	Organization	Window
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where	the	previous	task	left	off.	Periodic	tasks	have	a	time	range	of	1	millisecond	to	2000	seconds	
and	are	used	for	applications	requiring	accurate	and	deterministic	execution.

Event	Task—a	task	that	is	triggered	only	when	a	specific	event	(trigger)	occurs.	Whenever	an	event	
task	is	triggered,	the	event	task	interrupts	any	lower-priority	tasks,	executes	one	time,	and	returns	
to	where	the	previous	task	left	off.	

Programs
A	program	is	the	second	level	below	the	task.	As	you	recall,	each	task	can	have	up	to	32	programs.	
When	the	task	is	triggered,	the	programs	defined	for	that	task	are	executed	in	sequence	from	the	first	
scheduled	to	the	last	scheduled.	The	ladder	logic	with	each	program	can	modify	controller-scoped	
and	local	program-scoped	data.	Developing	multiple	programs	can	be	useful	in	helping	to	organize	
major	equipment	pieces	or	work	areas.	They	can	also	be	useful	 to	 isolate	machine	operations	or	
	during	development	by	multiple	programmers.	When	a	Logix	project	is	developed,	a	default	pro-
gram	is	created	and	scheduled	in	the	default	MainTask	(Figure	4–30).

Programs	are	scheduled	in	a	specific	task	or	left	unscheduled.	For	example,	a	technician	may	cre-
ate	a	 troubleshooting	or	 test	program	and	only	schedule	 the	program	when	needed.	Another	ex-
ample	might	be	that	an	original	equipment	manufacturer	develops	one	project	and	then	schedules	

Figure 4–30	Main	Task	Program	File
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or		unschedules	programs	based	on	the	needs	of	that	particular	machine.	In	Figure	4–31	the	author	
has	created	a	troubleshooting	program	that	is	configured	as	unscheduled.	Notice	how	a	folder	titled	
“Unscheduled	Programs”	has	been	created	in	the	controller	organizer	window	on	the	left	and	the	
program	placed	under	that	folder.	The	configuration	screen	on	the	right	clearly	shows	how	programs	
can	be	scheduled	and	unscheduled.	If	there	are	multiple	scheduled	programs	they	can	be	arranged	in	
the	sequence	desired,	from	the	first	scheduled	to	the	last	scheduled.	

routines
A	routine	contains	 the	actual	 ladder	 logic	within	a	program.	The	 routine	contains	 a	 set	of	 logic	
instructions	 that	provides	 the	executable	code	 to	 the	controller.	The	 routine	 is	programmed	 in	a	
single	programming	language,	such	as	ladder	logic.	The	Logix	PLC	is	capable	of	four	programming	

Figure 4–31	Configuring	Unscheduled	and	Scheduled	Programs
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languages;	relay	ladder	logic,	function	block	diagram,	sequential	function	chart,	and	structured	text.	
Each	of	these	programming	languages	will	be	covered	in	later	chapters.

There	is	no	limit	to	the	number	of	routines	that	can	be	created	under	a	program.	Use	routines	to	
isolate	machine	functions	or	modularize	code	into	subroutines.	For	example,	you	could	develop	a	
ladder	logic	routine	that	controlled	the	wash	cycle	and	another	for	the	rinse	cycle.	In	this	way,	the	
logic	is	organized	by	function	and	can	be	executed	only	when	needed.	

A	routine	can	be	assigned	as	the	main	routine	that	executes	automatically	when	the	controller	trig-
gers	the	associated	task	and	program,	or	a	fault	routine	that	executes	if	the	controller	finds	a	fault	
within	any	routines	in	the	associated	program.	Routines	can	be	created	that	are	only	executed	when	
instructed	by	logic	in	the	main	routine;	these	types	of	routines	are	called	subroutines.	

In	Figure	4–32	the	author	has	created	two	routines;	one	is	our	rinse	cycle	routine	and	the	other	is	our	
wash	cycle	routine.	Since	both	routines	are	triggered	from	the	main	routine,	as	seen	in	Figure	4–32,	
they	are	called	subroutines	and	are	only	executed	when	the	buttons	are	pushed.

Figure 4–32	Routines	and	Subroutines
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Keep	in	mind	that	only	one	task	can	be	assigned	as	the	continuous	task.	Programs	assigned	to	the	
continuous	task	will	execute	according	to	their	assigned	order,	and	only	one	routine	in	each	program	
can	be	assigned	as	the	main	or	continuous	routine.

As	the	names	and	structure	vary	between	PLC	families,	the	only	way	to	really	understand	the	mem-
ory	structure	is	to	obtain	the	literature	for	the	specific	PLC	that	you	are	dealing	with.	Salespeople	
and	technical	representatives	are	all	invaluable	resources	when	you	are	trying	to	gather	information	
or	clarification	about	a	particular	PLC.

chapter summary
All	data,	logic,	and	numerics	are	stored	with	binary	digits	that	are	represented	as	either	a	1	or	a	0.	
By	storing	binary	data,	the	processor	can	rapidly	scan	and	execute	the	user	program	and	update	the	
I/O	section.	I/O	addresses	in	many	cases	not	only	identify	the	word	and	bit	that	is	associated	with	
the	I/O,	but	also	indicate	hardware	location	(rack,	module	group,	and	terminal).	

The	names	given	to	memory	sections	or	subsections	are	unique	to	each	PLC	manufacturer,	but	the	
memories	all	work	in	basically	the	same	manner.

The	processor	memory	stores	the	I/O	status,	the	user	program,	and	numeric	data	used	by	the		processor.

In	tag-based	memory	the	user	determines	the	memory	structures	and	can	adjust	these	to	match	the	
application.

review Questions
	 1.	 The	following	types	of	information	are	normally	found	and/or	stored	in	one	of	the	PLC’s	

two	memory	categories	(user	and	storage).	Place	an	S	(for	storage	memory)	or	a	U	(for	user	
memory)	before	the	information	type	to	indicate	in	which	category	it	is	normally	found	and/or	
stored.

	 	 a.	status	of	discrete	input	devices
	 	 b.	preset	values	of	timers	and	counters
	 	 c.	numeric	values	of	arithmetic
	 	 d.	holding	registers
	 2.	 Identify	the	following	PLC-5	files:
	 	 a.	I	 b.	O	 c.	N
	 	 d.	S	 e.	B	 f.	T
	 	 g.	R	 h.	F	 i.	C
	 3.	 Define	the	term	byte.
	 4.	 In	a	PLC-5,	data	file	5	is	what	type	of	file?
	 5.	 What	word	and	bit	number	are	represented	by	PLC-5	address	O:010/01?
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	 6.	 Using	SLC	500	addressing,	what	do	the	following	addresses	indicate?
	 	 a.	O:3/15
	 	 b.	I:2.1/3
	 	 c.	O:5/0
	 	 d.	I:7/8
	 7.	 Using	Allen-Bradley	PLC-5	address	format,	what	would	address	I:013/12	indicate?
	 8.	 Using	SLC	500	or	MicroLogix	address	format,	what	would	address	I:1.0/4	indicate?
	 9.	 Referring	to	Figure	4–14,	what	would	address	O:6.2	indicate?
10.	Define	the	term	scope tags.
11.	Describe	the	following	data	types:
	 	 a.	REAL	 	 b.	BOOL
	 	 c.	SINT	 	 d.	DINT
12.	What	is	an	array?
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Numbering Systems

Chapter

5
Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand	decimal,	binary,	octal,	hexadecimal,	and	binary	coded	decimal	(BCD)	num-
bering	systems.

•	 Convert	from	one	numbering	system	to	another.
•	 Express	negative	numbers	in	2s	complement.
•	 Add	signed	numbers.
•	 Convert	a	negative	binary	display	to	its	decimal	equivalent.
•	 Complete	a	subtraction	problem	using	2s	complement	and	addition.

Electricians,	technicians,	or	other	personnel	who	are	required	to	program,	modify,	or	maintain	a	PLC	
must	have	a	“working”	knowledge	of	the	different	numbering	systems	that	are	used.	For	ex	ample,	the	
input/output	addresses	may	use	the	octal	numbering	system;	the	timer	and	counter	ad	dres	ses	may	use	
the	decimal	numbering	system;	accumulated	and	preset	values	of	the	timers	and	counters	may	use	the	
binary	numbering	system;	operator	interfaces,	such	as	thumbwheels	and	seven-segment	displays,	may	
require	information	to	be	sent	and	received	using	the	BCD	format;	and	the	hexadecimal	system	may	
be	used	for	loading	information	into	sequencers.	The	numbering	system	used	in	each	area	discussed	
varies	with	the	different	PLC	manufacturers,	but	it	is	obvious	that	to	fully	understand	and	program	a	
PLC,	an	understanding	of	the	various	numbering	systems	is	necessary.

Decimal SyStem

The	decimal	numbering	system	is	used	every	day	by	electricians	and	technicians,	and	it	is	a	system	
they	are	comfortable	with.	This	system	uses	ten	unique	numbers,	or	digits,	which	are	0	through	9.	
A numbering	system	that	uses	10	digits	is	said	to	have	a	base	of	10.	The	value	of	the	decimal		number	
depends	on	the	digit(s)	used,	and	each	digit’s	place	value.	Each	position	can	be	represented	as	a	
power	of	10,	starting	with	100	as	shown	in	Figure	5–1.	In	the	decimal	system,	the	first	position	to	the	
left	of	the	decimal	point	is	called	the	units	place,	and	any	digit	from	0–9	can	be	used.	The	next	posi-
tion	to	the	left	of	the	units	place	is	the	tens	place;	next	is	the	hundreds	place,	the	thousands	place,	
and	so	on,	with	each	place	extending	the	capability	of	the	decimal	system	by	ten,	or	a	power	of	ten.	

Note: Any number that uses an exponent of 0, such as 100, has a place value of 1. Exponent 100 
equals 1.

98
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A	specific	decimal	number	can	be	expressed	by	adding	the	place	values,	as	shown	in	Figure	5–2.

Mathematically,	each	place	value	is	expressed	as	a	digit	number	times	a	power	of	the	base,	or	10,	
in	the	decimal	numbering	system.

Another	example	is	shown	in	Figure	5–3	using	the	decimal	number	239.
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Binary SyStem

The	binary	system	uses	only	two	digits:	1	and	0.	Since	only	two	digits	are	used,	this	system	has	a	base	
of	2.	Like	the	decimal	system—and	all	numbering	systems	for	that	matter—each	digit	has	a	certain	
place	value.	The	first	place	to	the	left	of	the	starting	point,	or	binary	point,	is	the	units	or	1s	location	
(base	20).	The	next	place,	to	the	left	of	the	units	place,	is	the	2s	place,	or	base	21,	as	shown	in	Fig-
ure 5–4.	The	next	place	value	is	the	4s	place,	or	base	22,	then	the	8s	place,	or	base	23,	and	so	forth.	
A binary	number	is	always	indicated	by	placing	a	2	in	subscript	to	the	right	of	the	units	digit.	Figure	
5–4	illustrates	how	a	binary	number	is	converted	to	a	decimal	equivalent	number.	Note	the	subscripted	
2	at	the	lower	right-hand	corner	of	the	binary	number	line	that	indicates	a	base	2,	or		binary	number.
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Figure 5–4	Converting	a	Binary	Number	to	a	Decimal	Number

To	convert	a	decimal	number	into	a	binary	number,	or	to	any	numbering	system	for	that	matter,	use	
the	following	procedure,	as	shown	in	Figure	5–5.	Divide	the	decimal	number	by	the	base	you	wish	to	

Figure 5–5	Converting	a	Decimal	Number	to	a	Binary	Number

1 1 1 0 1 1 1 1
2

DECIMAL NUMBER

1. = 119 remainder 1239
2

10239

2. = 59 remainder 1119
2

3. = 29 remainder 159
2

4. = 14 remainder 129
2

5. = 7 remainder 014
2

6. = 3 remainder 17
2

7. = 1 remainder 13
2

8. = 0 remainder 11
2
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convert	to,	in	this	case	2.	The	remainder	is	the	1s	value	(see	Step	1	in	the	figure).	Now	divide	the	quo-
tient	from	the	first	division	again;	the	remainder	becomes	the	value	that	is	placed	in	the	2s	location	
(see	Step	2).	The	quotient	of	each	preceding	division	is	then	divided	by	the	base	2	until	the	base	can	
no	longer	be	divided	(see	Step	8),	and	the	remainder	(1)	becomes	the	last	digit	in	the	binary	number.	

It	is	important	to	arrange	the	remainders	correctly	when	making	the	decimal-to-binary	conversion.	
The	first	digit	placed	in	the	1s	position	is	called	the	least	significant	digit,	whereas	the	last	digit	is	
called the most	significant	digit.	The	last	digit	placed	has	the	highest	place	value	(128s)	which	is	
why	it	is	called	the	most	significant	digit.	This	reference	to	least	and	most	significant	digits	is	com-
mon,	and	refers	to	the	relative	position	of	any	given	digit	within	a	number.

The	following	steps	summarize	this	decimal-to-binary	conversion.
Step 1.	 The	decimal	number	is	divided	by	2	(base	of	the	binary	numbering	system).	The	

	quotient	is	listed	(119)	as	well	as	the	remainder	(1).
Step 2.	 Divide	the	quotient	of	Step	1	(119)	by	base	2,	and	list	the	new	quotient	(59)	and	the	

	remainder	(1).
Step 3.	 Divide	the	quotient	of	Step	2	(59)	by	base	2,	and	list	the	new	quotient	(29)	and	

	remainder	(1).
Step 4.	 Divide	the	quotient	of	Step	3	(29)	by	2,	and	list	the	new	quotient	(14)	and	the	remainder	

(1).
Step 5.	 Divide	the	quotient	of	Step	4	(14)	by	2,	and	list	the	new	quotient	(7)	and	remainder	(0).
Step 6.	 Divide	the	quotient	of	Step	5	(7)	by	2,	and	list	the	new	quotient	(3)	and	remainder	(1).
Step 7.	 Divide	the	quotient	of	Step	6	(3)	by	2,	and	list	the	new	quotient	(1)	and	remainder	(1).
Step 8.	 Divide	the	quotient	of	Step	7	(1)	by	2,	and	list	the	new	quotient	(0)	and	remainder	(1).

Note: When using a calculator to do the division, the value to the right of the decimal must be mul-
tiplied by the base to get the actual remainder. For example, when 239 is divided by 2 (Step 1) on 
a calculator, the answer is 119.5. To find the actual remainder, the 0.5 is multiplied by 2, the base, 
to find the remainder 1. This procedure is true for any numbering system. The base times the value 
to the right of the decimal point equals the actual remainder.

The	binary	numbering	system	 is	used	 to	store	 information	 in	 the	processor	memory	 in	 the	 form	
of bits.

2S complement

Virtually	all	programmable	controllers,	computers,	and	other	electronic	calculating	equipment	per-
form	counting	functions	using	the	binary	system.	For	those	PLCs	that	are	programmed	to	perform	
arithmetic	functions,	a	method	of	representing	both	positive	(1)	and	negative	(–)	numbers	must	be	
used.	The	most	common	method	is	2s	complement.	The	2s	complement	is	simply	a	convention	for	
binary	representation	of	negative	decimal	numbers.

Before	going	any	further	with	a	discussion	of	2s	complement,	a	review	of	adding	binary	numbers	
may	be	helpful.	In	decimal	addition,	numbers	are	added	according	to	an	addition	table.	A	partial	
	addition	table	is	shown	in	Figure	5–6.
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For	binary	addition,	a	similar	addition	table	is	constructed.	The	table	is	small	because	the	binary	
system	only	has	two	digits	(1	and	0)	(Figure	5–8).

0 1 2 3 4 5
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5
4 5

0
1
2
3
4

Figure 5–6	Decimal	Addition	System

Figure 5–7	Adding	2	and	3

0 1 2 3 4 5
0 1 2 3 4
1 2 3 4 5
2 3 4 5 6
3 4 5
4 5

0
1
2
3
4

To	use	the	table,	the	first	number	to	be	added	is	located	on	the	vertical	line,	and	the	second	num-
ber	on	the	horizontal	line.	The	sum,	or	total,	is	found	where	the	two	imaginary	lines	intersect.	For	
	example,	3	1	2	5	5	(as	shown	in	Figure	5–7).

Figure 5–8	Binary	Addition	Table

0  1
0  1 
1 10

0
1

Figure 5–9	Adding	Binary	1	and	0

0  1
0  1 
1 10

0
1

To	use	the	table,	the	first	number	(digit)	to	be	added	is	located	on	the	vertical	line,	the	second	digit	
is	located	on	the	horizontal	line.	The	sum,	or	total,	is	found	where	the	two	imaginary	lines	intersect.	
Figure	5–9	shows	an	example	of	adding	1	1	0	5	1.
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Notice	that	if	1	and	1	are	added,	the	table	shows	1	0,	not	2,	as	might	be	expected.	1	0	is	the	binary	
representation	of	2	(Figure	5–10).

0 0 1 0
2

8 4 2 1

Figure 5–10	Binary	Representation	of	2

0 1 0 1

161 1 18 4 2

0+ 0 1 1

1= 0 0 0

1

1

0

1
2

2

2

Figure 5–11	Adding	Binary	Numbers

0 1 0 1

16 8 4 2

1

1

1
2
8

1110

10

10

2

0 0 1 1 0

4
2
6

2

+

=

1 0 0 0 1

1
16
17

2

Figure 5–12	Converting	Binary	Numbers	to	Decimal	Equivalents

Figure	5–11	shows	how	binary	numbers	10112	and	1102	are	added.

In	the	1s	column	1	1	0	5	1.
In	the	2s	column	1	1	1	5	0,	with	a	carryover	of	1.
In	the	4s	column	1	1	0	1	1	5	0,	with	a	carryover	of	1.
In	the	8s	column	1	1	1	1	0	5	0,	with	a	carryover	of	1.	
In	the	16s	column	1	1	0	1	0	5	1.
The	sum	(total)	of	10112	and	1102	is,	therefore,	100012.

To	verify	our	results	we	can	convert	the	binary	numbers	to	decimal	equivalent	numbers	and	add	
them,	as	shown	in	Figure	5–12.
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Another	example	of	adding	binary	numbers	 is	shown	in	Figure	5–13,	where	110112	and	112 are 
added.

11011
11

11110
+

2

1 1

Figure 5–13	Addition	of	Binary	Numbers

11011
11

11110

+
=
=
=2

2

2 27
3

3010

10

10

Figure 5–14	Comparing	Binary	and	Decimal	Addition

0 0 0

SIGNED
BIT

PLACE VALUE
4 2

1

1

BIT # 34 2 1

+= 110

Figure 5–15	4-Bit	Word	with	a	Signed	Bit

In	the	1s	column	1	1	1	5	0,	with	a	carryover	of	1.	
In	the	2s	column	1	1	1	1	1	5	1,	with	a	carryover	of	1.

Note: 1 1 1 1 1 5 3. The binary equivalent of 310 is 112.

In	the	4s	column	1	1	0	5	1.	
In	the	8s	column	1	1	0	5	1.	
In	the	16s	column	1	1	0	5	1.
The	sum	of	110112	and	112	is	111102.

To	verify	this	method,	convert	the	binary	numbers	to	decimal	numbers,	and	add	them,	as	shown	in	
Figure	5–14.

To	represent	negative	numbers	using	the	binary	numbering	system,	one	bit	is	designated	as	a	signed	
bit.	If	the	designated	bit	is	a	0	(zero),	the	number	is	positive,	and	if	the	bit	is	a	1,	the	number	is	
	negative.

Using	a	4-bit	word	length,	and	using	bit	4	as	the	designated	signed	bit,	00012 represents 11	decimal	
(see	Figure	5–15).

The	table	in	Figure	5–16	shows	all	of	the	possible	numbers	for	a	4-bit	word	using	2s	complement.	
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Notice	that	the	negative	numbers	go	to	–8	while	the	positive	numbers	only	go	to	17.	In	this	case,	
the	signed	bit	is	used	for	its	place	value,	which	is	8.	The	same	holds	true	for	8-	and	16-bit	words.	
The	maximum	negative	number	is	always	one	number	higher	than	the	maximum	positive	number.	

To	display	a	negative	binary	number	requires	that	the	same	value	positive	number	be	complemented	
(all	1s	changed	to	0s	and	all	0s	changed	to	1s)	and	a	value	of	1	added.	The	result	is	the	2s	comple-
ment	of	the	number.	Figure	5–17	shows	the	steps	to	express	–5	in	2s	complement	using	a	4-bit	word.

BINARY NUMBER DECIMAL

0111

0110

0101

0100

0011

0010

0001

0000

1111

1110

1101

1100

1011

1010

1001

1000

+7

+6

+5

+4

+3

+2

+1

0

–1

–2

–3

–4

–5

–6

–7

–8

Figure 5–16	2s	Complement	Numbers	for	a	4-Bit	Word

1 0 1 0

1

1 0 1 1 = –510

0 1 0

SIGNED
BIT

1. POSITIVE BINARY EXPRESSION OF THE NUMBER (5)

2. COMPLEMENT

3. ADD 1

NEGATIVE BINARY DISPLAY

PLACE VALUE
4 2

1

1

Figure 5–17	Expressing	–5	in	2s	Complement
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Another	example	of	2s	complement	is	shown	in	Figure	5–18	with	the	steps	required	to	express	–7	
in	2s	complement.

1 0 0 0

1

1 0 0 1 = –710

0 1 1

SIGNED
BIT

1. POSITIVE BINARY EXPRESSION OF THE NUMBER (7)

2. COMPLEMENT

3. ADD 1

NEGATIVE BINARY DISPLAY

PLACE VALUE
4 2

1

1

Figure 5–18	Expressing	–7	in	2s	Complement

0 0 0 1

1

0 0 1 0

–210

1 1 1

SIGNED
BIT

1. COMPLEMENT

2. ADD 1

3. ADD NEGATIVE SIGN

BINARY SUM

PLACE VALUE
4 2

0

1

Figure 5–19	2s	Complement	to	Decimal	Equivalent

To	convert	a	negative	binary	number	to	the	decimal	equivalent,	the	negative	binary	display	is	com-
plemented,	1	is	added,	the	binary	sum	is	converted	to	decimal,	and	the	negative	sign	(–)	is	added.	
Figure	5–19	shows	what	steps	are	necessary	to	determine	the	negative	value	of	11102.

An	easy	way	to	convert	a	negative	binary	number	to	its	equivalent	negative	decimal	number	is	to	
subtract	the	place	value	of	the	signed	bit	from	the	value	of	the	binary	digits.	In	Figure	5–19,	the	bi-
nary	sum	1110	is	equal	to	–210,	which	is	the	decimal	number	–2.	In	this	example,	a	four-bit	word	is	
used	with	bit	4	being	the	signed	bit.	The	fourth	bit	normally	would	have	a	place	value	of	8.	In	this	
example,	 the	value	8	is	subtracted	from	the	value	of	the	binary	number	1102	which	is	equal	to	6.	
6	–	8	5	–2.	

Another	example	using	this	method	of	converting	negative	binary	numbers	to	their	decimal	equiva	-
lent	is	shown	in	Figure	5–20,	using	an	8-bit	word	with	bit	8	being	the	signed	bit.
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In	this	example,	the	signed	bit	would	have	a	value	of	128	(27),	whereas	the	numeric	value	of	the	
other	bits	would	be	94,	as	shown	in	Figure	5–21.

1 1 0

PLACE 
VALUE

SIGNED
BIT

64

64
16
8
4
2

94

94 – 128 = –34

128 8 4 2 132

1 1 1 1 0

16

Figure 5–21	8-Bit	Word	(2s	Complement)	with	Bits	Added

1 1 0

PLACE 
VALUE

SIGNED
BIT

64128 8 4 2 132

1 1 1 1 0

16

Figure 5–20	8-Bit	Word	2s	Complement

Subtracting	the	place	value	of	 the	signed	bit	(128)	from	the	numeric	value	of	 the	other	bits	(94)	
gives	us	the	decimal	number:	94	–	128	5	–34.	To	verify	this	answer,	complement	the	original	bi-
nary	number	1101	1110	to	get	0010	0001.	Then	add	1.

	 0010	0001
	 	 1
	 0010	0010

The	answer	is	25 1	21	or	32	1	2	5	34;	adding	the	negative	sign	gives	us	a	final	answer	of	–34,	the	
same	answer	we	got	when	we	subtracted	the	place	value	of	the	signed	bit	(128)	from	the	numeric	
value	of	the	binary	number	94.

If	the	PLC	system	uses	2s	complement	for	arithmetic,	the	highest	positive	number	that	a	16-bit	word	
can represent is 132,767	as	shown	in	Figure	5–22.
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The	 largest	negative	number	 that	 can	be	 represented	by	a	16-bit	word	 is	–32,768,	 as	 shown	 in	
Figure	5–23.

Another	method	of	converting	positive	numbers	to	2s	complemented	negative	numbers	is	as	fol-
lows:	starting	at	the	least	significant	bit	and	working	to	the	left,	copy	each	bit	up	to	and	including	
the	first	1	bit,	and	then	complement	or	change	each	remaining	bit.	Figure	5–24	shows	this	alternate	
method	of	expressing	–2	in	2s	complement	using	a	4-bit	word.

111111110 1 1

1 x 214 = 16,384 16,384
8,192
4,096
2,048
1,024

512
256
128
64
32
16
8
4
2
1

32,767

1 x 213 = 8,192
1 x 212 = 4,096

1 x 211 = 2,048
1 x 210 = 1,024

1 x 29 = 512
1 x 28 = 256

1 x 27 = 128
1 x 26 = 64

1 x 25 = 32
1 x 24 = 16

1 x 23 = 8
1 x 22 = 4

1 x 21 = 2
1 x 20 = 1

1 x 215 = 0 0 = POSITIVE NUMBER

1 1 1 1 1

Figure 5–22	Maximum	Positive	Value	of	2s	Complement	16-Bit	Word

000000001 0 0

1 x 215 = –32,768

SIGNED
BIT

RULE: SUBTRACT SIGNED BIT PLACE VALUE FROM THE
 NUMERIC VALUE OF THE OTHER BITS.

SIGNED BIT PLACE VALUE = 32,768

0 – 32,768 = –32,768

0 0 0 0 0

Figure 5–23	Maximum	Negative	Value	of	2s	Complement	16-Bit	Word
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A	further	example	is	shown	in	Figure	5–25	for	2s	complementing	the	value	24	using	an	8-bit	word.

0 0 1 0

1 0

1 1 1 0

1 1 1 0

1. ORIGINAL POSITIVE NUMBER (+2)

2. COPY UP TO FIRST 1 BIT

3. COMPLEMENT THE REMAINING BITS

2S COMPLEMENT –2

Figure 5–24	Alternate	Method	of	2s	Complement

0 0 0 1 1 0 0 0

1 0 0 0

1 1 1 0 1 0 0 0

1 1 1 0 1 0 0 0

1. ORIGINAL POSITIVE NUMBER (+24)

2. COPY UP TO FIRST 1 BIT

3. COMPLEMENT REMAINING BITS

2S COMPLEMENT –24

Figure 5–25	2s	Complement	of	–24	Decimal

By	using	2s	complement,	negative	and	positive	values	can	now	be	added.	The	two	steps	for	adding	
–710 and 1510	using	2s	complement	with	a	4-bit	word	are	shown	in	Figure	5–26.

1 0 0 0

1

1 0 0 1

1 0 0 1

0 1 0 1

1 1 1 0

1. EXPRESS –7 IN 2S COMPLEMENT

a. POSITIVE EXPRESSION OF NUMBER (+7)

b. COMPLEMENT

c. ADD 1

NEGATIVE BINARY DISPLAY

2. ADD –7 AND +5

0 1 1 1

=

+

–210BINARY SUM

SIGNED
BIT

PLACE VALUE
4 2 1

Figure 5–26	Adding	Positive	and	Negative	Numbers

Note: When adding signed binary numbers, any carryover from the signed bit column is discarded.

Once	addition	of	signed	numbers	is	possible,	the	other	arithmetic	functions	(subtraction,	multiplica-
tion,	and	division)	are	also	possible,	because	they	are	achieved	by	successive	addition	on	a	PLC.
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eXaMpLe: Subtracting	the	number	20	from	26	is	accomplished	by	complementing	20	to	obtain	
–20,	and	then	performing	addition.

Subtracting	20	from	26	by	complementing	20	and	performing	addition	using	an	8-bit	word	is	shown	
in	Figure	5–27.

0 0 0

SIGNED
BIT

PLACE VALUE
64 32

1

16

1

8

0

4

1

2

0

1 1 1 0 1 1 0 0

0 0 0 0 0 1 1 0

1

+

+26

–20

+610

Figure 5–27	Subtraction	by	Addition

octal SyStem

The	octal	system,	or	base	8,	is	made	up	of	eight	digits:	numbers	0	through	7.	The	first	digit	to	the	left 
of	the	octal	point	is	the	units	place,	or	1s,	and	has	a	base	or	power	of	80.	The	next	place	is	eights	(8s)	or	
base	81.	The	next	place	is	sixty-fours	(64s)	or	base	82,	followed	by	five	hundred	twelves	(512s)	or	base	
83,	and	four	thousand	ninety-sixes	or	base	84,	and	so	on.	An	octal	number	will	always	be	expressed	by	
placing	an	eight	in	subscript	to	the	right	of	the	units	digit,	as	shown	in	Figure	5–28.

8
357

Figure 5–28	Octal	Number

The	method	of	converting	an	octal	number	to	a	decimal	equivalent	number	is	illustrated	in	Figure	5–29.

Figure 5–29	Converting	an	Octal	Number	to	a	Decimal	Number

3

239

5 71. OCTAL NUMBER

2. PLACE VALUES

3. PLACE VALUES EXPRESSED AS 
 POWERS OF 8

4. PRODUCT OF STEPS 1 AND 3

5. DECIMAL EQUIVALENT (SUM OF PRODUCTS)

(8)(64) (1)

82 81 80

8

10

192

192

40

7

40 7++
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The	decimal	number	239	is	converted	to	an	octal	number	in	Figure	5–30.

239 10

3 5 7
8

 = 29 REMAINDER 7239
8

 = 3 REMAINDER 529
8

 = 0 REMAINDER 33
8

Figure 5–30	Converting	a	Decimal	Number	to	an	Octal	Number

Step 1.	 The	decimal	number	239	is	divided	by	8	(base	for	the	octal	numbering	system).	The	
quotient	is	listed	(29)	as	well	as	the	remainder	(7).	A	calculator	shows	the	answer	
as 29.875.	The	quotient	is	29,	and	the	remainder	is	0.875	3	8,	or	7.

Step 2.	 Divide	the	quotient	of	Step	1	(29)	by	8,	and	list	the	new	quotient	(3)	and	the	remainder	
(5).	A	calculator	gives	the	answer	3.625.	The	quotient	is	3,	and	the	remainder	is	0.625	3 
8,	or	5.

Step 3.	 Divide	the	quotient	from	Step	2	(3)	by	8,	and	list	the	new	quotient	(0)	and	remainder	(3).	
The	quotient	3	divided	by	8	equals	0.375.	The	new	quotient	is	0,	and	the	remainder	is	
0.375	3	8,	or	3.

The	decimal	number	239	is	the	same	as	the	octal	number	357.

Since	the	largest	single	number	that	can	be	expressed	using	the	octal	numbering	system	is	seven	(7),	
each	octal	digit	can	be	represented	by	using	only	three	(3)	binary	bits	(base	2).	Figure	5–31	illustrates	
how	to	convert	an	octal	number	to	a	binary	number.	The	figure	shows	three	sets	of	binary	bits	and	
the	place	value	of	each	bit.	For	the	least	significant	digit	(7),	a	one	(1)	must	be	placed	in	the	1s	place,	
the	2s	place,	and	the	4s	place	to	equal	7.	For	the	middle	digit	(5),	a	1	is	placed	in	the	1s	place	and	
the	4s	place,	while	a	0	is	placed	in	the	2s	place.	This	combination	equals	5.	For	the	most	significant	
digit	(3),	a	1	is	placed	in	the	1s	place	and	the	2s	place,	and	a	0	is	placed	in	the	4s	place.	This	com-
bination	adds	up	to	3.	

3 5 7
8

0 1

4 2

1

1

1 0

4 2

1

1

1 1

4 2

1

1

Figure 5–31	Conversion	of	Octal	Number	to	Binary
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Allen-Bradley	uses	the	octal	numbering	system	for	I/O	addressing	for	the	PLC-5	family.	The	ter-
minals	of	the	input	and	output	modules	are	labeled	00	through	07	and	10	through	17,	rather	than	
0	through	15	as	would	be	the	case	with	decimal	numbering	(which	is	used	for	the	SLC	500	and	
	MicroLogix	PLCs).	When	using	the	octal	numbering	system,	words	are	labeled	000–007,	010–017,	
020–027,	and	so	forth,	whereas	the	bits	are	labeled	00–07	and	10–17.	Figure	5–32	shows	a	memory	
word	with	the	internal	bits	addressed	using	the	octal	numbering	system.

02 01 0005 04 0307 0611 1014 13 1217

WORD 010

16 15

Figure 5–32	Word	and	Bit	Labeling	Using	the	Octal	Numbering	System

HexaDecimal SyStem

The	hexadecimal	system,	often	referred	to	as	HEX,	consists	of	a	number	system	with	base	16.	

It	seems	logical	that	the	numbers	used	in	base	16	would	be	0	through	15.	However,	only	numbers	
0 through	9	are	used,	and	the	letters	A	through	F	represent	numbers	10–15,	respectively.	The	place	
values	from	the	hexadecimal	point	are	1s—160,	16s—161,	256s—162,	4096s—163,	and	so	on.

Each	hexadecimal	digit	is	represented	by	four	(4)	binary	digits.	The	binary	equivalents	are	shown	
in	the	table	in	Figure	5–33.

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

HEXADECIMAL BINARY DECIMAL

Figure 5–33	Hexadecimal	Equivalents	for	Binary	and	Decimal
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The	decimal	number	4,780	is	converted	to	hexadecimal	as	illustrated	in	Figure	5–34.

2

4780

A C

DECIMAL NUMBER

16

10

1 2 10 12

1

 = 298 REMAINDER 124780
16

   = 18 REMAINDER 10298
16

 = 1 REMAINDER 218
16

 = 0 REMAINDER 11
16

1.

2.

3.

4.

Figure 5–34	Converting	a	Decimal	Number	to	a	Hexadecimal	Number

Step 1.	 The	decimal	number	is	divided	by	16	(base	for	the	hexadecimal	numbering	system).	The	
quotient	is	listed	(298)	as	well	as	the	remainder	(12).	A	calculator	provides	the	answer	
298.75.	The	quotient	is	298,	and	the	remainder	is	0.75	3	16,	or	12.

Step 2.	 Divide	the	quotient	of	Step	1	(298)	by	16,	and	list	the	new	quotient	(18)	and	the	remainder	
(10).	The	answer	is	18.625.	The	quotient	is	18,	and	the	remainder	is	0.625	3	16,	or	10.

Step 3.	 Divide	the	quotient	from	Step	2	(18)	by	16,	and	list	the	new	quotient	(1)	and	the	remain-
der	(2).	Eighteen	divided	by	16	equals	1.125.	The	quotient	is	1,	and	the	remainder	is	
0.125	3	16,	or	2.

Step 4.	 Divide	the	quotient	from	Step	3	(1)	by	16,	and	list	the	new	quotient	(0)	and	the	remainder	(1).	
One	divided	by	16	equals	0.0625.	The	quotient	is	0,	and	the	remainder	is	0.0625	3	16,	or	1.

Converting	a	hexadecimal	number	to	a	decimal	number	is	illustrated	in	Figure	5–35.

2 A C

4780

16

10

11. HEXADECIMAL NUMBER

2. PLACE VALUES

3. PLACE VALUES EXPRESSED 
 AS POWERS OF 16

4. PRODUCT OF STEPS 1 AND 3

5. DECIMAL EQUIVALENT (SUM OF PRODUCTS)

(4096) (256) (16) (1)

4096 512 160 12

4096

512
160
12

+++

163 162 161 160

Figure 5–35	Converting	a	Hexadecimal	Number	to	a	Decimal	Number
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Note: Remember that A is equivalent to 10, and C is equivalent to 12. 

The	binary	equivalent	of	the	hexadecimal	number	12AC	is	shown	in	Figure	5–36.

Since	the	largest	number	that	can	be	displayed	using	the	hexadecimal	numbering	system	is	15,	or	F	
(as	shown	in	the	table	in	Figure	5–33),	only	four	binary	bits	are	needed	to	display	each	hexadecimal	
digit.	The	conversion	to	binary	simply	places	the	1s	in	the	correct	binary	locations	to	duplicate	the	
hexadecimal	digit	(1	through	F),	as	illustrated.	The	C	has	a	value	of	12,	so	1s	are	placed	in	the	8s	
and	4s	locations,	while	zeros	(0)	are	placed	in	the	2s	and	1s	locations	for	a	total	binary	value	of	12.	
The	same	procedure	is	followed	for	the	remaining	digits	A	(10),	2,	and	1.

The	HEX	system	is	used	when	large	numbers	need	to	be	processed.	The	hexadecimal	system	is	also	
used	by	some	PLCs	for	entering	output	instructions	into	a	sequencer.

Figure	5–37	shows	the	conversion	of	a	16-bit	binary	number	to	its	hexadecimal	equivalent.

21 A C
16

0 0

4

0

8 2

1

1

0 1

4

0

8 2

0

1

0 1

4

1

8 2

0

1

1 0

4

1

8 2

0

1

Figure 5–36	Binary	Equivalent	of	a	Hexadecimal	Number

Figure 5–37	16-Bit	Binary	to	Hexadecimal

1 0 0 1 0 0 1 0 1 0 1 1 0 1 0 1

10

16

1 00

16-BIT BINARY

GROUPED
BINARY

HEXADECIMAL
EQUIVALENT

DECIMAL EQUIVALENT

1

48 2 1

0 11 1

48 2 1

0 10 0

48 2 1

0 01 1

48 2 1

9 52 B

9 x 163 2 x 162 11 x 161 5 x 160

36,864

37,557
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5
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The	first	step	 in	converting	16-bit	binary	 to	hexadecimal	 is	 to	group	the	16-bit	binary	word	into	
groups	 of	 four	 (conversion	 to	BCD).	Each	 group	 of	 four	 digits	 is	 converted	 to	 its	 hexadecimal	
equivalent.	In	Figure	5–37,	the	hexadecimal	number	is	92B516.

The	conversion	of	92B516	to	decimal	is	37,55710.	Figure	5–38	shows	the	conversion	of	the	original	
16-bit	binary	number	to	its	decimal	equivalent.

Figure 5–38	Converting	a	16-Bit	Digital	Number	to	a	Decimal	Number

10

2
1 00 10 11 10 10 00 01 1

32
128
512

4,096
32,768

32
,7

68

16
,3

84

8,
19

2
4,

09
6

2,
04

8
1,

02
4

51
2

25
6

12
8

64 32 16 8 4 2 1

37,557

16
4
1

BcD SyStem

When	large	decimal	numbers	are	 to	be	converted	 to	binary	for	memory	storage,	 the	process	be-
comes	somewhat	cumbersome.	To	solve	this	problem	and	speed	conversion,	the	BCD	system	was	
devised.	In	the	BCD	system,	four	binary	digits	(base	2)	are	used	to	represent	each	decimal	digit.	To	
distinguish	the	BCD	numbering	system	from	a	binary	system,	the	designation	BCD	is	subscripted	
and	placed	to	the	lower	right	of	the	units	place.	Converting	a	BCD	number	to	a	decimal	equivalent	
is	shown	in	Figure	5–39.	

0 1 0

92 10

01. BCD NUMBER

BCD

2. PLACE VALUES

3. PLACE VALUES 
 EXPRESSED AS
 POWERS OF 2

4. PRODUCT OF 
 STEPS 1 AND 3

5. DECIMAL EQUIVALENT 
 (SUM OF PRODUCTS)

(8) (4) (2) (1)

0 0 2 0

0
0
2
0

+++

23 22 21 20

0 1 1

3

0

(8) (4) (2) (1)

0 0 2 1

0
0
2
1

+++

23 22 21 20

0 0 11

(8) (4) (2) (1)

8 0 0 1

8
0
0
1

+++

23 22 21 20

Figure 5–39	Converting	a	BCD	Number	to	a	Decimal	Number
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When	using	a	BCD	numbering	system,	three	decimal	numbers	may	be	displayed	using	12	bits	(3	
groups	of	4),	or	16	bits	(4	groups	of	4)	may	be	used	to	represent	four	decimal	numbers	or	digits.	

When	only	three	decimal	digits	are	to	be	represented,	using	12	bits,	they	are	further	identified	as	
most significant digit	(MSD),	middle digit	(MD),	and	least significant digit	(LSD)	(Figure	5–40).

When	using	the	BCD	system,	the	largest	decimal	number	that	can	be	displayed	by	any	four	binary	
digits	is	9.	The	table	in	Figure	5–41	shows	the	four	binary	digit	equivalents	for	each	decimal	number	
0	through	9.

0 0 1
BCD

10 1 100

MSD LSDMD

1 00

Figure 5–40	Significant	Digits

Figure 5–41	Binary	to	Decimal	Equivalents

0
0
0
0
0
0
0
0
1
1

0
0
0
0
1
1
1
1
0
0

0
0
1
1
0
0
1
1
0
0

0
1
0
1
0
1
0
1
0
1

0
1
2
3
4
5
6
7
8
9

PLACE VALUE
DECIMAL

EQUIVALENT23

(8)
22

(4)
21

(2)
20

(1)

USing nUmBering SyStemS

The	alphanumeric	keys	of	many	programming	terminals	generate	standard	ASCII	characters	and	
control	codes.	ASCII	is	an	acronym	for	American	Standard	Code	for	Information	Interchange.	The	
ASCII	code	uses	different	combinations	of	7	bit	binary	(base	2)	information	for	communication	of	
data.	The	data	may	be	communicated	to	a	printer,	barcode	reader,	or	be	shown	on	the	display	of	the	
programmer	and/or	computer.

Note:  ASCII information is often expressed in hexadecimal (base 16.) Figure 5–42 shows the 
128 standard ASCII control codes and character set with both the binary and hexadecimal number-
ing systems.
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BINARY
HEX

111
7
p
q
r
s
t
u
v
w
x
y
z
{

|
}

~
DEL

110
6
\
a
b
c
d
e
f
g
h
i
j
k
l

m
n
o

101
5
P
Q
R
S
T
U
V
W
X
Y
Z
[

\
]

^
–

100
4
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

011
3
Ø
1
2
3
4
5
6
7
8
9
:
;

<
=
>
?

010
2

SP
!
"
#
$
%
&
'
(
)
*
+
,

-
.
/

001
1

DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM

SUB
ESC
FS
GS
RS
US

000
0

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

MSB
MOST SIGNIFICANT BIT

LS
B

LE
A

S
T 

S
IG

N
IF

IC
A

N
T 

B
IT

Figure 5–42	Standard	ASCII	Control	Code	and	Character	Set

Figure 5–43	Parity	Bit	Set	to	1	for	Even	Parity

1   0 1 0 0 0 1 1

PARITY
BIT

EVEN PARITY
ASCII CODE BITS

The	digital	or	hexadecimal	number	is	determined	by	first	 locating	the	vertical	column	where	the	
code	or	character	is	located,	and	then	the	horizontal	row.

eXaMpLe: The	letter	A	is	in	column	4,	row	1.	The	binary	number	that	transmits	the	letter	A	is	
100 0001.	The	hexadecimal	number	is	41.	The	symbol	#	is	010	0011	in	binary	and	23	
in	HEX.

An	eighth	bit	is	often	used	by	programmers	to	provide	error-checking	of	information	that	is	trans-
mitted.	This	eighth	bit	is	called	the	parity bit.

For	even	parity,	the	parity	bit	(the	eighth	bit)	is	added	to	the	seven	bits	that	represent	the	ASCII	
codes	and	characters	so	that	the	number	of	1s	will	always	add	up	to	an	even	number.

eXaMpLe: The	binary	number	for	the	#	symbol	is	010	0011.	The	1s	add	up	to	three,	an	odd	num-
ber.	By	adding	an	eighth	bit	and	making	it	a	1,	the	total	of	1s	is	now	4,	or	even,	as	
shown	in	Figure	5–43.
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The	letter	A,	which	is	the	binary	number	100	0001,	has	two	1s	and	is	already	even.	In	this	case,	the	
parity	bit	would	be	a	0,	as	shown	in	Figure	5–44.

The	ASCII	control	code	BS	(backspace)	is	binary	number	000	1000.	For	even	parity,	a	1	is	added	
for	the	parity	bit,	as	shown	in	Figure	5–45.

0   1 0 0 0 0 0 1

PARITY
BIT

EVEN PARITY
ASCII CODE BITS

Figure 5–44	Parity	Bit	Set	to	0	for	Even	Parity

Figure 5–45	Even	Parity

1   0 0 0 1 0 0 0

PARITY
BIT

EVEN PARITY
ASCII CODE BITS

Figure 5–46	Parity	Bit	Set	to	1	for	Odd	Parity

1   0 1 1 0 1 0 1

PARITY
BIT

ODD PARITY
ASCII CODE BITS

By	checking	each	character	or	control	code	that	is	sent	for	an	even	number	of	1s,	transmission		errors	
can	be	detected	when	an	odd	number	of	1s	is	found.

For	systems	that	operate	on	odd	parity,	the	parity	bit	is	used	to	make	the	total	of	1s	add	up	to	an	odd	
number.

eXaMpLe: The	number	5	has	a	binary	number	of	011	0101.	The	1s	add	up	to	4.	The	parity	bit	is	
set	to	1,	making	the	1s	total	5,	or	an	odd	number.	Figure	5–46	illustrates	this	concept.

For	systems	that	do	not	use	a	parity	bit	for	error-checking,	the	eighth	bit	is	always	a	zero	(0).

chapter Summary
There	are	several	numbering	systems	that	are	used	to	store	information	in	the	form	of	binary	digits	
(bits)	into	the	memory	system	of	a	processor.	The	specific	numbering	system	or	the	combination	of	
numbering	systems	used	depends	on	the	hardware	requirements	of	the	specific	PLC	manufacturer.	
The	important	thing	to	remember,	however,	is	that	no	matter	which	numbering	system	or	systems	
are	used,	the	information	is	still	stored	as	1s	and	0s.
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For	programmable	controllers	to	perform	arithmetic	functions,	a	way	must	be	found	to	represent	
both	positive	and	negative	numbers.	One	of	the	most	common	methods	used	is	called	2s	comple-
ment.	Using	2s	complement,	negative	and	positive	numbers	can	be	added,	subtracted,	divided,	and	
multiplied.	In	reality,	however,	all	arithmetic	functions	are	accomplished	by	successive	addition.

review Questions
	 1.	 When	information	is	stored	using	only	1s	and	0s,	it	is	called	a	___________________	system.
	 2.	 A	bit	is	an	acronym	for	_________________________________________________________.
	 3.	 The	decimal	numbering	system	uses	10	digits,	or	a	base	of	10.	List	the	base	for	each	of	the	

following	numbering	systems.
	 	 a.	binary	 	 base	___________________
	 	 b.	hexadecimal	 base	___________________
	 	 c.	octal	 	 base	___________________
	 4.		Convert	binary	number	11011011	to	a	decimal	number.
	 5.	 Convert	decimal	number	359	to	a	binary	number.
	 6.	 Convert	hexadecimal	number	14CD	to	a	decimal	number.
	 7.	 Convert	decimal	number	3247	to	a	hexadecimal	number.
	 8.	 Convert	decimal	number	232	to	an	octal	number.
	 9.		How	do	we	prevent	binary	numbers	10	and	11	from	being	confused	as	decimal	numbers?
10.	Convert	the	following	binary values to decimal.
	 	 a.	10011000
	 	 b.	01100101
	 	 c.	10011001
	 	 d.	00010101
	11.	Convert	the	following	BCD values to decimal.
	 	 a.	1001	1000
	 	 b.	0110	0101
	 	 c.	1001	1001
	 	 d.	0001	0101
	12.	The	BCD	value	1001	0011	0101	is	not
	 	 a.	935	decimal
	 	 b.	0011	1010	0111	binary
	 	 c.	647	octal
	 	 d.	3A7	hexadecimal
	13.	The	hexadecimal	value	2CB	is	not
	 	 a.	715	decimal
	 	 b.	1313	octal
	 	 c.	0010	1100	1011	binary
	 	 d.	0111	0001	0011	BCD
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120  Technician’s	Guide	to	Programmable	Controllers

	14.		Express	the	following	signed	decimal	numbers	in	2s	complement.	Use	8-bit	words.	Show	
all work.

	 	 a.	(–)7
	 	 b.	(–)4
	 	 c.	(–)3
	15.		Convert	the	following	decimal	numbers	to	2s	complement	and	add.	Use	8-bit	words.	Show	

all work.	
	 	 a.	 (1)4
	 	 		 (–)7

	 	 b.	 (–)10
	 	 		 (1)22

	 	 c.	 (1)22
	 	 		 (1)33
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Understanding and Using 
Ladder Diagrams

Chapter

6
Objectives

After completing this chapter, you should have the knowledge to:
•	 Identify	a	wiring	diagram.
•	 Identify	the	parts	of	a	wiring	diagram.
•	 Convert	a	wiring	diagram	to	a	ladder	diagram.
•	 List	the	rules	that	govern	a	ladder	diagram.

There	are	basically	two	types	of	electrical	diagrams:	wiring	diagrams	and	ladder	diagrams.

Wiring Diagrams

The wiring diagram shows the circuit wiring and its associated devices (relays, timers, motor 
	starters,	switches,	and	the	like)	in	their	relative	physical	locations	(Figure	6–1).	While	this	type	of	
 diagram assists in locating components and shows how a circuit is actually wired, it does not show 
the	circuit	in	its	simplest	form.	To	simplify	understanding	of	how	a	circuit	works,	and	to	show	the	
electrical	relationship	of	the	components	(not	the	physical	relationship),	a	ladder	diagram	is	used.

L1

T1

2

3
M

START

STOP

MOTOR

T2 T3

L2 L3

O.L.

Figure 6–1	Wiring	Diagram
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LaDDer Diagrams

The ladder diagram, also referred to as a schematic or elementary diagram, is used by the electrician 
or	technician	to	speed	their	understanding	of	how	a	circuit	works.	Figure	6–2	shows	the	same		circuit	
as	Figure	6–1,	but	in	ladder	diagram	form.	

L1

L2

L3

2 3

M
M

START

POWER

CONTROL
STOP O.L.

Figure 6–2	Ladder	Diagram

To simplify the circuit and help to understand its configuration, the power portion of the circuit is 
shown	separate	from	the	control	portion.	No	attempt	is	made	to	show	the	actual	physical	location	
of	the	components.	Since	the	motor	connections	(power	portion)	are	the	same	for	any	three-phase	
motor,	it	is	common	practice	not	to	show	the	motor	starter	or	the	motor.	By	not	showing	the	power	
portion of the circuit, a simplified ladder diagram is created, showing only the control portion of the 
diagram	(Figure	6–3).	

L1 L2

2 3
M

START

STOP O.L.

M

Figure 6–3	Simplified	Ladder	Diagram

The power required for the control circuit is always shown as two vertical lines, while the actual line(s) of 
logic	are	drawn	as	horizontal	lines.	The	power	lines,	or	rails	as	they	are	often	called,	are	like	vertical	sides	
of	a	ladder,	whereas	the	horizontal	logic	lines	are	like	the	rungs	of	a	ladder	and	are	referred	to	as	rungs.	

When	referring	back	to	Figure	6–1,	it	is	easy	to	see	the	physical	relationships	between	the	STOP/
START	station,	the	motor	starter	coil	(M),	the	overload	contacts	(O.L.),	and	the	holding		contacts	
(2  and	 3),	 but	 it	 is	 difficult	 to	 determine	 the	 electrical	 relationships.	 The	 ladder	 diagram	 in	
	Figure	6–3,	however,	clearly	shows	the	electrical	relationships	between	all	of	the	control	circuit	
	components.
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LaDDer Diagram ruLes

Some	basic	rules	for	ladder	diagrams	are	as	follows:
1.	A	ladder	diagram	is	read	like	a	book;	from	left	to	right	and	from	top	to	bottom.
2.	The	vertical	power	lines	(rails)	of	the	ladder	diagram	represent	the	voltage potential of the 

circuit.	The	potential	could	be	AC	or	DC,	and	varies	in	voltage	from	6	V	to	480	V.	Stan-
dard	labeling	for	the	rails	is	L1	and	L2.	L1	is	AC	high	or	hot	for	AC	circuits,	and	positive	
or plus (1)	for	DC	circuits.	L2	is	AC	low	or	neutral	for	grounded	AC	circuits,	and	negative	
or minus (2)	for	DC	circuits.	The	rails	may	also	be	marked	X1	and	X2	when	the	voltage	
	potential	is	derived	from	a	step-down	transformer.

3.	Devices	or	components	are	shown	in	order	of	importance	whenever	possible.	In	Figure	6–3	
the STOP button is shown ahead of the START	button.	For	safety	reasons,	the	STOP button 
has a higher order of importance than the START	button.

4.	Electrical	devices	or	components	are	shown	in	their	normal	condition.	The	normal	condi-
tion of electrical diagrams is the circuit deenergized (OFF) and with no external forces 
such	as	pressure	or	flow,	etc.,	acting	on	the	device.	The	STOP button is shown closed be-
cause that is the normal position for the STOP	button.	The	holding	contacts	(2	and	3)	of	
coil	M	are	shown	open.	This	is	the	normal	position	for	these	contacts	when	coil	M	is	deen-
ergized.	The	normally	open	(N.O.)	M	holding	contacts	2	and	3	do	not	close	until	there	is	a	
complete	path	for	current	flow	to	coil	M.	When	coil	M	energizes,	M	contacts	2	and	3	close,	
providing a parallel path for current flow with the START	button.

5.	Contacts	associated	with	relays,	timers,	motor	starters,	and	the	like	always	have	the	same	
number	or	letter	designation	as	the	device	that	controls	them.	This	labeling	method	holds	
true	no	matter	where	the	contacts(s)	appear	in	the	circuit.	For	example,	in	Figure	6–3	the	
N.O.	holding	contacts	2	and	3	are	controlled	(activated)	by	motor	starter	coil	M.	Therefore,	
the	contacts	are	identified	with	the	letter	M.

6.	All	contacts	associated	with	a	device	change	position	when	the	device	is	energized.	
	Figure 6–4	shows	a	control	relay	(CR)	controlled	by	a	switch	(S-1)	on	rung	1	of	the	l	adder	
	diagram.	Rung	2	shows	a	normally	closed	(N.C.)	control	relay	contact	in	series	with	a	
green	indicator	lamp.	Rung	3	shows	an	N.O.	control	relay	contact	in	series	with	a	red	
	indicator	light.

L1 L2S-1

CR

CR
CONTROL
RELAY
CONTACT

RUNG 1

RUNG 2

RUNG 3

CONTROL
RELAY
CONTACT

CONTROL
RELAY

INDICATOR
LAMP

INDICATOR
LAMP

SWITCH
CR

G

R

Figure 6–4	Three-Rung	Ladder	Diagram
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When	power	is	applied	to	the	rails	of	the	ladder	diagram,	the	only	device	in	the	circuit	that	operates	
is	the	green	indicator	lamp.	The	green	indicator	lamp	lights	due	to	a	complete	path	for	current	flow	
through	the	N.C.	control	relay	contacts.	These	contacts	are	normally	closed	and	only	change	position	
and	open	when	the	control	relay	in	rung	1	is	energized.	When	switch	S-1	is	closed,	completing	the	path	
for	current	flow	and	energizing	the	CR	in	rung	1,	the	N.C.	CR	contacts	in	rung	2	open,	while	the	N.O.	
CR	contacts	in	rung	3	close.	The	action	of	the	contacts	will	turn	OFF	the	green	lamp	in	rung	2	and	turn	
ON	the	red	lamp	in	rung	3.	As	long	as	the	control	relay	remains	energized	through	S-1,	the	normally	
closed	contact	in	rung	2	remains	open,	and	the	normally	open	contact	in	rung	3	remains	closed.	When	
S-1	is	opened	and	CR	deenergizes,	the	contacts	controlled	by	CR	will		return	to	their	normal	state	(N.C.	
in	rung	2	and	N.O.	in	rung	3).

7.	 In	a	ladder	diagram,	devices	that	perform	a	STOP	function	are	normally	wired	in	series.	
Figure	6–5	shows	two	switches	wired	N.C.	that	control	a	green	indicator	lamp.

L1 L2A B

G

Figure 6–5	Two	Switches	Wired	in	Series

INDICATOR
LAMP

G
OFF
OFF
OFF
ON

SWITCH

B
OFF
ON
OFF
ON

SWITCH

A
OFF
OFF
ON
ON

Figure 6–6	Truth	Table	for	Series	Devices

With	the	two	switches	wired	in	series,	both	A	and	B	must	remain	closed	for	the	lamp	to	
remain	lit.	If	either	switch	is	opened,	the	green	lamp	will	go	out.	When	switches	and/or	
contacts	are	wired	in	series,	they	are	said	to	have	an	AND	relationship.	The	AND	rela-
tionship requires that both A and	B	must	be	closed	for	the	lamp	to	light.	A	truth	table	for	
this	concept	is	shown	in	Figure	6–6.
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8.	Devices	that	perform	a	START	function	are	normally	wired	in	parallel.	Figure	6–7	shows	
two	switches	(A	and	B)	wired	in	parallel	to	control	a	red	indicator	lamp.	In	this	configura-
tion, if either switch A or	B	is	closed,	the	red	lamp	will	light.

A

B

R

Figure 6–7	Two	Switches	Wired	in	Parallel

INDICATOR
LAMP

R
OFF
ON
ON
ON

SWITCH

B
OFF
ON
OFF
ON

SWITCH

A
OFF
OFF
ON
ON

Figure 6–8	Truth	Table	for	Parallel	Devices

When	switches	or	contacts	are	wired	in	parallel,	they	are	said	to	have	an	OR	relation-
ship.	The	OR	relationship	requires	that	either	A	or	B	be	closed	for	the	red	indicator	
lamp	to	light.	A	truth	table	for	this	concept	is	shown	in	Figure	6–8.

With	this	understanding	of	what	a	ladder	diagram	is,	and	the	rules	that	apply	to	it,	a	discussion	of	a	
basic motor STOP/START	circuit	(shown	in	Figure	6–2)	can	begin.

Basic StOp/Start circuit

As stated earlier in this chapter, the wiring diagram in Figure 6–1 is great for showing actual physi-
cal	 locations	of	 the	circuit	wiring	and	the	components.	 It	does	not,	however,	show	the	electrical	
	relationships	of	the	devices	as	simply	as	the	ladder	diagram.	The	wiring	diagram	is	used	for	original	
installation and some troubleshooting, whereas the ladder diagram is used to show the electrical 
relationships	of	the	components,	and	to	speed	understanding	of	how	the	circuit	works.

From viewing the ladder diagram in Figure 6–9, it can be seen that when power is applied to the 
circuit, the motor starter coil M cannot energize because there is an incomplete path for current flow 
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due to the open START	button	and	the	N.O.	M	contacts	(2	and	3).	The	START	button	and	the	N.O.	
M	contacts	are	wired	in	parallel	and	have	an	OR	relationship.	When	the	START button is pushed, a 
path	for	current	exists	from	L1	potential	through	the	normally	closed	STOP button, through the now 
closed START	button,	through	the	coil	of	the	motor	starter	(M),	and	on	through	the	N.C.	overload	
contacts	to	L2	potential.

STOP

START

M

L1 L2

32

M

O.L.

Figure 6–9	Ladder	Diagram	for	Basic	STOP/START	Circuit

STOP

START

MOTOR

L2L1

T1

M

T2 T3

L3

3

2

O.L.

Figure 6–10	Wiring	Diagram	for	Basic	STOP/START	Circuit

When	the	starter	coil	M	energizes,	the	M	contacts	(2	and	3)	close,	providing	an	alternate	path	for	cur-
rent	flow.	At	this	point,	the	START button could be released, and the circuit would remain energized, 
or	held	in,	by	the	holding	contacts	(2	and	3)	of	the	motor	starter.	When	contacts	from	a	motor	starter	
or other device are wired in this fashion, they are often referred to as holding, maintaining, or sealing 
contacts	as	the	circuit	is	held,	maintained,	or	sealed-in	after	the	START	button	is	released.

When	the	holding	contacts	(2	and	3)	are	closed,	the	main	motor	contacts	of	the	motor	starter	are	also	closed	
and	the	motor	is	started.	The	operation	of	the	motor	is	normally	taken	for	granted	and	is	not	shown	on	the	
ladder	diagram.	By	keeping	the	ladder	diagram	as	simple	and	uncluttered	as	possible,	the	explanation	of	
the	relationships	between	components	and	how	the	control	portion	of	the	circuit	works	is	greatly	enhanced.

Figure	6–10	again	shows	the	wiring	diagram	of	a	motor	STOP/START	circuit.	While	this	diagram	
looks	entirely	different	from	the	ladder	diagram,	both	are	electrically	the	same.	This	comparison	
shows	the	electrician	or	technician	why	the	ladder	diagram	is	preferred.
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The ladder diagram has been the “working language” of electricians and electrical engineers for 
many years, and helps explain why most programmable controllers are programmed using ladder 
logic.	While	this	method	of	programming	is	welcomed	by	some,	it	has	frustrated	other	PLC	users	
who	have	not	been	exposed	to,	or	trained	in,	relay	ladder	logic.

sequenceD motor starting

Relay	ladder	diagrams	can	become	large	and	complex.	It	 is	not	 the	purpose	of	 this	 text	 to	cover	
them in great detail, but instead to discuss the basic rules and present some concepts to enhance 
understanding	of	circuits	that	are	discussed	in	later	chapters.

Figure	6–11	shows	a	ladder	diagram	for	a	circuit	that	starts	three	motors.

STOP

RUNG 1

RUNG 2

RUNG 3

START

M-3

L1 L2

M-1

O.L.1 O.L.2 O.L.3

M-2

M-1

M-2

M-3

Figure 6–11	Three-Motor	Start	Circuit

Rung	1	contains	the	STOP/START	buttons	and	the	motor	starter	coil	M-1	for	motor	1.	Notice	that	
the holding contacts wired in parallel with the START	button	are	not	M-1	contacts,	but	instead	are	
M-3	contacts.	With	this	arrangement,	rung	1	cannot	be	sealed	in,	or	maintained,	unless	motor	starter	
3	energizes	and	closes	its	contacts.	Additionally,	the	M-1	contacts	in	rung	2	must	close	to	energize	
motor	starter	2	(M-2).	And	M-2	contacts	in	turn	must	close	in	rung	3	to	energize	motor	starter	3	
(M-3).	When	the	START button of this circuit is pushed, it operates as follows:

1.	M-1	energizes,	closing	the	N.O.	M-1	contacts	in	rung	2,	and	M-2	energizes.
2.	M-2	N.O.	contacts	close	in	rung	3	and	energize	M-3.
3.	M-3	N.O.	contacts	in	Rung	1	close	and	act	as	holding	contacts	to	keep	the	circuit	energized	

after the START	button	is	released.

Note: This sequence happens almost instantaneously.

4.	 Pushing	the	STOP	button	deenergizes	M-1,	which	deenergizes	M-2	in	rung	2	when	the	
normally	open	M-1	contacts	go	open.	M-2’s	deenergizing	opens	the	M-2	contacts	in	rung	3	
and	deenergizes	M-3.	With	M-3	deenergized,	the	N.O.	M-3	contacts	in	rung	1	open.	
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5.	By	wiring	all	three	overload	contacts	in	series	with	M-1	in	rung	1,	it	is	ensured	that	an	
overload	on	any	motor	would	shut	down	all	motors.	An	open	overload	contact	would	have	
the same effect as pushing the STOP	button.	

It	could	be	said	that	this	circuit	consists	of	basically	three	elements:	inputs,	outputs,	and	logic.

The inputs consist of the STOP button, the START	button,	and	the	overload	contacts.	The	outputs	are	
motor	starters	M-1,	M-2,	and	M-3.	The	logic	that	caused	the	sequential	starting	were	N.O.	contacts	
M-1,	M-2,	and	M-3.

These	three	elements—inputs,	outputs,	and	logic—also	work	well	with	programmable	controllers.	
The inputs are wired to input modules, the outputs are wired to output modules, and the processor 
performs	the	logic	functions.

Figure	 6–12	 shows	 the	wiring	 diagram	 for	 the	 three-motor	 circuit	 just	 discussed.	 This	 diagram	
further illustrates the point that while wiring diagrams are great for giving the physical locations of 
components,	they	do	not	show	the	control	function	of	the	circuit	as	clearly	as	a	ladder	diagram	does.

MOTOR
2

MOTOR
1

MOTOR
3

O.L.1 O.L.2 O.L.3

M-1
M-1

M-2
M-2 M-3

M-3
START

STOP

Figure 6–12	Wiring	Diagram	for	Three-Motor	Circuit

DigitaL Logic gates

While	the	typical	PLC	is	programmed	using	ladder	logic	symbols,	some	older	PLCs	were		programmed	
using	digital	logic	notations	such	as	AND,	OR,	NOT,	etc.	To	better	understand	these	digital	logic	
	notations	and	to	see	how	they	compare	to	relay	ladder	logic,	we	will	cover	six	basic	digital	logic	gates.

Figure	6–13	shows	a	two-input	AND	gate.

From the truth table, we see that both inputs A and	B	must	be	TRUE,	or	set	to	1,	before	the	output	is	
turned ON,	or	set	to	1.	The	AND	gate	functions	like	the	two	switches	that	were	wired	in	series	to	a	
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Understanding	and	Using	Ladder	Diagrams  129

lamp	in	Figure	6–5.	Both	switch	A	and	switch	B	had	to	be	closed	for	the	lamp	to	light.	Figure	6–14	
shows	AND	logic	for	two	programmed	input	devices	wired	in	series	to	an	output		device.	

INPUT A INPUT B OUTPUT

0 0 0
0 1 0
1 0 0
1 1 1

OUTPUT
A

B

Figure 6–13	Two-Input	AND	Gate	with	Truth	Table

A B OUTPUT

0 0 0
0 1 0
1 0 0
1 1 1

INPUT A INPUT B OUTPUT

Figure 6–14	Two	Input	Devices	Wired	in	Series	with	Truth	Table

Figure 6–15	Two-Input	OR	Gate	with	Truth	Table

A B OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

OUTPUT
A

B

Figure	6–15	shows	a	two-input	OR	gate.
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From the truth table, we see that if either input A or	B	is	TRUE,	or	set	to	1,	the	output	will	be	turned	
ON,	or	set	to	1.	The	OR	gate	functions	like	the	two	switches	that	were	wired	in	parallel	to	a	lamp	in	
Figure	6–7.	If	either	switch	A	or	B	was	closed,	the	lamp	would	light.	Figure	6–16	shows	OR	logic	
for	two	input	devices	wired	in	parallel	to	an	output	device.

Figure 6–16	Two	Input	Devices	Wired	in	Parallel	with	Truth	Table

A B OUTPUT

0 0 0
0 1 1
1 0 1
1 1 1

INPUT A OUTPUT

INPUT B

INPUT OUTPUT

0 1
1 0

OUTPUTINPUT

NOT (INVERTER)

Figure 6–17	NOT	Gate	with	Truth	Table

The	next	gate	is	called	a	NOT	gate	and	is	often	referred	to	as	an	inverter.	The	inverter,	or	NOT	
gate,	will	have	only	one	input	lead	and	one	output	lead.	If	the	input	is	OFF,	or	set	to	0,	then	the	
output will be ON,	or	set	to	1.	If	the	input	is	ON, or set to 1, then the output will be OFF,	or	set	to 0.	
Figure	6–17	shows	a	NOT	gate	with	a	truth	table.	The	circle	in	the	output	line	is	used	to	indicate	an	
inverted		function.

The	NOT	gate	functions	like	the	normally	closed	contacts	in	rung	2	for	the	three-rung	ladder	dia-
gram	in	Figure	6–4.	As	long	as	the	CR	in	rung	1	remains	deenergized,	or	OFF,	the	N.C.	CR		contact	
in	rung	2,	which	controls	the	green	indicator	lamp,	will	be	TRUE	and	the	indicator	lamp	will be	ON.	
Figure	6–18	shows	an	N.C.	CR	contact	controlling	a	lamp	and	the	truth	table	for	the		circuit.
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As	long	as	the	single-pole	switch	(S1)	that	is	wired	in	series	with	the	CR	coil	is	open,	CR	is	OFF, 
or	set	to	0.	With	CR	OFF,	the	logic	for	the	normally	closed	contacts	will	be	TRUE,	and	the	lamp	
will be ON.	When	S1	is	closed,	CR	will	energize,	turn	ON,	the	N.C.	CR	contacts	will	open,	and	the	
light will be turned OFF.	The	truth	table	reflects	the	action	of	the	CR	coil	that	controls	the	action	of	
the	CR	contacts.	It	may	help	to	understand	the	truth	table	if	we	think	that	the	N.C.	CR	contacts	are	
controlled	by	the	CR	coil.	If	the	CR	coil	is	OFF,	or	set	to	0,	we	can	think	of	the	CR	N.C.	contacts	
also	being	closed,	or	set	to	1.	As	the	input	will	be	inverted	when	the	CR	coil	is	energized,	or	set	to	
1,	then	the	output	device	controlled	by	the	NC	contacts	will	be	FALSE,	or	set	to	0.	

The	programmable	controller	will	use	NOT	logic	in	the	same	way	as	described	above.	If	the	output	
device	is	set	to	0,	or	OFF,	any	N.C.	contacts	associated	with	the	output	device	with	the	same	address	
will	also	be	set	to	1.	The	NOT	logic	will	be	used	in	the	next	chapter	for	the	Examine	Off	instruction.	
When	an	N.C.	contact	is	addressed	with	the	same	address	as	an	output	coil,	the	N.C.	contact	will	be	
true as long as the output coil is OFF, or FALSE.

By	combining	the	NOT	gate	with	the	AND	gate,	we	get	what	is	called	a	NAND	gate.	Figure	6–19	
shows	a	two-input	NAND	gate	with	a	truth	table.

CR

CR

S1

LAMP

LAMP

0 1
1 0

CR

Figure 6–18	N.C.	CR	Contact	Controlling	a	Lamp	with	NOT	logic

OUTPUTINPUT A

INPUT B

A B OUTPUT

0 0 1
0 1 1
1 0 1
1 1 0

Figure 6–19	NAND	Gate	with	Truth	Table
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As	discussed	with	the	NOT	logic,	the	circle	is	used	to	indicate	an	invert	function.	By	placing	the	
invert,	or	NOT,	symbol	at	the	output	of	the	AND	gate,	the	output	can	only	be	TRUE	when	one	or	
both of the inputs are FALSE	or	set	to	0.	Figure	6–20	shows	the	equivalent	relay	circuit.

To	help	understand	the	logic	of	the	NAND	gate,	consider	the	ladder	diagram	in	Figure	6–20.

CR

A B

OUTPUT

CR

A B OUTPUT

0 0 1
0 1 1
1 0 1
1 1 0

Figure 6–20	Ladder	Diagram	with	NAND	Logic

A B OUTPUT

0 0 1
0 1 0
1 0 0
1 1 0

OUTPUT

INPUT A

INPUT B

Figure 6–21	NOR	Gate	with	Truth	Table

With	both	inputs	A	and	B	OFF,	or	set	to	0,	the	inverted	output	will	be	set	to	1,	or	be	turned	ON.	If	
only	input	A	is	set	to	1,	the	inverted	output	will	remain	set	to	1	because	input	B	is	still	open,	or	set	to	
0.	If	input	A	is	opened	and	input	B	is	closed	or	is	set	to	1,	the	inverted	output	will	again	remain	set	to	
1.	However,	If	both	A	and	B	are	closed,	or	set	to	1,	then	the	inverted	output	will	be	set	to	0,	or	OFF.	
From	the	ladder	diagram,	we	can	see	that	with	both	input	devices	A	and	B	open,	CR	would	not	be	
energized and the output would be set to 1, or ON.	For	the	output	device	to	go	FALSE,	or	to	0,	both	
input switches A and	B	will	be	closed,	or	set	to	1,	as	illustrated	in	the	truth	table.

When	we	combine	the	NOT	gate	with	an	OR	gate,	we	get	what	is	called	a	NOR	gate.	Figure	6–21	
shows	the	NOR	gate	with	a	truth	table.
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To	help	understand	the	logic	of	the	NOR	gate,	consider	the	ladder	diagram	in	Figure	6–22.

CR

INPUT A

OUTPUT

INPUT B

CR

A B OUTPUT

0 0 1
0 1 0
1 0 0
1 1 0

Figure 6–22	Ladder	Diagram	with	NOR	Logic

A B OUTPUT

0 0 0
0 1 1
1 0 1
1 1 0

OUTPUT

INPUT A

INPUT B

Figure 6–23	XOR	Logic	Gate	with	Truth	Table

From this figure we can see that if either input A or	B	is	closed	the	CR	coil	will	energize	and	the	nor-
mally	closed	contacts	in	rung	2	will	open	and	turn	OFF	the	output.	With	this	configuration,	the	only	
time	the	output	lamp	will	light	is	if	both	switches	A	and	B	are	open,	or	set	to	0.

The	final	logic	gate	that	will	be	covered	is	the	exclusive	OR	gate	(XOR).	The	XOR	gate	with	truth	
table	is	shown	in	Figure	6–23.
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The	XOR	logic	gate	will	only	turn	the	output	ON when either input A or	B	is	ON, but not both ON.	
This	logic	gate	can	be	compared	to	the	two	double-circuit	pushbuttons	shown	in	Figure	6–24a.

A B

CR

A B OUTPUT

0 0 0
0 1 1
1 0 1
1 1 0

Figure 6–24a	Ladder	Logic	Circuit	Equivalent	to	the	XOR	Gate

PB-1
INPUT A

PB-2
INPUT B OUTPUT

Figure 6–24b	Input	A	Closed	and	
Output is ON

PB-1
INPUT A

PB-2
INPUT B OUTPUT

Figure 6–24c	Input	B	Closed	and	
Output is ON

This ladder diagram shows us that as long as one pushbutton is pushed, but not both, the output 
 device will be turned ON.	If	button	A	is	pushed,	a	complete	path	for	current	now	exists,	as shown	
in  Figure	 6–24b.	 Similarly,	 if	 button	 B	 is	 pushed,	 a	 complete	 path	 for	 current	 now	 exists,	 as	 
shown	in	Figure	6–24c.

Logic	gates	can	be	combined	to	create	very	complicated	control	logic.	Figure	6–25	shows	an	OR	
gate	combined	with	an	AND	gate	to	duplicate	the	logic	of	a	ladder	diagram	that	contains	a	start	but-
ton,	holding	contacts,	float	switch,	and	pump	starter.	Compare	the	logic	of	the	ladder	diagram	with	
the	logic	gate	equivalent	circuit	and	the	truth	table.
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Figure	 6–26	 shows	 a	 ladder	 diagram	with	 four	 contacts	 that	 control	 an	 output	 device.	We	 can	
see from the diagram that to turn on the output, any of the following combinations of contacts is 
 required:

A	and	C
A	and	D
B	and	D
B	and	C

By	combining	two	OR	gates	and	an	AND	gate,	we	can	duplicate	the	logic	of	the	four	contacts,	as	
shown	in	Figure	6–26	and	verified	by	the	truth	table.

(A)
START

(B)

(C)
FLOAT

SWITCH

P1

PUMP

OUTPUT

P1

AND
OR

A

B C

A B OUTPUT

0 0 0
0 0 0
0 1 0
0 1 1

C

0
1
0
1

1 0 00
1 0 1
1 1 0
1 1 1

1
0
1

Figure 6–25	Combining	an	OR	Gate	and	an	AND	Gate

A C

B D

OUTPUT

OUTPUTAND

OR

A

B

OR

C

D

A B OUTPUT

0 0 0
0 0 0
0 0 0
0 0 0

C

0
0
1
1

0 1 00
0 1 1
0 1 1
0 1 1

D

0
1
0
1
0
1
0
1

0
1
1

1 0 000
1 0 110
1 0 101
1 0 111
1 1 000
1 1 110
1 1 101
1 1 111

Figure 6–26	Combining	OR	and	AND	Gates
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chapter summary
There	are	basically	two	types	of	electrical	diagrams:	wiring	diagrams	and	ladder	diagrams.	Wir-
ing diagrams show actual physical locations and wiring, whereas ladder diagrams show electrical 
relationships.	The	simplified	ladder	diagram	speeds	understanding	of	circuit	operation	and	is	used	
for	circuit	design	and	troubleshooting.	The	vertical	sides	of	the	ladder	diagram	are	referred	to	as	
rails, while the horizontal lines or logic are called rungs.	On	electrical	diagrams,	devices	are	always	
shown	in	their	normal	or	deenergized	condition.	When	two	or	more	devices	are	wired	in	series,	they	
perform	an	AND	function,	while	two	or	more	devices	wired	in	parallel	perform	an	OR	function.	The	
elements	of	the	ladder	diagram	are	inputs,	outputs,	and	logic.

Logic	gates	can	be	used	that	duplicate	the	logic	of	the	pushbuttons,	contacts,	and	control	devices	
typically	used	in	motor	control	circuits.	Common	logic	gates	are	AND,	OR,	NOT,	NOR,	NAND,	
and	XOR	(exclusive	OR).	Logic	gates	can	be	combined	to	create	complex	control	circuits.	The	ele-
ments	of	the	ladder	diagram	are	inputs,	outputs,	and	logic.	Ladder	diagrams	are	favored	over	wiring	
diagrams	when	a	basic	understanding	of	the	control	circuit	is	needed.	The	wiring	diagram	is	used	to	
show actual physical locations and relationships between components, whereas the ladder diagram 
shows	electrical	relationships	without	regard	to	actual	location.

review questions
	 1.	 Define	the	terms	normally open and normally closed.
	 2.	 Describe	the	difference	between	a	wiring	diagram	and	a	ladder	(schematic)	diagram.
	 3.	 Explain	the	operation	of	the	circuit	in	Figure	6–9	if	M	contacts	2	and	3	do	not	close.
	 4.	 Contacts	wired	in	parallel	have	what	relationship?
	 	 a.	AND
	 	 b.	OR
	 5.	 Contacts	wired	in	series	have	what	relationship?
	 	 a.	AND
	 	 b.	OR
	 6.	 The	two	main	vertical	lines	of	a	ladder	diagram	are	often	referred	to	as:
	 	 a.	rungs
	 	 b.	power	ports
	 	 c.	rails
	 	 d.	tracks
	 	 e.	none	of	the	above
	 7.	 The	horizontal	lines	of	a	ladder	diagram	are	referred	to	as:
	 	 a.	rungs
	 	 b.	power	ports
	 	 c.	rails
	 	 d.	tracks
	 	 e.	none	of	the	above
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	 8.	 Devices	that	are	intended	to	perform	a	STOP function are normally wired in  
with	each	other.

	 9.	 Devices	that	are	intended	to	perform	a	START function are normally wired in  
with	each	other.

10.	How	are	contacts	that	are	associated	with	relays,	motor	starters,	timers,	and	the	like	identified?
11.	Convert	the	wiring	diagram	below	into	a	ladder	diagram.

12.	Convert	the	wiring	diagram	below	into	a	ladder	diagram.

L2
L1

SW-1

SW-2

CR-1

CR-2

1

2

3

4

MOTOR

FS-1

FS-2

L1 L2 L3

M

2

OFF

AUTO

HAND STOP

START

T1 T2 T3

K
J L

3

4

5

O.L.
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	13.	 Identify	the	following	logic	gates.

A.

C.

B.
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Relay Type Instructions

ChapTeR

7
Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand	the	ExaminE On instruction.
•	 Understand	the	ExaminE OFF instruction.
•	 Write	and	understand	the	logic	for	a	standard	StOp/Start motor circuit.

The next step in understanding how the programmable logic controller works is to learn how ladder 
logic is changed into processor logic. The actual programming is accomplished using either a hand-
held programming device or a computer. Figure 7–1a shows the Allen-Bradley MicroLogix PLCs 
and the Hand-Held Programmer for programming and monitoring. Figure 7–1b shows the keyboard 
of the hand-held programmer.

-

139

Image not available due to copyright restrictions
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Regardless of the type of programmer used, some common relay symbols are standard. These symbols 
 include normally open contacts, normally closed contacts, and coil or output. Figure 7–1b shows that the 
keyboard has no symbols for input devices such as StOp buttons, limit switches, and pressure switches. 
The contacts from all input devices are programmed using either the N.O. or the N.C. relay contact  symbols 
(above the numbers 8 and 5 on the keyboard). The actual programming devices used by the different PLC 
manufacturers are covered in Chapter 8, but first the relay logic used for PLCs must be discussed and 
 understood.

Programming ContaCts

A PLC is normally programmed using a ladder logic–type language. Ladder logic is a good choice 
for a programming language because it closely resembles the way circuits are hardwired. Electricians 
and technicians feel comfortable with, and understand, ladder logic, so programming with a ladder 
logic–type	 language	makes	good	sense.	While	 there	are	many	similarities	between	standard	relay	
ladder logic and the ladder logic used for programming a PLC, there are some distinct  differences.

Hardwired contacts in a motor control circuit control the path for current flow to the output (coil, 
light, solenoid, etc.). The contact symbols that are used when programming a PLC are actually logic 
instructions that the processor uses to make decisions. 

The PLC N.O. contact symbol is actually an instruction that tells the processor to look for an On 
condition at the address that corresponds to the symbol. If an On condition exists, the instruction 

Image not available due to copyright restrictions
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is said to be  logically true, and logic continuity exists. This is much like saying that if a contact is 
closed, current can flow. 

Note: as stated earlier in the text, the terms current flow and power flow are often used by the vari-
ous pLC manufacturers to indicate that a circuit is complete, or logically true. 

Figure 7–2 shows a simple circuit containing a single-pole switch and a lamp for an output. Figure 7–3 
shows the equivalent circuit when programmed with a PLC. Addresses shown are  Allen-Bradley 
PLC-5 format. An “I” preceding a word and bit number indicates an input, whereas an “O” preced-
ing a word and bit address indicates an output. 

Figure 7–2 Simple Circuit

I:010

00

O:012

01

Figure 7–3 Equivalent Circuit Programmed with a PLC

In Figure 7–2, if the switch is closed, current flows through the switch contacts and the lamp lights. 
In Figure 7–3, the single-pole switch is shown as an N.O. contact symbol with the address I:010/00.   
The lamp, or output, is shown as a circle, and is given the  address O:012/01. The output is actually 
bit 01 of output image word 012. 

Because of the way this program is written, the normally open contact symbol tells the processor 
to look at address location I:010/00 (input for single-pole switch); if a closed (On) condition 
is	found,	then	the	logic	of	the	circuit	is	true.	When	the	logic	of	the	circuit	is	true,	the	processor	
is instructed to turn On output O:012/01. There is, in reality, no actual electrical connection 
between the switch (I:010/00) and the lamp (O:012/01). Instead, it is the processor that turns 
the lamp On or OFF  depending on the logic of the program that is written and the status of the 
input device. 

Figure 7–4 shows the switch and lamp as they are wired to their respective I/O modules. It is the N.O. 
contact symbol in the program that tells the processor to examine the single-pole switch for an On 
condition. If the switch is open (OFF), the program logic is not true and the processor will not turn 
on the lamp. On the next processor scan, however, if the switch has been closed, it will be On, the 
logic of the circuit will be true, and the processor will turn On the lamp.
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Figure	7–5a	shows	the	bit	status	of	input	image	word	010	when	the	switch	is	open.	With	the	switch	
open (OFF ), the logic of the circuit cannot be true so the lamp (output image word 012 bit 01) will 
not be On. The OFF condition of the switch and the lamp is indicated by a 0 in bit location 00 in 
input	word	010	and	output	image	word	012	bit	01.	When	the	switch	is	closed,	the	bit	that	represents	
the	switch	(00)	will	change	to	a	1.	This	makes	the	circuit	logically	TRUE,	the	processor	will	turn	the	
lamp to On (bit 01), and a 1 will be shown in that location (Figure 7–5b).

L1 L2

INPUT
MODULE

00

01

02

00

01

02

OUTPUT
MODULE

L1 L2

Figure 7–4	Input	and	Output	Devices	Wired	to	I/O	Modules
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INPUT IMAGE WORD 010

17 16 15

0

14

0 0 0

13 12 11

0

10

0 0 0

07 06 05

0

04

0 0 0

03 02 01

0

00

0 0 0

OUTPUT IMAGE WORD 012

17 16 15

0

14

0 0 0

13 12 11

0

10

0 0 0

07 06 05

0

04

0 0 0

03 02 01

0

00

Figure 7–5a	Bit	Status	for	I/O	Word	1	with	Switch	Open
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INPUT IMAGE WORD 010

17 16 15

0

14

0 0 0

13 12 11

0

10

0 0 0

07 06 05

0

04

0 0 0

03 02 01

1

00

0 0 0

OUTPUT IMAGE WORD 012

17 16 15

0

14

0 0 0

13 12 11

0

10

0 0 0

07 06 05

0

04

0 0 1

03 02 01

0

00

Figure 7–5b	Bit	Status	for	I/O	Word	1	after	Switch	Is	Closed
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Because the processor views the N.O. contact instruction as a request to examine a given address 
for an On condition, it is referred to as an EXAMINE ON instruction. The opposite instruction, the 
N.C. contact, is referred to as an EXAMINE OFF instruction. 

These instructions are also referred to as examine if closed (XIC) and examine if open (XIO), as 
shown in Table 7–1.

The EXAMINE OFF instruction is only logically true when the device referenced is OFF, or open. 
Figure 7–6 shows the EXAMINE OFF instruction now used for address I:010/00. The processor is 
asked to examine the address location for an OFF (open) condition. If an OFF condition is found, then 
the instruction is logically true and the output O:012/01 would be turned On. If, on the other hand, the 
switch were found to be On (closed), the logic would be false, and the lamp would not be turned On. 

At first these two instructions may seem to be contrary to the logic of hardwired contacts, so it is 
important to remember that these are instructions to the processor, and are not hardwired contacts. 
A review of both instructions seems appropriate.

EXaminE on

Whenever	the	processor	sees	an	N.O.	contact	in	the	user	program,	it	views	the	contact	symbol	as	a	
 request to examine the address of the contact for an On condition. If the N.O. contact has an input 
 address, and if the real-world input device is closed, or On, the processor sets the appropriate bit in the 
input register to 1, or On. As the EXAMINE ON instruction is looking for an On condition, a bit set 
to 1, or On, is a true condition, and a logic path exists through the contacts. If the real-world input had 
been open, or OFF, the processor would have cleared the appropriate bit to 0, or OFF, and the contact 
would be false as far as the logic of the ladder diagram was concerned and would not allow a logic path. 

Table 7–1 Examine if Closed (XIC) and Examine if Open (XIO)

 Examine On Examine Off

 —] [— —]/[—

 Normally Open Normally Closed

 Examine if Closed Examine if Open

 XIC XIO

I:010

00

O:012

01

Figure 7–6 EXAMINE OFF Instruction
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EXaminE oFF

When	the	N.C.	symbol	is	programmed	in	a	ladder	diagram,	the	processor	views	it	as	a	request	to	
examine the address of the contact for an OFF condition. Any address that is actually OFF becomes 
logically true and power can flow. If an N.C. contact has an input address and the real-world input 
device is open, or OFF, the processor sets the bit to 0, or OFF. As the EXAMINE OFF instruction 
is looking for an OFF condition, a bit set to 0, or OFF, is a true condition and there would be logic 
continuity, so power can flow through the contact. If the input device had been closed, or On, the bit 
would be set to 1, or On. The EXAMINE OFF instruction can only be logically true when an OFF 
condition exists. Any bit set to 1 is viewed as an On condition, which makes an EXAMINE OFF 
(N.C.) contact false, and no power can flow. 

To further reinforce the EXAMINE ON and EXAMINE OFF instruction concepts, a look at a 
standard StOp/Start station may be helpful. Figure 7–7a shows a standard StOp/Start circuit 
with overload contacts using a standard ladder diagram. Figure 7–7b shows the equivalent circuit 
program for a PLC. 

Note: addresses shown are pLC-5 format. an “i” preceding a word and bit number indicates an 
input, whereas an “O” preceding a word and bit address indicates an output. Since the output must 
be the last item programmed on a rung, the overload contacts (O.L./i:010/02) are programmed 
ahead of the motor output.

Once the input devices are wired to the input module(s), as shown in Figure 7–7c, and the PLC sys-
tem is “powered up,” or turned On, the processor scans the inputs and sets the corresponding bits to 
1 or 0 depending on the status of the real-world input devices. If an input is open, the corresponding 
bit is set to 0, or OFF, whereas any bit that represents a closed device will be set to 1, or On. 

O.L.

2 3

M

START
STOP

L1 L2

M

Figure 7–7a Standard StOp/Start Ladder
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Figure 7–7b Equivalent StOp/Start Circuit Programmed with a PLC
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In Figure 7–7c, the StOp button (I:010/00) and the O.L. contact (I:010/02) are wired in N.C. but 
programmed as normally open contacts (EXAMINE ON), as shown in Figure 7–7b. Because the 
StOp button and overload contacts are actually closed, bits 00 and 02 of word 010 are set to 1, or 
On. Figure 7–8a shows the bit status of input image word 010 with the processor in the rUn mode.

With	the	StOp button and the O.L. contacts (bits 00 and 02) set to 1, or On, we need only press the 
Start	button	to	complete	the	circuit.	When	the	Start button (I:010/01) is depressed, bit 01 is set 
to 1 (On) during the next processor scan (shown in Figure 7–8b), and the circuit logic to the output is 
complete.
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Figure 7–7c Input Devices Connected to an Input Module
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Figure 7–8a	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with the Processor in rUn Mode
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With	the	circuit	logic	now	complete	(true),	the	processor	sets	bit	01	of	output	word	012	to	1,	or	On 
(Figure 7–8c), and motor O:012/01 is energized and held energized by holding contacts O:012/01. The 
holding contacts O:012/01 have the same address as the motor (O:012/01) because they both refer-
ence the same bit (01) of word 012 in the output register. The holding contacts do not actually exist as 
hardwired contacts, but are used to maintain the logic path for the circuit. The EXAMINE ON instruc-
tion with the address O:012/01 is the equivalent of holding contacts, and when the motor is energized 
(turned On), bit 01 of word 012 is set to 1, or On, and an alternate logic path is now complete.

When	the	STOP button (input I:010/00) is depressed, the processor clears bit 00 to 0, and the circuit 
logic is broken, or goes FALSE. Bit 01 is cleared to 0, and the real-world output device connected 
to terminal 01 of the output module drops out (turns OFF).	Words	010	and	012	in	the	I/O	register	
now appear as shown in Figure 7–8d, with only bit 02, the overload contact, set to 1.

When	the	STOP button is released or closed again, bit 00 is again set to 1, or On (Figure 7–8e). 
The output (O:012/01) is not energized, however, as the START button (bit 01) is 0 (OFF ), and the 
holding contacts (bit 01 of word 012) are cleared to 0 (OFF ).
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Figure 7–8b	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
While	Start Button Is Being Depressed
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Figure 7–8c	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
After Output O:010/01 Is Energized and the Start Button Is Released
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Another way to look at the N.O. and N.C. symbols used for programming the PLC is called the relay 
analogy. 

For the sake of discussion, imagine that each input device is connected to an invisible control relay 
inside the input module, and that each control relay has one normally open and one N.C. contact, as 
shown in Figure 7–9.
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Figure 7–8e	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with the StOp Button Released
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Figure 7–9	Imaginary	Control	Relays	Wired	to	an	Input	Module

Figure 7–8d	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with the StOp Button Depressed
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When	power	is	applied	to	L1	and	L2,	CR-1	energizes	through	the	N.C.	contacts	of	the	StOp but-
ton.	With	CR-1	energized,	the	N.O.	contacts	of	CR-1	close,	and	lamp	1	lights,	as	indicated	in	Figure	
7–11. The normally closed contacts of CR-1 are now open, so lamp 2 cannot light.

Connect one lamp to the N.O. contacts, and another lamp to the N.C. contacts of CR-1, as shown 
in Figure 7–10. 

Wired	in	this	manner,	N.O.	CR-1	contacts	controlled	by	a	N.C.	pushbutton	will	close	or	conduct 
when power is applied to the circuit. Likewise, N.O. contacts programmed to represent a N.C. 
 pushbutton will conduct when power is applied to the PLC.

An N.O. Start button connected to an input terminal and an invisible or imaginary control relay 
(shown in Figure 7–12) would not light Lamp 1 until the Start button is depressed, and would only 
stay lit as long as the button is held down. Lamp 2 would light as soon as power is applied, but would 
go out when the Start button was depressed and CR-2 energized (Figure 7–13).

Figure 7–10	Lamps	Wired	to	N.O.	and	N.C.	CR-1	Contacts
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Figure 7–11 Lamp 1 Lights with Power Applied to L1 and L2
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The rules for contacts that represent real-world input devices are shown in Figures 7–14a and 7–14b.

There are no invisible control relays in the input modules, and there are also no symbols on the pro-
gramming device for StOp buttons, Start buttons, limit switches, and the like. As long as relay 
contact symbols must be used in place of regular input symbols, the relay analogy is an easy way to 
explain why N.O. contacts are programmed to represent N.C. input devices.

It does not matter which approach you use to understand the logic behind the way that PLCs are 
 programmed, as long as you do understand it. The author believes that the EXAMINE ON and 
 EXAMINE OFF approach is the easiest and clearest way to look at programming. The conversion 
of ladder diagram to PLC program will be quite simple once you clearly understand the concept of 
EXAMINE ON and EXAMINE OFF.
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Figure 7–12 Power Applied—Start Button 
Not Depressed

Figure 7–13 Power Applied—Start 
Button Depressed
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NORMALLY

OPEN

— When the controlling device is ON, the normally
     open contact is closed.

— When the controlling device is OFF, the normally
     open contact is open.

NORMALLY

CLOSED

— When the controlling device is ON, the normally
     closed contact is open.

—  When the controlling device is OFF, the normally
     closed contact is closed.

Figure 7–14a Normally Open Contact 
of an External Input

Figure 7–14b Normally Closed Contact 
of an External Input
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ClariFying EXaminE on and EXaminE oFF

From the previous discussion and examples, it appears that all input devices, whether they are N.O. or 
N.C., are programmed as N.O. contacts to achieve the desired results in the ladder diagram. For many 
circuit applications this is true, and a big advantage of this programming technique is the  ability to 
turn single-pole input devices into double-, three-, or four-pole  devices in the circuit.  Figure 7–15 
shows a double-pole pressure switch (PS-1) controlling two outputs: motor 1 and motor 2.

02

PS-1
I:010

M1

O.L.
I:010

M2

O.L.
I:010

PS-1
I:010

01 01

0301

O:012

02

M1
O:012

Figure 7–16a Double-Circuit Pressure Switch Circuit Programmed for a Typical PLC

PS-1

L1

RUNG #1

#2

L2

O.L.

O.L.

M2

M1

Figure 7–15 Double-Circuit Pressure Switch

When	power	is	applied	to	the	circuit,	motor	1	will	start	through	the	N.C.	contacts	of	PS-1	in	rung	1.	
Motor	2	cannot	start,	however,	due	to	the	N.O.	contacts	of	PS-1	in	rung	2.	When	PS-1	is	actuated,	
the N.C. contacts in rung 1 will open and motor 1 will go OFF, while the N.O. contacts in rung 2 
will close, turning motor 2 On.

By programming the same circuit on a PLC, the necessity of buying a double-circuit pressure switch 
is eliminated. One N.O. and 1 N.C. contact having the same address are used (see Figure 7–16a). 
The address is actually the address of a discrete N.C. single-circuit pressure switch (illustrated in 
Figure 7–16b). 
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When	 the	processor	 is	placed	 in	 the	RUN	mode,	 it	 examines	all	N.O.	contacts	 for	an	On condi-
tion, or EXAMINE ON. As PS-1 and both overload contacts are closed (On), bits 01, 02, and 03 of 
input	word	010	are	set	to	1,	making	those	portions	of	the	ladder	diagram	true.	When	the	processor	
 EXAMINES OFF the N.C. contact (I:010/01), it sees that bit 01 is set to 1 so that this part of the 
 ladder diagram is false. Motor 1, address O:012/00, is On and motor 2, address O: 012/01, is OFF.

When	the	pressure	switch	is	actuated,	the	processor	continues	scanning	the	user	program	and		examines	
all N.O. contacts for On, and all programmed N.C. contacts for OFF. Since the pressure switch (PS-
1) is now actuated, the N.C. contacts are open, and the N.O. contacts (I:010/01) go false, turning OFF 
motor 1 (O:012/00), whereas the N.C. contacts (I:010/01) go true, and turn motor 2 (O:012/01) On.

Even though only double, three, and four poles were mentioned, there is no limit (except user 
memory size) to the number of times an input device can be addressed and used in a programmed 
circuit. This programming technique allows for six-pole, seven-pole, eight-pole, and so on, devices 
to be programmed using only a single-pole discrete device.

There are many more applications and circuits that normally require two- or three-pole devices that 
now only require single-pole devices when programmed for a PLC. Examples are double-pole limit 
switches for forward and reversing circuits, and double-pole pressure switches for duplex controllers.

When	programming	contacts	(N.O.	or	N.C.)	are	controlled	by	outputs,	the	familiar	standard	relay	
logic is used. Figure 7–17a shows a standard StOp/Start station with pilot lights. Lamp 1 (green) 
indicates power is available, and lamp 2 (red) indicates the circuit is activated. Figure 7–17b shows 
how the circuit is programmed.

When	the	processor	is	placed	in	the	RUN	mode,	lamp	1	lights	due	to	the	N.C.	contacts	O:012/00.	When	
the Start button is depressed, output O:012/00 energizes, N.C. contacts O:012/00 open (go false), 

Figure 7–16b	Actual	Wiring	of	a	Single-Pole	Pressure	Switch
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and lamp 1 (O:012/01) goes out. N.O. contacts O:012/00 close (go true), lamp 2 (O:012/02) turns 
On, and the holding contacts (O:012/00) go true to complete the circuit logic.

Notice that the output, holding contacts, N.C. contact, and N.O. contact for the lamps all have the same ad-
dress (O:012/00). The address refers to bit 00 of word 012, and this same bit (00) is referenced four times 
in the ladder diagram. The EXAMINE OFF, or N.C. contact, is logically true when bit 00 is cleared to 0 
(OFF), whereas the EXAMINE ON, or N.O. contacts, are not logi cally true until bit 00 is set to 1 (On).

Figure 7–18a shows the bit status for the circuit with power applied; Figure 7–18b, with the Start 
button depressed; Figure 7–18c, with the Start button released; Figure 7–18d, with the StOp  button 
depressed; and Figure 7–18e, after the StOp button is released. 
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Figure 7–18a	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with Power Applied
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Figure 7–17a Ladder Diagram for StOp/Start 
Station with Indicator Lamps
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Figure 7–18b	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with Start Button Depressed
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Figure 7–18c	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with Start Button Released
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Figure 7–18d	Bit	Status	for	Input	Image	Word	010	and	Output	Image	Word	012	
with StOp Button Depressed
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Chapter summary
The relay logic used for programming the PLC at first seems to be in conflict with standard ladder 
logic. But once the concepts of EXAMINE ON and EXAMINE OFF are understood, the logic pro-
cess is easy to understand. An EXAMINE ON instruction looks for an On condition, and will be log-
ically true when an On condition (a 1) is found. The EXAMINE OFF instruction will be  logically 
true when an OFF condition (a 0) is found. Looking at the actual status of the bits within  individual 
I/O	words	is	another	way	to	help	understand	how	the	processor	logic	works.	Using	the	XIC or	exam-
ine if closed (EXAMINE ON) and the XIO or examine if open (EXAMINE OFF)  approach may be 
helpful. Others find that the relay analogy approach to understanding the N.O. (EXAMINE ON) and 
N.C. (EXAMINE OFF) symbols used for programming is better. Another  approach is to accept the 
fact that an N.C. StOp button, or a similar closed input device, must be programmed using an N.O. 
contact symbol, and just have the philosophy that logic is relative to  application.

review Questions
 1. Briefly describe the action of the EXAMINE ON instruction.
	 2.	 When	an	N.O.	limit	switch	is	wired	to	an	input	module,	and	programmed	using	an	N.O.	

 contact symbol (EXAMINE ON), the instruction will be true (check all correct answers):
  a. when power is applied and the key switch is in the RUN position
  b. when the limit switch is closed
  c. as long as the limit switch is open
  d. never
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with StOp Button Released
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 6. The XIO instruction is the same as:
  a. EXAMINE ON
  b. EXAMINE OFF
 7. The XIC instruction is the same as:
  a. EXAMINE ON
  b. EXAMINE OFF

 3. If the N.O. limit switch in Question 2 is programmed using an N.C. contact symbol 
 (EXAMINE OFF), the instruction will be true (check all correct answers):

  a. when power is applied and the key switch is in the RUN position
  b. when the limit switch is closed
  c. as long as the limit switch is open
  d. never
 4. Briefly describe the action of the EXAMINE OFF instruction.
 5. Indicate the logic (T [True] or F [False]) for the following contacts:

CONDITION
OF INPUT
DEVICE

PROGRAM
INSTRUCTION

LOGIC
TRUE-FALSE

T       F

T       F

T       F

T       F
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8
Objectives

After completing this chapter you should have the knowledge to:
•	 Explain	the	term	On-Line Programming.
•	 Describe	basic	programming	techniques.
•	 Define	the	term	mnemonic	and	give	examples	of	mnemonic	names.
•	 Describe	the	Force On and Force Off	features,	and	the	hazards	that	could	be	associated	

with each.

Programmers and programming software can create, modify, monitor, and load programs into user 
memory,	and	can	also	make	changes	to	the	program	while	the	processor	and	driven	equipment	are	
running. This feature is often referred to as On-Line Programming. Changing the program while 
the processor is running must only	be	done	by	persons	with	a	complete	understanding	of	the		circuit	
	operation	and	the	process	or	driven	equipment.	To	prevent	unauthorized	On-Line	Programming,	a	
key switch is provided, either on the programming device or on the processor, to restrict the  access to 
a monitor-only mode, or to Off-Line and monitor-only mode. When programming using a  personal 
computer and specialized software, a password	may	be	used	to	limit	the	access	to	the		processor	
program.	Passwords	act	like	a	key	switch.	If	the	wrong	password	is	entered	when		requested,	the	user	
is denied further access to the program.

Off-Line	Programming,	which	means	that	the	program	is	being	developed	off	line	(without	being	
connected	to	the	process	or	driven	equipment),	is	the	most	common	method	of	programming—and,	
of	course,	 the	safest.	Since	 few	programs	are	ever	created	without	mistakes,	 it	 is	always	best	 to	
	create	 the	program	off	 line.	Once	 the	program	 is	complete,	 it	 should	be	 tested	while	 still	 in	 the	
Off-Line	mode.	After	testing	and	verifying	the	program	(circuit)	in	Off-Line	mode,	the	PLC	can	be	
put	in	the	On-Line	mode	for	final	verification,	testing,	and	operation.	

The	function	or	functions	of	the	processor	that	can	be	locked	out	with	the	key	switch	or	by	using	
passwords	are	fairly	standard,	but	vary	from	PLC	to	PLC.	

Most	PLCs	are	designed	so	that	any	input	contact	(N.O.	or	N.C.)	or	output	coil	can	be	Forced On or 
Off.	This	feature	(and	troubleshooting	aid)	allows	the	operator	to	Force	On,	or	make	a	contact	or	coil	
go ON regardless of actual status or circuit logic of the input or output device. Similarly, contacts and 
coils	can	be	Forced	Off,	or	turned	OFF, regardless of the actual device status or circuit logic.
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Caution:	The	Force	On	and	Force	Off	feature	should	never	be	used	except	by	personnel	who	com-
pletely understand the circuit and	the	process	machinery	or	driven	equipment.	An	understanding	of	
the potential effect that forcing a given contact or coil has on machine operation is essential if haz-
ardous	and/or	destructive	operation	is	to	be	avoided.

Programming With a ComPuter

Many	 companies	 have	 developed	 software	 for	 programming	 PLCs.	 For	 purposes	 of	 	illustrating	
how	the	software	works,	and	the	relative	ease	of	programming,	the	author	has	selected	the	RSLogix	
software	 created	 by	 Rockwell	 Automation,	 Inc.	 for	 programming	 the	 Allen-Bradley	 	family	 of	
	programmable	controllers.	This	software,	in	various	versions,	can	be	used	to	program	the	Logix5000,	
SLC	500,	or	the	MicroLogix	family	of	processors.	The	software	is	Windows®	based	and	very	user	
friendly.	For	the	first	programming	example,	we	will	use	RSLogix	500	to	program	an	SLC	5/03	
processor	mounted	in	a	4-slot	chassis,	as	shown	in	Figure	8–1.

The	circuit	to	be	programmed	is	a	simple	StOP/Start circuit that uses a Start	button,	a	StOP	button,	
and	holding	contacts	to	control	an	exhaust	fan.	The	ladder	diagram	of	the	circuit	is	shown	in	Figure	8–2.

16-POINT
OUTPUT 
MODULE

32-POINT
INPUT 

MODULE

16-POINT
INPUT 

MODULE

PROCESSOR
5/03

1747-L532

POWER SUPPLY

1746-P1

Figure 8–1	SLC	5/03	Processor	Mounted	in	a	4-Slot	Chassis
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Figure 8–2	Basic	StOP/Start Circuit
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158  Technician’s	Guide	to	Programmable	Controllers

To	start	the	RSLogix	software,	double	click	on	the	RSLogix	icon	for	the	PLC	family	you	are	using.	
The	opening	screen	for	the	RSLogix	500	software	is	shown	in	Figure	8–3.	

Figure 8–3	RSLogix	Opening	Screen

Using the computer mouse, left click on File and then click on New. The window that appears, titled Select 
Processor type,	lists	the	processors	that	the	RSLogix	500	software	can	program.	Scroll	down	the	list	until	
you	find	the	processor	you	are	using.	Figure	8–4	shows	the	window.	Note	that	an	SLC	5/03	processor	has	
been	highlighted.	Note	also	that	below	the	5/03	are	listings	for	MicroLogix	1000	and	1500	processors.	

Figure 8–4 Select Processor type Screen

Once	the	processor	has	been	selected,	the	processor	name	needs	to	be	entered.	In	Figure	8–4,	the	
box	where	the	name	of	the	processor	is	entered,	Processor Name:,	shows	the	name	as	UNTITLED.	
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The name given the processor is typically the name of the process that the processor controls. 
	Examples	are	Lumber	Stacker	1,	Log	Sorter,	Palletizing	Unit,	etc.	For	this	example,	the	processor	
name	will	be	TEST.	Figure	8–5	shows	the	window	after	the	processor	name	has	been	entered.

Figure 8–5	Screen	with	Processor	Name	Entered

The	next	step	is	to	single	click	on	the	OK	button	that	causes	the	software	to	enter	the	information	for	
the	processor	that	has	been	selected	(SLC	5/03).	Figure	8–6	shows	the	new	screen.

Figure 8–6	Screen	After	Processor	Information	Has	Been	Stored

The left side of the screen shows the Project tree while the right side of the screen is the Program-
ming area.	Either	area	can	be	increased	in	size,	minimized,	or	closed	by	left	clicking	the	mouse	on	
the	appropriate	symbol.	
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Under the project tree, the main folders are Help, Controller, Multipoint Monitor, Program Files, 
Data Files, Force Files, Custom Data Monitors, and Data Base.	Not	all	of	 these	folders	will	be	
 discussed, since the intent of this section is merely to illustrate the relative ease of programming 
using	the	RSLogix	software,	not	to	be	a	definitive	programming	guide.	

Double	clicking	on	the	Controller folder	opens	the	folder	and	produces	the	screen	shown	in	Figure	8–7.

Figure 8–7 Controller Screen

Double	 clicking	 on	Controller Properties	 produces	 the	 screen	 shown	 in	 Figure	 8–8.	 From	 this	
screen,	we	can	see	the	number	of	program	files	and	data	files,	and	also	determine	the	memory	used	
and	 the	memory	 left.	 In	 the	screen	shown	there	 is	an	asterisk	(*)	 in	both	 the	Memory	Used	and	
Memory	Left	areas	because	no	program	has	been	developed	yet	and	no	memory	has	been	used.

Figure 8–8 Controller Properties Screen
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Closing Controller Properties	and	double	clicking	on	the	IO Configuration	symbol	produces	the	
screen	shown	in	Figure	8–9.	From	this	screen,	we	can	configure	the	I/O.	As	stated	earlier,	the	SLC	
5/03	processor	is	installed	in	a	4-slot	chassis.	From	this	window	select	either	a	4-slot,	7-slot,	10-slot,	
or	a	13-slot	chassis	from	the	pull-down	list	for	Rack	1.

Figure 8–9 IO Configuration Screen

Notice	that	in	Figure	8–9	the	5/03	processor	is	shown	installed	in	slot	0.	The	processor	will	always	
be	installed	in	slot	0	when	using	modular	I/O.	To	enter	the	correct	I/O	module	that	is	installed	in	slot	
1	of	our	4-slot	chassis,	find	the	module	on	the	list	to	the	right	and	double	click.	Figure	8–10	shows	
the	window	after	double	clicking	on	1746-I*16,	which	is	a	16-point	discrete	input	module	installed	
in	slot	1	of	the	4-slot	chassis	(Figure	8–1).

Figure 8–10 I/O Configuration	Window	with	16-Point	Input	Module	Selected	for	Slot	1

©
 C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



162  Technician’s	Guide	to	Programmable	Controllers

To	complete	 the	 I/O	Configuration,	 select	 a	32-point	 input	module	 (1746-I*32)	 for	 slot	2	and	a	
16-point	 output	 module	 (1746-O*16)	 for	 slot	 3.	 The	 completed	 I/O	 Configuration	 is	 shown	 in	
	Figure	8–11.	If	the	processor	was	in	the	On-Line	mode,	the	software	could	look	at	the	I/O	modules	
installed	in	the	chassis	and	automatically	enter	the	appropriate	I/O	module	type	and	number	into	this	
window	by	pressing	the	“Read	IO	Config”	button.

Figure 8–11 Completed IO Configuration Window

The	software	has	the	ability	to	indicate	the	minimum	size	of	power	supply	that	should	be	used	based	
on	the	number	and	type	of	I/O	modules	that	have	been	selected.	To	determine	the	correct	power	sup-
ply to use, single click on the Power Supply	button.	The	Power Supply Loading window is shown 
in	Figure	8–12.	This	window	shows	that	our	SLC	5/03	system	consists	of	1	Rack,	and	the	minimum	
power	supply	recommended	is	a	1746-P1.	
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Figure 8–12 Power Supply Loading Window
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This	window	estimates	 the	 loading	of	 the	 rack.	 In	 this	 illustration,	 the	estimated	5-volt	current	
load	in	mA	(milliamps)	is	861	and	the	24-volt	current	load	is	estimated	at	355	mA.	This	window	
also		estimates	the	margin	of	mA	load	that	is	provided	by	a	1746-P1	power	supply	beyond	the	mA	
load	for	the	mix	of	I/O	currently	installed.	The	estimate	for	the	5-volt	current	is	1139	mA.	We	
could	add	an	additional	1139	mA	of	load	before	the	P1	power	supply	would	be	at	full	capacity.	
The	24-volt	current	load	margin	is	given	as	105	mA.	Note	the	message	at	the	bottom	of	the	win-
dow that says:

“Wildcard” type output detected—an estimate has been made but actual results may vary due 
to the large variances in different output card types.

This message informs the programmer that the current values given are only estimates and the type 
of discrete output cards used will determine the actual mA load. Common sense dictates that if the 
estimated	mA	margin	for	the	rack	is	low,	the	next	size	power	supply	should	be	used.

The	RSLogix	software	gives	an	OVERLOAD—Use a Larger Power Supply warning when the 
mix	of	I/O	requires	a	larger	power	supply	than	has	been	selected.	To	determine	the	correct	power	
supply,	once	an	overload	warning	has	been	displayed,	click	on	the	next	larger	power	supply	and	see	
if	the	warning	disappears.	If	not,	click	on	the	next	larger	power	supply	listed.	Continue	to	click	on	
the	next	larger	power	supply	until	the	OVERLOAD	display	disappears.

After closing the Controller Properties screen, open the Data Files	folder	by	double	clicking	on	the	
folder.	The	contents	of	this	folder	are	shown	in	Figure	8–13.

Figure 8–13 Data File	Folder	Contents

The	Data	File	folder	allows	the	user	to	determine	the	status	of	I/O	files,	as	well	as	the	status	file	(S2),	binary	
file	(B3),	timer	file	(T4),	counter	file	(C5),	control	file	(R6),	integer	file	(N7),	and	floating	point	file	(F8).
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When	the	processor	is	in	the	On-Line	mode,	the	actual	status	of	the	input	and	output	devices,	1	or 0,	
is	determined	by	looking	at	the	bit	status	in	either	the	Input or the Output	file.	Double	clicking	on	
I1—Input produces the Data File I1 (bin)—Input	window	shown	in	Figure	8–14.	

Figure 8–14 Data File Window

This	 window	 shows	 the	 status	 of	 the	 first	 three	 words	 of	 the	 input	 file.	 The	 first	 address	 I:1.0	
	indicates	that	this	is	an	input	module	installed	in	slot	1.	If	we	refer	back	to	Figure	8–1,	the		16-point	
input	module	was	indeed	installed	in	slot	1.	Also,	in	Figure	8–11,	an	input	module	1746-I*16	was	
shown	 installed	 in	 slot	 1	 of	 the	 4-slot	 chassis.	 The	 individual	 input	 devices	 are	 represented	 by	
bits	0	 through 15.	Again	note	 that	 the	bit	 addresses	 are	 in	decimal	 format,	 not	 in	octal,	 like	 the	
	Allen-Bradley	PLC-5 family.

The	 next	 two	 addresses	 are	 I:2.0	 and	 I:2.1.	 These	 addresses	 indicate	 that	 an	 input	 module	 is	
	installed	in	slot	2	but	requires	two	16-bit	words	of	memory.	If	we	refer	back	to	Figure	8–1	again,	
a		32-point	input	module	was	installed	in	slot	2.	Figure	8–11	showed	that	input	module	1746-I*32	
was		installed in	slot	2	of	the	4-slot	chassis.	Because	this	input	device	has	32	points,	or	terminals,	it	
requires	two	16-bit	words	of	memory,	as	shown	in	Figure	8–14.

From	this	window,	each	bit	(input	device)	can	be	assigned	a	Symbol and a Description.	The	symbol	
tells	what	the	device	is	and	the	description	explains	what	it	does.	The	symbol	and	the	description	
are	entered	by	typing	the	information	into	the	appropriate	boxes.	For	the	example	in	Figure	8–15,	
for	address	I:1.0/0,	the	symbol	was	identified	as	PB 1	(pushbutton	1),	and	the	description	as	Stop. 
This	is	the	address	that	will	be	used	for	the	StOP	button	in	the	StOP/Start	circuit	 to	be	pro-
grammed.	The	information	for	each	connected	input	device	can	be	entered	in	this	same	manner.	
Information	also	can	be	assigned	to	input	and	output	devices	as	the	program	is	being	written.	If	
this	 is	 the	case,	 the	symbol	 type	and	description	will	be	shown	automatically	when	a	Data File 
window is opened.
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Figure 8–15	Input	Data	File	with	Symbol	and	Description	of	Address	I:1.0/0	Entered
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If we close the Data File Input	screen	and	double	click	on	O0—Output, the Output Data File will 
open,	as	shown	in	Figure	8–16.

Figure 8–16	Output	Data	File

From	this	screen,	we	can	add	the	symbol	and	description	for	each	of	the	16	outputs	represented	by	
bit	0	through	15.	Figure	8–17	shows	the	screen	after	the	symbol	and	description	for	output	address	
O:3.0/0	have	been	typed	in.	This	is	the	address	that	will	be	used	for	the	motor	starter	that	controls	
the	exhaust	fan	in	our	StOP/Start circuit. As with the Input Data File,	each	output	device	can	be	
given	a	symbol	and	a	description	from	this	screen.	

Again,	this	brief	discussion	of	the	program	tree	and	the	information	that	can	be	obtained	is	intended	
to	show	the	power	of	the	RSLogix	software	and	is	not	a	complete	guide	to	the	software.	
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Figure 8–17	Output	Data	File	with	Symbol	and	Description	of	Address	O:3.0/0	Entered
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Closing the Output Data table	screen	and	maximizing	the	programming	side	of	the	display,	we	see	
that	the	screen	now	looks	like	the	one	in	Figure	8–18.

Figure 8–18 Programming Screen

The	box	in	the	upper	left-hand	corner	of	the	programming	screen	has	four	zeros	(0000)	inside	the	
box.	The	four	zeros	indicate	Rung	0000.	To	start	to	develop	a	program,	single	click	on	the	New rung 
button	above	the	program	area.	The	New rung	button	is	the	first	button	and	uses	this	symbol:	--|—|.	
Figure	8–19	shows	the	screen	with	the	new	rung	added.
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Figure 8–19 Program Area with Rung Added
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As	shown	in	Figure	8–19,	two	rungs	now	show	on	the	screen.	The	first	rung	is	0000;	the	second	
rung	is	0001.	Note	that	there	are	three	small	letter	e’s	at	Rung	0000.	The	e’s indicate that this rung 
is	being	edited.

Figure	8–20	shows	the	simple	StOP/Start	circuit	without	overloads	that	will	be	programmed.

PB 1
STOP

PB 2
START

M

MOTOR STARTER 1
CONTROLLING
EXHAUST FAN

M

Figure 8–20 Simple StOP/Start Circuit without Overloads

The	first	step	is	to	program	the	StOP	button.	This	is	accomplished	by	single	clicking	on	the	Nor-
mally Open	contact	symbol	(—]	[—).	This	is	the	third	symbol	in	the	group	of	seven	symbols.	This	
N.O.	contact	symbol	is	also	referred	to	as	XIC,	or	Examine	if	Closed.	Figure	8–21	shows	the	screen	
with	the	N.O.	contact.
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Double	click	on	the	question	mark	(?)	above	the	contact	and	enter	the	address	of	the	StOP	button.	
We	are	using	address	I:1.0/0.	Figure	8–22	shows	the	screen	with	the	address	I:1.0/0	entered	above	
the contact.

Figure 8–22	Address	Entered	above	the	N.O.	Contact

After typing in the address, hit the Enter key.	Figure	8–23	shows	how	the	screen	looks	now.

Remember	 that	earlier,	 the	address	 I:1.0/0	was	assigned	 the	symbol	PB 1 and the description of 
StOP.	When	the	address	was	entered,	the	information	entered	for	address	I:1.0/0	was	automatically	
added	to	the	programmed	N.O.	contacts.	Notice	also	that	the	address	is	I:1/0.	The	program	elimi-
nates	any	unnecessary	zeros.	So	address	I:1.0/0	becomes	I:1/0	(input	device	in	slot	1	connected	to	
terminal	0).	

Figure 8–21	Screen	with	N.O.	Contact
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Figure 8–23 Screen with StOP	Button	Identified

Note: When entering the addresses, the semicolon (;) can be used instead of the colon (:). the soft-
ware will automatically convert the “;” to a “:” in the address.

The	next	step	in	the	programming	process	is	to	add	the	Start button.	Since	the	Start	button	is	in	
parallel with the holding contacts, single click on the BraNCH Start	symbol	button.	The	button	
symbol	is	_______	.	
                  |_____|

After the BraNCH Start	symbol	is	clicked,	the	screen	now	appears	as	shown	in	Figure	8–24.

Figure 8–24 Screen with BraNCH Start	Symbol
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Notice	that	a	dark	vertical	line	appears	on	the	right	side	of	the	BraNCH Start	symbol.	It	is	neces-
sary	to	move	this	line	to	the	upper	left-hand	corner	of	the	symbol	before	contacts	can	be	added.	To	
move the line, point the arrow of the mouse at the upper left-hand corner of the BraNCH Start 
symbol	 and	 single	 click.	The	heavy	 line	now	moves	 to	 the	upper	 left	 portion	of	 the	 symbol,	 as	
shown	in	Figure	8–25.

Next,	single	click	on	the	N.O.	symbol	to	add	the	next	contact.	Figure	8–26	shows	the	screen	after	
the	next	contact	has	been	added.

Figure 8–26 Second Contact Added

Figure 8–25	Heavy	Line	Moved	to	Upper	Left-Hand	Side	of	Symbol
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Because	all	unnecessary	zeros	will	not	be	displayed,	double	click	on	the	(?)	and	enter	the	address	
I:1/1	for	the	Start	button.	Figure	8–27	shows	the	Start	button	contacts	with	the	address	I:1/1.

Notice	that	there	is	no	symbol	or	description	for	the	address	I:1/1	as	was	the	case	for	address	I:1/0.	
The	 symbol	and	description	can	be	entered	by	opening	 the	 Input	Data	File	 as	was	done	earlier.	
	However,	another	way	to	enter	the	information	is	to	place	the	cursor	on	the	N.O.	contact	symbol	
(Start	button)	and	single	click	the	right	mouse	button.	From	the	menu	that	appears,	select	Edit 
Symbol. The	screen	is	shown	in	Figure	8–28.	

Figure 8–28	Box	above	Start	Button	for	Entering	the	Symbol

Figure 8–27 Start Contacts Addressed
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In	 the	box	above	 the	Start	button,	 type	 in	 the	assigned	symbol	PB 2	 and	press	 the	Enter	key.	
	Figure	8–29	shows	the	screen	with	the	symbol	PB	2	added	above	the	Start	button.

The	 description	 of	 the	 input	 device	 (Start	 button)	 can	 be	 added	 by	 placing	 the	 cursor	 on	 the	
Start	button	again,	single	clicking	 the	right	mouse	button,	and	 then	selecting	Edit Description 
from the menu that appears. Type Start	in	the	box	for	the	description	and	then	click	on	OK to enter 
the	information.	Figure	8–30	shows	the	completed	Start	button.

Figure 8–30 Start	Button	with	Symbol	and	Description	Notations

Figure 8–29	PB	2	Symbol	Added	to	Start	Button
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To add the holding contact from the Motor Starter, point the arrow at the lower left-hand corner of the 
BraNCH Start	instruction	and	click.	This	causes	the	heavy	line	to	appear	as	shown	in	Figure	8–31.

Select	and	left	click	on	the	N.O.	symbol	above	the	program	area	to	add	the	holding	contacts	that	are	
in parallel with the Start	Button.	As	the	holding	contacts	are	controlled	by	the	output,	which	in	
this	case	is	a	motor	starter	connected	to	output	terminal	0	of	the	Output	module	in	slot	3,	the	holding	
contacts	will	have	the	same	address	as	the	Motor	Starter,	O:3.0/0.	As	before,	the	program	ignores	
all	 	unnecessary	zeros,	so	the	address	can	be	entered	as	O:3/0.	Figure	8–32	shows	the	screen	after	
the	holding	contacts	have	been	added	and	addressed.	Notice	also	that	the	symbol	notation	and	the	
	description	notation	added	earlier	for	address	O:3.0/0	are	automatically	added	to	the	holding	contacts.	
The	symbol	tells	what	it	is,	in	this	case	contacts	from	Motor	Starter	1,	that	controls		Exhaust	Fan	1.

Figure 8–32	Holding	Contacts	with	Address,	Symbol,	and	Description	Notation

Figure 8–31 Heavy Line in Lower Left Corner
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The last procedure necessary to complete our simple StOP/Start circuit is to program the output device. 
The	output	device	in	this	case	is	Motor	Starter	1.	Output	address	O:3.0/0	was	given	the	symbol	notation	
Motor	Starter	1	when	the	Output	Data	File	was	opened	earlier.	To	finish	our	program,	point	the	mouse	arrow	
at	the	upper	right-hand	corner	of	the	parallel	contacts	and	click	the	left	button.	This	produces	a	heavy	verti-
cal	line.	Once	the	line	is	present,	click	on	the	Output	symbol	(—( 	)—)	button	above	the	programming	area.

Figure	8–33	shows	the	Output	symbol	with	the	(?)	indicating	that	the	symbol	needs	an	address.	Double	
click	the	left	mouse	button	on	the	(?)	and	enter	the	assigned	address	for	the	output 	O:3/0. 	Remember,	

Figure 8–33	Screen	with	Output	Symbol

there	is	no	need	to	add	any	unnecessary	zeros	because	the	program	will	not		display	them.		Figure	8–34	
shows the completed StOP/Start	 circuit	with	all	 addresses,	 symbols,	 and	 	description	 	notations	
added.

Figure 8–34 Completed StOP/Start Circuit

The	RSLogix	software	has	been	designed	to	check	the	finished	program	to	make	sure	that	all		addresses	
and	instructions	are	correct.	To	verify	the	correctness	of	the	project	(StOP/Start	Circuit),	click	on	
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the Verify Project	button	at	the	top	of	the	program	area.	The	icon	for	the	Verify	Project		button	is	
a	computer	with	a	check	mark.	Single	click	on	the	icon	and	the	verification	process	begins.	If	the	
project has no errors or faults, the program will place a message across the lower left corner of the 
screen.	The	message	will	 read	“Verify	has	completed,	no	errors	found.”	Had	there	been	errors	 in	
the program,	the	errors	would	be	identified	by	program	rung	number.	Figure	8–35	shows	the	screen	
with	the	“verify	completed”	message.

Figure 8–35 “Verify	Completed”	Screen

Remember	that	earlier	we	opened	a	Controller	Properties	screen	(Figure	8–8)	and	one	of	the	things	
noted	was	that	no	Memory	Used	or	Memory	Left	values	were	given.	That	was	because	we	had	not	
developed	a	program	yet.	Now	that	a	program	has	been	developed,	we	can	open	that	screen	again	
and	see	the	number	of	memory	words	that	were	used.	Figure	8–36	shows	the	Controller	Proper-
ties	screen	and	indicates	that	our	program,	or	project	“TEST,”	used	seven	Instruction	Words	and	
100 Data	Table	words.	The	screen	shows	there	are	12,281	instruction	words	left.

Figure 8–36 Controller Properties Screen Showing Memory Words Used
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The	 seven	 (7)	program	words	used	were	 for	 the	first	 contact	 (Start),	 then	a	BraNCH Start 
	instruction,	another	contact	(StOP),	another	BraNCH Start,	another	contact	(holding	contacts),	
a BraNCH CLOSE	instruction,	and	finally	an	OutPut instruction. 

Programming With the LogiX5000 SoFtWare

For	this	programming	example,	we	will	use	RSLogix	5000	to	program	a	ControlLogix	1756-L62	
processor	mounted	in	a	4-slot	chassis,	as	shown	in	Figure	8–37.
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Figure 8–37 ControlLogic Processor Mounted in a 4-Slot Chassis

The	circuit	to	be	programmed	will	be	the	same	simple	StOP/Start	circuit	that	was	used	in	the	first	
example.	The	ladder	diagram	of	the	circuit	is	shown	again	in	Figure	8–38.

PB 1
STOP

PB 2
START

M

MOTOR STARTER 1
CONTROLLING
EXHAUST FAN

M

Figure 8–38	Basic	StOP/Start Circuit without Overloads
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Figure 8–39	RSLogix	5000	Opening	Screen

Start	the	RSLogix	software	by	double	clicking	the	RSLogix	5000	icon.	The	opening	screen	for	the	
RSLogix	5000	software	is	shown	in	Figure	8–39.

Using the computer mouse, left click on File and then click on New. The window that appears, 
titled New Controller, lists the processor type, revision, name, description, chassis type, slot, and 
	create in.	Figure	8–40	shows	the	window.	

Figure 8–40 Select Processor Type

The	first	step	is	to	select	the	processor	type,	left	click	the	black	arrow	to	the	right	of	the	box,	and	
use	the	pull-down	menu	to	choose	the	processor	you	are	using.	In	our	example	we	are	using	the	
1756-L62	processor.	After	selecting	the	processor	type,	select	the	major	revision	of	the	firmware	
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for	which	this	project	is	configured.	Next,	enter	the	processor	name	in	the	Name	box.	As	mentioned	
previously, the name given the processor is typically the name of the process that the processor 
controls.	In	our	example,	we	will	name	the	processor	“Test”.	You	can	enter	a	short	description	in	
the Description	 box	 if	 desired.	From	 the	Chassis type pull-down menu, choose the appropriate 
chassis	type	in	which	the	controller	will	reside.	In	our	example,	we	have	chosen	the	1756-A4,	4-slot	
ControlLogix	Chassis.	In	the	Slot	field,	enter	the	slot	number	for	the	controller.	

Note: In ControlLogix, controllers can be placed in any slot. It is also possible to place multiple 
controllers in the same chassis.

After	entering	the	processor	slot	number,	enter	a	directory	in	which	you	want	to	store	the	project	file	
in	the	box	Create In.	Figure	8–41	shows	our	completed	example.

Figure 8–41	Screen	with	Processor	Information	Entered

The	next	step	is	to	click	on	the	OK	button,	which	causes	the	software	to	enter	the	information	for	
the	processor	that	has	been	selected.	Figure	8–42	shows	the	new	screen.

The left side of the screen shows the project tree while the right side of the screen is the display area, 
which displays various screens depending on your selection in the project tree.

Under the project tree, the main folders are Controller test, task, Motion Groups, Data types, trends, 
and I/O Configuration.	Not	all	of	these	folders	will	be	discussed,	since	the	intent	of	this	section	is	
merely	to	 	illustrate	ease	of	programming	using	the	RSLogix	5000	software,	not	 to	be	a	definitive	
programming guide.

In	studying	Figure	8–42,	you	will	notice	that	under	the	I/O Configuration folder there is a picture 
of	a	chassis	titled	“1756	Backplane,	1756-A4”.	Under	the	chassis	is	a	picture	of	a	processor	that	

©
 C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming a PLC   179

is	titled	“[0]	1756-L62	Test”.	As	you	recall,	we	configured	the	processor	to	reside	in	slot	[0]	of	the	
4-slot	chassis	and	gave	it	the	name	“Test”.	

The	next	step	in	the	configuration	process	is	to	configure	the	I/O	modules	that	are	installed	in	the	
chassis	with	the	processor.	Reviewing	Figure	8–37,	you	will	notice	that	we	showed	a	1756-IA16	
Input	module	 located	 in	 slot	 1	 and	 a	 1756-OA16	Output	module	 located	 in	 slot	 2.	To	 enter	 the	
	correct	I/O	modules	that	are	installed	in	slots	1	and	2	of	our	4-slot	chassis,	right	click	on	the	picture	
of	a	chassis	titled	“1756	Backplane,	1756-A4”	and	left	click	on	“New Module”.Figure	8–43	shows	
the	window	after	clicking	on	“New Module”.

Figure 8–43	I/O	Configuration	Screen

Figure 8–42	Screen	after	Processor	Information	Entered
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Now	left	click	on	the	1	sign	to	the	left	of	where	it	says	“Digital”	and	you	should	see	the	screen	
shown	in	Figure	8–44.

Figure 8–44	I/O	Configuration	Screen	Showing	I/O	Modules

Using	the	scroll	button	on	the	right	side	of	the	window,	scroll	down	until	you	find	the	digital	input	
module	in	slot	1	of	our	chassis	(1756-IA16)	and	then	highlight	the	module	by	left	clicking	on	it.	
Once it is highlighted, left click the OK	button	at	the	bottom	of	the	screen.	If	you	are	creating	a	
module	for	which	more	than	one	major	revision	is	allowed,	you	will	be	prompted	to	choose	which	
revision you would like to create. Simply choose the appropriate revision from the pull-down menu 
and then click OK.	If	you	are	not	sure	which	revision	to	use,	then	select	the	highest-numbered	revi-
sion. After clicking OK,	you	should	see	the	screen	shown	in	Figure	8–45.

Figure 8–45	I/O	Module	Configuration	Screen

To	 complete	 the	 configuration	 of	 the	 new	module,	 enter	 the	 slot	 number	 of	 the	module	 in	 the	
box		titled	Slot. The Name and Description	boxes	are	optional	text	boxes	that	you	can	use	to	add	
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	additional	information	about	the	new	module.	The	other	boxes	can	be	left	in	their	default	settings.	
Once	you	are	finished,	click	OK	and	you	should	see	the	popup	window	shown	in	Figure	8–46.	Click	
OK to leave the module properties at their default settings. 

Figure 8–46	I/O	Module	Properties	Dialog	Window	

Note: the ControlLogix family of PLCs are very advanced PLCs and have many features that oth-
ers do not. there are configuration options available so the user can customize the operation of the 
processor for a given control or process application. this book is not intended to show all of the 
features or configuration options. One should consult the many programming and reference manuals 
available from the manufacturer to better understand all of the features.

After selecting OK	you	should	see	the	1756-IA16	module	located	under	the	picture	of	the	chassis	in	
the	left	window	pane	seen	in	Figure	8–47.

Figure 8–47	Project	Tree	Showing	1756-IA16	Module
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Now,	repeat	the	same	process	for	the	1756-OA16	Output	module	located	in	slot	2.	When	you	are	
finished	you	should	see	both	I/O	modules	listed	under	the	4-slot	chassis	in	the	left	window	pane	of	
the	project	tree	seen	in	Figure	8–48.

Figure 8–48	Project	Tree	Showing	Both	I/O	Modules	Configured

Open	the	controller	scoped	tags	window	by	double	clicking	on	the	Controller tags folder in the left win-
dow pane. After the controller scoped tags window opens, left click on the 1 sign to the left of where it 
says	“Local:1I”.	The	“Local”	stands	for	local	chassis,	the	“1”	stands	for	slot	1,	and	the	“I”	stands	for	input.	
If	you	recall,	we	configured	slot	1	for	the	digital	input	module	1756-IA16,	which	has	16	digital	inputs.	
Now	click	on	the	1	sign	to	the	left	of	“Local:1:I.Data”	and	you	should	see	the	screen	in	Figure	8–49.

Figure 8–49	Input	Module	1756-IA16	Data	Points

From	this	screen	you	can	see	all	of	 the	 input	data	points	 (tags)	 for	 the	1756-IA16	Input	module	
located	in	slot	1.	After	studying	Figure	8–49	you	probably	have	noticed	that	there	are	more	than	
16 input	data	tags.	How	can	there	be	more	than	16	input	data	tags	when	the	input	module	only	has	
16	input	points?	If	you	recall	from	Chapter	4,	the	ControlLogix	processor	is	a	32-bit	word	processor	
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and	allocates	memory	in	full	word	increments.	Since	the	input	module	only	has	16	inputs,	the	first	
16	input	data	tags	are	used	(Data.0…15)	and	the	remainder	are	unused	data	tags.	

When the processor is in the On-Line	mode,	the	actual	status	of	the	input	devices,	1	or	0,	is	determined	
by	looking	at	the	bit	status	in	the	column	titled	“Value”.	From	this	window,	each	input	data	tag	point	
can	be	assigned	a	description	in	the	“Description”	column	to	the	right	of	the	input	data	tag	name.	

In	our	example,	we	will	assume	that	the	StOP	pushbutton	has	been	wired	to	digital	input	point	0	
(Local:1:I.Data.0)	and	the	Start	pushbutton	to	input	point	1	(Local:1:I.Data.1).	In	Figure	8–50,	we	
have	added	the	descriptions	for	each	button	in	the	description	field	for	each	input	tag.	

Figure 8–50	Digital	Input	Tags	with	Descriptions

Now	minimize	 the	 input	 tags	 for	slot	1	by	clicking	on	 the	 (–)	sign.	The	screen	should	 look	 like	
Figure	8–51.	

Figure 8–51 Control Tags Screen

In	Figure	8–52,	we	have	expanded	the	output	data	tags	associated	with	the	1756-OA16	Output	mod-
ule	located	in	slot	2	of	the	chassis.	Since	this	is	an	output	module,	we	have	expanded	“Local:2:O”	
to reveal the output data tags for each output point on the module.
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Figure 8–52	Digital	Output	Tags	with	Descriptions

We	will	assume	that	our	Motor	Starter	coil	is	wired	to	output	point	0	on	the	1756-OA16	Module	
(Local:2:O.Data.0)	and	has	been	given	the	description	“MOTOR	STARTER	COIL”	as	shown	in	
Figure	8–52.	It	is	good	practice	to	take	the	time	to	add	all	of	your	descriptions	for	the	I/O	points	that	
are	used	before	starting	to	program	the	ladder	logic.	In	this	way,	your	description	will	already	be	
there when you enter the tag address while programming.

Now	that	we	have	configured	our	I/O	modules	and	entered	descriptions	for	the	I/O	points	to	be	used,	
it is time to program our Start/StOP	circuit.	If	you	recall	from	Chapter	4,	the	ControlLogix	pro-
cessor divides logic into tasks, Programs, and routines.	By	default,	when	you	create	a	new	project,	
a main task, main program, and main routine are automatically created. The routine is where the 
ladder	logic	is	entered.	When	you	double	click	on	the	“Mainroutine”	icon	in	the	project	tree,	the	
screen	should	look	like	Figure	8–53.

Figure 8–53 Main Routine Screen

Note: refer to Chapter 4 and the manufacturer’s literature for a detailed description of creating and 
using tasks, Programs, and routines.
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The	 “Mainroutine”	 ladder	 logic	 programming	window	 (Figure	 8–53)	 is	where	 the	 ladder	 logic	
program	will	be	entered	for	our	StOP/Start	circuit.	The	box	in	the	upper	left-hand	corner	of	the	
programming	screen	has	a	zero	(0)	inside	the	box	indicating	that	rung	0	is	selected.	Note	that	there	
are	four	small	e’s	at	Rung	0.	The	e’s	indicate	that	this	rung	is	being	edited.

Just	like	in	the	first	example,	the	first	step	will	be	to	program	the	StOP	button.	This	is		accomplished	
by	 single	 clicking	 on	 the	 Normally Open	 contract	 symbol	 (—]	 [—)	 in	 the	 instruction	 	toolbar	
	located	 above	 the	 programming	 window.	 Ladder	 programming	 elements	 can	 also	 be	 dragged	
from	the		instruction	toolbar	to	a	valid	placement	location	(green	target	circles).	The	green	target	
	circles		indicate	where	a	ladder	logic	element	will	be	inserted	when	the	mouse	button	is	released.	
	Figure 8–54	shows	the	screen	with	the	N.O.	(—]	[—)	contact	inserted.	

Figure 8–54	Programming	Screen	Showing	N.O.	Contact

Double	click	on	the	question	mark	(?)	above	the	contact,	enter	the	tag	for	the	StOP	button,	and	then	
press the Enter key. If you recall, the tag for the StOP	button	was	Local:1:I.Data.0.	Figure 8–55	
shows	the	tag	entered	above	the	N.O.	contact.	Notice	that	your	description	“STOP	Pushbutton”	
also	appeared	above	the	tag.	This	is	a	good	indicator	that	you	have	entered	the	tag	correctly.

Figure 8–55	Programming	Screen	with	STOP	Button	Identified
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Already	created	tags	can	also	be	selected	from	a	drop-down	list	in	the	text	box	by	clicking	on	the	
black	arrow	to	the	right	of	the	text	box.	You	must	then	expand	the	tag	structure	as	necessary	to	find	
the	tag	you	wish	to	select.	Figure	8–56	shows	the	tag	structure	of	the	Input	module	and	a	bit	grid	
that	you	can	use	to	select	the	appropriate	Input	bit.

Figure 8–56	Drop-Down	Tag	Selection

If	a	tag	is	not	already	created,	it	can	be	created	from	the	tag	text	box	by	simply	entering	in	a	name	for	the	tag	
and pressing the Enter key.	The	tag	will	be	“undefined”	until	you	right	click	on	the	tag	box,	at	which	time	
a menu will appear allowing you to create the new tag. This is commonly done with internal memory tags 
rather than I/O tags. See the manufacturer’s programming reference manuals for details on creating tags.

The	next	step	is	to	add	the	Start	button.	Since	the	Start	button	is	in	parallel	with	the	holding	
contacts, single click on the BraNCH Start	symbol	button	on	the	 toolbar.	After	 the	BraNCH 
Start	symbol	is	clicked,	the	screen	now	appears	as	shown	in	Figure	8–57.

Figure 8–57 Programming Screen with BraNCH Start	Symbol
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Notice	that	a	dark	vertical	line	appears	on	the	right	side	of	the	BraNCH Start	symbol.	It	is	neces-
sary	to	move	this	line	to	the	upper	left-hand	corner	of	the	symbol	before	contacts	can	be	added.	To	
move the line, point the arrow of the mouse at the upper left-hand corner of the BraNCH Start 
symbol	and	click.	The	heavy	line	now	moves	to	the	upper	left	portion	of	the	symbol,	as	shown	in	
Figure	8–58.

Figure 8–58 Heavy Line Moved to Upper Left-Hand Corner 

Next,	 single	click	on	 the	N.O.	symbol	 (—]	[—)	 to	add	 the	next	contact.	Figure	8–59	shows	 the	
screen	after	the	N.O.	contact	has	been	added.

Figure 8–59 Second Contact Added
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Enter	the	tag	for	the	Start	button	by	double	clicking	on	the	question	mark	(?)	above	the	contact	
and	entering	the	tag.	When	finished,	press	the	Enter	key.	If	you	recall,	the	tag	for	the	START	button	
was	Local:1:I.Data.1.	You	can	also	use	the	drop-down	list	in	the	text	box.	Figure	8–60	shows	the	
screen	with	the	tag	entered	above	the	N.O.	contact.	Notice	that	your	description	“START	Pushbut-
ton”	also	appeared	above	the	tag.

Figure 8–60	Tag	Added	to	Start	Button

To add the holding contact from the Motor Starter, point the arrow at the lower left-hand corner of 
the BraNCH Start	symbol	and	click.	This	causes	the	heavy	line	to	appear	in	the	lower	left	corner	
of	the	symbol.

Select	and	click	the	N.O.	symbol	to	add	the	holding	contacts	that	are	in	parallel	with	the	Start 
	button.	As	the	holding	contacts	are	controlled	by	the	output,	in	this	case	a	motor	starter	coil	con-
nected	to	output	terminal	0	of	the	Output	module	in	slot	2,	the	holding	contacts	will	have	the	same	
address	 as	 the	Motor	Starter,	Local:2:O.Data.0.	 Figure	 8–61	 shows	 the	 screen	 after	 the	 holding	
contacts	have	been	added	and	tagged.	Notice	that	the	description	you	entered	earlier	appears	above	
the tag for the Motor Starter.

The last procedure necessary to complete our simple StOP/Start circuit is to program the output 
device.	The	output	device	in	 this	case	is	 the	Motor	Starter	coil.	To	finish	our	program,	click	the	
upper right-hand corner of the BraNCH Start	symbol.	This	produces	a	heavy	vertical	line.	Once	
the	line	is	present,	click	on	the	Output	Coil	symbol	(—(	)—)	button	in	the	toolbar	above	the	pro-
gramming window.
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Figure 8–61	Holding	Contacts	with	Tag	and	Description

Figure	8–62	 shows	 the	Output	Coil	 symbol	with	 the	 (?)	 indicating	 that	 the	 symbol	needs	a	 tag.	
Double	click	on	the	(?)	and	enter	the	tag	for	the	Motor	Starter	coil,	Local:2:O.Data.0.	Figure	8–63 
shows the completed StOP/Start circuit with all tags and descriptions added.

Figure 8–62 Programming Screen with Output Coil
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If there are no errors, the four small e’s	to	the	left	of	the	rung	will	disappear.	The	ControlLogix	
software	can	check	for	errors	and	provide	a	description	by	right	clicking	on	the	rung	number	to	the	
left	of	the	finished	rung	and	selecting	“Verify rung”.	If	there	are	any	errors,	an	error	window	will	
appear	below	the	programming	window	describing	the	errors.

Chapter Summary
The	PLC	 is	 programmed	 by	 using	 a	 dedicated	 programmer	 or	with	 a	 personal	 computer	 that	 uses	
software	that	has	been	created	to	program	a	specific	PLC.	Operational	(OP)	codes	are	used	during	the	
 programming to tell the processor what to do, while addresses and tags are used to tell the processor 
where	to	do	it.	The	programming	device	(programmer)	is	used	to	enter,	modify,	and	monitor	the	user	
program.	The	program	(ladder	diagram)	is	entered	by	pushing	keys	on	the	keyboard	in	a	prescribed	se-
quence	so	that	the	results	can	be	displayed	on	the	screen	of	a	personal	computer.	Programs	are	usually	
developed	while	the	PLC	is	in	the	Off-Line	mode.	Once	the	program	is	complete,	it	can	be	tested	in	the	
Off-Line	mode	to	ensure	correct	operation	before	it	is	placed	in	the	On-Line	mode	for	final	testing	and	
verification.	Keys	or	passwords	are	used	to	prevent	unauthorized	use	of	the	PLC.	From	the	program-
ming		device,	contacts	and	coils	can	be	forced	ON or OFF	while	the	circuit	is	operational.	The	FORCE	
ON,	FORCE	OFF	capability	should	be	restricted	to	personnel	who	have	a	complete	understanding	of	
the	circuit	and the	driven	equipment.	The	programming	device	screen	can	be	used	as	a	troubleshooting	
aid to test the circuit prior to entry into user memory, or after the circuit is entered into memory and is 
operational.	Contacts	and	coils	are	either	intensified	or	displayed	in	reverse	video	to	indicate	true	logic	
or	power	flow.

Programming	a	PLC	is	not	difficult,	but	time	must	be	spent	to	become	familiar	with	the	programming	
device,	the	software,	and	the	programming	techniques	used	by	the	various	PLC	manufacturers.

Figure 8–63 Completed StOP/Start Circuit
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review Questions
	 1.	What	does	the	term	On-Line Programming	mean?
	 2.	What	is	the	function	of	the	cursor?
	 3.	What	is	the	FORCE	feature	used	for?
	 4.	 Timers	and	counters	use	words	of	memory,	but	contacts,	coils,	and	BraNCH Start instruc-

tions do not.
	 	 T    F
	 5.	When	is	Off-Line Programming	normally	used?	
	 6.	What	are	the	mnemonic	names	of	the	following	instructions?
  EXAMINE	ON 
  NEXT	BRANCH 
  TIMER	ON-DELAY 
  BRANCH	END 
	 7.	 The	RSLogix	software	can	tell	you	if	the	right	power	supply	has	been	used,	based	on	the	num-

ber	and	mix	of	I/O	modules.
	 	 T    F
	 8.	 Describe	briefly	the	shorthand	method	of	programming	using	the	RSLogix	software.
	 9.	 ControlLogix	processors	use	what	in	place	of	addresses	as	found	on	RSLogix	processors?
	10.	 In	a	ControlLogix	processor,	ladder	logic	is	entered	in:	
  Tasks, Routines, or Programs
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Programming  
Considerations

ChaPter

9
Objectives

After completing this chapter, you should have the knowledge to:
•  Define a network.
• Describe the term dummy relay.
• Understand the horizontal and vertical contact limits.
• Define the term nesting.
• Correctly wire and program stop buttons.
• Describe the difference between logical and discrete holding contacts.

Network LimitatioNs

A network is defined as a group of connected logic elements used to perform a specific function. 
Figure 9–1 shows a typical network consisting of seven series contacts and three parallel branches. 
A network also constitutes one rung of a ladder diagram that starts at the left rail and ends at the 
right rail. 

Figure 9–1 Network (Rung)

Some PLC manufacturers have virtually no network limitations, whereas other PLC systems are 
limited by the number of contacts or other logic symbols that can be included on the  horizontal line 
of a network, and the parallel branches (lines) that make up one network. A typical PLC  network 
limitation of ten series contacts per line and seven parallel lines, or branches, is shown in  Figure 9–2. 
Additionally, some PLCs are further limited because they only allot one output per rung or network, 
and the output must be on the first line. 
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Note: special functions and other logic symbols alter the network limitations and requirements; 
check the operation or program manual of the specific pLC for additional information.

While the number of elements and lines within a network is limited, only the size of user memory 
limits the number of networks or rungs.

When a circuit requires more series contacts than the network allows (Figure 9–3a), the contacts 
are split into two rungs (Figure 9–3b). The first rung contains part of the required contacts and is 
programmed to an internal, or “dummy,” relay. Internal relays are actually a bit and word location 
in storage memory.

Figure 9–2 Network Limits

DISCRETE
OUTPUT

EXCEEDS HORIZONTAL LIMIT

1 2 3 4 5 6 8 9 10 11 12 137

Figure 9–3a Contacts Exceed Horizontal Limit

INTERNAL
RELAY
02000

RUNG #1

#2

DISCRETE
OUTPUT

1 2 3 4 5 6

802000 9 10 11 12 13

7

Figure 9–3b Contacts Split into Two Rungs
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The address of the internal relay, 02000 in Figure 9–3b, is also the address of the first N.O. contact 
on the second rung. The remaining contacts (8–13) are programmed, followed by the address of the 
discrete output device. When the first seven contacts close, the internal output, 02000, is set to 1. 
This makes the N.O. contacts 02000 of Rung 2 true. If the other six contacts (8–13) are closed, the 
rung is true, and the discrete output is turned oN.

Note: It is not necessary to split the contacts in any ratio. If the network allows 10 horizontal con-
tacts, 10 could be placed on the top rung, and three could follow the N.o. contacts of the internal 
relay (02000) on Rung 2. this technique applies not only to N.o. contacts, but to N.C. (or combina-
tions of N.o. and N.C.) contacts as well.

The internal relay just used does not exist as a real-world device that has to be hardwired, but is merely 
a bit in the storage memory that performs the logic of a relay. In actual programming, internal control 
relays that do not actually exist, except in the storage memory as bits, are extensively used. The use of 
these internal relay equivalents is what makes the programmable controller unique, eliminating hours 
of hardwiring and shortening installation and maintenance time.

When a program requires more parallel branches than the network allows, the circuit can be split 
into two networks, or rungs. The first six parallel contacts are programmed to an internal or dummy 
relay, as shown in Figure 9–4. A contact with the same address as the internal, or dummy, relay is 
then programmed in parallel with the remaining contacts to control the output.

Figure 9–4 Parallel Contacts Split into Two Rungs (Networks)

INTERNAL
RELAY 02000

OUTPUT

1

2

3

4

5

6

02000

7

8
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Sometimes it is not the PLC that limits the number of horizontal or parallel contacts, but the dis-
play capability of the monitor. The screen may only be able to display 10 horizontal contacts, even 
though the PLC can be programmed with an unlimited number of horizontal contacts. While the 
processor may allow more contacts to be programmed than the monitor can display, it is not a good 
idea to do so. If the contacts cannot be seen on the screen, it is difficult to troubleshoot the circuit 
later. The ability to view each contact on the monitor and to know the status (oN or oFF ) of each 
contact, as well as the status of the output devices, is what makes the PLC such a powerful tool. 

Note: When using a computer as a programming device, most software packages allow the electri-
cian or technician to “shift” the screen to monitor all the instructions, even when the normal screen 
is filled with instructions. 

Many PLCs have networks that allow for more than one output (parallel outputs) (Figure 9–5). 
With this parallel output configuration, all of the outputs are oN or oFF at the same time, based on 
the network logic.

Figure 9–5 Parallel Output Format

Other PLCs allow multiple outputs that can be oN or oFF at different times, depending on the 
network logic (illustrated in Figure 9–6).

O:010

O:010

O:010

I:112 I:112

00

01

01 02

I:112

03

02

Figure 9–6 Multiple Outputs

ProgrammiNg restrictioNs

In addition to the number of horizontal contacts on one line, and the number of lines in a network 
or rung, the PLC does not allow for programming vertical contacts (Figure 9–7). In the real world, 
one could wire the circuit as shown in the figure, but programming restrictions would not allow the 
PLC to be programmed in this manner.
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If one analyzes the logic of the circuit in Figure 9–7, the circuit logic shows that output F can be 
 energized by any of the following contact combinations: A, B (Figure 9–8a); A, C, E (Figure 9–8b); 
D, C, B (Figure 9–8c); and D, E (Figure 9–8d).

F
BA

ED
C

Figure 9–8a Path A, B

F
BA

ED
C

Figure 9–8c Path D, C, B

F
BA

ED
C

Figure 9–8b Path A, C, E

F
BA

ED
C

Figure 9–8d Path D, E

To duplicate the logic, the circuit could be programmed as shown in Figure 9–9.

F
BA

CD C

D E

E

Figure 9–9 Equivalent Circuit without Vertical Contacts

This circuit maintains the circuit logic. Contact combinations A, B; A, C, E; D, C, B; and D, E all 
energize output F.

Another limitation to circuit programming is the way in which the processor considers power flow, 
or logic continuity, when it scans a rung of logic. Flow is from left to right only, and vertically up or 
down. The processor never allows logic continuity (power flow) from right to left. 

F
BA

ED
C

Figure 9–7 Vertical Contacts
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Normally, relay logic for the circuit shown in Figure 9–10 would indicate the following possible 
contact combinations to energize output G: A, B, C; A, D, E; F, E; and F, D, B, C.

G
C

E

B

D

A

F

Figure 9–10 Hardwired Circuit

If the circuit shown in Figure 9–10 was programmed into user memory as shown in Figure 9–11a, 
the processor would ignore contact combination F, D, B, C because it would require power flow 
(logic continuity) from right to left. If combination F, D, B, C was required, the circuit would be 
reprogrammed as shown in Figure 9–11b.

G
C

E

B

D

A

F

Figure 9–11a Circuit Improperly Programmed

G
C

E

B

D

A

F B CD

EF

Figure 9–11b Circuit Properly Programmed

The last restriction placed on the programming of circuits into user memory by some—but not all—
PLCs is the use of “a branch circuit within a branch circuit,” or the nesting of contacts.  Figure 9–12a 
is an example of a circuit that has nested contacts (L and G) or “a branch within a branch.” To  obtain 
the required logic, the circuit is programmed as shown in Figure 9–12b. The  duplication of  contacts 
J and K eliminates the nested contacts L and G.
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The easiest way to avoid nesting is to remember that all branches must start at a common point, and 
all of the branches must end at the same location. Figure 9–13b is actually three parallel branches in 
series as illustrated in Figure 9–14.

Q

K

L G

JIH

OM N P

Figure 9–12a Nested Contacts

Q
I J K

GL J K

H

NM O P

Figure 9–12b Programmed to 
Eliminate Nested Contacts

Figures 9–13a and 9–13b are other examples of circuits with “a branch within a branch” (in this case 
“branches within a branch”), and how the circuits are programmed to maintain circuit logic.

W

T

Q V

SR

G

U

Figure 9–13a Branches within a Branch

W
S T

QU V

R

GG G

Figure 9–13b Programmed to 
 Eliminate Branches within a Branch

W
S TR

Q VU

G GG

Figure 9–14 Parallel Series Combination

Program scaNNiNg

As discussed in Chapter 3, the processor first determines the status of the input devices, then it scans 
the user program, and then updates (turns oN or oFF) the outputs. The way the processor scans the 
program varies from PLC to PLC. One common method is to scan the program from left to right and 
top to bottom, similar to the way in which a book is read. In this method, the processor scans the first 
rung of the program from left to right, then the second rung from left to right, and continues in this 
fashion until all the rungs have been scanned. In the next scan, the processor returns to the first rung 
and starts all over again, scanning each rung in order from top to bottom. Figure 9–15 illustrates the 
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Look at the circuit shown in Figure 9–16. If S1 is closed, or true, the logic of Rung 1 is true, making 
the logic of Rung 2 true, which in turn makes the logic of Rung 3 true. Lamps 1, 2, and 3 are turned 
oN at the end of the first scan. 

S1 L1

L1 L2

L2 L3

Figure 9–16 One Scan Turns On L3

If, however, the circuit was programmed as shown in Figure 9–17, L3 would not turn oN until the 
third scan was completed. 

In the first scan, Rung 1 is not yet logically true because the processor does not know the status of L2. 
Rung 2 would also not have logic continuity because the processor does not yet know the status of L1. 

Figure 9–15 Processor Scan Left to Right, Top to Bottom
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order of scanning for a processor that scans from left to right and top to bottom. This is the scanning 
method used by Allen-Bradley for their family of PLCs.
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200  Technician’s Guide to Programmable Controllers

When the processor scans Rung 3, however, it now is logically true because S1 is closed. The proces-
sor, therefore, turns oN L1 at the end of the first scan. On the second scan, L2 is still false, so Rung 1 
has no logic continuity. Rung 2, however, is now logically true because L1 was turned oN after the 
first scan, and L1 contacts are closed, or true. S1 is still closed, which keeps the third rung true, so at 
the end of the second scan, L1 and L2 are oN. It is only during the third scan that Rung 1 becomes 
true. With L2 now oN, the logic of Rung 1 is complete and L3 will be turned oN at the end of the 
third scan. 

Each scan took only a matter of milliseconds (msecs) to complete, so the delay in turning on L3 is 
not perceptible to the naked eye. However, in certain high-speed processes, the time lost due to poor 
programming may be significant and must be considered.

Another example of how the processor scans is illustrated by duplicating output addresses. If the same 
output address is inadvertently used twice in one program, the last rung in which the address is used will 
indicate the status of the output. For example, if the address is used in Rung 5 and the logic of Rung 5 
is true (which would tell the processor to turn oN the output), and the address is used again in Rung 13 
and the logic of Rung 13 is false, the output will not be turned oN because the processor scanned Rung 
13 last, and the last state of the output (true or false) will be based on the last rung scanned.

ProgrammiNg StOP ButtoNs

During the early days of programmable controllers, it was common for salespeople to use a demon-
strator model that had the stop buttons wired N.O. This technique was used so the salespeople did 
not have to explain why a stop button was shown as N.O. in a PLC program.

Figure 9–18a shows a standard stop/staRt station ladder diagram, and Figure 9–18b shows the 
equivalent diagram used by some PLC salespeople. 

From an understanding of how a stop/staRt circuit works, and an understanding of the ExAMINE 
ON and ExAMINE OFF instructions, it is easy to see that the only way the circuit could be logically true 
would be for the stop button to be wired open. By using an N.O. stop button, the ExAMINE OFF 
instruction is true and the circuit energizes when the staRt button is pressed. The problem is that once 
the circuit is energized, the only way it can be stopped, or turned oFF, is if the stop button is pushed 
and the contacts close. While this circuit will work, there is a built-in danger that must be considered. 

L2 L3

L1 L2

S1 L1

Figure 9–17 Three Scans Required to Turn On L3
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If a stop button is wired in an N.O. position, the switch is impossible to close if it becomes jammed, 
and it would be impossible to deenergize the circuit. Similarly, if a wire breaks on the stop button, it is 
possible to complete the logic of the circuit and energize the equipment, but impossible to deenergize the 
equipment. With the wire broken, changes in the status of the stop button cannot be conveyed to the 
processor, and the circuit and/or equipment cannot be deenergized. 

Safety Note: all STOP buttons must be wired so that a failure of the switch or a broken wire will 
automatically break logic continuity and turn the circuit OFF. a good programmer will always wire 
the devices and program the circuit so that if the real-world device fails, it creates a safe condition, 
not a safety hazard. 

This practice of wiring stop buttons in the N.O. position was common during the 1980s. If an 
 electrician or technician finds equipment wired in this fashion, he or she should change the stop 
buttons to N.C. and the PLC program from ExAMINE OFF to ExAMINE ON. 

The staRt button should be wired N.O. and programmed with an ExAMINE ON (xIC) instruc-
tion. As a general rule, all input devices, except stop buttons, are wired N.O. and given ExAMINE 
ON instructions in the program. 

LogicaL HoLdiNg iNstructioNs 

In previous programming examples we have used the output address to address the holding contacts. 
This method of providing holding logic works well in many applications and eliminates the need to actu-
ally wire the holding contacts on the motor starter. When the output address is also used for the holding 
contacts (logic), the circuit is maintained logically because the output point has been turned oN. This is 
no guarantee, however, that the actual motor starter connected to the output module has been energized. 

discrete HoLdiNg coNtacts

The only real way to know that the starter has energized is to actually wire the holding contacts 
of the motor starter to an input module point, and use that address when programming the holding 
contacts or when programming motor fault logic. This method has many advantages, and, short of 
 installing a motor sensor, is the best way to verify that the motor starter has been energized.

STOP
START

M

M

L2L1

2 3

Figure 9–18a Standard stop/staRt 
Ladder Diagram

STOP START LOAD

Figure 9–18b PLC Programmed stop/staRt 
Circuit
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overLoad coNtacts

It is common practice not to wire the overload contacts to an input module, but instead to wire the 
overload contacts in series with the starter coil (as shown in Figure 9–19). When wired in this man-
ner, a motor overload that opens the overload contacts also opens the circuit to the starter coil, and 
the starter will drop out, or deenergize. When the starter deenergizes, the holding contacts (which 
must be wired to an input module and programmed in the PLC circuit) also open, and the PLC cir-
cuit loses logic, which, in turn, turns oFF the point on the output module that is connected to the 
starter coil. This arrangement only works if the holding contacts are wired to an input module and 
programmed into the PLC program.

L1 L2

M

MOTOR
STARTER

COIL O.L.

Figure 9–19 Overload Contacts Wired in Series with the Starter Coil

If the holding contacts are not wired to an input module, but instead the output address is used for 
holding logic, the overloads trip and interrupt the circuit to the starter coil and the starter deener-
gizes, but the PLC logic is not broken. Without the holding contact to open the logic in the PLC 
program, the output module point would remain oN, even though the starter coil circuit is open. 
This wiring scheme can cause a safety hazard. With the logic remaining true, the motor restarts 
automatically when the overload is reset. 

Some applications require the addition of a hardwired backup control circuit for PLC-controlled 
motors. These hardwired backup control circuits provide a means to control a motor or other  output 
independent of the PLC, if for any reason the PLC is unable to control its outputs. Many of these 
hardwired backup control systems can be found in critical control systems such as water and waste-
water systems, environmental systems, emergency power, cooling systems, etc. When a hardwired 
backup control circuit is used in conjunction with a PLC to control a motor, then the overload  contact 
on the motor starter must be wired in series with the motor coil to provide protection for the motor 
under both means of control, PLC and hardwired. Figure 9–20 shows a motor controlled from a PLC 
and hardwired control circuit.
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PLC OUTPUT
MODULE

L1

L1 L2

00

01

02

03

HAND
O.L.

PLC
OFF

STOP START

M

M

Figure 9–20 PLC and Hardwired Controlled Motor

By applying common sense and good PLC programming practices, many of the previously men-
tioned problems concerning overload contacts can be solved. One method that the author and many 
control engineers use to solve these problems and provide additional benefits is as follows:
Step 1. Hardwired the overload contacts in series with the motor starter coil, as was shown in 

Figure 9–19. This will protect the motor regardless of the method being used to control 
the motor, PLC or hardwired, and will not depend upon software for motor protection.

Step 2. Wire the holding contacts to an input module (as shown in Figure 9–21). The holding 
contact input can be used to monitor the motor starter for two abnormal conditions: fail-
ure of the motor starter to pull in when the output to the starter coil is oN, and failure of 
the motor starter to drop out when the output to the starter coil is oFF or deenergized.

MOTOR HOLDING
CONTACT

PLC INPUT
MODULE

L1

Figure 9–21 Motor Holding Contacts Wired to Input Module

Step 3. Write a rung of PLC logic that will monitor the motor starter for either of the two 
 abnormal conditions described above, failure to pull in or drop out (see Figure 9–22, 
Rung 2). If an abnormal  condition is detected, then Rung 2 will turn oN an internal 
memory bit labeled “Motor Fault” that will seal in and remain oN until an operator 
or maintenance person reattempts to start the motor. The first two branches in Rung 2 
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204  Technician’s Guide to Programmable Controllers

 monitor the motor for the two abnormal conditions, and the third branch acts as a hold-
ing circuit if a motor fault is detected. The On-Delay timer in Rung 2 is used to allow 
for the physical movement of the motor starter when energizing and deenergizing the 
motor starter (PLC timers will be discussed in Chapter 11).

MOTOR COIL
OUTPUT

STOP PB START PB MOTOR FAULT

MOTOR COIL
OUTPUT

MOTOR COIL
OUTPUT

MOTOR HOLDING
CONTACT

MOTOR COIL
OUTPUT

MOTOR
 FAULT

MOTOR
FAULT

MOTOR FAULT
TIMER DONESTART PB

MOTOR HOLDING
CONTACT

EN

DN

MOTOR FAULT
TIMER

TON
TIMER ON-DELAY
TIMER  T4:0
TIME BASE   0.01
PRESET      50
ACCUM        0

RUNG 1

RUNG 2

Figure 9–22 Motor Fault Logic

Step 4. When one is writing the logic to control the motor coil, an N.C. contact should be 
 inserted in series with the motor coil output. This N.C. contact should have the same 
PLC address as the “Motor Fault” memory bit described above. Figure 9–22, Rung 1 
shows an  example of this logic. Now, whenever the motor starter fails to pull in or drop 
out for any reason, the condition is detected and the motor coil output is turned oFF or 
 deenergized until the motor is again restarted.

Note: the “Motor Fault” memory bit can also be used to flash a light, such as the motor’s run light, 
to alert the operator and maintenance personnel of the problem. see Chapter 22, “programming 
 Examples,” for examples of this logic.

chapter summary
Each PLC has a maximum network size, or matrix, that limits the number of horizontal and verti-
cal contacts for any one network, or rung. The only limitation to the number of rungs (networks) 
is memory size. Since the processor reads power flow (logic) from left to right only, and vertically 
 either up or down, the logic of a relay circuit must be examined carefully to ensure that the logic 
is maintained when the circuit is programmed into the user memory. The program device does not 
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allow contact to be programmed vertically, but the logic of a ladder diagram with vertical contacts 
may be duplicated by adding additional contacts. Depending on the PLC, contacts may or may not 
be programmed as a “branch-within-a-branch,” or nested.

Consideration must be given to the way that the processor scans the program to eliminate unneces-
sary scans before a line or rung of logic goes true. stop buttons must always be wired as normally 
closed and use an ExAMINE ON (xIC) instruction to work correctly and safely. Holding contacts 
can be either logical or discrete (real world). The discrete method has the added advantage of verify-
ing that the motor starter has indeed energized. Holding contacts wired to a PLC input provide the 
added advantage of monitoring the motor starter for abnormal conditions.

review Questions
 1. Define the term network.
 2. Draw and label a diagram to show how a network that requires 14 series contacts to 

 control a discrete output can be programmed on a PLC that limits series logic elements to 
10 per line.

 3. Draw a circuit with nested contacts.
 4. Draw a circuit that retains the logic of the accompanying figures, which has a vertical contact 

(D), so the circuit could be programmed into a PLC.

  

A B C

E F G

D

H

 5. Power flow, or logic, in a PLC is considered to be (check all correct answers):
  a. up to down only
  b. up or down only
  c. left to right
  d. right to left
  e. up or down and from left to right
  f. up, down, and from right to left
  g. up to down only and left to right
  h. up to down only and right to left
  i. up or down and left to right or right to left

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



206  Technician’s Guide to Programmable Controllers

 6. Write a program for a PLC that does not allow nested contacts, for the Hand-Off-Auto circuit 
shown in the accompanying figure.

  

OFF
HAND AUTO

STOP
START

L1 L2

MM

FS-2

M

FS-1

2 3

4 5

O.L.

 7. Explain how a stop button must always be wired, and why.
 8. List two ways that holding contacts can be programmed.
  a. 
  b. 
 9. Explain two advantages of wiring the holding contacts to an input module and then 

 programming the holding contact address into the PLC program.
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Program Control  
Instructions

ChaPter

10
Objectives

After completing this chapter, you should have the knowledge to:
•	 Write	a	program	using	a	latching relay.
•	 Understand	the	term	retentive.
•	 Write	a	program	using	a	master control relay.
•	 Understand	the	importance	of	a	safety circuit.
•	 Describe	how	an	immediate input instruction	could	be	used.
•	 Describe	how	an	immediate output instruction	could	be	used.
•	 Write	a	program	using	the	jump and label instructions.
•	 Give	a	reason	for	using	the	temporary end instruction.

Master Control relay InstruCtIons

In standard relay control systems, a master control is often used to control power to the entire circuit 
or	just	to	selected	rungs.	This	allows	selected	rungs,	or	the	whole	circuit,	to	be	deenergized	by	turn-
ing off the master control relay (MCR). Figure 10–1 shows a typical hardwired master control relay 
that controls power for the whole circuit.

MCR

M
M

M

M

2 3

G

R

RUN

SAFE

MCR MCR

O.L.
START

STOP

Figure 10–1 Hardwired Master Control Relay
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MCRs	are	often	used	with	circuits	that	have	off-delay	timers	so	the	circuit	can	be	shut	down	com-
pletely without waiting for the timers to time out.

With	PLCs,	an	MCR	function	can	be	programmed	to	control	an	entire	circuit	or	just	selected	rungs	
of	a	circuit.	When	the	MCR	instruction	is	programmed	as	shown	in	Figure	10–2,	any	rungs	that	
follow	can	only	become	energized	if	the	MCR	instruction	is	energized,	or	set	to	a	True		condition.

Note: MCRs are sometimes called Master Control Resets because they reset the output to zero 
or OFF.

allen-Bradley logix5000, slC 500, and Micrologix  
MCr Instruction
As shown in Figure 10–2, when the MCR instruction is true, the outputs in the rungs that follow 
are	controlled	in	a	normal	fashion	by	the	logic	programmed	for	each	rung.	If	the	MCR	instruction	
is false,	the	rungs	below	the	MCR	are	also	false	and	cannot	energize	even	if	the	programmed	logic	
for each rung is true. The exception is retentive outputs such as latching relay instructions. Latching 
relay instructions will remain on, or true, even when the MCR instruction is false. Latching relay 
instructions are covered later in this chapter.

MCR

O:010

O:010

I:013

05

I:011

05

I:011

06

O:010

01

00

01

Figure 10–2 Allen-Bradley MCR Instruction

To	create	an	area,	or	zone,	within	a	program	that	will	turn	oFF all nonretentive outputs within the 
area,	or	zone,	two	MCR	instructions	are	used.	Figure	10–3	shows	how	the	two	instructions	are	pro-
grammed.	Rung	1	has	the	first	MCR	instruction	that	is	controlled	by	input	device	I:012/00.	Note	that	
the	second	MCR	instruction	has	been	programmed	in	Rung	5	with	no	logic	element	preceding	the	
instruction.	When	an	instruction	is	programmed	in	this	manner,	it	is	said	to	be	programmed	uncon-
ditionally.	This	second	MCR	instruction	is	used	to	end	the	zone	controlled	by	the	MCR	instruction	
in Rung 1.

When	input	device	I:012/00	goes	true, the MCR instruction goes true,	and	the	rungs	between	the	
two	MCRs—Rungs	2,	3,	and	4—are	controlled	by	the	first	MCR.	As	long	as	the	MCR	in	Rung	1	re-
mains true,	the	normal	logic	of	the	rungs	below	the	instruction	will	control	output	devices	O:010/00,	
01,	and	02.	When	the	MCR	instruction	in	Rung	1	goes	false,	all	output	devices	between	the	MCR	in	
Rung	1	and	the	MCR	in	Rung	5	will	be	turned	oFF, regardless of the logic of the individual rungs 
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(Rungs	2,	3,	and	4).	Rung	6	is	outside	the	area,	or	zone,	controlled	by	the	MCR	instructions	and	
works independently of the MCRs.

Additional	MCR	zones	 can	be	created	within	 the	program	using	pairs	of	MCR	 instructions.	An	
MCR	zone	cannot	be	nested	within	another	MCR	zone.

Safety Note: A programmed MCR must never be used to replace a hardwired emergency stop or 
master control relay that provides emergency shutdown. You should still install a hardwired master 
control relay to provide output power shutdown.

latChIng relay InstruCtIons

Before	discussing	how	a	latching	relay	function	is	programmed	with	a	PLC,	it	may	be	helpful	to	
review traditional hardwired latching relays.

Latching	relays	are	used	when	it	is	necessary	for	contacts	to	stay	open	and/or	closed	even	though	the	
coil	is	only	energized	for	a	short	time	(40	milliseconds)	by	a	momentary	signal.	Latching	relays	are	
often used for lighting applications where multiple circuits are needed for the lights in a large room 
or auditorium. Instead of having a switch for each circuit, a multiple contact latching relay is used. 
Each lighting circuit is wired to a set of contacts on the latching relay. One switch now controls the 
latching relay, which in turn controls several circuits of the lighting load. The latch and unlatch fea-
ture of the relay only requires three wires, so wiring is greatly reduced, and controlling the latching 
relay from multiple locations is quite simple. Another advantage of using the latching relay occurs 
when lighting is normally turned on at the start of the work day, and left on until quitting time. 

RUNG 1 MCR

RUNG 2

RUNG 3

RUNG 4

RUNG 5

RUNG 6

MCR

EN

O:010

00

01

02

01

00

04

02

03

O:010

O:010

I:012

I:012

I:012

I:012

I:012

DN

TON
TIMER ON DELAY
TIMER T4:1
TIME BASE 1.0
PRE 30
ACC 00

MCR ZONE

Figure 10–3	Two	MCR	Instructions	Used	to	Create	a	Control	Zone
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Under	these	circumstances,	if	a	normal	relay	is	used,	the	coil	needs	to	be	energized	all	day	long	to	
keep the lights on.	The	latching	relay,	however,	needs	only	to	be	momentarily	energized	to	latch,	
or turn the connected load on, and the relay remains latched even though the coil is no longer ener-
gized.	By	not	having	the	coil	energized	all	day,	there	is	an	energy	saving.	Another	advantage	is	the	
fact	that	the	lights	will	turn	on	after	a	power	outage	if	they	were	on	before	the	outage.

Latching relays normally use two coils: one to latch and one to unlatch. There is a mechanical link-
age	that	holds	the	relay	in	the	latched,	or	closed,	position.	When	the	unlatch	coil	is	energized,	the	
coil action disengages the mechanical latch and allows the relay to open.

Figure 10–4 shows the wiring diagram for a mechanical latching relay.

L1 L2

(L)

(U)

CR

CR

CR

U

L

ON

OFF

MECHANICAL-TYPE
LATCHING RELAY

Figure 10–4 Mechanical Latching Relay

When	the	on	button	is	pushed,	the	latch	coil	energizes	and	opens	the	N.C.	latch	(L)	contacts	and	
closes	the	unlatched	(U)	contacts.	Opening	the	N.C.	L	contacts	deenergizes	the	L	coil.	The	length	
of time it took to push the on	button	and	to	energize	the	latch	coil	(which	opened	the	N.C.	L	con-
tacts	and	deenergized	the	L	coil)	was	only	a	fraction	of	a	second.	During	the	short	time	the	latch	
coil	energized,	it	closed	the	N.O.	CR	contacts,	completing	the	circuit	to	the	lamp.	The	CR	contacts	
remain	closed	even	though	the	latch	coil	deenergized	because	of	the	mechanical	latch	mechanism.	
To open the mechanically latched contacts to turn the light oFF requires the oFF	button	be	pushed.	
The	U contacts	in	the	unlatch	coil	circuit	are	now	closed.	Pushing	the	oFF	button	energizes	the	
unlatch	coil,	which	in	turn	closes	the	N.C.	L	contacts,	and	opens	the	U	contacts,	which	deenergizes	
the	unlatch	coil.	For	the	brief	instant	that	the	unlatch	coil	is	energized,	it	releases	the	mechanically	
latched CR contacts so they can open and turn the light oFF.

Mechanical	latching	relays	can	be	replaced	by	programming	internal	latching	instructions.	Like	the	
dummy relays discussed earlier, the programmed internal latching relays do not exist as real-world 
devices	but	can	perform	all	the	logic	of	an	actual	latching	relay.

Programmed	 latch	 and	 unlatch	 instructions,	 like	 their	 physical	 real-world	 counterparts,	 are	
 retentive	 during	 a	 power	 failure.	 When	 the	 processor	 loses	 power,	 is	 switched	 to	 either	
the TEST	or	the	PROGRAM	modes,	or	detects	a	major	fault,	discrete	outputs	are	turned	oFF; 
the state of the latch instruction is retained in memory, however, and when power is restored 
or	 the	 processor	 is	 switched	 back	 to	 the	 RUN	mode,	 the	 outputs	 that	 were	on previously 
 return to their on state. 
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Figure	10–5	shows	latch	and	unlatch	rungs	as	they	would	be	programmed	using	the	Allen-Bradley	
Output	Latch	(OTL)	and	Output	Unlatch	(OTU)	instructions	for	 their	Logix5000,	SLC	500,	and	
	MicroLogix	PLCs.

O:0

06

5

U

L

I:0

I:0 O:0

0

Figure 10–5	Programmed	Latch	and	Unlatch	Rungs

The	OTL	instruction	is	a	retentive	output	instruction	that	can	be	programmed	to	turn	on an output 
device. This instruction cannot turn an output device oFF.	Once	an	output	device	has	been	turned	
on	by	an	OTL	instruction,	an	OTU	(output	unlatch)	instruction	must	be	used	to	turn	the	device	
oFF.	As	these	two	instructions	must	be	used	in	pairs,	it	follows	that	they	will	use	the	same	address.	
Note	in	Figure	10–5	that	both	the	latch	(L)	and	unlatch	(U)	coils	have	the	same	address	(O:0/0).	

The	address,	which	is	bit	0	of	output	image	table	word	0,	will	be	set	to	1,	or	on, when the latch rung 
is	true	(input	I:0/5	closed),	and	will	be	cleared	to	0	or	turned	oFF when the unlatch rung is true 
(input	I:0/6	closed).	Like	normal	latching	relays,	only	a	momentary	closure	of	input	device	I:0/5	
latches	output	coil	(L)	O:0/0,	and	the	output	remains	latched,	or	on,	until	the	unlatch	coil	(U)	rung	
is	true	by	closing	input	I:0/6.

Normally,	an	internal	storage	bit	(dummy	relay)	is	used	for	the	latch	and	unlatch	address,	rather	
than an actual discrete output address. If a discrete output address is used, the output, once latched, 
remains on,	even	if	programmed	after	an	open	MCR	rung.	When	an	internal	storage	bit	is	used	for	
the	latch	and	unlatch	address,	the	bit	is	still	retentive,	but	turns	oFF if programmed after an MCR 
rung that is open.

Although	all	PLCs	are	designed	and	manufactured	to	the	highest	standards	and	quality,	a	latching	or	
MCR	instruction	should	not	be	depended	on	for	machine	safety.	A	hardwired	safety	circuit	should	
always	be	added.	A	safety	circuit	is	recommended	by	most	PLC	manufacturers	to	ensure	maximum	
safety rather than depending on a programmed MCR or latching relay alone.

safety CIrCuIt

The	concept	of	safety	circuits	has	been	discussed	earlier	in	the	text,	and	it	is	an	important	enough	
subject	to	be	covered	again.	The	National	Electrical	Manufacturing	Association	(NEMA)	standards	
for	programmable	controllers	recommend	that	consideration	be	given	to	the	use	of	emergency	stop	
functions	that	are	independent	of	the	programmable	controller.	The	standard	reads	in	part:

When	the	operator	is	exposed	to	the	machinery,	such	as	loading	or	unloading	a	machine	tool,	
or	where	 the	machine	cycles	automatically,	consideration	should	be	given	 to	 the	use	of	an	
electromechanical override or other redundant means, independent of the controller, for start-
ing or interrupting the cycle.
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Figure 10–6 shows how a control relay (CR) and safe-run switch is added to interrupt L1 and L2 to 
the discrete output devices of an automatic machine or process.

JuMp and laBel InstruCtIons

Used	in	combination,	these	two	instructions	allow	for	skipping	over	portions	of	the	program	to	save	
program scan time. If there is a portion of the program that is not operational during certain portions 
of	the	process,	the	portion	that	is	not	used	and/or	needed	can	be	jumped	over	or	bypassed	until	it	is	
needed again. By jumping over parts of the program, one decreases the scan time and more scans 
can	be	completed	in	a	given	period	of	time,	which,	in	turn,	means	more	frequent	updating	of	infor-
mation	in	the	program.	The	jump	instruction	(JMP)	tells	the	processor	to	jump	over	a	portion	of	the	
program.	Where	to	jump	to	is	controlled	by	the	label	instruction	(LBL).	Figure	10–7	shows	a	jump	
and	label	instruction	in	Allen-Bradley	PLC-5	format.	When	the	JMP	instruction	is	true,	the	proces-
sor	will	jump	over	Rungs	3	and	4	and	go	directly	to	Rung	5,	as	shown.

The	JMP	instruction	is	assigned	a	three-digit	number	from	000	to	255,	and	the	rung	that	the	proces-
sor	is	to	jump	to	is	given	an	LBL	of	the	same	number.	In	Figure	10–7	the	JMP	and	LBL	instruc-
tion	is	also	enabled,	and	the	processor	is	instructed	to	jump	all	successive	rungs	until	it	reaches	the	
rung	that	contains	the	label	instruction	with	the	number	20.	In	this	illustration,	only	two	rungs	are	
jumped.	In	actual	practice,	any	number	of	rungs	can	be	jumped.

The	jump	and	label	instruction	can	be	used	to	jump	forward	or	backward	in	the	program,	depending	
on	need.	Jumping	backward	adds	to	the	total	scan	time.

Note: Jumping backward an excessive number of times could increase the scan time to a point 
where the watchdog timer will time out (the processor has a watchdog timer that is reset on each 

M-1

L2L1

RUN

SAFECR CR

SOL-1

CR

M-2

M-3

Figure 10–6 Safety Circuit
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O:013I:012
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I:012

11 01

JMP

20I:012

13

EN

DN

I:012

14

O:013I:012

10 13

O:01320

LBL

I:012

01 02

TON

TIMER ON
TIMER T4:0
TIME BASE 1.0
PRESET 100
ACCUM 0

RUNG 1

RUNG 2

RUNG 3

RUNG 4

RUNG 5

Figure 10–7	Programming	the	Jump	(JMP)	and	Label	(LBL)	Instructions

scan). If the scan time exceeds the watchdog timer’s preset time, the processor goes into a fault 
condition.

Safety Note: When a portion of the program is jumped over, the outputs located within that 
portion will remain in their last state until scanned again by the processor.

JuMp to suBroutIne, suBroutIne, and return InstruCtIons

The	jump	to	subroutine,	subroutine,	and	return	instructions	are	used	to	direct	the	processor	to	
go	to	a	different	routine	(subroutine),	scan	it,	return	to	the	routine,	and	continue	to	scan.	The	
formats	used	by	the	various	PLC	manufacturers	to	program	these	instructions	vary	widely,	and	
for	 this	 	reason,	 only	 instruction	blocks	 are	 shown	 in	Figure	10–8.	The	blocks	 are	 identified	
using	 the	Allen-Bradley	mnemonics,	or	 labels:	 jump	 to	 subroutine	 (JSR),	 subroutine	 (SBR),	
and	return	(RET).	Subroutines	are	very	valuable	for	program	organization,	and	for	using	blocks	
of	programming	logic	over	and	over	by	simply	changing	the	variables	used	in	the	subroutine.	
To	use	 this	group	of	 instructions,	consult	 the	programming	guide	for	 the	PLC	system	that	 is	
being	used.

teMporary end InstruCtIon

The	temporary	end	instruction	(TND)	is	used	to	place	a	temporary	end	to	the	routine.	When	the	in-
struction is inserted into the routine, the processor stops scanning the routine and moves to the end 
of	the	current	routine.	This	instruction	is	often	used	when	a	new	program	is	being	debugged	for	the	
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first	time,	because	it	allows	for	portions	of	the	routine	to	be	checked	out	without	running	the	entire	
routine.	Figure	10–9	shows	a	TND	using	the	Allen-Bradley	format.	When	the	TND	instruction	is	
true,	the	processor	stops	scanning	at	Rung	3	and	does	not	scan	Rungs	4	and	5.	

JSR

SBR

RET

TON

90

MAIN PROGRAM

Figure 10–8	Jump	to	Subroutine,	Subroutine,	and	Return	Instructions

TND
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I:012
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Figure 10–9	Allen-Bradley	PLC—Temporary	End	Instruction	(TND)
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always false InstruCtIon

The	always	false	instruction	(AFI)	is	also	used	when	debugging	a	new	or	modified	program.	By	
inserting	the	always	false	instruction	in	a	rung,	it	is	ensured	that	the	rung	will	always	be	false,	re-
gardless of the status of other instructions in the rung. Figure 10–10 shows a rung of logic with the 
AFI instruction programmed at the start of the rung.

O:013

01

I:012

00

I:012

01
O:013

01

AFI

Figure 10–10 Always False Instruction

one-shot InstruCtIon

The	one-shot	instruction	(ONS)	is	an	input	instruction	that	makes	the	rung	true	for	just	one	program	
scan,	based	on	a	 false-to-true	 transition	of	 the	 instruction	 that	precedes	 the	one-shot	 instruction.	
Figure 10–11 shows a rung of logic with the one-shot instruction programmed after input device 
I:011/04,	which	is	controlling	output	O:010/12.	

When	the	rung	is	programmed	as	shown,	the	output	is	turned	on for one scan, and one scan only, 
when	input	I:011/04	is	true	(makes	a	false-to-true	transition).	The	output	cannot	be	turned	on again 
until	the	input	device	is	first	opened,	then	closed	again,	making	a	false-to-true	transition.	With	the	
next	false-to-true	transition,	the	output	device	is	again	only	turned	on	for	one	scan.	This	is	a	benefi-
cial instruction when an output signal or operation is wanted for only one scan.

Math operations, data or word moves, and the like, are completed only once if a one-shot instruction 
is put in series or “anded” with the instruction. The one-shot instruction is often used with timers 
and counters for changing preset and accumulated values. This technique is discussed further in 
Chapter 13.

Note: This chapter has covered some of the basic instructions that are available for programming 
with a PLC. As the instruction sets vary with each manufacturer, it is necessary that the program-
ming manuals be consulted to determine what instructions are available, what their mnemonics or 
designations are, and how to properly use them in a program.

O:010

12

I:011

04
ONS

Figure 10–11 One-Shot Instruction
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Chapter summary
Latching	and	master	control	instructions	can	be	programmed	to	serve	the	same	control	functions	as	
their	real-world	counterparts.	Where	personnel	safety	is	a	factor,	a	hardwired	safety	circuit	should	
be	added,	 instead	of	depending	on	latching	or	MCR	instructions	alone.	Through	the	use	of	vari-
ous	PLC		instructions,	the	programmer	can	cause	the	processor	to	jump	between	specific	rungs	of	
logic,	jump	to	subroutines	then	back	to	the	original	rung	by	using	special	instruction	blocks,	place	
a temporary end statement in the program to limit the amount of program that the processor will 
scan, use an always false instruction to keep a rung of logic from going true, and program one-shot 
instructions	that	limit	activity	to	only	that	one program	scan.	Although	the	mnemonics	used	by	the	
various	manufacturers	will	differ	for	each	of	their	instruction	sets	or	blocks,	the	main	purpose	of	
each instruction is the same. Once the  electrician or technician has mastered programming one type 
of	PLC,	the	transition	to	other	types	becomes	easier.

review Questions
	 1.	 Will	both	programmed	and	real-world	latching	relays,	if	latched,	remain	latched	if	power	is	

lost and then restored?
 2. Latching relays are normally used when it is necessary for:
	 	 a.	contacts	to	open	and/or	close	only	while	the	coil	is	energized.
	 	 b.	contacts	to	open	and/or	close	every	30	seconds.
	 	 c.	contacts	to	stay	open	and/or	closed	even	though	the	coil	is	only	energized	a	short	time.
	 	 d.	none	of	the	above.
 3. Explain why an MCR is often used with off-delay timers.
	 4.	 An	MCR	can	be	used	to	control	(check	all	correct	answers):
  a. selected circuit rungs (networks).
	 	 b.	entire	circuits.
  c. individual contacts within a rung (network).
	 	 d.	all	of	the	above.
	 5.	 Define	the	term	unconditional.
	 6.	 When	using	PLCs,	NEMA	recommends	that	consideration	be	given	to	stop	functions	indepen-

dent	of	the	PLC.	Explain	briefly	why	this	recommendation	is	made.
	 7.	 Define	the	term	retentive.
	 8.	 What	does	the	jump and label instruction do?
	 9.	 Give	one	reason	why	you	might	use	a	temporary end instruction.
	10.	What	is	the	function	of	the	always false instruction?
	11.	What	is	the	function	of	a	one-shot instruction?
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Programming Timers

ChaPTer

11
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	how	pneumatic time delay relays work.
•	 Write	a	program	using	on delay and off delay timers. 
•	 Describe	the	difference	between	an	on delay timer and a retentive timer.
•	 Explain	how	to	extend	the	time	range	of	timers	by	cascading.

Pneumatic timers (General)

To	fully	understand	how	a	PLC	can	be	programmed	to	replace	pneumatic	time-delay	relays,	both	
the	basic	pneumatic	time-delay	relay	and	the	standard	symbols	used	must	be	understood.

Figure	11–1	shows	a	complete	Allen-Bradley	pneumatic	 timing	 relay,	and	Figure	11–2	shows	a	
cutaway view of the contact and timing mechanism.
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Figure 11–1 Pneumatic 
 Timing Relay

OVER-CENTER
TOGGLE MECHANISM (5)
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TIME 
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PLUNGER (4)

OPERATING PLUNGER (11)
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AIR ORIFICE

Figure 11–2 Cutaway View of Contact Unit and 
Timing Mechanism
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For the timer to time when power is applied (coil energized), the solenoid unit—coil, core piece, and 
armature—is mounted so that the natural weight of the armature (10) pushes down on the operating 
plunger	(11).	This	causes	the	bellows	(1)	and	bellows	spring	(3)	to	collapse	the	bellows,	and	dispel	
the	air	out	through	the	release	valve	(9).	When	the	coil	is	energized,	the	armature	is	attracted	mag-
netically	to	the	pole	pieces,	and	lifts	up	and	off	the	bellows	assembly.	Air	now	comes	in	through the	
air	inlet	filter,	past	the	needle	valve	(2),	and	fills	the	bellows	with	air.	The	incoming	air	expands	
the bellows	upward,	pushing	on	the	timing	mechanism	plunger	(4).	As	the	plunger	rises,	it	causes	
the	over-center	toggle	mechanism	(5)	to	move	the	snap-action	toggle	blade	(6)	upward.	This	picks	
up	the	push	plate	(7)	that	carries	the	movable	contacts	(8)	to	open	the	N.C.	contact	and	close	the	
N.O.	contact.	The	time	it	takes	for	the	bellows	to	fill	with	air	and	activate	the	contact	mechanism	is	
controlled	by	adjusting	the	needle	valve	in	the	air	orifice.	The	valve	is	adjusted	with	a	screwdriver	
as	shown	in	Figure	11–3.	A	counterclockwise	rotation	moves	the	needle	valve	further	into	the	air	
orifice,	restricting	airflow	into	the	bellows,	slowing	the	airflow,	and	increasing	the	time	it	takes	for	
the	bellows	to	expand	and	operate	the	contact	mechanism.	Conversely,	clockwise	adjustment	of	the	
needle	valve	decreases	the	time	it	takes	the	bellows	to	fill	with	air	and	activate	the	contacts	after	the	
armature	has	been	lifted	off	the	bellows	mechanism.

When	the	contact	action	is	delayed	after	the	coil	has	been	energized	and	the	armature	is	lifted	up	and	
off	the	bellows	mechanism,	it	is	called	ON delay.

When	the	coil	of	an	ON delay timer	is	de-energized,	the	armature	drops	down,	pushing	on	the	op-
erating	plunger,	which	in	turn	pushes	down	on	the	bellows	expelling	air	through	the	release	valve.	
The	downward	motion	of	the	bellows	causes	the	snap-action	toggle	blade	to	instantaneously	snap	
the	N.C.	contact	closed	and	the	N.O.	contact	open.

To	summarize	the	ON	delay	timer,	 the	delay	in	contact	operation	begins	after the timer coil has 
been	energized,	or	turned	on.	When	the	timer	coil	is	de-energized,	or	turned	off, the contacts go 
back	to	their	normal	condition	instantly.	Figure	11–4	shows	a	pneumatic	timer	with	the	solenoid	
unit	mounted	for	ON	delay.

Figure 11–3	Pneumatic	Timer	Adjustment
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Figure	11–5	illustrates	the	electrical	symbols	used	to	indicate	ON	delay	contacts.

The	arrowhead	indicates	that	movement	is	up.	Since	ON	delay	contacts	can	only	time	after the ar-
mature	has	lifted	up	off	the	bellows,	this	method	of	identifying	timed	contacts	is	easy	to	remember.	
Another	common	method	of	identifying	timed	contacts	is	shown	in	Figure	11–6.

N.C. TIME OPENING
ON-DELAY

N.O. TIME CLOSING
ON-DELAY

T.O. T.C.

Figure 11–6	ON	Delay	Symbols

Note: Remember that “normal” for contacts is how they are open or closed, with the coil of the 
relay de-energized and time expired.

For a pneumatic timer to time when power is removed from the relay coil (OFF delay), the solenoid 
unit	is	mounted	as	shown	in	Figure	11–7.	With	a	spring	holding	the	armature	up,	no	weight	is	ap-
plied	to	the	bellows	assembly,	and	the	bellows	are	filled	with	air	in	a	fully	extended	position.

Figure 11–4	ON	Delay	Timer
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Figure 11–7 OFF	Delay	Timer
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N.C. TIME OPENING
ON-DELAY

N.O. TIME CLOSING
ON-DELAY

Figure 11–5	ON	Delay	Symbols
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Note: Compare figure 11–4 (the on delay) with figure 11–7 (the off delay) to clearly see the 
difference in the mounting of the solenoid assemblies.

When	the	coil	 is	energized	and	the	armature	moves	down,	 the	armature	pushes	on	the	operating	
plunger.	The	plunger	pushes	on	the	bellows	assembly,	and	all	air	is	immediately	forced	out	of	the	
bellows	through	the	release	valve.	This	causes	the	snap-action	contact	assembly	to	instantly	open	
the	N.C.	contact	and	close	the	N.O.	contact.	The	contacts	stay	in	this	configuration	as	long	as	the	
coil	is	energized	and	the	armature	is	holding	the	bellows	mechanism	down	(compressed).

When	the	relay	coil	is	de-energized,	or	turned	off, the spring on the armature lifts it up and off the 
operating	plunger,	which	allows	the	bellows	to	start	to	fill	with	air.	The	N.C.	contact	remains	open,	
and	the	N.O.	contact	remains	closed	until	the	bellows	are	filled	with	enough	air	to	activate	the	snap-
action	contact	mechanism.	When	the	contact	mechanism	has	been	activated,	the	N.C.	contacts	go	
closed	and	the	N.O.	contacts	go	open.

Figure	11–8	shows	the	electrical	symbols	for	OFF	delay	contacts.

To	avoid	confusion	when	reading	electrical	drawings	with	OFF	delay	contacts,	it	must	be	remem-
bered	that	normal	refers	to	the	coil	after	it	has	been	de-energized	(turned	off ), and the time set for 
the	timer	has	elapsed.	The	other	symbols	used	for	OFF	delay	contacts	are	shown	in	Figure	11–9.

Figure	11–10	compares	both	types	of	symbols	used	for	ON	delay	and	OFF	delay	timer	relays.

N.C. TIME CLOSING
OFF-DELAY

N.O. TIME OPENING
OFF-DELAY

T.C. T.O.

N.C. TIME CLOSING
OFF-DELAY

N.O. TIME OPENING
OFF-DELAY

N.C. TIME OPENING
ON-DELAY

N.O. TIME CLOSING
ON-DELAY

T.O. T.C.

N.C. TIME OPENING
ON-DELAY

N.O. TIME CLOSING
ON-DELAY

Figure 11–10	ON	and	OFF	Delay	Symbols
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N.C. TIME CLOSING
OFF-DELAY

N.O. TIME OPENING
OFF-DELAY

T.C. T.O.

Figure 11–9	OFF	Delay	Symbols
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N.C. TIME CLOSING
OFF-DELAY

N.O. TIME OPENING
OFF-DELAY

Figure 11–8	OFF	Delay	Symbols
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Reviewing	the	two	types	of	symbols	commonly	used	in	motor	control	diagrams,	an	electrician	or	
technician	should	have	no	trouble	determining	the	type	of	timing	relay	(ON	delay	or	OFF	delay)	
used, or what is normal (open or closed) for the timed contacts.

The	 basic	 pneumatic	 timing	 relay	 is	 designed	 so	 that	 additional	 instantaneous	 contacts	may	 be	
added, as shown in Figure 11–11. The instantaneous contacts operate when the coil is energized or 
de-energized	independent	of	the	timing	mechanism.	Figure	11–12	shows	the	electrical	symbol	for	
contacts with an asterisk (*), which is sometimes used to indicate instantaneous contacts of a timing 
relay.

Figure	11–13a	shows	a	simple	light	circuit	controlled	by	an	ON	delay	timer	set	for	five	seconds.	
The	amount	of	delay	is	written	near	the	timer	coil	on	the	diagram	for	understanding	and	for	trouble-
shooting.	Figure	11–13b	shows	that	when	S1 is closed, the coil of the pneumatic timer energizes, 
lifts	the	armature	up	and	off	the	bellows,	and	the	timing	starts.	Figure	11–13c	shows	the	circuit	after	
three seconds have elapsed (not enough time for the timer to time out) with the lamp circuit still 
open.	After	five	seconds	have	elapsed	(Figure	11–13d),	the	N.O.	time	closing	contacts	close,	and	the	
lamp lights. As long as S1 remains closed, the timer coil is energized, and the timed contacts stay 
closed.	When	S1	is	opened	(Figure	11–13e),	the	coil	circuit	is	broken,	and	the	coil	deenergizes.	This	
causes	the	timed	contacts	to	open,	thereby	turning	off the lamp. The timed contacts will open the 
instant	the	coil	deenergizes	because	they	are	timed	only	when	power	is	applied	to	the	coil.

Figure 11–11	Adding	Instantaneous	Contacts
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N.O. INSTANTANEOUS CONTACTS
TIME DELAY RELAY

N.C. INSTANTANEOUS CONTACTS
TIME DELAY RELAY

Figure 11–12 Instantaneous	Contact	Symbols
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Figure	11–14a	 shows	 the	 same	circuit	but	with	an	OFF	delay	 timer.	When	S1 is closed (Fig-
ure 11–14b),	the	TD	coil	energizes,	drawing	the	armature	down	and	compressing	the	bellows.	This	
causes	the	N.O.	OFF	delay	contacts	to	go	closed	instantly,	and	the	lamp	lights.	When	S1 is opened 
(Figure	11–14c),	the	TD	coil	is	de-energized,	the	spring-loaded	armature	is	lifted	up	and	off	the	bel-
lows,	and	the	five-second	timing	begins.	Figure	11–14d	shows	the	circuit	after	three	seconds	have	
elapsed.	The	lamp	remains	energized	until	the	full	five	seconds	have	elapsed,	and	the	N.O.	contacts	
time	out	and	open	(Figure	11–14e).
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Figure 11–13b	The	Instant	S1 is Closed
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Figure 11–13d Five Seconds 
After S1 is Closed

L1

TD

TD

ON DELAY
5 SEC.

S1
L2

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

L1

TD

TD

ON DELAY
5 SEC.

S1
L2

Figure 11–13e	The	Instant	S1	is	Opened
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Figure 11–14a OFF	Delay	Timer	Circuit
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Figure 11–14b The	Instant	S1 is Closed
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Figure 11–13a	ON	Delay	Timer	Circuit
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Figure 11–13c Three Seconds 
After S1 is Closed
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Instead	of	a	bellows	assembly,	like	the	pneumatic	time	delay	relay,	PLC	timers	use	internal	solid	
state	circuitry	(clocks)	for	timing	intervals	or	time	base.	The	various	PLC	manufacturers	use	vary-
ing approaches for the actual programming of timers. Several methods that are typical for most 
PLCs	will	be	discussed.	Because	it	is	an	easy	transition	from	pneumatic	timer	concepts	to	program-
ming	concepts,	the	Allen-Bradley	approach	to	programming	timers	is	discussed	first.

allen-Bradley Plc-5, slc 500, and microloGix timers

Figure	11–15	shows	the	timer	format	used	by	Allen-Bradley.	The	timer	consists	of	a	timing	block	
containing	the	timer	number	(address),	 time	base	(1	second	or	0.01	seconds),	and	the	preset	and	
accumulated	times.	The	preset	time	can	be	programmed	with	any	value	from	0	to	32,767.	If	a	time	
base	of	one	second	was	assigned,	32,767	would	equal	9.1	hours	(32,767	4	[60	3	60]	5 9.1); if 
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Figure 11–14e Five Seconds After S1	is	Opened
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Figure 11–14d Three Seconds After S1	is	Opened
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TIME BASE 1.0
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ACCUM 0
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TIMER FILE NUMBER

TIMER (FILE TYPE)

Figure 11–15	Allen-Bradley	Timer	Format
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Figure 11–14c	The	Instant	S1	is	Opened
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a	time	base	of	0.01	(one	hundredth	of	a	second)	was	assigned,	32,767	would	equal	approximately	
5.5 minutes	(32,767	3 0.01 4	60	5	5.46).

The	two	lines	to	the	right	of	the	block	are	the	enable	(EN)	bit	and	done	(DN)	bit	that	indicate	the	
	status	of	the	timer.	The	timer	address	(T4:0)	identifies	the	timer	file	number	and	timer	number.	T4:0	
	indicates	timer	file	4,	timer	0.

File	4	is	the	default	file	from	the	data	table	for	timers	using	the	PLC-5,	SLC	500,	and	the		MicroLogix	
family.	The	PLC-5	can	be	programmed	to	use	files	3-999	for	additional	timer	files.	The	SLC	500	can	
be	programmed	to	use	files	9-255	for	additional	timer	files.	The	MicroLogix	1000	is	limited	to	one	
timer	file	which	is	the	default	file,	file	4.

By	only	having	one	timer	file,	the	MicroLogix	1000	is	limited	to	40	timers	(timer	0	through	39)	
whereas	the	SLC	500	can	use	timers	0	through	255.	The	PLC-5	can	have	timer	numbers	from	0	
through 999.

The	EN	bit	is	set	to	1	(or	is	true)	whenever	there	is	a	logic	path	to	the	timer	block.	The	DN	bit	is	set	
to	1	(or	is	true)	when	the	accumulated	value	equals	the	preset	value,	and	the	timer	has	timed	out.	
Figure	11–16	shows	how	the	information	for	a	timer	is	stored.	Three	words	of	memory	are	used	
for	each	timer	programmed.	The	first	word	of	memory	uses	the	first	8	bits	for	internal	use	and	uses	
bit 13	for	the	DN	bit,	bit	14	for	the	timer	timing	bit	(TT),	and	bit	15	for	the	EN	bit.	The	next	two	
words store the preset and accumulated values of the timer. 

Note: There is no need to remember or memorize the timer bit numbers because the programming 
software accepts the mnemonics Dn, TT, and En. When addressing timer contacts, enter the timer 
number first, followed by the timer bit. for example, T4:1/TT or T4:1.TT addresses the TT bit of 
timer 1, file 4.

The	timer	enable	bit,	bit	15,	is	set	to	1,	or	turned	on, when the rung goes true, and remains set until 
the rung goes false or a reset instruction resets the timer.

Note: The En bit can be used as an instantaneous contact.

The	TT	bit,	bit	14,	is	set	to	1,	or	turned	on, when the rung goes true, and remains on until the rung 
goes	false;	the	DN	bit	is	set	to	1	(accumulated	value	5 preset value); timing is completed; or a reset 
instruction resets the timer.

EN TT DNFIRST 
WORD

1415 13 12 1011 09 08 0607 05 04 0203 01 00

T4:0 I N T E R N A L  U S E

SECOND
WORD P R E S E T  V A L U E  ( 1 6  B I T S )

THIRD 
WORD A C C U M U L A T E D  V A L U E  ( 1 6  B I T S )

Figure 11–16 Timer Storage Format
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Note: The TT bit can be used to control a timer timing light that is only ON when the timer is 
 actually timing. figure 11–17a shows how the TT bit is used to control an indicator light, and fig-
ure 11–17b shows the equivalent circuit using a pneumatic timer.

TON

TIMER ON DELAY
TIMER T4:1
TIME BASE 1:0

PRESET 180
ACCUM 0

EN

DN

O:013

01

I:012

T4:1

10

EN

RUNG 2

RUNG 3

RUNG 4

RUNG 5

RUNG 1

O:013

02

T4:1

TT

O:013

03

T4:1

DN

O:013

04

T4:1

DN

Figure 11–18	Programmed	TON	Timer

The	DN	bit,	bit	13,	is	set	to	1	when	the	accumulated	value	is	equal	to	the	preset	value.	The	DN	bit	
remains set to 1, or on, until the rung goes false or a reset instruction resets the timer.

Note: The Dn bit can be used to control an output, or for other logic within a program.

Figure	11–18	shows	an	ON	delay	 timer	and	how	it	 is	programmed	 to	control	outputs	O:013/01,	
O:013/02,	O:013/03,	and	O:013/04.

S1 5 SEC

INDICATOR
LAMP

TD-1
TD-1

TD1

Figure 11–17b Pneumatic Timer Circuit Used to 
Control	an	Indicator	Lamp
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TON

TIMER ON 
TIMER T4:0
TIME BASE 1:0

PRESET 5
ACCUM 0

DN

EN

O:013

01
INDICATOR

LAMP

I:012

T4:0

01

TT

S1

Figure 11–17a	TT	Bit	Used	to	Control	an	
Indicator	Lamp
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When	bit	I:012/10	(input	device)	is	true,	or	set	to	1,	the	timer	rung	is	true,	and	the	processor	starts	
timer	T4:0	timing	and	sets	the	EN	and	TT	bits	to	1.	This	turns	on	outputs	O:013/01	and	O:013/02	in	
Rungs	2	and	3.	The	accumulated	value	increases	in	one-second	intervals.	The	output	in	Rung	4,	con-
trolled	by	an	EXAMINE	OFF	instruction,	is	true	as	long	as	the	preset	is	not	equal	to	the	accumulated	
value.	The	EXAMINE	OFF	instruction	addressed	with	the	timer	DN	bit	acts	like	a	normally	closed	
time-opening	contact,	and	does	not	open	until	the	accumulated	value	equals	the	preset	value.	The	
	EXAMINE	ON	instruction	in	Rung	5	with	the	DN	bit	address	acts	like	a	normally	open	time-closing	
timer	contact,	and	does	not	close	(or	go	true)	until	the	accumulated	value	is	equal	to	the	preset.	When	
the	accumulated	time	does	equal	the	preset	time,	the	DN	bit	is	set	to	1,	and	output	O:013/04	is	turned	
on	and	output	O:013/03	is	turned	off.	Once	the	timer	instruction	has	completed	timing,	the	TT	bit	
is	reset	to	0	and	the	output	(O:013/02)	of	Rung	3	is	turned	off. 

Like	a	pneumatic	ON	delay	timer,	when	power	is	removed,	the	timer	is	reset	to	0.	The	PLC-5	timer	
instruction	is	reset	when	the	input	device	(I:012/10)	is	opened.	

Figure	11–19	shows	a	typical	timing	chart.	Notice	that	when	the	Rung	condition	is	true	(on ), the 
timer	will	time,	but	if	the	Rung	goes	false	(off ), the timer resets to 0, as illustrated, during the first 
two minutes of the timing diagram.

ON

ON

ON

ON

ON

ON

ON

OFF

OFF

OFF

OFF

OFFOUTPUT O:013/04

TIMER ACCUMULATED
VALUE

OUTPUT O:013/03

TIMER DN BIT
(DN)

TIMER TIMING BIT
(TT)

TIMER ENABLE BIT
(EN)

RUNG CONDITION

ON

OFF

OFF

OFF

OFF

ON

OFF

OFF

180

0

120

120 SECONDSTIME

TIMER PRESET = 180 SECONDS 180 SECONDSTIME

0

ON

ON

OFF

Figure 11–19 TON	Timing	Chart
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Figure	11–20	shows	how	an	OFF	delay	timer	(TOF)	is	programmed.

In	an	OFF	delay	timer,	when	bit	I:012/10	is	set	to	1,	the	DN	and	EN	bits	are	also	set	to	1.	The	DN	bit	
acts	like	the	OFF	delay	contacts	of	a	pneumatic	timer,	and	the	EXAMINE	OFF	(N.C.)	instruction	in	
Rung	4	goes	false,	or	open,	while	the	EXAMINE	ON	instruction	(N.O.)	in	Rung	5	goes	true.	When	
input	device	I:012/10	is	reset,	or	set	to	0,	Rung	1	goes	false,	and	the	timer	starts	to	accumulate	time	in	
one-second	intervals	as	long	as	the	rung	remains	false.	When	the	accumulated	value	equals	the	preset	
value	(180)	the	timer	stops.	T4:1.TT	was	set	to	1	while	the	timer	was	timing	and	output	O:013/02	in	
Rung	3	was	on.	When	the	accumulated	value	equaled	the	preset	value	and	the	timer	stopped	timing,	
the	TT	bit	was	reset	to	0	and	output	O:013/02	was	turned	off.	When	the	TT	bit	is	reset	to	0,	the	DN	
bit	(bit	13)	is	also	set	to	0,	and	output	O:013/03	in	Rung	4	is	turned	on	and	output	O:013/04	in	Rung	5	
is turned off.	The	TOF	instruction	is	reset	by	each	open-to-closed	transition	of	input	device	I:012/10.	
Figure	11–21	shows	a	typical	timing	chart	for	an	OFF	delay	timer.	

During	the	first	timing	cycle,	the	timer	was	only	off	for	120	seconds.	That	was	not	long	enough	for	
the	timer	to	time	out,	so	the	outputs	controlled	by	the	DN	bit	did	not	change.	During	the	second	timing	
cycle, the timer was allowed to time out and the outputs changed states.

Most	 PLCs	 also	 offer	 a	 timer	 that	 replaces	 the	 standard	 motor-driven	 timer.	 A	 typical	 motor- 
driven	timer	consists	of	shaft	mounted	cam(s)	that	are	driven	by	a	synchronous	motor.	Rotating	cam(s)	ac-
tivate	(open	or	close)	limit	or	micro	switches.	Once	power	is	applied,	the	motor	turns	the	shaft	and	cam(s).	
The	positioning	of	the	lobes	of	the	cam(s)	and	the	gear	reduction	of	the	motor	determine	the	time	it	takes	
for	the	motor	to	turn	the	cam	far	enough	to	activate	the	switches.	If	power	is	removed	from	the	motor,	the	
shaft	stops.	When	power	is	reapplied,	the	motor	continues	turning	the	shaft	until	the	switches	are	activated.	
When	the	timing	of	a	device	is	not	reset	due	to	a	loss	of	power,	the	timing	is	said	to	be	retentive.

TOF

TIMER OFF DELAY
TIMER T4:1
TIME BASE 1:0

PRESET 180
ACCUM 0

EN

DN

O:013

01

O:013

02

O:013

03

O:013

04

I:012

T4:1

10

EN

RUNG 2

RUNG 3

RUNG 1

T4:1

TT

T4:1

DN

T4:1

DN

RUNG 4

RUNG 5

Figure 11–20	Programming	an	OFF	Delay	Timer	(TOF)
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Retentive	timers	(RTO)	can	be	programmed	to	replace	motor-driven	timers.	The	retentive	timer	lets	
the timer START and STOP	without	resetting	the	accumulated	value	to	0.	The	bits	associated	with	the	
timer	EN,	TT,	and	DN	function	the	same	as	with	the	TON	instruction.	The	RTO	instruction	begins	tim-
ing when the rung goes true. As long as the rung remains true, the timer continues to time until the ac-
cumulated	value	reaches	the	preset	value.	If	the	timer	rung	goes	false,	the	timer	holds	the	accumulated	
time,	rather	than	resetting	the	accumulated	value	to	0.	When	the	timing	rung	goes	true	again,	the	count	
picks	up	from	where	it	was,	and	continues	to	accumulate	time.	Once	the	accumulated	time	is	equal	to	
the	preset	time,	the	processor	will	set	bit	13	(the	DN	bit)	to	1.	The	DN	bit	remains	on (or set to 1) as 
long	as	the	accumulated	value	is	equal	to	or	greater	than	the	preset	value.	Because	the	retentive	timer	
does	not	reset	to	000	when	the	timer	is	de-energized,	a	reset	rung	(RES)	instruction	must	be	added.	The	
reset	instruction	must	be	given	the	same	address	as	the	retentive	timer	it	is	intended	to	reset.	

A	common	problem	in	programs	 that	have	retentive	 timers	 is	 that	 the	 timer	 is	not	accumulating	
time,	even	 though	 the	 timer	 rung	 is	 true.	More	often	 than	not,	 the	problem	is	a	 reset	 instruction	
that	is	true,	which	prevents	the	timer	from	timing.	Figure	11–22	shows	how	the	RTO	timer	is	pro-
grammed,		including	the	reset	rung	(Rung	3),	and	shows	a	typical	retentive	timer	timing	chart.

ON

ON

ON

ON

ON

ON

0 0

120

180

OUTPUT O:013/04

TIMER ACCUMULATED
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OUTPUT O:013/03

TIMER DONE BIT
(DN)

TIMER TIMING BIT
(TT)

TIMER ENABLE BIT
(EN)

RUNG CONDITION
I:012/10

OFF

OFF

OFF

OFF

OFF

OFF

TIME
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TIME
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Figure 11–21	Timing	Chart	for	a	TOF	Timer
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allen-Bradley loGix5000 timers

Figure	11–23	shows	 the	 timer	format	used	by	Allen-Bradley’s	Logix5000	controllers.	The	 timer	
consists	of	a	 timing	block	containing	 the	 timer	 tag,	 the	preset,	and	accumulated	 times.	The	 time	
base	is	always	1	millisecond	for	Logix5000	timers.	For	example,	for	a	1-second	timer,	you	would	
enter	 1000	 for	 the	 preset	 value.	 The	 preset	 time	 can	 be	 programmed	with	 any	 value	 from	 0	 to	
2,147,483,647	(DINT).	

Figure 11–22	Programmed	Retentive	Timer	(RTO)	and	Timing	Chart
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The	same	EN,	DN,	and	TT	bits	are	available	on	the	Logix5000	timers	as	were	available	on	the	other	
Allen-Bradley	timers	discussed	previously.	The	operation	of	the	TON,	TOF,	and	RTO	timers	are	
the	same	in	both	types	of	processors,	and	the	timing	charts	in	Figures	11–19,	11–21,	and	11–22	can	
be	applied	to	both.	The	only	difference	between	the	timers	is	that	the	Logix5000	timers	have	a	fixed	
time	base	of	1	msecs	and	use	a	tag	structure	to	address	the	timer.

Figure	11–24	shows	a	TON	timer	programmed	in	a	Logix5000	controller.	Note	that	the	Timer pa-
rameter	contains	the	tag	(address)	for	the	timer.	In	this	example	tag	name	“Flasher”	was	assigned	to	

Figure 11–23 Allen-Bradley	Logix5000	Timer	Format
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Figure 11–24 Logix5000	TON	Instruction
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the	timer.	Figure	11–25	shows	the	new	tag	window.	By	default,	when	creating	new	tags	they	will	be	
configured	as	program-scoped	tags.	

After	the	tag	has	been	created,	the	preset	and	accumulated	values	can	be	entered.	The	finished	TON	
timer	is	shown	in	Figure	11–26.

The	Logix5000	controllers	have	three	additional	timer	instructions—TONR,	TOFR	and	RTOR—
that	have	a	built-in	reset	function.	These	timers	are	only	available	with	Function	Block	program-
ming,	which	will	be	covered	in	Chapter	18.

cascadinG timers

When	circuit	requirements	demand	more	time	than	is	available	from	a	single	timer,	two	or	more	
timers	can	be	programmed	together,	as	shown	in	Figure	11–27.	Programming	two	or	more	timers	
together	to	extend	the	timing	range	is	called	cascading.

In	this	circuit,	 the	first	timer	is	controlled	by	input	device	I:012/01.	When	the	device	is	true,	the	
timer	starts	to	time.	When	the	accumulated	time	is	equal	to	the	preset	time,	the	timer	done	bit	is	set	

Figure 11–25 New	Tag	Dialog	Box	for	Timer	Tag	“Flasher”
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Figure 11–26 Finished	TON	Timer
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Figure 11–27 Cascading Timers
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to 1, or on.	When	the	timer	done	bit	(T4:0.DN)	is	set	to	1,	the	second	timer	is	enabled	and	starts	to	
time.	When	the	second	timer	has	timed	out,	output	O:013/01	is	turned	on. The total time to turn on 
output	O:013/01	after	input	I:012/01	was	true	is	36,000	seconds	(32,767+3,233),	or	600	minutes.	

chapter summary
Although	the	format	is	different	for	different	PLCs,	the	basic	principles	are	the	same.	Preset	and	ac-
cumulated	times	are	stored	and	compared	on	each	processor	scan.	When	the	accumulated	value	equals	
the	preset	value,	discrete	output	devices	or	internal	outputs	can	be	turned	on or off.	Timers	can	be	
programmed for on delay or off delay, or as retentive	timers.	The	only	limit	to	the	number	of	timed	
and	instantaneous	contacts	that	can	be	programmed	is	memory	size.	Programmed	timers	offer	a	wider	
range	of	time	settings	and	greater	accuracy	than	is	possible	with	hardwired	pneumatic	timers.

review Questions
	 1.	 Match	the	standard	time	delay	symbols.

N.O.T.0.
a.

b.

c.

d.

N.O.T.C.

N.C.T.C.

N.C.T.0.

1.

2.

3.

4.

	 2.	 The	amount	of	time	for	which	a	timer	is	programmed	is	called	the:
  a. preset
	 	 b.	set	point
	 	 c.	desired	time	(DT)
	 	 d.	all	of	the	above
	 3.	 As	scan	time	increases,	so	does	the	accuracy	of	any	programmed	timers.
  T  F
	 4.	 When	the	timing	of	a	device	is	not	reset	due	to	a	loss	of	power,	the	timer	is	said	to	be:
  a. holding
	 	 b.	secured
  c. retentive
  d. continuous
	 5.	 When	more	time	is	needed	than	can	be	programmed	with	one	timer,	two	or	more	timers	can	be	

programmed	together.	This	programming	technique	is	called:
  a. stacking
	 	 b.	cascading
	 	 c.	doubling
  d. synchronizing
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	 6.	 When	programming	timers	with	Allen-Bradley	format,	which	bit	will	act	as	an	instantaneous	
contact?

	 	 a.	DN
	 	 b.	TT
	 	 c.	EN
	 	 d.	IN
	 7.	 When	the	accumulated	time	is	equal	to	the	preset	time,	which	bit	in	the	Allen-Bradley	PLC-5	

family	will	be	true?
	 	 a.	DN
	 	 b.	TT
	 	 c.	EN
	 	 d.	IN
	 8.	 When	programming	a	Logix5000,	what	preset	value	would	be	entered	to	create	a	23-minute	

timer?
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Programming Counters

ChaPter

12
Objectives

After completing this chapter, you should have the knowledge to:
•	 Write	a	program	using	up	and	down	counters.
•	 Define	the	terms	increment and decrement.

Programmed	counters	serve	 the	same	function	as	 the	mechanical	counters	used	 in	 the	past.	Pro-
grammed	counters	can	count	up,	count	down,	or	be	combined	to	count	up	and	down.	Counters	are	
similar to timers, except they do not operate on an internal clock but instead are dependent on ex-
ternal	or	program	sources	for	counting.

Allen-BrAdley PlC-5, SlC 500, And MiCrologix CounterS

Allen-Bradley	offers	 two	types	of	counters:	up	counters	(CTU)	and	down	counters	(CTD).	Both	
counters	are	retentive	until	reset	by	a	reset	instruction.	Figure	12–1	shows	a	typical	Allen-Bradley	
up	counter.
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CTU

COUNT UP
COUNTER C5:0

PRESET 4
ACCUM 0

CU

DN
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COUNTER NUMBER*

COUNTER FILE NUMBER

COUNTER (FILE TYPE)

*PLC-5 0-999
 SLC 500 0-255
 MICROLOGIX 1000 0-39

Figure 12–1	Allen-Bradley	PLC-5	Counter	Format
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The	Allen-Bradley	up	counter	format	is	similar	to	the	timer	format.	The	up	counter	consists	of	a	
 counter block that contains the up counter address, the preset value, and the accumulated count value, 
which	can	be	any	number	from	0	to	+32,767.	The	counter	address	consists	of	C	for	counter,	the	file	
number	(5	[the		default	number]),	a	colon	(:),	and	the	counter	number.	File	5	is	the	default	file	from	
the	data	table	for	counters	using	the	PLC-5,	SLC	500,	and	the	MicroLogix	1000.	The	PLC-5	can	
be 	programmed	to	use	files	3-999	for	additional	counter	files.	The	SLC	500	can	be	programmed	to	
use	files	9-255	for	additional	counter	files.	The	MicroLogix	is	limited	to	one	counter	file,	which	is	the	
default	file,	file	5.	

By	only	having	one	counter	file	the	MicroLogix	1000	is	limited	to	32	counters	(counters	0	through	31),	
whereas	the	SLC	500	can	use	0	through	255	counters	per	counter	file.	The	PLC-5	can	have	counter	
numbers	from	0	through	999.	Each	counter	requires	three	words	of	memory,	as	shown	in	Figure	12–2.

The	first	word	stores	the	status	bits	of	the	counter	(bits	11	through	15).	The	second	word	holds	the	
preset	values,	or	count,	and	can	range	from	–32,768	to	+32,767.	The	positive	numbers	are	stored	in	
16-bit	binary,	while	the	negative	numbers	are	stored	in	the	2s	complement.	The	third	word	stores	the	
accumulated	count,	and	can	be	any	number	from	–32,768	to	+32,767.	(2s	complement	is	covered	
in	Chapter	5.)

The	status	bits	for	up	and	down	counters	that	are	stored	in	the	first	word	are	as	follows:

Count Up Enable Bit (CU)  The	CU	bit	(bit	15)	is	set	to	1,	or	is	true,	when	the	rung	is	true,	and	
remains	true	as	long	as	the	up	counter	is	enabled.	The	CU	bit	goes	false	when	the	counter	is	reset	or	
the	counter	rung	goes	false.	The	CU	bit	is	only used	with	up	counters.

Count Down Enable Bit (CD)  The	CD	bit	(bit	14)	is	set	to	1,	or	is	true,	when	the	rung	is	true,	and	
remains	true	as	long	as	the	down	counter	is	enabled.	The	CD	bit	goes	false	when	the	counter	is	reset	
or	the	counter	rung	goes	false.	The	CD	bit	is	only used	with	down	counters.

Count Done Bit (DN)  The	DN	bit	(bit	13)	is	ON,	or	set	to	1,	as	long	as	the	accumulated	value	is	
equal	to	or	greater	than	the	preset	value.	The	DN	bit	is	only	reset	to	0,	turned	OFF, when the ac-
cumulated	count	is	less	than	the	preset	value.	

PLACE VALUE
1415 13 12 1011 09 0607 05 04 0203 01 00

FIRST 
WORD

08

C5:0 CU CD DN OV UN I N T E R N A L  U S E  O N L Y

SECOND 
WORDP R E S E T  V A L U E S  ( 1 6  B I T S )

THIRD 
WORDA C C U M U L A T E D  V A L U E S  ( 1 6  B I T S )

Figure 12–2	Storage	Format	for	Counters
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Count Up Overflow Bit (OV)  The	OV	bit	(bit	12)	is	set	by	the	processor	to	1,	or	ON, when the 
accumulated count exceeds the upper limit	of	(+)32,767.	When	this	limit	is	reached,	the	count	wraps	
around	to	(–)32,767,	and	the	up	counter	increments	from	there.

Count Down Underflow Bit (UN)  The	UN	bit	(bit	11)	is	set	by	the	processor	to	1,	or	ON, when 
the accumulated count exceeds the lower limit	of	(–)32,768.	It	wraps	around	to	(+)32,767,	and	the	
CTD	instruction	counts	down	from	there.

Figure	 12–3	 shows	 a	CTU	 counter	 and	 how	 it	 is	 programmed	 to	 control	 outputs	O:013/01	 and	
O:013/02.	Rung	5	is	the	reset	rung	that	resets	the	counter’s	accumulated	value	to	0000.	An	output	
instruction	is	used	to	reset	the	counter.	The	reset	(RES)	command	must	have	the	same	address	as	
the	counter	to	enable	it	to	be	reset.

Each	time	input	device	I:012/10	in	Rung	1	makes	a	transition	from	false	to	true,	the	counter	incre-
ments,	or	counts	up	by	1.	When	the	accumulated	value	(count)	is	equal	to	or	greater	than	the		preset	
count,	the	done	(DN)	bit	is	set	to	1	by	the	processor,	and	Rung	2	becomes	true,	turning	ON output 
O:013/01.	Rung	3	is	not	 true	unless	 the	count	exceeds	the	counter’s	upper	 limit	of	(+)32,767.	If	
the	count	exceeds	the	limit,	output	O:013/02	comes	ON and remains ON until the counter is reset 
by	closing	and	then	opening	input	device	I:017/12	in	Rung	5.	Bit	15,	the	count	up	bit	(CU),	can	be	
programmed	and	used	to	indicate	that	the	counter	is	enabled	and	that	Rung	1	is	true.	The	CU	bit	in	
Rung	4	is	set	to	1	by	the	processor	any	time	that	input	device	I:012/10	is	true,	thereby	enabling	the	
counter.	Bit	15	is	reset	to	0	when	Rung	1	goes	false,	or	the	timer	is	reset.

CTU

COUNT UP
COUNTER C5:0

PRESET 4
ACCUM 0

CU

DN

O:013

O:013

01

02

I:012

C5:0

10

DN
RUNG 2

RUNG 3

RUNG 4

RUNG 5

RUNG 1

O:013

03

C5:0

CU

C5:0

OV

C5:0
RES

I:017

12

Figure 12–3	Programmed	Up	Counter
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Figure	12–5	shows	how	a	PLC-5	down	counter	(CTD)	is	programmed.

Figure	12–4	shows	a	typical	counting	chart	for	a	CTU	timer.
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COUNTER ACCUMULATED VALUE
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DN BIT 13

CU BIT 15
(OUTPUT O:013/03

I:012/10

PRESET = 4
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OFF
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OFF
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OFF
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Figure 12–4	CTU	Counting	Chart
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RUNG 3

RUNG 4
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Figure 12–5	Programmed	CTD	Counter
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The	CTD	counter	counts	down	each	time	input	device	I:012/12	in	the	counter	rung	(Rung	1)	goes	
from	false	to	true.	As	long	as	the	accumulated	count	is	equal	 to	or	greater	 than	the	preset	count,	
the output	device	(O:013/01)	in	Rung	2	remains	ON.	When	the	accumulated	count	falls	below	the	
preset	count	of	4,	output	O:013/01	is	set	to	0,	or	OFF.	Rung	3	contains	the	underflow	bit,	which	is	
opposite	the	overflow	bit	used	with	the	CTU	counter,	and	is	only	set	to	1	when	the	count	goes	below	
(–)32,768.	Rung	4	contains	the	CD	bit	and	is	ON,	or	true,	any	time	the	counter	is	enabled.	The CD	
bit	mirrors	the	status	of	input	device	I:012/12.	Rung	5	is	the	reset	rung	and	uses	input	device	I:017/12	
for	resetting	the	counter.	Figure	12–6	shows	the	counting	chart	for	a	count	down	timer	(CTD).

Many	times	a	CTD	instruction	is	combined	with	a	CTU	instruction	as	shown	in	Figure	12–7a.	Figure	
12–7b	is	an	example	counting	chart	for	the	CTD	and	CTU	combination.	When	combining	up	and	
down	counters,	the	same	counter	file	and	counter	number	are	used	for	both	counters	as	well	as	for	the	
reset	instruction	in	Rung	6.
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Figure 12–6	CTD	Counting	Chart
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Figure 12–7a	Combining	CTU	and	CTD	Instructions
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Figure 12–7b	Combined	CTU	and	CTD	Counting	Chart
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Up	and	down	counters	can	be	programmed	together	as	shown	in	Figures	12–8a	and	12–8b	to	count	
products	as	they	enter	a	conveyor	line	(count	up)	and	as	they	leave	the	line	(count	down).

LS-1

PRODUCTION LINE

LS-2

RESET SWITCH
LINE FULL 

LIGHT

R

Figure 12-8a	Applying	Up	and	Down	Counters
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Figure 12-8b	Up	and	Down	Counter	Logic
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As	a	product	enters	 the	conveyor	 line,	 input	 I:012/01	 (LS-1)	 is	activated	 (false-to-true),	 and	 the	
actual	count	in	C5:0	increments	from	0	to	1.	The	next	product	increments	C5:0	to	2,	and	so	on.	If	
eight	products	entered	the	line	before	any	were	removed,	the	accumulated	count	in	C5:0	would	be	8.	
The	first	product	to	leave	the	line	and	activate	I:012/02	(LS-2)	decrements	the	actual	count	in	C5:0	
(from	8	to	7).	The	next	product	that	left	the	line	and	activated	I:012/02	(false-to-true)	would	again	
decrease	the	accumulated	count	in	C5:0	from	7	to	6.

The	indicator	lamp,	output	O:013/01	(red),	indicates	the	condition	of	the	production	line.	When	the	
line	is	full,	the	up	counter	accumulated	value	is	equal	to	or	greater	than	the	preset	(25),	and	the	red	
lamp	(output	O:013/01)	is	ON.

Input	device	I:012/03	is	a	RESET	switch.	When	the	switch	is	closed,	the	accumulated	value	in	C5:0	
is	reset	to	0.	Up	and	down	counters	are	retentive	and	retain	their	values	during	power	failures.

CoMBining tiMerS And CounterS

Timers	can	be	combined	with	counters	when	it	is	necessary	to	extend	the	time	of	the	timer	beyond	
its	normal	limits.	An	example	of	combining	a	timer	with	a	counter	is	shown	in	Figure	12–9.
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RETENTIVE ON TIMER
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PRESET:   3600
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CTU
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T4:0.DN

T4:0.DN T4:0

UP COUNTER

COUNTER:             C5:0
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EN

DN
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I:012/11 C5:0
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Figure 12–9	Combining	a	Timer	with	a	Counter
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The	same	CU,	CD,	DN,	OV,	and	UN	bits	are	available	on	the	Logix5000	counters	as	were	available	
on	the	other	Allen-Bradley	counters	discussed	previously.	The	operation	of	the	CTU	and	CTD	coun-
ters	are	the	same	in	both	types	of	processors	and	the	counting	charts	in	Figures	12–4	and	12–6	can	be	
applied	to	both.	The	only	difference	between	the	counters	is	the	Logix5000	counters	use	a	tag	struc-
ture	to	address	the	counter	and	can	have	preset	or	accumulated	values	up	to	±2,147,483,647	(DINT).

Figure	12–11	shows	a	CTU	counter	being	programmed	in	a	Logix5000	controller.	Note	 that	 the	
Counter	parameter	contains	the	tag	(address)	for	the	counter.	In	this	example	tag	name	“Counter1”	
was	assigned	to	the	counter.	Figure	12–12	shows	the	new	tag	window.	By	default,	when	creating	
new	tags	they	will	be	configured	as	program-scoped	tags.	

The	 timer	 (T4:0)	has	a	 time	base	of	1.0	seconds	and	a	preset	value	of	3600.	The	3600-second	
preset	value	is	equal	to	1	hour.	When	input	device	I:012/10	is	closed,	the	timer	starts	to	time	in	
1-second	increments.	When	the	accumulated	time	is	equal	to	the	preset	value,	the	DN	bit	is	set	
to	1	and	the	CTU	counter	counts,	or	increments,	by	one.	The	DN	bit	also	resets	the	timer	and	the	
timer	starts	to	accumulate	time	again.	When	the	accumulated	time	on	the	timer	has	reached	3600	
seconds,	the	timer	increments	counter	C5:0	again	and	resets	itself.	The	counter	continues	to	count	
each	time	the	DN	bit	makes	a	false-to-true	transition	(every	3600	seconds,	or	one	hour)	until	the	
accumulated	count	equals	the	preset	value	of	24.	When	the	counter	has	counted	to	24	(24	hours),	
the	counter	DN	bit	is	set	to	1	and	output	O:013/01	is	turned	ON.	Input	I:012/11	is	used	to	reset	
the	counter.

Note: Remember that the length of the program affects scan time, which in turn affects timer ac-
curacy and total time. The actual time it takes for the counter to count to 24 may be 24 hours plus 
or minus a few minutes.

Allen-BrAdley logix5000 CounterS

Figure	 12–10	 shows	 an	 up	 counter	 format	 used	 by	Allen-Bradley’s	Logix5000	 controllers.	 The	
counter	instruction,	CTU	or	CTD,	contains	the	counter	tag,	and	the	preset	and	accumulated	values.	
The	counter	instruction	preset	value	can	be	set	for	any	value	between	0	and	2,147,483,647	(DINT).	
If	the	accumulated	value	should	exceed	the	upper	limit,	the	overflow	bit	(OV)	will	be	set	and	the	
counter	then	rolls	over	to	–2,147,483,648	and	begins	counting	up	again.	

Figure 12–10	Allen-Bradley	Logix5000	UP	Counter	Format
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Figure 12–11	Logix5000	CTU	Instruction
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Figure 12–12	New	Tag	Dialog	Box	for	Counter	Tag	“Counter1”
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After	the	tag	has	been	created,	the	preset	and	accumulated	values	can	be	entered.	The	finished	CTU	
counter	is	shown	in	Figure	12–13.

The	Logix5000	controllers	have	one	additional	counter	instruction,	CTUD,	that	is	both	an	up	and	
down	counter	in	one	instruction	with	a	built-in	reset	function.	This	counter	is	only	available	with	
Function	Block	programming,	which	will	be	covered	in	Chapter	18.

Chapter Summary
Programmed	counters	give	added	flexibility	and	control	to	electrical	process	equipment	and/or	driven	
machinery.	Similar	to	timers,	counters	store	values	in	binary	format	for	the	preset	and	accumulated	
counts.	The	processor	compares	the	preset	and	accumulated	values	on	each	scan	of	 the	rung,	and	
updates	the	counter’s	status	bits	as	appropriate.	

Figure 12–13	Finished	CTU	Counter
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	 7.	 When	the	accumulated	count	is	equal	to	or	greater	than	the	preset	count,	which	bit	in	the	
Allen-Bradley	SLC	500	family	will	be	true?

	 	 a.	CU
	 	 b.	CD
	 	 c.	OV
	 	 d.	DN
	 8.	 When	is	the	OV	status	bit	set	on	an	Allen-Bradley	SLC	500	up	counter?

review Questions
	 1.	 Define	the	term	increment.
	 2.	 Define	the	term	decrement.
	 3.	 What	is	the	preset value or count?
	 4.	 What	is	the	accumulated value or count?
	 5.	 In	the	figure	below,	switch	I:012/10	is	now	open.	When	switch	I:012/10	is	closed,	counter	C5:0	

will	do	which	of	the	following?
	 	 a.	increment	by	1
	 	 b.	decrement	by	1
	 	 c.	not	count,	and	the	accumulated	value	will	remain	at	0

	 6.	 Output	O:013/01,	shown	in	Rung	2	of	the	figure	below,	is	true:
	 	 a.	only	when	the	count	is	equal	to	the	preset	value
	 	 b.	when	the	count	is	equal	to	or	greater	than	the	preset	value
	 	 c.	when	the	count	is	less	than	the	preset	value
	 	 d.	when	the	accumulated	value	reaches	+32,767	and	overflows
	 	 e.	when	the	count	goes	to	011

CTU

COUNT UP
COUNTER C5:0

PRESET 4
ACCUM 0

I:012

10
CU

DN

RUNG 1
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CTD

COUNT DOWN
COUNTER C5:1

PRESET 10
ACCUM 7

I:012

01
CD

DN

C5:1

DN

O:013
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RUNG 1
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	 9.	 Up	and	down	counters	can	be	programmed	together	to	count	up	and	down.
	 	 T	 	 F
	10.	The	reset	rung	shown	in	the	figure	below	resets	counter	C5:0:
	 	 a.	automatically	when	the	count	reaches	010
	 	 b.	automatically	when	the	count	reaches	011
	 	 c.	only	when	the	count	reaches	32,767
	 	 d.	only	when	switch	I:017/12	is	closed
	 	 e.	only	when	switch	I:017/12	is	closed	and	then	opened

	11.	Define	the	term	overflow.
	12.	Define	the	term	underflow.
	13.	When	an	up	counter	accumulated	value	equals	the	preset	value,	the	counter	will:
	 	 a.	reset	itself	
	 	 b.	stop	counting
	 	 c.	continue	to	count
	 	 d.		continue	to	count	but	go	into	an	overflow	condition	as	soon	as	the	accumulated	value	

 exceeds the preset value

CTU

COUNT UP
COUNTER C5:0

PRESET 4
ACCUM 0

I:012

10
CU

ALLEN-BRADLEY UP COUNTER

DN

C5:0

DN

O:013

01

I:017

12

C5:0

RES

RUNG 1

RUNG 2

RUNG 3
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Data Manipulation

Chapter

13
Objectives

After completing this chapter, you should have the knowledge to:
•	 Explain	what	data	transfer	is.
•	 Define	the	term	writing over.
•	 Write	a	rung	of	logic	that	transfers	data	from	one	word	to	another.
•	 Identify	the	standard	data	compare	instructions.
•	 Write	logic	that	compares	data	to	control	an	output.

Most	PLCs	now	have	the	ability	to	manipulate	data	that	is	stored	in	memory.	Data	manipulation	can	
be	placed	in	two	broad	categories:	data	transfer	and	data	compare.

Data transfer

Data	transfer	consists	of	moving	or	transferring	numeric	information	stored	in	one	memory	word	
location	to	another	word	in	a	different	location.	Words	in	the	user	memory	portion	of	the	proces-
sor may be referred to as data table words, holding registers, internal memory tags, and/or storage 
register	words,	depending	on	the	PLC.

Figures 13–1a and 13–1b illustrate the concept of moving numerical data from one word location 
to	another	word	location.	Figure	13–1a	shows	that	numeric	(binary)	data	is	stored	in	word	0	of	file	
N7,	and	that	no	information	is	currently	stored	in	word	1	of	file	N7.

1 1 0

N7:0 (WORD 0 FROM INTEGER FILE 7)

15 14 13

1

12

0 0 1

11 10 09

1

08

0 1 0

07 06 05

1

04

1 1 0

03 02 01

1

00

0 0 0

N7:1 (WORD 1 FROM INTEGER FILE 7)

15 14 13

0

12

0 0 0

11 10 09

0

08

0 0 0

07 06 05

0

04

0 0 0

03 02 01

0

00

Figure 13–1a	Numeric	Data	Stored	in	Words	0	and	1	of	File	N7
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After	the	data	transfer	(Figure	13–1b),	word	1	of	file	N7	now	holds	the	exact	or	duplicate	informa-
tion	that	is	in	word	0	of	file	N7.	If	word	1	had	information	already	stored,	rather	than	all	0s,	the	
information	would	have	been	 replaced.	When	new	data	 replaces	 existing	data	 in	 a	word	 after	 a	
transfer, it is referred to as writing over	the	existing	data.

allen-BraDley PlC-5, slC 500, anD miCrologix  
Data transfer instruCtions

The	PLC-5,	SLC	500,	and	MicroLogix	use	a	move	(MOV)	instruction	for	moving	data	from	one	
word	to	another.	MOV	is	an	output	instruction	that	copies	a	value	from	one	word	(source	address)	
to	another	word	(destination	address).	When	the	rung	that	holds	the	MOV	instruction	is	true,	the	
instruction	moves	data	from	the	source	address	into	the	destination	address	on	each	processor	scan.	
Figure	13–2	shows	the	MOV	format.

1 1 0

N7:0 (WORD 0 FROM INTEGER FILE 7)

15 14 13

1

12

0 0 1

11 10 09

1

08

0 1 0

07 06 05

1

04

1 1 0

03 02 01

1

00

1 1 0

N7:1 (WORD 1 FROM INTEGER FILE 7)

15 14 13

1

12

0 0 1

11 10 09

1

08

0 1 0

07 06 05

1

04

1 1 0

03 02 01

1

00

Figure 13–1b	Data	Transferred	from	Word	0	of	File	N7	into	Word	1	of	File	N7

I:012

01

MOV

MOVE
SOURCE N7:0
DESTINATION N7:1

Figure 13–2	PLC-5	MOV	Format

When	input	device	I:012/01	is	closed	and	the	rung	is	true,	the	MOV	instruction	reads	the	data	from	
the	source	address	and	copies	it	to	the	destination	address.	In	this	case,	the	source	is	integer	file	N,	
file	number	7,	and	Word	0.	The	destination	is	integer	file	N,	file	7,	Word	1.	As	long	as	the	rung	stays	
true,	the	values	found	in	Word	0	of	N7	are	transferred	(copied)	into	Word	1	of	N7	on	each	program	
scan.	The	integer	file	(as	discussed	in	Chapter	4)	is	used	for	storing	whole	numbers.	

To	illustrate	how	an	MOV	instruction	could	be	used,	consider	a	machine	that	produces	two	types	
of	products.	Product	A	requires	a	time	delay	of	10	seconds	during	the	processing	and	Product	B	re-
quires	a	20-second	delay.	The	ON	delay	(TON)	timer	in	the	process	program	would	be	programmed	
as	shown	in	Figure	13–3.
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The	ON	delay	timer	T4:1	is	programmed	with	no	preset	value	as	shown	in	Rung	1.	Rung	2	has	input	
device	I:012/11	controlling	an	MOV	instruction	programmed	to	move	the	numeric	value	found	in	
Word	1	of	 integer	file	N7	(Source)	 into	 the	destination	word,	which	is	shown	as	T4:1.PRE.	The	
destination	word	is	the	word	that	holds	the	preset	value	for	timer	T4:1.	Rung	3	is	programmed	so	
that	when	the	rung	is	true,	the	MOV	instruction	moves	the	numeric	value	in	Word	2	of	file	N7	into	
the	word	that	holds	the	preset	value	for	timer	T4:1.

When	 Product	 A	 is	 being	 processed,	 input	 device	 I:012/10	 and	 I:012/11	 are	 activated,	 and	 the	
numeric	value	of	10	from	Word	1	of	file	N7	is	moved	into	the	word	that	holds	the	preset	value	of	
ON	delay	timer	T4:1.	This	gives	timer	T4:1	a	preset	value	of	10	seconds.	As	long	as	input	device	
I:012/11	remains	true,	the	preset	value	of	T4:1	is	10.	When	Product	B	is	to	be	run,	input	device	
I:012/11	is	opened	and	input	device	I:012/12	in	Rung	3	is	closed.	With	Rung	3	now	true,	the	value	
found	in	Word	2	of	file	N7	(20)	is	moved	into	the	word	that	holds	the	preset	value	for	ON	delay	
timer	T4:1.	The	value	20,	from	the	Source	(N7:1),	is	moved	into	the	word	that	holds	the	preset	time	
for	timer	T4:1	and	overwrites	the	previous	information,	which	was	a	preset	of	10.

In	the	Allen-Bradley	MOV	instruction,	constants	such	as	250,	400,	5.5,	etc.,	can	be	entered	into	the	
source	location	of	the	MOV	instruction	rather	than	a	memory	address	containing	the	value	to	be	
moved.	Only	use	constants	in	the	source	location	if	the	source	value	is	to	remain	unchanged.	In	fact,	
entering	constant	values	into	the	source	of	the	MOV	instruction	insures	that	only	that	value	gets	
moved into the destination address, and is called hard coding	the	source	value.

MOV	instructions	can	be	used	to	change	preset	values	of	timer	preset	or	accumulated	values	of	coun-
ters,	as	well	as	for	transferring	data	between	any	two	words	to	meet	program	requirements.	An	example	
of	how	an	MOV	instruction	can	be	used	to	change	preset	values	of	a	counter	is	a	program	that	counts	

TON

TIMER ON DELAY
TIMER T4:1
TIME BASE 1:0
PRESET 0
ACCUM 0

I:012

10

MOV

MOVE
SOURCE N7:1
 10
DEST. T4:1.PRE

I:012

11

MOV

MOVE
SOURCE N7:2
 20
DEST. T4:1.PRE

I:012

12

EN

DN

RUNG 1

PROCESS START SWITCH

PRODUCT A  PB

PRODUCT B  PB

RUNG 2

RUNG 3

Figure 13–3	MOV	Instruction	Used	to	Change	Timer	Preset	Values
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CTU

COUNT UP
COUNTER C5:1
PRESET 0
ACCUM 0

I:011

00

MOV

MOVE
SOURCE 400
 
DEST. C5:1.PRE

I:012
2 x 4 PB

2 x 6 PB

RESET PB

00

MOV

MOVE
SOURCE 250
 
DEST. C5:1.PRE

I:012

01

CU

C5:1

DN

O:010

00

STACK FULL LIGHT

I:012

02
RES

C5:1

DN

RUNG 1

CONVEYOR
LIMIT SWITCH

RUNG 2

RUNG 3

RUNG 4

RUNG 5

Figure 13–4a	Changing	Preset	Values	with	an	MOV	Instruction

COUNTS BOARDS
AS THEY LEAVE
CONVEYOR AND
ARE STACKED

CONVEYOR
2 x 4s

PUSHED TO RUN 2 x 4s

I:011/00

I:012/00

2 x 6s

PUSHED TO RUN 2 x 6s

I:012/01

STACK FULL

O:010/00

RESET

WHEN PUSHED
RESETS ACCUMULATED

VALUE TO 000

ON WHEN COUNTER
ACCUMULATED
VALUE EQUALS
PRESET VALUEI:012/02

R

Figure 13–4b	Pushbuttons	Used	to	Change	Preset	Values

boards	in	a	saw	mill.	When	the	mill	is	producing	2	3	4s,	it	wants	400	in	a	stack.	However,	when	the	
mill is producing 2 3	6s,	only	250	boards	are	needed	for	a	full	stack.	Figures	13–4a	and	13–4b	show	
how	to	change	the	preset	value	of	an	up	counter	for	each	different	lumber	size	by	using	pushbuttons.
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Up	 counter	 C5:1	 is	 initially	 programmed	 with	 no	 preset	 (0).	 The	 preset	 is	 determined	 by	
	which	ever	pushbutton	is	depressed.	If	2	3	4s	are	to	be	counted,	pushbutton	I:012/00	is	pushed,	
enabling	the	MOV	instruction	in	Rung	3.	When	this	rung	is	enabled,	or	true,	it	tells	the	proces-
sor	to	move	the	value	400	stored	in	word	10	of	file	N7	into	the	word	that	stores	the	preset	value	
for	up	counter	C5:1.	This	causes	CTU	C5:1	to	be	preset	to	400.	A	pushbutton	is	used	so	the	rung	
will	go	false	(open)	after	the	preset	value	has	been	set.	Holding	the	button	down	and	keeping	
Rung	3	true	holds	the	value	at	400,	and	transitions	of	input	device	I:011/00	do	not	increment	the	
counter.	After	400	boards	have	been	counted	(PR	5	AC),	bit	13	(the	done	bit)	of	the	first	word	
of	C5:1	in	the	up	counter	will	be	set	to	1,	and	the	“Stack	Full”	light,	O:010/00,	comes	ON.	After	
the	stack	has	been	moved,	counter	reset	pushbutton	I:012/02	is	pushed	to	clear	the	accumulated	
value	back	to	0.

To	change	the	preset	value	of	up	counter	C5:1	from	400	to	250,	the	pushbutton	for	2	3	6s	(I:012/01)	
is	depressed.

Another	Allen-Bradley	data	manipulation	instruction	is	the	masked	move	(MVM)	instruction.	The	
MVM	is	an	output	instruction	that	copies	a	value	from	a	source	address	to	a	destination	address,	but	
in addition allows portions of the data to be masked,	or	blocked	from	being	copied.	The	format	for	
the	MVM	instruction	is	shown	in	Figure	13–5.

MVM

MASKED MOVE
SOURCE  N7:0
MASK FØFØ
DESTINATION N7:2

Figure 13–5	Masked	Move	(MVM)	Instruction	Format

To	program	an	MVM	instruction,	a	source	address	and	a	destination	address	are	required,	just	as	
in	the	MOV	instruction.	The	additional	requirement	for	the	MVM	instruction	is	the	mask	data.	For	
each	bit	of	the	destination	word	that	is	to	be	masked,	or	not	copied,	a	0	is	used.	If,	on	the	other	hand,	
it	is	desired	that	the	data	from	the	source	word	be	written	into	specific	bits	of	the	destination	word,	
a	1	is	placed	in	that	bit	location.	Figure	13–6	clarifies	the	operation	of	the	MVM	instruction.

For each location in the destination word that you want to be overwritten by the data from the source 
word,	a	1	is	used.	In	Figure	13–6,	only	bits	4	through	7,	and	bits	12	through	15,	are	set	to	1	in	the	
mask,	so	only	these	bits	of	the	destination	word	will	have	data	transferred	in	from	the	source	word.	
Those	bits	in	the	destination	word	that	had	0s	in	the	mask	(bits	0	through	3	and	bits	8	through	11)	
remain	unchanged	when	the	MVM	instruction	is	true.	

The	bit	status	for	the	mask	is	entered	by	addressing	a	word	and	file	that	has	the	desired	bit	order	that	
is	wanted;	for	example,	B100:0	(Binary	file,	file	100,	Word	0).	The	value	can	also	be	entered	into	
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the	instruction	using	the	hexadecimal	format.	The	mask	bit	pattern	shown	in	Figure	13–6	is	F0F0	in	
hexadecimal.

Data ComPare

Data	compare	opens	a	new	realm	of	programming	possibilities	and	demonstrates	why	PLCs	are	
rapidly	replacing	most,	if	not	all,	hardwired	control	systems.

Data	compare	instructions,	as	the	name	implies,	compare	the	data	stored	in	two	or	more	words	and	
make	decisions	based	on	the	program	instructions.	Numeric	values	in	two	words	of	memory	can	be	
compared for less than	(,),	equal to	(5),	greater than	(.),	less than or equal to	(#),	greater than 
or equal to	($),	and	not equal to	(fi)	conditions,	depending	on	the	PLC.

Data	compare	concepts	were	previously	used	when	 timers	and	counters	were	discussed.	The	ON 
delay timer turns ON	 an	output	when	 the	accumulated	value	equals	 the	preset	value	 (AC	5	PR).	
What	happens	is	that	the	accumulated	numeric	data	in	one	memory	word	is	compared	to	the	preset	
value	in	another	word	on	each	scan	of	 the	processor,	and	when	the	accumulated	value	equals	 the	
preset	value	(AC	5	PR),	the	output	is	turned	ON.	Additional	programming	instructions	can	compare	
memory words and turn ON	outputs	when	the	values	are	less	than	(,),	equal	to	(5),	greater	than	(.),	
and	so	on.

1 1 1
DESTINATION
WORD PRIOR 
TO MVM
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1

12

1 1 1

11 10 9

1
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1

N7:2
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7 6 5
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0

0 1 0SOURCE
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1

4
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3 2 1
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0

1 1 1MASK
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Figure 13–6	Mask	Bits	Used	to	Block	Transfer	of	Data	from	Source	Address	into	Destination	Address
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allen-BraDley PlC-5, slC 500, 
anD miCrologix Data ComPare instruCtions

The	Allen-Bradley	family	of	programmable	controllers	has	a	set	of	data	compare	instructions	that	in-
clude equal	(EQU),	greater than or equal	(GEQ),	greater than	(GRT),	less than or equal	(LEQ),	less 
than	(LES),	and	not equal	(NEQ).	Figure	13–7	shows	how	the	EQU	instruction	is	programmed.

EQU

EQUAL
SOURCE A T4:1.ACC
SOURCE B 200

O:013

01

Figure 13–7 Allen-Bradley	PLC-5	Equal	To	Instruction

The	EQU	instruction	is	 true,	and	turns	ON	output	O:013/01,	when	the	value	in	Source	A	is	equal	
to	 the	value	 in	Source	B.	Source	A	and	B	can	be	either	numeric	values	or	addresses	 that	contain	
values.	The	value	in	Source	A	is	the	value	of	address	T4:1.ACC	(timer	file	4,	timer	1,	accumulated	
value),	whereas	the	value	in	Source	B	is	the	numeric	value	200.	To	use	either	the	accumulated	or	pre-
set	values	of	timers	and	counters,	a	period	is	entered	after	the	timer	number,	followed	by	ACC	or	PRE.

Figure	13–8	illustrates	how	the	GEQ	instruction	operates.

GEQ

GREATER THAN OR EQUAL
SOURCE A N7:1
SOURCE B 250

O:013

01

Figure 13–8 Allen-Bradley	PLC-5	Greater	Than	or	Equal	To	Instruction

This	instruction	becomes	true	and	turns	output	O:013/01	ON	when	the	value	in	Source	A	is	greater	
than	or	equal	to	the	value	in	Source	B.	Again,	the	value	that	is	in	Source	A	or	B	can	be	numeric	
values	or	addresses	that	contain	values.	In	this	illustration,	the	value	in	Source	A	is	the	value	stored	
in	integer	File	7,	Word	1.	The	value	in	Source	B	is	the	numeric	value	of	250.

The	GRT	(greater	than)	instruction	is	programmed	as	shown	in	Figure	13–9.	This	instruction	is	true	
when	the	value	in	Source	A	is	greater	than	the	value	in	Source	B.

GRT

GREATER THAN
SOURCE A C5:1.ACC
SOURCE B C5:12.ACC

O:013

01

Figure 13–9 Allen-Bradley	PLC-5	Greater	Than	Instruction
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The	instruction	is	true	as	long	as	the	value	in	Source	A	is	greater	than	the	value	in	Source	B.	In	Fig-
ure	13–9,	output	O:013/01	is	turned	ON whenever the accumulated value of counter C5:1 is greater 
than	the	accumulated	value	in	counter	C5:12.	As	in	the	earlier	example,	the	preset	and	accumulated	
values	of	timers	and	counters	can	be	referenced	by	typing	a	period	followed	by	either	ACC	or	PRE	
after	the	timer	or	counter	address.	In	Figure	13–9,	Source	A	is	the	accumulated	value	of	Counter	1,	
in	counter	file	5	(C5:1.ACC).	Source	B	is	the	ACC	value	of	timer	12,	in	counter	file	5	(C5:12.ACC).	

The	less	than	or	equal	instruction	(LEQ)	is	programmed	as	shown	in	Figure	13–10.	This	instruction	
is	true	whenever	the	value	in	Source	A	is	less	than	or	equal	to	the	value	stored	in	Source	B.

LEQ

LESS THAN OR EQUAL
SOURCE A N7:5
SOURCE B N7:10

O:013

01

Figure 13–10 Allen-Bradley	PLC-5	Less	Than	or	Equal	To	Instruction

The	LEQ	instruction	is	true	as	long	as	the	value	in	N7:5	is	less	than	or	equal	to	the	value	in	N7:10.	
When	the	value	in	Source	A	is	less	than	or	equal	to	the	value	in	Source	B,	output	O:013/01	is	turned	
ON	by	the	processor.

The	LES	(less	than)	instruction	is	logically	true	when	the	value	in	Source	A	is	less	than	the	value	in	
Source	B.	Figure	13–11	shows	an	LES	instruction.

LES

LESS THAN
SOURCE A N7:5
SOURCE B N7:10

O:013

01

Figure 13–11 Allen-Bradley	PLC-5	Less	Than	Instruction

In	Figure	13–11,	output	O:013/01	is	ON	whenever	the	value	in	N7:5	(Source	A)	is	less	than	the	
value	in	N7:10	(Source	B).	When	the	value	in	Source	A	is	equal	to	or	larger	than	the	value	in	Source	
B,	the	instruction	is	not	logically	true,	and	output	O:013/01	is	set	to	0,	or	OFF.

The	not	equal	to	instruction	(NEQ)	is	programmed	as	shown	in	Figure	13–12.	This	instruction	is	
true	whenever	the	value	in	Source	A	is	not	equal	to	the	value	stored	in	Source	B.

NEQ

NOT EQUAL
SOURCE A N7:5
SOURCE B N7:10

O:013

01

Figure 13–12 Allen-Bradley	PLC-5	Not	Equal	To	Instruction
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256  Technician’s Guide to Programmable Controllers

The	NEQ	instruction	will	be	logically	true	any	time	the	value	in	N7:5	(Source	A)	is	not	equal	to	the	
value	in	N7:10	(Source	B).	As	long	as	the	values	are	not	equal,	output	O:013/01	will	be	turned	ON.	
This	instruction	is	logically	false	only	when	the	value	in	Source	A	is	equal	to	the	value	in	Source	B.

To graphically demonstrate how data compare instructions can be used, consider the hardwired 
circuit	in	Figure	13–13.	This	circuit	uses	three	pneumatic	time	delay	relays	to	start	up	a	4-motor	
conveyor	system	in	inverse	order	(4–3–2–1).

M4

START
OL 1

ON DELAY 5 SECONDS

ON DELAY 5 SECONDS

ON DELAY 5 SECONDS

OL 2 OL 3 OL 4STOP

CONVEYOR #1

TD-1

TD-2

TD-3

M4

2 3

L1 L2

M3

M2

TD-2

TD-1

TD-3

M1

CONVEYOR #2

CONVEYOR #3

CONVEYOR #4

Figure 13–13 Hardwired	Conveyor	System

The	same	circuit	can	be	programmed	with	an	Allen-Bradley	PLC	using	only	one	internal	timer	and	
two	data	compare	statements,	as	shown	in	Figure	13–14.	

Assume	that	STOP	button	I:012/00	in	Rung	1	is	closed.	When	the	START	button	(I:012/05)	is	pushed,	
Output	M-4	 (O:010/04)	 energizes,	 and	 holding	 contacts	O:010/04	 close	 and	 hold	 the  	circuit  in.	 
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(STOP)
I:012

(START)
I:012/05

M-4
O:010

M-4
O:010

M-4
O:010

00

04

RUNG 1

RUNG 2

RUNG 3

RUNG 4

RUNG 5

DN

04

04

M-3
O:010

03

M-1
O:010

01

TON

TIMER ON DELAY
TIMER T4:1
TIME BASE 1.0
PRESET 15
ACCUM 0

T4:1

GEQ

GREATER THAN OR EQUAL
SOURCE A T4:1.ACC
SOURCE B 5

M-2
O:010

02

GEQ

GREATER THAN OR EQUAL
SOURCE A T4:1.ACC
SOURCE B 10

EN

DN

Figure 13–14 Allen-Bradley	Data	Compare	Format

M-4	contacts	O:010/04	also	close	in	Rung	2	and	enable	the	timer.	The	timer	has	been	preset	to	15	
seconds	(1.0	second	time	base).	The	accumulated	time	is	stored	in	timer	file	T4:1	(remember	that	
timers	use	three	words	of	memory	with	the	third	word	holding	the	accumulated	value	of	the	timer).

The	GEQ	instruction	in	Rung	3	that	controls	output	O:010/03	(Motor	3)	is	logically	true	when	the	
accumulated	value	of	timer	T4:1	(Source	A)	is	equal	to	or	greater	than	the	constant	in	Source	B	(5	
seconds).	When	the	accumulated	value	reaches	5,	output	O:010/03	(M-3)	is	turned	ON.	Similarly,	
when	the	accumulated	value	reaches	10,	the	logic	of	Rung	4	will	be	true	and	output	O:010/02	will	be	
turned ON.	When	the	accumulated	value	of	the	timer	reaches	15	and	is	equal	to	the	preset	value	of	15,	
the	done	bit	(DN),	bit	13,	will	be	set	to	1	and	the	last	motor,	Motor	1,	will	be	turned	ON.

To further illustrate how the data compare instructions work, consider the program in Figure 13–15 
and	the	time	chart	for	data	comparisons	in	Figure	13–16.
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I:012

01

RUNG 1

RUNG 2

RUNG 3

RUNG 4

RUNG 6

RUNG 5

DN

O:010

00

O:010

04

TON

TIMER ON DELAY
TIMER T4:1
TIME BASE 1.0
PRESET 100
ACCUM 0

T4:1

EQU

EQUAL
SOURCE A T4:1.ACC
SOURCE B 30

O:010

01

NEQ

NOT EQUAL
SOURCE A T4:1.ACC
SOURCE B 030

O:010

02

GEQ

GREATER THAN OR EQUAL
SOURCE A T4:1.ACC
SOURCE B 50

O:010

03

LES

LESS THAN
SOURCE A T4:1.ACC
SOURCE B 50

EN

DN

= 30

 30

 50

< 50

Figure 13–15 Data	Compare	Instructions

0

OFF

OFF

ON

OFF

OFF

ON

I:012/01

I:010/00

I:010/01

I:010/02

I:010/04

I:010/03

OFF

OFF

ON

ON

ON

ON

OFF

OFF
OFF

OFF

ON

10 20 30 40 50 60 70 80 90 100

Figure 13–16 Time	Chart	for	Data	Comparisons
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When	power	is	applied,	but	before	I:012/01	is	closed	to	activate	the	timer,	outputs	O:010/01	(Rung	3)	
and	O:010/03	(Rung	5)	are	energized.	The	NEQ	instruction	preceding	output	O:010/01	is	true	if	the	
value	in	Source	A	is	not	equal	(fi)	to	30.	With	I:012/01	open,	timer	T4:1.ACC	value	is	00	and	is	not 
equal	to	30.	Output	O:010/03	(Rung	5)	is	energized	because	the	LES	instruction	is	true	whenever	
the	accumulated	value	of	T4:1	is	less	than	(,)	50.

When	input	I:012/01	closes,	the	timer	is	enabled	and	starts	to	time.	At	time	30,	the	EQU	instruction	
preceding	O:010/00	goes	true	because	the	accumulated	value	in	T4:1	is	equal	to	(5)	30,	and	output	
O:010/00	in	Rung	2	is	energized.	This	is	only	true	when	the	accumulated	value	of	timer	T4:1	is	30.	
When	it	advances	to	31,	the	EQU	instruction	goes	false	and	O:010/00	goes	OFF.	Output	O:010/01,	
which was ON	because	of	the	not	equal	to	(fi)	instruction,	now	goes	OFF for one second because the 
NEQ	instruction	was	false	when	the	accumulated	value	of	T4:1	was	equal	to	(5)	30.

When	the	accumulated	time	reaches	50,	output	O:010/02	(Rung	4)	turns	ON	because	the	GEQ	in-
struction	preceding	it	goes	true	when	T4:1.ACC	is	equal	to	or	greater	than	($)	50.	The	rung	is	true	
when	the	accumulated	value	in	T4:1	is	equal	to	(5)	50	and	remains	true	as	long	as	the	accumulated	
value	is	50	or	greater.	Output	O:010/02	remains	ON until the timer is turned OFF and the accumu-
lated	value	is	reset	to	00.

Output	O:010/03,	which	was	ON, now goes OFF	when	the	accumulated	value	of	T4:1	reaches	50	be-
cause	the	LES	instruction	that	precedes	it	is	only	true	when	the	value	of	Source	A	is	less	than	(,)	50.

Output	O:010/04,	the	timer	done	bit	(DN),	comes	ON	at	100	when	the	accumulated	value	equals	
the	preset	value.	The	time	chart	in	Figure	13–16	illustrates	the	ON and OFF states of the outputs in 
relation	to	time	and	the	data	compare	instructions.

The	Allen-Bradley	PLC-5	has	an	instruction	that	is	a	combination	of	the	previous	instructions,	it	
is the compare instruction, or CMP. The CMP instruction is an input instruction that compares 
values	from	addresses	or	files.	Figure	13–17	shows	a	CMP	instruction	and	the	compare	expression	
is	designated	as	T4:0.ACC	5	N7:2.	

CMP

EXPRESSION
T4:0.ACC = N7:2

Figure 13–17 Allen-Bradley	PLC-5	Compare	Instruction

The	CMP	instruction	in	this	case	is	true	only	when	the	accumulated	value	of	T4:0	is	equal	to	the	
value	found	in	integer	file	7,	word	2.

The	table	in	Figure	13–18	shows	the	different	operators	(symbols)	that	the	CMP	instruction	uses.	
Because	 standard	 computer	 keyboards	 do	 not	 have	 keys	 for	 not	 equal,	 less	 than	 or	 equal	 to,	 or	
greater	than	or	equal	to,	the	CMP	instruction	uses	variations,	as	shown	in	Figure	13–19.
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OPERATOR

=
< >
<
< =
>
> =

DESCRIPTION

EQUAL TO
NOT EQUAL TO
LESS THAN
LESS THAN OR EQUAL TO
GREATER THAN
GREATER THAN OR EQUAL TO

EXAMPLE

TRUE IF A = B
TRUE IF A < > B
TRUE IF A < B
TRUE IF A < = B
TRUE IF A > B
TRUE IF A > = B

Figure 13–18 Available	Operators	(Symbols)	for	CMP	Instruction

CMP

COMPARE
EXPRESSION
T4:0.ACC = N7:40

EQUAL
=

EQU

EQUAL
SOURCE A T4:0.ACC
SOURCE B N7:40

OR

CMP

COMPARE
EXPRESSION
T4:0.ACC < > N7:40

NOT EQUAL
< >

NEQ

NOT EQUAL
SOURCE A T4:0.ACC
SOURCE B N7:40

OR

CMP

COMPARE
EXPRESSION
C5:10.ACC < 350

LESS THAN
<

LES

LESS THAN
SOURCE A C5:10.ACC
SOURCE B 350

OR

CMP

COMPARE
EXPRESSION
C5:1.ACC < = 457

LESS THAN OR
EQUAL TO
< =

LEQ

LESS THAN OR EQUAL
SOURCE A C5:1.ACC
SOURCE B 457

OR

CMP

COMPARE
EXPRESSION
T4:0.ACC > 200

GREATER THAN
>

GRT

GREATER THAN
SOURCE A T4:0.ACC
SOURCE B 200

OR

CMP

COMPARE
EXPRESSION
T6:1.PRE > = I:010

GREATER THAN 
OR EQUAL TO
> =

GEQ

GREATER THAN OR EQUAL
SOURCE A T6:1PRE
SOURCE B I:010

OR

Figure 13–19 Comparing	the	PLC-5	CMP	Instruction	to	Data	Compare	Instructions

Note: While the CMP instruction duplicates the other data compare instructions, the execution 
time for the CMP instruction is longer than the execution time for equivalent comparison instruc-
tions (for example, GRT, LEQ, etc.). A CMP instruction also uses more words per instruction 
than the equivalent comparison instructions. The advantage, however, is that the CMP instruction 
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can also perform math operations as part of the compare and also multiple compare operations. 
 Figure 13–20 shows an example of a CMP instruction with embedded math operation.

The	LIM,	or	limit	test	instruction,	is	an	input	instruction	used	by	Allen-Bradley	to	test	for	values	
inside	or	outside	a	specific	range.	The	instruction	is	false	until	it	detects	that	the	test	value	is	within	
certain	 limits.	 It	 then	goes	 true.	When	 the	 instruction	detects	 that	 the	 test	 value	has	 again	gone	
outside	the	prescribed	limits,	the	instruction	goes	false.	This	instruction	is	perfect	for	monitoring	
analog	signals	and	making	program	decisions	based	on	the	analog	value(s).	Figure	13–21	shows	the	
format	for	an	LIM	instruction.

LIM

LIMIT TEST
LOW LIMIT
TEST
HIGH LIMIT

Figure 13–21 PLC-5	Limit	Test	Instruction	Format

CMP

COMPARE

EXPRESSION

(T4:Ø.ACC + 25) >= 450

Figure 13–20 CMP	with	Embedded	Math	Operation

To	program	an	LIM	instruction,	the	following	information	must	be	provided:

low limit
Low	limit	is	a	constant,	or	an	address	that	determines	the	lower	limit	of	the	test	range.	The	value	
in	the	low	limit	can	be	either	integer	(whole	number)	or	floating	point	(number[s]	and	a	decimal).

test Value
The	test	value	is	the	address	that	contains	the	value	examined	to	determine	if	it	is	inside	or	outside	
the	specified	range.

High limit
High	limit	is	a	constant	(numeric	value)	or	an	address	that	determines	the	upper	limit	of	the	test	
range.	The	value	in	the	high	limit	can	be	either	integer	or	floating	point	value.
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An	example	of	how	an	LIM	instruction	is	used	is	shown	in	Figure	13–22.	In	the	example,	the	LIM	
instruction is used to turn ON	an	indicator	lamp	whenever	the	accumulated	value	of	T4:1	is	between	
the	values	stored	in	N7:10	and	N7:20.

LIM

LIMIT TEST
LOW LIMIT 60
TEST N7:1
HIGH LIMIT 80

O:013

01

FALSE

–32,768 +32,7678060

HIGH
LIMIT

LOW
LIMIT

FALSETRUE

≤≥

Figure 13–23 LIM	Instruction	with	the	Low	Limit	Value	Set	at	60

LIM

LIMIT TEST
LOW LIMIT N7:10
TEST T4:1.ACC
HIGH LIMIT N7:20

O:013

01

Figure 13–22 PLC-5	Limit	Test	Instruction

If	the	lower	limit	is	set	to	100	(value	stored	in	N7:10)	and	the	upper	limit	is	set	for	300	(value	stored	in	
N7:20),	the	instruction	will	be	false	as	long	as	the	accumulated	value	of	T4:1	is	less	than	100	or	greater	
than	300.	When	the	accumulated	value	of	T4:1	reaches	100	and	becomes	equal	to	or	greater	than	the	
low	limit,	the	instruction	becomes	true	and	the	indicator	lamp	(output	O:013/01)	is	set	to	1,	or	turned	
ON.	If	the	accumulated	value	of	T4:1	becomes	greater	than	300,	the	instruction	again	goes	false	and	
the	indicator	lamp	(O:013/01)	is	turned	OFF.	The	instruction	remains	OFF as long as the accumulated 
value	of	T4:1	is	outside	the	limit	test	range	(100–300)	that	was	established	for	the	LIM	instruction.	

The values that are used for the low limit and high limit can be entered as numeric values when the 
instruction	is	being	programmed.	Instead	of	referencing	N7:20	(which	held	a	value	of	300),	a	value	
of	300	could	have	been	entered	at	the	low	limit	prompt.

Another	example	of	the	limit	test	instruction	(LIM)	is	shown	in	Figure	13–23.
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The	low	limit	is	a	constant	with	a	value	of	60	whereas	the	high	limit	has	a	constant	value	of	80.	
The	test	address	is	N7:1.	This	could	be	the	numeric	value	from	an	analog	input	device	such	as	a	
thermocouple	or	resistive	temperature	device	(RTD).	Programmed	this	way,	the	instruction	is	true,	
and	output	device	O:013/01	is	ON,	as	long	as	the	test	value	is	equal	to	or	greater	than	the	low	limit	
of	60	and	less	than	or	equal	to	the	high	limit	of	80.	Any	time	the	value	stored	in	N7:1	is	below	60	
or	greater	than	80,	the	instruction	is	false	and	output	device	O:013/01	is	OFF.	The	output	device	
could be an indicator lamp that is lit as long as the temperature value measured by the thermocouple 
is	within	the	specified	range	of	60	to	80	degrees.

If	an	LIM	instruction	is	programmed	with	the	low	limit	value	higher	than	the	high	limit	value,	as	
shown	in	Figure	13–24,	the	logic	of	the	instruction	is	reversed.

In	this	illustration,	the	low	limit	has	been	set	at	80,	and	the	high	limit	has	been	set	at	60.	The	test	value	
is	still	the	value	stored	in	integer	file	N7	word	1.	Programmed	this	way,	the	logic	of	the	LIM	instruc-
tion	is	true	when	the	value	stored	in	N7:1	is	equal	to	or	greater	than	80	(low	limit)	and	also	true	when	
the	value	is	less	than	or	equal	to	60	(high	limit).	Figure	13–24	illustrates	the	logic	for	the	instruction.	
Output	device	O:013/01	will	be	ON	whenever	the	value	stored	in	N7:1	is	equal	to	or	less	than	60	and	
also will be ON	whenever	the	value	in	N7:1	is	equal	to	or	greater	than	80.

allen-BraDley logix5000 Data maniPulation

The	only	difference	between	the	data	manipulation	instructions	for	the	Logix5000	controllers	and	
those	just	discussed	is	that	the	Logix5000	controllers	use	tag-based	addressing.	Otherwise,	the	same	
data	transfer	and	compare	instructions	are	found	in	both.	It	is	worth	noting	that	the	optimal	data	types	
for	Logix5000	data	manipulation	instructions	are	DINT	and	REAL.

Once	the	electrician	or	technician	becomes	familiar	with	a	specific	PLC,	the	many	applications	and	
advantages	of	using	the	various	data	compare	instructions	become	evident.

LIM

LIMIT TEST
LOW LIMIT 80
TEST N7:1
HIGH LIMIT 60

O:013

01

–32,768 +32,7678060

HIGH
LIMIT

LOW
LIMIT

TRUE TRUEFALSE

≥≤

Figure 13–24 LIM	Instruction	with	the	Low	Limit	Value	Higher	Than	the	High	Limit	Value
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Chapter summary
Although formats and instructions vary with each PLC manufacturer, the concepts of data manipu-
lation	are	the	same.	Data	manipulation	enables	an	operator	to	transfer	data	from	one	word	location	
to another, whereas data comparison allows a value in one word to be compared to another word or 
a	constant	value.

Both	data	transfer	and	data	comparison	instructions	give	new	dimension	and	flexibility	to	motor-
control	circuits,	and	the	application	of	either	is	only	limited	by	programmer	imagination.

review Questions
	 1.	 Define	the	term	data transfer.
	 2.	 When	numerical	information	replaces	data	that	already	exists	in	a	memory	location,	it	is	

 referred to as:
	 	 a.	exchanging	info	(data)
	 	 b.	replacement	programming
	 	 c.	blanket	move
	 	 d.	writing	over
	 3.	 Match	the	symbols	to	their	correct	definitions.	Note: Not all nine definitions are used.
	 	 a.	. 	 1.	less	than	1
	 	 b.	, 	 2.	less	than
	 	 c.	5 	 3.	less	than	or	equal	to
	 	 d.	$ 	 4.	greater	than
	 	 e.	fi 	 5.	greater	than	or	equal	to
	 	 f.	,. 	 6.	equal	to
	 	 g.	.5 	 7.	not	equal	to
	 	 h.	,5 	 8.	not	equal	to	1
	 	 i.	#   	 9.	greater	than	1
	 4.	 Define	the	term	data compare.
	 5.	 Write	a	program	that	compares	the	accumulated	value	of	T4:0	to	a	constant	of	250.	The	

	instruction	is	to	be	true	when	the	accumulated	value	of	T4:0	is	greater	than	250.	
	 6.	 Define	the	term	mask.
	 7.	 Give	an	example	of	how	an	Allen-Bradley	LIM	instruction	is	used.
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Math Functions

Chapter

14
Objectives

After completing this chapter, you should have the knowledge to:
•	 List	the	four	standard	math	functions	available	with	most	PLCs.
•	 Discuss	the	math	functions	and	give	examples	of	how	they	are	used.
•	 Program	the	square	root	function.

Using Math FUnctions

The	four	basic	math,	or	arithmetic,	functions	are	addition	(+),	subtraction	(–),	multiplication	(3),	
and	division	(÷);	they	can	be	used	with	constant	values	or	values	stored	in	a	storage	register,	holding	
register,	input/output	registers,	or	any	other	accessible	word	or	tag	locations.

A	typical	application	of	an	arithmetic,	or	math,	function	may	be	a	chemical	batch	plant	where	a	
given	mix	of	two	chemicals	(A	and	B)	is	to	have	a	2:1	ratio.	By	using	analog	input	devices	(dis-
cussed	in	Chapter	2),	the	weight	of	the	first	chemical,	A,	can	be	converted	to	a	binary	equivalent	and	
stored.	For	a	2:1	mix,	only	half	as	much	of	chemical	B	(by	weight)	is	needed.	The	binary	value	of	
the	weight	that	is	stored	can	be	divided	by	2	to	determine	the	amount	of	chemical	B	that	is	needed	
for	a	proper	2:1	mix.

allen-Bradley Plc-5, slc 500,  
and Micrologix Math instrUctions

Figure	 14–1	 illustrates	 a	 divide	 (DIV)	 instruction	 showing	 how	 the	 value	 of	 chemical	 A	
(Source	A-N7:10)	can	be	divided	by	2	(Source	B),	and	the	result	placed	into	destination	N7:3.	
A	data	comparison	is	then	made	to	the	data	stored	in	integer	file	N7:3	to	limit	the	amount	of	
chemical	B	to	one-half	the	amount	of	chemical	A.

I:012

01

DIV

DIVIDE
SOURCE A N7:10
SOURCE B 2
DEST. N7:3

Figure 14–1	Divide	(DIV)	Instruction
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When	I:012/01	is	closed,	the	value	in	Source	A	is	divided	by	2,	and	the	result	is	stored	in	destination	
word	N7:3	on	each	processor	scan.	Once	the	total	weight	of	chemical	A	has	been	determined	and	the	
amount	divided	by	2,	the	result	(which	is	now	stored	in	N7:3)	is	programmed	with	a	data	compare	
instruction	to	control	the	feed	of	chemical	B.	

Figure	 14–2	 shows	 how	 a	 LES	 (less	 than)	 instruction	 is	 programmed	 to	 control	 the	 amount	 of	
chemical	B	that	is	to	be	mixed	with	chemical	A.

O:010

01

LES

LESS THAN
SOURCE A N7:5
SOURCE B N7:3

CONTROL VALVE
FOR CHEMICAL B

Figure 14–2	Data	Compare	Instruction	LES	to	Control	Amount	of	Chemical	B

As	shown	in	the	figure,	output	O:010/01,	the	control	valve	for	chemical	B,	is	true,	or	ON, as long 
as	the	value	in	source	A	is	less	than	Source	B.	Source	A,	N7:5,	is	the	word	that	stores	the	weight	
of	chemical	B.	When	the	weight	of	chemical	B	is	equal	to	or	greater	than	one-half	the	weight	of	
chemical	A	(the	value	stored	in	N7:3,	Source	B),	the	instruction	goes	false	and	the	valve	to	chemi-
cal	B	is	closed.

The	math	function	might	also	be	used	with	timer	and/or	counter	values,	accumulated	or	preset,	to	
change	a	given	process	machine	operation	under	varying	conditions.	The	DIV	instruction	divides	
the	value	in	source	A	by	the	value	of	Source	B	and	stores	the	answer	in	the	destination	word.	Figure	
14–3	shows	the	DIV	instruction.

I:012

14

DIV

DIVIDE
SOURCE A N7:10
 120
SOURCE B C5:1.ACC
 4
DEST. T4:5.PRE
 30

Figure 14–3	Divide	(DIV)	Instruction	Used	to	Enter	Preset	Value	in	a	Timer

When	input	device	I:012/14	is	true,	the	value	of	Source	A,	address	N7:10	(120),	is	divided	by	the	
value	of	source	B,	4,	which	is	the	accumulated	value	of	counter	1	in	counter	file	5.	The	result	of	the	
division,	30,	becomes	the	preset	value	of	timer	5	in	timer	file	4.

Figure	14–4	shows	the	ADD	instruction.	This	instruction	adds	the	value	in	Source	A	to	the	value	
in	Source	B	and	places	the	result	(answer)	into	the	destination	address.	In	the	example,	Source	A	is	
shown	as	N7:1,	which	indicates	that	this	is	word	1	of	File	7,	the	integer	file.
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Source	B	is	word	2	of	the	integer	file	(file	7),	and	the	destination	is	shown	as	word	10	of	File	7.	
When	input	address	I:012/10	is	true,	the	value	in	Source	A	(20)	is	added	to	the	value	in	Source	B	
(40)	and	the	results	(60)	are	placed	in	the	destination	word.

I:012

10

ADD

ADD
SOURCE A N7:1
 20
SOURCE B N7:2
 40
DEST. N7:10
 60

Figure 14–4	Addition	(ADD)	Instruction

Source	A	and	B	can	each	be	the	value	of	a	word	address	or	can	be	a	constant.	If	the	result	of	the	ad-
dition	is	greater	than	+32,767	or	less	than	–32,768,	an	overflow	bit	(bit	1)	in	word	0	of	the	status	file,	
File	S,	will	be	set	to	1.	Additional	status	bits	for	word	0	are	bit	0,	which	is	set	if	a	carry	is	generated;	
bit	2,	which	is	set	if	the	result	of	the	math	is	0	after	the	instruction	has	been	implemented;	or	bit	3,	
which	indicates	a	negative	value	after	the	math	instruction	has	been	executed.	Figure	14–5	shows	
the	arithmetic	status	bits.

With	the	MicroLogix	and	the	SLC	5/02,	5/03,	and	5/04	processors,	addition	and	subtraction	using	
32-bit	 words	 is	 possible.	 This	 allows	 for	 addition	 and	 subtraction	 beyond	 the	 normal	 limits	 of	
+32,767	and	–32,768.	For	instructions	on	how	to	add	or	subtract	32-bit	words,	refer	to	the	program-
ming	manual	for	the	processor	being	used.

Figure	14–6	shows	the	subtract	(SUB)	instruction.	With	this	instruction,	the	value	in	Source	B	is	
subtracted	from	the	value	in	Source	A	and	the	results	are	placed	in	the	destination	word	(DEST).

STATUS BIT CONTROLLER ACTION

S:0/0 Carry (C) set to 1 if a carry is generated

S:0/1 Overflow (V) set to 1 when the results of the math will not fit the destination ad-
dress

S:0/2 Zero (Z) set to 1 if the math operation results in an answer of 0

S:0/3 Sign (S) set to 1 when the result of the math instruction is negative (less
than 0)

Figure 14–5	Arithmetic	Status	Bits
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When	input	device	I:012/11	goes	true,	the	value	in	Source	B,	address	N7:2	(15),	is	subtracted	from	
the	value	in	Source	A,	address	N7:1	(20),	and	the	result,	5,	is	stored	in	destination	address	N7:3	(5).

The	 multiply	 (MUL)	 instruction	 used	 for	 the	 PLC-5,	 SLC	 500,	 and	 MicroLogix	 is	 shown	 in	 
Figure	14–7.

I:012

11

SUB

SUBTRACT
SOURCE A N7:1
 20
SOURCE B N7:2
 15
DEST. N7:3
 5

Figure 14–6	Subtract	(SUB)	Instruction

I:012

12

MUL

MULTIPLY
SOURCE A N7:4
 32
SOURCE B 2
DEST. N7:7
 64

Figure 14–7	Multiply	(MUL)	Instruction

Like	previous	instructions,	the	MUL	instruction	multiplies	the	value	in	Source	A	times	the	value	in	
Source	B	and	places	the	answer	into	the	destination	address.	In	this	example,	when	address	I:012/12	
goes	true,	the	value	stored	in	Source	A,	address	N7:4	(32),	is	multiplied	by	a	constant	value	of	2	and	
the	answer,	64,	is	placed	into	destination	word	N7:7.	As	with	previous	math	instructions,	Sources	A	
and	B	can	be	values	(constants)	or	addresses	that	contain	values.

For	the	Allen-Bradley	PLC-5	and	the	SLC	500	5/03,	5/04,	and	5/05	processors,	a	more	powerful	
math	instruction	called	the	compute	(CPT)	is	available.	The	CPT	instruction	is	an	output	instruction	
that	performs	the	operations	defined	in	the	expression	and	then	writes	the	results	to	the	destination	
address.	Figure	14–8	shows	the	CPT	instruction	format.

CPT

COMPUTE
DEST
EXPRESSION

Figure 14–8	PLC-5	Compute	(CPT)	Instruction	Format
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The	typical	math	functions	that	can	be	performed	with	the	CPT	instruction	are	add	(+),	subtract	(–),	
multiply	(*),	divide	(|),	negate	(–),	square	root	(SQR),	and	exponential	(**).	The	table	in	Figure	14–9	
shows	the	functions	and	an	example	of	each	operation.	The	complexity	of	the	math	that	can	be	per-
formed	will	vary	with	the	PLC	model.

Note: Different symbols are used for some operations due to limited symbols on the keyboard.

OPERATOR

+
–
*
÷
–
SQR
**

DESCRIPTION

ADD
SUBTRACT
MULTIPLY
DIVIDE
NEGATE (NEGATIVE)
SQUARE ROOT
EXPONENTIAL

EXAMPLE

2 + 3 + 7
12 – 5
6 * (5 * 2)
24 ÷ 4
–N7:0
SQR N7:1
10 ** 3 OR 103

Figure 14–9	Compute	(CPT)	Operators	(Symbols)

I:112

01

CPT

COMPUTE
DESTINATION T4:1.ACC
EXPRESSION
(N7:0 + N10:1) * 4.50000

Figure 14–10	Programmed	PLC-5	Compute	(CPT)	Instruction

CLR

CLEAR
DEST. N7:12

I:112

01

Figure 14–11	Example	of	the	Clear	(CLR)	Instruction

Figure	14–10	shows	how	a	CPT	instruction	is	typically	programmed.	In	some	PLC-5	models,	but	
not	all,	any	combination	of	operators	may	be	used	with	various	addresses	and/or	constants.	The	
	expression	can	be	up	to	80	characters	in	length.

When	the	instruction	first	appears	on	the	screen	during	programming,	the	destination	must	be	speci-
fied	first.	The	destination	address	in	the	example	is	T4:1.ACC.	Then	the	expression	or	math	formula	
is	entered.	The	expression	states	that	the	value	in	N7:0	is	to	be	added	to	the	value	found	in	N10:1.	
The	sum	is	then	multiplied	by	4.5.	The	result	of	the	computation	is	then	sent	to	the	designated	des-
tination,	in	this	case,	the	timer	file,	file	4,	timer	1,	accumulated	value	(T4:1.ACC).	

Additional	math	functions	available	for	the	PLC-5,	SLC	500,	and	MicroLogix	are	the	clear	(CLR)	
and	square	root	(SQR)	instructions.

The	clear	instruction	(CLR),	as	the	name	implies,	clears	the	value	in	a	word	to	zero.	Figure	14–11	
shows	the	CLR	instruction.
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When	the	input	address	is	true,	the	value	in	the	destination	word	is	set	to	zero.	That	means	that	all	
16	bits	of	word	12,	in	integer	file	7,	are	cleared	or	set	to	zero.

The	square	root	instruction	(SQR)	is	shown	in	Figure	14–12.

SQR

SQUARE ROOT
SOURCE N7:3
 64
DEST. N7:16
 8

I:112

01

Figure 14–12	Example	of	the	Square	Root	(SQR)	Instruction

XPY

X TO POWER OF Y
SOURCE A N7:3
 4
SOURCE B 3
DEST. 64

I:112

01

Figure 14–13	Example	of	the	XPY	Instruction

When	 the	 logic	 that	precedes	 the	SQR	 instruction	 is	 true,	 the	 square	 root	of	 the	 source	value	 is	
transferred	into	the	destination	word.	In	the	example	in	Figure	14–12,	the	square	root	of	the	source	
address,	N7:3	(64),	which	is	8,	is	placed	into	destination	word	16	of	the	N7	file.

Some	PLC-5	processors	and	the	SLC-5/02,	03,	04,	and	05	processors	also	can	perform	the	trigono-
metric	functions	sine	(SIN),	cosine	(COS),	tangent	(TAN),	arc	sine	(ASN),	arc	cosine	(ARS),	and	
arc	tangent	(ATN).	These	PLCs	can	also	raise	a	number	to	a	power	by	using	the	X	to	the	Power	of	
Y	(XPY)	instruction.	This	instruction	is	shown	in	Figure	14–13.

If	we	wanted	to	raise	the	value	of	a	word	by	a	power	of	3,	which	is	the	same	as	saying	X3	or	X	•	X	•	X,	
we	could	use	the	XPY	instruction.	If	the	value	of	Source	A,	word	N7:3,	is	4,	and	this	value	is	to	be	
raised	by	a	power	of	3,	Source	B,	the	destination	would	hold	the	result	of	raising	4	by	a	power	of	3,	
which	is	64.	Raising	4	by	a	power	of	3	could	be	written	as	43	or	could	be	written	as	4	•	4	•	4.	In	either	
case,	the	answer	is	64	(4	•	4	•	4	5	64).

coMBining Math FUnctions

An	example	of	using	more	than	one	math	instruction	can	be	illustrated	using	the	Pythagorean	theo-
rem,	which	is	used	to	find	the	hypotenuse	of	a	right	triangle.	The	theorem	states	that	C2 5 A2 1	B2.	
This	formula,	or	theorem,	can	be	transposed	and	rewritten	C	5 œa2 1	b2.	Figure	14–14	shows	a	
right	triangle.	Side	A	is	3˝	and	side	B	is	4˝.	Side	C,	the	hypotenuse,	has	no	measurement	and	is	the	
unknown	that	the	theorem	will	solve.
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Figure	14–15a	shows	how	two	XPY	instructions,	an	ADD	instruction,	and	an	SQR	instruction	are	
used	to	find	the	dimension	for	side	C	of	the	right	triangle	shown	in	Figure	14–14.	When	the	rung	is	
true,	the	value	in	Source	A	(which	is	3	from	side	A	of	the	right	triangle)	of	the	first	XPY	instruction	is	
increased	by	a	factor	of	2	(32)	and	the	value	of	9	is	stored	in	word	3	of	file	N7.	The	next	XPY	instruc-
tion	takes	the	dimension	of	side	B,	which	is	4,	and	raises	it	by	a	factor	of	2	(42),	then	stores	the	answer	
(16)	in	word	4	of	file	N7.	The	ADD	instruction	now	takes	the	values	in	Sources	A	and	B	and	adds	them	
together	to	get	the	answer	of	25,	as	shown	in	word	5	of	file	N7.	The	last	instruction,	SQR,	finds	the	
square	root	of	the	value	that	is	stored	in	word	5	of	file	N7.	The	value	is	25,	and	the	square	root	of	25	
is 5.	And,	as	we	all	remember	from	our	high-school	geometry	class,	if	side	A	is	equal	to	3,	and	side	B	
is	equal	to	4,	then	side	C	must	be	equal	to	5.	This	is	often	referred	to	as	a	3,	4,	5	triangle.

C = ?

B = 4"

A = 3"

Figure 14–14	Solving	the	Hypotenuse	of	a	Right	Triangle	Using	the	Pythagorean	Theorem

XPY

X TO POWER OF Y
SOURCE A N7:1
 3
SOURCE B 2
DEST. N7:3
 9

XPY

X TO POWER OF Y
SOURCE A N7:2
 4
SOURCE B 2
DEST. N7:4
 16

ADD

ADD
SOURCE A N7:3
 9
SOURCE B N7:4
 16
DEST. N7:5
 25

SQR

SQUARE ROOT
SOURCE  N7:5
 25
DEST. N7:6
 5

Figure 14–15a	Combining	Math	Instructions
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We	could	have	solved	the	problem	using	a	compute	(CPT)	instruction,	as	shown	in	Figure	14–15b.	
With	the	CPT	instruction,	a	formula	or	expression	is	written	that	will	solve	the	problem	and	the	
solution	is	then	displayed	in	the	destination	word	(N7:6).

CPT

COMPUTE
DEST. N7:6
 5
EXPRESSION
SQR ((N7:1 **2) + (N7:2 **2))

Figure 14–15b	Using	the	CPT	Instruction	to	Solve	the	Hypotenuse	of	a	Right	Triangle

allen-Bradley logix5000 Basic Math FUnctions

The	only	difference	between	the	basic	math	instructions	for	the	Logix5000	controllers	and	those	just	
discussed	is	the	Logix5000	controllers	use	tag	based	addressing.	Otherwise,	the	same	basic	math	
instructions	are	found	in	both.	It	is	worth	noting	that	the	optimal	data	types	for	Logix5000	math	
instructions	are	DINT	and	REAL.

The limits and limitations of the different arithmetic functions vary from manufacturer to manu-
facturer,	but	the	concepts	are	basically	the	same.	Values	or	contents	of	storage	registers,	data	table	
words,	tags,	or	constants	are	combined	arithmetically,	and	the	results	are	stored	in	registers,	data	
table	words,	or	tags.	The	only	way	to	learn	how	to	apply	the	arithmetic	functions	on	a	given	PLC	is	
to read the manufacturer’s literature and work with that	PLC.

chapter summary
As	with	most	other	features,	arithmetic	functions	and	formats	vary	with	each	manufacturer.	Arith-
metic	 functions	 of	 add,	 subtract,	multiply,	 and	 divide	 can	 be	 combined	with	 data	manipulation	
instructions	(data	transfer	and	data	compare)	to	provide	expanded	control	and	information	for	and	
from	process	or	driven	equipment.	Memory	words	such	as	holding,	storage,	and	data	can	be	used	
with	the	arithmetic	functions	as	well	as	words	and	constants,	or	just	constants.

review Questions
	 1.	 List	the	four	math	functions	that	can	be	performed	by	most	PLCs.
	 2.	 Data	manipulation	instructions	can	be	combined	with	arithmetic	(math)		instructions.
	 	 T	 	 F
	 3.	 Define	the	term	double-integer.
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Math	Functions  273

	 4.	 Give	an	example	of	how	a	math	function	is	used	in	a	PLC	program.
	 5.	 Using	Allen-Bradley	format,	describe	the	following	status	bits:
	 	 S:0/0
	 	 S:0/2
	 	 S:0/3
	 6.	 When	using	the	Allen-Bradley	CPT	instruction,	what	operator	is	used	for:
	 	 a.	Multiply	
	 	 b.	Divide	
	 	 c.	Exponential	
	 7.	What	is	the	function	of	the	clear	(CLR)	instruction?
	8.	What	does	the	XPY	instruction	do?
	 9.	 List	the	trigonometric	instructions	discussed	in	this	chapter.
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Word and File Moves

Chapter

15
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	the	function	of	a	synchronous	shift	register.
•	 Explain	the	function	of	word-to-file, file-to-word, and file-to-file	instructions.
•	 Explain	the	difference	between	an	asynchronous shift register (FIFO) and a word-to-

file move.

Before word and file moves are discussed, the electrician and technician should understand the  
definition	of	both	words	and	files.

Words,	or	registers	as	they	are	often	called,	are	locations	in	memory	that	can	be	used	to	store	differ-
ent	kinds	of	information.	Typically,	a	word	or	register	can	store	the	status	of	inputs	and	outputs,	hold	
numerical	values	used	for	math	functions	and	other	numerical	data	used	for	timers	and	counters,	etc.	
Most	words	consist	of	16	bits,	although	on	newer	PLCs,	a	32-bit	word	is	sometimes	used.

A file	is	a	group	of	consecutive	memory	words	used	to	store	information.	Words	1	through	5	would	
make	up	a	consecutive	5-word	file.	Words	1,	2,	3,	6,	and	7	are	not	used	as	a	5-word	file	because	the	
numbers	are	not	consecutive.	A	file	is	also	referred	to	as	a	table	by	some	PLC	manufacturers.

Words

Information	stored	in	a	word	can	be	shifted	within	the	word,	or	from	one	word	to	another.	Informa-
tion	stored	in	a	word	may	also	be	moved	into	a	file,	or	the	information	stored	in	a	file	can	be	trans-
ferred	into	a	word.	All	of	these	different	possibilities	are	discussed	later	in	this	chapter.

synchronous shift register

When	information	is	shifted—one	bit	at	a	time—within	a	word,	or	from	one	word	to	another,	it	is	
called	a	synchronous	shift	register.	The	bits	may	be	shifted	forward	(left)	or	reverse	(right).	

Note: The synchronous shift register may also be referred to as a serial shift register or bit shift.

Figure	15–1	shows	a	16–bit	word	used	as	a	forward	synchronous	shift	register.
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Figure	15–1(a)	shows	the	bit	status	of	register	word	100	prior	to	the	forward	shift,	while	15–1(b)	
shows	how	the	register	looks	after	the	bits	have	been	shifted	one	place	to	the	left,	or	forward.

Notice	that	when	the	register	is	shifted,	the	information	(1	or	0)	in	bit	16	is	shifted	out,	and	is	lost.	
If	the	register	is	continually	shifted	with	a	zero	(0)	in	bit	 location	1,	all	of	the	1s	are	shifted	left	
(forward)	until	only	0s	remain	(Figure	15–2).

1 1 1

16 15 14

0

13

0 1 1

12 11 10

1

9

0 0 1

8 7 6

1

5

1 0 0

4 3 2

0

1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 0

1 0 0 1 1 1 0 0 1 1 1 0 0 0 0 0

0 0 1 1 1 0 0 1 1 1 0 0 0 0 0 0

0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0

1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0

1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

Figure 15–2 Register with All 1s Shifted Out

INITIAL CONDITION OF REGISTER

REGISTER
100

REGISTER
100

a.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0

1

CONDITION OF REGISTER AFTER SHIFT FORWARD (LEFT)

b. 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0

Figure 15–1 Forward 16-Bit Synchronous Shift Register
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In	a	forward	shift	register,	bit	1	is	used	to	enter	data	(1	or	0).	The	data	is	then	shifted	forward,	one	bit	
at	a	time.	Figure	15–3	shows	a	2-word	forward	shift	register.	In	this	case	data	is	entered	at	bit	1	and	
shifted	one	bit	at	a	time	to	the	left.	With	a	2-word	shift	register,	the	information	(1	or	0)	in	bit	16	of	
word	1	is	not	shifted	out	and	lost,	but	is	shifted	into	bit	1	of	the	second	word	of	the	shift	register.

The	BSL	instruction	shifts	all	bits	to	the	left	with	each	false-to-true	transition.	The	file	information	
that	is	entered	is	the	address	of	the	word	or	words	that	contain	the	bits	to	be	shifted.	This	address	
must	be	a	16-bit	word	address	and	the	address	must	be	preceded	with	the	file	indicator	symbol	(#).	
The	file	indicator	symbol	indicates	that	the	address	is	a	user-defined	file.	The	file	is	referred	to	as	
a	 bit	 array.	The	 length	 of	 the	file—or	 bit	 array—must	 be	 entered	when	 the	 instruction	 is	 being	 
programmed.	The	bit	array	does	not	need	to	be	in	full	16-bit	sections.	A	bit	array	length	of	20	would	
use	two	memory	words.	All	16	bits	of	the	first	word	would	be	used,	but	only	4	bits	of	the	second	
word	would	be	used.	Figure	15–5	shows	a	two-word	20-bit	array.	Note	than	any	unused	bits	in	the	
file	are	invalidated	addresses	and	cannot	be	used	for	any	other	programming.	Figure	15–6	shows	the	
allowable	bit	array	length	for	each	type	of	Allen-Bradley	PLC.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

DATA IN

SHIFTED
OUT

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

WORD
2

WORD
1

1

Figure 15–3	Two-Word	Forward	Shift	Register

Allen-BrAdley Plc-5, slc 500, And  
Micrologix Bit shift instructions

Allen-Bradley	has	synchronous	shift	 register	 instructions.	They	are	Bit	Shift	Left	 (BSL)	and	Bit	
Shift	Right	(BSR).	Figure	15–4	shows	a	BSL	instruction.

BSL

BIT SHIFT LEFT

FILE:                       #N7:0
CONTROL:                R6:1
BIT ADDRESS:    I:012/01
LENGTH:                      10

I:013/10

EN

DN

Figure 15–4	Bit	Shift	Left	(BSL)	Instruction
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The	Control	shown	on	the	instruction	in	Figure	15–4	is	the	element	that	stores	the	status	of	the	BSL	
instruction	and	the	size	of	the	bit	array.	Figure	15–7	shows	the	three-word	control element that is 
used	for	the	BSL	instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 WORD 1

WORD 2— — — I N V A L I D — — 19 18 17 16

Figure 15–5	Two-Word	20-Bit	Array

ALLEN-BRADLEY PLC MAXIMUM BIT ARRAY
15,999
2,048
1,680

PLC-5
SLC 500

MICROLOGIX 1000

Figure 15–6	Allowable	Length	of	the	Bit	Array

ENWORD 0

WORD 1

WORD 2

DN ER UL

— —S I Z E  O F  B I T  A R R A Y  ( N U M B E R  O F  B I T S )

R E S E R V E D — — — — — — — —

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Figure 15–7	BSL	Three-Word	Control	Element

Word	0	of	the	control	element	holds	the	status	bits	for	the	instruction.
Unload Bit—UL	(bit	10)	stores	the	status	of	the	last	bit	in	the	array	that	is	shifted	out,	or	exits,	
from	the	array	on	each	false-to-true	transition.
Error Bit—ER	(bit	11)	is	set	to	1	when	an	error	in	programming	the	BSL	instruction	is		detected.	
This	bit	would	be	set	if	a	negative	number	is	entered	for	the	length	or	position	of	the	array.
Done Bit—DN	(bit	13)	is	set	to	1	each	time	the	bit	array	is	shifted	to	the	left.
Enable Bit—EN	 (bit	 15)	 is	 set	 to	 1	 on	 each	 false-to-true	 transition	 and	 indicates	 that	 the	
instruction	is	enabled.

When	 the	array	 is	shifted	and	 the	 rung	condition	goes	 false,	 the	enable,	done,	and	error	bits	are	 
reset	to	zero.

The	Bit	Address	portion	of	the	BSL	instruction	is	the	address	of	the	bit	whose	information	will	
be	shifted	into	the	bit	array.	The	information	will	be	entered	into	the	lowest	bit	position	of	the	
array.

The	Length	portion	of	the	instruction	determines	the	length	of	the	bit	array.
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Figure	15–8a	shows	a	one-word	(B3:0),	16-bit	array,	with	the	input	bit	address	of	I:012/00.	The	
status	of	bit	00	of	input	word	012	will	be	inserted	into	the	first	bit	of	the	array,	which	is	bit	00,	
when	 the	 bit	 array	 is	 shifted	 left.	The	 information	 in	 bit	 15	 (position	16	of	 the	 array)	will	 be	
shifted	out	and	into	the	unload	bit	(UL)	of	the	control	element.	Figure	15–8b	shows	the	16-bit	
array	after	the	BSL	instruction	has	made	a	false-to-true	transition	and	the	information	has	been	
shifted	left.

1 1 0

15 14 13

1

12

1 1 1

11 10 09

0

08

0 0 1

07 06 05

1

04

0 1 0

03 02 01

0

0

00

INPUT ADDRESS
I:012/00

UNLOAD BIT

#B3:0

0

Figure 15–8a	Bit-Shift	Array	Prior	to	BSL	Execution

1 0 1

15 14 13

1

12

1 1 0

11 10 09

0

08

0 1 1

07 06 05

0

04

1 0 0

03 02 01

0

0

00

INPUT ADDRESS
I:012/00

UNLOAD BIT

#B3:0

1

Figure 15–8b	Bit-Shift	Array	After	BSL	Execution

An	example	of	a	practical	application	for	a	shift	register	is	the	overhead	parts	conveyor	in		Figure	
15–9,	which	is	used	to	transport	parts	into	a	paint	booth	for	painting.	If	a	part	is	on	the	hook	as	it	
enters	the	paint	booth,	limit	switch	1	(LS-1)	is	activated.	Limit	switch	2	(LS-2)	is	activated	each	time	
a	hook	on	the	conveyor	passes,	even	if	no	part	is	present.
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Both	limit	switches	(LS-1	and	LS-2)	are	wired	to	an	input	module	of	a	PLC,	and	the	solenoid	that	
operates	the	paint	spray	nozzle	is	wired	to	an	output	module,	as	shown	in	Figure	15–10.

The	input	addresses	of	the	limit	switches	and	the	output	address	of	the	paint	spray	nozzle	are	now	
programmed	with	a	forward	shift	register	(Figure	15–11).

When	a	part	activates	LS-1	(address	I:012/00),	a	1	is	placed	in	bit	00	of	input	word	012.	As	the	part	
moves	toward	the	spray	nozzle,	LS-2	is	activated	by	the	hook	that	closes	LS-2.	The	closing	of	the	

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

LS-1

LS-2

PAINT BOOTH

PAINT SPRAY
NOZZLE

Figure 15–9 Applying a Forward Shift Register

I:012/00

I:012/01

I:012/02

O:010/00

O:010/01

O:010/02

LS-1

L1 L2

LS-2

PAINT SPRAY
NOZZLE

SOLENOID

OUTPUT
MODULE

INPUT
MODULE

Figure 15–10	Input	and	Output	Devices	Wired	to	I/O	Modules
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LS-2	contacts	(address	I:012/01)	gives	a	false-to-true	transition	for	 the	BSL	instruction,	and	the	
	instruction	loads	the	status	(1	or	0)	of	bit	00	of	input	word	012	into	bit	00	of	the	bit	array.	The	other	
information	in	the	bit	array	is	shifted	left.	The	information	in	bit	15	of	the	array,	the	last	bit	of	the	
16-bit	array,	is	shifted	out	and	into	the	UL	bit	of	the	control	element.	As	the	conveyor	continues	to	
run,	a	1	or	0	is	entered	into	bit	00	of	input	word	012,	depending	on	whether	a	part	is	present	or	not.	
The	data	is	then	shifted	as	LS-2	is	activated	and	deactivated	by	the	moving	hooks,	which	causes	 
a	succession	of	false-to-true	transitions	of	 the	BSL	instruction.	As	the	data	shifts	 to	the	left,	 the	
paint	spray	nozzle	solenoid	(O:010/00)	in	Rung	2	is	activated	each	time	a	1	is	shifted	into	bit	15	
	of	the	bit	array.	Bit	15,	which	is	the	16th	bit	of	the	array,	is	equivalent	to	location	16	in	the	spray	
paint	booth.

A	reverse	shift	register	is	programmed	using	a	Bit	Shift	Right	(BSR)	instruction.	This	instruction	
is	the	same	as	the	BSL	instruction	except	that	instead	of	entering	data	at	the	lowest	numbered	bit	in	
the	bit	array	and	unloading	data	from	the	highest	numbered	bit,	this	instruction	enters	(loads)	data	
into	the	highest	numbered	bit	and	unloads	at	the	lowest	numbered	bit.	Figures	15–12a	and	15–12b	
show	the	load	and	unload	order	for	a	BSR	instruction.

I:012

EN
01

B3:0

15

O:010

00

BSL

BIT SHIFT LEFT
FILE #B3:0
CONTROL R6:1
BIT ADDRESS I:012/00
LENGTH 16

DN

SPRAY PAINT
NOZZLE

SHIFT LIMIT
SWITCH 2

RUNG 1

RUNG 2

Figure 15–11	Programming	a	Forward	Shift	Register	Using	BSL	Instruction
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Figure 15–12a	Load	and	Unload	Bits	for	BSR	Instruction	Prior	to	Shift
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Similar	to	other	functions,	shift	register	formats	vary	from	manufacturer	to	manufacturer,	but	the	
basic	function	of	the	synchronous	shift	register	is	the	same.

file Moves

As	indicated	earlier,	a	file,	or	table,	is	a	group	of	consecutive	words	used	to	store	or	hold	information.	
A	file	can	consist	of	just	a	few	words	or	can	be	several	hundred	words	in	length,	depending	on	the	
PLC	program.	Figure	15–13	shows	a	five-word	file	using	consecutive	memory	words	50	through	54.

1 0 0

15 14 13

1

12

1 0 0

11 10 09

0
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1 1 1

07 06 05

1

04

0 1 1

03 02 01

0

1

00

UNLOAD BIT
R6:1/UL

INPUT ADDRESS
I:012/00

(LOAD BIT)

1

Figure 15–12b	Load	and	Unload	Bits	for	BSR	Instruction	After	Shift

Information	(data)	may	be	transferred	into	or	out	of	a	file	by	using	data	transfer	instructions.	The	
three	most	common	data	transfer	instructions	are	word-to-file,	file-to-word,	and	file-to-file.

Word-to-file instruction

The	word-to-file	 instruction	 is	 used	 to	 transfer	 data	 from	a	word	 into	 a	file.	For	 example,	word	
110	stores	the	temperature	of	the	die	for	a	plastic	injection	molding	machine.	A	thermocouple	is	
attached	to	the	heated	die	and	then	connected	to	a	thermocouple	input	module.	Depending	on	the	
module,	the	temperature	of	the	die	is	then	stored	in	an	input	word	in	either	binary	or	BCD	format.	
By	using	a	word-to-file	data	transfer	instruction,	the	data	(temperature)	in	word	110	can	be	trans-
ferred	into	a	file.	Once	the	word-to-file	instruction	has	been	programmed,	the	information	stored	in	
word	110	is	transferred	into	a	file	each	time	the	instruction	is	implemented.	Figure	15–14a	shows	a	
5-word	file	prior	to	a	word-to-file	instruction	being	implemented,	and	Figure	15–14b	shows	the	file	
after	the	data	transfer	instruction	is	implemented.

FILE

WORD 050

051

052

053

054

Figure 15–13	Five-Word	File
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The	next	time	the	word-to-file	instruction	is	implemented	(indexed),	the	current	value	in	word	110	
is	transferred	to	the	file.	At	the	next	word	location	in	the	file,	Figure	15–15	illustrates	this	point.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0020

BCD

Figure 15–14a	File	Prior	to	Word-to-File	Data	Instruction	Implementation

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0020

BCD

Figure 15–14b	File	Content	After	First	Word-to-File	Instruction	Is	Implemented

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 00 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2020

Figure 15–15	File	After	Second	Word-to-File	Instruction	Is	Implemented

By	using	a	timer,	the	word-to-file	instruction	could	be	implemented	every	15	minutes.	By	increasing	
the	size	of	the	file,	a	record	of	the	die	temperature	for	an	8-hour	shift	can	be	stored,	the	data	(tempera-
ture)	from	the	file	could	be	printed	out,	and	the	temperature	of	the	die	compared	to	quality-control	
records.	The	application	of	this	instruction,	like	all	other	instructions,	is	limited	only	by	imagination.

file-to-Word instruction

The	file-to-word	instruction	transfers	data	from	a	file	into	a	word.

Using	the	previous	example,	the	temperature	of	the	injection	molding	machine	die	can	be	transferred	
to	an	output	word	(011)	that	controls	an	LED	display.	By	incrementing	or	indexing	the	file-to-word	
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instruction,	 the	 temperature	 of	 the	 die	 in	 15-minute	 intervals	 is	 displayed.	 Figures	 15–16a	 and	 
15–16b	illustrate	how	a	file-to-word	instruction	functions.

file-to-file instruction

This	instruction	moves	data	from	one	file	to	another.	The	data	from	the	source	file	may	be	moved	to	
the	destination	file	one	word	at	a	time,	or	the	entire	contents	of	the	file	can	be	moved	in	one	move,	
depending	on	the	PLC.

An	example	of	using	the	file-to-file	move	might	be	a	chemical	batch	plant	where	different	amounts	
and	types	of	chemicals	are	mixed	for	a	variety	of	products.	The	different	mix	ratios	(recipes)	are	
stored	in	different	files,	and	could	be	transferred	to	a	file	that	controls	machine	and/or	plant	opera-
tion	for	a	given	product.

Figure	15–17	shows	how	a	file-to-file	move	works.

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0

BCD

WORD FILE WORD

050
051
052
053
054
055
056
057

LED DISPLAY

Figure 15–16a	File-to-Word	Instruction	at	First	Word	of	File	(050)

0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0

BCD

WORD FILE WORD

050
051
052
053
054
055
056
057
058 0 0 0

LED DISPLAY

Figure 15–16b	File-to-Word	Instruction	at	Second	Word	of	File	(051)
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The	address	of	the	first	word	in	the	source	file	is	specified	as	well	as	the	first	address	of	the	destina-
tion	file.	As	both	of	these	files	are	to	be	user-defined,	the	file	numbers	must	start	with	the	file	indi-
cator	symbol	(#).	The	length	of	the	file	is	then	specified.	In	this	example,	the	source	file	starts	with	
N7:0,	the	destination	file	is	N12:0,	and	the	file	length	is	5	words.	When	the	input	device	is	closed,	
the	COP	instruction	is	enabled,	and	the	instruction	copies	data	from	the	5-word	file	starting	at	N7:0	
into	the	5	words	of	the	destination	file	starting	at	N12:0.	

FILE A

FORMULA
X

FILE B

FORMULA
Y

RESULTANT
FILE

FILE C

FORMULA
Z

Figure 15–17	Data	in	File	A,	B,	or	C	Can	Be	Transferred	into	the	Resultant	File	
When	the	File-to-File	Move	Is	Executed

I:012

10

COP

COPY FILE
SOURCE #N7:0
DESTINATION #N12:0
LENGTH 5

Figure 15–18	PLC-5	File	Copy	(COP)	Instruction

Allen-BrAdley Plc-5, slc 500, And Micrologix  
 file coPy instruction

Allen-Bradley	uses	a	file	copy	(COP)	instruction	for	making	file-to-file	moves.	File	copy	is	an	out-
put	instruction,	and	is	programmed	as	shown	in	Figure	15–18.
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Asynchronous shift register (fifo)

The	asynchronous	shift	register,	instead	of	shifting	bits	of	information	within	a	word,	or	words,	like	
the	synchronous	shift	register,	shifts	the	data	from	a	complete	word	into	a	file,	or	stack.	Although	this	
	appears	to	be	just	another	name	for	a	word-to-file	instruction,	it	is	not.	There	are	similarities	between	
the	two,	but	there	is	also	one	major	difference.	In	the	asynchronous	shift	register,	the	information	from	
a word is shifted into the top of the file and moved down through the file with each implementation, or 
indexing,	of	the	instruction.	The	word-to-file	move,	however,	allows	the	information	transferred	from	
the word to go to the last unused	word	of	the	file.	This	difference	is	why	the	asynchronous	shift	register	
is	often	referred	to	as	a	FIFO	stack	(first-in	first-out).	Figure	15–19	compares	the	asynchronous	shift	
register	to	the	word-to-file	instruction	to	demonstrate	the	difference.

0 0 1 1

INPUT WORD

a.

b.

c.

0 0 1 1

FILE OR STACK INPUT WORD FILE

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

1 0 1 1 1 0 1 1

0 0 0 0

0 0 1 1

0 0 0 0

0 0 1 1 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

1 0 1 1 0 0 1 1

0 0 0 0

1 0 1 1

0 0 0 0

ASYNCHRONOUS SHIFT REGISTER WORD-TO-FILE MOVE

Figure 15–19	Comparison	of	Asynchronous	Shift	Register	(FIFO)	to	Word-to-File	Move

When	data	is	transferred	at	position	(a),	the	asynchronous	shift	register	places	the	data	into	the	first	
(top)	word	of	the	file	or	stack.	In	the	word-to-file	move,	data	is	also	moved	into	the	first	(top)	word	
of	the	file,	just	like	the	asynchronous	shift	register.

At	the	next	implementation	at	position	(b),	no	data	is	entered	at	the	top	of	the	stack	and	all	previous	
data is shifted down in the asynchronous shift register, whereas the data of the input word is trans-
ferred	to	the	next	available	word	in	the	file	in	the	word-to-file	instruction.

When	 the	 instructions	are	 indexed	again	at	position	 (c),	 all	previous	data	 is	 shifted	down	 in	 the	
asynchronous shift register and new data is entered at the top of the stack, whereas the word-to-file 
instruction	transfers	the	new	data	into	the	next	available	location	in	the	file.
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Allen-BrAdley Plc-5, slc 500, And Micrologix 
fifo instruction

Allen-Bradley	uses	a	pair	of	output	instructions	to	store	and	retrieve	data	in	a	prescribed	order,	or	
FIFO	(First-In	First-Out).	Words	are	loaded	into	a	file	and	unloaded	in	the	same	order	in	which	they	
were	loaded.	Figure	15–20	shows	the	First-In	First-Out	Load	(FFL)	and	First-In	First-Out	Unload	
(FFU)	Instructions.

FFL

FIFO LOAD
SOURCE N60:1
FIFO  #N60:3
CONTROL R6:51
LENGTH 64
POSITION 0

EN

DN

EM

FFU

FIFO UNLOAD
FIFO  #N60:3
DESTINATION N60:2
CONTROL R6:51
LENGTH 64
POSITION 0

EN

DN

EM

DESTINATION POSITION
WORD FILE

60:3

N60:2

SOURCE

N60:1

0

1

2

3

4

5

6

7

3

4

5

6

7

8

9

63

62

61

60

59

58

67

66

65

64

63

62

61

Figure 15–20	FIFO	Load	and	Unload	Instructions

The	FIFO	Load	instruction	loads	the	information	stored	in	one	word	into	a	file,	or	stack.	The	FIFO	
Unload	instruction	retrieves	information	stored	in	the	file,	or	stack,	and	places	it	into	a	destination	
word.	The	instruction	components	are	as	follows:

The	Source	is	the	address	that	stores	the	“data”	that	will	be	loaded	into	the	file,	or	stack.

FIFO	is	the	address	of	the	first	word	in	the	file,	or	stack.

Control	is	the	address	of	the	control	structure	(48	bits—three	16-bit	words)	in	the	control	area	(R)	
of	memory.	The	control	structure	stores	the	instruction’s	status	bits,	stack	length,	and	next	available	
position	(pointer)	in	the	stack,	as	shown	in	Figure	15–21.
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Empty Bit—EM	(bit	12)	is	set	to	1	when	the	stack,	or	file,	is	empty.
Done Bit—DN	(bit	13)	is	set	to	1	when	the	stack	is	full.	This	prevents	any	additional	data	
from	being	loaded	into	the	stack.
FFU/LFU Enable Bit—EU	(bit	14)	is	set	to	1	on	a	false-to-true	transition	and	is	reset	to	0	on	
a	true-to-false	transition.
FFL/LFL Enable Bit—EN	(bit	15)	is	set	to	1	on	a	false-to-true	transition	and	is	reset	to	0	on	
a	true-to-false	transition.

The	Length	portion	of	the	instruction	defines	the	length,	or	number	of	words,	that	make	up	the	stack,	or	file.

The	Position	portion	of	the	instruction	indicates	the	position	in	the	file,	or	stack,	in	which	informa-
tion	from	the	source	word	will	be	entered.

Destination	(FIFO	Unload)	is	the	address	that	stores	the	data	that	exits,	or	is	removed	from	the	file,	
or	stack.

In	Figure	15–20,	note	that	the	FIFO	address	is	#N60:3	for	both	the	FIFO	Load	and	FIFO	Unload	
instructions.	Address	#N60:3	is	the	start	of	the	64-word	file,	and	address	N60:67	is	the	last	address	
for	the	file.	Position	0	is	the	first	word	of	the	file,	or	stack,	and	Position	63	would	be	the	last	word	
of	the	64-word	file.	With	each	false-to-true	transition	of	the	FFL	instruction,	data	from	the	Source	is	
loaded	into	the	file	(FIFO)	and	the	position	indicator	will	advance,	or	increment,	by	one.

When	the	rung	that	contains	the	FFL	instruction	goes	true,	the	processor	sets	the	EN	bit	(bit	15)	ON, 
and	loads	the	source	data	(N60:1)	into	the	next	available	position	in	the	stack.	The	processor	loads	
data	 from	the	source	 into	 the	stack	with	each	false-to-true	 transition.	When	 the	stack	 is	 full,	 the	
processor	sets	the	DN	bit	(bit	13)	to	1.	The	program	should	be	programmed	so	that	when	the	stack	
is	full,	no	additional	data	can	be	loaded	from	the	source.

When	the	rung	that	contains	the	FFU	instruction	goes	from	false	to	true,	the	processor	sets	the	EU	
(enable	unload	bit	14)	to	1	and	unloads	data	from	the	first	element	of	the	stack	into	the	destination	
word	N60:2.	As	the	data	is	shifted	out,	the	processor	shifts	the	remaining	data	in	the	stack	up one 
position	toward	the	first	word.	The	processor	continues	to	unload	the	stack	each	time	the	rung	goes	
from	false	to	true	until	it	empties	the	FIFO	stack.

lAst-in first-out (lifo) instructions

The	Last-In	First-Out	Load	(LFL)	 instruction	 loads	words	 into	a	file.	Then,	using	an	LFU	(LIFO	
Unload)	instruction,	it	retrieves	them	in	inverse	order.	In	other	words,	the	instruction	removes	the	

EN EU DN

15 14 13

EM

12 11 10 09 08 07 06 05 04 03 02 01 00

S T A C K  ( F I L E )  L E N G T H

WORD 0

WORD 1

WORD 2 P O S I T I O N  N U M B E R

Figure 15–21	FFL	Three-Word	Control	Element
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last	word	that	was	entered	into	the	file	when	the	rung	that	has	the	LFU	instruction	makes	a	false-to-
true	transition.	Figure	15–22	shows	an	LFL	and	an	LFU	instruction	and	illustrates	how	the	words	are	
entered	and	retrieved.

LFL

LIFO LOAD
SOURCE N60:1
LIFO  #N60:3
CONTROL R6:51
LENGTH 64
POSITION 0
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Figure 15–22 LIFO	Load	and	Unload	Instructions

When	the	rung	condition	makes	a	false-to-true	transition,	the	LFL	EN	(enable	bit)	will	be	set	to	1,	the	LFL	
instruction	will	load	the	contents	(data)	from	the	source	word	N60:1	into	the	stack,	and	the	position	value	
will	be	incremented	by	1.	The	LFL	instruction	will	continue	to	load	information	into	the	file,	or	stack,	on	
each	false-to-true	transition	until	the	stack	is	full	(64	words).	When	the	stack	is	full,	the	processor	will	set	
the	DN	bit	(bit	13)	to	1.	This	prevents	any	additional	information	from	being	loaded	into	the	file.

When	the	LFU	rung	makes	a	false-to-true	transition,	the	LFU	EU	(unload	bit)	is	set	to	1	and	the	LFU	
instruction will unload the last word that was loaded into the file and place it into the destination 
word	(N60:2).	The	file	words	will	continue	to	be	unloaded	from	the	file	each	time	the	rung	makes	
a	false-to-true	transition.	Each	time	a	word	is	removed	from	the	file,	or	stack,	the	position	indicator	
will	decrement	(decrease	in	value)	by	1.

Allen-BrAdley logix5000 file (ArrAy) instructions

The	Logix5000	controllers	have	the	same	basic	shift,	word,	and	file	move	instructions	as	those	just	
discussed	for	the	PLC-5,	SLC	500,	and	MicroLogix	PLCs.	In	addition,	the	Logix5000	controllers	
have the following array instructions:

FAL—Performs	arithmetic,	logic,	shift,	and	function	operations	on	values	in	arrays.
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FSC—Searches	for	and	compares	values	in	arrays.
CPS—Copies	the	contents	of	one	array	into	another	array	without	interruption.
AVE—Calculates	the	average	of	an	array	of	values.
SRT—Sorts	one	dimension	of	array	data	into	ascending	order.
STD—Calculates	the	standard	deviation	of	an	array	of	values.

As	you	recall,	Logix5000	controllers	use	tag	based	memory	and	therefore	do	not	have	data	files	like	
the	other	Allen-Bradley	PLCs.	So,	the	only	difference	between	the	basic	instructions	just	covered	
and	the	corresponding	Logix5000	instructions	is	that	the	“File”	parameter	is	replaced	with	“Array”.

Logix5000	 controllers	 use	 arrays	 to	 organize	 data	 and	 are	 a	 key	 element	when	 programming	
file	 type	 instructions.	 If	 you	 recall	 from	Chapter	 4,	 an	 array	 is	 a	 tag	 that	 contains	 a	 block	 of	
	multiple	pieces	of	data	and	can	be	one-,	two-,	or	three-dimensional.	An	array	is	similar	to	a	file	
that  contains individual pieces of data called elements.	Each	element	uses	 the	same	data	 type,	
such	as	DINT.	The	elements	of	an	array	tag	are	arranged	in	a	contiguous	block	of	memory	in	the	
controller	with	each	element	in	sequence.	An	example	of	a	single-dimension	array	called	“Parts”	
is	shown	in	Figure	15–23.	In	this	example,	the	array	has	been	configured	for	six	DINT	elements.	
A subscript	identifies	each	individual	element	within	the	array.	A	subscript	starts	at	0	and	extends	
to	the	number	of	elements	in	the	array.	In	our	array	example,	we	have	six	elements	identified	as	
Parts[0]…Parts[5].	

Figure 15–23	Example	Array	Tag
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To	better	understand	and	see	how	the	array	tag	is	used,	the	same	Bit	Shift	Left	(BSL)	instruction	that	
was	used	earlier	in	the	paint	booth	example	(Figure	15–11)	is	shown	programmed	in	the	Logix5000	
format.	See	Figure	15–24.

Figure 15–24	Logix5000	Bit	Shift	Left	(BSL)	Instruction

When	programming	the	BSL	instruction	in	the	Logix5000	controller,	the	Array parameter is the tag 
of	the	first	element	of	the	group	of	elements	in	the	array.	In	our	example	we	specified	element	[0]	in	
the	array	called	“Parts”.	With	a	length	of	16,	the	bits	will	shift	to	the	left	starting	at	bit	0	of	element	
[0]	and	end	with	bit	15	of	element	[0].	

The	Control	parameter	in	Figure	15–24	is	a	user-created	tag	that	is	defined	as	a	control	type.	You	
must	create	a	unique	control	tag	for	each	type	of	array	instruction	you	program.	The	Source	bit	is	a	
bit	tag	in	memory	containing	the	status	to	be	moved	into	the	array	each	time	the	rung	goes	from	false	
to	true.	In	our	example,	the	source	is	digital	input	Local:1:I.Data.0	(limit	switch).

As	you	can	see,	once	you	become	familiar	with	creating	and	using	arrays	there	is	very	little		difference	
in	the	basic	instructions	discussed	in	this	chapter.	

Note: For more information on using the available array instructions found in the Logix5000 
 controllers, refer to the reference manual “Logix5000™ Controllers General Instructions.” 

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Word	and	File	Moves  291

chapter summary 
Although	the	keystrokes	and	instructions	vary	with	each	PLC	manufacturer,	the	principles	of	word	and	
file	moves	are	the	same.	The	synchronous	shift	register	shifts	bits	of	information	left	or	right	(forward	
and	reverse)	within	a	word	or	words,	while	file	moves	transfer	data	from	words	to	files,	files	to	words,	or	
files	to	files.	The	asynchronous	shift	register	is	referred	to	as	FIFO,	or	first-in	first-out,	as	data	transfers	
or	falls	to	the	bottom	of	the	stack	and	uses	the	last	unused	word.	The	data	is	retrieved	in	the	order	it	
enters	the	stack	(first-in	first-out).	The	file	can	also	be	programmed	to	retrieve	the	data	that	was	last	in	
to	be	the	first	data	out.	This	convention	is	referred	to	as	a	LIFO	stack.

review Questions
	 1.	 Define	the	term	word	as	used	in	this	chapter.
	 2.	 Define	the	term	file	as	used	in	this	chapter.
	 3.	 The	synchronous	shift	register	shifts	data	in	a	forward	direction	only.
	 	 T	 	 F
	 4.	 In	a	1-word	shift	register,	the	data	is	entered	at	bit:
	 	 a.	1
	 	 b.	2
	 	 c.	4
	 	 d.	8
	 	 e.	16
	 	 f.	none	of	the	above
	 5.	 In	a	1-word	shift	register,	the	data	is	shifted	out	at	bit:
	 	 a.	1
	 	 b.	2
	 	 c.	4
	 	 d.	8
	 	 e.	16
	 	 f.	none	of	the	above
	 6.	 Define	the	term	FIFO.
	 7.	 Define	the	term	LIFO.
	 8.	 Briefly	describe	the	difference	between	synchronous and asynchronous shift registers.
	 9.	 When	using	the	PLC-5	FFL	instruction,	which	bit	is	set	to	1	when	the	stack	is	full?
	10.	When	using	the	PLC-5	FFU	instruction,	which	bit	is	set	to	1	when	the	stack	is	empty?
	11.	List	two	other	terms	that	could	be	used	to	refer	to	a	file.
	12.	When	using	a	AB	PLC-5	PLC,	what	is	the	maximum	length	of	a	FIFO	stack?
	13.	What	is	the	purpose	of	the	PLC-5	COP	instruction?
	14.	Which	of	the	following	group	of	words	could	not	be	a	file?
	 	 a.	50,	51,	52
	 	 b.	50,	51,	52,	53
	 	 c.	100,	101,	102,	103
	 	 d.	100,	101,	102,	103,	105
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	15.	Briefly	describe	the	function	of	a	word-to-file	move.
	16.	Briefly	describe	the	function	of	a	file-to-word	move.
	17.	Briefly	describe	the	function	of	a	file-to-file	move.
	18.	Which	instruction	is	also	known	as	a	FIFO?	
	 	 a.	synchronous	shift	register
	 	 b.	word-to-file	move
	 	 c.	file-to-word	move
	 	 d.	asynchronous	shift	register
	 	 e.	file-to-file	move
	19.	When	data	is	transferred	into	a	file	using	a	word-to-file	move,	the	data	is	entered	at	the	last	

	unused	word	of	the	file.
	 	 T	 	 F
	20.	The	control	element	for	a	BSL	instruction	requires	how	many	words?	What	information	does	

each	word	hold?
	21.	File	numbers	must	start	with	what	file	indicator	symbol	when	programming	an	Allen-Bradley	

PLC-5,	SLC	500,	or	MicroLogix	PLC?
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Sequencers

Chapter

16
Objectives

After completing this chapter, you should have the knowledge to:
•	 Describe	what	a	sequencer	instruction	does.
•	 Understand	the	basics	of	sequencer	operation.
•	 Define	the	term	mask.

The	sequencer	instruction	transfers	information	from	memory	words	into	output	words.	Sequencer	
instructions	 are	 typically	used	 to	 control	 automatic	 assembly	machines	 that	 have	 consistent	 and	
repeatable	operations.

A programmed sequencer	replaces	the	mechanical	drum	sequencer	that	was	used	in	the	past.	On	the	
mechanical	sequencer,	when	the	drum	cylinder	rotated,	contacts	opened	and	closed	mechanically	to	
control	output	devices.	Figure	16–1	shows	a	mechanical	drum	cylinder	with	pegs	placed	at	varying	
horizontal	positions	for	step	1	of	the	sequence.	When	the	cylinder	rotated,	contacts	that	aligned	with	
the	pegs	closed,	and	contacts	where	no	pegs	existed	remained	open.	In	this	example,	the	presence	of	
a	peg	should	be	thought	of	as	a	1,	or	ON,	and	the	absence	of	a	peg	as	a	0,	or	OFF.

1

2

3

6

5

4
ROTATION

DRUM
CYLINDER

STEP

PEG LOCATIONS

Figure 16–1	Drum	Cylinder

To	program	a	sequencer,	binary	information	is	entered	into	a	series	of	consecutive	memory	words.	
These	consecutive	memory	words	are	referred	to	as	a	file.	Information	from	the	words	in	the	file	is	
transferred	sequentially	to	the	output	word	to	control	the	outputs.
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If	the	first	six	steps	on	the	drum	cylinder	in	Figure	16–1	are	removed	and	flattened	out,	they	appear	
as	illustrated	in	Figure	16–2.

11STEP

EQUIVALENT
SEQUENCER
TABLE

2
3

4

5

6

0 1 1 1 1 0 1 1 0 1 1 0 1 0 0

BIT LOCATIONS

Figure 16–2	Sequencer	Table

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16–3	Output	Lamps

For	step	1,	each	horizontal	location	where	a	peg	was	located	is	now	represented	by	a	1	(ON), and 
the	positions	where	there	were	no	pegs	are	represented	by	a	0	(OFF).

The	six	steps	could	also	be	viewed	as	a	6-word	file	with	each	16-bit	word	representing	a	sequencer	
step.	If	one	enters	different	binary	information	(1s	and	0s)	into	each	word	of	the	file,	the	file	replaces	
the	rotating	drum	cylinder.

To	illustrate	how	this	works,	16	lamps	are	used	for	outputs	(as	shown	in	Figure	16–3).

Each	lamp	represents	one	bit	address	(1	through	16)	of	output	word	25.

Assume,	for	the	sake	of	discussion,	that	the	operator	wants	to	light	the	lamps	in	the	4-step	sequence	
shown	in	Figures	16–4a,	16–4b,	16–4c,	and	16–4d.
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The	bit	addresses	of	the	lamps	that	are	to	be	lit	in	each	step	of	the	sequence	are	written	down	to	as-
sist	in	entering	data	into	a	word	file.

Step 1.	 1,	2,	3,	4
Step 2.	 1,	2,	3,	4—13,	14,	15,	16
Step 3. 1,	2,	3,	4—5,	9—13,	14,	15,	16
Step 4.	 1,	2,	3,	4—5,	8,	9,	12—13,	14,	15,	16

The	next	step	is	to	define	a	word	file	to	store	the	binary	data	required	for	each	step	of	the	sequencer.	
Words	30,	31,	32,	and	33	are	used	for	the	4-word	file.	By	using	the	programmer,	one	enters	binary	
information	(1s	and	0s)	into	each	word	of	the	file	to	reflect	the	desired	lamp	sequence	(Figure	16–5).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16–4a	Sequence	1

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16–4b	Sequence	2

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16–4c	Sequence	3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 16–4d	Sequence	4

0WORD 25

WORD 30

WORD 31

WORD 32

WORD 33

OUTPUT

STEP #1

 #2

 #3

 #4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1

Figure 16–5	Binary	Information	for	Each	Sequencer	Step
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Note: Some PLCs allow the data to be entered using BCD, which speeds the entry process. To use 
this feature, the required binary information for each sequencer step is converted to BCD. The  
information is then entered using a programming device into the word file with four key strokes for 
each word, rather than 16.

Once	the	sequencer	has	been	programmed	and	the	data	entered	into	the	word	file,	 the	sequencer	
is	ready	to	control	the	lamps.	When	the	sequencer	is	activated	and	advanced	to	Step	1,	the	binary	
	information	in	word	30	(Figure	16–5)	is	transferred	into	word	25,	and	the	lamps	light	in	the	pattern	
shown	in	Figure	16–4a.	Advancing	the	sequencer	to	Step	2	transfers	the	data	from	word	31	into	
word	25	for	the	light	sequence	shown	in	Figure	16–4b.	Step	3	transfers	the	data	from	file	word	32	
into	word	25,	and	Step	4	transfers	information	from	word	33	into	word	25.	When	the	last	step	is	
reached,	the	sequencer	can	be	reset	and	sequenced	again.

Depending	on	the	PLC,	sequencers	can	be	programmed	from	a	few	steps	up	to	hundreds	of	steps,	
and	can	control	one	output	word	or	several.

Masks

When	a	sequencer	operates	on	an	entire	output	word,	there	may	be	outputs	associated	with	the	word	
that	the	operator	does	not	want	controlled	by	the	sequencer.	To	prevent	the	sequencer	from	control-
ling	certain	bits	of	an	output	word,	a	mask	word	is	used.	Figure	16–6	shows	how	a	mask	word	works.

1 WORD 025

WORD 30

WORD 31

WORD 32

WORD 33

OUTPUT

FILE

1 1 1 1 0 0 1 1 0 0 1 1 1 1 1

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1WORD 20 MASK1 1 1 1 0 0 1 1 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 1

1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1

WORD 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 16–6	Using	a	Mask	Word

The	mask	word	is	a	means	of	selectively	screening	out	data	from	the	sequencer	word	file	 to	 the	
output	word.	For	each	bit	of	output	word	025	that	the	operator	wants	the	sequencer	to	control,	the	
corresponding	bit	of	mask	word	20	must	be	set	to	1.

In	Figures	16–4a,	16–4b,	16–4c,	and	16–4d,	bits	6,	7,	10,	and	11	are	not	used.	Not	setting	bits	6,	7,	
10,	and	11	of	the	mask	word	to	1	means	that	these	bits	can	be	used	independently	of	the	sequencer.

In	Figure	16–6,	a	fifth	step	is	added	to	the	sequencer.	File	word	34	and	bits	6,	7,	10,	and	11	are	set	
to	1.	With	bits	6,	7,	10,	and	11	of	mask	word	20	set	to	0,	the	data	in	file	word	34	is	screened	out	and	
prevented	from	being	transferred	into	output	word	025.

The	sequencer	works	much	like	the	file-to-word	move	discussed	in	Chapter	15.	For	programmable	con-
trollers	that	don’t	have	a	dedicated	sequencer	instruction,	a	file-to-word	move	instruction	can	be	used.
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aLLEN-BRaDLEY PLC-5, sLC-500, aND  
MICROLOGIX 1000 sEQUENCER INsTRUCTION

The	Allen-Bradley	Sequencer	Output	Instruction	(SQO)	creates	a	sequencer	file	of	information	that	
is	used	to	control	various	output	devices.	When	the	rung	that	contains	the	SQO	instruction	makes	
a	false-to-true	transition,	the	instruction	increments	to	the	next	word	in	the	sequencer	file	and	loads	
the	information	into	the	destination	word.	Figure	16–7	shows	an	SQO	instruction.

SQO

SEQUENCER OUTPUT
FILE #B3:1
MASK 0F0F
DEST. O:012
CONTROL R6:50
LENGTH 6
POSITION 4

EN

DN

I:010

00

Figure 16–7	Sequencer	Output	Instruction	(SQO)

EN ERDN

15 14 13

FD

12 11 10 09 08 07 06 05 04 03 02 01 00

L E N G T H  O F  S E Q U E N C E R  F I L E

P O S I T I O N

Figure 16–8	Three-Word	Element	for	an	SQO	Instruction

The	File	portion	of	the	instruction	is	the	address	of	the	sequencer	file.	You	must	use	the	file	indicator	
symbol	(#)	for	this	address.	In	this	illustration,	the	file	has	been	addressed	#B3:1.	This	address	indicates	
that	a	file	has	been	created	in	the	Bit	File	portion	of	the	processor	memory	starting	with	word	1.	

The	Mask,	as	explained	earlier,	is	a	filter	through	which	all	data	from	the	sequencer	file	must	pass	
	before	being	placed	into	the	destination,	or	output	word.	Allen-Bradley	uses	a	hexadecimal	number	
that	represents	the	bit	pattern	that	is	desired	by	the	mask	for	screening	information,	or	data,	from	the	
sequencer	file.	A	1	must	be	placed	in	the	mask	bit	location	for	information	to	be	passed	through.

The	Destination	is	the	address	of	the	output	word	that	is	to	be	controlled	by	the	sequencer	instruc-
tion.	In	Figure	16–7,	the	destination	address	is	O:012,	or	word	12	of	the	output	image	table.

The	Control	is	the	three-word	element	that	stores	the	status	bits	for	the	sequencer,	as	well	as	the	
length	of	the	sequencer	file	and	the	position	of	the	sequencer.	Figure	16–8	shows	the	three-word	 
element	for	the	SQO	instruction.

The	status	bits	shown	in	word	1	include:
Error Bit—ER	(bit	11)	is	set	to	1	if	the	processor	detects	a	negative	position value or a nega-
tive or zero length	value.
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Done Bit—DN	(bit	13)	is	set	to	1	when	the	last	word	of	the	sequencer	file	has	been	transferred	
into the destination word.
Enable Bit—EN	(bit	15)	is	set	to	1,	or	is	true,	when	the	SQO	instruction	is	enabled.
Found Bit—FD (bit	08)—SQC	instruction	only.	When	the	status	of	all	nonmasked	bits	in	the	
source	address	matches	the	reference	word	bits,	bit	08	is	set	to	1.

The	Length	value	in	the	instruction	is	the	number	of	steps	in	the	sequencer	file	starting	with	Step	1.	
Step	0	is	the	startup,	or	default	value	of	the	sequencer	on	startup.	On	the	next	false-to-true	transition,	
after	the	last	step	of	the	sequencer	has	been	loaded	into	the	destination	word,	the	sequencer	will	be	
reset	to	Step	1.	The	maximum	length	of	a	sequencer	file	is	as	follows:

PLC-5	 1–1000
SLC	500	 1–255
MicroLogix	1000		 1–104

The	Position	indicates	the	step,	or	word,	where	the	sequencer	is	currently	positioned.	The	position	
number	will	increment	with	each	false-to-true	transition	of	the	instruction.	

Figure	16–9	shows	a	programmed	SQO	instruction	with	the	sequencer	file,	mask	word,	destination	
word,	and	the	status	of	the	external	output	devices	when	the	sequencer	instruction	is	on	Step	4.

As	programmed	in	Figure	16–9,	the	sequencer	instruction	transfers	data	from	the	sequencer	file	each	
time	that	input	device	I:010/00	closes.	In	Figure	16–9,	the	sequencer	is	shown	on	Step	4.	Even	though	
the	data	in	word	B3:5	(Step	4)	has	a	1	set	for	bits	0,	1,	4,	6,	8,	9,	11,	12,	and	14,	the	external	output	
devices	associated	with	output	word	O:012	only	show	that	outputs	0,	1,	8,	and	11	are	ON.	The	reason	
outputs	4,	6,	12,	and	14	are	not	ON	is	that	these	bits	are	masked.	

When	a	sequencer	instruction	has	a	mask	address,	data	will	transfer	only	from	the	sequencer	file	to	
the	bits	of	the	destination	word	that	have	a	1	in	the	mask	address.	The	mask	address	in	Figure	16–7	
was	hexadecimal	number	0F0F.	This	address	is	the	binary	equivalent	of	0000	1111	0000	1111.

Another	Allen-Bradley	sequencer	instruction	is	the	Sequencer	Compare	Instruction	(SQC).	This	in-
struction	compares	all	of	the	masked	bits	of	the	source	word	to	the	current	step	of	the	sequencer	file.	
If	all	of	the	bits	match,	bit	08	of	the	control	word	is	set	to	1.	Bit	8	is	the	Found	Bit	(FD).	This	in-
struction	can	be	used	to	compare	the	status	of	machine/equipment	input	devices	with	what	is	normal	
operation.	This	is	a	great	way	to	do	machine	diagnostics.	Figure	16–10	shows	an	SQC		instruction.

Note: The PLC-5 family of processors calls this instruction SQI for Sequencer Input. While the 
initials are different, the operation is the same.

As	programmed,	the	sequencer	file	is	Bit	File	3,	starting	with	word	8	(B3:8).	Because	this	is	a	user-
defined	file,	the	address	is	preceded	with	the	#	symbol.	The	Mask	has	been	set	to	all	1s	by	entering	
the	hexadecimal	number	FFFF.	The	Source	is	listed	as	I:010,	or	word	10	of	the	input	image	table.	
This	is	the	word	that	holds	the	status	of	the	input	devices	for	the	process	equipment.	The	Control	is	
a	three-word	element	in	the	R	(control)	file	that	holds	the	status	bits,	the	length	of	the	sequencer	file,	
and	the	current	position	(step)	of	the	sequencer.	The	Length	of	the	file	is	shown	as	2,	and	current	 
Position	(step)	is	shown	as	0.	
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SQC

SEQUENCER COMPARE
FILE #B3:8
MASK FFFF
SOURCE I:010
CONTROL R6:50
LENGTH 2
POSITION 0

EN

DN

FN

I:012

11

Figure 16–10	Sequencer	Compare	Instruction

SQO

SEQUENCER OUTPUT
FILE #B3:1
MASK 0F0F
DEST. O:012
CONTROL R6:50
LENGTH 6
POSITION 4

EN

DN

I:010

00

0 0 0

15 14 13

0

12

1 0 1

11 10 09

1

08

0 0 0

07 06 05

0

04

0 0 1

03 02 01

1

00

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

15

B3:1
WORD

2

3

4

5

6

7

0
STEP

1

2

3

4

5

6

CURRENT STEP

14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

STATUS OF EXTERNAL OUTPUTS ASSOCIATED WITH O:012

DESTINATION—OUTPUT IMAGE TABLE WORD O:012

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 1 0 0 1 1 0 0 1 0 1

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 1 0 1 1 0 1 1 0 1 0 1 0 0 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

MASK VALUE 0F0F

SEQUENCER OUTPUT FILE #B3:1

Figure 16–9	Sequencer	(SQO)	Instruction

The	 status	 bits	 for	 this	 instruction	 are	 the	 same	 as	 the	 SQO	 instruction	 previously	 discussed	(Fig	- 
ure	16–8),	with	the	addition	of	the	Found	Bit	(FD)	(bit	8).	This	bit	will	be	set	to	1	whenever	the	status	of	
all	of	the	masked	bits	in	the	source	word	matches	the	status	of	the	reference	word	in	the	sequencer	file.
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As an example, let us say that when a given production machine is operating normally and ready to 
produce	Product	A,	the	status	of	the	input	devices	on	the	machine	(ON or OFF)	should	be	indicated	
by	the	data	stored	in	Step	1	of	the	sequencer	file.	When	input	device	I:012/11	is	closed,	making	a	
false-to-true	transition,	the	sequencer	will	increment	and	move	from	the	startup	position	of	0	to	Step	
1.	The	bit	status	of	input	word	I:010	will	be	compared	to	the	status	of	the	16-bit	word	at	Step	1	of	
the	sequencer	file.	Step	1	is	word	B3:9.	

As	shown	in	Figure	16–11,	if	the	bit	status	of	I:010	matches	the	bit	status	of	B3:9,	the	processor	sets	
bit	08	(FD)	of	the	control	word	to	1.	If	bit	08	of	control	word	R6:50	was	programmed	to	an	output	
device,	like	the	indicator	lamp	(O:014/00)	shown	in	Figure	16–11,	the	output	device	would	turn	ON 
when	bit	08	was	set	to	1.	This	light	indicates	that	the	input	devices	of	the	process	machine	are	oper-
ating	correctly	and	the	machinery	is	ready	to	start	producing	Product	A.	If	the	data	of	the	two	words	
does	not	match,	bit	08	will	not	be	set	to	1.	The	processor	will	continue	to	compare	the	status	of	input	
word	I:010	with	the	data	stored	in	Step	1	of	the	sequencer	on	each	program	scan.	When	the	input	 

SQC

SEQUENCER COMPARE
FILE #B3:8
MASK FFFF
SOURCE I:010
CONTROL R6:50
LENGTH 2
POSITION 1

EN

FD

DN

I:012

11

R6:50

08

O:014

00

R6:50

DN

R6:50

08

O:014

01

1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0

B3:8
WORD

9

10

0
STEP

1

2

CURRENT STEP

INPUT WORD I:010

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0

0 0 1 1 0 1 1 0 0 1 0 1 1 0 1 0

MASK VALUE FFFF

INPUT 
IMAGE 
TABLE

Figure 16–11	SQC	Instruction	with	File	Compare
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devices	are	 set	 (ON or OFF)	 correctly	and	match	sequencer	Step	1,	bit	08	will	be	 set	 to	1,	 and	
output	indicator	lamp	O:014/00	will	turn	ON.

Step	2	of	the	sequencer	could	be	loaded	with	the	bit	status	of	the	machine	when	it	is	correctly	set	
up	to	produce	Product	B.	By	opening	and	closing	input	device	I:012/11,	the	sequencer	is	activated	
and	moves	to	Step	2.	The	bit	status	of	Step	2	mirrors	the	status	of	the	input	devices	on	the	machine	
when	it	is	ready	to	produce	Product	B.	If	output	light	O:014/01	comes	ON, the operator knows the 
input	devices	are	operating	correctly	and	he	or	she	can	start	the	process	of	producing	Product	B.	As	
programmed,	output	O:014/01	can	only	be	turned	ON	when	the	DN	bit	(bit	13)	of	the	sequencer	is	
set	to	1,	indicating	that	the	sequencer	is	on	the	last	step	and	the	FD	bit	(bit	8)	has	been	set	to	1.	The	
program	could	have	been	written	by	entering	FD	instead	of	08,	and	13	instead	of	DN.	Either	way,	
output	light	O:014/01	can	only	come	ON	when	the	sequencer	is	on	the	last	step,	Step	2,	and	the	data	
in	sequencer	Step	2	matches	the	status	of	input	word	I:010.	If	the	light	fails	to	come	ON, the opera-
tor	knows	that	one	or	more	of	the	input	devices	are	not	operating	correctly.	Using	the	video	display	
on	the	programming	device,	it	could	be	determined	which	device(s)	are	not	set	properly.

This	instruction	can	be	used	as	a	powerful	diagnostic	tool	to	determine	correct	machine	operation.	
This	instruction	can	be	used	to	compare	input	words	as	well	as	output	words	that	represent	input	and	
output	devices	used	for	the	manufacturing	process.

Another	sequencer	instruction	is	the	Sequencer	Load	(SQL)	instruction.	This	instruction	allows	data	
to	be	loaded	into	a	sequencer	file	from	a	source	address	on	each	false-to-true	transition.	Figure	16–12	
shows	the	Sequencer	Load	instruction,	the	Source	word,	and	the	five-word	sequencer	file.

SQL

SEQUENCER LOAD
FILE #N7:1
SOURCE I:0.0
CONTROL R6:1
LENGTH 5
POSITION 3

EN

DN

I:0.1

0

1 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1

N7:1
WORD

2

3

0
STEP

1

2

CURRENT STEP

SOURCE IS INPUT IMAGE TABLE WORD I:0.0

SEQUENCER LOAD FILE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1

1 1 1 0 1 0 0 1 1 0 1 1 0 0 0 1

4 31 1 0 0 0 1 0 1 1 0 1 1 0 0 1 1

5 40 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0

6 50 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Figure 16–12	Sequencer	Load	(SQL)	Instruction
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As	with	the	other	sequencer	instructions,	the	file	used	for	the	SQL	instruction	is	a	user-defined	file	
and	must	be	preceded	by	the	#	symbol.	The	source	is	shown	as	I:0.0.	This	address	tells	us	that	this	
instruction	has	been	programmed	using	either	an	SLC	500	or	a	MicroLogix	PLC	with	fixed	I/O.	The	
source	word	address	is	Input	Word	0	in	slot	0.	

The	input	that	controls	the	SQL	instruction	has	an	address	of	I:0.1/0,	indicating	that	this	is	word	1,	
slot	0,	bit	0.	If	you	refer	back	to	Chapter	4,	Figure	4–8,	you	will	see	that	bit	0	of	word	1	of	the	input	
image	table	is	input	device	number	16.

On	each	false-to-true	transition	of	input	device	I:0.1/0,	the	current	status	(1	or	0)	of	each	input	device	
represented	by	input	image	word	0	will	be	transferred	into	the	sequencer	file.	Figure	16–12	shows	the	
SQL	instruction	in	Step	3.	The	information	shown	in	the	Source	word	I:0.0	has	been	written	into	Step	
3	of	the	sequencer	file.	On	each	false-to-true	transition,	the	instruction	will	be	incremented	by	1	and	the	
current	status	of	input	devices	in	input	image	table	word	0.0	will	be	written	into	the	file	N7:1.	When	the	
instruction	has	reached	Step	5,	the	DN	bit	(bit	13)	will	be	set	to	1.	On	the	next	false-to-true	transition	
of	the	instruction,	the	Sequencer	Load	instruction	will	recycle	to	Step	1	and	the	status	of	word	0.0	will	
be	loaded	into	the	file,	overwriting	previous	information	that	had	been	loaded	into	Step	1	of	the	file.

In	this	SQL	example,	an	input	word	was	used	for	the	source.	The	source	can	also	be	a	file	address	
or	a	constant	(232,768	to	132,767).	

The	SQL	instruction	is	like	a	word-to-file	move	instruction	and	could	be	used	to	store	numeric	data	
from	RTDs,	thermocouples,	and	the	like.

aLLEN-BRaDLEY LOGIX5000 sEQUENCERs

The	only	difference	between	 the	 sequencer	 instructions	 for	 the	Logix5000	controllers	 and	 those	
just	discussed	is	that	the	Logix5000	controllers	use	array	tags	instead	of	files.	Otherwise,	the	same	
sequencer	instructions	(SQI,	SQO,	SQL)	are	found	in	both.	It	is	worth	noting	that	the	Mask param-
eter	in	the	Logic5000	sequencer	instructions	can	be	entered	as	a	tag	address	or	an	immediate	mask	
value.	If	entered	as	an	immediate	mask	value,	the	programming	software	defaults	to	decimal	values.	
If	you	want	to	enter	a	mask	by	using	another	format	such	as	hexadecimal,	octal,	or	binary,	precede	
the	value	with	the	correct	prefix.	The	prefixes	are	shown	in	Figure	16–13.

Data Type Prefix Example

Hexadecimal 16# 16#0F0F

Octal 8# 8#7417

Binary 2# 2#111100001111

Figure 16–13	Mask	Prefixes

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sequencers  303

Chapter summary
Although	 sequencers,	 like	 other	 data	manipulation	 and	 arithmetic	 instructions,	 are	 programmed	
differently	with	each	PLC,	 the	concepts	are	 the	same.	Data	are	entered	into	a	word	file	for	each	
sequencer	step,	and,	as	the	sequencer	advances	through	the	steps,	binary	information	is	transferred	
sequentially	from	the	word	file	to	the	output	word(s).	Output	word	bits	can	be	masked	so	they	can	
operate	independently	of	the	sequencer.

Review Questions
	 1.	 Briefly	describe	a sequencer.
	 2.	 A	series	of	consecutive	words	is	referred	to	as	a:
	 	 a.	deck
	 	 b.	group
	 	 c.	file
	 	 d.	chain
	 3.	 What	is	the	purpose	of	a	mask word	in	a	sequencer?
	 4.	 What	device	is	commonly	replaced	by	a	sequencer	instruction?
	 5.		Set	up	the	file	in	the	following	figure	so	the	sequencer	will	operate	the	motors	as	shown		 

in	steps	1,	2,	3,	and	4.	Program	the	circuit	so	motors	01015,	01016,	and	01017	cannot	be	 
energized.

1
STEP

MASK
WORD

2

3

4

1STEP

2

3

4

17

01000 01001 01002 01003 01004 01005 01006 01007 01010 01011 01012 01013 01014 01015 01016 01017

16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

M M M M M M M M M M M M M M M M

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



304  Technician’s	Guide	to	Programmable	Controllers

	 6.	 What	is	the	maximum	length	of	a	sequencer	file	when	using	the	SLC	500?
	 7.	 Which	Allen-Bradley	sequencer	instruction	is	like	a	file-to-word	move?
	 8.	 Which	Allen-Bradley	sequencer	instruction	is	like	a	word-to-file	move?
	 9.	 The	maximum	length	of	an	SLC	500	sequencer	file	is	____________________	.
	10.	What	condition	would	cause	bit	08	(FD)	of	an	SQC	instruction	control	word	to	be	set	to	1?
	11.	What	would	be	the	mask	word	bit	status	if	the	mask	was	set	at	FFFF?
	12.	What	would	be	one	use	for	an	SQC	instruction?
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Process Control Signals, 
Scaling, and PID Instructions

ChaPter

17
Objectiv es

After completing this chapter, you should have the knowledge to:
•	 Understand	process	control	signals	and	scaling.
•	 Apply	linear	scaling	equations.
•	 Program	the	Allen-Bradley	SCL	and	SCP	instructions.
•	 Understand	process	controllers.
•	 Understand	and	program	the	Allen-Bradley	PID	instruction.
•	 Program	a	basic	process	control	loop	using	the	Allen-Bradley	SLC	500.

This	chapter	covers	basic	process	control	signals,	linear	scaling	of	analog	process	signals,	and	the	
Allen-Bradley	SLC	500	Scale	(SCL),	Scale	with	Parameters	(SCP),	and	Proportional	Integral	De-
rivative	(PID)	instructions.	Most	of	what	you	will	learn	in	this	chapter	can	be	applied	to	any	PLC	on	
the	market	today,	provided	that	it	has	a	basic	set	of	math	instructions	and	a	PID	instruction.	Because	
PID	instructions	and	the	processes	 that	 they	control	can	be	extremely	complex,	 this	chapter	will	
cover	only	the	basics	elements	of	the	PID	instruction,	its	application,	and	tuning.	

Process control signals and scaling

The	 ability	 to	monitor	 and/or	 control	 a	 process	 depends	 on	having	 accurate	 and	meaningful	 in-
formation	about	 the	process.	This	 information	can	 include	 such	 things	as	 temperature,	pressure,	
level,	flow,	weight,	etc.,	and	is	commonly	referred	to	as	the	process variable (PV). Electrical and 
pneumatic	signals	are	used	to	represent	the	process	variables	and	are	typically	generated	by	field-
mounted	devices	such	as	transducers	and	transmitters.	These	process	signals	are	sent	to	PLCs,	loop	
controllers, displays, and other devices as one of the following standard analog type signals:

Low	DC	electrical	current	(4–20	mA,	0–20	mA,	etc.)
Low	DC	electrical	voltage	(0–10	V	DC,	1–5	V	DC,	1/210	V	DC,	etc.)
Low	air	pressure	signal	(3–15	psig)

A	standard	analog	signal	has	a	value	that	uniquely	corresponds	to	the	process	variable	being	measured.	That	
is,	as	the	measured	process	variable	changes,	so	does	the	analog	signal	representing	it	(refer	to	Figure	17–1).

Figure	17–1	shows	a	graph	of	an	electrical	analog	signal	compared	to	the	process	variable	being	
measured.	The	process	variable	is	shown	along	the	vertical	or	y-axis	and	is	in	degrees	Fahrenheit.	

305
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The electrical analog signal is shown along the horizontal or x-axis	and	is	represented	as	a	low-level	
DC	voltage.	This	low-level	DC	electrical	voltage	is	the	analog	signal	that	would	be	sent	to	the	PLC	
or	other	device	representing	the	measurement	of	the	process	variable,	temperature	in	this	example.	

As	 you	 study	 the	 graph	 in	Figure	 17–1,	 you	will	 notice	 that	 the	 process	 variable	 has	 a	 range	of	 
0	to	2500	°F	and	the	corresponding	electrical	analog	signal	representing	that	process	variable	has	a	
range of	0	to	10	V	DC.	There	is	a	linear	relationship	that	exists	between	these	two	signals,	meaning	
that	when	the	temperature	is	at	50%	of	its	range	(1250	°F),	the	electrical	analog	signal	will	be	at	50%	
of	its	range	(5	V	DC).	Simply	put,	for	every	change	in	the	process	variable	there	is	an	equally	propor-
tional	change	in	the	electrical	analog	signal	representing	that	process	variable.

Before	an	electrical	analog	signal	can	be	used	by	the	PLC	or	other	digital	device,	it	must	first	be	
converted	into	a	corresponding	digital	value.	This	conversion	from	analog	to	digital	is	accomplished	
by	an	Analog-to-Digital	or	A/D	converter	that	is	part	of	the	I/O	hardware	of	the	device.	The	digital	
range that the electrical analog signal is converted into depends on the electrical range and digital 
resolution	of	the	A/D	converter.	No	matter	what	that	range	is,	there	is	again	a	linear	relationship	
between	the	electrical	analog	signal	and	the	corresponding	digital	value,	just	as	there	was	with	the	
process	variable	and	the	electrical	analog	signal	described	above.	Figure	17–2	shows	a	graph	of	an	
electrical	analog	signal	and	the	corresponding	digital	range	of	the	A/D	converter.

In	Figure	17–2	the	electrical	analog	signal	is	shown	on	the	horizontal	or	x-axis	and	has	a	range	of	
0	to	10	V	DC.	The	corresponding	digital	range	is	shown	on	the	vertical	axis	or	y-axis	and	has	a	range	
of	0	to	32,767.	When	the	analog	signal	is	at	50%	of	its	range	(5	V	DC),	the	corresponding	digital	
value	will	be	at	16,384	or	50%	of	the	digital	range.	
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Figure 17–1	Relationship	Between	Analog	Signal	and	Process	Measurement
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Physical Process

Analog Transducer/Transmitter

Analog Signal

PT A/D 00000 PSI00000

Analog Input Module PLC Program/Logic

Figure 17–3	Process	Variable	Signal	(Process	to	PLC)

In	order	for	process	information	to	be	transmitted	and	made	available	for	display	and/or	control,	
there	will	always	be	some	type	of	signal	conversion	that	will	take	place,	and	in	most	cases,	more	
than	one	conversion.	Shown	in	Figure	17–3,	is	an	example	of	a	complete	process	variable	signal	from	
the	output	of	the	transmitter	in	the	field	to	a	PLC	memory	location	that	stores	the	current	process	
variable	measurement	in	engineering	units.	
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Figure 17–2	Relationship	Between	Analog	Signal	and	Digital	Range

As	you	can	see	from	Figure	17–3,	there	are	three	signal	conversions	required	in	order	to	transmit	and	
store	the	process	variable	measurement,	in	engineering	units,	into	a	PLC	memory	location.	The	first	con-
version	converts	the	physical	measurement	into	an	electrical	analog	signal	by	the	transducer/transmitter.	
The	second	conversion	converts	the	electrical	analog	signal	into	a	digital	value	by	the	A/D	converter.	The	
third	conversion	is	required	to	convert	the	digital	output	of	the	A/D	converter	into	a	corresponding	scaled	
value	representative	of	the	engineering	units	being	measured,	pressure	in	this	example.
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To	maintain	measurement	accuracy	of	process	variable	signals,	every	signal	conversion	required	must	
be	done	correctly	and	accurately.	In	most	cases,	this	conversion	is	done	for	us	by	solid-state	and	digital	
solid-state	devices	like	transducers,	transmitters,	and	A/D	converters.	With	these	devices	we	merely	
need	to	make	sure	they	are	programmed	and/or	calibrated	correctly.	On	the	other	hand,	converting	the	
digital	output	of	an	A/D	converter	into	a	value	that	represents	the	engineering	units	being	measured	
will	require	that	we	calculate	the	linear	conversion	between	the	two	ranges	using	linear	interpolation	
or	scaling	formulas	and	program	the	required	math	instructions	into	the	PLC.	Some	PLCs,	like	the	
Allen-Bradley	SLC	500s,	have	special	scaling	instructions	that	can	be	programmed	to	perform	this	
linear	conversion	for	us.	The	Allen-Bradley	SLC	500	scaling	instructions	will	be	covered	later	in	this	
chapter.	Let	us	begin	by	calculating	the	linear	relationship	between	the	output	of	an	A/D	converter	
and	the	corresponding	scaled	value	in	engineering	units	using	linear	interpolation	or	scaling	formulas.

The	following	mathematical	equations	can	be	used	to	express	the	linear	relationship	between	an	input	
value	and	the	resulting	scaled	value	if	the	minimum	and	maximum	ranges	of	both	values	are	known:

Scaled	Value 5	(input value 3 slope)	1 offset

The slope	(sometimes	called	rate)	and	offset	values	in	the	above	equation	can	be	calculated	from	
the following:

Slope 5	(scaled maximum 2 scaled minimum)/(input	maximum	2 input minimum)
Offset	5 scaled minimum 2	(input	minimum	3	slope)

Note: The offset value will always be equal to what the scaled value would be when the input is at zero.

examPLe:  The	following	example	will	use	the	graph	data	shown	in	Figure	17–4	to	calculate	a	
scaled	value	 in	psi.	The	digital	output	 range	of	our	A/D	converter	 is	 shown	on	 the	
horizontal or x-axis	and	has	a	range	of	0	to	32,767.	The	corresponding	scaled	range	for	
the	process	variable	is	shown	on	the	vertical	or	y-axis	and	has	a	range	of	0	to	250	psi.

Figure 17–4	Relationship	Between	Process	Variable	and	Digital	Range
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Let	us	assume	in	our	example	that	the	current	digital	output	value	from	the	A/D	converter	is	18,325.	
What	would	be	the	corresponding	scaled	value	in	psi?

SOLutION:	 First	we	must	calculate	the	slope	(rate)	using	the	following	equation:

	 Slope	5	(scaled	maximum	2	scaled	minimum)/(input	maximum	2	input	minimum)
	 Slope	5	(250	2	0)	/	(32,767	2	0)
	 Slope	5 0.0076296

Next	we	must	determine	what	the	offset	value	should	be.	The	offset	can	be	calculated	
from	the	following	equation:

Offset	5 scaled minimum 2	(input	minimum	3	slope)
Offset	5	0	2	(0	3	0.0076296)
Offset	5 0

Remember	that	 the	offset	value	is	always	equal	 to	what	 the	scaled	value	would	be	
when	the	input	is	at	zero.	In	this	case,	we	know	that	when	the	input	is	zero	the	scaled	
value	will	also	be	zero.	Since	there	is	no	offset	in	our	example,	we	could	choose	to	
omit	the	offset	in	the	scaling	equation.

The	last	step	is	to	calculate	the	scaled	value	for	the	digital	input	value	given	(18,325)	
using	the	scaling	equation:

Scaled	Value	5	(input	value	3	slope)	1 offset
Scaled	Value	5	(18,325	3	0.0076296)	1	0
Scaled	Value	5 139.8 psi

Figure	17–5	shows	the	same	graph	as	in	Figure	17–4,	but	this	time	with	dashed	lines	
showing	the	intercept	of	the	two	ranges	for	the	above	example.
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Figure 17–5	Intercept	of	Two	Ranges
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examPLe:	 This	example	will	use	the	range	data	shown	in	Figure	17–6	to	calculate	a	scaled	value.	
The digital input range is again shown on the horizontal or x-axis	and	this	time	has	a	
range	of	3,277	to	16,384.	The	corresponding	scaled	range	is	shown	on	the	vertical	or	 
y-axis	and	has	a	range	of	0	to	1500	°F.
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Figure 17–6	Relationship	Between	Process	Variable	and	Digital	Range

Let	us	assume	that	the	current	digital	output	value	from	the	A/D	converter	is	10121.	What	would	be	
the	corresponding	scaled	value	in	°F	for	this	value?

SOLutION: 

	Slope	5	(scaled	maximum	2	scaled	minimum)	/	(input	maximum	2	input	minimum)
	 Slope	5	(1,500	2 0)	/	(16,384	2 3,277)
	 Slope	5 0.1144426

	Offset	5 scaled minimum 2 (input	minimum	3	slope)
	 Offset	5	0	2	(3,277	3	0.1144426)
	 Offset	5 2375.0284

	Scaled	Value	5	(input	value	3	slope)	1 offset
	 Scaled	Value	5	(10,121	3	0.1144426)	1 2375.0284
	 Scaled	Value	5 783.25 °F

After	working	through	the	previous	two	examples	you	can	see	that	once	the	slope (rate)	and	offset val-
ues	have	been	determined	based	on	the	digital	input	and	scaled	ranges,	we	can	calculate	a	correspond-
ing	scaled	value	for	any	input	value	given.	To	further	illustrate	this,	let	us	take	the	slope	and	offset	
values	just	calculated	and	use	them	in	our	PLC	program	logic	so	that	we	will	have	a	scaled	value	rep-
resenting	°F	for	any	digital	output	value	given	to	us	from	the	A/D	converter.	Figure	17–7a	shows	our	
PLC	logic	using	basic	math	instructions.	The	output	of	the	A/D	converter	is	stored	in	PLC	memory	
address	I:1.0	and	the	corresponding	scaled	value	will	be	stored	in	floating	point	element	address	F8:0.	
Figure	17–7b	shows	the	same	math	operation	using	the	Allen-Bradley	Compute	instruction.
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Analog	signals	from	process	variables	are	not	 the	only	 type	of	analog	signals	found	in	 industry.	
There	are	analog	signals	that	are	used	to	control	devices	such	as	valves,	motors,	and	pumps.	An	ana-
log	signal	that	is	used	to	control	a	device	that	has	a	direct	influence	on	the	process	being	controlled	
is called the control variable (CV),	or	final	control	element.	The	control	variable	is	also	referred	to	
as an analog output signal, and more correctly so if it does not have a direct influence on the process 
being	controlled,	as	is	the	case	with	an	analog	display.

The	same	analog	signal	conversions	described	previously	for	process	variable	signals	also	apply	to	
control	variable	signals,	but	only	in	reverse.	This	time	a	digital	value	is	converted	to	a	standard	elec-
trical	analog	signal	by	means	of	a	Digital-to-Analog	or	D/A	converter.	The	electrical	analog	signal	

CPT
COMPUTE

DEST. = F8:0

EXPRESSION:
(I:1.0 × 0.1144426) + –375.0284

Scale Digital Range into Engineering Range

Figure 17–7b		Analog	Scaling	Using	Compute	Instruction

MUL
Multiply A × B = DEST.

A = I:1.0

B = 0.1144426

DEST. = F8:0

ADD
ADD A + B = DEST.

A = F8:0

B = –375.0284

DEST. = F8:0

Scale Digital Range into Engineering Range

Figure 17–7a		Analog	Scaling	Using	Basic	Math	Instructions
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Final Control Element (Valve)

00000%

Analog Output ModulePLC Program/Logic

00000 D/A

FV

Analog Signal

Figure 17–8		Control	Variable	Signal	(PLC	to	Process)

is	then	converted	into	physical	motion	by	the	final	control	element	device,	or	in	the	case	of	a	digital	
display,	back	into	a	digital	value.	Shown	in	Figure	17–8	is	an	example	of	a	complete	control	vari-
able	signal	from	a	PLC	memory	location	to	the	final	control	element	that	is	controlling	the	process.

Many	times	when	working	with	analog	output	signals	 in	a	PLC,	you	will	be	required	to	convert	
a	decimal	value	in	engineering	units,	such	as	valve	position	in	%	or	speed	in	ft/min,	into	a	digital	
value	required	by	the	D/A	converter	to	output	the	proper	electrical	analog	signal.	The	same	linear	
interpolation	or	scaling	equation	and	math	instructions	used	previously	can	also	be	used	here.	The	
following	example	will	help	to	illustrate	this.

examPLe:	 In	this	example	an	internal	PLC	memory	word	contains	the	position	of	a	process	con-
trol	valve	(0	to	100%)	that	we	desire	to	control	with	an	electrical	analog	output	signal.	
We	have	determined	that	the	required	electrical	analog	signal	to	the	valve	is	a	4	to	20	
mA	current	signal	and	the	corresponding	digital	range	required	by	the	D/A	converter	
to	produce	such	a	signal	is	6,242	to	31,208.	We	will	again	use	a	graph	to	help	illustrate	
the two	data	ranges	we	will	be	working	with	(see	Figure	17–9).	The	scaled	range	of	
the valve is shown on the horizontal or x-axis	and	has	a	range	of	0	to	100%.	The	digital	
input	range	to	the	D/A	converter	to	produce	the	4	to	20	mA	signal	is	shown	on	the	
vertical or y-axis	and	has	a	range	of	6,242	to	31,208.	This	will	also	be	our	scaled	range	
in	the	scaling	formulas.

If	we	assume	that	 the	current	position	the	valve	needs	 to	be	at	 is	32%,	what	would	be	 the	
corresponding	digital	value	 required	by	 the	D/A	converter	 to	produce	 the	 required	analog	
current	signal?

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Process	Control	Signals,	Scaling,	and	PID	Instructions  313

0
6,242

31,208

D
ig

ita
l R

an
ge

 o
f D

/A
 C

on
ve

rt
er

18,725

50 (12 mA)

Control Variable Signal (%)

100 (20 mA)
x

y

Figure 17–9		Relationship	Between	Scaled	Range	and	Digital	Range

SOLutION: 

	 Slope	5	(scaled	maximum	2	scaled	minimum)	/	(input	maximum	2	input	minimum)
	 Slope	5	(31,208	2	6,242)	/	(100	2 0)
	 Slope	5 249.66

	 Offset	5 scaled minimum 2	(input	minimum	3	slope)
	 Offset	5	6,242	2	(0	3	249.66)
	 Offset	5 6,242

	 Scaled	Value	5	(input	value	3	slope)	1 offset
	 Scaled	Value	5	(32	3	249.66)	1	6,242
	 Scaled	Value	5 14,231.12

The	value	of	14,231	would	be	moved	into	the	location	in	PLC	memory	that	is	used	by	the	D/A	con-
verter	to	output	the	desired	analog	signal.

In	the	above	example	what	would	be	the	analog	current	signal,	in	milliamps,	to	the	control	valve?

SOLutION:

	 Milliamps	(mA)	5	(((20	2	4)	/	(31,208	2	6,242))	*	(14,231	2	6,242))	1	4
 milliamps 5 9.12 mA

 or

	 milliamps	(mA)	5	((20	2	4)	*	.32)	1	4
 milliamps 5 9.12 mA
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You	will	find	that	when	working	with	analog	signals	it	is	quite	common	to	be	required	to	convert	an-
alog	signals	from	one	form	or	value	into	another.	Understanding	the	scaling	formulas	and		examples	
presented	here	will	allow	you	to	make	such	conversions.	You	will	also	find	that	the	preceding	equa-
tions	will	be	helpful	when	you	want	to	find,	for	example,	what	the	analog	signal	reading	would	or	
should	be	on	a	digital	multi-meter	for	a	given	process	or	control	signal	value.	

allen-Bradley slc 500 scale (scl) instruction

The	Scale	(SCL)	instruction	is	an	output-type	instruction	used	to	produce	a	scaled	value	that	has	a	
	linear	relationship	to	that	of	an	input	value.	The	instruction	takes	a	source	value	and	then,	based	on	the	
slope (rate)	and	offset values you enter into the instruction, makes a linear conversion and stores the 
result	into	a	destination	address.	This	instruction	is	often	used	with	analog	input	and	output	signals	to	
convert	the	signals	for	use	within	your	PLC	program.	Figure	17–10	shows	the	Scale	(SCL)	instruction.

SCL
SCALE

Source          N7:0

Rate [  /10,000] 25,000

Offset 125

DEST. N7:1

Figure 17–10		Allen-Bradley	Scale	Instruction

Whenever	the	instruction	is	true,	the	value	at	the	source	address	is	multiplied	by	the	slope	(rate)	
value.	The	result	is	then	added	to	the	offset	value	and	placed	into	the	destination	address	specified.	
The	four	parameters	that	must	be	entered	into	the	instruction	are	outlined	below:

Source—A	word	 address	 containing	 the	 value	 to	 be	 scaled.	 Example:	 integer	word	N7:0,	
analog	input	word	I:1.0,	etc.
Rate—The slope (rate)	can	be	a	program	constant	or	a	word	address.	Most	often	 this	 is	a	
program	constant	that	you	have	calculated.	The	rate	value	you	enter,	either	positive	or	nega-
tive,	is	divided	by	10,000	prior	to	being	applied	to	the	source.	The	rate	value	is	limited	to	a	
range of 232,768/10,000	 to	32,767/10,000	or	more	correctly	a	 rate	of	23.2768	 to	3.2767.	
For	example,	if	your	calculated	slope	(rate)	is	1.5,	then	enter	15,000	into	the	Rate	parameter.
Offset—The offset can	 be	 a	 program	 constant	 or	 a	word	 address.	Like	 the	 rate,	 this	 is	 also	
most	often	a	program	constant	that	you	have	calculated.	Valid	range	for	the	offset	is232,768	to	
32,767.
Destination—A	word	address	that	the	scaled	value	will	be	placed	in.	Example:	integer	word	
N7:1,	analog	output	word	O:2.0,	etc.

All	parameters,	including	the	Source	and	Destination,	are	limited	in	value	to	an	integer	range		between	
232,768	and	32,767.
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Note: Any time an underflow or overflow occurs in the destination word, minor error bit S:5/0 will 
be set. At the end of the program scan, the processor checks the minor error bit and if set, will cause a 
major error to be declared and the processor will fault. It must be noted that this overflow can occur 
before the offset is added. To prevent this problem, check to ensure that the minimum and maximum 
input values expected will not cause an underflow or overflow condition.

examPLe:	 This	example	illustrates	the	use	of	the	Scale	(SCL)	instruction	to	scale	the	output	of	a	
PID	instruction	into	the	appropriate	digital	range	needed	by	an	analog	output	module’s	
D/A	converter.	

In	this	example,	the	PID	instruction	can	output	a	digital	value	in	the	range	of	0	to	16,383,	which	is	
equal	to	0	to	100%.	The	analog	output	to	be	controlled	by	the	PID	instruction	is	a	4	to	20	mA	signal.	
In	order	to	produce	a	4	to	20	mA	analog	signal,	the	analog	output	module’s	D/A	converter	must	
receive	a	digital	value	in	the	range	of	6,242	to	31,208.	

The	Scale	(SCL)	instruction	can	be	used	in	this	example	to	convert	the	0	to	16,383	output	of	the	
PID	instruction	into	a	corresponding	range	of	6,242	to	31,208	needed	by	the	analog	output	module’s	
D/A	converter,	which	in	turn	will	produce	the	required	4	to	20	mA	analog	current	output	signal.	
Before	we	can	program	the	Scale	(SCL)	instruction,	we	must	first	calculate	what	the	slope	(rate)	
and offset values	need	to	be.	

SOLutION: 

	Slope	5	(scaled	maximum	2	scaled	minimum)	/	(input	maximum	2	input	minimum)
	 Slope	5	(31,208	2	6,242)	/	(16,383	2 0)
	 Slope	5 1.5239

	Offset	5 scaled minimum 2	(input	minimum	3	slope)
		 Offset	5	6,242	2	(0	3	1.5239)
	 Offset	5 6,242

Figure	17–11	shows	the	Scale	(SCL)	instruction	programmed	with	the	slope (rate)	and	offset values 
just	calculated.	The	PLC	output	address	of	the	PID	instruction	is	N7:1	and	the	PLC	address	of	the	
analog	output	module’s	D/A	converter	is	O:2.0.

SCL
SCALE

Source          N7:1

Rate [ /10,000] 15,239

Offset 6,242

DEST. O:2.0

Analog  D/A Converter Scaled Value

Figure 17–11		Programmed	Allen-Bradley	Scale	Instruction

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



316  Technician’s	Guide	to	Programmable	Controllers

SCP
SCALE W/PARAMETERS

Input I:1.0

Input Min.          0

Input Max. 32,767

Scaled Min. 0

Scaled Max. 1,000

Scaled Output N7:0

 Figure 17–12		Allen-Bradley	Scale	with	Parameters	Instruction

The	Scale	(SCL)	instruction	has	limited	applications	when	scaling	operations	are	being	performed.	
This is due in part to the range limits of the slope	(rate)	and	offset	values,	integer-only	values,	and	
the		potential	math	overflow	problem.	It	is	the	author’s	belief	that	the	Scale	(SCL)	instruction	was	
 intended to provide an easy means of scaling the various analog input and output ranges so that 
they	would	be	compatible	with	the	input	and	output	range	requirements	of	the	PID	instruction.	For	
this	reason	the	author	recommends	that	the	Scale	(SCL)	instruction	be	used	in	limited	applications.

allen-Bradley slc 500 scale 
with Parameters (scP) instruction

The	Scale	with	Parameters	(SCP)	instruction	is	an	output-type	instruction	used	to	produce	a	scaled	
value	that	has	a	linear	relationship	between	an	input	value	and	the	scaling	parameters	entered	into	
the	instruction.	The	SCP	instruction	is	a	true	linear	scaling	instruction	and	does	not	share	the	same	
	limitations	as	that	of	the	Scale	(SCL)	instruction.	The	instruction	takes	a	source	value	and,	based	
on	the	minimum	and	maximum	ranges	entered	into	the	instruction,	makes	a	linear	conversion	and	
stores	the	result	into	a	destination	address.	If	you	recall,	the	Scale	(SCL)	instruction	required	that	
we calculate the slope	(rate)	and	offset	values,	whereas	the	SCP	takes	the	minimum	and	maximum	
ranges	you	enter	into	the	instruction	and	performs	all	required	calculations	to	produce	a	scaled	out-
put	value.	You	simply	enter	into	the	instruction	the	minimum	and	maximum	ranges	of	both	the	input	
and	output,	and	the	instruction	does	the	rest.	This	instruction	supports	both	integer	and	floating	point	
values.	Figure	17–12	shows	the	SCP	instruction.

When	one	is	programming	the	SCP	instruction,	six	parameters	are	required	to	be	entered	into	the	
instruction.	The	following	is	a	brief	description	of	these	six	parameters.

Input—A	word	address	containing	the	value	to	be	scaled.	Example:	integer	word	N7:0,	float-
ing	point	element	F8:0,	analog	input	word	I:1.0,	etc.
Input Minimum and Input Maximum—These two values determine the range of data that 
can	appear	in	the	Input	parameter.	The	values	entered	into	these	two	parameters	can	be	a	word	
address,	floating	point	element,	or	a	constant	value,	either	integer	or	floating	point.	Most	often	
the	Input	Minimum	and	Input	Maximum	parameters	are	entered	as	constants.
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Scaled Minimum and Scaled Maximum—These two values determine the range of data that 
appears	in	the	Scaled	Output	parameter.	The	values	entered	into	these	two	parameters	can	be	a	
word	address,	floating	point	element,	or	a	constant	value,	either	integer	or	floating	point.	Most	
often	the	Scaled	Minimum	and	Scaled	Maximum	parameters	are	entered	as	constants.
Scaled Output—A	word	address	or	floating	point	data	element	containing	the	scaled	value.	
Example:	integer	word	N7:0,	floating	point	element	F8:0,	analog	output	word	O:1.0,	etc.

examPLe: This	example	will	illustrate	the	use	of	the	SCP	instruction	to	scale	the	digital	input	of	
an electrical analog input signal associated with a temperature transmitter into engi-
neering	units	representative	of	the	process	being	measured,	in	this	case	temperature	in	
degrees	Fahrenheit.	

Figure	 17–13	 shows	 the	 temperature	 transmitter,	 analog	 input	 module,	 and	 A/D	
conversion	of	the	analog	signal.	After	studying	Figure	17–13,	you	can	see	that	the	
	temperature	 transmitter	has	an	effective	measurement	 range	of	200	 to	2500	°F	for	
a	 corresponding	4	 to	20	mA	analog	 signal.	The	analog	 input	module	 converts	 the	
electrical	signal	into	an	equivalent	digital	value	through	the	onboard	A/D	converter.	
The	digital	range	equivalent	to	that	of	the	4	to	20	mA	analog	signal	in	our	example	
is	3,277	to	16,384.

Physical Process

Analog Transmitter
Eng. Range = 200–25008F
Analog Signal 4–20 mA

Analog Signal
 4–20 mA

TT A/D 00000 00000 8F
(SCP)

Scale with
Parameters
Instruction

Analog Input Module
4–20 mA

3,277–16,384

PLC Program/Logic

Figure 17–13		Process	Variable	Signal	(Temperature)

With	the	information	from	Figure	17–13,	we	are	able	to	enter	into	the	SCP	instruc-
tion	the	required	values	for	 the	minimum	and	maximum	ranges	for	both	 the	output	
of	 the A/D	converter	and	 the	measurement	 range	of	 the	 temperature	 transmitter,	as	
shown	in	Figure	17–14.	The	output	from	the	A/D	converter	is	located	in	I:1.0	and	we	
have	chosen	to	store	the	scaled	value,	in	degrees	Fahrenheit,	in	floating	point	element	
	address	F8:0.
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SCP
SCALE W/PARAMETERS

Input I:1.0

Input Min.          3,277

Input Max. 16,384

Scaled Min. 200

Scaled Max. 2,500

Scaled Output F8:0

Scaled Analog Signal (Temperature)

Figure 17–14		Programming	for	Scale	with	Parameters	Instruction

In	summary,	the	Scale	with	Parameters	(SCP)	instruction	can	be	used	any	time	you	have	a	need	to	
perform	a	linear	conversion	between	two	values.

allen-Bradley slc 500 Pid instruction

Before	we	cover	the	PID	instruction,	let	us	first	look	at	what	the	elements	of	a	process	control	sys-
tem	are,	what	a	process	control	loop	is,	and	how	we	might	use	the	PID	instruction.

Process	control	can	be	defined	as	a	means	by	which	we	regulate	a	process.	The	heating/cooling	
system	that	maintains	or	regulates	your	home’s	temperature	can	be	thought	of	as	a	process	control	
system.	The	internal	temperature	of	your	home	is	the	process	under	control	and	the	means	to	regu-
late	or	control	that	temperature	is	your	home’s	furnace	or	air	conditioner.	The	hot	water	heater	in	
your	home	is	also	a	process	system.	Almost	every	day	of	our	lives	we	are	affected	by	some	means	
of	process	control.	Figure	17–15	illustrates	the	basic	elements	of	a	process	control	system.

In	the	system	shown	in	Figure	17–15,	a	level	transmitter	(LT),	a	level	controller	(LC),	and	a	control	
valve	(LV)	are	all	used	to	control	the	level	of	the	liquid	in	the	storage	tank.	The	process	control	sys-
tem	is	designed	to	maintain	the	height	of	the	liquid	in	the	storage	tank	at	some	predetermined	level	
from	the	bottom	of	the	tank.	This	predetermined	level	is	called	the	process	setpoint	or	setpoint (SP). 
It	will	be	assumed	that	the	rate	at	which	the	liquid	enters	the	tank	varies.	The	level	transmitter	is	the	
measurement device that converts the physical level in the tank into a standard analog signal, also 
referred to as the process variable (PV). The process controller reads the level measurement and 
compares	it	against	the	setpoint	or	desired	level.	If	the	level	in	the	tank	is	not	at	the	desired	level,	
then the process controller produces a series of corrective actions that are sent to the control valve 
in	the	outlet	pipe	in	an	attempt	to	bring	the	process	under	control.	The	control	valve	is	referred	to	
as the control variable (CV) or	final	control	element.	The	control	variable	or	final	control	element	
is a	device	that	when	operated	exerts	a	direct	influence	on	the	process	under	control.	Devices	such	
as	control	valves,	motors,	fans,	and	pumps	are	all	examples	of	final	control	elements.
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As	you	can	see	from	the	above	example,	a	process	control	system	consists	of	four	key	elements:	the	
process,	the	measurement	or	process	variable	(PV),	the	process	controller,	and	the	final	control	ele-
ment	or	control	variable	(CV).	When	all	four	elements	are	present,	it	is	considered	a	closed process 
control loop.	Figure	17–16	shows	a	simple	block	diagram	of	a	closed	process	control	loop.

The term closed loop control comes from the fact that you are continuously measuring the process 
under	control	to	determine	if	corrective	action	is	required	to	maintain	the	process	within	the	desired	
limits	(setpoint),	whereas	with	open	loop	control	there	is	no	continuous	measurement	and	correc-
tive	action	taking	place	to	maintain	the	process	within	limits.	For	example,	in	Figure	17–15,	if	you	
were	to	manually	adjust	the	valve	position	based	on	current	conditions,	there	would	be	no	guarantee	
that	the	level	would	remain	the	same	in	the	tank	because	of	possible	changing	conditions.	It	is	like	
operating	blind.	

The	process	controller	can	be	a	stand-alone	device	or	a	software	instruction	that	is	part	of	a	larger	
control	 system.	A	process	controller	has	analog	 inputs	and	outputs	 that	are	used	 to	monitor	and	
control	the	process.	In	addition	to	the	process	connections,	the	process	controller	will	also	have	a	
means	to	enter	the	desired	setpoint,	as	well	as	the	ability	to	make	adjustments	to	various	parameters	
that	are	designed	to	tune	the	process	controller	for	a	given	process.	Some	process	controllers	that	
are	used	for	temperature	control	may	have	the	analog	output	converted	to	a	time	proportioning	on/
off	output	for	driving	a	heater	or	cooling	unit.	

Level Control Valve
(Final Control Element)

Control Variable (CV)
Analog Output Signal

Level
Controller

(LC)

Level Transmitter

Setpoint (SP)

Process Under Control
(LEVEL)

Process Variable (PV)
Analog Input Signal

LV

LT

Figure 17–15		Elements	of	a	Process	Control	Loop	(System)
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The	 remainder	of	 this	 chapter	 is	devoted	 to	describing	 the	Allen-Bradley	SLC	500	Proportional	
Integral	Derivative	(PID)	instruction.	The	PID	instruction	is	a	software	type	of	closed	loop	process	
controller,	like	that	described	above.

The	Allen-Bradley	SLC	500	PID	 instruction	 is	an	output	 instruction	 that	can	be	operated	 in	 the	
timed mode or selectable timed interrupt (STI) mode.	In	the	timed	mode,	the	instruction	updates	
its	output	at	a	rate	selected	by	the	user.	In	the	STI	mode,	the	instruction	is	placed	in	an	STI	subrou-
tine	program	file	and	its	output	is	updated	each	time	that	the	instruction	is	scanned	by	the	processor.	
The	timed	mode	is	more	commonly	used	than	the	STI	mode.	In	the	timed	mode,	you	are	not	required	
to	create	a	separate	STI	subroutine	program	file	for	your	PID	instructions.	More	important,	the	in-
struction’s	update	time	can	be	easily	changed	without	further	impacting	other	PID	instructions	as	
would	be	the	case	in	the	STI	mode.	

Note: When used in the STI mode, the STI time interval and the PID loop update rate parameter 
must be the same, in order for the PID instruction to operate properly.

Figure 17–16		Block	Diagram	of	Process	Control	Loop

PROCESS
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The	PID	instruction	controls	its	output	based	on	the	error	between	the	setpoint	and	process	vari-
able	using	a	mathematical	equation.	The	greater	the	error	between	the	setpoint	and	process	variable	
input,	the	greater	the	output	signal	will	change,	and	vice	versa.	The	PID	instruction	will	automati-
cally	control	the	output	signal,	up	or	down,	until	the	error	between	the	setpoint	and	process	variable	
is	nearly	gone.

The	Allen-Bradley	SLC	500	PID	instruction	uses	the	standard	PID	equation	with	dependent	gains.	
This	is	the	standard	PID	equation	used	in	almost	all	process	controllers.	The	equation	is	shown	below:

	 output	(CV)	5	Kc	[(E)	11/Ti	e	(E)	dt	1 Td ?	D(PV)	/	dt]	1	bias

 where
 Kc 5	Proportional	Gain	Constant	(Unitless)
	 1/Ti	5	Reset	Gain	(Repeats/Minute)	or	Integral
 Td 5	Rate	Gain	(Minutes)	or	Derivative
 E 5	Error	(SP	2	PV	or	PV	2	SP)

The	Proportional,	Integral,	and	Derivative	gains	are	constants	entered	into	the	instruction	at	the	time	
that the instruction is implemented and are dependent upon the nature of the process and system 
components	under	control.	We	will	cover	these	constants	in	greater	detail	a	little	later	in	this	chap-
ter.	But	first,	let	us	take	a	look	at	the	instruction.	Shown	in	Figure	17–17	is	the	Allen-Bradley	PID	
instruction.

PID
PID

Control Block          N12:0

Process Variable N7:0

Control Variable N7:1

Control Block Length 23

PID Control Block

Setup Screen

Figure 17–17		Allen-Bradley	SLC	500	PID	Instruction

Normally,	you	program	the	PID	instruction	as	shown	in	Figure	17–17,	without	conditional	logic.	
If	the	rung	is	false,	the	output	will	remain	in	its	last	state	and	the	integral	term	will	reset.	You	will	
notice	that	the	PID	instruction	has	three	parameters	that	must	be	entered	into	the	instruction	at	the	
time	of	programming.	These	three	parameters	are	described	as	follows:

Control Block—The	control	block	is	a	file	that	stores	the	required	data	to	operate	the	in-
struction.	The	file	 length	 is	 fixed	 at	 23	words	 and	 is	 an	 integer	 file	 address.	 The	 address	
	entered	in	the	control	block	should	be	the	starting	word	of	the	integer	file	that	will	make	up	
the	control	block.	For	example,	if	you	enter	N12:0	then	the	PID	instruction	will	allocate	and	
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use	elements	N12:0	through	N12:22	for	control	of	the	instruction.	These	words	should	not	
be	used	for	any	other	purpose	in	your	program.	A	good	programming	practice	would	be	to	
create	an	integer	file	dedicated	to	your	PID	control	blocks,	such	as	N12.	Figure	17–18	shows	
the	23-word	control	block	layout.

PID Status BitsWORD 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

23

22

PID Sub Error Code

Setpoint (SP)

Gain Kc

Reset Ti

Rate Td

Feed Forward Bias

Setpoint (SP) Max.

Setpoint (SP) Min.

Deadband

Internal Use Only

Output Max.

Output Min.

Loop Update

Scaled Process Variable

Scaled Error

Output CV%

MSW Integral Sum

LSW Integral Sum

Internal Use Only

Internal Use Only

Internal Use Only

Internal Use Only

Figure 17–18		Allen-Bradley	SLC	500	PID	Instruction	Control	Block	Layout

Process Variable (PV)—The	process	variable	parameter	is	an	integer	word	address	that	con-
tains	the	measurement	of	the	process	under	control.	This	word	address	could	be	the	location	
in	PLC	memory	where	the	analog	input	module	stores	the	value	from	the	A/D	converter.	The	
numerical	scale	for	the	process	variable	parameter	is	0	to	16,383.
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Control Variable (CV)—The	 control	 variable	 parameter	 is	 an	 integer	 word	 address	 that	
stores	 the	output	of	 the	PID	instruction.	The	output	of	 the	PID	instruction	has	a	numerical	
range	from	0	to	16,383,	where	16,383	equals	100%.	The	PID	output	value	would	most	likely	
be	scaled	to	a	value	required	by	the	D/A	converter	of	an	analog	output	module	 in	order	 to	
produce	the		required	analog	signal	to	the	final	control	element.

The	numerical	scale	for	both	the	process	variable	and	control	variable	is	0	to	16,383	for	the	PID	in-
struction.	You	will	most	likely	be	required	to	scale	your	analog	I/O	ranges	within	the	above	numeri-
cal	scale	required	by	the	PID	instruction.	To	do	this,	use	the	Scale	(SCL)	instruction.	The	following	
two	examples	will	help	illustrate	this:

examPLe:	 		If	a	4	to	20	mA	analog	input	signal	has	a	digital	range	of	3,277	to	16,384,	then	it	must	
first	be	scaled	into	the	range	of	0	to	16,383	to	be	used	as	the	process	variable	in	the	
PID	instruction.

SOLutION:	 		Calculate	 the	 slope	 (rate)	 and	offset	 values	 for	 the	 analog	 input	 range	of	3,277	 to	
1,63,684	and	the	PID	process	variable	range	of	0	to	16,383.

Slope	5	(scaled	maximum	2 scaled	minimum)	/	(input	maximum	2 input	minimum)
Slope	5	(16,383	2 0)/(16,384	2 3,277)
Slope	5 1.2499

Offset	5 scaled minimum 2 (input	minimum	3	slope)
Offset	5	0	2 (3,277	3	1.2499)
Offset	524,096

Enter the slope	(rate)	and	offset	values	into	the	Scale	(SCL)	instruction	as	shown	in	
Figure	17–19.

SCL
SCALE

Source          I:1.0

Rate [ /10,000] 12,499

Offset 4,096

DEST. N7:0

Scaled PID Process Variable (PV)

Figure 17–19		Scaling	PID	Process	Variable	with	Scale	Instruction

examPLe:	 		If	the	analog	output	of	a	D/A	converter	is	4	to	20	mA	and	requires	a	digital	input	in	
the	range	of	6,242	to	31,208	to	produce	it,	then	the	0	to	16,383	control	variable	output	
of	the	PID	instruction	must	be	scaled	across	this	range	of	6,242	to	31,208.

SOLutION: 		Calculate	the	slope	(rate)	and	offset values	for	the	analog	output	range	of	6,242	to	
31,208	and	the	PID	control	variable	range	of	0	to	16,383.
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Slope	5	(scaled	maximum	–	scaled	minimum)	/	(input	maximum	–	input	minimum)
Slope	5	(31,208	2 6,242)	/	(16,383	2 0)
Slope	5 1.5239

Offset	5 scaled minimum 2 (input	minimum	3	slope)
Offset	5	6,242	2 (0	3	1.5239)
Offset	5 6,242

Enter the slope	(rate)	and	offset	values	into	the	Scale	(SCL)	instruction	as	shown	in	
Figure	17–20.

SCL
SCALE

Source          N7:1

Rate [ /10,000] 15,239

Offset 6,242

DEST. O:2.0

Scaled PID Control Variable (CV)

Figure 17–20		Scaling	PID	Control	Variable	with	Scale	Instruction

Note: The PID instruction is an integer-only instruction and will not allow you to enter floating 
point values for any of its parameters. If you attempt to move a floating point value into one of the 
 parameters using ladder logic, then a floating point-to-integer conversion occurs.

After	you	have	entered	the	Control	Block,	Process	Variable,	and	Control	Variable	parameters	into	
the	PID	instruction,	a	PID	Setup	Screen	will	appear	that	allows	you	to	enter	additional	parameters	
to	complete	the	configuration	of	the	instruction.	The	PID	Setup	Screen	is	shown	in	Figure	17–21	
and	is	divided	into	four	groups	or	parameter	types,	Tuning,	Inputs,	Output,	and	Flags.	The	Tuning,	
	Inputs,	and	Output	parameters	are	additional	parameters	that	you	must	configure	in	order	for	the	
PID	instruction	to	properly	control	your	process.	The	Flags	section,	located	on	the	far	right	of	the	
Setup	Screen,	displays	the	various	status	and	control	flags	associated	with	the	PID	instruction.

The	following	is	a	brief	description	of	each	of	the	additional	configuration	parameters	and	status/	
control	flags	found	on	the	PID	Setup	Screen:

Pid tuning Parameters
The	PID	Tuning	area	of	the	Setup	Screen	allows	you	to	configure	the	PID	instruction	for	the	mode	
of	operation	and	how	the	PID	controller	reacts	and	regulates	your	process	loop.

Controller Gain Kc—Controller	Gain	is	the	proportional	gain	of	the	controller,	ranging	from	
0	to	32,767	(0	to	3276.7).	If	the	RG	status	bit	is	set	to	1,	then	the	valid	range	is	0	to	327.67	and	
is	only	valid	on	the	5/03	and	higher	processors.	
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Figure 17–21		PID	Instruction	Setup	Screen

Reset Ti—Reset	is	 the	integral	action,	ranging	from	0	to	32,767	(0	to	3276.7)	minutes	per	
repeat.	If	the	RG	status	bit	is	set	to	1,	then	the	valid	range	is	0	to	327.67	and	is	only	valid	on	
the	5/03	and	higher	processors.	

Note: The RG status bit will be covered later under the status/control flags section.

Rate Td—Rate	is	the	derivative	action,	ranging	from	0	to	32,767	(0	to	327.67)	minutes.	This	
word	is	not	affected	by	the	reset	and	gain	range	(RG)	bit.
Loop Update—Loop	Update	time	is	the	time	interval	between	PID	calculations.	The	valid	
range	is	1	to	1024	(0.01	to	10.24)	second	intervals.	You	should	enter	a	loop	update	time	that	
is	five	to	ten	times	faster	than	the	natural	period	of	the	loop.	The	faster	the	process	responds	to	
changes,	the	faster	the	loop	update	time	needs	to	be.	When	in	the	STI	mode,	this	value	needs	
to	be	set	equal	to	the	STI	interval	time.
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A more detailed description, along with several methods to determine the settings for the  Controller 
Gain Kc, Reset Ti, Rate Td, and Loop Update parameters,	will	be	given	later	in	this	chapter	under	
“PID	Loop	Tuning.”

Control Mode—The	Control	Mode	parameter	toggles	between	Reverse Acting (E	5 SP	2 PV)	
and Forward Acting (E	5 PV	2 SP).	Reversing	acting	will	cause	the	control	variable	output	
of	the	PID	instruction	to	decrease	when	the	process	variable	is	greater	than	the	setpoint	(for	
example,	a	heating	application).	Forward	acting	will	cause	the	control	variable	output	of	the	
PID	instruction	to	increase	when	the	process	variable	is	greater	than	the	setpoint	(e.g.,	in	a	
cooling	application).	Set	this	parameter	to	match	your	type	of	process	loop	application.
PID Control (AM)—The	PID	Control	parameter	toggles	between	Auto	and	Manual	modes.	
When	auto	mode	is	active	(AM	bit	5	0),	the	PID	equation	is	controlling	the	output.	Once	in	
manual	mode	(AM	bit	5	1),	the	output	of	the	PID	instruction	can	be	set	by	the	user	through	
the	Setup	Screen	by	changing	the	value	of	the	Output	(CV)%	parameter;	or,	in	the	case	of	a	
manual		control	station,	through	instructions	in	your	PLC	ladder	program	by	directly	moving	
a	value	between	0	and	16,383	into	the	element	address	specified	for	the	output	Control Vari-
able (CV)	parameter.	The	auto/manual (AM)	control	bit	can	be	set	or	cleared	by	instruction	in	
your	ladder	program,	as	in	the	case	of	a	manual	control	station.	When	you	switch	from	auto	
to	manual	mode,	the	output	of	the	PID	instruction	remains	in	its	last	state.	You	should	set	this	
parameter	to	Manual	when	programing	the	PID	instruction	until	you	are	ready	to	begin	tuning	
the	PID	instruction.
Time Mode—Time	Mode	toggles	between	Timed	and	STI	mode	of	operation.	Select	the	STI	
mode	only	if	the	PID	instruction	is	programmed	in	an	STI	interrupt	subroutine	file.	When	in	
the	Timed	mode	the	PID	instruction	updates	its	output	at	the	rate	specified	in	the	Loop	Update	
parameter.

Note: When the timed mode is selected, your processor scan time should be at least five to ten 
times faster than the loop update time to prevent timing inaccuracies or disturbances.

Limit Output CV—The	Limit	Output	CV	parameter	 toggles	between	Yes	and	No.	 If	Yes	
is		selected,	then	the	output	of	the	PID	instruction	is	limited	to	the	minimum	and	maximum	
ranges	as	determined	by	the	Output	Min	CV%	and	Output	Max	CV%	parameters.
Deadband—The	Deadband	parameter	is	a	nonnegative	value	that,	when	entered,	extends	a	
deadband	above	and	below	the	setpoint	by	the	value	you	enter.	The	deadband	only	takes	ef-
fect	after	the	process	variable	has	entered	the	deadband	and	passed	through	the	setpoint.	This	
deadband	sets	a	range	above	and	below	the	setpoint	where	the	PID	output	does	not	change	as	
long	as	the	error	remains	within	this	range.	The	deadband	helps	to	reduce	the	effects	of	“hunt-
ing”	in	many	applications.	The	valid	range	is	based	on	whether	scaling	has	been	implemented	
or	not.	If	scaling	has	been	implemented,	then	the	range	is	0	to	Setpoint	MAX	Smax	parameter;	
otherwise	the	range	is	0	to	16,383.

Pid input Parameters
The	PID	Input	parameters	area	of	the	Setup	Screen	allows	you	to	configure	the	PID	instruction	for	
the	process	setpoint	and	its	scaled	range.

Setpoint SP—The	Setpoint	SP	parameter	is	the	desired	control	point	of	the	process	variable.	
Enter	a	value	between	0	and	16,383	or	within	the	valid	scaled	range	as	defined	by	the		Setpoint	
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MIN	 Smin	 and	 Setpoint	 MAX	 Smax	 parameters	 below.	 This	 parameter	 can	 be	 changed	
through	your	ladder	program	by	moving	a	value	into	the	third	word	of	the	control	block;	see	
Figure	17–18.	
Setpoint MAX Smax—If	the	Setpoint	SP	parameter	 is	 to	be	entered	into	and	displayed	in	
 engineering units, then the value entered into this parameter should correspond to the value, 
in engineering	units,	when	the	process	variable	is	at	maximum	(16,383).	For	example,	if	the	
process	variable	has	a	full	scale	range	of	2200	(0)	to	1500	°F	(16,383),	then	enter	1,500	into	
this	parameter.	The	valid	range	is	1/232,767	(if	you	are	using	the	SLC	5/02	the	valid	range	
is 1/216,383).	
Setpoint MIN Smin—If	 the	Setpoint	SP	parameter	 is	 to	 be	 entered	 into	 and	displayed	 in	
engineering units, then the value entered into this parameter should correspond to the value, 
in	engineering	units,	when	the	process	variable	is	at	minimum	(0).	For	example,	if	the	pro-
cess	variable	has	a	full	scale	range	of	2200	(0)	to	1500	°F	(16,383),	 then	enter	2200	into	
this		parameter.	The	valid	range	is	1/232,767	(if	you	are	using	the	SLC	5/02	the	valid	range	
is 216383	to	116382).

Note: Entering scaling values in the Setpoint	MAX	Smax and Setpoint	MIN	Smin parameters 
allows you to enter the setpoint value in engineering units. In addition, the Deadband, Error, 
and Process Variable PV parameters will also be displayed in the same engineering units. The 
process variable input still must be in the range of 0 to 16,383.

Process Variable PV—The	Scaled	Process	Variable	parameter	is	for	display	only.	This	pa-
rameter	will	display	 the	scaled	value	of	 the	process	variable	 input.	 If	 scaling	 is	not	 imple-
mented,	then	the	range	is	0	to	16,383.

Pid output Parameters
The	PID	Output	parameters	area	of	the	Setup	Screen	allows	you	to	configure	the	PID	instruction		
output	limits	and	manual	control.

Control Output CV%—The	Control	Output	CV%	parameter	displays	the	actual	0	to	16,383	
control	variable	output	in	terms	of	percent	(0	to	100%).	When	the	PID	instruction	is	in	auto	
mode,	this	parameter	is	for	display	only.	When	the	PID	instruction	is	in	manual	mode,	this	
	parameter	will	allow	you	to	change	the	%	output	of	the	control	variable	of	the	PID	instruction	
through	the	PID	Setup	Screen	only.	If	you	are	using	a	manual	control	station,	then	change	the	
output	of	the	PID	instruction	through	the	manual	control	station	and	not	through	this		parameter.	
This	parameter	is	widely	used	during	the	tuning	of	the	PID	instruction	and	control	loop.
Output Max CV%—When	the	Limit	Output	CV	parameter	is	set	to	Yes, the value you enter 
into	this	parameter	will	determine	the	maximum	output	percent	that	the	PID	control	variable	
will	obtain.	If	the	control	variable	should	exceed	this	value,	then	the	control	variable	will	be	
clamped	to	the	value	you	entered	into	this	parameter	and	the	Output	Alarm,	Upper	Limit		status	
bit	will	be	set	to	1.

If	the	Limit	Output	CV	parameter	is	set	to	No, then the value you enter into this parameter 
will	only	determine	when	the	Output	Alarm,	Upper	Limit	status	bit	will	be	set	to	1.
Output Min CV%—When	the	Limit	Output	CV	parameter	is	set	to	Yes, the value you enter 
into	this	parameter	will	determine	the	minimum	output	percent	that	the	PID	control	variable	
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will	obtain.	If	the	control	variable	should	drop	below	this	value,	the	control	variable	will	be	
clamped	 to	 the	 value	 you	 entered	 into	 this	 parameter	 and	 the	Output	Alarm,	Lower	Limit	
	status	bit	will	be	set	to	1.

If	the	Limit	Output	CV	parameter	is	set	to	No, the value you enter into this parameter will 
only	determine	when	the	Output	Alarm,	Lower	Limit	status	bit	will	be	set	to	1.
Scaled Error SE—The	Scaled	Error	parameter	is	for	display	only.	This	parameter	will		display	
the	calculated	error	based	on	the	mode	selected	(E	5 PV	2 SP	or	E	5 SP	2 PV).	If	scaling	
is	implemented,	then	the	value	displayed	will	equal	the	scaled	range	of	the	process	variable	
input;	otherwise	the	range	is	0	to	16,383.

Pid status & control Flags
When	one	is	viewing	the	PID	Setup	Screen,	shown	in	Figure	17–21,	the	far	right	column	or	group	
displays	the	various	status	and	control	flag	indicators	associated	with	the	PID	instruction.	The	status	
and		control	flags	are	bit-level	addresses	that	are	located	in	the	first	word	of	the	PID	control	block;	
see	Figure	17–18.	The	following	is	a	brief	description	of	each	of	the	status	and	control	flags:

Time Mode Bit TM (bit 0)—This	bit	specifies	the	PID	mode,	Timed	or	STI.	When	set,	the	
Timed	mode	is	in	effect.	The	status	of	this	bit	was	determined	at	the	time	that	you	set	up	the	
PID	instruction	as	described	above.
Auto/Manual Bit AM (bit 1)—This	bit	specifies	whether	the	PID	instruction	is	in	automatic	
or	manual	control.	When	set,	the	PID	instruction	is	selected	for	manual	operation.	This	bit	can	
be	set	or	cleared	by	instructions	programmed	in	your	ladder	logic.	See	PID	Control	parameter	
above	for	further	information	on	the	uses	of	this	bit.
Control Mode Bit CM (bit 2)—This	bit	specifies	the	PID	control	mode,	Forward or Reverse 
acting.	When	set,	forward	acting	mode	is	in	effect.	The	condition	of	this	bit	was	determined	at	
the	time	that	you	set	up	the	PID	instruction	as	described	above.
Output Limiting Enabled Bit OL (bit 3)—This	bit	specifies	whether	you	have	selected	to	
limit	 the	control	variable	output	of	 the	PID	 instruction.	When	set,	output	 limiting	 is	 in	ef-
fect.	The	status	of	this	bit	was	determined	at	the	time	that	you	set	up	the	PID	instruction	as	
	described	above.
Reset and Gain Range Enhancement Bit RG (bit 4)—This	bit	is	specific	to	the	SLC	5/03,	
and	higher	processors	only.	When	this	bit	is	set,	it	will	cause	the	Reset	Minute/Repeat	value	
and	 the	gain	multiplier	 to	be	enhanced	by	a	 factor	of	10	 (reset	multiplier	of	0.01	and	gain	
multiplier	 of	 0.01).	 See	Controller	Gain	Kc	 and	Reset	 Ti	 parameters	 above	 for	 additional	
	information	on	the	effects	of	this	bit.
Scale Setpoint Flag SC (bit 5)—This	 status	bit	 is	 set	 to	one	 (1)	when	 setpoint	 scaling	 to	
 engineering units is not	being	performed.	The	status	of	this	bit	was	determined	at	the	time	
that  you	 set	 up	 the	PID	 instruction	 scaling	option	under	 the	PID	 Input	Parameters	 section	
above.
Loop Update Time Too Fast TF (bit 6)—This	bit	 is	set	by	the	PID	algorithm	if	 the	loop	
	update	time	you	have	entered	cannot	be	achieved.	This	condition	is	due	to	scan	time	limita-
tions.	If	this	bit	is	set,	try	to	increase	your	Loop	Update	parameter;	this	will	slow	down	the	
interval	time	between	calculations.	If	you	are	not	able	to	update	the	PID	loop	at	a	slower	rate,	
then	move	the	PID	instruction	into	an	STI	interrupt	routine.
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Derivative Action Bit DA (bit 7)—When	the	Derivative	Action	Bit	is	set	to	one	(1),	then	the	
Derivative	(Rate)	calculation	will	be	based	on	the	error	instead	of	the	process	variable.	This	
bit	is	specific	only	to	the	SLC	5/03	and	higher	processors.	
DB, Set When Error Is in DB (bit 8)—This	status	bit	is	set	to	1	when	the	process	variable	is	
within	the	zero	crossing	deadband	range	of	the	Setpoint.
Output Alarm, Upper Limit UL (bit 9)—This	status	bit	is	set	to	1	whenever	the	PID	control	
variable	output	exceeds	the	upper	limit	as	set	by	the	Output	(CV)	%	Max	parameter.
Output Alarm, Lower Limit LL (bit 10)—This	status	bit	is	set	to	1	whenever	the	PID	con-
trol	variable	output	is	less	than	the	lower	limit	as	set	by	the	Output	(CV)	%	Min	parameter.
Setpoint Out of Range SP (bit 11)—This	status	bit	is	set	to	1	whenever	the	value	entered	into	
the	Setpoint	SP	parameter	is	outside	the	range	of	the	minimum	and	maximum	scaled	values.	
If	scaling	is	not	used,	then	the	range	is	0	to	16,383.
Process Variable Out of Range PV (Bit 12)—This	status	bit	is	set	to	1	whenever	the	process	
variable	input	is	outside	the	range	of	0	to	16,383.
PID Done DN (bit 13)—The	PID	Done	bit	is	set	On	during	the	scans	in	which	the	PID	equa-
tion	is	calculated.	The	PID	equation	is	calculated	at	the	loop	update	time.
PID Enable EN (bit 15)—The	 PID	 Enable	 bit	 is	 set	 On	 whenever	 the	 rung	 of	 the	 PID	
	instruction	is	true	or	enabled.

After	studying	the	list	of	configuration	parameters	and	status/control	flags	associated	with	the	PID	
instruction,	you	should	begin	to	have	a	better	understanding	of	 the	instruction	and	its	configura-
tion.	Of	all	the	PLC	instructions,	the	PID	instruction	is	the	most	complex	and	requires	the	greatest	
knowledge	to	configure	and	implement	properly.

Pid Program example
The	following	example	should	help	you	gain	a	better	understanding	of	the	application	and	configu-
ration	of	the	PID	instruction.	Figure	17–22	shows	a	basic	process	control	loop	for	which	we	will	
program	the	Allen-Bradley	SLC	500	PID	instruction.

The	process	under	control	in	Figure	17–22	is	the	outlet	flow	rate	of	a	liquid	storage	tank.	The	flow	
rate	is	controlled	by	a	flow	control	valve	located	in	the	outlet	pipe.	One	of	the	first	steps	involved	in	
programming	any	PID	type	controller	is	to	identify	the	system	components	that	will	be	used	to	mon-
itor	and	control	the	process.	In	our	example,	we	will	begin	by	first	identifying	the	process	variable,	
then	the	control	variable,	and	last	we	will	identify	any	auxiliary	control	requirements	(manual,	etc.).

Process Variable (PV)  The	process	variable	under	control	in	our	example	is	the	liquid	flow,	as	
measured	in	gallons	per	minute	(gpm)	by	the	flow	transmitter	located	in	the	outlet	pipe.	The	flow	
transmitter is designed to continuously measure the flow rate and output a corresponding electrical 
analog	signal	that	is	representative	of	that	flow	rate.	The	analog	signal	is	wired	to	our	PLC	analog	
input	module.	Notice	in	Figure	17–22	that	 the	flow	transmitter	has	a	range	of	0	to	200	gpm	and	
converts	 that	 range	 into	a	4	 to	20	mA	electrical	analog	signal.	The	PLC	analog	 input	module	 is	
designed	to	convert	the	4	to	20	mA	analog	signal,	by	way	of	the	A/D	converter,	into	a	digital	value	
with	a	range	of	3,277	to	16,384.
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Figure 17–22		PID	Program	Example	Control	Loop

Remember	from	our	study	of	the	PID	instruction,	the	range	of	the	process	variable	input	is	from	0	
to	16,383.	In	order	to	use	the	analog	input	value	from	the	flow	transmitter	as	the	process	variable	
input	to	the	PID	instruction,	we	must	first	scale	the	analog	input	into	a	range	of	0	to	16,383	that	is	
	required	by	the	PID	instruction.	We	will	use	the	Scale	(SCL)	instruction	to	scale	the	analog	input	
signal.	Before	we	can	program	the	Scale	(SCL)	we	must	first	calculate	the	slope	(rate)	and	offset 
values, as follows:

	 Slope	5	(scaled	maximum	2 scaled	minimum)	/	(input	maximum	2 input	minimum)
	 Slope	5	(16,383	2 0)	/	(16,384	2 3,277)
	 Slope	5 1.2499
	 Offset	5 scaled minimum 2 (input	minimum	3	slope)
	 Offset	5	0	2 (3,277	3	1.2499)
	 Offset	5 24,096

Enter	the	slope	and	offset	values	into	the	Scale	(SCL)	instruction	as	shown	in	Figure	17–23.

In	the	Scale	(SCL)	instruction	in	Figure	17–23,	we	are	just	assuming	that	the	analog	input	value	
from	the	A/D	converter	 is	being	placed	 into	PLC	Input	word	I:1.0.	This	address	 location	would	
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SCL
SCALE

Source          I:1.0

Rate [ /10,000] 12,499

Offset 4,096

DEST. N7:0

Scaled Process Variable

Figure 17–23		Scaling	Process	Variable	for	PID	Instruction

	depend	 upon	 the	 type	 of	 analog	 input	module	 being	 used	 and	 its	 physical	 location	 in	 the	 PLC	
	system.	We	have	chosen	to	store	 the	scaled	value	in	 integer	element	address	N7:0.	We	can	now	
use N7:0	as	the	process	variable	input	parameter	in	our	PID	instruction.

Control Variable (CV)  The	control	variable	or	final	control	element	in	our	example	is	the	flow	
control	valve	located	in	the	outlet	pipe;	refer	back	to	Figure	17–22.	The	flow	of	liquid	in	the	outlet	
pipe	 is	determined	by	 the	position	or	opening	of	 the	flow	control	valve.	The	position	of	 the	flow	
control	valve	in	our	example	is	determined	by	an	analog	current	signal	(4	to	20	mA)	that	is	generated	
by	the	PLC.

The	digital	range	required	to	produce	a	4	to	20	mA	analog	signal	by	the	D/A	converter	in	the	analog	
output	module	of	our	PLC	is	6,242	to	31,208.	Again,	if	you	remember	from	our	study	of	the	PID	
instruction,	the	output	range	of	the	control	variable	of	the	PID	instruction	is	0	to	16,383.	We	must	
then	scale	the	output	of	the	PID	instruction	into	a	range	that	will	produce	the	required	4	to	20	mA	
analog	signal	needed	to	control	the	valve.	To	scale	the	analog	output	signal	of	the	PID	instruction	
we	will	again	use	the	Scale	(SCL)	instruction.	Before	we	can	program	the	Scale	(SCL)	we	must	first	
calculate the slope	(rate)	and	offset values, as follows:

	 Slope	5	(scaled	maximum	2 scaled	minimum)	/	(input	maximum	2 input	minimum)
	 Slope	5	(31,208	2 6,242)	/	(16,383	2 0)
	 Slope	5 1.5239

	 Offset	5 scaled minimum 2 (input	minimum	3	slope)
	 Offset	5	6,242	2	(0	3 1.5239)
	 Offset	5 6,242

Enter the slope	(rate)	and	offset	values	into	the	Scale	(SCL)	instruction	as	shown	in	Figure	17–24.

In	Figure	17–24,	we	are	just	assuming	that	the	output	address	O:2.0	is	the	word	location	in	PLC	
memory	for	the	analog	output	D/A	converter.	This	address	location	would	depend	upon	the	type	of	
analog	output	module	being	used	and	its	physical	location	in	the	PLC	system.	We	have	chosen	to	
use	the	integer	element	address	N7:1	as	the	control	variable	output	of	our	PID	instruction.	
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As	you	can	see,	we	were	required	to	program	two	Scale	(SCL)	instructions	into	our	PLC	program	
in	order	for	the	analog	input	and	output	signals	to	be	compatible	with	our	PID	instruction’s	process	
variable	input	and	control	variable	output	parameters.

auxiliary Control Functions  The	last	 item	to	identify	in	setting	up	our	PID	instruction	is	 to	
determine	if	there	are	any	auxiliary	control	requirements	required	for	our	process	loop.	If	you	refer	
back	to	Figure	17–22,	you	will	notice	that	there	is	a	manual	control	station	that	can	be	used	by	an	
operator	to	manually	control	the	flow	control	valve.	The	manual	control	station	in	our	example	con-
sists	of	a	two-position	selector	switch	(Auto/Manual)	and	a	0	to	10	V	DC	potentiometer	to	control	
valve	position.

The	two-position	selector	switch	is	wired	to	our	PLC	as	digital	input	(I:3/0).	When	the	input	is	true 
or on	the	selector	switch	is	in	the	Manual	position.	

The	0	to	10	V	DC	potentiometer	is	wired	to	our	PLC	as	an	analog	input	(input	word	address	I:1.1).	
The	0	to	10	V	DC	output	range	of	the	potentiometer	corresponds	to	a	valve	position	of	0	to	100%.	
Before	we	can	use	the	analog	input	from	the	potentiometer	to	manually	control	the	valve	through	
our	PID	instruction,	we	must	first	determine	what	the	digital	output	range	is	for	a	0	to	10	V	DC	
analog	signal	and	see	if	that	range	is	compatible	with	the	PID	manual	control	feature.	The	digital	
output	range	for	a	0	to	10	V	DC	analog	input	signal	from	the	A/D	converter	is	0	to	32,767.	If	you	
recall	from	our	study	of	the	PID	instruction,	in	order	to	control	the	PID	instruction	in	manual	re-
quires	that	we	set	the	Auto/Manual	(AM)	bit	to	1	and	write	a	value	directly	into	the	control	variable	
output	address	of	the	PID	instruction	that	corresponds	to	the	desired	output.	The	valid	range	that	
can	be	written	to	the	control	variable	output	address	of	the	PID	instruction	is	0	to	16,383,	which	
corresponds	to	0	to	100%	output.	

As you can see, we will need to convert, or scale, the analog input from the potentiometer that has a 
range	of	0	to	32,767	into	a	corresponding	range	of	0	to	16,383	in	order	for	it	to	be	compatible	with	
the	PID	instruction’s	control	variable	output.	To	scale	the	analog	input	signal	from	the	potentiom-
eter,	we	will	again	use	the	Allen-Bradley	Scale	(SCL)	instruction.	Before	we	can	program	the	Scale	

SCL
SCALE

Source         N7:1

Rate [  /10,000] 15,239

Offset 6,242

DEST. O:2.0

Scaled Control Variable

Figure 17–24		Scaling	Control	Variable	Output	of	PID	Instruction
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In	Figure	17–25,	we	have	chosen	the	integer	element	address	N7:2	to	store	the	scaled	value	that	
represents	the	desired	position	of	the	flow	control	valve	when	in	manual	mode	as	determined	by	the	
remote	potentiometer.

Now	that	we	have	scaled	the	process	variable,	control	variable,	and	manual	control	analog	signals,	
it	is	time	to	program	and	configure	the	PID	instruction	for	our	example	application.	The	completed	
PLC	program	logic	is	shown	in	Figure	17–26.

In	Rung	1	of	Figure	17–26,	we	have	programmed	the	Scale	(SCL)	instruction	that	is	required	to	
convert	the	analog	input	signal	from	the	flow	transmitter	(I:1.0)	into	a	digital	value	with	a	range	that	
is	compatible	with	the	PID	instruction’s	process	variable	input	parameter	(N7:0).	

The	Scale	(SCL)	instruction	in	Rung	2,	as	you	recall,	is	required	to	scale	the	analog	input	signal	
from	the	manual	potentiometer	(I:1.1)	into	a	digital	range	that	is	compatible	with	the	PID	instruc-
tion’s	control	variable	output	parameter	(N7:1).	Once	in	manual	(see	Rung	3),	the	position	of	the	
flow	control	valve	in	the	outlet	pipe	is	determined	by	the	position	of	the	potentiometer,	thus	giving	
the	operator	manual	control	over	the	valve.

SCL
SCALE

Source         I:1.1

Rate [ /10,000] 5,000

Offset 0

DEST. N7:2

Scaled Manual Control Signal

Figure 17–25	Scaling	Manual	Control	Signal	for	Use	with	PID	Instruction	

(SCL),	we	must	first	calculate	the	slope	(rate)	and	offset values, as follows:

	 Slope	5	(scaled	maximum	2 scaled	minimum)	/	(input	maximum	2 input	minimum)
	 Slope	5	(16,383	2 0)	/	(32,767	2 0)
	 Slope	5 0.5

	 Offset	5 scaled minimum 2 (input	minimum	3	slope)
	 Offset	5	0	2 (0	3	0.5)
	 Offset	5 0

Enter the slope	(rate)	and	offset	values	into	the	Scale	(SCL)	instruction	as	shown	in	Figure	17–25.
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Scaled Process Variable

Move Manual Control Signal to PID Output (CV)

Scaled Manual Control Signal

Setup Screen

PID Control Block

Scaled Control Variable

RUNG 1

RUNG 2

RUNG 3

RUNG 4

MANUAL CONTROL STATION
AUTO/MANUAL SS (MANUAL)

I:3/0

PID INSTRUCTION
AM CONTROL BIT

N12:0/1

SCL
SCALE

Source           I:1.0

Rate [ /10,000] 12,499

Offset 24,096

DEST. N7:0

SCL
SCALE

Source           I:1.1

Rate [ /10,000] 5,000

Offset 0

DEST. N7:2

SCL
SCALE

Source           N7:1

Rate [ /10,000] 15,239

Offset 6,242

DEST. O:2.0

PID
PID

Control Block N12:0

Process Variable   N7:0

Control Variable   N7:1

Control Block Length      23

MOV
MOVE

Source:           N7:2

Destination: N7:1

Figure 17–26		Program	Logic	for	PID	Example
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When	manual	mode	 is	 selected	 by	 the	 operator,	 Input	 I:3/0	 true,	Rung	 3	 sets	 the	Auto/Manual	
AM	flag	(N12:0/1)	in	the	PID	instruction	to	true, or on, and	allows	the	output	of	the	Scale	(SCL)	
	instruction	(N7:2)	located	in	Rung	2	to	be	moved	into	the	PID	instruction’s	control	variable	output	
parameter.	

In	Rung	4,	we	have	programmed	the	PID	instruction	with	a	Control	Block	integer	address	of	N12:0,	
process	variable	input	as	N7:0,	and	control	variable	output	as	N7:1.	We	have	also	programmed	our	
third	Scale	(SCL)	instruction	that	is	required	to	convert	the	control	variable	output	(N7:1)	of	the	
PID	instruction	into	a	digital	range	that	will	produce	the	4	to	20	mA	analog	output	signal	(O:2.0)	to	
the	flow	control	valve.	

After	 the	 PID	 instruction	 has	 been	 entered	 into	 Rung	 3,	 the	 remainder	 of	 the	 PID	 	instruction	
	configuration	 is	 done	 through	 the	 PID	 instruction’s	 Setup	 Screen.	 The	 PID	 Setup	 Screen	 in	
	Figure 17–27	shows	the	parameter	settings	that	we	have	entered	for	our	example	application.	The	
	following	is	a	brief	description	of	the	parameter	settings.

Figure 17–27		PID	Configuration	Parameters	Setup	Screen
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The	values	entered	into	the	Controller	Gain	Kc,	Reset	Term	Ti,	Rate	Term	Rd,	and	Loop	Update	
Time	parameters	are	just	arbitrary	values.	The	real	values	will	be	determined	at	the	time	the	PID	
	instruction	and	control	loop	is	tuned.	See	the	following	PID	Loop	Tuning	section	for	assistance	in	
determining	these	values.

The	 Control	Mode	 parameter	 is	 set	 to	 E	5 SP	2 PV	 (reverse acting).	Whenever	 the	 flow	 rate	
(process	variable)	 in	 the	outlet	pipe	drops	below	the	setpoint,	we	want	 the	output	of	 the	PID	in-
struction	to		increase,	causing	the	control	valve	to	open	in	an	attempt	to	increase	the	flow	(reverse 
 acting).	The	PID	Control	(Auto/Manual)	parameter	is	determined	by	the	output	(N12:0/1)	in	Rung	3	
(see	Figure 17–26).	The	Timed	Mode	parameter	is	set	to	“Timed”	because	the	PID	instruction	is	
programmed	in	a	standard	PLC	program	file	and	not	in	an	STI	interrupt	subroutine.	We	have	chosen	
not	to	limit	the	output	of	the	PID	instruction,	so	we	have	set	the	Limit	Output	CV	parameter	to	No.	
With	the	Limit	Output	CV	parameter	set	to	No,	the	output	of	the	PID	instruction	will	be	allowed	to	
operate	from	0	to	100%.	We	have	chosen	no	deadband	around	the	setpoint,	so	the	Deadband	param-
eter	was	set	to	0,	or	no	deadband.

The	value	in	the	Setpoint	SP	parameter	is	just	an	arbitrary	value	that	we	have	set	at	50,	or	50	gpm.	
The	 value	 you	 enter	 into	 this	 parameter	 is	 your	 desired	flow	 rate	 in	 gpm.	You	 can	 change	 this	
	parameter	through	PLC	program	logic	if	desired.	The	Setpoint	MAX	Smax	and	Setpoint	MIN	Smin	
	parameters	are	set	to	correspond	to	the	engineering	range	of	the	process	variable	input,	which	in	
our case	is	the	flow	transmitter.	The	flow	transmitter	has	an	engineering	measurement	range	of	0	to	
200	gpm.

The	Output	Max	CV(%)	and	Output	Min	CV(%)	parameters	have	been	set	to	95	and	5	respectively.	
Anytime	the	PID	output	falls	below	5%	or	above	95%,	the	corresponding	output	alarm	flags	will	be	
set	in	the	PID	instruction	status	word.	We	can	use	these	status	flags	as	desired	in	our	PLC	program.	
They	have	no	effect	on	the	actual	PID	output.

Now	that	we	have	programmed	and	configured	our	PID	instruction	for	our	example	application,	
the	 last	and	final	 step	would	be	 to	adjust	 the	 tuning	parameters	 in	our	PID	 instruction	based	on	
the		characteristics	that	would	be	unique	to	our	process	control	loop.	The	next	section	will	cover	in	
greater	detail	the	loop	tuning	parameters	and	several	procedures	for	determining	their	values.

Pid looP tuning

Tuning	 a	PID	 loop	 is	 the	 process	 of	 selecting	 values	 for	 the	PID	 tuning	parameters	 (Controller	
Gain	Kc,	Reset	Ti	,	Rate	Td,	and	Loop	Update	Time) so	that	the	PID	instruction	is	able	to	quickly	
eliminate	an	error	between	the	setpoint	and	process	variable	without	causing	excessive	fluctuations	
in	the	process	loop	under	control.	PID	loop	tuning	is	probably	one	of	the	most	difficult	procedures	
to	master	and	requires	a	knowledge	of	general	process	control,	process	controllers,	and	the	process	
under	control.	Many	people	would	say	that	tuning	a	PID	loop	is	an	art.	Although	not	completely	
true,	I	would	agree	that	to	properly	tune	a	PID	loop	does	require	the	knowledge	and	skill	that	can	
only	come	from	experience.	If	you	thoroughly	understand	what	each	tuning	parameter	does,	you	
are	more	likely	to	be	able	to	tune	a	PID	loop	with	confidence	and	success.	Before	we	discuss	the	
techniques	that	can	be	used	to	tune	PID	loops,	let	us	first	review	each	of	the	PID	instruction	tuning	
	parameters.
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Controller Gain Kc, or	 proportional	 gain,	 refers	 to	 the	 amount	 by	which	 the	 error	 signal	will	
	influence	controller	output.	In	other	words,	the	controller	gain	changes	the	output	of	the	controller	
by	an	amount	proportional	to	the	error	between	the	setpoint	and	the	process	variable.	The	higher	the	
gain,	the	greater	the	output	will	change	for	a	given	error.	Too	much	gain	may	cause	the	control	loop	
to	become	unstable	or	oscillate.	You	should	always	try	to	start	out	with	a	small	controller	gain	value	
and	then	gradually	increase	it	while	observing	how	the	process	loop	responds	to	an	upset.	

The Reset Ti, or integral	gain	parameter,	 is	used	 to	change	 the	output	of	 the	controller	by	a	 rate	
	proportional	to	the	error	over	time.	The	Reset	Ti	parameter	is	expressed	in	minutes	per	repeat.	This	
means	that	as	 long	as	 there	 is	an	error	between	the	setpoint	and	the	process	variable,	 the	 integral	
action	will	add	to	the	controller’s	proportional	output	by	repeating	the	previous	proportional	action	
over	the	time,	and	at	the	frequency	specified	in	the	Reset	Ti	parameter.	As	long	as	there	is	an	error,	
the	integral	action	will	continue	to	add	to	the	output	of	the	PID	instruction	until	the	process	variable	
equals	or	nearly	equals	 (with	deadband)	 the	 setpoint.	Some	 integral	gain	 is	 required	 to	eliminate	
the	effects	of	offset,	which	can	occur	with	proportional-only	control.	Keep	in	mind	that	the	integral	
	action	is		expressed	in	minutes	per	repeat,	so	the	larger	the	value,	the	longer	the	time	between	repeats.	
See	Figure	17–28	for	an	illustration	of	both	proportional	and	integral	response	to	a	step	change.

Step Change Made
PV No Longer Equals SP

Controller Gain Kc
Contribution

Controller Gain Kc
Added by Integral Action

Integral or Reset Ti
Time

PID Output Signal

Time (T) in Minutes

P
ID

 O
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p
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 (0
–1

00
%

)
E

rr
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Figure 17–28		Proportional	and	Integral	Response	to	Step	Change
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The Rate Td, or	derivative	action,	is	used	as	a	method	of	changing	the	PID	output	in		proportion	
to	 the	 rate	 of	 change	 of	 the	 process	 variable.	 The	 faster	 the	 process	 variable	 is	 changing,	 the	
greater	the	influence	that	the	derivative	action	will	have	on	the	output.	The	derivative	action	acts	
as	 an	 	anticipator,	 or	 “brake,”	 in	 the	 control	 loop,	 helping	 to	minimize	 the	 amount	 of	 overshoot	
and	 	undershoot	 in	 the	 control	 loop’s	 response.	You	 typically	 see	derivative	 action	used	when	 a	
	process	has	considerable	time	constant	lags,	such	as	temperature	loops.	You	should	set	the	Rate	Td	
	parameter	to	0,	derivative	term	off,	when	controlling	process	loops	that	have	a	fast	response	time.

The Loop Update Time parameter	sets	the	time	between	PID	calculations	and	should	be	set	to	a	
time	that	is	five	to	ten	times	faster	than	the	natural	period	of	the	process	under	control.	The	faster	
that	the	process	responds	to	a	change	in	the	PID	output,	the	faster	the	loop	update	time	needs	to	be.	
	Determining	the	natural	period	of	the	process	will	be	covered	next	under	“Loop	Tuning		Techniques.”	
If	you	are	unsure,	start	with	a	loop	update	time	of	one-half	second	and	adjust	from	there.	

loop tuning techniques
In	1942	J.G.	Ziegler	and	N.B.	Nichols	published	two	loop	tuning	techniques	that	are	still	used	today	
by	many	control	engineers	and	technicians.	The	two	techniques	are	called	the	ultimate gain method 
and the reaction curve method.	We	will	cover	both	methods,	but	before	we	do	we	need	to	address	
some	safety	concerns	related	to	loop	tuning.

caution:	These	tuning	methods	should	only	be	done	on	noncritical	applications	in	terms	of	personal	
safety	and	equipment	damage.	During	loop	tuning	it	is	possible	that	the	PID	control	variable	output	
may	become	unstable	and	oscillate	between	0	and	100%.	For	this	reason,	be	sure	that	the	process		can	
safely	 tolerate	 such	 instability	 and	 that	 personal	 safety	 and	 equipment	 damage	 have	 also	 been	
	considered	before	the	tuning	process	begins.

Ziegler and Nichols ultimate Gain method (Closed Loop technique)  The ultimate gain 
method	 requires	 that	you	determine	 the	ultimate	gain	and	ultimate	period	of	 the	process	control	
loop.	The	ultimate	gain	is	a	controller	gain	value	that	will	cause	a	sustained	but	stable	oscillation	
in	the	process	variable	from	the	slightest	error.	The	period	of	these	sustained	oscillations	is	called	
the	ultimate	period	or	the	natural	period	of	the	control	loop.	This	method	is	conducted	with	the	PID	
instruction	in	automatic	mode	and	with	the	integral	action	(Reset	Ti)	and	derivative	action	(Rate	Td)	
parameters turned off.	Once	you	have	determined	what	the	ultimate	gain	(Gu)	and	ultimate	period	
(Pu)	of	the	control	loop	is,	you	can	then	use	these	two	values	to	calculate	the	Controller	Gain	Kc,	
Reset	Ti,	Rate	Td,	and	Loop	Update	Time	parameters	for	the	PID	instruction.

To	determine	the	ultimate	gain	and	ultimate	period	of	your	control	loop,	perform	the	following	steps.
Step 1.	 Enter	the	following	values	into	the	tuning	parameters	of	your	PID	instruction	through	

the	PID	Setup	Screen:
Controller Gain Kc 5	1
Reset Ti 5	0
Rate Td 5	0
Loop Update Time 5	0.5	seconds	

Step 2.	 Enter	an	initial	setpoint	value	that	you	desire	into	the	Setpoint	SP	parameter	through	the	
PID	Setup	Screen.
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Step 3.	 You	will	need	to	observe	the	process	variable	as	it	varies	with	time	and	with	respect	to	
the setpoint	value	you	entered	in	Step	2.	A	strip	chart	recorder	or	trending	chart	works	well	
for	making	this	observation,	particularly	when	working	with	slow-responding	process	loops.

Step 4.	 Place	the	PID	instruction	in	manual	mode	and	adjust	the	output	of	the	PID	instruction	
until	the	process	variable	equals	or	nearly	equals	the	setpoint.	If	you	are	using	a	manual	
control	station,	then	use	the	manual	control	station	for	this	adjustment;	otherwise	adjust	
the	PID	output	by	setting	a	value	in	the	Control	Output	CV%	parameter	through	the	PID	
Setup	Screen.	Remember	that	the	value	you	enter	is	a	percent	(0	to	100).

Step 5.	 After	the	process	loop	is	under	control	manually,	place	the	PID	instruction	in	auto	mode.
Step 6.	 While	observing	the	relationship	of	the	process	variable	to	the	setpoint	over	time,	

	impose	an	upset	(create	an	error)	on	the	control	loop	and	observe	the	response.	The	
	simplest	and	easiest	way	to	impose	an	upset	is	to	change	the	setpoint	by	a	small	amount.

Step 7.	 If	the	response	curve	of	the	process	variable	produced	by	Step	6	becomes	unstable	(see	
Figure	17–29a),	the	controller	gain	is	too	high.	Reduce	the	Controller	Gain	Kc	value	and	
repeat	Step	6	until	you	have	obtained	a	sustained	but	stable	oscillation	of	the	process	
variable,	as	shown	in	Figure	17–29b.
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Figure 17–29a		Unstable	Process	Response	Curve

Step 8.	 If	the	response	curve	of	the	process	variable	produced	by	Step	6	dampens	out	over	time,	
as	shown	in	Figure	17–29c,	then	the	controller	gain	is	too	low.	Increase	the		Controller	
Gain	Kc	value	and	repeat	Step	6	until	you	have	obtained	a	sustained	but	stable	
	oscillation,	as	was	shown	in	Figure	17–29b.

Step 9.	 When	you	obtain	a	stable	response	in	which	the	process	variable	is	oscillating	above	
and below	the	setpoint	in	an	even	manner,	record	the	values	of	the	ultimate	gain	(Gu)	
and	ultimate	period	(Pu).	The	ultimate	gain	is	the	current	value	in	the	Controller	Gain	
Kc	parameter. 
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Figure 17–29c		Damped	Process	Response	Curve
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Figure 17–29b		Stable	Process	Response	Curve
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The	ultimate	period	is	the	time	of	one	cycle,	measured	between	successive	peaks	(see	
Figure	17–29b).	The	ultimate	period	is	also	referred	to	as	the	natural		period	of	the	pro-
cess.

Step 10.	 Return	the	PID	instruction	to	manual	mode	and	gain	control	of	the	process.	At	this	time	
you	may	stop	controlling	the	process	if	desired.

Step 11.	 Set	the	Loop	Update	Time	parameter	to	a	value	that	is	from	5	to	10	times	faster	than	
the ultimate	(natural)	period	as	observed	in	Step	9.	If,	for	example,	the	ultimate	period	
is 30 seconds	and	we	desire	a	loop	update	time	10	times	faster	than	the		ultimate	period,	
then	the	Loop	Update	Time	parameter	would	be	set	to	3	seconds.

Step 12.	 Calculate	the	value	of	the	Controller	Gain	Kc	parameter	by	taking	the	ultimate	gain	(Gu)	
recorded	in	Step	9	and	multiplying	it	by	0.45	(Kc	5 Gu ?	0.45).	For	example,	if	the	ul-
timate	gain	(Gu)	recorded	in	Step	9	was	40,	you	would	then	set	the	Controller	Gain	Kc	
parameter	to	18.

Step 13.	 Calculate	the	value	of	the	Reset	Ti	parameter	by	taking	the	ultimate	period	(Pu)	re-
corded	in	Step	9	and	multiplying	it	by	0.5	(Ti	5	Pu	?	0.5).	For	example,	if	the	ultimate	
period	(Pu)	recorded	in	Step	9	was	30	seconds,	you	would	then	set	the	Reset	Ti	param-
eter	to	2	(0.2	minutes	approximates	15	seconds).

Step 14.	 Calculate	the	Rate	Td	parameter	by	taking	the	ultimate	period	(Pu)	recorded	in	Step	9	
and	dividing	it	by	6.3	(Td5Pu/6.3).	For	example,	if	the	ultimate	period	(Pu)	recorded	
in	Step	9	was	30	seconds,	you	would	then	set	the	Rate	Td	parameter	to	8	(0.08	minutes	
	approximates	4.8	seconds).	Only	set	the	Rate	Td	parameter	on	process	loops	that	have	
large	time	constant	lags.

Note: If you do not add derivative action (Rate Td 5 0) then change the Controller Gain 
Kc parameter calculation in Step 12 to Controller Gain Kc 5 Gu ? 0.32 and change the 
Reset Ti parameter calculation in Step 13 to Reset Ti 5Pu / 1.2.

Step 15.	 Place	the	PID	instruction	in	auto	mode.	If	you	have	an	ideal	process,	the	PID	controller	
should	achieve	a	decay	ratio	of	one-quarter	wave	when	an	error	occurs,	which	Ziegler	
and	Nichols	defined	as	good	control	(see	Figure	17–30).	In	reality	the	tuning	parameters	
just	calculated	and	entered	into	the	PID	instruction	are	more	likely	just	a	good	starting	
point,	and	additional	tweaking	of	the	tuning	parameters	will	be	required.	It	will	take	
	experience	and	sometimes	a	little	luck	to	achieve	the	right	values	for	Kc,	Ti,	and	Td.	
This	is	where	the	art	of	loop	tuning	comes	into	play.	

Ziegler and Nichols reaction Curve method (Open Looptechnique)    The second 
method	of	tuning	control	loops	developed	by	Ziegler	and	Nichols	was	based	on	data	taken	from	a	
reaction	curve	during	an	open	loop	test.	The	open	loop	technique	involves	making	a	manual	step	
change	in	the	output	of	the	controller	and	observing	the	reaction	of	the	process	variable	over	time.	
This	observed	reaction	over	time	is	called	the	reaction	curve,	and	it	indicates	the	reaction	of	the	
control	system	loop	when	a	step	change	is	made	to	the	process.	The	reaction	curve	is	obtained	by	
using	a	strip	chart	recorder	or	trending	chart	and	recording	the	process	variable	signal	over	time	
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Figure 17–30		Decay	Ratio	of	One-Quarter

after	a	step	change	has	been	made	to	the	controller	output.	An	example	reaction	curve	is	shown	in	
Figure	17–31.

In	Figure	17–31,	the	sloped	line	drawn	tangent	to	the	curve	at	its	point	of	maximum	slope	is	the	
process reaction rate and denotes how fast the process reacted to the step change made in the 
 controller	output.	The	inverse	of	this	line’s	slope	is	a	measure	of	the	severity	of	the	process	lag	
as	measured	 in	 time	 (T).	The	process	 deadtime	 (Dt)	 can	be	determined	by	measuring	 the	 time	
from	when	the	step	change	was	made	to	the	intersection	of	the	tangent	line	with	the	baseline.	The	
	process	gain	(K)	is	a	measure	of	how	much	the	process	variable	increased	relative	to	the	size	of	
the	step	change.

Perform	the	following	steps	to	calculate	the	Controller	Gain	Kc,	Reset	Ti,	and	Rate	Td	parameters	
for	the	PID	instruction	using	the	reaction	curve	method:
Step 1.	 Place	the	PID	instruction	in	manual	mode	and	adjust	the	output	of	the	PID	instruction	

until	the	process	variable	is	at	about	50%	of	its	range.	If	you	are	using	a	manual	control	
station	then	use	the	manual	control	station	for	this	adjustment;	otherwise	adjust	the	PID	
output	by	setting	a	value	in	the	Control	Output	CV%	parameter	in	the	PID	Setup	Screen.	

Step 2.	 Turn	on	your	strip	chart	recorder	or	trending	chart	and	allow	the	system	to	stabilize.	
You	should	be	trending	the	process	variable	at	this	time.	Make	sure	that	your	strip	chart	
	recorder	or	trending	chart	is	set	fast	enough	to	capture	the	reaction	curve.

Step 3.	 Manually	introduce	a	10%	step	change	(50%	to	60%)	in	the	output	of	the	PID	instruc-
tion.	Record	on	the	chart	the	time	when	you	made	the	step	change.	Record	the	reaction	
curve	of	the	process	variable	to	the	step	change.
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Step 4.	 Once	you	have	recorded	the	process	variable	reaction	curve,	you	may	stop	controlling	
the	process	at	this	time	if	desired.

Step 5.	 Using	the	process	reaction	curve	recorded	in	Step	3,	draw	a	line	tangent	to	the	reaction	
curve	at	its	point	of	maximum	slope.	Next	draw	a	line	that	is	the	inverse	of	the	tangent	
line	just	drawn	and	measure	the	severity	of	the	process	lag	in	time	(T).	Determine	the	
process	deadtime	(Dt)	by	measuring	the	time	from	when	the	step	change	was	made	to	
the	intersection	of	the	tangent	line	with	the	baseline.	Finally,	measure	the	process	gain	
(K)	by	measuring	how	much	the	process	variable	increased	relative	to	the	size	of	the	
step	change	in	the	control	variable.

Step 6.	 Compute	the	values	for	the	Controller	Gain	Kc,	Reset	Ti,	and	Rate	Td	parameters	from	
the	following	equations:

Controller Gain Kc 5	(1.2	?	T)	/	(Dt	?	K)

K 5 DPV%	/	DCV%	

Time and Point of 10% Step Increase
in Control Variable (CV) Output

Time (T) in Minutes

Process Lag (T)

0

50%

62%

5 20
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Figure 17–31		Process	Reaction	Curve
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DPV%	5	Percent	change	in	Process	Variable
DCV%	5	Percent	change	in	Control	Output

Reset Ti 5	2.0	?	Dt
Rate Td 5	0.5	?	Dt

For	example,	let’s	take	the	data	from	the	reaction	curve	shown	in	Figure	17–31	to	calculate	
what	the tuning	parameter	values	would	need	to	be.	We	will	assume	the	reaction	curve	
was	made	when	a	10%	step	change	was	made	to	the	output	of	the	PID	controller.	Studying	
the	reaction	curve	of	Figure	17–31,	we	can	determine	the	following	values:

Process	Lag	Time	(T)	5	15	minutes	(20	2 5)
Process	Deadtime	(Dt)	5	5	minutes
Process	Gain	(K)	5	percent	change	of	PV	/	percent	change	of	CV	5	12%	/	10%
Process	Gain	(K)	5	1.2

Controller Gain Kc 5	(1.2	?	15)	/	(5	? 1.2)
Controller Gain Kc 5	3

Reset Ti 5	2.0	?	5
Reset Ti 5	10	minutes

Rate Td 5	0.5	?	5
Rate Td 5	2.5	minutes

Note: If you do not add derivative action (Rate Td 5 0) then change the Controller Gain 
Kc parameter calculation in Step 6 to Controller Gain Kc 5 (0.9 ? T) / (Dt ? K) and change 
the Reset Ti parameter calculation in Step 6 to Reset Ti 5 3.33 ? Dt.

Step 7.	 After	calculating	the	values	for	the	Controller	Gain	Kc,	Reset	Ti,	and	Rate	Td	
	parameters,	enter	them	into	the	PID	instruction	using	the	Setup	Screen.

Step 8.	 The	PID	instruction	is	now	ready	to	be	placed	in	the	auto	mode.	As	in	the	previous	
method,	if	you	have	an	ideal	process	the	PID	controller	should	achieve	a	decay	ratio	of	
one-quarter	wave	when	an	error	occurs.	See	Figure	17–30	for	an	example	of	a	decay	
ratio	of	one-quarter	wave.	As	stated	before,	the	tuning	parameters	just	calculated	and	
	entered	into	the	PID	instruction	are	more	likely	just	a	good	starting	point,	and	additional	
tweaking	of	the	tuning	parameters	may	be	required.

One	of	 the	major	advantages	of	 the	reaction	curve	method	over	 the	ultimate	gain	method	is	 that	
the	tuning	of	the	PID	parameters	can	be	done	much	quicker	when	tuning	very	slow	process	loops.	
Another	advantage	of	the	reaction	curve	method	is	that	there	is	less	process	disturbance,	which	can	
be	important	when	dealing	with	sensitive	or	critical	processes.

There	are	many	commercial	PID	tuning	software	products	available	that	can	be	used	to	find	the	ideal	
tuning	values.	Some	PLC	manufacturers	offer	PID	tuning	as	an	addition	to	their	PLC	programming	
software.	
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chapter summary
Process	control	signals	fall	into	two	types,	those	that	measure	the	process,	and	those	that	control	the	
process, referred to as process variables (PVs)	and	control variables (CVs).	These	process		control	
signals	 are	 typically	 transmitted	 as	 low-level	 electrical	 analog	 signals	 to	 and	 from	 devices	 like	
PLCs.	In	order	for	analog	input	signals	to	be	used	in	the	PLC	program,	they	must	first	be	converted	
into	a	corresponding	digital	value	by	an	Analog-to Digital Converter (A/D	converter),	or	 in	 the	
case of an analog output signal a Digital-to-Analog Converter (D/A	converter).	When	working	with	
	digital	values	in	the	PLC	that	represent	analog	signals,	you	may	be	required	to	convert,	or	scale,	the	
	digital	values	from	one	range	to	another.	In	order	to	make	this	linear	conversion	from	one	range	to	
another,	mathematical	formulas	can	be	employed,	or	in	the	case	of	the	Allen-Bradley	SLC	500,	the	
Scale	(SCL)	and	Scale	with	Parameters	(SCP)	instructions	can	be	used.

Process	control	can	be	defined	as	a	means	by	which	you	regulate	a	process.	All	process	control	
systems	consist	of	four	key	elements;	the	process,	the	measurement	or	process	variable,	the		process	
controller,	and	the	final	control	element	or	control	variable.	When	all	four	elements	are	present,	it	
is considered a closed loop control system.	An open loop control system on the other hand does not 
have	the	process	variable,	process	controller,	and	control	variable	providing	automatic		regulation	
of	the	process.	A	process	controller	is	a	device	or	software	instruction	that	regulates	a	process	by	
	monitoring	an	analog	input	from	a	process	variable	and	outputting	an	analog	output	 to	a	 	control	
	variable	 based	 on	 a	 programmed	 setpoint.	 The	 process	 controller	 is	 often	 referred	 to	 as	 a	 PID	
	controller,	as	in	the	case	of	the	Allen-Bradley	SLC	500	PID	instruction.	PID	stands	for		proportional, 
integral, and derivative	control	that	uses	a	mathematical	formula	to	regulate	a	process.	Loop	tuning	
is	the	process	of	finding	the	right	values	for	the	proportional,	integral,	and	derivative	constants	in	
the	PID	equation	so	the	PID	controller	is	able	keep	the	process	under	control.	

review Questions
	 1.	 	If	an	analog	input	has	a	digital	range	of	0	to	32,767	and	we	wish	to	scale	that	range	between	

200	and	1500	°F,	what	would	be	the	slope (rate)	and	offset values	required	for	our	scaling	math	
formula?

	 2.	 	If	the	current	digital	input	value	in	Question	1	was	12,537,	what	would	be	the	scaled	value	in °F?
	 3.	 A	4	to	20	mA	analog	input	signal	is	converted	into	3,277	to	16,384	by	the	PLC	A/D	converter.	

What	would	be	the	digital	value	that	corresponds	to	9.34	mA?
	 4.	 	The	transmitter	producing	the	4	to	20	mA	signal	in	Question	3	is	a	pressure	transmitter	with	

a range	of	0	to	250	psig.	What	is	the	pressure	reading	when	the	transmitter	is	putting	out 
17.42	mA?

	 5.	 		The	slope (rate)	and	offset	values	entered	into	the	Scale	(SCL)	instruction	must	first	be	divided	
by	10,000.

	 	 T	 	 F
	 6.	 		The	maximum	value	that	can	be	entered	into	the	Source	parameter	of	a	Scale	(SCL)	instruction	

is	32,767.
	 	 T	 	 F
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	 7.	 	List	the	six	parameters	that	must	be	entered	into	the	Scale	with	Parameters	(SCP)	instruction.
	 8.	 	What	are	the	four	key	elements	that	make	up	a	closed	loop	process	control	system?
	 9.	 	The	Allen-Bradley	PID	instruction	has	three	integer	address	parameters	that	must	be	

	entered	into	the	instruction	at	the	time	of	programming.	What	are	the	names	of	those	three	
	parameters?

	10.	PID	stands	for	what?
	11.	What	are	the	digital	input	and	output	ranges	of	the	Allen-Bradley	PID	instruction?
	12.	 J.G.	Ziegler	and	N.B.	Nichols	in	1942	published	two	loop	tuning	methods	that	are	still	used	

today.	What	are	those	two	methods	called?

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



347

00

0
01

1
02

0
03

0
04

1
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0

00

0
01

0
02

0
03

0
04

0
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

1

00

0
01

1
02

0
03

0
04

1
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0

Chapter

18
Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand Function Block Diagrams.
•	 Use function block elements.
•	 Understand Structured Text programming.
•	 Apply structured text components.

FUNCTION BLOCK DIAGRAM PROGRAMMING

Function Block Diagram (FBD) programming is a method of programming that uses  function blocks 
to make decisions or perform calculations. FBD programming is typically found in  process control 
applications where there is more data handling and calculations, as compared to  discrete machine 
control applications. There are many types of function blocks available. In fact,  Allen-Bradley’s 
Logix5000 controllers have over 80 different function blocks available to perform various tasks. 

A function block takes one or more inputs, makes a decision or calculation, and then generates one 
or more outputs. An output of one function block can also be the input to other function blocks. In 
the case of the Allen-Bradley Logix5000 controllers, the user must create a function block routine to 
program and use FBD instructions. A Jump-to-Subroutine (JSR) instruction is typically used to run 
a function block routine from the main routine or another routine.

The following examples will illustrate the Function Block Diagram programming features of the 
Allen-Bradley Logix5000 controllers. The function block diagram is made up of function block ele-
ments (Figure 18–1). The elements consist of the function blocks themselves and the elements used 
to get information into and out of the function blocks.

The function block performs an operation on an input value or values and produces an output value 
or values. As you can see in Figure 18–1, there are four basic input and output elements used with 
the function blocks: Input Reference (IREF), Output Reference (OREF), Input Wire Connector 
(ICON), and Output Wire Connector (OCON). 

Function Block Diagram 
and Structured text 

programming
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The Input Reference (IREF) supplies a value from an input device or tag to a function block input. 
The Output Reference (OREF) sends a value from the function block to an output device or tag. The 
Input Wire Connector (ICON) and Output Wire Connector (OCON) transfer data between function 
blocks when they are far apart or on different sheets, or to disperse data to several points in the routine.

Each function block uses a tag to store configuration and status information. The RSLogix 5000 
software will automatically create a tag for the function block when it is created. This default tag 
can be used as is, or you can assign a different tag. For the IREF and OREF elements, you have to 
create a tag or assign an existing tag. 

The order of execution (flow of data) is done by wiring elements together as shown in Figure 18–2. 
The actual location of the function blocks does not affect the order of execution. As you can see 
in Figure 18–2, there are two types of wire symbols: a solid line indicates a SINT, INT, DINT, or 
REAL value data path, and a dashed line indicates a BOOL value (0 or 1) data path. 

This should begin to give the reader a basic understanding of the function block diagram (FBD) pro-
gramming language. Additional information on using this type of programming language with the 
Logix5000 controllers can be found in their programming manual entitled “Logix5000  Controllers 
Function Block Diagram,” publication 1756-PM009C-EN-P.

STRUCTURED TEXT PROGRAMMING

Structured text is a textual programming language similar to BASIC, C, or C11 that uses  statements 
to define what to execute. It is best used for complex mathematical operations or specialized  
array/table loop processing. 

Input Reference (IREF)

Output Reference (OREF)

Output Wire
Connector (OCON)

Input Wire
Connector (ICON)

Function Block
Function Block

Function Block

Figure 18–1 Function Block Elements
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Because structured text programming language is difficult to monitor and troubleshoot, it should be 
left to special applications that, once debugged, rarely require troubleshooting by the electrician/
technician. Many computer programmers will feel right at home programming in structured text.

Structured text can contain the following components: assignments, expressions, instructions,  constructs, 
and comments. Each will be discussed to an extent that the reader should have a basic understanding 
of their function. Before getting started, it is worth mentioning that structured text is not case sensitive. 
You also use tabs and carriage returns to make the structured text easier to read.

Assignments
You use an assignment statement to assign values to tags. The operator (symbol) that is used to 
 indicate an assignment statement is “: 5 ”. You terminate the assignment statement with a semicolon 
“;”. Figure 18–3 shows the syntax for an assignment statement along with several examples.

The tag must be a BOOL, SINT, INT, DINT, or REAL data type. If you use a BOOL tag, then the 
expression must of the BOOL type; otherwise, use a numeric expression.

Figure 18–2 Function Block Example
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Expressions
An expression can be a tag name, equation, or comparison. When writing an expression, you can use 
any of the following elements in the expression:

•	 A memory tag that stores a value
•	 An immediate value or number
•	 Function elements such as: LOG, TAN
•	 Operator elements such as: 1 , 2 , <, >, And

When writing expressions, you can use any combination of uppercase and lowercase letters. For ex-
ample, the AND operator can be entered as AND, And, or and. All three are acceptable. When writ-
ing a complex expression, use parentheses to group expressions within expressions. This will make 
the whole expression easier to read and ensure that the expression executes in the desired sequence. 
The example below shows the use of parentheses.

tag1: 5 (tag2 1 tag3) * (tag4 2 tag5);

Expressions can be either BOOL or numeric expressions. A BOOL expression produces a value of 
1 (true) or 0 (false), whereas a numeric expression calculates an integer or floating-point value.

A BOOL expression uses BOOL tags and operators (relational and logical) to compare values 
or check if conditions are true or false. The example below uses a relational operator to check if 
the value stored in tag1 is greater than 150. If tag1 is greater than 150, the expression is true or 1, 
 otherwise the expression is false or 0. 

tag1 > 150 

You typically use BOOL expressions to condition the execution of other logic. This will become 
more apparent later in this chapter.

A numeric expression uses arithmetic operators and functions to calculate a value. The example 
below adds 10 to the value stored in tag2 and puts the results in tag1.

tag1: 5 tag2 1 10;

Figure 18–3 Assignment Statements

tag: 5 expression

Where tag is any valid memory tag and is the tag getting the new
value. The expression contains the new value to assign to the tag.

Example: Tag1: 5 250; Tag1: 5 Tag2; Tag1: 5 Tag2 1 Tag3;
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A numeric expression can also use bitwise operators to return a value based on two values. In 
the example below, DINT tag1 and tag2 are logically ANDed together and the result is placed in 
DINT tag3. 

tag3: 5 tag1 AND tag2;

Many times in structured text programming you nest a numeric expression within a BOOL expres-
sion. In the example below, 10 is added to the value stored in tag1 and the result is then compared 
to see if it is greater than 100.

(tag1110)>100

To calculate arithmetic values, use one of the Arithmetic or Function Operators shown in Figure 18–4.

Figure 18–4 Arithmetic and Function Operators

To/For Operator/Function Optimal Data Type

Add 1 DINT, REAL

Subtract 2 DINT, REAL

Multiply * DINT, REAL

Exponent(x to the power of y) ** DINT, REAL

Divide / DINT, REAL

Module-divide MoD DINT, REAL

Absolute value ABS (numeric_expression) DINT, REAL

Arc cosine ACoS (numeric_expression) REAL

ARC SINE ASIN (numeric_expression) REAL

ARC tangent ATAN (numeric_expression) REAL

CoSINE CoS (numeric_expression) REAL

Radians to degrees DEG (numeric_expression) DINT, REAL

Natural log LN (numeric_expression) REAL

Log base 10 LoG (numeric_expression) REAL

Degrees to radians RAD (nemeric_expression) DINT, REAL

SINE SIN (nemeric_expression) REAL

Square root SQRT (nemeric_expression) DINT, REAL

Tangent TAIN (nemeric_expression) REAL

Truncate TRUNC (nemeric_expression) DINT, REAL
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To compare two values, use one of the Relational Operators shown in Figure 18–5.

Comparison Operator Optimal Data Type

Equal 5 DINT, REAL

Less than < DINT, REAL

Less than or equal <5 DINT, REAL

Greater than > DINT, REAL

Greater than or equal >5 DINT, REAL

Not equal <> DINT, REAL

Figure 18–5 Relational Operators

To compare the bits within values, use one of the Bitwise Operators in Figure 18–6.

For Operator Data Type

Bitwise AND &, AND DINT

Bitwise oR oR DINT

Bitwise exclusive oR XoR DINT

Bitwise complement NoT DINT

Figure 18–6 Bitwise Operators

To check if conditions are true (1) or false (0), use one of the Logical Operators in Figure 18–7.

Figure 18–7 Logical Operators

For Operator Data Type

Logical AND &,AND BooL

Logical oR oR BooL

Logical exclusive oR XoR BooL

Logical complement NoT BooL

The operators you write into an expression are not necessarily performed from left to right, but 
rather in a prescribed order. Operations of equal order are performed from left to right. When 
 expressions contain more than one operator or function, group them in parentheses “()” as this will 
ensure the correct order of execution and make it easier to read the expression. Figure 18–8 shows 
the order of execution for the various operations.
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Order Operation

1 0

2 Function (...)

3 **

4 2(negate)

5 NoT

6 *, /, MoD

7 1, 2 (subtract)

8 <, <5, >, >5

9 5,<>

10 &,AND

11 XoR

12 oR

Figure 18–8 Order of Execution

Instructions
Structured text statements can also be instructions. An instruction is a stand-alone statement that 
performs a given task such as copying the contents of one array into another array or jumping to 
another routine. A structured text instruction executes each time it is scanned unless it is used within 
a construct. Constructs will be covered next.

A structured text instruction uses parentheses to contain its operands, and depending on the  instruction, 
there can be zero, one, or multiple operands. Always terminate an instruction with a semicolon “;”. The 
example below shows the structured text format for a Copy File instruction. Where “tag1_array[0]” is the 
source array, “tag2_array[0]” is the destination array, and 10 is the number of elements to copy. 

COP(tag1_array[0], tag2_array[0], 10);

Another example of a structured text instruction is the Jump-to-Subroutine instruction shown below.

JSR(routine_name, input_count, input_parameter, return_parameter);

Notice how the operands of the instruction are contained within the parentheses and separated by 
commas. Also notice that the instruction is terminated with a semicolon.

Even though they are similar, instructions differ from functions in that instructions cannot be used 
in expressions; only functions can be used in expressions.

Refer to the Logix5000 Controllers General Instructions manual (instruction locator section) for a 
complete listing of the available structured text instructions.
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Constructs
Constructs are conditional statements used to trigger structured text code (statements). Constructs 
can be programmed singly or nested within other constructs. Always terminate a construct with a 
semicolon “;”.

Constructs are very powerful statements and one of the key elements in structured text program-
ming. The following constructs are available.

•	 IF…THEN 
•	 CASE…OF
•	 FOR…DO
•	 WHILE…DO
•	 REPEAT…UNTIL

IF…THEN
Use the IF…THEN construct to do something if or when specific conditions occur. For example: If the 
motor faults then turn on the alarm light or if the water is greater than 100° then start the cooling pump.

The syntax for the IF…THEN construct is:

IF bool_expression THEN
<statement>;

END_IF;

The operand can be either a BOOL tag or an expression that evaluates to a BOOL value. The 
 example below shows a BOOL tag operand. 

IF motor_fault THEN
alarm_light : 5 1;

END_IF;

where “motor_fault” is a BOOL tag that is either 1(true) or 0(false). If the BOOL value is 1 or true, 
then the statement is executed. In our example, if the “motor_fault” tag contained a value of 1(true), 
then the “alarm_light” tag would be set to a value of 1.

The example below shows an expression that evaluates to a BOOL value.

IF tank1_temperature > 100 THEN
cooling_pump : 5 1;

END_IF;
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where “tank1_temperature” tag contains a numeric value that is compared to a constant. If the value 
stored in “tank1_temperature” is greater than 100, then the statement is true or 1 and the “ cooling_
pump” tag would be set to a value of 1 or on. 

The IF…THEN construct also has two optional statements that can be used with it, ELSIF and 
ELSE. The ELSIF statement allows you to select from several possible groups of statements, where 
each ELSIF represents an alternative path. The ELSE statement does something when all of the IF 
or ELSIF conditions are false. The following examples will help to illustrate the use of the ELSIF 
and ELSE statements.

example 1: IF…THEN…ELSE

IF motor_fault THEN
alarm_light : 5 1;

ELSE
alarm_light : 5 0;

END_IF;

As you can see in this example the ELSE statement turns the alarm light off (0) if the condition of 
the IF statement is false. 

example 2: IF…THEN…ELSIF

IF tank1_temperature > 100 THEN
cooling_pump : 5 1;

ELSIF tank1_temperature < 75 THEN
cooling_pump : 5 0;

END_IF;

In this example, the ELSIF provides an alternative path if the temperature is not greater than 100. 
In this case, if the temperature is below 75, then turn the cooling pump off. As you can clearly see, 
we have created an IF, THEN, and ELSIF statement that turns the cooling pump on anytime the 
temperature in the tank is above 100° and leaves the cooling pump on until the temperature drops 
below 75°. 

The table in Figure 18–9 summarizes the various combinations of IF, THEN, ELSIF, and ELSE.
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CASE…OF
Use the CASE…OF construct to select what to do based on a numerical value. For example: A recipe 
number determines which ingredients to add in a batching process.

The syntax for the CASE…OF construct is:

CASE numeric_expression OF
selector1: <statement>;
selector2: <statement>;
 “ “
 “ “
selectorN: <statement>;

ELSE
<statement>;

END_CASE;

The numeric_expression operand can be either a tag or expression that evaluates to a number. The 
selector operand is an immediate number of the same type as the numeric_expression operand. The 
“N” represents the last selector number. The statement is the statement to execute when the selector 
is true. The ELSE is optional and will only execute the statements if the numeric_expression does 
not equal any of the selectors. 

The selector values can be a single value, multiple distinct values, a range of values, or a 
 combination of distinct and range of values. The syntax for the selector values is shown in the 
example below.

value: <statement>;
value1, value2, value3, valueN: <statement>;
value1..valueN: <statement>;
value1, value2, value3..valueN: <statement>;

Use a comma (,) to separate each value and two periods (..) to identify a range.

Figure 18–9 IF, THEN, ELSIF, and ELSE

If you want to And Then use this construct

Do something if or when 
 conditions are true

Do nothing if conditions are false IF...THEN

Do something else if conditions are false IF...THEN...ELSE

Choose from alternative 
 statements based on input 
 conditions

Do nothing if conditions are false IF...THEN...ELSIF

Assign default statements if all condi-
tions are false

IF...THEN...ELSIF...ELSE
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The following example will help to illustrate the CASE…OF construct. 

CASE batch_recipe_number OF
 1:  ingredient_valve1 : = 1;
   ingredient_valve2 : = 1;
   ingredient_valve3 : = 0;
   ingredient_valve4 : = 0;

 2,3,4:  ingredient_valve1 : = 0;
   ingredient_valve2 : = 1;
   ingredient_valve3 : = 1;
   ingredient_valve4 : = 1;

 5..7:  ingredient_valve1 : = 1;
   ingredient_valve2 : = 1; 
   ingredient_valve3 : = 1;
   ingredient_valve4 : = 1;

 8,9..12:  ingredient_valve1 : = 1;
   ingredient_valve2 : = 1;
   ingredient_valve3 : = 0;
   ingredient_valve4 : = 0;

ELSE
ingredient_valve1 : = 0;
ingredient_valve2 : = 0; 
ingredient_valve3 : = 0;
ingredient_valve4 : = 0;

END_CASE;

In the example above, the value stored in the batch_recipe_number tag is compared to the selector 
values for a match. If a match is found, then the ingredient valves are either opened or closed based 
on the selector statements. If no match is found then the ingredient valves are closed.

FOR…DO
Use the FOR…DO construct to do something a specific number of times before doing anything else. 
For example: Clear an array of bits or check an array of part numbers for a match. 

The syntax for the FOR…DO construct is:

FOR count : 5 initial_value TO final_value BY increment

DO
<statement>;

END_FOR;

The count operand is a tag that stores the count position as the construct executes and assigns a 
unique tag to this operand. The initial_value operand specifies the initial value for the count. This 
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can be a tag, expression, or immediate number. The final_value operand specifies the final value 
for the count, which determines when to exit the loop. This can be a tag, expression, or immediate 
number. The increment operand is optional and is the amount to increment the count by each time 
through the loop. If you don’t specify an increment, the count increments by 1. 

Caution: The controller does not execute any other statements in the routine until it completes 
the loop. This could lead to a processor fault if the loop time is greater than the watchdog timer 
for the task. 

The following examples will illustrates the FOR…DO construct. 

example 1:

FOR count_tag : 5 0 TO 20 DO
bit_array1[count_tag] : 5 0;

END_FOR;

example 2:

FOR count_tag : = 0 TO 100 DO

 IF part_number 5 part_number_array[count_tag] THEN
 found_tag : 5 1;
 EXIT;
 ELSE
 found_tag : 5 0;

 END_IF;

END_FOR;

In the first example, bits 0–20 are cleared in the BOOL array called “bit-array1”. Notice how the 
count_tag is used as the subscript in the array tag. Since the increment operand was omitted, the 
count increment defaulted to 1. In the second example, the value in the tag called “part_number” 
was compared against an array of numbers (part_number_array) for a match. If a match was found, 
the BOOL tag “found_tag” was set to 1 and the loop was stopped by using the EXIT statement. If a 
match was not found then the “found_tag” was set to 0.

WHILE…DO
Use the WHILE…DO construct to keep doing something as long as certain conditions are true.

The syntax for the WHILE…DO construct is:

WHILE bool_expression DO
 <statement>;

END_WHILE;
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The bool_expression operand is a BOOL tag or expression that returns a value of 1(true) or 0(false). 
The statement is what is executed as long as the bool_expression returns a 1(true). 

Caution: The controller does not execute any other statements in the routine until it completes the 
WHILE…DO loop. This could lead to a processor fault if the loop time is greater than the watchdog 
timer for the task. 

REPEAT…UNTIL
Use the REPEAT…UNTIL construct to keep doing something until certain conditions are true. The 
REPEAT…UNTIL construct executes the statements in the construct first before checking if  conditions 
are true. If conditions are not true, then the controller executes the statements within the loop again. 

The syntax for the REPEAT…UNTIL construct is:

REPEAT 
 <statement>;

UNTIL bool_expression

END_REPEAT;

The bool_expression operand is a BOOL tag or expression that returns a value of 1(true) or 0(false). 
The statement is what is executed as long as the bool_expression returns a 0(false). 

Caution: The controller does not execute any other statements in the routine until it completes the 
REPEAT…UNTIL. This could lead to a processor fault if the loop time is greater than the watchdog 
timer for the task. 

Comments
You can add comments to your structured text program to help describe how your program works. This 
will make your program much easier to interpret by someone else or if you must work with it at a later 
date. Comments will not affect the execution of the program and are downloaded to controller memory. 

You can add comments on a single line, at the end or within a line of structured text. The following 
syntax is used for entering comments.

//comment 2 single line only
(*comment*)
/*comment*/

example COmmentS:

//Check for high temperature conditions
IF water_temp > 100 THEN….
IF water_temp (*sludge tank 1 water temperature*) > 100 THEN….
pressure_valve1 : 5 1;/*open the pressure valve on tank 1*/ 
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Structured Text Example Program
The following structured text program loads the correct temperature set points into a working 
 temperature array based on which recipe the operator has selected. It also monitors the temperatures 
for abnormally high conditions.

//Check for operator input and then select the correct temperatures to load 

IF operator_select THEN

CASE recipe_number OF
 1: tank_temp[0] : 5 150;
  tank_temp[1] : 5 175;
  tank_temp[2] : 5 200;
  tank_temp[3] : 5 100;
  batch_start : 5 1;

 2: tank_temp[0] : 5 125;
  tank_temp[1] : 5 150;
  tank_temp[2] : 5 175;
  tank_temp[3] : 5 75;
  batch_start : 5 1;

 3: tank_temp[0] : 5 200;
  tank_temp[1] : 5 250;
  tank_temp[2] : 5 300;
  tank_temp[3] : 5 150;
  batch_start : 5 1;

 4..5: tank_temp[0] : 5 225;
  tank_temp[1] : 5 300;
  tank_temp[2] : 5 325;
  tank_temp[3] : 5 180;
  batch_start : 5 1;

ELSE tank_temp[0] : 5 100;
 tank_temp[1] : 5 100;
 tank_temp[2] : 5 100;
 tank_temp[3] : 5 75;
 batch_start : 5 0;

END_CASE;

END_IF
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//Monitor batch temperatures during batching operation

IF batch_start THEN
FOR count : 5 0 TO 3 DO
IF temp[count] 5> tank_temp[count] 1 20 THEN
batch_start : 5 0;
over_temp_alarm : 5 1;

END_FOR;

END_IF

(*End of Program*)

Chapter Summary
Function Block Diagram (FBD) programming uses function blocks to make decisions or perform 
 calculations and is typically found in process control applications. A function block takes one or 
more inputs, makes a decision or calculation, and then generates one or more outputs.

Structured text programming language uses statements to define what to execute and is similar 
to BASIC. It is best used for complex mathematical operations or specialized array/table loop 
 processing. Structured text programming contains assignments, expressions, instructions,  constructs, 
and comments.

Review Questions
 1. A function block diagram is made up of function block   . 
  a) references
  b) assignments
  c) elements
  d) operators
 2. What is the function of the Output Wire Connector (OCON)?
 3. “OREF” stands for what?
 4. Structured Text programming is similar to what type of programming language?
  a) Ladder Logic
  b) SFC
  c) Word
  d) BASIC
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 5. What are constructs?
 6. The operator (symbol) that is used to indicate an assignment statement is  .
  a) “;”
  b) “*”
  c) “^”
  d) “: 5 ”
 7. List any two constructs discussed in this chapter.
 8. A dashed line indicates what type of data path in a function block diagram?
 9. What type of expression is “tag1>150”?
 10. A structured text instruction executes once unless it is used within a construct. 
  a) True
  b) False 
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Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand the building blocks used to create a sequential function chart program.
•	 Understand steps and transitions.
•	 Develop a basic sequential function chart program.

Sequential function chart (SFC) programming is a method of programming that is similar to design-
ing a flowchart of your process. You program steps and transitions that are arranged like a flowchart 
and, when executed, control your system in a prescribed order. Some advantages of using SFC 
programming to specify your process are:

•	 Easier to organize and read (graphical representation)
•	 Faster execution of your logic
•	 Faster and easier troubleshooting 
•	 Faster to design and debug

Sequential function chart programming is most often used with an application that is sequential in 
nature and has definable steps. For example, a burner control application would have definable steps 
that would typically be executed in sequential order. Figure 19–1 shows an example of what our 
burner control application might look like in an SFC format.

An SFC program is made up of steps, actions, and transitions. The “steps” are the major 
building blocks of any SFC program. They perform timing and counting functions as well as 
executing any actions associated with them. Actions are used for turning tags on or off and 
performing other functions. Transitions are conditions that must be met before moving on to 
the next step. 

Sequential Function 
Chart Programming

ChaPter

 19

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



364  Technician’s Guide to Programmable Controllers

Start

Purge

Ignition

Control

Stop/Purge

Cool Down

End

Figure 19–1 Burner Control Application (purge, ignition, control, shutdown, purge)

The key elements of an SFC program are shown in Figure 19–2. Notice how an SFC program can 
have simultaneous branches that execute more than one step at a time.  

-
N Action_002

valve1:=0;

…

S Action_003

Conveyor1:=1;

…

-
S Action_001

Conveyor1:=0;

…

-

Step_000

Step_001

Step_002

Tran_002

?

Step_003

N Action_000

Tran_000

Start_PB

Tran_001

System_Stop

valve1:=1;
…

…

…

…

…

… …

…

x

A step
represents a

major function
of your

process, it
contains your

actions

An action is one of
the functions that a

step performs

A simultaneous
branch

executes more
than one step at
the same time

A transition is the
true or false

condition that
tells the SFC

when to go to the
next step

A quali�er
determines when
an action starts

and stops

Figure 19–2 SFC Program Key Elements
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In Figure 19–2, Step_000 is the first step to be executed and its actions performed until transition 
Tran_000 is true, at which time execution is moved to Step_001. The default names for each step 
are shown, but other names can be given to a step to help define its purpose such as “Purge” or 
“ Ignition.” The first two steps are linear steps, meaning they execute one right after the other, 
whereas the next two are concurrent. Concurrent steps are steps that are executed simultane-
ously. 

When developing an SFC program, you must organize the execution of your steps to match the pro-
cess. You can use linear, concurrent, and branch sequences to control the execution of your steps. 
Figure 19–3 shows an example of each type.

Figure 19–3 Execution Control

Sequence

A sequence is a group
of steps that execute one 

after the other.

A selection branch represents
a choice between one
path or another path.

Selection Branch Simultaneous Branch

A simultaneous branch
represents paths that occur

at the same time.

A linear sequence is used to execute one step after another. A concurrent or simultaneous branch is 
used to execute two or more steps at the same time, and a selection branch is used to select between 
steps depending on logic (transition) conditions. 

Note: A simultaneous branch is indicated by parallel horizontal lines at the top and bottom of the 
branch, whereas a selection branch uses a single horizontal line.

In a selection branch, the SFC program checks each path from left to right; the first path with a true 
transition is executed and all others are ignored. If all path transitions are false, the program starts 
over with the first path. A path can have only a transition and no step if desired. This is useful if you 
want to bypass the entire branch group. See Figure 19–4.
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Each path
has its own
transition.

This path skips the
structure if the

transition is true.

Figure 19–4 Selection Branch with Bypass

Creating Steps
Steps should be created that represent the major functions of your process. A step contains the ac-
tions to be performed during that part of the sequential process. When creating a step, a tag is created 
that provides information about the step. The tag name, by default, follows the step number created, 
such as Step_000, Step_001,…Step_005, etc. You can change the tag name to something that is more 
meaningful, such as Initialize, Purge, Ignite, etc. The information contained in the tag structure for an 
SFC step is shown in Figure 19–5. The members of the tag provide a substantial amount of informa-
tion about the step such as, how long has the step been active, is this the first scan or the last scan, etc. 
All of this information can be used as needed when programming your SFC program. Refer to the 
detailed SFC programming manual for a complete explanation of each tag member.

Figure 19–5 SFC Step Information
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You add actions to steps to perform functions such as opening a valve, starting a motor, or initial-
izing a mode. To add an action to a step, right-click on the step and then choose Add Action. See 
Figure 19–6. A step can have multiple actions associated with it.

Figure 19–6 Adding Actions

When creating an action, you create a tag that provides information about the action. The tag name, 
by default, follows the action number created, such as Action_001, Action_002,…Action_005, etc. 
You can change the tag name to something that is more meaningful, such as Valve Open, Motor1 
Start, etc. The information contained in the tag structure for an action is shown in Figure 19–7. This 
should sound familiar as this is the same as a step tag, which was discussed earlier.

Figure 19–7 Action Properties
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Actions can be either non-Boolean or Boolean. Non-Boolean actions use Structured Text program-
ming to execute assignments and instructions (logic) or call a subroutine. When programming non-
Boolean actions you have the option to automatically reset the assignments and instructions before 
leaving a step. Refer to the SFC programming manual for details. Otherwise, all data keeps its 
current values when the SFC leaves a step. Figure 19–8 shows several examples of non-Boolean 
actions.

Figure 19–8 Non-Boolean Actions

A Boolean action on the other hand contains no logic. It simply sets a bit in its tag structure that can 
be monitored by other logic located elsewhere, such as in a ladder logic routine. This method allows 
you to reuse a Boolean action multiple times within the same SFC program. Figure 19–9 shows an 
example of a Boolean action.

Figure 19–9 Boolean Action

Each action (non-Boolean and Boolean) uses a qualifier to determine when it starts and stops. By 
default, actions start when the step is activated and stop when the step is deactivated. A list of the 
qualifiers is shown in Figure 19–10. 
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If you want the action to And Then this qualifier

Start when the step is activated Stop when the step is deactivated N

Execute only once PI

Stop before the step is deactivated or 
when the step is deactivated

L

Stay active until a Reset action turns 
off this section

S

Stay active until a Reset action turns 
off OR a specific time expires, even if 
the step is deactivated

SL

Start a specific time after the 
step is activated and the step is 
still active

Stop when the step is deactivated D

Stay active until a Reset action turns 
off this action

DS

Start a specific time after the step 
is activated, even if the step is de-
activated before this time

Stay active until a Reset action turns 
off this action

SD

Execute once when the step is 
activated

Execute once when the step is deac-
tivated

P

Start when the step is deactivated Execute only once PO

Turn off (reset) a stored action R

Figure 19–10 Action Qualifiers

When a step contains multiple actions, the order of execution is from top to bottom as shown in the 
“Action Order” window of the step’s properties dialog box. See Figure 19–11.

Figure 19–11 Action Order Window

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



370  Technician’s Guide to Programmable Controllers

Creating Transitions
Transitions control when the SFC program moves from step to step. If a transition is true, the SFC 
program goes to the next step; otherwise it repeats the step above it. Transitions occur between steps in 
a sequence, after a simultaneous branch, and in each branch of a selection branch. See Figure 19–12.

Transition

Transition

Transition

Figure 19–12 Transitions

Each transition uses a BOOL tag to represent the true or false state that is evaluated by the SFC pro-
gram. When programming the transition, you enter the condition as a BOOL expression that uses 
BOOL tags, relational operators, and logical operators to compare values or check if conditions are 
true or false. The BOOL expression is entered in Structured Text format. You can also call a Subrou-
tine that contains an End Of Transition (EOT) instruction that returns the state of the conditions to 
the transition. Figure 19–13 shows examples of both a BOOL expression and Subroutine transitions. 

BOOL_Tag

BOOL_Tag

JSR Subroutine OR

BOOL_Tag_A & BOOL_Tag_B DINT_Tag>150

BOOL_Tag

EOT

Condition_1 Condition_2

To use a subroutine
to control a

transition, include an
End Of Transition

(EOT) instruction in
the subroutine. When

the BOOL_Tag is
true, the transition

is true.

If Condition_1 & Condition_2 Then
 BOOL_Tag: = 1;
Else
 BOOL_Tag: = 0;
End if;
EOT (BOOL_Tag);

Figure 19–13 BOOL Expression and Subroutine Transitions

You can use the step millisecond timer within a transition to signal when the step has run 
the  required time or too long and the SFC program should go to the next step. This is a very 
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good use of the millisecond timer contained in the step tag. An example of this is shown in  
Figure 19–14.

Figure 19–14 Timed Transition

When an SFC completes its last step, you must either wire the last transition to the top of the first step 
or use an SFC Stop element. When you use a Stop element, the SFC stops execution for part or the 
entire SFC program based on the location of the Stop element. If the Stop element is located after a 
sequence or selection branch then the entire SFC program stops. If the Stop element is located within 
a path of a simultaneous branch, then only that path is stopped and the rest of the SFC continues to 
execute. Once an SFC Stop element has been activated, you can restart the SFC by using either an 
SFC Reset (SFR) instruction or logic to clear the status bit of the Stop element. The following ex-
ample illustrates the method of ending an SFC program. See Figure 19–15.

Figure 19–15 Ending SFC Program
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SFC Programming Example
In this example, we will program a simple SFC program to control a batch operation as shown in 
Figure 19–16.

Start

End

Open Batch
Valve

Close Batch
Valve

Batch A
Operation

Batch B
Operation

Figure 19–16 Batch Operation Example

The first step is to create the SFC routine by right-clicking on the Main Program and adding a new 
routine as shown in Figure 19–17. The new SFC routine was given the name SFC_Batch.

Figure 19–17 New SFC Routine

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sequential Function Chart Programming  373

Double-click on the new routine (SFC_Batch) and the SFC program will appear in the right pane. 
See Figure 19–18. Note the SFC toolbar at the top of the window. The toolbar is used to select the 
SFC element to be added to the program.

Figure 19–18 SFC Programming Window

Programming consists of dragging and dropping program elements from the toolbar onto the SFC 
program window replicating your SFC steps and transitions. After your steps and transitions have 
been placed, the last step is to configure your elements and add your actions. In Figure 19–19, we 
have added all of our steps and transitions for the batch operation example shown in Figure 19–16. 
We are now ready to configure our steps and transitions.

To configure each step, right-click on the step and select properties or click on the el-
lipses button located on the step. The properties screen will appear for that step as shown in  
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Figure 19–20. If this is the first step of the SFC program, then you must choose the Initial 
checkbox; otherwise select Normal. The properties screen allows you to configure the step for 
such things as preset time, alarming, action order, etc. 

Actions are added to a step by right-clicking on the step and then selecting Add Action. To config-
ure an Action, right-click on the action and select properties or click on the ellipses button located 

Figure 19–19 SFC Elements Added for Batch Example
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on the action. The properties screen will appear for that action as shown in Figure 19–21. Select 
the appropriate properties for that action. After selecting the properties for the action, then enter 
the action by double-clicking on the action window of the action box if a Non_Boolean action was 
selected. Continue to add actions to your steps as required for your SFC program.

Figure 19–21 Action Properties Window

Figure 19–20 Step Properties Window
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To configure each transition, double-click on the “?” just below the transition name as shown in 
Figure 19–22, and enter the tag or subroutine tag to be evaluated for a true condition.

Figure 19–22 Transition Configuration

Continue entering your action and transition conditions until your program is complete. You can 
add text boxes to your SFC program by selecting the text box icon on the toolbar. After you select 
the text box on the toolbar, a text box will appear on your SFC window that you can move around. 
The pushpin symbol in the text box allows you to attach the text box to an SFC element by drag-
ging the wire to the element as shown in Figure 19–23.

Figure 19–23 Text Box
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Only a general overview of SFC programming has been presented here. For a complete descrip-
tion on how to program the Logix5000 controllers using SFC programming language, refer to the 
programming manual entitled “Logic5000 Controllers Sequential Function Charts,” Publication 
1756-PM006D-EN-P.

Chapter Summary
Sequential function chart (SFC) programming is similar to designing a flowchart of your process 
using steps and transitions. Steps contain actions that are used for turning tags on or off and perform-
ing other functions. Transitions are the conditions that must be met before moving on to the next 
step(s). Steps can be configured as linear steps (one step after another), concurrent steps (executed 
simultaneously), or selected branch (selected between steps). 

SFC programming is easy to organize, read, design, and troubleshoot. It is most often used with an 
application that is sequential in nature and has definable steps.

Review Questions
 1. List the key elements of an SFC program.
 2. You can use   ,   , and    to control the execution of 

your SFC steps.
 3. Each step and transition is assigned a tag, which provides information about the step or  

transition.
 a) True
 b) False
 4. Actions can be one of two types. List the two types and their differences.
 5. A transition can use a subroutine to determine the state of the transition. What instruction is 

used in the subroutine for this?
 a) END
 b) OTE
 c) SFC
 d) EOT
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Understanding 
Communication Networks

Chapter

20
Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand	networking	principles.
•	 Describe	the	different	network	categories.
•	 Explain	the	different	network	topologies.
•	 Understand	the	media	used	to	construct	a	network.
•	 Explain	the	different	methods	used	to	access	a	network.
•	 Understand	what	a	network	protocol	is	and	how	packets	work.
•	 Understand	the	different	industrial	communication	networks	and	protocols.	

With	PLCs	used	in	greater	numbers	and	distributive	control	being	the	norm,	the	control	systems	of	
today	are	becoming	more	complex,	requiring	various	communication	schemes	to	tie	these	system	
components	together.	Passing,	or	exchanging,	 information	is	not	only	a	desire	but	a	requirement	
in	many	control	systems	today.	A	communication	scheme	can	be	as	simple	as	having	two	PLCs	
ten	feet	apart	passing	information	between	them,	to	as	complex	as	a	plant-wide	control	and	infor-
mation network in which PLCs, human machine interfaces (HMIs), intelligent I/O devices, and 
information	technology	(IT)	systems	are	able	to	exchange	information.	This	chapter	on	networking	
is not intended to provide the reader with a comprehensive knowledge of communication networks 
or	schemes,	but	rather	to	give	a	general	overview	of	the	control	and	information	networks	that	are	
being	used	today	in	many	industrial	plants	and	factories.

History

Data	 communication	 has	 become	 an	 integral	 part	 of	modern	 control	 systems,	 and	 continues	 to	
evolve	as	technology	advances	at	an	ever-increasing	rate.	One	of	the	first	methods	used	to	com-
municate	between	PLCs	was	a	pair	of	wires	used	to	connect	the	output	card	of	one	PLC	to	the	input	
card	of	a	second	PLC.	As	simple	as	this	method	may	seem,	it	did	satisfy	some	of	the	criteria	that	we	
look for in many modern industrial control and information networks today, such as:

•	 real-time	or	nearly	real-time	control
•	 high	data	integrity
•	 high	noise	immunity
•	 reliability	in	harsh	industrial	environments

378
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As	industrial	plants	began	to	implement	PLCs	in	a	distributive	or	modular	approach	to		controlling	
equipment,	it	was	necessary	to	develop	fast,	secure,	and	reliable	communications	schemes	to	tie	
the	 various	 PLCs	 and	 their	 systems	 together.	 PLC	manufacturers	 began	 developing	 their	 own	
control	networks	to	meet	this	growing	demand.	These	were	considered	proprietary	networks	since	
they	were	only	compatible	with	their	own	equipment.	These	proprietary	networks	are	often	called	
highways,	data	highways,	or	control	networks.	Many	of	these	proprietary	networks	were		installed	
and	continue	to	function	today	in	many	plants	and	factories	across	the	world.

With	 the	advancements	 in	digital	communications	 technology	and	 the	 increased	number	of	PLC	
manufacturers,	it	became	clear	that	the	proprietary	networks	of	the	past	were	limiting	the	ability	for	
modern	control	systems	to	work	together.	This	also	became	apparent	to	plant	engineers	who	were	
under	pressure	to	find	ways	to	integrate	the	various	PLCs,	intelligent	I/O	devices,	information,	and	
HMI	systems.	Today	most	manufacturers	of	PLC	and	control	equipment	support	open	communi-
cation	networks.	Open	networks	are	based	on	international	standards	developed	through	industry	
	associations.	This	has	opened	the	door	for	control	equipment	manufactured	by	different	vendors	to	
communicate	across	a	common	network.	

NetworkiNg PriNciPles

A	communication	network	exists	when	two	or	more	devices	are	connected	together	by	some	type	of	
media	for	the	sole	purpose	of	exchanging	information.

When devices are connected to network media, they are called nodes.	Nodes	can	be	PLCs,	personal	
computers,	HMIs,	intelligent	I/O	devices,	routers,	and	bridges,	to	name	just	a	few	examples.	Some	
of	these	devices	may	also	be	called	by	other	names	like	“stations,”	“network	devices,”	or	just	plain	
“devices.”	Nodes	are	 typically	divided	 into	 two	classes:	devices	 that	produce	and	consume	data	
(i.e.,	computers,	PLCs,	HMIs)	and	devices	that	only	receive	and	forward	the	data	(i.e.,	repeaters,	
switches,	routers,	bridges).	See	Figure	20–1.

NODE
(PLC, COMPUTER, ETC.)

NETWORK ‘A’ NETWORK ‘B’

NODE
(BRIDGE, REPEATER, ETC.)

NODE
(PLC, COMPUTER, ETC.)

NODE
(PLC, COMPUTER, ETC.)

NODE
(PLC, COMPUTER, ETC.)

Figure 20–1	Nodes	and	Network	Media

Modern	data	communications	uses	a	digital	method	of	sending	and	receiving	binary	information	
by	way	of	low-level	DC	digital	pulses.	These	digital	pulses	represent	binary	digits	or	bits	that	are	
sent	as	a	bit	stream	called	a	packet	over	a	common	media	format	(i.e.,	wires,		cables,	optical	fibers)	
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to	the	multiple	devices	connected	to	the	network	media.	A	packet	is	a	unit	of	data	represented	by	
a	 series	of	digital	 signals	 (being	either	on or off )	 that	 represents	 the	message	 to	be	 transmitted.	
Think	of	a	packet	as	a	 letter	 that	you	would	mail.	The	 length	of	 the	bit	stream	or	packet	size	 is	
dependent	 on	many	 factors	 such	 as	 data	 length,	 format,	 and	 protocol.	These	 digital	 signals	 that	
make	up	the		messages	are	used	to	communicate	information	between	such	devices	as	PLCs,	com-
puters,	and		intelligent	I/O	devices.	The	remote	I/O	bus	network	covered	earlier	is	an	example	of	
a digital  communication network that allows PLCs to communicate with remote I/O devices over  
a	 common	media.	Messages,	 packets,	 and	 protocols	will	 be	 covered	 in	more	 detail	 later	 in	 this	 
chapter.

You will often hear the term bandwidth	when	working	with	communications	networks.	Bandwidth	
is	the	speed	at	which	information	can	be	transferred.	Network	bandwidth	can	be	thought	of	as	the	
ability	of	a	network	to	pump	data	through	the	communication	media.	In	other	words,	it’s	like	the	
pipe	that	brings	water	to	your	house:	the	bigger	the	pipe,	the	greater	the	volume	of	water	that	can	
be	delivered	 to	your	house	 in	 a	given	amount	of	 time.	Network	bandwidth	 is	usually	expressed	
in bits per second transmitted,	abbreviated	bps.	Most	networks	operate	in	the	millions	of	bits	per	
second	 range,	 so	 the	abbreviation	Mbps	 is	 typically	used.	Theoretically	a	10	Mbps	network	can	
be		transmitting	data	at	the	rate	of	10	million	bits	per	second,	but	this	is	not	always	the	case.	Some	
	networks,	such	as	Ethernet,	may	really	only	be	operating	at	40	to	50	percent	of	the	rated	bandwidth,	
depending	on	the	mode	of	operation	and	hardware	devices	used.

Network categories 

The	geographic	area	that	they	encompass	typically	categorizes	communication	networks.	Two	of	
these categories, Local Area Networks (LANs)	and	Radio Area Networks (RANs),	can	be	found	
in	the	control	and	information	networks	of	many	factories	and	cities.	The	following	is	a	description	
of the four network categories:

•	 Local Area Networks (LANs)	are	typically	high-speed,	low-error	data	networks	cover-
ing	a	relatively	small	geographic	area	(up	to	several	thousand	meters).	A	LAN	connects	
such devices as PLCs, computers, HMIs, printers, servers, and other devices in a single 
building	or	geographically	limited	area	(see	Figure	20–2).	All	industrial	control	and	most	
information	networks	fall	in	this	category.	Not	all	LANs	are	the	same.	LANs	have	stan-
dards	or	protocols	that	specify	the	cabling	and	signaling	methods	used.	Some	of	these	
standards	or	protocols	are	proprietary	and	others	are	not.

•	 Metropolitan Area Networks (MANs)	are	data	communications	networks	that	gen-
erally	span	a	metropolitan	area.	A	MAN	can	be	found,	for	example,	connecting	the	
 departments of a city government if those departments are scattered throughout the 
city.		A	MAN	network	will	typically	use	transmission	devices	provided	by	a	local	com-
mon		carrier	such	as	the	telephone	or	cable	TV	provider.	A	MAN	is	larger	than	a	LAN	
but	smaller	than	a	WAN.	This	category	is	used	primarily	for	information	networks	like	
those	found	in	large	offices	and	buildings.	

•	 Wide Area Networks (WANs)	are	data	communications	networks	that	encompass	
a broad	geographic	area,	such	as	between	cities	or	countries.	A	WAN	will	typically	
use transmission	devices	provided	by	common	carriers	such	as	telephone	and	cable	
TV providers.	These	transmission	devices	can	include	copper	cable,	optical	fiber,	
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 microwave,	and	satellite	communications	devices.	A	WAN	is	a	network	that	spans	
 the	largest	geographical	area.	When	you	connect	to	the	Internet	you	are	connecting	
to	a	WAN.

•	 Radio Area Networks (RANs)	are	data	communications	networks	that	use	radio	or	
	microwave	signals	as	the	network	media	to	communicate	between	devices.	This	cate-
gory	of	network	is	typically	found	in	supervisory	control	and	data	acquisition	(SCADA)	
systems.	You	may	find	this	type	of	network	used	by	a	city	municipal	water	department,	
for	example,	to	monitor	and/or	control	the	city’s	water	reservoirs	and	pumping	stations	
that	may	be	located	throughout	the	city	(see	Figure	20–3).	This	type	of	network	can	
sometimes provide a cost savings over traditional methods like leasing phone lines from 
a	local	common	carrier.	In	some	cases	in	which	no	physical	media	are	available	or	prac-
tical	this	may	be	the	only	option.

LOCAL AREA NETWORK

LOCAL AREA NETWORK

LOCAL AREA NETWORK

Figure 20–2	Local	Area	Network	(LAN)
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Network coNfiguratioNs

Communication	networks	can	be	physically	constructed	in	several	different	configurations.	These	
configurations	are	called	network	topologies.	A	network	topology	can	be	in	the	form	of	a	bus, star, 
or ring	 configuration.	 Each	 topology	 serves	 different	 network	 requirements,	 and	 in	many	 cases	
more	than	one	topology	might	be	used	to	construct	the	network.	The	following	is	a	description	of	
the	three	network	topologies.

•	 Bus Topology—A	bus	network	is	a	topology	in	which	nodes	are	connected	to	a	com-
mon	bus	in	a	daisy	chain	or	multidrop	fashion,	as	shown	in	Figure	20–4.	In	the	common	
bus	topology,	each	device	is	capable	of	receiving	all	information	packets	on	the	bus,	
and	network	communication	can	occur	between	any	two	devices	without	having	to	pass	
the information through a central network controller (as is the case with a star topol-
ogy).	Common	bus	topologies	are	well	suited	to	industrial	control	applications	since	
each		device	has	equal	priority	and	can	exchange	information	at	any	time.	Most	indus-
trial	I/O	networks	are	of	the	bus	topology.	When	adding	or	removing	devices	from	this	
type	of	topology	very	little,	if	any,	reconfiguration	is	required.	The	main	disadvantage	
with	this	topology	is	that	all	devices	share	a	common	bus	and	a	break	in	the	bus	can	af-
fect	many	devices.

•	 Ring Topology—A ring network is a topology in which nodes are connected in series 
to	form	a	ring	(see	Figure	20–5).	This	type	of	network	requires	each	node	to	participate	
in	the	distribution	of	the	information	along	the	network.	Data	packets	are	transmitted	

CITY
WATER DEPT.
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PUMP
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RESERVIOR
STATION B

MODEM

Figure 20–3 Radio	Area	Network	(RAN)	
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from node to node along the network with each node checking the address attached to 
the	packet.	If	the	address	attached	to	the	packet	matches	the	node	address,	then	the	node	
processes,	or	consumes,	the	information.	If	it	does	not	match,	then	the	node	retransmits	
the	packet	to	the	next	node	in	the	network.	The	ring	topology	is	not	typically	used	in	
	industrial	control	networks	because	of	the	dependency	on	each	node	to	participate	in	the	
transfer	of	data.	

NODE 1 NODE 2 NODE 3 NODE 4

NODE 1 NODE 2 NODE 3 NODE 4

MULTIDROP COMMON BUS

DAISY CHAIN COMMON BUS

Figure 20–4 Bus	Topology

NODE 4

NODE 2

NODE 1 NODE 3

Figure 20–5 Ring Topology
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•	 Star Topology—A star network is a topology in which each node is connected to a 
network	controller	(see	Figure	20–6).	The	network	controller	has	the	task	of	passing	or	
 retransmitting the information received from one node to the other nodes connected to 
it.	The	network	controller	is	responsible	for	all	communication	routing	on	the	network.	
In this type of topology, a failure of a single device does not cause the entire network 
to	fail,	but	a	failure	of	the	network	controller	could	cause	an	entire	network	to	fail.	The	
network	controller	is	typically	an	intelligent	device	such	as	a	network	repeater	(hub)	or	
switch.	This	type	of	topology	traditionally	has	not	been	used	in	industrial	control	net-
works	because	of	the	dependence	on	the	network	controller,	the	installation	cost	(more	
cable	required	than	in	the	bus	topology),	and	the	unreliable	data	transfer	time.	The	star	
topology	is	often	used	in	networking	computers	in	business	offices.	It	is	worth	noting	
that	the	star	topology	is	finding	its	way	into	the	industrial	controls	environment	due	to	
advances	in	technology	and	requirements	to	integrate	information	networks	with	con-
trol	system	networks.

NETWORK CONTROLLER
(Repeater, Hub, Switch)

Figure 20–6 Star	Topology

Network Media

The network media are	 the	wire,	cable,	and	optical	fibers	used	to	physically	connect	 the	various	
communication	devices	together	within	a	network	topology.	The	most	commonly	used	media	in-
clude twisted-pair, coaxial, and optical fiber cables.	To	implement	a	communications	network	you	
must	have	a	good	understanding	of	the	media	and	hardware	used	to	construct	a	network.	
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twisted-Pair cable 
Twisted-pair	is	the	basic	networking	cable	used	today	in	most	offices,	buildings,	and	industrial	plants.	
This	type	of	cable	is	relatively	inexpensive	and	has	a	fair	degree	of	noise	immunity.	The	name	comes	
from	the	way	that	each	pair	of	wires	are	twisted	around	one	another,	as	shown	in	Figure	20–7.

Twisted-pair	cables	help	reduce	crosstalk	and	noise	susceptibility	by	reducing	magnetic	coupling	
between	pairs.	Some	networks	using	twisted-pair	wiring,	such	as	Ethernet,	use	balanced	transmis-
sion.	In	balanced	transmission,	two	wires	are	used	to	carry	the	electrical	signal,	and	each	carries	a	
signal	(and	noise)	that	is	of	equal	potential	with	the	other	conductor,	but	has	opposite	polarity.	The	
receiving	device	only	measures	the	difference	between	the	two	conductors.	This	has	the	effect	of	
canceling	the	noise.

Twisted-pair	cable	can	be	unshielded	or	shielded.	Unshielded	Twisted-Pair	cable	(UTP)	is	the	most	
common	cable	used	in	offices,	buildings,	and	areas	that	have	low	levels	of	electrical	noise.	Shielded	
Twisted-Pair	cable	(STP),	on	the	other	hand,	greatly	improves	the	electrical	noise	immunity	of	the	
cable	and	is	normally	the	type	used	in	industrial	network	applications.	It	must	be	noted	that	when	
using	STP	cable,	maximum	shielding	can	be	 achieved	only	 if	 the	 shield	 is	properly	 terminated.	
	Remember	that	the	purpose	of	the	shield	is	to	pick	up	the	noise	and	conduct	it	to	ground.	The	cable,	
connectors,	and	equipment	must	provide	a	continuous	path	to	ground	for	the	noise,	or	shielded	cable	
is	no	better	than	unshielded	cable	and	in	most	cases	worse.

When	twisted-pair	cables	are	used	in	industrial	control	networks,	the	manufacturers	of	the	equip-
ment	will	typically	specify	the	type	and	quality	of	the	cable	to	be	used	for	optimum	performance.	
A	shielded	twisted-pair	cable	with	an	outer	jacket	that	can	withstand	high	temperatures,	dirt,	oil,	
solvents,	and	abrasions	is	typically	specified.	Recommendations	given	by	the	manufacturers	should	
be	followed	to	minimize	network	problems.

Figure 20–7 Twisted-pair	Cable

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



386  Technician’s	Guide	to	Programmable	Controllers

The	twisted-pair	cables	used	in	most	offices,	buildings,	and	factories	for	Ethernet	communication	
networks	are	rated	by	a	category	(CAT)	numbering	system	representing	the	quality	and	data	rate	of	
the	cable.	The	following	are	the	most	common	of	the	CAT	cable	ratings	being	used	today.

•	 CAT	5—Category	5	cable	is	a	multi-pair	(usually	4)	cable	used	primarily	for	data	trans-
mission	at	rates	up	to	100	Mbps.	

•	 CAT	5e—Category	5e	cable	is	the	same	as	CAT	5	cable,	except	that	it	is	manufactured	
to	a	higher	standard	with	transmission	rates	up	to	1000	Mbps	(gigabit).	CAT	5e	cable	is	
recommended	for	all	new	installations.	

•	 CAT	6—Category	6	cable	has	data	transmission	rates	up	to	400	MHz	(10	gigabit).	
Category	6	cable	is	the	fastest	communications	cable	available	that	is	unshielded.	This	
is	a	high-end	cable	and	the	emerging	favorite.	It	should	be	noted	that	Category	6	cable	
is	not	recommended	for	industrial	applications	because	it	can	carry	higher	frequencies	
better	than	Category	5e	cable,	which	makes	it	more	susceptible	to	the	higher-frequency	
noise	from	arc	welders,	motors,	VFDs,	and	other	noise	sources.	

•	 CAT	7—Category	7	cable	is	a	shielded	multi-pair	high-performance	cable	with	trans-
mission	rates	up	to	700	MHz.	As	of	this	writing,	the	standard	for	CAT	7	cable	had	not	
been	completed.	This	will	be	the	future	cable	of	choice	and	will	require	new	connectors	
and	connecting	devices	to	accommodate	the	shielded	pairs.

•	 CAT	5i—Category	5i	cable	is	an	industrial	grade	cable	that	has	a	higher	tempera-
ture	range	and	an	outer	jacket	that	is	more	resistant	to	abrasion,	oils,	chemicals,	and	
	solvents.

All	communication	cables	must	be	connected	at	each	end.	In	some	cases	the	means	of	connection	is	
as	simple	as	stripping	the	cable	back	and	connecting	the	wires	on	the	proper	terminals,	and	at	other	
times	a	connector	is	used.	Most	twisted-pair	cables	used	for	Ethernet	networks	use	an	RJ-45	type	
connector,	as	shown	in	Figure	20–8.

Figure 20–8 RJ-45	Connector
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Outer Jacket
Shield

Dielectric Substance

Center Conductor

Figure 20–9 Basic	Structure	of	a	Coaxial	Cable

Figure 20–10 Coaxial	Cable	Terminator

There	 are	 industrial	RJ-45	 type	 connectors	 available	 that	 are	 equipped	with	 threaded	 boots	 that	
provide	protection	from	moisture,	liquids,	and	vibration.	The	equipment	that	the	cable	is	to	be	con-
nected	to	determines	the	type	of	connection.	Cable	terminations	are	a	common	source	of	network	
problems,	due	to	such	factors	as	improper	terminations,	miswiring,	and	mechanical	or	environmen-
tal	damage.	Care	should	be	 taken	when	 terminating	communication	cables	 to	minimize	network	
problems.	

coaxial cable
Coaxial	cable	was,	and	still	is,	widely	used	in	industrial	control	networks	because	of	its	excellent	
immunity	to	electrical	noise	generated	by	factory	equipment;	it	offers	the	best	performance	of	all	
copper	cables.	On	the	other	hand,	coaxial	cable	is	hard	to	work	with	and	costs	more	than	twisted-
pair	cable.	The	basic	structure	of	a	coaxial	cable	is	a	center	conductor	surrounded	by	a	dielectric	
substance,	shield,	and	outer	jacket	(see	Figure	20–9).	

Coaxial	cables	have	characteristic	impedances	(50	ohms,	75	ohms,	etc.),	and	must	be	terminated	at	
their	ends	for	proper	operation.	For	example,	if	coaxial	cable	is	used	in	a	bus	topology	in	which	the	
ends	are	not	connected	to	a	device	that	terminates	the	cable,	a	special	connector	called	a	terminator	
must	be	placed	on	the	ends,	as	shown	in	Figure	20–10.
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The	terminator	absorbs	all	energy	reaching	it	and	this	prevents	reflections	that	can	cause	network	
problems.	Terminators	must	have	the	proper	resistance	value	(50	ohms	for	50-ohm	coaxial	cable,	
etc.)	and	be	installed	for	proper	network	operation.	The	connector	type	typically	used	with	coaxial	
cable	is	the	BNC	connector,	as	shown	in	Figures	20–11a	and	20–11b.	

Figure 20–11a BNC	Connector

Figure 20–11b T-tap	and	BNC	Connectors

©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13
©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Understanding	Communication	Networks  389

fiber optic cable
Fiber	optic	cables	use	thin	glass	strands	called	optical	fibers	to	carry	data	signals	by	means	of	light.	
The	process	is	simple.	Electrical	signals	are	converted	to	light	signals	and	transmitted	down	a	glass	
fiber.	At	the	other	end,	the	light	signals	are	converted	back	to	electrical	signals.	A	single	optical	
fiber	strand	consists	of	two	parts,	the	inner	core	made	of	glass	and	the	outer	cover	or	cladding.	The	
cladding	helps	to	confine	the	light	inside	the	core	by	acting	as	a	mirror	to	reflect	the	light	down	the	
core	(see	Figure	20–12).

LED

SIGNAL CONVERSION

Optical Fiber Strand

OPTICAL FIBER STRAND

GLASS CORE (8–65 microns)

Cladding (125 microns)

Receiver

Figure 20–12 Optical	Fiber	Strand	and	Signal	Conversion

The	optical	fibers	 themselves	are	 enclosed	within	a	protective	 structure.	This	 structure	 typically	
	consists	of	a	fiber	coating,	buffer,	strength	member,	and	outer	jacket,	as	shown	in	Figure	20–13.	
Most	fiber	cables	consist	of	multiple	optical	fibers.	Of	the	three	network	media	types,	fiber	optic	is	
	considered	to	be	the	best	because	of	its	high	data	rates	over	long	distances,	its	immunity	to		electrical	
noise,	and	the	fact	that	it	carries	no	current,	so	that	it	is	not	a	spark	or	fire	hazard.

Optical	fibers	come	in	two	types:	multi-mode and single-mode.	Multi-mode	fiber	has	a	core	diam-
eter	of	around	50–62.5	microns	(1	micron	5	1	millionth	of	a	meter)	with	a	cladding	diameter	of	
about	125	microns,	and	can	have	transmission	distances	up	to	12	Km	without	the	use	of	repeaters.	
Multi-mode	fiber	has	traditionally	been	the	optical	fiber	of	choice	for	most	industrial	communica-
tions	networks	because	of	its	compatibility,	ease	of	coupling,	cost,	and	sufficient	bandwidth.	Not	
all	multi-mode	fibers	are	the	same,	however;	there	are	several	grades	of	fiber	that	determine	such	
things	as	bandwidth	and	attenuation.	Attenuation	is	a	decrease	in	optical	power	from	one	point	to	
another	and	is	measured	in	decibels	(dB).	You	could	compare	attenuation	in	optical	fibers	to	the	 
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I2R	 loss	 in	 copper	 wires.	 Single-mode	 fiber,	 on	 the	 other	 hand,	 has	 a	 core	 diameter	 around		
8		microns	with	a	cladding	diameter	the	same	as	multi-mode,	and	can	have	transmission	distances	
up	to	100	Km.	Single-mode	fiber	is	most	often	used	in	the	telecommunication	and	cable	television	
	industries.

There	are	two	optical	devices	in	use	today	for	converting	the	electrical	signals	into	light.	They	are	
the	LED	and	the	laser.	The	LED	is	inexpensive	and	is	used	primarily	with	multi-mode	fibers.	The	
LED	emits	a	wide	band	of	light	that	lowers	the	bandwidth	of	the	signal	that	the	fiber	can	carry,	mak-
ing	it	impractical	for	single-mode	fibers.	Lasers,	on	the	other	hand,	have	a	very	narrow	and	intense	
beam,	are	high-speed	capable	devices,	and	operate	with	a	very	narrow	spectrum	of	light,	making	
them	ideally	suited	for	single-mode	fiber	applications.	The	wavelength	of	the	light	employed	with	
most	optical	fiber	systems	is	in	the	infrared	region.	The	human	eye	cannot	see	light	in	the	infrared	
region	of	the	light	spectrum.	

caution:	Never	look	directly	into	the	end	of	an	optical	fiber	that	is	connected	to	a	power	source	or	
permanent	eye	damage	could	result.

Fiber	optic	connectors	provide	an	easy	means	 to	connect	 the	optical	fiber	 to	 the	equipment	with	
as	 little	 loss	 of	 power	 as	 possible.	With	 optical	 fiber	 connectors,	 the	 challenge	 becomes	 one	 of	
alignment	of	the	light-carrying	optical	cores	to	the	optical	cores	on	the	equipment	connectors.	Any	
misalignment	of	the	fiber	cores	means	a	loss	of	optical	power	at	the	connection.	Remember	that	the	
	optical	core	diameter	of	a	multi-mode	fiber	is	only	about	50	microns—about	the	width	of	a	human	
hair,	if	not	smaller.	Fiber	connectors	use	what	are	called	ferrules	to	hold	the	fiber	cores.	A	ferrule	
has	a	precision	hole	that	the	fiber	core	is	inserted	into	that	provides	for	accurate	positioning	of	the	
fiber.	Ferrules	are	typically	made	of	ceramic,	plastic,	or	stainless	steel.	Epoxy	has	traditionally	been	
used	to	secure	the	fiber	in	the	ferrule,	but	recent	advancements	in	manufacturing	have	developed	
	alternate	methods	 that	are	 fast,	efficient,	and	do	not	 require	 the	equipment	and	skill	 level	of	 the	
traditional	epoxy	methods.	Fiber	optic	connectors	come	in	different	types.	Two	of	the	most	com-
mon	used	in		industrial	applications	are	the	ST	and	SC	connectors,	as	shown	in	Figures	20–14a	and	
20–14b.	Some	newer	fiber	optic	connectors	to	hit	 the	market	are	the	LC	and	MT-RJ	connectors,	
which	are	about	half	the	size	of	the	ST	and	SC	connectors.

FIBER - OPTIC CABLE (Single Fiber)

GLASS CORE

CLADDING

REINFORCEMENT STRANDS
(Kevlar)

OUTER SHEATH
(PVC/Te�on)

BUFFER
(Tight/Loose)

Figure 20–13 Optical	Fiber	Cable
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Figure 20–14a “ST”	Fiber	Connector

Figure 20–14b “SC”	Connector

reducing electromagnetic interference 
Industrial	environments	are	notorious	for	producing	electromagnetic	interference	(EMI	or	electrical	
noise)	in	communications	and	other	low-voltage	cables.	In	order	to	minimize	EMI	problems,	proper	
selection	and	installation	of	communications	cables	cannot	be	overemphasized.	The	following	is	a	
checklist	that	you	can	use	to	help	minimize	EMI	problems.

o Survey	the	environment	the	cable	will	be	located	in.	What	kinds	of	sources	of	EMI	may	
be	present,	such	as	power	cables,	high-voltage	sources,	motors,	transformers,	welders,	
variable-frequency	drives,	generators,	etc.?	This	would	be	a	good	time	to	also	consider	
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other	environmental	concerns	such	as	temperature	extremes,	moisture,	oils,	chemicals,	
solvents,	abrasion,	vibration,	shock,	etc.

o To	the	extent	that	would	be	practical,	plan	communication	cable	runs	to	avoid	potential	
EMI	sources	that	are	identified	in	the	survey.

o Do	not	route	copper	communication	cables	near	high-voltage	power	sources	and/or	
power	cables.	

o To	provide	maximum	EMI	and	physical	protection	to	communications	cables	that	are	
located	within	industrial	plants,	consider	running	the	cable	in	steel	conduit.	This	pro-
vides	excellent	EMI	protection.	Never	run	communications	cables	in	the	same	conduit	
or	raceway	with	power	wires	or	cables.

Note: Some manufacturers recommend against running unshielded cable in metal con-
duits, as it may affect the electrical performance of the cable. Always check with the 
manufacturer.

o Shielded	cable	should	be	considered	for	most	industrial	applications.	For	maximum	
noise	immunity	or	in	areas	of	high	EMI	sources,	fiber	optic	cable	should	be	considered.

o When	you	are	using	shielded	cable,	proper	grounding	of	the	shield	is	important.	
Shielded	cable	should	only	be	grounded	at	one	end.	If	grounded	at	both	ends,	noise-
inducing	ground	loops	can	occur.	You	should	always	follow	the	equipment	manufac-
turer’s	recommendations	on	grounding	shielded	cables.

o Make	sure	all	cables	are	properly	terminated.
o Other	items	to	consider	when	installing	communications	cables	and	equipment:
•	 Avoid	sharp	bends	in	communication	cables.	A	good	rule	to	follow	is	that	the	radius	of	
the	bend	should	be	four	(4)	times	the	diameter	of	the	cable	and	no	less	than	1	inch.

•	 Connectors	should	be	properly	selected	for	the	environment	and	network	type.
•	 Good	cable	termination	practices	cannot	be	overemphasized.	Failure	in	this	regard	is	
the	source	of	most	communication	problems.

•	 Install	communications	equipment	in	enclosures	to	protect	against	moisture,	dirt,	and	other	
contaminants.	When	steel	enclosures	are	used	they	also	offer	a	degree	of	EMI		protection.

Network addressiNg

Devices	connected	to	a	network	must	have	some	means	of	identification	in	order	for	messages	to	be	
received	only	by	the	intended	device	or	devices.	A	network	address,	also	called	a	station or node 
address,	is	like	your	home	address.	In	order	for	the	mail	carrier	to	deliver	a	letter	intended	for	you,	
he	or	she	must	identify	your	house	by	its	address.	In	communication	networks	the	same	basic	prin-
ciple	applies.	Each	node	connected	to	the	network	is	assigned	a	unique	address.	When	a	data	packet	
(message) is transmitted across network media, each node connected to the network checks the 
	destination	address	attached	to	the	packet.	If	the	address	matches	the	node’s	address,	then	the	packet	
is	accepted;	if	not,	the	packet	is	discarded.	The	format	and	assignment	of	an	address	for	a	node	on	a	
network	depends	on	the	type	of	network	and	the	protocols	in	effect	for	that	network.

On	most	networks	the	address	assigned	to	a	device	is	a	number	such	as	1,	10,	77,	115,	etc.	On	some	
networks,	 it	 can	be	 a	 series	of	numbers	 such	as	256.256.168.23	 separated	by	a	 character(s).	The	
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Figure 20–15a Dual	In-line	Package	(DIP)	Switches

Figure 20–15b Rotary	Switches

	number(s)	can	be	set,	or	assigned,	to	a	device	by	setting	switches	physically	located	on	the	device	
or	 through	 software.	On	many	 industrial	 control	networks	 the	address	 is	 assigned	 to	a	device	by			
switches,	such	as	dual	in-line	package	(DIP)	switches	or	rotary	switches,	as	shown	in	Fig	ures	20–15a	
and	20–15b.	

On	some	networks,	the	assignment	of	node	addresses	is	done	automatically	by	a	network	control-
ler	across	the	network	media	by	first	scanning	the	network	and	then	assigning	each	node	a	unique	
	address.	On	other	devices,	the	network	address	is	programmed	into	the	device	using	software	and	
stored	in	memory	on	the	device.
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Network access MetHods (access Protocols)

PLCs,	computers,	 and	other	devices	must	 employ	a	common	network	access-control	method.	
An access-control	method	defines	how	and	when	devices	can	access	and	communicate	informa-
tion	across	the	network.	There	are	many	methods	used	but	the	most	common	ones	are		polling 
or  master/slave, token passing, and carrier sensing multiple access with collision detection 
(CSMA/CD).	The	following	is	a	description	of	how	each	of	these	network	access-control	methods	 
works.

•	 Polling or Master/Slave Access Method—In	a	polling	or	master/slave	access-control	
method, a single PLC or computer is designated as the master and all other devices 
or	nodes	connected	to	the	network	are	designated	as	slaves.	In	polling,	the	master	is	
programmed	to	interrogate,	or	poll,	each	slave	device	in	sequence	to	see	if	it	has	data	
to	transmit.	The	master	will	send	an	inquiry	to	a	slave	and	then	wait	a	predetermined	
time	for	the	slave	to	respond.	If	the	slave	does	not	respond	within	the	allotted	time,	the	
master	will	assume	that	the	slave	is	dead,	or	inactive,	and	continue	to	poll	the	next	slave	
in	sequence.	When	the	master	has	polled	the	last	device	in	the	sequence,	the	master	
then	repeats	the	process.	In	a	master/slave	access-control	method,	the	slaves	can	only	
respond	to	the	master,	not	to	each	other.	If	a	slave	wishes	to	send	data	to	another	slave	
 device, the master must act as a mediator, receiving the data from one slave and then 
sending	the	data	on	to	the	second	slave.	Many	of	the	bus	networks	used	in	industrial	
communications	use	this	method	of	access-control	or	provide	the	capability.	

•	 Token Passing Access Method—In a token passing access method all devices or nodes 
connected	to	the	network	have	equal	access	to	the	network.	There	is	no	master;	each	is	
a peer	to	the	other.	Another	common	name	for	this	type	of	network	access	method	is	
peer-to-peer.	In	a	token	passing	method,	each	node	on	the	network	is	allowed	to	send	
data packets directly to other nodes and each node has a scheduled turn and allotted 
time	to	send	data.	In	order	for	a	node	on	the	network	to	send	data,	it	must	first	possess	
what	is	called	the	token,	and	only	one	node	can	possess	the	token	at	any	time.	The	token	
is	a	special	packet	that,	when	received	by	a	node,	gives	that	node	the	exclusive	but	
temporary	right	to	transmit	an	allotted	amount	of	data.	If	a	node	has	more	than	the	allot-
ted data to transmit, it will send additional data packets each time it receives the token 
until	it	has	sent	the	entire	message.	When	a	node	that	possesses	the	token	has	completed	
transmitting a data packet or if it has no message to transmit, it immediately passes 
the	token	to	the	next	node	in	ascending	order	of	the	node	addresses.	The	node	with	the	
highest address passes the token to the node with the lowest address, so the token con-
tinues	to	circulate	in	a	loop	throughout	the	network.

	 Each	node	has	a	defined	token	holding	time.	If	for	any	reason	a	node	does	not	pass	
the	token	within	the	allotted	time	given,	the	originating	node	then	begins	polling	node	
	addresses	in	ascending	order	until	it	finds	a	node	that	will	accept	the	token.	It	must	be	
noted	that	in	a	token	passing	network	method	there	is	a	maximum	number	of	node	ad-
dresses	available,	limiting	the	number	of	devices	that	can	be	connected	to	the	network.

	 The	size	of	the	data	packets	is	defined	as	well	as	the	token	hold	time,	so	it	is	possible	
	to calculate	the	network	access	time.	For	this	reason	the	token	passing	access	method	
is the most common network access method used in industrial control networks for 
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passing	time-critical	control	information	between	PLCs	and	other	controllers.	A	second	
advantage is that a failure of any one node does not cause a failure of communications 
between	the	other	nodes	on	the	network.

•	 CSMA/CD Access Method—The previous two access methods (master/slave and token 
passing) stipulate that a node on the network can only transmit when it has permission, 
	either	from	the	master	or	by	possessing	the	token.	In	the	CSMA/CD	access	method	each	
node	has	equal	right	to	attempt	to	transmit,	without	waiting	for	permission.	Whenever	a	
device	is	ready	to	transmit	data,	it	checks	the	network	for	the	presence	of	traffic	on	the	
network.	If	the	network	is	clear,	the	device	then	transmits	its	data.	If	the	network	is	busy,	
the	device	waits	until	the	network	is	clear.	A	“collision”	occurs	when	two	or	more	devices	
attempt	to	transmit	at	the	same	time.	When	a	collision	occurs,	a	collision	detection	signal	
is	sent	to	all	devices	on	the	network.	Each	of	the	colliding	devices	must	then	back	off	and	
wait	a	brief	but	random	time	before	beginning	the	process	again.

	 A	collision	is	not	an	event	to	be	avoided,	but	simply	a	method	used	to	arbitrate	access	to	
the	network.	The	resolution	of	a	collision	occurs	very	quickly.	The	two	devices	transmit-
ting	almost	immediately	abort	their	transmission	and	wait	a	random	amount	of	time	be-
fore	reattempting	the	transmission.	The	number	of	attempts	with	collision	and	a	random	
number	determine	the	back off time.	The	back	off	time	is	typically	in	the	microsecond	
range	but	can	be	in	the	millisecond	range	if	there	are	significant	collisions	occurring.

	 Because	it	is	impossible	to	predict	the	amount	of	time	required	for	all	colliding	devices	
to		successfully	complete	their	transmission,	the	CSMA/CD	access	method	may	not	
be	the	best	choice for	time-critical	control	networks.	It	is	worth	noting	that	data	trans-
mission	updates	are	typically	processed	in	a	fast	(millisecond)	time	frame.	Advances	
in	network	bandwidth	and	hardware	(active	switches)	have	made	this	access	method	
more	widely	accepted	in	the	industrial	controls		industry.

Network Protocols

Network	communication	protocols	are	sets	of	formal	rules	describing	how	to	 transmit	and	share	
data	across	a	network.	Without	these	formal	rules,	devices	on	a	network	would	not	be	able	to	under-
stand	each	other	(we	must	speak	the	same	language).	Low-level	protocols	define	the	electrical	and	
physical	standards	to	be	observed,	bit	and	byte	ordering,	transmission	execution,	error	detection,	
and	correction	of	the	bit	stream.	High-level	protocols	deal	with	the	data	formatting,	including	the	
syntax	of	messages,	 the	computer-to-computer	dialogue,	character	sets,	sequencing	of	messages,	
etc.	The	Open	Systems	Interconnect	(OSI)	reference	model	defines	many	of	the	protocols	used.	The	
OSI	is	a	reference	model	developed	by	the	ISO	(International	Organization	for	Standardization)	in	
1978	as	a	framework	for	international	standards	in	network	architecture.	The	OSI	model	is	split	into	
seven	layers,	from	lowest	to	highest,	as	shown	in	Figure	20–16.	

Each	layer	uses	the	layer	immediately	below	it	and	provides	a	service	to	the	layer	above.	In	some	
implementations	 a	 layer	may	 itself	 be	 composed	 of	 sublayers.	 It	must	 be	 noted	 that	 a	 network	
	requires	only	layers	1,	2,	and	7	of	the	OSI	model	to	operate.	Individually,	each	layer	of	the	OSI	
model	is	responsible	for	a	specific	task.
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Most	communication	networks	today	contain	all	or	most	of	the	OSI	layers	to	allow	other	networks	
and	devices	to	share	information.	When	a	device	is	sending	data	over	the	network,	the	data	starts	at	
the application layer and works its way down to the physical layer, where it’s placed onto the network 
media.	When	a	device	receives	a	message,	it	is	received	by	the	physical	layer	and	works	its	way	up	
to	the	application	layer.	The	final	result	of	this	effort	is	to	ensure	that	the	data	sent	from	one	device	is	
the	same	exact	data	received	by	another	device	on	the	network	(refer	back	to	Figure	20–16).

Network Messages

When it comes to network communications, the terms message, packet, and frame	can	be	confusing	
for	even	the	most	experienced	technician.	It	seems	that	many	of	these	terms	are	used	interchange-
ably.	We	will	make	an	attempt	to	define	and	describe	some	of	these	terms:

•	 Message—Message	is	a	common	term	used	to	describe	information	transmitted	via	a	
network.	A	message	is	the	complete	information	to	be	conveyed	regardless	of	size	or	
protocols.	
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Figure 20–16 Two	OSI	Models	and	Common	Media
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•	 Packet or Data Packet—Packet	is	a	generic	term	used	to	describe	a	unit	of	data	at	any	
layer	of	the	OSI	model,	but	it	is	most	correctly	used	to	describe	the	application	layer	
data	units.	An	application	layer	data	unit	is	a	packet	of	data	exchanged	between	two	
application	programs	across	a	network.	This	is	the	highest-level	view	of	communica-
tion	in	the	OSI	seven-layer	model.	A	single	packet	exchanged	at	this	level	may	actu-
ally	be	transmitted	as	several	smaller	packets	at	a	lower	layer,	as	well	as	having	extra	
information	(headers)	added	for	routing,	etc.	

•	 Frame—A frame is a data link layer packet that contains the header, data, and 
trailer	information	required	by	the	physical	media.	That	is,	network	layer	packets	are	
	encapsulated	to	become	frames.	A	typical	frame	consists	of	a	header	section,	a	data	
	section	or	payload,	and	a	trailer	section.	A	frame	refers	to	the	structural	container	of	a	
packet.	In	most	cases,	a	frame	as	outlined	above	is	the	equivalent	of	a	data	packet	(see	
Figure	20–17).	

HEADER SECTION
(Start, To/From, Frame #, etc.)

DATA SECTION or PAYLOAD
(Message Protocol and Message or Data)

TRAILER SECTION
(Error Checking, End of Frame)

FRAME
(Data Packet)

Figure 20–17 Basic	Structure	of	a	Data	Frame

The	following	is	a	brief	outline	of	the	three	sections	of	a	data	packet	frame.
•	 Header—The	header	section	contains	instructions	about	the	data	carried	by	the	data	
packet.	These	instructions	may	include:	length of data (some	networks	have	fixed-
length	data	packets,	while	others	rely	on	the	header	to	contain	this	information);	syn-
chronization	(a	few	bits	that	help	the	packet	match	up	to	the	network);	packet number 
(which	packet	this	is	in	a	sequence	of	packets);	protocol (on networks that carry multi-
ple	types	of	information,	the	protocol	defines	what	type	of	packet	is	being	transmitted);	
destination address (where	the	packet	is	going);	and	originating address (where the 
packet	came	from).

•	 Data—The data section, also called the payload, is the actual data that the packet is 
	delivering	to	the	destination.	If	a	packet	is	fixed-length,	then	the	payload	may	be	pad-
ded	with	blank	information	to	make	it	the	right	size.

•	 Trailer—The trailer section, sometimes called the footer, typically contains a couple of 
bits	that	tell	the	receiving	device	that	it	has	reached	the	end	of	the	packet.	It	may	also	
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have	some	type	of	error	checking.	The	most	common	error	checking	used	in	packets	is	
Cyclic Redundancy Check (CRC).	CRC	is	pretty	simple,	but	effective.	Here	is	how	
it	works	in	certain	networks:	It	takes	the	sum	of	all	the	1s	in	the	payload	and	adds	
them	together.	The	result	is	stored	as	a	hexadecimal	value	in	the	trailer.	The	receiv-
ing	device	adds	up	the	1s	in	the	payload	and	compares	the	result	to	the	value	stored	in	
the	trailer.	If	the	values	match,	the	packet	is	good.	But	if	the	values	do	not	match,	the	
receiving		device	discards	the	packet	and	sends	a	request	to	the	originating	device	to	
resend	the	packet.	

A	 message	 transmitted	 over	 a	 network	 may	 be	 composed	 of	 many	 data	 packets	 arranged	 in	 
a	 	numbered	 sequence.	 As	 mentioned	 above,	 most	 network	 protocols	 have	 fixed-length	 data	
	packets.	 If	 a	message	 is	 too	 large	 for	 one	 data	 packet,	 the	message	 is	 broken	 up	 into	 several	 
data	packets,	 each	given	a	 sequence	number	before	being	sent	on	 to	 the	network	media.	When	
the	data	packets	arrive	at	the	destination	node,	they	are	reassembled	according	to	their	sequence	
	number.

The	subject	of	protocols,	packets,	 frames,	and	messages	may	seem	overwhelming	 to	 the	reader	 
at	this	point,	so	let’s	use	the	following	example	to	illustrate	the	transfer	of	data	across	a	network.

Let	us	assume	that	we	have	the	message	“Feed	Boiler	Number	2	High	Temperature	Warning”	that	
needs	to	be	sent	from	the	PLC	controller	operating	the	boiler	to	the	HMI	(human	machine	interface)	
computer	located	in	the	main	control	room.	

When	the	high	temperature	condition	is	detected,	the	boiler	PLC	controller	prepares	the	message	
for	transfer	across	the	network	by	breaking	the	message	into	data	packets	(payloads)	of	the	proper	
length.	Each	data	packet	is	given	a	header	section	containing	such	things	as	a	packet	sequence	num-
ber,	destination	address	(node	address	of	the	HMI),	source	address	(its	node	address),	etc.	Each	data	
packet	is	also	given	a	trailer	section	containing	the	error-checking	value	and	end	of	data	packet	flag.	
Once	the	data	packets	are	assembled,	they	are	called	frames	or	data	packet	frames.	Each	data	packet	
frame	is	transmitted	onto	the	network	media	as	a	bit	stream	message	according	to	the	network	pro-
tocol,	as	seen	in	Figure	20–18.

The	HMI	computer	checks	the	destination	address	on	each	packet	being	sent	across	the	network.	If	
the	destination	address	matches,	then	the	complete	data	packet	frame	is	received.	Once	received,	
it	is	checked	for	errors.	If	an	error	is	detected,	the	frame	is	discarded	and	a	message	is	sent	to	the	
sending	node	to	resend	the	data	packet	frame.	If	no	errors	are	detected,	the	data	packet	frame	is	held	
until	all	the	data	packet	frames	have	been	received	for	that	message.	After	all	data	packet	frames	
have	been	received,	the	header	and	trailer	sections	are	stripped	from	the	frame	and	each	payload	
data	section	is	reassembled	according	to	the	packet	sequence	number.	The	message	“Feed	Boiler	
Number	2	High	Temperature	Warning”	would	then	appear	on	the	HMI	computer	screen	alerting	the	
operators	to	the	problem.

The	process	 just	described	 is	how	most	 information	 is	 shared	across	network	media.	 It	must	be	
made clear that the protocol for the type of network you are using will determine how the messages, 
packets,	frames,	and	electrical	or	optical	signals	are	constructed	and	used.
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Network coMMuNicatioN iNstructioNs

Many PLC manufacturers provide network communication instructions that allow the trans-
fer	 of	 information	 like	 the	 status	 of	 inputs,	 outputs,	 and	 registers	 between	 PLCs.	 These	
programmed	 instructions	 typically	 can	 be	 used	 to	 read	 and/or	write	multiple	 data	 registers	
	between	PLCs	of	 the	 same	manufacturer.	Some	PLC	controllers	 provide	 for	 the	 transfer	 of	
 information using a producer/consumer	 approach.	 In	 the	producer/consumer	approach,	data	
memory	 locations	are	 assigned	as	global	producers	or	 consumers	during	 setup.	This	 allows	
data	 to	 be	 shared	 between	PLCs	 over	 a	 peer-to-peer	 network	without	 programming	 special	
instructions	into	the	controllers.

BOILER CONTROLLER (NODE 1) BOILER

DESTINATION
(NODE 2)

SENT FROM
(NODE 1)

FRAME SEQUENCE
1 OF 2

DATA "FEED
BOILER NUMBER 2"

ERROR CHECK
(CRC)

DESTINATION
(NODE 2)
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(NODE 1)

FRAME SEQUENCE
2 OF 2

DATA "HIGH
TEMPERATURE WARNING"

ERROR CHECK
(CRC)
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©
	C

en
ga

ge
	L
ea

rn
in
g	
20

13

Figure 20–18 Data	Packet	Frames	from	Controller	to	HMI
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When	transferring	critical	control	information	between	PLC	controllers,	you	should	make		provisions	
to	ensure	that	the	data	being	used	from	other	controllers	is	valid.	Invalid	data	can	occur	when	there	is	
a	loss	of	communications	between	PLCs	that	goes	undetected.		Programming	heartbeat	logic	in	one	or	
both	PLC	controllers	may	be	required.	Some	PLC	manufacturers	provide	status	information	within	
the	PLC	on	all	active	nodes	connected	to	the		network.	This	status	information	is	updated	continu-
ously	and	can	be	used	to	check	for	valid	communications.

Most	of	the	transfer	of	information	between	PLC	controllers	and	non-PLC	devices	(HMIs,	com-
puters,	information	systems,	etc.)	does	not	require	the	programming	of	PLC	instructions	to	carry	
out	the	transfer.	The	HMI	and	computer	information	systems	are	typically	configured	during	setup	
to	poll		information	from	the	various	PLCs	at	a	predetermined	interval.	The	transfer	of	information	
is	typically	handled	by	an	onboard	communications	processor	within	the	PLC	when	a	request	for	
data	is		received.	

iNdustrial coMMuNicatioN Networks

Industrial	communication	networks	can	be	divided	into	three	types:	I/O and device, control, and 
 information,	as	shown	in	Figure	20–19.	

Depending	on	the	needs	and	requirements	of	the	control	systems	on	the	factory	floor	and	those	of	
operators,	supervisors,	and	managers,	some	or	all	of	these	network	types	may	be	used.	Let’s	take	a	
closer	look	at	the	three	types	of	industrial	networks.

i/o and device Networks
I/O	and	Device	Networks	work	at	 the	 lowest	 level	of	 the	control	 system	architecture.	These	are	
networks	 that	provide	 the	communications	 link	between	 the	 real-world	devices	and	 the	machine	
or	 process	 controllers	 (PLCs).	 In	 previous	 chapters	 you	 learned	 about	Remote	 I/O,	which	 is	 an	
example	of	a	communications	network	that	falls	in	this	category.	Other	network	types	include	De-
vice	Bus	and	Process	Bus	networks.	Some	of	the	characteristics	that	would	typically	be	found	in	
this	type	of	network	would	be	relatively	small	data	packet	sizes,	master/slave	protocols,	bus	type	
topologies,	high	degree	of	reliability,	fault	tolerance,	real-time	operation,	and	deterministic	opera-
tion.	Remote	I/O	has	long	dominated	this	category	of	networks,	providing	the	communication	link	
between		remote	I/O	devices	and	the	PLC.	Most	remote	I/O	networks	are	proprietary,	meaning	that	
the	hardware	and	communications	protocols	used	have	been	developed	by	the	manufacturer	to	sup-
port	only	their	PLC	systems.

With	advancements	in	digital	communications	technology,	distributive	control,	and	increased	de-
sire	for	more	information,	two	additional	network	types	have	been	developed	in	recent	years	to	join	
	Remote	 I/O.	 In	 this	category	of	 industrial	networks,	 they	are	Device and Process	bus	networks.	
These two network types are not unlike remote I/O in that they communicate I/O information to 
PLCs,	and	process	control	 systems	and	other	devices	on	 the	network.	What	 sets	 these	networks	
apart from remote I/O is the following: 

•	 They	allow	you	to	connect	devices	such	as	photo	sensors,	proximity	sensors,	valve	
manifolds,	smart	motor	controllers,	pressure	sensors,	flow	sensors,	etc.,	directly	to	
 controllers and other control systems without hardwiring each device into an I/O 
 module.
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•	 Each	device	has	built-in	network	communications	capabilities	and	acts	as	a	node	on	a	
network.

•	 Most	often	the	field	devices	are	powered	from	the	same	communications	cable.
•	 Diagnostic	and	configuration	information	can	also	be	transmitted	between	the	de-

vice and master controller, providing additional information and increased savings in 
	troubleshooting	and	setup	cost.

•	 Most	device	and	process	bus	networks	use	open	communication	proto-
cols, meaning that they are not proprietary, so devices from many different 
	manufacturers	can	be	used.

•	 Some	process	bus	networks	are	capable	of	performing	control	functions	at	the	device	
level	using	predefined	function	blocks.	

•	 Scanner	ports	and	modules	are	available	from	most	PLC	and	controller	manufacturers	
that	support	the	open	device	and	process	bus	protocols.		

Device	and	process	bus	networks	are	device-specific	networks	and	are	intended	for	small	amounts	
of	data	 to	be	communicated	between	 the	controller	 and	 the	devices.	These	networks	provide	an	
	effective	way	to	gain	access	 to	 the	intelligence	within	those	types	of	devices.	Some	of	 the	more	
common	device	and	process	bus	protocols	used	today	include	DeviceNet, Foundation Fieldbus, and 
Profibus-DP.

control Networks
Control	Networks	work	at	the	middle	level	of	the	control	system	architecture.	These	are	networks	
that	provide	the	communications	link	between	multiple	process	controllers	(PLCs),	HMIs,	and	other	
intelligent	devices	that	are	critical	for	machine	or	process	operations.	Some	of	the	same	characteris-
tics	that	we	found	with	I/O	and	device	bus	networks	would	also	apply	with	control	networks.	High	
degrees	of	reliability,	fault	tolerance,	high	speed,	bus	topologies,	and	determinism	would	be	equally	
important	at	this	level	of	network	communications.	The	data	packet	sizes	would	typically	be	larger,	
and	a	peer-to-peer	(token	passing)	protocol	is	most	often	used.

Control	networks	provide	for	the	communications	of	critical	machine	or	process	information	be-
tween	the	PLC	controllers	in	a	system,	programming	devices,	master	controllers,	and	HMI	stations.	
As control and plant engineers have worked towards a more distributive control architecture, the 
need	for	reliable	communications	between	these	various	controllers	and	systems	has	also	evolved.	
A	distributive	control	architecture	is	one	in	which	controllers	are	distributed	throughout	the	factory	
floor,	controlling	single	machines	or	processes,	 rather	 than	a	single	or	central	controller	control-
ling	all	 the	various	machines	or	processes.	The	advantages	of	 a	distributive	 control	 architecture	
are increased processing speed with smaller controllers, no single source point of failure for com-
plete	shutdown	of	operations,	decreased	troubleshooting	time,	reduced	expansion	and	reconfigura-
tion	limitations	and	problems,	etc.	Most	of	the	early	control	networks	were	proprietary.	As	more	
and	more	controllers	of	different	manufacturers	found	their	way	onto	the	factory	floor,	many	from	
equipment	suppliers,	there	became	an	ever-increasing	need	to	easily	integrate	these	controllers.	To	
the	benefit	of	many	plant	and	control	system	engineers,	most	PLC	and	control	system		manufacturers	
are	building	 their	equipment	 today	with	one	of	 the	open	system	network	protocols.	Some	of	 the	
control networks found today include Modbus Plus, ControlNet, Data Highway Plus, Profibus-DP, 
and	others.	
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information Networks
Information	Networks	work	at	the	highest	level	of	the	control	system	architecture.	These	are	net-
works	that	provide	the	communications	link	between	process	and	system	controllers	(PLCs)	on	the	
factory	floor	and	the	business	information	systems	used	by	supervisors,	process	engineers,	manag-
ers,	and	inventory	and	production	management	systems.	These	networks	also	provide	the	backbone	
for	plant-wide	integration	of	control	systems.

As	PLCs	multiplied	on	the	factory	floor,	so	did	the	need	to	retrieve	the	information	that	was	in	them	
to	help	increase	production,	correct	process	errors	sooner,	track	products,	and	monitor	production.	
With	factory	floor	information	in	the	hands	of	supervisors,		managers,	and	process	engineers,	deci-
sions	can	now	be	made	more	quickly,	problems	averted,	and	money	saved.	The	days	of	the	daily	
production	 reports	are	nearly	gone,	 thanks	 to	 information	 	networks.	Some	of	 the	characteristics	
typically	 found	 in	 information	 networks	 include	 large	 data	 amounts,	 high	 network	 compatibil-
ity	with	 existing	 business	 systems	 networks,	 and	 	reliability.	 Topologies	 used	with	 information	
	networks	 include	 star	 and	 bus.	 Some	 common	 	information	 network	 protocols	 include	Ethernet 
TCP/IP, Ethernet/IP, Modbus/IP, ProfiNet,	and		others.

iNdustrial Protocols

The	following	section	provides	a	brief	description	of	some	of	the	more	common	industrial	control	
and	information	protocols	being	used	by	PLC	manufacturers	to	implement	their	industrial	automa-
tion	systems.	The	protocols	mentioned	in	this	section	are	but	a	few	of	the	many	being	used	today.	
Because	 the	descriptions	are	brief,	 they	are	 intended	only	 to	give	you	a	general	overview	of	 the	
	protocol.

deviceNet
DeviceNet,	originally	developed	by	Allen-Bradley	(Rockwell	Automation),	is	an	open	system	pro-
tocol	based	on	 the	Controller Area Network	 (CAN)	 technology.	DeviceNet	 is	 a	digital	 network	
that	uses	a	trunk-line/drop-line	topology	(bus	topology)	in	which	node	devices	(i.e.,	sensors,	motor	
controllers,	small	I/O	blocks)	can	be	connected	either	daisy	chain	or	on	short	(209	maximum)	drop	
lines	from	the	main	trunk.	Power	and	signal	are	provided	on	the	same	network	cable	using	separate	
twisted-pair	 busses.	DeviceNet	 supports	 both	 isolated	 and	 non-isolated	 physical	 layer	 design	 of	
devices.	An	opto-isolated	option	allows	externally	powered	devices	(i.e.,	smart	motor	controllers,	
solenoid	valve	manifolds)	to	share	the	same	bus	cable.	The	end-to-end	network	distance	varies	with	
data	 rate	and	cable	 thickness.	A	maximum	end-to-end	distance	of	1,6409	 can	be	achieved	using	
thick	cable	and	a	communication	rate	of	125	kbs.	Each	DeviceNet	network	supports	up	to	64	nodes.	
	DeviceNet	systems	can	be	configured	to	operate	with	a	master-slave	or	peer-to-peer	communication	
method.	Figure	20–20	shows	an	example	of	a	DeviceNet	network.

foundation fieldbus
Foundation	Fieldbus	was	established	in	1994	to	create	a	single	 international	fieldbus	standard	for	
hazardous	environments	and	is	an	open	bus	standard	that	enables	devices	of	different	manufacturers	
to	be	integrated	into	one	system.	Fieldbus	technology	was	intended	to	replace	the	conventional	4	to	
20	mA	analog	wiring	methods	found	in	process	control	applications	with	a	digital communications	
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Figure 20–20 DeviceNet	Network
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network.	Fieldbus	technology	supports	bus-powered	field	devices	such	as	process	sensors,		actuators,	
and	 I/O.	Foundation	fieldbus	protocol	allows	 for	 the	capability	 to	distribute	 the	control	 functions	
to	the	devices	using	predefined	function	blocks.	This	allows	field	devices	the	capability	of	assum-
ing process control functions, thus reducing the risk of system failure and the amount of I/O and 
control	equipment	needed.	The	Foundation	Fieldbus	protocol	is	based	on	the	OSI	reference	model	
and	operates	only	at	layers	1,	2,	and	7	of	the	model,	as	is	the	case	with	most	open	fieldbus	systems.	
Foundation	fieldbus	uses	two	communications	bus	systems:	the	slow,	intrinsically	safe	H1	bus	and	
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a	higher-level,	high	speed	Ethernet	HSE	bus.	The	H1	bus	is	used	at	the	device	level	using	shielded	
twisted-pair	 cable	 in	 a	 bus	 topology.	Other	 topology	 combinations	 are	 possible	when	 equipped	
with junction	boxes.	Field	devices	are	connected	to	the	bus	using	tee	connectors	and	short	drops	
called spurs.	The	maximum	length	of	an	H1	segment	without	repeaters	is	6,000	feet	including	spurs,	
with	a	maximum	number	of	devices	limited	to	32	per	segment.	Data	transmission	rates	for	the	H1	
bus	are	31.25	Kbps.	The	H1	bus	of	the	Foundation	fieldbus	uses	a	central	communication	control	
system	called	a	Link	Active	Scheduler	(LAS)	that	controls	and	schedules	the	communication	on	
the	bus.	This	device	is	called	the	Link	Master.	During	network	setup	of	the	LAS,	a	transmission	
schedule	is	constructed.	The	schedule	determines	when	devices	process	their	function	blocks	and	
when	it	is	time	to	transmit	data.	The	LAS	also	allows	for	unscheduled	transmissions	for	things	like	
device	setup	and	diagnostic	data	when	needed.	The	LAS	handles	unscheduled	transmissions	using	
a	token	passing	access	method.	The	higher-level	HSE	bus	is	based	on	standard	Ethernet	technology	
and	runs	at	100	Mbps.	(Ethernet	will	be	covered	later	in	this	section.)	The	HSE	bus	allows	for	the	
high-speed	integration	of	controllers	(PLCs),	workstations,	HMIs,	and	H1	bus	subsystems	using	a	
bridge		device.	Figure	20–21	shows	a	Foundation	fieldbus	architecture.	For	further	information	visit	
the	Foundation	fieldbus	website	at	http://www.fieldbus.org.	
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Figure 20–21 Foundation	Fieldbus	Network
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Profibus
Profibus	 is	 a	 group	of	 protocols	 originally	designed	by	Siemens	 and	 adopted	 into	 the	European	
standards	in	1996.	Profibus	is	an	open	bus	system	with	protocols	(Profibus-FMS,	Profibus-DP,	and	
Profibus-PA)	that	are	compatible	with	each	other.	Profibus-PA	is	equivalent	to	the	Foundation	field-
bus	just	discussed.	In	fact	the	physical	bus	design	is	the	same,	and	it	exhibits	many	common	features	
such	as	function	block	control	at	the	device	level,	master/slave,	and	peer-to-peer	communications.	
Profibus-DP	is	optimized	especially	for	communication	between	automation	systems	and	decentral-
ized	field	devices.	It	is	designed	to	handle	time-critical	communications.	Profibus-FMS	is	optimized	
for	communication	between	automation	systems	(i.e.,	PLCs,	HMIs)	as	well	as	data	exchange	with	
field	devices.	For	further	information	on	Profibus	and	the	available	protocols	visit	the	Profibus	web-
site	at	http://www.profibus.com.	

Modbus Plus
Modbus	Plus	is	a	high-speed,	peer-to-peer	LAN	network	developed	by	Modicon	(currently	Groupe	
Schneider).	The	original	Modbus	network,	one	of	the	first,	was	introduced	by	Modicon	in	1979	and	
was a master/slave network that permitted a host computer to communicate to one of several PLCs 
to	perform	programming,	data	transfer,	upload/download,	and	other	host	operations.	Modbus	Plus	is	
a local area network that allows host computers, PLCs, and other sources to communicate as peers 
using	twisted-pair	cable	media.	Modbus	Plus	networks	can	support	up	to	32	nodes	at	distances	up	
to	1,500	feet	at	communications	rates	of	1	Mbps.	Additional	nodes	and	distances	can	be	achieved	by	
using	repeaters.	Modbus	Plus	networks	use	a	bus	topology	in	which	nodes	on	the	network	function	
as	peer	members,	gaining	access	to	the	network	using	a	token	passing	access	protocol.

data Highway Plus
Data	Highway	Plus	(DH1)	is	a	peer-to-peer	control	network	developed	by	Allen-Bradley	(Rock-
well	Automation).	This	proprietary	LAN	network	was	Allen-Bradley’s	primary	control	network	for	
many	years	to	link	their	PLCs,	programming,	and	HMI	devices	together.	The	DH1 network is con-
sidered	obsolete	and	has	been	replaced	by	ControlNet	as	their	network	of	choice,	but	many	factories	
and	industrial	plants	are	still	operating	DH1	networks.	A	DH1 network allows computers, PLCs, 
and	other	 devices	 to	 communicate	 using	 shielded	 twisted-pair	 cable	media.	DH1 networks can 
	support	up	to	64	nodes	at	distances	up	to	10,000	feet	at	communications	rates	of	57.6	Kbps.	Allen-
Bradley	recommends	a	maximum	of	15	nodes	per	link	for	optimal	performance.	DH1 networks use 
a	bus	topology	in	a	trunk-line/drop-line	or	daisy	chain	fashion,	in	which	nodes	on	the	network	func-
tion	as	peer	members,	gaining	access	to	the	network	using	a	token	passing	access	protocol.	Routing	
between	DH1	networks,	Ethernet/IP,	ControlNet,	and	DeviceNet	networks	 is	possible	using	 the	
ControlLogix	Bridge	modules.

controlNet
ControlNet	is	an	open	systems	(nonproprietary)	control	network	originally	developed	by	Allen-Brad-
ley	(Rockwell	Automation).	ControlNet	uses	the	Common	Industrial	Protocol	(CIP),	which		allows	
messages	to	be	routed	to	other	networks	that	support	the	CIP	protocol,	such	as	DeviceNet	and	Eth-
ernet/IP.	ControlNet	can	support	control	of	I/O,	peer-to-peer	messaging	between	PLC		controllers,	
and	messaging	of	information	on	the	same	network	media.	ControlNet	uses	the		Producer/Consumer	
model	for	network	access.	Nodes	that	have	data	to	transmit	produce	a	data	packet	with	a	data	identi-
fier	and	place	it	onto	the	network.	All	nodes	connected	to	the	network	then		consume	the	data	packet	
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The	maximum	number	of	nodes	for	a	single	coaxial-only	segment	(i.e.,	no	repeaters)	is	48.	With	48	
nodes,	the	maximum	segment	length	is	250	meters.	The	number	of	nodes	per	segment	determines	
the	maximum	segment	length.	Additional	segments	and	nodes	can	be	added	by	using		repeaters.	
The	maximum	number	of	nodes	that	can	be	connected	to	a	single	ControlNet	network	is	99.	The	
data	transmission	rate	for	ControlNet	is	5	Mbps.

ethernet
The	original	Ethernet	was	developed	as	an	experimental	LAN	in	the	1970s	by	Xerox	Corporation	
and	operated	on	coaxial	cable	at	a	data	rate	of	3	Mbps	using	CSMA/CD	protocol.	The	success	of	the	
original	Ethernet	led	to	the	development	of	the	10	Mbps	Ethernet	through	a	joint	effort	by	Digital	
Equipment	Corporation,	Intel	Corporation,	and	Xerox	Corporation	in	1980.	The	American	National	
Standards	Institute	(ANSI)	and	Institute	of	Electrical	and	Electronics	Engineers	(IEEE)	published	
Ethernet	as	an	official	 standard	 in	1985	as	ANSI/IEEE	std.802.3-1985.	 It	has	become	known	as	
IEEE	802.3	standard.

Ethernet	is	the	major	LAN	technology	used	in	the	world	today	to	connect	personal	computers	(PCs)	
and	workstations	within	offices,	buildings,	and	across	the	Internet.	Some	of	the	reasons	that	the	Eth-
ernet	protocol	has	monopolized	the	computer	networking	industry	are	that	it	is	easy	to	understand,	
implement,	manage,	and	maintain,	not	to	mention	the	low	cost	of	implementation.	Not	too	many	
years	ago,	Ethernet	was	not	a	consideration	for	the	factory	floor	because	it	was	slow	and		response	
time	varied	greatly	based	on	network	traffic.	With	the	development	of	high	bandwidth	and	inexpen-
sive	Ethernet	switching	technology,	Ethernet	is	rapidly	emerging	on	the	factory	floor.	It	is	worth	the	

Figure 20–22 ControlNet	Passive	Tap

and	determine	(based	on	the	identifier)	whether	they	are	configured	to	further	process	the	data.	This	
allows	a	data	packet	from	a	single	node	to	be	consumed	by	multiple	nodes	without	having	to	be	
retransmitted.	ControlNet	uses	a	bus	topology	with	coaxial	cable	as	the	main	trunk	with	passive	taps	
to	connect	each	node	to	the	main	trunk,	as	shown	in	Figure	20–22.	
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reader’s	time	to	take	a	few	minutes	and	take	a	closer	look	at	Ethernet	because	of	its	widespread	use	
and	future	in	factory	automation	and	control.

The	term	Ethernet	refers	to	LAN	products	covered	by	the	IEEE	802.3	standard	that	defines	what	is	
commonly	known	as	the	CSMA/CD	protocol.	Three	data	rates	are	currently	defined	for	operation	
over	optical	fiber	and	twisted-pair	cables,	10	Mbps	(10Base-T	Ethernet),	100	Mbps	(Fast	Ether-
net),	and	1000	Mbps	(Gigabit	Ethernet).	Ethernet	networks	consist	of	network	nodes	or	devices	
that	connect	 to	 interconnecting	media.	The	nodes	can	fall	 into	 two	classes	of	devices.	The	first	
class of devices is called Data Terminal Equipment (DTE),	which	produces	 and	 consumes	 the	
data	packet	frames	on	the	network.	Typical	devices	are	PCs,	workstations,	servers,	printers,	PLCs,	
etc.	The	second	class	of	devices	is	called	Data Communication Equipment (DCE),	which	receives	
and	forwards	data	packet	frames	across	the	network.	Typical	devices	are	repeaters	(hubs),	routers,	
switches,	etc.,	as	shown	in	Figures	20–23a	and	20–23b.	The	media	options	available	to	connect	the	
different	devices	include	unshielded	twisted-pair	cable	(UTP),	shielded	twisted	pair-cable	(STP),	
and	optical	fiber	cable.

Figure 20–23a Ethernet	Hub

Figure 20–23b Ethernet	Switches

Ethernet	LANs	can	have	different	network	topology	configurations	including	point-to-point,	bus,	
and	star.	Since	the	early	1990s,	the	star-connected	topology	has	been	used	as	the	standard	topology.	
Data	 terminal	equipment	(DTE)	 is	connected	 to	a	central	 repeater	 (known	as	a	hub)	or	 to	a	net-
work	switch	that	has	multiple	connection	ports.	Each	DTE	device	is	connected	in	a	point-to-point	
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Figure 20–24 Typical	Ethernet	Topology

	configuration	with	the	central	repeater	or	switch.	The	maximum	distance	that	a	DTE	device	can	be	
located	from	the	central	repeater	device	is	typically	265	feet	but	can	depend	on	the	network	data	rate	
and	media	used.	Most	Ethernet	LANs	are	made	up	of	many	small	star	topologies	interconnected	to	
form	the	network	(see	Figure	20–24).

The	Ethernet	protocol	itself	operates	at	only	layers	1	and	2	of	the	OSI	reference	model.	The	IEEE	
802	standard	divides	the	data	link	layer	(layer	2)	of	the	OSI	model	into	two	sublayers	called	the	
Media Access Control (MAC)	sublayer	and	 the	MAC-client	 sublayer.	The	MAC-client	 sublayer	
provides	the	interface	between	the	MAC	sublayer	and	the	upper	layers	of	the	OSI	model.	The	MAC	
sublayer	 is	 responsible	 for	 the	data	 frame	assembly	before	 transmission,	 frame	disassembly	and	
error-checking	during	and	after	receipt	of	data	frames,	media	access	control	including	initiation	of	
frame	transmission,	and	recovery	from	transmission	failure.	The	format	of	an	Ethernet	data	frame	
is	shown	in	Figure	20–25.	The	physical	layer	(layer	1)	specifies	the	transmission	data	rate	(Mbps),	
	signal	encoding,	and	the	type	of	media	interconnecting	the	devices.	

The	IEEE	802.3	standard	currently	requires	that	all	Ethernet	MACs	support	half-duplex	operation	
and	the	CSMA/CD	access	method.	There	are	physical	network	size	limits	for	half-duplex	operation	
based	on	the	network	data	rate.	Full-duplex	operation	is	an	optional	capability	that	allows	simulta-
neous	two-way	transmission	between	two	devices	(point-to-point	link).	Full-duplex	transmission	is	
much	simpler	than	half-duplex	transmission,	because	full-duplex	uses	two	pairs	of	network	wires	or	
links	for	sending	and	receiving	data	frames.	Media	contention	and	data	collisions	are	all	but	elimi-
nated	with	 full-duplex	 transmission,	 leaving	more	 time	available	 for	 transmissions	and	 in	effect	
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doubling	the	link	bandwidth.	In	order	for	full-duplex	transmission	to	take	place,	the	physical	layers	
(cables	and	network	equipment)	must	be	capable	of	supporting	full-duplex	operation.	

Ethernet	devices	implement	only	the	bottom	two	layers	of	the	OSI	protocol	model,	and	for	this	
 reason they are typically implemented as Network Interface Cards (NICs),	or	as	built-in	Ether-
net	network	 interface	ports.	The	NICs	and	 interface	ports	are	 identified	by	a	 three-part	naming	
	convention	based	on	the	physical	layer	standards.	The	three	parts	of	the	naming	convention	are	
data	transmission	rate,	transmission	method,	and	the	media	type.	For	example:	10BaseT	stands	for	
10	Mbps	data	transmission	rate,	baseband	transmission	method,	and	two	twisted-pair	cable	as	the	
media	type.

Most	Ethernet	networks	today	are	constructed	using	category	5	(CAT	5)	or	better	cable	and	ter-
minated	at	each	end	by	an	8-pin	RJ-45	connector.	Cables	 lower	 than	Category	5e	should	not	be	
	considered	for	new	installations	to	allow	for	future	data	transmission	rate	needs.

As	mentioned,	DTE	is	connected	to	a	central	repeater	(known	as	a	hub)	or	network	switch	hav-
ing	multiple	 connection	 ports.	Each	DTE	device	 is	 connected	 in	 a	 point-to-point	 configuration	
with	the central	repeater	or	switch.	When	central	repeaters	or	hubs	are	used,	they	typically	accept	
only one	data	packet	frame	at	a	time	and	then	resend	it	to	all	active	ports	on	the	repeater.	Switches,	
on	the	other	hand,	have	ports	with	I/O	frame	buffers	that	isolate	the	port	from	traffic	being	sent	at	
the	same	time	on	other	ports.	Multiple	internal	data	paths	allow	data	packet	frames	to	be	received	
on	 one	 port	 and	 then	 rapidly	 switched	 to	 the	 appropriate	 output	 port.	 Switches	 typically	 build	
and	maintain	internal	tables	that	map	Ethernet	addresses	to	ports.	The	switch	uses	the	addressing	
	information	within	each	Ethernet	data	packet	frame	to	forward	the	frame	only	to	the	port	connected	
to	the	destination	device.	This	may	not	seem	like	that	much	of	a	difference	between	a	switch	and	

Preamble (PRE)—Alternating pattern of ones and zeros that tells receiving stations that a frame is coming.

Start-of-frame delimiter (SOF)—Pattern of ones and zeros indicating start of frame information.

Destination address (DA)— Indicates which station(s) should receive the data frame.

Source address (SA)—Identi�es the sending station.

Length/Type—Indicates the length of the data �eld or optional data frame format.

Data—Data �eld containing the message. Padded if required for proper length.

Frame check sequence (FCS)—Cyclic redundancy check (CRC), used to check frame for errors.

Figure 20–25 Structure	of	an	Ethernet	Data	Frame
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hub	but	it	has	a	major	effect	on	network	operation.	Because	switches	provide	access	to	a	high-speed	
network	bridge	(switch)	that	interconnects	only	two	ports,	the	collision	domain	in	the	network	is	
reduced	to	a	series	of	small	domains	in	which	there	are	only	two	devices.	This	markedly	increases	
network	bandwidth	and	begins	to	increase	the	determinism	of	an	Ethernet	network,	making	Ethernet	
attractive	for	industrial	control	systems.	For	this	reason	network	repeaters	or	hubs	are	all	but	obso-
lete	for	industrial	and	large	networks.

In	summary,	Ethernet	 itself	 is	simply	a	protocol	 that	works	at	 the	bottom	layers	of	 the	OSI	stack	
	(layers	1	and	2),	and	is	a	way	to	transport	data	between	two	devices;	 it	does	not	guarantee	that	a	
device	that	receives	the	data	will	know	how	to	interpret	the	data.	To	communicate	and	use	informa-
tion	over	an	Ethernet	network	you	only	have	to	implement	protocols	for	layers	1,	2,	and	7	of	the	OSI	
model	as	a	minimum.	Remember	that	the	applications	that	utilize	this	data	operate	at	the		highest	level	
of	the	OSI	model	(layer	7),	and	if	the	applications	are	not	using	the	same	protocols	at	this	level	they	
will	not	be	able	to	interpret	the	data	received.	Most	industrial	control	manufacturers		implementing	
Ethernet	in	their	control	equipment	are	implementing	their	own	protocols.	What	this	means	is	that	
devices	connected	to	an	Ethernet	network	from	different	manufacturers	are	not		guaranteed	to	com-
municate	with	each	other,	even	though	they	are	all	on	the	same	network	called	“Ethernet.”

chapter summary
Communication networks provide the means for devices like PLCs, computers, and intelligent I/O 
devices	to	share	or	pass	information	using	common	media.	A	communication	network	is	typically	
called	a	Local	Area	Network	(LAN),	but	other	names	like	WAN,	MAN,	and	RAN	are	also	used	
	depending	on	physical	size.	How	the	network	cables	are	routed	and	the	role	that	network	devices	
play in the transmission of data is called the network topology.	 The	 three	 basic	 topologies	 are	
bus, ring, and star. The most common media types used in the construction of a network include 
coaxial, twisted-pair, and fiber optic	cables.	One	or	all	three	of	these	types	could	be	used	in	the	
construction	of	a	single	network.	In	order	for	devices	to	share	a	common	media,	a	method	called	
Network Access-Control is	used.	Network	access-control	is	like	a	traffic	cop	that	determines	when	
devices	 can	 access	 the	 network	 to	 transmit	 their	 information,	 and	 it	 also	 resolves	 any	 conflicts.	
The	three	most	common	network	access-control	methods	include	master/slave, peer-to-peer, and 
CSMA/CD.	When	devices	share	common	media,	they	must	speak	the	same	language.	This	com-
mon language is called the network protocol. A network protocol is a set of rules that determines 
how a message is compiled into data packets, converted into electrical signals, transmitted onto the 
network	media,	received	only	by	the	intended	device,	and	then	converted	back	into	the	original	mes-
sage	without	any	loss	of	information	or	translation.

Different	 types	of	networks	are	used	 in	 industrial	 automation	and	control	based	on	 the	 type	of	
information	to	be	communicated.	An	I/O or device network is used to transmit the information 
	between	field	devices	 (i.e.,	 sensors,	actuators,	motor	controllers,	push	buttons)	and	 the	control-
lers	(PLCs,	computers)	that	are	controlling	the	machines	or	process.	Control Networks link the 
controllers,	HMIs,	and	other	control	systems.	Information Networks link	the	factory	floor	to	the	
business	 system	of	 the	company	and	can	also	provide	 the	backbone	 to	 link	 the	 smaller	 control	
networks	together	in	a	large	plant.
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review Questions
	 1.	 When	devices	are	connected	to	network	media	they	are	typically	called	what?
	 2.	 Network	bandwidth	is	usually	expressed	in
	 	 a.	meters
	 	 b.	bytes	per	hour
	 	 c.	bits	per	second
	 	 d.	packets	per	second
	 3.	 What	category	of	network	would	you	typically	find	monitoring	and/or	controlling	a	city’s	

water	reservoirs	and	pump	stations,	which	may	be	in	located	in	remote	areas?
	 4.	 Star	topology	is	a	network	topology	in	which	each	device	is	connected:
	 	 a.	to	the	other	devices	in	a	daisy	chain	fashion
	 	 b.	to	a	PLC
	 	 c.	to	a	network	controller
	 	 d.	to	a	common	bus
	 5.	 When	twisted-pair	cable	is	used	as	the	network	media	it	can:
	 	 a.	be	no	longer	than	100	meters
	 	 b.	only	have	one	pair	of	wires	per	cable
	 	 c.	use	BNC	type	connectors
	 	 d.	be	unshielded	or	shielded
	 6.	 A	single	optical	fiber	strand	consists	of	two	parts.	What	are	those	two	parts?
	 7.	 What	are	the	three	most	commonly	used	network	access-control	protocols?	
	 8.	 The	Open	Systems	Interconnect	(OSI)	model	is:
	 	 a.	used	to	connect	two	networks
	 	 b.	a	reference	model	of	network	architecture	and	a	suite	of	protocols
	 	 c.	a	reference	model	of	the	physical	topologies	of	a	network
	 	 d.	a	network	media	connector
	 9.	 A	“frame”	is	a	data	link	layer	“packet”	that	contains	information	required	by	the	physical	

media.	What	are	the	three	basic	sections	that	make	up	a	frame?
	10.	 In	what	type	of	industrial	network	would	you	typically	find	the	master/slave	protocol	and	bus	

type	topology	used?
	 	 a.	Information	Networks
	 	 b.	Control	Networks
	 	 c.	Device	Networks
	 	 d.	All	of	the	above
	11.	The	network	address	assigned	to	a	device	is:
	 	 a.	a	letter
	 	 b.	a	number
	 	 c.	a	word
	 	 d.	a	ten-digit	code
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Objectives

After completing this chapter, you should have the knowledge to:
•	 Understand	start-up	procedures	listed	in	the	manufacturers’	literature.
•	 Explain	how	input	devices	are	tested.
•	 Explain	how	to	test	output	devices	using	a	push	button	or	another	input	device.
•	 Explain	safety	considerations	when	testing	output	devices.
•	 Describe	how	voltage	readings	are	taken	to	check	input	and	output	modules.

Start Up

Careful	 start-up	 procedures	 are	 necessary	 to	 prevent	 damage	 to	 the	 driven	 equipment	 and	 the	
	programmable	controller	system,	or,	more	importantly,	injury	to	personnel.

Prior	to	beginning	a	system	start-up	procedure,	it	is	important	to	check	and	verify	that	the	system	
has	been	 installed	according	 to	 the	manufacturer’s	 specifications,	 and	 that	 the	 installation	meets	
local,	state,	and	national	codes.	Special	attention	should	be	given	to	system	grounding.

Before applying power to the controller, complete the following steps:
Step 1.		 Verify	that	the	incoming	power	matches	the	jumper-selected	voltage	setting	of	the	

power	supply.	Figure	21–1	shows	a	typical	power	supply	with	the	jumper	position	
	indicated.

Note: Almost all power supplies are shipped from the manufacturer with the voltage setting in the 
HIGH voltage (240 V) position.

Step 2.	 Verify	that	a	hardwired	safety	circuit	or	other	redundant	EMERGENCY	STOP	device	
(described	in	chapters	2	and	10)	has	been	installed	and	is	in	the	open	position.

Step 3.	 Check	all	power	and	communication	cables	to	ensure	that	connector	pins	are	straight,	
and	not	bent	or	pulled	out.

Step 4.	 Connect	all	cables,	making	sure	that	connectors	are	fully	inserted	into	their	sockets.	
	Secure	connectors	as	applicable.

Step 5.	 Ensure	that	all	modules	are	securely	held	in	the	I/O	rack,	and	that	field	wiring	arms	(if	
	applicable)	are	fully	seated	and	locked.

413
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 Caution: Before	 proceeding	 further,	 make	 sure	 that	 the	 safety	 circuit	 or	 other	 EMERGENCY	
STOP	devices	are	OFF, or open, and that power is removed from all output	devices.

Apply	power	and	observe	processor	indicator	light(s)	for	proper	indications.

When power is applied and the safety switch is closed, the power supply should provide the neces-
sary	DC	voltage	for	the	processor	and	I/O	rack.	If	the	proper	voltage	is	present,	the	input	indicator	
LEDs	of	the	input	modules	will	be	functioning.	Any	input	device	that	is	closed,	or	ON, will have an 
illuminated	LED	(Figure	21–3).

Power Supply
Jumper

Figure 21–1 Power	Supply	with	Jumper

Step 6.	 Place	the	PLC	processor	key	switch	to	a	safe	position,	as	indicated	in	Figure	21–2.
Step 7.	 Double-check	the	setting(s)	of	all	DIP	swit			ches.

RUN

PROG

REM

Figure 21–2 Key	Switch	in	Program	Position
Note: “REM” means the PLC mode (Run, Program, etc.) can be controlled remotely by a programming device
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teSting inpUtS

Each	input	device	can	be	manipulated	to	obtain	open	and	closed	contact	conditions.

Caution: Do not	activate	the	input	devices	mounted	on	equipment	by	hand,	because	unexpected	
machine	motion	could	cause	injury.	Use	a	wooden	stick	or	other	nonconducting	material	to	activate	
input	devices	mounted	on	equipment.

Each	time	an	input	device	is	closed,	the	corresponding	LED	on	the	input	module	should	illuminate.	
Failure	of	an	LED	to	illuminate	indicates:

1.	 Improper	input	device	operation.
2.	 Incomplete	or	incorrect	wiring;	check	to	be	sure	that	the	input	device	is	wired	to	the	correct	

input	module	and	proper	terminal.
3.	Loss	of	power	to	the	input	device.
4.	Defective	LED	and/or	input	module.

To	further	check	the	system,	a	program	can	be	developed	and	entered	into	the	processor	that	uses	
each	input	device	address.	With	the	PLC	in	the	test	or	disable	output	state,	the	status	of	the	input	
devices	may	now	be	monitored	by	using	 the	 computer	 programmer,	 or	 by	LED	 indicators	 on	 a	
hand-held	 programmer.	On	 a	monitor,	 the	 input	 contact	 becomes	 intensified	 or	 goes	 to	 reverse	
video,		depending	on	the	model	of	PLC,	when	the	instruction	is	true.	An	EXAMINE	ON	instruction	
intensifies	or	goes	to	reverse	video	when	the	input	device	is	ON,	or	closed.	An	EXAMINE	OFF	
instruction	intensifies	or	shows	reverse	video	when	the	input	is	OFF,	or	open.	Figure	21–4	shows	a	
rung	for	testing	input	devices.

1
2
3
4
5
6
7
8

1

2

3

4

5

6

7

8

L1 L2

L2

INPUT
MODULE

INPUT DEVICE INDICATOR
ILLUMINATES WHEN
DEVICE IS ON

Figure 21–3 Input	Module	Indicators
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A	second	method	for	testing	the	status	of	inputs	in	the	processor	(for	PLCs	with	the	option)	is	by	
monitoring	the	status	(1	or	0)	of	the	desired	input	address	through	the	tag	monitor	or	INPUT	image	
file	using	the	monitor	of	a	computer	programmer.

Once	all	input	devices	have	been	tested	and	checked	out	as	operational	and	properly	terminated,	the	
output	devices	can	be	tested.

teSting OUtpUtS

Before	 testing	output	 devices,	 it	must	 be	determined	which	devices	 can	 safely	be	 activated	 and	
which	devices	should	be	disconnected	from	the	power	source.	Figure	21–5	shows	a	motor	starter	
with	 the	motor	 disconnected	 for	 safety.	 In	 this	 configuration,	 the	motor	 starter	 coil	 (the	 output	
device)	is	activated	for	checkout	without	energizing	the	motor.	This	prevents	unwanted	machine	
motion	that	might	cause	injury	to	personnel	or	damage	the	machine.

I:012

05

B3:0

/00

DISCRETE INPUT
ADDRESS

INTERNAL or DUMMY
OUTPUT ADDRESS

Figure 21–4 Rung	for	Testing	Input	Devices

M

L2L1

T1 T2 T3

L3

MOTOR

Figure 21–5 Disconnecting	Motor	Leads	for	Safety

For	 outputs	 that	 can	 be	 safely	 started,	 be	 sure	 equipment	 is	 in	 the	 start-up	 position,	 is	 properly	
	lubricated,	and	is	ready	to	run.
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There	are	two	methods	used	to	test	output	devices.	The	first	method	uses	a	push	button	or	another	
convenient	input	device	that	is	part	of	the	control	panel.	The	push	button	is	programmed	to	energize	
each	output,	one	at	a	time.

The	second	method	uses	the	FORCE	function	of	the	PLC	to	energize	outputs,	one	at	a	time.

When	using	a	push	button	(or	another	input	device),	the	address	of	the	push	button	is	programmed	
in	series	with	the	output	device	to	be	tested	(shown	in	Figure	21–6).

I:011

05

O:010

00

ADDRESS OF AN N.O.
PUSH BUTTON

ADDRESS OF OUTPUT
DEVICE TO BE TESTED

Figure 21–6 Rung	for	Testing	Output	Devices

Once	the	rung	has	been	programmed	and	entered	into	processor	memory,	the	processor	is	placed	in	
the run	mode.	Pressing	the	push	button	(I:011/05)	illuminates	the	output	indicator	on	the	output	mod-
ule	for	address	O:010/00.	If	there	is	an	output	connected,	verify	that	the	output	device	is		energized.	If	
the	output	indicator	does	not	illuminate,	using	the	monitor,	verify	that	the	input	instruction	I:011/05	
is	intensified	or	showing	reverse	video	to	indicate	an	ON	condition.	Double-check	the	output	address,	
and verify that the output instruction indicates an ON	condition.	If	both	instructions	indicate	an	ON 
condition	and	the	output	address	is	correct,	a	defective	module	is	likely	the	problem.

If	the	output	module	indicating	LED	is	illuminated,	but	a	connected	output	device	does	not	ener-
gize,	check	the	following:

1.	Wiring	to	the	output	device.
2.	Operation	of	the	output	device.
3.	 Proper	potential	to	the	output	device.
4.	Output	device	wired	to	correct	output	module	and	proper	terminal.

A	second	method	for	testing	output	devices	(for	PLCs	with	the	option)	is	the	FORCE	feature.	The	
FORCE	feature	allows	the	user	to	turn	an	output	device	ON and OFF	without	using	a	push	button	
or	adding	logic.	Figure	21–7	shows	an	Allen-Bradley	FORCE	table	that	allows	any	output	address	
to	be	forced	ON	and/or	OFF.

By	moving	the	cursor	to	the	desired	output	address,	the	FORCE	ON	function	can	be	initiated,	by		
placing	a	1	in	the	address	location	of	the	desired	output	(see	Figure	21–7,	address	O:000/03)	and	
	enabling	Forces,	which	should	illuminate	the	output	module	indicating	LED	and	turn	ON the output 
device,	if	one	is	connected.	If	the	LED	does	not	illuminate,	and	Forces	are	shown	as	being		enabled,	
one	should	suspect	the	module.	If	the	LED	lights,	but	the	output	device	does	not	energize,	proceed	as	
previously		described.	To	FORCE	OFF	the	output,	place	a	0	in	the	address	location		(see	Figure	21–7,	
address	O:000/06)	and	to	remove	the	FORCE	simply	replace	the	1	or	0	with	a		period	(“.”).
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Figure 21–7 Allen-Bradley	Force	Table

Final SyStem CheCkOUt

After	all	input	and	output	circuits	have	been	tested	and	verified,	the	electrician	or	technician	is	ready	
for	the	final	system	checkout.

Reconnect	any	output	loads	(motors,	solenoids,	etc.)	that	were	previously	disconnected.	In	the	case	
of	motors,	correct	rotation	needs	to	be	established	before	the	complete	machine	or	process	can	be	
tested.	Using	a	momentary	push	button	that	is	part	of	the	control	panel	(or	using	one		installed	spe-
cifically	for	this	purpose),	load	a	rung	of	logic	into	the	processor	as	previously	discussed	for	testing	
outputs	(Figure	21–6).

Caution: Because this part of the test causes machine motion, make sure the machine is  operational 
and	all	personnel	are	in	the	clear.	Station	someone	at	the	EMERGENCY	STOP	or	disconnect	loca-
tion	to	de-energize	the	system,	if	necessary.
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Close	the	push	button	and	immediately	release	or	open	it.	This	momentary	operation	of	the	push	
button	is	called	jogging	or	bumping,	and	allows	the	output	(motor	starter)	to	energize	only	momen-
tarily.	The	motor	starter	is	only	energized	long	enough	to	determine	the	direction	of	rotation	of	the	
motor.	If	the	rotation	is	wrong,	reverse	any	two	motor	leads	(assuming	3-phase	power)	and	repeat	
the	test	for	verification.	Continue	testing	all	output	loads	previously	disconnected	until	all	of	them	
function	correctly.	Once	all	machine	components	are	tested	and	correct	rotations	are	established,	
total	machine	operation	testing	can	be	accomplished.

For	final	system	checkout,	the	following	steps	should	apply:
Step 1. Place the processor in the program	mode.
Step 2.	 Clear	the	memory	of	any	previous	rungs	used	for	testing.
Step 3.	 Using	a	programming	device,	enter	the	program	(ladder	diagram)	into	memory.
Step 4. Place the processor in the test or disable output mode, depending on the PLC, and 

	verify	correctness	of	the	program.

Note: In the test, or disable output mode, the outputs cannot be energized. All logic of the circuit 
is verified, input devices function, but no outputs come on. This step must not be skipped if injury to 
personnel or damage to equipment is to be avoided.

Step 5.	 Once	the	circuit	operation	has	been	verified	in	the	test or disable output mode, the pro-
cessor	can	be	placed	in	the	run	mode	for	final	verification.

Step 6.	 Make	changes	to	the	program	as	required	(timer	settings,	counter	presets,	and	the	
like).

Step 7.	 Once	the	circuit	is	in	final	form,	and	the	machine	or	process	is	running	correctly,	it	is	
recommended	that	a	copy	of	the	program	be	made.

trOUbleShOOting

The	key	word	to	effective	troubleshooting	is	systematic.	To	be	a	successful	troubleshooter,	the	tech-
nician must use a systematic	approach.

A systematic approach should consist of the following steps:
Step 1.	 Symptom	recognition.
Step 2.	 Problem	isolation.
Step 3.	 Corrective	action.

The	electrician	and/or	technician	should	be	aware	of	how	the	system	normally	functions	if	he	or	
she	expects	to	successfully	troubleshoot	the	system.	When	prior	knowledge	of	system	operation	is	
not	possible,	the	next	best	source	of	information,	if	applicable,	is	the	operator.	Don’t	hesitate	to	ask	
the	operator	what	the	symptoms	are	and	what	he	or	she	thinks	the	problem	might	be.	If	no	operator	
is	available,	the	next	best	source	of	information	is	the	PLC	system	itself.	Although	the	PLC	can’t	
talk,	it	can	communicate	in	various	ways	to	show	what	the	problem	is.	There	are	status	lights	on	
the	processor,	power	supply,	and	I/O	rack	that	indicate	proper	operation,	as	well	as	status	lights	
that	alert	the	troubleshooter	to	the	problem.	The	status	lights	of	a	typical	processor	with	built-in	
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power supply indicate:
1.	DC	POWER	ON—If	this	LED	is	not	lit,	there	is	a	fault	in	the	DC	power	supply.	Check	

the	power	supply	fuse	and/or	incoming	power.
2.	MODE—Indicates	which	operating	mode	the	processor	is	in	(run, halt, test, program, etc.).	

The	fault	may	simply	be	that	the	key	switch	is	in	the	wrong	position.
3.	 PROCESSOR	FAULT—When	this	status	light	is	on,	it	indicates	a	fault	within	the	proces-

sor.	This	is	a	major	fault,	and	requires	changing	the	processor	module.
4.	MEMORY	FAULT—This	status	light	illuminates	when	a	parity	error	exists	in	the	trans-

mission	of	data	between	the	processor	module	and	the	memory	module.	Replace	only	one	
module	at	a	time.	If	the	first	module	does	not	correct	the	problem,	reinstall	the	original	
module	and	then	replace	the	second	module.	If	replacing	the	second	module	doesn’t	clear	
the	problem,	replace	both	modules.	

5.	 I/O	FAULT—This	light	indicates	a	communication	error	between	the	processor	and	the	I/O	
rack.	Check	that	the	communication	cables	are	fully	inserted	into	their	sockets.	If	available,	
connect a programming device with a monitor to the processor, and look for error codes 
and/or	fault	messages	for	further	diagnostic	assistance.

Note: Refer to manufacturer’s literature for explanation of error codes. 

6.	 STANDBY	BATTERY	LOW—When	this	LED	is	illuminated,	the	RAM	backup	batteries	
are	low	and	need	to	be	replaced.	Although	this	is	not	a	fault	condition,	failure	to	replace	bat-
teries	results	in	losing	the	program	when	the	system	is	shut	down	or	a	power	failure		occurs.

Status	 lights	on	 the	I/O	modules	also	assist	with	 troubleshooting	problems	that	 involve	 input	and	
output	devices.

If	 the	operator	confirms	that	 the	solenoid	 that	activates	a	brake	 isn’t	working,	 the	first	step	 is	 to	
	determine	 the	address	of	 the	 solenoid.	Once	 the	address	 is	known,	 the	programming	device	can	
be	used	to	ensure	that	the	output	circuit	to	the	solenoid	has	been	turned	ON.	Are	all	input	devices	
closed	that	should	be	closed?	Has	the	rest	of	the	rung	logic	been	completed?	If	the	answers	are	yes,	
then	it	is	necessary	to	determine	the	hardware	location.	(Some	PLCs	use	the	address	to	specify	the	
hardware	location,	whereas	others	do	not.)	

Output	modules	have	LED	indicators	that	illuminate	when	each	of	the	output	circuits	is	turned	ON.	
If	the	LED	is	lit	for	the	location	of	the	solenoid,	it	indicates	that	the	problem	is	not	with	the	output	
module,	but	with	the	circuit	from	the	module	to	the	solenoid,	or	with	the	solenoid	itself.

A	voltage	check	from	L2	to	the	terminal,	as	shown	in	Figure	21–8,	verifies	the	conclusion	that	the	
module	is	working	properly,	but	that	the	problem	is	either	in	the	wiring	to	the	solenoid,	or	in	the	
	solenoid	itself.	Further	voltage	checks	will	locate	the	problem.

Note: When testing AC output modules, the high internal resistance of most analog or digital  meters 
acts like a series voltage divider when measuring across an open load (Figure 21–9). The  result is 
a reading of nearly full voltage even after the triac has been turned OFF. For accurate readings, a 
10 K ohm resistor can be placed in parallel with the meter leads as shown in Figure 21–10, or a 
solenoid-type tester (Wiggins) with low internal resistance can be used.
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L1

1

2

3

4

L2
OUTPUT
MODULE

V

Figure 21–8 Testing	Voltage	on	an	Output	Module

TRIAC HAS HIGH INTERNAL
RESISTANCE WHEN NOT GATED (OFF)
TYPICALLY 1 MEG OHM OR LESS

VOLTMETER WITH HIGHER
INTERNAL RESISTANCE
TYPICALLY 6–10 MEG OHMS

L1

L2

VOLT-
METER

OPEN
LOAD

Figure 21–9 Series	Voltage	Divider	Effect	When	Reading	Across	an	Open	Load
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RESULTING TOTAL RESISTANCE 
IS NOW FAR BELOW THE INTERNAL
RESISTANCE OF THE TRIAC AND THE 
METER WILL READ NEARLY ZERO

L1

L2

VOLT-
METER

OPEN
LOAD

10 K OHM

Figure 21–10 Adding	a	Resistor	in	Parallel	with	Meter	to	Reduce	Voltage	Divider	Effect

If	 the	 indicator	 LED	 has	 not	 been	 lit,	 the	 first	 reaction	might	 be	 to	 change	 the	 output	module.	
	Instead,	look	first	for	a	blown-fuse	indicator	LED.	A	fuse	might	be	all	that’s	needed	to	make	the	
	solenoid	operational.	 If,	however,	 there	was	no	blown	 fuse,	 replacing	 the	output	module	 should	
	correct	the	problem.

Note: Remove all power from the I/O rack before changing modules.

Some	PLC	manufacturers	offer	deluxe	output	modules	that	have	two	indicator	LEDs.	One	indicates	
that	the	logic	from	the	processor	has	been	received	to	turn	on	the	output;	the	second	LED	comes	on	
when	the	triac,	or	power	transistor,	has	been	turned	ON.	These	two	LEDs	should	come	on	simulta-
neously, unless the PLC is in the test	mode.	In	the	test	mode,	only	the	logic	LED	is	lit	because	the	
output	circuits	are	isolated,	and	kept	from	being	turned	ON.

Troubleshooting	input	modules	follows	the	same	basic	procedure.	If	it	was	determined	that	the	so-
lenoid	had	not	energized	because	limit	switch	1	was	not	being	shown	closed	on	the	programming	
device,	the	LS-1	address	would	need	to	be	determined.	From	the	address,	determine	the	terminal	on	
the	input	module	that	LS-1	is	connected	to.
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An	illuminated	LED	indicates	that	the	limit	switch	is	closed,	but	that	the	state	of	the	switch	(ON)	
is	not	being	communicated	to	the	processor.	Exchanging	the	input	module	should	make	the	system	
operational.	However,	had	 the	 indicator	LED	for	LS-1	not	been	 lit,	 there	could	be	several	other	
possible	problems,	such	as	a	bad	limit	switch,	faulty	wiring	from	LS-1	to	the	input	module,	or	a	
bad	input	module.	Closing	the	limit	switch	and	taking	a	voltage	check,	as	shown	in	Figure	21–11,	
determines	if	the	limit	switch	and	associated	wiring	is	operational.

L1 L2

VOLT-
METER

INPUT
MODULE

1

2

3

4

Figure 21–11 Testing	Voltage	on	an	Input	Module

A	voltage	reading	equal	to	the	applied	voltage	indicates	that	the	limit	switch	and	wiring	are	operat-
ing,	but	that	there	is	a	faulty	input	module.	No	voltage	reading	indicates	a	problem	with	either	the	
limit	switch	or	its	wiring.	Further	voltage	checks	will	isolate	the	problem.

Caution: Use	a	high-impedance	voltage	meter	when	taking	voltage	readings	on	PLC	input	circuits.	
Failure	to	use	a	high-impedance	voltage	meter	could	cause	unexpected	machine	operation	by	unin-
tentionally	activating	inputs	such	as	Start	and	Jog	buttons,	limit	switches,	etc.

Similar	to	the	deluxe	output	modules,	there	are	also	input	modules	that	have	two	indicating	LEDs.	
The	first	LED	indicates	that	the	input	device	has	closed,	and	a	voltage	signal	has	been	received	by	
the	input	module;	the	second	LED	indicates	that	the	status	of	the	input	device	(ON)	has	been	com-
municated	to	the	processor.

Note: Once the PLC program has been proven, or checked out, for complete and accurate opera-
tion, any future problems normally will be bad field wiring and/or bad field devices.
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Chapter Summary
Start-up	procedures	check	each	part	of	the	PLC	system	for	proper	installation	and	operation.	Safety	
must always	be	the	overriding	factor	when	testing	or	operating	a	PLC	system.	Care	must	be	taken	to	
prevent	unexpected	or	incorrect	machine	motion	if	injury	to	personnel	and/or	damage	to	equipment	
is	to	be	avoided.

Once	the	system	start-up	is	complete	and	the	system	is	operational,	problems	or	faults	can	occur.	
To	successfully	troubleshoot	the	system,	a	systematic	approach	must	be	used.	This	systematic	ap-
proach	includes	recognizing	the	symptoms,	isolating	the	problem,	and	taking	corrective	action.	A	
variety of indicator and status lights, as well as error messages and fault codes, assist the electrician 
or	technician	in	troubleshooting	a	given	system.

The	information	covered	in	this	chapter	is	intended	to	be	general	in	nature	and	is	not	specific	to	any	
particular	PLC.	For	more	specific	information	on	start-up	and	troubleshooting	procedures,	refer	to	
the	manufacturer’s	operating	manual	that	accompanies	the	PLC.

review Questions
	 1.	 A	programmable	controller	system	should	be	installed	according	to:
	 	 a.	manufacturer’s	specifications
	 	 b.	local	electrical	codes
	 	 c.	state	electrical	codes
	 	 d.	national	electrical	codes
	 	 e.	all	of	the	above
	 2.		Explain	why	a	safety	circuit	or	other	EMERGENCY	STOP	device	is	important.
	 3.	 Describe	briefly	how	input	devices	are	tested.
	 4.	 List	two	methods	for	testing	output	devices.
	 5.	 Why	should	output	devices	be	disconnected	before	testing?
	 6.	 Draw	an	input	module	complete	with	input	devices	and	power	connected	(L1–L2),	and	show	

how	a	voltage	reading	is	taken	to	verify	the	operation	of	an	input	device.
	 7.	 On	a	deluxe	input	module,	what	do	the	two	LED	indicators	represent?
	 8.	 On	a	deluxe	output	module,	what	do	the	two	LED	indicators,	other	than	the	blown-fuse	indi-

cator,	represent?
	 9.	 Define	the	term	jogging.
10.	List	the	three	steps	of	systematic	troubleshooting.

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



425

00

0
01

1
02

0
03

0
04

1
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0

00

0
01

0
02

0
03

0
04

0
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

1

00

0
01

1
02

0
03

0
04

1
05

0
06

0
07

0
10

0
11

0
12

0
13

0
14

0
15

0
16

0
17

0

PLC Programming  
Examples

ChaPtEr

22
Objectives

After completing this chapter, you should have the knowledge to:
• Better understand PLC instructions.
• Apply various PLC instructions together.
• Apply simple PLC control logic solutions.

This chapter will provide the reader with examples of PLC programming code/logic utilizing many 
of the instructions covered in previous chapters. The examples presented here are intended to help 
the reader gain a better understanding of the various PLC instructions and how they can be com-
bined to provide simple control logic solutions. The examples are not intended to take the place of 
application-specific requirements. In most cases there is more than one solution to a problem; the 
right solution and subsequent logic depends on having a thorough understanding of the machine or 
process to be controlled.

To help in understanding the following PLC programming examples, PLC memory addresses will 
most often not be shown. Instead a description will be used followed by the type of memory address 
in bold type. As an example, shown in Figure 22–1 is an N.O. contact (EXAMINE ON) with the 
 description “Start Push Button” followed in bold by “Digital Input”; this memory address would 
be a digital input from a real-world button labeled “Start.”

START
PUSH BUTTON
"Digital Input"

Figure 22–1 Digital Input Description Example

The following are examples of other memory types used in this chapter:
Digital Output—A digital address in the output memory area of the PLC that a real-world 
 device is being controlled from, such as a pilot light, motor starter, solenoid, etc.
Digital Memory—A digital address in a user memory area of the PLC that is used primarily 
for internal or dummy relays, such as “Control Relay CR-1.”
Analog Input—A word address in PLC memory containing a decimal value from a real-
world analog input device such as a temperature sensor, pressure transmitter, etc.
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Analog Output—A word address in PLC memory containing a decimal value being sent to a 
real-world analog output device such as a valve, variable speed drive, panel meter, etc.
Analog Memory—A word address in a user memory area of the PLC containing a decimal 
value from calculations or simply used to store values for in comparison type instructions.

Timer and counter address will only have descriptions such as “1⁄2 Second Flasher Timer,” “1⁄2  Second 
Flasher Timer Done,” etc.

ExamplE 1—push ON/push OFF CirCuit

In some applications it is desirable to have a single, N.O., momentary push button used to both turn 
ON and OFF a digital output(s) such as lights, motors, solenoids, etc. When one  begins to think 
about the solution and subsequent logic it becomes clear that there is certainly more than one solu-
tion possible, as is most often the case. Which is the best solution is a question that challenges all 
PLC programmers. Only after carefully studying what the output controls and taking into  account 
any safety or fail-safe considerations can the best solution be chosen.

In our example of the “Push ON/Push OFF” circuit, we have chosen to control a light and  always 
have it be in the OFF state when the PLC begins executing the program on a restart of the proces-
sor (fail-safe position on restart). Figure 22–2 shows the logic we have selected. In our example 

PUSH BUTTON
"Digital Input"

FLIP/FLOP
TRIGGER

"Digital Memory"ONE SHOT

ONS

FLIP/FLOP
TRIGGER

"Digital Memory"
LIGHT

"Digital Output"
LIGHT

"Digital Output"

FLIP/FLOP
TRIGGER

"Digital Memory"
LIGHT

"Digital Output"

RUNG 1

RUNG 2

Figure 22–2 Push ON/Push OFF Circuit
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PUSH BUTTON
"Digital Input"

FLIP/FLOP
TRIGGER

"Digital Memory"

ONE SHOT
COIL

"Digital Memory"

ONE SHOT
COIL

"Digital Memory"

RUNG 1

Figure 22–3 Push Button with One-Shot Coil

ExamplE 2—1⁄2 sECONd pilOt light FlashEr CirCuit

Many times when designing control circuits, it is desirable to flash pilot lights at various times to 
alert operators to abnormal or pending conditions. The power and flexibility of PLCs makes this 
a very easy addition to any control circuit design. In the example presented here, we will design a 
 universal flasher circuit that will provide for a digital memory bit labeled “1⁄2 Second Flasher” that 
can be used throughout your PLC program to flash pilot lights as desired. The one-half (1⁄2 )  second 
flash rate used in this example is a common flash rate for pilot lights, but any flash rate can be 
 chosen based on your application or needs. The same basic flip/flop circuit used in Example 1 will 
also be used here to provide the basis for our flasher. As you will recall from Example 1, any time 
the “Flip/Flop Trigger” memory bit is ON, the output of the flip/flop circuit will change state. In that 
 example, the push button and one-shot were used to turn on the “Flip/Flop Trigger” memory bit. 
Now if we could have someone push the button every 1⁄2 second we would have ourselves a 1⁄2 second 

we are using a common logic circuit called the flip/flop circuit to provide the means of alternating 
 between the two states, ON and OFF. The basic flip/flop circuit is shown in Rung 2 of Figure 
22–2. It gets the name flip/flop because any time the input memory address labeled “Flip/Flop 
Trigger” is true or ON and the PLC processor scans the rung, the output, the light to be controlled 
in this case, will change state or alternate, hence the name flip/flop. In Rung 1 of Figure 22–2 the 
real-world push button is used to turn on the “Flip/Flop Trigger” output that is used to change the 
state of the flip/flop circuit. The “ONS” instruction in Rung 1 is a One-Shot instruction used to 
keep the “Flip/Flop Trigger” output ON for only one scan, which is required for proper operation 
of the flip/flop circuit. Refer back to Chapter 11 for a review of the “ONS” instruction.

The basic flip/flop circuit shown here is a very useful and universal circuit that can be used for many 
different applications, as you will soon see. 

If the PLC you are using does not have a One-Shot instruction, one can be made by using the logic 
shown in Figure 22–3 in place of Rung 1 in Figure 22–2.
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flasher. Of course having someone push the button every 1⁄2 second is not practical, but if we  replace 
the rung containing the push button, one-shot, and “Flip/Flop Trigger” output with an  On-Delay 
Timer set for 1⁄2 second that automatically resets itself, we will have our 1⁄2 second flasher. Fig ure 
22–4 shows the flasher circuit using the On-Delay Timer and flip/flop circuit.

1/2 SECOND
FLASHER TIMER

DONE

1/2 SECOND
FLASHER TIMER

TIMER ON-DELAY

TON

1/2 SECOND
TIMER

EN

DN

1/2 SECOND
FLASHER TIMER

DONE

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER TIMER

DONE

RUNG 1

RUNG 2

Figure 22–4 1⁄2 Second Flasher Circuit

After reviewing the flasher circuit in Figure 22–4, did you notice that we did not use a one-shot 
 instruction as was required in Example 1? That is because the On-Delay timer in Rung 1 is self- 
resetting, meaning that the done bit of the On-Delay timer is only ON for one scan before being used 
to reset the timer.

ExamplE 3—mOtOr startEr Fault-mONitOriNg lOgiC

When controlling industrial motors with PLCs, it is often desirable to monitor and know when motor 
starters fail to operate as directed. If a motor starter should fail to operate, then that  information 
can be used in your PLC program to provide for the safe shutdown of other  equipment, as well 
as alert an operator or maintenance person to the problem. Motor starters can fail to  operate for 
many  reasons, but some of the more common reasons are: motor overload trips, low or no  control 
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voltage, open starter coils, welded contacts, etc. The logic presented in this example is  designed to 
monitor and detect a failure of a motor starter to pull in and/or drop out when directed. In order to 
detect a motor starter failure, an N.O. auxiliary (aux) contact mounted on the starter must be wired 
to an input module of the PLC (refer to Chapter 10, “Overload Contacts,” for additional  information 
on this input and the circuit presented here). The status of this input, as well as the PLC output to 
the starter, becomes the basis for the monitoring and fault detection circuit shown in   Figure 22–5.

MOTOR STARTER
FAULT TIMER

TIMER ON-DELAY
TON

1/2 SECOND
TIMER

EN

DN

MOTOR START
PUSH BUTTON
"Digital Input"

MOTOR STARTER
FAULT

"Digital Memory"

MOTOR STARTER
FAULT TIMER

DONE

MOTOR STARTER
FAULT

"Digital Memory"

MOTOR STARTER
AUX CONTACT
"Digital Input"

MOTOR STARTER
COIL

"Digital Output"

MOTOR STARTER
AUX CONTACT
"Digital Input"

MOTOR STARTER
COIL

"Digital Output"

RUNG 1

Figure 22–5 Motor Starter Fault-Monitoring Logic

In this circuit, a single motor starter can be monitored for a failure both to pull in and/or drop out 
by evaluating the state of the output with that of the input. If the output to the starter is ON and the 
input from the starter auxiliary contact is OFF, then this would be considered a failure to pull in, 
and  conversely, if the output to the starter is OFF and the input is ON then this would be considered 
a failure to drop out. This logic is shown in the first two branches of Figure 22–5. If a motor starter 
failure is detected, then the third branch of Figure 22–5 acts as a holding circuit for the fault condi-
tion until it can be acknowledged and reset by an operator or maintenance person. In our example, 
we have chosen to use the “Motor Start” push button to also act as the fault reset button, but you 
could just as well use a separate reset button, or for that matter, any other condition that fits your 
 application or needs.
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The On-Delay timer in Figure 22–5 is required to allow for the physical movement (time) of the 
motor starter when energizing and de-energizing the starter. The 1⁄2 second time delay chosen for 
the On-Delay timer is typically more than adequate for most applications, but can be adjusted as 
 necessary. If the On-Delay timer should time out, then the “Motor Starter Fault” memory bit will 
turn ON and remain ON until reset. This “Motor Starter Fault” memory bit can be used in your PLC 
program as necessary to disable the motor starter output rung, flash pilot lights, shut down other 
equipment, etc.

ExamplE 4—thrEE-WirE mOtOr CONtrOl lOgiC With Fault 
mONitOriNg, pilOt light, aNd FlashEr CirCuit

In this example, we will show how the 1⁄2 Second Pilot Light Flasher and Motor Starter Fault-
Monitoring Logic shown previously can be used in a basic three-wire motor control circuit. In our 
example we will use both Start and Stop push buttons to control the motor. In addition to start-
ing the motor, the Start push button will also be used to reset a motor starter fault if one should 
occur. Along with the Start and Stop push buttons, a pilot light will also be used to indicate when 
the motor is running, as well as when a motor fault occurs. Shown in Figure 22–6 is the logic for 
 Example 4. 

Rung 1 of Figure 22–6 is your basic three-wire motor control circuit for controlling the motor 
 output. In addition to the Start and Stop push buttons in Rung 1, you will also notice an N.C. con-
tact labeled “Motor Starter Fault” that is in series with the motor output coil. This  contact is used 
to turn OFF the output to the motor starter during a motor fault condition. Rung 2 of Figure 22–6 
is the Motor Starter Fault-Monitoring Logic that was described in Example 3,  always monitoring 
the motor starter for abnormal conditions. Rungs 3 and 4 set up a 1⁄2 second flasher circuit to be 
used in Rung 5 for flashing the motor pilot light when a motor fault should occur. Keep in mind 
that this flasher circuit could be located at the beginning of your program and used in any of the 
pilot light circuits in your program as needed. Rung 5 is the Motor Pilot Light circuit with Motor 
Fault Flasher included. 

ExamplE 5—timE-BasEd EvENts

Often it is desirable to trigger an event at some predetermined time. If the time is in seconds or 
minutes, then a basic On-Delay or Off-Delay timer may be all that is needed, but if the time is in 
hours or days then additional PLC logic is required. In the examples presented here, our goal is to 
show two methods that can be used to trigger an event at a predetermined time that a timer instruc-
tion alone is unable to do. In the following two examples, we shall assume we are operating a ball 
mill that requires routine service by the plant maintenance personnel every 168 hours or 7 days of 
ball mill operation. The event to be triggered at the end of the 168 hours is a maintenance warning 
light that is used to alert the maintenance personnel that the ball mill requires service. In our first 
example, we will use a counter and timer instruction to keep track of the number of hours the ball 
mill has  operated and trigger our maintenance warning light. In the second example we shall accom-
plish the same thing, but instead of a counter and timer, we shall use math and compare instructions 
along with a timer.

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PLC Programming  Examples  431

MOTOR STARTER
FAULT TIMER

TIMER ON-DELAY
TON

1/2 SECOND
TIMER

EN

DN

1/2 SECOND
FLASHER TIMER

TIMER ON-DELAY
TON

1/2 SECOND
TIMER

EN

DN

MOTOR START
PUSH BUTTON
""Digital Input"

MOTOR STARTER
FAULT

"Digital Memory"

MOTOR STARTER
FAULT TIMER

DONE

MOTOR STARTER
FAULT

"Digital Memory"

MOTOR STARTER
AUX CONTACT
"Digital Input"

MOTOR STARTER
COIL

"Digital Output"

MOTOR STARTER
AUX CONTACT
"Digital Input

MOTOR STARTER
COIL

"Digital Output"

MOTOR START
PUSH BUTTON
"Digital Input"

MOTOR STARTER
FAULT

"Digital Memory"

MOTOR STARTER
COIL

"Digital Output"

MOTOR STARTER
COIL

"Digital Output"

MOTOR STOP
PUSH BUTTON
"Digital Input"

RUNG 2

RUNG 3

1/2 SECOND
FLASHER TIMER

DONE

1/2 SECOND
FLASHER TIMER

DONE

RUNG 1

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER

"Digital Memory"

1/2 SECOND
FLASHER TIMER

DONE

MOTOR STARTER
COIL

"Digital Output"

1/2 SECOND
FLASHER

"Digital Memory"

MOTOR
PILOT LIGHT

"Digital Output"

MOTOR STARTER
FAULT

"Digital Memory"

RUNG 4

RUNG 5

Figure 22–6 Motor Control and Monitoring Logic
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Shown in Figure 22–7 is the logic for our time-based event using a counter and timer. 

In Rung 1 of Figure 22–7 the On-Delay Retentive Timer is enabled whenever the ball mill is running. 
A retentive On-Delay timer was chosen so that any accumulated time would not be lost in the event 
the mill was stopped and then restarted. The On-Delay timer is set to time in seconds with a preset 
time of 3600 seconds or one hour. When the On-Delay timer has timed out at the end of one hour, the 
done bit of the timer is used to increment the counter (CTU) in Rung 2. At the same time the counter 
is incremented, the retentive On-Delay timer is also reset, allowing it to begin another  timing cycle. 
The counter instruction in Rung 2 is programmed with a preset count of 168 counts, which is equal 
to 168 hours and the time required to trigger our maintenance warning light. When the counter 
accumulated value equals the preset, the done bit of the counter is used in Rung 3 to turn ON our 
maintenance warning light, alerting the maintenance personnel that the ball mill requires service.  
A “Reset” push button is used to reset the counter and timer to begin the operation over as shown 
in Rung 4. The “Reset” push button could be an integral part of the maintenance warning light. 

BALL MILL
RUN TIMER

7-DAY
COUNTER

BALL MILL
RUN TIMER

DONE

7-DAY
COUNTER DONE

BALL MILL
STARTER COIL
"Digital Output"

RUNG 2

RUNG 3

RESET
PUSH BUTTON
"Digital Input"

7-DAY
COUNTER

DONE

RUNG 1

7-DAY
COUNTER

BALL MILL
RUN TIMER

RUNG 4

BALL MILL
RUN TIMER

MAINTENANCE
WARNING LIGHT
"Digital Output"

RETENTIVE TIMER ON
RTO

3600 SECOND
TIMER

UP COUNTER
CTU

PRESET EQUALS
168 COUNTS

EN

CU

DN

DN

RES

RES

RES

Figure 22–7 Time-Based Logic Using Counter
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The done bit of the counter is also used to keep the timer and counter from counting above the 
preset time of 168 hours. If you wish to track the hours beyond 168 for display or HMI purposes, 
then  remove the counter done bit from Rung 1, providing the counter instruction you are using will 
 increment beyond the preset value of the counter. Remember that the accumulated value of a coun-
ter has a maximum value.

Shown in Figure 22–8 is the logic for our time-based event using a Timer, Math, and Compare 
 Instructions. The same PLC logic used in Rung 1 of Figure 22–7 will also be used in this example. 

BALL MILL
RUN TIMER

BALL MILL HOUR COUNTER
BALL MILL
RUN TIMER

DONE

BALL MILL
STARTER COIL
"Digital Output"

RESET
PUSH BUTTON
"Digital Input"

BALL MILL
RUN TIMER

RUNG 2

RUNG 3

RUNG 1

RUNG 4

BALL MILL
RUN TIMER

MAINTENANCE
WARNING LIGHT
"Digital Output"

RETENTIVE TIMER ON
RTO

3600 SECOND
TIMER

EN

DN

ADD A + B = DEST.
A = HOUR REG. "Analog Memory"
B = 1
DEST. = HOUR REG. "Analog Memory"
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SOURCE A = HOUR REG. "Analog Memory"
SOURCE B = 168
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RES
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Figure 22–8 Time-Based Logic Using Math and Compare
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FO = (1 – K)(D) + K(FP)

Where:

FO = analog 	lter output

K = gain

D = raw analog input data

FP = previous analog 	lter output

Figure 22–9 Analog Filter Equation

In fact, the primary difference between the two examples is that the counter instruction in Figure 
22–7 is replaced with a math “Add” instruction, and the counter done bit in Rung 3 is replaced 
with a  compare “Greater Than or Equal” instruction. To reset the accumulated hours in the analog 
 memory word, a math “Clear” instruction is used in place of the counter reset instruction in Rung 4 
of  Figure 22–7, as is shown in Figure 22–8. In this example we have chosen to allow the accumulated 
hours to increment above 168 if not reset. If you do not wish to have the accumulated hours incre-
ment above 168, then what would you do?

Note:  Remember that the length of the program affects scan time, which in turn affects timer 
 accuracy and total time. The actual time it takes to count to 168 hours may be 168 hours plus.

ExamplE 6—aNalOg sigNal FiltEr algOrithm

When working with analog input signals it is not uncommon to have analog signals that may contain 
some degree of noise. The problems that this noise can cause vary, depending on the severity of the 
noise and how the analog data is intended to be used. Common problems include digital displays 
that become hard to read, unnecessary and erratic operation of analog output devices, process er-
rors or disturbances, etc. The solution to noisy analog input signals is to implement some kind of 
signal conditioning, either hardware- or software-based. In this PLC programming example, you 
will see one possible software solution that requires very little programming to implement and is an 
 improvement over other methods, such as running or weighted averages.

The PLC logic shown in this example is based on a math algorithm that uses recursion to provide 
a filtering effect similar to an RC network. The formula is shown in Figure 22–9.

To adjust the amount of filtering needed, change the value of K in the formula. Maximum filtering 
occurs when K approaches 1.0, and if K is zero, the filter is off. Values of K between 0.80 and 0.90 
provide the best results. When you are using this filter, the equation shown in Figure 22–9 should 
not be  executed any faster than the analog data acquisition update time. Keep in mind that this filter 
will introduce some process lag. The PLC logic to implement this filter is shown in Figure 22–10. 

The Allen-Bradley “Compute” instruction is being used in our example, but you could easily 
 replace the “Compute” instruction shown here with the required individual math instructions, 
“Subtract,” Multiply,” and “Add.” In this example we have arbitrarily set our filter update time 
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ANALOG FILTER
UPDATE TIMER

ON–DELAY TIMER
TON

1/4 SECOND
TIMER

EN

DN

ANALOG FILTER
UPDATE TIMER

DONE

K = GAIN (This should be a �oating point register such as F8:0)

D = ANALOG DATA IN (This is the raw analog data being received by the PLC)

FP = PREVIOUS ANALOG FILTER OUTPUT (Should be same analog memory type as Fo)

FO = ANALOG FILTER OUTPUT (This is the analog output value of the �lter to be used in
  your PLC program as needed)

ANALOG FILTER
UPDATE TIMER

DONE

RUNG 2

RUNG 1

ANALOG FILTER EQUATION

COMPUTE

DEST. = Fo
EXPRESSION:

((1 – K) * D) + (K * FP)

CPT

STORE LAST FILTERED VALUE

MOVE

SOURCE = Fo
DESTINATION = FP

MOV

Figure 22–10 Analog Filter Logic

to one-quarter of a second, as indicated in our On-Delay timer in Rung 1. Make sure you adjust 
the On-Delay timer in Rung 1 to match your analog data acquisition update time. The “Move” 
 instruction in Rung 2 stores the current filtered analog value for use in the next calculation as the 
previous value. 

ExamplE 7—parts CONvEyOr traCkiNg lOgiC

In many industrial plants it is often desirable to track objects as they are transported from one end of 
a conveyor system to the other. There can be many reasons for tracking an object, including track-
ing the physical location of an object; tracking the information about an object such as part number, 
length, destination, etc.; or just simply keeping track of the number of objects. Every tracking re-
quirement is unique, both in the hardware and PLC logic needed. For this reason, it is only possible 
to show several basic examples of tracking logic. 
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tracking Example One
In our first example, we are going to track the physical location and length of an object or part as it 
travels the length of a 50-foot conveyor. Located 25 feet from the beginning of the conveyor system 
is a spray nozzle that is designed to spray a cleaning solution onto each object as it passes. Because 
of physical and environmental constraints we are unable to mount a sensor at the spray nozzle to 
 detect the presence of each object as it passes the sprayer. The only location where an object can be 
detected is at the very beginning of the conveyor system by means of a photoelectric sensor. For this 
reason, we must track the physical location along with the length of each object as it travels down 
the conveyor system in order to turn ON and OFF the spray nozzle at the appropriate time. In addi-
tion to the photoelectric sensor, an incremental encoder is mounted on the conveyor system and is 
designed to produce a pulse (ON/OFF signal) for every 1 inch that the conveyor travels. These two 
digital PLC inputs, Photoelectric Sensor and Incremental Encoder, will be used to track the position 
and length of each object as it travels down the conveyor system.

Based on the above information we know that the length of the conveyor is 50 feet or 600 inches, 
which also equals 600 encoder pulses; therefore, the spray nozzle located at 25 feet would equal 
300 encoder pulses. By taking the encoder input and using it to operate a “Bit Shift Left”  instruction 
with a length of 600 bits, we are able to have a bit location that corresponds to each inch of conveyor 
length. Figure 22–11 shows the conveyor, photoelectric sensor, spray nozzle, and 600-bit array laid 
out on the length of the conveyor system. As you study Figure 22–11 you will note that the spray 
nozzle is located at bit location 300, which we know equals 25 feet. For each inch that the conveyor 
system travels, all bits in the array are shifted one position to the left toward bit  location 600. 
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Figure 22–11 Conveyor Tracking System Layout
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If we use the photoelectric sensor input as the input bit address to the “Bit Shift Left” instruc-
tion, we will in effect be setting the bit in position 1 of the array to ON or 1 any time that the 
 photoelectric  sensor is blocked by an object. Each time the conveyor moves one inch, the status 
of the  photoelectric sensor, ON or OFF, is loaded into the bit array and shifted one position to the 
left. If an  object on the conveyor system is 12 inches in length and blocks the photoelectric sensor 
as it passes, then our bit array will have 12 consecutive bits that will be ON, matching the length of 
the object (see Figures 22–12a and b). As the object travels down the conveyor system towards the 
spray  nozzle, the 12 bits matching the object’s length are also being shifted through the bit array, 
in effect tracking the object’s position on the conveyor system. When the first bit of the string of 
12 bits reaches the 300th bit location in the array, the spray nozzle is energized, spraying cleaning  
so lution on the object, and it  remains ON until all 12 bits have passed the 300th bit location (see 
Figure 22–12c).

Shown in Figure 22–13 is the PLC logic for our bit array tracking system described above. We have 
shown the “Bit Shift Left” instruction with a file or array address of #B3:0. We have also shown the 
file or array address for the Photoelectric Sensor and Spray Nozzle in Figures 22–11 and 22–12 for 
clarity. The “Conveyor System Running” digital input in Rung 2 is there to ensure that the “Spray 
Nozzle” output operates only when the conveyor is moving.

If the conveyor system can be operated in both the forward and reverse directions, then the addition 
of a “Bit Shift Right” instruction with the same file or array address as that of the “Bit Shift Left” 
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Figure 22–12a Object at Photoelectric Sensor
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Figure 22–12c Object at Spray Nozzle
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Figure 22–12b Object Past Photoelectric Sensor
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CONVEYER
RUNNING

"Digital Input"

SPRAY
NOZZLE

"Digital Output"

BIT ARRAY
LOCATION

B3/299

EN

DN

BIT SHIFT LEFT

FILE: #B3:0

CONTROL: R6:0

BIT ADDRESS: PHOTOELECTRIC

 SENSOR "DIGITAL INPUT"

LENGTH: 600

BSL

CONVEYOR TRACKING BIT SHIFT
INSTRUCTION

ENCODER
INPUT

"Digital Input"

RUNG 2

RUNG 1

Figure 22–13 Bit Array Tracking Logic

should be used. In addition to the “Bit Shift Right” instruction, each bit shift instruction must be 
 enabled only when the conveyor system is operating in the appropriate direction, using either the 
status of the motor starters or a quadrature encoder (see Figure 22–14).

Note: When using an encoder with standard digital PLC input modules, make sure that the encoder 
pulses are not changing faster than can be read by the PLC, including scan time, or missed pulses 
could occur, causing inaccurate operation. Many PLC manufacturers sell special encoder or coun-
ter modules for high-speed operation. 

tracking Example two
In our second tracking example, we are going to track the part number of an object as it travels the 
length of the same 50-foot conveyor. We will use the same encoder and digital inputs as in the first 
 example. The only difference between this example and the first is that we will replace the spray  nozzle 
with a Diverter Gate and add a Bar Code Reader to the system. Instead of loading 1s and 0s into a 
bit array, we will be loading part numbers into a word array. The Diverter Gate will be  designed to 
divert an object off the conveyor system if its part number matches the reject part  number stored in 
PLC memory. The diverter must also be activated for the length of the object. Figure 22–15 shows 
the  conveyor, bar code reader, photoelectric sensor, diverter gate, and 600-word array laid out on 
the length of the conveyor. The Diverter Gate, like that of the spray nozzle in the first example, 
is also located 25 feet or 300 words from the start of the conveyor system. The Bar Code Reader, 
located just ahead of the photoelectric sensor, reads the bar code number or part number of each 
object and stores the part number in PLC analog memory word address (N7:601) to be used by the 
word array tracking logic.
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In this example, we will need to use some type of word shift instruction that will allow us to shift 
part numbers through a word array, as was done in the first example with the “Bit Shift Left” 
 instruction. As you will recall from Chapter 16, most PLCs have some type of asynchronous shift 
register (FIFO) instructions, such as Allen-Bradley’s “FFL” and “FFU” instructions, that can be 
used to shift word values into a stack or array. We could easily use the “FFL” and “FFU” instruc-
tions to shift our part numbers through the array, but we have chosen to use the Allen-Bradley file 
copy instruction (COP) because it only requires one instruction, not two; is faster to execute than 
the FIFO instructions; and is simpler to implement for our application. Figure 22–16 shows the PLC 
logic for our part number tracking system.
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Figure 22–14 Bit Array Tracking Logic Forward/Reverse
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Figure 22–15 Conveyor Bar Code Tracking System

The move “MOV” instruction in Rung 1 is used to move the part number, read by the Bar Code 
Reader, into the first word of the array when the photoelectric sensor is detecting an object. Rung 2 
clears the first word of the array if no part is detected by the photoelectric sensor. Just as in the first 
example, in which we were loading 1s or 0s into a bit array, here we are loading part numbers and/
or 0s into the word array based on the photoelectric sensor input.

Rung 3 is the copy “COP” instruction that is used to shift the part numbers through the word array 
when the encoder input is true. When the “COP” instruction is used in this manner, the values in the 
word array are shifted from the highest word location (N7:600) to the lowest word location (N7:0); 
see Figure 22–15. The one-shot “ONS” in Rung 3 is required to ensure the Copy Instruction only 
moves the data in the word array one position whenever the encoder input is True.

By studying Figure 22–15 we know that the Diverter Gate is located at word position 300 in the 
word array, just as the Spray Nozzle was located at bit position 300 in the bit array. Rung 4 in 
 Figure 22–16 uses an equal-to “EQU” instruction to see if the part number at word position 300 in 
the word array is equal to the reject part number stored in PLC memory, and if true, energizes the 
 Diverter Gate, diverting the object off the conveyor system. As with the spray nozzle, the diverter 
gate is ON for the full length of the object.
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Chapter summary
After working through the examples presented in this chapter, you should begin to see how the 
various PLC instructions can be combined to provide control logic solutions. As was stated at 
the  beginning of this chapter, there is typically more than one solution to a problem and the right 
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Figure 22–16 Word Array Tracking Logic

©
 C

en
ga

ge
 L

ea
rn

in
g 

20
13

      Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PLC Programming  Examples  443

 solution depends on having a thorough understanding of the machine or process to be controlled. 
Along with understanding what you are controlling, you must also understand how the various PLC 
instructions work and how the PLC executes them. Think of the various PLC instructions as tools in 
your tool bag: They are only as good as the person who knows how to use them.

When developing PLC logic always think about safety to personnel and preventing damage to 
equipment. Never create an unsafe condition; always look to prevent it. SAFETY FIRST!

review Questions
No time for questions! It is time to go out and start programming.
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GLOSSARY

ADDRESS: A location in processor memory.

ANALOG INPUT MODULE: A module that converts an analog input signal to a binary or BCD 
number for use by the processor.

ANALOG OUTPUT MODULE: A module that provides an output proportional to a binary or a 
BCD number provided to the module by the processor.

ANALOG SIGNAL: A continuous signal that depends directly on magnitude (voltage or current) 
to represent some condition. For example, a voltage might represent the speed of a motor (5 V 
 corresponding to 200 rpm, 10 V corresponding to 400 rpm, etc.).

AND LOGIC: Logic that has a series relationship. Two devices that are in series would both have to 
be true to pass the logic. Device one AND two need to be true for the logic to pass.

ARITHMETIC CAPABILITY: The ability of a PLC to perform addition, subtraction,  multiplication, 
division, and other math functions.

ARRAY: An array is similar to a data file and lets you group data of the same data type using a com-
mon name. An array tag occupies a contiguous block of memory.

ASCII: Acronym for American Standard Code for Information Interchange. It is a seven- or  eight-bit 
code for representing alphanumerics, punctuation marks, and certain special characters for control 
purposes.

ASSIGNMENT: Use an assignment statement to assign values to tags when using structured text 
programming.

ASYNCHRONOUS SHIfT REGISTER: An instruction that shifts data one word at a time into a 
file or register.

BANDwIDTH: The amount of data that can be transmitted in a fixed amount of time. For digital 
 devices, the bandwidth is usually expressed in bits per second (bps) or bytes per second. For analog 
devices, the bandwidth is expressed in cycles per second, or Hertz (Hz).

BAUD: The seven or eight bits that make up a character. A character can be a letter, number, symbol, etc.

BAUD RATE: A unit of data transmission speed equal to the number of code elements (characters) 
per second. For example, 300 baud is thirty characters—letters, numbers, symbols—per second. 
1200 baud is 120 characters per second.

BINARY: A numbering system that uses a base of 2. There are two digits (1 and 0) in the binary  system.

BINARY CODED DECIMAL (BCD): One of several numbering systems used with PLCs. This 
unique numbering system uses four binary digits to represent each decimal digit from 0 to 9. Groups 
of four binary digits are grouped together to display decimal numbers. Twelve bits can represent a 
three-digit number. Sixteen bits are needed to represent a four-digit number.

BIT: An acronym for Binary digIT. A bit can be only one of two possible states: ON or OFF, high 
or low, logic 1 or logic 0, etc.

BOOL EXPRESSION: A BOOL expression uses BOOL tags, relational operators, and logical 
 operators to compare values or check if conditions are true or false. A BOOL expression can be 
found in sequential function chart programming.
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BOOLEAN ALGEBRA: Shorthand notation for expressing logic functions.

BOOLEAN EQUATION: Expression of relations between logic functions and/or elements.

BOOT: A term used in the computer world to indicate that a computer has been turned on, and the 
software has been loaded.

BRANCH: A parallel logic path within a user program rung.

BREAKDOwN VOLTAGE: The voltage at which a disruptive discharge takes place, either through 
or over the surface of insulation.

BUffER: A temporary storage area where information is held while the printer or other device 
catches up with the transmission speed of the data.

BUS: A central cable that connects all devices on a local-area network (LAN). It is also called the 
backbone.

BUS TOPOLOGY: The physical configuration of a communications network in which all devices 
are connected to a central cable, called the bus or backbone. Bus networks are relatively inexpensive 
and easy to install for small networks. PLC systems use a bus  topology.

BYTE: A sequence of binary digits usually operated upon as a unit (normally eight bits).

CASCADING: A programming technique that extends the ranges of timer and/or counter instruc-
tions beyond the maximum values that normally may be accumulated.

CENTRAL PROCESSING UNIT (CPU): Another term for PROCESSOR.

CHARACTER: One symbol of a set of elementary symbols, such as a letter of the alphabet, a deci-
mal numeral, a punctuation mark, etc.

CLOCK: A device (usually a pulse generator) that generates periodic signals for synchronization 
or timing.

CMOS: An acronym for Complementary Metal Oxide Semiconductor. A family of very low-power, 
high-speed integrated circuits.

COAXIAL CABLE: A type of cable that consists of a center wire surrounded by insulation and then 
a grounded shield of braided wire. The shield minimizes electrical and radio frequency interference. 
Coaxial is the primary type of cabling used by the cable television industry and is also used for many 
PLC networks, such as ControlNet.

CODE: A system of symbols (bits) for representing data (characters).

COMPARE fUNCTION: A program instruction that compares numerical values for “equal,” “less 
than,” “greater than,” etc.

COMPATIBILITY: The ability of various specified units to replace one another, with little or no 
 reduction in capability.

COMPUTER INTERfACE: A device designed for data communication between a central com-
puter and another unit, such as a PLC processor.

CONSTRUCT: A conditional statement used to trigger structured text code when using structured 
text programming.

CONTACT SYMBOLOGY DIAGRAM: Commonly referred to as a ladder diagram, it expresses 
the user-programmed logic of the controller in relay-equivalent symbols.
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CONTROL VARIABLE (CV): An electrical or pneumatic signal that is used to control the posi-
tion, speed, etc., of devices such as valves, motors, and pumps that have a direct influence on the 
process in which they are placed. 

COUNTER: A device that can count up or down in response to transitions (OFF or ON) of an input 
signal and opens and/or closes contacts when a predetermined count is reached. Counters are internal 
to the processor and are not real-world devices.

CPU: An abbreviation for Central Processing Unit. It is used interchangeably with PROCESSOR.
CRC: Short for cyclic redundancy check, a common technique for detecting data transmission er-
rors. Transmitted messages are divided into predetermined lengths that are divided by a fixed divisor. 
 According to the calculation, the remainder number is appended onto and sent with the message. 
When the message is received, the computer or PLC recalculates the remainder and compares it to 
the transmitted remainder. If the numbers do not match, an error is detected.

CRT: The Cathode Ray Tube, which is an electronic display tube similar to the familiar TV picture 
tube. It is more commonly called a monitor.

CURSOR: A means for indicating on a monitor the point at which data entry or editing is to occur.

DATA MANIPULATION: The process of altering and/or exchanging data between storage words.

DATA TRANSfER: The process of exchanging data between PLC memory words and/or areas.

DECREMENT: A term used with counters to indicate that the value of the counter has decreased. 
When a counter value goes from 4 to 3, it is said to have decremented by 1.

DEfAULT: The initial setting of a value, or the initial assignment of a file by the software.  Default 
values may or may not be changeable, depending on the software and the PLC manufacturer.

DEfAULT DRIVE: The drive that will be used if no other drive has been specified.

DERIVATIVE: Something derived from another. In the case of a process controller, the change in 
the output by an amount proportional to the rate of change of the process variable. 

DIGITAL: The representation of numerical quantities by means of discrete numbers. It is possible 
to express in binary digital form all information stored, transferred, or processed by dual-state condi-
tions; for example, ON/OFF, open/closed, etc.

DINT: A data type that stores a 32-bit signed integer value.

DIP SwITCH: Dual In-Line Package Switch; multiple switches installed in a small device or pack-
age that are used to set PLC parameters.

DISCRETE INPUT: An input that is either ON or OFF. Examples of discrete inputs are limit 
switches, push buttons, float switches, etc.

DISCRETE INPUT MODULE: A module that converts signals from real-world input devices to 
logic level signals for use by the processor.

DISCRETE OUTPUT: An output that is either ON or OFF. Examples of discrete outputs are sole-
noids, motor starter coils, pilot lights, etc.

DISCRETE OUTPUT MODULE: A module that converts the logic levels of the processor to an 
output signal to control a real-world output.

DISKETTE: A magnetic medium for storing information that can later be read by the computer or PLC.
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DOUBLE PRECISION ARITHMETIC: Two words are used to store the results of arithmetic 
 operations, thereby increasing the size of the value that can be stored. (See SINGLE PRECISION 
ARITHMETIC.)
DUMP: A term used when information stored in memory is copied or recorded onto magnetic tape 
or disk.

DUPLEX: A means of two-way data communication. Also see fULL DUPLEX and HALf 
 DUPLEX.
EAROM: A type of programmable memory that can be erased or altered electrically. The term 
stands for Electrically Alterable Read Only Memory.

EEPROM OR E2PROM: A memory chip that can be programmed using a standard programming 
 device, and can be erased when the proper signal is applied to the erase pin. The initials stand for 
Electrically Erasable Programmable Read Only Memory.

ELECTRICAL NOISE: Noise, or voltage spikes, that is generated whenever inductive loads such 
as relays, solenoids, motor starters, and motors are operated by “hard contacts” such as push buttons, 
selector switches, and relay contacts.

ELECTRICAL-OPTICAL ISOLATOR: A device that couples different voltage levels using a 
light source and detector in the same package. It is used to provide electrical isolation between line 
voltage input and output circuitry and the processor.

ELEMENT: A program instruction (N.O. contact, timer, counter, etc.) displayed on a monitor. An 
element is also an addressable unit of data that is a sub-unit of a larger unit.

EMI: Electromagnetic induction. The term used to describe electrical noise.

ENABLED: A term used to indicate that a function or operation has been activated.

EVEN PARITY: The condition that occurs when the sum of a string of binary digits, 1s and 0s, is 
an even number. Parity is used for error checking.

EXAMINE Off: An EXAMINE OFF PLC instruction is a true precondition if its addressed bit is 
OFF (0). It is false if the bit is ON, or 1.

EXAMINE ON: An EXAMINE ON instruction is a true precondition if its addressed bit is ON (1). 
It is false if the bit is OFF, or 0.

EXPRESSION: An expression is part of a complete assignment or construct statement and evaluates 
to a number or to a true or false state when using structured text programming.

fALSE: When relating to PLC instructions, an OFF state or condition.

fAULT: Any malfunction that interferes with normal operation.

fIfO: First-In First-Out. A reference to the way that information is stored and removed from a file 
or register.

fILE: A group of words, usually consecutive, that is used to store information.

fORCE: A mode of operation or instruction that allows the operator (as opposed to the processor) 
to control the state of an input or output device.

fORCE Off fUNCTION: A feature that allows the user to de-energize any input or output by 
means of the programmer, independent of the PLC program.
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fORCE ON fUNCTION: A feature that allows the user to energize any input or output by means 
of the programmer, independent of the PLC program.

fORTRAN: An acronym for fORmula TRANslation, a scientific programming language.

fRAME: A packet of transmitted information.

fULL DUPLEX (fDX): A mode of communications in which data may be simultaneously trans-
mitted and received by both ends (sender/receiver).

GROUND: A conducting connection, intentional or accidental, between an electric circuit or equip-
ment chassis and the earth ground.

GROUND POTENTIAL: Zero voltage potential with respect to earth ground.

HALf DUPLEX (HDX): A mode of data transmission capable of communicating in two directions, 
but in only one direction at a time.

HARD CONTACTS: Any type of physical switch contacts contrasted with electronic switching 
 devices, such as triacs and transistors.

HARD COPY: Any form of printed document such as a ladder diagram, program listing, data table 
configuration, etc.

HARD DRIVE: A storage system that consists of an inflexible (hard) disk, as opposed to a floppy 
disk, that is used to store files, directories, software programs, etc. 

HARDwARE: The mechanical, electrical, and electronic devices that constitute a programmable 
logic controller and its application.

HARDwARE KEY: A piece of hardware that is required for a program to run. It may be in the form 
of a plug or connector plugged into the printer port that allows the software to run. Without the hard-
ware key installed, the software does not work, or limits the access to certain portions of the program.

HARDwIRED: Devices interconnected through physical wiring.

HEAT SINK: Heat sinks work on convection and are used to dissipate the heat generated by elec-
tronic devices.

HEXADECIMAL: The numbering system that represents all possible statuses of four bits with six-
teen unique digits (0–9 then A–F).

HIGH = TRUE: A signal type wherein the higher of two voltages indicates a logic state of 1, or ON. 
(See LOw = TRUE.)
HOLDING REGISTER: A register or file that holds a value or values for comparison or for use in 
a user program.

HUMAN MACHINE INTERfACE (HMI): A computer type device that provides the ability of a 
human to monitor and/or control a machine or process. Most HMIs are standard computers running 
special graphical interface software designed to communicate to one or more PLC controllers and/or 
other intelligent devices.

IEEE: An acronym for Institute of Electrical and Electronics Engineers.

IMAGE TABLE: An area in PLC memory dedicated to I/O data. Ones and zeros (1s and 0s) rep-
resent ON and OFF conditions, respectively. During every I/O scan, each input controls a bit in the 
input image table, and each output is controlled by a bit in the output image table.
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INCREMENT: A term used with counters to indicate that the value has increased. When a counter 
has counted up from 3 to 4, it is said to have incremented by 1.

INPUT DEVICES: Devices such as limit switches, pressure switches, push buttons, etc., that supply 
data to a programmable logic controller. These real-world inputs are of two types: those with com-
mon returns, and those with individual returns (referred to as isolated inputs). Other inputs  include 
analog devices and digital encoders.

INSTRUCTION: A command or order that causes a PLC to perform a single prescribed operation.

INT: A data type that stores a 16-bit integer value.

INTEGRAL: Belonging to or forming a necessary part of a whole; to make up or complete as a 
whole. In the case of a process controller, the change in the output by an amount proportional to the 
error and the duration of the error.

INTERfACING: Interconnection of a PLC with its input and output devices and data terminals 
through various modules and cables. Interface modules convert PLC logic levels into external signal 
levels, and vice versa.

INTERPOSING RELAY: A relay that is added to a PLC circuit to handle current values larger than 
can be handled by one terminal of an output module.

INTERRUPTIBLE: Interruptible refers to a timer that can be interrupted but still retain its accu-
mulated time.

I/O: An abbreviation for Input/Output. For example, a group of input modules and output modules 
would be referred to as I/O modules.

I/O ELECTRICAL ISOLATION: Separation of the field-wiring circuits from the logic level  circuits 
of the PLC. This is typically achieved using electrical-optical isolators mounted in the I/O module.

I/O MODULE: The printed circuit assembly that interfaces between the user devices and the PLC.

I/O RACK: A chassis that contains I/O modules.

I/O SCAN TIME: The time required for the PLC to monitor all inputs, read the user program, and 
control all outputs. The I/O scan repeats continuously.

I/O SECTION: Interfaces the different signals from real-world devices and sensors to signals the 
CPU can use.

JOGGING: The momentary operation of a motor to test rotation or to cause small movements of 
the driven equipment.

JUMPER: A short length of conductor used to make a connection between terminals, around a break 
in a circuit, or around a device.

KEYED: A term used with PLCs to indicate that a keying device has been installed to prevent I/O 
modules from being installed in the wrong slot.

KILO-: A prefix used with units of measurement to designate quantities 1000 times as great (as in 
kilowatt). The exception to K having a value of 1000 is when referring to computer memory. Com-
puter memory is counted using the binary numbering system and one kilo (or K) of memory is 1024, 
not 1000 (210 5 1024).

LADDER DIAGRAM: A complete control scheme normally drawn as a series of contacts and coils 
arranged between two vertical supply lines so that the horizontal lines of contacts appear similar to 
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rungs of a ladder. A ladder diagram is normally the reference document used by the operator when 
entering the control program. (See CONTACT SYMBOLOGY DIAGRAM.)

LADDER DIAGRAM PROGRAMMING: A method of writing a user’s PLC program in a format 
similar to a relay ladder diagram.

LANGUAGE: A set of symbols and rules for representing and communicating information (data) 
among people, or between people and machines.

LATCH: A device that continues to store the state of the input signal after the signal is removed. The 
input state is stored until the latch is reset.

LATCH INSTRUCTION: A PLC instruction that causes an output to stay ON, regardless of how 
briefly the instruction is enabled. (It can only be turned OFF by an UNLATCH INSTRUCTION in 
a separate rung.)

LATCHING RELAY: A relay constructed so that it maintains a given position by mechanical 
means until released mechanically or electrically.

LEAST SIGNIfICANT DIGIT (LSD): The digit that represents the smallest value. In the number 
102, the 2 is the least significant number, or digit.

LED: Acronym for Light Emitting Diode.

LIfO: Last-In First-Out. A reference to the way information is stored or removed from a file or register.

LIMIT SwITCH: A switch that is actuated by some part or motion of a machine or equipment to 
alter the electrical circuit associated with it.

LIQUID CRYSTAL DISPLAY (LCD): A reflective visual readout. Because its segments are dis-
played only by reflected light, it has extremely low power consumption, as contrasted with an LED 
display, which emits light.

LOAD: 1. The power delivered to a machine or apparatus. 2. A device intentionally placed in a 
circuit or connected to a machine or apparatus to absorb power and convert it into the desired useful 
form. 3. To place data (e.g., a ladder diagram) into the processor’s memory.

LOCAL AREA NETwORK (LAN): A computer or PLC network that spans a relatively small 
area. Most LANs are confined to a single building or group of buildings. However, one LAN can be 
 connected to other LANs over any distance via telephone lines and radio waves. A system of LANs 
connected in this way is called a wide-area network (WAN).

LOGIC LEVEL: The voltage magnitude associated with signal pulses representing ones and zeros 
(1s and 0s) in binary computation.

LOw = TRUE: A signal type wherein the lower of two voltages indicates a logic state of 1, or ON. 
(See HIGH = TRUE.)
MAIN ROUTINE: The first routine to execute and be used to call (execute) other routines.

MALfUNCTION: Any incorrect functioning within electronic, electrical, or mechanical hardware. 
(See fAULT.)

MANIPULATION: The process of controlling bits or words within a program to obtain the required 
program outcomes.

MASK: Bits in a word that are used to prevent other bits in a different word from being used. If there is 
a 1 in the bit location of the mask, the corresponding bit in the output word is enabled and can be turned 
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ON and OFF. If the mask bit is set to 0, the corresponding bit in the output word is disabled, and does 
not allow the output to be turned ON, even if the program called for the bit to be turned ON.

MASK wORD: A word used to mask or selectively screen out data or bits of a word of memory.

MASTER/SLAVE: A type of network access method in which a master device controls communica-
tion traffic on a network. The master of a network typically polls every slave device to check if it has a 
message to transmit. In a master/slave configuration only the master can initiate communication. The 
slave can only reply if it receives a special message token that explicitly enables the slave to reply.

MCR: The Master Control Relay is used to disconnect all power to a PLC system.

MECHANICAL DRUM CONTROLLER: A type of SEQUENCER that operates switches by 
means of pins or cams placed on a rotating drum. The switch sequence may be altered by changing 
the pin or cam pattern.

MEMORY: The section of the programmable logic controller that stores the user program and other 
data. The storage may be either temporary or semipermanent.

MEMORY PROTECT: The hardware capability to prevent a portion of the memory from being 
 altered by an external device. This hardware feature can be under actual key and lock control, or may 
use passwords that are referred to as software keys.

MENU: A display on the computer or PLC monitor that offers options or gives the operator choices 
to select from.

METROPOLITAN AREA NETwORK (MAN): A data network designed for a town or city. In 
terms of geographic area, MANs are larger than local-area networks (LANs), but smaller than wide-
area networks (WANs). MANs are usually characterized by very high speed connections using fiber 
optic cable or other digital media.

MIDDLE DIGIT (MD): The middle digit of a three-digit number.

MILLIAMPERE (mA): One thousandth of an ampere: 1023 or 0.001 ampere.

MILLISECOND (ms): One thousandth of a second; 1023 or 0.001 second.

MINI-PLC: A scaled-down version of a standard PLC with small I/O capability.

MNEMONIC: A shorthand notation used with PLC instructions, such as OTE, the mnemonic for 
Output Energized; BST, for Branch Start; and so forth.

MODE: A selected method of operation (for example, run, test, or program).

MODEM: Acronym for MOdulator/DEModulator. A device used to transmit and receive data by 
frequency-shift-keying (FSK). It converts FSK tones into their digital equivalents, and vice versa.

MODULE: An interchangeable “plug-in” item containing electronic components that may be com-
bined with other interchangeable items to form a complete unit.

MOST SIGNIfICANT DIGIT (MSD): The digit representing the greatest value. In the number 
102, the 1 is the most significant number, or digit.

MOTOR CONTROLLER: A device, or group of devices, that serves to govern, in a predetermined 
manner, the electrical power delivered to a motor.

NAND LOGIC: NAND logic is a combination of a NOT gate and an AND gate. By placing the 
invert, or NOT, symbol at the output of the AND gate the output can only be true when one or both 
of the inputs are false, or set to 0.
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NEMA STANDARDS: Consensus standards for electrical equipment approved by the majority of 
the members of the National Electrical Manufacturers Association.

NESTING: A programming technique that has a “branch-within-a-branch.” Depending on the PLC 
manufacturer, nesting may or may not be allowed.

NETwORK: A group of connected logic elements used to perform a specific function. A network 
can range from one element to a complete matrix of elements, plus coil(s) as desired by the user. The 
size and configuration of the matrix or rungs varies with PLC manufacturers.

NETwORK ACCESS CONTROL: The means used to control access to a data network. Common 
network access control methods include Master/Slave, Token Passing, and CSMA/CD.

NETwORK MEDIA: In computer and PLC networks, media refers to the cables linking processors 
together. There are many different types of transmission media, the most popular being twisted-pair 
wire, coaxial cable, and fiber optic cable.

NODE: A common connection point between two or more contacts or elements in a circuit. In com-
munication networks, a processing location. A node can be a PLC, a computer, or some other device, 
such as a printer. Every node has a unique network address, sometimes called a Node address, Data 
Link Control (DLC) address, or Media Access Control (MAC) address.

NOISE: Extraneous signals; any disturbance that causes interference with the desired signal or 
 operation.

NOISE SPIKE: Voltage or current surge produced in the industrial operating environment.

NONVOLATILE MEMORY: A memory that is designed to retain its information even though its 
power supply is turned off.

NOR LOGIC: NOR logic is the combination of a NOT gate and an OR gate. The NOR gate will 
only be logically true when both inputs, NOT and OR, are false, or set to 0.

NOT LOGIC: The NOT gate, often referred to as the inverter, will have only one input lead and one 
output lead. If the input is OFF, or set to 0, then the output will be ON, or set to 1. If the input is ON, 
or set to 1, then the output will be OFF, or set to 0.

OCTAL NUMBERING SYSTEM: A numbering system that uses a base of 8. Only the digits 0 
through 7 are used.

ODD PARITY: The condition that occurs when the sum of 1s and 0s in a binary word is an odd 
number. Parity is used for error-checking.

Off-DELAY TIMER: 1. In relay panel application, a device in which the timing period is initiated 
upon de-energization of its coil. 2. In a PLC, an instruction that starts the delay whenever the timer 
rung goes false.

Off-LINE PROGRAMMING: A method of programming that is done while the processor is not 
communicating with the outputs.

OffSET: To offset is to equalize or compensate. In the case of linear interpolation formulas, the 
amount to be added 1/2 to the final calculated value.

ON-DELAY TIMER: 1. In relay panel applications, a device in which the timing period is initiated 
upon energization of its coil. 2. In a PLC, an instruction that starts the delay whenever the timer rung 
goes true.
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ON-LINE OPERATION: Operations in which the programmable logic controller is directly con-
trolling the machine or process.

ON-LINE PROGRAMMING: A method of programming by which rungs in the program may be 
inserted, changed, or deleted while the processor is running and controlling the process equipment.

OPERAND: 1. Either of the two numbers used in a basic computation to produce an answer. For 
 example, in the computation 2 3 3 5 6, 2 and 3 are the operands. 2. Data required for the operation 
of a special function.

OPTICAL fIBER: A technology that uses glass (or plastic) threads (fibers) to transmit data. A fiber 
optic cable consists of a bundle of glass threads, each of which is capable of transmitting messages 
modulated onto light waves.

OPTICALLY COUPLED/OPTICAL ISOLATION: The use of a light emitting diode and a photo 
transistor to communicate a signal or state to the processor. Optical coupling is used in input and 
output modules to isolate the logic level signal for line voltage sources.

OR LOGIC: Logic that has a “parallel” relationship. When two devices are in parallel, if either 
 device one OR device two is true, the logic passes.

OUTPUT CIRCUIT: An output module point, real-world device (e.g., motor starter, digital read-
out, solenoid, etc.), and its associated wiring. The output module’s function is to convert processor 
signal levels to field voltage levels necessary to control the real-world devices.

OUTPUT DEVICES: Devices such as solenoids, motor starters, etc., that receive data (control) 
from the programmable logic controller.

OUTPUT SIGNAL: A signal provided by the processor to the real-world output devices that con-
trols their status (ON or OFF).

OVERLOAD: A load greater than that which a device is designed to handle.

PACKET: A piece of a message transmitted over a packet type network. One of the key features of 
a packet is that it contains the destination address in addition to the data.

PARALLEL COMMUNICATIONS: A type of communication or information transfer whereby a 
group of digits (bytes) is transmitted simultaneously. This is different from serial communications in 
which the data bits are transmitted one at a time—sequentially—in a string.

PARENT: A name given to a directory that has subdirectories.

PARITY: A method of testing the accuracy of binary numbers used in recorded, transmitted, or 
 received data.

PARITY BIT: An additional bit added to a binary word to make the sum of the number of 1s in a 
word always even or odd.

PARITY CHECK: A check that tests whether the number of 1s in an array of binary digits is odd or even.

PASSwORD: A word used to gain access to a program or process. A password serves the same 
function as a hardware key, except that it is not a piece of hardware, but rather a word that when 
entered at the keyboard, gains access for the user to the program.

PC: Abbreviation for Personal Computer (also used as an abbreviation for Programmable Control-
ler). To avoid the confusion caused by using the same abbreviations for two different types of sys-
tems, the programmable logic controller is now most often referred to as a PLC.
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PEER-to-PEER: A type of network in which each station has equivalent capabilities and responsibili-
ties. This differs from client/server or master/slave architectures, in which some stations are dedicated 
to serving the others. Peer-to-peer networks are often called token passing networks. Peer-to-peer net-
works are generally simpler, often found in PLC networks, but lack performance under heavy loads.

PILOT DEVICE: A device used in a circuit that performs a control function only. Pilot devices are 
limited to 10 amps of current-carrying capacity, and are to be used in control circuits only. They are 
not designed to control the power and current required by the operating equipment.

PLC: See PROGRAMMABLE LOGIC CONTROLLER.

POwER SUPPLY: Supplies the DC power for the CPU and for the I/O section. The voltage is 
typically +5 volts. The power supply can be internal with the processor, rack-mounted, or externally 
mounted as a separate unit. A separate power supply is required if DC voltage is required for the 
 actual input and/or output devices.

PRIORITY: Order of importance.

PROCESS VARIABLE (PV): Refers to the physical measurement of a process component such as 
temperature, level, pressure, flow, speed, etc. The physical measurement is converted into an electri-
cal or pneumatic signal that varies proportionally with a change in the measured quantity. Devices 
such as transducers and transmitters are used to convert the physical measurement into a correspond-
ing electrical or pneumatic signal. 

PROCESSOR/PROCESSOR UNIT: The part of the programmable logic controller that performs 
logic-solving, program storage, and special functions within a PLC system. It scans all the inputs 
and outputs in a predetermined order. The processor monitors the status of the inputs and outputs in 
response to the user-programmed instructions, and energizes or de-energizes outputs as a result of the 
logical comparisons made through these instructions.

PROGRAM: A sequence of instructions executed by the processor to control a machine or process. 
Also, a set of related routines and tags found in the Logix5000 controllers.

PROGRAMMABLE LOGIC CONTROLLER (PLC): A solid-state control system that has a 
user-programmable memory for storage of instructions to implement specific functions such as I/O 
control logic, timing, counting, arithmetic, and data manipulation. A PLC consists of the proces-
sor, input/output interface, memory, and programming device that typically uses relay-equivalent 
symbols. The PLC is purposely designed as an industrial control system to perform functions 
equivalent to a relay panel or a wired solid-state logic control system.

PROGRAMMER: A device that is needed to enter, modify, and troubleshoot the PLC program, and 
check the condition of the processor. The programmer may be hand-held, dedicated desktop-type, or 
a personal computer.

PROGRAM PANEL (PROGRAMMER): A device for inserting, monitoring, and editing a pro-
gram in a programmable logic controller.

PROGRAM SCAN TIME: The time required for the processor to execute all instructions in the 
 program one time.

PROM: Acronym for Programmable Read Only Memory. A type of read only memory that re-
quires an electrical operation to generate the desired bit or word pattern. In use, bits or words can be 
 accessed on demand, but cannot be changed.
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PROPORTIONAL: A comparative relation between magnitudes as to size, quantity, number, etc. A 
proportional amount is a large or small proportion of a total amount or part. In the case of a process 
controller, it is the change in the output by an amount proportional to the error.

PROTECTED MEMORY: Storage (memory) locations reserved for special purposes or use by the 
processor into which data cannot be entered directly by the user.

PROTOCOL: A defined means of establishing criteria for receiving and transmitting data through 
communication channels.

RACK: A PLC chassis that contains modules. Some PLC manufacturers, like Allen-Bradley, use 
the term “rack” to indicate a given number of I/O points rather than to identify a specific piece of 
 hardware. In the Allen-Bradley scheme, a chassis could contain a number of racks. With most other 
manufacturers, however, rack and chassis are used interchangeably, and mean the hardware that 
holds the various modules, power supplies, etc.

RADIO AREA NETwORK (RAN): A communication network that uses radio waves as the me-
dium that interconnects the computers or PLCs to form a network. Most RANs are used in the control 
field to interconnect PLCs where no other means is possible or practical. RANs can quite often be 
found in the water and wastewater industries.

RAM: Acronym for Random Access Memory. Random access memory is a type that can be read 
from (accessed) or written into by the user.

RANDOM ACCESS: See RAM.

RATED VOLTAGE: The maximum voltage at which an electrical component can operate for ex-
tended periods without damage or undue degradation.

READ/wRITE MEMORY: A memory into which data can be placed (write mode) or accessed 
(read mode). The write mode destroys previous data; the read mode does not alter stored data.

REAL: A data type that stores a 32-bit IEEE floating-point value.

REGISTER: A word or group of words used to store numerical values.

REPORT: A display of data, or a printout, containing data and/or information that is useful to the 
user or operator. Reports can include operator messages, part records, production lists, etc. Reports 
are normally stored in a memory area separate from the user’s program.

REPORT GENERATION: The printing or displaying of user-formatted application data by means 
of a programming device. Report generation can be initiated by means of either the user’s program 
or a programming device keyboard.

RETENTIVE: To retain a value or time.

RETENTIVE OUTPUT: An output that remains in its last state (ON or OFF), depending on which 
of its two program rungs (one containing a LATCH INSTRUCTION, the other an UNLATCH 
 INSTRUCTION) was the last to be true. The retentive output remains in its last state when both rungs 
are false. It also remains in its last state if power is removed from, then restored to, the PLC.

RETENTIVE TIMER: A PLC instruction that accumulates the amount of time, whether continu-
ous or not, when the preconditions of its rung are true, and which controls one or more outputs after 
the total accumulated time is equal to the preset time. When the rung is false, the accumulated time 
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is  retained. Moreover, if the outputs have been energized, they remain ON. Additionally, the accu-
mulated time and energized outputs are retained if power is removed from, then restored to, the PLC.

RING TOPOLOGY: All devices are connected in the shape of a closed loop, so that each device 
is connected directly to two other devices, one on either side of it. Ring topologies are relatively 
 expensive and difficult to install, but they offer high bandwidth and can span large distances.

ROM: Acronym for Read Only Memory. A read only memory is a solid-state digital storage  memory 
whose contents cannot be altered by the user.

ROUTINE: A set of logic instructions in a single programming language in a Logix5000 controller 
and similar to a program file.

RS-232C: An Electronic Industries Association (EIA) standard for data transfer and communication.

RTD: Resistance Temperature Detector, or temperature probe that can be connected to a special PLC 
input module to indicate temperature reading.

RUNG: A grouping of PLC instructions that control one output or storage bit. Some PLCs can have 
multiple outputs on the same rung. A rung is also referred to as a network.

SCAN: The time required for a program to make one complete scan through memory and update the 
status of all inputs and outputs.

SCHEMATIC: A diagram of a circuit in which symbols illustrate circuit components.

SCR: An acronym for Silicon Controlled Rectifier. The SCR is used to convert AC current to DC 
 current.

SEQUENCER: A controller that operates an application through a fixed sequence of events. 

SERIAL COMMUNICATION: A type of communication or information transfer within a pro-
grammable logic controller whereby the bits are handled sequentially rather than simultaneously as 
they are in parallel communications. Serial operation is slower than parallel operation for equivalent 
clock rate. However, only one channel is required for serial operation.

SETPOINT (SP): The desired operating point that the process system is to operate at. The setpoint 
value typically has the same range as the process variable being measured and is determined by the 
operator of the system.

SHIELDING: The practice of confining the electrical field around a conductor to the primary insula-
tion of the cable by putting a conducting layer around the cable insulation. 

SIGNED BIT: A way to indicate that a number is negative or positive.

SINGLE PRECISION ARITHMETIC: Only one word is used to store the results of math or arith-
metic operations. Single precision arithmetic is limited to a maximum value of 999. (See DOUBLE 
PRECISION ARITHMETIC.)

SINT: A data type that stores an 8-bit signed integer value.

SLOPE (RATE): An inclined or slanting direction downward or upward from the horizontal, as in 
the case of an xy graph. It is the degree of the incline or amount of change.

SOfTwARE: The manufacturer’s program that controls the operation of a programmable logic 
 controller.
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SOLID-STATE: Circuitry designed using only integrated circuits, transistor, diodes, etc.; no elec-
tromechanical devices such as relays are utilized. High reliability is obtained with solid-state logic.

SOLID-STATE DEVICES (SEMICONDUCTORS): Electronic components that control electron 
flow through solid materials (e.g., transistors, diodes, integrated circuits, etc.).

STAR TOPOLOGY: All devices are connected to a central hub. Star networks are relatively easy 
to install and manage, but bottlenecks can occur because all data must pass through the hub. Today 
switches are used in place of hubs, all but eliminating bottlenecks.

STATE: The logic condition, 1 or 0, in PLC memory, or at a circuit’s input or output.

STEP: A step represents a major function of your process and contains actions. Steps can be found 
in sequential function chart programming.

STORAGE: Synonymous with MEMORY.

STORAGE MEMORY: That part of the memory that stores the status of the input and output 
devices, numeric values for timers and counters, numeric values for arithmetic functions, status of 
internal relays, and information stored in holding and storage registers.

SURGE: A transient variation in the current and/or voltage at a point in the circuit.

SwITCHING: The action of turning a device ON and OFF.

SYMBOLIC NAME: A user designation for an application I/O device (e.g., S-1, LS-4, or SOL-7).

SYNCHRONOUS SHIfT REGISTER: An instruction that shifts information one bit at a time 
within a word or from one word to another.

SYSTEM PROMPT: The system prompt indicates the current drive for the computer. If the prompt 
is C:\, then the current drive is the C drive.

TAG: A named area of memory where data is stored in the controller. Tags are the basic mechanism 
for allocating memory in the Logic5000 controllers.

TASK: A scheduling mechanism for executing a program in the Logix5000 controllers.

THUMBwHEEL SwITCH: A rotating numeric switch used to input numeric information to a 
 controller.

TIMER: In relay-panel hardware, an electromechanical device that can be wired and preset to control 
the operating interval of other devices. In a PLC, a timer is internal to the PROCESSOR, meaning 
that it does not exist in the real world, but can be controlled by a user-programmed instruction. A timer 
instruction has greater accuracy and timing range than a hardware timer.

TOGGLE SwITCH: A panel-mounted switch normally used for ON or OFF switching.

TOPOLOGY: The shape of a local area network (LAN) or other communications system. Topologies 
are either physical or logical. There are four principal topologies used in LANs: bus, star, ring, and tree.

TRANSfORMER COUPLING: One method of isolating I/O devices from the controller.

TRANSITION: A transition is the physical conditions that must occur or change in order to go to 
the next step in a sequential function chart programming.

TREE: A command that is used to display the organization of all the directories, subdirectories, and 
files on a given disk or hard drive.
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TREE TOPOLOGY: A tree topology combines characteristics of linear bus and star topologies. It 
consists of groups of star-configured workstations connected to a linear bus backbone cable.

TRIAC: A solid-state component capable of switching alternating current.

TRUE: As related to a PLC instruction, an enabling logic state or ON condition. (See fALSE.)

TRUTH TABLE: A matrix that shows all the possible states (ON or OFF) of a single input device or 
combination of input devices, and the corresponding state (ON or OFF) of the output  device(s).

TTL: Abbreviation for Transistor–Transistor Logic, a family of integrated circuit logic. (Usually 5 
volts is high, or 1, and 0 volts is low, or 0.)

TUTORIALS: Text included in software that provides the user with helpful information on how 
the software works or how to use functions of the software. Typically can be accessed by using the 
“Help” option.

TwISTED-PAIR CABLE: A type of cable that consists of two independently insulated wires 
twisted around one another. The use of two wires twisted together helps to reduce crosstalk and elec-
tromagnetic induction. Twisted-pair cable is the least expensive type of local area network (LAN) 
cable. Most computer and some PLC networks contain twisted-pair cabling at some point along the 
network.

TwOS COMPLEMENT: A convention for binary representation of negative and positive decimal 
numbers.

UNCONDITIONAL: A term applied to an output (or other instruction) that is always true.

UNLATCH INSTRUCTION: A PLC instruction that causes an output to unlatch, or turn OFF, 
 regardless of how briefly the instruction is enabled. (It can only be turned back ON by a LATCH 
 INSTRUCTION in a separate rung.)

UPDATING: A term used to indicate that the processor has scanned and checked the status of all 
input and output devices. After the status of the inputs and outputs is known, the data table is  updated 
to reflect the current status.

UPwARD COMPATIBILITY: The ability of a new version of software to support previous editions 
of the same software. If version 6.6 of a particular software allows documents and files from previous 
versions (5.2 and 6.0) to be read, the software is said to have upward compatibility.

USER MEMORY: The portion of memory that is set aside for the storage of the user program 
(i.e., ladder diagrams, program messages, etc.).

UV ERASABLE PROM: An erasable programmable read only memory that can be erased or cleared 
(set to 0) by exposure to intense ultraviolet light. After being cleared, it may be reprogrammed.

VALUE: 1. A number that represents a computed or assigned quantity. 2. A number contained in a 
register or file word.

VOLATILE MEMORY: A memory that loses its information if the power is removed.

wATCHDOG TIMER: A timer that is used within the PLC processor to verify that the program 
scan has been completed correctly in the allotted amount of time. If there is a program error, the scan 
is not completed in the prescribed amount of time, and the watchdog timer times out and indicates 
that there is a problem with the circuit.
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wIDE AREA NETwORK (wAN): A computer network that spans a relatively large geographical 
area. Typically, a WAN consists of two or more local area networks (LANs). Computers connected 
to a wide area network are often connected through public networks, such as the telephone system. 
They can also be connected through leased lines or satellites. The largest WAN in existence is the 
Internet.

wORD: A grouping, or a number of bits, in a sequence that is treated as a unit.

wRITING OVER: A term used to indicate that information will be replaced (or the existing 
 information will be written over) by new information.

XOR LOGIC: The XOR logic gate will only turn the output ON when either input A or B is 
ON—but not both ON.
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Index

A
AC

discrete input module, 16–20
input/output (I/O) interface, 3
output module, 23–25

access-control methods, 394
access protocols, 394–395
accumulated value, 236–240,  

242–243, 245
ADC. see Analog-to-Digital converter 

(ADC)
address/addressing

destination, 397
distinct, 14–15
MicroLogix, 67–74
network, 392–394
node, 392
originating, 397
SLC 500, 67–74

AFI. see always false instruction (AFI)
Allen-Bradley Logix5000

data manipulation, 263
file array, 288–290
hand-held programmers, 55
master control relay, 208–209
math functions, 272
programming counters, 243–245
programming timers, 229–231
sequencers, 302

Allen-Bradley PLC-5
asynchronous shift register, 286–287
data compare instructions, 254–263
data transfer instructions, 249–253
file copy instruction, 284
file structure, 76–78
hand-held programmers, 55
math functions, 265–270
programming counters, 235–242
programming timers, 223–229
sequencers, 297–302
synchronous shift register,  

276–281
always false instruction (AFI), 215
AM. see auto/manual (AM) control
American National Standards Institute 

(ANSI), 407
American Standard Code (ASCII), 

116–118
analog, 7

input, 425
input/output (I/O) interface, 7, 32–33
memory, 426
output, 426
output signal, 311
signal filter algorithm, 434–435

Analog-to-Digital converter (ADC), 7

AND
gate, 128, 131, 134–135
logic, 129

ANSI. see American National Standards 
Institute (ANSI)

arc cosine (ARS), 270
arc sine (ASN), 270
arc tangent (ATN), 270
arithmetic functions. see math functions
array

Allen-Bradley Logix5000, 288–290
AVE, 289
bit, 276
BOOL, 358
CPS, 289
FAL, 288
FSC, 289
Logix memory, 86–90
parts, 289–290
SRT, 289
STD, 289

ARS. see arc cosine (ARS)
ASCII. see American Standard Code 

(ASCII)
ASN. see arc sine (ASN)
assignments, 349–350
asynchronous shift register (FIFO), 285

Allen-Bradley PLC-5, 286–287
MicroLogix, 286–287
SLC 500, 286–287

asynchronous updates, 47
ATN. see arc tangent (ATN)
attenuation, 389
auto/manual (AM) control, 326
Auto/Manual Bit AM (bit 1), 328
auxiliary control functions, 332–336
AVE array instructions, 289

B
back off time, 395
backplane, 14
backup batteries, 48–49
backup copy, 49
bandwidth, 380, 389
basic STOP/START circuit, 125–127
batteries

backup, 48–49
lithium, 48

BCD. see Binary-Coded Decimal (BCD) 
values

BCD system, 115–116
binary bits, 111, 114–116
Binary-Coded Decimal (BCD) values, 32
binary data, 248
binary digits, 61, 106, 112, 115–116. see 

also bits
binary system, 52, 100–101

binary values, 32
bit array, 276
bit-array1, 358
bit delimiter, 67
bit shift. see synchronous shift register
Bit Shift Left (BSL), 276, 290
Bit Shift Right (BSR), 276
bits, 101. see also binary digits

binary, 111, 114–116
count done, 236
count down enable, 236
count down underflow, 237
count up enable, 236
count up overflow, 237
done, 224–225, 277, 287, 298
empty, 287
enable, 224–226, 277, 298
error, 277, 297
FFL/LFL enable, 287
FFU/LFU enable, 287
found, 298
internal, 112
least significant, 108
matching, 298
memory, 427
overflow, 243
parity, 117–118
signed, 104–109
status, 267
timing, 224–226
underflow, 239
unload, 277

BOOL
array, 358
data, 86
expression, 350, 370
tag, 354, 358, 370
value, 354

Boolean actions, 368
bool_expression operand, 359
broadcast tag, 90
BSL. see Bit Shift Left (BSL)
BSR. see Bit Shift Right (BSR)
bumping, 419
bus topology, 382, 411
bytes, 62

C
CAN. see Controller Area Network (CAN)
carrier sensing multiple access with 

collision detection (CSMA/CD) 
methods, 394–395, 408

cascading, defined, 231
cascading programming timers, 231–233
CASE...OF constructs, 356–357
CAT. see category (CAT) numbering 

system
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category (CAT) numbering system, 386
CD. see count down enable (CD) bits
central processing unit (CPU), 3, 44
central repeater, 408, 410
checkout, final system, 418–419
CIP. see Common Industrial Protocol 

(CIP)
circuit

basic STOP/START, 125–127
flip/flop, 427–428
1/2 Second Pilot Light Flasher, 

427–428
optically coupled, 17
Push ON/Push OFF, 426–427
safety, 34–35, 211–212
three-motor start, 127
Three-Wire Motor Control Logi with 

Fault Monitoring, Pilot Light, and 
Flasher, 430

clear (CLR), 269
closed loop control, 319
Closed Loop technique, 338–341
closed process control loop, 319
CLR. see clear (CLR)
CMOS-RAM. see Complimentary Metal 

Oxide Semiconductor-Random Ac-
cess Memory (CMOS-RAM)

CMP. see compare instruction (CMP)
coaxial cable, 387–388
coding, hard, 250
coils, 210
comments, 359
Common Industrial Protocol (CIP), 406
communication networks, 399–400

categories of, 380–382
configuration of, 382–384
history of, 378–379
industrial, 400–403
industrial protocols, 403–411
network access methods (access proto-

cols), 394–395
network addressing, 392–394
network communication instructions, 

399–400
network media, 384–392
network messages, 396–399
network protocols, 395–396
networking principles, 379–380

compare instruction (CMP), 259–260
Complimentary Metal Oxide Semicon-

ductor-Random Access Memory 
(CMOS-RAM), 49–50

compute (CPT), 268–269, 272
computer programmers, 56–58
consecutive words, 281
constructs, 354–359

CASE...OF, 356–357
FOR...DO, 357–358
IF...THEN, 354–356
REPEAT...UNTIL, 359
WHILE...DO, 358–359

contact output modules, 31
contacts. see also holding contacts

maintaining, 126
nesting of, 197
programming, 140–143, 148
sealing, 126

continues task, 91–92
continuity, logic, 196
control. see also program control

auto/manual, 326
block, 321–322
closed loop, 319
distributive, 402
loop, 319
network, 379

control flags, 328–329
Control Mode, 326
Control Mode Bit CM (bit 2), 328
control networks, 379, 402
Control Output CV%, 327
control relay (CR), 123, 212
control systems, hardwired, 6
control variable (CV), 311, 318, 323, 326, 

331–332
controller action, 267
Controller Area Network (CAN), 403
Controller Gain Kc, 324, 326, 336, 337
ControlLogix, 178, 181–182, 184, 190
ControlNet, 406–407
COP. see file copy (COP)
COS. see cosine (COS)
cosine (COS), 270
count, 236, 243
count done (DN) bits, 236
count down enable (CD) bits, 236
count down timer (CTD), 239
count down underflow (UN) bits, 237
count increments, 358
count operand, 357
count up enable (CU) bits, 236
count up overflow (OV) bits, 237
counter increments, 237
counters, down, 235
count_tag, 358
CPS array, 289
CPT. see compute (CPT)
CPU. see central processing unit (CPU)
CR. see control relay (CR)
CRC. see Cyclic Redundancy Check 

(CRC)
CSMA/CD. see carrier sensing multiple 

access with collision detection 
(CSMA/CD) methods

CTD. see count down timer (CTD)
CTU. see up counters (CTU)
CU. see count up enable (CU) bits
current

flow, 141
maximum RMS on-state, 24
passing, 58

cursor, function of, 171–172

CV. see control variable (CV)
Cyclic Redundancy Check (CRC), 398

D
DAC. see digital-to-analog converter 

(DAC)
data, 397

binary, 248
BOOL, 86
DINT, 86
flow of, 348
INT, 86
length of, 397
masked, 252
numeric, 248
REAL, 86
SINT, 86
writing over existing, 249

Data Communication Equipment (DCE), 408
data compare instructions, 253

Allen-Bradley PLC-5, 254–263
MicroLogix, 254–263
SLC 500, 254–263

Data Highway Plus (DH+), 406
data highways, 379
data manipulation

Allen-Bradley Logix5000, 263
data compare instructions, 253–263
data transfer instructions, 248–253

data packet, 397, 398
data registers, 75
data table, 74, 248
data terminal equipment (DTE), 408–409
data transfer instructions, 248–249

Allen-Bradley PLC-5, 249–253
MicroLogix, 249–253
SLC 500, 249–253

data types, 90
Logix memory, 86

DB, Set When Error Is in DB (bit 8), 329
DC

discrete input module, 20–21
input/output (I/O) interface, 3
output modules, 28–29
POWER ON, 420
power supply, 5

DCE. see Data Communication Equipment 
(DCE)

Deadband, 326
decimal system, 98–99
decrements, 242
default memory, 76
delimiter

bit, 67
element, 67

Derivative Action Bit DA (bit 7), 329
DEST. see destination word (DEST)
destination, 314

address, 397
destination word (DEST), 267
DeviceNet, 403
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DH+. see Data Highway Plus (DH+)
digital input, 425
digital logic gates, 128–135

AND gate, 128, 131, 134–135
AND logic, 129
NAND gate, 131–132
NOR gate, 132–133
NOT gate, 130
NOT logic, 131–132
OR gate, 129–130, 132, 135
OR logic, 130
XOR gate, 133
XOR logic, 134

digital memory, 425
digital output, 425
digital signals, 380
digital-to-analog converter (DAC), 7, 32
DINT data, 86
DIP. see dual in-line package (DIP) 

switches
disable output, 419
discrete holding contacts, 201, 205
discrete input module, 15–16

AC, 16–20
DC, 20–21
fast-responding, 21

discrete input/output (I/O) interface, 7
AC output module, 23–25
contact output modules, 31
DC output modules, 28–29
discrete input module, 15–21
discrete output modules, 22–23
interposing relay, 31
module keying, 27–28
output fuses, 25–26
reed relay output module, 31
sinking, 29–31
sourcing, 29–31
status lights, 26
transistor-transistor logic (TTL) I/O 

modules, 31
discrete output, 22–23
distinct address, 14–15
distributive control, 402
DIV. see divide (DIV)
Diverter Gate, 441
divide (DIV), 266
DN. see count done (DN) bits; done (DN) bits
done (DN) bits, 224–225, 277, 287, 298
Double EPROM, 51
down counters (CTD), 235
drop out, 429
DTE. see data terminal equipment (DTE)
dual in-line package (DIP) switches, 14, 

63, 393, 414

E
E-Stop. see emergency stop (E-Stop)
EEPROM. see Electrically Erasable Pro-

grammable Read Only Memory 
(EEPROM)

electrical noise. see electromagnetic inter-
ference (EMI)

Electrically Erasable Programmable Read 
Only Memory (EEPROM), 51, 81

electromagnetic interference (EMI), 37–38, 
391–392

electromechanical relay, 1
electrostatic discharge (ESD), 52–54
element, 67, 311
elementary diagrams. see ladder diagrams
elements, 289
ELSIF statement, 355
EM. see empty (EM) bits
emergency stop (E-Stop), 35, 413–414
Emergency Stop Relay (ESR), 35
EMI. see electromagnetic interference 

(EMI)
empty (EM) bits, 287
EN. see enable (EN) bits
enable (EN) bits, 224–226, 277, 287, 298
encoders, 21, 439
End Of Transition (EOT), 370
EOT. see End Of Transition (EOT)
EPROM. see Erasable Programmable Read 

Only Memory (EPROM)
EQU. see equal (EQU)
equal (EQU), 254
ER. see error (ER) bits
Erasable Programmable Read Only Mem-

ory (EPROM), 50–51
error (ER) bits, 277, 297
ESD. see electrostatic discharge (ESD)
ESR. see Emergency Stop Relay (ESR)
Ethernet, 407–411
even parity, 117
event task, 93
examine if closed (XIC), 143, 167, 201
examine if open (XIO), 143
EXAMINE OFF instruction, 144–149
EXAMINE ON instruction, 143, 415
execution, order of, 348
expression, 350–353, 370
external input, 75

F
FAL array, 288
fast-responding discrete input module, 21
FBD. see function block diagram (FBD)
FD. see found (FD) bits
ferrules, 390
FFL. see First-In First-Out Load (FFL)
FFU. see First-In First-Out Unload (FFU)
fiber optic cable, 389–391, 408
field wiring, 19
FIFO. see asynchronous shift register 

(FIFO)
file copy (COP), 284
file structure

Allen-Bradley PLC-5, 76–78
MicroLogix, 78–81
SLC 500, 78–81

file-to-file, 283–284
file-to-word, 282–283
files, 76, 274. see also words and files
final control element, 311
final system checkout, 418–419
final_value operand, 358
First-In First-Out Load (FFL), 286
First-In First-Out Unload (FFU), 286
fixed input/output (I/O) interface, 11–12
FLASH. see Flash memory (FLASH)
Flash memory (FLASH), 51
flip/flop circuit, 427–428
“Flip/Flop Trigger”

memory bit, 427
output, 427

flow
current, 141
of data, 348
power, 58, 141, 196

footer, 397–398
FORCE function, 417
Forced Off, 156–157
Forced On, 156–157
FOR...DO constructs, 357–358
Forward Acting, 326, 328
found (FD) bits, 298
Foundation Fieldbus, 403–405
frames, 397, 398

data packet, 398
FSC array, 289
function block diagram (FBD), 347–348
fuses, output, 25–26

G
gain, integral, 337
gates

AND, 128, 131, 134–135
digital logic, 128–135
NAND, 131–132
NOR, 132–133
NOT, 130
OR, 129–130, 132, 135
XOR, 133

GE Fanuc Micro PLC, 11, 48–49
general timers, 217–223
GEQ. see greater than or equal (GEQ)
greater than (GRT), 254
greater than or equal (GEQ), 254
grounding, 39
GRT. see greater than (GRT)

H
1/2 Second Pilot Light Flasher circuit, 

427–428
hand-held programmers, 55–56

Allen-Bradley, 55
hard coding, 250
hardware locks, 50
hardwired control systems, 6
header, 397
HEX. see hexadecimal system (HEX)
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hexadecimal system (HEX), 112–115
high-density modules, 16
high limit, 261
highways, 379
HMI. see human machine interface (HMI)
holding contacts, 126, 201

discrete, 201, 205
logical, 205
motor, 203
wiring, 201–203

holding registers, 75, 248
housekeeping, 46
hub, 408, 410
human machine interface (HMI), 378, 398

I
I/O. see input/output (I/O) interface
ICON. see Input Wire Connector (ICON)
IEEE. see Institute of Electrical and Elec-

tronics Engineers (IEEE)
IEEE 802.3 standard, 407
IF...THEN constructs, 354–356
increments, 243

count, 358
counter, 237
operand, 358
product, 242

industrial communication networks, 
400–403

control networks, 402
I/O and device networks, 400–402
information networks, 403

industrial protocols, 403–411
ControlNet, 406–407
Data Highway Plus (DH+), 406
DeviceNet, 403
Ethernet, 407–411
Foundation Fieldbus, 403–405
Modbus Plus, 406
Profibus, 406

information networks, 403
information technology (IT) systems, 378
initial_value operand, 357–358
input, 316

digital, 425
external, 75
image table, 75
maximum, 316
minimum, 316
Proportional Integral Derivative, 

326–327
register, 75
status table, 75
testing, 415–416

input/output (I/O) interface, 2, 3, 6–7. see 
also discrete input/output (I/O) 
interface

AC, 3
analog, 7, 32–33
DC, 3
device networks and, 400–402
electrical noise, 37–38
FAULT, 420

fixed, 11–12
grounding, 39
intelligent, 378
local, 14
modular, 12–15
purpose of, 22
rack installation, 35–37
real world, 6–7
remote, 14
safety circuit, 34–35
shielding, 40–41
understanding, 10–42

Input Reference (IREF), 347, 348
Input Wire Connector (ICON), 347, 348
Institute of Electrical and Electronics Engi-

neers (IEEE), 407
instructions, 353
INT data, 86
integral gain, 337
intelligent I/O devices, 378
interface. see also input/output (I/O) in-

terface
defined, 3
human machine, 378, 398

internal bits, 112
internal memory tags, 248
internal storage, 75
“Internal_Relays,” 88
International Organization for Standardiza-

tion (ISO), 395
interposing relay, 31
invalid word, 70
inverter, 130
IREF. see Input Reference (IREF)
ISO. see International Organization for 

Standardization (ISO)
isolation, optical, 17
IT. see information technology (IT) sys-

tems

J
JMP. see jump instruction (JMP)
jogging, 419
JSR. see jump to subroutine (JSR)
jump instruction (JMP), 212–213
jump to subroutine (JSR), 213, 347

K
keying, module, 27–28
keystrokes, 55

L
label (LBL), 212–213
ladder diagrams, 1–2

basic STOP/START circuit, 125–127
digital logic gates, 128–135
function of, 122
horizontal lines of, 122
relay, 127
rules, 123–125
rungs of, 122
sequenced motor starting, 127–128
simplified, 122
three-rung, 123

vertical lines of, 122
wiring diagrams, 121

LANs. see Local Area Networks (LANs)
LAS. see Link Active Scheduler (LAS)
last-in-first-out (LIFO), 287–288, 291
latch coil, 210
latching relay, 209–211
LBL. see label (LBL)
least significant bits, 108
least significant digit (LSD), 101, 116
LED. see light emitting diode (LED)
length of data, 397
LEQ. see less than or equal (LEQ)
LES. see less than (LES)
less than (LES), 254
less than or equal (LEQ), 254
LIFO. see last-in-first-out (LIFO)
light emitting diode (LED), 17, 414–415
LIM. see limit test (LIM)
Limit Output DV, 326
limit test (LIM), 261–263
Link Active Scheduler (LAS), 405
Link Master, 405
lithium batteries, 48
loads, output, 418
Local Area Networks (LANs), 380
local input/output (I/O) interface, 14
logic

AND, 129
conditions, 365
continuity, 196
light, 26
NOT, 131–132
OR, 130
XOR, 134

logical holding contacts, 205
logical holding instructions, 201
Logix memory, 81–96

arrays, 86–90
data types, 86
programs, 93–94
routines, 94–96
tags, 90–91
tasks, 91–92

Logix memory programs, 93–94
LOGIX5000 software, 176–190
loop control, closed, 319
loop tuning, 336–344
Loop Update, 325–326, 336
Loop Update Time, 338
Loop Update Time Too Fast TF (bit 6), 

328
low limit, 261
LSD. see least significant digit (LSD)

M
MAC. see Media Access Control (MAC)
maintaining contacts, 126
MANs. see Metropolitan Area Networks 

(MANs)
masked data, 252
masked move (MVM), 252
masks, sequencers, 296
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master control relay (MCR), 207–209
Allen-Bradley Logix5000, 208–209
MicroLogix MCR instruction, 208–209
SLC 500, 208–209

master control resets, 207–208
master/slave methods, 394
matching bits, 298
math functions

Allen-Bradley Logix5000, 272
Allen-Bradley PLC-5, 265–270
combining, 270–272
MicroLogix, 265–270
SLC 500, 265–270
using, 265

MCR. see master control relay (MCR)
MD. see middle digit (MD)
Media Access Control (MAC), 409
memory, 47–48

Complimentary Metal Oxide Semicon-
ductor-Random Access Memory, 
49–50

default, 76
digital, 425
EEPROM, 81
Electrically Erasable Programmable 

Read Only Memory, 51
electrostatic discharge, 52–54
Erasable Programmable Read Only 

Memory, 50–51
Flash memory, 51
Logix, 81–96
Programmable Read Only Memory, 50
Random Access Memory, 49
Read Only Memory, 50
read/write, 49
size of, 52
storage, 47, 74–75
structure of, 54–55
types of, 49–51
Ultra Violet Programmable Read Only 

Memory, 50–51
memory bit, “Flip/Flop Trigger,” 427
memory chips, 47–48
MEMORY FAULT, 420
memory organization

addressing scheme, 67–74
file structure, 76–81
Logix memory, 81–96
memory words, 61–67
storage memory, 74–75
user memory, 75–76
word locations, 61–67

memory words, 61–67
message, 396–399
metal oxide varistor (MOV), 23–24
Metropolitan Area Networks (MANs), 380
MicroLogix

address, 67–74
asynchronous shift register, 286–287
data compare instructions, 254–263
data transfer instructions, 249–253
file copy instruction, 284
file structure, 78–81

master control relay, 208–209
math functions, 265–270
programmable logic controller, 11
programming counters, 235–242
programming timers, 223–229
sequencers, 297–302
synchronous shift register, 276–281

middle digit (MD), 116
Modbus Plus, 406
MODE, 420
Modicon 984-120 Compact PLC, 51
Modicon Corporation, 2
modular input/output (I/O) interface, 

12–15
module keying, 27–28
Morley, R. E., 2
most significant digit (MSD), 101, 116
motor holding contacts, 203
motor starter coil (M), 122
Motor Starter Fault-Monitoring Logic, 

428–430
MOV. see metal oxide varistor (MOV)
MSD. see most significant digit (MSD)
MUL. see multiply (MUL)
multi-mode optical fibers, 389
multiply (MUL), 268
MVM. see masked move (MVM)

N
NAND gate, 131–132
National Electrical Manufacturing Asso-

ciation (NEMA), 2, 31, 34–35, 211
natural period, 338
N.C. see normally closed (N.C.)
NEMA. see National Electrical Manufac-

turing Association (NEMA)
NEQ. see not equal (NEQ)
nesting of contacts, 197
Network Interface Cards (NICs), 410
network media, 384–392

coaxial cable, 387–388
electromagnetic interference, reduction 

of, 391–392
fiber optic cable, 389–391
twisted-pair cable, 385–387

networking principles, 379–380
networks. see also communication net-

works
access methods, 394–395
addressing, 392–394
control, 379
defined, 192
information, 403
messages, 396–399
programming, limitations for, 192–195
protocols, 395–396
topologies, 382, 411

Nichols, N. B., 346
NICs. see Network Interface Cards (NICs)
N.O. see normally open (N.O.)
node address, 392
nodes, 379
non-Boolean actions, 368

non-volatile memory chips, 47–48
NOR gate, 132–133
normally closed (N.C.), 123
normally open (N.O.), 123
not equal (NEQ), 254
NOT gate, 130
NOT logic, 131–132
numbering systems

BCD system, 115–116
binary system, 100–101
category, 386
decimal system, 98–99
hexadecimal system, 112–115
octal system, 110–112
2S complement, 101–110
using, 116–118
working knowledge of, 98

numeric data, 248
numeric_expression operand, 356

O
OCON. see Output Wire Connector 

(OCON)
octal system, 110–112
odd parity, 118
off-delay timers, 208, 219–220
off-line mode, 57
off-line programming, 156
offset, 314
offset values, 308, 310, 316
O.L. see overload contacts (O.L.)
ON delay timer, 218–219
on-line programming, 57, 156
one-shot (ONS), 215
ONS. see one-shot (ONS)
Open Loop technique, 341–344
Open Systems Interconnect (OSI), 395
operands

bool_expression, 359
count, 357
final_value, 358
increment, 358
initial_value, 357–358
numeric_expression, 356

operation of output device, 417
optical fiber cable, 408
optical fibers, 389

multi-mode, 389
optical isolation, 17
optically coupled circuit, 17
OR gate, 129–130, 132, 135
OR logic, 130
order of execution, 348
OREF. see Output Reference (OREF)
originating address, 397
OSI. see Open Systems Interconnect (OSI)
OTL. see Output Latch (OTL)
OTU. see Output Unlatch (OTU)
output, 414

digital, 425
disable, 419
discrete, 22–23
“Flip/Flop Trigger,” 427
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output (continued)
fuses, 25–26
loads, 418
operation of, 417
potential to, 417
Proportional Integral Derivative, 

327–328
reed relay, 31
scaled, 317
testing, 416–418
updating, 46

Output Alarm, Lower Limit LL (bit 10), 329
Output Alarm, Upper Limit UL (bit 9), 329
Output Latch (OTL), 211
Output Limiting Enabled Bit OL (bit 3), 

328
Output Max CV%, 327
Output Min CV%, 327–328
Output Reference (OREF), 347, 348
Output Unlatch (OTU), 211
Output Wire Connector (OCON), 347, 348
OV. see count up overflow (OV) bits; 

overflow (OV) bits
overflow (OV) bits, 243
overload contacts (O.L.), 122, 202–204
OVERLOAD—Use a Larger Power 

Supply, 163

P
packet, 379, 397
“Packing_Station_Timers,” 88
parity, 117–118
“part_number,” 358
parts array, 289–290
Parts Conveyor Tracking Logic, 435–442
passing current, 58
password, 156
payload, 397
PC. see personal computer (PC)
peer-to-peer method, 394
periodic task, 92–93
personal computer (PC), 3, 7
PID. see Proportional Integral Derivative 

(PID)
PLC. see programmable logic controller 

(PLC)
pneumatic timers, 217–223
polling methods, 394
potential to output, 417
power flow, 58, 141, 196
power lines, 122
power rails, 122
power supply, 3–6
preset value, 236, 243
printed circuit board guides, 15
process control signals, 305–314
process setpoint, 318
Process Variable Out of Range PV  

(Bit 12), 329
process variable (PV), 305, 318, 322, 327, 

329–331

PROCESSOR FAULT, 420
processor scan, 45–47
processor unit, 3. see also memory

backup batteries in, 48–49
as central processing unit, 44
computer programmers, 56–58
defined, 44
function of, 45
hand-held programmers, 55–56
processor scan by, 45–47
programming devices, 55
size of, 45
types of, 45

produced tag, 90
producer/consumer approach, 399
product increments, 242
Profibus, 406
program control

always false instruction (AFI), 215
jump, 213
jump and label instructions, 212–213
latching relay, 209–211
master control relay, 207–209
one-shot instruction, 215
return instructions, 213
safety circuit, 211–212
subroutine, 213
temporary end instructions, 213–214

program mode, 419
program scanning, 198–200
programmable controllers, 211
programmable logic controller (PLC), 1–8

advantages of, 6
components of, 3
computer and, differentiation between, 

3
defined, 1–2
GE Fanuc Micro, 11, 48–49
MicroLogix, 11
Modicon 984-120 Compact, 51
operation of, 3
programming, 7, 156–190
self-check of, 46
self-diagnostic check of, 46

Programmable Read Only Memory 
(PROM), 50

programmed contacts, 148
programmed sequencers, 293–296
programmers. see programming
programming, 3, 7, 55, 156–190

analog signal filter algorithm, 434–435
with a computer, 157–176
considerations when, 192–205
cursor, function of, 171–172
discrete holding contacts, 201
examples of, 425–443
1/2 Second Pilot Light Flasher circuit, 

427–428
logical holding instructions, 201
Logix memory, 93–94
with LOGIX5000 software, 176–190

Motor Starter Fault-Monitoring Logic, 
428–430

network limitations for, 192–195
off-line, 156
on-line, 57, 156
overload contacts, 202–204
Parts Conveyor Tracking Logic, 

435–442
program scanning, 198–200
Push ON/Push OFF circuit,  

426–427
restrictions when, 195–198
STOP buttons, 200–201
Three-Wire Motor Control Logi with 

Fault Monitoring, Pilot Light, and 
Flasher circuit, 430

time-based events, 430–434
programming contacts, 140–143
programming counters

Allen-Bradley Logix5000, 243–245
Allen-Bradley PLC-5, 235–242
MicroLogix, 235–242
programming timers and, combining, 

242–243
SLC 500, 235–242

programming timers
Allen-Bradley Logix5000, 229–231
Allen-Bradley PLC-5, 223–229
cascading, 231–233
ON delay, 218–219
MicroLogix, 223–229
OFF delay, 219–220
pneumatic timers (general), 217–223
programming counters and, combining, 

242–243
retentive, 228
SLC 500, 223–229

PROM. see Programmable Read Only 
Memory (PROM)

Proportional Integral Derivative (PID)
Allen-Bradley SLC 500, 318–344
Control (AM), 326
Done DN (bit 13), 329
Enable EN (bit 15), 329
input parameters, 326–327
loop tuning, 336–344
output parameters, 327–328
program example, 329–336
status and control flags, 328–329
tuning parameters, 324–326

protocols, 397
access, 394–395
industrial, 403–411
network, 395–396

pull in, 429
push buttons, 419
Push ON/Push OFF circuit, 426–427
PV. see process variable (PV)

Q
quadrature encoder, 439
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R
rack installation, 35–37
Radio Area Networks (RANs), 381
rails, 122, 136
RAM. see Random Access Memory 

(RAM)
Random Access Memory (RAM), 49, 53
RANs. see Radio Area Networks (RANs)
rate, 308–310, 316, 6314
Rate Term Rd, 325–326, 336, 338
reaction curve, 338, 341
Read Only Memory (ROM), 50
read/write memory, 49
REAL data, 86
real world, 6
real world input/output (I/O) interface, 6–7
recursion, 434
reed relay output, 31
registers. see also words

data, 75
holding, 75, 248
input, 75

relay
analogy, 147
electromechanical, 1
interposing, 31
ladder diagrams, 127
ladder logic, 127
latching, 209–211
logic, 1–2
master control, 207–209

RELAY LADDER LOGIC, 2–3
relay type

clarifying, 150–154
EXAMINE OFF instructions, 144–149
EXAMINE ON instructions, 143
programming contacts, 140–143

remote input/output (I/O) interface, 14
repeater, central, 408, 410
REPEAT...UNTIL constructs, 359
RES. see reset (RES) command
Reset and Gain Range Enhancement Bit 

RG (bit 4), 328
reset (RES) command, 237
reset rung, 237–240
Reset Term Ti, 325–326, 336, 337
resets, master control, 207–208
resistive temperature device (RTD),  

32, 263
RET. see return (RET)
retentive counterparts, 210
retentive programming timers, 228
return instructions, 213
return (RET), 213
reverse acting, 326, 328, 336
reverse video, 57–58
ring topology, 382–383, 411
Rockwell Automation, Inc., 157
ROM. see Read Only Memory (ROM)
RSLogix software, 158
RTD. see resistive temperature device (RTD)

rungs, 122, 136
of ladder diagrams, 122
reset, 237–240

S
2S complement, 101–110, 119
safe-run switch, 212
safety circuit, 34–35, 211–212
SBR. see subroutine (SBR)
SCADA. see supervisory control and data 

acquisition (SCADA)
scale (SCL), 314–316
Scale Setpoint Flag SC (bit 5), 328
Scaled Error (SE), 328
scaled maximum, 317
scaled minimum, 317
scaled output, 317
scaling, 305–314
schematic diagram. see ladder diagrams
SCL. see scale (SCL)
scope, 90
SCR. see Silicon-Controlled Rectifier 

(SCR)
scratch areas, 75
scratch pads, 75
SE. see Scaled Error (SE)
sealing contacts, 126
selectable timed interrupt (STI) mode, 320
selector values, 356
selectors, 356
self-check, 46
self-diagnostic check, 46
sequenced motor starting, 127–128
Sequencer Compare Instruction (SQC), 

298
Sequencer Output Instruction (SQO), 297
sequencers

Allen-Bradley Logix5000, 302
Allen-Bradley PLC-5, 297–302
function of, 293
masks, 296
MicroLogix, 297–302
programmed, 293–296
SLC-500, 297–302

sequential function chart (SFC) program-
ming

creating steps to, 366–369
creating transitions in, 370–371
defined, 363
elements of, 364–365
example of, 372–377

serial shift register. see synchronous shift 
register

setpoint (SP), 318, 326–327
MAX Smax, 327
MIN Smin, 327
Out of Range SP (bit 11), 329
process, 318

SFC. see sequential function chart (SFC) 
programming

shielded twisted pair-cable (STP), 385, 408

shielding, 40–41
signals, 305–314, 380
signed bits, 104–109
Silicon-Controlled Rectifier (SCR), 23
simplified ladder diagrams, 122
SIN. see sine (SIN)
sine (SIN), 270
single-mode optical fibers, 389
sinking, 29–31, 30
SINT data, 86
SLC-500

address, 67–74
asynchronous shift register, 286–287
data compare instructions, 254–263
data transfer instructions, 249–253
file copy instruction, 284
file structure, 78–81
fixed input/output (I/O) interface, 12
master control relay, 208–209
math functions, 265–270
programming counters, 235–242
programming timers, 223–229
Proportional Integral Derivative, 

318–344
scale, 314–316
sequencers, 297–302
synchronous shift register, 276–281

slope, 308–310, 316
software locks, 50
source, 314
sourcing, 29–31, 30
SP. see setpoint (SP)
Spray Nozzle, 441
spurs, 405
SQC. see Sequencer Compare Instruction 

(SQC)
SQO. see Sequencer Output Instruction 

(SQO)
SQR. see square root (SQR)
square root (SQR), 269
SRT array, 289
stack, LIFO, 291
STANDBY BATTERY LOW, 420
star topology, 384, 411
START buttons, 149
start up, 413–415
static bag, 53
station, 392
status, 328–329
status bits, 267
status lights, 26
STD array, 289
STI. see selectable timed interrupt (STI) 

mode
STOP buttons, 149, 200–201
storage

internal, 75
memory, 47, 74–75
register words, 248

STP. see shielded twisted pair-cable (STP)
structured text example program, 360–361
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structured text programming, 348–361
assignments, 349–350
comments, 359
constructs, 354–359
expression, 350–353
instructions, 353
structured text example program, 

360–361
SUB. see subtract (SUB)
subroutine (SBR), 88, 95, 213
subtract (SUB), 267
supervisory control and data acquisition 

(SCADA), 381
surge suppression. see electromagnetic 

interference (EMI)
switches

DIP, 14, 63, 414
dual in-line package (DIP), 393
safe-run, 212

synchronous shift register, 274–276
Allen-Bradley PLC-5, 276–281
MicroLogix, 276–281
SLC 500, 276–281

systematic approach, 419
systematic troubleshooting, 419

T
tables. see also file

data, 74
input image, 75
input status, 75

tags
BOOL, 354, 358, 370
broadcast, 90
internal memory, 248
Logix memory, 90–91
name, 90
produced, 90
type, 90

TAN. see tangent (TAN)
tangent (TAN), 270
tasks

continues, 91–92
event, 93
Logix memory, 91–92
periodic, 92–93

temporary end instructions (TND), 
213–214

terminator, 387
test value, 261
testing inputs, 415–416
testing outputs, 416–418
three-motor start circuit, 127
three-rung ladder diagrams, 123
Three-Wire Motor Control Logi with 

Fault Monitoring, Pilot Light, and 
Flasher circuit, 430

time-based events, 430–434

Time Mode, 326
Time Mode Bit TM (bit 0), 328
time/timers

back off, 395
ON delay, 218
general, 217–223
increments, 243
mode, 320
OFF delay, 219–220
off-delay, 208
pneumatic, 217–223
retentive programming, 228
watchdog, 47

timing (TT) bits, 224–226
TND. see temporary end instructions 

(TND)
token, 394
token passing methods, 394–395
topologies

bus, 382, 411
network, 382, 411
ring, 382–383, 411
star, 384, 411

trailer, 397–398
transistor-transistor logic (TTL) I/O mod-

ules, 31
transition conditions, 365
Triac, 23–24
trigonometric functions, 270
troubleshooting, 419–423
TT. see timing (TT) bits
TTL. see transistor-transistor logic (TTL) 

I/O modules
tuning parameters, 324–326
twisted-pair cable, 385–387

U
UL. see unload (UL) bits
ultimate gain method, 338
ultimate period, 338
Ultra Violet Programmable Read Only 

Memory (UVPROM), 50–51
UN. see count down underflow (UN) bits
unconditionally programmed, 208
underflow bits, 239
units place, 98
unlatch coil, 210
unload (UL) bits, 277
unshielded twisted-pair cable (UTP),  

385, 408
unused word, 285
up counters (CTU), 235
updating outputs, 46
user memory, 47, 75–76
UTP. see unshielded twisted-pair cable 

(UTP)
UVPROM. see Ultra Violet Programmable 

Read Only Memory (UVPROM)

V
values

accumulated, 236–240, 242–243, 245
binary, 32
Binary-Coded Decimal, 32
BOOL, 354
offset, 308, 310, 316
preset, 236, 243
selector, 356
test, 261

volatile memory chips, 47–48

W
WANs. see Wide Area Networks (WANs)
watchdog timer, 47
WHILE...DO constructs, 358–359
Wide Area Networks (WANs), 380–381
wiring, 121

for basic STOP/START cirucit, 126
field, 19
holding contacts, 201–203
to output device, 417

word-to-file instruction, 281–282
words, 61, 274. see also words and files

consecutive, 281
data table, 248
delimiter, 67
destination, 267
invalid, 70
locations, 61–67
memory, 61–67
storage register, 248
unused, 285

words and files
Allen-Bradley Logix5000 file instruc-

tions, 288–290
asynchronous shift register,  

285–287
file copy instruction, 284
file-to-file instruction, 283–284
file-to-word instruction, 282–283
last-in-first-out, 287–288
synchronous shift register, 274–281
word-to-file instruction, 281–282

writing over existing data, 249

X
X to the Power of Y (XPY), 270
XIC. see examine if closed (XIC)
XIO. see examine if open (XIO)
XOR, 133, 134
XPY. see X to the Power of Y (XPY)

Z
Ziegler, J. G., 346
Ziegler and Nichols reaction Curve 

method, 341–344
Ziegler and Nichols ultimate Gain method, 

338–341
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