

800 East 96th St., Indianapolis, Indiana, 46240 USA

Teach Yourself

in 24HoursDave Taylor

Unix System
Administration

00 0672323982 FM 6/18/02 2:05 PM Page i

Sams Teach Yourself Unix System
Administration in 24 Hours
Copyright © 2003 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32398-2

Library of Congress Catalog Card Number: 2001099557

Printed in the United States of America

First Printing: July 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to the
accuracy of this information. Use of a term in this book should not be regarded
as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

ACQUISITIONS EDITOR

Kathryn Purdum

DEVELOPMENT EDITOR

Heather Goodell

MANAGING EDITOR

Charlotte Clapp

PROJECT EDITOR

Elizabeth Finney

PRODUCTION EDITOR

Seth Kerney

INDEXER

Larry Sweazy

PROOFREADER

Suzanne Thomas

TECHNICAL EDITORS

Dee-Ann LeBlanc
David Ennis

TEAM COORDINATOR

Amy Patton

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Alan Clements

PAGE LAYOUT

Stacey Richwine-DeRome

00 0672323982 FM 6/18/02 2:05 PM Page ii

Contents at a Glance
Introduction 1

PART I Installing Unix 5
Hour 1 Installing Unix 7

PART II Introduction to the Filesystem 21
Hour 2 An Unsung Resource: Unix Documentation 23

3 Disk Usage 41

4 File Ownership 67

PART III User & Package Management 83
Hour 5 Working with User Accounts 85

6 Account Management 107

7 Large File Management & Backups 133

8 Unix Package Management 161

PART IV Advanced Filesystem Topics 179
Hour 9 Fixing Broken Disks 181

10 Adding Disks to Your System 197

11 Multiple Boot Configurations 217

12 Managing Disk Quotas 231

PART V Process & System Controls 245
Hour 13 Changing System State 247

14 Exploring Processes 265

15 Running Jobs in the Future 285

16 Managing Your Log Files 301

PART VI Network Topics 325
Hour 17 Basic Network Configuration 327

18 Running Your Own Name Server 353

19 Running Internet Services 373

20 Working with E-mail 391

00 0672323982 FM 6/18/02 2:05 PM Page iii

PART VII Web Server Management & Shell Programming 413
Hour 21 Shell Scripting: The Administrator’s Swiss Army Knife 415

22 Power Scripting with awk and Perl 443

23 Introduction to the Apache Web Server 457

24 Virtual Hosts with Apache 473

Index 483

00 0672323982 FM 6/18/02 2:05 PM Page iv

Contents
Introduction 1

PART I Installing Unix 5

HOUR 1 Installing Unix 7

Unix Installation Options ..8
Basic Red Hat Linux Installation ..10
Installation Help Online ..16
Summary ..17
Q&A ..17
Workshop ..18

Quiz ..18
Answers ..18

PART II Introduction to the Filesystem 21

HOUR 2 An Unsung Resource: Unix Documentation 23

The Philosophy of Digging..23
apropos: The Administrator’s Secret Weapon ..24

Task 2.1: apropos and the Whatis Database ..24
Exploring the whatis Database ..32

Task 2.2: What’s Inside the whatis Database ..32
Finding Commands..34

Task 2.3: Which Command Are You Running? ..34
Digging Around in Executable Binaries..37

Task 2.4: The strings Command ..37
Summary ..39
Q&A ..39
Workshop ..39

Quiz ..39
Answers ..40

HOUR 3 Disk Usage 41

Physical Disks and Partitions ..41
Task 3.1: Exploring Partitions ..42

A Closer Look with du ..47
Task 3.2: Using du to Ascertain Directory Sizes ..47

Simplifying Analysis with sort ..52
Task 3.3: Piping Output to sort ..53

Identifying the Biggest Files..55
Task 3.4: Finding Big Files ..55

00 0672323982 FM 6/18/02 2:05 PM Page v

Keeping Track of Users: diskhogs ..59
Task 3.5: This Little Piggy Stayed Home? ..59

Summary ..64
Q&A ..64
Workshop ..64

Quiz ..64
Answers ..65

HOUR 4 File Ownership 67

Starting at the Beginning: Permission Strings ..67
Task 4.1: The Basics of File Permissions ..68

Ownership and /etc/passwd ..70
Task 4.2: Understanding /etc/passwd..70

Understanding Unix Groups and /etc/group ..73
Task 4.3: Groups and the /etc/group file ..74

Using Groups to Control Access ..77
Task 4.4: Access Control with Groups ..77

Summary ..80
Q&A ..80
Workshop ..80

Questions ..80
Answers ..81

PART III User & Package Management 83

HOUR 5 Working with User Accounts 85

Understanding the /etc/passwd File ..86
Task 5.1: Exploring /etc/passwd ..86

Password Files in BSD/Mac OS X..91
Task 5.2: Accounts and the Password File in Darwin......................................91

Adding Users and the adduser Script ..94
Task 5.3: Adding Users in a Conventional Unix World95

Adding Users in a NetInfo World..100
Task 5.4: The Darwin Version of adduser ..100

Summary ..103
Q&A ..103
Workshop ..104

Quiz ..104
Answers ..104

HOUR 6 Accounts Management 83

Ways to Suspend User Accounts ..108
Task 6.1: Suspending Users..108

Deleting User Accounts ..112
Task 6.2: Deleting User Accounts ..112

vi Sams Teach Yourself Unix Administration in 24 Hours

00 0672323982 FM 6/18/02 2:05 PM Page vi

Linux Account Management Tools114
Task 6.3: Linux Admin Tools ..115

Solaris Account Management Tools ..121
Task 6.4: Solaris Account Administration Tools ..121

Password Aging ..126
Task 6.5: Tools for Managing Password Aging ..126

Summary ..129
Q&A ..130
Workshop ..130

Quiz ..130
Answers ..130

HOUR 7 Large File Management and Backups 133

Shrinking Big Files with compress ..134
Task 7.1: Working with compress ..134

The gzip Alternative ..138
Task 7.2: Working with gzip ..139

A Zippy Tour of zip ..145
Task 7.3: Working with zip ..145

Copying Directory Trees with tar ..148
Task 7.4: Working with tar ..149

dump and System Backups ..153
Task 7.5: Incremental Backups ..153

Summary ..158
Q&A ..158
Workshop ..159

Quiz ..159
Answers ..159

HOUR 8 Unix Package Management 161

Red Hat Package Manager and Linux ..162
Task 8.1: Working with RPM ..162

Adding New RPM Packages from the Internet ..165
Task 8.2: Installing New Web-Based RPM Packages165

Package Management in Darwin ..168
Task 8.3: Installing and Working with fink ..168

Package Management in Solaris..172
Task 8.4: Managing Packages in Solaris..172

Summary ..177
Q&A ..177
Workshop ..177

Quiz ..177
Answers ..177

Contents vii

00 0672323982 FM 6/18/02 2:05 PM Page vii

viii Sams Teach Yourself Unix Administration in 24 Hours

PART IV Advanced File System Topics 179

Hour 9 Fixing Broken Disks 181

Introduction to fsck ..182
Task 9.1: Getting Started with fsck ..183

Fixing Problems with fsck..186
Task 9.2: Fixing Disk Problems with fsck..186

Single-User Mode ..190
Task 9.3: Single-User Mode in Darwin..191

Don’t Panic! ..193
Summary ..194
Q&A ..194
Workshop ..195

Quiz ..195
Answers ..195

HOUR 10 Adding Disks to Your System 197

Formatting Disks with fdisk ..198
Task 10.1: Formatting a Disk with fdisk ..199

Adding a Filesystem with mke2fs ..203
Task 10.2: Making a Filesystem with mke2fs ..204

Mounting the New Disk ..208
Task 10.3: Adding New Drives to Your System ..208

Fine-tuning Your /etc/fstab Configuration File ..212
Task 10.4: Creating the Perfect /etc/fstab File..212

Summary ..215
Q&A ..215
Workshop ..216

Quiz ..216
Answers ..216

HOUR 11 Multiple Boot Configurations 217

The Theory of Dual-Booting ..218
Task 11.1: Partitioning Disks for Dual Boot..219

Dual-Boot Configurations with LILO ..220
Task 11.2: Configuring LILO ..221

Dual-Boot Configurations with GRUB ..223
Task 11.3: Configuring GRUB ..223

Other Solutions for Other Unixes..226
Task 11.4: Learning About Virtual Machines ..227

00 0672323982 FM 6/18/02 2:05 PM Page viii

Summary ..228
Q&A ..229
Workshop ..229

Quiz ..229
Answers ..230

HOUR 12 Managing Disk Quotas 231

Implementing a Disk-Quota Policy ..232
Task 12.1: Implementing Quotas..232

Quota Nuances on Other Unixes ..237
Task 12.2: Quotas on Other Systems ..237

Creating Your Own Quota System with find ..239
Task 12.3: Disk-Quotas with find ..239

Summary ..243
Q&A ..243

Workshop ..243
Quiz ..243
Answers ..244

PART V Process & System Controls 245

HOUR 13 Changing System State 247

Configuring and Working with the init Process..248
Task 13.1: The init Process and Configuration ..248

Enabling Specific Services at Different Run Levels ..254
Task 13.2: Configuring Your System for Run Levels255

Shutting Down Your System the Right Way..259
Task 13.3: Safe Shutdowns and Reboots ..260

Summary ..262
Q&A ..262
Workshop ..262

Quiz ..263
Answers ..263

HOUR 14 Exploring Processes 265

The Secret Life of Process IDs..266
Task 14.1: Process ID Information ..266

Examining Processes with the ps Command ..267
Task 14.2: Exploring ps ..267

A Typical Sysadmin Task: What’s artsd? ..273
Task 14.3: A Little Unix Detective Work ..273

Process Priorities..276
Task 14.4: Managing Process Priorities ..276

Contents ix

00 0672323982 FM 6/18/02 2:05 PM Page ix

x Sams Teach Yourself Unix Administration in 24 Hours

Zapping Stray Processes ..279
Task 14.5: The kill Command ..279

Summary ..282
Q&A ..282
Workshop ..283

Quiz ..283
Answers ..283

HOUR 15 Running Jobs in the Future 285

Allowing User Access to crontab ..286
Task 15.1: Turning on crontab..286

Building crontab Files ..287
Task 15.2: Building a crontab File ..288

System cron Jobs in /etc ..292
Task 15.3: Exploring the Administrative cron Jobs292

Once in the Future with at ..296
Task 15.4: Working with at ..296

Summary ..298
Q&A ..298
Workshop ..298

Quiz ..298
Answers ..299

HOUR 16 Managing Your Log Files 301

Understanding Log Files..302
Task 16.1: Rummaging Around in Log Files ..302

Tracking a Hacker..307
Task 16.2: Tracking Backward ..308

The httpd Log File ..312
Task 16.3: Exploring the httpd Log File ..312

Trimming Log Files with logrotate..317
Task 16.4: The logrotate Program ..317

Building Your Own Log Rotation Tool ..320
Task 16.5: Rotating Your Own Logs ..320

Q&A ..323
Workshop ..323

Quiz ..323
Answers ..324

PART VI Network Topics 325

HOUR 17 Basic Network Configuration 327

Hooking Up a Linux Box to the Internet ..328
Task 17.1: Hooking Up a Linux System ..328

00 0672323982 FM 6/18/02 2:06 PM Page x

Contents xi

Network Configuration on Other Unixes ..336
Task 17.2: Configuring Solaris and Mac OS X ..336

Testing and Evaluating Connectivity ..343
Task 17.3: Evaluating Connectivity..344

Summary ..350
Q&A ..350
Workshop ..350

Quiz ..350
Answers ..351

HOUR 18 Running Your Own Name Server 353

The Berkeley Internet Name Domain Package ..354
Task 18.1: Exploring BIND and Zone Files ..354

Configuring named ..359
Task 18.2: Configuring the Name Server named..359

Working with rndc ..362
Task 18.3: Learning rndc..362

Testing DNS Setups ..364
Task 18.4: Testing with dig and host ..364

Summary ..370
Q&A ..370
Workshop ..371

Quiz ..371
Answers ..371

HOUR 19 Running Internet Services 373

The inetd Super-Daemon ..374
Task 19.1: Understanding and Working with inetd......................................374

Managing inetd Security with TCP Wrapper ..379
Task 19.2: Working with TCP Wrapper ..379

Super-inetd: xinetd ..381
Task 19.3: Working with xinetd ..381

An Example: Enabling ftp..385
Task 19.4: Enabling ftp (and Why You Might Not

Want To) ..385
Summary ..390
Q&A ..390
Workshop ..390

Quiz ..390
Answers ..390

HOUR 20 Working with E-mail 391

Testing Mail Connectivity with sendmail ..392
Task 20.1: Using sendmail to Verify Connectivity ..392

00 0672323982 FM 6/18/02 2:06 PM Page xi

xii Sams Teach Yourself Unix Administration in 24 Hours

Mail Logs and Mail Queues ..398
Task 20.2: Mail Logs and Mail Queues ..398

Creating sendmail Aliases ..404
Task 20.3: Mail Aliases ..405

sendmail Aliases Within Mac OS X ..408
Task 20.4: Mac OS X and sendmail Aliases ..408

Summary ..411
Q&A ..411
Workshop ..412

Quiz ..412
Answers ..412

PART VII Web Server Management & Shell Programming 413

HOUR 21 Shell Scripting: The Administrator’s Swiss Army Knife 415

The Basics of Shell Scripting ..416
Task 21.1: Basic Shell Scripts ..416

Flow Control ..423
Task 21.2: Conditionals, Looping, and Functions..424

Some Cool Examples ..436
Task 21.3: Some Example Scripts..436

Summary ..441
Q&A ..441
Workshop ..441

Quiz ..441
Answers ..442

HOUR 22 Power Scripting with awk and Perl 443

The Elegant awk Language ..444
Task 22.1: An Overview of awk ..444

Basic Perl Programming ..447
Task 22.2: Basic Perl ..447

Advanced Perl Examples ..450
Task 22.3: Advanced Perl Capabilities ..450

Summary ..454
Q&A ..454
Workshop ..454

Quiz ..454
Answers ..455

HOUR 23 Introduction to the Apache Web Server 457

Setting Up Your Web Server ..458
Task 23.1: Bringing Apache to Life ..458

00 0672323982 FM 6/18/02 2:06 PM Page xii

Exploring the httpd.conf File ..462
Task 23.2: The Internals of the httpd.conf File ..462

Testing and Tuning the Configuration ..467
Task 23.3: What Can Apache Do? ..467

Summary ..471
Q&A ..471
Workshop ..472

Quiz ..472
Answers ..472

HOUR 24 Virtual Hosts with Apache 473

Enabling Virtual Hosting in Apache ..474
Task 24.1: Configuring Virtual Hosts ..474

Keeping Your System Secure ..478
Passwords ..479
rlogin ..479
Unnecessary Network Services ..480
Keep Your Operating System Up-To-Date ..480
Join the Computer Emergency Response Team ..481
Other Useful Web Sites ..481
Useful Tools..481

Summary ..481
And So Our 24 Hours Come to an End… ..482

Index 483

Contents xiii

00 0672323982 FM 6/18/02 2:06 PM Page xiii

About the Author
DAVE TAYLOR is a popular writer, teacher, and speaker focused on business and technol-
ogy issues. The founder of The Internet Mall and iTrack.com, he has been involved with
Unix and the Internet since 1980, having created the popular Elm Mail System and
Embot mail autoresponder. A prolific author, his most recent books include Learning
Unix for Mac OS X, Sams Teach Yourself Unix in 24 Hours, Creating Cool HTML 4.0
Web Pages, Dynamic HTML Weekend Crash Course, and The e*Auction Insider.

Previous positions include research scientist at HP Laboratories and senior reviews editor
of SunWorld magazine. He has contributed software to the official 4.4 release of
Berkeley Unix (BSD), and his programs are found in all versions of Linux and other
popular Unix variants.

Dave has a bachelor’s degree in computer science, a master’s degree in educational com-
puting, and is working on an MBA. He teaches business and technology-related courses
both in the physical world through the University of Colorado at Boulder, and online
with the University of Phoenix. His e-mail address has been the same for over 15 years:
taylor@intuitive.com.

When not typing madly on the keyboard of his Mac, Dave’s either playing with his wife
Linda and two wonderful kids, Ashley and Gareth, or out bicycling around Boulder.

00 0672323982 FM 6/18/02 2:06 PM Page xiv

Dedication
To the three shining stars in my firmament…

Acknowledgments
This project has been quite complex, juggling multiple operating systems, installations,
and configurations. Fortunately I was lucky to have a group of Unix and system experts
helping me along. As a result, I’d like to thank Andy Lester for his help with my oft-inef-
ficient Perl coding, Westley Annis for helping clarify the mysterious world of DNS, and
Max Horn for his helpful corrections on the Darwin Fink project. Gideon Shaanan,
Richard Blum, Cedric Higgins, Tim Hicks, Dave Ennis, Brian Bilbrey, Eugene Lee, and
Tyler and Rima Regas were all also helpful with their comments and assistance.

I can’t say enough wonderful things about Dee-Ann LeBlanc and David Ennis, the tech
editors for this book. They’re master nit-pickers, but ultimately any errors you encounter
are probably mine. (But please, file an errata report so we can fix it in the next edition!)
In particular, Dee-Ann was always available for late night IM sessions as my sanity
started to slip. Thanks! I was also blessed to work with the same Sams team I’ve used on
other books, notably Katie Purdum, Heather Goodell, and Elizabeth Finney. They’re all
ably led by my longtime friend Mark Taber.

Finally, I couldn’t have done this book without the indulgence of my wife and kids.
Thanks oodles to Linda, Ashley, and Gareth. It might not be entirely clear why Daddy’s
always on the computer, but there is an end-product occasionally!

00 0672323982 FM 6/18/02 2:06 PM Page xv

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

You can e-mail or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name, e-mail address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

E-mail: opensource@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
For more information about this book or another Sams title, visit our Web site at
www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in
the Search field to find the page you’re looking for.

00 0672323982 FM 6/18/02 2:06 PM Page xvi

Introduction
Welcome to Teach Yourself Unix System Administration in 24 Hours! This book has been
designed so that it’s helpful for both beginning system administrators and those with pre-
vious Unix experience. This text is helpful as a guide as well as a tutorial. The reader of
this book is assumed to be intelligent, and to have at least a basic familiarity with Unix.
If you would like to brush up on your Unix prior to delving into this book, I suggest the
companion title Teach Yourself Unix in 24 Hours, a top-selling introductory title that’ll
get you up to speed with the intricacies of Unix faster than you can say “supercalifrag-
ilisticexpialidocious!” (or type it, for that matter!)

What This Book Isn’t
I’d like to state my intent with this book up front, while you’re still browsing in the
bookstore: This book is not intended to be the only system administration material you
ever study. Indeed, this book grew out of a course I taught, an introduction to Unix sys-
tem administration. The reason for this distinction is because there are a number of very
good reference works on administration (that typically run 800–1,100 pages) that offer a
cookbook approach of “if this is wrong, do this to fix it.” That’s very helpful, and I have
these titles on my reference shelf, but they don’t teach you how to approach, diagnose,
and solve problems the Unix way. That’s a major goal for this book.

When you finish exploring this book, you will know how to think like a good system
administrator, regardless of what variation of Unix you encounter. You’ll learn how to
hypothesize about problems, dig through man pages and configuration files, postulate
solutions, then test and verify that they’ve worked. And have fun in the process too!

In the same vein, this book isn’t 1,001 ways to fine-tune your Unix installation. In fact,
we’re going to gloss over the question of installation, because for most users the system
is either already installed (like Mac OS X or Solaris), or has very good installation and
configuration documentation. (Red Hat and Mandrake Linux distributions are standouts
in this regard.)

What Flavors of Unix?
This book covers both the System V and BSD Unix worlds—the specific operating
systems explored are Red Hat Linux 7.2 (with the 2.4.7 kernel), Solaris 8 (running on
Intel, though it’s identical to the SPARC version), and Darwin, the BSD OS hidden
underneath Mac OS X (release 10.1.2).

01 0672323982 Intro 6/18/02 2:05 PM Page 1

Between them, these three represent the major families of Unix, with Red Hat represent-
ing the strong but anarchic Linux world; Solaris, the commercial Unix release; and Mac
OS X, a direct descendant of the BSD school of Unix.

There are, of course, hundreds of different Unix distributions, ranging from free down-
loads to operating systems that only run on expensive, million-dollar supercomputers.
That’s why a major goal of Teach Yourself Unix System Administration in 24 Hours is to
teach you how to work within the tools of generic Unix to diagnose and solve problems,
rather than how to use vendor-supplied platform-specific tools.

Does Each Chapter Take an Hour?
You can learn the concepts in each of the 24 chapters in one hour. If you want to experi-
ment with what you learn in each chapter, something I highly recommend, you might
take longer than an hour. However, all the concepts presented herein are straightforward.
If you are familiar with Windows applications or the Macintosh, you will be able to
progress more quickly, and if you’re already comfortable at the Unix command line,
well, this book might well only be “12–16 hours” worth of studying!

What If I Take Longer than 24 Hours?
Since the publication of the first edition of my Unix book, I’ve received a considerable
amount of praise and positive feedback, but the one message that’s always been a sur-
prise is “I finished your book, but it took me a lot longer than 24 hours.” Now you can
read here, direct from the author: It’s okay! Take your time and make sure you try every-
thing as you go along. Learning and remembering is more important than speed.
Remember, too, that 24 hours doesn’t necessarily mean 24 consecutive hours. And if you
do finish it all in 24 hours, let me know!

How to Use This Book
This book is designed to teach you topics in one-hour sessions. All the books in the Sams
Teach Yourself series enable you to start working and become productive as quickly as
possible. This book will do that for you.

Each hour, or session, starts with an overview of the topic to inform you what to expect
in each lesson. The overview helps you determine the nature of the lesson, and whether
the lesson is relevant to your needs.

2 Sams Teach Yourself Unix System Administration in 24 Hours

01 0672323982 Intro 6/18/02 2:05 PM Page 2

Main Section
Each lesson has a main section that discusses the lesson topic in a clear, concise manner
by breaking the topic down into logical component parts and explaining each component
clearly.

Interspersed in each lesson are special elements, called Notes, Tips, and Cautions, which
provide additional information.

Introduction 3

Notes are designed to clarify the concept that is being discussed. It elabo-
rates on the subject, and if you are comfortable with your understanding of
the subject, you can bypass them without danger.

Tips inform you of tricks or elements that are easily missed by most com-
puter users. You can skip them, but often Tips show you an easier way to do
a task.

A Caution deserves at least as much attention as a Tip, because Cautions
point out a problematic element of the topic being discussed. Ignoring the
information contained in the Caution could have adverse effects on the task
at hand. These are the most important special elements in this book.

This book uses different typefaces to differentiate between code and regular English, and
also to help you identify important concepts. Therefore, code lines, commands, state-
ments, variables, and any text you see onscreen appear in a computer typeface.
Additionally, any text you type as input appears in a bold computer typeface.

Tasks
This book offers another special element called a Task. These step-by-step exercises are
designed to quickly walk you through the most important skills you can learn in different
areas of Unix system administration.

01 0672323982 Intro 6/18/02 2:05 PM Page 3

Q&As and Workshops
A Q&A and Workshop section are at the end of each lesson. The Q&A section and Quiz
questions reinforce concepts you learned in the lesson and help you apply them in new
situations. You can skip this section, but it is advised that you go through the questions to
see how the concepts can be applied to other common tasks.

The Online Component
There are lots of sample code listings, shell scripts, and other types of information
throughout this book that you’ll want to download from the official book Web site rather
than type in:

http://www.intuitive.com/tyusa/

In addition, there’s an errata area and an all-important errata report form on the site too:
Any time you find any sort of hiccup or oddness with a command you try, please let us
know! We’ll keep an up-to-date errata list and make sure they’re all fixed in the next edi-
tion of the book. Thanks!

4 Sams Teach Yourself Unix System Administration in 24 Hours

01 0672323982 Intro 6/18/02 2:05 PM Page 4

Hour
1 Installing Unix 7

PART I
Installing Unix

02 0672323982 pt1 6/18/02 1:59 PM Page 5

02 0672323982 pt1 6/18/02 1:59 PM Page 6

HOUR 1
Installing Unix

If you’re reading this book, I bet that you already have a Unix operating
system installed on a system you run. Whether it’s a shared server that
you’re renting space on for your Web site, a file server in your office, or
even a PC that you’ve used as a Unix test platform, this first hour will possi-
bly be the least interesting one in this book.

However, it’s also possible that you’ve read through some Unix books
(perhaps even my own Teach Yourself Unix in 24 Hours), and are eager to
learn more about the internals of Unix and how you can ensure that yours is
stable.

This first hour, therefore, is going to go through a typical Red Hat Linux
installation on a PC, with all the default configuration options specified.
Then we’ll look at some of the great online Unix and Linux help sites. If
you have a different flavor of Unix you’re interested in, your installation will
doubtless be different (I have experimented with SuSE, Mandrake, Red Hat,
Solaris, AIX, HP-UX, Mac OS X, FreeBSD and NetBSD, to name a few).
The basic concepts, however, will prove similar in almost all cases.

03 0672323982 CH01 6/25/02 10:50 AM Page 7

And as a reminder, this is the only hour in this book where we’ll only look at a single
operating system. All subsequent material will explore Red Hat Linux, Solaris, and Mac
OS X as the three reference flavors of Unix.

In this hour, you will learn about

• Unix installation options

• Basic Red Hat Linux installation

• Online installation resources

Unix Installation Options
The first issue of concern is whether your system meets the hardware requirements for a
Unix installation. Although Linux (and Red Hat in particular) runs across a wide range of
different hardware platforms, there are nonetheless certain requirements to have it run
reasonably well:

• A minimum of 350MB of available disk space, and if you want to have the X
Window System running, a Web server, developer software, and other standard
Unix goodies, you’ll find that the realistic minimum disk space requirement is
1.8–2GB.

• At least 64MB of RAM, though Unix is definitely an operating system where more
RAM is always better. I always try for a minimum of 128MB, and if you have
256MB or more, you’ll find greatly increased performance.

• A CPU. Should it be a specific minimum speed, like a 500Mhz Pentium III?
Surprisingly, people have successfully run Linux on quite old and slow systems.
Does it run well enough that you would enjoy using it? Well, you can answer that
question for yourself. Generally, any computer sold since January 1, 2000, has
plenty of horsepower to run a Linux distro (jargon for distribution) with good
results.

• A CD-ROM drive (hopefully that is self-evident).

• A network card, ideally, so you can connect to the Internet. Be warned, it can be
tricky to configure a modem and PPP (the Point-to-Point Protocol), though not at
all impossible.

• A graphical display, display card, keyboard, and mouse.

It’s worth noting that, armed with this book, you don’t have to buy anything else to get a
copy of Red Hat Linux and install it on your system. Start by going to the Red Hat
download area and look for the latest version of their system. As of this writing, it’s 7.2,
so the download link is http://www.redhat.com/download/rhlinux72.html. On the

8 Hour 1

03 0672323982 CH01 6/25/02 10:50 AM Page 8

other hand, by the time you read this, they’ll likely be shipping 8.0, so your best bet is to
start on the Red Hat home page to ensure you get the latest release.

There are good directions online about how to proceed. In general, you’ll download ISOs
(installation disk images) that are 650MB a pop, burned to a CD-ROM,1 and used for the
installation process. You’ll need a minimum of two CD-ROMs for a good install, so
that’s a download of 2×650MB, and if you’re on a 56K modem, you’ll do much better to
go to the computer store and buy the official Red Hat distribution box, with CD-ROMs,
installation documents, and more, for about $60.

Installing Unix 9

1

1Even better, it’s legal. You are explicitly allowed to burn your own CD-ROM install disks from the
downloaded ISOs on their site.

There are also people who download the ISO files, burn CD-ROMs, then sell
them online (and yes, it’s legal). A quick search on eBay reveals “RH Linux
7.2 Brand New 4 CD-ROM Set Enigma” for a starting bid of only $8.95. Add
$2 for shipping, and you can have a complete four-CD-ROM installation
set—an exciting new operating system for your computer—for less than the
price of a small pizza with anchovies and pineapple!

Other Linux distributors offer very low-cost CD-ROM distributions, if you are nervous
about online auction venues. For example, the highly-rated Mandrake Linux (www.man-
drakesoft.com) offers a three-CD-ROM Download Edition for $15, including shipping.

Other Unixes are priced differently, as you might suspect. Solaris Intel, from Sun
Microsystems, can be downloaded for free from their Web site (www.sun.com/solaris/),
or for $45 they have a very nice distribution package that includes 12 CD-ROMs and
some (very sparse) documentation. However, there are some conflicting rumors about the
long-term health of Solaris on Intel, so don’t be surprised if at some point in the future
Sun instead points you to a Linux distro.

Apple distributes Mac OS X on two CD-ROMS in a box with documentation and more.
It’s rather more expensive than the other distros discussed so far at $129
(store.apple.com), but if you have a recent Macintosh, you probably already have Mac
OS X installed.

There are many other Unixes available, many of which are available as free downloads
from online archive sites. You can start at www.download.com, for example. Select Linux,
Distributions, and you’ll have 36 matches from which to choose, including Phat Linux,
Slackware Linux, Caldera OpenLinux, and the nifty Yellow Dog Linux for Mac systems.

03 0672323982 CH01 6/25/02 10:51 AM Page 9

Basic Red Hat Linux Installation
Let’s assume that you want to install Red Hat Linux, as they have one of the best instal-
lation packages (called anaconda) out of all the Linuxes I’ve used.

1. The first step is to make sure you have a reliable backup of any information that
you already have on your computer. Most likely, you’ll want to just overwrite your
entire disk with the new operating system, which will mean that all your existing
files will be stomped, mutilated, and otherwise burned beyond recognition.

Once you’re sure you want to proceed, slip the first installation CD-ROM into the
CD-ROM drive of your computer and boot up.

It’s not visually exciting, but the first thing you’ll see is as shown in Figure 1.1, the
boot-up screen options. I always choose the default by pressing Enter on the key-
board.

10 Hour 1

FIGURE 1.1
Red Hat Linux instal-
lation boot options.

2. Linux flashes into graphics mode, enabling your mouse, and the next screen you
see lets you choose what language to use for the installation process. You’ll proba-
bly choose English, in which case you can just click on the Next button on the bot-
tom right.

The next step, as illustrated in Figure 1.2, is to pick your keyboard configuration.
Most likely, you can again select the default values and proceed to the next step.

The mouse configuration is the third pre-installation step (these steps are just con-
figuring anaconda, the installation application), and I’ve always had good results
with the default 3 Button Mouse (PS/2).

03 0672323982 CH01 6/25/02 10:51 AM Page 10

3. Now we’re ready for the actual installation process to begin. The first selection—
and perhaps the most important selection—is to decide what kind of installation
you’d like. The choices are Workstation, Server, Laptop, and Custom.

I recommend a workstation installation if you have sufficient disk space (about
2GB), because it’s easier to install software and then not use it than to want to use
it and find it wasn’t installed. The server installation skips all the X Window
System software packages, though you can add it back by going to the package
groupings area.

4. The first major task during the installation process is to decide how you want to
slice up your available disk space so that Linux can properly utilize it. In almost all
cases, your best bet is to have the system figure out how much space you have and
then partition it automatically. You can choose this with Have The Installer
Automatically Partition For You.

You’ll probably see a dialog box similar to Figure 1.3. Don’t panic. Remember,
you’ve already done a complete backup, and we’re planning on replacing the cur-
rent OS on the computer with Linux.

Next, choose Remove All Partitions On This System, unless you already had a pre-
vious Linux installed and want to use that existing partition space. Make sure that
if you have multiple drives, it has picked the correct drive for the install we’re
about to start!

Installing Unix 11

1
FIGURE 1.2
Keyboard
configuration.

03 0672323982 CH01 6/25/02 10:51 AM Page 11

The system automatically creates a reasonable partition strategy. For my system,
with a 15GB disk available, it split it into /dev/hda1 (to mount as /boot) with
47MB of disk space, /dev/hda3 (to mount as swap space) with 188MB of space,
and the remaining 15.1GB as /dev/hda2 (mounting as /).

Rather than accept this, I am going to split /dev/hda2 into two partitions, one
that’s 4.1GB and one that’s 11GB. The latter will prove useful later in the book,
when we explore disk formatting and the mount command. To accomplish this task,
I select the partition in question and click Edit. This produces the dialog box
shown in Figure 1.4. Notice that I’ve already specified a fixed size of 4100MB
here.

12 Hour 1

FIGURE 1.3
You need to confirm
that you want to cre-
ate new partitions.

FIGURE 1.4
Repartitioning to
grab some space.

Once accepted (click OK), you’ll now have a free space listed at 11029MB. Click
on that, click Edit, and you can specify a mount point if you’d like. Or, leave it as
free space and you can perhaps install Windows within and create a dual-boot
configuration (see Hour 11, “Multiple Boot Configurations”).

5. Now you need to pick a boot loader, if any. I prefer grub, but you might like lilo.
I will say that there’s really no reason not to pick one of these, just so you have
flexibility in your configuration later on. Otherwise, leave all these options alone.

03 0672323982 CH01 6/25/02 10:51 AM Page 12

If you’d like, you can specify a grub password, which will mean that every time
the system is rebooted, the password will be required to proceed with the boot
process. Be thoughtful about this option: If you specify this and then have your
system in a collocation rack, who will enter the password if it reboots?

The next step is to configure your network interface, as shown in Figure 1.5. If you
have DHCP, you’re in luck. Click that box and you’re done! Otherwise, you’ll want
to fill out as much of the information specified as possible.

Installing Unix 13

1

FIGURE 1.5
Configuring your net-
work connection.

Almost done with the configuration questions. The last network configuration step
is to pick a firewall configuration for security. Though the default is to customize
your settings, I tend to select Use Default Firewall Rules and leave a security level
of Medium.

6. If you want to make your system usable in multiple languages, you can specify
them in the Additional Language Support screen that comes next. Even if you only
want English (USA), spend a moment to scroll through this list and see just how
many different choices there are. Quite impressive!

There are lots of languages listed, but it’s worth highlighting that it’s up to
the individual application to support the language, so don’t be surprised if
you install Italian, just to find some richiami del sistema in inglese.

03 0672323982 CH01 6/25/02 10:51 AM Page 13

Your time zone should be specified next, and you can click on cities on the world
map, select a regional map from the pull-down menu, or scroll until you find a city
in your own time zone to select from the list. Living in the Mountain Time zone, I
select Denver, Colorado, from the list.

The next screen is the Account Configuration screen. You don’t need to create a
number of accounts at this juncture, but if you know multiple people will be using
the system, this is a very convenient place to add them. In Figure 1.6 you can see
that I’ve created four user accounts, and also set the root password.

As a reminder, you must set a root password here, and it must be something that’s
simultaneously complex enough that it would be difficult for crackers to guess, and
simple enough that you’ll remember it. Don’t forget what you specify here; it’ll be
critical to the long-term health of your Unix system down the road.

14 Hour 1

FIGURE 1.6
Account
Configuration screen.

7. Finally, we are at the point where we need to select which packages we’d like to
install. There are default packages already selected because of our workstation
installation specification earlier, but additional material can be added.

As Figure 1.7 shows, I recommend installing KDE in addition to Gnome and the
Software Development Tools. Whether you want to include games is up to you.

Notice in particular on the lower right corner the indicator of how big all the com-
bined packages will be (here it’s 1559MB, just about 1.6GB).

03 0672323982 CH01 6/25/02 10:51 AM Page 14

It’s just about time to go and get a cup of tea and read the paper while anaconda
slowly installs each of the hundreds of packages you’ve now selected.

8. The only task left is to configure the screen for X Windows System (which might
seem a little weird, since we’ve already been working in a graphical environment
with a mouse, but that’s another story). Fortunately, I’ve found that anaconda does
a very good job of analyzing hardware configurations, and just about always picks
the best setup to match your physical system.

Installing Unix 15

1
FIGURE 1.7
Selecting additional
packages to install.

At this point in the installation process, you can still back out, shut down
your computer, eject the CD-ROM, and have your system just as it was prior
to booting into the Red Hat world. Once we proceed beyond this, however,
all the prior contents of the disk will be destroyed. Please, please ensure you
have a good backup before going further!

Enough paranoia, let’s install this baby!

The next screen shows you the progress of the installation process, as anaconda
formats the file systems, transfers an install image (the ISO images we discussed
earlier in this hour) to the disk, and then begins the actual transfer. Pay particular
attention to the Total and Remaining package counts—they’ll give you a very good
idea of how much time you have left on the install.

03 0672323982 CH01 6/25/02 10:52 AM Page 15

Expect this step to take at least an hour, and possibly quite a bit longer, depending
on how fast your system, CD-ROM, and disk are. Figure 1.8 shows how the instal-
lation looks just a little ways into the process (about 10 minutes).

16 Hour 1

FIGURE 1.8
Installing packages
slowly but surely!

Once this process is done, you’ll get a peppy Finished! screen and you can reboot
and run your new Red Hat Linux installation on your computer. Congratulations!

The question of what to do after you’ve installed your system is, of course, the topic of
the rest of this book. But one thing you might try is just logging in as a regular user,
selecting either Gnome or KDE as your desktop environment, then launching a Web
browser and surfing the Web. See how it is similar in some ways, and quite different in
other ways, to Windows or Macintosh systems.

Installation Help Online
The documentation that’s included with the Red Hat Linux distro is actually pretty good,
particularly the Installation Guide, but you might find that there’s useful information
available online.

A good place to start your exploration is at the Red Hat Web site itself
(www.redhat.com), where they have a complete documentation set available for search-
ing and reading online (and, of course, printing, even if you’re running Windows or Mac
OS at the time).

03 0672323982 CH01 6/25/02 10:52 AM Page 16

Another valuable source of Linux installation and configuration information is Linux
Planet (www.linuxplanet.com), where they also have a nice writeup comparing the dif-
ferent flavors of Linux available. Start by clicking on Tutorials when you visit this site.

A great source for all Unix documentation, though it’s ostensibly focused on Linux, is
the Linux Documentation Project (www.linuxdoc.org). It’s out of date, but there’s still
helpful information in the Installation and Getting Started Guide in the Guides section of
the LDP site. The HOWTO section offers some very specific information that you might
find of use too, including a guide to installing Linux on an Acer laptop, booting a
Compaq T1500 into Linux, and the useful Config-HOWTO.

The DMOZ Open Directory project has a very nice set of references that’ll be worth a
bookmark in your Web browser too, though the starting URL is rather long:

http://dmoz.org/Computers/Software/Operating_Systems/Linux/Support/Tutorials/

In particular, check out “Dancing with the Penguin,” a good tutorial with a great title!

If you opted for a Unix other than Red Hat Linux, you’ll find many of these Web sites
quite useful. Also check out the vendor Web site, and you can also check out SlashDot
(www.slashdot.com) for the latest gossip and discussion about Unix systems and distrib-
utions.

Summary
This hour has explored how to install and configure Red Hat Linux on a typical personal
computer. Fortunately, the process is quite straightforward, and if you have the network
information necessary to connect directly to the Internet prior to installation, you should
be online by now, too. If you have another flavor of Unix, you’ll find that the install
varies quite a bit: Mandrake Linux is a breeze, Mac OS X Unix is even easier, but Solaris
can prove to be tricky. We also discussed some of the top Web sites that can help with
installation and configuration.

Q&A
This section contains common questions and answers about the topic covered in this
hour. If you have additional questions that aren’t covered, send me an e-mail and maybe
it’ll show up in the next edition!

Q Why are there so many different Unixes and Linuxes?

A That’s a very good question. One of the main strengths and weaknesses of Unix
has been that it’s been widely distributed in both source and binary form, and that

Installing Unix 17

1

03 0672323982 CH01 6/25/02 10:52 AM Page 17

it was built from the beginning for developers, by developers. The combination of
these two, coupled with many years of legal wrangling over the ownership of the
Unix code, trademarks, intellectual property, and so on, produces a veritable explo-
sion of choices for the Unix-savvy computer user. Even Apple succumbed and
made Unix the underpinning of Mac OS X.

Instead of seeing this as a point of confusion—though it is a bit confusing—think
of it instead as a terrific advantage. You sure can’t get 20 different free distributions
of Windows, and there aren’t even 20 total versions of Mac OS, even if you go all
the way back to 1984 when it was released.

Q What Unix distributions do you run on your own systems?

A My main computer is a Mac OS X system with, of course, Darwin as the underpin-
nings. In addition, I have a PC that dual-boots Windows 2000 and Mandrake 8.1,
and a collocated Web server that runs Red Hat Linux 7.2.

Workshop
Quiz

1. What’s the most important first step in the installation process?

2. What’s an ISO and why is it important?

3. If you can download the entire operating system installation data set from the net,
why buy it?

4. If you do want prebuilt CD-ROMs for installation, where’s a good place to get ‘em
cheap?

5. According to author Douglas Adams, what’s the meaning of life?

Answers
1. Back up any pre-existing information on the disk. And ensure that the backup

worked!

2. An ISO is an install system image, a single file that can be copied onto a CD-
ROM, making that CD-ROM an instant install disk.

3. Buying it saves an immense amount of time, and as the cost is quite minimal, I
think only people with a lot of patience actually download install images.

4. The eBay online auction site always has some Linux install CD-ROMs prebuilt and
available for just a few dollars.

5. 42. (See the brilliant book Hitchhiker’s Guide to the Galaxy to figure out what the
heck it means!)

18 Hour 1

03 0672323982 CH01 6/25/02 10:52 AM Page 18

Now that we’ve got a Unix distro installed on your system, it’s time to jump in and start
looking at the job and responsibilities of Unix system administrator. Because it’s impos-
sible to instantly become a guru, we’ll start next hour by exploring the unsung resource
of online documentation and man pages.

Installing Unix 19

1

03 0672323982 CH01 6/25/02 10:52 AM Page 19

03 0672323982 CH01 6/25/02 10:52 AM Page 20

Hour
2 An Unsung Resource: Unix

Documentation 23

3 Disk Usage 41

4 File Ownership 67

PART II
Introduction to the
Filesystem

04 0672323982 pt2 6/18/02 1:59 PM Page 21

04 0672323982 pt2 6/18/02 1:59 PM Page 22

HOUR 2
An Unsung Resource:
Unix Documentation

The last hour discussed various nuances of Unix installation on smaller
computers. This hour starts you toward becoming a Unix system administra-
tion expert. Our goal for this hour is to explore the valuable online docu-
mentation that’s included with your Unix system. Along the way, we’ll read
through some shell scripts and Perl scripts, and fix a system bug, too.

In this hour you will learn the philosophy of digging, including

• How to use apropos to search through documentation

• How to find just the right command you need

• How to use the strings command to dig around binary files

The Philosophy of Digging
As promised in the Introduction, the fundamental approach to system
administration I’d like to teach you in this book is what I call The
Philosophy of Digging. It refers to the value of learning how to find things

05 0672323982 CH02 6/25/02 10:35 AM Page 23

in the Unix world, and how it’s ultimately more helpful than knowing commands
themselves.

24 Hour 2

There’s an adage about the two types of sysadmins: A wizard is someone
who knows how to do everything, and a guru is someone who knows how
to find the answer to everything. Which do you think is a better model
for you?

How can that be? Well, imagine this common scenario: You’ve been working with
Mandrake Linux on your home computer to learn the Unix operating system, and your
boss asks you to start maintaining a Red Hat Linux box. So far, so good. Three weeks
later, a new Chief Technology Officer is hired and she announces, “All servers will be
replaced with Sun Solaris systems forthwith!” Now you’re going to move into a com-
pletely new Unix environment. Worse, your son hacks your home computer and replaces
your trusty Mandrake Linux with FreeBSD, convinced that it’s superior.

In a situation like this, having memorized all the Linux commands and flags is going to
prove of limited value at best. But if you’ve learned a philosophy of digging, a strategy
of exploring the system starting with the man pages themselves, you’ll be able to get up
to speed on the new Unix flavors in remarkably little time.

So let’s see how that works in this chapter, as we begin to explore the online Unix docu-
mentation suite.

apropos: The Administrator’s Secret Weapon
One of the classic dilemmas that a system administrator faces in the world of Unix,
whether highly experienced or a neophyte, is to remember the name of the command that
does just what you want. Then, once you recall the command, you must remember the
exact sequence of flags and arguments that’ll bend the system to your will and accom-
plish your task.

The secret weapon that smart sysadmins use is the apropros command (also known as
man -k, because they’re the same thing). apropos works with a database of one-line
command summaries for the entire Unix system.

Task 2.1: apropos and the whatis Database
To search for commands related to a specific topic, type apropos followed by the word
you seek. It’ll quickly search a prebuilt database of command summaries (more than
15,000 of ‘em) and show you all the matches.

,
TA

SK

05 0672323982 CH02 6/25/02 10:35 AM Page 24

1. Let’s get started by looking for commands related to online documentation:
$ apropos help
help: nothing appropriate

Hmmm…This is a little puzzling, because there are a number of Unix commands
that contain the word “help” in their description, so there should be a number of
matches. If you do get a list of possible matches, congratulations, your vendor set
things up properly and you can skip the next few paragraphs, but don’t. Read it
instead; it’s an informative journey into the recesses of Unix.

Perhaps something’s wrong with this system configuration. Let’s dig around a bit,
shall we?

2. A quick check of the apropos man page gives us a hint:
$ man apropos
apropos(1) apropos(1)

NAME
apropos - search the whatis database for strings

SYNOPSIS
apropos keyword ...

DESCRIPTION
apropos searches a set of database files containing short

➥descriptions of system commands
for keywords and displays the result on the standard output.

SEE ALSO
whatis(1), man(1).

(END)

The critical part of this man page entry is the SEE ALSO section. Here it’s pointing
us to two other commands for more information: whatis and man. Because we
already know the basics of the man command, let’s have a peek at the whatis entry
to see what it contains.
$ man whatis
whatis(1) whatis(1)

NAME
whatis - search the whatis database for complete words.

An Unsung Resource: Unix Documentation 25

2

The command apropos is available on most Unix systems, and is often just an
alias to man -k. If it’s not on your system, you can create it by adding the
line alias apropos=’man -k \!’ to your .bashrc file.

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 25

SYNOPSIS
whatis keyword ...

DESCRIPTION
whatis searches a set of database files containing short

➥descriptions of system commands
for keywords and displays the result on the standard output.

➥ Only complete word matches
are displayed.

The whatis database is created using the command /usr/sbin/
➥makewhatis.

SEE ALSO
apropos(1), man(1).

(END)

There’s the clue we’re seeking: “The whatis database is created using the
command /usr/sbin/makewhatis.”

Rather than just run that command, however, let’s dig into it and see if we can fig-
ure out the name of the database file itself.

3. To see the contents (instructions) within a system program, the first step is to use
the file command, so we know what to expect:
$ file /usr/sbin/makewhatis
/usr/sbin/makewhatis: Bourne shell script text executable

Great! It’s a shell script, so we can just step through it and see what’s inside. Much
easier to deal with than a compiled binary (but we’ll look at digging through those
in a little while).
$ head /usr/sbin/makewhatis
#!/bin/sh
makewhatis aeb 010319 (from man-1.5i1)

program=`basename $0`

DEFMANPATH=/usr/share/man:/usr/man
DEFCATPATH=/var/cache/man:/usr/share/man/preformat:/usr/man/preformat:
➥/usr/share/man:/usr/man

AWK=/usr/bin/gawk
AWK=/bin/gawk

Following these few definitions (which might be prefaced by lots and lots of com-
ments or almost none, depending on your flavor of Unix) are many lines of shell
script code, and about 75 lines into the script is the following snippet:

26 Hour 2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 26

-u) if [-e /var/cache/man/whatis]; then
findarg=”-newer /var/cache/man/whatis”
update=1

fi
continue;;

Here we can see that this is part of a section of code that parses starting arguments.
The -u flag indicates that makewhatis should update the database with new com-
mands (it’s detailed in the script), so it’s unsurprising to find the script testing for
the existence of the whatis database.

And that’s what we’ve been seeking: The name of the database that is used by
makewhatis—and therefore by whatis and apropos—is /var/cache/man/whatis.

4. By contrast, Darwin (which, you’ll recall, is the Unix underneath Mac OS X) is
from the BSD Unix family, so it’s a bit different. First off, the man page for apro-
pos is more informative, with the following information included:
FILES

whatis.db name of the apropos database

SEE ALSO
man(1), whatis(1), whereis(1), makewhatis(8)

Not only does this establish the direct connection between apropos and the whatis
command, but it also points to the tool needed to make the database, and even tells
us that apropos uses the whatis.db file!

A quick man makewhatis reveals
SYNOPSIS

/usr/libexec/makewhatis [manpath]

Now we have the location of the command in Darwin (note how different the file
structure is!).

Interestingly, file reveals a surprising change:
$ file /usr/libexec/makewhatis
/usr/libexec/makewhatis: perl commands text

It’s a Perl script, rather than a Bourne shell script. For the last step, let’s look in the
Perl script to find the name and location of the database file.

This proves to be tricky. The closest you can find in the script directly is the fol-
lowing (quite a ways down in the code!):
sub variables {

$verbose = 0; # Verbose
$indent = 24; # indent for description
$outfile = 0; # Don’t write to ./whatis
$whatis_name = “whatis.db”; # Default name for DB
$append = 0; # Don’t delete old entries

An Unsung Resource: Unix Documentation 27

2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 27

if no argument for directories given
@defaultmanpath = (‘/usr/share/man’);

From this, you can imply that the database will end up being saved as
/usr/share/man/whatis.db.

5. A smarter way to ascertain the output filename is to simply log in as root (or use
su to change to root), then rebuild the database with the -v flag specified.
$ makewhatis –v
Open /usr/share/man/whatis.db.tmp
open manpath directory ``/usr/share/man’’
lots and lots of output as it lists each man page it finds and parses
sort -u > /usr/share/man/whatis.db.tmp
Rename /usr/share/man/whatis.db.tmp to /usr/share/man/whatis.db
2068 entries in /usr/share/man/whatis.db

Not only did this answer the question of “where’s the database for apropos?” but it
also built it!

Contrast the preceding output from Darwin with the following output from Red
Hat Linux:
/usr/sbin/makewhatis -v
about to enter /usr/share/man
adding ./uuidgen.1.gz
lots and lots and lots of output omitted
adding ./vacuum.l.gz
about to enter /usr/man
/usr/sbin/makewhatis: cd: /usr/man: No such file or directory

Ahhh…very interesting. The command failed on a stock RHL7.21 system. Having
to fix bugs and tweak the system just to get things to work in the first place is not
an uncommon occurrence in the world of Unix system administration.

So let’s fix this bug, shall we?

6. First off, it’s rather surprising that there isn’t a /usr/man directory, because that’s
part of standard (System V) Unix. Let’s have a peek to ensure that we’re reading
this properly:
$ ls –l /usr
total 152
drwxr-xr-x 2 root root 36864 Nov 21 14:51 bin
drwxr-xr-x 2 root root 4096 Feb 6 1996 dict
drwxr-xr-x 2 root root 4096 Feb 6 1996 etc
drwxr-xr-x 2 root root 4096 Nov 21 14:36 games
drwxr-xr-x 82 root root 8192 Nov 21 14:51 include
drwxr-xr-x 8 root root 4096 Nov 21 14:49 kerberos

28 Hour 2

1RHL7.2 is shorthand for Red Hat Linux release 7.2. This type of shorthand is very common in the Unix
world, and you should try to get used to seemingly cryptic acronyms. Very much part of the Unix cul-
ture!

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 28

drwxr-xr-x 71 root root 45056 Nov 21 14:51 lib
drwxr-xr-x 7 root root 4096 Nov 21 14:42 libexec
drwxr-xr-x 12 root root 4096 Nov 21 14:33 local
drwxr-xr-x 2 root root 16384 Nov 21 14:31 lost+found
drwxr-xr-x 2 root root 8192 Nov 27 06:05 sbin
drwxr-xr-x 135 root root 4096 Nov 21 14:51 share
drwxr-xr-x 3 root root 4096 Nov 21 14:50 src
lrwxrwxrwx 1 root root 10 Nov 21 14:33 tmp -> ../var/tmp
drwxr-xr-x 2 root root 4096 Nov 22 09:14 web
drwxr-xr-x 8 root root 4096 Nov 21 14:36 X11R6

Lots of stuff, but no man directory.

We have two ways of addressing this problem. The easy solution is to create
/usr/man as a directory and leave it empty. The more sophisticated solution, how-
ever, is to dig through the makewhatis shell script to see why it looks in /usr/man
in the first place, and teach it to ignore that directory.

The good news is that the more sophisticated solution is actually pretty easy. If you
flip back a page or two, you’ll see that at the very top of the script there’s a vari-
able DEFMANPATH that’s defined as

DEFMANPATH=/usr/share/man:/usr/man

My guess is that if we simply rewrite this as /usr/share/man and nothing else,
we’ll be golden and it’ll work.

An Unsung Resource: Unix Documentation 29

2

At this point you’re doubtless thinking “Huh? We’re just trying to find out
what commands are on my Unix system! Why are we having to reprogram
system shell scripts?” The answer to this conundrum is that, of course, the
life of a Unix system administrator is divided into on-task activity and subse-
quent off-task sidetracks. For most sysadmins, it’s probably about a 50/50
split between the two, but some days it’s undoubtedly going to be more like
25/75 or, worst of all, 0/100.

To some extent I’m leading you down the garden path here, too: It’s entirely
possible that your Unix system has the whatis database built and ready to
use. But if this isn’t broken, it’s a sure bet that something else will be!

The change is simple, and because I like to leave a trail of comments for later ref-
erence, I’m not going to simply delete the :/usr/man suffix on the DEFMANPATH
line, but instead change it as follows:

DEFMANPATH=/usr/share/man # also used to include “:/usr/man”

Now, with this modification, I run the mkwhatis command again on the Red Hat
Linux system and it works flawlessly! Hurray!

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 29

7. In contrast to both of these solutions, the Solaris system has a very different man
page for apropos, but the great news is that in the man page it states that “The
apropos utility displays the man page name, section number, and a short descrip-
tion for each man page whose NAME line contains a keyword. This information is
contained in the /usr/share/man/windex database created by catman(1M). If
catman(1M) was not run, or was run with the -n option, apropos fails.”

A pointer to the command needed to fix things is always appreciated, and this even
details the exact filename in question, too! Let’s pop over to catman and see what it
says on that man page:
$ man catman
NAME

catman - create the formatted files for the reference manual

SYNOPSIS
/usr/bin/catman [-c] [-n] [-p] [-t] [-w] [
-M directory] [-T macro-package] [sections]

DESCRIPTION
The catman utility creates the preformatted versions of the
online manual from the nroff(1) or sgml(5) input files.
This feature allows easy distribution of the preformatted
manual pages among a group of associated machines (for exam-
ple, with rdist(1)), since it makes the directories of pre-
formatted manual pages self-contained and independent of the
unformatted entries.

catman also creates the windex database file in the direc-
tories specified by the MANPATH or the -M option. The win-
dex database file is a three column list consisting of a
keyword, the reference page that the keyword points to, and
a line of text that describes the purpose of the utility or
interface documented on the reference page. Each keyword is
taken from the comma separated list of words on the NAME
line before the ‘-’ (dash). The reference page that the key-
word points to is the first word on the NAME line. The text
after the - on the NAME line is the descriptive text in the
third column. The NAME line must be immediately preceded by
the page heading line created by the .TH macro (see NOTES
for required format).

Each manual page is examined and those whose preformatted
versions are missing or out of date are recreated. If any
changes are made, catman recreates the windex database.

Seems reasonable enough. To build the database, run the catman command with
the -w flag. If there are no problems, there’s no output and everything should be
installed and ready to run. Let’s have a quick test:

30 Hour 2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 30

apropos solaris | wc -l
54

Great!

8. Now on any of our systems we can run the apropos command and find out what
commands are related to the topic help:
$ apropos help
B::Stackobj (3pm) - Helper module for CC backend
consolehelper (8) - A wrapper that helps console users run
➥system programs
forum (1) - Interactive Help for MRTG users
help [builtins] (1) - bash built-in commands, see bash(1)
help [faq] (1) - How to get help if you have problems with MRTG
LDP (7) - Intro to the Linux Documentation Project, with
➥help, guides and documents
mibhelp (1) - A Table of some interesting OIDs
Pod::ParseUtils (3pm) - helpers for POD parsing and conversion
QCharRef [qcharref] (3qt) - Helper class for
QToolTip [qtooltip] (3qt) - Tool tips (sometimes called balloon help)
➥for any widget or rectangular part of a widget
QXmlNamespaceSupport [qxmlnamespacesupport] (3qt) - Helper class for XML
➥readers which want to include namespace support
smbmnt (8) - helper utility for mounting SMB filesystems
userhelper (8) - A helper interface to pam

This is from Linux, and you can see that there are a number of commands. Notice
that they all have the letters h-e-l-p somewhere in their command or description
text, but they don’t all necessary relate to user-level help commands.

An Unsung Resource: Unix Documentation 31

2

As a reminder, the Unix man pages are broken into eight main categories:
1=user commands, 2=system maintenance commands, 3=system calls (for
programmers), 4=administration files, 5=miscellaneous, 6=games, 7=special
file formats, and 8=administrative commands.

Oftentimes you only want to see the interactive commands rather than the system
maintenance commands, and so on. One simple way to do that is to use egrep:
$ apropos help | egrep ‘(1|8)’
consolehelper (8) - A wrapper that helps console users run
➥system programs
forum (1) - Interactive Help for MRTG users
help [builtins] (1) - bash built-in commands, see bash(1)
help [faq] (1) - How to get help if you have problems with MRTG
mibhelp (1) - A Table of some interesting OIDs
smbmnt (8) - helper utility for mounting SMB filesystems
userhelper (8) - A helper interface to pam,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 31

A further nuance might be to feed this to sort such that it shows you all the sec-
tion 1 commands, then the section 8 commands, but I’ll leave that as an exercise
for you!

What started out as a simple task of learning how to use the apropos command rapidly
spun out of control, and ended up roaming far and wide as we found and fixed some sys-
tem configuration problems. This is very typical of your day-to-day experience as a sys-
tem administrator, as you’ll find out as you spend more time learning Unix from the
admin perspective.

Exploring the whatis Database
Now that we know how to build the whatis database, let’s spend a few minutes digging
inside of it to see what we can learn. Just a short additional sidetrack, I promise!

Task 2.2: What’s Inside the whatis Database
Being curious folk, we can’t leave the database alone without a little exploration, so let’s
have a peek.

1. The database itself is a regular text file, so we can use head to see what’s inside:
cd /var/cache/man
file whatis
whatis: ASCII English text
head whatis
411toppm (1) - convert Sony Mavica .411 image to PPM
a2p (1) - Awk to Perl translator
a2ps (1) - format files for printing on a PostScript
printer
ab (8) - Apache HTTP server benchmarking tool
abbrev [Text::Abbrev] (3pm) - create an abbreviation table from a list
abort (3) - cause abnormal program termination
ABORT [abort] (l) - Aborts the current transaction
abs (3) - compute the absolute value of an integer
accept (2) - accept a connection on a socket
access (2) - check user’s permissions for a file

Interesting, eh? This leads me to conclude that apropos is a synonym for grep -i,
and sure enough, grep -i help whatis produces the exact same results we saw
earlier. Try it!

2. More interestingly, we can now extract the different sections of the database and
see how many commands there are in each section.

To accomplish this, I want to split the line at the beginning parenthesis, then again
at the ending parenthesis, and leave just the value within. This can be done with

32 Hour 2

,

,

,
TA

SK
,

05 0672323982 CH02 6/25/02 10:35 AM Page 32

two calls to cut, the first specifying the open paren delimiter, the second the
closing paren. Here’s what the first invocation does:
cut -d\(-f2 < whatis | head –5
1) - convert Sony Mavica .411 image to PPM
1) - Awk to Perl translator
1) - format files for printing on a PostScript printer
8) - Apache HTTP server benchmarking tool
3pm) - create an abbreviation table from a list

and the second, added in the middle of the pipe:
cut -d\(-f2 < whatis | cut -d\) -f1 | head -5
1
1
1
8
3pm

Now, finally, just a call to sort to sort them all, and uniq with the -c flag to get a
final output count:
cut -d\(-f2 < whatis | cut -d\) -f1 | sort | uniq -c

14
1405 1

6 1m
39 1ssl

254 2
8272 3
400 3pm
335 3qt
657 3ssl
77 3t
61 3thr

3603 3x
36 4

146 5
1 5ssl
3 6

67 7
1 7ssl

380 8
67 l

446 n
1 Paranoia release III
1 xnmap

That’s your answer. Ignore the odd ones (for example, Paranoia release III),
and you can see that there are 1,405 section 1 commands, 380 section 8 com-
mands, and over 13,000 different commands and functions for system program-
mers on a Linux system. No wonder it’s not easy to program a Unix system!

An Unsung Resource: Unix Documentation 33

2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 33

This section is not only a good example of how you can combine Unix commands to
produce useful results, but how you can also get quite sidetracked. Even the author finds
it occasionally difficult to avoid poking around and learning more about the system!

Finding Commands
The apropos command offers a very helpful way to navigate through the man commands
based on the one-line command summaries, but there are other ways to explore the com-
mands available on your Unix system. Most notably, which will search your path and tell
you what file is to be executed for a given command name, and locate is a fast way to
try to match a pattern against a list of all filenames on your system.

The latter, however, is really a special purpose variation of the powerful general purpose
find command, which we’ll cover in greater detail later in the book.

Task 2.3: Which Command Are You Running?
The first step in debugging any problem in Unix is to ensure that your PATH is correct,
then to make sure that the version of the command you think you’re running is the ver-
sion that is being invoked.

All command shells build what’s called a hash table of commands, a quickly-searched
list of filenames located in each of the directories specified in the PATH environment vari-
able. If there are collisions (for example, two directories have the same filename), the
directory referenced earlier in the PATH wins.

34 Hour 2

It’s interesting to note that there are only 1,324 section 1 commands and a
grand total of 6,689 commands in Solaris, and an even more paltry 478 sec-
tion 1 commands and a grand total of 2,068 commands documented in the
whatis.db file on Darwin.

The characteristic of earlier PATH matches overriding later PATH entries is
exactly why having a PATH set up like PATH=.:other stuff is so danger-
ous: If you’re in a directory where there’s a fake version of, say, ls, you
could execute it without even realizing it. Why is that dangerous? Because
the fake ls could do something sneaky, like make a secret copy of the shell,
then chmod it to have it setuid for your account. The cracker comes along
some time later, and any time she wants to masquerade as you, she simply
runs that shell. This is what’s called a trojan horse hack.

,
TA

SK
,

05 0672323982 CH02 6/25/02 10:35 AM Page 34

1. Let’s start by finding out what our PATH is, and then seeing what version of man
we’re running when we use the man command:
echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/taylor/bin
which man
/usr/bin/man

You can see that our Linux path consists of /usr/local/bin, /bin, /usr/bin,
/usr/X11R6/bin (the X Window System files), and /home/taylor/bin (my per-
sonal additions to the Unix command world). Notice there’s no . entry, and that
my personal version of any command will not supplant the standard version
because my directory comes last in the PATH. To have it supplant built-in com-
mands, I’d need to have it appear first in the PATH instead.

2. Some versions of which know about aliases, whereas others don’t. Both Linux
and Darwin have an alias of ll=”ls -l”, but the difference in which output is
interesting:

Linux:
alias ll
alias ll=’/bin/ls -l’
which ll
which: no ll in (/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:
➥/home/taylor/bin)

Darwin:
alias ll
ls -lag !* | more
which ll
ll: aliased to ls -lag !* | more

Some of this output is directly related to what shell the user is running—often
C Shell (csh) will include alias parsing, whereas the Bourne-Again Shell (bash)
won’t.

Solaris behaves exactly like Linux in this example, happily displaying the alias for
ll, but with a which command that is unaware of shell aliases.

The puzzle here is that if we’re using Linux, we now have an example of a com-
mand that works—ll—but isn’t in our path. Most mysterious if you don’t remem-
ber the alias command, too.

3. But then again, maybe there is an ll command, and we’re just not seeing it with
the which command. To search quickly through all the filenames on the system, the
locate command is our choice; though like much of Unix, it takes a little bit of
thinking to figure out how to use it most appropriately:
locate ll | wc -l

4021

An Unsung Resource: Unix Documentation 35

2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 35

Alright, more than 4,000 filenames match the double-l sequence. Of course, you
might well have a different number due to the specific packages you opted to
install on your system. No worries! Instead, let’s try prefixing it with a slash:
locate /ll | wc -l

11

Eleven is a much more manageable number, so let’s see what they are:

locate /ll
/usr/share/doc/HTML/en/kdevelop/reference/C/CONTRIB/SNIP/ll_msort.c
/usr/share/doc/HTML/en/kdevelop/reference/C/CONTRIB/SNIP/ll_qsort.c
/usr/share/man/man2/llseek.2.gz
/usr/share/man/man3/llabs.3.gz
/usr/share/man/man3/llrint.3.gz
/usr/share/man/man3/llrintf.3.gz
/usr/share/man/man3/llrintl.3.gz
/usr/share/man/man3/llround.3.gz
/usr/share/man/man3/llroundf.3.gz
/usr/share/man/man3/llroundl.3.gz
/usr/share/man/mann/llength.n.gz

Interesting, but there’s no sign of an ll command in the entire system.

The locate command can also show you where commands you suspect are part of
Unix are located. For example:
locate chess
/usr/share/ghostscript/6.51/examples/chess.ps
/usr/share/licq/qt-gui/icons.computer/chess.xpm
locate cribbage
/home/taylor/bin/cribbage
/home/taylor/DEMO/Src/cribbage.c

Neat! As you can see, locate casts a net across the entire file system, including
individual user files. Very helpful.

36 Hour 2

Of course, there’s a security hole: I wasn’t user taylor when I did this
locate search, but it told me the names of files and directories within the
taylor account, even if they were otherwise shut off to me. That’s why
locate isn’t included with Solaris. Something to consider if you make
locate available on your system.

One of the first tasks of any system administrator is to be able to figure out what’s going
on when a user complains of a problem (or when encountering your own problem). To
do that, it’s critical to ascertain what command the user is invoking and whether that’s
the correct version for the system. That’s the province of the helpful which command.

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 36

When that fails, locate can be used to see if there’s a match, and if you really need to
roll out the power tools, find is a lifesaver, as you’ll see throughout this book.

Digging Around in Executable Binaries
The combination of which to identify commands, file to ascertain what kind of com-
mand it is, the man page, and even viewing the file itself (if it’s a script) can reveal a lot
about your system. Sometimes, though, the file in question might be a compiled binary,
and the source might not be handy. That’s where the strings command can be very
helpful.

Task 2.4: The strings Command
The strings command is an unsung hero of sysadmins, just as the file command is
such a winner, even though it’s rarely mentioned in system administration books. What
strings does is read through the contents of any file, looking for printable ASCII
sequences. If it finds one, it displays it on the screen.

Given this behavior, it’s quite easy to feed the output to grep and extract useful informa-
tion from the executable binary itself, including what configuration files it uses, and
more.

1. Let’s have a look at the man command itself. To start, I’ll use which to see where
the command lives, then I’ll use file to see whether it’s a script or executable:
which -a man
/usr/bin/man
file /usr/bin/man
/usr/bin/man: ELF 32-bit LSB executable, Intel 80386, version 1,
➥dynamically linked (uses shared libs), stripped

An Unsung Resource: Unix Documentation 37

2

In the world of Darwin, this same program is reported as Mach-O executable
ppc, whereas Solaris also uses the ELF (Executable and Linking Format)
binary format for executables.

Now that we know it’s a binary, let’s peek inside with the strings command:
strings /usr/bin/man | head
/lib/ld-linux.so.2
__gmon_start__
libc.so.6
strcpy
ioctl
getgid

,
TA

SK
,

05 0672323982 CH02 6/25/02 10:35 AM Page 37

printf
stdout
vsprintf
geteuid

Not too exciting, but if we grep this for the sequence conf…
strings /usr/bin/man | grep conf
[no configuration file]
/usr/share/misc/man.config
/usr/share/misc/man.conf
/usr/lib/man.config
/usr/lib/man.conf
/etc/man.conf
/etc/man.config
Reading config file %s
C file : use `file’ as configuration file

man-config.c: internal error: string %s not found
Unrecognized line in config file (ignored)
but the configuration file does not define COMPRESS.
Warning: cannot open configuration file %s
is not in the config file
is in the config file
Line too long in config file
Error parsing config file

This is the kind of output that can prove very useful. Here you can see that the man
command uses a configuration file, and that it can appear in any of a number of
different places:
/usr/share/misc/man.config
/usr/share/misc/man.conf
/usr/lib/man.config
/usr/lib/man.conf
/etc/man.conf
/etc/man.config

It would be a matter of a quick ls or two to find out which is the actual file on this
system; then we’d be learning how to configure man, even though the man page
only mentions the configuration file in passing.

Although the Unix documentation can reveal quite a bit about how to work with different
commands, sometimes popping open the proverbial hood to tinker on the engine is nec-
essary. With shell and Perl scripts, that’s easy, but if you encounter a compiled binary,
the strings command can be an invaluable addition to your toolbox!

38 Hour 2

,

,

05 0672323982 CH02 6/25/02 10:35 AM Page 38

Summary
This hour has focused on demonstrating how to use common Unix tools like grep, cut,
and head to fine-tune the online documentation tools. You have also seen how SEE ALSO
and FILES sections in man pages offer great assistance in figuring out how commands
work and how to configure them.

As somewhat of a sidetrack, you saw how commands rely on each other within Unix,
and how specifically the apropos command relies on the database that the whatis com-
mand uses, and is created by makewhatis. Building that database, we encountered an
error condition, diagnosed the problem, postulated a couple of possible solutions, and
implemented the best of them, permanently fixing the command.

Finally, the other important aspect of this chapter is that it demonstrates how this book is
focused on teaching you how to explore Unix and find solutions for yourself, rather than
listing all the command flags for each command, or even ensuring that every possible use
of every possible command has been enumerated.

This problem-solving orientation will prove a great boon as you go through these 24
hours’ worth of material, and you’ll have a much greater degree of comfort on new and
alien Unixes than if you memorized lots of Unix flavor-specific commands.

Q&A
Q Is it a wizard or a guru who knows how to find the answer to everything?

A A guru. A wizard is someone who can do things as if they’re magic, but can’t ever
teach anyone else what they’re doing.

Q Why do some Unix systems have a command apropos if it’s really just an alias
to the grep command?

A As is common with Unix, some development teams err on the side of offering
maximal usability, enabling users to just start typing and go, whereas others prefer
the simple elegance of core commands and nothing else.

Workshop
Quiz

1. No cheating now: What do you think the whatis command does?

2. Write an equivalent of whatis using grep. Think carefully about the transformation
you want to make to the given pattern before searching through the whatis data-
base.

An Unsung Resource: Unix Documentation 39

2

05 0672323982 CH02 6/25/02 10:35 AM Page 39

3. Are system administrators more likely to get sidetracked if they’re working on an
OS like Windows? Why, or why not?

4. What command is in the man pages section “Paranoia”?

5. How many section 1 commands do you have on your system? Can you think of
another way to figure that number out?

Answers
1. whatis summarizes in a single line of output the purpose of any Unix command

specified on the command line.

2. The equivalent of whatis floppy would be grep -iE ‘^floppy\(‘
/usr/man/whatis.db (the exact syntax might change based on where your system
stores the whatis database). Note that you need to construct a regular expression
that ensures whatis cp doesn’t match uucp or other commands containing the let-
ters cp. The -i flag ignores case, and the -E indicates that a regular expression will
follow.

3. Well, you can probably be sidetracked on any operating system if you’re the sort to
poke around and explore, but generally there’s so much power underneath the hood
on a typical Unix system that I think you’re more likely to get sidetracked than if
you’re in the constrained and confined world of Windows.

4. On Red Hat Linux 7.2, searching for Paranoia in the whatis.db database reveals
that it’s the cdparanoia command, which is described as “an audio CD-reading
utility which includes extra data verification features.”

5. One obvious strategy for this is grep ‘(1)’ /usr/man/whatis.db | wc -l, but
there are a variety of commands that are officially in section 1, but end up listed as
1L or 1B or some other such cryptic subsection. The best strategy, therefore, if you
want to exploit the whatis database, is to use grep ‘(1’ /usr/man/whatis.db |
wc -l. Another way to ascertain this number that’s even more direct is to ls
/usr/man/man1 | wc -l (though you’ll end up with more than you expect,
because some man pages are symbolically linked to more than one command name
for historical reasons).

In the next hour, you’ll learn how to explore the file allocation information within Unix
through use of the du and df commands. We’ll also look at how to create a simple shell
script that will report the size of every user’s home directory, sorted from largest to
smallest.

40 Hour 2

05 0672323982 CH02 6/25/02 10:35 AM Page 40

HOUR 3
Disk Usage

One of the most common problems that system administrators face in the
Unix world is disk space. Whether it’s running out of space, or just making
sure that no one user is hogging all your resources, exploring how the hard
disks are allocated and utilized on your system is a critical skill.

In this hour, you learn:

• How to look at disk usage with df and du

• How to simplify analysis with sort

• How to identify the biggest files and use diskhogs

Physical Disks and Partitions
In the last few years, hard disks have become considerably bigger than most
operating systems can comfortably manage. Indeed, most file systems have a
minimum size for files and a maximum number of files and/or directories
that can be on a single physical device, and it’s those constraints that slam
up against the larger devices.

06 0672323982 CH03 6/18/02 1:59 PM Page 41

As a result, most modern operating systems support taking a single physical disk and
splitting it into multiple virtual disks, or partitions. Windows and Macintosh systems
have supported this for a few years, but usually on a personal desktop system you don’t
have to worry about disks that are too big, or worse, running out of disk space and hav-
ing the system crash.

Unix is another beast entirely. In the world of Unix, you can have hundreds of different
virtual disks and not even know it—even your home directory might be spread across
two or three partitions.

One reason for this strategy in Unix is that running programs tend to leave log files, temp
files, and other detritus behind, and they can add up and eat a disk alive.

For example, on my main Web server, I have a log file that’s currently growing about
140K/day and is 19MB. Doesn’t sound too large when you think about 50GB disks for
$100 at the local electronics store, but having big disks at the store doesn’t mean that
they’re installed in your server!

In fact, Unix is very poorly behaved when it runs out of disk space, and can get suffi-
ciently corrupted enough that it essentially stops and requires an expert sysadmin to res-
urrect. To avoid this horrible fate, it’s crucial to keep an eye on how big your partitions
are growing, and to know how to prune large files before they become a serious problem.

Task 3.1: Exploring Partitions
Enough chatter, let’s get down to business, shall we?

1. The command we’ll be exploring in this section is df, a command that reports disk
space usage. Without any arguments at all, it offers lots of useful information:
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda5 380791 108116 253015 30% /
/dev/sda1 49558 7797 39202 17% /boot
/dev/sda3 16033712 62616 15156608 1% /home
none 256436 0 256436 0% /dev/shm
/dev/sdb1 17245524 1290460 15079036 8% /usr
/dev/sdb2 253871 88384 152380 37% /var

Upon first glance, it appears that I have five different disks connected to this sys-
tem. In fact, I have two.

2. I’m sure you already know this, but it’s worth pointing out that all devices hooked
up to a computer, whether for input or output, require a specialized piece of code
called a device driver to work properly. In the Windows world, they’re typically
hidden away, and you have no idea what they’re even called.

42 Hour 3

,
TA

SK
,

06 0672323982 CH03 6/18/02 1:59 PM Page 42

Device drivers in Unix, however, are files. They’re special files, but they show up
as part of the file system along with your e-mail archive and login scripts.

That’s what the /dev/sda5 is on the first line, for example. We can have a look at
this file with ls to see what it is:
ls -l /dev/sda5
brw-rw---- 1 root disk 8, 5 Aug 30 13:30 /dev/sda5

The leading b is something you probably haven’t seen before. It denotes that this
device is a block-special device.

Disk Usage 43

3

If you ever have problems with a device, use ls -l to make sure it’s config-
ured properly. If the listing doesn’t begin with a c (for a character special
device) or a b (for a block-special device), something’s gone wrong and you
need to delete it and rebuild it with mknod.

Here’s a nice thing to know: The device names in Unix have meaning. In fact, sd
typically denotes a SCSI device, and the next letter is the major device number (in
this case an a), and the last letter is the minor device number (5).

From this information, we can glean that there are three devices with the same
major number but different minor numbers (sda1, sda3, and sda5), and two
devices with a different major number and different minor numbers (sdb1 and
sdb2).

In fact, the first three are partitions on the same hard disk, and the second two are
partitions on a different disk.

3. How big is the disk? Well, in some sense it doesn’t really matter in the world of
Unix, because Unix only cares about the partitions that are assigned to it. If the
second disk is 75GB, but we only have a 50MB partition that’s available to Unix,
the vast majority of the disk is untouchable and therefore doesn’t matter.

If you really want to figure it out, you could add up the size of each partition (the
Available column), but let’s dissect a single line of output first, so you can see
what’s what:

/dev/sda5 380791 108116 253015 30% /

Here you’re shown the device ID (sda5), then the size of the partition (in 1K
blocks within Linux). This partition is 380,791KB, or 380MB. The second number
shows how much of the partition is used—108,116KB—and the next how much is
available—253,015KB. This translates to 30% of the partition in use and 70%
available.

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 43

The last value is perhaps the most important because it indicates where the
partition has been connected to the Unix file system. Partition sda5 is the root
partition, as can be seen by the /.

4. Let’s look at another line from the df output:

/dev/sda3 16033712 62616 15156608 1% /home

Notice here that the partition is considerably bigger! In fact, it’s 16,033,712KB, or
roughly 16GB (15.3GB for purists). Unsurprisingly, very little of this is used—less
than 1%—and it’s mounted to the system as the /home directory.

In fact, look at the mount points for all the partitions for just a moment:
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda5 380791 108116 253015 30% /
/dev/sda1 49558 7797 39202 17% /boot
/dev/sda3 16033712 62616 15156608 1% /home
none 256436 0 256436 0% /dev/shm
/dev/sdb1 17245524 1290460 15079036 8% /usr
/dev/sdb2 253871 88389 152375 37% /var

We have the topmost root partition (sda5); then we have additional small partitions
for /boot, /usr, and /var. The two really big spaces are /home, where all the indi-
vidual user files will live, and /usr, where I have all the Web sites on this server
stored.

This is a very common configuration, where each area of Unix has its own sandbox
to play in, as it were. This lets you, the sysadmin, manage file usage quite easily,
ensuring that running out of space in one directory (say, /home) doesn’t affect the
overall system.

5. Solaris 8 has a df command that offers very different information, focused more on
files and the file system than on disks and disk space used:
df
/ (/dev/dsk/c0d0s0): 827600 blocks 276355 files
/boot (/dev/dsk/c0d0p0:boot): 17584 blocks -1 files
/proc (/proc): 0 blocks 1888 files
/dev/fd (fd): 0 blocks 0 files
/etc/mnttab (mnttab): 0 blocks 0 files
/var/run (swap): 1179992 blocks 21263 files
/tmp (swap): 1179992 blocks 21263 files
/export/home (/dev/dsk/c0d0s7): 4590890 blocks 387772 files

44 Hour 3

Those purists among you will realize the error of this calculation:
380,791/1024 is not a simple division by 1,000. So everyone is happy, that
reveals that this partition is exactly 371.8MB.

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 44

It’s harder to see what’s going on, but notice that the order of information pre-
sented on each line is the mount point, the device identifier, the size of the device
in 1K blocks, and the number of files on that device.

There’s no way to see how much of the disk is in use and how much space is left
available, so the default df output isn’t very helpful for a system administrator.

Fortunately, there’s the -t totals option that offers considerably more helpful infor-
mation:
df -t
/ (/dev/dsk/c0d0s0): 827600 blocks 276355 files

total: 2539116 blocks 320128 files
/boot (/dev/dsk/c0d0p0:boot): 17584 blocks -1 files

total: 20969 blocks -1 files
/proc (/proc): 0 blocks 1888 files

total: 0 blocks 1932 files
/dev/fd (fd): 0 blocks 0 files

total: 0 blocks 258 files
/etc/mnttab (mnttab): 0 blocks 0 files

total: 0 blocks 1 files
/var/run (swap): 1180000 blocks 21263 files

total: 1180008 blocks 21279 files
/tmp (swap): 1180000 blocks 21263 files

total: 1180024 blocks 21279 files
/export/home (/dev/dsk/c0d0s7): 4590890 blocks 387772 files

total: 4590908 blocks 387776 files

Indeed, when I’ve administered Solaris systems, I’ve usually set up an alias
df=”df -t” to always have this more informative output.

Disk Usage 45

3

If you’re trying to analyze the df output programmatically so you can flag
when disks start to get tight, you’ll immediately notice that there’s no per-
centile-used summary in the df output in Solaris. Extracting just the relevant
fields of information is quite tricky too, because you want to glean the num-
ber of blocks used from one line, then the number of blocks total on the
next. It’s a job for Perl or awk (or even a small C program).

6. By way of contrast, Darwin has a very different output for the df command:
df
Filesystem 512-blocks Used Avail Capacity Mounted on
/dev/disk1s9 78157200 29955056 48202144 38% /
devfs 73 73 0 100% /dev
fdesc 2 2 0 100% /dev
<volfs> 1024 1024 0 100% /.vol

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 45

/dev/disk0s8 53458608 25971048 27487560 48% /Volumes/
➥Macintosh HD
automount -fstab [244] 0 0 0 100% /Network/
➥Servers
automount -static [244] 0 0 0 100% /automount

About as different as it could be, and notice that it suggests that just about every-
thing is at 100% capacity. Uh oh!

A closer look, however, reveals that the devices at 100% capacity are devfs,
fdesc, <volfs>, and two automounted services. In fact, they’re related to the Mac
OS running within Darwin, and really the only lines of interest in this output are
the two proper /dev/ devices:
/dev/disk1s9 78157200 29955056 48202144 38% /
/dev/disk0s8 53458608 25971048 27487560 48% /Volumes/ Macintosh HD

The first of these, identified as /dev/disk1s9, is the hard disk where Mac OS X is
installed, and it has 78,157,200 blocks. However, they’re not 1K blocks as in
Linux, they’re 512-byte blocks, so you need to factor that in when you calculate
the size in GB:

78,157,200 ÷ 2 = 39,078,600 1K blocks

39,078,600 ÷ 1024 = 38,162.69MB

38,162.69MB ÷ 1024 = 37.26GB

In fact, this is a 40GB disk, so we’re right on with our calculations, and we can see
that 38% of the disk is in use, leaving us with 48202144 ÷ (2 × 1024 × 1024) =
22.9GB.

46 Hour 3

Wondering what happened to the 2.78GB of space that is the difference
between the manufacturer’s claim of a 40GB disk and the reality of my only
having 37.26GB? The answer is that there’s always a small percentage of disk
space consumed by formatting and disk overhead. That’s why manufacturers
talk about “unformatted capacity.”

Using the same math, you can calculate that the second disk is 25GB, of which
about half (48%) is in use.

7. Linux has a very nice flag with the df command worth mentioning: Use -h and
you get:
df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda5 372M 106M 247M 30% /
/dev/sda1 48M 7.7M 38M 17% /boot

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 46

/dev/sda3 15G 62M 14G 1% /home
none 250M 0 250M 0% /dev/shm
/dev/sdb1 16G 1.3G 14G 8% /usr
/dev/sdb2 248M 87M 148M 37% /var

A much more human-readable format. Here you can see that /home and /usr both
have 14GB unused. Lots of space!

This section has given you a taste of the df command, but we haven’t spent too much
time analyzing the output and digging around trying to ascertain where the biggest files
live. That’s what we’ll consider next.

A Closer Look with du
The df command is one you’ll use often as you get into the groove of system administra-
tion work. In fact, some sysadmins have df e-mailed to them every morning from cron
so they can keep a close eye on things. Others have it as a command in their .login or
.profile configuration file so they see the output every time they connect.

Once you’re familiar with how the disks are being utilized in your Unix system, however,
it’s time to dig a bit deeper into the system and ascertain where the space is going.

Task 3.2: Using du to Ascertain Directory Sizes
The du command shows you disk usage, helpfully enough, and it has a variety of flags
that are critical to using this tool effectively.

1. There won’t be a quiz on this, but see if you can figure out what the default output
of du is here when I use the command while in my home directory:
du
12 ./.kde/Autostart
16 ./.kde
412 ./bin
36 ./CraigsList
32 ./DEMO/Src
196 ./DEMO
48 ./elance
16 ./Exchange
1232 ./Gator/Lists
4 ./Gator/Old-Stuff/Adverts
8 ./Gator/Old-Stuff
1848 ./Gator/Snapshots
3092 ./Gator
160 ./IBM/i
136 ./IBM/images
10464 ./IBM
76 ./CBO_MAIL

Disk Usage 47

3

,

,

,
TA

SK
,

06 0672323982 CH03 6/18/02 1:59 PM Page 47

52 ./Lynx/WWW/Library/vms
2792 ./Lynx/WWW/Library/Implementation
24 ./Lynx/WWW/Library/djgpp
2872 ./Lynx/WWW/Library
2880 ./Lynx/WWW
556 ./Lynx/docs
184 ./Lynx/intl
16 ./Lynx/lib
140 ./Lynx/lynx_help/keystrokes
360 ./Lynx/lynx_help
196 ./Lynx/po
88 ./Lynx/samples
20 ./Lynx/scripts
1112 ./Lynx/src/chrtrans
6848 ./Lynx/src
192 ./Lynx/test
13984 ./Lynx
28484 .

If you guessed that it’s the size of each directory, you’re right! Notice that the sizes
are cumulative because they sum up the size of all files and directories within a
given directory. So the Lynx directory is 13,984 somethings, which includes the
subdirectory Lynx/src (6,848), which itself contains Lynx/src/chrtrans (1112).

The last line is a summary of the entire current directory (.), which has a com-
bined size of 28484.

And what is that pesky unit of measure? Unfortunately, it’s different in different
implementations of Unix so I always check the man page before answering this
question. Within RHL7.2, the man page for du reveals that the unit of measure isn’t
specifically stated, frustratingly enough. However, it shows that there’s a -k flag
that forces the output to 1KB blocks, so a quick check
du -k | tail -1
28484 .

produces the same number as the preceding, so we can safely conclude that the
unit in question is a 1KB block. Therefore, you can see that Lynx takes up 13.6MB
of space, and that the entire contents of my home directory consume 27.8MB. A
tiny fraction of the 15GB /home partition!

48 Hour 3

Of course, I can recall when I splurged and bought myself a 20MB external
hard disk for an early computer. I couldn’t imagine that I could even fill it,
and it cost more than $200 too! But I’ll try not to bore you with the reminis-
cence of an old-timer, okay?

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 48

2. The recursive listing of subdirectories is useful information, but the higher up you
go in the file system, the less helpful that information proves to be. Imagine if you
were to type du / and wade through the output:
du / | wc -l

6077

That’s a lot of output!

Fortunately, one of the most useful flags to du is -s, which summarizes disk usage
by only reporting the files and directories that are specified, or . if none are
specified:
du -s
28484 .
du -s *
4 badjoke
4 badjoke.rot13
412 bin
4 browse.sh
4 buckaroo
76 CBO_MAIL
36 CraigsList
196 DEMO
48 elance
84 etcpasswd
16 Exchange
3092 Gator
4 getmodemdriver.sh
4 getstocks.sh
4 gettermsheet.sh
0 gif.gif
10464 IBM
13984 Lynx

Note in the latter case that because I used the * wildcard, it matched directories
and files in my home directory. When given the name of a file, du dutifully reports
the size of that file in 1KB blocks. You can force this behavior with the -a flag if
you want.

Disk Usage 49

3

The summary vanishes from the bottom of the du output when I specify
directories as parameters, and that’s too bad, because it’s very helpful. To
request a summary at the end, simply specify the -c flag.

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 49

3. While we’re looking at the allocation of disk space, don’t forget to check the root
level, too. The results are interesting:
du -s /
1471202 /

Oops! We don’t want just a one-line summary, but rather all the directories con-
tained at the topmost level of the file system. Oh, and do make sure that you’re
running these as root, or you’ll see all sorts of odd errors. Indeed, even as root the
/proc file system will sporadically generate errors as du tries to calculate the size
of a fleeting process table entry or similar. You can ignore errors in /proc in any
case.

One more try:
du -s /*
5529 /bin
3683 /boot
244 /dev
4384 /etc
29808 /home
1 /initrd
67107 /lib
12 /lost+found
1 /misc
2 /mnt
1 /opt
1 /proc
1468 /root
8514 /sbin
12619 /tmp
1257652 /usr
80175 /var
0 /web

That’s what I seek. Here you can see that the largest directory by a significant mar-
gin is /usr, weighing in at 1,257,652KB.

Rather than calculate sizes, I’m going to use another du flag (-h) to ask for human-
readable output:
du -sh /*
5.4M /bin
3.6M /boot
244k /dev
4.3M /etc
30M /home
1.0k /initrd
66M /lib
12k /lost+found
1.0k /misc

50 Hour 3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 50

2.0k /mnt
1.0k /opt
1.0k /proc
1.5M /root
8.4M /sbin
13M /tmp
1.2G /usr
79M /var
0 /web

Much easier. Now you can see that /usr is 1.2GB in size, which is quite a lot!

4. Let’s use du to dig into the /usr directory and see what’s so amazingly big,
shall we?
du -sh /usr/*
121M /usr/bin
4.0k /usr/dict
4.0k /usr/etc
40k /usr/games
30M /usr/include
3.6M /usr/kerberos
427M /usr/lib
2.7M /usr/libexec
224k /usr/local
16k /usr/lost+found
13M /usr/sbin
531M /usr/share
52k /usr/src
0 /usr/tmp
4.0k /usr/web
103M /usr/X11R6

It looks to me like /usr/share is responsible for more than half the disk space
consumed in /usr, with /usr/bin and /usr/X11R6 the next largest directories.

You can easily step into /usr/share and run du again to see what’s inside, but
before we do, it will prove quite useful to take a short break and talk about sort
and how it can make the analysis of du output considerably easier.

5. Before we leave this section to talk about sort, though, let’s have a quick peek at
du within the Darwin environment:
du -sk *
5888 Desktop
396760 Documents
84688 Library
0 Movies
0 Music
31648 Pictures
0 Public
32 Sites

Disk Usage 51

3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 51

Notice that I’ve specified the -k flag here to force 1KB blocks (similar to df, the
default for du is 512-byte blocks). Otherwise, it’s identical to Linux.

The du output on Solaris is reported in 512-byte blocks unless, like Darwin, you
force 1KB blocks with the -k flag:
du -sk *
1 bin
1689 boot
4 cdrom
372 dev
13 devices
2363 etc
10 export
0 home
8242 kernel
1 lib
8 lost+found
1 mnt
0 net
155306 opt
1771 platform
245587 proc
5777 sbin
32 tmp
25 TT_DB
3206 users
667265 usr
9268 var
0 vol
9 xfn

This section has demonstrated the helpful du command, showing how -a, -s, and -h can
be combined to produce a variety of different output. You’ve also seen how successive du
commands can help you zero in on disk space hogs, foreshadowing the diskhogs shell
script we’ll be developing later in this hour.

Simplifying Analysis with sort
The output of du has been very informative, but it’s difficult to scan a listing to ascertain
the four or five largest directories, particularly as more and more directories and files are
included in the output. The good news is that the Unix sort utility is just the tool we
need to sidestep this problem.

52 Hour 3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 52

Task 3.3: Piping Output to sort
Why should we have to go through all the work of eyeballing page after page of listings
when there are Unix tools to easily let us ascertain the biggest and smallest? One of the
great analysis tools in Unix is sort, even though you rarely see it mentioned in other
Unix system administration books.

1. At its most obvious, sort alphabetizes output:
cat names
Linda
Ashley
Gareth
Jasmine
Karma
sort names
Ashley
Gareth
Jasmine
Karma
Linda

No rocket science about that! However, what happens if the output of du is fed to
sort?
du -s * | sort
0 gif.gif
10464 IBM
13984 Lynx
16 Exchange
196 DEMO
3092 Gator
36 CraigsList
412 bin
48 elance
4 badjoke
4 badjoke.rot13
4 browse.sh
4 buckaroo
4 getmodemdriver.sh
4 getstocks.sh
4 gettermsheet.sh
76 CBO_MAIL
84 etcpasswd

Sure enough, it’s sorted. But probably not as you expected—it’s sorted by the
ASCII digit characters! Not good.

Disk Usage 53

3

,
TA

SK
,

06 0672323982 CH03 6/18/02 1:59 PM Page 53

2. That’s where the -n flag is a vital addition: With -n specified, sort will assume
that the lines contain numeric information and sort them numerically:
du -s * | sort -n
0 gif.gif
4 badjoke
4 badjoke.rot13
4 browse.sh
4 buckaroo
4 getmodemdriver.sh
4 getstocks.sh
4 gettermsheet.sh
16 Exchange
36 CraigsList
48 elance
76 CBO_MAIL
84 etcpasswd
196 DEMO
412 bin
3092 Gator
10464 IBM
13984 Lynx

A much more useful result, if I say so myself!

3. The only thing I’d like to change in the sorting here is that I’d like to have the
largest directory listed first, and the smallest listed last.

The order of a sort can be reversed with the -r flag, and that’s the magic needed:
du -s * | sort -nr
13984 Lynx
10464 IBM
3092 Gator
412 bin
196 DEMO
84 etcpasswd
76 CBO_MAIL
48 elance
36 CraigsList
16 Exchange
4 gettermsheet.sh
4 getstocks.sh
4 getmodemdriver.sh
4 buckaroo
4 browse.sh
4 badjoke.rot13
4 badjoke
0 gif.gif

One final concept and we’re ready to move along. If you want to only see the five
largest files or directories in a specific directory, all that you’d need to do is pipe
the command sequence to head:

54 Hour 3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 54

du -s * | sort -nr | head -5
13984 Lynx
10464 IBM
3092 Gator
412 bin
196 DEMO

This sequence of sort|head will prove very useful later in this hour.

A key concept with Unix is understanding how the commands are all essentially Lego
pieces, and that you can combine them in any number of ways to get exactly the results
you seek. In this vein, sort -rn is a terrific piece, and you’ll find yourself using it again
and again as you learn more about system administration.

Identifying the Biggest Files
We’ve explored the du command, sprinkled in a wee bit of sort for zest, and now it’s
time to accomplish a typical sysadmin task: Find the biggest files and directories in a
given area of the system.

Task 3.4: Finding Big Files
The du command offers the capability to either find the largest directories, or the combi-
nation of the largest files and directories, but it doesn’t offer a way to examine just files.
Let’s see what we can do to solve this problem.

1. First off, it should be clear that the following command will produce a list of the
five largest directories in my home directory:
du | sort -rn | head -5
28484 .
13984 ./Lynx
10464 ./IBM
6848 ./Lynx/src
3092 ./Gator

In a similar manner, the five largest directories in /usr/share and in the overall
file system (ignoring the likely /proc errors):
du /usr/share | sort -rn | head -5
543584 /usr/share
200812 /usr/share/doc
53024 /usr/share/gnome
48028 /usr/share/gnome/help
31024 /usr/share/apps
du / | sort -rn | head -5
1471213 /
1257652 /usr
543584 /usr/share

Disk Usage 55

3

,

,

,
TA

SK
,

06 0672323982 CH03 6/18/02 1:59 PM Page 55

436648 /usr/lib
200812 /usr/share/doc

All well and good, but how do you find and test just the files?

2. The easiest solution is to use the find command. find will be covered in greater
detail later in the book, but for now, just remember that find lets you quickly
search through the entire file system, and performs the action you specify on all
files that match your selection criteria.

For this task, we want to isolate our choices to all regular files, which will omit
directories, device drivers, and other unusual file system entries. That’s done with
-type f.

In addition, we’re going to use the -printf option of find to produce exactly the
output that we want from the matched files. In this instance, we’d like the file size
in kilobytes, and the fully qualified filename. That’s surprisingly easy to accom-
plish with a printf format string of %k %p.

56 Hour 3

Don’t worry too much if this all seems like Greek to you right now. Hour 12,
“Managing Disk Quotas,” will talk about the many wonderful features of
find. For now, just type in what you see here in the book.

Put all these together and you end up with the command

find . -type f -printf “%k %p\n”

The two additions here are the ., which tells find to start its search in the current
directory, and the \n sequence in the format string, which is translated into a car-
riage return after each entry.

3. Let’s see it in action:
find . -type f -printf “%k %p\n” | head
4 ./.kde/Autostart/Autorun.desktop
4 ./.kde/Autostart/.directory
4 ./.emacs
4 ./.bash_logout
4 ./.bash_profile
4 ./.bashrc
4 ./.gtkrc
4 ./.screenrc
4 ./.bash_history
4 ./badjoke

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 56

You can see where the sort command is going to prove helpful! In fact, let’s pref-
ace head with a sort -rn to identify the ten largest files in the current directory, or
the following:
find . -type f -printf “%k %p\n” | sort -rn | head
8488 ./IBM/j2sdk-1_3_0_02-solx86.tar
1812 ./Gator/Snapshots/MAILOUT.tar.Z
1208 ./IBM/fop.jar
1076 ./Lynx/src/lynx
1076 ./Lynx/lynx
628 ./Gator/Lists/Inactive-NonAOL-list.txt
496 ./Lynx/WWW/Library/Implementation/libwww.a
480 ./Gator/Lists/Active-NonAOL-list.txt
380 ./Lynx/src/GridText.c
372 ./Lynx/configure

Very interesting information to be able to ascertain, and it’ll even work across the
entire file system (though it might take a few minutes, and, as usual, you might see
some /proc hiccups):
find / -type f -printf “%k %p\n” | sort -rn | head
26700 /usr/lib/libc.a
19240 /var/log/cron
14233 /var/lib/rpm/Packages
13496 /usr/lib/netscape/netscape-communicator
12611 /tmp/partypages.tar
9124 /usr/lib/librpmdb.a
8488 /home/taylor/IBM/j2sdk-1_3_0_02-solx86.tar
5660 /lib/i686/libc-2.2.4.so
5608 /usr/lib/qt-2.3.1/lib/libqt-mt.so.2.3.1
5588 /usr/lib/qt-2.3.1/lib/libqt.so.2.3.1

Recall that the output is in 1KB blocks, so libc.a is pretty huge at more than
26MB!

4. You might find that your version of find doesn’t include the snazzy new GNU
find -printf flag (neither Solaris nor Darwin do, for example). If that’s the case,
you can at least fake it in Darwin, with the somewhat more convoluted
find . -type f -print0 | xargs -0 ls -s | sort -rn | head
781112 ./Documents/Microsoft User Data/Office X Identities/Main Identity/
➥Database
27712 ./Library/Preferences/Explorer/Download Cache
20824 ./.Trash/palmdesktop40maceng.sit
20568 ./Library/Preferences/America Online/Browser Cache/IE Cache.waf
20504 ./Library/Caches/MS Internet Cache/IE Cache.waf
20496 ./Library/Preferences/America Online/Browser Cache/IE Control

➥Cache.waf
20496 ./Library/Caches/MS Internet Cache/IE Control Cache.waf
20488 ./Library/Preferences/America Online/Browser Cache/cache.waf
20488 ./Library/Caches/MS Internet Cache/cache.waf
18952 ./.Trash/Palm Desktop Installer/Contents/MacOSClassic/Installer

Disk Usage 57

3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 57

Here we not only have to print the filenames and feed them to the xargs command,
we also have to compensate for the fact that most of the filenames will have spaces
within their names, which will break the normal pipe. Instead, find has a -print0
option that terminates each filename with a null character. Then the -0 flag indi-
cates to xargs that it’s getting null-terminated filenames.

58 Hour 3

Actually, Darwin doesn’t really like this kind of command at all. If you want
to ascertain the largest files, you’d be better served to explore the -ls
option to find and then an awk to chop out the file size:

find /home -type f -ls | awk ‘{ print $7” “$11 }’

Of course, this is a slower alternative that’ll work on any Unix system, if you
really want.

5. To just calculate the sizes of all files in a Solaris system, you can’t use printf or -
print0, but if you omit the concern for filenames with spaces in them (consider-
ably less likely on a more traditional Unix environment like Solaris anyway),
you’ll find that the following works fine:
find / -type f -print | xargs ls -s | sort -rn | head
55528 /proc/929/as
26896 /proc/809/as
26832 /usr/j2se/jre/lib/rt.jar
21888 /usr/dt/appconfig/netscape/.netscape.bin
21488 /usr/java1.2/jre/lib/rt.jar
20736 /usr/openwin/lib/locale/zh_TW.BIG5/X11/fonts/TT/ming.ttf
18064 /usr/java1.1/lib/classes.zip
16880 /usr/sadm/lib/wbem/store
16112 /opt/answerbooks/english/solaris_8/SUNWaman/books/REFMAN3B/index/
➥index.dat
15832 /proc/256/as

Actually, you can see that the memory allocation space for a couple of running
processes has snuck into the listing (the /proc directory). We’ll need to screen
those out with a simple grep -v:
find / -type f -print | xargs ls -s | sort -rn | grep -v ‘/proc’ | head
26832 /usr/j2se/jre/lib/rt.jar
21888 /usr/dt/appconfig/netscape/.netscape.bin
21488 /usr/java1.2/jre/lib/rt.jar
20736 /usr/openwin/lib/locale/zh_TW.BIG5/X11/fonts/TT/ming.ttf
18064 /usr/java1.1/lib/classes.zip
16880 /usr/sadm/lib/wbem/store
16112 /opt/answerbooks/english/solaris_8/SUNWaman/books/REFMAN3B/index/
➥index.dat
12496 /usr/openwin/lib/llib-lX11.ln

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 58

12160 /opt/answerbooks/english/solaris_8/SUNWaman/books/REFMAN3B/ebt/
➥REFMAN3B.edr
9888 /usr/j2se/src.jar

The find command is somewhat like a Swiss army knife. It can do hundreds of different
tasks in the world of Unix. For our use here, however, it’s perfect for analyzing disk
usage on a per-file basis.

Keeping Track of Users: diskhogs
Let’s put all the information in this hour together and create an administrative script
called diskhogs. When run, this script will report the users with the largest /home direc-
tories, and then report the five largest files in each of their homes.

Task 3.5: This Little Piggy Stayed Home?
This is the first shell script presented in the book, so a quick rule of thumb: Write your
shell scripts in sh rather than csh. It’s easier, more universally recognized, and most shell
scripts you’ll encounter are also written in sh. Also, keep in mind that just about every
shell script discussed in this book will expect you to be running as root, since they’ll
need access to the entire file system for any meaningful or useful system administration
functions.

In this book, all shell scripts will be written in sh, which is easily verified by the fact that
they all have

#!/bin/sh

as their first line.

1. Let’s put all this together. To find the five largest home directories, you can use

du –s /home/* | sort –rn | cut –f2 | head –5

For each directory, you can find the largest files within by using

find /home/loginID -type f -printf “%k %p\n” | sort -rn | head

Therefore, we should be able to identify the top home directories, then step one-
by-one into those directories to identify the largest files in each. Here’s how that
code should look:
for dirname in `du -s /home/* | sort -rn | cut -f2- | head -5`
do
echo “”
echo Big directory: $dirname
echo Four largest files in that directory are:
find $dirname -type f -printf “%k %p\n” | sort -rn | head -4

done
exit 0

Disk Usage 59

3

,

,

,
TA

SK
,

06 0672323982 CH03 6/18/02 1:59 PM Page 59

2. This is a good first stab at this shell script. Let’s save it as diskhogs.sh, run it and
see what we find:
sh diskhogs.sh
Big directory: /home/staging
Four largest files in that directory are:
423 /home/staging/waldorf/big/DSCF0165.jpg
410 /home/staging/waldorf/big/DSCF0176.jpg
402 /home/staging/waldorf/big/DSCF0166.jpg
395 /home/staging/waldorf/big/DSCF0161.jpg

Big directory: /home/chatter
Four largest files in that directory are:
1076 /home/chatter/comics/lynx
388 /home/chatter/logs/access_log
90 /home/chatter/logs/error_log
64 /home/chatter/responding.cgi

Big directory: /home/cbo
Four largest files in that directory are:
568 /home/cbo/financing.pdf
464 /home/cbo/investors/CBO-plan.pdf
179 /home/cbo/Archive/cbofinancial-modified-files/CBO Website.zip
77 /home/cbo/Archive/cbofinancial-modified-files/CBO Financial
➥Incorporated .doc

Big directory: /home/sherlockworld
Four largest files in that directory are:
565 /home/sherlockworld/originals-from gutenberg.txt
56 /home/sherlockworld/speckled-band.html
56 /home/sherlockworld/copper-beeches.html
54 /home/sherlockworld/boscombe-valley.html

Big directory: /home/launchline
Four largest files in that directory are:
151 /home/launchline/logs/access_log
71 /home/launchline/x/submit.cgi
71 /home/launchline/x/admin/managesubs.cgi
64 /home/launchline/x/status.cgi

As you can see, the results are good, but the order of the output fields is perhaps
less than we’d like. Ideally, I’d like to have all the disk hogs listed, then their
largest files listed. To do this, we’ll have to either store all the directory names in a
variable that we then parse subsequently, or we’d have to write the information to a
temporary file.

Because it shouldn’t be too much information (five directory names), we’ll save the
directory names as a variable. To do this, we’ll use the nifty backquote notation.

60 Hour 3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 60

Here’s how things will change. First off, let’s load the directory names into the new
variable:

bigdirs=”`du –s /home/* | sort –rn | cut –f2- | head –5`”

Then we’ll need to change the for loop to reflect this change, which is easy:

for dirname in $bigdirs ; do

Notice I’ve also pulled the do line up to shorten the script. Recall that a semicolon
indicates the end of a command in a shell script, so we can then pull the next line
up without any further ado.

3. Now let’s not forget to output the list of big directories before we list the big files
per directory. In total, our script now looks like this:
echo “Disk Hogs Report for System `hostname`”

bigdirs=”`du -s /home/* | sort -rn | cut -f2- | head -5`”

echo “The Five biggest home directories are:”
echo $bigdirs

for dirname in $bigdirs ; do
echo “”
echo Big directory: $dirname
echo Four largest files in that directory are:
find $dirname -type f -printf “%k %p\n” | sort -rn | head -4

done

exit 0

This is quite a bit closer to the finished product, as you can see from its output:
Disk Hogs Report for System staging.intuitive.com
The Five biggest home directories are:
/home/staging /home/chatter /home/cbo /home/sherlockworld /home/launchline

Big directory: /home/staging
Four largest files in that directory are:
423 /home/staging/waldorf/big/DSCF0165.jpg
410 /home/staging/waldorf/big/DSCF0176.jpg
402 /home/staging/waldorf/big/DSCF0166.jpg
395 /home/staging/waldorf/big/DSCF0161.jpg

Big directory: /home/chatter
Four largest files in that directory are:

Disk Usage 61

3

Unix old-timers often refer to backquotes as backticks, so a wizened Unix
admin might well say “stick the dee-ewe in backticks” at this juncture.

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 61

1076 /home/chatter/comics/lynx
388 /home/chatter/logs/access_log
90 /home/chatter/logs/error_log
64 /home/chatter/responding.cgi

Big directory: /home/cbo
Four largest files in that directory are:
568 /home/cbo/financing.pdf
464 /home/cbo/investors/CBO-plan.pdf
179 /home/cbo/Archive/cbofinancial-modified-files/CBO Website.zip
77 /home/cbo/Archive/cbofinancial-modified-files/CBO Financial
➥Incorporated .doc

Big directory: /home/sherlockworld
Four largest files in that directory are:
565 /home/sherlockworld/originals-from gutenberg.txt
56 /home/sherlockworld/speckled-band.html
56 /home/sherlockworld/copper-beeches.html
54 /home/sherlockworld/boscombe-valley.html

Big directory: /home/launchline
Four largest files in that directory are:
151 /home/launchline/logs/access_log
71 /home/launchline/x/submit.cgi
71 /home/launchline/x/admin/managesubs.cgi
64 /home/launchline/x/status.cgi

This is a script you could easily run every morning in the wee hours with a line in
cron (which we’ll explore in great detail in Hour 15, “Running Jobs in the
Future”), or you can even put it in your .profile to run automatically each time
you log in.

4. One final nuance: To have the output e-mailed to you, simply append the
following:

| mail –s “Disk Hogs Report” your-mailaddr

If you’ve named this script diskhogs.sh like I have, you could have the output e-
mailed to you (as root) with

sh diskhogs.sh | mail –s “Disk Hogs Report” root

Try that, then check root’s mailbox to see if the report made it.

5. For those of you using Solaris, Darwin, or another Unix, the nifty -printf option
probably isn’t available with your version of find. As a result, the more generic
version of this script is rather more complex, because we not only have to sidestep
the lack of -printf, but we also have to address the challenge of having embedded
spaces in most directory names (on Darwin). To accomplish the latter, we use sed
and awk to change all spaces to double underscores and then back again when we
feed the arg to the find command:

62 Hour 3

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 62

#!/bin/sh
echo “Disk Hogs Report for System `hostname`”

bigdir2=”`du -s /Library/* | sed ‘s/ /_/g’ | sort -rn | cut -f2- | head
➥-5`”

echo “The Five biggest library directories are:”
echo $bigdir2

for dirname in $bigdir2 ; do
echo “”
echo Big directory: $dirname
echo Four largest files in that directory are:
find “`echo $dirname | sed ‘s/_/ /g’`” -type f -ls | \
awk ‘{ print $7” “$11 }’ | sort -rn | head -4

done

exit 0

The good news is that the output ends up being almost identical, which you can
verify if you have an OS X or other BSD system available.

Of course, it would be smart to replace the native version of find with the more
sophisticated GNU version, but changing essential system tools is more than most
Unix users want!

Disk Usage 63

3

If you want to explore upgrading some of the Unix tools in Darwin to take
advantage of the sophisticated GNU enhancements, then you’d do well to
start by looking at http://www.osxgnu.org/ for ported code. The site also
includes download instructions.

If you’re on Solaris or another flavor of Unix that isn’t Mac OS X, check out
the main GNU site for tool upgrades at http://www.gnu.org/.

This shell script evolved in a manner that’s quite common for Unix tools—it started out
life as a simple command line; then as the sophistication of the tool increased, the com-
plexity of the command sequence increased to where it was too tedious to type in
directly, so it was dropped into a shell script. Shell variables then offered the capability
to save interim output, fine-tune the presentation, and more, so we exploited it by build-
ing a more powerful tool. Finally, the tool itself was added to the system as an auto-
mated monitoring task by adding it to the root cron job.

,

,

06 0672323982 CH03 6/18/02 1:59 PM Page 63

Summary
This hour has not only shown you two of the basic Unix commands for analyzing disk
usage and utilization, but it’s also demonstrated the evolution and development of a use-
ful administrative shell script, diskhogs.

This sequence of command-to-multistage command-to-shell script will be repeated again
and again as you learn how to become a powerful system administrator.

Q&A
Q Why are some Unix systems built around 512-byte blocks, whereas others are

built around 1024-byte blocks?

A This is all because of the history and evolution of Unix systems. When Unix was
first deployed, disks were small, and it was important to squeeze as many bytes out
of the disk as possible. As a result, the file system was developed with a fundamen-
tal block size of 512 bytes (that is, the space allocated for files was always in 512-
byte chunks). As disks became bigger, millions of 512-byte blocks began to prove
more difficult to manage than their benefit of allowing more effective utilization of
the disk. As a result, the block size doubled to 1KB and has remained there to this
day. Some Unix systems have stayed with the 512-byte historical block size,
whereas others are on the more modern 1KB block size.

Q Do all device names have meaning?

A As much as possible, yes. Sometimes you can’t help but end up with a
/dev/fd13x4s3, but even then there’s probably a logical explanation behind the
naming convention.

Q If there’s a flag to du that causes it to report results in 1KB blocks on a system
that defaults to 512-byte blocks, why isn’t there a flag on 1KB systems to
report in 512-byte blocks?

A Ah, you expect everything to make sense? Maybe you’re in the wrong field after
all.…

Workshop
Quiz

1. Why do most Unix installations organize disks into lots of partitions, rather than a
smaller number of huge physical devices?

2. When you add up the size of all the partitions on a large hard disk, there’s always
some missing space. Why?

64 Hour 3

06 0672323982 CH03 6/18/02 1:59 PM Page 64

3. If you see devices /dev/sdb3, /dev/sdb4, and /dev/sdc1, what’s a likely guess
about how many physical hard disks are referenced?

4. Both Solaris and Darwin offer the very helpful -k flag to the df command. What
does it do, and why would it be useful?

5. Using the -s flag to ls, the -rn flags to sort, and the -5 flag to head, construct a
command line that shows you the five largest files in your home directory.

6. What do you think would happen to our script if a very large file was accidentally
left in the /home directory overnight?

Answers
1. By dividing a disk into multiple partitions, you have created a more robust system

because one partition can fill without affecting the others.

2. The missing space is typically allocated for low-level disk format information. On
a typical 10GB disk, perhaps as much as two to four percent of the disk space
might not be available after the drive is formatted.

3. This probably represents two drives: /dev/sdb and /dev/sdc.

4. The -k flag makes a system that defaults to 512-byte blocks report file sizes in
1KB block sizes.

5. ls -s $HOME | sort -rn | head -5.

6. The script as written would flag the very large file as one of the largest home direc-
tories, then would fail when it tried to analyze the files within. It’s an excellent
example of the need for lots of error condition code and some creative thought
while programming.

The next hour will continue to build the foundations of sysadmin knowledge with the
oft-convoluted file ownership model. This will include digging into both the passwd and
groups files and learning how to safely change them to create a variety of different per-
mission scenarios.

Disk Usage 65

3

06 0672323982 CH03 6/18/02 1:59 PM Page 65

06 0672323982 CH03 6/18/02 1:59 PM Page 66

HOUR 4
File Ownership

After you’ve wrestled with how to figure out how much disk space you have
and how to manage it (Hour 3, “Disk Usage”), the next logical topic is how
to change the ownership of files and directories. Although this might seem
like a simple topic, this hour demonstrates some of the nuances of file man-
agement necessary for a Unix file and system administrator.

In this hour, you will learn

• To use commands like ls and chmod to work with file and directory
ownership

• The intricacies of the /etc/passwd file

• The concepts of Unix groups and /etc/group

Starting at the Beginning: Permission
Strings

Any discussion of file and directory ownership must begin with a primer on
how to use the ls command to ascertain the owner, group, and permissions
associated with a specific file. A discussion of permission strings, however,

07 0672323982 CH04 6/18/02 2:05 PM Page 67

naturally expands to cover a variety of additional topics, including umask, chmod, and
more.

Task 4.1: The Basics of File Permissions
To start at the beginning, all directories in Unix are treated as if they were files. Similar
to files, directories also have a user owner and group owner, and similar to files, groups
have a finite number of possible permissions. Both files and directories have their per-
missions split into three categories: user, group, and others.

1. To start, here’s a long-format listing of a few files and directories:
$ ls -laF
total 172
drwxrw---- 3 taylor coders 4096 Jan 7 21:35 ./
drwxr-x--- 13 taylor coders 4096 Jan 7 21:35 ../
-rw-rw---- 1 taylor coders 263 Dec 5 05:12 snapshot.sh
-rw-rw---- 1 taylor coders 153600 Dec 5 05:12 sourcefiles.cpio
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 Src/

The permission string is, of course, the sequence of dashes, r, w, and x at the
beginning of each file listed. The owner of each file (or directory) is listed, then the
group. In this case, notice that all files are associated with account taylor and
group coders.

The .. (parent) directory is an interesting example of permission strings because it
offers read, write, and execute permission (rwx) to the owner of the directory (tay-
lor), read and execute permission to other members of the group coders, and no
access to anyone else on the system.

2. To change file permissions, use the chmod command. Although you can specify a
target octal permission (for example, 0750), it’s probably easiest to use mnemonic
change notation instead. To fix the peculiar permissions of the current directory, for
example:

chmod u+x .

says “user plus execute” (user = file owner, but the o notation is for others, con-
fusingly).

3. To be able to experiment, two useful Unix commands should be highlighted: touch
and mkdir. touch updates the last-modified-time of a specific file or directory, but
if the file doesn’t exist, touch creates an empty file. mkdir, of course, makes direc-
tories.

A quick example. Note the default permissions for the new file and directory that
are set up:

68 Hour 4

,
TA

SK
,

07 0672323982 CH04 6/18/02 2:05 PM Page 68

$ ls
snapshot.sh sourcefiles.cpio Src/
$ touch testfile
$ mkdir testdir
$ ls -alF
total 176
drwxrw---- 4 taylor coders 4096 Jan 7 21:47 ./
drwxr-x--- 13 taylor coders 4096 Jan 7 21:35 ../
-rw-rw---- 1 taylor coders 263 Dec 5 05:12 snapshot.sh
-rw-rw---- 1 taylor coders 153600 Dec 5 05:12 sourcefiles.cpio
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 Src/
drwxrwxr-x 2 taylor coders 4096 Jan 7 21:47 testdir/
-rw-rw-r-- 1 taylor coders 0 Jan 7 21:47 testfile

4. The default permissions for files and directories are specified by the value of the
umask setting. As a user you probably don’t have to worry too much about your
umask setting, but as a system administrator, you’ll probably want to figure out a
preferred value, and then set that in a shared configuration file like /etc/profile.

A quick peek in /etc/profile shows that there’s no explicit setting for umask, so
we’re getting the default, as is every other user who logs in to the system. To ascer-
tain your own default value, simply type umask at the shell prompt:
$ umask
002

If through analysis of your user base, it makes sense to have the default permission
be read + write + execute for the owner, read + execute for the group, and nothing
for everyone else, it would be time to modify the umask setting.

5. You’ll need to stick with me for this explanation, because umask values are the
exact octal opposite of the permissions you seek. Octal values range from 0–7, and
each value represents a unique permission, as shown in Table 4.1.

TABLE 4.1 Octal Permission Values

Octal Value Permission umask Opposite

0 no access allowed 7

1 execute only 6

2 write only 5

3 write + execute 4

4 read only 3

5 read + execute 2

6 read + write 1

7 read + write + execute 0

File Ownership 69

4

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 69

Working with this, the permission represented by the permission string -rwx r-x
--- can also therefore be conveyed as 750. The umask to produce this default per-
mission is its inverse: 027.

70 Hour 4

The most common umask values are 002, 022, and 027, which translate
(thanks to Table 4.1) as “rwx for owner and group, r-x for others,” “rwx for
owner, r-x for group and others,” and “rwx for owner, r-x for group, and no
access for others.”

It’s worth noting also that although most files don’t need execute permission, your
best bet is to specify a umask that allows it, and let the individual file creation pro-
grams (vi, for example) figure out what settings they need. These umasks are
changed with, simply enough, umask newvalue, as in umask 022.

File ownership in Unix is really most akin to a multifaceted diamond. One facet is file
permission, with its umask settings and chmod values. Other facets are the owner and
group settings, and that’s what we’ll explore next.

Ownership and /etc/passwd
The next concept we need to explore is how file ownership works in Unix. Fortunately,
this is straightforward and it all revolves around the entries in the /etc/passwd file.

Task 4.2: Understanding /etc/passwd
All files and directories have a pair of integer values associated with them representing
the owner ID and group ID. In fact, your account itself has two similar numeric IDs
associated with it (your so-called user ID, or UID, and your group ID or GID). Those are
the numbers that are used to tag all the files that you own so the system knows what’s
what.

1. To start, find out not only what your user ID and group ID are, but what groups
you’re in as well. You can use id to do so:
$ id
uid=502(taylor) gid=502(coders) groups=502(coders),4(adm)

In this output you can see that my account has a UID of 502, and a GID of 502. In
addition, it shows me that I am not only a member of the group coders but also
have been added to adm, group 4.

,

,

,
TA

SK
,

07 0672323982 CH04 6/18/02 2:05 PM Page 70

2. User accounts are defined in the /etc/passwd file, and here’s what they look like:
$ tail /etc/passwd
radvd:x:75:75:radvd user:/:/bin/false
postgres:x:26:26:PostgreSQL Server:/var/lib/pgsql:/bin/bash
apache:x:48:48:Apache:/var/www:/bin/false
squid:x:23:23::/var/spool/squid:/dev/null
named:x:25:25:Named:/var/named:/bin/false
pcap:x:77:77::/var/arpwatch:/bin/nologin
mthorne:x:500:500:Matt Thorne:/home/mthorne:/bin/bash
mdella:x:501:501:Marcos R. Della:/home/mdella:/bin/csh
taylor:x:502:502:Dave Taylor:/home/taylor:/bin/bash

We’ll examine each of these fields in the next hour, but for the purposes of file per-
missions, it’s important that we recognize that fields are separated by colons, and
that the first field is the account name, the third is the UID, and fourth is the GID.

To split those out is a quick task for awk:
$ awk -F: ‘{print $1” has UID=”$3” and GID=”$4}’ < /etc/passwd
root has UID=0 and GID=0
bin has UID=1 and GID=1
daemon has UID=2 and GID=2
adm has UID=3 and GID=4
lp has UID=4 and GID=7
sync has UID=5 and GID=0
shutdown has UID=6 and GID=0
halt has UID=7 and GID=0
mail has UID=8 and GID=12
news has UID=9 and GID=13
uucp has UID=10 and GID=14
operator has UID=11 and GID=0
games has UID=12 and GID=100
gopher has UID=13 and GID=30
ftp has UID=14 and GID=50
nobody has UID=99 and GID=99
mailnull has UID=47 and GID=47
rpm has UID=37 and GID=37
xfs has UID=43 and GID=43
ntp has UID=38 and GID=38
rpc has UID=32 and GID=32
gdm has UID=42 and GID=42
rpcuser has UID=29 and GID=29
nfsnobody has UID=65534 and GID=65534
nscd has UID=28 and GID=28
ident has UID=98 and GID=98
radvd has UID=75 and GID=75
postgres has UID=26 and GID=26
apache has UID=48 and GID=48
squid has UID=23 and GID=23
named has UID=25 and GID=25
pcap has UID=77 and GID=77

File Ownership 71

4

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 71

mthorne has UID=500 and GID=500
mdella has UID=501 and GID=501
taylor has UID=502 and GID=502

By convention, UIDs lower than 100 are system accounts or system IDs and should
be ignored. The only exception is UID=0, which is the root or superuser account.
You want to keep track of that because anyone with that ID can ignore all file per-
missions and edit, change, and even delete any file they’d like.

3. A simple awk command to use occasionally to keep track of these UID=0
accounts—since a sysadmin can always set up any number of different accounts
with a given UID, and UID=0 is obviously the most important to watch—is

awk -F: ‘{ if ($3 == ‘0’) print $0 }’ /etc/passwd

Your output should be a single line: the root account. If there are other matches,
you need to immediately look into it and ascertain why there’s another superuser
account. (We’ll explore this issue further in Hour 5, “Working with User
Accounts.”)

4. To change the owner UID of a file or directory, use the chown command. To
demonstrate, let’s try to change the ownership of the testfile file created earlier
to games (which you can see in the earlier listing is UID=12):
$ chown games testfile
chown: changing ownership of `testfile’: Operation not permitted

This error is good news, in fact. This means that Red Hat Linux 7.2 is one of the
Unix systems available that prevents users from changing the ownership of their
own files. Why? Because otherwise there’s a really sneaky way that users can cir-
cumvent quotas. They could change the ownership of a very large file (an MP3
archive, for example) to a+rwx (giving everyone read, write, and execute access),
then changing ownership to another user ID. When the quota system analyzes disk
usage by UID, the huge file shows up as being owned by someone else. When the
user wants to return to their ownership, they copy it into a new filename (which
they own by default), and delete the version that had been recorded as owned by
the other user. Tricky, eh?

72 Hour 4

Both Solaris and Darwin have a similar restriction on chown usage by regular
users, so this sneaky trick must be more popular than I thought!

Good news or not, this means that it’s time to become root to be able to change
ownership. This can be done a variety of different ways, but I typically use su,
which, without any arguments, spawns a subshell as UID=0, after prompting for
the root account password.

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 72

$ su
Password:
bash-2.05# chown games testfile
bash-2.05# ls -laF
total 176
drwxrw---- 4 taylor coders 4096 Jan 7 21:47 ./
drwxr-x--- 13 taylor coders 4096 Jan 7 22:27 ../
-rw-rw---- 1 taylor coders 263 Dec 5 05:12 snapshot.sh
-rw-rw---- 1 taylor coders 153600 Dec 5 05:12 sourcefiles.cpio
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 Src/
drwxrwxr-x 2 taylor coders 4096 Jan 7 21:47 testdir/
-rw-rw-r-- 1 games coders 0 Jan 7 21:47 testfile

As you can see, as root I can change ownership of a file with nary a complaint or
warning.

5. An interesting observation is that although the Unix system displays the UID by
account name, it’s really only storing it by account ID. Which means, if user
mdella were to ask me, as sysadmin, to change his login account name to marcos,
all I’d have to do is change the first word of the account-information line in
/etc/passwd, and all the file listings would magically change as well.

For example, if I change taylor to davet in the password file:

davet:x:502:502:Dave Taylor:/home/taylor:/bin/bash

then the very same ls command has different results:
ls -laF
total 176
drwxrw---- 4 davet coders 4096 Jan 7 21:47 ./
drwxr-x--- 13 davet coders 4096 Jan 7 22:27 ../
-rw-rw---- 1 davet coders 263 Dec 5 05:12 snapshot.sh
-rw-rw---- 1 davet coders 153600 Dec 5 05:12 sourcefiles.cpio
drwxrw---- 2 davet coders 4096 Dec 5 05:12 Src/
drwxrwxr-x 2 davet coders 4096 Jan 7 21:47 testdir/
-rw-rw-r-- 1 games coders 0 Jan 7 21:47 testfile

Working with account IDs in Unix is fairly straightforward, and if you’re already work-
ing on a Unix system, it was doubtless a simple review. Unix handles groups in a way
that is quite helpful, but understood much less. That’s what we’ll explore next.

Understanding Unix Groups and /etc/group
To fully understand Unix groups, it’s helpful to take some time to talk about the histori-
cal roots of the Unix operating system. Unix was developed at AT&T Bell Telephone
Labs (also known as Bell Labs, now a core part of Lucent Corporation) during a period
when all computers were shared by multiple users. In the jargon of the time, Unix is a
multiuser, multitasking operating system.

File Ownership 73

4

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 73

One of the challenges of multiuser systems is file permission, and a popular research
operating system at the time that had gained considerable attention at Bell Telephone
Labs (BTL) was Multics. Developed originally by BTL, the Massachusetts Institute of
Technology, and General Electric (BTL later dropped out of the project), Multics was an
astonishingly complex multiuser system that had a highly sophisticated security model,
based on concentric circles of access to files, peripherals, and applications.

Brian Kernighan and Ken Thompson, the inventors of the Unix system, had helped with
Multics before BTL quit, and although they liked many of its capabilities, they disliked
its complexity. The Unix security model, therefore, has an approximately similar concept
of circles of access, but in a much simpler manner.

74 Hour 4

It’s worth mentioning that the name Unix is a bit of a poke at Multics.
UN-IX, MULT-ICS. The saying at Bell Labs used to be “Unix is one of
whatever Multics was many of.” Learn more, if you’re curious, at
http://www.multicians.org/

It’s not entirely true that files can only have one owner and group. Creating
a hard link to a file can enable the new name to be assigned a different
owner and/or group. Yet there’s still only one file on the system, so no addi-
tional disk space has been consumed. This is a very important concept for
system administrators who are going to develop more sophisticated access
control methods on their system.

On first glance, the Unix security model seems to be three levels of access: owner,
group, and everyone else. A glimmer of how this can be more complex was suggested
earlier when I used the id command and learned that I was in two groups, not one.
Therefore, although files, programs, or directories can only have a single owner and
group, a user can be a member of many groups and thereby end up with access privi-
leges that represent the union of all the individual permissions.

For our purposes, let’s start by exploring standard Unix groups, then go from there.

Task 4.3: Groups and the /etc/group file
Every user account is assigned what’s called a default group. On many modern Unix
systems, the use of groups has become so uncommon that by default every user gets his
own group, effectively negating a powerful characteristic of the Unix operating system
itself.

,
TA

SK

07 0672323982 CH04 6/18/02 2:05 PM Page 74

1. Look at the last ten lines of the /etc/passwd file for a moment, running it through
the awk filter, shown earlier in this hour:
$ awk -F: ‘{print $1” has UID=”$3” and GID=”$4}’ < /etc/passwd | tail
radvd has UID=75 and GID=75
postgres has UID=26 and GID=26
apache has UID=48 and GID=48
squid has UID=23 and GID=23
named has UID=25 and GID=25
pcap has UID=77 and GID=77
mthorne has UID=500 and GID=500
mdella has UID=501 and GID=501
taylor has UID=502 and GID=502

Notice that every UID has a corresponding GID, and that no two accounts share a
default group.

I think this is somewhat silly. It’s akin to buying a Ferrari and never putting it in
high gear, or a multifunction stereo and only listening to AM radio. (Well, maybe
that’s a bit of an exaggeration!)

Since mthorne and taylor are both administrators, it would actually make more
sense to have them in the same administrative group on this system. mdella, by
contrast, is a regular user and should not be included in the sysadmin group.

2. To change who is in what group, it’s time to delve into the /etc/group file. Let’s
start by examining the file (which does have a tendency to vary in format from fla-
vor to flavor, in case yours isn’t exactly the same):
$ head /etc/group
root:x:0:root
bin:x:1:root,bin,daemon
daemon:x:2:root,bin,daemon
sys:x:3:root,bin,adm
adm:x:4:root,adm,daemon,taylor
tty:x:5:
disk:x:6:root
lp:x:7:daemon,lp
mem:x:8:
kmem:x:9:

As you can see, the file format is quite similar to the /etc/passwd file examined
earlier. In this case, the format for each line is

account name : encrypted password : group ID : member list

The first thing to notice is that an encrypted password value of x denotes that
there’s a shadow password file stored elsewhere on the system—for security rea-
sons—that has the actual encrypted password string. The next hour explores the
password’s /etc/shadow file, but for groups, the relevant group file is

File Ownership 75

4

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 75

/etc/gshadow. Before we look at that, however, just observe that the first group—
root—is group ID=0, and has one member: account root. The second, group bin,
has three members, adm has four, and so on.

3. A user can be moved from one default group to another by changing the number
associated with his default group in the /etc/passwd file, as you might expect.

Adding a user to additional groups is most efficiently done by editing the group
file itself. On Linux, there’s a simple tool vigr (vi group) that enables you to
safely edit the /etc/group file without worrying about another sysadmin making
changes underfoot. If you have that on your system, I recommend using it.
Otherwise, you can directly edit the file with the editor of your choice and if you’re
the only admin, you should be safe.

To demonstrate, I’m going to add user taylor to the administrative group wheel by
simply appending the login ID taylor to the line.

Before the change, wheel looks like this:
grep wheel /etc/group
wheel:x:10:root

and after the change:
grep wheel /etc/group
wheel:x:10:root,taylor

Now, when user taylor logs in, the id command reports something slightly
different:
$ id
uid=502(taylor) gid=502(coders) groups=502(coders),4(adm),10(wheel)

Voilà! Now taylor is a member of three groups.

76 Hour 4

The wheel group is an interesting one: On most Unixes, only users who are
part of the group wheel can use the su command to switch user accounts
without logging out.

Users can temporarily join a group with the newgrp command, though they’ll need
to know the group password if one has been set. (Groups have random, impossible-
to-guess passwords by default, by the way.)

A good philosophy to follow is to create mnemonic groups for the teams in your organi-
zation, and add and delete members of the group to reflect the current membership.
Then, the group members are free to create directories and allow limited access to pro-
grams and files without worries about unauthorized access.

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 76

Using Groups to Control Access
As a demonstration of how to work with groups in Unix, let’s control access to the
printer on this system. We’re going to change permissions on the printing application to
only allow access to members of the lp group. To do this, we’re going to add a password
to the lp group, then change the permissions of the lp binary to match.

Task 4.4: Access Control with Groups
Using groups to control access to the lp command proves an informative and illustrative
example. I should let you know up front that a more common solution to this problem is
to rename the lp command something like lp.authorized, then create a shell script
called lp that checks user ID against a list of valid, authorized users.

The downside of the authorization list, of course, is that it must be maintained. Creating
an lp group is more elegant in many ways because the administrator needs simply to
give out the password and a user is authorized. If you want to disable a single user, how-
ever, it’s a bit of a problem.

1. The first step is to make sure that there’s an lp group in the /etc/group file.
Easily done with grep, fortunately:
grep lp /etc/group
lp:x:7:daemon,lp

Looks good. Now let’s add user mdella to the list to ensure that he can print when-
ever he wants without fuss. This can be done in a variety of ways, but the group
editing utility vigr is really the optimal solution. So, that’ll let me change the line
above (in the non-shadow groups file) to
grep lp /etc/group
lp:x:7:daemon,lp,mdella

2. Setting the password for a group can be a very hard task on most Unix systems.
Linux has the helpful gpasswd program that enables you to specify the password
for a group, but most Unixes have no equivalent. As a result you are left changing
the password of a regular user account, then copying-and-pasting the encrypted
password string into the group file. Ugh.

Making this even more complex, modern Unixes use a shadow password file,
meaning that the passwords themselves (encrypted) are kept in a different file than
the account information. With the group file, passwords are stored in
/etc/gshadow. By default, the lp group password is left blank (unmatchable):
grep lp /etc/gshadow
lp:::daemon,lp

File Ownership 77

4

,
TA

SK
,

07 0672323982 CH04 6/18/02 2:05 PM Page 77

We’ll want to edit this file by hand to add the new group member. Then, rather than
try to add the new encrypted password by hand—a tricky proposition—and since
we have the gpasswd command, let’s use it to set the password for the lp group:
gpasswd lp
Changing the password for group lp
New Password:
Re-enter new password:
grep lp /etc/group
lp:x:7:daemon,lp,mdella

Notice that there are no changes in the /etc/group file. The shadow password file
looks a bit different, however:
grep -C lp /etc/gshadow
tty:::
disk:::root
lp:0UexIr.hI7TDY::daemon,lp,mdella
mem:::
kmem:::

78 Hour 4

A really handy flag for grep is -C (on most modern Unixes), causing the com-
mand to show you the context of your matches. By default two lines before
and after the line that matched are included in the output.

3. Time to modify the lp command itself. I’ll use the which command to ensure that
I’m finding the official copy:
which lp
/usr/bin/lp
ls -l /usr/bin/lp
lrwxrwxrwx 1 root root 3 Nov 21 14:36 /usr/bin/lp -> lpr

Aha! Turns out that the lp command is symbolically linked to lpr. So, it’s the lpr
command that really must be changed.
which lpr
/usr/bin/lpr
ls -l /usr/bin/lpr
-rwxr-xr-x 1 lp lp 408536 Aug 10 18:32 /usr/bin/lpr

Conveniently, the command is already owned by the group lp, so the change
required is simply a matter of the permissions.

A moment’s thought should reveal that the desired permissions are read + execute
for members of group lp, and no access permission for anyone else. The chmod
command can make this change in one easy step:

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 78

chmod o-rx /usr/bin/lpr
ls -l /usr/bin/lpr
-rwxr-x--- 1 lp lp 408536 Aug 10 18:32 /usr/bin/lpr

Done!

4. To test this new configuration, let’s see if user mdella can execute the lp com-
mand:
$ ls | lp
$

Looks like it worked with nary a hitch.

How about user taylor, who isn’t part of the lp group?
$ id
uid=502(taylor) gid=502(coders) groups=502(coders),4(adm),10(wheel)
$ ls | lp
bash: /usr/bin/lp: Permission denied

That’s what we want to have occur—the system rejected the print request because
user taylor isn’t part of the lp group, and therefore doesn’t have permission to run
the lpr program.

5. To get permission, the user has to know the password and change to the lp group
by using the newgrp command:
$ newgrp lp
Password:
$ id
uid=502(taylor) gid=7(lp) groups=502(coders),4(adm),10(wheel)

As you can see, newgrp spawns a new subshell for the user that has the requested
group as the primary GID. This does not, however, mean that taylor is part of
group lp permanently. Just temporarily. Dangerously, any files or directories cre-
ated while in this subshell will have lp as the group owner, however. Beware so
that doesn’t trip you up.
$ ls | lp
$

That’s exactly the solution we were hoping to create.

Using groups to control access to applications is a great demonstration of the unheralded
power of Unix group permissions. The actual implementation of groups within the vari-
ous programs that comprise the Unix system varies, however. If you find that your explo-
rations come to an occasional dead end, I encourage you to focus on using groups for file
and directory access instead. It’s a much more common approach.

File Ownership 79

4

,

,

07 0672323982 CH04 6/18/02 2:05 PM Page 79

Summary
This hour has focused on how file and directory permissions relate to the contents of the
/etc/passwd and, especially, /etc/group files. You’ve seen how you can use groups to
compartmentalize information on the Unix system you administer through thoughtful use
of group membership for users. Finally, the extensive example of using the lp group to
control access to the printer through changes to the group and application permission
modifications.

Groups are a surprisingly under-utilized feature of Unix. When I’ve administered Unix
boxes, I’ve always tried to model the group and team membership of my colleagues with
groups on the computer itself.

Q&A
Q Unix essentially has three concentric circles of access as its permission model

(owner, group, and other). Did Multics really have more?

A Yes indeed. In fact, Multics was the first computer operating system awarded the
B2 security level certification from the United States government.

Q Why use vigr to edit the /etc/group file, rather than just regular old vi?

A Because it’s always dangerous to edit an underlying system file in case someone
else is editing it or otherwise tries to alter it simultaneously. Imagine if you’re edit-
ing the file while another sysadmin unknowingly runs gpasswd to change a group
password. You then save your edit session and their password change is lost. The
vigr program creates a lock file that prevents gpasswd from writing to the file
while you’re editing it.

Workshop
Questions

1. Why do most modern Unixes automatically place each new user in his own private
group?

2. What umask value would create files with read permission for the owner, read +
write for the group, and read + write + execute for everyone else? Would this make
sense as a umask?

3. I want to end up with an octal directory permission of 754. What umask would I
specify?

80 Hour 4

07 0672323982 CH04 6/18/02 2:05 PM Page 80

4. How many accounts do you have on your Unix system with user IDs greater than
100? Less than 100?

5. Changing the spelling of the account name in /etc/passwd has what far-reaching
effects?

Answers
1. As best as I can figure, modern Unix systems figure that sysadmins will forget to

manage groups. The easiest way to sidestep that possible security problem is to
drop each user into their own group, effectively eliminating the entire capability of
groups in Unix.

2. Read for owner, read+write for group, and read+write+execute for everyone else is
r--rw-rwx, which can be expressed as 467. The umask is the opposite: 310. This
would be a really weird umask value, of course, because the person with the least
permissions is the owner!

3. If you want to end up with 754, you need the opposite for the umask: 023.

4. On my systems I have 20–30 accounts under UID=100, and no more than five or
ten actual user accounts.

5. Changing the spelling of the account not only changes the owner information
shown in file listings, but it also forces the user to use the new name when he logs
in, and it might also affect his e-mail address on the system.

Next hour will focus on the creation and management of user accounts. We touched on
the /etc/passwd file in this hour, but in the next hour we’ll dig deep into the file and
learn how to manage and modify the content to implement security and usage policies.

File Ownership 81

4

07 0672323982 CH04 6/18/02 2:05 PM Page 81

07 0672323982 CH04 6/18/02 2:05 PM Page 82

Hour
5 Working with User Accounts 85

6 Account Management 107

7 Large File Management and
Backups 133

8 Unix Package Management 161

PART III
User & Package
Management

08 0672323982 pt3 6/18/02 1:59 PM Page 83

08 0672323982 pt3 6/18/02 1:59 PM Page 84

HOUR 5
Working with User
Accounts

One of the most common tasks facing a Unix system administrator is the
management of user accounts. Whether it’s helping someone change a login
shell, adding new users, or promptly closing an account when someone is
given “walking papers,” you’ll constantly find yourself fiddling and tweak-
ing these settings. That’s what this hour and the next are all about: working
with user accounts. This hour focuses specifically on adding new users,
which is more involved than you might think….

In this hour, you learn about

• Exploring the /etc/passwd file

• Using NetInfo to manage user accounts in Mac OS X

• Adding users and the adduser script

• Adding users in an NIS world

09 0672323982 Ch05 6/18/02 2:02 PM Page 85

Understanding the /etc/passwd File
The best place to start this hour is with the /etc/passwd file, as it’s the central hub of all
user accounts and information. Seems like an unlikely database, but it’s true: The
/etc/passwd file is the core account database on every Unix system.

Task 5.1: Exploring /etc/passwd
When Unix was first developed, databases were considered massive applications on cus-
tom hardware, appropriately used for heavy-duty information analysis like the census or
tax data, but not for something as trivial as keeping track of what home directory is asso-
ciated with a specific user account.

However, the need for some sort of database that could track

• Account name

• User ID

• Default group ID

• Login shell

• Home directory

remained, and was solved with the creation of the /etc/passwd file.

Fortunately, it’s easy to understand this seemingly cryptic file. Let’s have a look!

1. First off, let’s get the line of the /etc/passwd file associated with your own
account. To do this, simply grep for the value of $USER:
grep $USER /etc/passwd
taylor:x:502:502:Dave Taylor:/home/taylor:/bin/bash

The entry is divided by colons, as we learned in the last hour, and the information
therein is
account name : password placeholder : user ID : default group ID :
➥ comment : home directory : login shell

The password is only stored encrypted in Unix, and modern Unixes all use the
shadow password file to avoid having even that displayed to users. Why? Because
if a cracker has an encrypted password string, she can encrypt words in a dictio-
nary and compare the two encrypted strings. Given enough time, it’s remarkable
how many passwords can be cracked. Hide the encrypted strings and the system is
just that much more secure.

Indeed, notice the permissions of the /etc/passwd file compared to the encrypted
password-containing /etc/shadow file:

86 Hour 5

,
TA

SK
,

09 0672323982 Ch05 6/18/02 2:02 PM Page 86

ls -l /etc/passwd
-rw-r--r-- 1 root root 1583 Jan 8 17:32 /etc/passwd
ls -l /etc/shadow
-rw------- 1 root root 1155 Jan 8 17:32 /etc/shadow

2. Knowing how this file is organized, it’s a simple task to see which login shells are
in use. For example:
cut -d: -f7 /etc/passwd | sort | uniq -c | sort -rn

16 /sbin/nologin
6 /bin/false
6 /bin/bash
2 /dev/null
1 /sbin/shutdown
1 /sbin/halt
1 /bin/sync
1 /bin/nologin
1 /bin/csh
1

The blank match defaults to the standard shell of /bin/sh, which is replaced in
Linux with the more capable /bin/bash. The other shells listed are all intended to
prevent users from logging on using those accounts. Let’s have a peek at what
accounts have /bin/false as their login shell:
grep /bin/false /etc/passwd
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
rpc:x:32:32:Portmapper RPC user:/:/bin/false
nscd:x:28:28:NSCD Daemon:/:/bin/false
radvd:x:75:75:radvd user:/:/bin/false
apache:x:48:48:Apache:/var/www:/bin/false
named:x:25:25:Named:/var/named:/bin/false

Quite reasonable. None of these accounts should have login privileges.

Working with User Accounts 87

5

Why have accounts that can’t log in? To organize files and directories and
set access permissions properly. Consider the example at the end of Hour 4:
the lp account isn’t a login account (in RHL7.2 its default shell is
/sbin/nologin), but it’s very helpful for having a single owner of all printer-
related files and applications. Accounts with a UID under 100 are usually
administrative accounts of this nature.

Notice that there are also some command shortcuts accessible from a direct login:
egrep ‘(shutdown|halt|sync)’ /etc/passwd
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 87

If you know the password for sync, shutdown, or halt, you can perform the asso-
ciated command right at the login prompt, without having to even log in as root.
Helpful in case of emergencies, but potentially dangerous if others can access these
administrative functions remotely.

3. One really useful script that will help illustrate how to work with the /etc/passwd
file is checkhomes.sh—it extracts all the home directories in the password file,
then verifies that each exists, flagging any errors.

Sound difficult to write? It’s easy!
$ cat checkhomes.sh
#!/bin/sh

Checkhomes.sh - Scan /etc/passwd for all home directories, then make
sure that each exists.

pw=/etc/passwd

for homedir in `cut -d: -f6 /etc/passwd`
do
echo checking home directory $homedir
if [! -d $homedir] ; then
echo Warning: home directory $homedir does NOT exist

fi
done

exit 0

The cut in the for loop pulls out all the home directories; then one by one they’re
assigned to $homedir and checked to see whether they’re a directory. If they’re not
(“! -d” returns true), then an error message is output.

Surprisingly, the stock RHL7.2 configuration has some problems:
$ sh checkhomes.sh
Warning: home directory /var/adm does NOT exist
Warning: home directory /var/spool/news does NOT exist
Warning: home directory /var/spool/uucp does NOT exist
Warning: home directory /var/gopher does NOT exist
Warning: home directory /home/root does NOT exist

4. To be fancy, it’d be nice if each of these errors also listed the account name itself,
but that’s quite a bit more complex: You’d want to use read to load two variables at
a time from the cut command. Extracting them both is easy, though: cut -d:
-f1,6 would do it.

Here’s the much improved script:
$ cat checkhomes.sh
#!/bin/sh

Checkhomes.sh - Scan /etc/passwd for all home directories, then make

88 Hour 5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 88

sure that each exists.

cut -d: -f1,6 /etc/passwd | sed ‘s/:/ /g’ | \
(while read acct homedir
do
echo checking home directory $homedir
if [! -d $homedir] ; then
echo Warning: home directory $homedir for account $acct is missing

fi
done)

exit 0

Although this might look considerably different from the previous version, a closer
glance will confirm that the only significant refinement to this version of the script
is that we’re using surrounding parentheses around the test and output. The paren-
theses spawn a subshell that then has the output of the cut|sed command as its
standard input, so we can use the built-in read shell command.
$ sh checkhomes.sh
Warning: home directory /var/adm for account adm is missing
Warning: home directory /var/spool/news for account news is missing
Warning: home directory /var/spool/uucp for account uucp is missing
Warning: home directory /var/gopher for account gopher is missing
Warning: home directory /home/root for account taylorsu is missing

The output is definitely more user friendly!

Working with User Accounts 89

5Solaris has a very nifty utility pwck that does a number of these /etc/passwd
consistency checks. It’s well worth knowing.

5. An equally important test is whether there’s more than one UID 0 (root) account,
and whether there are any accounts without a password.

The first test can be done with a very simple awk invocation:
$ awk -F: ‘$3 == 0 { print $0 }’ /etc/passwd
root:x:0:0:root:/root:/bin/bash

The $3 == 0 is a conditional test: If it is true, then the entire line is printed.

If you ever have a change in the number of accounts with UID 0, it’s time
to IMMEDIATELY investigate. Remember, anyone with UID 0 access can do
anything they want, including replacing login with their own version that

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 89

The test to see whether there are any accounts without passwords is a bit more
tricky, because we need to check not only the /etc/passwd file, but also the
/etc/shadow file. The trick is that only root can access the /etc/shadow file in
the first place, so this command will have to be run by root:
cat /etc/passwd /etc/shadow | awk -F: ‘length($2) < 1 { print $0 }’
#

No output. Phew! What a relief!

To make this more interesting, however, I’ll create a new account and omit the
password:
cp /etc/passwd /etc/passwd.save
echo “taylorsu::0:502:Dave as Superuser:/home/root:/bin/bash” >>
➥/etc/passwd

90 Hour 5

e-mails account/password pairs to an e-mail address surreptitiously, or
worse!

The >> is a very dangerous command, so either don’t do it at all, or do it
very, very carefully. If you were to accidentally use > instead of >>, for exam-
ple, you’d have just deleted your entire /etc/passwd file, which could have
catastrophic results! That’s why you can see that I’m also saving a copy of
the /etc/passwd file as /etc/passwd.save, just in case….

Now running the zero-password test is more interesting:
cat /etc/passwd /etc/shadow | awk -F: ‘length($2) < 1 { print $0 }’
taylorsu::0:502:Dave as Superuser:/home/root:/bin/bash

Got it! How about checking for more than one UID 0 account?
awk -F: ‘$3 == 0 { print $0 }’ /etc/passwd
root:x:0:0:root:/root:/bin/bash
taylorsu::0:502:Dave as Superuser:/home/root:/bin/bash

Good. That flagged it, too. To fix it, I’ll use passwd to set the password for this
account, and we’re done with this task.

There are a number of ways that the /etc/passwd file can be analyzed and tested in an
automated fashion, as we’ve seen in this first task. The most important thing isn’t to
come up with super-fancy analysis tools, but to do some sort of analysis frequently. If
someone hacks into your system, they’re not going to wave a flag or send you an e-mail
message, so your vigilance with the accounts in the /etc/passwd file is critical!

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 90

Password Files in BSD/Mac OS X
Darwin has a completely different approach to managing user accounts. For single-user
mode, the standby /etc/passwd is available, but in normal multiuser mode, the system
uses a considerably more sophisticated (and very complex) system called NetInfo.

Task 5.2: Accounts and the Password File in Darwin
In addition to the standard Unix /etc/passwd file, BSD also works with a system called
NetInfo, which has both an attractive graphical interface and a crude but powerful com-
mand-line interface available.

1. A simple glance at /etc/passwd shows just how different things are. Notice that
I’m logged in as taylor, but that my account information doesn’t even show up
here!
$ who am i
taylor ttyp1 Jan 9 12:29
$ cat /etc/passwd
##
User Database
#
Note that this file is consulted when the system is running in single-
user
mode. At other times this information is handled by lookupd. By
default,
lookupd gets information from NetInfo, so this file will not be consulted
unless you have changed lookupd’s configuration.
##
nobody:*:-2:-2:Unprivileged User:/nohome:/noshell
root:*:0:0:System Administrator:/var/root:/bin/tcsh
daemon:*:1:1:System Services:/var/root:/noshell
www:*:70:70:World Wide Web Server:/Library/WebServer:/noshell
unknown:*:99:99:Unknown User:/nohome:/noshell

As the comment indicates, most user account information is stored in the cryptic
NetInfo database, and can most easily be accessed from the graphical NetInfo
application within the world of Mac OS X.

2. There are a number of different command line utilities for NetInfo too, fortunately:
$ man -k netinfo
netinfo(3) - library routines for NetInfo calls
netinfo(5) - network administrative information
netinfod(8) - NetInfo daemon
nibindd(8) - NetInfo binder
nicl(1) - NetInfo command line utility
nidomain(8) - NetInfo domain utility
nidump(8) - extract text or flat-file-format data from NetInfo
nifind(1) - find a directory in the NetInfo hierarchy

Working with User Accounts 91

5

,
TA

SK
,

09 0672323982 Ch05 6/18/02 2:02 PM Page 91

nigrep(1) - search for a regular expression in the NetInfo
➥hierarchy
niload(8) - load text or flat-file-format data into NetInfo
nireport(1) - print tables from the NetInfo hierarchy
niutil(1) - NetInfo utility

To see the full NetInfo database, the proper command is nidump:
$ nidump passwd .
nobody:*:-2:-2::0:0:Unprivileged User:/dev/null:/dev/null
root:c8bkMtK6Wlth2:0:0::0:0:System Administrator:/var/root:/bin/tcsh
daemon:*:1:1::0:0:System Services:/var/root:/dev/null
unknown:*:99:99::0:0:Unknown User:/dev/null:/dev/null
www:*:70:70::0:0:World Wide Web Server:/Library/WebServer:/dev/null
taylor:fse2juv3k6JiE:501:20::0:0:Dave Taylor:/Users/taylor:/bin/tcsh

You can see that it’s similar to the /etc/passwd file, with the exception of the tay-
lor account. A closer look will reveal that there are more information fields listed
than are in /etc/passwd.

92 Hour 5

Note that nidump is a user-level command, and that it shows encrypted
password strings rather than just a placeholder, while hiding the actual
encrypted password in a shadow file. A potential security consideration, if
you’re paranoid about guest users!

3. The nidump command lists all the entries in the /etc/passwd file along with all
the additional accounts set up in the NetInfo database, so modifying the earlier
tests and scripts isn’t too difficult. Every time we simply had “/etc/passwd” ref-
erenced, we’ll instead need to stream in the output of nidump, and we’ll have to
modify the field count to compensate for the additional information output:
nidump passwd . | cut -d: -f10 | sort | uniq -c | sort -rn

4 /dev/null
3 /bin/tcsh

However, there’s a much more sophisticated way to work with NetInfo: the nire-
port command. This way of accessing the NetInfo information requires that you
know the names of the fields in the users area of the NetInfo database. They are
summarized in Table 5.1.

TABLE 5.1 NetInfo /users Property Names

Property Name Explanation

name The login name of the user

passwd The encrypted password of the user

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 92

uid The user ID of the user

gid The default group ID of the user

realname The real name of the user

home The home directory of the user

shell The login shell of the user

To see this in action, here’s how I could extract a report that lists the account
names and password strings:
$ nireport . /users name passwd
nobody *
root c8bkMtK6Elth9
daemon *
unknown *
www *
taylor fse2juv5k6JiA

You can see that four of these accounts (the ones with the /dev/null login shell, as
reported earlier) have login capability disabled, while two have explicit encrypted
passwords.

4. To make this more interesting, I created a UID 0 account with no password called
badguy, appropriately enough. I can’t just append the information to the
/etc/passwd file this time, however; I need to use a script called niadduser to add
the information to the NetInfo database. (We’ll develop this script a bit later in this
hour.)

With this new account in place, let’s see how nireport can be combined with
some regular Unix utilities to create some useful analysis filters:
$ nireport . /users name uid | awk ‘$2 == 0 { print $0 }’
root 0
badguy 0

That reports that there are two accounts that have UID=0.

The test for missing passwords is a bit more subtle:
$ nireport . /users name passwd | awk ‘NF==1 { print $0 }’
badguy

In this instance, the variable NF is the number of fields, so the awk test is, in
essence, “if there’s only one field in the output line.”

5. Finally, before we leave, let’s change the password for the badguy account, to
ensure we don’t leave this gaping security hole!

Working with User Accounts 93

5

TABLE 5.1 continued

Property Name Explanation

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 93

$ passwd badguy
Changing password for badguy.
New password:
Retype new password:
$ nireport . /users name passwd | grep badguy
badguy Hk4IS.3eeh69.

Looks like things are safe again!

In some sense, NetInfo is a great application, managing the various databases that com-
prise the Unix system world, including printers, Internet services, user accounts, and net-
work connections. It also has a venerable pedigree, coming from the Network
Information Service (NIS) and Yellow Pages (YP) services originally developed by Sun
Microsystems. (More in a minute about those services.)

However, NetInfo is also a bit of an oddball in the Unix world. Not only is it not a part
of the popular Linux distributions, it’s also not included in any of the major commercial
Unix distributions either (other than Mac OS X). NetInfo is therefore very incompatible
and platform- and version-specific.

Ordinarily, I’d recommend that you shy away from using the utility for just this reason,
but if you’re running Darwin or another NIS/YP-enabled (NetInfo) Unix system, you
must go through the NetInfo facility or your changes will be ignored. As an example, the
/etc/passwd file on the test Darwin platform includes the following few lines at its end:

$ tail –3 /etc/passwd
www:*:70:70:World Wide Web Server:/Library/WebServer:/noshell
unknown:*:99:99:Unknown User:/nohome:/noshell
testme::0:0:Unknown Root User:/var/root:/bin/tcsh

Yet you’ll notice that the testme account never showed up in the NetInfo listings if you
flip back and look. That’s because it was added to the password file, but not to the
NetInfo database.

Adding Users and the adduser Script
Putting Darwin, BSD, and the NetInfo weirdness aside for a bit, let’s breathe some fresh
air and go back to “regular Unix” (whatever that means!), okay?

There are a couple of steps required for creating a new user account, more than just cre-
ating a new entry in the /etc/passwd file. These steps are as follows:

1. Add the user to the /etc/passwd file.

2. Add the user to the /etc/group file.

3. Create their home directory.

94 Hour 5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 94

4. Optionally copy default .profile/.login files.

5. Ensure that the directory and its contents are all owned by the new user.

6. Set their initial password to a known value.

A fair number of steps, which can all be done by hand, but why do that? Instead, let’s
build a script that will automate it all and add the user to the system in one simple step.

Working with User Accounts 95

5

Task 5.3: Adding Users in a Conventional Unix World
If you’re using a standard Unix system, adding a user is a straightforward sequence of
adding them to the password file and the group file, then creating a home directory and
setting an initial password.

1. To start out, we’ll need to collect the information from the sysadmin before we can
begin to build the account. This is most easily done with the read function built
into the shell. Here’s a demonstration of how it can work:
echo “Add new user account to `hostname`”
echo -n “login: “ ; read login
echo -n “uid: “ ; read uid
echo -n “gid: “ ; read gid
echo -n “full name: “ ; read fullname
echo -n “home dir: “ ; read homedir
echo -n “shell: “ ; read shell

echo “Setting up account:”
echo “ “ ${login}:x:${uid}:${gid}:${fullname}:${homedir}:${shell}

As practice, if you run this script, you can see how it simplifies collecting the nec-
essary data and emitting an /etc/passwd-format line:
Add new user account to staging.intuitive.com
login: astaire
uid: 211
gid: 211
full name: Fred Astaire

There is an adduser command already built into both Solaris and Red Hat
Linux 7.2, but as you work with multiple flavors of Unix, you’ll find that
adduser is not widely available, and that the syntax varies from system to
system. A smarter solution is to understand what the command does and
then duplicate it for your own needs. With your own script, you can fine-
tune it for your preferred configuration and then move it from system to
system as your administrative responsibilities expand. Many of the top sysad-
mins have an entire toolkit that they bring with them.

,
TA

SK
,

09 0672323982 Ch05 6/18/02 2:02 PM Page 95

home dir: /home/astaire
shell: /bin/bash
Setting up account:

astaire:x:211:211:Fred Astaire:/home/astaire:/bin/bash

That’s the core functionality of the script. Now it’s time to refine things….

2. To start, let’s recognize that home directories are always in the same folder on a
system, and that their name is always the same as the account name:

$homedir=$defaulthome/$account

Furthermore, it’s difficult to prompt the admin for a UID without any further infor-
mation. At the same time, by convention, UIDs go in ascending order in the
/etc/passwd file, so if you were to automatically extract the last UID and incre-
ment it, you could use that as the default new UID:
currentUID=”`tail -1 /etc/passwd | cut -d: -f3`”
newUID=”`expr $currentUID + 1`”

The problem with this approach is that if for some reason the password file does
not have the highest UID as the last line, you could get into significant trouble.
Instead, a smarter approach is to use awk to extract the highest UID (plus one):

uid=”`awk -F: ‘{ if (big < $3) big=$3 } END { print big + 1 }’

➥/etc/passwd`”

This is a very elegant and quite typical Unix solution.

96 Hour 5

Many Unix sysadmins prefer to work with Perl rather than awk, but I still
lean toward awk because I can be 100% certain it’ll be included in the stan-
dard distribution of all Unixes, whereas some exclude Perl, letting users
install it after the fact.

3. There are two approaches to assigning the default group, as we’ve already seen.
Some sites give each user his own personal group by default, which is always the
same value as the UID. Others have a standard group that all users are dropped
into by default. These can be modeled in the code quite easily:
if your site policy is for all users to get their own group
gid =$uid
otherwise, add them to the default group
gid=$defaultgid

There’s an additional tweak needed when we automatically modify the /etc/group
file to include the new account, but we’re getting ahead of ourselves!

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 96

4. Here’s our first full version of the script, including an additional test to ensure that
only user root can run it:
$ cat adduser.sh
#!/bin/sh

ADDUSER - add a new user to the system, including building their
home directory, copying in default config data, etc.

progname=”`basename $0`”
pwfile=”/etc/passwd”
gfile=”/etc/group”
hdir=”/home”

if [“`whoami`” != “root”] ; then
echo “$progname: Error: You must be root to run this command.”
exit 0

fi

echo “Add new user account to `hostname`”
echo -n “login: “ ; read login

uid=”`awk -F: ‘{ if (big < $3) big=$3 } END { print big + 1 }’
/etc/passwd`”
homedir=$hdir/$login

we are giving each user their own group, so gid=uid
gid=$uid

echo -n “full name: “ ; read fullname
echo -n “shell: “ ; read shell

echo “Ready to set up account:”
echo “ “ ${login}:x:${uid}:${gid}:${fullname}:${homedir}:${shell}
exit 0

When it’s run, there are only three fields required:
$ sh adduser.sh
Add new user account to staging.intuitive.com
login: testdude
full name: The Test Dude
shell: /bin/csh
Ready to set up account:

testdude:x:503:503:The Test Dude:/home/testdude:/bin/csh

The next step is, obviously, to have the script start doing things rather than just
demonstrating how to prompt for input! That can be done by adding the following
lines:
echo ${login}:x:${uid}:${gid}:${fullname}:${homedir}:${shell} >> /etc/passwd
mkdir $homedir

Working with User Accounts 97

5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 97

chmod 755 $homedir
chown $login $homedir
echo “Please enter a default initial password for $login now:”
passwd $login

In a small nutshell, those six lines accomplish almost all that the adduser
command requires. In a bit, you’ll see how we can deal with the shadow file issue.
The only two steps missing are to manipulate the /etc/group file appropriately
(which many adduser scripts skip), and copy across any default cshrc, login, or
profile files.

5. Adding the new user in the /etc/group file is easy if each user gets her own
group. It’s accomplished with one line:

echo “${login}:x:${gid}:${login}” >> /etc/group

Where things get more difficult is if we’re adding the new user to an existing
group. Then we need to extract the group line from the /etc/group file, append
the user name, then write it back to the file:
grep –v “${groupname}:” /etc/group > /tmp/group.tmp.$$
groupline=”`grep “${groupname}:” /etc/group`”
echo “$groupline,$login” >> /tmp/group.tmp.$$
mv /tmp/group.tmp.$$ /etc/group
chmod 644 /etc/group

This no doubt looks odd, but we copy every line but the matching group line to a
temp file; then set groupline to the matching line that’s been extracted, append the
new login, and then move the temp group file to the master group file and change
its mode to our required default (644).

6. Finally, to copy default configuration files across, Linux includes the standard
/etc/skel directory, which contains prototypical default files for new home direc-
tories:
$ ls -la /etc/skel
total 15
drwxr-xr-x 3 root root 1024 Nov 21 14:48 ./
drwxr-xr-x 50 root root 4096 Jan 10 06:12 ../
-rw-r--r-- 1 root root 24 Jul 9 2001 .bash_logout
-rw-r--r-- 1 root root 191 Jul 9 2001 .bash_profile
-rw-r--r-- 1 root root 124 Jul 9 2001 .bashrc
-rw-r--r-- 1 root root 820 Jul 30 03:03 .emacs
-rw-r--r-- 1 root root 118 Aug 9 17:15 .gtkrc
drwxr-xr-x 3 root root 1024 Nov 21 14:40 .kde/
-rw-r--r-- 1 root root 3511 Aug 3 09:53 .screenrc

Because there’s a subdirectory (for KDE, the K Desktop Environment) we’ll want
to use the -R flag to cp when we copy these files across.

98 Hour 5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 98

Now, with all that, here’s the complete second half of the script, built with the
assumption that every user gets his own group.
echo “Setting up account $login for $fullname...”

echo “${login}:x:${uid}:${gid}:${fullname}:${homedir}:$shell” >> /etc/passwd
echo “${login}:*:11647:0:99999:7:::” >> /etc/shadow

echo “${login}:x:${gid}:$login” >> /etc/group
#uncomment below if your system is using group shadow files too
#echo “${login}:!::” >> /etc/gshadow

mkdir $homedir
cp -R /etc/skel/.[a-zA-Z]* $homedir
chmod 755 $homedir
find $homedir -print | xargs chown $login

echo “Please enter a default initial password for $login now:”
passwd $login

exit 0

Notice that because this version of Unix is working with shadow password files,
we need to include new entries for the account in /etc/shadow, and for the group
in /etc/gshadow.

Working with User Accounts 99

5

Solaris doesn’t use the gshadow file. Instead the encrypted passwords for
groups are saved in the /etc/group file regardless of whether shadow pass-
words are enabled on the system overall.

sh adduser.sh
Add new user account to staging.intuitive.com
login: testdude
full name: The Test Dude
shell: /bin/bash
Setting up account testdude for The Test Dude...
Please enter a default initial password for testdude now:
Changing password for user testdude
New password:
Retype new password:
passwd: all authentication tokens updated successfully

That’s all that’s required. Simple, succinct, and the resultant account is ready to go
with default files from /etc/skel and everything.

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 99

This has been a long and involved script that has demonstrated a variety of sophisticated
shell script techniques. It also is written in a completely portable fashion, can be run eas-
ily on any system that supports shadow passwords, and, with a few small tweaks, even
on systems that don’t have /etc/shadow enabled.

To have the adduser script work with an NIS-compatible system like Solaris, I’d recom-
mend making the adduser script a front end to the built-in useradd utility. Darwin, with
NetInfo, is a proverbial horse of a different color, as the next section will succinctly
detail.

Adding Users in a NetInfo World
The earlier shell script for adding users directly manipulated the /etc/passwd file, but as
was demonstrated earlier, systems running NetInfo or another NIS descendant require
new users to be added to the NIS database. This sounds harder than it is, though, because
that’s exactly what the niutil command does.

Task 5.4: The Darwin Version of adduser
The world of NetInfo not only changes how we need to examine the user account data,
but also forces significant changes on how new accounts are created. That’s the bad
news. The good news is that Darwin includes a variety of different command-line
NetInfo utilities, most notably including the general purpose niutil.

There are two modes to niutil that we’re interested in for this task: -create specifies
that a new entry should be made in the database, then -createprop adds specific proper-
ties and assigns the specified values within the specified record.

1. To start out, we’ll have to recode the section that calculates the highest UID in use.
To do this, we’ll use nireport and sort -n:
uid1=”`nireport . /users uid | sort -n | tail -1`”
uid=”`expr $uid1 + 1`”

The next step is to actually create a new user account record. This can be done
with niutil, using the -create option:

niutil -create . /users/$login

2. Each individual property of the user record must be defined and have a value
assigned to it. It’s a bit more work than a single line output to /etc/passwd:
niutil -createprop . /users/$login passwd
niutil -createprop . /users/$login uid $uid
niutil -createprop . /users/$login gid $gid
niutil -createprop . /users/$login realname “$fullname”
niutil -createprop . /users/$login shell $shell
niutil -createprop . /users/$login home $homedir

100 Hour 5

,
TA

SK
,

09 0672323982 Ch05 6/18/02 2:02 PM Page 100

There shouldn’t be any surprises in the name/value pairs but it’s worth highlighting
that fullname is the only variable that might have spaces, hence the quotes in the
script.

3. For the Darwin version of the script, we’re also going to add all users to the home-
team group rather than give them each unique groups. This is done by using the
niutil command to modify the field users for the specified group:

niutil -appendprop . /groups/hometeam users $login

Other than those changes, the rest of the script is identical to the Linux version.

Here’s the entire Darwin adduser script:
#!/bin/sh

ADDUSER - add a new user to the system, including building their
home directory, copying in default config data, etc.

progname=”`basename $0`”
dgroup=”hometeam”
dgid=101
hdir=”/Users”

if [“`whoami`” != “root”] ; then
echo “$progname: Error: You must be root to run this command.”
exit 0

fi

echo “Add new user account to `hostname`”
echo -n “login: “ ; read login

uid1=”`nireport . /users uid | sort -n | tail -1`”
uid=”`expr $uid1 + 1`”
homedir=$hdir/$login

we are putting all users into the “$dgroup” group, which has a fixed GID
gid=$dgid

echo -n “full name: “ ; read fullname
echo -n “shell: “ ; read shell

echo “Setting up account $login for $fullname...”

niutil -create . /users/$login
niutil -createprop . /users/$login passwd
niutil -createprop . /users/$login uid $uid
niutil -createprop . /users/$login gid $gid
niutil -createprop . /users/$login realname “$fullname”
niutil -createprop . /users/$login shell $shell
niutil -createprop . /users/$login home $homedir

Working with User Accounts 101

5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 101

niutil -createprop . /users/$login _shadow_passwd “”

adding them to the $dgroup group...
niutil -appendprop . /groups/$dgroup users $login

mkdir $homedir

if [-d /etc/skel] ; then
cp -R /etc/skel/.[a-zA-Z]* $homedir

fi

chmod 755 $homedir
find $homedir -print | xargs chown $login

echo “Please enter a default initial password for $login now:”
passwd $login

exit 0

4. Let’s test it out by creating an account!
$ adduser
adduser: Error: You must be root to run this command.

Oops! Use the su command to switch to root (you’ll need to enter your adminis-
trative password) and try again:
adduser
Add new user account to dsl-132.dsldesigns.com
login: tintin
full name: Tintin, Boy Reporter
shell: /bin/tcsh
Setting up account tintin for Tintin, Boy Reporter...
Please enter a default initial password for tintin now:
Changing password for tintin.
New password:
Retype new password:

And verify its existence and proper creation:
nireport . /users name realname
nobody Unprivileged User
root System Administrator
daemon System Services
unknown Unknown User
www World Wide Web Server
taylor Dave Taylor
badguy Test Account
tintin Tintin, Boy Reporter

Welcome to the world of Darwin, Mr. Tintin! All looks good.

102 Hour 5

,

,

09 0672323982 Ch05 6/18/02 2:02 PM Page 102

Many systems include some sort of utility for adding new users, but as a system adminis-
trator, you never really know exactly what they’re doing, and what is or isn’t accom-
plished by the application. Further, some Unixes do half the job: The best adduser utility
available for Darwin I could find neglected to add the user to any group.

Summary
This has been the first hour that has focused more on common daily system administra-
tion tasks. Whether you’re learning more about how to work with your own personal
Unix box, or whether you’re responsible for an entire computing facility, managing user
accounts is something you can’t avoid.

Fortunately, building your own custom utilities lets you subsequently hide the oddities,
peculiarities, and quirks of each Unix system; then you’re done forever. That’s one of the
greatest reasons to build your own tools in my opinion: If you learn all the Red Hat
Linux account management tools, for example, that’s not going to help you one iota if
you suddenly find yourself managing an HP-UX or AIX system.

We’ll explore this topic in greater detail as we proceed throughout the lessons in this
book.

Q&A
Q Can you add new users such that the first time they log in, they’re forced to

pick a password, rather than you choosing a password for them and having to
write it down for them?

A Yes. Most Unix systems support either password aging or a similar mechanism.
This is an important concept that’s covered in greater detail in the next hour.

Q Isn’t having the /etc/passwd file readable to anyone logged in a bit of a secu-
rity risk?

A Well, yes and no. It’s risky because someone can get a lot of information about
user accounts by reading it (home directories, valid login names, and so on), but
it’s just about impossible to hide this information and still be running Unix.
Whether it’s the output of ls /home or the results of typing who, it’s very hard to
completely hide the password and account information from curious eyes.

Q Why would I ever have more than one UID 0 account on my system?

A While at first it might seem kinda wacky, I have always been a proponent of each
administrator having a different UID 0 login account. I’d be set up as
taylorsu (su for super user), for example. The advantage of this approach is that

Working with User Accounts 103

5

09 0672323982 Ch05 6/18/02 2:02 PM Page 103

you can more easily manage access for these admins. If you have three UID 0
admins, for example, and one no longer needs access, it’s considerably easier (and
safer) to delete the account than to constantly be changing the root password on a
system.

Workshop
Quiz

1. There are a variety of additions to the adduser command that would improve it,
not the least of which is checking to see whether the specified account name
already exists in the database. How would you do that?

2. Jump onto the Web for this question: Go to Google (www.google.com) and see if
you can find a program that advertises its capability to crack encrypted password
strings, or even an entire /etc/passwd file.

3. Throughout the last hour or two we’ve used basename. Use the man system to
ascertain what it actually does.

Answers
1. To ensure you’re not creating two accounts with the same name, immediately after

the prompt for the account name grep for that account name in the password file.
This can be done with

egrep ‘^${account}:’ /etc/passwd

though you’d want to capture the output and analyze the results in a conditional
test of some sort.

2. I hopped onto Google and used the following search string:

+UNIX +password +cracker +download

(The + forces Google to ensure that all the words appear in each match it presents.)
It returned more than 9,000 matches. More interestingly, Google also has some cat-
egorization of a subset of their enormous database, and a link to Computers ->
Security -> Unix-> Exploit Software shows up on the results page, too. That
proves the best area to explore, and it’s distressingly easy to find a half dozen pro-
grams available for download that promise to crack Unix-encrypted passwords1.

104 Hour 5

1It’s worth noting that none of these programs really crack any passwords. The encryption used for
Unix passwords is one-way: You can encode it, but you can’t decode it. The programs work by guessing
a password, encrypting it, and then comparing that encryption key to the encrypted password itself. If
they match, it’s “cracked” the password. A good reason for picking weird and impossible-to-guess
passwords, if you ask me!

09 0672323982 Ch05 6/18/02 2:02 PM Page 104

3. The useful basename command strips all the directory information from a fully
qualified filename. If you specify basename /usr/sbin/bash, it’ll return bash.

The next hour will add to your sysadmin toolbox by creating suspend and delete user
account commands. It will also more closely examine the passwd command and the
/etc/shadow file, and explore password aging and acceptable use policies for organiza-
tions.

Working with User Accounts 105

5

09 0672323982 Ch05 6/18/02 2:02 PM Page 105

09 0672323982 Ch05 6/18/02 2:02 PM Page 106

HOUR 6
Account Management

The last hour explored the steps involved in adding a new user to a Unix
system, whether through NetInfo or with additions to /etc/passwd and
/etc/shadow. This hour will present the additional tools needed for com-
plete account management, tools that will let you suspend user accounts and
delete them.

Additionally, if you are running with shadow passwords, there are some
interesting techniques you can use to enable password aging on your Unix
system.

In this hour you will learn about

• Suspending user accounts

• Deleting user accounts

• Linux account management tools

• Solaris account management tools

• Password aging

10 0672323982 Ch06 6/18/02 2:04 PM Page 107

Ways to Suspend User Accounts
There are three basic account management tasks that you’ll perform frequently: account
creation, account suspension, and account deletion.

Creating new accounts can be done with the handy but rather long adduser script we’ve
already built in the previous hour. Fortunately, suspending and deleting accounts are
quite a bit easier.

Task 6.1: Suspending Users
Perhaps your company works with contractors who come and go as projects demand. Or
perhaps your school likes to suspend student accounts during breaks to ensure that they
really take time off and not get obsessed with modern technology. Then again, the police
might have just served a subpoena and you are required to lock down an account to avoid
anything changing. Whatever the reason, it’s helpful to know the super-simple trick for
suspending user accounts—change the password.

108 Hour 6

To suspend a user account in case of an emergency, simply change the pass-
word!

A smart way to either suspend or remove an account starts by ensuring that the user isn’t
actually logged in. If he is logged in, you’ll probably need to immediately kick him out.
Change the user’s password first, though, or he’ll just log in again.

1. The first step on any suspension or deletion is to change the account password.
That’s easily done with passwd. For ease of use, I always just enter my own
account password: No one knows it, I’m very used to typing it in, and it’s just
about impossible to guess or crack.

Then it’s time to check whether the user is logged in, and log him out if necessary.
If he’s logged in, the process ID of his login shell must be obtained, and that can
be done with the ps processor status command:
ps -jU testdude

PID PGID SID TTY TIME CMD
11259 11259 11259 pts/1 00:00:00 bash
11380 11380 11259 pts/1 00:00:00 vi

You can see that testdude is running a vi session. Probably not good.

2. To log him out, you want to extract the session ID (or, in BSD terms, the parent
process ID, or PPID) and use it as an argument to the kill command. If the script
has been called with the account name as its argument ($1), then

,
TA

SK
,

10 0672323982 Ch06 6/18/02 2:04 PM Page 108

if [“`who | grep $1`” != “”] ; then
sid=”`ps -jU $1 | awk ‘{print $3}’ | tail -1`”
kill -HUP $sid
echo “$1 was logged in. Just logged $1 out.”

fi

If you force the logout of a user while he’s logged in, be prepared for an emotional
response! A better way to code this is to have the script warn him, then give him a
few seconds to promptly exit his apps before being booted off.

To send a message to a user on the system, there’s a faster solution than sending e-
mail that might be ignored: Write information directly to the user’s terminal
device. Consider the second field in the output of the who command:
$ who
taylor pts/0 Jan 14 05:09 (dsl-132.dsldesigns.com)
testdude pts/1 Jan 14 05:11 (dsl-132.dsldesigns.com)

That’s the terminal device address if you preface it with /dev/ (so testdude is
logged in to /dev/pts/1). Obtain that information and you can write a message to
the user’s screen directly (then sleep $secs seconds):

tty=”`who | grep $1 | tail -1 | awk ‘{print $2}’`”
cat << “EOF” > /dev/$tty

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended by the request of management.
You are going to be logged out in $secs seconds. Please
shut down any processes you have running immediately.

If you have any questions, please contact your supervisor or
Jane Mansmith, director of corporate computing.

EOF

echo “(Warned $1, now sleeping $secs seconds)”
sleep $secs

Another step I like to take when suspending accounts is to close off the user’s
home directory. This is also easy:

chmod 000 $homedir/$1

3. In total, and with some useful comments added, the suspend script looks like this:
#!/bin/sh

Suspend - suspend a user account for the indefinite future

secs=10 # seconds before user is logged out (if logged in)
homedir=”/home” # home directory for all users

Account Management 109

6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 109

if [“$1” = “”] ; then
echo Usage: `basename $0` account
exit 0

fi
if [“`whoami`” != “root”] ; then

echo `basename $0`: Error. You must be ‘root’ to run this command.
exit 0

fi

passwd $1

Now, let’s see if they’re logged in, and if so, boot ‘em

if [“`who | grep $1`” != “”] ; then

tty=”`who | grep $1 | tail -1 | awk ‘{print $2}’`”

cat << “EOF” > /dev/$tty

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended by the request of management.
You are going to be logged out in $secs seconds. Please shut down
any processes you have running immediately.

If you have any questions, please contact your supervisor or
Jane Mansmith, director of information technology.

EOF

echo “(Warned $1, now sleeping $secs seconds)”

sleep $secs

sid=”`ps -jU $1 | awk ‘{print $3}’ | tail -1`”
kill -HUP $sid
echo “$1 was logged in. Just logged $1 out.”

fi

Finally, let’s close off their home directory from prying eyes:

chmod 000 $homedir/$1

echo “Account $1 has been suspended.”

exit 0

4. When we’re ready to shut testdude out of his account, it’s now easy:
$ suspend testdude
Changing password for user testdude

110 Hour 6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 110

New password:
Retype new password:
passwd: all authentication tokens updated successfully
(Warned testdude, now sleeping 10 seconds)
testdude was logged in. Just logged testdude out.
Account testdude has been suspended.

The user testdude would have seen the following pop up on his screen:

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended by the request of management.
You are going to be logged out in 10 seconds. Please shut down
any processes you have running immediately.

If you have any questions, please contact your supervisor or
Jane Mansmith, director of information technology.

And, sure enough, ten seconds later testdude would be logged out and unable to
log back in.

Account Management 111

6

Compatibility-wise, the third field of the ps output on BSD systems is the
parent process ID (PPID) rather than the session ID. The good news is that
it’ll work just as well for this task, so the script works across platforms, with
but one small change necessary: homedir must be defined as appropriate for
each server.

4. To re-enable an account after you’ve suspended it is sufficiently straightforward
enough that I’ll just show you the snippet of the shell script (unsuspend) that does
the work:
passwd $1 # change their password back to a known value
chmod 750 $homedir/$1 # and open their home directory back up

There are other ways to suspend accounts on some Unix systems that are worth men-
tioning. If you’re running Linux, for example, there’s usermod, which lets root change
the status of a user account. With the -L flag, it locks the account, disabling the pass-
word by prefacing the encrypted password string with a !, and with -U it removes that !
and enables the account again.

Solaris uses the passwd command to enable suspension: passwd -l acct will lock the
specified account (specifying a new password with the standard passwd acct will
unlock the account again).

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 111

On BSD systems, it’s a bit more tricky, because there isn’t a command as accessible as
usermod by default. That’s why it’s easier just to change the user’s password to some-
thing else, as shown in the script.

Deleting User Accounts
Suspending accounts is helpful, but often you’ll need to completely remove the account
from the system, including deleting all the files. Another relatively simple task, but if you
want to do everything properly, you might find that there are more nuances than initially
expected.

Task 6.2: Deleting User Accounts
The most important step in deleting a user account is to remove the entry from the
/etc/passwd file. With that done, the user ceases to exist as far as the Unix system is
concerned. However, the user still has files in the system, a home directory, and perhaps
also e-mail coming into the system and more. But let’s take one step at a time.

1. It’s time to delete accounts once the word has come down that the person no longer
needs, and will never again need, access to the system. This is most easily done by
deleting the user’s entry from the /etc/passwd file (or the NetInfo database), then
using the dangerous ‘-rf’ flags to the rm command to force a recursive deletion of
all files and folders within the user’s home directory.

Deleting a line from the password file is superficially easy within a script:
grep -vE “^${1}:” /etc/passwd > /tmp/newpasswd
mv /tmp/newpasswd /etc/passwd
chmod 655 /etc/passwd

112 Hour 6

The problem with this solution is that you need to prevent any other system
administrator from touching or changing the /etc/passwd file while you’re
doing this. In Unix terms, it’s called locking the file, and there’s no easy solu-
tion to this dilemma overall.

On some Unix systems—including RHL7.2—there’s a user-level command
lockfile, but although it will help you ensure that two accounts aren’t
deleted at the same time, it only works for scripts that you’ve written. The
danger, however, is with all the other commands that might alter the file
(including the passwd command on a non-shadow password system).

A better solution is to use vipw, a special file-locking version front end to
vi that locks the password file, lets you edit it, then unlocks it when done.
Fortunately, vipw is available on Red Hat Linux, Solaris, and Darwin.

,
TA

SK
,

10 0672323982 Ch06 6/18/02 2:04 PM Page 112

2. The second step required is to remove the user’s home directory and all its contents
within a script, assuming that $1 is the user’s account name:

rm -rf $homedir/$1

There’s a nuance to this, however, because the user might very well have files else-
where on the system.

3. Finding these stray files is a job for the find command, which will search through-
out the file system for any remaining files or directories that are owned by the user.
For example:
$ find / -uid 501 -print
/var/spool/mail/mdella

In this case, you can see that though you’ve stripped all the files in the /home direc-
tory, there was still an e-mail mailbox lingering in the spool directory.

One ramification of adding this check for files outside the user’s home directory is
that you need to grab the UID of the account before deleting it. This is done with
the line

uid=”`egrep “^${1}:” /etc/passwd | cut -d: -f3`”

4. Here’s the full script with the exception of stripping the account information out of
shadow files. Notice that the first step is to call the suspend script to ensure that
the user can’t log in and is logged out if needed. No reason to duplicate that code
here!
#!/bin/sh

Delete - delete a user account without a trace...

homedir=”/home”

if [“$1” = “”] ; then
echo Usage: `basename $0` account; exit 0

fi
if [“`whoami`” != “root”] ; then

echo `basename $0`: Error. You must be ‘root’ to run this command.
exit 0

fi

suspend $1 # suspend their account while we do the dirty work

uid=”`egrep “^${1}:” /etc/passwd | cut -d: -f3`”

egrep -v “^${1}:” /etc/passwd > /tmp/newpasswd
mv /tmp/newpasswd /etc/passwd
chmod 655 /etc/passwd

rm -rf $homedir/$1

Account Management 113

6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 113

echo “Files still left to remove (if any):”
find / -uid $uid -print

echo “Account $1 (uid $uid) has been deleted, and their /home “
echo “directory has been removed.”
exit 0

5. Upon reflection, however, it seems smarter to move the user’s /home directory to a
different, temporary staging area, just in case a request comes the next day for
some of the files. To do this, replace the rm -rf call with

mv $homedir/$1 $holdingarea

The variable $holdingarea should be somewhere secure, with minimal access. A
good location would be /home/root/pending_deletion or someplace similar.

6. The Darwin version of deleteuser is a bit different, because instead of extracting
the line from the /etc/passwd file, you can use the much safer niutil command:

niutil -destroy . /users/$1

One significant advantage to the Darwin version is that there’s no worry about the
potential danger from not using a file locking protocol—NetInfo itself automati-
cally ensures that commands don’t step on each other.

114 Hour 6

It would be wise to include a test in the deleteuser script to flag and
refuse to delete the root account. If you accidentally deleted that account,
the results would be very bad. It’s recoverable (boot in single-user mode and
fix the password file or NetInfo database), but very, very bad.

Deleting accounts proves to be more than just deleting a line from the /etc/passwd file.
Indeed, there’s an additional step necessary for a deleted account that we won’t address
until Hour 18, “Running Your Own Name Server”—setting up an automatic e-mail
response informing people that the user is no longer accessible through this system.

Rather than fall too far into the trap of the “not invented here syndrome,” however, let’s
spend the rest of this hour looking at some of the platform-specific account management
tools available in Linux, Solaris, and Darwin.

Linux Account Management Tools
Lurking under the hood of the simple passwd command in Linux (and Solaris, for that
matter) is a powerful set of options that can significantly simplify your administrative
tasks. They’re different on each platform, alas, but if you’re in a relatively homogeneous

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 114

environment (or just managing a single Unix system), a thorough knowledge of these
options will prove to be a great boon.

There are other administrative commands, too, so let’s examine them all while we’re here.

Task 6.3: Linux Admin Tools
Based on the material discussed last hour and earlier in this hour, you might think that
there aren’t any tools available to help you administer user accounts in any of the flavors
of Unix available. That would be wrong. As indicated earlier, the problem isn’t that there
aren’t any tools, the problem is that there are too many different tools and nothing that
exists—in the same form—across all the major platforms.

As a case in point, if you’re running on a Linux system, you can add users with the
useradd command, a program that seems to offer much of the power of the shell script
developer earlier. Indeed, here’s the synopsis of the command from the Linux man pages:

SYNOPSIS
useradd [-c comment] [-d home_dir]

[-e expire_date] [-f inactive_time]
[-g initial_group] [-G group[,...]]
[-m [-k skeleton_dir] | -M] [-p passwd]
[-s shell] [-u uid [-o]] [-n] [-r] login

That’s all well and good, but without being able to see what’s going on inside, it’s impos-
sible to know what’s really happening. How does the program pick the UID, and will it
work if you have a password file where entries aren’t in ascending numeric order?
Nonetheless, there are built-in commands that are worth exploring if you only have to
worry about Linux boxes, or if you have the luxury of being able to learn the nuances of
each Unix flavor you manage.

The most useful of the built-in account management commands is passwd. Let’s have a
look.

1. The first stop is always the man page, where it’ll no doubt surprise you to learn
how many options there are. The command synopsis is

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

The meanings of these flags are summarized in Table 6.1.

TABLE 6.1 Command Flags for Linux passwd

Flag Meaning

-k Update should only apply to expired authentication tokens (relevant only if you’re
running Kerberos or another token-generating authorization system. For a vanilla
Linux, this won’t have any effect).

Account Management 115

6

,
TA

SK
,

10 0672323982 Ch06 6/18/02 2:04 PM Page 115

-l Lock the specified account out by prefacing the encrypted password string with a !
character, thereby making it impossible for the user to match. Note that this method
of suspending an account would still allow the user to have previously set her home
directory permission to be world-readable, and therefore accessible from another
account. The partner option is -u.

-u This unlocks the specified account by stripping out the ! prefix from the encrypted
password string. The partner to -l.

-f By default, passwd won’t let you unlock an account if the ! is the only character in
the encrypted password string, because unlocking it would then leave the account
without a password. If you know what you’re doing and really want to do this any-
way, add the -f flag to force the unlocking of the account.

-d Disables the password protection for an account. I’m not sure why you’d ever want
to use this, but passwd –d testdude will instantly strip out the password from the
testdude account and let anyone log in.

-S Shows the status of an account. Lists the password status of a specific account.

Many of these options are very helpful shortcuts, particularly if you haven’t
already typed in the suspend script discussed earlier in this hour.

The -S summary is interesting:
passwd -S taylor
Changing password for user taylor
Password set, MD5 encryption

The output is a bit awkward, however, because the Changing password line
shouldn’t be output. No worries; we’re in Unix, so you can modify the output!
Let’s wrap this command in a loop and see the status of some the accounts on the
system.
for name in `cut -d: -f1 /etc/passwd`
> do
> echo Status of account $name is `passwd -S $name|tail -1`
> done
Status of account root is Password set, MD5 encryption
Status of account bin is No Password set.
Status of account daemon is No Password set.
Status of account adm is No Password set.
Status of account lp is No Password set.
Status of account sync is No Password set.

... lots of output removed ...

116 Hour 6

TABLE 6.1 continued

Flag Meaning

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 116

Status of account apache is Locked password.
Status of account squid is Locked password.
Status of account named is Locked password.
Status of account pcap is Locked password.
Status of account mthorne is Locked password.
Status of account mdella is Password set, MD5 encryption
Status of account taylor is Password set, MD5 encryption
Status of account taylorsu is Password set, MD5 encryption
Status of account testdude is Empty password.

Lots of output, but the important thing is to be aware of any account that’s similar
to operator or ftp where the status is No Password set. In fact, screening all the
Locked password lines (which should be the state of all admin daemons) will
make this output considerably clearer:

Account Management 117

6

Notice that when you type in a multiline command, the shell automatically
recognizes the continuation and prompts you for subsequent lines with the
> prompt. Very helpful!

for name in `cut -d: -f1 /etc/passwd`
> do
> echo Status of account $name is `passwd -S $name|tail -1` | grep
–v Locked
> done
Status of account root is Password set, MD5 encryption
Status of account bin is No Password set.
Status of account daemon is No Password set.
Status of account adm is No Password set.
Status of account lp is No Password set.
Status of account sync is No Password set.
Status of account shutdown is No Password set.
Status of account halt is No Password set.
Status of account mail is No Password set.
Status of account news is No Password set.
Status of account uucp is No Password set.
Status of account operator is No Password set.
Status of account games is No Password set.
Status of account gopher is No Password set.
Status of account ftp is No Password set.
Status of account nobody is No Password set.
Status of account mdella is Password set, MD5 encryption
Status of account taylor is Password set, MD5 encryption
Status of account taylorsu is Password set, MD5 encryption
Status of account testdude is Empty password.

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 117

This is another output that would be very useful to monitor! In particular, notice
that some accounts have no password set, and the testdude account has an empty
password string (functionally the same as having no password set).

118 Hour 6

Any account that doesn’t have a password set is a security hole. If someone
can get to you via telnet, for example, she could log in using any of the
accounts that don’t have a password. Fortunately most of them have
/bin/nologin as their shell, but it’s worth checking that very closely. And,
needless to say, testdude needs to have a password!

2. The testdude account is the most glaring security problem here, so let’s lock the
account:
passwd -l testdude
Changing password for user testdude
Locking password for user testdude
passwd: Success

passwd -S testdude
Changing password for user testdude
Locked password.

Much better. When you try to unlock it, notice what happens:
passwd -u testdude
Changing password for user testdude
Unlocking password for user testdude
Warning: unlocked password for testdude is the empty string.
Use the -f flag to force the creation of a passwordless account.
passwd: Unsafe operation

A very helpful warning and something that would cause a savvy sysadmin to sit up
and take notice!

3. Before we leave this, let’s create a quick script that checks to ensure that any
account that’s flagged as No Password set has a shell that prevents interactive
use:
#!/bin/sh

CHECKPW - Check the status of all accounts on the system, checking
to ensure that any account without a password has a shell that
prevents interactive use. Any others will be flagged in output.

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 118

This only runs on Linux systems with the ‘-S’ flag to ‘passwd’

temp=”/tmp/tocheck.$$”

trap “/bin/rm -f $temp” 0 # remove the file upon exit

for name in `cut -d: -f1 /etc/passwd`
do

echo “$name” `passwd -S $name|tail -1` | \
egrep -v “(Locked|encryption)” | awk ‘{print $1}’ >> $temp

done

for account in `cat $temp`
do

shell=”`egrep \”^${account}:\” /etc/passwd | cut -d: -f7`”
if [“$shell” != “/sbin/nologin”] ; then

echo “*** WARNING: Account $account has no password and login
shell $shell”

fi
done

exit 0

Nothing too fancy in this script, but notice that we’ve had to resort to a temporary
file for intermediate output. The results are quite helpful and could easily become
part of a daily system status report:
checkpw.sh
*** WARNING: Account sync has no password and login shell /bin/sync
*** WARNING: Account shutdown has no password and login shell
/sbin/shutdown
*** WARNING: Account halt has no password and login shell /sbin/halt
*** WARNING: Account news has no password and login shell
*** WARNING: Account testdude has no password and login shell /bin/bash

The shells sync, shutdown, and halt are indicative of shortcuts available at the
login prompt. Type in shutdown as the account name and—remember that there’s
no password—the system will probably be shut down. You might want to disable
those accounts if you don’t think you’ll ever need them.

Account Management 119

6

In more than 20 years of working with Unix systems, most of which had
these three administrative logins, I’ve never used them in this manner. I
always shut these accounts off when I install a new system.

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 119

When there’s no shell listed, that means that the system will default (usually) to
/bin/sh as the shell, so news is just as much a security risk as testdude. Both
need to be closed, and

passwd –l testdude

does the trick for testdude, but locking the other accounts requires that an initial
password be set. That can be done with passwd news . Then use the passwd –l
news to lock it.

3. The final command worth viewing is the userdel command, the built-in Linux
command to delete users. Scan the man page and you’ll see that it’s straightforward
and useable, though it doesn’t log the user out if she’s logged in (instead, the com-
mand fails), and it leaves you, the system administrator, on your own trying to fig-
ure out how to identify what other files the user might have.
man userdel
USERDEL(8) USERDEL(8)

NAME
userdel - Delete a user account and related files

SYNOPSIS
userdel [-r] login

DESCRIPTION
The userdel command modifies the system account files,
deleting all entries that refer to login. The named user
must exist.

-r Files in the user’s home directory will be removed
along with the home directory itself and the user’s
mail spool. Files located in other file systems
will have to be searched for and deleted manually.

FILES
/etc/passwd - user account information
/etc/shadow - secure user account information
/etc/group - group information

A reasonable solution to the problem, but if you looked for an equivalent command
in the Darwin/BSD world, you’d be stymied—there is no equivalent command in
Darwin. Hence the script that we created earlier in this hour.

There are a lot of smart people who have contributed to the evolution and growth of Unix
over its 25+ year life. Many of them have been system administrators who have sought to
simplify their lives through the development of sophisticated tools. Unfortunately,
because of the erratic and chaotic development of the many different flavors of Unix, no
account administration tools have ended up as standard and common across all systems.

120 Hour 6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 120

Indeed, the greatest challenge as a Unix system administrator isn’t how to accomplish
sysadmin tasks on a particular system, but rather how to do those tasks on any system
that you’re responsible for maintaining. It’s the bane of all admin people, but an unpleas-
ant fact of life: Installations are much more likely to be heterogeneous than homoge-
neous. That is, you’re more likely to find that your data center has a legacy IBM AIX
system, three Solaris servers, a dozen Linux servers, all but one of which is running Red
Hat Linux, and a separate Darwin-based file and print server that doubles as the worksta-
tion for the department secretary. In that sort of environment, knowing that userdel is
available on Red Hat Linux 7.2 isn’t going to make your life that much easier, alas.

Indeed, there’s no section in this hour entitled “The Darwin Account Management Tools”
because, frankly, there are none, other than the rather primitive niutils or graphical
NetInfo application.

Solaris Account Management Tools
Solaris is quite similar to Linux, fortunately. Well, let me rephrase this to better reflect
the evolution of Unix: Linux has been inspired by many of the Solaris utilities. This
means that the passwd command in Solaris includes a summary option and the capability
to lock accounts, and that most of the scripts presented in the Linux section will work for
Solaris.

However, it’s not exactly the same, and that’s a bit of a problem. For example, in Linux
passwd –S taylor would show a summary of the password status for account taylor,
but Solaris doesn’t know the -S flag and instead uses -s for this function. And did I men-
tion the output is different?

Task 6.4: Solaris Account Administration Tools
The differences between Solaris and Linux are more subtle nuances than dramatic varia-
tions with command-line account administration tools. It’s no surprise, then, that the
scripts already discussed just need minor tweaks to work within the Solaris world.

1. Adding a user can be done with the useradd command, though the syntax is a little
different than the Linux command of the same name:
man useradd | head –18
Maintenance Commands useradd(1M)

NAME
useradd - administer a new user login on the system

SYNOPSIS
useradd [-c comment] [-d dir] [-e expire] [

Account Management 121

6

,
TA

SK
,

10 0672323982 Ch06 6/18/02 2:04 PM Page 121

-f inactive] [-g group] [-G group [, group ...]
] [-m [-k skel_dir]] [-u uid [-o]] [
-s shell] [-A authorization [,authorization...]] [
-P profile [,profile...]] [-R role [,role...]]
login

useradd -D [-b base_dir] [-e expire] [-f inactive]
[-g group]

Sharp eyes will notice the addition of the -A, -P, and -R flags for authorizations,
profiles, and roles, respectively. We don’t have space to get into the Solaris security
model, but if you’re running a Solaris system, you’ll find time spent reading the
auth_attr(4), exec_attr(4), and user_attr(4) man pages very worthwhile.

122 Hour 6

Standard Unix nomenclature with man page entries is to specify the com-
mand followed by the section in the man page database where that com-
mand can be found. So auth_attr(4) indicates that it’s the auth_attr man
page in section four (file formats). You would read this page with man 4
auth_attr at your command line.

2. The real difference in Solaris appears when you look at the passwd man page:
man passwd
User Commands passwd(1)

NAME
passwd - change login password and password attributes

SYNOPSIS
passwd [-r files | -r ldap | -r nis | -r nisplus] [
name]

passwd [-r files] [-egh] [name]

passwd [-r files] -s [-a]

passwd [-r files] -s [name]

passwd [-r files] [-d | -l] [-f] [-n min] [
-w warn] [-x max] name

passwd -r ldap [-egh] [name]

passwd -r nis [-egh] [name]

passwd -r nisplus [-egh] [-D domainname] [name]

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 122

passwd -r nisplus -s [-a]

passwd -r nisplus [-D domainname] -s [name]

passwd -r nisplus [-l] [-f] [-n min] [-w warn]
[-x max] [-D domainname] name

There are a bewildering number of different possible ways to work with the passwd
command in Solaris, but if you’re not running LDAP (Lightweight Directory
Access Protocol), NIS (Network Information Service) or NIS+ (an improved NIS
architecture), you can thankfully ignore them.

To clarify the differences, here’s my own synopsis of the Solaris passwd command,
minus all the confusing NIS stuff:

passwd [-s] [-d | -l] [-f] [-n min]
[-w warn] [-x max] name

Quite similar to Linux, but with two notable differences: The -S summary flag is
now -s, and although there’s a -l for locking accounts, notice that there isn’t a -u
to unlock them.

Indeed, to lock an account in Solaris, you can use the familiar passwd –l
account, but to unlock an account there’s no -u flag that resets the password to its
original state (as there is in Linux). Instead, to unlock an account, simply set the
password to a known value with passwd account.

3. The output of the -s summarize command is a bit more succinct:
passwd –s taylor
taylor PS

Checking the man page for passwd reveals that there are three possible values for
this flag, as summarized in Table 6.2.

TABLE 6.2 Output States for the passwd Account Summary in Solaris

ValueMeaning

PS Password set

NP No password associated with this account

LK Account is locked

Armed with this, let’s use the -a (show all entries) flag in combination with the -s
flag to analyze the different accounts on the Solaris system. First, here’s the
passwd –sa command in action:
passwd -sa
root PS

Account Management 123

6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 123

daemon LK
bin LK
sys LK
adm LK
lp LK
uucp LK
nuucp LK
listen LK
nobody LK
noaccess LK
nobody4 LK
taylor PS
testtdude LK
testdude NP

Notice that these are shown in the order that they’re listed in the /etc/passwd file.

Screening out the locked accounts is simple:
passwd -sa | grep -v LK
root PS
taylor PS
testdude NP

It’s not particularly easy to read when compared to the Linux output, but you could
fix that if you want to, of course.

5. Another nifty utility in Solaris is the terrific pwck command, which performs a
variety of consistency checks against the information in the /etc/passwd file. It
will catch a nonexistent home directory, but it doesn’t check to see if no-password
accounts have login shells, so you’ll still have to do that by hand.
pwck

testtdude:x:101:1::/home/testtdude:/bin/sh
Logname too long/short
Login directory not found

testdude:x:102:1::/home/testdude:/bin/sh
Login directory not found

To accomplish the task, you can substantially simplify the shell script that per-
formed the checking in Linux, checkpw.
cat checkpw.sh
#!/bin/sh

CHECKPW - Check the status of all accounts on the system, checking
to ensure that any account without a password has a shell that
prevents interactive use. Any others will be flagged in output.

This only runs on Solaris systems with the ‘-sa’ flags to ‘passwd’

124 Hour 6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 124

for account in `passwd -sa | grep NP | awk ‘{print $1}’`
do

shell=”`egrep \”^${account}:\” /etc/passwd | cut -d: -f7`”
if [“$shell” != “/sbin/nologin”] ; then

echo “*** WARNING: Account $account has no password and login
shell $shell”

fi
done

exit 0

When it’s run, the results are what you would hope:
checkpw.sh
*** WARNING: Account testdude has no password and login shell
/bin/sh

5. Let’s lock testdude out with the passwd –l option:
passwd -l testdude
passwd -s testdude
testdude LK

No feedback was given on the first command, but the -s summarizes the new state
as LK (locked), which is correct. To unlock the account again, use passwd test-
dude, then enter an appropriate new password value.

6. One more quick examination of the userdel command for comparison’s sake
proves that it’s 100% identical to the Linux version shown earlier. Hurray!
man userdel
Maintenance Commands userdel(1M)

NAME
userdel - delete a user’s login from the system

SYNOPSIS
userdel [-r] login

DESCRIPTION
The userdel utility deletes a user account from the system
and makes the appropriate account-related changes to the
system file and file system.

OPTIONS
The following options are supported:

-r Remove the user’s home directory from the system. This
directory must exist. The files and directories under
the home directory will no longer be accessible fol-
lowing successful execution of the command.

Account Management 125

6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 125

Again, notice that although it can remove the user’s home directory, it does not
explore the rest of the file system to identify what additional files might be owned
by the user.

Solaris has traveled a very different path of development. Growing originally from the
Stanford University Network (that’s where “Sun” comes from), where Scott McNealy
had the savvy to take the idea of a networked workstation and build a company around it,
Solaris (originally SunOS) started out much more like BSD Unix—their head scientist is
Bill Joy of UC Berkeley, after all—but ironically is much more like Linux now.

Being yet another flavor of Unix, however, it has differences that mean it’s yet another
variant, and although a command might work perfectly well on Linux, it doesn’t in fact
work on Solaris, too. It’s the never-ending challenge of modern Unix systems, and
should probably be our mantra for this book.

Password Aging
One more topic before we wrap up this hour, okay? Last hour, we peeked into the
/etc/shadow file and found out that there were a bunch of new and intriguing field val-
ues associated with a user account. To wit (from the shadow(5) man page):

DESCRIPTION
shadow contains the encrypted password information for
user’s accounts and optional the password aging informa?
tion. Included is

Login name
Encrypted password
Days since Jan 1, 1970 that password was last changed
Days before password may be changed
Days after which password must be changed
Days before password is to expire that user is warned
Days after password expires that account is disabled
Days since Jan 1, 1970 that account is disabled
A reserved field

The capability that the shadow password system enables that we’re interested in is called
password aging. It’s a way to force users to change their password on a given schedule,
and to automatically enforce a policy of disabling accounts after a certain period during
which users don’t log in.

Task 6.5: Tools for Managing Password Aging
The mechanism for specifying a password aging policy varies by operating system, but
that’s probably no surprise! Solaris neatly tucks the options into the passwd command,

126 Hour 6

,

,

,
TA

SK

10 0672323982 Ch06 6/18/02 2:04 PM Page 126

while Linux uses the command chage. There’s no equivalent mechanism in Mac OS
X/Darwin, nor does Darwin support the shadow password file mechanism.

1. Let’s start with chage, because it makes the various possible settings quite obvious:
man chage | head -12
CHAGE(1) CHAGE(1)

NAME
chage - change user password expiry information

SYNOPSIS
chage [-m mindays] [-M maxdays] [-d lastday] [-I inactive]

[-E expiredate] [-W warndays] user
chage -l user

The -l flag is a good place to start, as it generates a report of password aging
information for the specified account and can be used by anyone:
$ chage -l taylor
Minimum: 0
Maximum: 99999
Warning: 7
Inactive: -1
Last Change: Jan 14, 2002
Password Expires: Never
Password Inactive: Never
Account Expires: Never

As you can see, taylor is in luck; the password never expires, and the account
never expires, either. The first four fields deserve an explanation, however.

The Minimum and Maximum fields are the minimum and maximum number of
days between password changes—quite literally. If the minimum was two days and
user taylor changed his password early one morning, he couldn’t change it again
until the minimum number of days value had elapsed.

The Warning field indicates the number of days before the password expires that
the user will be warned during the login process, and, finally, the Inactive field
indicates how many days after a password expires that the account will automati-
cally be locked (similar to passwd –l).

2. Remember our friend testdude? It’s time to make some changes to his account to
match the account password policy implemented at our site.

The first update is that passwords must be changed every 30 days, and that if the
user doesn’t log in within 14 days of the expiration date of their password, the
account should be automatically locked out. The testdude account should have a
two-day warning before being forced to change the password upon login, and it’s
also due to expire on August 3, 2003, so that’ll be specified too.

Account Management 127

6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 127

Here’s the command needed:

chage -M 30 -W 2 -I 14 -E 2003-08-03 testdude

If all is well, there’s no output, in a typical Unix manner. To verify that it worked:
chage -l testdude
Minimum: 0
Maximum: 30
Warning: 2
Inactive: 14
Last Change: Jan 12, 2002
Password Expires: Feb 11, 2002
Password Inactive: Feb 25, 2002
Account Expires: Aug 03, 2003

Perfect, and quite simple, once you learn the magic incantation—or refer to Table
6.3 for details of all the flags to chage.

TABLE 6.3 Command Flags to Linux’s chage Command

Flag Meaning

-m Minimum number of days between password changes (0 = no minimum)

-M Maximum number of days between password changes

-E Expiration date, specified in number of days since January 1, 1970, or in YYYY-
MM-DD format

-I Number of days of inactivity after a password expires before the account is auto-
matically locked

-W Number of days prior to password expiration that the user will be presented with
a warning message

3. By contrast, Solaris slips these flags into the passwd command, as highlighted in
Table 6.4.

TABLE 6.4 Password Aging Flags in Solaris passwd Command

Flag Meaning

-f Forces the password to expire immediately; user will be prompted for a new pass-
word upon next login

-n Minimum number of days between password changes

-x Maximum number of days between password changes

-w Number of days prior to password expiration that the system should generate a
warning message to the user

128 Hour 6

,

,

10 0672323982 Ch06 6/18/02 2:04 PM Page 128

As you can see, to set a specific account expiration date, you need to use the
Solaris usermod command, with a -e flag. To accomplish the same task as shown
in Linux with the chage command, therefore, requires two steps:
passwd -x 30 -w 2 testdude
usermod -e 08/03/2003 testdude

Notice that there’s no way to automatically lock accounts after a certain number of
days of inactivity (the -I flag in the Linux chage command).

Checking the settings is yet another Solaris command: logins. There are lots of
flags to this useful utility (see the man page for details), but to see the settings for a
specific account, use the -x extended output flag:
logins -xl testdude
testdude 102 other 1

/home/testdude
/bin/sh
NP 011802 0 30 2

The output is a bit cryptic, but remember that NP means “no password,” and much
of the rest of the information can be inferred by peeking at the /etc/passwd entry:
grep testdude /etc/passwd
testdude:x:102:1::/home/testdude:/bin/sh

The output of logins shows us that account testdude has UID 102, and a default
group of other, which has a GID of 1. The home directory is /home/testdude, the
login shell is /bin/sh, and the password expiration information is, in order: date
the password last changed, number of days required between changes, number of
days allowed before a change is required, and the pre-expiration warning value.

Do you see what’s missing? There’s no clue that the account itself is scheduled to
automatically turn off in August of 2003.

Linux offers a succinct and sophisticated password aging capability through its chage
command. Solaris offers a similar capability, but the interface is considerably more awk-
ward, split across three different commands. And Darwin—well, as of yet, Darwin
doesn’t support password aging.

Regardless of whether it’s easy or difficult, however, the password aging capability is a
very good addition to your Unix sysadmin toolkit if it’s available on the systems you
administer.

Summary
This hour has explored many facets of account management, with a focus on working
with recalcitrant users and shutting them down as needed. It also highlights how much

Account Management 129

6

,

,

10 0672323982 Ch06 6/18/02 2:05 PM Page 129

difference there can be between different flavors of Unix. Just because they all have the
same OS name doesn’t mean that they’re identical!

Q&A
Q Why is it so important to make sure that someone isn’t logged in if you’re

going to disable their account?

A Oftentimes you’ll find that you need to suspend an account because of inappropri-
ate activity by the user, or because the user’s been furloughed temporarily. In those
situations, it’s best to avoid any potential copying of confidential files, attempts to
sabotage the system, or what have you by simply giving the user the boot.

Q The whole idea of file locking seems pretty critical to the design of a multiuser
operating system. Is it?

A Absolutely, and even with file locking, it’s still not uncommon for multiple admins
to override each others’ changes (what I’d call “stepping on each other”). The best
policy is to have one person who is empowered to make changes to critical files,
then let everyone else feed change requests to them.

Workshop
Quiz

1. What’s the super-fast less-than-a-minute technique for suspending a user account?

2. The passwd command on most Unix systems has heuristics (a fancy word for rules)
defining what is an acceptable password. Find out what the rules are on your main
system.

3. The built-in usermod –L mechanism for locking accounts consists of simply stick-
ing an ! in front of the encrypted password string. Will that work for any system?
Try it.

4. Why might you use passwd –d on a Linux or Solaris system?

Answers
1. Suspending a user account can be done very quickly by changing the password as

root.

130 Hour 6

10 0672323982 Ch06 6/18/02 2:05 PM Page 130

2. The easiest way to find out what rules the passwd command uses is to check the
passwd man page. Here’s the relevant excerpt from the Solaris man page:
Passwords must be constructed to meet the following require-

ments:

o Each password must have PASSLENGTH characters, where
PASSLENGTH is defined in /etc/default/passwd and is
set to 6. Only the first eight characters are signifi-
cant.

o Each password must contain at least two alphabetic
characters and at least one numeric or special charac-
ter. In this case, “alphabetic” refers to all upper or
lower case letters.

o Each password must differ from the user’s login name
and any reverse or circular shift of that login name.
For comparison purposes, an upper case letter and its
corresponding lower case letter are equivalent.

o New passwords must differ from the old by at least
three characters. For comparison purposes, an upper
case letter and its corresponding lower case letter
are equivalent.

3. Prefacing an encrypted password string with a new character will definitely make
the password unmatchable, effectively turning the account off. It’s another trick
you can use if there’s no locking mechanism available.

4. If you set up an account with a shell of, say, lpq or something similar, you might
make it general access by informing users that they can log in to the lpq account
from any login prompt to see the state of the printer queue.

In the next hour, we’ll have a close look at backup and archiving tools with Unix, focus-
ing specifically on gzip and tar, two tools that every Unix system administrator should
know like the proverbial back of the hand. We’ll also compare compression packages to
see which does the best job of saving disk space and making transfers more speedy.

Account Management 131

6

10 0672323982 Ch06 6/18/02 2:05 PM Page 131

10 0672323982 Ch06 6/18/02 2:05 PM Page 132

HOUR 7
Large File Management
and Backups

The last few hours have concentrated on tools and techniques for managing
user accounts on your Unix system. However, users have expectations of
you as a system administrator in much the same way you have expectations
of them. Chief among their expectations is that the file system has a high
level of integrity. Put another way, you’d better be doing backups!

This hour will concentrate on managing large files and archives, and then
talk about common methods of backing data up onto an archival device.

In this hour you’ll learn about

• Managing big files with compress

• The gzip alternative

• A zippy tour of zip

• Copying directory trees with tar

• Dump and system backups

11 0672323982 Ch07 6/18/02 2:02 PM Page 133

Shrinking Big Files with compress
If you’ve picked up the newspaper in the last few years or walked into a computer shop,
you know that the price of hard disks has been decreasing at a rather astonishing rate.
Today I can walk into the local electronics store and buy a 40 gigabyte hard disk for
under $100. When I remember how much my first 20 megabyte disk cost years ago…
well, I promised I wouldn’t bore you with reminisces, so I’ll stop there.

The point is that it’s hard to imagine filling up disks, or having files on a Unix system
that are so large that it’s necessary to worry about coming up with a technique that will
let you shrink them down.

Until, that is, your users start to explore multimedia files. A four minute MP3-encoded
music file can easily be 50MB or more, a JPEG image from a digital camera can sprawl
across 1MB or more, and even Word documents have been known to grow at a surprising
rate once editing and reviewing begins.

That’s why one of the foundational topics for system administration is managing large
files. Like it or not, you have some on your computer, and you’re bound to have more as
more users are added (or as you use it more yourself).

Task 7.1: Working with compress
The primary cross-platform tool for managing large files is a program called compress,
which uses an adaptive Lempel-Ziv encoding that shrinks files down 20% to 30% on
average.

1. To start out, I’ve been exploring how my users are using their disk space, and
found that that pesky taylor guy has all sorts of large files in his directory. Here’s
a representative sampling:
$ ls -l
total 5036
-rw-r--r-- 1 taylor coders 1113 Jan 10 08:12 adduser.sh
-rw-rw---- 1 taylor coders 56 Dec 5 05:10 badjoke
-rw-rw---- 1 taylor coders 56 Dec 5 05:10 badjoke.rot13
drwxrw---- 2 taylor coders 4096 Dec 5 05:48 bin/
-rw-rw---- 1 taylor coders 739 Dec 5 05:11 browse.sh
-rw-rw---- 1 taylor coders 276 Dec 5 05:11 buckaroo
drwxrwxr-x 2 taylor coders 4096 Dec 18 21:26 CBO_MAIL/
-rw-r--r-- 1 root coders 537 Jan 9 22:39 checkhomes.sh
-rw-r--r-- 1 root coders 756 Jan 14 21:31 checkpw.sh
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 CraigsList/
-rw-r--r-- 1 root coders 693 Jan 14 06:40 delete.sh
drwxrw---- 4 taylor coders 4096 Jan 7 21:47 DEMO/
-rw-rw-r-- 1 taylor coders 373 Jan 7 20:22 diskhogs.sh
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 elance/

134 Hour 7

,
TA

SK
,

11 0672323982 Ch07 6/18/02 2:02 PM Page 134

-rw-rw---- 1 taylor coders 81491 Dec 5 05:12 etcpasswd
drwxrw---- 2 taylor coders 4096 Dec 5 05:12 Exchange/
drwxrw---- 5 taylor coders 4096 Dec 5 05:16 Gator/
-rw-rw---- 1 taylor coders 605 Dec 5 05:21 getmodemdriver.sh
-rw-rw---- 1 taylor coders 569 Dec 5 05:21 getstocks.sh
-rw-rw---- 1 taylor coders 593 Dec 5 05:21 gettermsheet.sh
-rw-rw---- 1 taylor coders 0 Dec 5 05:21 gif.gif
drwxrw---- 4 taylor coders 4096 Dec 5 05:28 IBM/
drwxrwxr-x 12 10185 root 4096 Dec 18 05:07 Lynx/
-rw-r--r-- 1 taylor coders 4303501 Jan 21 12:41 Nice Work.mp3
-rw-r--r-- 1 taylor coders 130048 Jan 21 12:42 proposal.doc
-rw-r--r-- 1 taylor coders 522970 Jan 21 12:43 rowing-w-jasmine2.jpg
-rw-r--r-- 1 root coders 1290 Jan 14 04:15 suspend.sh

There are a number of large files, including the more than four megabyte MP3
audio file Nice Work.mp3 and the 522KB JPEG image rowing-w-jasmine2.jpg.
These don’t seem too out of control, but imagine if instead of having this one file,
the user actually had the entire Ella Fitzgerald discography online? If each song is
roughly 4MB, that would be many, many gigabytes of space, space that other users
can’t use.

The solution is to compress the files to minimize the disk space used and maximize
the utility of the drive itself.

2. The standard Unix command for compressing files is compress, and it has a num-
ber of different starting arguments:
$ compress --help
Unknown flag: ‘-’; Usage: compress [-dfvcVr] [-b maxbits] [file ...]

-d If given, decompression is done instead.
-c Write output on stdout, don’t remove original.
-b Parameter limits the max number of bits/code.
-f Forces output file to be generated, even if one already.

exists, and even if no space is saved by compressing.
If -f is not used, the user will be prompted if stdin is.
a tty, otherwise, the output file will not be overwritten.

-v Write compression statistics.
-V Output vesion and compile options.
-r Recursive. If a filename is a directory, descend

into it and compress everything in it.

Large File Management and Backups 135

7
You can see a lazy sysadmin’s shortcut to remembering how to work with a
specific Unix command: Use the --help flag. Either the command will under-
stand the flag and output some help, or it’ll parse the flag and find it isn’t
known and output a Usage error that includes the help information anyway.
Either way, it’s easy and works 99% of the time.

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 135

The most interesting flag is -v, which shows the results of the compression activ-
ity. Let’s try it!
$ compress -v *mp3
Nice Work.mp3: No compression -- Nice Work.mp3 unchanged

An interesting first test: Because of the way that the information is laid out in this
file, compress tried to compress it, but found that the compressed file wasn’t sig-
nificantly smaller than the original, so it refused to complete the compression task.

Let’s try it on some other files instead:
$ compress -v *jpg *doc
rowing-w-jasmine2.jpg: No compression -- rowing-w-jasmine2.jpg unchanged
proposal.doc: -- replaced with proposal.doc.Z Compression: 62.31%

Here you can see the results: the proposal.doc file compressed down more than
60%—it was originally 130K, but it’s now only 49K, as shown:
$ ls -l p*
-rw-r--r-- 1 taylor coders 49010 Jan 21 12:42 proposal.doc.Z

However, the file itself is no longer usable without being uncompressed first, which
is the purpose of the uncompress command.

3. One super-useful utility that lets you work with compressed files without hassle is
zcat, which acts exactly like the cat command, but can uncompress compressed
files on the fly. Among other things, this is how many man systems work on Unix:
All the man pages are stored in a compressed form, and their contents are uncom-
pressed on the fly, with zcat feeding its output to the nroff formatter.

For our purposes, let’s use zcat to sneak a peek at the first few lines of a com-
pressed mail log file, without uncompressing it:
$ zcat maillog.txt.Z | head -2
Dec 24 04:02:09 staging sendmail[16202]: fBOC29k16202: from=root, size=186,
class=0, nrcpts=1, msgid=<200112241202.fBOC29k16202@staging.intuitive.com>,
relay=root@localhost
Dec 26 04:02:09 staging sendmail[19880]: fBQC29D19880: from=root,
size=1315, class=0, nrcpts=1,
msgid=<200112261202.fBQC29D19880@staging.intuitive.com>,
relay=root@localhost

136 Hour 7

The zcat command on Linux is actually part of the gzip utility, which we’ll
explore a bit later in this hour.

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 136

5. It turns out that in the world of Red Hat Linux, there are a number of utilities that
can work directly with compressed files, as summarized in the following listing:
zcat [compress] (1) - compress and expand data (version 4.1)
zcat [gzip] (1) - compress or expand files
zcat [uncompress] (1) - compress and expand data (version 4.1)
zcmp [zdiff] (1) - compare compressed files
zdiff (1) - compare compressed files
zgrep (1) - search possibly compressed files for expression
zless (1) - file perusal filter for viewing compressed text
zlib (3) - compression/decompression library
zmore (1) - file perusal filter for viewing compressed text
znew (1) - recompress .Z files to .gz files

6. It’s also fun and illustrative of the subtle differences between Unix flavors to see
how the same command compressing the same original files has different results
on different Unix platforms.

Red Hat Linux 7.2:
$ compress -v Nice* maillog* prop* rowing*
Nice Work It.mp3: No compression -- Nice Work.mp3 unchanged
maillog.txt: -- replaced with maillog.txt.Z Compression: 90.65%
proposal.doc: -- replaced with proposal.doc.Z Compression: 62.31%
rowing-w-jasmine2.jpg: No compression -- rowing-w-jasmine2.jpg unchanged

Solaris 8:
$ compress -v Nice* maillog* prop* rowing*
Nice Work.mp3: Compression: -29.87% -- file unchanged
maillog.txt: Compression: 90.60% -- replaced with maillog.txt.Z
proposal.doc: Compression: 62.31% -- replaced with proposal.doc.Z
rowing-w-jasmine2.jpg: Compression: -30.28% -- file unchanged

Darwin/Mac OS X:
$ compress -v Nice* maillog* prop* rowing*
Nice Work.mp3: file would grow; left unmodified
maillog.txt.Z: 9% compression
proposal.doc.Z: 38% compression
rowing-w-jasmine2.jpg: file would grow; left unmodified

Amazingly, the resultant size of the maillog.txt file is different on each of the
platforms, as summarized in Table 7.1.

TABLE 7.1 Variation in Compressed File Size

Filename Original Size Linux Solaris Darwin

maillog.txt 39,350,440 3,677,629 3,696,761 3,696,039

As you spend more time digging around on your Unix system, you’ll inevitably find
huge files that are rarely accessed. Perhaps an old development project saved in an

Large File Management and Backups 137

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 137

archival format? A set of MP3s residing on the server for a garage band? A streaming
video that’s not part of a Web site any more? Archival log files that are kept for long-
term system usage analysis?

Regardless of the reason for little used files, compress is a terrific tool to help maximize
the availability of your disk space. Not only that, it’s also a great command to teach your
users so they can manage their own disk space more wisely, too.

The gzip Alternative
Although compress has a long, venerable history, it’s not the only utility available on
Unix systems that knows how to compress files. There are two others worthy of note,
zip and gzip. They sound like the same program, but they’re definitely not.

The zip utility lets you build a package of files and directories, then automatically com-
presses them. What’s most helpful about this utility is that it’s completely compatible
with the very popular PKZIP and WinZip utilities on Windows. Even better, Aladdin
System’s very successful StuffIt system for Mac OS also knows how to work with ZIP
archives, so it’s a completely multiplatform solution.

138 Hour 7

In fact, ZIP archives are compatible across Unix, VMS, MSDOS, OS/2,
Windows, Macintosh, Amiga, Atari, and even Acorn systems.

The gzip utility is intended to be a replacement to compress, as is stated explicitly by
the program’s author in the documentation: “We developed this program as a replace-
ment for compress because of the UNISYS and IBM patents covering the LZW algo-
rithm used by compress. These patents made it impossible for us to use compress, and
we needed a replacement. The superior compression ratio of gzip is just a bonus.”

A bit of history: The “GNU” project (which stands for, and I’m not kidding,
GNU’s Not Unix) was born out of a dissatisfaction in the developer commu-
nity with the strongarm tactics of AT&T, the patent holder and owner of the
original Unix system. GNU’s purpose in life was to offer a free version of
Unix that was clear of all patents and other corporate intellectual property,
and it succeeded astonishingly well. It’s a fascinating read and can be found
online at http://www.gnu.org/.

11 0672323982 Ch07 6/18/02 2:02 PM Page 138

There is one other common compression program available with some flavors of Unix:
pack. The pack command, which uses a Huffman encoding compression algorithm, is
available on Solaris 8, but not Linux or Darwin. I expect that no one uses it, however,
because of the widespread availability of compress and gzip.

Task 7.2: Working with gzip
There are alternative compression utilities, but gzip is worth significant attention because
it has become the de facto compression utility of choice for the Unix community.

1. To start, let’s see if using the --help flag will produce some useful information:
$ gzip --help
gzip 1.3
(1999-12-21)
usage: gzip [-cdfhlLnNrtvV19] [-S suffix] [file ...]
-c --stdout write on standard output, keep original files unchanged
-d --decompress decompress
-f --force force overwrite of output file and compress links
-h --help give this help
-l --list list compressed file contents
-L --license display software license
-n --no-name do not save or restore the original name and time stamp
-N --name save or restore the original name and time stamp
-q --quiet suppress all warnings
-r --recursive operate recursively on directories
-S .suf --suffix .suf use suffix .suf on compressed files
-t --test test compressed file integrity
-v --verbose verbose mode
-V --version display version number
-1 --fast compress faster
-9 --best compress better
file... files to (de)compress. If none given, use standard input.

Report bugs to <bug-gzip@gnu.org>.

Notice that there are two forms of each command flag: the single-letter traditional
Unix flag (for example, -f, -v) and the double-dash full-word flag (for example,
--force, --verbose). Only GNU versions of Unix commands have the full-word
flag options, so although it might be tempting to use them, I will counsel you to
learn the single-letter flags instead. It’s less typing, and you won’t subsequently get
frustrated when you’re working with a non-GNU command that thinks --help is a
request for the five flags -, -h, -e, -l, and -p.

2. Armed with this summary, here’s the first demonstration of gzip’s use:
$ gzip -v Nice* maillog* prop* rowing*
Nice Work.mp3: 2.4% -- replaced with Nice Work.mp3.gz

Large File Management and Backups 139

7

,
TA

SK
,

11 0672323982 Ch07 6/18/02 2:02 PM Page 139

maillog.txt: 92.3% -- replaced with maillog.txt.gz
proposal.doc: 79.9% -- replaced with proposal.doc.gz
rowing-w-jasmine2.jpg: 0.2% -- replaced with rowing-w-jasmine2.jpg.gz

It did an outstanding job compressing the maillog.txt file: Compared to the
3.6MB average for compress, gzip has shrunk it down to 2.9MB. However, one
annoying characteristic of gzip is that it compresses just about everything, even if
the savings are pointless (the JPEG image has been compressed 0.2%, and the
original file that was 522Kb has been replaced with its gzipped version that’s
521Kb.

Here’s how our four files compressed with the regular gzip invocation:
-rw-r--r-- 1 taylor coders 2992332 Jan 21 16:08 maillog.txt.gz
-rw-r--r-- 1 taylor coders 4197440 Jan 21 12:41 Nice Work.mp3.gz
-rw-r--r-- 1 taylor coders 26159 Jan 21 12:42 proposal.doc.gz
-rw-r--r-- 1 taylor coders 521565 Jan 21 12:43 rowing-w-jasmine2.
➥jpg.gz

To uncompress them is a simple matter of invoking gunzip

$ gunzip *.gz

and compressing them with a higher requested compression ratio (the -9 flag):
$ gzip -v9 Nice* maillog* prop* rowing*
Nice Work.mp3: 2.4% -- replaced with Nice Work.mp3.gz
maillog.txt: 93.3% -- replaced with maillog.txt.gz
proposal.doc: 80.1% -- replaced with proposal.doc.gz
rowing-w-jasmine2.jpg: 0.2% -- replaced with rowing-w-jasmine2.jpg.gz

The result files are just a tiny bit smaller:
-rw-r--r-- 1 taylor coders 2604313 Jan 21 16:08 maillog.txt.gz
-rw-r--r-- 1 taylor coders 4197118 Jan 21 12:41 Nice Work.mp3.gz
-rw-r--r-- 1 taylor coders 25850 Jan 21 12:42 proposal.doc.gz
-rw-r--r-- 1 taylor coders 521565 Jan 21 12:43 rowing-w-jasmine2.
➥jpg.gz

Better, but probably not enough to worry about whether you remember to use the
-9 flag or not!

3. One great capability of gzip is its ability to recursively compress every file in the
current directory and any subdirectory from a given point:
$ cd ~testdude
$ gzip -rv9 *
adduser.sh: 46.3% -- replaced with adduser.sh.gz
browse.sh: 57.1% -- replaced with browse.sh.gz
checkhomes.sh: 50.4% -- replaced with checkhomes.sh.gz
checkpw.sh: 38.8% -- replaced with checkpw.sh.gz
delete.sh: 43.7% -- replaced with delete.sh.gz

140 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 140

DEMO/testfile: 0.0% -- replaced with DEMO/testfile.gz
DEMO/Src/cribbage.c: 69.0% -- replaced with DEMO/Src/cribbage.c.gz
DEMO/snapshot.sh: 28.8% -- replaced with DEMO/snapshot.sh.gz
DEMO/sourcefiles.cpio: 72.8% -- replaced with DEMO/sourcefiles.cpio.gz
diskhogs.sh: 37.2% -- replaced with diskhogs.sh.gz
getmodemdriver.sh: 37.0% -- replaced with getmodemdriver.sh.gz
getstocks.sh: 39.1% -- replaced with getstocks.sh.gz
gettermsheet.sh: 37.0% -- replaced with gettermsheet.sh.gz
rowing-w-jasmine2.jpg: 0.2% -- replaced with rowing-w-jasmine2.jpg.gz
suspend.sh: 47.3% -- replaced with suspend.sh.gz

Large File Management and Backups 141

7

The gzip program has automatically replaced each file in the directory (and subdi-
rectories below it) with compressed versions, and, as usual, each has been given a
.gz suffix.

This behavior is terrific for system administrators. In particular, this can be a great
additional step taken when an account is suspended—automatically compress all
the files in the user’s home directory to maximize available disk space for active
users.

4. The gunzip command is another name for the gzip program, through a hard link.
The nuances of symbolic versus hard linking is a bit beyond the scope of this book
(check out Sams Teach Yourself Unix in 24 Hours for a good explanation), but
when you see a man page that starts similar to gzip (with a list of commands), it
implies that the file system is set up a certain way.

Because ensuring that commands are installed properly is an important sysadmin
task, let’s have a quick sidetrack to learn how this is done! Besides, I love these
sidetracks, don’t you?
$ man gzip | head
GZIP(1) GZIP(1)

NAME
gzip, gunzip, zcat - compress or expand files

SYNOPSIS
gzip [-acdfhlLnNrtvV19] [-S suffix] [name ...]
gunzip [-acfhlLnNrtvV] [-S suffix] [name ...]
zcat [-fhLV] [name ...]

In case you haven’t seen it before, the ~acct notation is a convenient short-
cut for the home directory of user acct. Without any account specified, ~
itself expands to your home directory in just about every worthwhile shell.

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 141

Any time you see a set of different command names in the SYNOPSIS of a man page,
it means that the same executable binary has multiple names in the file system.
This should be revealed with ls:
$ which gzip
/bin/gzip
$ cd /bin
$ ls -l gzip gunzip zcat
-rwxr-xr-x 3 root root 51228 Aug 23 20:02 gunzip*
-rwxr-xr-x 3 root root 51228 Aug 23 20:02 gzip*
-rwxr-xr-x 3 root root 51228 Aug 23 20:02 zcat*

Perfect. They’re all the same size, and all three have the same link count (the sec-
ond column of the -l long output format).

Notice anything surprising in that last output? Flip back a few pages for a clue….
The zcat command is supposed to be associated with the compress utility, but you
can see that it’s clearly part of the gzip family of compression commands instead.
What’s going on here?

The solution to this puzzle is that one of the unheralded features of gzip is that it
can not only uncompress its own compressed file formats, but it can also uncom-
press compressed files from compress, zip, and pack!

6. If you’re perpetually encountering disk space problems and can’t afford to buy big-
ger disks, you can combine gzip with find to automatically comb through user
files and autocompress any exceptionally large ones:
$ find /home -type f -size +1000k -print
/home/taylor/Gator/Snapshots/MAILOUT.tar.Z
/home/taylor/IBM/fop.jar
/home/taylor/IBM/j2sdk-1_3_0_02-solx86.tar
/home/taylor/Lynx/src/lynx
/home/taylor/Lynx/lynx
/home/taylor/maillog.txt.gz
/home/taylor/Nice Work.mp3.gz

This particular command lists all files (-type f) that are greater than 1000Kb.
There are a number of steps required to turn this into a fully usable shell script, but
let’s skip straight to the end product this time:
cat autocompress.sh
#!/bin/sh

AUTOCOMPRESS - automatically find and compress excessively large files
in the /home directory tree, sending email to the user so they know
what’s happened.

homedir=”/home”
threshold=”+1000k” # files must be bigger than this to compress

142 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 142

compressed=0

clean up our temp files before we start
/bin/rm -f /tmp/autocompress.*

for fname in `find $homedir -type f -size $threshold -print | \
egrep -v ‘(.Z$|.gz$|.tgz$)’`

do
owner=”`ls -l $fname | awk ‘{print $3}’`”
if [$owner = “root”] ; then
echo “... skipping file $fname (owned by root)”

else
echo “autocompressing file $fname (owned by $owner)”
gzip $fname
echo “ $fname” >> /tmp/autocompress.$owner
compressed=”`expr $compressed + 1`”

fi
done

now send out email reports to any users who has had files compressed

if [$compressed -gt 0]; then
for report in `ls /tmp/autocompress.*`
do
recipient=”`echo $report | sed ‘s/\/tmp\/autocompress\.//’`”
echo “”
echo “Sending autocompress report to ${recipient}:”
cat $report
(
echo “In an effort to save disk space, files larger than $threshold”
echo “are automatically compressed on this system. On a regular sweep”
echo “through the disk, the following file or files of yours have been”
echo “identified and auto-compressed:”
cat $report
echo “To learn how to work with compressed files, please see the “
echo “gzip man page. You can do this with the command”
echo “ man gzip”

) | mail -s “Notice: Compressed your big files” $recipient

/bin/rm -f $report
done
echo “”
echo “$compressed file(s) compressed.”

else
echo “”
echo “autocompress: no files compressed, no report generated”

fi

exit 0

Large File Management and Backups 143

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 143

This is a considerably more sophisticated shell script than those presented in earlier
hours, so I encourage you to spend some time reading it line by line. Note particu-
larly how the $compressed variable keeps count of how many matches there are,
and how parentheses spawn a separate subshell and let you compose a very
friendly e-mail message to the user with various Unix commands. The use of temp
files to store intermediate information is also worthy of study.

7. Let’s run the script to see what happens:
autocompress.sh
autocompressing file /home/taylor/IBM/fop.jar (owned by taylor)
autocompressing file /home/taylor/IBM/j2sdk-1_3_0_02-solx86.tar
➥(owned by taylor)
... skipping file /home/taylor/Lynx/src/lynx (owned by root)
... skipping file /home/taylor/Lynx/lynx (owned by root)

Sending autocompress report to taylor:
/home/taylor/IBM/fop.jar
/home/taylor/IBM/j2sdk-1_3_0_02-solx86.tar

2 file(s) compressed.

Two files have been compressed, and two potentially large files were skipped
because they’re owned by root (suggesting that they are perhaps more important).
The second half of the script ensures that these changes don’t occur silently.
Instead, the user will receive an e-mail message notifying him of the autocompres-
sion:
From: root
Subject: Notice: Compressed your big files

In an effort to save disk space, files larger than +1000k
are automatically compressed on this system. On a regular sweep
through the disk, the following file or files of yours have been
identified and auto-compressed:

/home/taylor/IBM/fop.jar
/home/taylor/IBM/j2sdk-1_3_0_02-solx86.tar

To learn how to work with compressed files, please see the
gzip man page. You can do this with the command

man gzip

The two commands compress and gzip perform the same function on a Unix system—
they replace a large file with a smaller file that has the same information, albeit in a
slightly less useable format. The difference in compression quality is important, but not
critical, so if you’ve long since wired compress into your brain as the way to shrink files,
you’re probably okay without learning any new tricks.

If you’re coming at this for the first time, however, gzip is the way to go. If you want a
strong motivation, have a peek inside /usr/share/man and notice that all the man pages

144 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 144

are stored with .gz suffixes—they’re all stored by default in the gzip compressed for-
mat. In the next hour we’ll explore the various Unix package mechanisms, and you’ll see
again that gzip is the compression system of choice in the software development com-
munity.

A Zippy Tour of zip
Although zip sounds like it’s the direct relative of gzip, it’s actually quite a different
program. Yes, it does file compression (though zip calls it deflation and inflation, rather
than compression and decompression), but the primary purpose of the zip utility is to
create an archive file that contains multiple files and folders within.

Historically, zip was developed by Phil Katz of PKWare (makers of PKZIP) in 1989,
and has since been adopted as an archive format by a wide variety of vendors and most
major computing platforms. The zip command on Linux was developed over many years
and is not a part of the GNU project, so it doesn’t support those peculiar --word com-
mand arguments.

Task 7.3: Working with zip
Enough talk, let’s see what zip does!

1. Just before he left, our pal testdude asked if we could build a Windows-friendly
archive of files and folders in his home directory and e-mail it to him. This is a
perfect job for zip!

Large File Management and Backups 145

7

It’s worth pointing out that you probably do not want to send all the files
from a user’s home directory without checking if it’s okay. I recommend you
get approval—in writing—from either human resources or the legal depart-
ments before you let users have their e-mail archive, project directory, or
any file that’s at all questionable.

If you check out the zip man page, you’ll doubtless be a bit overwhelmed, but for-
tunately typing zip without any arguments will give you a (very) concise summary
of use:
$ zip
Copyright (C) 1990-1999 Info-ZIP
Type ‘zip “-L”’ for software license.
Zip 2.3 (November 29th 1999). Usage:
zip [-options] [-b path] [-t mmddyyyy] [-n suffixes] [zipfile list] [-xi list]
The default action is to add or replace zipfile entries from list, which

,
TA

SK
,

11 0672323982 Ch07 6/18/02 2:02 PM Page 145

can include the special name - to compress standard input.
If zipfile and list are omitted, zip compresses stdin to stdout.
-f freshen: only changed files -u update: only changed or new files
-d delete entries in zipfile -m move into zipfile (delete files)
-r recurse into directories -j junk (don’t record) directory names
-0 store only -l convert LF to CR LF (-ll CR LF to LF)
-1 compress faster -9 compress better
-q quiet operation -v verbose operation/print version info
-c add one-line comments -z add zipfile comment
-@ read names from stdin -o make zipfile as old as latest entry
-x exclude the following names -i include only the following names
-F fix zipfile (-FF try harder) -D do not add directory entries
-A adjust self-extracting exe -J junk zipfile prefix (unzipsfx)
-T test zipfile integrity -X eXclude eXtra file attributes
-y store symbolic links as the link instead of the referenced file
-R PKZIP recursion (see manual)
-e encrypt -n don’t compress these suffixes

To build a PKZIP-compatible archive, you want to ensure that you use the following
flags: -r causes the program to recurse into subdirectories and include that content
too, -9 requests the best possible compression, and -v offers verbose output:
$ zip -r -9 -v testdude.zip *
adding: adduser.sh (in=1113) (out=597) (deflated 46%)
adding: browse.sh (in=739) (out=317) (deflated 57%)
adding: checkhomes.sh (in=537) (out=266) (deflated 50%)
adding: checkpw.sh (in=756) (out=462) (deflated 39%)
adding: delete.sh (in=693) (out=390) (deflated 44%)
adding: DEMO/ (in=0) (out=0) (stored 0%)
adding: DEMO/testfile (in=0) (out=0) (stored 0%)
adding: DEMO/Src/ (in=0) (out=0) (stored 0%)
adding: DEMO/Src/cribbage.c (in=26150) (out=8081) (deflated 69%)
adding: DEMO/snapshot.sh (in=263) (out=187) (deflated 29%)
adding: DEMO/sourcefiles.cpio... (in=153600) (out=41688) (deflated 73%)
adding: DEMO/testdir/ (in=0) (out=0) (stored 0%)
adding: diskhogs.sh (in=373) (out=234) (deflated 37%)
adding: getmodemdriver.sh (in=605) (out=381) (deflated 37%)
adding: getstocks.sh (in=569) (out=346) (deflated 39%)
adding: gettermsheet.sh (in=593) (out=373) (deflated 37%)
adding: rowing-w-jasmine2.jpg....... (in=522970) (out=521525) (deflated 0%)
adding: suspend.sh (in=1290) (out=679) (deflated 47%)

total bytes=710251, compressed=575526 -> 19% savings

Neatly done, and the file testdude.zip is now ready to e-mail to the user. Notice
that the compressed value shown on the last line is in fact the size of the resultant
archive file: 575,526 bytes.

146 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 146

2. If you want to check that the contents of the package are correct, you can use the
companion unzip, which also tells you how it works if you omit arguments:
$ unzip
UnZip 5.42 of 14 January 2001, by Info-ZIP. Maintained by C. Spieler. Send
bug reports to the authors at Zip-Bugs@lists.wku.edu; see README for details.

Usage: unzip [-Z] [-opts[modifiers]] file[.zip] [list] [-x xlist] [-d exdir]
Default action is to extract files in list, except those in xlist, to exdir;
file[.zip] may be a wildcard. -Z => ZipInfo mode (“unzip -Z” for usage).

-p extract files to pipe, no messages -l list files (short format)
-f freshen existing files, create none -t test compressed archive data
-u update files, create if necessary -z display archive comment
-x exclude files that follow (in xlist) -d extract files into exdir

modifiers: -q quiet mode (-qq => quieter)
-n never overwrite existing files -a auto-convert any text files
-o overwrite files WITHOUT prompting -aa treat ALL files as text
-j junk paths (do not make directories) -v be verbose/print version info
-C match filenames case-insensitively -L make (some) names lowercase
-X restore UID/GID info -V retain VMS version numbers

-M pipe through “more” pager
Examples (see unzip.txt for more info):
unzip data1 -x joe => extract all files except joe from zipfile data1.zip
unzip -p foo | more => send contents of foo.zip via pipe into program more
unzip -fo foo ReadMe => quietly replace existing ReadMe if archive file

newer

To check that the ZIP archive is correct, simply use the -l flag:
$ unzip -l testdude.zip
Archive: testdude.zip
Length Date Time Name

-------- ---- ---- ----
1113 01-21-02 23:19 adduser.sh
739 01-21-02 23:19 browse.sh
537 01-21-02 23:19 checkhomes.sh
756 01-21-02 23:19 checkpw.sh
693 01-21-02 23:19 delete.sh
0 01-21-02 23:17 DEMO/
0 01-21-02 23:17 DEMO/testfile
0 01-21-02 23:17 DEMO/Src/

26150 01-21-02 23:17 DEMO/Src/cribbage.c
263 01-21-02 23:17 DEMO/snapshot.sh

153600 01-21-02 23:17 DEMO/sourcefiles.cpio
0 01-21-02 23:17 DEMO/testdir/

373 01-21-02 23:19 diskhogs.sh
605 01-21-02 23:19 getmodemdriver.sh

Large File Management and Backups 147

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 147

569 01-21-02 23:19 getstocks.sh
593 01-21-02 23:19 gettermsheet.sh

522970 01-21-02 23:19 rowing-w-jasmine2.jpg
1290 01-21-02 23:19 suspend.sh

-------- -------
710251 18 files

Although no rational Unix system administrator uses zip as a mechanism for moving
archives around or backing them up onto other media (that’s what tar or tar + gzip are
for, as you’ll learn shortly), there are plenty of users who need portable archives for their
non-Unix system, and that’s where zip shines.

In many years of system administration, I have only built one or two ZIP archives
myself, but it’s really great to know that the capability is available on Unix systems.

148 Hour 7

There is no command-line zip utility in Darwin, so you’ll need to use StuffIt
Deluxe or another graphically-oriented ZIP utility if you must create a ZIP-
format archive for a user. You could also install a zip port through fink or
similar, as discussed in the next hour.

On the Windows side, there are a bunch of different ZIP-friendly utilities available. The
two most popular are WinZip and PKZIP. WinZip features built-in support for CAB files
and popular Internet file formats such as tar, gzip, uuencode, BinHex, and MIME.
PKZIP also supports the uuencode, BinHex, MIME, tar, gzip, CAB, and JAR formats.
The Mac-equivalent super-utility is the wonderful—and completely free—StuffIt
Expander, and it not only supports the ZIP format, but also the BinHex, tar, MIME,
gzip, ARC, uuencode, and even the .Z files from the Unix compress. (StuffIt Expander
is also available for Windows, Linux, and Solaris, if you want to improve your own
working environment.)

All these applications are available on the Web for any users who request your assistance
with this process. Send them to http://www.winzip.com/ for WinZip,
http://www.pkware.com/ for PKZIP, or http://www.aladdinsys.com/ for the StuffIt
application suite.

Copying Directory Trees with tar
When it comes to building Unix-friendly archives of files and directories, the command
of choice is tar. Amazingly, tar started out life as a way to write files onto a backup
tape device so that you could later restore them, retaining any subdirectory information.

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 148

Zoom forward a few years, and tar is the most common utility for creating snapshots of
file sets and directory structures. Sure, you can use something like cp –R to recursively
copy a directory tree elsewhere on your system, but what if you need to transfer it via
ftp to a second machine? That’s a great use of tar, and that’s where we’ll start exploring
this powerful utility.

Task 7.4: Working with tar
On first glance, you might be thinking, “As a sysadmin, why would the capability to cre-
ate archival files be so useful?” In fact, it’s remarkable to me how often I find myself
working with the tar command, whether it’s to transfer directory trees from one system
to another, copy files from one spot on the disk to another, or even to take quick “snap-
shots” of a development directory so I have a backup copy.

The most popular use for tar is transferring files and directories in bulk from one system
to another.

1. The tar command has oodles of options, but there are three core uses of tar that
are a good starting point: creating archives, extracting files from archives, and
examining the contents of archives. These are -c, -x, and -t, respectively. Other
useful flags are summarized in Table 7.2.

TABLE 7.2 Useful Flags to tar

Flag Meaning

-c Create a new archive.

-f file or device Save output as specified filename, or write to the specified device.
The default output device varies by system, but on Linux it’s
/dev/rmt0, which is usually a tape drive or similar streaming
backup media.

-N date Only archive files newer than the specified date. Date formats can
include 2003-08-03 (year-month-day), and 3 Aug 2003 (day month-
name year). This flag is only available in GNU tar.

-p Preserve file information. Ensures that, if possible, the UID, GID,
file permissions and access and modification times are restored
along with the file itself.

-t Show the contents of a tar archive.

-v Verbose output. Applies to all three modes of tar usage.

-x Extract a file or files from a tar archive.

-Z Filter the archive through compress.

-z Filter the archive through gzip.

Large File Management and Backups 149

7

,
TA

SK
,

11 0672323982 Ch07 6/18/02 2:02 PM Page 149

There are at least 20 different flags to the tar command, and more than double that
in the GNU version, so check the man page if you really want to have your head
start swimming! Instead, let’s just start using the tar command.

2. Having just set up a new OS X system, why don’t we create a compressed tar
archive of all the files in my Linux account, ftp them to the Mac, then unpack
them with tar? This is a very common task!

The first step is to create the archive on the Linux system. Because I want to also
pick up the dot-files (those that start with .), I’ll use a sophisticated file matching
pattern:
$ cd ~taylor
$ tar -cvzf /tmp/taylor-dir.tar.gz .[a-zA-Z]* *
.bash_history
.bash_logout
.bash_profile
.bashrc
.emacs
.gtkrc
.kde/
.kde/Autostart/
.kde/Autostart/Autorun.desktop
.kde/Autostart/.directory
.mc/
.mc/tmp/
.mc/ini
.mc/history
.mc/Tree
.screenrc
1
CBO_MAIL/

... lots of output removed ...

elance/getquotes-txt.sh
etcpasswd
getmodemdriver.sh
getstocks.sh
gettermsheet.sh
gif.gif
mail.log
proposal.doc.gz
rowing-w-jasmine2.jpg.gz
suspend.sh

Notice what file reports for the archive:
$ file *gz
taylor-dir.tar.gz: gzip compressed data, deflated, last modified: Tue Jan
22
➥12:06:33 2002, os: Unix

150 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 150

3. To transfer the file to the Mac system, I’ll use ftp, a program that isn’t elegant, but
works great:
$ ftp g4.intuitive.com
Connected to g4.intuitive.com (198.76.82.132).
220 g4.intuitive.com FTP server (Version 6.00LS) ready.
Name (g4.intuitive.com:taylor): taylor
331 Password required for taylor.
Password:
230 User taylor logged in.
Remote system type is Unix.
Using binary mode to transfer files.
ftp> binary
200 Type set to I.
ftp> lcd /tmp
Local directory now /tmp
ftp> cd /tmp
250 CWD command successful.
ftp> put taylor-dir.tar.gz
local: taylor-dir.tar.gz remote: taylor-dir.tar.gz
227 Entering Passive Mode (198,76,82,132,195,54)
150 Opening BINARY mode data connection for ‘taylor-dir.tar.gz’.
226 Transfer complete.
3064316 bytes sent in 125 secs (24 Kbytes/sec)
ftp> quit
221 Goodbye.

It took just barely more than two minutes to transfer the 3MB of data from a Linux
server at a remote location to my Mac server in my office, through a slow DSL
line. Not bad.

4. To unpack the archive on the Darwin box, let’s start by checking its contents with
the -t flag, and let’s also specify a pattern against which the filenames will be
matched:
$ tar -tzf *gz DEMO
DEMO
DEMO/testfile
DEMO/Src
DEMO/Src/cribbage.c
DEMO/snapshot.sh
DEMO/sourcefiles.cpio
DEMO/testdir

This shows all the files and directories that match the specified pattern DEMO.
Another quick example lists all the C program source files:
$ tar -tzf *gz *.c
DEMO/Src/cribbage.c
bin/fixit.c
elance/filter.c

Large File Management and Backups 151

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 151

To extract specific files, simply change the -t flag to an -x flag. Here’s how you
would unpack the DEMO directory in Darwin:
$ tar -xzvpf /tmp/*gz DEMO
DEMO
DEMO/testfile
DEMO/Src
DEMO/Src/cribbage.c
DEMO/snapshot.sh
DEMO/sourcefiles.cpio
DEMO/testdir

Like most tar archives, this one assumes that you’re already in the directory you
want to install into, so the DEMO directory has been added to the current working
directory.

5. One very common usage of tar is to copy a directory tree from one spot to another
while retaining the original file ownership and permissions.

The standard solution for this is to specify - as the output device, because all the
information will be streaming into standard output. Simply have another tar on the
receiving end that’s expecting information from standard input:

cd olddir; tar -cf - . | (cd newdir; tar -xpf -)

The parentheses, recall, spawn a subshell which inherits the stdin, stdout, and
stderr of the parent shell. In this case, the subshell changes to the new directory,
then the tar begins to unpack what’s being given to it from the first tar command.

152 Hour 7

One warning related to using tar to move directory trees without an inter-
mediate file. Because tar tries to intelligently rebuild symbolic links as it
unpacks an archive, it’s a good habit to always specify newdir as an
absolute directory name (for example, one that begins with /).

,

,

Archiving a directory, moving the archive elsewhere, and unpacking it selectively in
another location is probably the quintessential use of tar in the Unix world. It’s a
sophisticated task done quite easily with standard Unix tools.

dump and System Backups
The tar command can also be used for system backups, but unless you have the sophis-
ticated GNU tar with its helpful -N date flag, you’ll probably find tar too primitive for
standard system backups. You could back up pieces of your system, but is that sufficient?

In fact, the standard Unix approach for system backups is the dump command, and its
partner, restore.

11 0672323982 Ch07 6/18/02 2:02 PM Page 152

Task 7.5: Incremental Backups
In the world of system administration, there are two types of backups that are neces-
sary—full backups, in which every file in the file system is copied or archived, and
incremental backups, in which only those files that have changed since the previous
backup are saved.

A full backup is easy, and can even be accomplished by tar –cf /dev/st0 /, where
/dev/st0 is the name of a SCSI backup device, perhaps a DAT tape or similar.

Large File Management and Backups 153

7

A common backup device is a tape drive added to the SCSI chain. If that’s
your configuration, your tape drive is probably best referenced as /dev/st0
for Linux, /dev/rsa0 for Darwin (though you’ll have to mknod it before you
can use it), and /dev/rmt/0 for Solaris. There are nuances regarding whether
the device will rewind or not too, so double-check with your system docu-
mentation to verify the exact device name. For example, although /dev/st0
works for Linux, the nonrewinding device name for the same SCSI tape drive
would be /dev/nst0.

The more interesting situation is when you want to do an incremental backup. How do
you find the files that have changed since the previous backup (either a full or
incremental backup, depending on what happened the previous night) and copy just
those to the archival device?

You can identify files that have changed with find, using its super-helpful -newer flag,
but let’s focus instead on the standard Unix dump command, because it has this capability
built in and lots more besides.

1. The dump command is built on the concept of multiple backup levels: a level 0
dump is a full backup, whereas a level 1-9 backup will only save files that have
changed since the last backup of a similar, or higher level. That’s confusing, I
admit, so instead just use two levels like most people: 0 for full backups, 1 for
incremental backups.

,
TA

SK
,

The dump command on Solaris is for programmers who want to analyze the
contents of binary executables. The equivalent backup command is called
ufsdump (and ufsrestore), which otherwise work completely identically to
what’s demonstrated here.

11 0672323982 Ch07 6/18/02 2:02 PM Page 153

154 Hour 7

The last-backed-up timestamp is stored in the file /etc/dumpdates, and a some-
what annoying characteristic of dump must be considered: it can only back up one
partition or disk at a time. A quick glance at the output of df shows
df
Filesystem 1k-blocks Used Available Use% Mounted on
/dev/sda5 380791 102093 259038 29% /
/dev/sda1 49558 7797 39202 17% /boot
/dev/sda3 16033712 40416 15178808 1% /home
none 256436 0 256436 0% /dev/shm
/dev/sdb1 17245524 1310620 15058876 9% /usr
/dev/sdb2 253871 86739 154025 37% /var

Ignore /dev/shm because it’s part of the virtual memory system, and you can see
that there are five different partitions on this system. This means that you’ll need
to invoke dump five times to successfully backup the entire system.

2. To do a full backup within the Linux environment to a nonrewinding SCSI tape
drive would therefore look like this:
dump –0uf /dev/nst0 /
dump –0uf /dev/nst0 /boot
dump –0uf /dev/nst0 /home
dump –0uf /dev/nst0 /usr
dump –0uf /dev/nst0 /var

Somewhat tedious, admittedly, but backup utilities are fairly crude in the world of
Unix, even after 30 years of development.

The dump command has many starting flags, of which the most critical are high-
lighted in Table 7.3.

TABLE 7.3 Critical Flags for dump

Flag Meaning

0-9 Dump level. Level 0 is always a full dump.

-b size Block size of the output device.

-f file Send output to specified file or device.

-S Estimate the amount of tape needed, without actually doing the backup itself.

-T date Calculate what files to dump based on whether they’re newer than the speci-
fied date. See ctime(3) for correct date format.

-u Update the /etc/dumpdate file after a successful dump.

-W Show which file systems need to be backed up, and when the last backup of
each system was, if ever.

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 154

3. To experiment with dump, we can write output to /dev/null, a device that’s the
“bit bucket” of Unix—you can write as much as you want to it, and it never fills
up. Everything just vanishes:
/sbin/dump -0uf /dev/null /boot
DUMP: Date of this level 0 dump: Wed Jan 23 12:58:11 2002
DUMP: Dumping /dev/sda1 (/boot) to /dev/null
DUMP: Exclude ext3 journal inode 8
DUMP: Label: /boot
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 3726 tape blocks.
DUMP: Volume 1 started with block 1 at: Wed Jan 23 12:58:23 2002
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
DUMP: Closing /dev/null
DUMP: Volume 1 completed at: Wed Jan 23 12:58:24 2002
DUMP: Volume 1 3720 tape blocks (3.63MB)
DUMP: Volume 1 took 0:00:01
DUMP: Volume 1 transfer rate: 3720 kB/s
DUMP: 3720 tape blocks (3.63MB) on 1 volume(s)
DUMP: finished in 1 seconds, throughput 3720 kBytes/sec
DUMP: Date of this level 0 dump: Wed Jan 23 12:58:11 2002
DUMP: Date this dump completed: Wed Jan 23 12:58:24 2002
DUMP: Average transfer rate: 3720 kB/s
DUMP: DUMP IS DONE

As a second experiment, let’s dump all the files in /home that have been changed
since January 21, 2002 (two days prior to the creation of this example):
/sbin/dump -0f /tmp/homedump -T “Mon Jan 21 00:00:00 2002” /home
DUMP: Date of this level 0 dump: Wed Jan 23 13:10:09 2002
DUMP: Date of last level ? dump: Mon Jan 21 00:00:00 2002
DUMP: Dumping /dev/sda3 (/home) to /tmp/homedump
DUMP: Exclude ext3 journal inode 8
DUMP: Label: /home
DUMP: mapping (Pass I) [regular files]
DUMP: mapping (Pass II) [directories]
DUMP: estimated 2649 tape blocks.
DUMP: Volume 1 started with block 1 at: Wed Jan 23 13:10:26 2002
DUMP: dumping (Pass III) [directories]
DUMP: dumping (Pass IV) [regular files]
DUMP: Closing /tmp/homedump
DUMP: Volume 1 completed at: Wed Jan 23 13:10:26 2002
DUMP: Volume 1 2680 tape blocks (2.62MB)
DUMP: 2680 tape blocks (2.62MB) on 1 volume(s)
DUMP: finished in less than a second
DUMP: Date of this level 0 dump: Wed Jan 23 13:10:09 2002
DUMP: Date this dump completed: Wed Jan 23 13:10:26 2002
DUMP: Average transfer rate: 0 kB/s
DUMP: DUMP IS DONE

This backup image took 2.6MB, or 2,744,320MB of disk space.

Large File Management and Backups 155

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 155

4. Let’s have a look at what file systems do and don’t need to be backed up:
/sbin/dump -W
Last dump(s) done (Dump ‘>’ file systems):
/dev/sda5 (/) Last dump: never
/dev/sda1 (/boot) Last dump: Level 0, Date Wed Jan 23 12:58:11 2002
/dev/sda3 (/home) Last dump: never
/dev/sdb1 (/usr) Last dump: never
/dev/sdb2 (/var) Last dump: never

Surprisingly, the /home partition still lists as never being backed up. This is
because the -T flag is mutually exclusive with the -u flag necessary to update the
incremental backup data file /etc/dumpdates.

5. The partner command for dump is restore, which lets you extract one or more files
from a dump archive. To list what’s in a dump archive, the -t flag should be
familiar:
/sbin/restore -tf /tmp/homedump
Dump date: Wed Jan 23 13:10:09 2002
Dumped from: Mon Jan 21 00:00:00 2002
Level 0 dump of /home on staging.intuitive.com:/dev/sda3
Label: /home

2 .
326401 ./taylor
326408 ./taylor/.bash_history

1256641 ./taylor/bin
1256671 ./taylor/bin/autocompress.sh
326425 ./taylor/mail.log
326427 ./taylor/sentinel.file
326428 ./taylor/proposal.doc.gz
326423 ./taylor/rowing-w-jasmine2.jpg.gz

1844161 ./testdude
1893121 ./testdude/DEMO
1909441 ./testdude/DEMO/Src
1909443 ./testdude/DEMO/Src/cribbage.c.gz
1925761 ./testdude/DEMO/testdir
1893123 ./testdude/DEMO/testfile.gz
1893124 ./testdude/DEMO/snapshot.sh.gz
1893125 ./testdude/DEMO/sourcefiles.cpio.gz
1844169 ./testdude/adduser.sh.gz
1844179 ./testdude/browse.sh.gz
1844171 ./testdude/delete.sh.gz
1844173 ./testdude/getmodemdriver.sh.gz
1844174 ./testdude/getstocks.sh.gz
1844175 ./testdude/gettermsheet.sh.gz
1844176 ./testdude/rowing-w-jasmine2.jpg.gz
1844177 ./testdude/suspend.sh.gz
1844180 ./testdude/checkhomes.sh.gz
1844170 ./testdude/checkpw.sh.gz
1844172 ./testdude/diskhogs.sh.gz

156 Hour 7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 156

Although you can specify which files to restore directly from the command line,
restore has a nifty interactive mode that is considerably easier to work with. You
get there with the -i flag:

It’s a bit different than the way tar handles things, because restore is actually an
interactive program of its own, as demonstrated in this example:
/sbin/restore -if /tmp/homedump
/sbin/restore > what
Dump date: Wed Jan 23 13:10:09 2002
Dumped from: Mon Jan 21 00:00:00 2002
Level 0 dump of /home on staging.intuitive.com:/dev/sda3
Label: /home
/sbin/restore > ls
.:
taylor/ testdude/

/sbin/restore > cd testdude
/sbin/restore > ls
./testdude:
DEMO/ checkpw.sh.gz getstocks.sh.gz
adduser.sh.gz delete.sh.gz gettermsheet.sh.gz
browse.sh.gz diskhogs.sh.gz rowing-w-
jasmine2.jpg.gz
checkhomes.sh.gz getmodemdriver.sh.gz suspend.sh.gz

/sbin/restore > cd DEMO
/sbin/restore > ls
./testdude/DEMO:
Src/ sourcefiles.cpio.gz testfile.gz
snapshot.sh.gz testdir/

/sbin/restore > add testfile.gz
/sbin/restore > add snapshot.sh.gz
/sbin/restore > ls
./testdude/DEMO:
Src/ sourcefiles.cpio.gz *testfile.gz

*snapshot.sh.gz testdir/

/sbin/restore > extract
You have not read any tapes yet.
Unless you know which volume your file(s) are on you should start
with the last volume and work towards the first.
Specify next volume #: 1
set owner/mode for ‘.’? [yn] y
/sbin/restore > quit

The concept here is that you’re interactively exploring the archive and marking
each file that you’d like to have added to the restore list (extracted). When you’re
done, extract begins the actual work. If your backup is in multiple volumes,
you’ll need to specify which, or 1 for a single-volume dump.

Large File Management and Backups 157

7

,

,

11 0672323982 Ch07 6/18/02 2:02 PM Page 157

Backups are difficult to implement safely and reliably on Unix systems because the com-
mands and utilities are relatively primitive. Nonetheless, ignoring backups is a dangerous
practice, and at any time your system could crash and potentially burn. And then what
would your users say about you?

Explore the information about different backup devices and their tradeoffs online—one
good place to start is http://www.backupcentral.com/—then ensure that the device is
supported by your flavor of Unix before you buy and install it. Once you have everything
running smoothly, immediately establish a tape rotation regimen and add the dump com-
mands to your crontab file. (We’ll cover cron in great detail in Hour 15, “Running Jobs
in the Future.”)

Summary
This hour has explored the nuances of compression and file system backup. We’ve seen
how different compression tools can produce surprisingly varied results on Unix systems,
and that there are a variety of non-tape-backup uses for these utilities, too. One final
comment: If you’re going to create a backup regimen, remember to rotate your tapes, so
you always have a safe backup from a few days ago in addition to the tape you’re using
for the latest backup.

Q&A
Q Why are the backup solutions so poor on Unix?

A That’s a good question with no good answer. With thousands of Unix servers pow-
ering the Internet, you’d think that there are better backup solutions than dump and
expensive commercial solutions. The only other interesting backup applications I
know of are Kbackup (X Window System-based), BURT (based on Tcl/Tk), and
Amanda (Advanced Maryland Automatic Network Disk Archiver).

Q How do you do backups on your own server?

A Um, err, next question?

Q What’s your favorite compression program?

A I always use gzip –9 if it’s available, to get the maximum compression possible.
On the other hand, the command compress is certainly more mnemonic, so perhaps
an alias…?

158 Hour 7

11 0672323982 Ch07 6/18/02 2:02 PM Page 158

Workshop
Quiz

1. Why do you think that compress had different results on different platforms?

2. When compressing lots of different types of files, what’s the main difference—
other than compression efficiency—between compress and gzip?

3. How do you view the contents of compressed files without uncompressing them?

4. Where will cd ~ take you?

5. What does tar –xvZpf /dev/st0 do?

Answers
1. Actually, that’s a really good question. Logically, if they’re using the same algo-

rithm, they should all have the same results. I’d be interested in hearing your own
theory on this puzzling variation.

2. The main difference is that gzip likes to compress everything, even if the resultant
file is a tiny bit bigger than the original. This rarely occurs, because gzip does a
great job of compression, but it’s still peculiar.

3. Use zcat, or if you have them, zmore, zgrep, or something similar.

4. To your home directory, exactly as cd $HOME and cd would do.

5. Extract commands from the dev/st0 device, uncompressing them with verbose
output, and try to retain ownership and permission information from the archive.

The next hour explores the nifty world of package management—the mechanism by
which administrators can obtain, install, and uninstall new software on their computer.
This hour will offer a basic overview of package management functionality, and explore
basic package functionality with RPM and fink, the Mac OS X package management
system.

Large File Management and Backups 159

7

11 0672323982 Ch07 6/18/02 2:02 PM Page 159

11 0672323982 Ch07 6/18/02 2:02 PM Page 160

HOUR 8
Unix Package
Management

In the world of personal computers, if you want to add a software package
to your system, you buy it (or download it, perhaps) and run an installer pro-
gram that does lots of behind-the-scenes magic and eventually pops up with
an “installed!” message. What it did, and indeed what you have installed on
your system, can be a mystery.

Rising from more egalitarian roots, the Unix system for many years was
saddled with packages that were distributed as source code along with very
complex instructions on how to build and install the program when (alright,
if!) it compiled.

Over the last half dozen years, however, Unix has caught up and in many
ways surpassed the installation strategies of the personal computer world.
However, there’s no standard. Red Hat Linux, for example, uses RPM, the
Red Hat Package Manager system. Darwin uses the still-evolving fink sys-
tem, and Solaris has its own solution—pkg.

12 0672323982 Ch08 6/18/02 1:59 PM Page 161

In this hour you will learn about

• Working with RPM on Linux

• Adding RPM packages from the Internet

• Working with fink on Darwin

• Working with pkg on Solaris

Red Hat Package Manager and Linux
The Red Hat Package Manager (RPM) system is one of the most sophisticated available
in the Unix marketplace, and is the result of years of development by contract program-
mers (and eventually employees) of Red Hat Linux Corporation. Indeed, some sysadmins
stick with Red Hat because RPM is so easy to work with.

The concept behind RPM is the same as with all package managers: They encapsulate all
the files and configuration details needed to install and enable the specified package,
including tracking version numbers of libraries, installing relevant documentation, and
even checking automatically to ensure that the installation won’t step on files needed by
a different package.

The interface to RPM is a bit baffling, however, so let’s jump right in and see how it
works.

162 Hour 8

If you are using a GUI, the good news is that there’s an RPM front end for
both of the popular window managers in Linux—GnoRPM for GNOME, and
Kpackage for KDE.

Task 8.1: Working with RPM
There are basic tasks that you’ll want to know how to do in your package manager:
query what packages are installed, install (or update) a specific package, list what files
are included with a given package, and delete a package from the system.

1. The most basic RPM command is to query all packages. This is done with -qa, and
you’ll probably have 400–600 packages installed on your system. When we first
installed Red Hat Linux (see Hour 1, “Installing Unix”), recall that we opted for
the “workstation” configuration, and that it took forever because it was installing
package after package. RPM is how you can go back and query exactly what it did.
$ rpm -qa | head
redhat-logos-1.1.3-1
glibc-2.2.4-13

,
TA

SK
,

12 0672323982 Ch08 6/18/02 1:59 PM Page 162

cracklib-2.7-12
dosfstools-2.7-1
gdbm-1.8.0-10
ksymoops-2.4.1-1
mktemp-1.5-11
perl-5.6.0-17
setserial-2.17-4
netconfig-0.8.11-7
$ rpm -aq | wc -l

638

There are more than 600 packages installed, so typing rpm –qa without feeding it
to a pager or something similar would result in a phenomenal wave of information!

Each package is identified by its name, version number, and the package version
number. For example, the Perl package is identified as perl-5.6.0-17, which
means that it’s the perl package for version 5.6.0 of Perl, and that this is the 17th
version of the RPM package for this particular distribution of Perl.

Unix Package Management 163

8

2. To learn more about a specific package, use rpm –qi, either by specifying the full
package name, or just the base name instead:
$ rpm -qi setserial
Name : setserial Relocations: /usr
Version : 2.17 Vendor: Red Hat, Inc.
Release : 4 Build Date: Sun 24 Jun 2001
➥11:59:21 PM PDT
Install date: Wed 21 Nov 2001 02:34:04 PM PST Build Host: elliot.
➥devel.redhat.com
Group : Applications/System Source RPM: setserial-2.17-4.
➥src.rpm
Size : 31113 License: GPL
Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>
Summary : A utility for configuring serial ports.
Description :
Setserial is a basic system utility for displaying or setting serial
port information. Setserial can reveal and allow you to alter the I/O
port and IRQ that a particular serial device is using, and more.

3. One of the features I really like about other package systems that isn’t a part of
RPM is the capability to provide a summary listing of packages and their descrip-
tions.

Why is this the seventeenth version of this package? Because when packages
are large, include lots of files, and have lots of dependencies, it can often
take package developers quite a few tries to get things just right for all plat-
forms and possible configurations. Nothing to worry about!

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 163

And yet, if you look at the output, there’s a Summary line. So a little bit of judi-
cious shell script coding produces showrpms:
$ cat showrpms.sh
#!/bin/sh

SHOWRPMS - List all the RPM packages on the system in a friendly manner

count=0

for package in `rpm -qa`
do
summary=”`rpm -qi $package | grep ‘^Summary’ | cut -d: -f2-`”
echo ${package}: $summary
count=”`expr $count + 1`”

done

echo “”
echo “Listed $count RPM packages”

exit 0

In a nutshell, this loops through all packages reported by rpm –qa, querying each
for its information, then extracts the summary line and outputs the package name
and summary on the same line:
$ showrpms.sh | head
redhat-logos-1.1.3-1: Red Hat-related icons and pictures.
glibc-2.2.4-13: The GNU libc libraries.
cracklib-2.7-12: A password-checking library.
dosfstools-2.7-1: Utilities for making and checking MS-DOS FAT filesystems
➥on Linux.
gdbm-1.8.0-10: A GNU set of database routines which use extensible hashing.
ksymoops-2.4.1-1: Kernel oops and error message decoder
mktemp-1.5-11: A small utility for safely making /tmp files.
perl-5.6.0-17: The Perl programming language.
setserial-2.17-4: A utility for configuring serial ports.
netconfig-0.8.11-7: A text-based tool for simple configuration of ethernet
➥devices.

An attractive and much more sysadmin-friendly output!

164 Hour 8

There is actually a way to convince RPM to output information in this for-
mat, if you really dig into it. There’s a command option --queryformat that
lets you specify exactly what information you want presented, and in what
form. If you use

rpm -qa --queryformat ‘%{NAME}: %{SUMMARY}\n’

your output will be the same as the showrpms script.

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 164

4. Now we can more effectively search to see, for example, what command line shells
are installed:
$ showrpms.sh | grep -i shell
sharutils-4.2.1-8: The GNU shar utilities for packaging and unpackaging
➥shell archives.
mc-4.5.51-36: A user-friendly file manager and visual shell.
docbook-utils-0.6.9-2: Shell scripts for managing DocBook documents.
bash-2.05-8: The GNU Bourne Again shell (bash) version 2.05.
ash-0.3.7-2: A smaller version of the Bourne shell (sh).
tcsh-6.10-6: An enhanced version of csh, the C shell.
sh-utils-2.0.11-5: A set of GNU utilities commonly used in shell scripts.

The RPM package is a powerful way to manage packages on your system, but where it
really gets exciting is when you can grab different packages from the Internet and extend
the capabilities of your system with ease!

Adding New RPM Packages from the
Internet

There’s no capability within the rpm command to reach out to a Net archive and search
for available packages, so you’ll need to pop into your graphical Web browser (perhaps
Kommando, a popular Linux browser) and poke around a bit.

Task 8.2: Installing New Web-Based RPM Packages
To install new packages on your system, you need to explore the Web and identify the
specific package desired.

Unix Package Management 165

8

1. Because the network isn’t always available, I like to have copies of relevant docu-
mentation on my own system for backup purposes. I popped over to Pbone and
learned that the great Linux FAQ set is available as an RPM package called faq-
7.2-1.noarch.rpm. On the site, it also lists the full URL of the specific package at
a variety of servers around the world.

I’ll pick a link from the University of Oklahoma and feed it to the RPM package
with the -i to install, -v for more verbose output, and -h to show a sequence of
hash marks as the file downloads:

A great place to start your RPM package search is the Pbone Web site at
http://rpm.pbone.net/. You can also make sure you have the latest version
of RPM by checking http://www.rpm.org/.

,

,

,
TA

SK
,

12 0672323982 Ch08 6/18/02 1:59 PM Page 165

rpm -ivh ftp://ftp.ou.edu/mirrors/linux/redhat/redhat-7.2-
en/doc/RedHat/RPMS/faq-7.2-1.noarch.rpm
Retrieving ftp://ftp.ou.edu/mirrors/linux/redhat/redhat-7.2-
en/doc/RedHat/RPMS/faq-7.2-1.noarch.rpm
Preparing... ### [100%]

1:faq ### [100%]

2. Looks like it installed just fine. Let’s double-check with the -qi flag:
rpm -qi faq
Name : faq Relocations: (not relocateable)
Version : 7.2 Vendor: Red Hat, Inc.
Release : 1 Build Date: Thu 30 Aug 2001
➥12:10:48 PM PDT
Install date: Sat 26 Jan 2002 11:31:11 AM PST Build Host: stripples.
➥devel.redhat.com
Group : Documentation Source RPM: faq-7.2-1.src.rpm
Size : 1596478 License: distributable
Packager : Red Hat, Inc. <http://bugzilla.redhat.com/bugzilla>
Summary : Frequently Asked Questions (FAQ) about Linux.
Description :
The faq package includes the text of the Frequently Asked
Questions (FAQ) about Linux from
http://metalab.unc.edu/pub/Linux/docs/faqs/. These FAQs are a great source
of information (sometimes historical) about Linux.

Install the faq package if you’d like to read the Linux FAQ off your own
machine.

There’s another useful flag to RPM that will show you the exact names of all the
files installed with a package—the -l flag:
rpm -ql faq | wc -l

121

You can see that more than 120 files were installed with this simple rpm install. To
have a peek, let’s use head:
rpm -ql faq | head -20
/etc/X11/applnk/Documentation
/etc/X11/applnk/Documentation/Linux Community
/etc/X11/applnk/Documentation/Linux Community/faq.desktop
/usr/share/doc/FAQ
/usr/share/doc/FAQ/html
/usr/share/doc/FAQ/html/AfterStep-FAQ
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-1.html

166 Hour 8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 166

/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-10.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-2.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-3.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-4.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-5.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-6.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-7.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-8.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ-9.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/AfterStep-FAQ.html
/usr/share/doc/FAQ/html/AfterStep-FAQ/new.gif
/usr/share/doc/FAQ/html/AfterStep-FAQ/next.gif
/usr/share/doc/FAQ/html/AfterStep-FAQ/prev.gif

Unix Package Management 167

8

Being able to quickly and easily install RPM packages from the Web is one of the true
luxuries of working with Linux. It’s just as easy to update your installed software against
a newly downloaded RPM, too (use rpm –Uvh package rather than -ivh, for example).
To delete a package, use rpm –e packagename. The most helpful rpm flags are summa-
rized in Table 8.1.

TABLE 8.1 Helpful Flags to rpm

Flag Meaning

-e Eliminate the specified RPM package from the system.

-h Show progress of any downloads as hash marks (#) on the screen.

-i Install. (Use with -v to see what’s going on.)

-p Query an uninstalled package. Quite helpful!

-q Query the RPM database: -qa queries all packages, or you can specify a package by
name.

-U Upgrade whatever parts of the specified package have changed since the last install.

-v Verbose—RPM usually only lists errors, which can be disconcerting. Use -v to see what
it’s doing.

The preceding example of the FAQ package is a great place to start, because
it has no dependencies. One of the great frustrations of working with RPM
is that there are inconsistencies in the dependencies listed, so an attempt to
install one package often causes you to install a half dozen updated library
and support packages first. It can be most frustrating!

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 167

Package Management in Darwin
There is no built-in default package manager in Darwin, and while Mac OS X has a very
sophisticated installation system for Mac applications, it’s not accessible from the
command line, nor does it particularly help you extend the Unix side of things.

The good news is that the open source community has banded together and built a very
sophisticated alternative package management system called fink.

168 Hour 8

Wondering what fink means? From the original developer: “Fink is the
German name for Finch, a kind of bird. I was looking for a name for the
project, and the name of the OS, Darwin, led me to think about Charles
Darwin, the Galapagos Islands, and evolution. I remembered a piece about
the so-called Darwin Finches and their beaks from school, and well, that’s
it.…” You can read more at the great fink FAQ at http://fink.source-
forge.net/faq/.

To get started with fink, you need to download the initial fink distribution package,
which is packaged as a standard Mac OS X application binary.

Task 8.3: Installing and Working with fink
The first step toward using fink on your OS X Macintosh is to make sure that you’ve
installed Developer Tools, which was included with your Mac OS X distribution. If you
don’t have it, you can always download it from Apple at
http://developer.apple.com/tools/macosxtools.html.

Once you’re ready, pop over to http://fink.sourceforge.net/ and click on the
Downloads link. Then you’ll want to choose the Binary Installer, which is a bit less than
8MB.

Once that’s downloaded, click on the .pkg opened box icon to install the fink system.
Remember that you’ll need your administrative password for this install to succeed, as
shown in Figure 8.1.

Once you’ve done that, it’ll zip through various screens and finish up without error.
There’s one more step necessary: When you start up Terminal in OS X, make sure you
add /sw/bin and /sw/sbin to your PATH so the commands can be found. In fact, you
might also add a second environment variable while you’re editing your .cshrc (or
equivalent): MANPATH=”/sw/share/man” to ensure that the man pages for the fink-
installed applications can be found. Now you’re ready to get started!

,
TA

SK
,

12 0672323982 Ch08 6/18/02 1:59 PM Page 168

1. The fink application is installed in the directory /sw/bin, so let’s start with the
list command to see what’s included in the distribution:
fink list | head
Reading package info...
Information about 251 packages read.

a2ps 4.12-4 Any to PostScript filter.
anacron 2.3-3 A periodic command scheduler
ant 1.4.1-2 Java based build tool.
apache 1.3.20-2 Flexible and extensible web server
app-defaults 20010814-1 Creates an app-defaults directory for fink

i apt 0.5.4-1 Advanced front-end for dpkg
audiofile 0.2.1-2 Audio File Library
autoconf 2.13-3 System for generating configure scripts

One significant difference between fink and RPM is that fink has an underlying
network connectivity capability that lets it list all the packages that you could
install, with those that you have installed delimited with the i in the left edge of
the listing (see the apt package, for example).

This means that if you want to see what packages you’ve installed, simply feed the
output of fink to a grep:
fink list | grep ‘^ i ‘
i apt 0.5.4-1 Advanced front-end for dpkg
i base-files 1.3-1 Directory infrastructure
i bzip2 1.0.1-4 Block-sorting file compressor
i debianutils 1.15-4 Misc. utilities specific to Debian (and Fink)
i dpkg 1.9.17-2 The Debian package manager
i fink 0.9.4-1 The Fink package manager
i gettext 0.10.40-1 Message localization support
i gzip 1.2.4a-5 The gzip file compressor
i libiconv 1.7-3 Character set conversion library
i ncurses 5.2-5 Full-screen ascii drawing library
i tar 1.13.19-1 GNU tar - tape archiver

Packages that might have (i) as their status are installed, but there’s a newer ver-
sion available.

Unix Package Management 169

8FIGURE 8.1
Administrative pass-
word prompt.

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 169

2. Now that we have fink installed, we can remedy a couple of problems with the
Darwin distribution. It’s time to install bash, a command shell that is the first
choice of many Unix sysadmins.
fink install bash
Reading package info...
Information about 288 packages read in 1 seconds.
pkg bash version ###
pkg bash version 2.05-3
The following package will be installed or updated:
bash
The following 2 additional packages will be installed:
dlcompat readline
Do you want to continue? [Y/n] y
curl -L -O ftp://ftp.gnu.org/gnu/bash/bash-2.05.tar.gz
curl -L -O http://prdownloads.sourceforge.net/fink/dlcompat-20010831.tar.gz
curl -L -O ftp://ftp.gnu.org/gnu/readline/readline-4.2.tar.gz
mkdir -p /sw/src/dlcompat-20010831-1
tar -xvzf /sw/src/dlcompat-20010831.tar.gz
dlcompat-20010831/
dlcompat-20010831/APPLE_LICENSE
dlcompat-20010831/ChangeLog
dlcompat-20010831/dlfcn.h
dlcompat-20010831/dlopen.c
dlcompat-20010831/Makefile
dlcompat-20010831/README
make prefix=/sw
cc -Wall -O2 -DDEBUG=0 -fno-common -o dlopen.o -c dlopen.c

...lots and lots of output removed ...

mkdir -p /sw/fink/dists/stable/main/binary-darwin-powerpc/shells
dpkg-deb -b root-bash-2.05-3
/sw/fink/dists/stable/main/binary-darwin-powerpc/shells
dpkg-deb: building package `bash’ in
`/sw/fink/dists/stable/main/binary-darwin-powerpc/shells/bash_2.05-3_darwin-
powerpc.deb’.
ln -sf
/sw/fink/dists/stable/main/binary-darwin-powerpc/shells/bash_2.05-3_darwin-p
owerpc.deb /sw/fink/debs/
rm -rf /sw/src/root-bash-2.05-3
dpkg -i
/sw/fink/dists/stable/main/binary-darwin-powerpc/shells/bash_2.05-3_darwin-p
owerpc.deb
Selecting previously deselected package bash.
(Reading database ... 3476 files and directories currently installed.)
Unpacking bash (from .../bash_2.05-3_darwin-powerpc.deb) ...
Setting up bash (2.05-3) ...
* Bash: (bash). The GNU Bourne-Again SHell.
install-info: no section specified for new entry, placing at end

170 Hour 8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 170

The output of this command was hundreds of lines of compilation and configura-
tion information because at the time of this writing, the binary distributions of most
packages were unavailable. As a result, fink automatically switched to a source
code distribution, and instead of taking just a minute or two, the install took almost
ten minutes to complete—two minutes to download the files, and seven minutes to
compile and install.

Installing the helpful text-only Web browser lynx is a similarly easy task with fink
install lynx.

3. To see what’s inside a package, use fink describe pkg. Here’s a bit more infor-
mation on bash, for example:
fink describe bash
Reading package info...
Information about 251 packages read.

bash-2.05-3: The GNU Bourne Again SHell
Bash is an sh-compatible command language interpreter that executes
commands read from the standard input or from a file. Bash also
incorporates useful features from the Korn and C shells (ksh and csh).
.
Bash is ultimately intended to be a conformant implementation of the IEEE
Posix Shell and Tools specification (IEEE Working Group 1003.2).
.
Web site: http://www.gnu.org/software/bash/bash.html
.
Porting Notes:
GNU Bash version 2.05 compiles (and installs correctly after
commenting out the install-info line in doc/Makefile.in)
.
Maintainer: Paul Swenson <pds@mac.com>

Done.

4. Removing a package with fink is straightforward:
fink remove lynx
Reading package info...
Information about 251 packages read.
dpkg --remove lynx
(Reading database ... 3548 files and directories currently installed.)
Removing lynx ...
Done.

Once you’ve uninstalled the package, fink is also smart enough to know that the
core archive is still available, so a re-install is quite speedy:
fink install lynx
Reading package info...

Unix Package Management 171

8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 171

Information about 251 packages read.
dpkg -i /sw/fink/dists/stable/main/binary-darwin-powerpc/web/lynx_2.8.4-1_
➥darwin-powerpc.deb
Selecting previously deselected package lynx.
(Reading database ... 3475 files and directories currently installed.)
Unpacking lynx (from .../lynx_2.8.4-1_darwin-powerpc.deb) ...
Setting up lynx (2.8.4-1) ...
Done.

5. The fink man page has an extensive discussion of the command options, of course,
but Table 8.2 summarizes the key options for everyday use.

TABLE 8.2 Key Options for fink

Option Meaning

install pkg Installs the specified package, and any additional packages that might be
required.

remove pkg Removes the specified package from the system.

list Lists all packages—marking those installed with an i and those installed
but out-of-date with (i).

describe pkg Describes the specified package in detail.

selfupdate Updates fink itself to the very latest version.

The fink package is surprisingly sophisticated and quite easy to use, a boon to those
Darwin users who might be relatively new to the power—and oddness—of Unix. What I
most like about it is that you’re shielded from having to dig around on the Web and find
packages, because they’re already registered in the central fink database. That’s a model
that the RPM team should follow.

Be aware, however, that fink is unquestionably a work-in-progress and doesn’t have the
benefit of years of widespread use, so don’t be surprised if the version of fink you
install is more than a little different from that demonstrated here.

Package Management in Solaris
Solaris uses its own package management system too, one that’s more primitive than
RPM in some ways, and easier to use in others. It’s certainly easier to work with from
the command line, one of my greatest criticisms of the RPM system.

Task 8.4: Managing Packages in Solaris
Similar to other package management systems, the Solaris pkg package management sys-
tem lets you query packages, find out what’s inside a package, and install new packages.

172 Hour 8

,

,

,
TA

SK

12 0672323982 Ch08 6/18/02 1:59 PM Page 172

1. To see what packages you have installed, use the pkginfo command. Without any
argument it lists everything installed:
pkginfo | head -15
system AMImega MEGA Family SCSI Host Bus Adapter
system CADP160 Adaptec Ultra160 SCSI Host Adapter Driver
system CPQcnft Compaq NetFlex Family NIC
system CPQncr Compaq Family SCSI HBA
system CPQsmii Compaq SMART-2/E Family of Array Controller
system HPFC Agilent Fibre Channel HBA Driver
system MADGFmt Madge Token Ring Family of NIC
system MYLXflp Buslogic FlashPoint Ultra PCI SCSI
system NCRos86r NCR Platform Support, OS Functionality (Root)
application NSCPcom Netscape Communicator
system SK98sol SysKonnect SK-NET Gigabit Ethernet Adapter SK-98xx
system SKfp SysKonnect PCI-FDDI Host Adapter
system SUNW1251f Russian 1251 fonts
ALE SUNW5ttf Traditional Chinese BIG5 True Type Fonts Package
ALE SUNW5xmft Chinese/Taiwan BIG5 X Windows Platform minimum
➥required Fonts Package

You can also feed it to grep to search for specific packages:
$ pkginfo | grep shell
system SUNWbash GNU Bourne-Again shell (bash)
system SUNWtcsh Tenex C-shell (tcsh)
system SUNWzsh Z shell (zsh)

2. The full name of a package is rather intimidating in pkg. A typical name is gcc-
2.8.1-sol26-sparc-local.gz, which should be interpreted as program-version-
os-processor-installation directory.gz.

Unix Package Management 173

8

To install a network application, you need to copy the file onto your Solaris system
through whatever means you prefer. Typically, this will be ftp or through a Web
browser. We’ll use ftp for this example:
$ ftp ftp.sunfreeware.com
Connected to ftp.sunfreeware.com.
220 ftp.sunfreeware.com FTP server ready.
Name (ftp.sunfreeware.com:taylor): ftp
331 Guest login ok, send your complete e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.

A good starting place to learn about Solaris packages available for down-
load is at Steven Christensen’s http://www.sunfreeware.com/.

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 173

Using binary mode to transfer files.
ftp> cd /pub/freeware/intel/8/
250 CWD command successful.
ftp> dir sud*
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
-rw-r--r-- 1 steve staff 93934 Nov 23 1999 sudo-1.5.9p4
➥-sol8-intel-local.gz
226 Transfer complete.
ftp> lcd /tmp
Local directory now /tmp
ftp> get sudo-1.5.9p4-sol8-intel-local.gb
200 PORT command successful.
150 Opening BINARY mode data connection for ‘sudo-1.5.9p4
➥-sol8-intel-local.gz’ (93934 bytes).
226 Transfer complete.
local: sudo-1.5.9p4-sol8-intel-local.gz remote: sudo-1.5.9p4
➥-sol8-intel-local.gz
93934 bytes received in 1.2 seconds (76.79 Kbytes/s)
ftp> quit
221 Goodbye.

Now the package is copied from the Net to /tmp, so it’s time to install it on the
Solaris system.

3. Installation of packages is done with pkgadd, but you need to take a simple interme-
diate step first: unzip the file. Fortunately, that’s easy, as you learned last hour, with
the command gunzip sudo*gz.
gunzip sudo*gz
pkgadd -d sudo-1.5.9p4-sol8-intel-local

The following packages are available:
1 SMCsudo sudo

(i86pc) 1.5.9p4

Select package(s) you wish to process (or ‘all’ to process
all packages). (default: all) [?,??,q]: all

Processing package instance <SMCsudo> from </tmp/sudo-1.5.9p4-sol8-intel-local>

sudo -- (i86pc) 1.5.9p4 -- Todd Miller

The selected base directory </usr/local> must exist before
installation is attempted.

Do you want this directory created now [y,n,?,q] y
Using </usr/local> as the package base directory.
Processing package information.
Processing system information.

174 Hour 8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 174

Verifying disk space requirements.
Checking for conflicts with packages already installed.
Checking for setuid/setgid programs.

The following files are being installed with setuid and/or setgid
permissions:
/usr/local/bin/sudo <setuid root>

Do you want to install these as setuid/setgid files [y,n,?,q] y
Installing sudo as <SMCsudo>

Installing part 1 of 1.
/usr/local/bin/sudo
/usr/local/doc/sudo/BUGS
/usr/local/doc/sudo/CHANGES
/usr/local/doc/sudo/COPYING
/usr/local/doc/sudo/FAQ
/usr/local/doc/sudo/HISTORY
/usr/local/doc/sudo/INSTALL
/usr/local/doc/sudo/INSTALL.configure
/usr/local/doc/sudo/PORTING
/usr/local/doc/sudo/README
/usr/local/doc/sudo/RUNSON
/usr/local/doc/sudo/TODO
/usr/local/doc/sudo/TROUBLESHOOTING
/usr/local/man/man5/sudoers.5
/usr/local/man/man8/sudo.8
/usr/local/man/man8/visudo.8
/usr/local/sbin/visudo
[verifying class <none>]

Installation of <SMCsudo> was successful.

The package is installed, and you can see that even something as simple as the
sudo command ends up including 16 different files, mostly stored in the new direc-
tory /usr/local/bin/sudo.

4. To learn more about a package, use the pkginfo command, but specify a package
name on the command line. With the -d flag, pkginfo will also show information
about a package before it’s installed, a critical capability!

First, the already-installed bash package:
pkginfo SUNWbash
system SUNWbash GNU Bourne-Again shell (bash)

Notice here that the output of the command without any arguments is minimally
informative. The real value is that it can be used to quickly ascertain if a given
package is actually installed on the system or not.

Unix Package Management 175

8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 175

The -l flag is the best way to learn about the contents of a package:
pkginfo -l SUNWbash

PKGINST: SUNWbash
NAME: GNU Bourne-Again shell (bash)

CATEGORY: system
ARCH: i386

VERSION: 11.8.0,REV=2000.01.08.18.17
BASEDIR: /
VENDOR: Sun Microsystems, Inc.
DESC: GNU Bourne-Again shell (bash)

PSTAMP: catsup20000108183519
INSTDATE: Jan 14 2002 21:39
HOTLINE: Please contact your local service provider
STATUS: completely installed
FILES: 7 installed pathnames

5 shared pathnames
5 directories
1 executables

1222 blocks used (approx)

And for the sake of completeness, the same command on the sudo package
archive file:
pkginfo -l -d sudo*

PKGINST: SMCsudo
NAME: sudo

CATEGORY: application
ARCH: i86pc

VERSION: 1.5.9p4
BASEDIR: /usr/local
VENDOR: Todd Miller
PSTAMP: Steve Christensen
EMAIL: steve@smc.vnet.net

STATUS: spooled
FILES: 26 spooled pathnames

7 directories
2 executables
1 setuid/setgid executables
2 package information files

496 blocks used (approx)

To remove a package, use pkgrm.

The Solaris package management system is less sophisticated than either Linux’s RPM
or Darwin’s fink system, but all three of them offer system administrators the ability to
control what’s on the system—adding, modifying, updating, and deleting as desired.

Prior to package management systems, installing software on a Unix system was an
unpleasant drudgery, but now it’s easy enough that some admins are tempted to let regu-
lar non-sysadmin users run the commands!

176 Hour 8

,

,

12 0672323982 Ch08 6/18/02 1:59 PM Page 176

Summary
All in all, this hour has offered a whirlwind tour of package management systems and
focused on their actual use on a day-to-day basis. Although there have been distinct and
even surprising differences between the package managers on the different flavors of
Unix, there have also been many similarities.

Before you go wild installing every package and its brother on your system, however,
ensure that you are adding important and relevant features and capabilities to the box.
Keep in mind that every change to the system adds a possible instability and, worse, a
possible security hole.

Q&A
Q If you could only install one package, what would it be?

A I think that bash might well be one of my crucial installs, but then again, I’ve spent
a lot of time scripting and parsing Web pages by utilizing lynx, so that’s a favorite,
too. But if you really want to waste time, it’s hard to beat the classic nethack!

Q Why isn’t transparent access to a Web-based database of installable packages
a part of RPM or pkg?

A That’s a good question, actually. In the Solaris case, the pkg system was developed
originally for tape and CD-ROM-based software distribution. With RPM, if you
want an easier interface, it might well be time to move to one of the X Window
System-based graphical RPM browsers, as mentioned in the beginning of this hour.

Workshop
Quiz

1. How do you find out how many packages you have installed on your system?
(You’ll need a different approach for each platform, of course.)

2. How do you find out what games you have installed, if any?

3. How do you figure out what version of Perl you have installed?

4. How do you find out what audio-related packages, if any, you have?

Answers
1. On Solaris, use pkginfo|wc –l; on Darwin, use fink list|wc –l; and on Linux,

use rpm –qa|wc –l.

Unix Package Management 177

8

12 0672323982 Ch08 6/18/02 1:59 PM Page 177

2. Use the appropriate package query command and grep the output through grep –i
game. Remember to use showrpm or something similar if you want to count RPM
packages!

3. You should at least have Perl 5. On Solaris, for example:
pkginfo | grep -i perl
system SUNWpl5m Perl5 On-Line Manual Pages
system SUNWpl5p Perl 5.005_03 (POD Documentation)
system SUNWpl5u Perl 5.005_03

4. Linux has the greatest number of audio packages installed, most likely:
showrpms.sh | grep -i audio | sort
audiofile-0.2.1-2: A library for accessing various audio file formats.
audiofile-devel-0.2.1-2: Libraries, includes and other files to develop
➥audiofile applications.
aumix-2.7-5: An ncurses-based audio mixer.
cdda2wav-1.10-4: A utility for sampling/copying .wav files from digital
➥audio CDs.
cdp-0.33-21: An interactive text-mode program for playing audio CD-ROMs.
cdparanoia-alpha9.8-2: A Compact Disc Digital Audio (CDDA) extraction tool
➥(or ripper).
esound-0.2.22-5: Allows several audio streams to play on a single audio
➥device.
gnome-audio-1.0.0-12: Sounds for GNOME events.
gnome-audio-extra-1.0.0-12: Files needed for customizing GNOME event sounds.
libao-0.8.0-1: Cross Platform Audio Output Library.
libao-devel-0.8.0-1: Cross Platform Audio Output Library Development.
libvorbis-1.0rc2-2: The Vorbis General Audio Compression Codec.
mpg321-0.1.5-1: An MPEG audio player.
vorbis-1.0rc2-1: The Vorbis General Audio Compression Codec libraries
➥and tools.

The next hour will be short but critically important for any Unix system administrator. It
will focus on running the fsck command, the de facto program that analyzes and fixes
any disk errors. As a bonus, the next hour will also demonstrate how to reboot each sys-
tem into single-user mode, so that it’s safe to use the fcsk command (because you sure
don’t want to use it on an active drive!).

178 Hour 8

12 0672323982 Ch08 6/18/02 1:59 PM Page 178

Hour
9 Fixing Broken Disks 181

10 Adding Disks to Your System 197

11 Multiple Boot Configurations 217

12 Managing Disk Quotas 231

PART IV
Advanced Filesystem
Topics

13 0672323982 pt4 6/18/02 2:02 PM Page 179

13 0672323982 pt4 6/18/02 2:02 PM Page 180

HOUR 9
Fixing Broken Disks

Many tasks of a Unix system administrator are preventative, from managing
user accounts to balancing loads on servers, to configuring and monitoring
an Apache Web server. If all is going well, and the planets are not in retro-
grade, you should be able to manage a Unix system or two for quite a while
without any problems cropping up.

There’s no way to completely eliminate the dangers inherent in running a
computer system, even one with an operating system as stable and mature as
Unix. Many things can go wrong, but the primary failure that you’re likely
to see is a disk hiccup.

That’s what this brief hour will focus on—how to manage when there are
disk errors on your system.

In this hour, you will learn

• How to check your disks with fsck

• To fix problems with fsck

14 0672323982 Ch09 6/18/02 2:04 PM Page 181

Introduction to fsck
The cornerstone tool for wrestling cranky disks into submission on a Unix system is
fsck. If you’re used to the Windows or Mac world, you’re familiar with tools like Norton
Utilities, Disk Doctor, and similar products, but in Unix, you’re on your own.

Worse, the tools available are quite primitive. With a little experimentation, you’ll find
that the fsck utility isn’t too horrible to work with. More importantly, don’t panic,
because you really shouldn’t need to use the fsck command more than once in a blue
moon, anyway.

To understand how the fsck (file system check) command works, it’s important that we
start out with a very brief explanation of how files are laid out on a typical Unix
filesystem.

All hard disks are broken down into blocks, either 512-bytes or 1024-bytes in size. You
can’t get anything smaller than that on a disk, so even a 15-byte file really takes up a
block and is either 512-bytes or 1024-bytes in size.

182 Hour 9

That’s why it’s so hard to have thousands of tiny files on a file system—they
end up using the disk space in an extremely inefficient manner.

Every single block has a unique number called an inode. An inode contains the file’s
owner (UID), group owner (GID), permissions, size, time of last access, and so on.
Inodes can point directly to file blocks or to indirect blocks, which themselves serve as a
list of data blocks or perhaps a list of pointers to other indirect blocks. In this manner,
the file system can efficiently store files on the disk, whether they’re very small or enor-
mous.

If you’re picturing this as a house of cards, you’ve probably grasped the fundamental
power and limitation of this approach to laying out files on a hard disk. If you “lose” the
address of the initial inode, for example, you’re out of luck in a big way; it’s almost
impossible to traverse the disk blocks and go backward to the original inode.

As a result, there’s another structure on Unix hard disks called a superblock, which con-
tains various information about the disk geometry (for example, size, sectors, tracks,
cylinders, block size) and the address of the first inode on the list.

The superblock is so critical to the correct interpretation of data on the disk that it’s
duplicated over and over again on the disk, and the disk subsystem keeps all the dupli-
cate superblocks up-to-date, just in case. In fact, the superblock is duplicated every 8,192

14 0672323982 Ch09 6/18/02 2:04 PM Page 182

blocks on the disk, so for a small 250MB disk, the system maintains 31 different
superblocks.

This explanation has covered the ext2 filesystem, the de facto standard of most Linux
installations. Other filesystem possibilities exist, notably FFS (the Berkeley Fast File
System, a de facto standard on larger Unix systems), ext3, FAT32, HFS, HFS+, UFS,
and VFAT.

Regardless of filesystem, there’s only one tool sysadmins use when things go south:
fsck.

Task 9.1: Getting Started with fsck
If you need to check your main disk, or any disk that has critical system data, you’ll
want to shut down your system and restart in single-user mode, as explained in Hour 13,
“Changing System State.”

For this hour, we’ll explore a new disk added to the system for just this purpose, a
250MB external ext2 hard drive.

Fixing Broken Disks 183

9

For the purposes of this hour, the disk has been formatted properly and mounted as
/disk2. There are some files copied onto it, but it’s still pretty empty.

1. Without further ado, let’s run fsck:
cd /disk2
fsck -c /distk2
Parallelizing fsck version 1.23 (15-Aug-2001)
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb is mounted.

WARNING!!! Running e2fsck on a mounted filesystem may cause
SEVERE filesystem damage.

Do you really want to continue (y/n)?

This seems rather ominous. Are things really that grim?

The answer is yes. The fsck program tries to fix problems that it encounters, so if
the file system is live and being changed simultaneously, the chances of it being
corrupted are very high. Don’t do this unless it’s a crisis.

In the next hour we’ll hook the disk into the system, format it, create an
empty Unix filesystem thereon, and hook it up. You can skip to that and
come back if you really want.

,

,
TA

SK

14 0672323982 Ch09 6/18/02 2:04 PM Page 183

To unmount the filesystem, use the umount command. If the filesystem is listed in
/etc/fstab, the main table of filesystems and their mount points, you can specify
either the mount point or the device name. Otherwise, just use the device name:
umount /dev/hdb
umount: /disk2: device is busy

Oops! We need to move out of the /disk2 subsystem before we can unmount the
disk:
umount /dev/hdb
#

2. Let’s try that fsck command again!
fsck /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb: clean, 11/64000 files, 8094/255528 blocks

When fsck reports ”clean” as a result, it means that it didn’t need to run a filesystem
integrity check because one had been run sufficiently recently (by default, disks only
force an fsck when there’s a reason to do so, or every few months). The information
about when the next scheduled fsck should occur is part of what’s in the superblock.

Did you catch that this is a “parallelizing” version of fsck? That’s a good thing. It
means this program can check multiple filesystems simultaneously by running par-
allel check processes. This means that you can boot your system quite a bit faster,
even after a bad shutdown sequence.

Also, it turns out that because of the different filesystems supported on many
Unix systems, fsck is a front-end to versions of fsck designed for specific
filesystem formats. In this case, because the system detected that /dev/hdb is an
ext2 filesystem, it handed the request to check the disk off to e2fsck for pro-
cessing.

Finally, notice that the last line reports the number of files and blocks used and
available. Here there are 11 files out of 64,000 possible, and 8,094 blocks out of
255,528 possible used.

3. The -f flag forces fsck to step through a proper disk check regardless of when the
next check is scheduled, and the -c flag causes the program to test and check for
bad blocks. If you want a bit more of a clue regarding what the program is doing,
use -V for verbose output (see Table 9.1 for a list of useful fsck flags).

184 Hour 9

Never ever run fsck on a mounted filesystem!!

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 184

fsck -cfV /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /dev/hdb] fsck.ext2 -c /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Checking for bad blocks (read-only test): done
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

/dev/hdb: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hdb: 11/64000 files (0.0% non-contiguous), 8094/255528 blocks

Here in the book the line “checking for bad blocks” whizzes by in a second or two,
but when you run this command on a hard disk, even a relatively small one, it can
take quite a long time. Don’t be surprised if you can go out for lunch and return
before it finishes this one step.

TABLE 9.1 Useful fsck Flags

Flag Meaning

-s Serialize: Don’t run multiple checks in parallel, run them one after the
other instead. (Use this if you’re actively debugging a corrupted disk.)

-b superblock Tells fsck to try using an alternate superblock. Recall that they’re stored
on the disk every 8,192 blocks, so the second superblock is 8192+1, the
third is 2×8192+1, and so on.

-c Check for bad blocks on the filesystem (actually, this invokes bad-
blocks(8) on Linux, interestingly enough).

-f Force fsck to check the disk even if it thinks it’s clean.

-y Automatically answer yes to error prompts.

-t type Specifies the type of filesystem to be checked. Usually, fsck can autode-
tect the filesystem, but if you must specify the type, your most likely bet
is ext2, or perhaps ext3.

-A Check all known disks. References the list in /etc/fstab (as explained
in the next hour).

Fixing Broken Disks 185

9

A bad block is a block on the disk that alters data. Usually it’s a disk media
problem, and it’s a hidden lurking danger that can corrupt files. It’s a good
idea to check for bad blocks with fsck every so often for just this reason.

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 185

You can see now that fsck actually steps through the disk six times in this invoca-
tion: once to check for bad blocks; again to check for consistency of inodes,
blocks, and sizes; then checking the directory structure, the directory connectivity,
inode reference counts, and finally the group summary information.

Even though there was no information indicating that any problems were encoun-
tered or changes made, the program ends by saying that the “filesystem was modi-
fied.” Sometimes it seems that’s a generic message, but it’s always safest to assume
it’s true, which is why you do not want to run fsck while your disk is mounted!

There seem to be two classes of administrative tools available in the Unix world—those
that are straightforward, and those that are tricky and offer oft-confusing output. Without
a doubt, fsck falls into the latter category for most sysadmins. The good news is that you
won’t need to use it often, and when you do run the program, most of the output is sensi-
ble when you learn more about the structure of the filesystem itself.

Fixing Problems with fsck
In the last section, things were pretty easy because there weren’t any problems on the disk.
When problems do arise, it can be scary but it’s not time to push the panic button yet!

Task 9.2: Fixing Disk Problems with fsck
To illustrate how fsck fixes corrupted disks, I did something dangerous: I altered the
contents of /dev/hdb in one window while running fsck in a second window.
Guaranteed to cause trouble, and, no surprise, it did.

1. First off, the fsck program was invoked with a request to check bad blocks and
force a complete structure check:
fsck -cfV /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /dev/hdb] fsck.ext2 -c /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb is mounted.

WARNING!!! Running e2fsck on a mounted filesystem may cause
SEVERE filesystem damage.

Do you really want to continue (y/n)? yes

Checking for bad blocks (read-only test): done
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity

186 Hour 9

,

,

,
TA

SK
,

14 0672323982 Ch09 6/18/02 2:04 PM Page 186

So far, so good. Meanwhile, in another window I copied lots of files onto the disk,
renamed them, and ultimately deleted them, in quick succession.

The changes underfoot caused fsck to get a bit upset on Pass 4:
Pass 4: Checking reference counts
WARNING: PROGRAMMING BUG IN E2FSCK!

OR SOME BONEHEAD (YOU) IS CHECKING A MOUNTED (LIVE) FILESYSTEM.
inode_link_info[2] is 9, inode.i_links_count is 11. They should be the same!
Inode 2 ref count is 11, should be 11. Fix<y>?

2. Although the accusation that we’re boneheads might be a bit harsh, the inode refer-
ence count error is a typical fsck error message. It indicates exactly what the prob-
lem is (inode_link_info[2] is 9, whereas inodei_links_count is 11), and then
asks you if you want to fix it.

Type y and it immediately expands it to yes and continues. There are lots of prob-
lems introduced with my dangerous filesystem stunt:
Pass 5: Checking group summary information
Block bitmap differences: +238277 +238278 +238279
Fix<y>? yes

Free blocks count wrong for group #29 (7486, counted=7483).
Fix<y>? yes

Free blocks count wrong (219063, counted=219060).
Fix<y>? yes

Inode bitmap differences: +68 +69 +58085 +58086 +58087 +58088 +58089 +58090
Fix<y>? yes

Free inodes count wrong for group #0 (1933, counted=1931).
Fix<y>? yes

Free inodes count wrong for group #29 (1916, counted=1910).
Fix<y>? yes

Directories count wrong for group #29 (11, counted=14).
Fix<y>? yes

Free inodes count wrong (60589, counted=60581).
Fix<y>? yes

/dev/hdb: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hdb: 3419/64000 files (0.5% non-contiguous), 36468/255528 blocks

Finally, it looks like all is well. Notice that the system has changed from having 11
files to having 3,419 files.

Fixing Broken Disks 187

9

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 187

3. Most system administrators will tell you that if you encounter errors with fsck you
should run the command again and again until it finally reports no errors. It’s
almost a superstition, but it’s also amazing how often a second pass catches new
errors introduced by the fixes in the previous run. This situation is no different (I
finally unmounted the disk before running these subsequent checks):
fsck -V /disk2
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /disk2] fsck.ext2 /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb: clean, 3419/64000 files, 36468/255528 blocks

A classic frustration with fsck: It assumed that because we’d recently run the com-
mand there was no reason to run it again, so it simply reported “clean.” But it’s not!

The -f flag forces the disk integrity check to be run, and this time I’m going to add
the -y flag, which tells fsck to assume I answer yes to all questions that aren’t
absolutely critical:
fsck –fVy /disk2
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /disk2] fsck.ext2 -f /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Inode 2 ref count is 11, should be 10. Fix<y>? yes

Pass 5: Checking group summary information
Block bitmap differences: -238277 -238278
Fix<y>? yes

Free blocks count wrong for group #29 (7483, counted=7485).
Fix<y>? yes

Free blocks count wrong (219060, counted=219062).
Fix<y>? yes

Inode bitmap differences: -58085 -58086 -58088 -58090
Fix<y>? yes

Free inodes count wrong for group #29 (1910, counted=1914).
Fix<y>? yes

Directories count wrong for group #29 (14, counted=12).
Fix<y>? yes

Free inodes count wrong (60581, counted=60585).
Fix<y>? yes

188 Hour 9

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 188

/dev/hdb: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hdb: 3415/64000 files (0.5% non-contiguous), 36466/255528 blocks

Familiar errors? Note that they’re not exactly the same as the previous run (the first
run reported that the inode count of 11 was incorrectly nine, whereas here it’s
reporting that an inode reference count is 11 and should be 10).

One more pass through for good luck:
fsck -fVy /disk2
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /disk2] fsck.ext2 -fy /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information
/dev/hdb: 3415/64000 files (0.5% non-contiguous), 36466/255528 blocks

Good. All is well again in disk land.

4. We can remount the disk with mount:
ls /disk2
#
mount -t ext2 /dev/hdb /disk2
ls /disk2
games/ include/ kerberos/ lost+found/

Although the mount command itself will be discussed in the next hour, it’s worth
pointing out that the fsck program created the lost+found directory. From the man
page for the optional Linux command mklost+found, here’s the exact description
of what ends up there:

mklost+found preallocates disk blocks to the lost+found directory,
so when e2fsck(8) is being run to recover a filesystem, it does not
need to allocate blocks in the filesystem to store a large number of
unlinked files. This ensures that e2fsck will not have to allocate
data blocks in the filesystem during recovery.

5. Each ext2 filesystem has a directory called lost+found, and that’s where orphaned
or otherwise oddball directory blocks, file blocks, and file material end up.
Sometimes.

In my experience, it’s rare to find anything even semi-comprehensible in the
lost+found directory. In fact, almost always it’s completely empty. Here’s an
example from a live Web server system that’s being accessed every second of
every day:

Fixing Broken Disks 189

9

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 189

$ mount
/dev/sda5 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/sda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
/dev/sda3 on /home type ext3 (rw)
none on /dev/shm type tmpfs (rw)
/dev/sdb1 on /usr type ext3 (rw)
/dev/sdb2 on /var type ext3 (rw)

Without any options, mount lists the disks and devices attached to the filesystem.
Each mount point (don’t worry, you’ll learn about these in the next hour) has its
own lost+found directory, as we’d expect:
$ ls -a /lost+found
./ ../
$ ls -a /boot/lost+found
./ ../
$ ls -a /home/lost+found
./ ../
$ ls -a /usr/lost+found
./ ../
$ ls -a /var/lost+found
./ ../

Nada. Which is a good thing. If you see anything in your lost+found, it means
that you’ve had at least one file corrupted and disassembled by fsck as part of its
attempt to fix the disk.

The fsck program is ugly and can be difficult to understand, but it’s a lifesaver in the
world of Unix system administration. Spend some time reading the man page and learn-
ing about the different filesystems your particular flavor of Unix supports.

It’s much easier to learn about this when you’re not panicked because the system can’t
boot, or a directory just vanished into thin air!

Single-User Mode
All Unix systems have the capability to reboot into so-called single-user mode, where the
windowing system isn’t started up, the networking connections haven’t been made, and
the system is generally in a pretty raw state. The purpose of this mode is to create a safe
environment for manipulating and checking the otherwise busy filesystems.

To vary things a bit, I’m going to show you what it looks like to reboot a Macintosh run-
ning Mac OS X into single-user mode, and then run fsck from the command line.

190 Hour 9

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 190

Task 9.3: Single-User Mode in Darwin
Although most users of the Macintosh OS X operating system don’t really think much
about the power underneath the hood, we know better. Underlying the colorful and attrac-
tive graphical Aqua interface is a complete Unix environment, which means that there’s a
way to reboot the system and drop into single-user mode. To accomplish this, reboot the
Mac and hold down Cmd-S until it begins showing boot messages (see step 1).

Fixing Broken Disks 191

9

,
TA

SK

1. After lots of very Unix-y output, you’ll end up at a root prompt:
standard timeslicing quantum is 10000 us
vm_page_bootstrap: 123986 free pages
mig_table_max_displ = 64
COLOR video console at 0xbc0080000 (1152x768x32)
IOKit Component Version 1.1:
Sun Sep 9 15:30:21 PDT 2001; root(rcbuilder):RELEASE_PPC/iokit/RELEASE
_cppInit done
IODeviceTreeSupport done
Recording startup extensions.
Copyright (c) 1982, 1986, 1989, 1991, 1993

The Regents of the University of California. All rights reserved.

using 1310 buffer headers and 655 cluster IO buffer headers
USB: 25.540: [0x205E600] USB Generic Hub @ 1 (0x19)
enableClockSpreading returned with 0
Register ApplePMU to acknowledge power changes
Local FireWire GUID = 0x393ff:0xfe58285c
AppleFWOHCI: 20af000 0 AppleFWOHCI::free
devfs enabled
dlil_init
IOKitSDInit
BSD root: disk0s5, major 14, minor 5
ADB present:8c
devfs on /dev
Tue Jan 29 00:11:40 PST 2002
Singleuser boot – fsck not done
Root device is mounted read-only
If you want to make modifications to files,
run ‘/sbin/fsck –y’ first and then /sbin/mount –uw /’
localhost#

To boot a Macintosh running Mac OS X into single-user mode, reboot and
immediately hold down Cmd-S until you begin to see status messages from
the actual boot process.

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 191

One nice touch here is that the single-user mode boot-up reminds you that the root
filesystem is mounted read-only (which means that it’s safe to run fsck without
risk of corruption), where the fsck and mount commands are, and how to proceed.

2. Running fsck demonstrates the universality of this utility even across completely
different Unix platforms and different filesystem layouts (this is an HFS+ system
rather than an ext2 system):
localhost# /sbin/fsck
** /dev/rdisk0s5
** Checking HFS Plus volume
** Checking Extents Overflow file.
** Checking Catalog file.
** Checking multi-linked files

Orphaned indirect node temp105533
** Checking Catalog hierarchy.
** Checking volume bitmap.
** Checking volume information.
** Repairing volume.

***** FILE SYSTEM WAS MODIFIED *****

***** REBOOT NOW *****

The next step is to remount the filesystem read+write, and continue booting by
exiting this interactive shell:
localhost# /sbin/mount –uw /
localhost# exit

Although the specifics of the output from single-user mode boot vary from plat-
form to platform, the general concept is identical: to drop you, the system adminis-
trator, into a minimal command shell so you can run any necessary diagnostics.
Exiting the shell continues the boot process and should leave the system running as
normal.

One of the most common places you’ll encounter the fsck program is when the
system has a corruption problem and drops into single-user mode upon rebooting.
Although you can explicitly switch into this mode, many Unix systems, upon
encountering errors with the automatic fsck run at boot-time, will automatically
switch to this mode and leave you on your own.

As you have seen, fsck is rather straightforward, so its occasional cryptic output
isn’t too intimidating, and you can easily work and fix any disk problems encoun-
tered. Right?

192 Hour 9

,

,

14 0672323982 Ch09 6/18/02 2:04 PM Page 192

Don’t Panic!
Finally, if you do encounter any disk corruption, don’t immediately panic and start
breathing oddly. Instead, there are a couple of steps you can take to minimize the danger:

1. Kick off all the users and drop down into single-user mode. On most systems all
this will happen automatically if you type

init 1

while logged in as root (see Hour 13). Beware: Users don’t get any warning; they
just get the boot, and quick!

2. Now that you’ve minimized the danger of further corruption, take a deep breath
and pat yourself on the back because you’ve been keeping really good backups,
haven’t you?

If you have a good backup regimen, the worst you should lose are the changes
introduced that day, which isn’t too bad. If you aren’t backing up your system,
now’s a good time to start panicking.

3. Take a deep breath.

4. Make sure that the disk you need to check isn’t mounted by using mount (see Hour
10, “Adding Disks to Your System”).

5. Run fsck –V on the corrupt disk and see what the damage is.

6. Run fsck a second, and even a third time, until it reports no problems or corrup-
tion.

7. Reboot the machine with

shutdown –r now

and keep your fingers crossed.

If you have the unusual situation of the corruption not fixing itself, it might be time to try
copying as much of the material as possible to a different device (you’ll have varying
levels of success, alas). The next step is to use fsck -c to have it check for—and iden-
tify—bad blocks. Then, run fsck again to see if that solves the problem.

In extreme cases you might need to completely reformat the disk with fdisk, but in more
than 20 years of using Unix I’ve never encountered this particular situation. It’s very rare
to have this level of problem with a filesystem.

Fixing Broken Disks 193

9

14 0672323982 Ch09 6/18/02 2:04 PM Page 193

Summary
Compared to other operating systems, Unix is remarkably stable and reliable. It’s not at
all uncommon to hear of systems that have been running for months, if not years, with-
out a single reboot.

194 Hour 9

The main server for The Internet Mall, running Red Hat Linux, never crashed
in almost three years of busy 24/7 operation. The only times it was rebooted
was because we were working on it or needed to relocate it from one facil-
ity to another. Unix is very reliable!

When things do go south, however, your best friend will prove to be fsck. The fsck
command really has a remarkable capability to fix almost anything that can go wrong
with a Unix filesystem, and many sysadmins have spent their entire careers using the -y
flag and not even paying attention to the specific error messages.

Q&A
Q Where did the ext3 filesystem come from?

A The layout of information on hard disks has a long and quite interesting history.
I’ll restrain myself, however, and simply note that the immediate parent of the
ext3 filesystem is the ext2 filesystem, which itself came from some groundbreak-
ing research at UC Berkeley by Kirk McKusick, Bill Joy, and Sam Leffler on
something they eventually called the Berkeley Fast File System. UC Berkeley
plays a very important role in the history of Unix, with BSD and many of the most
popular commands in Unix spawned from the Computer Science Research Group.

Q Why don’t popular PC disk maintenance utilities require you to unmount the
disk?

A Actually, if you get into real trouble with your disks, you’ll find that most of these
utility programs require you to reboot off the included CD-ROM. The purpose of
this is so that the disk-fix utility can unmount the disk before it begins to try and
fix it, just like our friend fsck.

Q If you have fsck parallelizing (that is, checking multiple disks at the same
time) and one of the disks turns out to have an error, how do you know what’s
going on?

A That’s actually one of the few limitations of the parallel approach to checking
disks. Fortunately, the authors of fsck thought this through and almost all parallel

14 0672323982 Ch09 6/18/02 2:04 PM Page 194

versions offer a “serialize” flag that forces the program to check disks one at a time
rather than all at once. On Linux, for example, the -s flag does just that.

Workshop
Quiz

1. What’s the most common Linux filesystem? Mac OS filesystem? Commercial
Unix filesystem?

2. Superstition or not, most Unix sysadmins do what after they run fsck and find
errors?

3. On a filesystem with 512-byte blocks, what’s the minimum actual disk space used
by a file that’s 1025 bytes in size?

4. The Unix equivalent of the PC “File Allocation Table” (that’s what “FAT” stands
for on those FAT* filesystems) is called?

5. When the fsck program doesn’t think that a check is required of the filesystem, it
refers to that disk as being in what state?

6. Though it’s called single-user mode, can you really use a computer in that state?

Answers
1. The most common Linux filesystem is ext2 with ext3 continuing to grow in popu-

larity; on the Mac it’s HFS+ (Hierarchical File System Plus), and on commercial
Unix systems it’s the FFS (Berkeley Fast File System).

2. Run fsck again.

3. If the file is 1025 bytes in size and it gets stored in 512-byte blocks, the minimum
size possible is three 512-byte blocks, or 1536 bytes.

4. The superblock.

5. Disks that don’t need checking are “clean.”

6. No. On almost all Unix systems, networking, a windowing environment, and other
necessities of modern Unix interaction, aren’t started yet. It’s an unfortunate name
because it’s really administrative mode.

In the next hour, we’ll format and mount a new disk on the system, exploring partition
tables, fdisk, newfs and other helpful tools.

Fixing Broken Disks 195

9

14 0672323982 Ch09 6/18/02 2:04 PM Page 195

14 0672323982 Ch09 6/18/02 2:04 PM Page 196

HOUR 10
Adding Disks to Your
System

The last hour explored the fsck command and how it can be used to diag-
nose and fix problems with hard disks. This hour will address the other half
of the disk issue—how to add new disks, format them, and hook them up to
your Unix system. It’s a set of commands you won’t need too often, I
expect, but when you are ready, this shows the sequence needed.

With personal computer systems, the steps involved in adding and accessing
a new disk tend to be hidden, but with Unix, a new disk needs to be format-
ted, partitioned, checked, then mounted somewhere in the filesystem.

Indeed, PC and Macintosh systems have a very primitive multiple disk con-
figuration capability: On the PC, for example, a primary disk is C:, a CD-
ROM drive is E:, and a floppy drive is A:. Add a new disk, and it’s probably
configured as D: or F:. On the Macintosh, all new disks appear on the desk-
top with mnemonic names—a small improvement, but they’re still all at the
topmost level of the filesystem.

15 0672323982 ch10 6/18/02 2:07 PM Page 197

The Unix approach is quite a bit more sophisticated, because you can hook new disks up
wherever you’d like. If you are perverse, you could even connect your floppy drive as
/tmp, or your CD-ROM drive as /home.

Disks are hooked into the system with mount, and the mount command checks the
/etc/fstab file (or the equivalent) to see what should be automatically included at
boot-time.

But we’re getting ahead of ourselves, so let’s start at the beginning with low-level disk
formatting.

In this hour you learn about

• Formatting disks with fdisk

• Adding a filesystem with mke2fs

• Mounting the new disk

• Fine-tuning your /etc/fstab configuration file

Formatting Disks with fdisk
It might surprise you, but the old MS-DOS command for formatting hard disks is in fact
the same one used in modern Unix systems too: fdisk. Of course, what it does behind
the scenes is a bit different!

198 Hour 10

Actually, while they seem to be the same, the Unix version of fdisk has
some subtle differences, so if you want to create a disk for a Unix or Linux
system, use the fdisk included with that OS.

By this point in your Unix journey, it should be no surprise that inconsistencies are rife
in the Unix user interface. Although most commands have single-character command
flags, some have full-word command flags. The fdisk command is a member of a third
category of interface: On many systems, type fdisk and you’ll enter a simple fdisk
shell in which you can type various commands to configure your disk; then the changes
actually take place as you quit. On other versions of fdisk, you’ll need to specify the
device name on the command line.

If you forget to write out your changes, any configuration you make in the
fdisk program will be lost.

15 0672323982 ch10 6/18/02 2:07 PM Page 198

Task 10.1: Formatting a Disk with fdisk
To stay focused on Unix systems administration, we’re going to assume here that the
hardware issues surrounding the hookup of a disk to your computer have been addressed
already, and that you now have a new, raw disk sitting on the bus and ready for you to
format and link into your Unix system. In reality, you’ll want to check with your vendor
or IT department to find out what kind of hardware and cables you need, and how to get
everything neatly settled into the physical box.

1. The first step in adding a new disk to your system is to figure out its new device
address. Recall that there is a logical approach to the device-naming convention in
Unix, so on Red Hat Linux 7.2, for example, IDE devices are named /dev/hdXN
where X is the major device number (the disk address on the bus, typically), and N
is the partition number.

You can see this in action with the output from the mount command:
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

Notice that the root device is /dev/hda2, which implies that it’s the primary device
(because a is the first letter of the alphabet) and it’s partition #2. Unsurprisingly for
a Unix configuration, the /boot partition is partition #1 on the same drive.

2. Having added a second IDE drive to this system, a logical guess for the device
address is /dev/hdb, and a quick check with fdisk confirms it:
fdisk /dev/hdb
bash: fdisk: command not found

Oops! The fdisk command isn’t in our PATH. Easy to fix:
echo $PATH
/bin:/usr/bin:/usr/X11R6/bin:/usr/local/bin:/home/taylor/bin
PATH=${PATH}:/sbin

And now:
fdisk /dev/hdb
Command (m for help): p

Disk /dev/hdb: 16 heads, 63 sectors, 507 cylinders
Units = cylinders of 1008 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdb1 1 507 255496+ b FAT32

Command (m for help): q

Adding Disks to Your System 199

10

,
TA

SK
,

15 0672323982 ch10 6/18/02 2:07 PM Page 199

You can see that fdisk has recognized the geometry of the disk: it’s 507 cylinders,
63 sectors, and 16 heads (and no, I have no idea what this all means either!) Most
importantly, it’s identified the disk as a FAT32 system with 255,496 blocks
(approximately 250MB).

If you have problems identifying the bus address of your disk (the major and minor
numbers), you might need to pop open your server and check the settings on the
drive (often these are called jumpers by disk manufacturers, and in the SCSI world
this is known as the SCSI address).

200 Hour 10

,

Each hardware platform has a completely different scheme for hooking up
disks and addressing schemes for the specific device drivers. Your best bet is
to check with the documentation that came with your hardware if you’re
managing a commercial server.

At this point in the formatting of your disk, you need to decide whether you want
to partition the large disk into smaller virtual disks, or have it as a single large disk
image for the system to utilize. For smaller disks, there’s little value to partitioning,
but if you are adding a 30GB disk (or larger), it might be very helpful to split that
into two or more smaller virtual disks.

The fdisk program builds the partitions in Unix, too, and you need to figure out
how big each partition should be and ensure that they add up to the entire size
of the disk. What’s important is that once you install a filesystem on the disk,
you can’t repartition it without destroying all the data on it. This, as you might
expect, is a common point of frustration, because sysadmins must therefore
proactively anticipate how disks need to be laid out and how to best utilize avail-
able resources.

A great example of this is with swap space, special areas of the disk allocated for
swapping memory images (pages of memory) to disk so that other applications
can utilize physical RAM. You might have enough on your system for the current
configuration, but if you upgrade your RAM, will you be able to have sufficient
swap space to meet the usual rule of thumb of 2x–3x RAM for swap space? If
not, creating a second swap partition on a new disk prior to bringing it online can
be a very easy step. Even if you don’t think you need it today, you might tomor-
row! Indeed, spreading the swap task across devices can improve performance,
particularly on a busy system.,

15 0672323982 ch10 6/18/02 2:07 PM Page 200

Our new disk is too darn small to be usefully partitioned, however—whether to
anticipate additional swap space needs, or simply to allow multiple virtual disks.
But let’s get started:
fdisk /dev/hdb

Command (m for help): m
Command action

a toggle a bootable flag
b edit bsd disklabel
c toggle the dos compatibility flag
d delete a partition
l list known partition types
m print this menu
n add a new partition
o create a new empty DOS partition table
p print the partition table
q quit without saving changes
s create a new empty Sun disklabel
t change a partition’s system id
u change display/entry units
v verify the partition table
w write table to disk and exit
x extra functionality (experts only)

As you can see, there are many options within fdisk. The most important com-
mands are d (delete a partition), p (print partition table), n (add a new partition),
and w (write partition information and quit).

3. The process of formatting a disk without any partitions is quite straightforward,
but let’s start by looking at the device itself:
Command (m for help): p

Disk /dev/hdb: 16 heads, 63 sectors, 507 cylinders
Units = cylinders of 1008 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdb1 1 507 255496+ b FAT32

There’s a problem lurking here: We don’t want the disk to be a FAT32 disk (a
Windows format), but rather a Unix disk. We’ll need to delete the existing partition
and write a new one of the appropriate format:
Command (m for help): d
Partition number (1-4): 1

Command (m for help): p

Disk /dev/hdb: 16 heads, 63 sectors, 507 cylinders
Units = cylinders of 1008 * 512 bytes

Device Boot Start End Blocks Id System

Adding Disks to Your System 201

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 201

Having deleted the #1 partition, the current disk is now completely unusable from
a Unix perspective. Fixing it is accomplished with the n (new partition) command:
Command (m for help): n
Command action

e extended
p primary partition (1-4)

p
Partition number (1-4): 1
First cylinder (1-507, default 1): 1
Last cylinder or +size or +sizeM or +sizeK (1-507, default 507): 507

Because the partition is intended to span the entire physical disk, we can use the
default cylinder specifications. Also notice that you can specify the size in bytes,
kilobytes, or megabytes if you don’t think in terms of cylinders.

202 Hour 10

,

Wondering whether to use a primary or extended partition? If you’re creat-
ing partition #1, 2, 3, or 4, you should use a primary partition, but if you
need to have more than four partitions on the disk, you’ll need the higher
number partitions to be essentially subpartitions within an extended parti-
tion. This all stems from some poor implementation decisions in the original
design of the DOS hard disk format, but that’s another story…

If you need to specify a different type of partition, start by using the l command to
list known partitions. It’s a remarkable list:
Command (m for help): l
0 Empty 1b Hidden Win95 FA 64 Novell Netware bb Boot Wizard hid
1 FAT12 1c Hidden Win95 FA 65 Novell Netware c1 DRDOS/sec (FAT-
2 XENIX root 1e Hidden Win95 FA 70 DiskSecure Mult c4 DRDOS/sec (FAT-
3 XENIX usr 24 NEC DOS 75 PC/IX c6 DRDOS/sec (FAT-
4 FAT16 <32M 39 Plan 9 80 Old Minix c7 Syrinx
5 Extended 3c PartitionMagic 81 Minix / old Lin da Non-FS data
6 FAT16 40 Venix 80286 82 Linux swap db CP/M / CTOS / .
7 HPFS/NTFS 41 PPC PReP Boot 83 Linux de Dell Utility
8 AIX 42 SFS 84 OS/2 hidden C: df BootIt
9 AIX bootable 4d QNX4.x 85 Linux extended e1 DOS access
a OS/2 Boot Manag 4e QNX4.x 2nd part 86 NTFS volume set e3 DOS R/O
b Win95 FAT32 4f QNX4.x 3rd part 87 NTFS volume set e4 SpeedStor
c Win95 FAT32 (LB 50 OnTrack DM 8e Linux LVM eb BeOS fs
e Win95 FAT16 (LB 51 OnTrack DM6 Aux 93 Amoeba ee EFI GPT
f Win95 Ext’d (LB 52 CP/M 94 Amoeba BBT ef EFI (FAT-12/16/
10 OPUS 53 OnTrack DM6 Aux 9f BSD/OS f1 SpeedStor
11 Hidden FAT12 54 OnTrackDM6 a0 IBM Thinkpad hi f4 SpeedStor
12 Compaq diagnost 55 EZ-Drive a5 BSD/386 f2 DOS secondary
14 Hidden FAT16 <3 56 Golden Bow a6 OpenBSD fd Linux raid auto
16 Hidden FAT16 5c Priam Edisk a7 NeXTSTEP fe LANstep
17 Hidden HPFS/NTF 61 SpeedStor b7 BSDI fs ff BBT
18 AST SmartSleep 63 GNU HURD or Sys b8 BSDI swap,

15 0672323982 ch10 6/18/02 2:07 PM Page 202

4. A quick check that everything is specified as desired:
Command (m for help): p

Disk /dev/hdb: 16 heads, 63 sectors, 507 cylinders
Units = cylinders of 1008 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdb1 1 507 255496+ 83 Linux

and it’s time to write out the new partition information for our Linux system with
the w command:
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.
Syncing disks.

In theory, we’re done and we now have a disk that is in the appropriate Linux for-
mat. This means that we should be able to fsck it, right?
fsck /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Couldn’t find ext2 superblock, trying backup blocks...
fsck.ext2: Bad magic number in super-block while trying to open /dev/hdb

The superblock could not be read or does not describe a correct ext2
filesystem. If the device is valid and it really contains an ext2
filesystem (and not swap or ufs or something else), then the superblock
is corrupt, and you might try running e2fsck with an alternate superblock:

e2fsck -b 8193 <device>

Ahhh…there’s no actual Unix filesystem information written to the disk yet. That’s
the subject of the next section.

Although fdisk has a relatively primitive interface, it’s not too difficult to use, and makes
slicing up a new hard disk into specific partitions straightforward. That’s only the first step
on the journey toward having a second drive show up as part of the Linux system.

Adding a Filesystem with mke2fs
If we can talk about computer disks as if they were paintings, then running fdisk is the
equivalent to acquiring a blank canvas and putting it in the closet. There’s not much you
can do with it unless you can place it on your easel and pull out your paints and brush.

Adding Disks to Your System 203

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 203

Task 10.2: Making a Filesystem with mke2fs
A filesystem is created on the hard disk with mkfs, and because different filesystems are
so different in their underlying characteristics, most modern Unix systems have specific
versions of mkfs for each supported filesystem.

1. Linux includes a number of applications for building a new filesystem on a disk:
man -k mkfs
mkdosfs [mkfs] (8) - create an MS-DOS file system under Linux
mkfs (8) - build a Linux file system
mkfs.bfs [mkfs] (8) - make an SCO bfs filesystem
mkfs.minix [mkfs] (8) - make a Linux MINIX filesystem
man -k mke2fs
mke2fs (8) - create a Linux second extended file system

204 Hour 10

,
TA

SK

Notice that mke2fs didn’t match the man -k mkfs. A classic example of why
you have to dig around a bit when you’re searching for specific commands
in Unix. Someday that’ll be fixed, but for now…

By contrast, Mac OS X Darwin offers nothing that even matches mkfs, but if you
try the variation newfs you find:
$ man -k newfs
newfs(8), mount_mfs(8) - construct a new file system
newfs_msdos(8) - construct a new MS-DOS (FAT) file system

Notice that you can create Windows-format hard disk images from within the
Macintosh environment, even on the command line.

Solaris spans the gap, offering both newfs and mkfs, and they’re completely
different commands. You’ll want to check the man page and the AnswerBook
material (Sun’s great online documentation suite at http://docs.sun.com) to
find out the specifics of your own version of Solaris.

2. Building a “second extended” filesystem requires the mke2fs command:
mke2fs /dev/hdb
mke2fs 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb is entire device, not just one partition!
Proceed anyway? (y,n) y
Filesystem label=
OS type: Linux
Block size=1024 (log=0),

15 0672323982 ch10 6/18/02 2:07 PM Page 204

Fragment size=1024 (log=0)
64000 inodes, 255528 blocks
12776 blocks (5.00%) reserved for the super user
First data block=1
32 block groups
8192 blocks per group, 8192 fragments per group
2000 inodes per group
Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729, 204801, 221185

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 25 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.

Notice that the program properly reminds us that we’re about to install a filesystem
on the overall drive, and that if there are partitions, they’ll be stepped on. If we had
created partitions, the mke2fs command would have to be run for each partition,
perhaps as mke2fs /dev/hdb1, mke2fs /dev/hdb2, and similar.

3. The output of mke2fs is well worth a closer look. Notice, for example, that it speci-
fies that blocks are 1024 bytes, which actually might be a bit too big for a small
250MB disk. 64,000 inodes were allocated, which means that’s the upper limit on
how many different files can be stored on this device, and that there are 255,528
1024-byte blocks, which translates—correctly—to 249.5MB.

Just as importantly, the superblock was written into Block 1 as expected, and dupli-
cates were written to Blocks 8193, 24557, 40961, 57345, 73729, 204801, and
221185. Recall from fsck that if the default superblock is corrupted, you might
find yourself in a situation where you have to specify a duplicate superblock. These
are the addresses of those superblocks. You could write them down, but since it’s a
standard spacing on the disk, just jot down a note so you remember that they’re
8,193 blocks.

Finally, notice that the mke2fs command has also set a flag in the core device
information that specifies to fsck that the disk should be checked automatically at
system boot every 25 mounts (typically boots), or 180 days. You can change this
with tune2fs, but frankly the defaults are quite acceptable, and running fsck every
few weeks is a very good idea anyway.

Are we done with the file formatting? Depends on what command you run,
frankly:
fdisk -l

Disk /dev/hda: 255 heads, 63 sectors, 1958 cylinders
Units = cylinders of 16065 * 512 bytes

Adding Disks to Your System 205

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 205

Device Boot Start End Blocks Id System
/dev/hda1 * 1 6 48163+ 83 Linux
/dev/hda2 7 1934 15486660 83 Linux
/dev/hda3 1935 1958 192780 82 Linux swap

Disk /dev/hdb: 16 heads, 63 sectors, 507 cylinders
Units = cylinders of 1008 * 512 bytes

Disk /dev/hdb doesn’t contain a valid partition table

Thinking about this error, though, there’s nothing wrong. We didn’t actually build
a partition table on /dev/hdb because it’s a small disk. We talked about it, but as
it’s only a 250MB drive, partitions would chop it up into chunks too small to be
used. So there’s no problem at all.

4. Instead, let’s run an fsck and see what happens (recall that earlier fsck com-
plained that there wasn’t a superblock, which is what reminded us to run mke2fs in
the first place):
fsck /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb: clean, 11/64000 files, 8094/255528 blocks

Interestingly, the newly created filesystem is marked as clean by default, so no
check was done. Let’s specify -cV to check for bad blocks and force a check:
fsck -cV /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
[/sbin/fsck.ext2 -- /dev/hdb] fsck.ext2 -c /dev/hdb
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Checking for bad blocks (read-only test): done
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Pass 5: Checking group summary information

/dev/hdb: ***** FILE SYSTEM WAS MODIFIED *****
/dev/hdb: 11/64000 files (0.0% non-contiguous), 8094/255528 blocks

No bad blocks, no problems with the filesystem, and notice that from the last line
summary that there are only 11 files (out of 64,000 possible—the same number
that there are allocated inodes for the drive) and 8,094 blocks used (out of 255,528;
again, the exact same count as mke2fs showed us).

206 Hour 10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 206

5. There are a variety of different options to the mke2fs command worth exploring in
Table 10.1.

TABLE 10.1 Useful Flags to mke2fs

Flag Meaning

-b blocks Specify a different block size than the default. Valid sizes are 1024, 2048, and
4096 bytes.

-c Check the disk for bad blocks before formatting the filesystem.

-j Enable a journaling option on an ext3 disk.

-L label Set the volume label for the disk.

-N i Specify that the disk should have i inodes rather than the default.

-v Verbose output, showing you more of what’s going on.

Adding Disks to Your System 207

10

,

To learn more about the cool new ext3 filesystem and its disk journaling
capability, please visit http://www.redhat.com/support/wpapers/
redhat/ext3/.

Before we leave this section, let’s use the command flags to rebuild the filesystem
on the new drive to support lots more tiny files by upping the inodes available.
While we’re at it, we’ll also specify a volume label.
mke2fs -L “Little Guy” -v -N 128000 /dev/hdb
mke2fs 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
/dev/hdb is entire device, not just one partition!
Proceed anyway? (y,n) y
Filesystem label=Little Guy
OS type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)
128000 inodes, 255528 blocks
12776 blocks (5.00%) reserved for the super user
First data block=1
32 block groups
8192 blocks per group, 8192 fragments per group
4000 inodes per group
Superblock backups stored on blocks:

8193, 24577, 40961, 57345, 73729, 204801, 221185

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 37 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.,

15 0672323982 ch10 6/18/02 2:07 PM Page 207

Notice that the volume has a label now, and that the number of inodes has jumped
up considerably, as desired.

A quick fsck demonstrates that all is as expected:
fsck /dev/hdb
Parallelizing fsck version 1.23 (15-Aug-2001)
e2fsck 1.23, 15-Aug-2001 for EXT2 FS 0.5b, 95/08/09
Little Guy: clean, 11/128000 files, 16094/255528 blocks

Most of the work of adding a new disk to the filesystem is done by the mke2fs (or one of
its brethren), and there are a number of different options to the command.

Mounting the New Disk
After the disk is formatted and has a filesystem skeleton added by newfs (or mkfs), it can
be hooked into the filesystem. This is where Unix proves slightly different than other
computer systems, because rather than add new drive images, Unix requires you to hook
the new disk into the existing filesystem. That’s why the mount output shows specific
directories. Consider the following line from the mount output:

/dev/hda1 on /boot type ext3 (rw)

What this implies is that there’s a /boot directory on the root (/) filesystem, and that its
contents are hidden by the newly mounted /dev/hda1 drive.

This idea that newly mounted disks hide existing file content is critical to understand so
you can best plan how to add your new disk space to your system.

Task 10.3: Adding New Drives to Your System
Imagine that we can stop the system partway through the boot sequence, after things
have started running, but before any nonboot disks are mounted. At this point, there’ll be
a /boot directory, but nothing in it. The job of the mount command is to attach filesys-
tems to a specific directory.

1. Before the new drive hdb is added to the system, let’s have a look at the directory
/home/taylor:
cd /home/
ls -a taylor
. .first_start_kde .MCOP-random-seed
.. .gconf .mcoprc
.autorun.lck .gconfd .nautilus
.bash_history .gnome .sawfish

208 Hour 10

,

,

,
TA

SK
,

15 0672323982 ch10 6/18/02 2:07 PM Page 208

.bash_logout .gnome-desktop .screenrc

.bash_profile .gnome_private .wmrc

.bashrc .gtkrc .xauth

.DCOPserver_localhost.localdomain .ICEauthority .Xauthority

.DCOPserver_localhost.localdomain_:0 .kde .xsession-errors
Desktop .kderc
.emacs .mcop

Now, let’s use the mount command to hook the new drive into the existing system,
with /home/taylor as its initial mount point:
mount /dev/hdb /home/taylor
ls -al taylor
total 17
drwxr-xr-x 3 root root 1024 Feb 1 14:40 .
drwxr-xr-x 3 root root 4096 Jan 24 12:20 ..
drwxr-xr-x 2 root root 12288 Feb 1 14:40 lost+found

Rather scary to see all the files gone, but they’re not really gone, they’re under-
neath the contents of the new disk that’s been mounted.

2. To demonstrate that, umount unmounts a disk, permitting access to the previous
content:
umount /dev/hdb
ls -a taylor
. .first_start_kde .MCOP-random-seed
.. .gconf .mcoprc
.autorun.lck .gconfd .nautilus
.bash_history .gnome .sawfish
.bash_logout .gnome-desktop .screenrc
.bash_profile .gnome_private .wmrc
.bashrc .gtkrc .xauth
.DCOPserver_localhost.localdomain .ICEauthority .Xauthority
.DCOPserver_localhost.localdomain_:0 .kde .xsession-errors
Desktop .kderc
.emacs .mcop

This is a very important concept that isn’t clear to many Unix system admini-
strators: Disks can only be mounted onto an existing directory, and whatever’s
in that directory prior to the mount will be inaccessible until the disk is
unmounted again.

3. The mount command supports a variety of different methods for mounting a disk.
The most important flags are summarized in Table 10.2.

Adding Disks to Your System 209

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 209

TABLE 10.2 Helpful mount Flags

Flag Meaning

-a Ensure that all devices listed in /etc/fstab are mounted, and mount them if they
are detached. This can be combined with -t to allow mount -a -t ufs, for exam-
ple, which will force all UFS filesystems listed in the /etc/fstab file to be
mounted if possible.

-o opts Specify opts options to mounting. Common values are ro (read-only), rw
(read/write), noatime (disable updating access times on files, speeding up disk
interaction), noauto (disk can only be mounted explicitly, rather than with a mount
-a), and noexec (disable execution of binaries on the disk).

-r Mount read-only (analogous to -o ro).

-t type Mount the disk as type type. Common values are ext2, ext3, hfs, hfs+, nfs, ufs,
iso9660, and xfs, depending on which platform you’re on.

-v Verbose output. Shows more of what’s happening.

-w Mount read/write (analogous to -o rw).

As a further experiment, let’s copy an executable binary onto the disk, then mount
the disk read-only to demonstrate some interesting behaviors:
mkdir /disk2

cp /bin/ls /home/taylor
umount /dev/hdb

mount -o ro,noexec -v -t ext2 /dev/hdb /disk2

/dev/hdb on /disk2 type ext2 (ro,noexec)
ls –alF /disk2
ls -al /disk2
total 63
drwxr-xr-x 3 root root 1024 Jan 28 18:14 ./
drwxr-xr-x 20 root root 4096 Jan 28 15:38 ../
drwxr-xr-x 2 root root 12288 Jan 28 15:34 lost+found/
-rwxr-xr-x 1 root root 45948 Jan 28 18:10 ls*

As you can see, there’s a copy of the executable binary for /bin/ls on the disk.
But because the disk was mounted noexec, watch what happens when the exe-
cutable is invoked:
/disk2/ls
tcsh: /disk2/ls: Permission denied

210 Hour 10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 210

This can be quite puzzling if you forget that no programs can be executed from the
disk, because as the ls -l shows, the file is indeed executable. How about copying
to a read-only filesystem?
cp /bin/cp /disk2
cp: cannot create regular file `/disk2/cp’: Read-only file system

A considerably more helpful error message, at least!

This time mount proves a bit more helpful in reminding us what might be causing
the strange behavior on this particular disk:
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/hdb on /disk2 type ext2 (ro,noexec)

4. Before we leave this section, let’s fix the disk so that it’s a standard mount format:
umount /dev/hdb
mount -v -t ext2 /dev/hdb /disk2
/dev/hdb on /disk2 type ext2 (rw)

In the next section, we’ll explore how to add an entry to /etc/fstab to have the
disk parameters specified automatically.

5. One additional observation about the Mac OS X environment is that if you dual-
boot Mac OS 9 and OS X, you’ll find that old OS 9 disks are automatically
mounted on the /Volumes directory:
/sbin/mount
/dev/disk1s9 on / (local)
devfs on /dev (local)
fdesc on /dev (union)
<volfs> on /.vol (read-only)
/dev/disk0s8 on /Volumes/Macintosh HD (local)
automount -fstab [252] on /Network/Servers (automounted)
automount -static [252] on /automount (automounted)

However, you might well decide that you only want read-only access to the OS 9
disks to ensure that no corruption can occur. To do that, simply unmount the exist-
ing disk and remount it read-only:
umount /dev/disk0s8
mount –r /dev/disk0s8 /Volumes/Macintosh\ HD
/sbin/mount
/dev/disk1s9 on / (local)
devfs on /dev (local)

Adding Disks to Your System 211

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 211

fdesc on /dev (union)
<volfs> on /.vol (read-only)
/dev/disk0s8 on /Volumes/Macintosh HD (read-only)
automount -fstab [252] on /Network/Servers (automounted)
automount -static [252] on /automount (automounted)

When you have a disk fully configured with a filesystem and a spot on the filesystem
where you can add the disk and utilize the space, it’s quick work with mount to hook
things up.

As you begin to work with external media, including “borrowed hard disks” and read-
only devices, being able to mount disks with specific security settings (for example,
noexec) can save a lot of headaches. Indeed, a good rule of thumb is that you should
always mirror the logical settings of the device with the mount instructions: If you are
mounting a DVD-ROM drive, use ro; if you’re mounting a potentially virus-infected
shareware CD-ROM, use noexec; and so on. A little bit of caution will save a lot of

212 Hour 10

,

,

potential hassles down the road.

If you’re running Mac OS X and want to mount disks within Darwin, being
aware of these security precautions can be even more beneficial. There
aren’t many viruses for Unix, but there are definitely Mac viruses that can

infect your system, and mounting a disk from the Darwin level might well
sidestep any virus protection system you’ve installed.

Fine-tuning Your /etc/fstab
Configuration File

While it’s straightforward to add new disks to your system with the mount command, it’s
somewhat of a pain to have to remember the exact options and type everything in each
time the system reboots.

Fortunately, there’s a smarter solution, a configuration file that mount uses to ascertain
what disks to mount where, when, and with what permissions. That file is /etc/fstab,
and before we leave this hour, let’s have a quick peek at what’s inside.

Task 10.4: Creating the Perfect /etc/fstab File
It’s a bit surprising, but mount is a pretty smart command for a Unix command. For
example, once an entry in /etc/fstab maps a drive name to a mount point, you can
manually mount disks by specifying either the mount point (/disk2), or the drive name

,
TA

SK
,

15 0672323982 ch10 6/18/02 2:07 PM Page 212

(/dev/hdb) by itself. Even better, the default mount permissions will be read from the
file too, ensuring that the DVD-ROM is always mounted read-only, perhaps, unless
explicitly overridden.

But the most important use of /etc/fstab is to control which disks are mounted auto-
matically at boot-time. If you wanted to include /dev/hdb as a crucial part of your
filesystem, it would be unacceptable to use the mount command manually each time the
system rebooted!

1. To start, let’s have a look at a stock RHL7.2 filesystem list:
more /etc/fstab
LABEL=/ / ext3 defaults 1 1
LABEL=/boot /boot ext3 defaults 1 2
none /dev/pts devpts gid=5,mode=620 0 0
none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0
/dev/hda3 swap swap defaults 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,kudzu,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0

There are six columns of information in this file, as detailed in Table 10.4.

TABLE 10.4 Information Contained in /etc/fstab

Column Contains

1 Device name or label.

2 Mount point.

3 Filesystem type. Common values are ext2, ext3, hfs, hfs+, ufs, fat32, fat, proc,
tmpfs, swap, and iso9660.

4 Options: ro (read-only), rw (read+write), exec (permit execution of programs on
disk), noatime (prohibits update of access time; this can improve performance on
disks where the atime value doesn’t matter), noauto (disables automatic mounting
of the device with the mount -a command at bootup), and nosuid (prohibits any
SUID program running from this disk). There are probably additional options for
your flavor of Unix: Check man page fstab(5) for details.

5 Indication of what dump pass this drive should be included with (see man page
dump(8) and Hour 8, “Unix Package Management”).

6 Indicates which pass of fsck should examine this disk on bootup. (Pass 0 = don’t
automatically check).

To add an entry for the new disk /dev/hdb, therefore, we’d add the following line:

/dev/hdb /disk2 ext2 noauto,ro 2 0

Adding Disks to Your System 213

10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 213

This would define the mount point for the /dev/hdb drive as /disk2, indicate that
it’s a stock ext2 filesystem, should not be automounted at boot-time (which means
that it’ll have to be added by hand), should be mounted read-only, and is part of
dump group 2.

2. To check that the disk won’t be automatically mounted at boot-time, we can use
the following sequence:
umount /disk2
mount -a
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)

As expected, the /disk2 mount point has not been listed.

To include the disk manually is now a breeze:
mount /disk2
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/hdb on /disk2 type ext2 (ro)

Notice in particular that the disk has been added at the correct mount point, and
that it’s read-only.

3. Changing the options in /etc/fstab will change the behavior dramatically. A
switch from noauto,ro to defaults in the mount configuration file results in the
following:
umount /disk2
mount -a
mount
/dev/hda2 on / type ext3 (rw)
none on /proc type proc (rw)
usbdevfs on /proc/bus/usb type usbdevfs (rw)
/dev/hda1 on /boot type ext3 (rw)
none on /dev/pts type devpts (rw,gid=5,mode=620)
none on /dev/shm type tmpfs (rw)
/dev/hdb on /disk2 type ext2 (rw)

Any disk that’s mounted with the -a flag to mount will also be mounted at boot-
time, which is exactly what we wanted.

214 Hour 10

,

,

15 0672323982 ch10 6/18/02 2:07 PM Page 214

There are many ways that disk automounting can be custom-configured for your installa-
tion, and you can also see that there are a wide variety of different file types that are sup-
ported by modern Unix systems, enabling easy disk-sharing between different operating
systems, whether Macintosh, Windows, DOS, or other flavors of Unix.

To learn how to fine-tune your configuration further, you’ll do well to read man page
fstab(5) and, if you have it, man page fs(5), for more information about the possible
values in this configuration file. Of course, the mount man page offers lots of good infor-
mation too!

Summary
As a system administrator, it’s your job to ensure that the disk layout and configuration
matches user needs. You’ll also undoubtedly be expected to recognize when disk space is
running low and solve the problem—probably by adding more space by including a new
hard drive.

With 30GB disks priced under $250, running out of space seems hard to imagine, but
your users will doubtless challenge that assumption!

Q&A
Q When I look at the contents of my /etc/fstab, it’s not the same as you list in

Table 10.2. What’s up with that?

A Some flavors of Unix have different formats for the /etc/fstab file, confusingly
enough. For example, some versions of Solaris have device to mount, device to
fsck, mount point, fs type, mount at boot and mount options as the seven
columns listed in the config file. No dump information at all.

As always, your best solution is to check with the fstab(5) man page to ensure
that your understanding of this vital file matches the layout specified.

Q The presence of /etc/floppy and /etc/cdrom suggests that it’s really easy to
work with these peripheral devices in Unix. Is it really this easy?

A Many Unix flavors indeed make it very easy, mounting the actual device so that
access to /dev/floppy fails or succeeds based on whether there’s a floppy in the
drive, or similarly with CD-ROMs.

Q My impression is that it’s dangerous to experiment with fdisk and newfs?

Adding Disks to Your System 215

10

15 0672323982 ch10 6/18/02 2:07 PM Page 215

A Oh yeah! Remember, when you run a disk formatting utility, you wipe all the
data on that disk, so overwriting the superblocks on an existing drive, for exam-
ple, instantly unhooks all the files and directories that were on that drive previ-
ously. Please use these commands judiciously to ensure you don’t get into any
trouble!

Workshop
Quiz

1. Why would you want to mount a disk read-only?

2. Why would you specify noatime at mount, and what does it mean?

3. If a disk is automatically mounted with mount -a, what does that imply about
boot-time?

4. Which of the following file types is not supported by Linux: FAT12, OS/2, Plan 9,
CP/M, Golden Bow, DRDOS, DOS, or BeOS.

5. If you want to have more than four partitions on a disk, will you need to use pri-
mary or extended partitions?

Answers
1. Generally, you should always match the access permissions of the peripheral itself.

If you’re mounting a CD-ROM, for example, you’d use read-only because your
system can’t write CD-ROMs. (If you have a read/write CD-ROM burner, it’s a
different story, of course, but even then, if you’re writing a CD-ROM you’ll want
to unmount and remount the device to enable writing.)

2. On drives that store lots of small files and have frequent access (Usenet archive
servers, for example), disabling updates to the access times for the filesystem can
improve performance a bit.

3. It implies that the disk will also be automatically mounted at boot-time.

4. It’s a trick question! All of these are supported by Red Hat Linux 7.2.

5. Both, actually. You’ll want to have partitions 1–4 as primary partitions, and all sub-
sequent partitions as extended.

In the next hour, we’ll explore the different options for boot-time operating system selec-
tion, focused specifically on LILO and GRUB. Use of these tools enable you to boot into
different operating systems as desired, a very handy capability.

216 Hour 10

15 0672323982 ch10 6/18/02 2:07 PM Page 216

HOUR 11
Multiple Boot
Configurations

Although it’s true that after you get intimately involved with Unix you prob-
ably won’t want to go back, there are times when it’s helpful to boot into a
variant of Microsoft Windows or another operating system. If you’re on
Solaris, you’re out of luck—Solaris doesn’t play nicely with other operating
systems on the disk. If you’re running Mac OS X, the best solution for you
is to explore Virtual PC from Connectix.

If you are using Mac OS X, try holding down the Option key
next time you reboot. You’ll find that if you have Mac OS 9 on
one disk and Mac OS X on the other, you can easily pick which
should boot directly, rather than fussing with the Boot Disk
control panel.

16 0672323982 CH11 6/18/02 2:03 PM Page 217

If you’re on a PC and you have some flavor of Linux or PC Unix, this hour is for you.
You can easily set up your system to boot a variety of different operating systems with a
simple switcher screen displayed at boot-time. My PC systems customarily can boot into
Red Hat Linux or a version of Windows (usually Windows 2000).

In this hour you will learn

• How to partition your disk for dual-booting

• Dual-boot configurations with LILO

• Dual-boot configurations with GRUB

• The theory of virtual machines

The Theory of Dual-Booting
Upon first glance, it might surprise you that your PC can have multiple operating sys-
tems installed simultaneously, without each of them stepping on and otherwise over-
writing the other. Certainly, if you come from the world of Windows, you’re used to
being asked Reformat disk? (all data will be lost) during the installation
process.

Understanding how dual-booting works requires a brief digression into the sequence of
events that transpires when a PC is booted.

When you power-on your computer, it does not instantly start reading in the hard disk,
even though it seems that way. Instead, the CPU starts by reading the BIOS, the Basic
I/O System, which has a set of configuration options set in your PRAM, Programmable
Random Access Memory. The PRAM settings indicate which of your multiple disks is
the boot disk, the disk with the desired operating system image.

The secret to dual-booting is while the PC BIOS always wants to boot off of the master
boot record, “sector zero” of the specified disk, the program it boots can be a loader, a
program that simply identifies other possible operating systems on the disk and enables
you to pick between them.

Both LILO and GRUB are boot loaders; simple, tiny programs that are invoked directly
on power-up, they either automatically hand the CPU off to the appropriate operating
system image or display a list of possible OS choices for the user to choose.

Sound simple? It is. That’s the good news. The challenge of configuring a system to
dual-boot is that you have to partition your disk to allow space for all your operating

218 Hour 11

16 0672323982 CH11 6/18/02 2:03 PM Page 218

systems before you install any of them. That’s the biggest hassle of the entire dual-boot
process: Typically you won’t decide you want to dual-boot until you already have an OS
installed and decide that you want to experiment with another.

This can go in either direction, of course. Perhaps you’re a PC person and have been
happily living in Windows ME, but decide you want to explore the world of Linux. Or,
you gave up on Microsoft and have a pure Linux system, but you suddenly realize that
there are a few key applications (or games) that you can’t run without a native
Windows OS.

Either way, you might be forced to back up your system, repartition your hard disk,
then reinstall your basic OS. Then, finally, you can install additional operating sys-
tems, each in their own partition. A caveat is that Microsoft doesn’t really like this
“other OS” stuff, so if you want to have a version of Windows, install that first.
Otherwise, it’ll stomp on whatever multi-boot information you put in the disk master
boot record.

Multiple Boot Configurations 219

11
There is a very cool alternative called VMware. Later in this hour we’ll
talk about how virtual machines within an OS let you sidestep a lot of this
hassle.

Task 11.1: Partitioning Disks for Dual Boot
Each combination of operating systems requires a different disk-partition structure, with
Linux having the most complex. An ideal Linux configuration has three different parti-
tions in use, whereas most other operating systems (that is, Windows) can work just fine
with one big partition.

1. The first step to learning about your partition strategy is to find out the name of
your boot disk device. This is most easily done with mount:
mount | grep boot
/dev/sda1 on /boot type ext3 (rw)
#

To check your current partition strategy, use fdisk, giving it the top-level device
name:
fdisk /dev/sda

Command (m for help): p

,
TA

SK
,

16 0672323982 CH11 6/18/02 2:03 PM Page 219

Disk /dev/sda: 255 heads, 63 sectors, 522 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 * 1 6 48163+ 83 Linux
/dev/sda2 7 490 3887730 83 Linux
/dev/sda3 491 522 257040 82 Linux swap

To add an additional operating system, we would need to have a configuration that
included additional partitions—they’re all in use already in the above output, as
you can see by comparing the disk statistics with the start and end values of the
specific devices.

Given that we’ve consumed the entire disk with this set of partitions, the bad news
is that we need to repartition the disk, destroying the /dev/sda2 partition, then
reinstall Linux. Or we need to buy, format, and install a new disk.

2. The resultant partition table for a reorganized disk might look like this:
Disk /dev/sda: 255 heads, 63 sectors, 522 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/sda1 * 1 6 48163+ 83 Linux
/dev/sda2 7 245 1943865 83 Linux
/dev/sda3 246 490 1943865 b Win95 FAT32
/dev/sda3 491 522 257040 82 Linux swap

There are other ways to partition your disk too, and many Linux experts recom-
mend that you start with Windows, using the Windows installer to partition the disk
into the four partitions needed.

If you’re going to dual-boot, it’s wise to read this section before you begin any installa-
tion on your disk. You could also opt for another solution that’s less destructive, such as
VMware, covered later in this hour.

Dual-Boot Configurations with LILO
When you have more than one operating system installed on your system, you can select
your favorite at boot-time by using either LILO or GRUB. LILO is the Linux Loader,
and it’s surprisingly straightforward to configure.

220 Hour 11

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 220

Task 11.2: Configuring LILO
Though it has an important task in the boot sequence, LILO itself is a very simple pro-
gram. The configuration file isn’t too complex, but there are some nuances that are criti-
cal to understand.

1. To start, here’s a lilo.conf file for a system that can dual-boot Red Hat Linux or
Windows 2000. There are three possible boot options here: a regular RHL boot, a RHL
boot into single-user mode (see Hour 13, “Changing System State”), and a boot into
Windows 2000 Professional, if the user feels the need to see how the other half lives!
cat /etc/lilo.conf
boot=/dev/sda
default=RHL
prompt
timeout=300
image=/boot/vmlinuz-2.4.7-10

label=RHL
root=/dev/sda2
read-only

image=/boot/vmlinuz-2.4.7-10
label=”RHL-s”
root=/dev/sda2
append=-s
read-only

other=/dev/sda3
label=Windows2000
table=/dev/sda

The boot= line specifies where the master-boot record should be written, default
specifies the default image (OS) to boot, and prompt forces LILO to give you a
chance to enter your preferred OS at boot-time.

The timeout setting specifies how long before the system automatically picks the boot
option specified, but it’s in tenths of a second, so timeout=300 is 30 seconds, not 5
minutes. It’s very important to keep this value large while you’re experimenting!

Multiple Boot Configurations 221

11

Once, a friend and I were experimenting with the settings in the lilo.conf
file and accidentally set timeout=10 rather than timeout=100. It wouldn’t
have been too bad except the default OS to boot into was Windows, so we
couldn’t get to the Linux OS to fix the configuration file. It was quite comi-
cal to watch us try and type the appropriate entry to the LILO prompt at just
the right moment!

,
TA

SK
,

16 0672323982 CH11 6/18/02 2:03 PM Page 221

For LILO-friendly operating systems (most Linux and PC-Unix systems), you can
then specify the kernel file image name, the label for LILO to display at the
prompt, and the root= line, indicating where the partition containing the kernel
image is located.

You can see that we specify that the system should be mounted read-only, which
might seem a bit weird, but we want to have the disk read-only so that fsck can
check it without causing too much trouble (recall that running fsck on a mounted
disk is very bad juju!). As the boot sequence proceeds, the disk is automatically
unmounted and remounted as read-write.

The second boot option takes advantage of the append= option to force the kernel
to boot with the -s flag, which forces single-user mode. You should rarely need
something like this in day-to-day operation.

Finally, partition 3 of /dev/sda contains a separate Windows boot environment, so
it’s denoted by specifying the partition of the disk upon which the OS is installed,
here other=/dev/sda3, and then the disk that the OS itself is found as
table=/dev/sda.

There are a few other options to the lilo.conf file, and because they change from
version to version (albeit subtly), your best bet is to check the LILO man page for
exact details on what your version supports.

2. After you have your configuration file written, you need to install or update LILO
in the master-boot record (MBR). Before you do that, however, it’s critical to
always test the configuration file first, by specifying -t:
/sbin/lilo –t
Adding RHL *
Added RHL-s
Added Windows2000

After the configuration file can be read without any errors, really install it by omit-
ting -t:
/sbin/lilo
Added RHL *
Added RHL-s
Added Windows2000

Not very exciting output, but because it didn’t generate any errors, all is well.

222 Hour 11

Note that if you forget to test the configuration and a real install fails part-
way with an error, you must fix it and reinstall before you reboot! If you
don’t, your MBR will be corrupt and you will not be able to boot properly.

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 222

3. Rebooting the system now produces the standard PC bootup output messages, then
clears the screen and prompts:

LILO boot:

At this point, you can just wait—and after 30 seconds the default entry in the
lilo.conf file will be booted (in this case, the one with the RHL label). If you’d
rather see your options, type either ? or TAB and you’ll see all your choices:
LILO boot: ?
RHL RHL-s Windows2000
boot:

You can type the operating system you desire, or, again, you can just let the system
timeout.
boot: RHL
the long, involved Unix boot sequence begins.

There are many fans of LILO in the Unix world, and for good reason. LILO has been
reliably booting Unix and Linux systems for many years with few problems or hiccups.
However, in the past few years GRUB has grown in popularity because of its flexibility
and more attractive appearance. That’s why Red Hat Linux installs with GRUB as the
default boot loader, not LILO.

Multiple Boot Configurations 223

11

In any case, a good rule of thumb before you try anything discussed in this
hour is to ensure that you have a boot disk available for your OS, just in
case. Oftentimes that can be the install CD-ROM, but most Unixes also let
you create explicit boot disks. Check the Unix install documentation if you
need help.

Dual-Boot Configurations with GRUB
GRUB is the GRand Unified Boot loader, originally written by Erich Boleyn in part to
sidestep the oft-confusing LILO configuration files. The most popular thing about GRUB
is that it’s a graphical, menu-based loader (though it does have a simple line-oriented
command mode a la LILO).

Task 11.3: Configuring GRUB
Working with GRUB is a little bit easier than LILO, but you still need to be careful and
keep in mind the core functionality of a boot loader. You shouldn’t have to change this
configuration file too often, but if you do experiment, beware that you might cause lots
of trouble, so always make sure you have a copy of the original GRUB configuration for
your system as one of the boot-time options.

,

,

,
TA

SK

16 0672323982 CH11 6/18/02 2:03 PM Page 223

All the GRUB files, including the graphic used as the background image, live in
/boot/grub.

1. Here’s what’s in /boot/grub:
ls –l /boot/grub
total 239
-rw-r--r-- 1 root root 82 Jan 11 15:45 device.map
-rw-r--r-- 1 root root 10848 Jan 11 15:45 e2fs_stage1_5
-rw-r--r-- 1 root root 9744 Jan 11 15:45 fat_stage1_5
-rw-r--r-- 1 root root 8864 Jan 11 15:45 ffs_stage1_5
-rw------- 1 root root 543 Jan 11 15:45 grub.conf
lrwxrwxrwx 1 root root 11 Jan 11 15:45 menu.lst -> ./grub.conf
-rw-r--r-- 1 root root 9248 Jan 11 15:45 minix_stage1_5
-rw-r--r-- 1 root root 12512 Jan 11 15:45 reiserfs_stage1_5
-rw-r--r-- 1 root root 54044 Sep 5 13:10 splash.xpm.gz
-rw-r--r-- 1 root root 512 Jan 11 15:45 stage1
-rw-r--r-- 1 root root 120000 Jan 11 15:45 stage2
-rw-r--r-- 1 root root 8512 Jan 11 15:45 vstafs_stage1_5

Although you should never touch most of this material without protective clothing
(just kidding, but you really do want to be an expert before you fiddle with this!),
it’s worth highlighting both the GRUB configuration file, grub.conf, and the
graphic used as the background image in menu mode, splash.xpm.gz.

224 Hour 11

Some versions of GRUB look for the configuration in menu.lst rather than
grub.conf. Check the man page for the preferences in your own version of
Unix, as needed. Notice in the example that menu.lst is a symbolic link to
grub.conf.

If you want to have your own custom splash screen, use a program such as xfig to
open splash.xpm.gz (after unzipping it, of course), then duplicate its size, depth
(number of colors used) and image format. Then gzip the file and give it the same
name, or update the splashimage value in the grub.conf file (see the following).

2. More likely, though, you’ll want to modify the configuration file, and here’s how it
looks inside:
cat grub.conf
grub.conf generated by anaconda
#
Note that you do not have to rerun grub after making changes to this file
NOTICE: You have a /boot partition. This means that
all kernel and initrd paths are relative to /boot/, eg.
root (hd0,0)

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 224

kernel /vmlinuz-version ro root=/dev/sda2
initrd /initrd-version.img
boot=/dev/sda
default=0
timeout=10
splashimage=(hd0,0)/grub/splash.xpm.gz
title Red Hat Linux (2.4.7-10)

root (hd0,0)
kernel /vmlinuz-2.4.7-10 ro root=/dev/sda2
initrd /initrd-2.4.7-10.img

title Windows 2000
root (hd0,3)
makeactive
chainloader +1

One important note about GRUB is its disk reference notation. The root reference
to (hd0,0) means that it’s on hard disk 0, partition 0. If we wanted to boot off par-
tition 3 of hard disk 1, it’d be (hd1,3).

The default parameter specifies which of the operating systems should be booted
by default; zero indicates the very first of those listed (Red Hat Linux). The time-
out variable specifies how long GRUB displays its menu before booting (in sec-
onds, not the confusing tenths of a second used in LILO), and splashimage
indicates the name of the background graphic to use.

Each bootable operating system is then specified with a title and a root partition
indicator (again, it’s disk, partition). In the case of a Unix system, you specify the
kernel information on the kernel line (note the ro indicating that the disk should
be mounted read-only, just as was done in LILO).

The configuration of a non-Unix operating system (for example, Windows 2000) is
rather different because there isn’t a kernel per se. Instead, GRUB uses a so-called
chainloader, which tells GRUB to step aside and let the boot loader on the speci-
fied disk and partition take over.

2. You don’t have to do anything for a new configuration to be installed, but because
you don’t want to run into errors in the configuration file format while you’re
booting, it’s wise to install the new GRUB configuration explicitly, by running
grub-install:
/sbin/grub-install /dev/sda
Installation finished. No error reported.
This is the contents of the device map /boot/grub/device.map.
Check if this is correct or not. If any of the lines is incorrect,
fix it and re-run the script `grub-install’.

(fd0) /dev/fd0
(hd0) /dev/sda

Multiple Boot Configurations 225

11

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 225

Unlike LILO, if the installer finds a problem with the configuration, it won’t leave
the system in an unusable state, so you don’t have to be paranoid about running in
test mode.

3. Now when you boot you’ll have the choice of the two operating systems, and
you’ll have an attractive boot screen as well, shown in Figure 11.1.

226 Hour 11

FIGURE 11.1
GRUB boot screen
with two operating
systems.

Considerably more information can be obtained about GRUB by exploring the GRUB
info pages. Type info grub and you can go from there.

Other Solutions for Other Unixes
Although dual-booting and having different operating systems all living in their own par-
titioned worlds is appealing to many, there’s another alternative if you’re willing to give
up 10–30% of the performance of the secondary OS.

Both Windows and Mac OS support virtual machines, the former through some tricky
simulation of the boot loader in a protected space, and the latter through an emulation of
the Intel hardware architecture on the Apple platform.

It’s beyond the scope of this book to talk too much about these, but it’s worth a few
quick screenshots to show you how to create a virtual Unix OS to use for experimenta-
tion and practice, without any worries about hurting a live production system.

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 226

Task 11.4: Learning About Virtual Machines
The most popular solution for running virtual machines on the Intel platform is VMware,
from VMware Corporation (www.vmware.com). With this program installed, you can cre-
ate virtual Unix-operating environments, and even have multiple Windows operating sys-
tems installed for testing. Performance is roughly 80–90% of what you’d have with a
native load, so it’s not quite as fast. It’s worth noting that you can also install VMware on
your Linux system, enabling you to run Windows within Linux.

On the Macintosh, Virtual PC from Connectix Corporation (www.connectix.com) offers a
similar capability, albeit with a higher performance penalty because of the need to emu-
late the Intel hardware architecture (including CPU). On a very fast Mac OS X system
Virtual PC runs like a slightly sluggish PC.

1. When you have VMware installed on your PC, you can install a couple of different
operating systems and boot up the one of your choice by simply clicking on the
appropriate icon. Figure 11.2 shows a Windows 2000 system running Red Hat
Linux 7.2 within VMware.

Multiple Boot Configurations 227

11FIGURE 11.2
VMware lets you run
another OS within
your OS.

You can also run the virtual machine in full-screen mode, eliminating all the
Windows clutter (or, if you were running VMware within Linux, you could hide all
the Linux material and just appear to be running Windows directly).

,
TA

SK
,

16 0672323982 CH11 6/18/02 2:03 PM Page 227

2. Virtual PC on the Macintosh is quite similar in functionality. Figure 11.3 shows a
Macintosh screen with Virtual PC running Red Hat Linux 7.2 again. Although too
small to see, Windows 98 SE and Windows 2000 are other available operating sys-
tems on this Macintosh setup.

228 Hour 11

FIGURE 11.3
Virtual PC lets you
run multiple operat-
ing systems on
Mac OS X.

As with VMware, Virtual PC also lets you run a full-screen mode, which slightly
improves performance and eliminates any distracting Macintosh visual clutter.

Software testers have been using products such as VMware for years to enable access to
many different versions of Windows and Unix, and it’s a really great way to learn Unix
system administration in a manner that’s considerably safer than working directly on a
physical machine. Worst case, if you completely thrash things to where it won’t even
boot, just delete the virtual-machine image and build a new one. Better, it allows easy
cut-and-paste between the native operating system and the virtual or emulated one.

Summary
This hour has focused on multiple-OS boot configurations, starting with the specifics of
partitioning hard disks with Unix tools, and then examining in depth the most popular
boot loaders available, LILO and GRUB. Finally, we ended by discussing the different
options available for running one operating system within the environment of another.

,

,

16 0672323982 CH11 6/18/02 2:03 PM Page 228

Q&A
Q Isn’t it dangerous to play with boot loader configurations?

A Oh yes. In fact, a stray character in a test lilo.conf file during the production of
this chapter caused me no end of grief and at least eight lost hours. Again, be care-
ful and methodical with these configuration files, and make sure you have a backup
of the original set of boot parameters as one of the options. And always make sure
you have boot disks, just in case….

Q Why dual-boot if VMware is so cool?

A VMware and other virtual machine systems offer a very nifty approach to running
an OS within a safe environment, but it’s not a native install, and you certainly
wouldn’t want to run a Web server from within a virtual machine. There are also
some subtle nuances of network and peripheral interaction that don’t matter in the
macro, but might become important if you’re administering a machine that people
are using to develop device drivers or other low-level solutions.

Q Given that, how many operating systems do you have installed on your sys-
tems?

A I’ll simply say that on my Titanium Powerbook, I have it natively booting into Mac
OS X, and then with Virtual PC I can switch into full-screen mode with Linux,
Solaris, Windows 2000, and Windows 98. It’s sure to cause confusion when people
look over my shoulder!

Workshop
Quiz

1. What does LILO stand for? GRUB?

2. The boot sequence is BIOS, PRAM, and what?

3. What is the greatest challenge facing system administrators who want to set up a
system for dual-booting?

4. What do you need to watch out for with the timeout parameter in the lilo.conf
file?

5. What critical design mistake in LILO did the GRUB developers fix, helping thou-
sands of system administrators avoid a nightmare?

Multiple Boot Configurations 229

11

16 0672323982 CH11 6/18/02 2:03 PM Page 229

Answers
1. LILO is the Linux Loader, and GRUB is the GRand Unified Boot loader.

2. The BIOS gets the system started, then the PRAM is checked for the specific con-
figuration details. One of the most important snippets of information therein is the
boot disk, so the next step is switching control of the system to the code in the
master boot record.

3. Having the disk properly partitioned for multiple operating systems before
installing any of them.

4. That you’ve set it to a sufficiently large value: The timeout is calculated in tenths
of a second, not seconds.

5. The GRUB developers fixed the program so that it won’t install a bad configura-
tion, so testing the configuration is less critical. You should still proceed with cau-
tion nonetheless.

In the next hour, you’ll learn about disk quotas, both those that are built in to various
Unix flavors, and those you can build yourself with some savvy shell scripts. More
importantly, we’ll also look at the find command in detail and explore how it can help
with many system administration tasks.

230 Hour 11

16 0672323982 CH11 6/18/02 2:03 PM Page 230

HOUR 12
Managing Disk Quotas

There’s an old joke in the system administration world that there are two dif-
ferent types of sysadmins: those that are happy when their users are happy,
and those that are happy when they don’t have any users. Without going into
this too much, it’s worth pointing out that happy users lead directly to an
environment where you’re successful and have the ability to plan and orga-
nize, rather than reactively fight fires everyday.

In that sense, we’re going to look at disk quotas and managing disk usage
on a per-user basis in this hour. We have already looked at disk usage in
Hour 3, “Disk Usage,” but that was focused on df and du, which are useful
tools, but relatively primitive compared to the find power tool we’ll
explore this hour.

In this hour you learn

• How to implement disk quotas

• Quota nuances on other Unixes

• How to create your own quota system with find

17 0672323982 Ch12 6/18/02 2:01 PM Page 231

Implementing a Disk-Quota Policy
Earlier we talked about how disk space is so cheap that it’s probably easier to get an
additional disk and hook it into your system, rather than complaining to users that they’re
consuming too much disk space. You could even charge them a disk overuse tax and let
them buy their own disks.

However, that’s not realistic and it’s very helpful to learn about tools that are built-in to
the Unix system for managing and limiting disk usage. Even better, by having it inte-
grated into the user environment, you free yourself from having to send nastygrams, e-
mail messages to users that say they’re in trouble. (Rarely are they received with a
positive glow!)

Disks can fill up, too, even big disks. Don’t believe me? Go look at how large movie
trailer files are on sites such as www.sonypictures.com. If you have a user eagerly stor-
ing them on disk, you’ve got a problem brewing, and it could be a problem that pops up
overnight without you even realizing anything is wrong! Not good.

To address these issues, there’s a disk-quota system built-in to just about every flavor of
Unix. Essentially, the exact same disk-quota tools are available on Red Hat Linux, Mac
OS X, and Solaris 8. This means that we’ll be able to explore one in depth, and have it
apply to all three of these operating systems.

232 Hour 12

It turns out that enabling disk quotas on Mac OS X is quite a bit more tricky.
We’ll talk about that in a little while.

Task 12.1: Implementing Quotas
The key commands for managing a disk-quota policy are edquota to define user (or
group) quotas; quotacheck to ensure everything is configured properly; quotaon to
enable quotas; and finally the user-level quota command to see how much space users
have left in their quota allocation.

Let’s get started looking at Red Hat Linux 7.2. Our first stop is the /etc/fstab file used
by mount.

1. Disk quotas need to be enabled on each physical disk or partition you want to
manage. To do this you need to make a change in the /etc/fstab file and create
two empty admin files at the topmost level of the disk for the system to track
quota usage.

,
TA

SK
,

17 0672323982 Ch12 6/18/02 2:01 PM Page 232

First off, to enable quotas by user, you’ll need to add usrquota to the list of mount
options in the /etc/fstab file. For group-based quotas (that is, a configuration
where all members of a group cannot collectively exceed a specific disk allocation)
use grpquota, and, yes, you can specify both if you would like.

I have modified the mount entry for /disk2 because my intent is for this disk to be
used for storing large media files like movies, MP3 music collections, tarballs, and
so forth. Everyone will get a large quota, but I want to ensure that every user gets a
fair shake at the disk space.

Managing Disk Quotas 233

12

,

cat /etc/fstab
LABEL=/ / ext3 defaults 1 1
LABEL=/boot /boot ext3 defaults 1 2
none /dev/pts devpts gid=5,mode=620 0 0
none /proc proc defaults 0 0
none /dev/shm tmpfs defaults 0 0
/dev/hda3 swap swap defaults 0 0
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,kudzu,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner,kudzu 0 0
/dev/hdb /disk2 ext2 defaults,usrquota 2 0

Note the addition of usrquota to the very last entry.

2. The next step is to create the two files: aquota.user and aquota.group.

As a reminder, a tarball is a cute name for an archive of files, usually a pro-
gram and its supplemental docs, stored in compressed tar format. See Hour
7, “Large File Management and Backups,” for more about this.

Different versions of Unix differ on the name of these two files. Newer
Unixes use aquota.*, whereas other flavors use quota.*. Check the man
page for the final verdict on your installation.

These two files have to go at the root of the disk in question, so we’ll want to cre-
ate them before we unmount and remount the disk.
cd /disk2
touch aquota.user aquota.group
chmod 600 aquota.user aquota.group
ls –l aquota.*
-rw------- 1 root root 0 Feb 22 10:10 aquota.group
-rw------- 1 root root 0 Feb 22 10:10 aquota.user,

17 0672323982 Ch12 6/18/02 2:01 PM Page 233

3. Because /disk2 is already mounted to the system, I’ll need to either unmount it
and mount it again, or reboot. I’ll try the former first because obviously it’s consid-
erably less disruptive!
% umount /disk
umount: /disk2: device is busy

Ugh! This is one of those errors that sysadmins don’t like very much. It means that
there’s a process running that has a file or directory open on this disk.

If you encounter this, you can immediately step to rebooting, but there’s one more
trick we can try first: wall. The wall command (think write-all) enables you to
send a quick message to everyone who is logged in. I’ll use this to ask everyone to
pull off of /disk2 for a few minutes.
wall

I’m trying to reconfigure /disk2 so if you are using this disk,
please back away and go back to your home directory for five.
Thanks. If this doesn’t work, I’ll need to reboot! :-)

#

To end my input, I used Ctrl+D. Here’s what users see on their screens:
Broadcast message from root (pts/2) Fri Feb 22 10:14:18 2002...

I’m trying to reconfigure /disk2 so if you are using this disk,
please back away and go back to your home directory for five.
Thanks. If this doesn’t work, I’ll need to reboot! :-)

Sixty seconds later we try the umount command again and succeed! (If that hadn’t
succeeded, fuser can be a real blessing—it shows what files are open by what
processes on a given file system. Check the man page for details.)

Ah, users can be nice folk sometimes!
umount /disk2
mount /disk2
#

4. The next step is to run quotacheck to ensure that everything is configured prop-
erly. You can specify a disk, but it’s easier to just use the -a flag to have quo-
tacheck check all the disk quotas at once:
quotacheck -a
quotacheck: WARNING - Quotafile /disk2/aquota.user was probably truncated.
Can’t save quota settings...
#

234 Hour 12

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 234

This isn’t as dire as it seems; all it’s saying is that we need to add at least one user
quota. This is done with edquota, and to start, let’s give user taylor a quota.

edquota –u taylor

If you get an immediate error message that there are no disk systems with quotas,
your best bet is to double-check that you modified /etc/fstab appropriately, then
reboot. Once everything is settled, the system pops up a vi editor with the follow-
ing information within:
Disk quotas for user taylor (uid 500):
Filesystem blocks soft hard inodes soft hard
/dev/hdb 1578 0 0 2 0 0

You can see that this user has no disk quota, though he’s using 1578 blocks of disk
space and consuming two inodes. You can also see that you can specify quota by
disk blocks (1K each) or by the number of inodes (essentially, the number of files)
the user can create. Usually, you’ll specify both.

Managing Disk Quotas 235

12

,

There are two types of quotas available. Users that exceed their soft limit
have warnings generated by the file system as they proceed, but they can
continue to work. The hard limit, however, often stops them in their tracks,
rejecting any attempts to write to the disk. Always set your soft limit signifi-
cantly lower than your hard limit to avoid frustrated users.

User taylor isn’t too bad a disk hog, so we’ll give him relatively generous disk
quotas by editing the values shown:
Disk quotas for user taylor (uid 500):
Filesystem blocks soft hard inodes soft hard
/dev/hdb 1578 7500 9000 2 3000 4000

Quit the editor and the quota values are saved.

If you want to copy one user’s quota limits to another user, specify the -p proto-
type-user flag to the edquota command. To copy taylor’s quota to user
sangeeth, for example, you’d use edquota –p taylor sangeeth. Or, of course,
you can automate the whole shebang with a quick shell script.

5. One more step: We need to enable the quota system with quotaon. For this, I pre-
fer to use –a, -g, -u, and -v, which are all quotas turned on, verbose output, group
and user quotas checked, respectively. To do this once, we can simply type it in:
quotaon –aguv
/dev/hdb [/disk2]: user quotas turned on,

17 0672323982 Ch12 6/18/02 2:01 PM Page 235

5. Now when user taylor types quota, he’ll see
% quota
Disk quotas for user taylor (uid 500):

Filesystem blocks quota limit grace files quota limit grace
/dev/hdb 1578 7500 9000 2 3000 4000

On systems with quotas in place, it’s often a good idea to add the quota command
to the user’s .login or .bash_profile files.

6. From an administrative point of view, you can use repquota to generate an attrac-
tive output report:
repquota -a
*** Report for user quotas on device /dev/hdb
Block grace time: 7days; Inode grace time: 7days

Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 66 0 0 5 0 0
taylor -- 1578 7500 9000 2 3000 4000

7. The only issue we haven’t touched on is how to automatically turn on quotas at boot-
time, so you don’t have to remember quotaon each time you restart the system.

We’re jumping ahead of ourselves a little bit (the sequence of files read during
bootup is covered in the next few hours) but in a nutshell, if the quota enabling code
isn’t already therein, you’ll want to append the following lines to your
/etc/rc.local file:
echo “Checking quotas. This may take a moment or two...”
/sbin/quotacheck -aguv

if [$? -eq 0] ; then
echo “Turning on disk quotas.”
/sbin/quotaon -aguv

else
echo “*** Did not turn on disk quotas due to quotacheck errors.”

fi

This checks the quota files for a valid format, then, if all is well (the return code,
tested as $?, is equal to zero) turns on the quota-management system. Otherwise, an
error is output.

Many Unix system administrators eschew disk quotas, preferring either to ignore the
problem or assume that users will manage their own disk space properly. This might be
true in some environments, but setting big disk quotas once and forgetting them can be a
much more graceful solution. If no one ever emerges as a disk hog, you’ll forget the disk
quotas are even there. But, if someone starts expanding their file system usage the system
will automatically flag it and help avoid bigger problems.

236 Hour 12

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 236

Quota Nuances on Other Unixes
Although the basics of turning on disk quotas are the same in just about all modern Unix
operating systems, there are nuances with Solaris 8 that are worth examining briefly.

Managing Disk Quotas 237

12

Setting up disk quotas from the Unix level of Mac OS X is quite tricky—too
tricky to explore in this book. The basic challenge is that disks other than
root are mounted by autodiskmounter, so enabling quotas is quite difficult.
After you do that, the standard quota commands are available, as man –k
will confirm. Hopefully, as OS X matures it’ll become easier to enable quo-
tas, too. If you really want to pursue this, start by reading the quotaon man

page.

Task 12.2: Quotas on Other Systems
The best way to learn about the nuances of implementing quotas on your particular ver-
sion of Unix is, of course, to read the man pages for the quota commands.

1. Let’s start there, on a Solaris system:

man -k quota
edquota edquota (1m) - edit user quotas for ufs file system
quota quota (1m) - display a user’s ufs file system disk quota
➥and usage
quotacheck quotacheck (1m) - ufs file system quota consistency checker
quotactl quotactl (7i) - manipulate disk quotas
quotaoff quotaon (1m) - turn ufs file system quotas on and off
quotaon quotaon (1m) - turn ufs file system quotas on and off
repquota repquota (1m) - summarize quotas for a ufs file system
rquotad rquotad (1m) - remote quota server

The commands certainly look familiar, don’t they?

,
TA

SK

Actually, one command shown here and worth knowing is rquotad, which
enables you to use quotas on a shared NFS (network file system) disk.

,

The Solaris version of quota only reports disks where the users are over their soft
limit, so they should probably get into the habit of using the -v flag, which reports
their status on all disks with quotas enabled, over limit or not. Alternatively, you
could make it a system-wide shell alias.

17 0672323982 Ch12 6/18/02 2:01 PM Page 237

2. The first change we need to make is to edit /etc/vfstab (notice that it’s not fstab,
but vfstab) to add rq to the list of mount-time options. Then, instead of creating
quota.user and quota.group, simply create a single file quotas:
cd /export/home
touch quotas ; chmod 600 quotas

Now, unmount the disk and remount it; then use edquota to set up a quota for a user.
The edquota command is essentially the same, even though the actual layout of the
information presented in the editor is slightly different.

3. Next, ensure all is set up properly with quotacheck. The Solaris version of quo-
tacheck differs in what flags it understands. To get the equivalent of the -aguv set in
Linux, use -pva, which has the added benefit of checking quotas in parallel, which
can be considerably faster!
quotacheck –pva
*** Checking quotas for /dev/rdsk/c0d0s7 (/export/home)
#

The repquota reports the status of users on a device with quotas enabled:
repquota –a
/dev/dsk/c0d0s7 (/export/home):

Block limits File limits
User used soft hard timeleft used soft hard timeleft
taylor 0 5000 7500 0 0 0

4. Here’s what user taylor would see on a Solaris box by using quota:
$ /usr/sbin/quota
$

Remember, without the -v flag it only reports systems where the user is over quota.
One more try:
$ /usr/sbin/quota -v
Disk quotas for taylor (uid 100):
Filesystem usage quota limit timeleft files quota limit timeleft
/export/home 0 5000 7500 0 0 0

Many system administration books counsel you not to bother with disk quotas because
they’re obsolete or no one really uses them. I disagree. If you have a multiuser system, it’s
in everyone’s best interest to set high, but meaningful, disk quotas to ensure that the
resources are shared fairly. If you set this up prior to assigning accounts, you’ll never have
to argue with sore users afterward either!

238 Hour 12

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 238

Creating Your Own Quota System with find
Before we leave the topic of disk quotas, let’s look at how you can use the powerful find
command to build your own simple disk quota system.

The basic idea is that you want to automatically scan all disks on your system for files
owned by the specified user, sum up their sizes, and then compare the total size of all
files against a set limit that you’ve defined.

Rather than have this as a set of daemons, however, we’ll just create a shell script,
fquota, to do the work for us.

Task 12.3: Disk Quotas with find
There are a small number of commands that I find myself using over and over again as a
system administrator, and find definitely makes the short list. Whether you’re looking to
ensure that there are no setuid root programs, trying to find where RPM stores its
package data files, or even just helping a user find that long-lost letter to Aunt Hernia,
find offers lots of power and capabilities. Indeed, spending 30 minutes reading the man
page and trying out different find options is time very well spent!

Managing Disk Quotas 239

12

1. Here’s a typical use of find, to output the equivalent ls string for each regular file
owned by user taylor below the specified point on the file tree:
find /disk2 -user taylor -type f -ls

12 789 -rw-r--r-- 1 taylor root 802068 Feb 22 10:53 /disk2/
➥vmlinuz

15 789 -rw-r--r-- 1 taylor root 802068 Feb 22 10:53 /disk2/
➥vmlinuz-2.4.7-10
#

Only two files match these criteria on /disk2.

setuid root programs are programs that run as if they were root. These are
very dangerous security holes, and therefore, you should always be aware of
what programs on your system are setuid root. You can check by looking
for a file permission s in an ls –l output, coupled with an ownership of
root. We’ll talk about this again in Hour 21, “Shell Scripting: The
Administrator’s Swiss Army Knife.”

,
TA

SK
,

17 0672323982 Ch12 6/18/02 2:01 PM Page 239

2. I’ll cast my net wider by looking across the entire file system, but because I know
there are going to be lots of files, I’ll just count lines the first time through:
find / -user taylor -type f -ls | wc -l

686

To sum up the sizes of all files is a good job for awk or perl: I’ll opt for awk
because it’s available on older Unix systems, too. The task we want is to have a
script that extracts the seventh field of each line, then sums them all up and outputs
the result. This can be done in awk with the succinct program

{ sum += $7} END { print sum }

(the END tag denotes a block of instructions that is only run after all the lines have
been read in).
find / -user taylor -type f -ls | \

awk ‘{ sum += $7 } END { print sum }’
27869349

Let’s see; that’s in bytes, so dividing by 1024×1024 will reveal that this is 26
megabytes. Not too much disk space at all, even though the number certainly looks
huge!

Of course, awk can do this math, too:
find / -user taylor -type f -ls | \

awk ‘{ sum += $7 } END { print sum / (1024*1024) }’
26.5783

3. This suggests our simple disk-quota script—for each user account, sum up their
disk usage and report if it’s greater than MAXDISKUSAGE, a variable we’ll set in the
script. For the first version, however, let’s just figure out everyone’s disk usage:
#!/bin/sh

FQUOTA - Disk quota analysis tool for Unix.
Assumes that all user accounts are >= UID 100.

MAXDISKUSAGE=20 # 20MB is our soft quota

for name in `cut -d: -f1,3 /etc/passwd | awk -F: ‘$2 > 99 { print $1 }’`
do
echo -n “User $name exceeds disk quota. Disk usage is: “

240 Hour 12

If you want to constrain your search to a single file system, add –xdev to the
list of parameters.

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 240

find / /usr /var /home -user $name -xdev -type f -ls | \
awk ‘{ sum += $7 } END { print sum / (1024*1024) “ Mbytes” }’

done

exit 0

There are a couple of things worth mentioning about the script here. First off, the
for loop is being fed a list of usernames whose UIDs are 100 or greater, to screen
out system accounts. This is done with a more sophisticated expression to awk, as
you can see. Then, the find we’re constraining to the file systems we’re interested
in checking, and using –xdev to ensure that it doesn’t check uninteresting systems.

The output of this version of fquota is
fquota
User mthorne exceeds disk quota. Disk usage is: 0.0558786 Mbytes
User mdella exceeds disk quota. Disk usage is: 0.700355 Mbytes
User taylor exceeds disk quota. Disk usage is: 26.5783 Mbytes
User testdude exceeds disk quota. Disk usage is: 0.554475 Mbytes

4. Adding the final step of only listing those users whose disk usage exceeds the
MAXDISKUSAGE quota is accomplished by wrapping the entire for loop in subshell
parentheses, then feeding the output, again, to awk for filtering:
#!/bin/sh

FQUOTA - Disk quota analysis tool for Unix.
Assumes that all user accounts are >= UID 100.

MAXDISKUSAGE=20

(for name in `cut -d: -f1,3 /etc/passwd | awk -F: ‘$2 > 99 { print $1 }’`
do
echo -n “User $name exceeds disk quota. Disk usage is: “

find / /usr /var /home -user $name -xdev -type f -ls | \
awk ‘{ sum += $7 } END { print sum / (1024*1024) “ Mbytes” }’

done) | awk “\$9 > $MAXDISKUSAGE { print \$0 }”

exit 0

When this version of the program is run, it correctly reports which users are over
the allocated disk quota, across the entire file system:
fquota
User taylor exceeds disk quota. Disk usage is: 26.5783 Mbytes

A little bit more work and this could automatically e-mail the user with a gentle re-
minder to compress or delete some files, and free up the disk space for others to use.

Managing Disk Quotas 241

12

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 241

5. Now what about getting this Linux script to work on Mac OS X? Surprisingly little
has to change. We just need to omit –xdev, which isn’t understood by the Apple
version of find. Of course, there are a few more files to consider:
find / -user taylor -ls | wc -l

87308

The main wrinkle is that users need to be extracted from the NetInfo database, not
/etc/passwd, so we’ll need to use nireport, as discussed extensively back in
Hour 5, “Working with User Accounts.”

Put all this together, and the modified script looks like this:
#!/bin/sh

FQUOTA - Disk quota analysis tool for Unix.
Assumes that all user accounts are >= UID 100.

MAXDISKUSAGE=20

(for name in `nireport . /users name uid | awk ‘$2 > 99 { print $1 }’`
do
echo -n “User $name exceeds disk quota. Disk usage is: “

find / -user $name -xdev -type f -ls | \
awk ‘{ sum += $7 } END { print sum / (1024*1024) “ Mbytes” }’

done) | awk “\$9 > $MAXDISKUSAGE { print \$0 }”

exit 0

The output is fun:
fquota
User taylor exceeds disk quota. Disk usage is: 17162.5 Mbytes

That taylor guy is using a ton of disk space!! I’ll have to talk with him!

It’s not particularly difficult to write a simple quota-management system in Unix. After
all, with hundreds of different utilities ready to pull into action, there’s not much you
can’t cobble together, frankly!

However, if your system has a built-in quota system, there are advantages to having the
file system itself enforce quota limits, particularly if you have any concern about run-
away users who might go bananas over a weekend downloading MP3s and filling up a
disk completely.

242 Hour 12

,

,

17 0672323982 Ch12 6/18/02 2:01 PM Page 242

Summary
This hour has explored the concept of disk quotas and the difference between using built-
in tools, and using system tools that are part of the file system. There are pluses and
minuses for each of the solutions, and there are, of course, potential problems lurking if
you ignore disk quotas and run out of disk space. As with many administrative issues,
there are no simple answers.

Q&A
Q Aren’t quotas a bad thing? I mean, didn’t the U.S. Supreme Court vote that

quotas were in violation of the U.S. Constitution?

A Um, you might well have too much time on your hands, even with this accelerated
24-hour format. The U.S. Supreme Court did overrule quotas, most notably in
Regents of the University of California v. Bakke, back in 1978, but, really, is this
relevant?

Q Why are so many system admins against quotas?

A Somewhat tied to the previous question, and certainly related to the anarchistic
strain of the hacker community, many sysadmins do speak out strongly against
quotas or any other artificially imposed constraints on usage. However, even with
disk space a dime a megabyte, it simply cannot be that everyone can use as much
space as they want. There must be some constraints, and if that’s the case, quotas
are a reasonably elegant, and certainly an egalitarian solution.

Q Are disk quota systems used on Windows?

A Yes. You can get disk quota management systems for just about any flavor of
Windows available. Shareware repository Download.com has nine, including
Northern.Net’s slick Quota Server (but beware, it’s $900).

Workshop
Quiz

1. What’s the difference between a hard and soft quota limit?

2. What is the first step before enabling a disk quota?

3. A major limitation of quotas that are built-in to the system is….

4. What’s the purpose of the wall command?

5. Where is a recommended location for adding a call to the quota command?

Managing Disk Quotas 243

12

17 0672323982 Ch12 6/18/02 2:01 PM Page 243

Answers
1. A soft limit is the maximum amount of disk space users can consume without any

warnings. When they exceed their soft limit, the system complains but lets them
continue. A hard limit is an inviolable constraint and the system will reject user
attempts to add new files or even enlarge files.

2. The first step is to edit the /etc/fstab (or vfstab on Solaris) to enable quotas at
mount time.

3. A major limitation is that the quota system doesn’t span multiple file systems, so
although it’s possible to limit users to a specific amount of space per device,
there’s no built-in mechanism to limit overall disk usage.

4. The wall command lets you send an instant message to every user logged in at that
moment.

5. If you enable quotas, adding a call to quota (or quota –v, as necessary) in every
user’s .login or .bash_profile is a very smart move.

In the next hour, we’ll switch gears and start looking at process and system controls.
We’ll focus on starting up and shutting down Unix systems, including an extensive dis-
cussion of run levels and init states. It’s required reading for any system administrator!

244 Hour 12

17 0672323982 Ch12 6/18/02 2:01 PM Page 244

Hour
13 Changing System State 247

14 Exploring Processes 265

15 Running Jobs in the Future 285

16 Managing Your Log Files 301

PART V
Process & System
Controls

18 0672323982 pt5 6/18/02 2:03 PM Page 245

18 0672323982 pt5 6/18/02 2:03 PM Page 246

HOUR 13
Changing System State

Compared to a personal computer operating system, the multiuser, multipro-
cessing capabilities of Unix can seem a bit alien in some regards. Most
notably, have you ever stopped to consider what happens when you either
boot up or shut down your Unix system?

In this hour, we’ll dig into the system configuration and learn exactly what
processes are started and stopped (and how they’re started and stopped)
when you switch states, either booting, halting, rebooting, or switching
between single-user and multiuser modes.

In this hour you’ll learn about

• The init process and its configuration file

• Enabling specific services at different run levels

• Shutting down your system the right way

19 0672323982 Ch13 6/18/02 2:06 PM Page 247

Configuring and Working with the init
Process

The Unix operating system has a number of run levels, each of which define a different
state of the OS, and a different set of applications and daemons that are available and
running. For example, by convention, run level 0 is the shutdown state—a system that’s
in run level 0 is stopped.

Run levels are also called init states after the all-important program that defines these
different run levels for your computer: init.

Task 13.1: The init Process and Configuration
To start this hour, let’s delve into the internals of the init program and its configuration
file /etc/inittab.

1. First off, a quick invocation of ps will confirm that the init daemon is running.
This turns out to be easy because on every Unix system, the init program is the
very first program run by the operating system. As a result, it’s always process ID 1.

On a Linux box:
ps -up 1
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 1412 52 ? S 08:58 0:06 init

On a Solaris box:
ps -fp 1

UID PID PPID C STIME TTY TIME CMD
root 1 0 0 Jan 26 ? 0:00 /etc/init -

And on a Mac OS X Darwin box:
ps -up 1
USER PID %CPU %MEM VSZ RSS TT STAT TIME COMMAND
root 1 0.0 0.1 1292 268 ?? SLs 0:00.00 /sbin/init

If for any reason the init program wasn’t running, your system would be stopped
dead in its tracks.

Notice that there aren’t any starting options to init. Instead, the program figures
out its configuration by reading the /etc/inittab file.

2. Let’s focus on Linux for a while now. On Red Hat Linux, the standard /etc/init-
tab file looks like the following:
cat /etc/inittab
#

248 Hour 13

,

,
TA

SK

19 0672323982 Ch13 6/18/02 2:06 PM Page 248

inittab This file describes how the INIT process should set up
the system in a certain run-level.
#
Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
Modified for RHS Linux by Marc Ewing and Donnie Barnes
#

id:5:initdefault:

System initialization.
si::sysinit:/etc/rc.d/rc.sysinit

l0:0:wait:/etc/rc.d/rc 0
l1:1:wait:/etc/rc.d/rc 1
l2:2:wait:/etc/rc.d/rc 2
l3:3:wait:/etc/rc.d/rc 3
l4:4:wait:/etc/rc.d/rc 4
l5:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

Things to run in every runlevel.
ud::once:/sbin/update

Trap CTRL-ALT-DELETE
ca::ctrlaltdel:/sbin/shutdown -t3 -r now

When our UPS tells us power has failed, assume we have a few minutes
of power left. Schedule a shutdown for 2 minutes from now.
This does, of course, assume you have powerd installed and your
UPS connected and working correctly.
pf::powerfail:/sbin/shutdown -f -h +2 “Power Failure; System Shutting Down”

If power was restored before the shutdown kicked in, cancel it.
pr:12345:powerokwait:/sbin/shutdown -c “Power Restored; Shutdown Cancelled”

Run gettys in standard runlevels
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Run xdm in runlevel 5
xdm is now a separate service
x:5:respawn:/etc/X11/prefdm –nodaemon

This might seem overwhelming, but all lines in the /etc/inittab file have the
same general format:

unique ID : run levels : action : process

Changing System State 249

13

,

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 249

For example, the very last line, uniquely identified as inittab line x, only applies
to run state (init level) 5, and forces a respawn of the /etc/X11/prefdm program
with the -nodaemon flag specified.

250 Hour 13

,

The prefdm script manages login screens within the X Window System envi-
ronment.

3. Let’s define the most common init levels in Table 13.1 and the known init
actions in Table 13.2.

TABLE 13.1 Common init Levels

Level Meaning

0 Halt

1 Single-user mode (also called s mode on some systems)

2 Multiuser, but no remote file systems mounted; often also no networking
daemons running

3 Full multiuser mode

5 Full multiuser + X11 graphics

6 Reboot

TABLE 13.2 Defined init Actions

Action Meaning

boot Process will be executed during system bootup

bootwait Like boot, but init waits for completion

ctrlaltdel Process will be executed when the console keyboard device driver
receives a Control-Alt-Del key sequence

initdefault Specifies the default run level to boot into on system boot

once Like wait, but init doesn’t wait for completion

respawn Process is guaranteed to be running—the system will restarted it if it dies

sysinit Process will be executed during boot, but before any boot or bootwait
entries

wait The process will be started once (as opposed to respawn), and init will
wait for it to complete

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 250

It’s very rare for your system to not be in init level 3 (if you have a nongraphical
Unix environment) or init level 5 (if you have a graphical environment; for exam-
ple, Mac OS X with Aqua enabled for the fancy graphical user interface).

4. On my Web server, for example, I have the default init level set to 3—I don’t
need an X Window System environment running, so I save the cycles for the Web
server, SSH daemon, and so on. To see what processes init runs at this run level, I
simply step through the inittab looking for all lines that contain a 3 in the run
levels field.

This brings up the following list:
l3:3:wait:/etc/rc.d/rc 3
pr:12345:powerokwait:/sbin/shutdown -c “Power Restored; Shutdown Cancelled”
1:2345:respawn:/sbin/mingetty tty1
2:2345:respawn:/sbin/mingetty tty2
3:2345:respawn:/sbin/mingetty tty3
4:2345:respawn:/sbin/mingetty tty4
5:2345:respawn:/sbin/mingetty tty5
6:2345:respawn:/sbin/mingetty tty6

Of these, the last six are simply processes to ensure that there’s a listener program
available for virtual consoles. The pr line matches power restore events. (By not
specifying an init level in the powerfail action, you can imply that it applies to
all states—flip back to the /etc/inittab we just listed to see what I mean.)

Finally, the very first line of output is probably the most important: When moving
into init state 3, run /etc/rc.d/rc.3 and wait for it to complete. The rc directo-
ries contain a list of all the scripts that are executed (which ends up being the same
statement as “list of all daemons and programs automatically started”) for each
specific init level. The directory /etc/rc.d/rc.3 contains scripts that control
what runs (or doesn’t run) at run level 3.

Similarly, init state 5 is a multiuser + graphical user interface, typically the X
Window System. The entries in the /etc/inittab for run level 5 are the same as
for run level 3, with the only exception being that run level 5 references
/etc/rc.d/rc.5 instead.

Changing System State 251

13

Many versions of Unix support a number of actions that let you gracefully
interact with an uninterruptible power supply (UPS), including powerwait,
powerfail, powerokwait, and powerfailnow. Read the apmd man page in Linux
or the powerd man page in Solaris for more details.

,

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 251

5. In the next section, we’ll explore those rc files more closely, but for now, let’s end
this section by learning that you can switch from any run level to any other by sim-
ply typing init n, where n is the desired run level.

This means that to shut down the computer, you can type

init 0

and to reboot the computer you can type

init 6

Similarly, one way to drop into single-user mode (where no other users can log in
and there’s no graphical interface), you can type

init 1

Let’s do that and have a quick peek at what processes are still running in the Red
Hat Linux environment.

6. When you type init 1, nothing seems to happen: The shell prompts for another
command as if you’d typed echo or ls, but behind the scenes things are starting to
close down, and within a minute or so the system should log out remote terminals,
close xterms, log out of X Windows System, and end up with just a command shell
prompt on the console. Typing ps will reveal that there are very few processes run-
ning at this point:
sh-2.05# ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.6 1424 376 ? S 08:58 0:07 init
root 2 0.0 0.0 0 0 ? SW 08:58 0:01 [keventd]
root 3 0.0 0.0 0 0 ? SW 08:58 0:01 [kapm-idled]
root 4 0.0 0.0 0 0 ? SWN 08:58 0:00 [ksoftirqd_CPU0]
root 5 0.0 0.0 0 0 ? SW 08:58 0:10 [kswapd]
root 6 0.0 0.0 0 0 ? SW 08:58 0:00 [kreclaimd]
root 7 0.0 0.0 0 0 ? SW 08:58 0:00 [bdflush]
root 8 0.0 0.0 0 0 ? SW 08:58 0:01 [kupdated]
root 9 0.0 0.0 0 0 ? SW< 08:58 0:00 [mdrecoveryd]
root 13 0.0 0.0 0 0 ? SW 08:58 0:18 [kjournald]
root 88 0.0 0.0 0 0 ? SW 08:58 0:01 [khubd]
root 183 0.0 0.0 0 0 ? SW 08:59 0:00 [kjournald]
root 10412 0.1 0.7 1492 444 ? S 14:07 0:00 minilogd
root 10636 0.0 0.6 1424 408 tty1 S 14:07 0:00 init
root 10637 0.4 1.8 2212 1136 tty1 S 14:07 0:00 /bin/sh
root 10641 0.0 1.1 2628 716 tty1 R 14:08 0:00 ps aux
sh-2.05#

Notice the process IDs: All the processes with PIDs less than 200 are part of the
kernel itself and stick with you regardless of run level. The higher-level processes
are minilogd, init, /bin/sh, and of course, the ps command itself.

252 Hour 13

,

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 252

The /bin/sh is the command shell, and the init hangs around until you’re done
with single-user mode. When you quit the shell (or kill the new init process), the
system boots back into the default run level (typically 5) automatically:
sh-2.05# exit
INIT: Entering runlevel: 5
Updating /etc/fstab [OK]
Checking for new hardware [OK]
Flushing all current rules and user defined chains: [OK]
Clearing all current rules and user defined chains: [OK]
Applying ipchains firewall rules: [OK]
Setting network parameters: [OK]
Bringing up interface lo: [OK]
Bringing up interface eth0: [OK]
Starting system logger: [OK]
Starting kernel logger: [OK]
Starting portmapper: [OK]
Starting NFS file locking services:
Starting NFS statd: [OK]
Initializing random number generator: [OK]
Mounting other filesystems: [OK]
Starting up APM daemon: [OK]
Starting automount: No Mountpoints Defined [OK]
Starting sshd: [OK]
Starting xinetd: [OK]
Starting lpd: No Printers Defined [OK]
Starting sendmail: [OK]
Starting console mouse services: [OK]
Starting crond: [OK]
Starting xfs: [OK]

As you can see from this listing, all these services were shut down in run level 1,
so the system was impregnable from outside interference, remote users, and so on.
Once you go back into the standard multiuser graphical run environment, all the
services listed are relaunched, just as if you were booting from scratch (and indeed,
the boot from scratch steps through these init scripts in exactly the same way).

Let’s end this section by rebooting the computer completely. To do this, simply
type init 6 and then go get a cup of tea.…

The init process is the traffic cop that controls all processes running on the operating
system in a Unix box, and it’s configured through the inittab file. The good news is
that you don’t ever have to actually edit the file (unless you want to change the default
run level or enable power management tools, for example) because all the interesting
issues of what apps are started for a given run level are pushed into the /etc/rc.d direc-
tory, and that’s what we’ll explore next.

Changing System State 253

13

,

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 253

Enabling Specific Services at Different Run
Levels

While different flavors of Unix have slightly different setups for the rc files, they all
have the scripts associated with a particular run level, specified either in a single file, or
even better, in a specific subdirectory.

Mac OS X, for example, has three shell scripts in /etc that control this functionality:
/etc/rc is the multiuser startup script (the equivalent of init 5), /etc/rc.boot is the
single-user startup script (the equivalent of init 1), and /etc/rc.common holds com-
mands and steps that are shared by both run levels. Obviously, Mac OS X Unix doesn’t
have the concept of six different run levels, but rather four (recall that run level 0 is shut-
down and run level 6 is reboot, so they don’t need any specific scripts associated with
them).

Solaris 8 has a different /etc/rcn script for each run level (for example, rc0 and rc3),
and also has a corresponding rcn.d directory that contains specific service startup
scripts, as appropriate. For example, run level 3 is defined by the script /etc/rc3 and the
contents of directory /etc/rc3.d.

Linux has a layout that’s slightly easier to understand, where there’s a single shared
/etc/rc script and a specific directory for each of the defined run levels 0–6. Within
those directories are symbolic links to scripts that define whether a particular service,
daemon, or application should be started or stopped as the system transitions into the
specified run level.

254 Hour 13

Wait a second. Stopped as you enter a run level? Why would you do that?
The answer to this puzzle is revealed by thinking about what you’d want to
have happen if you, for example, switched from run level 5 to run level 3.
You wouldn’t want to reboot the system, and you wouldn’t want to discon-
nect and reconnect the remote disks hooked up via NFS, but you would
want to kill the X11 applications and graphical daemons. Hence the run
level 3 directory might not only specify which applications to have running,
but which applications should be stopped if they are currently running.

Without further ado, then, let’s look into the run level 3 and run level 5 directories.

19 0672323982 Ch13 6/18/02 2:06 PM Page 254

Task 13.2: Configuring Your System for Run Levels
When you first log in to the system and identify the process ID of your login shell, you
might be surprised to find that it will often be greater than 4,000. This means that four
thousand different applications have been started (and most, finished) since bootup and
prior to your login shell starting. This is really amazing if you think about it, because this
all might happen in no more than two or three minutes.

One of the main areas where the system defines which applications are automatically
launched at boot-time is within the /etc/rc directory structure.

1. To start out, let’s move directly to /etc/rc.d on the Linux system to see what’s
inside:
cd /etc/rc.d
ls -l
total 64
drwxr-xr-x 2 root root 4096 Jan 11 15:16 init.d
-rwxr-xr-x 1 root root 3219 Jul 10 2001 rc
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc0.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc1.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc2.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc3.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc4.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc5.d
drwxr-xr-x 2 root root 4096 Jan 11 15:45 rc6.d
-rwxr-xr-x 1 root root 453 Feb 22 11:07 rc.local
-rwxr-xr-x 1 root root 20983 Sep 9 00:00 rc.sysinit

As expected, each run level has its own directory, and there’s a single rc script that
controls the transition between states. The system keeps track of the current and previ-
ous run levels internally, and you can see for yourself, with the runlevel command:
/sbin/runlevel
S 5

Here it’s telling us that the last run level was S (a synonym for run level 1, or sin-
gle-user mode), and that the current run level is, as expected, run level 5.

2. Let’s look into the rc5.d directory to see what services are started and stopped for
this level on this particular system:
cd rc5.d
ls
K03rhnsd K35vncserver S05kudzu S17keytable S56xinetd S95atd
K20nfs K46radvd S08ipchains S20random S60lpd S99local
K20rstatd K50snmpd S08iptables S25netfs S80sendmail
K20rusersd K65identd S10network S26apmd S85gpm
K20rwalld K74ntpd S12syslog S28autofs S90crond
K20rwhod K74ypserv S13portmap S55sshd S90xfs
K34yppasswdd K74ypxfrd S14nfslock S56rawdevices S95anacron

Changing System State 255

13

,
TA

SK
,

19 0672323982 Ch13 6/18/02 2:06 PM Page 255

Lots of stuff! Anything that begins with a K is killed. Typically those are services
that are unwanted, and probably aren’t running anyway. This is just a sort of virtual
insurance policy. Anything that begins with an S is started if it’s not already running.

256 Hour 13

,

More than that, this also makes it easy to re-enable a service: Simply rename
the script with the first letter being an S instead of a K and jump out of, and
back into, the run level, and that service should be started and running!

From this list, you can see that on this system we have chosen not to run rhnsd,
nfs, rstatd, rusersd, rwalld, rwhod, yppasswdd, vncserver, radvd, and about six
other services. We do want to run 23 services, however, including syslog, netfs,
apmd, sshd, sendmail, crond, and atd.

3. Within each of these scripts—and recall they’re all symbolic links to central
scripts—the contents are fairly similar, as exemplified by the following, which ini-
tializes the random state so that the system has more randomly chosen random
numbers (which turns out to be important in the world of encryption):
cat S20random
#!/bin/bash
#
random Script to snapshot random state and reload it at boot time.
#
Author: Theodore Ts’o <tytso@mit.edu>
#
chkconfig: 2345 20 80
description: Saves and restores system entropy pool for higher quality \
random number generation.

Source function library.
. /etc/init.d/functions

random_seed=/var/lib/random-seed

See how we were called.
case “$1” in
start)

Carry a random seed from start-up to start-up
Load and then save 512 bytes, which is the size of the entropy pool
if [-f $random_seed]; then

cat $random_seed >/dev/urandom
else

touch $random_seed
fi
action $”Initializing random number generator: “ /bin/true,

19 0672323982 Ch13 6/18/02 2:06 PM Page 256

chmod 600 $random_seed
dd if=/dev/urandom of=$random_seed count=1 bs=512 2>/dev/null
touch /var/lock/subsys/random

;;
stop)

Carry a random seed from shut-down to start-up
Save 512 bytes, which is the size of the entropy pool
touch $random_seed
chmod 600 $random_seed
action $”Saving random seed: “ dd if=/dev/urandom of=$random_seed

➥count=1 bs=
512 2>/dev/null

rm -f /var/lock/subsys/random
;;

status)
this is way overkill, but at least we have some status output...
if [-c /dev/random] ; then

echo $”The random data source exists”
else

echo $”The random data source is missing”
fi
;;

restart|reload)
do not do anything; this is unreasonable
:
;;

*)
do not advertise unreasonable commands that there is no reason
to use with this device
echo $”Usage: $0 {start|stop|status|restart|reload}”
exit 1

esac

exit 0

Don’t get too concerned if some of this looks like completely random input of its
own! The most important thing to see here is that each script in the rc.d directory
is required to accept start, stop, status, and restart as commands from the
command line. This correctly implies that the main job of the /etc/rc script is to
invoke script start for those scripts whose name start with S, and script stop

for those whose name start with K.

This also means that you can test the status of any of these services to ensure
everything is running correctly by specifying the status option:
./S20random status
The random data source exists

Changing System State 257

13

,

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 257

Not too exciting in this case, but let’s go see if sendmail is running correctly:
./S80sendmail status
sendmail (pid 11315) is running...

You can also use this knowledge to verify that services that aren’t supposed to be
running are in fact stopped:
./K20nfs status
rpc.mountd is stopped
nfsd is stopped
rpc.rquotad is stopped

258 Hour 13

,

On my Web server, when I make changes to the Apache configuration files, I
use the restart command to the master httpd script in /etc/rc.d/init.d to
restart the server easily. I’ve even made it an alias to make things easy:

alias httpd=”/etc/rc.d/init.d/httpd”

With this alias defined, it’s easy to type httpd status to make sure the
server is running, and httpd restart to restart it with a new configuration
file.

5. Earlier in this hour, when we went from run level 1 to run level 5, we had a num-
ber of services list their startup messages. One stuck out:

Starting lpd: No Printers Defined [OK]

This message is coming from within the S60lpd script, and it’s a good guess that
the daemon never started because of this. Now you know how to check:
./S60lpd status
lpd is stopped

Sure enough, it’s not running. Because I don’t have any printers hooked up, I’m
going to disable this service at run level 5 so it doesn’t waste time at bootup (well,
to be more precise, when entering run level 5) trying to launch it. In fact, as a gen-
eral rule of thumb, you should make sure that only services you explicitly want to
have running are enabled at your default run level.

Doing this is remarkably easy because of the smart layout of the /etc/rc.d direc-
tories:

mv S60lpd K60lpd

That’s it. Easy, eh? The next time the system enters run level 5 it won’t bother try-
ing to start the line printer daemon lpd.,

19 0672323982 Ch13 6/18/02 2:06 PM Page 258

6. Remember in the last hour when we talked about having the quota system enabled
automatically at boot-time? Now you can see the logic behind the contents of the
equivalent non-Linux rc.local file (and why we put the lines that start up the
quota system there):
cat rc.local
#!/bin/sh
#
This script will be executed *after* all the other init scripts.
You can put your own initialization stuff in here if you don’t
want to do the full Sys V style init stuff.

touch /var/lock/subsys/local

echo “Checking quotas. This may take a moment or two...”
/sbin/quotacheck -aguv

if [$? -eq 0] ; then
echo “Turning on disk quotas.”
/sbin/quotaon -aguv

else
echo “Did *not* turn on disk quotas due to quotacheck errors.”

fi

There’s a lot to learn about the exact details of writing an rc script if you choose to
travel down that path and enable your own service, but the simpler tasks of deciding
what to turn on and turn off can be done easily. Furthermore, you can also now see that
testing the status of a given service is also straightforward.

Shutting Down Your System the Right Way
Earlier in this hour, we saw that one tricky way to get your system into a different run
level is to use the init command directly. Further, we saw that run level 0 is a full stop,
and that run level 6 is a reboot state.

Does this therefore imply that init 0 is a good way to shut your system down, and init
6 a good way to reboot it? No. Unless you’re in an emergency situation and there’s no
other choice, your better bet is always to use either halt, shutdown, or reboot.

Task 13.3: Safe Shutdowns and Reboots
The fundamental problem with just shutting down your system using a brute-force
method like init 0 is that it doesn’t ensure that things shutdown gracefully. There might
be specific services or daemons that need to remove temporary files as they die, and cer-

Changing System State 259

13

,

,

,
TA

SK

19 0672323982 Ch13 6/18/02 2:06 PM Page 259

tainly users want at least 60 seconds of grace period to save working files and otherwise
clean up behind themselves.

1. The question of warning users before the system shuts down, either to halt or
reboot, is a critical one, so let’s start with a vanilla shutdown and see what mes-
sages are output.

The standard Unix way to shutdown is

/sbin/shutdown –h now

This indicates that the system should be halted (-h) rather than rebooted, and that
this action should occur immediately (now).

Users then see
Broadcast message from root (pts/2) Fri Feb 22 14:56:25 2002...

The system is going down to maintenance mode NOW !!

and they have no grace period before the system begins to kill processes and halt.

2. A better way to shut down a system is

/sbin/shutdown –h +5m &

which queues up a shutdown event in five minutes. Note that any time you have a
shutdown event in the future, you’ll want to drop the program into the background
with a trailing &, or it’ll tie up your terminal until the specified time arrives.

260 Hour 13

,

One nice feature of shutdown is that while a shutdown is queued, it creates
/etc/nologin, which prevents any new users from logging in.

In this case, the message users see is
Broadcast message from root (pts/2) Fri Feb 22 14:58:24 2002...

The system is going DOWN for system halt in 5 minutes !!

which is a bit less terrifying!

3. To reboot a system, rather than halting it, simply use the –r flag. You can also
specify shutdown times in hours:minutes format, so the following will cause the
system to reboot automatically at 5 a.m.:

/sbin/shutdown –r 05:00 &

Note that if you have a shutdown event queued, you can always change your mind
and cancel it with –c:,

19 0672323982 Ch13 6/18/02 2:06 PM Page 260

shutdown -c
Shutdown cancelled.
[1]+ Done shutdown -r 05:00

4. This leads to the question about whether you should ever use halt or reboot. On
modern Linux systems, they turn out to be links to shutdown, so it’s not an issue,
but other Unix systems allow system administrators to directly halt or reboot
their system, without warning, and without any of the graceful termination of ser-
vices that shutdown offers.

For example, Mac OS X offers shutdown, which is completely flag-for-flag com-
patible with Linux, but the halt and reboot commands are also available.
However, the halt man page gently reminds admins:

Normally, the shutdown(8) utility is used when the system needs to be
halted or restarted, giving users advance warning of their impending
doom.

Solaris has a rather different version of shutdown, with only three flags allowed:
-y, -g graceperiod, and –iinitstate. Furthermore, you specify the grace period
time with the –g flag, rather than as a regular parameter. So a standard reboot com-
mand for Solaris, offering a five minute grace period, is

/usr/bin/shutdown –y –g 300 –i6

By default, Solaris shutdown drops you into single-user (init level 1) mode.
Therefore, to halt the machine, you’ll want to use –i0, and to reboot, you’ll
use -i6.

Changing System State 261

13

,

As a general rule of thumb, use shutdown regardless of your operating sys-
tem, and always try to give users at least 60 seconds grace period, if
possible.

5. One final note: The –k flag offers some interesting capabilities. On Linux, for
example, you can use it to practice working with shutdown because it causes the
program to send the shutdown warning, but doesn’t actually do the shutdown
requested.

Mac OS X is even cooler: The –k flag kicks everybody off the system, and pre-
vents subsequent logins from other than the console. It leaves the system in multi-
user mode with all the services running, and does not halt/reboot.

There are often times when you want to reboot the system, and sporadically you’ll want
to halt it completely (perhaps to upgrade the hardware, or to move the server to a new
physical location). Regardless, always use shutdown for these tasks.

,

19 0672323982 Ch13 6/18/02 2:06 PM Page 261

Summary
This hour has focused on how the Unix operating system keeps track of which services
to start and stop at any given run level, and how it determines the default run level for a
given system. Since one rule of good system management is to only enable services that
you know you need, we’ve also talked about how to disable specific services and change
default run levels as necessary.

Q&A
Q Why are there six run levels if only four are used?

A That’s an interesting historical question, actually. The theory I’ve heard is that early
telephone switches had seven states, so when the engineers at Bell Telephone
Laboratories created the first version of Unix, they naturally opted for seven run
states, too: 0–6.

Q How do you figure out what all these services specified for a given run level
actually do?

A Figuring out what a service like anaconda does can definitely be a challenge.
Searches of the man pages, even man –k lookups, produce nothing. One solution is
to search the World Wide Web. Try searching the Red Hat Linux knowledge base,
for example (www.redhat.com), or even Google (www.google.com) for the program
name.

Workshop
Quiz

1. Which run state reboots: init level 0 or init level 6?

2. What are the starting options to init?

3. Which of the following is not a valid action that might appear in an /etc/inittab
line: bootwait, respawn, sysboot, or wait?

4. If you have a system running in regular multiuser mode with a graphical environ-
ment, what’s its run level?

5. If you’re in single-user mode, how do you get back to multiuser mode?

262 Hour 13

19 0672323982 Ch13 6/18/02 2:06 PM Page 262

Answers
1. init level 0 halts, and init level 6 reboots. But use shutdown instead, of course.

2. There are no starting options to init. All the init configuration is stored in
/etc/inittab.

3. The sysboot action is not defined.

4. A multiuser + graphical environment is run level 5.

5. To return to multiuser mode from single-user mode, simply exit the single-user
command shell.

In the next hour, we’ll explore how Unix manages processes, including an explanation of
daemons, system processes, and user processes. Through an explanation of the ps com-
mand, we’ll show how to ascertain what processes are running and what they’re doing,
and kill will offer the tools to remove inappropriate processes.

Changing System State 263

13

19 0672323982 Ch13 6/18/02 2:06 PM Page 263

19 0672323982 Ch13 6/18/02 2:06 PM Page 264

HOUR 14
Exploring Processes

We have spent a considerable amount of time talking about how to work
with files, the fundamental data element of a Unix system. There’s another
facet of Unix that’s just as important to understand, however, and that’s
processes. Whether it’s the device driver that’s listening to your keystrokes
and relaying the characters to the program you’re running, the X Window
System window manager that’s responding to mouse clicks (which are cap-
tured and sent along by the mouse device driver), or even the list of files
produced by an ls invocation, Unix lives and breathes processes.

Indeed, what’s interesting about Unix is that it doesn’t hide system processes
from you, unlike other operating systems. This means that there’s a lot you
can learn by poking around and seeing what programs have what performance
characteristics. That’s what this hour is all about—exploring processes.

In this hour you’ll learn about

• Process IDs

• Using the ps command

• The artsd command

• Process prioritization

• Zapping stray processes

20 0672323982 ch14 6/18/02 2:00 PM Page 265

The Secret Life of Process IDs
Let’s start at the beginning. Every process in Unix has a unique numerical identifier
called a process ID. Typically, these are 3–4-digit numbers, and they increment one by
one from the very first process started on a Unix system at boot.

Although process IDs (or PIDs, as we Unix old-timers call ‘em) increment starting at
PID 1 (the init process, as explored in the last hour), at a certain point process ID num-
bers can exceed the maximum possible integer value (usually 65536) and wrap around.
In this case, you might find yourself running an application with a PID of 37 or 119.
Generally, though, you’ll find that any process with a one-or two-digit PID is part of the
core operating system kernel.

Task 14.1: Process ID Information
One thing that the incremental nature of PIDs implies is that you can check your process
ID and find out how many processes have been launched between boot-time and when
your login shell was launched.

1. The easiest way to identify the PID of your login shell is to use the shell variable
$$, which expands to the PID of the shell automatically:
$ echo $$
1560

This indicates that by the time I launch a shell in my window manager (immedi-
ately after booting), 1,559 other processes have been run by the Unix operating
system. This is quite remarkable, and should make you ask “What are all these
processes that are ahead of my shell?”

The primary answer to that question is found within all the scripts executed as the
system steps from init state to init state, starting and stopping services. There
are a lot of hidden processes that run, too. For example, a shell script constantly
spawns subshells for information within backticks (like `this`), information
within parentheses, and anything dropped into the background.

Just as inodes are the fundamental reference value for any files or directories on
any Unix filesystem, so PIDs are the essential reference value for any process run-
ning on the system.

The concept of process ID numbers is straightforward, but it’s quite important that you
understand how they let you reference any process running on the computer without any
ambiguity. By contrast, the name of the program running is ambiguous, of course,
because more than one copy of it might be running (or it might spawn copies of itself to
run background tasks).

266 Hour 14

,
TA

SK

,

20 0672323982 ch14 6/18/02 2:00 PM Page 266

Examining Processes with the ps Command
There are a number of different commands available for examining running processes,
but the most important one is ps, or process status, which first showed up in Hour 6,
“Account Management.” Although it’s littered with lots of flags, there’s a standard set
of two or three flags you’ll use 99% of the time to find all processes running on the
system.

Give ps a specific process ID and it’ll tell you about that process, identify a terminal (or
virtual terminal), and it’ll tell you about every process associated with that terminal.
Specify a user and it’ll show you everything that user is running, and lots more.

Task 14.2: Exploring ps
The ps command is somewhat akin to the ls command, in that it has dozens of different
options, but most of them are safely ignored, except in unusual circumstances.

1. Enough talk, let’s act! To start out, let’s allow ps to tell us about our login shell:
ps $$
PID TTY STAT TIME COMMAND

1636 pts/2 S 0:01 bash

Without any modifiers, the ps command reports the PID, the terminal associated
with the process, its status, the amount of CPU time that the process has con-
sumed so far, and the actual command itself. As you can see, I’m running the
bash shell.

The most interesting column here is STAT, which is really the current status of the
process. The value S indicates that it’s sleeping, oddly enough, even though it’s my
current shell. (Don’t worry, though; the shell itself sleeps while the ps command it
spawned runs.)

A full list of different process states is shown in Table 14.1.

TABLE 14.1 ps Process States

State Meaning

D Sleep (uninterruptible, blocked for input or output)

R Runnable (in the “run queue”)

S Sleeping

T Traced or stopped (often with ^Z by the user)

Z A “zombie” process (defunct or ended, but still stuck in the process queue)

Exploring Processes 267

14

,
TA

SK
,

20 0672323982 ch14 6/18/02 2:00 PM Page 267

2. You can experiment a bit by omitting the $$ specification of the shell’s PID. Now
ps shows all processes associated with your terminal, real or virtual:
ps
PID TTY TIME CMD

1636 pts/2 00:00:01 bash
8437 pts/2 00:00:00 ps

You can see that it shows we have our login shell, bash, and the ps command
itself. Notice also that it isn’t showing the state of each process.

To get the state, we can add either the –l or –f flags, for long or full listings,
respectively:
ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 0 9020 9018 2 69 0 - 636 wait4 pts/3 00:00:01 bash
000 R 0 9064 9020 0 77 0 - 778 - pts/3 00:00:00 ps
ps -f
UID PID PPID C STIME TTY TIME CMD
root 9020 9018 2 15:32 pts/3 00:00:01 bash
root 9065 9020 0 15:33 pts/3 00:00:00 ps -f

The output of the –f flag is more commonly used, and although it still doesn’t
show us the status of the commands, it now shows the helpful PPID (parent
process ID), which clearly shows that the ps is being run by bash.

In the long output format (-l), the F column lists the process flags, S is the runtime
state (same as STAT earlier), and PID and PPID are the current and parent process
IDs. The C column indicates the percentage of CPU usage, the PRI column shows
an internal priority state and should probably be ignored, the NI column is the nice
level (relative runtime priority) of the process, and ADDR is actually a meaningless
placeholder for compatibility with earlier versions of ps. SZ is the overall memory
size (in 1K blocks), WCHAN indicates where the process is within the kernel space,
the TTY shows what terminal or virtual terminal owns the process, TIME indicates
accumulated CPU time, and finally, CMD is the actual command.

268 Hour 14

,

Michael Johnson, the author of the Linux ps command, says this about the
PRI flag: “It’s a dynamic internal field from the kernel, which has semantics
that depend on the scheduler in use.”

The –f output is a bit more succinct, showing the UID, PID, PPID, C, start time
(listed as STIME), TTY, accumulated CPU time, and the command itself.,

20 0672323982 ch14 6/18/02 2:00 PM Page 268

3. Is your head swimming? Mine certainly is, just trying to figure this all out! The
good news is that there’s a considerably more friendly output format generated by
the –u (so-called “user friendly”) flag:
ps -u
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 9115 0.4 2.1 2544 1368 pts/2 S 16:33 0:01 bash
root 9144 0.0 1.2 2676 768 pts/2 R 16:37 0:00 ps -u

Helpfully, this presents information in a much more readable and understandable
manner. Notice that while bash is sleeping (STATE=S), it is still using 0.4% of the
CPU and 2.1% of the available memory. VSZ is the virtual memory size (in 1K
blocks), and RSS is the runtime stack, the subset of needed memory that’s actually
in the physical RAM of the computer (again, in 1K blocks).

You can do some simple math to see your available memory based on this. If 2,544
pages (VSZ) is 2.1% of the available memory, this implies that 100% memory
would be 121,142 pages, which is correct: This system has 128MB of RAM, so
we’re seeing 121MB available, and approximately 7MB reserved for the kernel
itself.

Exploring Processes 269

14

Realistically, the kernel will take up more than just 7MB of memory. This
approach to calculating available memory should only be considered a back-
of-the-envelope type of figure.

,

4. The most common ps flag I use is –aux. This gives you all the running processes,
with enough information to get a good clue about what they’re all doing.
ps -aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 1412 72 ? S 13:20 0:04 init
root 2 0.0 0.0 0 0 ? SW 13:20 0:00 [keventd]
root 3 0.0 0.0 0 0 ? SW 13:20 0:00 [kapm-idled]
root 4 0.0 0.0 0 0 ? SWN 13:20 0:00 [ksoftirqd_CPU0]
root 5 0.0 0.0 0 0 ? SW 13:20 0:01 [kswapd]
root 6 0.0 0.0 0 0 ? SW 13:20 0:00 [kreclaimd]

The Linux version of ps is a bit peculiar, in that it understands both BSD-style
and SYSV-style command flags. Try this: Compare the difference in output
between ps –e (the System V/Posix style) and ps e (the BSD style). Other
Unixes don’t have this peculiar dual personality with the ps command,
thankfully.

,

20 0672323982 ch14 6/18/02 2:00 PM Page 269

root 7 0.0 0.0 0 0 ? SW 13:20 0:00 [bdflush]
root 8 0.0 0.0 0 0 ? SW 13:20 0:01 [kupdated]
root 9 0.0 0.0 0 0 ? SW< 13:20 0:00 [mdrecoveryd]
root 13 0.0 0.0 0 0 ? SW 13:20 0:04 [kjournald]
root 88 0.0 0.0 0 0 ? SW 13:20 0:00 [khubd]
root 183 0.0 0.0 0 0 ? SW 13:21 0:00 [kjournald]
root 681 0.0 0.2 1472 160 ? S 13:21 0:04 syslogd -m 0
root 686 0.0 0.0 1984 4 ? S 13:21 0:02 klogd -2
rpc 706 0.0 0.1 1556 124 ? S 13:21 0:00 portmap
rpcuser 734 0.0 0.0 1596 4 ? S 13:21 0:00 rpc.statd
root 846 0.0 0.0 1396 4 ? S 13:22 0:00 /usr/sbin/apmd -p
root 902 0.0 0.0 2676 4 ? S 13:22 0:03 /usr/sbin/sshd
root 935 0.0 0.0 2264 4 ? S 13:22 0:00 xinetd -stayalive
root 962 0.0 0.5 5296 368 ? S 13:22 0:04 sendmail: accepti
root 981 0.0 0.0 1440 56 ? S 13:22 0:02 gpm -t ps/2 -m /d
root 999 0.0 0.1 1584 108 ? S 13:22 0:00 crond
xfs 1051 0.0 2.3 5112 1492 ? S 13:22 0:09 xfs -droppriv -da
daemon 1087 0.0 0.0 1444 44 ? S 13:22 0:00 /usr/sbin/atd
root 1095 0.0 0.0 1384 4 tty1 S 13:22 0:00 /sbin/mingetty tt
root 1096 0.0 0.0 1384 4 tty2 S 13:22 0:00 /sbin/mingetty tt
root 1097 0.0 0.0 1384 4 tty3 S 13:22 0:00 /sbin/mingetty tt
root 1100 0.0 0.0 1384 4 tty4 S 13:22 0:00 /sbin/mingetty tt
root 1101 0.0 0.0 1384 4 tty5 S 13:22 0:00 /sbin/mingetty tt
root 1102 0.0 0.0 1384 4 tty6 S 13:22 0:00 /sbin/mingetty tt
root 1103 0.0 0.0 2500 4 ? S 13:22 0:00 /usr/bin/kdm -nod
root 1110 0.3 6.0 14252 3776 ? S 13:22 0:41 /etc/X11/X -auth
root 1114 0.0 0.0 3340 4 ? S 13:22 0:00 -:0
root 1124 0.0 0.0 2236 4 ? S 13:24 0:01 /bin/bash /usr/bi
root 1240 0.0 1.0 16052 672 ? S 13:24 0:02 kdeinit: dcopserv
root 1243 0.0 3.0 17336 1916 ? S 13:24 0:02 kdeinit: klaunche
root 1246 0.0 7.0 17764 4412 ? S 13:24 0:05 kdeinit: kded
root 1247 0.0 1.3 2388 816 ? S 13:24 0:01 fam
root 1254 0.2 1.3 5524 852 ? S 13:25 0:25 /usr/bin/artsd -F
root 1268 0.0 2.2 19540 1420 ? S 13:25 0:02 kdeinit: knotify
root 1269 0.0 1.2 16500 772 ? S 13:25 0:00 kdeinit: Running.
root 1270 0.0 3.0 11632 1888 ? S 13:25 0:06 ksmserver --resto
root 1271 0.0 4.7 17740 2944 ? S 13:25 0:10 kdeinit: kwin
root 1273 0.1 7.4 18584 4632 ? S 13:25 0:18 kdeinit: kdesktop
root 1275 0.3 7.8 19268 4908 ? S 13:25 0:42 kdeinit: kicker
root 1281 2.6 5.0 17788 3148 ? S 13:25 5:36 kdeinit: klipper
root 1283 0.0 4.3 17360 2688 ? S 13:26 0:01 kdeinit: kwrited
root 1284 0.0 4.9 17024 3096 ? S 13:26 0:06 alarmd
root 1285 0.0 0.0 1640 4 pts/0 S 13:26 0:00 /bin/cat
root 1559 0.0 9.3 18160 5828 ? S 13:28 0:09 kdeinit: konsole
root 1560 0.0 2.0 2540 1300 pts/1 S 13:29 0:01 /bin/bash
root 9113 0.8 4.4 8148 2756 pts/1 S 16:33 0:12 xterm -fg white -
root 9115 0.2 2.2 2544 1372 pts/2 S 16:33 0:03 bash
root 9194 3.5 5.0 8520 3128 pts/2 S 16:52 0:11 xterm -fg white -
root 9196 0.8 2.2 2544 1372 pts/3 S 16:52 0:02 bash
root 9269 0.0 1.2 2680 768 pts/2 R 16:57 0:00 ps aux

As you can see, there are a lot of processes running on this system!

270 Hour 14

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 270

5. Unsurprisingly, it’s most common to feed this output to grep, to weed out the spe-
cific information you seek. Curious about what processes are not running as root?
Try this:
ps –aux | grep –vE ‘^root’
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
rpc 706 0.0 0.1 1556 124 ? S 13:21 0:00 portmap
rpcuser 734 0.0 0.0 1596 4 ? S 13:21 0:00 rpc.statd
xfs 1051 0.0 2.3 5112 1492 ? S 13:22 0:09 xfs -droppriv -da
daemon 1087 0.0 0.0 1444 44 ? S 13:22 0:00 /usr/sbin/atd

Note that all of these are in sleep state (STAT=S). Indeed, a quick scan of the earlier
output will reveal that the ps command is the only one in run state when the process
snapshot was taken by ps.

6. If you’re curious about what programs are consuming the most memory, rather than
dig through ps, most versions of Unix include a very helpful utility called top (or,
on some systems, monitor), which shows you all running applications, but refreshes
the list every few seconds. You can also get top to dump its output to the screen and
quit, rather than iteratively refresh. Then you can use head to identify the half dozen
processes using the most CPU time:
top -b -n0 | head -20
5:11pm up 3:50, 4 users, load average: 0.22, 0.09, 0.08

57 processes: 56 sleeping, 1 running, 0 zombie, 0 stopped
CPU states: 9.8% user, 5.4% system, 0.0% nice, 84.6% idle
Mem: 62264K av, 56172K used, 6092K free, 0K shrd, 1640K buff
Swap: 192772K av, 15208K used, 177564K free 18420K cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND
9299 root 15 0 1032 1028 828 R 14.4 1.6 0:00 top
1281 root 9 0 3544 3148 2372 S 1.6 5.0 5:56 kdeinit
1254 root 9 0 1184 852 580 S 0.8 1.3 0:26 artsd

1 root 9 0 120 72 72 S 0.0 0.1 0:04 init
2 root 9 0 0 0 0 SW 0.0 0.0 0:00 keventd
3 root 9 0 0 0 0 SW 0.0 0.0 0:00 kapm-idled
4 root 19 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0
5 root 9 0 0 0 0 SW 0.0 0.0 0:01 kswapd
6 root 9 0 0 0 0 SW 0.0 0.0 0:00 kreclaimd
7 root 9 0 0 0 0 SW 0.0 0.0 0:00 bdflush
8 root 9 0 0 0 0 SW 0.0 0.0 0:01 kupdated

The first few lines of top are most interesting, as it offers a very helpful snapshot of
the current state of your system. For this particular Linux server, you can see that
it’s 84.6% idle (lots of CPU headroom), has 561MB of memory used and 6MB free
(unsurprisingly, the kernel is maximizing the amount of physical memory it’s trying
to use), while 152MB of swap space is used and 177MB is free.

Exploring Processes 271

14

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 271

Stepping into the listing itself, notice that top itself is consuming 14.4% of the
CPU, kdeinit (an initialization and runtime management process for the KDE win-
dow manager) is using 1.6%, artsd is using 0.8%, and none of the other processes
are making any demands on the CPU at all.

7. By contrast, top needs slightly different flags on Mac OS X to produce the same
output, but the information shown is perhaps a bit more interesting:
top –ul1 | head –20
Processes: 49 total, 2 running, 47 sleeping... 166 threads 11:12:50
Load Avg: 0.78, 0.78, 0.83 CPU usage: 27.9% user, 9.3% sys, 62.8% idle
SharedLibs: num = 94, resident = 23.3M code, 1.37M data, 6.04M LinkEdit
MemRegions: num = 3774, resident = 209M + 10.5M private, 125M shared
PhysMem: 45.8M wired, 165M active, 294M inactive, 505M used, 7.49M free
VM: 2.84G + 46.8M 6650(0) pageins, 591(0) pageouts

PID COMMAND %CPU TIME #TH #PRTS #MREGS RPRVT RSHRD RSIZE VSIZE
312 iTunes 13.0% 24:54.68 9 141 236 8.04M 10.5M 12.5M 74.0M
337 Virtual PC 9.2% 7:36.81 10 139 219 79.5M 13.9M 87.5M 153M
65 Window Man 3.0% 23:20.98 3 191 181 1.75M 54.0M 54.9M 96.2M
359 Terminal 2.7% 0:05.54 5 116 129 2.35M+ 7.44M 5.46M+ 67.1M
391 top 2.7% 0:00.37 1 14 15 188K+ 328K 428K+ 1.49M+
336 Internet E 1.6% 1:26.15 8 99 146 8.94M 11.5M 14.8M 75.6M
335 Microsoft 1.2% 6:02.54 5 124 335 24.6M 41.3M 37.9M 124M
288 Microsoft 1.0% 34:40.22 13 156 338 21.1M 24.2M 35.4M 108M
0 kernel_tas 0.9% 2:54.33 30 0 - - - 37.5M 336M

294 MWBackGrou 0.3% 0:46.74 1 50 47 552K 2.15M 1.26M 30.9M
291 Snapz Pro 0.1% 0:20.12 1 54 73 1.73M 7.39M 4.52M 61.8M
67 update 0.1% 0:01.85 1 8 13 56K 292K 152K 1.25M

You can see that I’m running iTunes (a JPEG music player), Virtual PC, Internet
Explorer, and various other applications, and even though I’m actively in Terminal
(PID 359) running top (PID 391), there are many other applications actually using
the CPU at the same time.

8. I’d like to show you the equivalent program output in Solaris 8, but Solaris doesn’t
include a top or monitor program, frustratingly. You’re on your own to try and
combine uptime and ps instead, or start with whodo –l and see what that produces:
whodo -l
12:21am up 31 day(s), 1 hr(s), 54 min(s) 4 user(s)

272 Hour 14

What’s going on? How can I be using 561MB on a system that only has
128MB of total RAM? The answer is that top is showing a cumulative total
of the averages over time of usage, so the system hasn’t magically found an
additional 433MB. This averaging is also how CPU usage is calculated, which
is why earlier we saw bash using 0.9% of the CPU even though it was in a
sleep state.

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 272

User tty login@ idle JCPU PCPU what
root console 26Jan02 3days 1:25 xterm
root pts/2 26Jan02 6:40 -
root pts/4 4:56pm 1:25 whodo -l
root pts/3 10:56pm -

There’s a lot in the ps output to study, and as a system administrator, one of the most
important questions you’ll have will be “What is this?” for some of the jobs. In particu-
lar, pay attention to jobs that are not running as root, as they’ll show you how your users
are consuming CPU and memory resources.

A Typical Sysadmin Task: What’s artsd?
To give you a sense of how all the Unix tools work together, let’s spend a few minutes
trying to figure out what artsd is. I’m not sure what the artsd program running and eat-
ing up CPU time on my Linux box does. This is a very common situation where you’ll
need to use standard Unix tools to figure out what a specific task is and whether you
really need it.

Task 14.3: A Little Unix Detective Work
First off, let’s see if we can identify how it’s been started.

1. To do this, add the w flag to the ps command, but do it a couple of times. Unlike
just about any other Unix command, multiple occurrences of the w flag gives you
more output:
ps -auxwwww | grep artsd
root 1254 0.1 1.3 5524 852 ? S 13:25 0:28
➥/usr/bin/artsd -F 10 -S 4096 -s 60 -m artsmessage -l 3 -f
root 9322 0.0 0.9 1732 592 pts/2 S 17:35 0:00 grep artsd

The first stop is to try the man pages:
man –k artsd
artsd: nothing appropriate

Hmmm…looks like it’s going to be a bit harder to figure this one out.

2. As a next step, let’s see what files have artsd in them by using locate:
locate artsd
/usr/bin/artsd
/usr/bin/artsdsp
/usr/lib/libartsdsp.la
/usr/lib/libartsdsp.so
/usr/lib/libartsdsp.so.0
/usr/lib/libartsdsp.so.0.0.0
/usr/lib/libartsdsp_st.la

Exploring Processes 273

14

,

,

,
TA

SK
,

20 0672323982 ch14 6/18/02 2:00 PM Page 273

/usr/lib/libartsdsp_st.so
/usr/lib/libartsdsp_st.so.0
/usr/lib/libartsdsp_st.so.0.0.0
/usr/include/kde/arts/kartsdispatcher.h

Still nothing useful.

274 Hour 14

,

If your locate command has no output, it might be because you haven’t cre-
ated the initial locate database. Have a look at the man page for details on
how to accomplish this simple task.

Let’s look in /usr/bin to see what’s part of the arts family of applications:
ls /usr/bin/arts*
/usr/bin/artsbuilder /usr/bin/artsd /usr/bin/artsshell
/usr/bin/artscat /usr/bin/artsdsp /usr/bin/artswrapper
/usr/bin/artsc-config /usr/bin/artsmessage
/usr/bin/artscontrol /usr/bin/artsplay

Quite a few applications, actually. It’s surprising that there’s not a single man page
for any of it.

3. Let’s try one more locate before we give up and jump to a search on Google, or
one of the Linux sites on the Web:
locate artscontrol
/usr/bin/artscontrol
/usr/share/apps/artscontrol
/usr/share/apps/artscontrol/artsmidimanagerview.rc
/usr/share/apps/artscontrol/artscontrol.rc
/usr/share/icons/hicolor/16x16/apps/artscontrol.png
/usr/share/applnk/Multimedia/artscontrol.desktop

Ah ha! There’s a directory called artscontrol in the /usr/share/apps directory.
Let’s see what else is in that directory that might be relevant to our search:
cd /usr/share/apps
ls -ld arts*
drwxr-xr-x 4 root root 4096 Jan 11 15:03 artsbuilder
drwxr-xr-x 2 root root 4096 Jan 11 15:03 artscontrol

The artscontrol directory looks promising:
ls /usr/share/apps/artscontrol
artscontrol.rc artsmidimanagerview.rc
more !$/artscontrol.rc
more /usr/share/apps/artscontrol/artscontrol.rc,

20 0672323982 ch14 6/18/02 2:00 PM Page 274

<!DOCTYPE kpartgui>
<kpartgui name=”artscontrol” version=”3”>
<MenuBar>
<Menu name=”view”><text>&View</text>
<Action name=”view_fft_scope”/>
<Action name=”view_audio_manager”/>

<Action name=”view_arts_statusview”/>
<Action name=”view_midi_manager”/>
<Action name=”view_media_types”/>
<Action name=”view_freeverb”/>

<Action name=”old_volume_display”/>
</Menu>

</MenuBar>
</kpartgui>

Exploring Processes 275

14

Notice the very useful shell shortcut !$, which matches the last word of the
previous command.

,

Well, we haven’t found any documentation, but we can glean a few snippets of
information from this. First off, the arts application is some sort of synthesizer
player or interface system (notice arts MIDI managerview.rc: MIDI is musical
interface digital instrument, and it’s how synthesizers talk to each other). Secondly,
notice the rc file contents indicate that it’s a kpartgui, which indicates that it’s
part of the GUI to KDE. Most likely, then, artsd is a background daemon that
helps the arts synthesizer work properly.

4. Because all the arts* applications in /usr/bin seem to be part of this program,
another sneaky trick is to use the helpful strings command to search for any sort
of URL that might be listed in any of the programs:
cd /usr/bin
strings arts* | grep -i http:
http://www.arts-project.org/

Gotcha! A quick visit to that Web site reveals that sure enough, arts is an analog
real-time synthesizer. And now we know.

There are a number of different ways that you can try to isolate and identify different
programs running in a ps output. It’s good practice learning the various sysadmin tools,
so try doing a bit of your own detective work, and see if you can identify some of the
more cryptic daemons running on your own Unix system.

,

20 0672323982 ch14 6/18/02 2:00 PM Page 275

Process Priorities
One important capability that you have as sysadmin that isn’t available to mere mortal
users is that you can change the priority of specific tasks to meet the CPU demands of
your process workload. If you have a particular program that seems to eat your processor
alive, for example, you can lower its priority when you launch it, or you can even drop
its priority while it’s running, letting other applications have a better chance at getting a
slice of CPU time. Users can change the prioritization of their own tasks, but root can
change any task.

Conversely, perhaps you are running an image manipulation program or a real-time
analysis tool and want to ensure that it’s more important than any programs other users
might launch. To do that, you would increase the priority of the process, either at launch-
time, or when it’s already running.

Task 14.4: Managing Process Priorities
There are two commands available for working with process priorities: nice and renice.
The nice command lets you set the priority of the process before it’s launched, and, you
guessed it, renice lets you change the process of a running job.

Unfortunately, although you might think of a lower priority job as being less important
than a higher priority job, the nice and renice commands (and Unix itself) think about
this in the exact opposite way: A process with a high nice value has a lower priority than
another with a lower nice value.

The nice values can range from –20 to 19. Zero is a standard priority for all login shells
and applications that they spawn. Your login shell and your vi session are both priority
(nice level) zero.

1. To see your current nice level, use ps –l:
ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 0 9386 9384 0 69 0 - 654 wait4 pts/2 00:00:03 bash
000 R 0 9485 9386 0 76 0 - 775 - pts/2 00:00:00 ps

The NI column is what we’re interested in here: Notice that both jobs are, as
expected, running with a nice level of zero.

Wondering if there are any jobs that are not at nice level zero? A fair question,
easily answered with awk:
ps -lx | awk ‘{ if ($6 != 0) print $0 }’
F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

040 0 4 0 19 19 0 0 ksofti SWN ? 0:00
➥[ksoftirqd_
040 0 9 1 -1 -20 0 0 md_thr SW< ? 0:00
➥[mdrecovery

276 Hour 14

,
TA

SK
,

20 0672323982 ch14 6/18/02 2:00 PM Page 276

There are two tasks with a nonzero nice level: mdrecovery is the most important
job on the system, with a nice level of –20, and ksoftirqd is the least important
with a priority of 19.

2. To launch an application with a different priority, the nice command should be
used. A typical use might be to have a window watch the syslogd output file
(/var/log/messages), a job that’s important, but certainly less important than
interactive work:
nice tail –f /var/log/messages &
ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 0 9386 9384 0 69 0 - 654 wait4 pts/2 00:00:04 bash
000 T 0 9523 9386 16 75 10 - 506 do_sig pts/2 00:00:00 tail
000 R 0 9524 9386 54 75 0 - 776 - pts/2 00:00:00 ps

By default, you can see that nice adds 10 to the priority, which means that the
application is run at a lower priority (it’s less important) than all the other
processes on the system.

To make it more important, specify the desired nice value:
nice --5 vi importantfile &
ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 0 14540 14539 0 73 0 - 642 wait4 pts/0 00:00:00 bash
000 S 0 14566 14540 0 74 10 - 414 nanosl pts/0 00:00:00 tail
100 T 0 14575 14540 0 69 -5 - 505 do_sig pts/0 00:00:00 vi
100 R 0 14577 14540 0 76 0 - 773 - pts/0 00:00:00 ps

Exploring Processes 277

14

,

Did you notice that you need to use a double-dash to get a negative prior-
ity? The command nice -5 command sets it to priority 5, which is actually less
important than the default priority of zero. Most confusing!

3. To change the priority of a running task, use renice. The renice command
requires the PID, but that’s easy to obtain, as you now know.

Let’s bring the vi session back to the normal priority of zero to start:
renice 0 14575
14575: old priority -5, new priority 0

Looks good. How about in the other direction? Let’s make that tail process more
important than regular processes by giving it a nice level of –1:
renice –1 14566
14566: old priority 10, new priority –1,

20 0672323982 ch14 6/18/02 2:00 PM Page 277

4. The renice command has some additional options, not the least of which is that
you can change the priority of all processes owned by a specific user in a single
fell swoop. For example, if user taylor has been whining just a bit too much about
slow computers and how Quake just doesn’t zip along like his machine at home,
you might like to slow things down even further by lowering his priority for a short
period of time:
renice +1 -u taylor
502: old priority 0, new priority 1
537: old priority 0, new priority 1

More likely, you’ll want to perhaps improve the throughput of your Web server by
setting all the Apache processes to have a slightly higher priority. First, let’s use the
–U flag to ps to limit output to just the specified UID, then renice all the relevant
jobs:
ps -lU apache
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

140 S 48 13366 629 0 69 0 - 11689 semop ? 00:00:00 httpd
140 S 48 13367 629 0 69 0 - 11696 semop ? 00:00:00 httpd
140 S 48 13368 629 0 69 0 - 11686 semop ? 00:00:00 httpd
140 S 48 13369 629 0 69 0 - 11695 semop ? 00:00:00 httpd
140 S 48 13370 629 0 69 0 - 11689 semop ? 00:00:00 httpd
140 S 48 14093 629 0 69 0 - 11689 do_sel ? 00:00:00 httpd
140 S 48 14118 629 0 69 0 - 11693 semop ? 00:00:00 httpd
140 S 48 14322 629 0 69 0 - 11686 semop ? 00:00:00 httpd
renice -1 -u apache
48: old priority 0, new priority –1

In this case, it reports the real group ID of all the processes running that match. To
see that this is the case, use the –G flag (show group IDs) to ps with the number
given (48):
ps -lG 48
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

140 S 48 13366 629 0 69 -1 - 11689 semop ? 00:00:00 httpd
140 S 48 13367 629 0 69 -1 - 11696 semop ? 00:00:00 httpd
140 S 48 13368 629 0 69 -1 - 11686 semop ? 00:00:00 httpd
140 S 48 13369 629 0 69 -1 - 11695 semop ? 00:00:00 httpd
140 S 48 13370 629 0 69 -1 - 11689 semop ? 00:00:00 httpd
140 S 48 14093 629 0 69 -1 - 11689 do_sel ? 00:00:00 httpd
140 S 48 14118 629 0 69 -1 - 11693 semop ? 00:00:00 httpd
140 S 48 14322 629 0 69 -1 - 11686 semop ? 00:00:00 httpd

278 Hour 14

As a regular user, you can renice your own processes, but only within the
range of 0–19. It is not possible for you to make your jobs more important
than the standard nice level of zero.

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 278

That’s exactly what we wanted. Because this server is primarily a Web server, we
have now prioritized all Web requests (Apache is the Web server, and its daemon is
httpd) to be higher (a lower nice level) than regular login shells and other
processes.

Being able to adjust and fine-tune the priority of tasks on a Unix system is a powerful—
and dangerous—capability. Like any superpower, you must use it wisely and judiciously.
Never change the priority of any kernel task, for example, and be cautious about lower-
ing the priority of any regular user task.

On the other hand, being able to tweak things can be a significant benefit, too. On my
Mac OS X system, for example, I have learned that using renice to set the priority of
iTunes to 1 and Virtual PC to –1 significantly improves overall performance without any
adverse affect on music playback.

Zapping Stray Processes
One more topic to discuss in this hour is kill. The renice command lets you lower the
priority of tasks you’d like to consume fewer CPU and system resources, but what if you
want to kill the process entirely?

That’s what the eponymously named kill command is for. Specify a PID and you can
make it vanish in a puff of greasy black smoke.

Task 14.5: The kill Command
Whether the process is wedged, running out of control, has become unresponsive to reg-
ular interaction, or is from another user who isn’t authorized to run it, there are times
when being able to eliminate a process is of great value.

1. From the last section, there are still a couple of jobs running that should be
removed, as ps reminds us:
ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 0 14539 14369 0 70 1 - 589 wait4 pts/0 00:00:00 su
100 S 0 14540 14539 0 72 0 - 642 wait4 pts/0 00:00:00 bash
000 S 0 14566 14540 0 69 -1 - 414 nanosl pts/0 00:00:00 tail
100 T 0 14575 14540 0 68 0 - 505 do_sig pts/0 00:00:00 vi
100 R 0 14701 14540 0 75 0 - 773 - pts/0 00:00:00 ps

Let’s kill the tail first of all, because we don’t need it any more—we have instead
decided to just peek at the contents of the syslog file itself once every morning:
kill 14566
#

Exploring Processes 279

14

,

,

,
TA

SK
,

20 0672323982 ch14 6/18/02 2:00 PM Page 279

The kill command never has any output, so traditionally sysadmins run the com-
mand a second time: If it reports nothing again, that means that the application is
blocking or ignoring the signal, but if it reports No such pid, then the first kill
did its job:
kill 14566
bash: kill: (14566) - No such pid
[1]- Terminated nice tail -f /var/log/messages

In this case, the first kill terminated the tail, and the shell was just being polite
by waiting until the end of another job to report that the job was terminated.

2. Did you notice earlier that the state of the vi job was T, not S or R? That means
that it’s stopped—either blocked for I/O, or stopped by the user with a ^Z control
sequence. Whether it’s stopped, sleeping, or running, sending a signal to the
process causes it to wake up long enough to handle the signal, either ignoring it or
accepting it and performing a specific action.

There are a lot of signals that can be sent to a job, too: kill –l lists all the possi-
bilities:
kill -l
1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2

13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS 32) SIGRTMIN 33) SIGRTMIN+1
34) SIGRTMIN+2 35) SIGRTMIN+3 36) SIGRTMIN+4 37) SIGRTMIN+5
38) SIGRTMIN+6 39) SIGRTMIN+7 40) SIGRTMIN+8 41) SIGRTMIN+9
42) SIGRTMIN+10 43) SIGRTMIN+11 44) SIGRTMIN+12 45) SIGRTMIN+13
46) SIGRTMIN+14 47) SIGRTMIN+15 48) SIGRTMAX-15 49) SIGRTMAX-14
50) SIGRTMAX-13 51) SIGRTMAX-12 52) SIGRTMAX-11 53) SIGRTMAX-10
54) SIGRTMAX-9 55) SIGRTMAX-8 56) SIGRTMAX-7 57) SIGRTMAX-6
58) SIGRTMAX-5 59) SIGRTMAX-4 60) SIGRTMAX-3 61) SIGRTMAX-2
62) SIGRTMAX-1 63) SIGRTMAX

Almost all of these can be safely ignored, but there are three worth highlighting, as
they’ll be used most often: SIGTERM is sent if no signal is specified (as with the ear-
lier kill of the tail process), SIGHUP is the “hang-up” signal and is usually a very
graceful way to terminate a process that ignores SIGTERM, and SIGKILL is the “big
gun” of the signal world—it’s a kill signal that cannot be captured or ignored by a
process. If you’re lazy, you can also use the signal number, as in kill –9 pid.

As with the scary days of the Cold War, there’s a sense of escalation of signals,
based on the response of the process to the previous signal sent. Think of it like
this: If the pistol didn’t work, try the rifle. If that doesn’t work either, it’s time for a
tactical nuke. Well, maybe that’s a wee bit dramatic, but you get the idea.

280 Hour 14

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 280

3. To kill the vi session, I’ll specify SIGTERM and see what happens:
kill -TERM 14575
kill –TERM 14575
#

Ahhh…vi ignores SIGTERM signals, so we’ll have to try something a bit stronger:
SIGHUP.
kill -HUP 14575
kill –HUP 14575
#

As you can see, some applications are pretty tough, able to accept and ignore many
common signals. The tail command gracefully died when it received its first
SIGTERM, but vi is lingering. This means it’s time for a SIGKILL (aka –9):
kill -9 14575
kill -9 14575
bash: kill: (14575) - No such pid
[2]+ Killed nice --5 vi testme

That did the trick. Notice that you can specify the signal by name (for example,
-KILL) or by its number. Many system administrators have the command kill –9
wired into their fingers after a bit, and don’t even think about signal names.

4. If you ever find yourself in a situation where it would be useful to stop a job tem-
porarily, then resume it later, it’s worth knowing that you can send the signal
equivalent of a ^Z to a process, then a resume signal to have it start up and begin
running again:
ps -lU taylor
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 502 14369 14368 0 70 1 - 618 wait4 pts/0 00:00:00 bash
000 S 0 14539 14369 0 70 1 - 589 wait4 pts/0 00:00:00 su
100 S 502 14717 14716 0 71 0 - 618 read_c pts/1 00:00:00 bash
000 R 502 14757 14717 27 78 0 - 445 do_sig pts/1 00:00:00 find

You can see that user taylor has a find running that’s currently taking up 27% of
the CPU. It’d be helpful to stop this find temporarily, run a few sysadmin com-
mands, then start it up again:
kill –STOP 14757
ps -lU taylor
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 502 14369 14368 0 70 1 - 618 wait4 pts/0 00:00:00 bash
000 S 0 14539 14369 0 70 1 - 589 wait4 pts/0 00:00:00 su
100 S 502 14717 14716 0 71 0 - 618 read_c pts/1 00:00:00 bash
000 T 502 14757 14717 0 78 0 - 445 do_sig pts/1 00:00:00 find

now the job is stopped, we can do other stuff for a while

kill –CONT 14757
ps -lU taylor

Exploring Processes 281

14

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 281

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
100 S 502 14369 14368 0 70 1 - 618 wait4 pts/0 00:00:00 bash
000 S 0 14539 14369 0 70 1 - 589 wait4 pts/0 00:00:00 su
100 S 502 14717 14716 0 71 0 - 618 read_c pts/1 00:00:00 bash
000 R 502 14757 14717 0 78 0 - 445 do_sig pts/1 00:00:00 find

Some system daemons will reread their configuration files and restart themselves
upon receiving a specific signal, too. If that’s the case, then typically something
like kill -1 pid does the trick easily, but double-check with the documentation
before you wreak too much havoc on your system.

In a typical week of work as a system administrator, you probably won’t need to kill
more than one or two processes, but it’s very important to realize that as sysadmin you
have the tools and ability to affect the jobs running on your system. Whether it’s by
changing their priority with renice, or sending them specific signals like –STOP or –HUP
with kill, you’re in control.

And with control and power comes responsibility. You’ll have your user community mad-
der than hornets at a summer picnic if you randomly change priorities or kill processes!

Summary
This hour has popped the hood and delved into the mysterious world of Unix process
management, starting by learning how to know what processes are running with the ps
command, then discussing task prioritization, and finally ending by considering the dif-
ferent methods available for killing processes that shouldn’t be running. Along the way
we also explored how to solve a common system administration puzzle: identifying each
of the tasks running to ascertain whether they’re needed or not.

Q&A
Q Is the init program always PID 1?

A Certainly on every Unix system I’ve ever seen. The init process manages the
sequence of booting up the computer, so it’s the very first application started at
boot-time.

Q Why is the nice value the opposite of what you’d expect, where a smaller
number is more important than a bigger number?

A A very good question!

Q If there’s a nice command, is there a naughty command too?

A I think we’d have to check the SCUR1 (Santa Claus Unix, Release 1, of course!)
Linux man pages for that one. Alternatively, the answer might be that it depends on
what you’re doing with your command shell.

282 Hour 14

,

,

20 0672323982 ch14 6/18/02 2:00 PM Page 282

Workshop
Quiz

1. Could a job I run later in my session end up with a PID that’s lower than the PID
of my login shell?

2. What’s the shortcut to identify the PID of your login shell? And how can you use
that to identify what shell you’re running?

3. Is it accurate to say that a process in state T is terminated, pending removal from
the process queue?

4. In what situation might your login shell be listed as state S, sleeping?

5. What do you think would happen if you typed kill –9 $$?

6. One of the processes that Red Hat Linux listed in the ps output was mdrecoveryd.
Do some detective work and see if you can figure out what it does. (If you don’t
have Linux, pick a different mysterious daemon and figure out what that does
instead.)

Answers
1. It’s possible to have a subsequent PID be lower, but you’d need your PIDs to cycle

back to zero, which would mean that your system would have needed more than
MAXINT (maximum possible integer value) processes run since boot-time. Because
MAXINT is 232, that’s a lot of processes.

2. The shortcut is $$, and you can identify your shell definitively with ps $$.

3. It is not accurate. A process in state T is either being traced, or more likely, stopped
with a SIGSTOP, probably from a ^Z.

4. Any time a subprocess like ps is running, the parent shell sleeps until it completes.

5. You’d log out, lickety-split!

6. The best I can figure is that mdrecoveryd is related to RAID disk subsystems: If
you don’t have RAID, you probably don’t need this running. But check your OS
documentation to be sure!

In the next hour we’ll explore the ins and outs of cron, a wonderfully helpful utility that
lets you schedule jobs at any time in the future.

Exploring Processes 283

14

20 0672323982 ch14 6/18/02 2:00 PM Page 283

20 0672323982 ch14 6/18/02 2:00 PM Page 284

HOUR 15
Running Jobs in the
Future

The gist of our study together through this point in the book has been learn-
ing how to accomplish tasks, and then how to automate them with aliases
and shell scripts (though the latter will be covered in greater detail later in
the book). What’s been missing has been any sort of scheduler, a way
whereby you can instruct the Unix system to run a specified command or set
of commands in the future.

That’s what this hour focuses on, and it’s one of my favorite parts of Unix:
crontab. Through the cron mechanism, as crontab is called generally, you
can specify Unix commands or shell scripts to run at a specific minute, hour,
day, or date. Just as importantly, you can also specify how frequently it
should be run, so if you want to perpetually sidestep the problem of forget-
ting your anniversary by scheduling an annual e-mail greeting to your
spouse, it’s a breeze with cron.

21 0672323982 CH15 6/18/02 2:06 PM Page 285

If you want to run administrative tasks every 15 minutes, at midnight, or on Sunday of
each week, they’re also quickly and easily accomplished with cron.

Here’s what you’ll learn in this hour:

• Enabling crontab for users

• Building crontab files

• System cron jobs in /etc

• Scheduling future jobs with at

Allowing User Access to crontab
Before you can start using cron, you need to ensure that the system is enabled and that
you’ve created a list of users that you, as sysadmin, explicitly allow or prevent from
using crontab.

This leads to an important point: The crontab facility is not only helpful for system
administration, it’s a generally useful Unix utility even on those systems where you do
not have administrative access. On most systems on which I have an account, I eventu-
ally have some scripts running from within cron.

Task 15.1: Turning on crontab
The very first step required in working with cron is to ensure that the crond daemon is
launched and running when you boot up your system.

1. To ascertain whether it’s running, use ps:
ps -aux | grep crond
root 820 0.0 0.1 1584 660 ? S Mar09 0:00 crond
taylor 21117 0.0 0.1 1728 584 pts/0 S 13:59 0:00 grep crond

Looks good. If crond wasn’t running, you would look in /etc/rc.d/rc3.d (if you
are at run level 3) or /etc/rc.d/rc5.d (if you are at run level 5) to ensure that the
cron facility was enabled:
/sbin/runlevel
N 3
ls /etc/rc.d/rc3.d/*cron*
/etc/rc.d/rc3.d/S90crond /etc/rc.d/rc3.d/S95anacron

You can see that on this Linux box, we can use runlevel to confirm that we’re at
run level 3 (the first argument is the previous run level, and N means it was boot-
ing). A quick peek at the appropriate rc.d directory reveals that both crond and
anacron are launched (their file names start with S).

286 Hour 15

,
TA

SK
,

21 0672323982 CH15 6/18/02 2:06 PM Page 286

If for any reason you find that cron should be running but isn’t, you can start it by
typing

/etc/rc.d/init.d/crond start

Running Jobs in the Future 287

15

The anacron system is a new replacement for cron, its big difference being
that anacron doesn’t assume that you’re running your server 24/7. See the
man page for more information about this alternative to cron, though my
recommendation is that you stick with cron on your systems.

2. By default, cron allows all users to create their own crontab files (a text file
owned by each user that details what jobs to run and with what frequency), but if
you want to limit it to specific users and prevent others, you can either do this
inclusively or exclusively.

That is, if you create a file called /etc/cron.allow, then only those users listed in
that file can use the cron facility. Alternatively, if you create a file called
/etc/cron.deny, then users that are not listed in the file can use cron. The format
for these files is a simple list of account names, one per line.

3. While we’re looking at the underbelly of cron, let’s have a peek at the spool direc-
tory that the program uses to store user crontab files:
ls -l /var/spool/cron
total 2
-rw------- 1 root coders 357 Dec 17 23:01 root
-rw------- 1 root root 273 Mar 14 14:13 taylor

You can see that root and taylor both have crontabs. Notice also that all
crontab files are owned by root. As you’ll see momentarily, this is not a security
problem.

Because the cron facility is such an important part of standard Unix, just about every
flavor of Unix has it enabled and ready to run by default. Each user has a specific file of
instructions called a crontab, and they are all stored in the /var/spool/cron directory.

Building crontab Files
Now that you’ve confirmed that the cron facility is up and running, let’s jump in and
build a new crontab file. The crontab file is a series of lines that take the form “when
what.” The first five fields on each line specify when the job should run, and the remain-
ing fields are the command given to the shell for execution.

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 287

The time specification is a bit tricky. Each of the first five fields can accept an asterisk, a
numeric value, list, range of values, or a mnemonic name. The fields are as specified in
Table 15.1.

TABLE 15.1 crontab Field Values

Field Acceptable Values

minute 0–59

hour 0–23

day of month 1–31

month 1–12 (or mnemonic names Jan, Feb)

day of week 0–7 (or mnemonic names Sun, Mon)

288 Hour 15

If you’re doing your math, you realize that a day-of-the-week specifier than
can range from 0–7 has eight days. We’re not referencing a Beatles song
here, the cron mechanism lets you use either 0 or 7 as Sunday, depending
on how you prefer to count.

Ranges can be specified by having a begin, end, and a dash between them, and a list is
separated by commas, so 2-5 and 2,3,4,5 both match value = 2, value = 3, value =
4, or value = 5. You can also specify a skip-factor on lists, so if you wanted to only run
a command on odd numbered days, for example, you could use 1-31/2 as the day-of-
month specifier (which is the same as 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,
but quite a bit easier to type.

Task 15.2: Building a crontab File
Understanding the time specification format is 90% of the work of building and reading
crontab files, so the best way to proceed is with some examples. Let’s explore the basic
language of crontab files, then we’ll talk about how to build the files and submit them
to the cron scheduler.

1. To have a process run every single minute of every hour of every day, you’d sim-
ply have asterisks for every field. In this unusual case, your crontab entry would
look like

* * * * * /home/taylor/scripts/everyminute

,
TA

SK
,

21 0672323982 CH15 6/18/02 2:06 PM Page 288

This is unlikely, so let’s instead have the script run every hour at 15 minutes after
the hour. To specify this, all that has to happen is that the minute field needs to be
specified:

15 * * * * /home/taylor/scripts/hourly

2. More common uses of cron are to have scripts run every day at a specified time, or
weekly on a specified day. The former should be a straightforward step from the
last example:

15 3 * * * /home/taylor/scripts/daily

In this case, it’s going to run /home/taylor/scripts/daily every day at 3:15 a.m.
(remember, it’s minute-hour, not hour-minute).

15 3 * * Mon /home/taylor/scripts/weekly

This runs the weekly script every Monday at 3:15 a.m.

3. Now let’s turn our attention to the crontab program, which is how you create,
remove, edit, and even list crontab files.

Running Jobs in the Future 289

15

Yes, it’s quite confusing to have the command crontab have the same name
as the data file crontab. There are even two different man pages for the
command: man 1 crontab is for the command, and man 5 crontab contains
information about the data file.

The crontab program is straightforward, and has four meaningful flags: -e lets
you edit (or create, if you don’t yet have) your crontab file, -l lists the crontab
file, -r removes it, and –u user lets you, as root, work with a specified user’s
crontab file.

We can start working with crontab by using crontab –e, which drops us into vi
with a blank crontab data file. This isn’t very friendly in my opinion, so I invari-
ably type in the following as the first few lines of any crontab file I work on:
CRONTAB for root
#
min hour day-of-month month day-of-week command

With that at the top of the file, you have an easy mnemonic reminder of how to
create individual crontab entries.

4. I’d like to capture the first few lines of the top command, which offers a nice
snapshot of how my system is doing at any given moment, and e-mail it to myself
every day at 5 p.m.

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 289

The first step is to figure out the exact command required. This can be done at the
command line, of course:
top -b -n1 | head -9

9:53am up 6 days, 9:30, 1 user, load average: 0.00, 0.00, 0.00
44 processes: 43 sleeping, 1 running, 0 zombie, 0 stopped
CPU0 states: 0.0% user, 0.0% system, 0.0% nice, 100.0% idle
CPU1 states: 0.0% user, 0.1% system, 0.0% nice, 99.0% idle
Mem: 512872K av, 232612K used, 280260K free, 72K shrd, 65808K buff
Swap: 1048568K av, 0K used, 1048568K free 80808K
➥cached

That’s what we want. Now it’s just a matter of feeding that directly to the mail
program, and we have a command ready to go into a crontab file:

top –b –n1 | head –9 | mail –s “top status” taylor

All that’s left is to specify the exact time constraints that will match “every day at
5 p.m.” Here’s how that would look:

0 17 * * * top -b -n1 | head -9 | mail -s “top status” taylor

We need to use 17 rather than 5 because otherwise cron can’t differentiate between
a.m. and p.m. times.

Now that this line has been added to the crontab file, the job can be loaded and
installed into the scheduler by writing the temp file out and quitting the editor (use
:wq if you’re using vi). The crontab program confirms crontab: installing
new crontab and we’re done.

5. To list the crontab file for the current user, use the –l flag:
crontab -l
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.23687 installed on Fri Mar 15 09:59:01 2002)
(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)
CRONTAB for root

Format is:
min hour day-of-month month day-of-week command

0 17 * * * top -b -n1 | head -9 | mail -s “top status” taylor

Notice that the crontab program has prefaced our material with a warning not to
edit the raw file (which is, incidentally, sitting in /var/spool/cron). That’s good
advice: If you want to change the contents of a crontab file, use the crontab com-
mand, rather than swooping directly into the /var/spool/cron directory!

290 Hour 15

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 290

6. One of the trickier characteristics of cron is that it runs commands and scripts with
a very limited PATH, so it’s quite common for it to be unable to find commands that
aren’t located in /bin. It’s a good idea, therefore, for us to make one slight change
to the existing cron job and specify the full path to the top command. This can be
done by requesting the opportunity to edit the crontab file with the –e flag, but
before we do, let’s double-check the location of top:
which top
/usr/bin/top

Armed with that information, crontab –e drops us into vi with the crontab file
displayed, albeit without the warning lines that showed up in the –l output. Here’s
how things would look once I’ve added the appropriate path for the top command:
CRONTAB for root

Format is:
min hour day-of-month month day-of-week command

0 17 * * * /usr/bin/top -b -n1 | /bin/head -9 | /bin/mail -s “top” taylor

Quitting the editor again installs the crontab file in the correct place and we’re good
to go!

7. For reference, here are some additional crontab entries. See if you can figure out
what they do (the answers are later in this hour).
crontab -l
DO NOT EDIT THIS FILE - edit the master and reinstall.
(/tmp/crontab.23687 installed on Fri Mar 15 09:59:01 2002)
(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)
CRONTAB for root

Format is:
min hour day-of-month month day-of-week command

0 17 * * * top -b -n1 | head -9 | mail -s “top status” taylor
0 5 * * * cd /web/chatter/comics; ./build-comics-page.sh > ./index.html

0 12 1 * * /home/taylor/scripts/doitall
0 0 3 8 * mail -s “happy birthday Dave” taylor@intuitive.com < birthday.note
5 5 * * Mon-Fri uptime | mail -s uptime root
23 0-23/2 * * * echo “when does this run?” | mail root
30 4 1,15 * 5 /home/taylor/scripts/when_is_it
0 9,16 * * * /home/taylor/scripts/rotatefiles

Running Jobs in the Future 291

15

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 291

The crontab system is remarkably helpful, whether you’re working on the system as a
system administrator or just a regular user, but there are some nuances to creating and
specifying times. One classic example is if you want to have a job run on, say, just
August 3 every year, your temptation might be to specify that as

* * 3 Aug * daves.birthday.script

but that would be wrong. Can you figure out what’s wrong with it?

The problem is that we haven’t constrained it to a specific hour and minute. This would
run the script every minute of the matching day, 1,440 times. Instead, simply pick a time
and specify the minute and hour, too.

System cron Jobs in /etc
Earlier in this hour, you saw the root crontab file and might have been surprised how
little was actually listed therein. On older Unix systems, the root crontab was typically
20–30 lines long, with all the nightly, weekly, and monthly administrative jobs listed.
Clearly they aren’t there any more. So where did they go?

The answer is that the rewrite of the cron system for Linux extended the service by
adding support for special directories that contain root administrative cron jobs that
should be run on an hourly, daily, weekly, or monthly basis.

Task 15.3: Exploring the Administrative cron Jobs
The directories in question are all in /etc and are logically named cron.hourly,
cron.daily, cron.weekly, and cron.monthly. What’s interesting about this approach is
that you no longer have to worry about the time specifier—if it’s in the cron.daily
directory, it’ll be run once each day by crond.

1. Let’s have a look at what’s in these directories:
ls -R /etc/cron.*
/etc/cron.d:
sysstat

/etc/cron.daily:
00-logwatch 0anacron makewhatis.cron slocate.cron tmpwatch
00webalizer logrotate rpm sysstat

/etc/cron.hourly:

/etc/cron.monthly:
0anacron

/etc/cron.weekly:
0anacron makewhatis.cron

292 Hour 15

,

,

,
TA

SK
,

21 0672323982 CH15 6/18/02 2:06 PM Page 292

The entries in /etc/cron.d are formatted as regular crontab lines; they just let
you avoid having a very large crontab file. Otherwise, all the other files are simple
shell scripts.

2. It should be easy for you to now understand what the /etc/cron.d/sysstat file
specifies, and when it should be run by the cron system:
more /etc/cron.d/sysstat
run system activity accounting tool every 10 minutes
*/10 * * * * root /usr/lib/sa/sa1 1 1

This specifies to run sal every 10 minutes.

Running Jobs in the Future 293

15

Notice how the use of comments helps you understand what’s happening.
As a general rule, you should always try to have a comment explaining your
desired frequency before each line in your crontab file.

3. The weekly cron jobs are a good place for us to start, so let’s have a peek at the
default files included with Red Hat Linux:
cd /etc/cron.weekly
more *
::::::::::::::
0anacron
::::::::::::::
#!/bin/sh
#
anacron’s cron script
#
This script updates anacron time stamps. It is called through run-parts
either by anacron itself or by cron.
#
The script is called “0anacron” to assure that it will be executed
before all other scripts.

anacron -u cron.weekly

::::::::::::::
makewhatis.cron
::::::::::::::
#!/bin/bash

LOCKFILE=/var/lock/makewhatis.lock

the lockfile is not meant to be perfect, it’s just in case the
two makewhatis cron scripts get run close to each other to keep
them from stepping on each other’s toes. The worst that will

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 293

happen is that they will temporarily corrupt the database...
[-f $LOCKFILE] && exit 0
trap “rm -f $LOCKFILE” EXIT
touch $LOCKFILE
makewhatis -w
exit 0

As is typical with these administrative scripts, both of these examples are essen-
tially a single line long each. The first, 0anacron, calls anacron –u cron.weekly,
and the second makewhatis.cron rebuilds the whatis database (used by man –k)
every week with makewhatis –w.

4. The daily scripts are more interesting, and there are more of ‘em, so let’s see if
there’s anything unusual or otherwise exemplary:
wc -l *

691 00-logwatch
8 00webalizer

12 0anacron
3 logrotate

13 makewhatis.cron
4 rpm
3 slocate.cron
5 sysstat
7 tmpwatch

746 total

The logwatch script is remarkably long at 691 lines. Otherwise, you can see that
the scripts are all quite short. A few offer interesting techniques:
cat 00webalizer
#! /bin/bash
update access statistics for the web site

if [-s /var/log/httpd/access_log] ; then
/usr/bin/webalizer

fi

This is a common construct for an admin script—if a specific data file exists, run
the program that analyzes it. In this case, it’s checking to see if the Web server
(httpd) received any hits. If it did, webalizer will produce some rudimentary log
file analysis.
cat slocate.cron
#!/bin/sh
renice +19 -p $$ >/dev/null 2>&1
/usr/bin/updatedb -f “nfs,smbfs,ncpfs,proc,devpts” -e “/tmp,/var/tmp,/
➥usr/tmp,/afs,/net”

294 Hour 15

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 294

This is a terrific example of a succinct script that is written by someone who really
understands the nuances of shell scripts. The renice command lowers the priority
of its own shell (recall $$ is the PID of the shell) as much as possible by setting it
to +19. Every other task on the system is now more important than this shell script.
The very next line does the real work by launching updatedb, which rebuilds the
locate filename database.

5. One more example, a rather sophisticated use of shell scripting and file name
expansion through patterns.
cat tmpwatch
/usr/sbin/tmpwatch 240 /tmp
/usr/sbin/tmpwatch 720 /var/tmp
for d in /var/{cache/man,catman}/{cat?,X11R6/cat?,local/cat?}; do

if [-d “$d”]; then
/usr/sbin/tmpwatch -f 720 $d

fi
done

The tmpwatch program removes files that haven’t been accessed in more than a
specified number of hours, and here you can see that it helps keep the uncom-
pressed man page directories clear of old man pages (the /cat directories). Here, it’s
expiring files more than 720 hours (30 days) old.

You can have administrative jobs run with the cron system through a number of different
ways. You can create an explicit crontab file for root, drop a new script with a time
specifier in /etc/cron.d, or write a script and place it in cron.hourly, cron.daily,
cron.weekly, or cron.monthly and let the cron system schedule it automatically.

For regular users, the only option available is crontab files, but as has been demon-
strated, they’re reasonably straightforward to create, so it’s not too onerous.

Running Jobs in the Future 295

15

Explanation of crontab Entries Presented Earlier
Every day at 5 p.m.:

0 17 * * * top -b -n1 | head -9 | mail -s “top status” taylor

Every day at 5 a.m.:

0 5 * * * cd /web/chatter/comics; ./build-comics-page.sh > ./index.html

At noon on the first day of each month:

0 12 1 * * /home/taylor/scripts/doitall

At midnight on the 3rd day of August each year:

0 0 3 8 * mail -s “happy birthday Dave” taylor@intuitive.com < birthday.note

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 295

Once in the Future with at
There’s another utility worth mentioning for scheduling jobs in the future if you only
want to do them once, rather than repeatedly—the at command. Don’t be surprised if it’s
not actually running on your system, however, especially if you have a laptop installa-
tion. As the Mac OS X default distribution states in /etc/crontab:

Disabled by default, since it causes disk access every 10 minutes,
which is useless unless you use at(1). Enable as needed.
#*/10 * * * * root /usr/libexec/atrun

Notice here that it’s also only being run every 10 minutes (*/10), so if you want to have
a job run three minutes in the future, it’s not going to be quite that precise.

Task 15.4: Working with at
The stock Red Hat Linux distribution has at enabled, so we can experiment with it
briefly before wrapping up this hour.

1. You can confirm that at is running with ps, as usual:
ps -aux | grep atd
rpcuser 605 0.0 0.1 1688 836 ? S Mar09 0:00 rpc.statd
daemon 861 0.0 0.1 1444 568 ? S Mar09 0:00 /usr/sbin/atd
root 23814 0.0 0.1 1728 584 pts/0 S 11:11 0:00 grep atd

2. To schedule a job in the future, you can specify the time in one of several ways.
Generally, you either type in the command immediately following the at specifica-
tion, or you pipe a shell script into the at command.

296 Hour 15

Monday through Friday at 5:05 a.m.:

5 5 * * Mon-Fri uptime | mail -s uptime root

Every other hour at 45 minutes after the hour:

45 0-23/2 * * * echo “when does this run?” | mail root

This one’s tricky: cron matches either the day of week or the day of month if both are
specified, so this says at 4:30 a.m. on the first of the month, 15th of the month, and every
Friday (day = 5):

30 4 1,15 * 5 /home/taylor/scripts/when_is_it

Twice daily at 9 a.m. and 4 p.m.:

0 9,16 * * * /home/taylor/scripts/rotatefiles

,
TA

SK
,

21 0672323982 CH15 6/18/02 2:06 PM Page 296

In all these cases, let’s kick off fquota, as discussed earlier in the book in Hour 12,
“Managing Disk Quotas”:
at midnight < ~/bin/fquota
Job a01027320.000 will be executed using /bin/sh
at teatime < ~/bin/fquota
Job a01027140.000 will be executed using /bin/sh
at 5:18pm < ~/bin/fquota
Job a0102718e.000 will be executed using /bin/sh
at noon Aug 3 < ~/bin/fquota
Job a01058934.000 will be executed using /bin/sh
at noon tomorrow < ~/bin/fquota
Job a010275f0.000 will be executed using /bin/sh

Running Jobs in the Future 297

15

Yes, teatime is a valid time! It’s 4 p.m., for those of you that don’t already
know. Ain’t Unix fun?

3. With all these injected into the system, the atq command shows what’s queued
to run:
atq
Date Owner Queue Job#
16:00:00 03/15/02 root a a01027140.000
17:18:00 03/15/02 root a a0102718e.000
00:00:00 03/16/02 root a a01027320.000
12:00:00 03/16/02 root a a010275f0.000
12:00:00 08/03/02 root a a01058934.000

Notice that the last job isn’t scheduled for quite a while. In fact, it’s five months
away.

4. If you decide to give up on that job, you can remove an at job with atrm:
atrm a01058934.000
#

As with kill and so many other Unix commands, atrm doesn’t confirm success, it
only flags failure.
atq
Date Owner Queue Job#
16:00:00 03/15/02 root a a01027140.000
17:18:00 03/15/02 root a a0102718e.000
00:00:00 03/16/02 root a a01027320.000
12:00:00 03/16/02 root a a010275f0.000

In the interest of fair disclosure, I have been using Unix systems since my first login in
1980. In all those years, when I’ve administered a variety of large and small systems, I

,

,

21 0672323982 CH15 6/18/02 2:06 PM Page 297

have never once used the at command. It’s simple and elegant, but I have always found
that I either want to do jobs once, now, or with some frequency in the future through
cron. Your mileage will undoubtedly vary, but you may well never use at in your Unix
work.

Summary
Though not as exciting as H.G. Wells’ The Time Machine, this hour has focused on Unix
tools that allow you to execute commands either once in the future (with at), or on a
repeating basis (with cron). There are hidden depths to cron, so this hour also explored
the configuration along with hourly, daily, weekly, and monthly scheduled system jobs.

Q&A
Q Why can’t crontab accept time formats like 5:00pm Sundays?

A Date parsing is quite a challenge on computer systems, actually. Some applications
have lots and lots of code trying to offer a highly flexible date input format. The
cron system isn’t one of those, alas. It’d be nice to either have a smarter cron, or a
front end that would let you specify things in English and translate them to the
five-field crontab format, but as far as I have encountered, they don’t exist.

Q Earlier you commented that having all crontab files owned by root isn’t a
security risk. Can you expand upon that comment?

A One of the important things to realize about cron is that it runs all jobs with an
effective UID of the owner of the crontab, not the crontab file owner (which is
root). Some Unix users don’t really get this and think that because the crond pro-
gram is running as root, therefore all cron jobs will run as root, too. It’s not true.

Workshop
Quiz

1. Does crontab expect hour minute or minute hour format?

2. How do you delete a crontab file if you no longer need it?

3. Will this work as an hour specifier: 0,3,6-9,11-19/2? If so, what does it mean?

4. There’s a common problem in many first time crontab entries. What is it, and how
do you fix it?

5. When is teatime according to at?

298 Hour 15

21 0672323982 CH15 6/18/02 2:06 PM Page 298

Answers
1. The crontab file specifies minute hour as the first two fields of a time specifier.

2. The command crontab –r removes a crontab file forever.

3. It sure will, complex as it is. It matches the following enumerated list:
0,3,6,7,8,9,11,13,15,17,19.

4. The problem is that the PATH used by the cron program is almost certainly different
from your login shell. To sidestep this problem, always specify full pathnames for
commands referenced within the crontab line, and within any shell scripts invoked
by cron on your behalf.

5. As my Mum and Dad would most certainly confirm, teatime in all civilized coun-
tries is 4 p.m. Precisely.

In the next hour, we’ll see some practical uses for cron by analyzing and managing the
growth of the many log files in Unix. We’ll also learn about a nifty new utility called
logrotate in Linux, and how to simulate it in other Unixes.

Running Jobs in the Future 299

15

21 0672323982 CH15 6/18/02 2:06 PM Page 299

21 0672323982 CH15 6/18/02 2:06 PM Page 300

HOUR 16
Managing Your Log Files

One of the most important tasks for a system administrator is to keep an eye
on system and disk space. Earlier we spent some time exploring df, du, and
find, and learned how they can be used to better understand the allocation
of disk space on your system.

In this hour, we’ll delve into the specific log files used by the different Unix
services, learn how to analyze them to flag any potential problems, and how
to keep them from overrunning your disk.

In this hour you learn about

• Exploring the contents of log files

• Tracking hackers through log events

• Cracking open the httpd log file

• Trimming log files with logrotate

• Building your own log rotation tool

22 0672323982 ch16 6/25/02 11:06 AM Page 301

Understanding Log Files
Whether it’s the boot process itself, the FTP server, the mail server, or any other service
running on your computer, if it does something or someone interacts with it, the event is
logged. Some services have their own log files, but many use a shared central log mecha-
nism called syslog. syslog writes all messages to a log file typically called either mes-
sages or syslog.

Unix flavors vary on where they put log files, but generally you’ll find them all in
/var/log by default.

Task 16.1: Rummaging Around in Log Files
Different systems have a different number of log files, based both on how many services
are running and how the logging for each service is configured.

1. First, a peek at the /var/log directory:
ls -s
total 1836

0 boot.log 63 ksyms.2 0 pgsql 0 spooler.3
0 boot.log.1 63 ksyms.3 18 rpmpkgs 0 spooler.4
5 boot.log.2 63 ksyms.4 18 rpmpkgs.1 1 squid
0 boot.log.3 63 ksyms.5 18 rpmpkgs.2 1 vbox
0 boot.log.4 63 ksyms.6 18 rpmpkgs.3 42 wtmp

51 cron 20 lastlog 18 rpmpkgs.4 40 wtmp.1
257 cron.1 2 maillog 1 sa 0 xferlog
253 cron.2 5 maillog.1 1 samba 0 xferlog.1
254 cron.3 4 maillog.2 1 secure 0 xferlog.2
252 cron.4 3 maillog.3 5 secure.1 0 xferlog.3
11 dmesg 3 maillog.4 4 secure.2 0 xferlog.4
1 fax 1 messages 2 secure.3 23 XFree86.0.log
1 gdm 6 messages.1 1 secure.4 24 XFree86.9.log
1 httpd 26 messages.2 0 spooler

63 ksyms.0 2 messages.3 0 spooler.1
63 ksyms.1 1 messages.4 0 spooler.2

Notice that files have version number suffixes. As you’ll learn later in this hour,
this indicates that they’re being rotated—the higher the number, the older the file.
The version that has no version identification is the current log file.

2. The most basic log file is syslog’s file, and on a Linux box, it’s called
/var/log/messages.
grep “^Mar 11” messages
Mar 11 00:13:23 staging su(pam_unix)[12835]: session closed for user root
Mar 11 00:14:14 staging sshd(pam_unix)[12796]: session closed for user taylor
Mar 11 04:02:18 staging syslogd 1.4.1: restart.
Mar 11 11:19:32 staging sshd(pam_unix)[14368]: session opened for user taylor
➥ by (uid=0)
Mar 11 14:09:06 staging su(pam_unix)[14539]: session opened for user root by
➥taylor(uid=502)

302 Hour 16

,
TA

SK
,

22 0672323982 ch16 6/25/02 11:06 AM Page 302

Mar 11 16:02:05 staging sshd(pam_unix)[14716]: session opened for user taylor
➥by (uid=0)
Mar 11 16:28:10 staging sshd(pam_unix)[14716]: session closed for user taylor
Mar 11 16:28:19 staging su(pam_unix)[14539]: session closed for user root
Mar 11 16:28:21 staging sshd(pam_unix)[14368]: session closed for user taylor

This is a list of all logged messages for March 11, 2002. Not too exciting, but you
can see that su logs events and that the sshd (ssh daemon) logs when users connect
and disconnect.

Looking at the contents of this file, we can ascertain that user taylor was logged in
until 00:14 when the sshd session ended, and that there was also an su session alive
(as root) when the clock rolled over to the March 11. At 4:02 a.m., syslogd
restarted, and user taylor logged in twice that day, once at 11:19 a.m. and a second
time at 4:02 p.m. (16:02). During that time, taylor switched to root and left a root
shell running from 11:19 a.m. to 4:28 p.m. (16:28).

A quick look in earlier log files by searching for Mar 10 will identify the initial su,
to see if that was also from taylor:
grep “^Mar 10” messages.1 | grep ‘su’
Mar 10 23:39:49 staging su(pam_unix)[12835]: session opened for user root by
➥taylor(uid=502)

Sure enough, at 11:39 p.m., taylor used the su command to become root.

3. Perhaps more important than unthreading the logins for a given day is to scan for
any potential security problems. One obvious one: Did anyone try to use the su
facility and fail to log in?
grep “su(“ message* | grep -vE ‘(session opened|session closed)’
messages:Mar 18 12:52:14 staging su(pam_unix)[5330]: authentication failure;
➥logname=taylor uid=502 euid=0 tty= ruser= rhost= user=root
messages.1:Mar 12 20:56:09 staging su(pam_unix)[17297]: authentication failure;
➥logname=taylor uid=502 euid=0 tty= ruser= rhost= user=root
messages.3:Feb 23 21:09:16 staging su(pam_unix)[15552]: authentication failure;
➥logname=taylor uid=502 euid=0 tty= ruser= rhost= user=taylorsu

You can see that in the time window that includes all the logged events, there were
three failed su attempts, on February 23, March 12, and March 18, all by user
taylor. Two were attempts to become root, and one to become taylorsu.

You can also verify that all the sus that succeeded were from known users by building
a quick summary and using the helpful uniq utility to see what differences there were:
grep ‘session opened’ message* | awk ‘{print $12 “ became “ $10 }’ | \
sort | uniq -c

2 taylor(uid=0) became taylor
15 taylor(uid=502) became root
2 taylor(uid=502) became taylorsu
4 (uid=0) became judi

35 (uid=0) became taylor

Managing Your Log Files 303

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 303

It’s a bit complex, but we extract all the “session opened” messages, strip out the
From and To account information, and output a simple three-word value. Then sort
ensures they’re in order, and uniq –c counts unique occurrences of each string and
outputs a single line for each unique string, prefaced with a repeat count. The second
line, for example, shows that taylor used the su utility to become root 15 times.

4. On a Mac OS X system, by contrast, the syslog file is known as system.log, and
it contains all sorts of interesting information. For example, wonder what happens
when your system goes to sleep and wakes up again?
Mar 18 11:35:02 dsl-132 mach_kernel: UniNEnet: 0 0 UniNEnet::

putToSleep - turning off cell clock!!!
Mar 18 11:35:02 dsl-132 mach_kernel: System Sleep
Mar 18 11:35:02 dsl-132 mach_kernel: System Wake
Mar 18 11:35:02 dsl-132 mach_kernel: Wake event 0020

More usefully, both su and sudo are logged here:
grep “su:” system.log
Mar 15 09:42:38 dsl-132 su: taylor to root on /dev/ttyp1
grep “sudo:” system.log
Mar 11 22:02:45 dsl-132 sudo: taylor : TTY=ttyp1 ; PWD=/Users/taylor/bin ;
USER=root ; COMMAND=./docron weekly

Mar 11 22:05:14 dsl-132 sudo: taylor : TTY=ttyp2 ; PWD=/Users/taylor ;
USER=root ; COMMAND=/bin/ls /

There’s no evidence of any users other than taylor running su or sudo in this log
file.

304 Hour 16

,

You can easily figure out what period of time is recorded in a log file by
looking at the first and last lines:

head -1 system.log ; tail -1 system.log
Mar 11 22:02:28 dsl-132 syslogd: restart
Mar 18 12:20:58 dsl-132 WindowServer[65]: CGXGetWindowLevel:
Invalid window 623

Here you can see that this represents approximately one week: 10:02 p.m.
on March 11 through 12:20 p.m. on March 18.

5. The next log file to examine is boot.log, which shows you all the messages out-
put to the screen during boot-time. Because most Unix systems aren’t booted every
day (hopefully!), this will often be empty, as you can see in the ls listing in step 1.
head -20 boot.log.2
Feb 25 22:44:42 staging atd: atd shutdown succeeded
Feb 25 22:44:44 staging httpd: httpd shutdown succeeded
Feb 25 22:44:44 staging sshd: sshd -TERM succeeded,

22 0672323982 ch16 6/25/02 11:06 AM Page 304

Feb 25 22:44:44 staging sendmail: sendmail shutdown succeeded
Feb 25 22:44:44 staging xinetd: xinetd shutdown succeeded
Feb 25 22:44:44 staging crond: crond shutdown succeeded
Feb 25 22:44:45 staging dd: 1+0 records in
Feb 25 22:44:45 staging dd: 1+0 records out
Feb 25 22:44:45 staging random: Saving random seed: succeeded
Feb 25 22:44:45 staging nfslock: rpc.statd shutdown succeeded
Feb 25 22:44:45 staging portmap: portmap shutdown succeeded
Feb 25 22:44:46 staging syslog: klogd shutdown succeeded
Feb 25 22:47:37 staging syslog: syslogd startup succeeded
Feb 25 22:47:37 staging syslog: klogd startup succeeded
Feb 25 22:47:37 staging portmap: portmap startup succeeded
Feb 25 22:47:37 staging nfslock: rpc.statd startup succeeded
Feb 25 22:47:11 staging rc.sysinit: Mounting proc filesystem: succeeded
Feb 25 22:47:11 staging rc.sysinit: Unmounting initrd: succeeded
Feb 25 22:47:11 staging sysctl: net.ipv4.ip_forward = 0
Feb 25 22:47:11 staging sysctl: net.ipv4.conf.default.rp_filter = 1

These messages document a system shutdown (or change in init state that
required a set of shutdown events prior to starting up new services) on February
25. Probably most important things to look for are errors, warnings, and similar:
grep -E ‘(warning|error|crit|fail)’ boot.log*
#

Nothing’s wrong. Terrific!

6. By contrast, checking the syslog file on Solaris 8 (Solaris doesn’t have a separate
boot log file; all information about booting goes into syslog) with the same regu-
lar expression reveals:
egrep ‘(warning|error|crit|fail)’ syslog
Jan 14 22:36:35 solaris sendmail[347]: [ID 702911 mail.crit] My unqualified
➥host
name (solaris) unknown; sleeping for retry

Jan 15 00:06:08 solaris sendmail[223]: [ID 702911 mail.crit] My unqualified
➥host
name (solaris) unknown; sleeping for retry

Jan 15 00:34:43 solaris sendmail[224]: [ID 702911 mail.crit] My unqualified
➥host
name (solaris) unknown; sleeping for retry

Clearly there’s a problem with sendmail resolving its own name at boot-time. This
is something well worth exploring further, and ultimately fixing.

Managing Your Log Files 305

16

,

Any theory on what might be wrong based on the sendmail error shown in
the Solaris log file? My guess is that somewhere we need to set the host-
name properly and aren’t. Clearly solaris isn’t a good unqualified host-
name, and isn’t going to reverse DNS lookup properly.

,

22 0672323982 ch16 6/25/02 11:06 AM Page 305

7. Let’s quickly look through some of the other log files to understand what’s going on:
head -5 cron
Mar 17 04:05:00 staging CROND[27157]: (root) CMD
(/usr/bin/mrtg /etc/mrtg/mrtg.cfg)

Mar 17 04:10:00 staging CROND[27160]: (root) CMD
(/usr/bin/mrtg /etc/mrtg/mrtg.cfg)

Mar 17 04:10:00 staging CROND[27161]: (root) CMD
(/usr/lib/sa/sa1 1 1)

Mar 17 04:15:00 staging CROND[27164]: (root) CMD
(/usr/bin/mrtg /etc/mrtg/mrtg.cfg)

Mar 17 04:20:00 staging CROND[27167]: (root) CMD
(/usr/bin/mrtg /etc/mrtg/mrtg.cfg)

As expected, the cron log file shows commands and actions taken by the crond
daemon. In parenthesis it shows the user account, and also shows the command. If
you think someone is using a cron-based program to try and break security, it’ll be
logged here.

8. If you’re ready to become paranoid about people trying to get to your computer,
have a look at xferlog or ftp.log, depending on your OS. On my Mac OS X
server, for example, the log file shows
cat ftp.log | grep -v taylor
Jan 21 12:24:36 dsl-132 ftpd[369]: connection from dsl-155.dsldesigns.com
Jan 21 12:24:40 dsl-132 ftpd[369]: FTP LOGIN REFUSED
FROM dsl-155.dsldesigns.com, root

Jan 21 12:28:06 dsl-132 ftpd[390]: connection from 63.101.93.250
Jan 21 12:35:40 dsl-132 ftpd[412]: connection from dsl-155.dsldesigns.com
Jan 21 19:44:24 dsl-132 ftpd[491]: connection from 63.101.93.250
Jan 21 19:45:28 dsl-132 ftpd[492]: connection from dsl-155.dsldesigns.com
Jan 21 20:00:39 dsl-132 ftpd[516]: connection from 63.101.93.250
Jan 22 09:45:04 dsl-132 ftpd[332]: connection from webpac.clemson.edu
Jan 22 12:27:23 dsl-132 ftpd[460]: connection from 63.101.93.250
Jan 22 12:34:18 dsl-132 ftpd[461]: connection from 63.101.93.250
Jan 24 18:00:40 dsl-132 ftpd[369]: connection from dsl-151.dsldesigns.com
Jan 26 22:44:59 dsl-132 ftpd[927]: connection from dsl-155.dsldesigns.com
Jan 29 18:27:33 dsl-132 ftpd[359]: connection from 157.161.112.208
Jan 29 21:48:12 dsl-132 ftpd[378]: connection from
port-212-202-160-251.reverse.qdsl-home.de

Jan 29 21:48:13 dsl-132 ftpd[378]: ANONYMOUS FTP LOGIN REFUSED
FROM port-212-202-160-251.reverse.qdsl-home.de

Feb 6 12:10:23 dsl-132 ftpd[525]: connection from 199.88.128.27
Feb 6 15:54:41 dsl-132 ftpd[554]: connection from pd955f64e.dip.t-dialin.net
Feb 6 21:52:56 dsl-132 ftpd[605]: connection from pd955f64e.dip.t-dialin.net
Feb 6 21:52:58 dsl-132 ftpd[605]: ANONYMOUS FTP LOGIN REFUSED
FROM pd955f64e.dip.t-dialin.net

Feb 7 00:01:09 dsl-132 ftpd[612]: connection from maptech-inc.com
Feb 7 00:01:12 dsl-132 ftpd[613]: connection from maptech-inc.com
Feb 7 00:01:21 dsl-132 ftpd[614]: connection from maptech-inc.com

306 Hour 16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 306

There are no files available to the general public, and the IP address of our system
is not advertised anywhere. How these sites are finding our system is a mystery,
but what’s not a mystery is that they’re trying to connect and log in.

This is an obvious attempt to break the security on our system, so it’s a good time
to turn the ftpd program off until I’m ready to re-enable it. In Mac OS X, the
fastest way to do this is to go into the System Preferences, Sharing control panel
and uncheck Enable FTP Access. That not only turns it off from future activity, but
kills the currently running ftpd as well.

9. Another log file worth keeping an eye on is maillog, which records all electronic
mail transactions as they occur. If I send a quick e-mail message to myself, for
example, the following two lines are written out to the file:
tail -2 maillog
Mar 18 14:24:35 staging sendmail[5459]: g2IMOZb05459: from=root, size=58,
class=0, nrcpts=1, msgid=<200203182224.g2IMOZb05459@staging.intuitive.com>,
relay=root@localhost

Mar 18 14:24:52 staging sendmail[5462]: g2IMOZb05459: to=taylor@intuitive.com,
ctladdr=root (0/0), delay=00:00:17, xdelay=00:00:17, mailer=esmtp, pri=30058,
relay=mail-fwd.verio-web.com. [161.58.148.40], dsn=2.0.0,
stat=Sent (036711929 Message accepted for delivery)

Lots of stuff, but most importantly notice that the two lines can be matched with
the jobID (g2IMOZb05459), and that the first entry indicates from= and the second
indicates to=. Without any fancy footwork, we can sort by field value, then extract
the from= and to= values to see what’s going on:
sort –k6 maillog* | awk ‘{print $7 }’ | grep -v root | grep ‘@’
to=taylor@intuitive.com,

It’s a bit complex, but this pipe extracts all the from= and to= values from the log
file, strips out mail sent to or from root, then reports all off-system addresses. As
expected on this server, only one message has been sent.

There are a lot of log files to keep track of, no question, and there are important snip-
pets of information in each. It’s well worth your time to explore each file and keep
returning to each as your system runs to begin to understand what’s contained within
them.

Tracking a Hacker
One common thing you’ll find in your log files is that there are weird and surprising
entries. Let’s try to track one backward and see if we can ascertain what’s going on.

Managing Your Log Files 307

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 307

Task 16.2: Tracking Backward
Although some Unix systems have all their log entries dropped into the syslog file,
Linux offers a different, and helpful, log file called secure that contains all security-
related log events.

1. On Linux, there’s a very important log file called secure, and it’s well worth look-
ing at its contents:
head secure
Mar 10 10:22:14 staging sshd[12114]: Did not receive identification
string from 208.37.77.153.

Mar 10 22:27:39 staging sshd[12659]: Could not reverse map address
198.76.82.132.

Mar 10 22:27:42 staging sshd[12659]: Accepted password for taylor
from 198.76.82.132 port 49154 ssh2

Mar 10 23:39:43 staging sshd[12796]: Accepted password for taylor
from 198.76.82.132 port 49156 ssh2

Mar 11 11:19:29 staging sshd[14368]: Could not reverse map address
198.76.82.132.

Mar 11 11:19:32 staging sshd[14368]: Accepted password for taylor
from 198.76.82.132 port 49152 ssh2

Mar 11 16:02:00 staging sshd[14716]: Could not reverse map address
198.76.82.132.

Mar 11 16:02:05 staging sshd[14716]: Accepted password for taylor
from 198.76.82.132 port 49153 ssh2

Mar 11 17:15:38 staging sshd[14891]: Did not receive identification
string from 129.132.250.236.

Mar 12 15:01:13 staging sshd[16846]: Could not reverse map address
198.76.82.132.

This logs all security-related events, including sshd connections. As you can see,
taylor logged in from 198.76.82.132 (a known IP address), but there was also a
connection from 208.27.77.153.

The host command can do reverse IP mapping, so given an IP address, we can
ascertain its domain:
host -dv 208.37.77.153
;; res_nmkquery(QUERY, 153.77.37.208.IN-ADDR.ARPA., IN, PTR)
;; res_send()
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65086
;; flags: rd; QUERY: 1, ANSWER: 0, AUTHORITY: 0, ADDITIONAL: 0
;; 153.77.37.208.IN-ADDR.ARPA, type = PTR, class = IN
;; Querying server (# 1) address = 192.216.138.10
;; new DG socket
;; got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 65086
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 4, ADDITIONAL: 0

308 Hour 16

,
TA

SK
,

22 0672323982 ch16 6/25/02 11:06 AM Page 308

;; 153.77.37.208.IN-ADDR.ARPA, type = PTR, class = IN
153.77.37.208.IN-ADDR.ARPA. 2H IN PTR w153.z208037077.nyc-ny.dsl.cnc.net.
77.37.208.IN-ADDR.ARPA. 2H IN NS nameserver3.concentric.net.
77.37.208.IN-ADDR.ARPA. 2H IN NS nameserver.concentric.net.
77.37.208.IN-ADDR.ARPA. 2H IN NS nameserver1.concentric.net.
77.37.208.IN-ADDR.ARPA. 2H IN NS nameserver2.concentric.net.
rcode = 0 (Success), ancount=1
The following answer is not authoritative:
The following answer is not verified as authentic by the server:
153.77.37.208.IN-ADDR.ARPA 7200 IN PTR w153.z208037077.nyc-ny.dsl.cnc.net
For authoritative answers, see:
77.37.208.IN-ADDR.ARPA 7200 IN NS nameserver3.concentric.net
77.37.208.IN-ADDR.ARPA 7200 IN NS nameserver.concentric.net
77.37.208.IN-ADDR.ARPA 7200 IN NS nameserver1.concentric.net
77.37.208.IN-ADDR.ARPA 7200 IN NS nameserver2.concentric.net

The resolved name is buried in the middle of this information:
w153.z208037077.nyc-ny.dsl.cnc.net.

2. The next step is to look up the complete domain registration record:
whois -r cnc.net
[whois.crsnic.net]

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

Domain Name: CNC.NET
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com
Referral URL: http://www.networksolutions.com
Name Server: NAMESERVER.CONCENTRIC.NET
Name Server: NAMESERVER3.CONCENTRIC.NET
Updated Date: 05-nov-2001

>>> Last update of whois database: Tue, 19 Mar 2002 05:21:50 EST <<<

[whois.networksolutions.com]

Registrant:
Concentric Network Corporation (CNC6-DOM)

1400 Parkmoor Avenue
San Jose, CA 95126-3429

Domain Name: CNC.NET

Managing Your Log Files 309

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 309

Administrative Contact:
Schairer, David R (DRS9) njal@CONCENTRIC.NET
Concentric Network Corp.
1400 Parkmoor Ave
Cupertino, CA 95014
(408) 817-2800 (800) 745-2747 ext. 2800 (FAX) (408) 817-2630

Technical Contact:
DNS & IP ADMIN (DIA-ORG) hostmaster@CONCENTRIC.NET
Concentric Network Corporation
1400 Parkmoor Avenue
San Jose, CA 95126-3429
(408) 817-2800
Fax- (408) 817-2630

Billing Contact:
XO Communications, Hostmaster (CNCXCH-ORG) hostmaster@XOHOST.COM
XO Communications
1400 Parkmoor Ave
San Jose, CA 95126
408-817-2800
Fax- 408-817-2810

Record last updated on 02-Mar-2001.
Record expires on 06-Mar-2004.
Record created on 05-Mar-1997.
Database last updated on 18-Mar-2002 22:31:00 EST.

Domain servers in listed order:

NAMESERVER3.CONCENTRIC.NET 206.173.119.72
NAMESERVER2.CONCENTRIC.NET 207.155.184.72

Concentric Networks is a large ISP based in Northern California.

3. We’ll send them an e-mail message, but, alas, I don’t expect any sort of meaningful
response:
mail –s “One of your customers was trying to hack into my system”
abuse@cnc.net
Hello. I have tracked backward and found that one of the computers in
your domain (w153.z208037077.nyc-ny.dsl.cnc.net) was trying to hack into my
Linux server. In the “/var/log/secure” log file, I find the following message
from ‘sshd’:

Mar 10 10:22:14 staging sshd[12114]: Did not receive identification string
from 208.37.77.153.

A reverse lookup of that IP address returns:

153.77.37.208.in-addr.arpa. domain name pointer w153.z208037077.nyc-ny.dsl.
➥cnc.net.

310 Hour 16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 310

Can you please work backward in your usage logs to ascertain what computer has
the specified IP address of 208.37.77.153, and identify the culprit?
Needless to say, I don’t want people port-scanning my server!

Thanks for your assistance on this matter.

Dave Taylor
taylor@intuitive.com
.

4. About 15 minutes later, we receive the following:
The original message was received at Tue, 19 Mar 2002 13:46:52 -0500 (EST)

----- The following addresses had permanent fatal errors -----
abuse@cncx.net

(expanded from: <abuse@cnc.net>)

----- Transcript of session follows -----
550 abuse@cncx.net... Host unknown (Name server: cncx.net: host not found)

Oh well, at least we can see how to work backward in our log files, and at least we
tried….

It’s not uncommon to find people trying to probe your ports: Indeed, it’s a matter of five
minutes of shell programming to write a “port scanner” that will pick an IP address, then
see what Internet services, if any, are listening. Once that’s ascertained, there are tools
available to try and break in using a specific service “exploit.”

If it sounds a bit depressing, it should. The best thing you can do for security is to ensure
that your system is properly configured, that you keep an eye on your log files, that you
have a properly configured firewall, and that you have reliable backups just in case.

There are also some very good books about Unix security, three of which I’ll highlight
here:

Hacking Linux Exposed by Brian Hatch et al. (McGraw-Hill) has a good explanation of
what hackers do to try and gain entry into your system, though at the expense of less
coverage of how to avoid the problem in the first place.

Practical Unix and Internet Security by Simson Garfinkel and Gene Spafford (O’Reilly)
is more academic, but a definitive reference on this topic.

Maximum Linux Security by Anonymous (Sams) is another option. A quick search on
Amazon or Barnes & Noble will reveal quite a few other choices if none of these jump
out at you.

We’ll return to the topic of security again in the last hour.

Managing Your Log Files 311

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 311

The httpd Log File
There’s another log file that is well worth exploring in some detail, as it’s often the main
purpose for a Unix server in the first place: the Web server log.

There are different Web servers available, but by far the most popular is Apache, a freely
distributed HTTP daemon that offers remarkable flexibility, power, and configurability. It
is included on just about every modern Unix distribution, and you can download the
Apache distribution at www.apache.org.

Task 16.3: Exploring the httpd Log File
The last log file we’ll examine in this hour is the Apache Web server log file, actually a
set of files all stored in /var/log/httpd.

1. Here’s what’s typically in that directory:
cd /var/log/httpd
ls -s
total 984
35 access_log 3 error_log 1 ssl_engine_log 0 ssl_request_log
252 access_log.1 32 error_log.1 0 ssl_mutex.19348 0 ssl_scache.sem
217 access_log.2 44 error_log.2 0 ssl_mutex.4700
141 access_log.3 27 error_log.3 0 ssl_mutex.627
188 access_log.4 44 error_log.4 0 ssl_mutex.641

To make things more interesting, however, we’ll analyze the log files from a busier
Web server with larger log files:
ls -s
total 4200
2594 access_log 654 agent_log 33 error_log 919 referer_log

2. The first snippet of information you would like to extract from your log files is a
count of hits, which proves remarkably easy to do:
wc -l access_log
12384 access_log

12,384 hits, but in what period of time? Again, just look at the first and last lines of
the log file to find out:
head -1 access_log ; tail -1 access_log
centaurus.4web.cz - - [18/Mar/2002:00:09:53 -0500] “GET / HTTP/1.0” 200
➥229 “-” “Woko robot 3.0”
node-c-c10f.a2000.nl - - [18/Mar/2002:18:05:05 -0500] “GET
[ic:cc]/taylor/Graphics/biohazard.gif HTTP/1.1” 200 5330
“http://forum.fok.nl/showtopic.php/119057/1/50” “Mozilla/4.0 (compatible;
➥MSIE 6.0; Windows 98)”

312 Hour 16

,
TA

SK
,

22 0672323982 ch16 6/25/02 11:06 AM Page 312

This represents all usage between midnight and 6:05 p.m., a total of 18 hours. This
means that this server is seeing a respectable, but not overwhelming, 688 (12384÷18)
hits per hour, or 11.4 (688÷60) hits per minute.

3. To extract more information from this log file, a quick summary of the log file for-
mat is required. I won’t explain everything in this hour (we’ll look at Apache in
more detail later in the book), but here’s the essential field layout:

visitor-domain - - date&time timezone operation URL – return-code

➥bytes-sent ...

With this information, we can quickly extract interesting information, like what
domains account for the greatest number of hits:
awk ‘{print $1}’ access_log | sort | uniq -c | sort -rn | head -10

305 193.190.216.249
208 pc03.wimbp.zgora.pl
175 164.156.231.55
145 204.185.56.252
117 216.35.169.126
110 slb-proxy-03.boeing.com
84 194.131.98.235
78 216-203-142-177.customer.algx.net
75 61.11.78.180
70 209.248.92.29

Again, the hosts command can do a reverse lookup for the topmost domain:
host -dv 193.190.216.249 | grep “IN SOA”
216.190.193.IN-ADDR.ARPA. 2h59m40s IN SOA www.senate.be. sysadmin.senate.be.

A computer in the Belgian Senate accounts for more traffic than any other system
visiting the Web site in this 18 hour window. Surprised?
host -dv 164.156.231.55 | grep “IN SOA”
156.164.IN-ADDR.ARPA. 3H IN SOA jasper.cmic.state.pa.us. security.
➥state.pa.us

IP address number three is the Pennsylvanian office of Social Security!

4. Another common query to the Apache log file is about what URLs are most com-
monly requested. This is easy to calculate when you notice that field seven is the
requested URL:
awk ‘{print $7}’ access_log | sort | uniq -c | sort -rn | head

1334 /cgi-local/etymologic.cgi
699 /cgi-local/trivial.cgi
508 /
437 /taylor/Graphics/biohazard.gif
219 /sites/trivial/Graphics/kudos.gif
217 /sites/trivial/Graphics/intsys.gif
213 /sites/etymologic/Graphics/bottom-bar.gif
212 /sites/etymologic/Graphics/top-bar.gif
204 /sites/etymologic/Graphics/bonus-com.gif
203 /sites/etymologic/Graphics/linkbw2.gif

Managing Your Log Files 313

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 313

5. Many users like to keep track of the entire number of bytes sent from their server
to calculate the approximate percentage of bandwidth utilized per day. This is field
ten, and the analysis is easier than the earlier examples:
awk ‘{ sum += $10} END { print “total = “ sum/1024 “ Kb” }’ access_log
total = 41583.9 Kb

This equates to a reasonable transfer rate of 2.25MB/hour (41583÷18)÷1024.

6. The other log files are also worth a quick peek. The agent_log is just the Web
browser identification string from each visitor:
head agent_log
Woko robot 3.0
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
Woko robot 3.0
Mozilla/4.0 (compatible; MSIE 5.0; AOL 7.0; Windows 98; DigExt)
Mozilla/4.0 (compatible; MSIE 5.0; AOL 7.0; Windows 98; DigExt)

314 Hour 16

,

Fair warning: Some Apache Web server configurations don’t record this
information, and others only include it in the access_log.

Again, the powerful combination of sort|uniq -c|sort -rn|head will reveal the
most commonly used browsers:
sort agent_log | uniq -c | sort -rn | head

1049 Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt)
816 Mozilla/4.0 (compatible; MSIE 6.0; Windows 98)
732 Mozilla/4.0 (compatible; MSIE 5.01; Windows NT 5.0)
619 Mozilla/4.0 (compatible; MSIE 5.5; Windows 98; Win 9x 4.90)
604 Mozilla/4.0 (compatible; MSIE 5.5; Windows 98)
438 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
434 Mozilla/4.0 (compatible; MSIE 5.01; Windows 98)
333 Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 4.0)
326 Mozilla/5.0 (Windows; U; WinNT4.0; en-US; rv:0.9.4)

➥Gecko/3 Netscape6/6.2
287 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)

Given that any agent with MSIE in its string is Microsoft Internet Explorer, this
shows quite graphically that Internet Explorer certainly does lead the Web browser
pack by quite a margin (of the 5,638 browser agents listed in this top ten list, all
but 326 (5.7%) are MSIE).,

22 0672323982 ch16 6/25/02 11:06 AM Page 314

7. The referrer_log is somewhat interesting, but it takes a bit of data massaging to
see what’s really inside. The file contains a list of the last URL someone was at
before visiting a Web site on this server:
head -5 referer_log
http://search.yahoo.com/search/msie?o=1&m=i&a=fd&p=trivia+games&b=121&h=s -> /
http://www.intuitive.com/sites/trivial/index.html ->
➥/sites/trivial/Graphics/intsys.gif
http://www.intuitive.com/sites/trivial/index.html ->
➥/sites/trivial/Graphics/play-the-game.gif
http://www.intuitive.com/sites/trivial/index.html ->
➥/sites/trivial/Graphics/kudos.gif
http://www.intuitive.com/sites/trivial/index.html ->
➥/sites/trivial/Graphics/animated-banner.gif

The problem is that many of these URLs prove to be quite long, thus preventing us
from doing any meaningful analysis because the URL includes a timestamp, ses-
sion ID, and so on.

Instead, cut lets us chop out just the base domain name and see what we find:
cut -d/ -f3 referer_log | sort | uniq -c | sort -rn | head

9589 www.intuitive.com
164 www.google.com
116 pub43.ezboard.com
115 pub44.ezboard.com
107 forum.fok.nl
48 search.msn.com
47 search.yahoo.com
39 www.dancing.baby.net
34 www.yellow.baby.net
34 images.google.com

Some very interesting results!

8. The final log file is error_log, and here again, we’re going to see security prob-
lems as people try to break into our server:
head –4 error_log
[Mon Mar 18 00:14:54 2002] [error] [client 66.77.73.219] File does
➥not exist: /w/web/intui2/robots.txt
[Mon Mar 18 00:30:47 2002] [error] [client 198.107.235.65] File does
➥not exist: /u/web/intui2/custer
[Mon Mar 18 00:34:45 2002] [error] [client 12.233.27.11] File does
➥not exist: /u/web/intui2/robots.txt
[Mon Mar 18 01:11:07 2002] [error] [client 64.128.250.173] File does
➥not exist: /u/web/intui2/OLD/Images/social-guide-title.gif

Again, you can see that the format is very uniform, so you can easily search for
does not exist, extract the actual requested file, sort|uniq it, and have a list of
the most common incorrect references:
grep “does not exist” error_log | awk ‘{print $13}’ | sort | \
uniq -c | sort -rn | head

Managing Your Log Files 315

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 315

34 /u/web/intui2/custer
26 /u/web/intui2/robots.txt
17 /u/web/intui2/origins/
15 /u/web/intui2/favicon.ico
13 /u/web/intui2/origins/Graphics/nav/newswire-off.gif
13 /u/web/intui2/apps/Graphics/nav/newswire-off.gif
11 /u/web/intui2/OLD/Images/social-guide-title.gif
11 /u/web/intui2/OLD/Images/coolweb-ad.gif
8 /u/web/intui2/coolweb/apps/relayto.cgi
8 /u/web/intui2/apps/search-everything.cgi

More importantly, you can exclude those errors and see what other problems might
have arisen:
grep -v “does not exist” error_log | head
[Mon Mar 18 04:48:51 2002] [error] [client 213.106.38.231] Premature
end of script headers: /u/web/intui2/cgi-local/etymologic.cgi
[Mon Mar 18 05:24:40 2002] [error] [client 210.183.67.209] Client sent
malformed Host header
[Mon Mar 18 07:51:48 2002] [error] [client 206.114.36.6] script not found or
unable to stat: /u/httpd/cgi-bin/PDG_Cart
[Mon Mar 18 08:16:16 2002] [error] [client 213.77.101.163] script not found or
unable to stat: /u/web/intui2/cgi-local/apps/querty.cgi
[Mon Mar 18 08:16:44 2002] [error] [client 213.77.101.163] script not found or
unable to stat: /u/web/intui2/cgi-local/apps/querty.cgi
[Mon Mar 18 11:45:20 2002] [error] [client 193.63.5.67] attempt to invoke
directory as script: /u/web/intui2/cgi-local/apps
[Mon Mar 18 11:46:31 2002] [error] [client 193.63.5.67] attempt to invoke
directory as script: /u/web/intui2/cgi-local/apps
[Mon Mar 18 12:38:40 2002] [error] [client 164.156.231.55] attempt to invoke
directory as script: /u/web/intui2/cgi-local
[Mon Mar 18 13:53:23 2002] [error] [client 213.97.216.50] (11)Resource
temporarily unavailable: couldn’t spawn
child process: /u/web/intui2/cgi-local/switcher.pl
[Mon Mar 18 13:53:24 2002] [error] [client 213.98.97.138] (11)Resource
temporarily unavailable: couldn’t spawn
child process: /u/web/intui2/cgi-local/switcher.pl

Definitely some things to explore. Why, for example, is there a call to
apps/querty.cgi? What’s resource temporarily unavailable mean?

We’ll re-address Apache issues in the last two hours of the book.

Of all the log files that can be analyzed and explored, few are more interesting than the
Web server itself. Armed with basic Unix tools, it proves easy to extract meaningful
information and produce rudimentary statistics in just a moment or two.

Analyzing an access_log file is a clear task for a cron-launched script that can produce
a report and e-mail it to the Web administrators. This will be left as an exercise to the
reader.

316 Hour 16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 316

Trimming Log Files with logrotate
Let’s put the question of detecting security problems aside for the rest of this hour and
look at the issue of managing the log files themselves.

On a busy server, it’s not unusual to see log files that are enormous, and adding lines
every few seconds. On a busy Web server, for example, a tail –f
/var/log/httpd/access_log might well spit out 50–100 lines each minute as the sites
are visited.

The challenge is to simultaneously minimize the size of the log files, while still making
sure that they’re accessible and available as needed.

Task 16.4: The logrotate Program
Historically, system administrators have written their own scripts to manage and trim log
files, but with the latest generation of Linux, there’s a very helpful utility included called
logrotate, and it does a very sophisticated job of rotating all the log files in /var/log
automatically.

1. By convention, the logrotate command is called from cron on a daily basis.
Based on the discussion in the last hour, it should be no surprise that it’s located in
/etc/cron.daily:
cd /etc/cron.daily
ls
00-logwatch 0anacron makewhatis.cron slocate.cron tmpwatch
00webalizer logrotate rpm sysstat
more logrotate
#!/bin/sh

/usr/sbin/logrotate /etc/logrotate.conf

Before we look at the command, then, let’s have a peek at the configuration file.

2. If you think about the task that’s being accomplished, you’ll start to see the ele-
gance of the logrotate solution. We have a log file that we want to have automati-
cally renamed file.1, and we want file.1 to be renamed file.2, and so on.
After a certain count, we want the oldest files to be deleted, so we have a running
window of “rotate–frequency” days of events in the past.

The first few lines of the configuration file specify those two key settings:
cat /etc/logrotate.conf
see “man logrotate” for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

Managing Your Log Files 317

16

,
TA

SK
,

22 0672323982 ch16 6/25/02 11:06 AM Page 317

In this case, the frequency is weekly and the rotation is 4, so we have a running
window of the last month of activity on the server.
create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
compress

Some daemons are very picky about log files, and will refuse to create a log file if
it doesn’t already exist. If that’s the case, the create command is very useful, and
it’s the default setting for logrotate. Also notice how easy it is to decide that the
historic log file archives should be stored in a compressed (gzip) format by
default!
Keep a longer archive of the “secure” logs, and compress them
/var/log/secure {
rotate 8
compress

}

In this example, the secure log files are kept for eight weeks rather than the
default of four, and they’re compressed to save space.
Rotate the Apache log files when they get over 25K in size
Keep an archive of six weeks, compressed, and mail the new
rotated log to a special email address too:
/var/log/httpd/access_log {
rotate 6
size 25k
mail web-log-archive@intuitive.com
compress
postrotate
/etc/rc.d/rc3.d/S15httpd restart

endscript
}

This is a fancy use of logrotate that really demonstrates its capabilities. Rather
than having the rotation tied to a specific calendar day, the program will rotate the
log file whenever it grows larger than 25K. It’ll keep a six-week archive compressed,
and the oldest log file (which will be deleted once the rotation is complete) will be
sent via e-mail to the special address web-log-archive@intuitive.com as part of
the processing. Once the rotational sequence is completed, logrotate will call the
specified shell script (the httpd control script that init uses) to force a restart, so
each log file starts out with a Web server boot event.

This level of sophistication is far more than we’ll create in our own script later in
this hour, and it’s a strong testimony to why the logrotate command can be such
a powerful utility to the smart system administrator.

318 Hour 16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 318

One last example:
no packages own lastlog or wtmp -- we’ll rotate them here
/var/log/wtmp {
monthly
create 0664 root utmp
rotate 1

}

The wtmp file is a log of who logged in (logins are recorded in utmp while the user
is still logged in, and then moved to wtmp after she’s logged out), and it’s of value,
but it usually doesn’t grow very quickly. In this case, we’ll rotate it monthly and
only keep a two month window. Notice that the new empty utmp file has very spe-
cific creation parameters that must be specified—the permission is 0644 and the
owner of the file is root.

3. Using the logrotate command is quite simple: Log out and let cron do the work.
Every night, cron will call logrotate, which reads the configuration file and does
the actions specified.

To test out your configuration, use the –d (debug) flag:
logrotate -d /etc/logrotate.conf
reading config file /etc/logrotate.conf
reading config info for /var/log/secure
reading config info for /var/log/httpd/access_log
reading config info for /var/log/wtmp
Handling 3 logs
rotating pattern: /var/log/secure weekly (8 rotations)
empty log files are rotated old logs are removed
rotating file /var/log/secure
log does not need rotating
rotating pattern: /var/log/httpd/access_log 25600 bytes (6 rotations)
empty log files are rotated old logs mailed to web-log-archive@intuitive.com
rotating file /var/log/httpd/access_log
log needs rotating
renaming /var/log/httpd/access_log.6.gz to /var/log/httpd/access_log.7.gz
renaming /var/log/httpd/access_log.5.gz to /var/log/httpd/access_log.6.gz
renaming /var/log/httpd/access_log.4.gz to /var/log/httpd/access_log.5.gz
renaming /var/log/httpd/access_log.3.gz to /var/log/httpd/access_log.4.gz
renaming /var/log/httpd/access_log.2.gz to /var/log/httpd/access_log.3.gz
renaming /var/log/httpd/access_log.1.gz to /var/log/httpd/access_log.2.gz
renaming /var/log/httpd/access_log to /var/log/httpd/access_log.1
creating new log mode = 0644 uid = 0 gid = 0
running postrotate script
running script with arg /var/log/httpd/access_log: “

/etc/rc.d/rc3.d/S15httpd restart
“
compressing new log with: /bin/gzip -9 ‘/var/log/httpd/access_log.1’
executing: “/bin/mail -s ‘/var/log/httpd/access_log.7.gz’
web-log-archive@intuitive.com < /var/log/httpd/access_log.7.gz”

Managing Your Log Files 319

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 319

removing old log /var/log/httpd/access_log.7.gz
rotating pattern: /var/log/wtmp monthly (1 rotations)
empty log files are rotated old logs are removed
rotating file /var/log/wtmp
log does not need rotating

Rather a lot of output, but if you step through it, you’ll see that logrotate is indi-
cating exactly what it’ll do. Notice the invocation of the necessary commands for
restarting the httpd service and sending the oldest compressed archive file via e-
mail to a longer-term archive.

Unfortunately, logrotate is only available in certain Linux and Unix distros as of this
writing (Caldera, Red Hat, Solaris), though there’s no doubt it’ll eventually be widely
available to the general Unix community.

Not to fear, however, because the last section of this hour will explore a shell script that
can do simple rotation, albeit in a less sophisticated manner.

Building Your Own Log Rotation Tool
Now that you’ve seen how logrotate works, you should be inspired to write a flexible,
general purpose log rotator that can be easily distributed to all the different Unix systems
you maintain. Fortunately, that’s not too difficult to accomplish.

Task 16.5: Rotating Your Own Logs
The basic algorithm for rotating log files is to recursively select all the files in the
/var/log directory that are “plain files” (for example, not directories, not pipes, not
sockets, not device drivers) and don’t have a digit as the last letter of their name. With
that list, create a set of new filenames that have the appropriate sequential suffixes, and
rotate all the files.

1. Selecting just the files desired is perhaps the hardest part of this script, and it can
be done with find. The required addition is the –not logical flag, which reverses
the logic of the given test:
find /var/log -type f -not -name ‘*[0-9]’ -print
./messages
./lastlog
./secure
./maillog
./spooler
./wtmp
./gdm/:0.log
./xferlog
./pgsql

320 Hour 16

,

,

,
TA

SK
,

22 0672323982 ch16 6/25/02 11:06 AM Page 320

./httpd/error_log

./httpd/access_log

./httpd/ssl_engine_log

./httpd/ssl_request_log

./httpd/ssl_scache.sem

./dmesg

./cron

./boot.log

./XFree86.0.log

./XFree86.9.log

./rpmpkgs

As you can see, this correctly listed all the log files that we’d like to rotate (and a
few extra: the ssl_scache.sem file and the Xfree86 logs).

2. To refine this search further, we’ll add a few more tweaks to the find loop, including
a test to only match files greater than 1KB, and skipping the Xfree86 logs completely:
cat rotatelogs.sh
#!/bin/sh

for name in `find /var/log -type f -size +1k -not -name ‘*[0-9]’
-not -name ‘XFree*’ –not –name ‘:0*’ -print`

do
echo Log file $name is ready to rotate

done

This intermediate loop offers what we want:
rotatelogs.sh
Log file /var/log/lastlog is ready to rotate
Log file /var/log/maillog is ready to rotate
Log file /var/log/wtmp is ready to rotate
Log file /var/log/gdm/:0.log is ready to rotate
Log file /var/log/httpd/error_log is ready to rotate
Log file /var/log/httpd/access_log is ready to rotate
Log file /var/log/dmesg is ready to rotate
Log file /var/log/cron is ready to rotate
Log file /var/log/rpmpkgs is ready to rotate

3. Now let’s just jump into the entire script, so you can see how to accomplish the
increments:
#!/bin/sh

cd /var/log

for name in `find . -type f -size +1k -not -name ‘*[0-9]’ -not -name ‘XFree*’ -n
ot -name “:0*” -print`
do
back1=”${name}.1”; back2=”${name}.2”;
back3=”${name}.3”; back4=”${name}.4”;

Managing Your Log Files 321

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 321

rotate, starting with the oldest log
if [-f $back3] ; then
mv -fv $back3 $back4

fi
if [-f $back2] ; then
mv -fv $back2 $back3

fi
if [-f $back1] ; then
mv -fv $back1 $back2

fi
if [-f $name] ; then
mv -fv $name $back1

fi
touch $name; echo chmod 0600 $name

done

exit 0

4. That’ll do what we want. Let’s see what happens when we run this:
rotatelogs.sh
`lastlog’ -> `lastlog.1’
chmod 0600 lastlog
`maillog.3’ -> `maillog.4’
`maillog.2’ -> `maillog.3’
`maillog.1’ -> `maillog.2’
`maillog’ -> `maillog.1’
chmod 0600 maillog
`wtmp.1’ -> `wtmp.2’
`wtmp’ -> `wtmp.1’
chmod 0600 wtmp
chmod 0600 error_log
chmod 0600 access_log
`dmesg’ -> `dmesg.1’
chmod 0600 dmesg
`cron.3’ -> `cron.4’
`cron.2’ -> `cron.3’
`cron.1’ -> `cron.2’
`cron’ -> `cron.1’
chmod 0600 cron
`rpmpkgs.3’ -> `rpmpkgs.4’
`rpmpkgs.2’ -> `rpmpkgs.3’
`rpmpkgs.1’ -> `rpmpkgs.2’
`rpmpkgs’ -> `rpmpkgs.1’
chmod 0600 rpmpkgs
`./httpd/error_log.3’ -> `./httpd/error_log.4’
`./httpd/error_log.2’ -> `./httpd/error_log.3’
`./httpd/error_log.1’ -> `./httpd/error_log.2’
`./httpd/error_log’ -> `./httpd/error_log.1’
chmod 0600 ./httpd/error_log
`./httpd/access_log.3’ -> `./httpd/access_log.4’
`./httpd/access_log.2’ -> `./httpd/access_log.3’

322 Hour 16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 322

`./httpd/access_log.1’ -> `./httpd/access_log.2’
`./httpd/access_log’ -> `./httpd/access_log.1’
chmod 0600 ./httpd/access_log

Voila! The final step is to drop this into the appropriate cron file or directory, set it
to run weekly, and we’re done.

There are some refinements you could make to this script, most notably having the log
files compressed with gzip, but in general, this will do a nice job of rotating all the log
files on a given Unix system. Note that not all Unixes support the -v flag to mv, however,
so you might have to chop that out before your script runs correctly.

Q&A
Q As it’s impossible to document all possible Unix log files in this book, how do I

figure out what program creates a given log file on my Unix system?

A Usually, the log file corresponds to the name of the program, which makes it easy
(for example, syslogd.log for syslog, ftpd.log for ftp). If not, man –k is a
smart way to look. You can also strip a trailing d if there is one.

Q Tracking hackers seems quite interesting. How often does it produce positive
results?

A Well…the reality is that it’s very unlikely that you’ll accomplish anything mean-
ingful. On the other hand, if we don’t try to notify administrators of malicious
users, it certainly won’t improve things.

Workshop
Quiz

1. What are the two primary reasons to pay attention to your log files?

2. What’s in the messages log file, and what is it commonly called on other Unix
systems?

3. Using the tips suggested in this hour, what’s in ksyms on a Linux system?

4. What’s the basic technique for the reverse lookup of an IP address to ascertain its
domain?

5. Earlier in the hour, we analyzed the access_log file to figure out what domains
were hitting our Web server. How would you modify that command to identify just
the most popular top-level domains?

Managing Your Log Files 323

16

,

,

22 0672323982 ch16 6/25/02 11:06 AM Page 323

Answers
1. Always pay attention to your log files so you are aware of attempted break-ins, and

so you can keep track of disk space on your server.

2. The messages log file is used by syslogd, and on some systems it’s called
/var/log/syslog.

3. On a Linux box:
man -k ksyms
genksyms (8) - generate symbol version information
ksyms (8) - display exported kernel symbols

4. Use the host command and make sure you specify the –dv flags for maximal out-
put (see the man page).

5. There are a couple of ways to accomplish this, but I really like using the rev com-
mand to reverse the domain name, cut the first field out, reverse it again, and do
“the usual” sequence after that:
awk ‘{print $1}’ access_log | rev | cut -d. -f1 | rev | sort | \
uniq -c | sort –rn | head -10
2256 net
2198 com
570 es
348 us
339 pl
317 edu
311 249
228 ca
205 uk
198 55

In the next hour we’ll move to a new topic—network configuration. We’ll start with an
exploration of IP addresses and netmasks, and then we’ll look at the steps necessary to
configure a Unix box to work on an Ethernet or PPP network.

324 Hour 16

22 0672323982 ch16 6/25/02 11:06 AM Page 324

Hour
17 Basic Network Configuration 327

18 Running Your Own Name Server 353

19 Running Internet Services 373

20 Working with E-mail 391

PART VI
Network Topics

23 0672323982 pt6 6/18/02 2:05 PM Page 325

23 0672323982 pt6 6/18/02 2:05 PM Page 326

HOUR 17
Basic Network
Configuration

It’s hard to imagine a computer, Unix or otherwise, that isn’t directly con-
nected to the Internet. Whether via a direct LAN connection in an office, a
high-speed home connection through a digital subscriber line (DSL) or cable
modem, or, perhaps a modem/router combination to power your network, if
you’re administering a Unix system, you need to know how to get it on—
and keep it on—the Internet. Even if you’re still stuck with a modem.

That’s what the next few hours are all about. Starting with this first hour that
explores how to hook a Unix system into an existing hard-coded IP or
DHCP network, we’ll extend coverage in subsequent hours to include net-
work services, domain name servers, and the complex but critical sendmail
program.

In this hour, we’ll cover

• Connecting to the Internet using Linux

• Configuring your network with other Unixes

• Testing and evaluating connectivity

24 0672323982 ch17 6/18/02 2:00 PM Page 327

Hooking Up a Linux Box to the Internet
Whether you’re adding a Unix box to your existing network, or whether you’re adding a
Windows or Macintosh, there are two basic types of connections: hard-coded IP
addresses and DHCP. Older facilities and those sites that have had complex networks for
years often still run with fixed IP addresses for each system. In this scenario, you’ll
assign a unique, unused address within the available address range for each workstation
or network device on the LAN.

This implies that your facility has either installed a proxy server that enables you to use
IP addresses independent of the rest of the Internet1, or your facility has either a Class B
IP block or one or more Class C blocks. Each Class C block has 254 addresses, and each
Class B block has more than 65,000 addresses.

328 Hour 17

1This works because the proxy server automatically maps internal IP addresses to an IP address known
by the rest of the Internet for all external queries. It also helps keep your internal network private, a
great side effect.

It’s worth noting that an IP address block is .0 to .255, but that by conven-
tion .0 and .255 are reserved for loopback (a shorthand for your own sys-
tem) and broadcast (a shorthand for all systems on the local network), and
aren’t assigned individual workstations or devices.

Much more common than fixed IP addresses is a dynamic IP assignment protocol. That’s
what the Point-to-Point Protocol (PPP) is, as used by America Online, Earthlink, and
other ISPs. Within a LAN, however, PPP proves less efficient than the alternative, the
Dynamic Host Configuration Protocol (DHCP).

Task 17.1: Hooking Up a Linux System
If you are running DHCP, the job of hooking a new system up to the network is a breeze:
The only task required is to specify DHCP as the connection choice during the initial
installation of the operating system.

Hard-coded IP systems are a bit more tricky to configure. There are six essential numbers
you’ll need: the new system IP address, the netmask, the gateway (or router) address for the
new system (which will vary depending on which subnet the system is connected into), a
network and broadcast address, and at least one domain name system (DNS) server address.

1. If you’re unsure whether your Linux box is trying to connect to the Internet via
DHCP or a fixed IP, the place to look on a Red Hat system is in /etc/sysconfig.

,
TA

SK
,

24 0672323982 ch17 6/18/02 2:00 PM Page 328

First off, make sure you’ve enabled networking in the first place by looking in
network:
cat /etc/sysconfig/network
NETWORKING=yes
HOSTNAME=sombrero.dsldesigns.net

This is also where the hostname is set. Make sure you specify a full domain path
here, rather than just the basic hostname. Or not…(see the Caution).

Basic Network Configuration 329

17

,

The contents of the network file is a fine example of the divergence of stan-
dardization even within the Linux world: Red Hat encourages sysadmins to
use the hostname and not the domain name; SuSE Linux uses the hostname,
and has a separate variable (in /etc/rc.local, just like Mac OS X) called
FQHOSTNAME for the hostname and domain together; and Mandrake has two
variables in its configuration file, HOSTNAME and DOMAINNAME. Pay attention to
the configuration material included with your Linux system to ensure that
you set yours correctly if you’re changing things post-installation!

The details of how the system talks with the rest of the network is contained within the
interface configuration file for the specific interface. Most likely, the system uses eth0 as
the default Ethernet configuration, so the configuration file in question is /etc/syscon-
fig/network-scripts/ifcfg-eth0:

cat ifcfg-eth0
DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
TYPE=Ethernet
USERCTL=no
PEERDNS=no
NETWORK=0.0.0.0
BROADCAST=255.255.255.255

Remember the filename mnemonic here: if = interface, and cfg = config,
so ifcfg-eth0 is the interface configuration file for the eth0 Ethernet
connection.

Most of the fields in this file are unnecessary on a system that’s using DHCP, but
the critical one to eyeball is BOOTPROTO. If that’s DHCP, as we see here, the system
kicks off a program called the DHCP client daemon (dhcpcd) that manages the
client-side DHCP interaction.,

24 0672323982 ch17 6/18/02 2:00 PM Page 329

2. The default setup for dhcpcd is fine for 99% of the situations that you’re likely to
encounter as a Unix system administrator. The program has a variety of options
that can be specified in the ifcfg file. These are alluded to in the following frag-
ment of the important /sbin/ifup script, which brings up a specified interface:
if [-n “${DYNCONFIG}”]; then

PUMPARGS=$PUMPARGS
DHCPCDARGS=”$DHCPCDARGS -n”
if [-n “${DHCP_HOSTNAME}”]; then

PUMPARGS=”-h ${DHCP_HOSTNAME}”
DHCPCDARGS=”-h ${DHCP_HOSTNAME}”

fi
if [-n “${NEEDHOSTNAME}”]; then

PUMPARGS=”${PUMPARGS} --lookup-hostname”
DHCPCDARGS=”${DHCPCDARGS} -H”

fi
if [“${PEERDNS}” = “no”]; then

PUMPARGS=”${PUMPARGS} -d”
DHCPCDARGS=”${DHCPCDARGS} -R”

fi

If you ignore the pump options (pump is an older alternative to dhcpcd in Linux, and
most sites ignore it except for historical reasons), you can see that the arguments
given to dhcpcd are the initial value of DHCPCDARGS plus –n, -h dhcp hostname if
specified as DHCP_HOSTNAME, -H if the system hostname should be set by the DHCP
server (controlled by the presence of NEEDHOSTNAME in the config file), and –R if the
existing /etc/resolv.conf DNS server list file should not be replaced by the
information given by the DHCP server.

That’s a bit confusing, so let’s look again at the stock DHCP configuration. The
variables that can affect how dhcpcd is invoked are DHCP_HOSTNAME, NEEDHOSTNAME,
and PEERDNS. You’ll notice that in /etc/sysconfig/network-scripts/ifcfg-eth0
the variable PEERDNS is set to “no,” but the others are not referenced. This means
that dhcpcd is invoked as

dhcpcd –n –R

which, as expected, prevents dhcpcd from overwriting the /etc/resolv.conf file,
but otherwise assumes that the system is properly set up with its correct hostname.

That’s the –R flag explained. What about the –n that’s used regardless of configura-
tion? Well, recall that DHCP is the Dynamic Host Configuration Protocol. One
subtle ramification of the “dynamic” part of this is that while a DHCP server will
assign an IP address to a specific workstation on request, it doesn’t guarantee that
IP address will stick with that workstation forever. Instead, systems are given a
lease on their DHCP information, and have to renew the lease (for example, con-
firm that they’re still up and online) with the DHCP server every so often.

330 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 330

It’s a lease renewal that is trigged by the –n flag to dhcpcd; though if the system is
just starting up from scratch a renewal will have the effect of requesting a new IP
address.

The internals of the DHCP protocol are quite interesting, but a bit beyond the focus of
this particular book. If you’d like to learn more, a great place to start is at the Internet
Software Consortium, where they also have a good alternative DHCP client protocol
implementation that’s freely available: http://www.isc.org/products/DHCP/.

3. To see what information the DHCP server has handed the client program, peek at
the information file in /etc/dhcpcd:
cd /etc/dhcpcd
ls
dhcpcd-eth0.cache dhcpcd-eth0.info
cat *info
IPADDR=192.168.131.67
NETMASK=255.255.255.0
NETWORK=192.168.131.0
BROADCAST=192.168.131.255
GATEWAY=192.168.131.254
DNS=192.216.138.10
DHCPSID=192.168.131.254
DHCPGIADDR=0.0.0.0
DHCPSIADDR=0.0.0.0
DHCPCHADDR=00:03:FF:FF:FF:FC
DHCPSHADDR=00:03:FF:FF:FF:FF
DHCPSNAME=
LEASETIME=4294967295
RENEWALTIME=536870911
REBINDTIME=536870911

The time values are in seconds since January 1, 1970, and you can see by the sig-
nificant difference between LEASETIME and RENEWALTIME that this particular DHCP
server hands out (virtual) IP addresses until a point far, far into the future, without
any renewal of lease required. Many DHCP configurations will differ in this
regard, and it’s a policy setting accessible within the DHCP server itself.

Basic Network Configuration 331

17

,

The time value of seconds-since January 1, 1970 is a typical Unix-ism, but not
one you can count on definitively. Each Unix flavor has the option of defin-
ing its own “epoch” for the seconds-since date format. Check your ctime(3)
man page for a likely spot where it’s defined for your OS.

,

24 0672323982 ch17 6/18/02 2:00 PM Page 331

4. By contrast with the DHCP client, consider the same two configuration files on a
Linux system with fixed IP addresses, on a completely different network:
cd /etc/sysconfig
cat network
NETWORKING=yes
HOSTNAME=staging.intuitive.com
cat network-scripts/ifcfg-eth0
DEVICE=eth0
BOOTPROTO=static
ONBOOT=yes
IPADDR=10.10.2.200
GATEWAY=10.10.2.1
TYPE=Ethernet
USERCTL=no
NETMASK=255.255.255.0
NETWORK=10.10.2.0
BROADCAST=10.10.2.255
PEERDNS=no

Clearly, having a fixed IP address requires that other information be included, so
let’s spend a few minutes talking about the different values required and how to
calculate them.

The first value is the IP address itself, of course, and that should be easy to ascer-
tain based on your network. If you’re using fixed IPs, you have a block of them
and should have a master allocation table (perhaps just a sheet of paper in your
desk drawer—a not-uncommon solution) that has IP address and host pairs for
each of the IP addresses in the block. Those that haven’t yet been assigned are
blank and available.

In our office, we have a nonadjacent block of five IP addresses, one of which is
used by the gateway itself, so our IP allocation table looks like Table 17.1.

TABLE 17.1 Typical Fixed IP Allocation Table

IP Address Assigned To

198.76.82.129 Gateway

198.76.82.131 Laptop

198.76.82.132 G4 Mac

198.76.82.150 Win2K and iMac (shared, ugh!)

198.76.82.151 HP LAN printer

332 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 332

As you can see, we have fewer IP addresses than we need, which is why the PC
and iMac system are sharing one IP. This is not a good configuration2. The solution
is for us to set up one of the systems as a DHCP server, but we’ll get to that a bit
later in this hour.

In total, our ISP gave us the following information when we first gained network
connectivity, as shown in Table 17.2.

TABLE 17.2 Information from our ISP

Field Name Value

IP Range 198.76.82.131, 132, 150, 151

Gateway 198.76.82.129

Subnet Mask 255.255.255.128

DNS Servers 192.216.138.10 and .11

Basic Network Configuration 333

17

,

2Among other things, this means that they can’t both be on the Internet at the same time, a situation that
often causes frustration in our office!

By convention, if you see two IP addresses and the latter only has a single
value prefaced by a dot, it means that the first three “octets” are the same,
so the two DNS servers are 192.216.138.10 and 192.216.138.11.

These values can be directly dropped into the /etc/sysconfig/network-
scripts/ifcfg-eth0 file as IPADDR, GATEWAY, and NETMASK. In the earlier example,
the values differed because that particular Linux server is on a different network
(just in case you’re trying to puzzle out why they’re different values).

So where do NETWORK and BROADCAST come from? Unless you’ve been given spe-
cific values by your connectivity provider, most often those values are simply the
first three octets of the IP address with a trailing 0 or 255. In the case of the config-
uration details given by our ISP, we’d specify a NETWORK=198.76.82.0 and a
BROADCAST=198.76.82.255.

The only other file to create is /etc/resolv.conf, a list of the DNS servers avail-
able to the system. The format is quite straightforward:
cat /etc/resolv.conf
dns1.dsldesigns.net 192.216.138.10
dns2.dsldesigns.net 192.216.138.11

You can add as many name servers as you’d like to this file, and if you opt to have
a DNS cache server (a topic we’ll discuss in depth in Hour 18, “Running Your
Own Name Server”), you’d add the IP address of the cache server here as well.,

24 0672323982 ch17 6/18/02 2:00 PM Page 333

5. Whether your network uses DHCP or fixed IP, this should be sufficient information
to get things properly configured and on the network. To actually bring the system
online, you can reboot (usually the preferred strategy), or you can use the ifup or
init.d/network scripts.

I prefer using the init.d/network script because it allows status queries, too:
./network status
Configured devices:
lo eth0
Currently active devices:
eth0 lo

More importantly, you can easily restart all the networking services on a Red Hat
Linux system with a single command:
./network restart
Shutting down interface eth0: [OK]
Setting network parameters: [OK]
Bringing up interface lo: [OK]
Bringing up interface eth0: [OK]

If you’d prefer working with just the Ethernet interface and not touching the loop-
back mechanism (lo), you can use the ifup and ifdown commands in /sbin:
/sbin/ifdown eth0
/sbin/ifup eth0
Determining IP information for eth0... done.
#

Typically, bringing down the interface has no output, and bringing up the interface
offers only minimal feedback on success.

6. Another common task in the DHCP world is to set up a DHCP server. Although
there are many nuances to this task, the basics are easy to explain. The DHCP
server daemon is called dhcpd, probably the most confusing part of configuring the
service.

The configuration for dhcpd is stored in /etc/dhcpd.conf:
cat /etc/dhcpd.conf
subnet 198.76.82.0 netmask 255.255.255.128 {
option routers 198.76.82.129;
option subnet-mask 255.255.255.128;
option domain-name “intuitive.com”;
option domain-name-servers dns1.dsldesigns.net, dns2.dsldesigns.net;

option time-offset -8; # Pacific Standard Time

host imac {
option host-name “imac.intuitive.com”;

334 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 334

hardware Ethernet 00:A0:DD:8E:C3:F9;
fixed-address 198.76.82.151

}

range 198.76.82.131 198.76.82.132
}

As you can see, most of the information is identical to that specified for a single
client on the network. The host imac is the iMac system, and it’s always assigned
the same fixed IP address. Finally, the range of available IP addresses here is quite
small: .131 to .132. Normally we’d have quite a few more IP addresses than that
for the DHCP pool.

You’ll want to create the empty dhcpd.leases file so that the server can create
timestamp and lease information, which can easily be done with

touch /var/lib/dhcpd.leases

Basic Network Configuration 335

17

,

The dhcpd server automatically rotates the dhcpd.leases file as needed,
renaming the old lease file dhcpd.leases~. On very rare occasions the system
could crash in the midst of this lease rotation, in which case you’ll want to
rename the ~ file back to the original name (for example, mv dhcpd.leases~
dhcpd.leases) to ensure that any DHCP leases currently assigned are still
valid and known.

To start or stop the server, create the appropriate link (in Red Hat Linux, at least)
to the /etc/rc.d/init.d/dhcp from within the /etc/rc.d/rcn.d directory for
run state n.

Although configuring a Linux system to be a good network citizen isn’t quite as simple
and straightforward as a Mac or Windows box, it’s not too far off. If you opt to use some
of the graphical interfaces to Linux (notably linuxconf), you can set up almost every-
thing shown here in just a few minutes.

Also, if you find that you don’t have dhcpd on your Red Hat Linux distro, it might be
because you didn’t install the optional packages on the additional CD-ROMs, or because
you didn’t specify the server configuration upon installation. Verify this by using RPM
(rpm –qa | grep –i dhcp will do the trick). You can remedy this omission most easily
by flipping back to Hour 8, “Unix Package Management,” and searching Pbone or a sim-
ilar archival site for the dhcp package, and installing it with rpm.

,

24 0672323982 ch17 6/18/02 2:00 PM Page 335

Network Configuration on Other Unixes
Before we go too far into the topic of other Unixes, please make sure that you didn’t skip
the last section because you aren’t running Linux. There’s lots of information that we
won’t repeat in this later section that you’ll want to know.

The good news is that the basic concepts of DHCP client configuration and fixed IP con-
figuration are the same regardless of which flavor of Unix the system you’re configuring
is running. The location of the specific configuration files—well, that’s going to vary a
bit as you might expect, but if you can identify all the critical values to feed into the con-
figuration, it’s not too bad.

Task 17.2: Configuring Solaris and Mac OS X
Considering that Sun Microsystems widely touts its vision of the world as “The Network
is the Computer,” it would be reasonable to expect that configuring a Solaris system to be
a full member of the Internet would be a breeze. Similarly, Apple has always had a sig-
nificant advantage in how easily Mac OS lets you add systems to your network, an
advantage that you would expect to translate into a straightforward configuration in the
Mac OS X world.

And you’d be wrong in both cases.

1. To start out, the network configuration for a Solaris 8 system resides in a sprawl of
different files, including /etc/resolv.conf, /etc/hostname.ifname,
/etc/dhcp.ifname, /etc/nodename, /etc/inet/hosts, and more. Let’s step
through them, one by one, to see what’s what:
cat /etc/resolv.conf
search dsldesigns.net
nameserver 192.216.138.10
nameserver 192.216.138.11

No big surprises—this file is fairly typical of DNS name server lists. The first line
is worth mentioning because it’s the primary spot where Solaris is told the domain
name of the current system for DNS lookup purposes.

Trying to figure out where to drop the proper hostname for this system is a bit
more confusing, as it’s located in two configuration files:
ls /etc/hostname.*
/etc/hostname.pcn0
cat /etc/hostname.pcn0
solaris.dsldesigns.net
cat /etc/nodename
solaris.dsldesigns.net

336 Hour 17

,
TA

SK
,

24 0672323982 ch17 6/18/02 2:00 PM Page 336

You will need to change both of these files to update the name of your host, and if
you’ve guessed that pcn0 is the Ethernet interface on a Solaris 8 system, you’d be
correct.

2. Digging deeper than this rudimentary configuration causes us to hit a bit of a stum-
bling block: Solaris is in the midst of transitioning from a pure IPv4 to a mixed
IPv4/IPv6 environment, and some of the configuration files in Solaris 8 (and ear-
lier) will be deprecated in Solaris 9. Chief among these is /etc/hosts, which also
lists your current host name, among others. From Solaris 7 to Solaris 8 they dupli-
cated /etc/hosts as /etc/inet/hosts (which we’ll examine in a second), but by
Solaris 9, all of these should be replaced by the file /etc/inet/ipnodes to ensure
maximum confusion (well, that’s not why Sun did it, that’s just the likely effect).

Anyway, because the sample system is still running Solaris 8, we have just about
every possible configuration file still on the disk, even if some of them might be
secretly marked for obsolescence….

The router (gateway) IP address is in a file called defaultrouter:
cat /etc/defaultrouter
198.76.82.129

The subnet mask is stored in /etc/netmasks, which turns out to be a symbolic link
to one of the inet directory files, /etc/inet/netmasks:
cat /etc/inet/netmasks
#
The netmasks file associates Internet Protocol (IP) address
masks with IP network numbers.
#
network-number netmask
#
The term network-number refers to a number obtained from the Internet
Network
Information Center. Currently this number is restricted to being a class
A, B, or C network number. In the future we should be able to support
arbitrary network numbers per the Classless Internet Domain Routing
guidelines.
#
Both the network-number and the netmasks are specified in
“decimal dot” notation, e.g:
#
128.32.0.0 255.255.255.0
#
198.76.82.128 255.255.255.128

Lots of helpful explanatory information in this directory, as you can see.

Basic Network Configuration 337

17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 337

The mirror of /etc/hosts is /etc/inet/hosts:
cat /etc/hosts
#
Internet host table
#
127.0.0.1 localhost
198.76.82.131 laptop
198.76.82.132 mac
198.76.82.150 win2k
198.76.82.155 solaris loghost solaris.dsldesigns.net
cat /etc/inet/hosts
#
Internet host table
#
127.0.0.1 localhost
198.76.82.131 laptop
198.76.82.132 mac
198.76.82.150 win2k
198.76.82.155 solaris loghost solaris.dsldesigns.net

It turns out that /etc/hosts is a symbolic link to /etc/inet/hosts, so there’s a
quite logical reason that they’re always in sync! There’s a third hosts file to check
too, however—the new ipnodes:
cat ipnodes
#
Internet host table
#
::1 localhost
127.0.0.1 localhost
198.76.82.131 laptop
198.76.82.132 mac
198.76.82.150 win2k
198.76.82.155 solaris solaris.dsldesigns.net

Again, the system tries to keep them all in sync (though notice the first noncom-
mented line in ipnodes is new: ::1).

3. If you’re keeping track, we’ve figured out where to place just about every snippet of
information, except our IP address. Where does that get stored? It turns out that it’s
dropped into the /etc/hosts file, so let’s go back and get a better understanding of

338 Hour 17

It’s worth noting that, as stated in the comment, Solaris up through version
8, at least, does not support classless domain routing. This means that if you
have a nonadjacent subset of a Class C IP range, Solaris can only consider it
as a complete Class C for networking purposes. This could prove a significant
limitation, depending on your network topology.

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 338

the relationship between the files where the fully-qualified hostname is specified
(officially the nodename file), and the matching value appears, in the hosts file:
cat /etc/nodename
solaris.dsldesigns.net
grep `cat /etc/nodename` /etc/inet/hosts
198.76.82.155 solaris loghost solaris.dsldesigns.net

To change the IP address of this particular system, therefore, we need only change
its address in the hosts file and ensure that any host renaming therein also matches
exactly the name specified in the nodename file, too.

We can check the IP address by invoking the ifconfig program (which we’ll talk
about a bit later in this hour):
/sbin/ifconfig pcn0
pcn0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 198.76.82.155 netmask ffffff80 broadcast 198.76.82.255
ether 0:50:56:54:a5:9d

Notice in particular the inet value in the second line to confirm the IP address of
this host.

4. To switch from a fixed IP scheme to a DHCP connectivity solution, we need to
delve into the world of dhcpagent, the default DHCP client software for Solaris.
Pleasantly, Solaris includes a bunch of DHCP-related commands:
man -k dhcp | grep 1
dhcpagent dhcpagent (1m) - Dynamic Host Configuration Protocol (DHCP)
➥client daemon
dhcpconfig dhcpconfig (1m) - DHCP service configuration utility
dhcpinfo dhcpinfo (1) - display values of parameters received
➥through DHCP
dhcpmgr dhcpmgr (1m) - graphical interface for managing DHCP
service
dhtadm dhtadm (1m) - DHCP configuration table management utility
in.dhcpd in.dhcpd (1m) - Dynamic Host Configuration Protocol server
pntadm pntadm (1m) - DHCP network table management utility

The specific configuration file is named after the interface that requires a DHCP
connection—in this case, /etc/dhcp.pcn0. But wait, there’s great news! Delete the
contents of a couple of fixed IP files and create a bunch of empty DHCP-related
files, and the system will automatically create the configuration file and any other
DHCP file needed at the next system boot. Very helpful.

Here’s exactly what we’d need to do to switch from a fixed IP to a DHCP configu-
ration upon the next boot:
alias zero=”cat /dev/null > “
zero /etc/hostname.pcn0
zero /etc/dhcp.pcn0
zero /etc/notrouter

Basic Network Configuration 339

17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 339

zero /etc/defaultrouter
zero /etc/default/dhcp
zero /etc/resolv.conf

That’s just about it. The files that existed and were zeroed had their contents
erased, and the files that didn’t exist now exist (notably /etc/dhcp.pcn0).

The only other step is to chop just about everything out of the /etc/inet/hosts
file so that it has a line for the localhost and nothing else. It should look like this:
cat /etc/inet/hosts
127.0.0.1 localhost

The other lines associated with this host will be filled in upon boot and IP assign-
ment by the DHCP client.

340 Hour 17

,

If you want to learn how to set up a Solaris system as a DHCP server, your
best bet is to download the Solaris-compatible dhcpd from the Internet
Software Consortium Web site (www.isc.org) and follow their clear, coher-
ent directions.

5. Let’s turn our attention to Mac OS X before we leave the question of configuring
Unix systems for network connectivity. The Mac is, well, quite a different creature
when it comes to command-line based network configuration.

Frankly, if you’re rational, your best bet is to simply use the Mac OS X System
Preference Network panel, as shown in Figure 17.1.

FIGURE 17.1
The Network panel in
System Preferences.

,

24 0672323982 ch17 6/18/02 2:00 PM Page 340

But how dull life would be if we stuck to being rational and the simple, smart way
to solve problems.

Instead, let’s dig into Mac OS X a little bit to find out where the information from
this control panel is saved: If we can identify the specific archival file, we can then
modify it by hand, right? Kinda yes, kinda no.

6. The file that stores these configuration values is part of the Mac OS X System
Configuration area, and can be found in /var/db:
head -20 /var/db/SystemConfiguration/preferences.xml
<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE plist SYSTEM
“file://localhost/System/Library/DTDs/PropertyList.dtd”>
<plist version=”0.9”>
<dict>

<key>CurrentSet</key>
<string>/Sets/0</string>
<key>NetworkServices</key>
<dict>

<key>0</key>
<dict>

<key>AppleTalk</key>
<dict>

<key>ConfigMethod</key>
<string>Node</string>

</dict>
<key>DNS</key>
<dict>

<key>ServerAddresses</key>
<array>

<string>192.216.138.10</string>
<string>192.216.138.11</string>

This is just the top of what turns out to be a 461-line XML3 file. No neat and easy
variable: value sequences, but rather a complex and confusing XML-formatted
file. Nonetheless, once you recognize that the variable: value sequence is more
likely to look like

<key>variable</key>
<string>value</string>

Then you can start to see a little bit of what’s going on within the
preferences.xml file shown in the preceding code. For example, AppleTalk has a
ConfigMethod of Node, and the DNS service is using the ServerAddresses of
192.216.138.10 and 192.216.138.11.

Basic Network Configuration 341

17

,

3XML is the eXtensible Markup Language, a variant of HTML that was designed specifically to enable
easily parsed data in a universal format. It’s simultaneously brilliant that Apple uses it for preference
files, and darn frustrating as it’s very hard to work with on the command line.

,

24 0672323982 ch17 6/18/02 2:00 PM Page 341

Armed with this, let’s work backward and see if we can identify the network con-
figuration values in this file, starting with IP address:
grep -5 198.76.82 preferences.xml

</dict>
<key>IPv4</key>
<dict>

<key>Addresses</key>
<array>

<string>198.76.82.132</string>
</array>
<key>ConfigMethod</key>
<string>Manual</string>
<key>Router</key>
<string>198.76.82.129</string>
<key>SubnetMasks</key>
<array>

<string>255.255.255.128</string>
</array>

</dict>

That was a good call looking for five lines of context (the –5 flag) around the
matches for the Class C (the first three numbers in the IP address) here. You can
see all the relevant variables from the Network panel: Addresses, Router,
SubnetMasks, and from earlier in this section, DNS ServerAddresses.

Therefore, if you really want to, are comfortable editing XML files, and are ready
to live life on the very edge of danger, you could directly edit this file. Make a
backup copy first, however, just in case.

7. This would be an interesting time to try using sed, the stream editor, which is per-
fect for in-place editing tasks of this nature.

To copy this configuration to a second computer, you could transfer the prefer-
ences.xml file across via scp (secure cp, which allows for easy copying of files
across a network in a safe, encrypted fashion), perhaps, and change just the IP
address:
scp referencehost:/var/db/SystemConfiguration/preferences.xml - | \
sed ‘s/198.76.82.132/198.76.82.133/’ > \
/var/db/SystemConfiguration/preferences.xml

This would copy the file from the master referencehost, change the old .132 IP
address to the new .133 IP address, then save the newly changed file in the correct
place. We’d still need to ensure that the file ownership and permissions are correct:
cd /var/db/SystemConfiguration
ls -l preferences.xml
-rw-r--r-- 1 root wheel 11151 Apr 6 22:46 preferences.xml

342 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 342

But otherwise that would work, and it would also enable us to quickly duplicate
DHCP configurations from a single DHCP client reference system.

There are other issues regarding Mac OS X network configuration that we’re going
to skip here, because as you can see, command-line based network configuration is
not a trivial task in Mac OS X. In fact, it’s really the first area where you can see
that the Mac part of Mac OS X has become more important than the Unix under-
neath it (Darwin).

Basic Network Configuration 343

17

,

Don’t be fooled into thinking that because Mac OS X has Darwin under-
neath, it’s completely compatible with Darwin or FreeBSD, its ancestor. It’s
not. Those use /etc/iftab and /etc/hostconfig to specify network parame-
ters, but Mac OS X ignores those files for network configuration issues if the
file SystemConfiguration/preferences.xml is present. If you wanted to
really hack around, you could remove that and see what happens, but
you’re way outta warranty, and few people will be able to help you resusci-
tate the client at that point. Oh, and the user might not appreciate it either!

There is an amazing amount of variety between the different flavors of Unix when it
comes to networking code. It’s odd, because network connectivity is the “killer capabil-
ity” of Unix, and the reason why it’s still in widespread use over 25 years after first ship-
ping to customers. Can you imagine running Windows 95 in the year 2020? Or Mac OS
9 in 2024?

However, critical or not, it’s one area where you’ll need to study the manuals and docu-
mentation included with your particular flavor or flavors of Unix, to ensure that your
beliefs and understanding of the boot process and network configuration sequence
matches that of the OS you’re administering.

Testing and Evaluating Connectivity
One last topic worth discussion in this hour before we wrap up is a group of the network
diagnostic utilities included with Unix. Different Unixes have different programs for the
most part, but there are a few core applications and system utilities that can be quite
informative, notably ifconfig, netstat, and ping.

Each of these commands deserves more space than we’ll be able to offer in this book, so
you’re encouraged to read the man page for each one and experiment to learn more about
its capabilities.

,

24 0672323982 ch17 6/18/02 2:00 PM Page 343

Task 17.3: Evaluating Connectivity
The first task for evaluating connectivity is to see how the current system is configured,
then to step out onto the Internet and use ping and traceroute to see how things are
traveling about….

1. To evaluate your network configuration, the first and only important stop is
ifconfig. Use the –a flag to ask for all interfaces on this machine, or to specify
the name of the Ethernet interface itself:
/sbin/ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:A0:C9:AD:20:E2

inet addr:10.10.2.200 Bcast:10.10.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:37310 errors:0 dropped:0 overruns:0 frame:0
TX packets:36045 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
RX bytes:4134689 (3.9 Mb) TX bytes:15175268 (14.4 Mb)
Interrupt:5 Base address:0xa000

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:98 errors:0 dropped:0 overruns:0 frame:0
TX packets:98 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:7176 (7.0 Kb) TX bytes:7176 (7.0 Kb)

Red Hat is notable in that its ifconfig offers quite a bit of information (most are
more succinct than this). The eth0 is the Ethernet interface, and you can see that it
has an Internet address of 10.10.2.200 on this particular server, with a broadcast
address of 10.10.2.255 and a network mask of 255.255.255.0.

One important tuning value is the maximum transfer unit (MTU) value, which
is 1500 here. For Ethernet, 1,500 bytes is the maximum MTU according to the
protocol, but if you have FDDI token ring, you could kick this up to 4,500 for
better network throughput. If you are on Ethernet and your MTU is less than
1500, use ifconfig to restore it to its proper value (for example, ifconfig
eth0 mtu 1500).

The UP starting the third line of output is important too—it shows that the system
thinks that the Ethernet connection is up and alive. Always good. Note also that the
eth0 interface has received (RX) 37,310 packets of information with no errors, no
dropped packets, and no overruns. This is also very good to see, and it’s also trans-
mitted (TX) 36,045 packets with no glitches.

344 Hour 17

,
TA

SK
,

24 0672323982 ch17 6/18/02 2:00 PM Page 344

The summary line showing RX bytes is a nice addition that saves some hand calcula-
tions: This server has received packets totaling 3.9MB and transmitted 14.4MB of
packets.

2. In contrast to the loquacious output from Red Hat Linux, consider the same ifcon-
fig output from Mac OS X:
ifconfig -a
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet 127.0.0.1 netmask 0xff000000
en0: flags=8863<UP,BROADCAST,b6,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet 198.76.82.132 netmask 0xffffff80 broadcast 198.76.82.255
ether 00:30:65:3d:e8:10
media: autoselect (10baseT/UTP <half-duplex>) status: active
supported media: none autoselect 10baseT/UTP <half-duplex> 10baseT/UTP
<full-duplex> 100baseTX <half-duplex> 100baseTX <full-duplex>

Quite different, and no RX/TX statistics here at all. Same proper 1500-byte MTU,
though.

Solaris offers an even more concise result:
/sbin/ifconfig -a
lo0: flags=1000849<UP,LOOPBACK,RUNNING,MULTICAST,IPv4> mtu 8232 index 1

inet 127.0.0.1 netmask ff000000
pcn0: flags=1000843<UP,BROADCAST,RUNNING,MULTICAST,IPv4> mtu 1500 index 2

inet 198.76.82.155 netmask ffffff80 broadcast 198.76.82.255
ether 0:50:56:54:a5:9d

Even more minimal, but it still offers the core information necessary for verifying
the setup of the Ethernet interface, with the IP address, netmask (albeit in a more
difficult-to-interpret format), broadcast address, and MTU.

3. It’s useful to have a good picture of the network traffic on a given system, and that’s
what the multipurpose netstat network status command offers.
netstat
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 208 10.10.2.200:ssh dsl-132.dsldesign:49172 ESTABLISHED

Basic Network Configuration 345

17

If your client systems have RX and TX errors, or drops/overruns that account
for more than about 10% of the overall packets, you might have overly busy
subnets. The solution is to break up your subnets further. If you have zero
(as seen here), the logical conclusion is that there’s plenty of room for more
servers on the wire.

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 345

Active UNIX domain sockets (w/o servers)
Proto RefCnt Flags Type State I-Node Path
unix 7 [] DGRAM 905 /dev/log
unix 2 [] DGRAM 1226
unix 2 [] DGRAM 1207
unix 2 [] DGRAM 1162
unix 2 [] DGRAM 961
unix 2 [] DGRAM 914
unix 2 [] STREAM CONNECTED 628

By default, the first section shows the active established network connections (here
it’s showing an ssh connection to 10.10.2.200 from dsl-132.dsldesign, with a
connection ID of 49172). The second section is a list of all open sockets, some asso-
ciated with daemons, some tied to specific files (such as /dev/log), and most fairly
cryptic.

Similar output is produced by netstat on other Unixes, though the exact format
often varies. Solaris has a particularly helpful output format:
netstat

TCP: IPv4
Local Address Remote Address Swind Send-Q Rwind Recv-Q State

-------------------- -------------------- ----- ------ ----- ------ -------
solaris.32804 mac.6000 33304 0 66608 0 ESTABLISHED

Active UNIX domain sockets
Address Type Vnode Conn Local Addr Remote Addr
e106dd88 stream-ord 00000000 00000000
e106dea8 stream-ord e0e79920 00000000 /tmp/.X11-unix/X0

Clearly denoting that there’s a remote X11 event occurring.

Various flags to netstat produce different output. Most useful is –a, which offers a
different format that includes what protocols are listening, as well as established:
netstat -a
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:32768 *:* LISTEN
tcp 0 0 localhost.localdo:32769 *:* LISTEN
tcp 0 0 *:sunrpc *:* LISTEN
tcp 0 0 *:http *:* LISTEN
tcp 0 0 *:ssh *:* LISTEN
tcp 0 0 localhost.localdom:smtp *:* LISTEN
tcp 0 0 *:https *:* LISTEN
tcp 0 224 10.10.2.200:ssh dsl-132.dsldesign:49172
➥ESTABLISHED
udp 0 0 *:32768 *:*
udp 0 0 *:793 *:*
udp 0 0 *:sunrpc *:*

346 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 346

Active UNIX domain sockets (servers and established)
Proto RefCnt Flags Type State I-Node Path
unix 7 [] DGRAM 905 /dev/log
unix 2 [] DGRAM 1226
unix 2 [] DGRAM 1207
unix 2 [] DGRAM 1162
unix 2 [] DGRAM 961
unix 2 [] DGRAM 914
unix 2 [] STREAM CONNECTED 628

We can see that this system is supporting SunRPC (remote procedure call), http (for
the Apache Web server), ssh (secure shell), smtp (for e-mail), https (secure
Apache connections) and that there’s an established ssh connection. There are also
a few UDP listeners.

The output of netstat –a is one way you can verify that the services you think
you’ve disabled really aren’t running. (See Hour 19, “Running Internet Services,”
for more information about disabling services.)

4. The netstat command also offers transmit/receive statistics in a quite concise
manner if the –i flag is used:
netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 37507 0 0 0 36220 0 0 0 BMRU
lo 16436 0 98 0 0 0 98 0 0 0 LRU

This is consistent with what ifconfig reported: lots of in and out packets with
nary a single hiccup or glitch.

Solaris reports I and O (in and out) packets, rather than RX and TX packets, but oth-
erwise the data is quite similarly presented:
netstat -i
Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Queue
lo0 8232 loopback localhost 125 0 125 0 0 0
pcn0 1500 198.76.82.128 solaris 6780 0 4728 0 0 0

Finally, Mac OS X is a bit more odd, but the same basic information is included in
this longer output:
netstat -i
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16384 <Link> 1662 0 1662 0 0
lo0 16384 127 localhost 1662 0 1662 0 0
en0 1500 <Link> 00.30.65.3d.e8.10 6565 0 11226 0 0
en0 1500 198.76.82.128 dsl-132.dsldesi 6565 0 11226 0 0

Ipkts are input packets (RXs), and Opkts are output packets (TXs).

Basic Network Configuration 347

17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 347

5. Let’s turn from analyzing the system to exploring the network connectivity itself.
There are two basic tools to accomplish this task: ping and traceroute.

The ping command, which takes its name from the sound a submarine sonar
makes when trying to identify a remote object, sends an ECHO_REQUEST packet to a
specified remote system, times the duration of the send plus the echo back, and
reports that to you.

By convention, the first step with ping is to always try and check the connection to
the router. If that’s up and working, we’ve confirmed that the network card is
working, the Ethernet wire is okay, and that this computer can talk to its Ethernet
card.
ping -c 10 198.76.82.129
PING 198.76.82.129 (198.76.82.129): 56 data bytes
64 bytes from 198.76.82.129: icmp_seq=0 ttl=255 time=59.642 ms
64 bytes from 198.76.82.129: icmp_seq=1 ttl=255 time=33.371 ms
64 bytes from 198.76.82.129: icmp_seq=2 ttl=255 time=33.787 ms
64 bytes from 198.76.82.129: icmp_seq=3 ttl=255 time=33.842 ms
64 bytes from 198.76.82.129: icmp_seq=4 ttl=255 time=55.218 ms
64 bytes from 198.76.82.129: icmp_seq=5 ttl=255 time=33.934 ms
64 bytes from 198.76.82.129: icmp_seq=6 ttl=255 time=60.519 ms
64 bytes from 198.76.82.129: icmp_seq=7 ttl=255 time=69.425 ms
64 bytes from 198.76.82.129: icmp_seq=8 ttl=255 time=34.3 ms
64 bytes from 198.76.82.129: icmp_seq=9 ttl=255 time=34.241 ms

--- 198.76.82.129 ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 33.371/44.827/69.425 ms

The –c 10 specifies that ping should send 10 ECHO_REQUEST packets, spaced one
second apart by default. Each ping displays its own statistics, where you can see
that system vagaries cause the echo time to vary from 33.3 milliseconds to 69.4
milliseconds. The last two lines are the most important: percentage of loss (0%)
and average speed (44.8ms).

If you’d rather not see the individual lines of output, the –q flag hides them, limit-
ing ping to the first and last lines of output only, as shown in this next example,
where ping shows connection speed to the “other end of the wire,” a DNS server at
our ISP:
ping -q -c10 dns1.dsldesigns.com
PING dns1.dsldesigns.com (192.216.138.10): 56 data bytes

--- dns1.dsldesigns.com ping statistics ---
10 packets transmitted, 10 packets received, 0% packet loss
round-trip min/avg/max = 33.851/58.407/113.713 ms

Remarkably similar performance to the local router, so the connection between
them is clearly not a significant slowdown.

348 Hour 17

,

,

24 0672323982 ch17 6/18/02 2:00 PM Page 348

6. Finally, a few pings to popular systems around the world can demonstrate overall
connection speed:
ping -q -c5 www.yahoo.com
PING www.yahoo.akadns.net (66.218.71.89): 56 data bytes

--- www.yahoo.akadns.net ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 37.965/61.338/88.798 ms

An average of 61 milliseconds to Yahoo! and back—very fast.
ping -q -c5 news.bbc.co.uk
PING newswww.bbc.net.uk (212.58.240.34): 56 data bytes

--- newswww.bbc.net.uk ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 111.539/121.965/149.242 ms

A round trip of 121 milliseconds from California to London, where the BBC World
Service hosts its Web server.
ping -q -c5 www.koreaherald.co.kr
PING www.koreaherald.co.kr (211.200.28.40): 56 data bytes

--- www.koreaherald.co.kr ping statistics ---
5 packets transmitted, 0 packets received, 100% packet loss

This is an interesting situation because a Web browser will demonstrate that there’s a
site at this URL, so there must at least be a box answering queries from the Web. But
it’s not answering ping. How can that be?

It turns out that there are some forms of so-called denial-of-service attacks that
essentially look like a vast flood of ping ECHO_REQUEST packets. As a result, many
sites that are likely to see dissension/hackers will block all ECHO_REQUEST packets,
leading to curious results, like a 100% packet loss on a ping.
ping -qc5 www.news.co.kr
PING www.news.co.kr (203.248.249.170): 56 data bytes

--- www.news.co.kr ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 160.874/172.319/201.883 ms

Another Korean site, but this one echoes back ECHO_REQUEST packets and produces an
average ping time of 172 milliseconds. Not lightning fast, but if you consider that the lit-
tle Ethernet packet traveled at least 5,600 miles in each direction, that’s not a bad speed4.

There’s lots more that can be discussed about network connectivity and analysis, and much
of the remainder of the book will focus on this critical and quite interesting topic.

Basic Network Configuration 349

17

,

4If we assume 5,600 miles each way, that’s 11,200 miles in 0.172 seconds, or a whopping 234.4 million
miles per hour!

,

24 0672323982 ch17 6/18/02 2:00 PM Page 349

Summary
This hour has covered the essentials of Unix network configuration, focusing on Red Hat
Linux as a prototypical distro, and then exploring how things change on Solaris and Mac
OS X. And change they do! Finally, we covered some testing and validation tools, and
talked briefly about copying network configurations to multiple systems.

Q&A
Q I’m overwhelmed! Surely there are non-command-line ways to configure Unix

systems other than Mac OS X? If so, why don’t you talk about them here instead?

A The good news is that yes, there are GUI utilities for configuring networking in just
about every Unix you’ll find—if you can run a GUI interface. That’s part of the
problem; if you have a Unix system running as a server in a big collocation facility,
or if you have a rack-mounted system in the MIS department, or if you are servic-
ing 150 workstations, you might not be able to kick off an X application, let alone a
full X Window System environment. Nonetheless, rational system administrators
seek the fastest and easiest solutions, and a tool like linuxconf can be a lifesaver.
Just beware of heterogeneous environments where you have lots of OSes that you
are responsible for; how many different tools do you want to learn just to bring new
clients up on the network? It’s a conundrum.

Q What do you recommend, DHCP or fixed IP?

A Finally, an easy Q in the Q&A of this book! If you can, run DHCP, even for a small
home network. It simplifies everything.

Workshop
Quiz

1. Which has more IP addresses, a Class B or a Class C address block?

2. What’s a handy trick for figuring out the broadcast address and network address if
you know the IP address?

3. What’s the importance of the DHCP lease?

4. What’s stored in /etc/resolv.conf?

5. In Solaris 9, /etc/hosts (which is really /etc/inet/hosts anyway) is going to be
replaced by what configuration file?

6. Complete the sentence: If you’re a smart Mac OS X system administrator and are
very comfortable with Unix, your best bet to configure new clients so that they’re
on the network is _____________________.

350 Hour 17

24 0672323982 ch17 6/18/02 2:00 PM Page 350

Answers
1. A Class B block has 256 Class C blocks within it, and a Class C block has 254

usable IP addresses.

2. Drop the last of the octets in the IP address and replace it with 255 for the broad-
cast, and 0 for the network address. So, 192.37.18.33 would have the correspond-
ing broadcast address of 192.37.18.255 and a network address of 192.37.18.0.

3. The DHCP server hands out IP addresses to DHCP clients for a specified amount
of time, the duration or which is the lease. At the end of the lease, a client is
required to renew its lease on the information or request a new IP address.

4. The names and IP addresses of the DNS servers for the system are in
/etc/resolv.conf.

5. /etc/hosts will become /etc/inet/ipnodes.

6. If you’re a smart Mac OS X system administrator and are very comfortable with
Unix, your best bet to configure new clients so that they’re on the network is to use
the graphical Network control panel.

A common task among Unix admins is to set up a DNS or name server. This involves
working with BIND, named, and setting up the /etc/resolv.conf file properly, as well as
configuring and testing a DNS server, all of which we’ll cover in the next hour. We’ll also
discuss traceroute, dig, and host, all important Unix system administrator commands.

Basic Network Configuration 351

17

24 0672323982 ch17 6/18/02 2:00 PM Page 351

24 0672323982 ch17 6/18/02 2:00 PM Page 352

HOUR 18
Running Your Own
Name Server

A common task among Unix system administrators is setting up and running
a domain name system (DNS) server. Though we’re used to thinking of Web
sites, e-mail recipient systems, and other network information as specific
names, the Internet actually uses unique numbers. The DNS server system
maps names to numbers.

When you type a URL into your Web browser, for example, it first contacts
your local DNS server asking for the IP address of the Web host you are
requesting. If your local DNS server does not know the IP address, it will
then forward the request to another DNS server, often one of the root DNS
servers1. The root server typically won’t answer the query, but will instead
forward you along, reporting the IP address of the authoritative DNS server-
for the domain you are requesting. Your local DNS server then contacts this
DNS server, and finally receives the correct IP address.

1There are 13 root servers scattered around the world. They all contain the IP addresses
of the name servers that are registered with a particular domain.

25 0672323982 ch18 6/18/02 2:06 PM Page 353

In this hour, we’ll have a tour of the DNS system, with specific emphasis on how to
maintain a DNS server on your Unix systems.

In this hour, you’ll learn about

• Working with BIND and zone files

• Configuring named, the name server daemon

• Working with rndc, the best DNS admin tool

• Testing DNS installations

The Berkeley Internet Name Domain Package
To manage a DNS database, systems running as DNS servers often run the Berkeley
Internet Name Domain (BIND) system, a powerful and flexible DNS server. RedHat
Linux 7.2 ships with BIND version 9. Indeed, it turns out that early versions of BIND
are notorious for having security problems, so if you’re going to start running a DNS
server, it’s a smart idea to upgrade to the latest release. Of course, as with any software
that interacts with the outside network, it’s always a good idea to keep BIND up-to-date
with the latest security patches and bug repairs.

354 Hour 18

The official distribution of BIND is from the Internet Software Consortium
(www.isc.org) and includes the DNS server named, the resolver library, and
some very useful tools for analysis.

Task 18.1: Exploring BIND and Zone Files
It is important to note that named only needs to be run if you are going to be providing
authoritative name services for one or more domains. What’s an authoritative name? It’s
the official host on the Internet that’s authorized by the domain name record to answer
DNS queries.

1. To see what DNS servers are the authoritative name servers for a given domain,
use the whois command:
$ whois intuitive.com

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

,
TA

SK
,

25 0672323982 ch18 6/18/02 2:06 PM Page 354

Domain Name: INTUITIVE.COM
Registrar: NETWORK SOLUTIONS, INC.
Whois Server: whois.networksolutions.com
Referral URL: http://www.networksolutions.com
Name Server: NS11A.VERIO-WEB.COM
Name Server: NS11B.VERIO-WEB.COM
Updated Date: 05-nov-2001

>>> Last update of whois database: Fri, 19 Apr 2002 05:03:06 EDT <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains and
Registrars.

You can see in this record that the authoritative name servers are NS11A.VERIO-WEB.
COM and NS11B.VERIO-WEB.COM. But where does the information that these are the
authoritative name servers for this specific domain come from? A DNS server…

2. To be an authoritative name server, the most important part of the configuration is
to have a zone file for each domain.

Zone files describe the domain you are providing name services for, and the indi-
vidual hosts that have been given names. Each domain will usually contain two
zone files, one for normal lookups and one for reverse lookups (converting an IP
address to its fully qualified domain name).

Zone files typically contain one or more lines of directives, followed by multiple
lines listing individual resource types and their hostname and IP address pairs.
Here’s a typical entry, the one that serves as the statement or zone of authority
(SOA) for intuitive.com:

Running Your Own Name Server 355

18

,

By convention, these zone files are stored in /var/named/ and have file-
names that match the domain name, so this is called /var/named/intu-
itive.com.zone on our server.

cat /var/named/intuitive.com.zone
$ORIGIN intuitive.com.
$TTL 86400

@ IN SOA feed11.verio-web.com. hostmaster.verio-web.com. (
2002041100 ; serial
7200 ; refresh
3600 ; retry
604800 ; expiry
86400) ; minimum,

25 0672323982 ch18 6/18/02 2:06 PM Page 355

86400 IN NS ns11a.verio-web.com.
86400 IN NS ns11b.verio-web.com.
86400 IN MX 50 mail-fwd.verio-web.com.

www.intuitive.com. 86400 IN MX 50 mail-fwd.verio-web.com.

intuitive.com. 86400 IN A 161.58.20.91
ftp 86400 IN A 161.58.20.91
smtp 86400 IN A 161.58.20.91
www 86400 IN A 161.58.20.91
urlwire 86400 IN A 63.101.93.250
staging 86400 IN CNAME urlwire

There’s a lot in this zone file, so let’s take it one step at a time. First off, notice that
the very first line has a trailing dot after the domain name (for example, intu-
itive.com.). It turns out that this trailing dot is very important, and omitting it is a
common mistake for DNS administrators: If you forget, then the hostname is auto-
matically prepended, which is usually wrong.

The second line has the Time-To-Live (TTL) directive, and it’s in units of seconds:
86,400 = 24 hours. Think of this as the expiration date: Once the TTL has expired,
any DNS cache is required to request a fresh copy of the data.

3. The remainder of the zone file is comprised of resource records. The first resource
record is a Statement Of Authority (SOA), and it has its own TTL, administrative
address associated with the domain record (albeit with the usual @ replaced with a
dot), and a number of configuration parameters, as detailed in Table 18.1.

TABLE 18.1 Statement of Authority Fields in a Zone File

Name Exemplary Value Explanation

Serial 2002041100 A unique serial number for this version of this domain
record. This should change each time the zone file is
edited. By convention, most sysadmins use YYYYMMDD and
tack on a two-digit revision value, so this serial number
represents a zone file last modified on April 11, 2002.

Refresh 7200 Number of seconds that secondary servers can use this
record without it expiring and needing to be refreshed.

Retry 3600 How frequently a secondary server should try to contact
the primary server to refresh the DNS data in the cache.

Expiry 604800 The length of the time after which the secondary server
should stop responding as an authoritative on the domain
when no response has been received from the master.

Minimum 86400 The length of time other name servers should cache this
information, in seconds.

356 Hour 18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 356

Notice that the zone file inherently includes the concept of having a secondary, as
well as a primary, domain server. This is a smart fail-safe architecture: By having
multiple servers able to act authoritatively, users are less likely to have a DNS
query fail if the primary server is offline. However, having multiple primary
servers leads to a puzzle that this also solves—which of the multiple servers
“owns” the domain name record? That’s what all the refresh, expiry, and other
values specify—they tell authoritative, but nonprimary, name servers how to inter-
act with the primary for this specific domain name.

4. All the subsequent lines in the zone file specify explicit types of domain informa-
tion. Notice the column that has NS, MX, A, and CNAME values—those indicate
whether the specified record is a name server, mail exchange, address queries, or
alternate (canonical) name, respectively.

For example, we can see explicitly that ns11a.verio-web.com and ns11b.verio-

web.com are the name servers (NS) for this domain, and that e-mail receipt queries
resolve to mail-fwd.verio-web.com. The second MX record, explicitly listing
www.intuitive.com, allows mail sent to a user @www.intuitive.com to resolve
properly and drop into the correct mailbox.

Running Your Own Name Server 357

18

,

This is an important nuance: The same domain name can return different IP
addresses, based on the type of query specified. This zone file specifies that
all general queries for intuitive.com resolve to 161.58.20.91, except mail
exchange queries, which are answered by mail-fwd.verio-web.com.

Finally, there is a set of resource records that actually map domain and subdomain
names to explicit IP addresses. Here we can see that intuitive.com and the host
ftp, smtp, and www are assigned the same IP address as the main domain record,
but urlwire is a completely different IP address. This correctly implies that Web
and mail queries to urlwire.intuitive.com are handled by a different server.

The very last record demonstrates a helpful shorthand available in zone files: A
CNAME record is essentially an alias, so the line

staging 86400 IN CNAME urlwire

indicates that queries for staging.intuitive.com should be answered exactly the
same as queries for urlwire.intuitive.com.

Commonly, www subdomains are aliases to the main Web server through a CNAME in
just this fashion. Indeed, the zone file would be just as valid if the last few lines
were written as
intuitive.com. 86400 IN A 161.58.20.91
www 86400 IN A 161.58.20.91
smtp 86400 IN CNAME www,

25 0672323982 ch18 6/18/02 2:06 PM Page 357

ftp 86400 IN CNAME www
urlwire 86400 IN A 63.101.93.250
staging 86400 IN CNAME urlwire

The eagle-eyed among you will have noticed that fully qualified domain names (FQDNs
in DNS parlance: a domain that includes all elements—intuitive.com—versus the
unqualified domain name www) always have that trailing dot, whereas subdomains do
not. It’s important to keep this straight, so as not to corrupt your DNS system.

5. Before we leave the discussion about zone files, let’s have a peek at a different
type, a reverse lookup zone file:
cat /var/named/20.58.161.in-addr.arpa
$TTL 86400

@ IN SOA feed11.verio-web.com. hostmaster.verio-web.com. (
2002041200 ; serial
7200 ; refresh
3600 ; retry
604800 ; expiry
86400) ; minimum

86400 IN NS ns11a.verio-web.com.
86400 IN NS ns11b.verio-web.com.

91 IN PTR www.intuitive.com.

Much of this is the same as the earlier zone file, including the TTL, NS, and SOA
records. The difference lies in the very last line, which lists the fourth octet of the
domain IP address (for example, 91).

358 Hour 18

,

We only need the fourth octet here rather than the entire IP address
because we’re working with a Class C subnet. If your network has a Class B
or Class A subnet, you will need to specify more of the IP address in the
reverse lookup zone file. The name should also change to reflect the subnet
for the zone. For management purposes, it is better to split your Class A or
Class B subnets into Class C zones.

Notice that an inherent limitation of zone files is that we can only list one subnet per
file, so a separate reverse lookup zone file is required to permit a reverse lookup for
the staging.intuitive.com domain name (for example, the 63.101.93.x subnet).

Writing zone files from scratch is quite confusing, and there are few tools available to
help. One that might offer some respite from the potential headache that this represents
is available at www.dnstools.com, and it’s well worth exploring. Unfortunately, it’s only
available for Linux as of this writing. Mac OS X users might find DNSetup a useful,
albeit less powerful, alternative tool (homepage.mac.com/dnsetup/).

,

25 0672323982 ch18 6/18/02 2:06 PM Page 358

Configuring named
The zone files that we’ve explored up to this point are the data files that are fed to the
actual DNS name server, named. The named program runs by reading a named.conf file,
which is typically found in /etc/. The next step in our journey is to dig into this config-
uration file and see how it ties in with the individual zone files.

Task 18.2: Configuring the Name Server named
The named daemon reads the /etc/named.conf file to identify which zone files it needs
to load. All options and statements within the configuration file are terminated with a
semicolon.

1. To start, let’s check out the named.conf file:
cat /etc/named.conf
options {

directory “/var/named”;
/*
* If there is a firewall between you and nameservers you want
* to talk to, you might need to uncomment the query-source
* directive below. Previous versions of BIND always asked
* questions using port 53, but BIND 8.1 uses an unprivileged
* port by default.
*/

// query-source address * port 53;
};

controls {
inet 127.0.0.1 allow { localhost; } keys { rndckey; };

};
zone “.” IN {

type hint;
file “named.ca”;

};

zone “localhost” IN {
type master;
file “localhost.zone”;
allow-update { none; };

};

zone “0.0.127.in-addr.arpa” IN {
type master;
file “named.local”;
allow-update { none; };

};

zone “intuitive.com” IN {
type master;
file “intuitive.com.zone”;

Running Your Own Name Server 359

18

,
TA

SK
,

25 0672323982 ch18 6/18/02 2:06 PM Page 359

allow-update { none; };
};

zone “20.58.161.in-addr.arpa” IN {
type master;
file “20.58.161.in-addr.arpa.zone”;
allow-update { none; };

};

include “/etc/rndc.key”;

There’s quite a bit in this file, but a quick glance reveals that there are a few con-
trol statements at the top, then a recurring zone block, and a final include at the
bottom. Don’t be too intimidated!

360 Hour 18

,

Notice that there are two different styles of comments here: the C style that
begins with /*, ends with */, and can range over many lines, and the Java
style //, which denotes that the rest of that line is a comment.

The first statement we have is options, which is used to control the assorted
options available to named. In this configuration, the only option set is directory,
which informs named where to look for the zone files.

There’s a very helpful administrative utility called rndc, and the next statement in
the configuration file specifies who can make changes to named while it’s running.
The controls statement indicates that named is only monitoring the local loopback
address for localhost, and that connections must be verified using the secret key
rndckey (defined in the included file at the end).

For inexplicable reasons, the default /etc/named.conf file included with
some versions of Red Hat Linux has a keys value of key, which is invalid. For
you to be able to use rndc, you will have to edit named.conf so that it reads
rndckey.

2. The remainder of the configuration file contains blocks of zone file inclusion state-
ments (except the last line, which we’ll talk about shortly).

The first zone specifies the root of the DNS tree with .. These are the root servers
for the entire Internet. When named receives a request for a host it doesn’t know
about, it will contact one of the root servers asking for the DNS server registered
with the domain name.

After the name of the zone, the class is required. The class is always IN for Internet.,

25 0672323982 ch18 6/18/02 2:06 PM Page 360

The different options for each zone are specified within its block, delimited by
open and closed curly brackets. Our first option is the type of zone being specified.
Just about all of them will be master, but the root domain shows up as hint. No
other zone block should specify hint if things are configured properly.

The next option is the name of the zone file, and you can see why a standard nam-
ing scheme is quite helpful at this point. Oddly, the root domain has a zone file
with the default name of named.ca. It is located in /var/named, as expected, so
you can easily peek inside this 83-line default zone file if you’d like.

The next four zones work together as pairs, a forward-looking (name-to-IP num-
ber) and reverse looking (IP number-to-name) zone for each domain.

3. Let’s look at the next two zones together, as they describe the loopback interface:
zone “localhost” IN {

type master;
file “localhost.zone”;
allow-update { none; };

};

zone “0.0.127.in-addr.arpa” IN {
type master;
file “named.local”;
allow-update { none; };

};

The named zone goes first by convention, and it’s important to have the name
specified match the $ORIGIN value in the zone file itself:
grep ORIGIN /var/named/localhost.zone
$ORIGIN localhost.

Again, notice where there’s a trailing dot and where there isn’t. It is just as impor-
tant to omit the trailing dots in the named.conf file as it is to ensure that they’re
properly specified in the individual zone files.

There are various types of zones that can be specified in the configuration file, but
as we are hoping to be the authoritative name server for the specified domains, we
want to be the master. The other possibility is slave, in which case we act as a
backup authoritative name server, but get the master data from another more
authoritative server.

Finally, the block specifies the name of the zone file, followed by an optional list
of hosts that have the authority to update this zone, if any.

Running Your Own Name Server 361

18

,

It is dangerous to enable other hosts to update your zone configuration
files. Best practices dictate that one person be in charge of maintaining the
configuration files and restarting named when changes are made.

,

25 0672323982 ch18 6/18/02 2:06 PM Page 361

The last entry in the named.conf file is an include statement, which causes named
to include the contents of the specified file as if it were part of the named.conf file
itself. Why do this? To enable the system administrator to hide sensitive data in a
separate file with permissions that prevent unauthorized access.

In our example, named loads a file containing the secret key for the named adminis-
trative utility rndc (explained later this hour).

4. Because you need to have at least two name servers online for any given domain
name, being able to have slave zone definition blocks is a boon. Without it, you’d
have to manually distribute all the zone files to multiple systems and/or edit two or
more files for each change required.

A sample slave entry in the named.conf file on a secondary, or backup DNS
server, would look like this:
zone “intuitive.com” IN {

type slave;
file “intuitive.com.zone”;
masters { 161.58.20.91; };

};

This zone block tells named to contact host 161.58.20.91 for the zone configura-
tion information, and to store it in a file named intuitive.com.zone.

The named.conf file and the individual zone files stored in /var/named combine to let a
system administrator create a fully functional domain name server for anywhere from
two or three to thousands of domain names.

Working with rndc
The named daemon only reads its configuration files on startup, which implies that each
time you modify a zone file or the named.conf file you should restart the server. Rather
than starting and stopping each time a change is made, however, you should use the
remote name daemon control (rndc) program.

Task 18.3: Learning rndc
There are a variety of useful administrative tasks that can be accomplished with rndc, but
let’s just consider a couple of the most basic—you can read the rndc man page for more
information if you’re curious or need additional capabilities.

1. The most common operation is to force a reload of the configuration files. This is
accomplished using the reload command:
rndc reload
#

362 Hour 18

,
TA

SK
,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 362

If you have a lot of zone files and want to save time on the reload, explicitly spec-
ify reconfig instead and named will only scan the named.conf file and any new
zone files it finds. Again, there’s no output unless an error is encountered:
rndc reconfig
#

2. Other common rndc options that you might find useful are listed in Table 18.2.

TABLE 18.2 Useful rndc Commands

Command Meaning

reconfig Reload the named.conf file and any new zone files found.

reload Reload all zone files.

reload zone Reload the given zone only.

stop Stop the server, saving any changes to the master files of the updated zones.

halt Stop the server immediately. No changes are saved, but they will be rolled for-
ward from the journal files when the server is restarted, so they won’t be lost.

rndc is only used with BIND version 9, and carries most of the same commands
that were available in ndc, the named daemon control program from previous ver-
sions of BIND.

3. The rndc command has its own configuration file, /etc/rndc.conf. The default is
probably quite sufficient, particularly because the controls statement in named.
conf enables you to state who is allowed to send commands to named using rndc.
cat /etc/rndc.conf
options {

default-server localhost;
default-key “key”;

};

server localhost {
key “rndckey”;

};

key “rndckey” {
algorithm hmac-md5;
secret

“k0sYAWycZNcPVfLojkdnKWkgqYJsbNCtR0GyXYkldQehDcurizoHtQbFhqNp”;
};

4. Before you’re done with rndc, it’s quite helpful to run the utility named-check-

zone to verify the syntax of each zone file. To use this utility, specify a zone name
and zone file:

/etc/named-checkzone intuitive.com /var/named/intuitive.com.zone

Running Your Own Name Server 363

18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 363

You could also drop this into a loop, as in the following:
cd /var/named
for name in *
do
domain=”`echo $name | sed ‘s/\.zone//’`”
echo “Domain $domain:”
/etc/named-checkzone $domain /var/named/$name

done

A simple utility, the rndc command is critical to effective management of named and
your local name server.

Testing DNS Setups
Now that you have your configuration and zone files straight, it’s time to test it and make
sure everything is copacetic.

In the old days, there was a great utility called nslookup that offered a simple way to
interact with name servers. In the last few years, nslookup has been put out to the
proverbial pasture and replaced with two new tools, dig and host.

Task 18.4: Testing with dig and host
Of the two tools, you’ll doubtless find dig (the Domain Information Groper) the most
useful, but let’s look at both of them and see what they can offer.

1. In its basic form, dig just needs a domain name to retrieve information:
dig intuitive.com
; <<>> DiG 9.1.3 <<>> intuitive.com
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 51083
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;intuitive.com. IN A

;; ANSWER SECTION:
intuitive.com. 28067 IN A 161.58.20.91

;; AUTHORITY SECTION:
intuitive.com. 79973 IN NS ns11a.verio-web.com.
intuitive.com. 79973 IN NS ns11b.verio-web.com.

;; ADDITIONAL SECTION:
ns11b.verio-web.com. 149498 IN A 161.58.148.98

364 Hour 18

,

,

,
TA

SK
,

25 0672323982 ch18 6/18/02 2:06 PM Page 364

;; Query time: 5 msec
;; SERVER: 192.168.1.250#53(192.168.1.250)
;; WHEN: Fri Apr 12 01:23:58 2002
;; MSG SIZE rcvd: 113

If you get back something that looks similar to this, everything is working fine
with your configuration. If not, go back and double-check your settings.

Running Your Own Name Server 365

18

,

If you find that dig can’t report information on domains on which you have
set up master records, check the syslog log file for detailed problems
encountered by named upon startup. Most likely, the syslog output will be
called /var/log/messages.

2. The fourth line of the output gives us a status code status: NOERROR telling us
that our query was completed successfully. Line five gives us some stats: how
many queries, answers, authorities, and additional information was found for the
specified domain.

The next lines are broken up into sections detailing the question asked, the answer
found, the authority providing the answer, and any additional information.

We asked the simple question, “Who is intuitive.com?” The answer is IP address
161.58.20.91. The authority answering the question is the two name servers
ns11a.verio-web.com and ns11b.verio-web.com. And finally, the additional sec-
tion gives us the IP address of ns11b.verio-web.com.

3. This was a simple example to ensure named responds to requests, but clearly it
didn’t return all the information in our zone file.

How can we see it all? By asking for a zone transfer. The wrinkle is that you can
only request a zone transfer from the authoritative server, whether it’s an NS or
SOA. The solution is to ask dig for it explicitly:
dig intuitive.com soa
; <<>> DiG 9.1.3 <<>> intuitive.com soa
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19035
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;intuitive.com. IN SOA,

25 0672323982 ch18 6/18/02 2:06 PM Page 365

;; ANSWER SECTION:
intuitive.com. 27849 IN SOA feed11.verio-web.com. hostmaster
.verio-web.com. 2001121419 7200 3600 604800 86400

;; AUTHORITY SECTION:
intuitive.com. 79548 IN NS ns11b.verio-web.com.
intuitive.com. 79548 IN NS ns11a.verio-web.com.

;; ADDITIONAL SECTION:
ns11b.verio-web.com. 149073 IN A 161.58.148.98

;; Query time: 5 msec
;; SERVER: 192.168.1.250#53(192.168.1.250)
;; WHEN: Fri Apr 12 01:31:03 2002
;; MSG SIZE rcvd: 151

Now we can ask ns11b.verio-web.com to give us all records for intuitive.com.
There are quite a few different queries you can perform, but a zone transfer is speci-
fied with axfr:
dig @ns11a.verio-web.com intuitive.com axfr

; <<>> DiG 9.1.3 <<>> @ns11a.verio-web.com intuitive.com axfr
;; global options: printcmd
intuitive.com. 86400 IN SOA feed11.verio-web.com. hostmaster
.verio-web.com. 2001121419 7200 3600 604800 86400
intuitive.com. 86400 IN NS ns11a.verio-web.com.
intuitive.com. 86400 IN NS ns11b.verio-web.com.
intuitive.com. 86400 IN MX 50 mail-fwd.verio-web.com.
intuitive.com. 86400 IN A 161.58.20.91
ftp.intuitive.com. 86400 IN A 161.58.20.91
smtp.intuitive.com. 86400 IN A 161.58.20.91
www.intuitive.com. 86400 IN MX 50 mail-fwd.verio-web.com.
www.intuitive.com. 86400 IN A 161.58.20.91
urlwire.intuitive.com. 86400 IN A 63.101.93.250
staging.intuitive.com. 86400 IN A 63.101.93.250
intuitive.com. 86400 IN SOA feed11.verio-web.com. hostmaster
.verio-web.com. 2001121419 7200 3600 604800 86400
;; Query time: 169 msec
;; SERVER: 161.58.148.62#53(feed11.verio-web.com)
;; WHEN: Fri Apr 12 01:38:34 2002
;; XFR size: 13 records

4. To ask for a specific type of query, specify any one of a (network address), any (all
information about the domain), mx (mail exchange), ns (name servers), soa (the
zone of authority record), hinfo (host info), axfr (zone transfer), or txt (arbitrary
strings of text).

366 Hour 18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 366

Knowing this, it’s interesting to query a busy, well-known server to see how it’s set
up. For example, AOL’s mail exchange records should prove interesting:
$ dig aol.com mx

; <<>> DiG 9.1.3 <<>> aol.com mx
;; global options: printcmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 19186
;; flags: qr rd ra; QUERY: 1, ANSWER: 4, AUTHORITY: 4, ADDITIONAL: 18

;; QUESTION SECTION:
;aol.com. IN MX

;; ANSWER SECTION:
aol.com. 530 IN MX 15 mailin-04.mx.aol.com.
aol.com. 530 IN MX 15 mailin-01.mx.aol.com.
aol.com. 530 IN MX 15 mailin-02.mx.aol.com.
aol.com. 530 IN MX 15 mailin-03.mx.aol.com.

;; AUTHORITY SECTION:
aol.com. 136764 IN NS DNS-01.NS.aol.com.
aol.com. 136764 IN NS DNS-02.NS.aol.com.
aol.com. 136764 IN NS DNS-06.NS.aol.com.
aol.com. 136764 IN NS DNS-07.NS.aol.com.

;; ADDITIONAL SECTION:
mailin-04.mx.aol.com. 13 IN A 64.12.137.121
mailin-04.mx.aol.com. 13 IN A 64.12.137.152
mailin-04.mx.aol.com. 13 IN A 152.163.224.122
mailin-04.mx.aol.com. 13 IN A 64.12.136.153
mailin-01.mx.aol.com. 9 IN A 64.12.137.184
mailin-01.mx.aol.com. 9 IN A 152.163.224.26
mailin-01.mx.aol.com. 9 IN A 64.12.136.57
mailin-01.mx.aol.com. 9 IN A 205.188.156.122
mailin-01.mx.aol.com. 9 IN A 64.12.137.89
mailin-02.mx.aol.com. 183 IN A 64.12.136.121
mailin-02.mx.aol.com. 183 IN A 64.12.137.89
mailin-02.mx.aol.com. 183 IN A 64.12.137.184
mailin-02.mx.aol.com. 183 IN A 64.12.136.89
mailin-02.mx.aol.com. 183 IN A 205.188.156.154
DNS-01.NS.aol.com. 136764 IN A 152.163.159.232
DNS-02.NS.aol.com. 136764 IN A 205.188.157.232
DNS-06.NS.aol.com. 136764 IN A 149.174.211.8
DNS-07.NS.aol.com. 136764 IN A 64.12.51.132

;; Query time: 34 msec
;; SERVER: 207.182.224.5#53(207.182.224.5)
;; WHEN: Fri Apr 19 13:59:26 2002
;; MSG SIZE rcvd: 507

Running Your Own Name Server 367

18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 367

5. Another utility used to check DNS records is host. In its simplest form, host con-
verts back and forth between a domain name and its IP address:
host intuitive.com
intuitive.com. has address 161.58.20.91
host 161.58.20.91
91.20.58.161.in-addr.arpa. domain name pointer www.intuitive.com.

If we add the –v (verbose) flag to the command, the output is very similar to dig:
$ host -v intuitive.com
Trying “intuitive.com.”
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 22099
;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 2, ADDITIONAL: 1

;; QUESTION SECTION:
;intuitive.com. IN A

;; ANSWER SECTION:
intuitive.com. 26740 IN A 161.58.20.91

;; AUTHORITY SECTION:
intuitive.com. 78646 IN NS ns11a.verio-web.com.
intuitive.com. 78646 IN NS ns11b.verio-web.com.

;; ADDITIONAL SECTION:
ns11b.verio-web.com. 148171 IN A 161.58.148.98

Received 113 bytes from 192.168.1.250#53 in 5 ms

Using the -l (list) command is the same as asking for zone (axfr) information
using dig, but host presents the information in a friendlier format. You still need to
specify an authoritative server for this to work:
host -l intuitive.com ns11a.verio-web.com
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

intuitive.com. SOA feed11.verio-web.com. hostmaster.verio-web.com.
2001121419 7200 3600 604800 86400

Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

intuitive.com. name server ns11a.verio-web.com.
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

368 Hour 18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 368

intuitive.com. name server ns11b.verio-web.com.
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

intuitive.com. mail is handled by 50 mail-fwd.verio-web.com.
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

intuitive.com. has address 161.58.20.91
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

ftp.intuitive.com. has address 161.58.20.91
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

smtp.intuitive.com. has address 161.58.20.91
Using domain server:
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

www.intuitive.com. mail is handled by 50 mail-fwd.verio-web.com.
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

www.intuitive.com. has address 161.58.20.91
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

urlwire.intuitive.com. has address 63.101.93.250
Using domain server:
Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:

staging.intuitive.com. has address 63.101.93.250
Using domain server:

Running Your Own Name Server 369

18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 369

Name: feed11.verio-web.com
Address: 161.58.148.62#53
Aliases:
intuitive.com. SOA feed11.verio-web.com. hostmaster.verio-web.com.
➥2001121419 7200 3600 604800 86400

The two utilities dig and host are similar to each other, and both provide the same infor-
mation. Because of the breadth of options that are available with dig, it can be more
powerful than host, but host is a good tool to use because of its simplicity.

Summary
This hour has focused on the basic concepts and configuration of a domain name server
using the popular Berkeley BIND package. We’ve explored zone files, the named.conf
file, and discussed master and slave servers. In addition, we explored various useful utili-
ties that are quite useful whether you’re running a name server or not. In particular, host
offers a helpful reverse-IP lookup utility that can make reading through log files much
more informative.

Q&A
Q I want to control my domain name record, but not run a BIND server. Am I

out of luck?

A A year or two ago the answer would have been “yes, you’re outta luck,” but there
are a number of different Web-accessible domain name servers that enable you to
easily manage your own DNS records without the hassle of BIND, zone files, and
so on. I use one myself: http://www.mydomain.com/.

Q What are the numbers just before the domain names in MX records? A
search for the MX records for AOL, for example, prefaced each MX server
with 15. What does it mean?

A The number is the priority value associated with each of the MX servers for that
domain. The lower the number, the higher the priority. If there are multiple servers
with the same priority, the system load-balances by randomly picking one as the
recipient system.

370 Hour 18

,

,

25 0672323982 ch18 6/18/02 2:06 PM Page 370

Workshop
Quiz

1. What’s the main reason for updating your version of BIND?

2. What happens if you omit the trailing dots on domain names in the ORIGIN section
of a zone file?

3. What would happen if a TTL for a master record was set to 60? Would that be
good or bad?

4. What should you always remember to do when you edit a zone file?

5. Why is it dangerous to let other hosts update your zone configuration files through
rndc?

6. What very important thing happens if you use the command rndc stop that
doesn’t occur with rndc halt?

Answers
1. In a word: security.

2. ORIGIN names that lack a trailing dot have the hostname automatically prefaced,
changing the intent of the statement in the zone file in most cases.

3. Setting the TTL too low will cause the network to saturate, as DNS caches keep
asking for new authoritative records again and again. It’d definitely be bad.

4. Update or increment the serial number in the zone file.

5. See Answer #1.

6. The stop command saves any changes to the zone information by rewriting the
master files. The halt command does not change the master files.

A name server is a single Internet service, as is a Web server (covered in the last two
hours of this book). The next hour will focus on a variety of different Internet services,
including a discussion of how to enable or disable ftp access, and an exploration of the
useful telnet utility.

Running Your Own Name Server 371

18

25 0672323982 ch18 6/18/02 2:06 PM Page 371

25 0672323982 ch18 6/18/02 2:06 PM Page 372

HOUR 19
Running Internet
Services

Although there are specific network services that your Unix system runs as
separate programs, notably the Apache Web server, there’s an entire class of
daemons that are launched from a program that monitors incoming network
connections and hands specific queries off to the right software.

That program is called inetd, and it’s simultaneously your best friend as the
system administrator of a network-based computer and your worst enemy—
it’s a well-known open door for hackers.

This hour will focus on this important service and its more sophisticated
Linux cousin xinetd. Along the way, we’ll talk about TCP Wrapper, a help-
ful quasi-firewall specifically for services launched from inetd.

In this hour, you’ll learn about

• Configuring and managing inetd

• How to configure TCP Wrapper for security

• Working with xinetd and why it’s a mixed blessing

• Configuring anonymous FTP

26 0672323982 ch19 6/18/02 2:03 PM Page 373

The inetd Super-Daemon
If daemons had T-shirts hiding under their normal clothes, Apache might have a big
thumbs-up on its shirt, but without question, inetd would be the service with the big
blue “S” for super-daemon!

374 Hour 19

Some people have incorrectly assumed some sort of satanic meaning behind
the use of daemon to describe network and background services, assuming
it’s a misspelling of demon. It’s not. It’s a word first used by Socrates, and it
means “indwelling spirit.” No good or bad connotation, just a hidden capa-
bility within your Unix box.

The motivation behind creating inetd was that as more and more network services began
popping up on Unix systems, they started to consume system resources far beyond their
utility. It’s certainly useful to have an occasional user connect via ftp to download a file,
for example, but does that require having a daemon running all the time?

Hence the birth of inetd, a program that listens to multiple incoming ports and can
launch and relay incoming requests to the appropriate daemon as needed.

Task 19.1: Understanding and Working with inetd
Before we go further, a brief word on ports, or sockets, as they’re also known. Although
your server probably only has a single Ethernet wire or network connection, there are a
variety of different services that it can offer through that wire. These are differentiated by
having unique port addresses, akin to unique frequencies on a TV tuner. (Indeed, your
cable connection has a single wire transmitting dozens of different channels, and it’s the
job of your TV tuner to ignore everything but the specific channel you want to watch.)

1. All of these ports are defined in a file called /etc/services, and it’s quite long as
it defines the port for hundreds of different services, some available cross-platform,
and others available only on one specific OS or flavor of Unix. On Red Hat Linux,
for example, it defines almost 500 different services!

Here are a few representative lines:
ftp 21/tcp
ftp 21/udp
ssh 22/tcp # SSH Remote Login Protocol
ssh 22/udp # SSH Remote Login Protocol
telnet 23/tcp
telnet 23/udp
smtp 25/tcp mail
smtp 25/udp mail
time 37/tcp timserver
time 37/udp timserver

,
TA

SK
,

26 0672323982 ch19 6/18/02 2:03 PM Page 374

The general format is to list the service name followed by the port and protocol,
any aliases, and then (sometimes) a comment prefaced with the usual # character.
You’ll notice that all these services shown have both a TCP and UDP port defined:
TCP (the Transmission Control Protocol) maintains state in its communications,
and is therefore ideal for back-and-forth dialogs between server and client apps.
UDP (the User Datagram Protocol) is stateless, and is used for broadcast services
and other services where it doesn’t matter if packets are received. An example of
this is a service that might broadcast the current time every 120 seconds—it’s not
an error if no one is listening.

Running Internet Services 375

19

,

You’ll probably never need to change anything in the /etc/services file
unless you’re writing your own system daemon. In more than 20 years of
working with Unix systems, I’ve never edited /etc/services.

2. The main program that we’re interested in learning more about, of course, is
inetd, and the inetd program is usually launched as part of the standard run
level 3 service set:
ls */*inetd*
init.d/inetd* rc1.d/K37inetd@ rc3.d/S37inetd@ rc5.d/S56inetd@
rc0.d/K37inetd@ rc2.d/K37inetd@ rc4.d/S37inetd@ rc6.d/K37inetd@

Unwrapping this just a wee bit (and remembering that the K prefix means “kill”
and the S prefix means “start”), we can see that on this system, inetd is only sup-
posed to be running at run levels 3, 4, and 5.

On a Mac OS X system, things are different. For example, in addition to a 2066-line
/etc/services file, there’s also a set of services defined in the NetInfo database:
nidump services . | wc -l

1013

On the Mac, inetd is launched from the hard-to-find IPServices file, as shown
here:
head -12 /System/Library/StartupItems/IPServices/IPServices
#!/bin/sh

##
Run the Internet super-server.
##

. /etc/rc.common

ConsoleMessage “Starting TCP/IP services”

inetd,

26 0672323982 ch19 6/18/02 2:03 PM Page 375

Regardless of where it is, once inetd is started on a Unix system, it has control
over quite a few network services, as defined in the /etc/inetd.conf file.

To check that inetd is running, of course, we can easily use the ps command:
ps aux | grep inet
root 231 0.0 0.0 1288 184 ?? Ss 0:00.01 inetd
root 778 0.0 0.0 1112 220 std R+ 0:00.00 grep inet

A more sophisticated way would be to look for the file /var/run/inetd.pid and
use its contents to see if the program is still running:
ps `cat /var/run/inetd.pid`
PID TT STAT TIME COMMAND
231 ?? Ss 0:00.01 inetd

If it isn’t running (as is the case in Red Hat Linux, where it’s been replaced with
xinetd), this generates an error message instead.

3. Now that we can figure out whether inetd is running or not, let’s have a look at the
all-important configuration file and see what’s inside.

The most important check is to see what lines are not commented out: Any service
that’s commented out is disabled:
grep -v ‘^#’ /etc/inetd.conf
telnet stream tcp nowait root /usr/libexec/tcpd telnetd

This shows that the only service enabled through inetd on this system is telnet.
Shortly, we’ll enable ftp, but for now, this is sufficient for our exploration.

The format for lines in the inetd.conf file is

service socket proto flags user path args

where service is the name of the specific service (it must correspond to a matching
entry in /etc/services, which is why that file is important), socket defines how
the server and client should communicate, and the most common values are stream
(for TCP) and dgram (for UDP). proto specifies the communication protocol,
though it’s implied in the socket type as well, of course. Values can be TCP, UDP, or
RPC, the last for remote-procedure calls.

The flags setting is a bit tricky: It lets the sysadmin specify whether an individual
instantiation of the daemon can handle multiple connection requests or not. Most
cannot (if they could, they’d probably be running all the time like Apache). To spec-
ify that the daemon requires one application per connection—the most common—
use nowait, whereas wait indicates that the service can handle lots of connections.

A very important parameter is user, because it informs inetd what user should own
the process when launched. Most standard system daemons run as root, but if you
add something that isn’t vetted by your vendor, you’d be wise to use a different
user to minimize security risks.

376 Hour 19

,

,

26 0672323982 ch19 6/18/02 2:03 PM Page 376

Finally, the path to the executable is specified, and the command args are speci-
fied, always starting with the name of the program itself. In this example, you can
see that telnet uses the /usr/libexec/tcpd TCP Wrapper program, and that the
program name itself is telnetd.

4. For the most part, removing the leading # in the inetd.conf file will automatically
enable that service on your system. The only additional step required is to send a
SIGHUP signal to the inetd daemon to force a reread of the configuration file.

Running Internet Services 377

19

,

Well, the software required for some daemons might not be preinstalled. If
it isn’t, check an RPM or other package repository (see Hour 8, “Unix
Package Management,” for more information on Unix package managers).

Demonstrating this is easy: The telnet command allows easy access to any ser-
vice on the local system, and we can even specify the service by name (telnet
maps the name to a service port by referencing /etc/services). For example:
telnet localhost ftp
Trying 127.0.0.1...
telnet: Unable to connect to remote host: Connection refused

We’re trying to access ftp, but as is obvious, the service isn’t enabled.

To enable it, just strip out the # before ftp in /etc/inetd.conf, and have inetd
reread its configuration file:
grep -v ‘^#’ /etc/inetd.conf
ftp stream tcp nowait root /usr/libexec/tcpd
ftpd -l
telnet stream tcp nowait root /usr/libexec/tcpd
telnetd
kill -HUP `cat /var/run/inetd.pid`

and…
telnet localhost ftp
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
220 dsl-132.dsldesigns.net FTP server (Version 6.00LS) ready.

Ready to go. Type QUIT to drop the ftp connection.

5. Before we leave this discussion, let’s have a look at the different log files, and
where information about what we’ve just done is recorded. First off, the ftp pro-
gram itself has a log file (in Mac OS X it’s called /var/log/ftp.log, but on other
Unix systems it’s more likely to be called /var/log/xferlog or similar):
tail -1 ftp.log
Apr 22 20:32:08 dsl-132 ftpd[807]: connection from localhost,

26 0672323982 ch19 6/18/02 2:03 PM Page 377

Many systems also log inetd events themselves (particularly restarts), and they’d
be in the syslog file. However, most modern Unix systems only log errors here
(depending on how you’ve configured syslogd, actually. See the man page for
more details!).

The other log file of interest is the TCP Wrapper (remember, inetd launches
/usr/libexec/tcpd, not ftpd directly). We’ll examine this more closely in the
next section, however.

6. Perhaps the most important consideration with inetd is that it’s very easy to enable
services that you don’t really need, and that every service you enable offers more
ways for a bad guy to get in. As a result, a standard rule of thumb for smart system
administrators is to disable everything. Sounds harsh, but it’s a good policy—only
enable those services that are “must have” services, and for which there aren’t
smarter, more secure alternatives.

For example, instead of telnet and ftp, run sshd (SSH is the Secure Shell), which
supports both logging in directly and transferring files back and forth, only with
encrypted communication that’s considerably more secure.

378 Hour 19

,

Interestingly, sshd isn’t something that’s run from inetd or xinetd. Instead,
it’s almost always an always-running daemon launched from /etc/rc.local,
or one of the /etc/rc.d/n.d directories.

Here’s a handy shell script that will check to see what’s going on with inetd: You
might even invoke this automatically from your .login script:
cat enabled
#!/bin/sh

enabled - show what services are enabled with inetd

iconf=”/etc/inetd.conf”

if [-r $iconf] ; then
echo “Services enabled in $iconf are:”
grep -v ‘^#’ $iconf | awk ‘{print “ “ $1}’
echo “”
if [“`ps -aux | grep inetd | egrep -vE ‘(xinet|grep)’`” == “”] ; then
echo “** warning: inetd does not appear to be running”

fi
fi
exit 0,

26 0672323982 ch19 6/18/02 2:03 PM Page 378

Before we finish up this section, let’s disable all the services in inetd.conf (use
vi and add # before each enabled service). We can double-check the results with
the enabled script:
enabled
Services enabled in /etc/inetd.conf are:
#

The inetd super-daemon is a great help for the harried sysadmin trying to keep track of
what services are enabled, and what binaries the daemons actually use for each service.
It’s easy to not pay attention and have unnecessary services enabled, which is a definite
problem, so you should always double-check the state of the inetd.conf file on your
servers. In particular, make sure that the default configuration from the vendor doesn’t
enable a bunch of unnecessary services. And check again each time you upgrade your
OS, just in case things change.

Managing inetd Security with TCP Wrapper
Although some systems run a stock inetd service and have the program launch daemons
directly, this isn’t the best security policy in the world. Among other problems, this
doesn’t enable any sort of control over which remote systems can or cannot access a
given service. For example, perhaps your server should allow FTP access from anywhere
else in the company, but reject connections from elsewhere on the Internet; or there are
competitors who would love to break in through telnet, and you’d like to disable their
access.

TCP Wrapper enables just this level of control over access to individual services, and it
lets you specify access through allow lists or deny lists.

Task 19.2: Working with TCP Wrapper
Originally written by Wietse Venema of Eindhoven University of Technology in the
Netherlands, TCP Wrapper is actually a rather simple service, but quite helpful nonethe-
less. It’s also installed by default on many flavors of Unix.

1. Services monitored with TCP Wrapper are logged in the syslogd log file, usually
/var/log/messages or /var/log/system.log, depending on the OS. On Mac OS
X, for example, an earlier telnet connection and the ftp test from a remote sys-
tem are logged as
tail –4 /var/log/system.log
Apr 22 21:39:38 dsl-132 telnetd[922]: connect from 63.101.93.250
Apr 22 21:41:17 dsl-132 ftpd[943]: connect from 63.101.93.250
Apr 22 21:41:18 dsl-132 ftpd[943]: connection from 63.101.93.250
Apr 22 21:41:21 dsl-132 ftpd[943]: ANONYMOUS FTP LOGIN REFUSED FROM
➥63.101.93.250

Running Internet Services 379

19

,

,

,
TA

SK
,

26 0672323982 ch19 6/18/02 2:03 PM Page 379

The connect from messages are from TCP Wrapper (though it identifies the
requested service rather than itself), while the connection and LOGIN REFUSED

messages are from ftpd itself.

2. Configuring TCP Wrapper is fairly easy, particularly if used in conjunction with
the inetd service: Simply create either an /etc/hosts.allow or /etc/hosts.deny
file; then list specific services, hosts, and optionally, a command that should be run
upon queries to that service.

For example:
cat /etc/hosts.allow
/etc/hosts.allow
#
Allow telnet from anywhere
telnetd: ALL
ftp can only be from within my own subnet:
ftpd: LOCAL, .dsldesigns.com, 137.44.

This specifies that ALL hosts can use the telnetd service, whereas only LOCAL
hosts (those hostnames that don’t contain a dot), hosts within the .dsldesigns.com
domain (note the leading dot in this domain name; without that, it would be an
exact match only), and hosts whose names have 137.44. as their first two octets in
their IP address can use the ftpd service.

Contrast that with a deny file:
cat /etc/hosts.deny
/etc/hosts.deny
#
Reject all hosts with suspect hostnames
ALL: PARANOID

This nifty TCP Wrapper trick lets us automatically reject all connections from sys-
tems where the name either doesn’t match the IP address (from a reverse IP
lookup; see the discussion in the last hour for more details), or where there isn’t a
name associated with the IP address.

In fact, the recommended configuration is to have ALL:ALL in the hosts.deny file,
then to explicitly allow certain hosts to use specific services in the hosts.allow file.

3. There’s not much more to say about TCP Wrapper, other than that if you are find-
ing that there aren’t any entries in the appropriate log file, it might well be that
you’ve configured syslog to be overly minimal in what information is logged. To
experiment, add the following to the file /etc/syslog.conf:

. /dev/console

which, once you send a SIGHUP (a hang-up signal) to the syslogd program, will
cause all messages handed to syslog to also appear on the system console. Very
interesting output results.

380 Hour 19

,

,

26 0672323982 ch19 6/18/02 2:03 PM Page 380

Though simple in concept, the TCP Wrapper program is a great boon for sysadmins
because it lets you add access control to any network service. Without it, you’d have to
either develop a firewall solution, or rewrite the service itself to allow access control.

As you’ll see in a moment, one advantage of xinetd is that it includes a built-in TCP
Wrapper-like facility.

Super-inetd: xinetd
Initially released on Red Hat Linux, the more sophisticated big brother of inetd is
xinetd, and it’s about as different as two programs can be while sharing the same con-
ceptual basis. Although it isn’t in widespread use yet, it’s also included in Mandrake
Linux. Expect it to migrate onto other platforms over time, because it’s a smart alterna-
tive to inetd.

In inetd, as you saw, there’s a single configuration file that controls which services are
enabled and the parameters that define their operation on the system.

By contrast, xinetd has a directory of individual configuration files, one per service, and
a central master configuration file that defines all the default settings for services. For the
most part, your system will have one or the other—I’d stick with the default either way.

Task 19.3: Working with xinetd
Actually, if you imagine that each line in the inetd.conf file is dropped into its own file,
and that each field of each line is then written in a fieldname = value format, you’d be
pretty close to the xinetd format.

1. The master configuration file is /etc/xinetd.conf:
cat /etc/xinetd.conf
#
Simple configuration file for xinetd
#
Some defaults, and include /etc/xinetd.d/

defaults
{

instances = 60
log_type = SYSLOG authpriv

Running Internet Services 381

19

It’s very worthwhile to study how syslog works. Start by reading the syslog
man page; then also read the syslog.conf(5) man page and look at your own
/etc/syslog.conf file.

,
TA

SK
,

26 0672323982 ch19 6/18/02 2:03 PM Page 381

log_on_success = HOST PID
log_on_failure = HOST
cps = 25 30

}

includedir /etc/xinetd.d

This demonstrates the basic structure of xinetd configuration. A service is listed,
then a set of parameters within curly brackets are set with name = value pairs. In
this instance, the special service defaults enables certain parameters to be set for
all enabled services.

The specific settings here are instances (the maximum number of concurrent con-
nections a service is permitted), log_type (it’s using syslog, with the authpriv
facility—see the syslog discussion a bit earlier in this hour), and on successful
connections, it logs HOST and PID, while on failures it logs HOST only. Finally,
there’s a fail-safe connections-per-second parameter that specifies that services can
accept a maximum of 25 connections per second, and if the rate exceeds this value,
the service will be shut down completely for 30 seconds.

The last line is the most important: It indicates that the remainder of the configura-
tion information is located in individual files in the /etc/xinetd.d directory.

382 Hour 19

,

There are quite a few different parameters that can be specified in the
xinetd.conf files. Rather than list them all here, we’ll focus on the most
important. For a complete list, see the xinetd.conf(5) man page.

2. To continue this exploration, we’ll switch our attention to the includedir directory:
cd /etc/xinetd.d
ls -s
total 18

1 chargen 1 echo 1 rexec 1 sgi_fam 1 time-udp
1 chargen-udp 1 echo-udp 1 rlogin 1 talk 1 wu-ftpd
1 daytime 1 finger 1 rsh 1 telnet
1 daytime-udp 1 ntalk 1 rsync 1 time

There are seemingly quite a few services enabled with xinetd, but further exami-
nation of a specific configuration file—in this case telnet—shows that it’s not
quite as bad as it seems:
cat telnet
default: on
description: The telnet server serves telnet sessions; it uses
unencrypted username/password pairs for authentication.
CHANGED TO DISABLE TELNET 12/2001,

26 0672323982 ch19 6/18/02 2:03 PM Page 382

service telnet
{

flags = REUSE
socket_type = stream
wait = no
user = root
server = /usr/sbin/in.telnetd
log_on_failure += USERID
disable = yes

}

Most of the specific flags should be familiar from the format of the inetd.conf
file, including socket_type, wait, user, and server. flags lets you specify one of
a wide variety of different low-level network options. In this case, REUSE means
that this service has a specific reuse-address flag set (see the xinetd.conf(5) man

page for more details. Beware, it’s very low-level!).

There’s a wonderful feature demonstrated in the log_on_failure parameter in this
service definition. Notice that it’s using +=, which means that in addition to the
default values logged on failure, the telnet service will additionally log USERID.
Table 19.1 lists the parameters that can be logged upon the success or failure of a
given connection.

TABLE 19.1 Information Logged from xinetd

Value Used When Explanation

ATTEMPT Failure Logs the fact that a failed attempt was made

DURATION Success Logs the duration of a service session

EXIT Success Logs when the server quits

HOST Success or Failure The remote host address

PID Success The process ID of the server application

RECORD Failure Records as much information as possible from the
remote end

USERID Success or Failure The userid of the remote host, if available

Finally, the last line in the telnet configuration listing is perhaps the most impor-
tant. The disable parameter can be yes or no. If it’s yes, the service cannot be
started by xinetd and connection attempts will fail. If it’s set to no, the service is
enabled.

3. The use of the disable parameter leads to the greatest problem with xinetd—it’s
rather difficult to figure out what services are enabled and which are disabled.

Running Internet Services 383

19

,

,

26 0672323982 ch19 6/18/02 2:03 PM Page 383

Fortunately, it’s a great place for a shell script, and to accomplish this, we’ll simply
extend the enabled script earlier to check either inetd or xinetd, depending on
the system configuration:
cat enabled
#!/bin/sh

enabled - show what services are enabled with inetd and xinetd,
if they’re available on the system.

iconf=”/etc/inetd.conf”
xconf=”/etc/xinetd.conf”
xdir=”/etc/xinetd.d”

if [-r $iconf] ; then
echo “Services enabled in $iconf are:”
grep -v ‘^#’ $iconf | awk ‘{print “ “ $1}’
echo “”
if [“`ps -aux | grep inetd | egrep -vE ‘(xinet|grep)’`” == “”] ; then
echo “** warning: inetd does not appear to be running”

fi
fi

if [-r $xconf] ; then
don’t need to look in xinietd.conf, just know it exists
echo “Services enabled in $xdir are:”

for service in $xdir/*
do
if [“`grep disable $service | grep ‘yes’`” == “”]; then
echo -n “ “
basename $service

fi
done

if [“`ps -aux | grep xinetd | grep -v ‘grep’`” == “”] ; then
echo “** warning: xinetd does not appear to be running”

fi
fi

exit 0

This script now makes it clear what services are enabled and which are disabled
with xinetd:
enabled
Services enabled in /etc/xinetd.d are:
sgi_fam

A bit of poking around, and the identify of sgi_fam is ascertained:
grep server /etc/xinetd.d/sgi_fam

server = /usr/bin/fam

384 Hour 19

,

,

26 0672323982 ch19 6/18/02 2:03 PM Page 384

man -k fam
fam (1m) - file alteration monitor
fam (3x) - File Alteration Monitor (FAM) library routines
grolj4 (1) - groff driver for HP Laserjet 4 family

Apparently it’s a file alteration monitor. We may or may not want to keep this
enabled, but otherwise it’s reassuring to ascertain that no other stray services are
running on this server.

There’s more to xinetd and its configuration files, particularly in terms of the many
parameters that can be specified. If your system is running xinetd, you would be well
advised to put 30 minutes aside and read through the xinetd and xinetd.conf files to
learn exactly how to control this important function on your system.

An Example: Enabling ftp
One of the most helpful commands in the Unix pantheon has always been ftp. Though
not pretty by any means—the running joke is that it’s always been stuck in debug
mode—it’s a straightforward way of transferring files between computer systems.

With the addition of attractive FTP client interfaces for the X Window System along with
Mac and Windows computers, using this mechanism has been considerably simplified.

So how do you enable ftp on a server?

Task 19.4: Enabling ftp (and Why You Might Not
Want To)
Admit it, your interest is piqued with that curious section title. Before I explain why you
might not want to enable ftp, let’s look at the steps required to enable basic access.

1. To enable valid account access only (for example, access for those users who have
accounts on the system and know the appropriate account password), simply enable
ftpd, either within the /etc/inetd.conf file, or the ftp (or, perhaps, wu-ftp) file
within /etc/xinetd.d.

A quick test before enabling ftp shows that it’s off:
ftp localhost
ftp: connect: Connection refused
ftp> quit

Once the line is un-commented out in the inetd.conf file (or the enable option is
set to yes with xinetd, which will also change the first line below to the statement
needed to restart xinetd, of course), do a quick reread of the configuration file.
kill -HUP `cat /var/run/inetd.pid`
ftp localhost

Running Internet Services 385

19

,

,

,
TA

SK
,

26 0672323982 ch19 6/18/02 2:03 PM Page 385

Connected to localhost.
220 dsl-132.dsldesigns.net FTP server (Version 6.00LS) ready.
Name (localhost:taylor): ftp
530 User ftp unknown.
ftp: Login failed.
ftp> quit
221 Goodbye.
#

If you’re running a Mac OS X system, note that you can most easily enable FTP
by clicking on the Enable FTP Access check box in the Sharing control panel,
accessible from Apple, System Preferences. You’ll still have to configure anony-
mous FTP by hand, however.

2. Notice that although the ftp program now listens for connections and presents a
regular ftpd dialog, anonymous FTP access is still disabled. (The standard way to
connect to an anonymous FTP server is to log in as ftp with your e-mail address
as the password.)

386 Hour 19

,

The anonymous FTP service lets users on the Internet connect to your server
and rummage around, downloading files, and if permissions are really set
up wrong, upload files of their own. It’s a classic mixed bag from a security
perspective. On the one hand, it’s friendly and convenient to offer anony-
mous access to the system, but on the other hand, it’s very risky, as lots of
crackers poke around looking for FTP servers to exploit.

To enable the anonymous FTP service, you need to create some special directories
and drop specific files and copies of executable Unix binaries in them. The idea is
to create a closed subset of the file system that contains critical files (ls and a
pruned-down /etc/passwd), then trap the anonymous FTP user in that area.

If you’re running Red Hat Linux or another Unix system that’s RPM-compati-
ble (see Hour 8 for more details on using RPM), your best bet is to just install
the anonftp package rather than go through these individual steps).

The first necessary step is to create the ftp user account. Set the home directory of
this account to /bin/false or another program that will prevent anyone using it
for telnet or other sessions. You can set the password to just about anything,
because it’s never checked by the ftp program itself (remember, anonymous ftp
users specify their e-mail address as the password, by convention).,

26 0672323982 ch19 6/18/02 2:03 PM Page 386

Once that account is created, move into its home directory and type the following
commands:
cd ~ftp
mkdir bin etc lib pub
chown root.root bin etc lib
chown root.ftp pub
chmod 111 bin etc
chmod 755 lib
chmod 2755 pub

This creates a directory structure in the ftp home directory that mirrors some of
the core parts of the standard Unix file system.

The next step is to copy specific files into the lib and bin directories. This varies
by flavor of Unix, however: Red Hat Linux requires libraries in lib because of its
dynamic loader architecture, while other Unixes might not require anything in lib.
Because this is such a critical configuration issue, check with your vendor for spe-
cific guidelines for your version of your operating system.

Let’s continue with the Red Hat Linux configuration:
cp /lib/{ld-2.1.1,libc-2.1.1,libnsl-2.1.1,libnss_files-2.1.1}.so ~ftp/lib
chmod 755 ~ftp/lib/*
cp /usr/bin/compress ~ftp/bin
cp /bin/{cpio,gzip,ls,sh,tar} ~ftp/bin
chmod 111 ~ftp/bin/*

A few symbolic links are also required:
cd ~ftp/lib
ln –s ld-2* ld-linux.so.2
ln –s libc* libc.so.6
ln –s libnsl* libnsl.so.1
ln –s libnss* libnss_files.so.2
cd ../bin
ln –s gzip zcat

Now everything should be set up for a Red Hat Linux configuration.

Running Internet Services 387

19

,

Notice the slick shell pattern-matching notation of {a,b,c}, which produces
three filenames, a, b, and c. A nice shortcut.

If you have a different Unix, your install might look more like this:
cp /bin/ls ~ftp/bin
chmod 111 ~ftp/bin/ls

Quite a bit easier, eh?,

26 0672323982 ch19 6/18/02 2:03 PM Page 387

3. The final step required is to create a dummy passwd and group file in ~ftp/etc.
We can copy our existing files, but it’s better to create a very minimal new file
instead, as shown:
cat ~ftp/etc/passwd
root:*:0:0:::
bin:*:1:1:::
operator:*:11:0:::
ftp:*:14:50:::
nobody:*:99:99:::
cat ~ftp/etc/group
root::0:
bin::1:
daemon::2:
sys::3:
adm::4:
ftp::50:

With all of these changes in place, users can now anonymously log in to the ftp
server:
ftp localhost
Connected to localhost (127.0.0.1).
220 staging.intuitive.com FTP server (Version wu-2.6.1-18) ready.
Name (localhost:taylor): ftp
331 Guest login ok, send your complete e-mail address as password.
Password:
230 Guest login ok, access restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

4. Now it’s time to talk about security, and why you might not want to run FTP at all,
let alone anonymous FTP.

First off, imagine what would happen if you accidentally left the pub directory
writable by everyone. In a short time, some cracker would stumble across it and
create a subdirectory, and you would find your system being used as a repository
for illegal software (called “warez” in the lingo), or even pornography.

Worse, the ftpd daemon is a popular application to try and exploit to break into a
system (the infamous Internet Worm of many years ago pried the lid off remote
systems through ftpd, for example), so even running it at all opens you up to dan-
gerous activity.

Perhaps the most damning aspect of ftp—and this is a characteristic shared by
telnet, too—is that it doesn’t encrypt any of the information it shares with the
client computer. Account names, passwords, data—it’s all in clear-text. This means
that bad guys can rather easily grab account and password pairs from the network
data stream with a packet analyzer, or a similar tool.

388 Hour 19

,

,

26 0672323982 ch19 6/18/02 2:03 PM Page 388

Fortunately, there’s a very good alternative available on just about every popular
Unix system today: ssh. The secure shell not only encrypts data between the client
and server, it also offers a simple and effective ftp-like capability accessible on the
Unix command line with sftp. The interaction is almost the same (though anony-
mous sftp is not supported).

If you would like to offer file transfer capabilities to your user community, there’s
no question in my mind—use ssh and teach them how to use it, too. Then perma-
nently disable telnetd and ftpd. Oh, and you’ll have to accept that there’s no
anonymous ssh option.

Running Internet Services 389

19

,

If you decide to run anonymous ftp, please, at least study ftpaccess (see
the man page) and set that up to help offer the maximum possible security.

One of the most enjoyable aspects of running a Unix server is the breadth of services
available to your users. Although some are glorious examples of the power and flexibility
of Unix (like Apache, which is discussed in detail in the last two hours of this book), and
some are pretty nifty (the ntp network time protocol that automatically ensures your sys-
tem clock is always accurate is cool), there are a couple that are quite dangerous and
should be avoided if at all possible. At the top of that list is ftpd, with telnetd a close
runner-up.

Summary
This hour explored the important inetd and xinetd configuration files, with detours into
TCP Wrapper and syslogd. In addition, you’ve learned how to configure an anonymous
FTP server for a variety of different Unix platforms, and perhaps just as importantly,
learned some compelling reasons why it’s not a good idea.

Q&A
Q Wow. Strong words about FTP! Are you sure about this?

A It’s quite rare to find anonymous FTP on systems nowadays, particularly with the
advent of the Web and the ease at which users can download files directly through
a Web server (which, of course, has security problems of its own, but that’s another
story).

,

26 0672323982 ch19 6/18/02 2:03 PM Page 389

Q Which do you prefer, inetd or xinetd, and why?

A It might be old-dog-new-tricks syndrome, but I still prefer the simplicity of inetd.
There’s great value in being able to eyeball a single file and know instantly what
services are enabled and what are not.

Workshop
Quiz

1. What was the primary motivation for the creation of inetd?

2. What simple pattern should you use to ascertain which services listed in
/etc/inetd.conf are actually enabled?

3. When it comes to socket values in the inetd.conf file, stream implies ____, while
dgram implies _____?

4. What common Unix program enables the easy testing of any network service?

5. Being vaguely paranoid, the best rule of thumb with inetd or xinetd is what?

6. Using TCP Wrapper, you can allow or deny connections by specifying the appro-
priate information where?

7. Anonymous FTP accessibility isn’t necessary because you can easily make files
accessible to anonymous users through what popular mechanism?

Answers
1. To combat the growing number of daemons consuming system resources as they

hung around waiting for a connection.

2. Search for the # as the first character. To find all enabled services, use grep –v
‘^#’.

3. The stream socket implies TCP, while dgram implies UDP.

4. telnet, a great utility for any system administrator.

5. The best rule of thumb is disable everything.

6. To allow connections, specify rules in /etc/hosts.allow, while deny rules should
go in /etc/hosts.deny.

7. Use the Web server: Apache can delivery any type of file or information, not just
HTML and JPEG graphics.

The next hour explores another network service in great detail. If you’ve been trying to
understand low-level electronic mail, you’ll find Hour 20’s exploration of sendmail a
boon.

390 Hour 19

26 0672323982 ch19 6/18/02 2:03 PM Page 390

HOUR 20
Working with E-mail

System administration involves managing a wide variety of services on one
or more Unix system, but the one service that’s guaranteed to get you into hot
water if it breaks is electronic mail. Regardless of the level of sophistication
of your user base, if they can’t send and receive e-mail, you’ll hear about it.

This hour focuses on how to work with sendmail, the standard mail transfer
agent (MTA) on Unix systems. There are other MTAs available, including
the popular postfix, exim, qmail, and smail programs, but just about every
Unix I’ve seen ships with sendmail as the default.

It’s also important to differentiate a mail transfer agent from other e-mail-
related software. The program that lets you read, organize, and compose
messages is know as a mail user agent, and examples of that range from
Elm and Pine to Entourage and Outlook. There are X Window System-based
applications, graphical applications like Apple Mail, and a wide variety of
command line or shell-based mailers, but in Unix they all work by handing
off outgoing messages to an MTA. The MTA—sendmail—is the program
that either delivers mail locally, or connects to a remote system and feeds
the message along the wire to the destination system (which is quite possi-
bly also running sendmail).

27 0672323982 ch20 6/18/02 2:04 PM Page 391

Having said that, it’s important to state that we are not going to dig into the famously
complicated sendmail.cf configuration file. An arcane language unto itself, typical
sendmail.cf files can be huge. The default size of this file in Red Hat Linux is 1,490
lines, in Mac OS X it’s 1,214 lines, and on Solaris 8 it’s 1,191 lines. If you must learn
more, I suggest you check out the book sendmail (O’Reilly), by Brian Costales and orig-
inal sendmail programmer Eric Allman.

Alright, so what are we going to cover? How to work with and use sendmail and its
powerful alias facility to ensure that your users have a pleasant and painless e-mail expe-
rience, day in and day out.

Here’s what you’ll learn this hour:

• Using sendmail to test mail connectivity

• Mail logs and mail queues

• Creating sendmail aliases

• sendmail aliases within Mac OS X

Testing Mail Connectivity with sendmail
A logical place to start exploring the complexities of sendmail, where you’re essentially
in a maze of twisty passages, is to learn how to use the sendmail flags to test mail con-
nectivity for your server.

392 Hour 20

The twisty passage bit is a reference to the great 70s Adventure program,
written in Fortran for Unix. The first interactive fiction game that I ever
played, it has been an inspiration for generations of cool D&D-style games
since.

Task 20.1: Using sendmail to Verify Connectivity
The sendmail program has a wide variety of flags, most of which start with b or o if
they’re to be used when the program runs as a daemon. Commonly, you’ll see options
like –bd to run in daemon mode, -bp to print the mail queue, and –bi to initialize the
alias database.

1. Before we go too far, let’s figure out what version of sendmail you’re running.
This’ll give you a good sense of how to work with this program:
sendmail -bg -d0.1 < /dev/null
Version 8.11.6

,
TA

SK
,

27 0672323982 ch20 6/18/02 2:04 PM Page 392

Compiled with: LDAPMAP MAP_REGEX LOG MATCHGECOS MIME7TO8 MIME8TO7
NAMED_BIND NETINET NETINET6 NETUNIX NEWDB NIS QUEUE SASL SCANF
SMTP TCPWRAPPERS USERDB

Invalid operation mode g

============ SYSTEM IDENTITY (after readcf) ============
(short domain name) $w = staging

(canonical domain name) $j = staging.intuitive.com
(subdomain name) $m = intuitive.com

(node name) $k = staging.intuitive.com

Pleasantly, this Red Hat installation is running a recent version of sendmail (it’s
identified in the first line: 8.11.6).

The very same command run on Mac OS X reveals the following:
sendmail -bt -d0.1 < /dev/null
Version 8.10.2
Compiled with: MAP_REGEX LOG MATCHGECOS MIME7TO8 MIME8TO7 NAMED_BIND

NETINET NETINFO NETISO NETUNIX NEWDB NIS QUEUE SCANF SMTP
USERDB XDEBUG

/etc/mail/sendmail.cf: line 81: fileclass: cannot open
➥/etc/mail/local-host-names: Group writable directory

============ SYSTEM IDENTITY (after readcf) ============
(short domain name) $w = dsl-132

(canonical domain name) $j = dsl-132.dsldesigns.net
(subdomain name) $m = dsldesigns.net

(node name) $k = dsl-132.dsldesigns.net
==

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

And on Solaris 8:
/usr/lib/sendmail -bt -d0.1 < /dev/null
Version 8.10.2+Sun
Compiled with: LDAPMAP MAP_REGEX LOG MATCHGECOS MIME7TO8 MIME8TO7

NAMED_BIND NDBM NETINET NETINET6 NETUNIX NEWDB NIS NISPLUS
QUEUE SCANF SMTP USERDB XDEBUG

============ SYSTEM IDENTITY (after readcf) ============
(short domain name) $w = solaris

(canonical domain name) $j = solaris.dsldesigns.net
(subdomain name) $m = dsldesigns.net

(node name) $k = solaris.dsldesigns.net
==

ADDRESS TEST MODE (ruleset 3 NOT automatically invoked)
Enter <ruleset> <address>

Working with E-mail 393

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 393

Notice that both the Mac OS X and Solaris versions of sendmail are a version
behind Red Hat Linux. The official repository of sendmail is the open source
Sendmail Consortium at http://www.sendmail.org/.

2. As is suggested by the flags and output format of the resultant information, send-
mail is a program that only its mother could love. The output tends to be cryptic,
but the capabilities of the system are remarkable.

By default, sendmail wants to run as a daemon, which is easily done by launching
it as sendmail –bd. Typically, you also specify how often it should process the
queue with –qn, where n is a frequency indicator, such as 10m for 10-minute inter-
vals, or 2h for a two-hour interval.

We’ll talk more about mail queues in the next section, however, but you might be
wondering where this configuration information comes from for your default boot
sequence.

On a Red Hat system, it’s—unsurprisingly—in /etc/sysconfig:
cat /etc/sysconfig/sendmail
DAEMON=yes
QUEUE=1h

If you wanted to prevent sendmail from automatically starting up and listening for
incoming mail, for example, you could change the first line to DAEMON=no, and if
you’d rather it process the outbound mail queue more frequently, you could specify
QUEUE=15m or similar.

Solaris 8 has a similar mechanism, if configured. Look in /etc/default for a file
called sendmail, where it could contain QUEUEINTERVAL=value and the more
generic OPTIONS=value, which are both directly fed to sendmail as if they were
command-line options.

Mac OS X is quite different, partially because by default sendmail isn’t started at
boot-time, and partially because the default sendmail.cf file (at least up through
10.1.5) is missing a setting that will make it better understand the Mac OS X envi-
ronment.

To get it to work, first edit /etc/mail/sendmail.cf and replace the line that reads

#O DontBlameSendmail=safe

with

O DontBlameSendmail=GroupWritableDirPathSafe

Now you can start the daemon up by hand with sendmail –bd –q10m. To have
it automatically start with the options of your choice, there are two possible solu-
tions.

394 Hour 20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 394

The first, more OS X-like solution is to change the line MAILSERVER=-NO- in the
/etc/hostconfig file to MAILSERVER=-YES-. Alternatively, the more typical Unix
solution is to add a line or two to the /etc/rc file. For example:
start up the sendmail program as needed:

if [-f /usr/sbin/sendmail -a -f /etc/mail/sendmail.cf] ; then
/usr/sbin/sendmail -bd -q30m &
echo “sendmail started.”

fi

The next time you boot up the Macintosh system, it’ll be a mail server in addition
to a mail client.

Working with E-mail 395

20

,

The name DontBlameSendmail should give you a hint that we’re circumvent-
ing a security problem on the stock Mac OS X configuration. The sendmail
program is very picky about file and directory permissions, and we’re over-
riding its complaint that by default the / directory shouldn’t have group
write permission. You can change that and fix the problem, but anecdotal
evidence suggests that other Mac OS X applications will hiccup later.

Be aware of what’s going on by checking the online information at
http://www.sendmail.org/tips/DontBlameSendmail.html.

3. To check the status of your sendmail program (as opposed to identifying its ver-
sion number), you can most easily use the startup script that the system uses at
boot-time. To make this easier, let’s create an alias:

alias sm=/etc/rc.d/init.d/sendmail

Now, to check the status:
$ sm status
sendmail (pid 801) is running...

Solaris doesn’t support the status argument, so we’ll have to do some quick fid-
dling to identify if it’s running. One way would be to grep the output of ps to see
whether the sendmail process is there, but let’s use the more elegant solution of
checking to see whether there’s a sendmail.pid file, then checking to see whether
the specified process is running. Here’s a simple shell script that adds the useful
new sm command to the system:
cat /users/root/bin/sm
#!/bin/sh

smstat - check sendmail status by checking for pid file, then
checking to see if it’s running.,

27 0672323982 ch20 6/18/02 2:04 PM Page 395

pidf=/var/run/sendmail.pid

if [-f $pidf] ; then
pid=`head -1 $pidf`
if [“`ps -p $pid | wc -l `” -lt 2] ; then
echo “Sendmail appears to NOT be running (pid = $pid)”

else
echo “Sendmail appears to be running (pid = $pid)”
echo “Command was: `tail -1 $pidf`” # note the digit ‘1’

fi
else
echo “Sendmail is not running (no pid file)”

fi

exit 0

If run when sendmail isn’t running, sm will report the status as appropriate. If it is
running, however, sm is smart enough to show the second line of the .pid file, a
line that duplicates the calling sequence:
sm
Sendmail appears to be running (pid = 334)
Command was: /usr/lib/sendmail –bd –q30m

4. Now that we’ve got a handle on the basics of the sendmail program, let’s look at
what might well be the most useful feature of the program, the –v flag. With this
verbose output flag, you can watch how the system delivers messages to any e-mail
address, including alias expansions, remote connections, and so on. Note that it
doesn’t start the sendmail daemon; it just runs the app to deliver this specific mes-
sage and quits:
sendmail -v taylor@intuitive.com
Subject: test message from Mac OS X

just testing. Please ignore.
.
taylor@intuitive.com... Connecting to mail-fwd.verio-web.com. via esmtp...
220 mail11b.verio-web.com SMTP RS ver 1.0.60s
>>> EHLO dsl-132.dsldesigns.net
500 Command unrecognized
>>> HELO dsl-132.dsldesigns.net
250 mail11b.verio-web.com Hello dsl-132.dsldesigns.com [198.76.82.132],
➥I’m listening
>>> MAIL From:<taylor@dsl-132.dsldesigns.net>
250 taylor@dsl-132.dsldesigns.net... Sender ok
>>> RCPT To:<taylor@intuitive.com>
250 taylor@intuitive.com... Recipient ok
>>> DATA
354 enter mail, end with ‘.’ on a line by itself
>>> .

396 Hour 20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 396

250 041745238 Message accepted for delivery
taylor@intuitive.com... Sent (041745238 Message accepted for delivery)
Closing connection to mail-fwd.verio-web.com.
>>> QUIT
221 mail11b.verio-web.com closing connection

Notice that though we specified intuitive.com as a domain name, the system
knew to open a connection to mail-fwd.verio-web.com, the system that is the MX
(mail exchange) record holder for the intuitive.com domain. This is set as part of
the DNS record for the domain, as detailed in the previous hour.

This message went through fine, and was delivered without incident. The Command
unrecognized on the fourth line of output showed up because sendmail tried to use
the extended SMTP protocol (called ESMTP, it’s characterized by EHLO, rather than
the regular SMTP HELO command), and the remote server didn’t know ESMTP and
rejected it. The client then simply sent a more normal SMTP HELO and proceeded.

An attempt to deliver a message to a bogus address is informative:
sendmail -v junk@this-is-not-likely-to-work.org < /dev/null
taylor... Connecting to local...
taylor... Sent

“Informative?” you ask—it’s informative in that it didn’t connect to a remote site.
This implies that sendmail couldn’t resolve the domain name specified, and
bounced it locally. To understand what happened, we’ll need to look in the mail
log, which we’ll do in the next section.

There’s a lot more we could explore with the basic uses of sendmail, but if you want to
get that deep into the muck, your best bet is to check out some of the great online refer-
ence works at www.sendmail.org, or possibly grab a book on Unix e-mail management.

For now, let’s spend a bit more time looking at mail logs and mail queues, then explore
some of the capabilities of sendmail that can make it a great help to you as a system
administrator.

Mail Logs and Mail Queues
By default, sendmail tries to deliver all mail the moment it arrives. This means that the
majority of mail is delivered within seconds of its receipt, and it also means that the out-
bound mail queue should be quite small. What happens, however, when there are mes-
sages to systems where the remote SMTP server isn’t running, or is rejecting connections?

Working with E-mail 397

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 397

In those instances, mail is queued for later delivery. Depending on your configuration
settings, mail in the queue can have delivery attempted every ten minutes, two hours, or
even once daily for as many days as you have specified as the delivery attempt period in
the sendmail.cf file. Once that time expires, if the message hasn’t been delivered, it’s
bounced back to the sender with a Bounced: network is unreachable error or similar.

For the most part, sendmail does its own thing and you don’t have to intervene too
much, but sometimes it’s very helpful to be able to know what’s in the queue (if any-
thing) and why.

Task 20.2: Mail Logs and Mail Queues
To see what’s in the mail queue, many systems include a command called mailq, which
turns out to be a link to the sendmail program itself. An alias such as

alias mailq=’/usr/sbin/sendmail –bp’

will let you accomplish the exact same thing.

Before we look at the mail queue, however, let’s peek into the maillog file (where all e-
mail-related events are logged) to see the fate of the two messages sent in the earlier sec-
tion of this hour.

1. To learn the fate of e-mail messages, look in /var/log/maillog (Linux), /pri-
vate/var/log/mail.log (Mac OS X), or /var/log/messages (Solaris 8). Either
way, they all have essentially the same format, as demonstrated in this entry from a
Mac OS X server:
tail -6 /private/var/log/mail.log
Mar 22 18:11:39 dsl-132 sendmail[486]: g2N2BQO00486: from=taylor, size=66,
class=0, nrcpts=1, msgid=<200203230211.g2N2BQO00486@dsl-
132.dsldesigns.net>,
relay=root@localhost
Mar 22 18:11:45 dsl-132 sendmail[486]: g2N2BQO00486:
to=taylor@intuitive.com,
ctladdr=taylor (501/20), delay=00:00:19, xdelay=00:00:06, mailer=esmtp,
pri=30066, relay=mail-fwd.verio-web.com. [161.58.148.30], dsn=2.0.0,
stat=Sent (041745238 Message accepted for delivery)
Mar 22 18:16:25 dsl-132 sendmail[488]: g2N2GPj00488:
from=taylor, size=0, class=0, nrcpts=1,
msgid=<200203230216.g2N2GPj00488@dsl-132.dsldesigns.net>,
relay=root@localhost
Mar 22 18:16:26 dsl-132 sendmail[488]: g2N2GPj00488:
to=junk@this-is-not-likely-to-work.org, ctladdr=taylor (501/20),
delay=00:00:01, xdelay=00:00:01, mailer=esmtp, pri=30000,
relay=this-is-not-likely-to-work.org, dsn=5.1.2, stat=Host unknown
(Name server: this-is-not-likely-to-work.org: host not found)
Mar 22 18:16:26 dsl-132 sendmail[488]: g2N2GPj00488:
g2N2GPk00488: DSN: Host unknown

398 Hour 20

,
TA

SK
,

27 0672323982 ch20 6/18/02 2:04 PM Page 398

(Name server: this-is-not-likely-to-work.org: host not found)
Mar 22 18:16:26 dsl-132 sendmail[488]: g2N2GPk00488: to=taylor,
delay=00:00:00, xdelay=00:00:00, mailer=local, pri=30100, dsn=2.0.0,
stat=Sent

To understand what happened here, notice that the sixth field is the unique message
ID: All lines in the log file with the same ID are associated with the same send-
mail event. Therefore, the first message had the ID of q2N2BQO00486, and the sec-
ond had an ID of q2N2BQO00488.

The second entry of this log file shows that a message of 66 bytes was sent from
user taylor. The fifth line indicates the result of the attempt to send the message
to the specified address (taylor@intuitive.com) using ESMTP (mailer=esmtp on
the sixth line) relayed through mail-fwd.verio-web.com (the MX record server
for intuitive.com), and that it ended with a stat=Sent Message accepted for

delivery message.

By contrast, the last lines show a failure: The new message from taylor to
junk@this-is-not-likely-to-work.org failed with stat=Host unknown. On the
subsequent line is a more explicit error condition: Host unknown (Name server:
this-is-not-likely-to-work.org: host not found). The final two lines show
that the bounced message was then sent to user taylor (for example, bounced to
the sender), and that it was stat=Sent-delivered without incident.

On a busy system, you could use awk or Perl to extract the stat= field, then scan
for those that don’t equal Sent to get a quick idea of what problems you might
have on the server.

2. Jumping onto a busy FreeBSD system, a quick invocation of sendmail’s queue dis-
play feature reveals the following:
sendmail -bp | head -15

Mail Queue (147 requests)
--Q-ID-- --Size-- -----Q-Time----- ------------Sender/Recipient------------
SAA14346 290 Tue Mar 26 18:45 xaith

(office@iandistudio.com... reply: read error from
mail.iandis)

office@iandistudio.com
SAA16063* 2283 Tue Mar 26 18:54 <lincoln@dlair.net>

<RSwarts@SAS.Samsung.com>
<rswarts@austin.rr.com>
<gotoray@texas.net>
<ATANZI@SPRD1.MDACC.TMC.EDU>
<PRINCESSANDFROG@HOTMAIL.COM>

SAA10097 7031 Tue Mar 26 18:25 MAILER-DAEMON
(Deferred: Connection refused by fmailh8.real-net.net.)

<send@fmailh5.real-net.net>
QAA21483* 4651 Tue Mar 26 16:46 <lori@salesinminutes.net>

(Deferred: Connection timed out with delphi.mail.eds.com.)
<miirish@delphi.com>

Working with E-mail 399

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 399

QAA18380 4651 Tue Mar 26 16:39 <lori@salesinminutes.net>
(Deferred: Connection timed out with delphi.mail.eds.com.)

<miirish@delphi.com>

The first line shows the total number of requests in the outbound mail queue—
147—and then each request is listed with its queue-ID, size (in bytes), when it
entered the queue, a sender/recipient list, and a status, if known.

The first message in the queue, for example, has been queued for about three hours
(use date to get the current date and time, then compare it to the timestamp
shown), which, given that the system is trying to send mail every 10 minutes,
means that it’s already tried approximately 18 times to deliver this message and
failed.

The message is being sent by xaith to office@iandistudio.com, and the specific
error is reply: read error from mail.iandis. This particular error usually indi-
cates that the remote system is out of disk space or otherwise unable to receive
mail, though its SMTP daemon is listening and answering queries that come in.

Notice on the second entry that the queue-ID value has a trailing asterisk. This
means that there’s an active sendmail trying to deliver it right now. If it’s delivered
successfully, this entry will vanish from the queue. Notice that there’s no queue
error message, suggesting that this is the first time that the system has tried to
deliver this e-mail.

Compare that to the fourth entry, which also has an asterisk indicating that send-
mail is actively trying to deliver it, but because there’s an error message
(Deferred: Connection refused by fmailh8.real-net.net), you can see that
it’s been in the queue for at least one delivery cycle.

Actually, the fourth entry is the most interesting because it’s from MAILER-DAEMON.
This tells us that a message came into our system for a specific user from
send@fmailh5.real-net.net, and it then bounced locally. The bounced message
(which automatically has MAILER-DAEMON as the sender) is queued to go back to the
sender, but the MX record for real-net.net is fmailh8, which isn’t accepting
connections.

400 Hour 20

,

A cockeyed setup like the fourth entry strongly suggests a spam message to
me: It’s coming from one mail server, from a generic address (user send?),
and the responding MX record for the sender domain is rejecting connec-
tions. Hmmm….

,

27 0672323982 ch20 6/18/02 2:04 PM Page 400

3. There are three main reasons that messages end up in a queue: local system failures,
lookup and name resolution problems, and remote connection failures.

A connection refused message is a remote connection failure. Although some-
times this is caused by the system being down for a backup, relocation, or having
crashed, many times it indicates systems that don’t have an SMTP daemon run-
ning and don’t want to get e-mail. Searching for this in the queue shows the fol-
lowing:
mailq | grep refused | sort | uniq -c | sort -rn

16 (Deferred: Connection refused by mail.zwallet.com.)
4 (Deferred: Connection refused by 66.106.197.165.)
3 8BITMIME (Deferred: Connection refused by fgit.maillist.com.tw.)
3 (Deferred: Connection refused by postoffice.randbad.com.)
2 (Deferred: Connection refused by cors.estsale.ac.ma.)
1 8BITMIME (Deferred: Connection refused by www.mundomail.net.)
1 (Deferred: Connection refused by william.monsterjoke.com.)
1 (Deferred: Connection refused by webchi.com.)
1 (Deferred: Connection refused by smtp.apsoffers.com.)
1 (Deferred: Connection refused by mta1.mail.hotbot.com.)
1 (Deferred: Connection refused by lamx01.mgw.rr.com.)
1 (Deferred: Connection refused by billingproblemmail.

➥doteasy.c)

I’ve sorted and “uniq’d” them to shrink the output a bit. There are 16 messages
queued for mail.zwallet.com, which suggests that either it’s a very popular site, or
someone is dumping messages to it.

4. Another message you might see is a name lookup error:
mailq | grep lookup | sort | uniq -c | sort -rn

7 (host map: lookup (Liberty4Success.com): deferred)
5 (host map: lookup (poorrichardsenterprises.com): deferred)
3 (host map: lookup (NewSouthConstruction.net): deferred)
2 (host map: lookup (sdd.com): deferred)
2 (host map: lookup (gaystufftodo.net): deferred)
2 (Deferred: Name server: zero.nochill.com.: host name

➥lookup f)
1 8BITMIME (host map: lookup (virtueltv.com): deferred)
1 (host map: lookup (webmastermindsonline.com): deferred)
1 (host map: lookup (spinstudios.com): deferred)
1 (host map: lookup (pretaluz.com): deferred)
1 (host map: lookup (palesedesign.com): deferred)
1 (host map: lookup (maos.org): deferred)
1 (host map: lookup (libertywebdevelopment.com): deferred)
1 (host map: lookup (grundvig.com): deferred)
1 (host map: lookup (chequemail.com): deferred)

Working with E-mail 401

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 401

Many of these look suspiciously like spam to my jaded eye, particularly
liberty4success.com, poorrichardsenterprises.com, and chequemail.com.
Because you, as system administrator, are responsible for your user community and
for ensuring that people stick to the Acceptable Use Policy (AUP), you’d do well to
investigate these.

One way to investigate is to simply find the recipient and sender associated with
these messages. This can be done with grep, particularly with the –Bn flag, which
indicates that you’d like n lines of context prior to each match. Because deferred
lookups are always for the recipient, it’s a safe bet that this will reveal what we
want:
mailq | grep -B1 -i liberty4
QAA17284 4657 Tue Mar 26 16:36 <lori@salesinminutes.net>

(host map: lookup (Liberty4Success.com): deferred)
<Karen@Liberty4Success.com>

--
QAA15045 4657 Tue Mar 26 16:30 <lori@salesinminutes.net>

(host map: lookup (Liberty4Success.com): deferred)
<Karen@Liberty4Success.com>

--
AAA18116 269 Tue Mar 26 00:06 ximinute

(host map: lookup (Liberty4Success.com): deferred)
Karen@Liberty4Success.com

--
AAA27255 269 Mon Mar 25 00:04 ximinute

(host map: lookup (Liberty4Success.com): deferred)
Karen@Liberty4Success.com

--
AAA27203 269 Sun Mar 24 00:04 ximinute

(host map: lookup (Liberty4Success.com): deferred)
Karen@Liberty4Success.com

--
AAA00798 269 Sat Mar 23 00:05 ximinute

(host map: lookup (Liberty4Success.com): deferred)
Karen@Liberty4Success.com

--
AAA20693 269 Fri Mar 22 00:04 ximinute

(host map: lookup (Liberty4Success.com): deferred)
Karen@Liberty4Success.com

As suspected, almost every one of these messages is from ximinute to Karen@lib-

erty4success.com. Notice the times of these messages: all approximately at mid-
night, on March 22, March 23, March 24, March 25, and March 26. I suspect a
cron job or similar automated mail system, and I suspect some sort of spam. I’d
talk with this user to ask what’s going on if I were the main sysadmin for this box.

5. Another strategy you can use is to go into the actual mail queueing area, typically
/var/spool/mqueue. It’ll have lots of files, including a bunch of config and data
files for each queued message, as detailed in Table 20.1.

402 Hour 20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 402

TABLE 20.1 Files Commonly Found in the mqueue Directory

Prefix Contents

df The body of the message

Qf Created if the message bounced and could not be returned

qf The header of the message (the control file)

tf A temporary version of the qf file while delivery is being attempted

Tf Created if 32 or more locking attempts have failed

xf Transcript of a specific error message from a remote server

Let’s create a simple message and dig into the different possible files:
sendmail -O DeliveryMode=d -t
From: ximinute
To: Karen@Liberty4Success.com
Subject: fabulous offer

You are authorized to receive a fabulous offer...
.
#

This immediately queues the message (that’s what DeliveryMode=d does), so we
can then see what it looks like in the queue with mqueue, which among its waves of
output, shows:
g2R8OWC14928 50 Wed Mar 27 00:24 ximinute

Karen@Liberty4Success.com

The two files created by default are the df* and qf* files:
cat df*
You are authorized to receive a fabulous offer...
cat qf*
V4
T1017217472
K0
N0
P120
I8/18/26706
Fb
$_ximinute@localhost
Sximinute
Aximinute@staging.intuitive.com
RPFD:Karen@Liberty4Success.com
H?P?Return-Path: <?g>
H?D?Date: Wed, 27 Mar 2002 00:24:32 -0800
H?M?Message-Id: <200203270824.g2R8OWC14928@staging.intuitive.com>

Working with E-mail 403

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 403

H??From: ximinute
H??To: Karen@Liberty4Success.com
H??Subject: fabulous offer
.

Without going into exhaustive detail about each line in the qf* file, suffice to say
that it has all the headers, and considerable queuing information. While a delivery
is being attempted, an empty file xfg2R8OWC14928 is created.

The actual files in the mail queue directory /var/spool/mqueue can reveal some interest-
ing information and can help you identify which users might be spamming, whether you
have an open relay or other possible problems. It’s worth keeping an eye on its contents.

404 Hour 20

,

However, again, be conscious of privacy issues: It would be easy to read the
contents of every e-mail message leaving your system. Your users might not
be thrilled if they find out, however.

Creating sendmail Aliases
I expect that your head is fairly swimming from delving into some of the internals of the
sendmail program, so let’s tackle an easier topic for a break: mail aliases.

The concept is quite straightforward—instead of only accepting mail for specific login
names on your system, mail aliases let you accept e-mail and forward it to an individual
on another system, a group of individuals, a file listing a number of mailing addresses, or
even a specific program or file.

Mac OS X has a completely different way of managing mail aliases, through
the NetInfo mechanism. It’ll be covered in the last section of this hour.

Task 20.3: Mail Aliases
The original sendmail program enabled you to have aliases pointing to a wide variety of
different destinations, including files, programs, remote addresses, and even lists of e-
mail addresses. In the last few years, more effort has been put into security in the e-mail
world, and it’s affected sendmail most directly in the more limited aliases available on a
standard system configuration.

,
TA

SK

,

27 0672323982 ch20 6/18/02 2:04 PM Page 404

We’ll have a quick look at some of the more advanced aliases in this last section, but
don’t be surprised if your Unix OS blocks them by default, often with a cryptic error
message.

1. The most basic alias is to have a different name point to an existing mailbox. This
seems silly, but can prove quite useful to ensure that users get e-mail sent to them,
regardless of whether senders know their specific login names.

For example, on my server, my account is taylor, but what happens if you send
mail to dave instead? It would bounce by default. This can be easily fixed, how-
ever, by adding the following to /etc/aliases:

dave: taylor

That’s all we need to do, and once the aliases file is rebuilt—with the newaliases
command—then mail sent to dave will be properly delivered in the taylor mailbox.

As a result, many sites will automatically add common alternatives for a given
name as aliases, to ensure that there are minimal bounces. If a new user Susan
McGill joined the firm, here’s the set of aliases that might be created:
mcgill: susan
macgill: susan
smcgill: susan
susanm: susan
susan_mcgill: susan
susan.mcgill: susan

Notice the second alias in particular: Because we expect that some people will mis-
spell Susan’s last name, it’s easy to add an alias to ensure mail sent to
macgill@ourserver works.

2. The second type of alias is a redirect off-system:

john: john@aol.com

In this case, any mail sent to john on the local system, whether or not he has an
account set up, will automatically be redirected to his AOL mailbox.

You can combine both types of alias in a simple list, too:

split: mary, mary@Delphi.net

In this instance, mail sent to split@ourserver is duplicated and sent to mary
locally (assuming that there isn’t a separate alias set up), and mary@Delphi.net.

You can also use this list feature to create rudimentary mailing lists:

writers: dave,dee-ann,gideon,rima,smithers@some.host.com

In this case, mail sent to writers would automatically be expanded to dave, dee-
ann, gideon, rima, and, off-system, smithers@some.host.com.

Working with E-mail 405

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 405

3. There’s a better way to manage lists of addresses, however, and that’s to use a file
inclusion alias. These look a bit peculiar, but prove tremendously helpful:

writers: :include:/home/taylor/writers.list

In this situation, any mail sent to writers will be sent to every e-mail address in
the specified file. The file contents will be read on demand each time a message is
sent, so if it changes between newaliases runs, the changes are seen at once.

The real advantage of the :include: notation is that your users can manage their
own mailing lists without you having to touch (or let them touch!) the actual
/etc/aliases file. This can significantly simplify your day-to-day system admin-
istration tasks!

4. To redirect to a file, an alias can be written as

archive: /private/mail/archive

However, most sendmail configurations now disable saving directly to files
because of security issues (though what security issues are associated with writing
directly to a file escapes me, unless you had something wacky like /etc/passwd as
the archive file—in which case you could e-mail a line like root::0:0:::: and
have an instant superuser login).

5. Another mechanism that used to be widespread in sendmail installations, but is now
quite limited, is the capability to have an alias point directly to a program on the
server. To address the security problems, modern sendmail installations now include a
special program smrsh, the sendmail restricted shell, which is used explicitly as a safe
“sandbox” for running programs that are part of an alias. The alias looks like this:

ps: “|/bin/ps”

If your installation has good error messages, an attempt to send to the ps alias will
result in the following information as part of the bounced test message:

----- The following addresses had permanent fatal errors -----
“|/bin/ps”

(reason: service unavailable)
(expanded from: toprog)

----- Transcript of session follows -----
smrsh: ps not available for sendmail programs
554 5.0.0 “|/bin/ps”... Service unavailable

Notice the reference to smrsh in the second-to-last line: We thought we were speci-
fying /bin/ps, but smrsh automatically stripped the path specification and looked
in its own list of known programs for ps.

To learn more about how to configure smrsh to enable access to the popular vaca-
tion program, filter, procmail, and other sophisticated e-mail filtering pro-
grams, read the smrsh man page.

406 Hour 20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 406

The specifics of creating a flexible and functional set of mail aliases for your user com-
munity are going to vary, but being able to have a centralized alias system, compensate
for common spelling mistakes, normalize e-mail addresses within an organization while
simultaneously letting users pick their own login names, and the :include: mechanism
all demonstrate the many facets of sendmail’s tremendous power and flexibility.

It is worth mentioning that many Unix configurations will let users have their own .for-
ward file in their home directory that, if permissions are set properly, will let them have
simple redirects, comma-separated lists, and other mechanisms without any changes
required in the aliases file itself.

Also, there are some very powerful mailing list managers available that hook up as |prog
mechanisms, but then offer a complete list management service. You’ve probably seen
some of them, they’re called majordomo, listserv, and so on. If your user community
has a need for flexible mailing lists, Table 20.2 offers some good starting places to learn
more.

TABLE 20.2 Common Unix-based Mailing List Managers

Name Home URL

ListProc www.cren.net

Mailman www.list.org

Majordomo www.greatcircle.com

SmartList www.procmail.org

Of these choices, by the way, I’d recommend you start by looking at Mailman—it’s a
nice package that includes a straightforward Web-based interface, and it’s a big hit with
users and mailing list managers.

sendmail Aliases Within Mac OS X
As you learned earlier when exploring how to add new users to a Darwin/Mac OS X sys-
tem, even though Apple has Unix as the foundation of its new operating system, it still
has some twists and quirks that make working with it not quite as straightforward as
other Unix flavors.

In particular, Apple has centralized all the databases that were spread across
/etc/passwd, /etc/groups, /etc/aliases, and so on, and dropped them all into a cen-
tralized database called NetInfo. It’s cropped up before in this book, and this time we’ll
need to work with the NetInfo system to create and test e-mail aliases, rather than edit
the more common file /etc/aliases (or, on some systems, /etc/mail/aliases).

Working with E-mail 407

20

27 0672323982 ch20 6/18/02 2:04 PM Page 407

Task 20.4: Mac OS X and sendmail Aliases
Fortunately, the two tools that we used earlier to work with the /etc/passwd file will let
us also easily manipulate the e-mail aliases section of the NetInfo database: nidump and
niutil.

1. A simple one-line script starts us out:
cat showaliases
#!/bin/sh

showaliases - list all current email aliases from NetInfo

nidump aliases .

Running this requires changing it to executable mode, then ensuring that its in your
current PATH. Once that’s accomplished, here’s a typical output:
showaliases
administrator: root
postmaster: root
MAILER-DAEMON: postmaster
MAILER-AGENT: postmaster
nobody: root
dumper: root
manager: root
operator: root

Nothing too exciting, as you can see!

2. Adding an alias requires a little bit more fancy footwork in the script, because we
have to ensure that the new alias doesn’t step on the toes of an existing alias (that
is, it doesn’t use a name that’s already in use). Here’s the addalias script:
cat addalias
#!/bin/sh

addalias - add a new alias to the email alias database...

showaliases=/Users/taylor/bin/showaliases

echo -n “Alias to create: “
read alias

now let’s check to see if that alias already exists...

existing=`$showaliases | grep “^${alias}:”`

if [“$existing” != “”] ; then
echo “mail alias $alias already exists:”
echo “ $existing”
exit 0

fi

408 Hour 20

,
TA

SK
,

27 0672323982 ch20 6/18/02 2:04 PM Page 408

looks good. let’s get the RHS and inject it into NetInfo

echo -n “pointing to: “
read rhs

niutil -create . /aliases/$alias
niutil -createprop . /aliases/$alias name $alias
niutil -createprop . /aliases/$alias members $rhs

echo “Alias $alias created without incident.”

exit 0

In a manner common to most system administrators who write lots of shell scripts,
you can see that my second script here calls the first. Also note the use of the –n
flag to echo, which prevents a trailing carriage return. As will become obvious in a
moment, this means that you have nice prompts for input requests.

Here’s addalias in action:
addalias
Alias to create: operator
mail alias operator already exists:

operator: root

Oops! That’s already in use. Score one for addalias.
addalias
Alias to create: author
pointing to: taylor
Alias author created without incident.
showaliases | tail -1
author: taylor

That worked just fine, as is demonstrated by the addition of the new alias in the
showaliases output.

3. The aliases explained in the previous section can also be quickly added to the Mac
OS X system with the addalias script:
addalias
Alias to create: writers
pointing to: dave,dee-ann,gideon,rima,smithers@some.host.com
Alias writers created without incident.
addalias
Alias to create: writer-list
pointing to: :include:/Users/taylor/writers.list
Alias writer-list created without incident.
addalias
Alias to create: ps
pointing to: “|ps”
Alias ps created without incident.

Working with E-mail 409

20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 409

And verified with showaliases:
showaliases
administrator: root
postmaster: root
MAILER-DAEMON: postmaster
MAILER-AGENT: postmaster
nobody: root
dumper: root
manager: root
operator: root
author: taylor
writers: dave,dee-ann,gideon,rima,smithers@some.host.com
writer-list: :include:/Users/taylor/writers.list
ps: “|ps”

4. It’s worth pointing out again that having these aliases set up doesn’t mean that
they’ll work! A few quick examples with sendmail –v on Mac OS X:
sendmail -v writer-list < /dev/null
writer-list... aliased to :include:/Users/taylor/writers.list
:include:/Users/taylor/writers.list... including file
/Users/taylor/writers.list
:include:/Users/taylor/writers.list... Cannot open /Users/taylor/writers.list:
➥No such file or directory
taylor... Connecting to local...
taylor... Sent

We’ve set up the alias, but the included file writers.list doesn’t exist, and the
message bounced.
sendmail -v ps < /dev/null
ps... aliased to “|ps”
“|ps”... Connecting to prog...
taylor... Connecting to local...
taylor... Sent

That appears to have worked. Let’s double-check the /private/var/log/mail.log
file to see:
tail -6 mail.log
Mar 28 00:13:12 dsl-132 sendmail[433]: gethostbyaddr(198.76.82.132) failed: 1
Mar 28 00:13:12 dsl-132 sendmail[433]: g2S8DCL00433: from=taylor, size=0,
➥class=0, nrcpts=1, msgid=<200203280813.g2S8DCL00433@dsl-132.
➥dsldesigns.net>, relay=root@localhost
Mar 28 00:13:12 dsl-132 smrsh: uid 1: attempt to use ps
Mar 28 00:13:12 dsl-132 sendmail[433]: g2S8DCL00433: to=”|ps”,
➥ctladdr=ps (1/0), delay=00:00:00, xdelay=00:00:00, mailer=prog,
➥pri=30000, dsn=5.0.0, stat=Service unavailable
Mar 28 00:13:12 dsl-132 sendmail[433]: g2S8DCL00433: g2S8DCM00433: DSN:
➥Service unavailable
Mar 28 00:13:12 dsl-132 sendmail[433]: g2S8DCM00433: to=taylor,
➥delay=00:00:00, xdelay=00:00:00, mailer=local,
pri=30100, dsn=2.0.0, stat=Sent

410 Hour 20

,

,

27 0672323982 ch20 6/18/02 2:04 PM Page 410

As you can see, the message in fact failed: smrsh: uid 1: attempt to use ps,
followed by a Stat=Service unavailable and a bounce.

Working with E-mail 411

20

,

To enable ps, or any other command you’d like to have at the end of an e-
mail pipe, read the discussion and details on the smrsh man page.

Summary
Pleasantly, once you create a few tools to help you work with the NetInfo system
directly from the command line, it’s quite easy to create Mac OS X e-mail aliases that
conform to the standard sendmail aliases as found within /etc/aliases on most other
Unix systems.

Q&A
Q If I don’t want to run sendmail, what would you recommend as a replacement

MTA?

A There are two MTA replacements that have good reputations in the Unix industry:
exim and postfix. In the last six months or so, lots of people have been talking
about how postfix installed easily on their OS X systems and simplified the con-
figuration and management of their e-mail servers. You can learn about these two
alternatives at www.exim.org and www.postfix.org, respectively.

Q I ran sendmail –v on a message and it failed. Now what?

A The first step in debugging a sendmail problem—as with any Unix system prob-
lem—is to check the information in the log files. In this case, you’ll want to check
maillog (or mail.log, depending on your flavor of Unix). If that doesn’t reveal the
problem, check the permissions and briefly skim through the sendmail.cf file to
see whether there’s anything obviously wrong. If those don’t solve the problem, go
back a few hours in this book to read a bit about using ping and dig.

Q I’ve heard a lot about the dangers of “open relays.” What are they, and how
do I know if I have one?

A An open relay is a system that will forward e-mail from someone offsite to another
person also offsite, effectively relaying the mail. Spammers love this, and as a
result, open relay systems can end up blocked by many spam-unfriendly sites. You
can check to see whether you’re an open relay, and learn how to fix it, online at
http://www.mail-abuse.org/tsi/.

,

27 0672323982 ch20 6/18/02 2:04 PM Page 411

Workshop
Quiz

1. How do you ascertain the most recent version of sendmail?

2. What would be wrong with setting the QUEUE value of the /etc/sysconfig/send-
mail file to 1m?

3. Try sending a message to an AOL account from the command line with sendmail
–v. Do you get the error message 550 REQUESTED ACTION NOT TAKEN: DNS FAIL-
URE? What do you think it means?

4. What’s tricky about analyzing the contents of the mail queue?

5. What do each of the following mail aliases accomplish?
curly: moe,larry
moe: :include:/home/lists/stooges
larry: “|vacation”

Answers
1. You can figure out your own version of sendmail with the odd-looking command

sendmail -bg -d0.1 < /dev/null, and you can ascertain the latest version of the
program itself at www.sendmail.org.

2. If your queue value is too small, your system will be constantly spinning, trying to
deliver messages in the queue. It won’t get them delivered any faster, but it could
significantly affect your overall performance.

3. DNS FAILURE means that AOL tried to do a reverse lookup on your IP address and
failed to get a hostname that matched what you are announcing when you connect.
It’s a spam filter trick in their mail daemon.

4. The challenge is that the mail queue is constantly in flux: Any snapshot of the
information (such as the output of the mailq command) is sliding into obsoles-
cence while you’re reading through it….

5. The curly alias points to two addresses, moe and larry. moe then points to a list of
e-mail addresses called /home/lists/stooges, and larry hands off all his e-mail to
the vacation program through a toprog pipe notation (“|vacation”).

In the next hour, we’ll tackle a topic that has pervaded this entire book, but we’ll finally
focus on it exclusively: shell scripting. As has been demonstrated over and over, being
able to write simple and effective shell scripts is perhaps the single biggest time saver for
any savvy Unix system administrator, so you’ll want to warm up your brain cells to
really get the most possible out of Hour 21.

412 Hour 20

27 0672323982 ch20 6/18/02 2:04 PM Page 412

Hour
21 Shell Scripting: The Administrator’s Swiss

Army Knife 415

22 Power Scripting with awk and Perl 443

23 Introduction to the Apache Web
Server 457

24 Virtual Hosts with Apache 473

PART VII
Web Server Management
& Shell Programming

28 0672323982 pt7 6/18/02 2:05 PM Page 413

28 0672323982 pt7 6/18/02 2:05 PM Page 414

HOUR 21
Shell Scripting: The
Administrator’s Swiss
Army Knife

If I had to pick one core skill that differentiated good system administrators
from mediocre ones, it would be shell scripting. It’s useful to know the tools
in the operating system (or systems) you use, of course, but being able to
put those tools together and build something that addresses the specific
needs and requirements of your user community is a critical capability.

Throughout this book, you’ve had a chance to see many shell scripts, rang-
ing from simple one-liners to rather sophisticated scripts with loops, condi-
tional execution, return code analysis, and much more.

In this hour, we’ll focus specifically on the language and capabilities of shell
scripts, re-examine some of the earlier scripts to see exactly what they
accomplish, and introduce some new scripts to expand your programming
horizons.

29 0672323982 ch21 6/18/02 2:01 PM Page 415

There are tasks that cannot be accomplished in the shell, of course, and for those you’ll
want to move to awk, Perl, or C, depending on the task, and of course, your level of
familiarity with the development environment.

In this hour, you will learn:

• The basics of shell scripting

• How to control a script’s flow

The Basics of Shell Scripting
The first and most important question for anyone developing shell scripts is: what shell?

The answer to that varies somewhat in the Unix system administrator community, but
most sysadmins, myself included, believe that the best scripting environment is the
Bourne Shell (sh). Whether you use csh, tcsh, zsh, or whatever, just about every shell
script you’ll find uses the Bourne Shell as its interpreter.

416 Hour 21

Of course, on many systems /bin/sh is actually a hard link to /bin/bash,
meaning that sh is really an instance of bash. That’s fine: bash has the exact
same syntax and semantics as the older Bourne Shell, and offers some great
capabilities in addition, and a solid, constantly improving code base.

Task 21.1: Basic Shell Scripts
Like any procedural programming language, shell scripts are executed from the first line
to the last, and errors in the script are only encountered when the interpreter (the shell)
reads the line just prior to execution.

1. By default, all shell scripts are executed by your login shell or the shell specified
by the SHELL environment variable, unless you specify otherwise. As a result, all
well-written shell scripts do specify otherwise—the first line of all shell scripts
should specify the desired shell and any starting arguments desired. A typical first
line looks like this:

#!/bin/sh

The #! notation has special meaning in Unix, and the shell that’s reading the script
initially uses the information in that first line to ascertain what program should
actually execute (run) the script. For example, Perl scripts have

#!/usr/bin/perl

,
TA

SK
,

29 0672323982 ch21 6/18/02 2:01 PM Page 416

and Python programs might well have

#!/usr/local/bin/python

as their first line.

2. The Bourne Shell1 has a variety of starting flags that can be specified on this first
line of the script, with interesting and often valuable results. Foremost among these
is the –x flag, which turns on debugging mode. We’ll see an example of this a bit
later in the hour.

Another useful flag that’s popular with script writers is –f, which disables reading
any sort of rc or other configuration file. You won’t have any of your aliases avail-
able, but you will have your scripts start out and run quite a bit faster.

To add a starting flag, simply append it to the first line:

#!/bin/sh -f

A third starting flag, one that might not be available in all versions of the Bourne
Shell, is –n, which will scan through a script ensuring that the syntax is acceptable,
but won’t actually execute the script or any of the commands therein. This proba-
bly wouldn’t appear within the script, but rather would be something you invoke on
the command line as a special test:

$ sh –n mytestscript

just as you can also turn on debugging conditionally by invoking the shell script as

$ sh –x mytestscript

3. Enough discussion—let’s see a very simple shell script in its entirety to see how
they’re organized.
$ cat showaliases
#!/bin/sh

showaliases - list all current email aliases from NetInfo

nidump aliases .

This very simple shell script has three lines: an indication of what shell should be
used, a comment that describes briefly the purpose of the script, and the actual
Unix command to run.

A slightly longer example might be more interesting:
$ cat diskhogs
#!/bin/sh

diskhogs – report which users are taking up the most disk space

Shell Scripting: The Administrator’s Swiss Army Knife 417

21

,

1Or whatever shell you have that’s emulating the Bourne Shell (for example, bash).

,

29 0672323982 ch21 6/18/02 2:01 PM Page 417

echo “Disk Hogs Report for System `hostname`”

bigdir2=”`du -s /Library/* | sed ‘s/ /_/g’ | sort -rn | cut -f2- | head -5`”

echo “The Five biggest library directories are:”
echo $bigdir2

for dirname in $bigdir2 ; do
echo “”
echo Big directory: $dirname
echo Four largest files in that directory are:
find “`echo $dirname | sed ‘s/_/ /g’`” -type f -ls | \
awk ‘{ print $7” “$11 }’ | sort -rn | head -4

done

exit 0

Hopefully, you’re starting to see a pattern emerge. The first line is the same, the
second line is a brief comment, and the rest of the script is the actual executable
section.

Like other programming environments, shell scripts let you define script
constants—mnemonic names that represent common directories, programs, com-
mands, or values. In this script, it’s the bigdir2 line near the top. One of the best
programming techniques you can practice with shell scripts is to define your con-
stant values at the top of the script. This not only makes it easier to move to a new
Unix environment, but it also makes it a lot more readable, too!

Most of the work in this shell script is done in the for loop, which we’ll discuss
shortly. The only point that’s important to note here is that structurally, you can see
that you can have more than one command on the same line by separating them
with a semicolon (notice the ; do at the end of the for line), and that if you have a
long, complex pipe or command line, you can split it across multiple lines by sim-
ply ending a line with a backslash (\).

418 Hour 21

,

If you use backslashes to split long lines, make sure you don’t have any char-
acters after the slash. Even a trailing space or tab character will cause odd
and confusing error messages when the script is run.

4. As the previous shell script demonstrates, shell scripts can have variables that are
either assigned an initial value that’s constant throughout execution, or have their
value change as the script runs.,

29 0672323982 ch21 6/18/02 2:01 PM Page 418

An example of the latter is the following:
$ cat countfiles
#!/bin/sh

countfiles - return a count of the files matching the specified pattern

pattern=”${1:-dave}”
locate=/usr/bin/locate

for name in `$locate $pattern`
do
count=”`expr ${count:-0} + 1`”

done

echo “I counted $count files that matched pattern $pattern”

exit 0

This is an interesting script, because it has variables performing three different
functions: locate is a constant that makes it easy to reconfigure the script for dif-
ferent Unixes that have the locate command in odd places (or not at all, perhaps
replacing it with a find). The count variable is a numeric counter that increments
by one each time it’s referenced in the line:

count=”`expr ${count:-0} + 1`”

The pattern variable holds the filename pattern that’s being counted, or, if no
value is initially specified on the command line, dave as the default pattern.

The unusual notation of ${variable:-default} should be read as a very conve-
nient shorthand for the following logic: if $variable is defined, then $variable;
otherwise the default value $default. In the initial assignment to pattern, you can
now see that the line

pattern=”${1:-dave}”

really means “let pattern equal $1 if the user specified a pattern on the command
line, otherwise use the default pattern of dave.”

5. This shell script also demonstrates that you can use the helpful expr command for
simple math functions, particularly within shell scripts.

For example, here’s a variation on the preceding shell script that calculates the total
number of lines, and the average number of lines per file as well:
$ cat countfiles
#!/bin/sh

countfiles - return a count of the files matching the specified pattern,
and average line counts too.

Shell Scripting: The Administrator’s Swiss Army Knife 419

21

,

,

29 0672323982 ch21 6/18/02 2:01 PM Page 419

pattern=”${1:-dave}”
locate=/usr/bin/locate

for name in `$locate $pattern`
do
count=”`expr ${count:-0} + 1`”
lines=”`wc -l < $name`”
totalines=”`expr ${totalines:-0} + ${lines:-0}`”

done

echo “$count files, with $totalines lines, match pattern $pattern”
echo “for an average of `expr $totalines / $count` lines per file.”

exit 0

When run, this script reports the following:
$./countfiles
5 files, with 68 lines, match pattern dave
for an average of 13 lines per file.

Nice and neat.

6. Let’s have a closer look at the various special notations you can use with variables,
as that’s quite helpful for shell programming. First, let’s look at positional parame-
ters in Table 21.1.

TABLE 21.1 Shell Positional Parameters

Notation Explanation

$1..$9 The first through ninth argument on the command line.

${10}… The tenth through the nth parameter on the command line (even 10 parameters
are quite a few, though, so you’ll most likely never need to use this notation).

$# The number of parameters given to the command.

$* A list of all the parameters (commonly used by wrapper scripts that might log
the use of a command, then hand all its starting arguments and flags to the real
binary).

$@ The same as $*, but all arguments are quoted. Probably safer to use in almost
all cases.

A very common test in shell scripts is one that ensures that the positional parame-
ters are specified as desired. If countfiles insisted on a pattern being specified, an
easy test at the top of the script would be
if [$# -ne 2]
then
echo “Usage: countfiles PATTERN”
exit 0

fi

420 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:01 PM Page 420

Nicely, this conditional statement (if condition) will also catch when the user
specifies too many positional parameters as well.

Shell Scripting: The Administrator’s Swiss Army Knife 421

21

,

If you’re stepping through positional parameters, a very useful shell function
called shift is worth knowing. When invoked, all positional parameters
move down one value, so $2 becomes $1, $3 becomes $2, and so on.

Generally, all variables should be referenced with the notation ${name}, but in prac-
tice, it’s only necessary when there would be confusion over the exact variable name.
Examples: Is $11 really $1 and a 1, or referencing the eleventh variable? Is echo
“$joe:” referring to $joe, and if so, how does the shell interpret :” as a special nota-
tion? Does $1ish reference $1 and append ish to it, or is it a variable called 1ish?

In all of the preceding cases, the curly brackets resolve the ambiguity: ${1}1, echo
“${joe}:”, and ${1}ish.

7. There are also some important substitution notations that are well worth knowing
for shell scripting, as summarized in Table 21.2.

TABLE 21.2 Shell Variable Reference Notation

Notation Explanation

${variable:-default} $variable if defined, default otherwise.

${variable:=default} $variable if defined, otherwise set variable to the specified default
value and return that value as well. This acts similarly to “if not
defined, then $variable = default.”

${variable:?message} $variable if defined, or an error message is printed consisting of
the variable name followed by the specific message. For example:
${SHELL:?You must have a shell defined for this script}.

${variable:+value} If $variable is defined, return value, otherwise return null. For
example: ${name:+1} would return 1 if the variable name was
assigned a value.

${variable:offset} Return the value of $variable starting at character offset. For
example: ${name:3} would return the third through last characters
of $name.

${variable:offset:length} A variation on ${variable:offset}, this returns a substring of the
specified length, starting at offset of the variable specified. For
example: ${name:3:1} would return the third letter of the value
assigned to $name.

,

29 0672323982 ch21 6/18/02 2:01 PM Page 421

When working with mathematical notation, it’s particularly important to use substi-
tution notation to ensure that you don’t generate out-of-range or undefined result
errors. A common technique to avoid dividing by an undefined value, for example,
might be:

result=”`expr $num / ${denom:?Can’t be undefined}`”

To avoid dividing by zero requires a more elaborate conditional statement:
if [${denom:-0} -eq 0] ; then
echo “Can’t divide by zero. Error.”
exit 0

fi

This also demonstrates the value of the :- notation: In this case, even if the vari-
able $denom is undefined, this conditional statement will catch it and avoid the
potential problem.

8. It’s worth spending a few minutes looking at the expr statement itself before we
move on to conditional statements and loops.

The expr command is one of the hidden gems of Unix. Although it might not be a
particularly friendly interactive command, it does let you calculate a wide variety
of mathematical and other results, as shown in Table 21.3.

TABLE 21.3 Common expr Functions

Function Meaning

+ Addition.

- Subtraction.

/ Division.

* Multiplication (be careful not to have this expand as a shell wild
card in use! Use * if it’s not in a quoted string).

% Division, returning the remainder.

length string Length of string.

substr string pos length Returns the substring of string starting at pos for length charac-
ters. This is, of course, identical to ${string:pos:length}.

In addition to the helpful mathematical functions, length solves an otherwise
tough puzzle: How do you figure out how long a string is within a shell script?

Knowing this function, it’s a straightforward process to find out which login
accounts have a login name that exceeds the standard eight-character limit of Unix:
$ cat longname
#!/bin/sh

422 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:01 PM Page 422

longname - scan all login names in /etc/passwd, output any that
are longer than 8 chars

maxlength=8

for login in `cut -d: -f1 /etc/passwd`
do
if [`expr length $login` -gt $maxlength]
then
echo Warning: login $login exceeds $maxlength character max.

fi
done

exit 0

On a system that’s well organized, there shouldn’t be any problems reported at all.
However, one of the systems I use, a FreeBSD box, reports the following:
$./longname
Warning: login postmaster exceeds 8 character max.

Something worth fixing.2 Notice also that the use of maxlength to define the value
8 in one place really clarifies the logic of the script, and also makes it easier if in
fact only seven characters were recognized.

Shell Scripting: The Administrator’s Swiss Army Knife 423

21

,

2Or not—all this means is that postmast, postmaste, and postmaster are all synonymous, because only
the first eight characters of the login are checked. Not a huge crisis, unless you forgot and tried to cre-
ate postmaster2 and postmaster3 as separate accounts.

Another way to ascertain the number of characters in a string variable
within the shell is to reference ${#variable}; for example, the preceding
test could be done with if [${#login} –gt $maxlength] instead.

We can spend quite a bit of time on shell script programming, as you are starting to sus-
pect. Not only is it helpful, it’s just very interesting, and one of my favorite parts of writ-
ing this book is creating these nifty little example shell scripts. You could, for example,
check out Sriranga Veeraraghavan’s Sams Teach Yourself Shell Programming in 24 Hours,
but we’ll go faster than that here and see how it goes!

Flow Control
It’s just about impossible to demonstrate one feature of shell script programming without
delving into others along the way, so you have already seen a number of examples of
both conditional statements (if-then) and looping mechanisms.

,

29 0672323982 ch21 6/18/02 2:02 PM Page 423

Because there are so many different ways to build complex conditional statements, and
because loops are so essential to smart shell script programming, it’s quite helpful to
examine them in closer detail. Finally, this section will also briefly introduce shell func-
tions.

Task 21.2: Conditionals, Looping, and Functions
It is certainly possible to have useful shell scripts that move in a linear fashion through a
set of steps without any conditional tests or loops needed, but it’s unlikely. Almost every
helpful script at least checks to ensure the starting parameters are valid. Let’s see how it’s
done.

1. To start, let’s back up a bit and realize that there’s a problem with the version of
countfiles shown earlier. To wit: What happens if we specify a pattern that
doesn’t have any matches?
$./countfiles linda
files, with lines, match pattern linda

for an average of / lines per file.

Ugh. Not too good. What’s happened is, because there were no matches, all the
conditional variables were blank (undefined), and the final expr ended up seeing
the command

expr /

so it (logically) returned the / as its result.

To fix this, we’ll want to add a conditional test prior to emitting the summary
information. This can be done by changing the output lines to wrap them in a test:
if [$count -eq 0] ; then
echo “No files found that match pattern $pattern”

else
echo “$count files, with $totalines lines, match pattern $pattern”
echo “for an average of `expr $totalines / $count` lines per file.”

fi

Seem correct? Let’s test it:
$./countfiles linda
./countfiles: [: -eq: unary operator expected
files, with lines, match pattern linda

for an average of / lines per file.
$

A classic shell scripting error! The count variable isn’t defined, so the test $count
–eq 0 ends up being –eq 0, and the conditional test function thinks it’s an error.

424 Hour 21

,
TA

SK
,

29 0672323982 ch21 6/18/02 2:02 PM Page 424

To fix this properly, either a substitution operator is needed (if [${count:-0}
–eq 0]), or the variable should be quoted and the logic of the test should change to
a string test, rather than a numeric test:
if [“$count” = “”] ; then
echo “No files found that match pattern $pattern”

else
echo “$count files, with $totalines lines, match pattern $pattern”
echo “for an average of `expr $totalines / $count` lines per file.”

fi

One more check to see how many files contain the pattern linda:
$./countfiles linda
No files found that match pattern linda

Much better!

Shell Scripting: The Administrator’s Swiss Army Knife 425

21

,

Many shell programmers would approach this a slightly different way, writ-
ing if [X$count = X] ; then to sidestep the odd quote notation. If
$count has any value, the value won’t be just X, but if it’s undefined,
X$count will be exactly equal to the value X.

2. The Bourne Shell actually invokes a command called test (or has a copy of the
code for test compiled directly into the shell for improved performance), which
supports a remarkable range of tests, both on files and variables. Table 21.4 sum-
marizes some of the most helpful.

TABLE 21.4 Conditional Tests

Condition Explanation

File Comparisons

-d file True if file exists and is a directory

-e file True if file exists

-f file True if file exists and is a file (for example, not a directory)

-r file True if file exists and allows read access

-s file True if file exists and is not empty

-w file True if file exists and allows write access

-x file True if file exists and allows execute access

-O file True if file exists and is owned by the current user

-G file True if file exists and is in the same group as the current user

file1 –nt file2 True if file1 is newer than file2

file1 –ot file2 True if file1 is older than file2,

29 0672323982 ch21 6/18/02 2:02 PM Page 425

TABLE 21.4 Continued

Condition Explanation

String Comparisons

str1 = str2 True if str1 equals str2 (note that it’s not ==)

str1 != str2 True if str1 is not equal to str2

str1 < str2 True if str1 is less than str2

str1 > str2 True if str1 is greater than str2

-n str True if str is a nonzero length

-z str True if str is zero-length

Numeric Comparisons

x –eq y True if x is numerically equal to y

x –ge y True if x is numerically greater than or equal to y

x –gt y True if x is numerically greater than y

x –le y True if x is numerically less than or equal to y

x –lt y True if x is numerically less than y

x –ne y True if x is numerically not equal to y

That’s a lot of possible tests listed in Table 21.4, so don’t be too surprised if you
find it overwhelming. Let’s explore by writing a script that exercises many of these
tests to identify characteristics of a specified file or directory:
$ cat finfo
#!/bin/sh

finfo - list some information about a specified file or directory

if [$# -ne 1] ; then
echo “Usage: finfo file-or-directory-name”
exit 0

fi

file=$1

if test -e $file
then
echo -n “$file exists,”

else
echo “$file does not exist.”

426 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 426

exit 0
fi

if test -s $file; then
echo -n “ is not empty, “

fi

if test -r $file ; then
perm=”and is read”

else
perm=”and is “

fi
if test -w $file ; then
perm=”$perm+write”

fi
if test -x $file ; then
perm=”$perm+execute”

fi
if test -O $file ; then
info=”$file is owned by $LOGNAME”

else
info=”$file is not owned by $LOGNAME”

fi
if test -G $file ; then
info=”$info, same group as $LOGNAME”

else
info=”$info, and is not in any group that $LOGNAME is in”

fi

echo $perm
echo $info

exit 0

There are other ways to accomplish the tasks that finfo does here, but it’s a terrific
example of how all these tests work. Also note that instead of using the [shortcut,
we can call test directly instead. In this latter case, we don’t need a trailing].
$ finfo $HOME
/home/taylor exists, is not empty, and is read+write+execute
/home/taylor is owned by taylor, same group as taylor
$ finfo baddir
baddir does not exist.
$ finfo countfiles
countfiles exists, is not empty, and is read+write+execute
countfiles is owned by taylor, same group as taylor
$ finfo /etc/passwd
/etc/passwd exists, is not empty, and is read
/etc/passwd is not owned by taylor, and is not in any group that taylor is in

Shell Scripting: The Administrator’s Swiss Army Knife 427

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 427

3. There are three basic types of conditional statements: if-then-fi, if-then-else-
fi, and if-then-elsif-then-fi, (as is common in the bash shell, the statement
reversed is the end-of-statement delimiter, so fi ends an if statement) as exempli-
fied here:
if test -x $file ; then # executable
perm=”$perm+execute”

fi
if test -O $file ; then # owned by user
info=”$file is owned by $LOGNAME”

else
info=”$file is not owned by $LOGNAME”

fi
if test –d $file ; then # is a directory
echo “$file is a directory”

elsif test –f $file ; then # is a file
echo “$file is a file”

else
echo “$file doesn’t exist”

fi

The first is a straightforward conditional; if the condition (test –x $file) is true,
the statement following, assigning $perm+execute to variable perm, will be exe-
cuted. If it’s not true, the shell will skip to the subsequent instruction.

The second is a bit more complicated, but still easy to understand: If test –O
$file is true, the second line is executed. If not, the else statement causes the
fourth line (for example, not owned by $LOGNAME) to be executed.

Finally, the third example (elsif) is a shorthand way of writing the following
loop:
if test –d $file ; then
echo “$file is a directory”

else
if test –f $file ; then
echo “$file is a file”

else
echo “$file doesn’t exist”

fi
fi

The advantage of the elsif is that it helps avoid overly deep nesting on complex
statements. You can imagine if we had a script that had four or five else-if condi-
tionals that having the last dozen lines as fi-fi-fi-fi would look odd and be
potentially confusing.

4. Of course, one way to address a sequence of elsif statements is to turn the
sequence into a case statement, where you can test against a number of different
values in a more elegant fashion. This works in some situations, but not others.

428 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 428

Indeed, where each condition is against a different test option, it wouldn’t work,
but in many situations, where you’re testing the same variable or value against a
number of possible values, a case statement is ideal.

Here’s a considerably longer and more complex shell script to demonstrate the use
of a case statement and conditional statements. Pay attention to how the indenta-
tion helps clarify the control flow:
$ cat docron
#!/bin/sh

DOCRON - simple script to run the daily, weekly and monthly
system cron jobs on a system where it’s likely that
it’ll be shut down at the usual time of day when
this would occur For Mac OS X Unix only.
#
By Dave Taylor <taylor@intuitive.com>

Note: most of this is copied from /etc/crontab

SHELL=/bin/sh
PATH=/bin:/sbin:/usr/bin:/usr/sbin
HOME=/var/log

if [$# -ne 1] ; then
echo “Usage: `basename $0` [daily|weekly|monthly]”
exit 0

fi

if [“`id -u`” -ne 0] ; then
echo “Please enter your ‘sudo’ password for authorization”
sudo $0 $1
if [$? -ne 0] ; then
echo “(didn’t run `basename $0` because sudo auth failed)”

fi
exit 0

fi

case $1 in
daily)

sh /etc/daily 2>&1 | tee /var/log/daily.out | \
mail -s “`hostname` daily output” root

;;

weekly)

sh /etc/weekly 2>&1 | tee /var/log/weekly.out | \
mail -s “`hostname` weekly output” root

;;

Shell Scripting: The Administrator’s Swiss Army Knife 429

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 429

monthly)

sh /etc/monthly 2>&1 | tee /var/log/monthly.out | \
mail -s “`hostname` monthly output” root

;;

*) echo “Usage: `basename $0` [daily|weekly|monthly]”
esac

exit 0

This is a longer shell script, but if we look at it in sections, it’s really no more
complex than the earlier examples. In particular, notice that the case statement
structure is
case $1 in
daily) statements
;;

weekly) statements
;;

monthly) statements
;;
*) statements

esac

This is more or less equivalent to
if [$1 = daily] ; then

statements
elsif [$1 = weekly] ; then

statements
elsif [$1 = monthly] ; then

statements
else

statements
fi

The only difference is that case statement clauses can do wildcard pattern match-
ing, so whereas a conditional test with an if statement that matched dail* would
be difficult to write, it’s a breeze as part of a case statement: dail*)

Indeed, you’ll often see complex regular expressions as part of case statements,
and a set of choices to allow for, say, both single-character and longer flags is very
common, and might look like this:

-a | --append) statements

Also note that in the case statement that each block is ended with the all important
double semicolon (;;), without which the script will drop through into the state-
ments associated with the next condition. On the last case, of course, there is no
“next” condition, so it can be omitted.

430 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 430

5. The other looping mechanisms in shell scripts are for, while, and until loops.
We’ve already seen many examples of the for loop at work, but it’s a real work-
horse in scripting, so let’s have another look.

The following simple script searches all the directories in your PATH for a given
filename, using a simple for construct. There is one fancy trick here: the IFS vari-
able is the shell’s input field separator, and by changing it to a colon, it lets us very
easily chop up the $PATH into its component directories. This neatly also allows us
to match directories with spaces in their names without any sort of hiccup:
$ cat search.sh
#!/bin/sh

search - look for the specified file name in the PATH directories

IFS=:

for directory in $PATH
do
if [-e $directory/$1] ; then
echo Found $1 in directory $directory

fi
done

exit 0

When this is run, the output is succinct:
$ search xterm
Found xterm in directory /usr/X11R6/bin
$ search vi
Found vi in directory /bin
$ search search
Found search in directory /home/taylor/bin
$ search not-found
$

It would be useful to have an error condition so that instead of returning nothing upon
failure (as you can see in the last example of the preceding code fragment), it would
say not found. That task will resurface as an exercise later in this (rather long!) hour.

An interesting shortcut with the for loop is that if you don’t specify an in clause, it
automatically steps through the starting arguments, as demonstrated in the following:
$ cat args
#!/bin/sh

args - step through starting args

for arg
do

Shell Scripting: The Administrator’s Swiss Army Knife 431

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 431

echo got argument $arg
done

$ args this is a test
got argument this
got argument is
got argument a
got argument test
$

432 Hour 21

,

This for loop trick can simplify parsing starting arguments on a more sophis-
ticated shell script, though if you want to have a number of startup options,
getopts is a smarter way to go. See man 1 getopts for details.

6. The remaining loop structures are fundamentally the same, the only difference
being if they’re testing for a condition that will eventually go false or become true.
Consider this example:
$ cat args2
#!/bin/sh

args2 - step through starting args, stop at ‘--’ if seen

while [“$1” != “--” -a X$1 != X]
do
echo ... processing flag $1
shift

done

if [“$1” = “--”] ; then
shift # to get past the ‘--’

fi

echo Ended loop with post-flag arguments $*
exit 0

This script demonstrates that conditional expressions can actually be quite com-
plex: The test that’s part of the while loop actually is checking to see if $1 is “--”,
which indicates the end of starting flags by Unix convention, or if it simply ran out
of starting arguments. The –a is an AND notation, so you could read this as while
$1 isn’t ‘--’ AND X$1 isn’t X do.

Also note the use of the shift instruction to move all the numeric arguments down
one value. That is, $2 becomes $1, $3 becomes $2, and so on.
$./args2 a b -- c d
... processing flag a
... processing flag b,

29 0672323982 ch21 6/18/02 2:02 PM Page 432

Ended loop with post-flag arguments c d
$./args2 a b c d
... processing flag a
... processing flag b
... processing flag c
... processing flag d
Ended loop with post-flag arguments

7. The last type of flow control isn’t really a loop, per se, but an approach to taking a
block of code and making it a completely different entity—a shell function.
Generically, shell functions can be written either as
function functionname
{

shell commands
}
functionname()
{

shell commands
}

What makes this interesting is that you can pass parameters to functions, though
they can only return numeric return code values to the calling script. For example:
function listit()
{

if [-f $1 -a -r $1] ; then
cat $1

else
echo “Error: $1 is not a file, or is not readable”

fi;
}

This simple function will list the contents of a file if it is in fact a file (not a direc-
tory) and is readable; otherwise it’ll output a succinct error message.

One point of confusion when working with functions is that you need to ensure
that the function is defined prior to its first use in the script, so a typical shell script
that uses functions has all the function definitions presented first in the file, then
the actual script itself at the end.

A common place to see shell functions is in the /etc/rc.d/init.d files, or in the
/etc/rc.d/init.d/functions shared library. Two interesting examples from Red
Hat Linux are worth showing:
Check if $pid (could be plural) are running
checkpid() {

while [“$1”]; do
[-d /proc/$1] && return 0 # ‘&&’ is AND
shift

done
return 1

}

Shell Scripting: The Administrator’s Swiss Army Knife 433

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 433

confirm() {
local YES=$”yY”
local NO=$”nN”
local CONT=$”cC”

while : ; do
echo -n $”Start service $1 (Y)es/(N)o/(C)ontinue? [Y] “
read answer
if strstr “$YES” “$answer” || [“$answer” = “”] ; then

return 0 # ‘||’ is an OR condition above
elif strstr “$CONT” “$answer” ; then

return 2
elif strstr “$NO” “$answer” ; then

return 1
fi

done
}

Mac OS X has startup scripts in the /etc/rc.local file (a typical BSD location for
them), and within that file there are some interesting additional shell functions:
##
Print a message to the console and display it in the startup screen
##
ConsoleMessage()
{

local Message=”$*”

echo “${Message}”
}
##
Determine if the network is up by looking for any non-loopback
internet network interfaces. – uses “sed”, the stream-editor, to
make simple modifications to information in a pipe. See sed(1)
##
CheckForNetwork()
{

local test

if [-z “${NETWORKUP:=}”]; then
test=$(ifconfig -a | sed -e ‘/127.0.0.1/d’ | sed -e ‘/0.0.0.0/d’ | \sed -

➥n ‘/inet/p’ | wc -l)
if [“${test}” -gt 0]; then

NETWORKUP=”-YES-”
else

NETWORKUP=”-NO-”
fi

fi
}

434 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 434

Two more examples of shell functions, then we’ll move into exploring some inter-
esting scripts, okay? The following implement the start and stop functionality for
the anacron daemon with Red Hat Linux:
start() {

echo -n $”Starting $prog: “
daemon anacron
RETVAL=$?
[$RETVAL -eq 0] && touch /var/lock/subsys/anacron
echo
return $RETVAL

}

stop() {
if test “x`pidof anacron`” != x; then

echo -n $”Stopping $prog: “
killproc anacron
echo

fi
RETVAL=$?
[$RETVAL -eq 0] && rm -f /var/lock/subsys/anacron
return $RETVAL

}

Notice how they conform to the standard function syntax, and that, like most of the
other examples shown, they return zero upon success, and nonzero return codes on
failure.

We don’t have the space to dig deeply into the specific functionality of these
diverse shell functions, but I hope that they make sense to you based on the infor-
mation presented here.

Shell Scripting: The Administrator’s Swiss Army Knife 435

21

,

It’s well worth learning more about shell script programming if you’re moti-
vated, and there’s no better place to do so than by starting with the shell
scripts that are all over your own Unix system.

If you’re starting to suspect that there’s quite a bit to shell script programming, you’re
correct. The good news is that once you master the peculiar syntax of the test command
and the general structure of if, case, and while/until loops, you’ll be able to read and
understand at least 75% of the system shell scripts included with your Unix OS.

Add functions to that list, and you’re ready to read and understand just about every shell
script on your system, and, more importantly, create your own. Remember, just like the
answer to the immortal question “How do you get to Carnegie Hall?” you need to prac-
tice writing your own shell scripts before you can really begin to master this critical sys-
tem administrator skill!

,

29 0672323982 ch21 6/18/02 2:02 PM Page 435

Some Cool Examples
Before we wrap this hour up, it’s valuable to look at a few fully functional shell scripts
that offer useful sysadmin features.

Task 21.3: Some Example Scripts
These scripts are all generic and will run on just about any Unix, though they’re each
written for the OS specified in the description.

1. One of the programs that I miss the most when I work in the Solaris environment
is locate. The locate command itself is simple to create: It’s grep, but the file it
searches is slightly more tricky to create. That’s what mklocatedb does:
#!/bin/sh

mklocate - build the locate database. This is a simple job for the ‘find’
command. Note that we want to ignore everything in the /proc directory on
this build, so there’s a little bit of trickery needed to ensure we get all
the top level directories EXCEPT /proc and /xfn

This should be run by cron every night, or thereabouts

locatedb=/tmp/locatedb

checkall=”`ls -a / | egrep -v ‘(^\.$|^\.\.$|^proc$|^xfn$)’ | sed ‘s/^/\//g’`”

nice find $checkall -print > $locatedb

echo done. Listed `wc -l < $locatedb` entries in the db.

exit 0

If this is run every night (probably from cron), a simple alias gives you complete
functionality:

alias locate=’cat /tmp/locatedb | grep -i’

If you specify an argument to an alias, it’s automatically appended to the end; so a
search for, say, locate config is exactly the same as typing cat /tmp/locatedb
| grep –i config.
$ mklocatedb
Done. Listed 45426 entries in the db.
$ locate terminal
/.dt/wsmenu/Tools/Terminal
/kernel/misc/terminal-emulator
/usr/openwin/share/include/X11/bitmaps/terminal
/usr/openwin/share/include/images/terminal.icon
/usr/openwin/share/include/images/terminal_mask.icon
/usr/dt/appconfig/help/C/Terminal.sdl
/usr/dt/config/en_US.UTF-8/wsmenu/Tools/Terminal
/usr/dt/config/C/wsmenu/Tools/Terminal

436 Hour 21

,
TA

SK
,

29 0672323982 ch21 6/18/02 2:02 PM Page 436

You’d want to run mklocatedb as root so you can access all the directories on the
system, but once it’s built, all users can easily be given the locate alias and
informed of the new functionality.

2. A longer example that demonstrates many of the control structures discussed in
this hour is domaincheck:
#!/bin/sh

Usage: domaincheck [flags] domain list
-a show all information
-d show DNS records
-e expiration date of domain record
-r show registrar

case $1 in

-a) shift

for name
do
whois $name

done
;;

-d) shift

for name
do
echo ${name}:
whois -n $name | grep -E ‘^ Name Server:’

done
;;

-e) shift

for name
do
echo -n “${name} “
whois $name | grep -i ‘Record expires on’ | \

sed ‘s/Record expires on//’
done
;;

-r) shift

for name
do
echo -n ${name}:
whois -n $name | grep ‘Registrar:’

done
;;

Shell Scripting: The Administrator’s Swiss Army Knife 437

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 437

*)
echo “Usage: domaincheck [flags] domain list”
echo “ -a all information”
echo “ -d DNS name servers”
echo “ -e expiration date”
echo “ -r registrar”
;;

esac

exit 0

This script lets you easily interact with the domain name registration database
through the Linux whois command, extracting interesting and relevant information
as desired:
$ domaincheck
Usage: domaincheck [flags] domain list

-a all information
-d DNS name servers
-e expiration date
-r registrar

$ domaincheck -r abctv.com
abctv.com: Registrar: NETWORK SOLUTIONS, INC.
$ domaincheck -e nbc.com
nbc.com 16-Jun-2011.
$ domaincheck -d espn.com amctv.com
espn.com:

Name Server: AUTH50.NS.UU.NET
Name Server: AUTH03.NS.UU.NET

amctv.com:
Name Server: STANTZ.CABLEVISION.COM
Name Server: TULLY.CABLEVISION.COM

Notice in the last of the three examples that by using the for loop without any in
clause, it automatically lets you step through any number of domain names speci-
fied on the command line.

The big result, of course, is the –a flag. Rather than show you all the output, here’s
a concise summary of some of the information you can glean about any domain on
the Internet:
$ domaincheck -a disney.com
(roughly 50 uninteresting lines removed)
Disney Enterprises, Inc. (DISNEY-DOM)

500 S. Buena Vista Street
Burbank, CA 91521
US

Domain Name: DISNEY.COM

438 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 438

Administrative Contact, Technical Contact, Billing Contact:
idNames, Accounting (IA90-ORG) accounting@IDNAMES.COM
idNames from Network Solutions, Inc
440 Benmar
Suite #3325
Houston, TX 77060
US
703-742-4777
Fax- - 281-447-1160

Record last updated on 28-Mar-2002.
Record expires on 22-Mar-2008.
Record created on 21-Mar-1990.
Database last updated on 2-Apr-2002 15:46:00 EST.

Domain servers in listed order:

HUEY.DISNEY.COM 204.128.192.10
NS2-AUTH.SPRINTLINK.NET 144.228.254.10
NS3-AUTH.SPRINTLINK.NET 144.228.255.10
NOC.UNT.EDU 129.120.110.1

3. One more quickie: findsuid finds all the setuid scripts, then checks to see
whether the files are also owned by root and marked as executable. If all condi-
tions are true, it lists the questionable file in a meaningful and helpful manner:
cat findsuid
#!/bin/sh

findsuid - find all SUID files or programs on the system other
than those that live in /bin and /usr/bin, and
output the matches in a friendly and useful format.

screen=”egrep -vE ‘(^/usr/bin|^/bin)’”

echo “Executable SUID programs found on the system:”

for match in `find / -type f -perm +5000 -print | $screen`
do
if [-x $match] ; then
owner=”`ls -ld $match | awk ‘{print $3}’`”
lastmod=”`ls -ld $match | awk ‘{print $6\” \”$7\” \”$8}’`”
echo “ “ $match “ (owner is \”$owner\” and lastmod is $lastmod)”

fi
done

exit 0

Shell Scripting: The Administrator’s Swiss Army Knife 439

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 439

When run (as root, of course, so you can see every file on the system), the output
looks like this:
findsuid
Executable SUID programs found on the system:

/usr/bin/suidperl (owner is “root” and lastmod is Aug 9 2001)
/usr/bin/sperl5.6.0 (owner is “root” and lastmod is Aug 9 2001)
/usr/bin/chage (owner is “root” and lastmod is Aug 27 2001)
/usr/bin/gpasswd (owner is “root” and lastmod is Aug 27 2001)
/usr/bin/at (owner is “root” and lastmod is Aug 2 2001)
/usr/bin/passwd (owner is “root” and lastmod is Aug 6 2001)
/usr/bin/chfn (owner is “root” and lastmod is Aug 26 2001)
/usr/bin/chsh (owner is “root” and lastmod is Aug 26 2001)
/usr/bin/newgrp (owner is “root” and lastmod is Aug 26 2001)
/usr/bin/crontab (owner is “root” and lastmod is Jun 24 2001)
/usr/bin/kcheckpass (owner is “root” and lastmod is Sep 8 2001)
/usr/bin/ssh (owner is “root” and lastmod is Sep 6 2001)
/usr/bin/rcp (owner is “root” and lastmod is Jul 24 2001)
/usr/bin/rlogin (owner is “root” and lastmod is Jul 24 2001)
/usr/bin/rsh (owner is “root” and lastmod is Jul 24 2001)
/usr/bin/sudo (owner is “root” and lastmod is Jul 23 2001)
/usr/sbin/ping6 (owner is “root” and lastmod is Aug 27 2001)
/usr/sbin/traceroute6 (owner is “root” and lastmod is Aug 27 2001)
/usr/sbin/sendmail (owner is “root” and lastmod is Aug 31 2001)
/usr/sbin/usernetctl (owner is “root” and lastmod is Sep 9 2001)
/usr/sbin/userhelper (owner is “root” and lastmod is Aug 27 2001)
/usr/sbin/traceroute (owner is “root” and lastmod is Jun 25 2001)
/usr/sbin/suexec.old (owner is “root” and lastmod is Sep 5 2001)
/usr/X11R6/bin/Xwrapper (owner is “root” and lastmod is Sep 5 2001)
/bin/ping (owner is “root” and lastmod is Aug 27 2001)
/bin/mount (owner is “root” and lastmod is Jul 24 2001)
/bin/umount (owner is “root” and lastmod is Jul 24 2001)
/bin/su (owner is “root” and lastmod is Jul 23 2001)
/sbin/pwdb_chkpwd (owner is “root” and lastmod is Sep 24 2001)
/sbin/unix_chkpwd (owner is “root” and lastmod is Sep 24 2001)

Very interesting output, and if you used the helpful diff command and archived
earlier output so you could automatically compare, you’ll have a very helpful util-
ity that will help quickly identify possible trojan horses.

4. There are hundreds of different shell scripts on your system, and you can find them
with a script:
cat findscripts
#!/bin/sh

for match in `find / -type f -perm +0111 -print`
do
if [“`file $match | grep -i ‘shell script’`” != “”] ; then
echo $match is a shell script

fi
done

440 Hour 21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 440

Red Hat Linux reports 651 scripts present (findscripts | wc –l). Plenty of
material for you to study!

Summary
Writing shell scripts is easy—you can start by taking whatever command you’d type on
the command line and drop it into a file. Creating truly cool shell scripts, however, is
more of an art, and the best system administrators can produce some amazing scripts.
Keep your eye out for them, and spend time reading through the many shell scripts on
your own system. There’s always lots to learn!

Q&A
Q When do shell scripts get so complex that it makes more sense to switch to a

more powerful programming language like Perl?

A This is a question that will garner different answers depending on how comfortable
the sysadmin questioned feels about writing shell scripts. There’s no standard rule
of thumb, that’s for sure. I’ll switch to a different programming language if I’m
doing more data manipulation and relatively little system interaction. Your mileage
may vary, of course!

Q What’s the most common error in shell script programming?

A The most common error I make is forgetting either that a conditional test of strings
should be a = b rather than a == b, or that it should be a = b rather than
a –eq b. Unnecessary spaces after a backslash continuation at the end of a line is
another common hiccup.

Workshop
Quiz

1. Does it matter what login shell you have when writing shell scripts?

2. What’s a handy trick for debugging shell scripts?

3. The test command can also be referenced as what common punctuation charac-
ter? What needs to also be included if you use this shortcut?

4. List both ways that you can ascertain the number of characters stored in a string
variable.

5. How do you increment a numeric variable by 3?

6. What does the notation $# indicate?

Shell Scripting: The Administrator’s Swiss Army Knife 441

21

,

,

29 0672323982 ch21 6/18/02 2:02 PM Page 441

Answers
1. Your login shell doesn’t matter, as long as you remember to always specify

#!/bin/sh as the first line of your scripts.

2. Running a shell script as sh –x script offers lots of useful output for debugging
any problems.

3. The test command is also known as [, but if you use the square bracket, you need
to include a trailing] as well, or it’ll be an error.

4. You can invoke `expr length $variable`, or you could use the ${#variable}
notation to ascertain the number of characters in $variable.

5. Typically, you’d use var=”`expr $var + 3`”.

6. The notation $# indicates the number of arguments given to the script when
invoked.

In the next hour we’ll use a combination of awk and Perl to further explore ways to cus-
tomize the administrative environment and simplify repetitive tasks.

442 Hour 21

29 0672323982 ch21 6/18/02 2:02 PM Page 442

HOUR 22
Power Scripting with awk
and Perl

The evolutionary path of a good system administrator usually goes from
commands to pipes to aliases to shell scripts to something bigger. The some-
thing bigger step is usually C, C++, or Perl, but many system administrators
opt to take the intermediate step of learning how to use the powerful awk
language along the way.

Throughout this book, we’ve explored sophisticated Unix interaction, and
the last hour (or perhaps hour and a half!) was focused on learning how to
get the most out of shell scripts, including a number of programming-like
structures and examples.

At some point in your long journey as a sysadmin, you’ll reach the point
where shell scripts are too confining. Maybe you’ll be doing complex math,
and all the calls to expr make your head swim. Maybe you’ll be working
with a data file with many columns, and repeated calls to cut no longer,
ahem, cut it. At this point, you’ve outgrown shell scripts, and you’re ready to
move to awk or Perl.

30 0672323982 ch22 6/18/02 2:04 PM Page 443

In this hour we’ll have a brief overview of awk, the original pattern-matching program-
ming language in the Unix environment, then spend some time looking at how the popu-
lar Perl language can help with many common system administration tasks. Needless to
say, it’s impossible to convey the depth and sophistication of either language in this brief
space, so we’ll also have some pointers to other works, online and off, to continue the
journey.

In this hour, you will learn about

• The oft-forgotten awk language

• How to write basic Perl programs

• Advanced Perl programming tips and tricks

The Elegant awk Language
Named after its inventors Aho, Weinberg, and Kernighan, awk has been a part of the
Unix environment since the beginning, and is a part of every current shipping distro
today.

444 Hour 22

awk is also available for pre-OS X Mac and Windows systems through the
GNU project’s reimplementation of the language. See www.gnu.org/
software/gawk/gawk.html.

awk is ideally suited to the analysis of text and log files, using its “match and act”
method of processing. An awk program is basically a series of conditions, with a set of
actions to perform if those conditions are met or a string is found. Think of the -exec
clause in the find command, combined with the searching capabilities of grep. That’s
the power of awk.

Task 22.1: An Overview of awk
Conditions in awk are defined using regular expressions, similar to those available with
the grep command. The statements to perform upon matching the condition are delim-
ited with open and closing curly brackets.

1. Let’s say we want to scan through /etc/passwd to find user accounts that don’t
have a login shell defined. To do this, we look for lines that end with a colon. In
awk, for all lines that end with a colon, print that line:
$ awk ‘/:$/ {print $0}’ /etc/passwd
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:,

,

TA
SK

30 0672323982 ch22 6/18/02 2:04 PM Page 444

adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
mail:x:8:12:mail:/var/spool/mail:

The pattern to match is a regular expression, surrounded by slashes. In this
instance, the pattern /:$/ should be read as “match a colon followed by the end-
of-line delimiter.” The action for the pattern follows immediately, in curly braces:
{print $0}. Prior examples in this book have shown that you can print a specific
field by specifying its field number (for example, $3 prints the third field in each
line), but here you can see that $0 is a shorthand for the entire input line.

2. Printing the matching line is sufficiently common that it is the default action. If
your pattern doesn’t have an action following it, awk assumes that you want {print
$0}. We can shorten up our program like so:
$ awk ‘/:$/’ /etc/passwd
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:lp:/var/spool/lpd:
mail:x:8:12:mail:/var/spool/mail:

At this point, our awk program acts exactly like a simple call to grep
(grep -E ‘:$’ /etc/passwd).

3. Much of the text processing you’ll be faced with in Unix is field- or column-based.
awk does its best to make handling this input as easy as possible by automatically
creating special variables for the fields of a line. For example, take the output from
ls -l:
$ ls -l
total 24
-rwxrwxr-x 1 taylor taylor 108 Apr 7 20:11 bytes-used
-rw-rw-r-- 1 taylor taylor 4707 Apr 7 20:16 ch22.txt
drwxrwxr-x 2 taylor taylor 4096 Apr 7 12:48 CVS
-rw-rw-r-- 1 taylor taylor 19024 Apr 7 20:17 intro.txt

Fed as input, awk would see each line as a series of fields, with each field separated
by a series of whitespace characters. The first line, total 24, has two fields, and
the other four each have nine fields.

As awk reads in the lines of its input, it splits the input line into special variables
$1, $2, $3, and so on, one for each field in the input. $0 is the special variable that
holds the current line, and NF (notice the absence of a dollar sign variable name
delimiter) holds the number of fields on the current line.

It’s simple, then, to calculate the total number of bytes used by the files in the
directory. Sum the values of the fifth column:
$ ls –l | awk ‘(NF >= 9 && $1 !~ /^d/) { total += $5 } END { print total }’
33310

Power Scripting with awk and Perl 445

22

,

,

30 0672323982 ch22 6/18/02 2:04 PM Page 445

4. A valuable improvement to this is to drop the awk commands into a separate .awk
file:
$ cat bytes.awk
(NF >= 9 && $1 !~ /^d/) { total += $5}
END { print total “ bytes in this directory.” }

This can then be easily used as:
$ ls –l | awk –f bytes.awk
33310 bytes in this directory.

A further refinement would be to exploit the fact that executable scripts in Unix
can specify the command interpreter they prefer as part of the first line of the file.
Make sure you have the right path for your awk interpreter by using locate:
$ cat bytes-used
#!/usr/bin/awk -f
(NF >= 9 && $1 !~ /^d/) { total += $5 }
END { print total “ bytes used by files” }
$ chmod +x bytes-used
$ ls -l | ./bytes-used
33310 bytes used by files

In this more sophisticated awk program, the pattern isn’t just a regular expression,
but a logical expression. To match, awk checks to ensure that there are at least nine
fields on the line (NF >= 9), so that we skip that first total line in the ls output.
The second half of the pattern checks to ensure that the first field doesn’t begin
with d, to skip directories in the ls output.

If the condition is true, then the value of the fifth field, the number of bytes used, is
added to our total variable.

Finally, at the end of the program, awk runs a special block of code marked with
the END label and prints the value of total. Naturally, awk also allows a corre-
sponding block BEGIN that is run at the beginning of the program, which you’ll see
in the following example.

5. You’re not limited to just having fields separated by whitespace. awk’s special
FS (field separator) variable lets you define anything as your field separator.
Let’s look at improving our previous example of finding entries in /etc/passwd
that don’t have a login shell specified. It’s now called noshell:
$ cat noshell
#!/usr/bin/awk -f
BEGIN { FS = “:” }
($7 == “”) { print $1 }

446 Hour 22

,

,

30 0672323982 ch22 6/18/02 2:04 PM Page 446

The code in the BEGIN block, executed prior to any input, sets FS to the colon. As
each line is read and the seventh field is found to be blank or nonexistent, awk
prints the first field (the account name):
$./noshell /etc/passwd
bin
daemon
adm
lp
mail

There’s quite a bit more you can do with awk, and there are even a few books on how to
get the most out of this powerful scripting and pattern processing language. A Web site
worth exploring for more awk tips is IBM’s developerWorks site (www.ibm.com/
developerworks/), where there’s a very good tutorial on advanced awk programming at
www.ibm.com/developerworks/linux/library/l-awk1.html.

Basic Perl Programming
Designed as a hybrid programming environment that offered the best of shell scripting,
awk, and lots of bits and pieces stolen from other development environments, Perl has
quickly grown to be the language of choice in the system administration community.

There are a couple of reasons for this, but the greatest reason for using Perl is that it’s
incredibly powerful, while reasonably easy to learn.

Task 22.2: Basic Perl
Perl takes the power of awk and expands it even further. Perl’s abilities include the most
powerful regular expressions available, sophisticated string handling, easy array manipu-
lation, lookup tables with hashes, tight integration with SQL databases—and those are
just the basics!

1. Perl doesn’t automatically iterate through a file like awk does, but it’s not much
more difficult. Here’s our noshell program in Perl:
$ cat noshell.pl
#!/usr/bin/perl -w
use strict;
while (<>) {

chomp;
my @fields = split /:/;
print $fields[0], “\n” unless $fields[6];

}
$./noshell.pl /etc/passwd
bin
daemon
adm
lp
mail

Power Scripting with awk and Perl 447

22

,

,

,
TA

SK
,

30 0672323982 ch22 6/18/02 2:04 PM Page 447

The program steps through either standard input or the files specified on the com-
mand line. Each line has the trailing linefeed removed with chomp, and then the
line is split into individual fields using a colon as the field delimiter (the /:/ argu-
ment after the split). The my preface to the @fields line ensures that the variable
is only alive within its own loop (the while loop), and the split on that line
breaks the line at the colon. This statement breaks down the line into separate
fields, then pours those fields into the fields array.

Finally, we print the first field (like many programming languages, Perl indexes
starting at zero, not one, so $fields[0] is the equivalent of the awk $1 variable) if
the seventh field doesn’t exist or is blank.

Note that the variable @fields starts with an @ sign, yet we refer to the 0th element
of fields with a dollar-sign prefix: $fields[0]. This is one of those quirks of Perl
that constantly trips up beginners. Just remember to use the @ when referring to an
entire array, and the $ when referring to a single element.

448 Hour 22

,

Most Perl scripts you see have a -w switch and a use strict; line, and for
good reason. They catch about 95% of the silly typing errors that you’re
likely to make in a Perl program. Make the -w and use strict a reflexive
way to start your Perl programs, and you’ll save lots of time debugging
down the road.

2. Perl uses a special variable called $_ as the default variable for many different
blocks of code. Think of $_ as meaning it, where it is whatever the current block
of Perl code is working on at the moment.

To be explicit, the preceding program can be written as
#!/usr/bin/perl -w
use strict;
while ($_ = <>) {
chomp $_;

my @fields = split /:/, $_;
print $fields[0], “\n” unless $fields[6];

}

You can also use your own variables instead of using $_ if you find that to be more
readable.
#!/usr/bin/perl -w
use strict;
while (my $line = <>) {
chomp $line;
my @fields = split /:/, $line;
print $fields[0], “\n” unless $fields[6];
},

30 0672323982 ch22 6/18/02 2:04 PM Page 448

Which style you use depends on your needs and how you conceptualize program-
ming in Perl. In general, the larger the program or block of code, the more likely
you are to use your own variables instead of the implicit $_.

Power Scripting with awk and Perl 449

22

,

One of the mottos of the Perl community is “There’s More Than One Way To
Do It.” Depending on how you solve problems, you will either find this cute,
or highly annoying.

3. Perl was built on Unix systems, and is specifically geared to many of the common
system administration tasks you’ll face. A typical problem might be checking to
ensure that none of the users have a .rhosts file in their home directory with inap-
propriate permissions (a common security hole on multiuser systems).

Here’s how we’d solve this problem in Perl:
$ cat rhosts-check
#!/usr/bin/perl -w
use strict;
while (my ($uid,$dir) = (getpwent())[2,7]) {
next unless $uid >= 100;

my $filename = “$dir/.rhosts”;
if (-e $filename) {

my $permissions = (stat($filename))[2] & 0777;
if ($permissions != 0700) {
printf(“%lo %s\n”, $permissions, $filename);
chmod(0700, $filename);
} # if

} # if file exists
} # while walking thru /etc/passwd

This script introduces quite a few Perl mechanisms that we haven’t seen yet. The
main while loop makes repeated calls to the Perl function getpwent(), which
returns entries from the /etc/passwd file. This is safer and easier than parsing
/etc/passwd yourself, and allows the code to be more graceful.

The getpwent() function returns a list of information about the user, but we’re
only interested in the 3rd and 8th elements, so we specify elements 2 and 7
(remember indexing starts with zero, not one), and assign those to $uid and $dir,
respectively. Perl assigns these in one easy operation.

The next line skips to the next iteration of the loop if the $uid isn’t at least 100.
This sort of “do this unless that” way of expressing logic is one of the ways in
which Perl allows flexible code. This specific line lets us automatically skip check-
ing system and daemon accounts—user accounts should always have a UID that’s
greater than 100.,

30 0672323982 ch22 6/18/02 2:04 PM Page 449

After that, we build a filename using the user’s home directory and the .rhosts
filename, and check to see if it exists with the -e operator1. If it does, we extract
the file’s permissions using the stat() function, and make sure that they’re set to
0700 as desired. Finally, if the permissions aren’t up to snuff, we print out a mes-
sage so we can see whose files we’ve modified, and call Perl’s chmod() function to
set the permissions for us.

Running this script produces
$ rhosts-check

711 /home/shelley/.rhosts
777 /home/diggle/.rhosts

This just scratches the surface of the system administration capabilities of Perl within the
Unix environment. Depending on how you look at it, the depth and sophistication of Perl
is either a great boon, or an intimidating iceberg looming dead ahead.

Like any other development environment, however, Perl is malleable—but if you choose
to create obscure, cryptic and ultra-compact code, you’ll doubtless have everyone else
baffled and confused.

Take your time and learn how to program through the many excellent examples available
online and you’ll soon begin to appreciate the elegance of the language.

Advanced Perl Examples
Perl’s regular expressions make searching for patterns in text simple, and hashes enable
us to easily create lookup tables, named numeric accumulators, and more.

Task 22.3: Advanced Perl Capabilities
There are many directions in which you can expand your Perl knowledge once you get
the basics. Let’s look at a few.

1. We’ll combine searching and a hash-based lookup table in the following example
to analyze the Apache Web server’s access_log file.
#!/usr/bin/perl -w
use strict;
use Socket;
use constant NDOMAINS => 20;
my %domains;
while (<>) {

450 Hour 22

,

1 Exactly as we’d use with test in shell scripts. It’s not a coincidence—Perl contains many best prac-
tices of this nature.

,
TA

SK
,

,

30 0672323982 ch22 6/18/02 2:04 PM Page 450

/^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}) / or warn “No IP found”, next;
++$domains{ domain($1) };

}

my @domains = reverse sort { $domains{$a} <=> $domains{$b} } keys %domains;
@domains = @domains[0..NDOMAINS] if @domains > NDOMAINS;
for my $key (@domains) {

printf(“%6d %s\n”, $domains{$key}, $key);
}
our %domain_cache;
sub domain {

my $ip = shift;

if (!defined $domain_cache{$ip}) {
my @quads = split(/\./, $ip);
my $domain = gethostbyaddr(pack(‘C4’, @quads), AF_INET);
if ($domain) {
my @segments = split(/\./, $domain);
$domain_cache{$ip} = join(“.”, @segments[-2,-1]);
} else {
$domain_cache{$ip} = $ip;
}
}
return $domain_cache{$ip};

}

When run, the output is quite interesting:
$ topdomains access_log
781 aol.com
585 cox.net
465 attbi.com
456 pacbell.net
434 net.sg
409 rr.com
286 209.232.0.86
267 Level3.net
265 funknetz.at
260 194.170.1.132
243 takas.lt
200 com.np
196 mindspring.com
186 209.158.97.3
160 uu.net
160 ca.us
155 202.54.26.98
148 att.net
146 ops.org
145 ena.net

Power Scripting with awk and Perl 451

22

,

,

30 0672323982 ch22 6/18/02 2:04 PM Page 451

We’re interested in domain names here, not actual hostnames. Many ISPs like
Aol.com have dozens of different hosts (say, proxy-02.ca.aol.com) that generate
hits, so 500 hits might be spread out over 50 different hosts. Using domains gives a
more accurate view.

2. The Apache access_log file has a line for each request on the server, and the IP
address is the first field on each line:
$ head -1 /var/log/httpd/access_log
24.154.127.122 - - [19/Apr/2002:04:30:31 -0700] “GET /house/ HTTP/1.1”
200 769 “-” “Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET

➥CLR 1.0.3705)”

The while loop in the preceding Perl code walks through whatever file or files are
specified on the command line. Specifying files on the command line instead of
piping them through standard input is a good idea, because we can send many files
at once.

The regular expression line checks to see whether there’s an IP address at the start
of the line that was just read by checking that the first four characters in the line
are three digits and a period. If the match fails, the program outputs a warning to
standard error and skips to the next input line.

Once we have the IP address, stored in the first field, we call the domain() subrou-
tine, described later, to do a reverse lookup of IP address to domain name. The
resultant domain name is used as a key to the hash table of domain names and
either increments the value, or sets it to an initial value of 1.

452 Hour 22

A hash is like an array, by the way, but instead of being sequentially num-
bered, the elements of the hash are indexed via a string value.

Once the while loop has exhausted its input, it’s time to find the top 20 domains.
The keys function extracts the key values from the hash into an array. We can then
sort that list, but not by the domain name. We’re interested in sorting by the value
of the hash that corresponds to the domain. The special code block after sort spec-
ifies this. Then, the entire list of domains is reversed, so that the domains with the
most hits are at the top of the list.

Now that we have a list of domains, we extract and loop over the top 20 domains.
(Of course, we could have make it 10, 100, or 47 domains by changing the NDO-
MAINS constant at the top of the program.) Just as in shell scripts, Perl enables us to
loop through the values of an array. Inside our loop, we use the printf() function
to nicely format a line showing the number of hits and the domain name.

,

,

30 0672323982 ch22 6/18/02 2:04 PM Page 452

3. What about the translation from IP address to domain name? It’s complex enough
that it makes sense to wrap it in a subroutine, and the calling program doesn’t need
to know about the sneakiness we pull off to speed things up, as you’ll see later.

The first thing we do is check to see whether we’ve found a value for this given IP
address by looking it up in the hash %domains. If a value exists, there’s no need to
look it up again, so we return the matched value. If there isn’t a match, we do a
reverse DNS lookup by breaking apart the IP address, packing it into a special for-
mat, and using Perl’s gethostbyaddr() function. If gethostbyaddr fails, we fall
back to using the IP address, or else we use the last two segments of the hostname.
Finally, the calculated domain name is stored in the %domains hash for the next
time this function is called.

4. Even given that sophisticated example, Perl’s greatest strength might not lie in the
language itself, but in its huge community and base of contributed code. The
Comprehensive Perl Archive Network, or CPAN (www.cpan.org), is a collection of
modules that have been contributed, refined, and perfected over the years. Many of
the most common modules are shipped with Perl, and are probably installed on
your system.

Here’s a script that uses the Net::FTP module to automatically fetch the file of
recent uploads from the CPAN:
#!/usr/local/bin/perl -w
use strict;
use Net::FTP;
my $ftp = Net::FTP->new(‘ftp.cpan.org’);
$ftp->login(‘anonymous’,’myemail@mysite.com’);
$ftp->cwd(‘/pub/CPAN/’);
$ftp->get(‘RECENT’);

The $ftp variable is actually an object that encapsulates all the dirty work of FTP
connections, allowing you to concern yourself only with the specifics of your task
at hand.

Power Scripting with awk and Perl 453

22

,

There’s lots of interesting information about Perl modules at www.cpan.org,
the official home of the CPAN development group. Also, don’t miss
www.theperljournal.com and www.perl.org while you’re surfing around
looking for more information about Perl!

Like many of the hours in this book, this one is the tip of an iceberg, and there’s plenty
more you can learn about the powerful Perl programming language. Certainly having the
right tool at the right time can turn a major headache into a delightful victory. After all,
who’s the boss? You, or your Unix system?

,

30 0672323982 ch22 6/18/02 2:04 PM Page 453

Summary
This hour has offered a very brief discussion of some of the most powerful capabilities
of both the awk and Perl programming environments. It leads to the question: Which
should you use, and when? My answer:

• Use shells for very simple manipulation, or when running many different pro-
grams.

• Use awk for automatically iterating through lines of input text.

• Use Perl for extensive use of arrays and hashes, or when you need the power of
CPAN.

Q&A
Q So which has more coolness factor, Perl or awk?

A No question: Perl. Just pop over to somewhere like BN.com and search for Perl,
then search for awk. You’ll see what I mean.

Q What alternatives are there to Perl, awk, and shell scripting for a Unix system
administrator?

A There are some other choices, including Tcl and Python, and you can always pop
into C, C++, or another formal, compiled language. Remember, though, the right
tool for the job makes everything progress more smoothly.

Workshop
Quiz

1. Is it true that everything you can do in awk you can also accomplish in Perl?

2. What’s one of the more frustrating differences between Perl and awk (think
arrays)?

3. In awk, positional variables are referenced starting with a special character, but
nonpositional variables, like the number of fields in a line, don’t have this special
character prefix. What character is it?

4. What’s the two-character prefix you can use in scripts to specify which program
should interpret the contents?

5. What is the greatest advantage to using –w and use strict in Perl?

6. What’s the difference between a variable referenced as $list and @list?

454 Hour 22

30 0672323982 ch22 6/18/02 2:04 PM Page 454

Answers
1. It is indeed. Something to think about when you pick which language to learn.

2. Perl indexes starting at zero, but awk uses one as its index base, so $1 is the first
value in awk, but $list[1] is the second value in Perl.

3. The special character is $.

4. The magic two-character prefix is #! and it only works if the file is set to be exe-
cutable, too.

5. Most of your typographical errors will be caught by the Perl interpreter before you
try to start using your program.

6. Perl variables referenced with an @ are an array of values, whereas those prefaced
with $ are considered a specific value of the array. Note that the same variable can
be referenced in both ways depending on what you’re trying to accomplish!

The last two hours of the book explore the important Apache Web server included with
just about every version of Unix shipped. The next hour explores basic configuration and
setup, and the last hour will delve into virtual hosting.

Power Scripting with awk and Perl 455

22

30 0672323982 ch22 6/18/02 2:04 PM Page 455

30 0672323982 ch22 6/18/02 2:04 PM Page 456

HOUR 23
Introduction to the
Apache Web Server

I suspect that for a significant percentage of readers, this is the key chapter
in the book. I might like writing about shell scripts and quotas, but if you’re
a Unix system administrator in the 21st century, odds are quite good that
you are responsible for at least one system that operates as a Web server.

The good news is that these last two hours of the book are devoted to Web
server topics (not to mention the prior visits to explore the Web log files).
Not just any Web server, mind you, but the one that powers more Web sites
than any other online: Apache, from the Apache Group.

In this first hour of coverage, we’ll focus on ensuring that you have Apache
on your system, setting it up for basic single-system use, and learning how
to keep it running smoothly.

What we won’t cover is the Hypertext Markup Language (HTML), or any
other technologies associated with creating Web sites. If you’re interested in
those topics, I recommend you check out my books Creating Cool HTML 4
Web Pages (Hungry Minds) and its sequel Dynamic HTML Weekend Crash
Course (Hungry Minds).

31 0672323982 ch23 6/18/02 2:01 PM Page 457

In this hour, you’ll learn how to

• Set up your Web server

• Configure Apache with the httpd.conf file

• Test connectivity and capabilities

Setting Up Your Web Server
The first step in this journey is to see what version of Apache you might have included
with your Unix OS. As of this writing, Red Hat Linux ships with Apache 1.3.20, Mac OS
X includes Apache 1.3.23, and Solaris includes Apache 1.3.12 (in the somewhat odd
location of /usr/apache/).

458 Hour 23

To identify your version, find the httpd binary (use locate) and use the
–v flag. For example: /usr/sbin/httpd –v.

The Apache 2.0 release is available through the Apache Web site (www.apache.org), and
it’s pretty stable, but you might want to stick with your current distribution of Apache if
you’re just serving up HTML- and CGI-based pages. What’s important is that you at
least have 1.3. If you have 1.2, or earlier, it’s time to upgrade: Major architectural and
performance changes were introduced with 1.3, most notably the inclusion of how the
configuration files are laid out.

Task 23.1: Bringing Apache to Life
Before we start, a quick note: If you’re wondering why we’re focused on Apache versus
one of the other possible servers (notably Netscape), the answer is contained in this brief
quote from the Apache Web site:

Apache has been the most popular Web server on the Internet since April of 1996. The
March 2002 Netcraft Web Server Survey (http://netcraft.com/survey/) found that
54% of the Web sites on the Internet are using Apache, thus making it more widely
used than all other Web servers combined.

1. The first and most logical test is this: Is the Web server running on your system or
not? There are a couple of ways to test that, including the obvious ps –aux|grep
httpd, but I prefer to try and connect directly to the server and see what happens:
telnet localhost http < /dev/null
Trying 127.0.0.1...
telnet: connect to address 127.0.0.1: Connection refused

,
TA

SK
,

31 0672323982 ch23 6/18/02 2:01 PM Page 458

It’s not running. There can be three reasons for this: Apache isn’t installed, Apache
is installed but not enabled, or Apache was running and crashed. Hopefully it’s not
the last reason, but you could ascertain that by checking your syslog file (probably
/var/log/messages). If you don’t have Apache installed, flip back to Hour 8, “Unix
Package Management,” and search for and install the apache-1.3* package or its
equivalent (it should take about 15 minutes total with a good network connection).

But what if the server simply isn’t running? Let’s look at that situation in detail.

2. As with any service, you can start Apache by hand, or you can set things up so that
it’s automatically launched when the system moves into a desired run state (proba-
bly run state 3 and run state 5 (multiuser/no GUI and multiuser+GUI, respectively,
on Red Hat Linux. Recall, though, that different Unixes have different definitions
for run levels—see Hour 13, “Changing System State.”)

To start things by hand, you can use the apachectl script that’s included with the
Apache distribution, but I prefer to use the system control script that’s in
/etc/rc.d/init.d/ on Linux systems (if installed).
/etc/rc.d/init.d/httpd status
httpd is stopped

That makes sense.

Now, we haven’t touched the configuration since the Apache RPM package was
installed on the system, so starting it up might have unintended consequences. So
let’s try it!
/etc/rc.d/init.d/httpd start
Starting httpd: [OK]

Hey! It worked!
telnet localhost http < /dev/null
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
Connection closed by foreign host.

3. To have Apache start up automatically each time the system is booted, we need to
ensure that there’s a link from the appropriate rcn.d directory to the script in
init.d. A quick check reveals that the Apache RPM installs those links, but by
default has the server stop, not start:
ls /etc/rc.d/rc?.d/*httpd
/etc/rc.d/rc0.d/K15httpd
/etc/rc.d/rc1.d/K15httpd
/etc/rc.d/rc2.d/K15httpd
/etc/rc.d/rc3.d/K15httpd
/etc/rc.d/rc4.d/K15httpd
/etc/rc.d/rc5.d/K15httpd
/etc/rc.d/rc6.d/K15httpd

Introduction to the Apache Web Server 459

23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 459

It’s easy to change. Go into the appropriate directory that corresponds to the target
run level and change the K in the name to an S (see Hour 13 for more details about
how to work with run levels and initialization scripts).
cd /etc/rc.d/rc3.d/
mv K15httpd S15httpd
cd ../rc5.d
mv K15httpd S15httpd

That’s it. For this Red Hat Linux system, the next time it boots up or otherwise
switches into run level 3 or 5, it’ll automatically launch the Apache Web server.

4. Getting Apache to start working in Mac OS X is a breeze: Go to the Sharing con-
trol panel from the System Preferences, and click the Start button just below Web
Sharing Off, as shown in Figure 23.1.

460 Hour 23

,

FIGURE 23.1
Enabling the Mac OS
X Web server.

That’s all there is to it!

5. The Solaris approach to turning on the Web server is a bit more convoluted, but not
much. The Apache control program apachectl (apache control) is located in
/usr/apache/bin:
/usr/apache/bin/apachectl
usage: /usr/apache/bin/apachectl (start|stop|restart|fullstatus|status|
➥graceful|configtest|help)

start - start httpd
stop - stop httpd,

31 0672323982 ch23 6/18/02 2:01 PM Page 460

restart - restart httpd if running by sending a SIGHUP or start if
not running

fullstatus - dump a full status screen; requires lynx and mod_status enabled
status - dump a short status screen; requires lynx and mod_status enabled
graceful - do a graceful restart by sending a SIGUSR1 or start if not running
configtest - do a configuration syntax test
help - this screen

/usr/apache/bin/apachectl start
fopen: No such file or directory
httpd: could not open document config file /etc/apache/httpd.conf
/usr/apache/bin/apachectl start: httpd could not be started

Surprisingly, the Solaris distribution of Apache requires us to specify the appropri-
ate configuration before it can even launch for testing. That’s what the error mes-
sage about being unable to open the config file means.

Alright, we’ll copy across the sample configuration file and try again:
cd /etc/apache
ls
access.conf jserv.conf magic srm.conf
httpd.conf-example jserv.properties mime.types zone.properties
cp httpd.conf-example httpd.conf
/usr/apache/bin/apachectl configtest
Syntax OK
/usr/apache/bin/apachectl start
/usr/apache/bin/apachectl start: httpd started

This time notice that we ran the useful configuration test mode of apachectl and
received no errors. Then we started up the server and all was well.

Interestingly, Solaris is shipped with the Apache server configured to launch on
multiuser run levels, although the server itself cannot come up until the preceding
manual step (copying the httpd.conf-example file) occurs.
ls /etc/rc?.d/*apache
/etc/rc0.d/K16apache
/etc/rc1.d/K16apache
/etc/rc2.d/K16apache
/etc/rc3.d/S50apache
/etc/rcS.d/K16apache

This means that you’re ready to go after you get Apache launched by hand.

Regardless of the flavor of Unix, it’s quite easy to enable a Web server on your system—
certainly easier than creating a high quality Web site.

Introduction to the Apache Web Server 461

23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 461

Exploring the httpd.conf File
When you get Apache running on your computer, the next step is to ensure that it’s prop-
erly configured and reflects your own system configuration and setup. There are some
simple changes worth making to improve the security and capabilities of the server, and
we’ll highlight those as we go.

Task 23.2: The Internals of the httpd.conf File
Earlier versions of Apache—up through 1.2—had the configuration split into three sepa-
rate files: srm.conf, access.conf, and httpd.conf. That was useful, but it was also con-
fusing, because there was never a clear rule on what sort of configuration statement
should go in which file. As a result, starting with the 1.3 release of Apache, all the con-
figuration is stored in a single file: httpd.conf.

The location of this file varies on different Unix flavors (you can use locate, or check the
apache or httpd man page). Common locations are /etc/apache (Solaris), /private/
etc/httpd (Mac OS X), and either /etc/httpd/conf or /usr/local/apache/conf
(Linux).

1. Perhaps the single most important variable in the usually quite long httpd.conf
file (expect yours to be at least 1,000 lines) is DocumentRoot. This tells you where
in the file system the server is looking for Web pages to serve up.
grep DocumentRoot httpd.conf
DocumentRoot: The directory out of which you will serve your
DocumentRoot “/var/apache/htdocs”
This should be changed to whatever you set DocumentRoot to.
DocumentRoot /www/docs/host.some_domain.com

On Solaris, Web pages are served out of /var/apache/htdocs. Red Hat Linux has
a default directory of either /var/www/html or /usr/local/apache/htdocs, and
Mac OS X has a default of /Library/WebServer/Documents.

2. The default file (probably index.html) in the DocumentRoot directory is what will
be returned when a Web browser connects to our Web server and requests the
“home” or “root” document. (Usually this is done by simply not specifying any
document, as occurs when you connect to http://www.smoothjazz.com/, for
example.)
pushd /var/www/html
/var/www/html /etc/httpd/conf
ls -l
total 8
-rw-r--r-- 1 root root 2890 Sep 5 2001 index.html
-rw-r--r-- 1 root root 1154 Sep 5 2001 poweredby.png
popd
/etc/httpd/conf

462 Hour 23

,
TA

SK
,

31 0672323982 ch23 6/18/02 2:01 PM Page 462

By default, the Apache server has a page that says it’s running, it’s Apache, and
that it’s time to drop in personal pages. poweredby.png is the graphic file refer-
enced in the default index.html page.

Introduction to the Apache Web Server 463

23

,

The pushd and popd utilities are a great boon if you want to temporarily pop
to another directory, then zoom back to where you were. pushd is analogous
to cd, but popd knows where you were before the current directory. Very
helpful!

3. The full list of possible default filenames for a given directory can be found by
searching for index.html in the configuration file. Again, we’ll use the –n to get a
few lines of context around the match:
grep -2 index.html httpd.conf
#
<IfModule mod_dir.c>

DirectoryIndex index.html index.htm index.shtml index.php index.php4
➥index.php3 index.phtml index.cgi
</IfModule>

This rather confusing-looking statement says that if the mod_dir module is loaded
(and it is, by default), Apache should try to serve up one of, in order, the following
files: index.html, index.htm, index.shtml, index.php, index.php4, index.php3,
index.phtml, or index.cgi.

That last file is worth a bit more exploration: Files with a .cgi filename suffix are
executable programs that are written to be compatible with the Apache Common
Gateway Interface. They can be quite simple, even a shell script:
#!/bin/sh
echo “Content-type: text/html”
echo “”
echo “Hello world!”

But they can also be quite complex, hook into databases, and other sophisticated
programs.

4. Table 23.1 lists some of the key settings for a Web server, all found in the
httpd.conf file. The default value for the Red Hat Linux 7.2 distribution of
Apache 1.3.23 is also shown. Be cautious if you diverge from the standard settings:
Make sure you understand the security ramifications of some of the more obscure
settings before you use them!,

31 0672323982 ch23 6/18/02 2:01 PM Page 463

TABLE 23.1 Key Apache Configuration Fields

Name Exemplary Value Meaning

Port 80 Port that the Web server listens to. By default, it’s
always port 80, but you can actually have a Web
server running on any port you’d like. SSL connec-
tions are port 443, for example.

User apache Account name under which the Web server runs.
Do not use root for this!

ServerAdmin root@localhost E-mail address advertised as that of the server
administrator.

UserDir public_html Wrapped by the lines <IfModule mod_userdir.c>
and </ifModule>, this line defines the name of the
special directory in user home directories that lets
the server offer up ~account URLs.

ErrorLog logs/error_log The location of the Apache error log, rooted in
ServerRoot. This is a critical snippet of information
to ascertain, because keeping an eye on the error
file will help you nip trouble in the bud.

LogLevel warn What level of transactions should be logged. If you
have a busy server, keep this setting; but if you
want to see how things are working, or if you are
encountering errors with your Web server, ratchet
this up to info or debug. If you want less, try error
or alert.

There are many, many more settings in the httpd.conf file, but these will keep
you busy for at least the first week.

5. One thing to be wary about is the CGI setting. By default, Apache will only let
CGI scripts live in a special cgi-bin directory. Its location is, of course, defined
within the configuration file. Look for the variable ScriptAlias. Here’s how that
snippet looks in our configuration file:

ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that
documents in the realname directory are treated as applications and
run by the server when requested rather than as documents sent to the

➥client.

464 Hour 23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 464

The same rules about trailing “/” apply to ScriptAlias directives as to
Alias.
#
ScriptAlias /cgi-bin/ “/var/www/cgi-bin/”

#
“/var/www/cgi-bin” should be changed to whatever your ScriptAliased
CGI directory exists, if you have that configured.

If you would like to give your users more latitude, where they can have CGI scripts
anywhere on the system by simply ensuring that they’re named .cgi, look for and
uncomment out the last line of the following sequence:

AddHandler allows you to map certain file extensions to “handlers”,
actions unrelated to filetype. These can be either built into the server
or added with the Action command (see below)
#
If you want to use server side includes, or CGI outside
ScriptAliased directories, uncomment the following lines.
#
To use CGI scripts:
#
#AddHandler cgi-script .cgi

What language can you write CGI scripts in? Just about anything that’ll execute
when invoked and output the proper CGI return sequence as the header before the
rest of the material is returned.

Enabling CGI extends the protocol a little bit, actually. In addition to “I want/here
is,” we now have “Please run/Here’s the output” as well. That’s an essential con-
ceptual addition if you’re going to write CGI scripts of your own—make sure they
output HTML!

6. Each directory that serves up Web pages, whether it’s the DocumentRoot or a
subdirectory, can have specific permissions or capabilities set. By default,
directories inherit the permission of their parent, so setting the permissions of
the DocumentRoot also sets the capabilities for everything else not otherwise
specified.

This capability setting takes place within a Directory block, and most typically is
in two parts. The first part specifies the permissions of / to encompass all directo-
ries in the entire filesystem, even those outside the DocumentRoot area:
<Directory />

Options FollowSymLinks
AllowOverride None

</Directory>

Introduction to the Apache Web Server 465

23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 465

This default for the entire filesystem has two permissions set: FollowSymLinks
means that the Apache system will follow symbolic links (even if they might take
the system out of the safe directory subtree specified by DocumentRoot), and
AllowOverride None means that individual directories cannot contain configura-
tion files (usually .htaccess) that override global access permissions.

The DocumentRoot block typically has a few more settings and options:
<Directory “/var/www/html”>

#
This may also be “None”, “All”, or any combination of “Indexes”,
“Includes”, “FollowSymLinks”, “ExecCGI”, or “MultiViews”.
#
Note that “MultiViews” must be named *explicitly* --- “Options All”
doesn’t give it to you.
#

Options Indexes FollowSymLinks

#
This controls which options the .htaccess files in directories can
override. Can also be “All”, or any combination of “Options”, “FileInfo”,
“AuthConfig”, and “Limit”
#

AllowOverride None

#
Controls who can get stuff from this server.
#

Order allow,deny
Allow from all

</Directory>

Skipping the comments, you can see that this sets Indexes, repeats
FollowSymLinks and AllowOverride None (which means that they don’t really
have to be stated because they’d inherit these permissions from the / declaration),
and offers a stub that shows how to create directories that only allow (or deny)
access to certain classes of users. One use for this latter feature is if you want to
have an area of the Web site blocked to outside visitors. You could specify Allow
from 198.75.44.* and Deny from all, and if the connecting system didn’t have
the matching IP address, they would receive a “permission denied” message.

There are a number of different values that Options can be given, most notably
ExecCGI (specifies that CGI scripts can be run from this directory), Includes
(enable server-side include (SSI) pages), IncludesNOEXEC (same as Includes, but
prohibits the dangerous #exec statement), Indexes (show a directory listing if
there’s no default page available), and None (no features are activated). There are a
few more options, but those are the most commonly used.

466 Hour 23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 466

In the next hour we’ll explore more about the Directory blocks when we learn
how to extend Apache to allow virtual hosts.

That’s about it for specific configuration changes you might want to make to a typical
Web server.

Testing and Tuning the Configuration
Before we leave this hour, let’s spend a few minutes testing some of the capabilities of
the default Apache Web server, and discuss a few security considerations to ensure that
you don’t unwittingly leave any gaping holes open now that you’re administering a full-
fledged Web server. We’ll address security more fully in the next hour.

Task 23.3: What Can Apache Do?
As with any Internet service, as system administrator your responsibility is to both get
things up and running and to ensure that they’re running safely, and aren’t going to spill
over and allow corruption of the system. With a service like NTP (the Network Time
Protocol), it’s not too dangerous, but Apache has a particularly dangerous characteristic
of letting users write programs that will be run by unknown third parties—a potentially
dangerous situation!

Before we get too paranoid, however, let’s spend a few minutes examining the capabili-
ties of the new Apache server that’s running.

Introduction to the Apache Web Server 467

23

All documentation about Apache can be found on the Apache Group Web
site, and it’s well worth reading some of the tutorials and references if you’re
setting up a complex Web server configuration. Start at http://httpd.apache.
org/docs-project/ and pick the version number for your Apache server.

,

,

,
TA

SK

The biggest tip I’ll share regarding running a Web server is that having a
link to /web to get to the DocumentRoot is a tremendous timesaver. Do this
by creating a symbolic link: ln -s /var/www/html /web.

1. The most obvious capability is that httpd can serve up Web pages. Go to the
DocumentRoot directory and replace the boring default index.html with the fol-
lowing:
cat index.html
<HTML>
<TITLE>Welcome to Apache!</TITLE>,

31 0672323982 ch23 6/18/02 2:01 PM Page 467

<BODY>
<CENTER></CENTER>
If you need more information on Apache, please go to:
Apache.org or

The Yavalai-Apache Nation.
</BODY>
</HTML>

The easiest way to request the page is to open up a Web browser on your Unix sys-
tem and request http://localhost/, which should produce the page as shown in
Figure 23.2.

468 Hour 23

,

FIGURE 23.2
Test page in KDE’s
Web browser,
Konqueror.

2. Now that we’ve had some traffic, let’s check the Web log file to see what happened:
tail access_log
127.0.0.1 - - [10/Apr/2002:11:00:20 -0700] “GET / HTTP/1.1” 200 293 “-”
“Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:00:21 -0700] “GET /poweredby.png HTTP/1.1”
200 1154 “http://localhost/” “Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:00:22 -0700] “GET /favicon.ico HTTP/1.1” 404
295 “-” “Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:01:15 -0700] “GET / HTTP/1.1” 200 314 “-”
“Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:01:15 -0700] “GET /poweredby.png HTTP/1.1”
200 1154 “http://localhost/” “Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:01:29 -0700] “GET / HTTP/1.1” 200 314 “-”
“Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”
127.0.0.1 - - [10/Apr/2002:11:01:29 -0700] “GET /poweredby.png HTTP/1.1”
200 1154 “http://localhost/” “Mozilla/5.0 (compatible; Konqueror/2.2-11; Linux)”

You can see that there were a couple of reloads when I was in the Web browser.
Notice also that the first time the browser visited the page, it also requested
/favicon.ico, an optional icon that can be used with the browser’s favorites list to
have a tiny logo adjacent to the link.,

31 0672323982 ch23 6/18/02 2:01 PM Page 468

The format of the Apache log file is actually specified in the httpd.conf file:
grep combined /etc/httpd/conf/httpd.conf | grep -vE ‘^#’
LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\” \”%{User-Agent}i\””
➥combined
CustomLog logs/access_log combined

The second matching line shows that logs/access_log is a “combined” format log
file, and the first line uses the LogFormat directive to define exactly what fields
should be output, in what order, in a “combined” log file. The format and fields of
this file can be changed, but do so with extreme caution, as you’ll break all third-
party log file analysis software.

3. The next test is to see if we can have a CGI program execute in the main directory.
To do this, we’ll have to whip up a succinct shell script:
cat test.cgi
#!/bin/sh

echo “Content-type: text/html”
echo “”

echo “The current date and time is: `/bin/date`”
exit 0

A quick test while at the shell:
sh test.cgi
Content-type: text/html

The current date and time is: Wed Apr 10 11:37:06 PDT 2002

Looks good, but when we request this CGI script to run and have its output fed to
us in the Web browser, you can see the less than ideal results in Figure 23.3.

Introduction to the Apache Web Server 469

23

,

FIGURE 23.3
Instead of running the
CGI, it shows us the
source!

This is a very common configuration issue with Apache, and whether we want to
fix it or not revolves around assumptions of security and safety on the Web server.,

31 0672323982 ch23 6/18/02 2:01 PM Page 469

4. The basic question is: Do you trust your users to write good, clean, secure code? If
you do, the chance that someone can exploit a hole in a CGI script still exists but
isn’t overwhelming, and you should add ExecCGI to the appropriate Directory
block in the httpd.conf file.

If you aren’t sure, one strategy commonly used is to corral all the CGI scripts and
programs into a single cgi-bin directory, which is the default configuration.
Where is that directory? Check the httpd.conf file:
grep cgi-bin /etc/httpd/conf/httpd.conf | grep -vE ‘^#’

ScriptAlias /cgi-bin/ “/var/www/cgi-bin/”
“/var/www/cgi-bin” should be changed to whatever your ScriptAliased
<Directory “/var/www/cgi-bin”>

<Directory “/var/www/cgi-bin”>

The last lines are the match: /var/www/cgi-bin. Drop that very same shell script
into that directory and reference it as http://localhost/cgi-bin/test.cgi, and
it’ll work just fine. Then you can inform users that all CGI scripts have to be
mailed to you, as Webmaster, and that you’ll check through them and, if they’re
clean, install them in the cgi-bin directory. These can be written in any language
supported by your Unix system, including Perl, Python, C, and even shell scripts.

5. We are sure that on this server all the users are veritable security wizards and won’t
write a single line of CGI that isn’t completely secure (which means that they
probably won’t be writing shell scripts, for one thing, but that’s a bigger topic we’ll
address in the next hour). Therefore, we’re going to enable CGI execution in the
DocumentRoot.

To accomplish this, we’ll need to edit httpd.conf. Find the line <Directory
“/var/www/html”> (or the equivalent, depending on the configuration) and jump
down a few lines to where the Options statement can be found. All we need to do
is add ExecCGI to that list, so that it looks like this:

Options Indexes FollowSymLinks ExecCGI

We’ll also need to tell the Web server that files with the suffix .cgi are special
(they’re executable programs whose output should be returned to the Web
browser), and should be handled by the cgi-script module. This is done by
removing the # at the beginning of the line:

#AddHandler cgi-script .cgi

It’s time to restart Apache so that the server will reread its configuration file. This
is most easily done with the init script:
/etc/rc.d/init.d/httpd restart
Stopping httpd: [OK]
Starting httpd: [OK]

470 Hour 23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 470

Now when the URL http://localhost/test.cgi is entered, the server returns the
current date and time, as hoped:
telnet localhost http
Trying 127.0.0.1...
Connected to localhost.
Escape character is ‘^]’.
GET /test.cgi
The current date and time is: Wed Apr 10 12:26:36 PDT 2002
Connection closed by foreign host.

With a configuration file that contains more than 1,000 lines of information, it should be
no surprise to you that there are a number of ways you can change Apache. The exact
needs of your site and your user community are yours to ascertain, and reading through
the documents available at the Apache.org Web site will help clarify what can be
accomplished and how.

Summary
In this hour we have figured out how to find and install (if necessary) a copy of the popu-
lar and powerful Apache Web server, bring it online, and reconfigure the OS so that it’s
automatically started as one of the multiuser services. We wrapped up by looking at a few
simple capabilities, peeking into the access_log and learning how to enable CGI script
execution from any directory. We’ve only had a chance to scratch the surface of Apache. If
you’d like to learn more, one book worth seeking out is Sams Teach Yourself Apache in 24
Hours by Daniel Lopez. Of course, you could also try the voluminous online Apache doc-
umentation.

Q&A
Q Why do most Unix flavors call the Apache server httpd, while others—notably

Solaris—call it apache?

A A good question, one that has no definitive answer. By convention, most daemons
are named after the service they provide, so telnetd offers telnet service, ftpd
offers ftp services, and so on. On the Solaris platform, however, service daemons
are often named after the application that offers the service. Confusing? Oh yeah.

Q What’s your recommendation: Only allow cgi-bin, or let users drop CGI
scripts wherever?

A I think that if you’re running a Web hosting firm and clients are accessing the sys-
tem, my recommendation would be to either only allow a shared cgi-bin that only
the administrators can access directly, or perhaps create a separate cgi-bin for each
user. This way you can corral the scripts and read through them—if necessary—to
ensure that they don’t offer any obvious security holes.

Introduction to the Apache Web Server 471

23

,

,

31 0672323982 ch23 6/18/02 2:01 PM Page 471

Workshop
Quiz

1. If you wanted to create a separate cgi-bin for a user, what two statements in the
conf file would encompass the required changes?

2. What is the standard Apache control script called?

3. Everyone knows what an HTML file is. What’s a .shtml file, as referenced in the
config file?

4. Summarize the HTTP protocol for both file transfers and CGI execution.

5. Where does Apache get the e-mail address for the server on its error messages?

6. What simple grep trick lets you avoid seeing commented-out lines when searching
the Apache configuration file?

Answers
1. The Directory statement would explicitly allow permissions to be set in the users

/cgi-bin directory, and Options would let CGI scripts become executable.

2. apachectl

3. A .shtml is an HTML file that includes server-side include directives. They look
like this:

<!--#include file=”header.html”-->

and can dramatically simplify Web site construction. A neat, newer alternative to
SSI is PHP Hypertext Preprocessor, and it’s well worth learning. Start at
www.php.net to see why.

4. “I want/Here is” or “I want/Not found” are the basic file transaction dialogs, and
“Please run/Here’s the output” or “Please run/Failed: error” are the basic CGI
dialogs.

5. The e-mail address in Apache error messages comes directly from the httpd.conf
file. Look for ServerAdmin.

6. Use grep –vE ‘^#’ any time you want to strip out comment lines.

In the next and final hour, we will expand upon our discussion and exploration of the
Apache Web server by making the changes required to offer virtual hosting on the
machine. This will have it serve up different Web sites for different domain names, even
though they all point to the same IP address. Then we’ll wrap up with a brief discussion
of Web and system security.

472 Hour 23

31 0672323982 ch23 6/18/02 2:01 PM Page 472

HOUR 24
Virtual Hosts with
Apache

In this last hour, we’re going to explore a specific capability of Apache—
virtual hosting—then wrap up with some discussion of Unix system
security.

If you have a Web site—and odds are that you do—you know that there are
two basic approaches to hosting Web sites: Each site gets its own computer,
or, somehow, multiple Web sites (for example, multiple domain names)
resolve to a single shared server. Because Unix is the original shared multi-
user resource, it should be no surprise that sharing a Web server is easy and
well within the capabilities of even the lowliest Unix box.

In this last hour, we’ll explore how to

• Enable virtual hosting in Apache

• Secure your system

32 0672323982 ch24 6/18/02 1:58 PM Page 473

Enabling Virtual Hosting in Apache
The most interesting capability in Apache is its ability to deliver different Web pages for
different domains, even if they all resolve to the same IP address. Of course, you can
configure your domain names to have multiple IP addresses, all of which are served on a
single system (you would do this with additional ifconfig statements; see the man page
for more details), but that’s highly inefficient because there’s no reason not to have the
domains share a single IP.

When httpd first came on the scene in the guise of the original Web server from the
Center for High Energy Physics (CERN) in Switzerland and the National Center for
Supercomputer Applications at the University of Illinois, Urbana-Champaign, Web
servers were like other pre-Internet-boom servers—they blindly served up requests for
the machine they were running on.

As the Net became more popular, the number of people wanting to have their own
domain exceeded the number of discrete servers online, so it became obvious that there
would need to be some sort of sharing, or virtual hosting capability added to Unix.

That’s what the Apache team used as the inspiration for VirtualHost in its Web server:
It’s a simple mechanism that lets sysadmins set up dozens or even hundreds of different
Web sites, with different domains, on the same system.

474 Hour 24

Even sendmail has gotten into the act. Go to www.sendmail.org and read
about virtual user tables (virtusertable) capabilities. You can have a single
mail server appear to be dozens of different domains, so joe@hisbakerys-
tore and jane@herclothesshop use the same system, have adjacent e-mail-
boxes on the server, but are able to send mail out with different return
addresses, timestamps, message IDs, and more.

Task 24.1: Configuring Virtual Hosts
The first step required to configure a virtual host solution is to ensure that the DNS
name servers for the domains in question are all instructed to deliver up the server IP
address for any domain that should be served from the central system.

1. To check and verify that this configuration has occurred, use dig to confirm the IP
address in the statement of authority record (see Hour 18, “Running Your Own
Name Server” for more details on the internals of a domain name record).

For the examples in this hour, we’ll consider three domains. staging.intuitive.com
is a subdomain that points to a staging server that’s used for experimentation and

,
TA

SK
,

32 0672323982 ch24 6/18/02 1:58 PM Page 474

development, and sherlockworld.com and niftylister.com are both Web sites
available to the general public:
host sherlockworld.com
sherlockworld.com. has address 10.10.2.200
host niftylister.com
niftylister.com. has address 10.10.2.200
host staging.intuitive.com
staging.intuitive.com. has address 10.10.2.200

It takes a little bit of rethinking name-to-number concepts for many sysadmins to
understand how multiple domain names can resolve to the same IP address without
a conflict. In a nutshell, the DNS system ensures that names resolve to a number,
but you could have hundreds, nay, thousands of domains all pointing to a single
box without any violation of DNS standards and usage.

Virtual Hosts with Apache 475

24

,

If you read the Apache documentation about virtual hosting (at
http://www.apache.org/docs/vhosts/), realize that having a number of
domains sharing an IP address is known as name-based virtual sharing. If
each domain had a different IP address, that’d be IP-based virtual sharing.
It’s a bit confusing.

2. In a stock Apache configuration file, the virtual host directives appear within the
third section, delimited by Section 3: Virtual Hosts in the comments.

The configuration we’re using for this server—staging.intuitive.com—has all
the domains sharing a single IP address, so configuration consists of two basic ele-
ments: the VirtualHost directive and the Directory block that specifies what per-
missions and configuration directives are enabled (or disabled) for that particular
directory and all below it.

The very first step is to enable name-based virtual hosting in the httpd.conf con-
figuration file. This is done by ensuring that the line

NameVirtualHost *

isn’t commented out.

Subsequent to that in the file, here are the relevant VirtualHost blocks:
<VirtualHost *>
ServerName www.niftylister.com
DocumentRoot /web/niftylister
ErrorLog /web/niftylister/error_log
CustomLog /web/niftylister/access_log
ServerAdmin webmaster@niftylister.com,

32 0672323982 ch24 6/18/02 1:58 PM Page 475

</VirtualHost>

<VirtualHost *>
ServerName www.sherlockworld.com
DocumentRoot /web/sherlockworld
ServerAlias sherlockworld.com holmes.sherlockworld.com
</VirtualHost>

Notice that although the first virtual host definition specifies a new ErrorLog,
CustomLog, and ServerAdmin, the second domain is okay inheriting the values of
the overall server (for example, those values defined earlier in the configuration
file). However, sherlockworld.com also has the subdomain holmes.sherlock-
world.com as an alias; it’ll serve up the same Web pages at the same
DocumentRoot as the main sherlockworld.com site. (Of course, you still need to
have a DNS record for holmes.sherlockworld.com, but that can be added to the
main sherlockworld.com DNS record, if desired.)

A great feature of virtual hosting with Apache is that each virtual host can have its
own copy of the access and error file automatically. This means that as system
administrator, you aren’t responsible for splitting out traffic for a specific domain
from a central log file, a definite boon. Plus it ensures that the log traffic of other
domains can remain private, because it’s not always the case that Web site owners
want others to see their actual traffic.

Notice that each VirtualHost has a new DocumentRoot. This is critically impor-
tant, and each must be unique for virtual hosts to work properly. If you neglect this
important step, you’ll find that multiple domain names end up with the same home
page, defeating the purpose of virtual hosts.

3. The other half of the main configuration for virtual hosts is to specify a Directory
block for each of the new DocumentRoots (though technically, you could just let it
default to the permissions set for / at the top of the configuration file, it’s best to
explicitly indicate what the owner of a specific domain can or cannot do so you
can always quickly double-check security for any given user):
<Directory “/web/niftylister”>

Options Indexes FollowSymLinks ExecCGI
AllowOverride None
Order allow,deny
Allow from all

</Directory>
<Directory “/web/sherlockworld”>

Options Indexes FollowSymLinks ExecCGI Includes
AllowOverride None
Order allow,deny
Allow from all

</Directory>

476 Hour 24

,

,

32 0672323982 ch24 6/18/02 1:58 PM Page 476

In this particular configuration, both have almost the same permissions and options
set, but notice that server-side includes have been disabled for niftylister.com
by omitting Includes from the Options line.

4. That’s all that’s needed! The only other step is to ensure that the new
DocumentRoot directories exist and have at least some sort of rudimentary welcome
page to avoid “page not found” error messages.

Try visiting these three domains yourself to see how different the Web sites are,
even though they’re all coming off the very same Web server: staging.intu-
itive.com, www.sherlockworld.com, and www.niftylister.com.

It’s worth briefly showing the organization of the /web directory:
ls -l /web
total 12
drwxr-xr-x 2 root root 1024 Nov 22 09:25 campusdev
drwxr-xr-x 10 root root 1024 Dec 18 21:23 cbo
drwxr-xr-x 2 root root 1024 Nov 22 09:35 cbofacilities
drwxr-xr-x 10 root root 1024 Dec 18 05:20 chatter
drwxr-xr-x 8 root root 1024 Nov 22 09:46 launchline
drwxr-xr-x 5 root root 1024 Mar 8 22:40 niftylister
drwxr-xr-x 5 root root 1024 Nov 22 09:58 niftyseller
drwxr-xr-x 2 root root 1024 Nov 22 10:06 sherlockworld
drwxr-xr-x 2 root root 1024 Dec 18 05:20 smartpage
drwxrwxr-x 6 root root 1024 Mar 21 16:20 staging
drwxr-xr-x 5 root root 1024 Nov 22 10:18 windward

You can see that there are actually quite a few domains being served off this sys-
tem. Stepping into any one directory will show, as expected, the individual HTML
files, graphics, and so on, for that Web site, neatly separated from all other Web
sites on the server:
ls sherlockworld
about.html gutnavbar.js scandal-bohemia.html
beryl-coronet.html gutsmallprint.js smallprint.js
blue-carbuncle.html hmenu.js speckled-band.html
boscombe-valley.html holmes.css the-small-print.html
case-of-identity.html how-to-access.html topnavbar.js
copper-beeches.html index.html topnav.js
crashcourse.js noble-bachelor.html twisted-lip.html
engineers-thumb.html originals-from gutenberg.txt
five-orange-pips.html red-headed-league.html

And, as we know from the httpd.conf file, the default page that will be served up
for sherlockworld.com is index.html:
head sherlockworld/index.html
<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”>
<HTML>

Virtual Hosts with Apache 477

24

,

,

32 0672323982 ch24 6/18/02 1:58 PM Page 477

<META HTTP-EQUIV=”content-type” CONTENT=”text/html; charset=iso-8859-1”>

<META NAME=”keywords” CONTENT=”Sherlock Holmes,Arthur Conan Doyle,Dr.
➥Watson,John
Watson,Sherlockian,Baker Street,221b,Moriarty,detective,mystery,London,
England,Jeremy Brett,Christopher Plummer,Scotland Yard”>
<META NAME=”description” CONTENT=”A reader-friendly library of some
of the best Sherlock Holmes stories, as written by Arthur Conan Doyle and
➥narrated
by Dr. Watson. Inspired by the work of Project
Gutenberg. Note: Site won’t work with Netscape 4.x”>
<META NAME=”ROBOTS” CONTENT=”ALL”>

<TITLE>The Adventures of Sherlock Holmes, by Arthur Conan Doyle</TITLE>

Simple in concept, and simple in execution, virtual hosts are a “killer app” for Unix as an
Internet server. As a system administrator, it’s your job to configure and maintain this
sort of setup if you’re with an ISP or any other firm that serves up Web sites, and as
such, it should be a relief that it’s so straightforward.

Having run different Web hosting servers for almost 10 years now (rather amazing,
really!), my experience leads me to two strong recommendations:

1. Put all the Web sites on a different partition or different physical disk. It helps manage
disk space and maintain quotas for customers (see Hour 12, “Managing Disk Quotas,”
for more details on how you might set up a simple Web hosting disk usage quota).

2. Set up aliases so that when users connect to the server, they’re either dropped
directly into their Web hosting account (not a bad strategy, all in all—just set the
home directory to /web/sherlockworld, for example), or so that they have a link
directly in the home directory that takes them to the appropriate place on the
filesystem (perhaps public_html, to be consistent with other hosting firms).

If you can avoid it, don’t let people have telnet or ssh access to the system. Set them
up with ftp (see Hour 19, “Running Internet Services”) and, again, have their home
directory be their Web directory, too.

A few minutes of organization and proper setup and you can easily manage a server
hosting hundreds of Web sites.

Keeping Your System Secure
The preceding comments about trying to sidestep granting your users telnet or ssh
access to the system is the tip of a much bigger iceberg: Unix system security.

Although we clearly do not have sufficient space (or time) left to discuss this topic in any
extensive manner, it is worthwhile to wrap up Teach Yourself Unix System Administration
in 24 Hours with a brief foray into the world of system and server security.

478 Hour 24

,

,

32 0672323982 ch24 6/18/02 1:58 PM Page 478

There are two basic categories of security—keeping people out and keeping people con-
tained. I always think about security by remembering that it’s a study in trade-offs: The
more secure you make your system, the less accessible it is. Make it too secure, and no
one can use it. Make it too insecure, and anyone—including a bad guy—can do anything
they want.

Clearly, it’s finding the happy medium, the middle ground, that is the goal of computer
security. The exact balance of security and capability for a given system is a function
of its purpose and the sophistication, capabilities, trustworthiness, and type of its user
community.

If you are managing a shared Unix system for the undergraduate computer science
majors at a local university, I’d say that you’re at ground zero for trouble: smart, curious
computer types who will unquestionably look around and experiment. The greatest dan-
ger in this situation will most likely be from within the user community, not outsiders.

If, on the other hand, you are managing a set of collocated servers that only a half dozen
screened and bonded company administrators will be even accessing, you can ratchet up
the security quite a bit and know that your greatest danger will be unauthorized outsiders.

So how does Unix let you manage these security issues? Through a combination of spe-
cific security tools, third-party software, and implementation of your specific site policies
regarding security and usage.

Passwords
The first, and simplest, level of security is passwords. Yes, it sounds obvious and dopey,
but the most common method for cracking into a system is through poorly selected pass-
words. It used to be the case that passwords that were names or dictionary words were
easy targets (for example, if Joe has the password eoj or joseph). Nowadays, computers
are so fast that if a cracker can get a copy of the encrypted password string, he can
encrypt all the words in the dictionary and lots of common variations (for example,
jump! or ?jump) within an hour or two. As a result, the simplest step towards ensuring
system security is simply to ensure that your users change their passwords with some
frequency, and that the resultant passwords are complex and sufficiently varied that it
would take days, not seconds, for a cracker to match guesses.

Oh, and don’t write your password down. You just never know…

rlogin
There’s also a Unix facility called rlogin that combines a simple login-not-necessary
mechanism for accessing trusted remote systems with the software necessary to access
this capability. This is not a good idea, and smart crackers immediately search for
.rhosts or /etc/hosts.equiv files on the system (which contain a list of trusted hosts;

Virtual Hosts with Apache 479

24

32 0672323982 ch24 6/18/02 1:58 PM Page 479

if the cracker has broken into one system, he’s then therefore broken into the entire
trusted set). Disable rlogin by removing the rlogin and rshd binaries.

Unnecessary Network Services
This leads to a general observation: Shut off all services that are unnecessary to the day-
to-day use of your system. You probably don’t need to run the rwho daemon, for exam-
ple, or talkd or fingerd. Shut them off in xinetd (or an equivalent—see Hour 19 for
details).

Speaking of unnecessary network services, turn off telnet and ftpd now. If your users
need to log in to the system, instruct them to use ssh and point them to some ssh-com-
pliant client programs (check at www.download.com). The ssh system also supports
secure file transfers, and there are ssh-compliant FTP clients available online, too.

When you’re done turning things off, run the useful nmap utility to scan your ports and
inform you what’s still running:

nmap -sT localhost

Starting nmap V. 2.54BETA22 (www.insecure.org/nmap/)
Interesting ports on localhost.localdomain (127.0.0.1):
(The 1536 ports scanned but not shown below are in state: closed)
Port State Service
22/tcp open ssh
25/tcp open smtp
111/tcp open sunrpc
1024/tcp open kdm
1025/tcp open listen
6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 3 seconds

Here you can see that it might be smart to disable kdm (the KDE desktop manager),
sunRPC (the SunOS remote procedure call mechanism), and X11 (the X Window System
server).

Keep Your Operating System Up-To-Date
One of the most important security measures you can take as a system administrator is to
ensure that your Unix operating system is always up-to-date. It’s common for sysadmins
to run old operating systems that have all sorts of known—and fixed—security problems,
and that’s clearly a bad idea.

Regardless of which Unix you have, your vendor’s Web site should have any patches and
updates, and most have e-mail lists you can join that notify you proactively of any secu-
rity holes and how to fix them. Pay attention to this!

480 Hour 24

32 0672323982 ch24 6/18/02 1:58 PM Page 480

Join the Computer Emergency Response Team
One U.S. government-funded group that does a great job of keeping an eye on security
problems and promptly issuing warnings and notifications across a wide variety of differ-
ent operating systems is CERT, the Computer Emergency Response Team at Carnegie-
Mellon University. You can find it online at www.cert.org, then sign up for their mailing
list.

Other Useful Web Sites
There are a couple of other sites worth exploring if you want to learn more about secur-
ing your Unix systems: The Computer Incident Advisory Capability (www.ciac.org),
Rootshell (www.rootshell.org), Security Focus (www.securityfocus.com), and the
System Administration, Networking and Security group (www.sans.org) are all well
worth spending time exploring.

Useful Tools
There are a number of third-party security tools available that help you batten down the
hatches and keep an electronic eye on what’s happening. Chief among them are swatch,
an elegant and simple system logfile watchdog; tripwire, a tool that snapshots all the
system binaries and informs you of any change (for example, a cracker trying to sneak a
Trojan horse onto the system); crack, an effective password guesser that lets you enforce
a “non-guessable” password policy; and ipchains, a firewall that’s included with many
modern flavors of Unix. Other tools worth exploring if you want to really ratchet up your
protection include COPS, SATAN, SAINT, tcpd, and TCT.

Start your search for these sophisticated security tools at an appropriate package manage-
ment archive Web site (see Hour 8, “Unix Package Management”), or search at the
Usenix System Administration Guild (SAGE) Web site (www.usenix.org/sage/) for
details.

Summary
The most important security strategy is to be paranoid, circumspect, suspicious, secre-
tive, and open and friendly at the same time. Seriously, be conscious of security and
security issues, teach your user community simple steps—like picking good passwords—
and do your best to create an open and productive work environment, while still doing
regular backups, rotating your backup media to ensure you always have at least one
“spare” backup image.

Virtual Hosts with Apache 481

24

32 0672323982 ch24 6/18/02 1:58 PM Page 481

And So Our 24 Hours Come to an End…
This marks the end of the 24th hour of Teach Yourself Unix System Administration in 24
Hours. It’s been quite a journey, and there’s been a remarkable amount of material cov-
ered, much of which takes some time to digest and understand properly. So, whether
you’ve slammed through in 24 hours, or whether you’ve taken a few weeks to slowly
step through and understand each topic, it’s time to use what you’ve learned in this book.
It’s only through use that you’ll truly learn how to think and work like a top Unix system
administrator, comfortable in front of a command line and able to convince your systems
to jump through hoops of your own making.

Good luck!

Remember, if you encounter any errata in this book, any examples that you cannot dupli-
cate, typographical mistakes, or other problems, please let us know! Go to www.intu-
itive.com/tyusa/ and you’ll find an errata report form there.

And stay in touch.

Dave Taylor

taylor@intuitive.com

482 Hour 24

32 0672323982 ch24 6/18/02 1:58 PM Page 482

A

Acceptable Use Policy (AUP), 402
access

accounts, 108
CERT, 481
crontab, 286-291
/etc/passwd file, 86-90
groups

/etc/group, 73-76
security, 77-79

hackers, 307-311
inetd, 379-381
passwords, 91-94, 479
Red Hat Linux, 14
rlogin, 479
strings, 67

/etc/passwd, 70-73
files, 68-70

unnecessary network services, 480
updating, 480
Web sites, 481

access.log file, 316
accounts

Darwin password files, 91-94
deleting, 112-114
Linux management tools, 114-121
passwords, 126-129
re-enabling, 111
Red Hat Linux, 14
Solaris management tools, 121-126
suspending, 108-111
user, 89

actions, init, 250
adding

drives, 208-212
users, 94-103

addresses
IP, 333
ranges, 328

INDEX

33 0672323982 index 6/18/02 2:01 PM Page 483

adduser command, 98, 100-103
adduser script, 94-95
administration

accounts
deleting, 112-114
suspending, 108-111

databases, 354-358
inetd, 379-381
files

sizing, 134-138
zipping, 138-142, 144-148

packages
Darwin, 168-172
Solaris, 172-176

log files, 301-302
building rotation tools, 320-323
httpd, 312-316
navigating, 302-307
tracking hackers, 307-311
trimming with logrotate, 317-320

passwords, 126-129
processes, 276-279
RPM, 162-165
scripts, 59-63
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349

popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

xinetd, 381-385
aging passwords, 126-129
aliases, creating, 404-411
alphabetization, sort tool, 53-55
anacron daemon, 287, 435
analysis, sort tool, 52-55
anonymous FTP service, 386. See also FTP
Apache Web server

httpd log files, 312-316
httpd.conf file, 462-467
optimizing, 467-471
starting, 458-461
virtual hosting, 474-478

applications
ardsd, 273-275
artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management

Linux, 114-121
Solaris, 121-126

named, 359-362
netstat, 343-349
passwords, 126-129
ping, 343-349

484 adduser command

33 0672323982 index 6/18/02 2:01 PM Page 484

popd, 463
pushd, 463
rndc, 362-364
rotation, 320-323
sort, 52-55
tar, 148-158
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

zip, 145-148
applying

Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 172
fsck tool, 186-189
init processes, 248, 250-253
installation, 8-10

logrotate, 317-320
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
shell scripting, 436, 438-440
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478

applying 485

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 485

apropos command, 24, 24-31
artsd program, 273-275
at command, 296-298
AUP (Acceptable Use Policy), 402
authoritative names, 354
authority fields, 356
awk language, 444-446

B

backups, incremental, 152-158
bad blocks, 185
bash (Bourne-Again Shell), 35, 417
BIND (Berkeley Internet Name Domain),

354-358
blocks, DocumentRoot, 466
boot.log file, 304
booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

Bourne-Again Shell (bash), 35, 417
building

aliases for sendmail, 404-411
Apache Web servers, 464
crontab files, 287-291
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

/etc/fstab files, 212-215
filesystems, 204-208
home directories, 95-99
init processes, 248, 250-253

Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
quotas, 239-242
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
rotation tools, 320-321, 323
run levels, 254-259
Solaris, 336-343
virtual hosts, 474-478

C

C Shell (csh), 35
cable modems, 327
calculating disk space, 46
capabilities of Perl, 450-453
cat command, 136
CERT (Computer Emergency Response

Team), 481
chage command, 128-129
clients, enabling FTP, 385-389
commands

adduser, 98-103
apropos, 24
at, 296-298
cat, 136
chage, 128-129
df, 44-45

486 apropos command

33 0672323982 index 6/18/02 2:01 PM Page 486

du, 47
searching largest files, 55-59
viewing directory sizes, 47-52

dump, 152-158
expr, 422
fdisk, 198-203
find, 239-242
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
gpasswd, 78
grep, 444
gunzip, 141
hash, 34
hosts, 313
identifying, 37-38
kill, 108, 279-282
locate, 36, 274
logrotate, 319
lp, 77-79
man, 35
mount, 189, 208-212
nice, 276-279
nidump, 92
nireport, 92
niutil, 100-103
passwd, 126-129
ps, 267-273
reload, 362
renice, 276-279
rndc, 363
rpm, 162
searching, 34-36
sort, 53-55
strings, 37-38
su, 102

tar
backups, 152-158
copying directory trees, 148-152

umount, 209
unmount, 184
unzip, 147
useradd, 115
userdel, 120
usermod, 129
wall, 234
whatis database, 24-31
who, 109
zcat, 136

compress tool, 134-138
Computer Emergency Response Team

(CERT), 481
conditionals

shell scripting, 424-435
testing, 425

configuration
Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

init processes, 248, 250-253
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

configuration 487

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 487

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
virtual hosts, 474-478

connections
Internet

Linux, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

Red Hat Linux, 13
testing, 392, 394-397

constants, 418
copying

configurations, 342
directory trees, 148-152
quotas, 235

corruption, applying fsck tool, 193
CPAN development group, 453
creating. See also configuration

aliases for sendmail, 404-411
/etc/fstab files, 212-215
filesystems, 204-208
home directories, 95-99
quotas, 239-242

cron
log files, 306
jobs, 292-296

crond daemon, 286
crontab, 286-291
csh (C Shell), 35
customization

Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223

partitioning disks, 219-220
virtual machines, 226-228

fink, 172
init processes, 248, 250-253
installation, 8-10
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
virtual hosts, 474-478

D

daemons
anacron, 435
crond, 286
inetd, 379-381
inetd , 374-379
init, 248
xinetd, 381-385

Darwin
accounts, 91-94
adduser command, 100-103
packages, 168-172
single-user mode, 190, 192-193

488 configuration

33 0672323982 index 6/18/02 2:01 PM Page 488

databases
apropos command, 24-31
DNS, 354-358
/etc/passwd file, 86-90
NetInfo. See NetInfo
whatis, 32, 34

debugging PATH, 34-36
deleting

packages, 176
processes (kill command), 279-282
user accounts, 112-114

df command, 44-45
DHCP (Dynamic Host Configuration

Protocol)
Linux, 328-335
Solaris, 340

dig (Domain Information Groper), 364-370
digging

executable binaries, 37-38
philosophy of, 23-24
whatis database, 32, 34

digital subscriber line (DSL), 327
directories

creating, 95-99
mqueue, 402
permissions, 67

/etc/group, 73-76
/etc/passwd, 70-73
files, 68-70
security, 77-79

sort tool, 52-55
trees, 148-152
/var/log, 302
viewing, 47-52

disk space, managing, 134. See also sizing
files

diskhogs script, 59-63

disks
fdisks, 198-203
fsck tool, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

mounting, 208-212
partitioning, 219-220
physical, 41. See also physical disks
quotas

creating, 239-242
implementing policies, 232-236
Solaris 8, 237-238

usage, 47-52
DNS (domain name system), 328

servers
applying rndc, 362-364
BIND, 354-358
configuring named, 359-362

testing, 364-370
DocumentRoot block, 466
Domain Information Groper (dig), 364-370
domain name system. See DNS
domains, BIND, 354-358
downloading awk, 444
drives, adding, 208-212
DSL (digital subscriber line), 327
du command, 47

directories, 47-52
files, 55-59
sort tool, 53-55

dual-booting, 218-219. See also booting
GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

dump command, 152-158
Dynamic Host Configuration Protocol. See

DHCP

Dynamic Host Configuration Protocol 489

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 489

E

e-mail
connectivity, 392-397
logs, 397-404
queues, 397-404
sendmail, 404-411

enabling. See also installation
ftp, 385-389
Mac OS X Web server, 460
service run levels, 254-259
virtual hosting, 474-478

error.log file, 315
errors, 344

Apache Web servers, 464
disks, 182-193
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 172
init processes, 248, 250-253
installation, 8-10
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux, 16-17

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362

run levels, 254-259
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478
/etc/fstab file, 212-215
/etc/group file, 73-76
/etc/inittab file, 248
/etc/passwd file, 70-73, 86-90
executable binaries, searching, 37-38
expr command, 422

F

fdisk, formatting, 198-203
fields

Apache Web server configuration, 464
authority, 356
crontab, 288

490 e-mail

33 0672323982 index 6/18/02 2:01 PM Page 490

files
access.log, 316
boot.log, 304
configuration, 362
cron, 292-296
cron log, 306
crontab, 287-291
error.log, 315
/etc/fstab, 212-215
/etc/inittab, 248
/etc/passwd, 86-90
fsck tool, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
ftp.log, 306
httpd.conf, 462-467
large

diskhogs script, 59-63
searching, 55-59

lilo.conf, 221
log

building rotation tools, 320-323
httpd, 312-316
managing, 301-302
navigating, 302-307
tracking hackers, 307-311
trimming with logrotate, 317-320

maillog, 307
password, 91-99
permissions, 67-70

/etc/group, 73-76
/etc/passwd, 70-73
security, 77-79

RPM, 162-167
shadow passwords, 77
sizing, 134-142, 144-148

sort tool, 52-55
xferlog, 306
zone, 354-358

filesystems, formatting, 204-208
find command, 239-242
findsuid script, 439
fink, 168-172
fixed IP allocation tables, 332
flags

du command, 47-52
dump command, 154
fsck tool, 185
Linux, 115, 128-129
mke2fs, 207
mount command, 209
RPM, 167
sendmail, 392, 394-397
tar command, 149

flow control, 423-435
formatting. See also configuration

aliases for sendmail, 404-411
crontab files, 287-291
disks, 198-203
/etc/fstab files, 212-215
filesystems, 204-208
home directories, 95-99
quotas, 239-242
rotation tools, 320-321, 323
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370

formatting 491

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 491

ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

FQDN (fully qualified domain name), 358
fsck (file system check) tool, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, enabling, 385-389
ftp.log file, 306
fully qualified domain name (FQDN), 358
functions

adduser, 98-103
apropos, 24
at, 296-298
cat, 136
chage, 128-129
df, 44-45
du, 47

searching largest files, 55-59
viewing directory sizes, 47-52

dump, 152-158
expr, 422
fdisk, 198-203
find, 239-242
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
gpasswd, 78
grep, 444
gunzip, 141

hash, 34
hosts, 313
identifying, 37-38
kill, 108, 279-282
locate, 36, 274
logrotate, 319
lp, 77-79
man, 35
mount, 189, 208-212
nice, 276-279
nidump, 92
nireport, 92
niutil, 100-103
passwd, 126-129
ps, 267-273
reload, 362
renice, 276-279
rndc, 363
rpm, 162
searching, 34-36
shell scripting, 424-435
sort, 53-55
strings, 37-38
su, 102
tar

backups, 152-158
copying directory trees, 148-152

umount, 209
unmount, 184
unzip, 147
useradd, 115
userdel, 120
usermod, 129
wall, 234
whatis database, 24-31
who, 109
zcat, 136

492 formatting

33 0672323982 index 6/18/02 2:01 PM Page 492

G

GID (group ID), 70. See also permissions
gpasswd command, 78
grep command, 444
groups

permissions, 68-70
/etc/group, 73-76
security, 77-79

users, 95-99
GRUB (GRand Unified Boot loader),

223-226
gunzip command, 141
gzip tool, 138-144

H

hackers, tracking log files, 307-311. See also
security

hard limits, 235
hash tables, 34
Help, 16-17

Apache Web servers, 464
disks, 182-193
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 172
init processes, 248, 250-253
installation, 8-10
Mac OS X, 336-343
named application, 359-362

networks, 327
connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux, 16-17

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478
home directories, creating, 95-99
host tool, 364-370
hosting Apache Web servers, 474-478
hosts command, 313
httpd log files, navigating, 312-316
httpd.conf files, navigating, 462-467

httpd.conf files, navigating 493

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 493

I

identifying commands, 37-38
ifconfig tool, 343-349
implementation, 232-236

Apache Web servers, 464
creating, 239-242
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

init processes, 248, 250-253
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 237-238, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144

host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478
incremental backups, 152-158
inetd daemon, 374-381
information, PIDs, 266-273
init process, configuring, 248-253, 259-261
installation, 218-219

booting
Apache Web server, 458-461
crontab, 286-287
fsck tool, 183-186
GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 168-169, 171-172
GRUB, 223-226
Help, 16-17
LILO, 220-223
options, 8-9
partitioning disks, 219-220
Red Hat Linux, 10-17
RPM, 165-167
virtual machines, 226-228

interfaces, enabling ftp, 385-389
Internet

connecting, 343-349
Linux, 328-335
Mac OS X/Solaris, 336-343
RPM, 165-167

494 identifying commands

33 0672323982 index 6/18/02 2:01 PM Page 494

services
enabling ftp, 385-389
inetd, 374-379
managing inetd, 379-381
xinetd, 381-385

Internet service provider (ISP), 333
Internet Software Consortium, 354
interpreters, 416. See also shells
invoking commands, 34-36
IP (Internet Protocol)

addresses, 333
fixed allocation tables, 332

ISP (Internet service provider), 333

J-K

jobs
at command, 296-298
cron, 292-296

keyboards, Red Hat Linux, 10
kill command, 108, 279-282

L

LAN (local access network), 327
languages

awk, 444-446
Perl, 447-453

large files
diskhogs script, 59-63
searching, 55-59
sizing, 134-142, 144-148

launching PIDs, 266-273
levels

init, 250
run, 254

LILO (last in, last out), 220-223
Linux

account management tools, 114-121
at command, 296-298
cron jobs, 292-296
flags, 115, 128-129
Help, 16-17
installing, 10-15
Internet, 328-335
RPM, 162-167
xinetd daemon, 381-385

local access network. See LAN
locate command, 36, 274
log files, 301-302

building rotation tools, 320-323
httpd, 312-316
navigating, 302-307
tracking hackers, 307-311
trimming with logrotate, 317-320

logrotate, applying, 317-320
logs

e-mail, 397-404
xinetd daemon, 383

looping, shell scripting, 424-435
lp command, 77-79

M

Mac OS X
configuring, 336-343
fink, 168-172
sendmail aliases, 407-411
Web server, 460

Mac OS X 495

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 495

mail transfer agent (MTA), 391
mail. See e-mail
maillog file, 307
man command, 35
management

accounts
deleting, 112-114
suspending, 108-111

databases, 354-358
inetd, 379-381
files

sizing, 134-138
zipping, 138-142, 144-148

packages
Darwin, 168-172
Solaris, 172-176

log files, 301-302
building rotation tools, 320-323
httpd, 312-316
navigating, 302-307
tracking hackers, 307-311
trimming with logrotate, 317-320

passwords, 126-129
processes, 276-279
RPM, 162-165
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349

passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

xinetd, 381-385
maximum transfer unit (MTU), 344
MBR (master-boot record), 222
messages, log, 303. See also e-mail
methods

adduser, 98-103
apropos, 24
at, 296-298
cat, 136
chage, 128-129
df, 44-45
du, 47

searching largest files, 55-59
viewing directory sizes, 47-52

dump, 152-158
expr, 422
fdisk, 198-203
find, 239-242
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
gpasswd, 78
grep, 444
gunzip, 141
hash, 34
hosts, 313
identifying, 37-38
kill, 108, 279-282
locate, 36, 274
logrotate, 319

496 mail transfer agent (MTA)

33 0672323982 index 6/18/02 2:01 PM Page 496

lp, 77-79
man, 35
mount, 189, 208-212
nice, 276-279
nidump, 92
nireport, 92
niutil, 100-103
passwd, 126-129
ps, 267-273
reload, 362
renice, 276-279
rndc, 363
rpm, 162
searching, 34-36
shell scripting, 424-435
sort, 53-55
strings, 37-38
su, 102
tar

backups, 152-158
copying directory trees, 148-152

umount, 209
unmount, 184
unzip, 147
useradd, 115
userdel, 120
usermod, 129
wall, 234
whatis database, 24-31
who, 109
zcat, 136

mke2fs, formatting filesystems, 204-208
modems, cable, 327
modification

Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223

partitioning disks, 219-220
virtual machines, 226-228

files
sizing, 134-138
zipping, 138-148

init processes, 248, 250-253
lp command, 78
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
state, 248-253
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349

modification 497

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 497

popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

user accounts, 89
virtual hosts, 474-478

mount command, 189
mounting disks, 208-212
moving directory trees, 148-152
mqueue directory, 402
MTA (mail transfer agent), 391
MTU (maximum transfer unit), 344
multiple boot configurations, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

N

names
authoritative, 354
FQDNs, 358
NetInfo, 92
rndc application, 362-364
servers, 359-362

navigation
Apache Web server, 462-467
BIND, 354-358
cron jobs, 292-296
/etc/passwd file, 86-90
log files, 302-307

building rotation tools, 320-323
httpd, 312-316
trimming with logrotate, 317-320

partitions, 42-47
whatis database, 32, 34

NetInfo
Darwin password files, 91-94
users, 100-103

netstat tool, 343-349
networks, 13, 480

Apache Web servers, 464
DNS, 364-370
configuring, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

dual-booting, 218-219
GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

files
sizing, 134-138
zipping, 138-148

init processes, 248, 250-253
lp command, 78
Mac OS X, 336-343
named application, 359-362
passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
state, 248-253
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370

498 modification

33 0672323982 index 6/18/02 2:01 PM Page 498

du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

user accounts, 89
virtual hosts, 474-478

nice command, 276-279
nidump command, 92
nireport command, 92
niutil command, 100-103
niutl command, 100
notations, shell variable references, 421

O

octal permission values, 69
one-line command summaries, 24-31
online Help, installing, 16-17
optimizing Apache Web servers, 467-471
options. See also customization

fink, 172
installation, 8-9, 10

OS (operating system), 218-219
GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

others, permissions, 68-70
output

adduser, 98-103
apropos, 24
at, 296-298
cat, 136
chage, 128-129
df, 44-45
du, 47

searching largest files, 55-59
viewing directory sizes, 47-52

dump, 152-158
expr, 422
fdisk, 198-203
find, 239-242
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
gpasswd, 78
grep, 444
gunzip, 141
hash, 34
hosts, 313
identifying, 37-38
kill, 108, 279-282
locate, 36, 274
logrotate, 319
lp, 77-79
man, 35
mount, 189, 208-212
nice, 276-279
nidump, 92
nireport, 92
niutil, 100-103
passwd, 126-129
ps, 267-273
reload, 362

output 499

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 499

renice, 276-279
rndc, 363
rpm, 162
searching, 34-36
shell scripting, 424-435
sort, 53-55
strings, 37-38
su, 102
tar

backups, 152-158
copying directory trees, 148-152

umount, 209
unmount, 184
unzip, 147
useradd, 115
userdel, 120
usermod, 129
wall, 234
whatis database, 24-31
who, 109
zcat, 136

ownership, 67
/etc/group, 73-76
/etc/passwd, 70-73
files, 68-70
security, 77-79

P

packages
Darwin, 168-172
deleting, 176
fink, 168-172
Red Hat Linux, 15
RPM, 162-167
Solaris, 172-176
summaries, 163

parameters, shells, 420
partitioning, 41

disks, 219-220
navigating, 42-47
Red Hat Linux, 11

passwd command, aging, 126-129
passwords, 479. See also permissions; secu-

rity
aging, 126-129
configuring, 95-99
Darwin, 91-94
/etc/passwd file, 70-73, 86-90
files, 95-99
gpasswd command, 78
Red Hat Linux, 14
security, 70
shadow files, 77

PATH, debugging, 34-36
Perl, 447-453
permissions

accounts, 108
CERT, 481
crontab, 286-291
/etc/passwd file, 86-90
groups

/etc/group, 73-76
security, 77-79

hackers, 307-311
inetd, 379-381
passwords, 91-94, 479
Red Hat Linux, 14
rlogin, 479
strings, 67

/etc/passwd, 70-73
files, 68-70

unnecessary network services, 480
updating, 480
Web sites, 481

500 output

33 0672323982 index 6/18/02 2:01 PM Page 500

philosophy of digging, 23-24
physical disks, 41-47
PIDs (process IDs), 266-273
ping tool, 343-349
piping output (sort tool), 53-55
policies

creating, 239-242
implementing, 232-236
Solaris 8, 237-238

popd tool, 463
ports, 374
positional parameters, 420
priorities, 276-279
process IDs. See PIDs
programming

kill command, 279-282
priorities, 276-279
Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

init processes, 248, 250-253
Mac OS X, 336-343
named applications, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Perl, 447-453
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478
protocols

DHCP
connecting Linux, 328-335
Solaris, 340

IP
addresses, 333
fixed allocation tables, 332

ps command, 267-273
pushd tool, 463

pushd tool 501

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 501

Q

queries, log files, 313
queues, e-mail, 397-404
quotas

creating, 239-242
implementing, 232-236
Solaris 8, 237-238

R

ranges
addresses, 328
crontab, 288

rebooting, 259-261. See also booting; instal-
lation

Red Hat Linux. See also Linux
at command, 296-298
Help, 16-17
installing, 10-15

Red Hat Package Manager. See RPM
re-enabling accounts, 111
references, shell variables, 421
reload command, 362
renice command, 276-279
repartitioning Red Hat Linux, 12. See also

partitioning
requirements, 8
resources, security, 481
reverse lookups, 313
rlogin, 479
rndc application, applying, 362-364
rotation tools, building, 320-321, 323
RPM (Red Hat Package Manager), 162-167

run levels
modifying, 248, 250-253
services, 254-259

running Internet Services
enabling ftp, 385-389
inetd, 374-379
managing inetd, 379-381
xinetd, 381-385

RX errors, 344

S

safe shutdowns, 259-261
scripts

adduser, 94-95
diskhogs, 59-63
findsuid, 439
Perl, 447-453
setuid, 439
shells, 415-423

applying, 436, 438-440
flow control, 423-435

searching
apropos command, 24-31
commands, 34-36
executable binaries, 37-38
large files (du command), 55-59
philosophy of digging, 23-24

security, 478-479
accounts, 108
CERT, 481
crontab, 286-291
/etc/passwd file, 86-90
groups, 77-79
hackers, 307-311
inetd, 379-381

502 queries, log files

33 0672323982 index 6/18/02 2:01 PM Page 502

passwords, 91-94, 479
Red Hat Linux, 14
rlogin, 479
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

unnecessary network services, 480
updating, 480
Web sites, 481

sendmail
aliases, 404-411
testing, 392, 394-397

sequences
GRUB dual-boot configurations, 223-226
LILO dual-boot configurations, 220-223

servers
Apache Web

enabling virtual hosting, 474-478
navigating httpd.conf file, 462-467
optimizing, 467-471
starting, 458-461

dhcpd, 335
DNS

applying rndc, 362-364
BIND, 354-358
configuring named, 359-362

Mac OS X, 460
Web, 312-316

services
FTP, 386
Internet

enabling, 385-389
inetd, 374-379
managing inetd, 379-381
xinetd, 381-385

run levels, 254-259
unnecessary network services, 480

setuid script, 439
shadow password files, 77
shells

fdisk, 198-203
parameters, 420
scripting, 415-423

applying, 436-440
flow control, 423-435

shutdowns, 259-261
single-user mode, 190-193
sizing

directories, 47-52
files, 134-142, 144-148
log files, 317-320

SOA (statement of authority), 355
sockets, 374
soft limits, 235
Solaris

accounts management tools, 121-126
Apache Web server, 461
configuring, 336-343
packages, 172-176

Solaris 503

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 503

Solaris 8 quotas, 237-238
sort tool, 52-55
space

creating quotas, 239-242
implementing disk-quota policies, 232-236
Solaris 8, 237-238

starting, 218-219
Apache Web server, 458-461
crontab, 286-287
fsck tool, 183-186
GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

state, configuring init processes, 248,
250-253

statement of authority (SOA), 355
statements

adduser, 98-103
apropos, 24
at, 296-298
cat, 136
chage, 128-129
df, 44-45
du, 47

searching largest files, 55-59
viewing directory sizes, 47-52

dump, 152-158
expr, 422
fdisk, 198-203
find, 239-242
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

ftp, 385-389
gpasswd, 78
grep, 444

gunzip, 141
hash, 34
hosts, 313
identifying, 37-38
kill, 108, 279-282
locate, 36, 274
logrotate, 319
lp, 77-79
man, 35
mount, 189, 208-212
nice, 276-279
nidump, 92
nireport, 92
niutil, 100-103
passwd, 126-129
ps, 267-273
reload, 362
renice, 276-279
rndc, 363
rpm, 162
searching, 34-36
shell scripting, 424-435
sort, 53-55
strings, 37-38
su, 102
tar

backups, 152-158
copying directory trees, 148-152

umount, 209
unmount, 184
unzip, 147
useradd, 115
userdel, 120
usermod, 129
wall, 234
whatis database, 24-31
who, 109
zcat, 136

504 Solaris 8 quotas

33 0672323982 index 6/18/02 2:01 PM Page 504

su, 102
strategies, 478-479

CERT, 481
passwords, 479
rlogin, 479
unnecessary network services, 480
updating, 480
Web sites, 481

strings, 67
/etc/passwd, 70-73
files, 68-70

strings command, 37-38
su command, 102
summaries, packages, 163
superblocks, 182
suspending user accounts, 108-111
systems, 248-253

adding drives, 208-212
administration. See administration
Apache Web servers, 464
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 172
init processes, 248, 250-253
installation, 8-10
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

virtual hosts, 474-478

T

tables, fixed IP allocation, 332
tar command

backups, 152-158
directories, 148-152

tarballs, 233
TCP (Transmission Control Protocol)

Wrapper, 379-381

TCP (Transmission Control Protocol) Wrapper 505

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 505

testing
Apache Web servers, 467-471
conditionals, 425
connectivity, 343-349
DNS, 364-370
e-mail, 392-397

tools
artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management

Linux, 114-121
Solaris, 121-126

netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
sort, 52-55
tar, 148-158
zip, 145-148

tracking
hackers, 307-311
users, 59-63

trees, copying directories, 148-152
trimming log files, 317-320
troubleshooting

Apache Web servers, 464
disks, 182-193
DNS, 364-370
dual-booting, 218-219

GRUB, 223-226
LILO, 220-223
partitioning disks, 219-220
virtual machines, 226-228

fink, 172
init processes, 248, 250-253
installation, 8-10
Mac OS X, 336-343
named application, 359-362
networks, 327

connecting Linux to Internet, 328-335
Mac OS X/Solaris, 336-343
testing, 343-349

passwords, 95-99
Red Hat Linux, 16-17

keyboards, 10
network connections, 13

rndc application, 362-364
RPM, 162-167
reloading, 362
run levels, 254-259
Solaris, 336-343
tools

artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182-193
gzip, 138-142, 144

506 testing

33 0672323982 index 6/18/02 2:01 PM Page 506

host, 364-370
ifconfig, 343-349
management, 114-121, 121-126
netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
virtual hosts, 474-478

TX errors, 344

U

UID (user ID), 70. See also permissions
umount command, 209
unmount command, 184
unnecessary network services, 480
unzip command, 147
updating security, 480
usage, du command, 47-52
user accounts

Darwin password files, 91-94
deleting, 112-114
/etc/passwd file, 86-90
Linux management tools, 114-121
passwords, 126-129
re-enabling, 111
Red Hat Linux, 14
Solaris management tools, 121-126
suspending, 108-111

useradd command, 115
userdel command, 120
usermod command, 129

users
access

building crontab files, 287-291
crontab, 286-287

adding, 94-99
groups

/etc/group file, 73-76
security, 77-79

NetInfo, 92, 100-103
permissions, 68-70
Red Hat Linux, 14
single-user mode, 190-193
tracking, 59-63

utilities
artsd, 273-275
at command, 296-298
compress, 134-138
crontab, 286-291
dig, 364-370
du command, 47-52
fsck, 182

applying, 186-189
single-user mode, 190-193
starting, 183-186

gzip, 138-142, 144
host, 364-370
ifconfig, 343-349
management

Linux, 114-121
Solaris, 121-126

netstat, 343-349
passwords, 126-129
ping, 343-349
popd, 463
pushd, 463
rotation, 320-323
sort, 52-55
tar, 148-158
zip, 145-148

utilities 507

How can we make this index more useful? E-mail us at indexes@samspublishing.com

33 0672323982 index 6/18/02 2:01 PM Page 507

V

values
crontab, 288
octal permissions, 69

variables, shells, 421
/var/log directory, 302
/var/log/httpd file, 312-316
verification of e-mail connectivity, 392-397
versions, commands, 34-36
viewing directories, 47-52
virtual hosting, Apache Web server, 474-478
virtual machines, dual-booting, 226-228
Virtual PC from Connectix Corporation,

227
VMware, 227

W

wall command, 234
Web

Apache Web server
enabling virtual hosting, 474-478
navigating httpd.conf file, 462-467
optimizing, 467-471
starting, 458-461

connecting, 343-349
Linux, 328-335
Mac OS X/Solaris, 336-343
RPM, 165-167
services

enabling ftp, 385-389
inetd, 374-379
managing inetd, 379-381
xinetd, 381-385

servers, 312-316

Web sites
Apache, 458
security, 481

whatis database
apropos command, 24-31
navigating, 32, 34

who command, 109

X

xferlog, 306
xinetd daemon, 381-385

Z

zcat command, 136
zip tool, 145-148
zipping files, 138-148
zone files, 354-358

508 values

33 0672323982 index 6/18/02 2:01 PM Page 508

	Sams Teach Yourself Unix System Administration in 24 Hours
	Contents at a Glance
	Contents
	About the Author
	Dedication
	Acknowledgments
	We Want to Hear from You!
	Reader Services
	Introduction
	PART I Installing Unix
	HOUR 1 Installing Unix

	PART II Introduction to the Filesystem
	HOUR 2 An Unsung Resource: Unix Documentation
	HOUR 3 Disk Usage
	HOUR 4 File Ownership

	PART III User & Package Management
	HOUR 5 Working with User Accounts
	HOUR 6 Account Management
	HOUR 7 Large File Management and Backups
	HOUR 8 Unix Package Management

	PART IV Advanced Filesystem Topics
	HOUR 9 Fixing Broken Disks
	HOUR 10 Adding Disks to Your System
	HOUR 11 Multiple Boot Configurations
	HOUR 12 Managing Disk Quotas

	PART V Process & System Controls
	HOUR 13 Changing System State
	HOUR 14 Exploring Processes
	HOUR 15 Running Jobs in the Future
	HOUR 16 Managing Your Log Files

	PART VI Network Topics
	HOUR 17 Basic Network Configuration
	HOUR 18 Running Your Own Name Server
	HOUR 19 Running Internet Services
	HOUR 20 Working with E-mail

	PART VII Web Server Management & Shell Programming
	HOUR 21 Shell Scripting: The Administrator’s Swiss Army Knife
	HOUR 22 Power Scripting with awk and Perl
	HOUR 23 Introduction to the Apache Web Server
	HOUR 24 Virtual Hosts with Apache

	INDEX

