


SCRUM!	1st	Edition
	

The	Ultimate	Beginners	Guide	To	Mastering
Scrum	To	Boost	Productivity	&	Beat

Deadlines



TABLE	OF	CONTENTS
	
Introduction

Chapter	1:	Why	Scrum	is	Probably	the	Most	Efficient	System	Out	There

Chapter	2:	Will	Scrum	Work?

Chapter	3:	The	Scrum	Team

Chapter	4:	Activities	and	Artifacts

Chapter	5:	Agile	Principles	at	Work

Chapter	6:	The	Product	Backlog

Chapter	7:	Estimating	Work	and	Measuring	Velocity

Chapter	8:	Going	Bigger	with	Scrum

Chapter	9:	How	to	Cater	to	Multiple	Products

Chapter	10:	What	Products	Should	You	Produce?

Conclusion

	

	



Copyright	2015	by	Adam	Vardy	-	All	rights	reserved.

This	document	is	geared	towards	providing	exact	and	reliable	information	in	regards	to	the
topic	 and	 issue	 covered.	 The	 publication	 is	 sold	with	 the	 idea	 that	 the	 publisher	 is	 not
required	 to	 render	 accounting,	 officially	 permitted,	 or	 otherwise,	 qualified	 services.	 If
advice	is	necessary,	 legal	or	professional,	a	practiced	individual	 in	 the	profession	should
be	ordered.

-	 From	 a	 Declaration	 of	 Principles	 which	 was	 accepted	 and	 approved	 equally	 by	 a
Committee	 of	 the	 American	 Bar	 Association	 and	 a	 Committee	 of	 Publishers	 and
Associations.

In	no	way	is	it	legal	to	reproduce,	duplicate,	or	transmit	any	part	of	this	document	in	either
electronic	means	or	in	printed	format.	Recording	of	this	publication	is	strictly	prohibited
and	any	storage	of	this	document	is	not	allowed	unless	with	written	permission	from	the
publisher.	All	rights	reserved.

The	information	provided	herein	is	stated	to	be	truthful	and	consistent,	in	that	any	liability,
in	terms	of	inattention	or	otherwise,	by	any	usage	or	abuse	of	any	policies,	processes,	or
directions	contained	within	is	 the	solitary	and	utter	responsibility	of	 the	recipient	reader.
Under	 no	 circumstances	 will	 any	 legal	 responsibility	 or	 blame	 be	 held	 against	 the
publisher	 for	 any	 reparation,	 damages,	 or	monetary	 loss	 due	 to	 the	 information	 herein,
either	directly	or	indirectly.

Respective	authors	own	all	copyrights	not	held	by	the	publisher.

The	information	herein	is	offered	for	informational	purposes	solely,	and	is	universal	as	so.
The	presentation	of	the	information	is	without	contract	or	any	type	of	guarantee	assurance.

The	trademarks	that	are	used	are	without	any	consent,	and	the	publication	of	the	trademark
is	 without	 permission	 or	 backing	 by	 the	 trademark	 owner.	 All	 trademarks	 and	 brands
within	 this	 book	 are	 for	 clarifying	 purposes	 only	 and	 are	 the	 owned	 by	 the	 owners
themselves,	not	affiliated	with	this	document.

	







Introduction
Thank	you	for	purchasing	“Scrum!	The	Ultimate	Beginners	Guide	To	Mastering	Scrum	To
Boost	Productivity	&	Beat	Deadlines.”

This	book	contains	proven	steps	and	strategies	on	how	to	learn	Scrum	fast	and	how	to	use
this	framework	in	order	to	conserve	time	and	budget	while	hitting	targets	in	a	timely
manner.	This	book	will	also	show	you	what	kind	of	products	are	worth	developing	and
how	you	can	use	Scrum	principles	within	a	large	group	to	create	projects	that	are
measurable,	efficient,	and	reliable	when	it	comes	to	delivering	customer	satisfaction	and
good	return	of	investment.

Managers,	employees,	and	entrepreneurs	would	be	able	to	benefit	from	the	knowledge	on
how	they	can	be	better	involved	in	tasks	within	their	organizations	and	how	they	can	be
more	efficient	in	hitting	their	targets.	By	using	the	Scrum	framework,	you	would	realize
that	there	are	better	ways	to	complete	projects	and	have	them	launched	on	the	right	time
without	compromising	time	for	development.

With	this	book,	you	will	learn	how	to	use	Scrum	to	cut	the	time	you	need	to	plan	and
organize	in	order	to	submit	deliverables	way	before	the	deadline.	By	learning	Scrum,	you
would	be	able	to	generate	more	products	that	meet	customer	satisfaction	and	have	efficient
use	of	your	resources	to	meet	organization	goals.

	





Chapter	1:	Why	Scrum	is	Probably	the	Most	Efficient
System	Out	There
A	lot	of	organizations	in	the	world	operate	this	way	–	they	fulfill	requirements	that	people
from	the	higher	ups	tell	them	to	meet,	start	working	on	a	plan	that	they	have	discussed,
and	then	meet	up	with	a	client	or	a	boss	to	check	if	they	like	what	they	have	done.

Now,	you	can	see	that	there	is	a	likelihood	of	failure	in	this	type	of	management,	and	that
failure	is	more	likely	to	be	discovered	right	on	that	project’s	deadline.	When	that	happens,
the	organization	and	its	client	have	already	spent	a	lot	of	time	and	resources	working	on	a
product	that	they	both	won’t	like	in	the	end.

There’s	a	project	management	system	that	was	designed	to	address	this	problem.	Called
Scrum,	this	system	is	designed	to	cut	the	time	and	resources	that	any	organization	out
there	needs	to	finish	a	project.

What	is	Wrong	with	the	System,	Anyway?

The	traditional	method	of	getting	a	project	done	is	designed	for	people	to	make	sure	that
they	have	all	the	business	requirements	that	they	need	in	order	to	start	designing
something.	After	meeting	all	these	requirements,	they	will	start	working	on	a	plan	or	a
design.	Right	after	that,	they	will	start	making	that	plan	work	and	test	the	outcome.	Then,
the	client	or	the	boss	walks	in	and	then	says	that	it	is	okay	to	get	that	project	launched.

Of	course,	the	plan	is	to	make	sure	that	everyone	does	what	they	are	tasked	to	do	–	they
have	to	make	sure	that	all	things	written	on	the	Gantt	chart	is	done	before	the	next	step	is
taken.	They	also	need	to	finish	all	the	agreed	tasks	on	a	specific	deadline	so	that	they	can
start	testing.

When	the	teams	are	done	working	on	what	they	are	supposed	to	do,	then	that	is	the	time
that	they	will	know	if	what	they	did	is	satisfactory	or	not.	This	method	of	following	one
plan	after	another	is	called	the	Waterfall	Method.



The	Waterfall	method	makes	it	a	point	that	project	developers	go	through	these	steps:

1.	Analyze	Requirements

If	you	are	into	software	development	or	any	type	of	project	creation	team,	you	would	want
to	know	the	business	context	of	what	you	are	trying	to	create	–	you	want	to	define	what
kind	of	problems	you	are	trying	to	resolve	and	how	people	would	react	to	your	finished
product.	After	you	define	all	these	“requirements”,	you	have	the	input	that	you	need	to
move	on	to	the	next	step.

2.	Designing

This	step	is	made	up	of	all	the	steps	that	you	need	to	satisfy	all	the	requirements	that	you
have	determined	earlier.	In	software	development,	this	is	the	part	where	you	define	all	the
software	and	hardware	architecture,	programming	language,	data	storage,	etc.	This	is	also
the	part	wherein	you	determine	how	the	project	would	be	useful	to	its	end	user.

3.	Plan	Implementation

In	this	step,	you	begin	to	construct	what	you	have	designed	in	your	plan.	This	part	of	the
Waterfall	method	is	dedicated	to	meeting	the	standards	that	you	have	made	in	the	previous
steps.	This	is	the	part	where	people	from	the	development	team	come	in	and	make	all	the
things	discussed	in	the	previous	steps	happen.

4.	Testing

This	is	the	part	of	the	method	where	quality	assurance	people	enter	to	ensure	that	the
development	team	did	not	make	any	mistakes.	This	is	also	most	likely	the	part	where
people	realize	what	is	working	or	not	working	in	their	plan.

5.	Client	Approval

When	all	things	are	satisfied	by	the	project	implementers,	the	client	or	the	end	user	comes
in	and	makes	the	final	call	if	the	project	is	ready	to	be	launched.

The	Waterfall	method	makes	it	a	point	that	when	something	goes	wrong	in	a	particular
stage,	people	can	go	back	to	the	previous	one	to	see	what	went	wrong.	For	example,	if
there	is	a	problem	in	the	Plan	Implementation	and	people	know	that	they	simply	followed
the	blueprint	that	has	been	handed	over	to	them,	then	managers	look	at	their	plan	and
make	their	revisions	from	there.



	

However,	it	would	be	easy	to	point	out	what	could	possibly	be	wrong	when	you	follow
colorful,	organized,	and	time-coded	Gantt	charts	from	the	conception	of	an	idea	to
delivering	the	finished	product	–	there	is	no	guarantee	that	all	things	that	the	organization
has	thought	of	would	actually	work.	From	here,	you	would	realize	that	the	Waterfall
Method	has	the	following	issues:

1.	People	blindly	follow	plans.

In	the	traditional	method,	people	pay	more	attention	to	how	things	will	happen	during	the
right	moment	without	being	mindful	if	things	are	really	falling	into	place.	While	planning
is	important,	it	is	also	important	that	developers	and	quality	checkers	understand	how
things	should	happen,	especially	with	the	client	or	the	end-user.	It	is	also	important	that	all
people	involved	in	the	project	can	immediately	say	how	a	particular	step	in	project
fulfillment	can	fall	apart	without	having	to	wait	for	the	testing	stage.

2.	This	method	can	take	up	too	many	resources.

Going	back	to	a	previous	stage	in	the	Waterfall	method	may	mean	that	all	the	time	and
money	spent	is	not	going	to	turn	up	any	product.	That	means	that	it	is	possible	for
management	to	just	waste	its	resources	when	it	finds	out	that	something	is	not	working	out
well	in	a	stage,	and	then	spend	more	resources	going	back	to	the	previous	stage	to	find	out
what	went	wrong.

3.	End-users	do	not	know	what	they	want.

When	it	is	time	to	hand	over	the	finished	product	to	a	client,	it	is	likely	that	they	will	not
like	how	it	turned	out,	despite	deliberately	saying	otherwise	during	the	initial	stages.	It	is
easy	for	clients	and	end-users	to	change	what	they	want	over	time.	The	Waterfall	system
does	not	have	a	way	to	resolve	that	yet,	without	having	to	revise	plans	and	redoing	the
entire	project	altogether.

4.	Testing	for	quality	may	suffer.

It	is	impossible	to	accurately	predict	the	outcomes	of	a	project,	and	when	the	entire	team	is
pressed	for	time,	it	is	possible	to	cut	the	testing	stage	short	in	order	to	meet	the	deadline.



	

5.	You’ll	never	know	what	stage	you	really	are	on.

Since	the	product	that	you	are	trying	to	create	will	not	be	produced	until	the	very	end,	you
are	not	really	sure	if	you	are	still	on	planning	or	you	are	already	on	developing	stage.	That
means	that	it	is	also	likely	for	you	to	spend	more	time	on	a	stage	than	what	you	have
expected	because	of	this	poor	visibility.

In	the	end,	the	Waterfall	method	can	be	too	risky	since	it	is	too	rigid.	In	order	for	you	to
make	you	produce	a	product	that	works	and	would	be	flexible	enough	to	help	you	figure
out	what	is	working	or	not.



	

Enter	Scrum

Scrum,	an	Agile	method,	aims	to	help	you	solve	problems	in	product	creation	with
extreme	flexibility.	This	framework	aims	to	make	you	address	adaptive	and	complex
problems	with	the	highest	productive	value	without	compromising	productivity	in	the
process.

Scrum	is	based	on	the	assumption	that	knowledge	come	from	what	you	have	already
experienced,	which	means	that	you	can	only	make	decisions	based	on	things	that	you
already	know.	Since	this	framework	works	according	to	what	is	already	out	there,	it
implements	an	incremental	and	iterative	approach	to	make	sure	that	you	have	a	handle
over	risk	and	also	optimize	predictability	of	your	tasks.	To	do	just	that,	this	framework
stands	on	three	pillars:

1.	Transparency

All	important	steps	and	aspects	of	all	processes	are	visible	to	those	who	are	responsible	for
outcomes.	That	means	that	everyone	involved	knows	when	a	part	of	the	process	is	already
successful	or	completed,	and	everything	understands	what	they	steps	need	to	be	taken	to
ensure	the	success	of	a	particular	task.

2.	Inspection

Those	who	are	using	Scrum	are	bound	to	always	check	artifacts	and	progress	in	Sprint
Goals	in	order	to	see	if	there	are	any	variances	that	they	do	not	want.	Of	course,	everyone
involved	knows	that	checking	their	progress	should	not	get	in	the	way	of	work.

3.	Adaptation

If	the	person	that	took	care	of	the	inspection	sees	that	there	are	aspects	of	the	process	that
would	make	the	end	product	unacceptable,	then	materials	and	processes	are	immediately
adjusted	to	create	the	desired	outcome.	These	adjustments	are	made	as	soon	as	possible	in
order	to	minimize	any	other	resulting	deviations.

Because	Scrum	stands	on	these	pillars,	people	who	use	this	framework	does	not	have	to
rely	on	a	single	team	to	fulfill	stages	before	they	even	have	an	idea	of	what	they	are
supposed	to	create	and	to	see	if	the	product	that	they	are	making	will	actually	work.

Since	Scrum	eliminates	the	waiting	time	between	stages	and	immediately	points	out	what
process	people	concerned	are	taking	care	of,	it	is	easier	to	see	if	the	people	involved	are
making	progress	or	if	they	need	to	make	corrections.	This	effectively	cuts	the	time	and
budget	people	need	to	spend	to	complete	projects.





Chapter	2:	Will	Scrum	Work?
Scrum	is	a	very	lightweight	and	simple	framework,	and	is	the	way	of	thinking	that	top
companies	such	as	Honda,	Fuji-Xerox,	and	Canon	has	adopted	to	produce	world-class	and
high	quality	results.	With	this	framework,	you	would	learn	how	you	can	create	projects
through	an	all-at-once	product	development	using	a	team-based	and	scalable	approach.

While	it	was	popular	as	a	software	development	process,	Scrum’s	name	actually	came
from	the	rugby	sport	–	in	a	game	of	rugby,	you	restart	the	game	when	the	ball	went	out	of
play	or	someone	has	committed	an	accidental	infringement.	Scrum	as	a	framework	serves
a	similar	purpose	–	instead	of	making	a	game	keep	going	despite	a	possible	error,	you	fix
the	error	right	away	and	play	the	game	right.

What	You	Do	When	You	Scrum

Since	Scrum	is	an	agile	approach,	you	would	need	to	fulfill	a	product	backlog,	which
consists	of	all	capabilities	and	features	that	you	need	to	create	in	order	to	come	up	with	a
successful	product.	This	backlog	will	tell	you	the	things	that	you	need	to	do	first.	If	you
run	out	of	any	resource,	any	item	on	the	backlog	that	has	not	been	completed	will	have
lower	priority	than	the	completed	work.

Any	project	done	using	scrum	is	done	within	short	iterations,	known	as	sprints	that	are
within	time	boxes,	which	would	range	from	a	week	to	a	calendar	month.	During	these
iterations,	a	cross-functional	team	does	all	the	work.

The	jobs	would	include	building,	designing	and	planning,	and	testing.	After	they	are	done,
they	will	connect	with	the	stakeholders	to	get	their	feedback.	Based	on	what	the
stakeholders	will	say,	the	owner	of	the	product	and	the	team	will	make	alterations	on	the
product	and	then	plan	on	how	they	are	going	to	do	the	next	iteration.

If	the	stakeholders	see	a	feature	that	has	already	been	accomplished	by	the	team	and	then
realized	that	they	want	a	new	feature	that	has	not	been	considered	earlier,	the	product
owner	can	just	make	a	new	item	in	the	backlog	so	that	it	can	be	done	in	a	future	iteration.

By	the	end	of	each	sprint	or	iteration,	the	team	produces	a	product	that	can	already	be
launched,	or	an	addition	to	an	existing	product.	If	everyone	has	decided	that	they	cannot
release	a	product	yet	after	a	completed	iteration,	then	everyone	can	decide	to	release	a
bunch	of	features	from	multiple	iterations	instead.

	

What	Makes	Scrum	Great

While	the	previous	chapter	has	already	discussed	the	Scrum	pillars,	you	need	to	know
what	makes	Scrum	great	when	you	develop	products	or	create	a	flow	for	different	types	of
jobs.	Here	are	the	things	that	you	expect	from	a	Scrum	project

1.	Customer	satisfaction

Scrum	eliminates	the	danger	of	not	meeting	customer	needs	–	instead	of	simply	focusing
on	features,	Scrum	identifies	what	kind	of	product	would	be	useful	to	the	end	user.



Because	of	this	foresight,	Scrum	minimizes	the	risk	of	producing	a	product	that	would	be
declined	by	client.

2.	Less	resources	needed

Scrum	makes	it	a	point	that	all	teams	would	start	working	as	soon	as	they	have	a	list	of
what	they	need	to	accomplish.	Instead	of	working	on	a	definitive	plan	that	should	not	be
broken	at	any	cost,	Scrum	requires	teams	to	focus	on	finishing	backlogs	that	are	already
created	ahead	of	time.	Since	the	plans	are	always	flexible	according	to	what	works,	teams
do	not	need	to	spend	more	time	planning	and	instead	spend	resources	on	building	and
maintaining	the	product.

3.	Faster	turnaround	time

Since	people	are	more	focused	on	doing	a	working	product	than	creating	its	project
architecture,	this	framework	is	more	likely	to	produce	a	quality	product	with	less	time.

4.	Better	ROI

Clients	and	organizations	that	want	to	create	projects	are	likely	to	enjoy	improved	return
on	their	investments	since	products	created	through	Scrum	are	more	likely	to	be	tested	for
quality	and	launched	earlier	in	the	calendar.	Since	the	team	releases	smaller	and	more
frequent	improvements	or	additions	to	an	existing	product,	stakeholders	see	that	they
enjoy	better	returns	for	what	they	have	invested.

5.	Better	employee	satisfaction

Since	employees	are	able	to	measure	their	success	and	know	that	they	are	contributing	to
the	success	of	a	project,	they	are	found	to	be	more	motivated	in	engaging	in	projects	that
they	are	involved	in.	Of	course,	more	motivation	for	employees	means	better	productivity
during	iterations.



Can	Scrum	Work	All	the	Time?

While	Scrum	may	be	an	effective	framework	for	many	kinds	of	projects,	it	is	important	for
you	to	realize	that	it	is	not	the	panacea	for	all	kinds	of	projects	–	it	can	be	an	excellent
solution	for	a	lot	of	situations	in	your	organization	but	it	may	not	be	the	proper	answer	in
some	scenarios.

A	framework	known	as	Cynefin	allows	you	to	make	sense	of	situations	that	you	would
encounter	in	project	scenarios.	Take	a	look	at	these	possible	disorder	scenario	domains	in
your	projects	to	find	out	whether	Scrum	would	work	for	you	or	not:

1.	Simple

Simple	scenarios	are	situations	wherein	everyone	can	see	the	cause	and	effects	–	people
know	what	the	right	answer	is.	This	type	of	domain	exists	is	best	for	reproducing	products
over	and	over	again	since	there	are	steps	that	you	can	repeat	to	solve	existing	problems.
While	Scrum	can	be	a	way	to	address	this	type	of	scenario	domain,	you	can	achieve	faster
and	more	certain	results	with	the	assembly	line	frame	work	since	you	have	legitimate	best
practices	anywhere.

2.	Complicated

Complicated	scenarios	are	often	dominated	by	experts	in	order	to	ensure	good	practices	in
a	project.	While	there	is	a	possibility	of	having	multiple	answers,	having	an	expert	to
diagnose	problems	would	be	more	efficient	in	addressing	scenarios	that	have	multiple
possible	outcomes.	Scrum	may	be	used	to	resolve	scenarios	like	this,	but	of	course,	it	may
not	always	be	the	best	framework	to	use.

For	example,	if	you	need	to	adjust	parameters	in	optimizing	performance,	you	may	know
the	best	course	of	action	when	you	assemble	experts	to	take	a	look	at	the	situation,	check
out	available	options,	and	generate	a	response	based	on	their	experience	of	what	a	good
practice	should	be.	Complicated	scenarios	are	best	resolved	through	quantitative	and
tactical	approaches	like	Six	Sigma.

3.	Chaotic

These	kinds	of	scenarios	require	a	solution	right	away	–	when	your	project	goes	to	the
chaotic	domain,	it	means	that	you	are	experiencing	a	crisis	that	your	need	to	put	out	before
you	experience	any	additional	harm	and	to	go	back	to	the	state	of	order.	This	is	the	type	of
scenario	that	you	experience	when	someone	files	a	lawsuit	or	the	only	expert	that	you
know	is	nowhere	to	be	found.

Scrum	is	not	suitable	in	addressing	these	kinds	of	scenarios	since	you	do	not	have	the
luxury	to	prioritize	backlogs	and	what	you	need	to	do	during	the	next	situation.	When
chaos	hits,	you	need	to	have	someone	with	full	authority	to	take	charge	and	act	ASAP.

4.	Disorder

Disorder	domains	happen	when	you	become	uncertain	of	what	stage	you	are	in	in	your



project	and	you	do	not	know	if	any	plans	are	working	or	not.	This	is	a	very	dangerous
situation	that	you	need	to	get	out	of	immediately.

This	requires	you	to	break	the	situation	apart	and	look	at	its	components	to	know	if	they
fall	into	any	other	categories	to	see	what	kind	of	approach	you	should	use	to	solve	the
situation	and	go	back	to	making	progress.	You	can	see	that	there	is	no	point	in	adapting
Scrum	in	this	kind	of	situation	until	you	properly	categorize	the	components	of	the
problem.

5.	Interruptions

When	you	have	a	project	that	would	be	experiencing	multiple	interruptions,	then	you	may
need	to	use	a	different	approach	from	Scrum	–	in	an	interrupt-driven	work	scenario,	your
backlog	would	be	filled	up	non-stop	and	you	do	not	have	the	luxury	of	time	to	work	on
them	in	the	future.

Moreover,	your	backlog	can	change	frequently.	This	makes	iterations	unreliable	since	you
do	not	know	what	future	iterations	would	require	you	to	do.	You	are	also	likely	to	receive
high-priority	backlogs	that	would	prevent	you	from	planning	and	achieving	the	next
iteration	you	have	in	mind.

Because	work	flows	with	a	lot	of	interruptions	also	need	an	agile	approach,	you	may	want
to	use	an	agile	framework,	such	as	Kanban,	that	would	allow	you	to	limit	work	in	process
to	help	you	make	sure	that	you	are	not	handling	more	than	what	you	can	do.	An	agile
framework	also	allows	you	to	optimize	your	work	flow,	measure	your	progress,	and	see
where	you	can	improve	your	approach.

6.	Complex

Complex	problems	make	you	realize	that	there	are	more	unpredictable	results	than	what
you	can	expect	from	your	approaches,	and	in	this	domain,	you	are	more	likely	to	get	the
right	answer	when	you	correct	a	mistake	or	hindsight.

This	requires	you	to	explore	as	much	as	you	can	about	the	problem,	inspect	what	is
working	or	not,	and	then	adapt	based	on	what	you	have	learned.	This	is	also	the	domain
that	you	would	encounter	when	you	are	trying	to	make	innovations	or	making
enhancements	for	previous	projects	that	require	better	features.

This	is	the	domain	where	Scrum	truly	shines,	since	complex	situations	make	use	of	your
ability	to	probe	the	situation	and	inspect	what	you	can	do	in	a	particular	timeframe.	When
you	learn	a	better	method	in	the	process	of	iteration,	then	you	can	adapt	that	on	the	next
iteration	timebox.





Chapter	3:	The	Scrum	Team
Following	what	you	have	read	on	the	previous	chapter,	Scrum	is	not	a	standard	that	you
can	follow	faithfully	in	order	to	make	a	guaranteed	product	that	would	make	customers
happy,	or	to	develop	anything	within	your	budget	and	deadline.	Instead,	it	is	better	to
understand	Scrum	as	a	framework	that	would	enable	you	to	organize	and	manage	work
better.

You	can	think	of	it	as	the	foundations	of	a	building	–	you	can’t	simply	disregard	or	make
sudden	changes	to	a	practice,	principle,	or	value	without	getting	the	risk	of	a	collapse.
With	Scrum,	what	you	can	do	is	to	add	fixtures	and	customize	a	building	until	you	get	a
process	and	product	that	works	best	for	you.

Crucial	to	keeping	the	Scrum	framework	working	are	the	roles	that	people	do	when	they
agree	to	adhere	to	this	type	of	management.	Making	Scrum	work	means	that	people	within
the	Scrum	team	would	be	able	to	fulfill	their	roles	efficiently	to	prevent	any	problems.

The	Product	Owner

He	is	responsible	for	telling	what	should	be	developed	and	the	order	of	items	that	needs	to
be	fulfilled.	You	can	consider	him	as	the	sole	authority	that	would	tell	the	rest	of	the	team
what	they	need	to	create	and	which	features	should	come	first.	In	short,	he	is	the	one	who
tells	the	other	members	of	the	team	about	what	they	should	be	coming	up	with.

For	that	reason,	he	creates	the	product	backlog	that	contains	all	the	product	goals	that	the
development	team	needs	to	accomplish	when	they	are	ready	to	start	working.	The	product
owner	also	needs	to	be	available	at	all	times	in	any	case	the	development	team	and	the
ScrumMaster	has	any	question	about	the	goals	that	he	has	mentioned	in	his	product
backlog.	Because	of	this,	the	product	owner	bears	the	responsibility	of	making	sure	that
the	product	would	be	successful	during	development	and	maintenance.

This	role	entails	that	the	product	owner	needs	to	do	the	following	tasks:

1.	Manage	economics

There	are	several	things	that	a	product	owner	needs	to	meet	to	make	sure	that	he	is
managing	resources	well,	especially	when	the	entire	team	is	ready	to	start	developing	the
product.	When	he	manages	economics,	he	needs	to	make	sure	that	he	manages	the
following	in	the	process.

a.	economics	at	release	level

At	this	point,	the	product	owner	makes	a	series	of	trade-offs	when	it	comes	to	date,	scope,
quality,	and	budget	as	he	gets	information	during	the	product	development.	For	example,
if	he	sees	that	the	team	may	produce	a	product	that	may	create	extra	revenue	if	they	work
on	an	additional	week,	then	he	must	make	a	trade-off	for	the	budget	and	the	product’s	final
release.

Also,	he	may	make	the	decision	to	not	fund	an	additional	week	of	work	if	the	work
planned	to	be	done	on	that	timeframe	does	not	mean	creating	a	better	product.	It	can	also
be	that	the	resources	that	the	team	is	working	on	will	not	justify	additional	work.	He	can



also	decide	that	the	goals	that	they	need	to	work	on	should	change,	or	that	the	entire	team
should	stop	production	because	of	problems	encountered	with	other	stakeholders.

b.	economics	at	sprint-level

It	is	the	product	owner’s	job	to	make	sure	that	there	is	a	good	return	of	investment	(ROI)
happening	in	every	sprint.	Whenever	they	do	economics	at	this	level,	they	treat	the	money
that	the	entire	organization	is	using	as	if	it	is	their	own.	This	makes	them	consider	if	the
features	that	are	bound	to	be	spent	on	is	really	worth	doing.

c.	economics	in	product	backlog

Since	the	product	owner	is	the	one	who	is	going	to	create	the	product	backlog,	he	needs	to
make	changes	in	priorities	in	this	list	when	economic	changes	happen.	For	example,	if	the
development	team	says	that	they	need	to	work	more	on	a	feature	that	was	earlier	predicted
to	take	only	modest	effort,	then	he	sees	that	the	benefits	that	everyone	would	get	from	this
feature	has	already	changed,	prompting	him	to	put	another	feature	up	as	a	priority	in	lieu
of	the	heavier	task.

2.	Take	part	in	planning

During	product	planning,	the	product	owner	deals	with	the	stakeholders	to	get	their	help	in
envisioning	the	product.	Whenever	a	sprint	is	accomplished,	the	product	owner	goes	back
to	the	stakeholders	and	the	rest	of	the	team	to	define	what	should	be	done	next.	When	he	is
planning	the	sprint	with	the	rest	of	the	team,	he	provides	the	input	that	the	development
team	needs	to	look	at	which	items	in	the	backlog	can	be	realistically	done	within	the
sprint’s	timeframe.

3.	Create	the	product	backlog

When	the	product	owner	grooms	the	product	backlog,	he	takes	care	of	the	refining,
prioritizing,	and	estimating	of	the	items	that	are	listed	there,	with	the	help	of	the	members
of	the	Scrum	team.	While	he	may	not	be	entirely	knowledgeable	of	the	development
process,	he	is	available	for	consultation	and	clarification	when	the	development	team
foresees	that	some	amendments	must	be	made	to	meet	their	deadlines.

This	ensures	that	goals	are	updated	according	to	the	work	that	can	be	done	during
production	and	that	backlog	items	can	smoothly	flow	into	the	next	sprints.

4.	Make	criteria	on	what	is	acceptable	and	check	that	people	are	meeting	them

The	product	owner	makes	sure	that	all	goals	that	should	be	met	in	a	sprint	session	have
been	accomplished	by	seeing	to	it	that	both	non-functional	and	functional	requirements
have	been	met	by	the	team.	He	may	consult	with	experts	to	do	this	or	get	assistance	from
the	development	team.

The	acceptance	criteria	are	crucial	to	the	Scrum	team	because	it	tells	everyone	about	the
project’s	progress.	Without	them,	the	development	team	would	not	be	able	to	understand
what	defines	a	completed	work	and	would	not	be	able	to	include	better	practices	on	their
next	sprint.

5.	Work	with	the	development	team



The	job	of	the	product	owner	becomes	an	everyday	role	since	he	is	required	to	stay
engaged	in	the	tasks	of	the	development	team	in	order	to	prevent	delays	on	essential
feedbacks	that	can	already	be	incorporated	within	the	day.

It	also	makes	it	possible	for	the	product	owner	to	see	specific	features	that	are	initially
required	but	may	no	longer	be	needed	when	other	features	are	done.	When	the	product
owner	is	always	within	reach	and	ready	to	provide	feedback,	the	organization	prevents
unwanted	expenses	by	creating	timely	adaptations	for	better	practices.

6.	Work	with	the	stakeholders

The	product	owner	is	the	sole	voice	of	the	stakeholder	community	that	speaks	to	the
people	involved	in	the	production	process.	When	the	product	owner	is	able	to	work
closely	with	all	persons	involved	in	the	product	creation	that	are	outside	the	Scrum	team,
he	would	be	able	to	gather	all	the	input	that	he	needs	to	create	a	coherent	vision	in	the
development	process.	This	way,	the	entire	Scrum	team	prevents	unwanted	risks	in
developing	features	that	may	not	meet	client	and	customer	satisfaction.



ScrumMaster

The	ScrumMaster	takes	care	of	team	guidance	in	developing	the	product,	as	well	as
following	the	process	based	on	Scrum.	He	is	the	one	who	makes	everyone	understand
practices,	principles,	and	values	that	everybody	needs	to	stick	to	in	order	to	achieve	the
success	of	the	project.	In	the	Scrum	team,	the	ScrumMaster	serves	as	the	coach	that
provides	pointers	on	how	to	optimize	performance	by	providing	the	necessary	process
leadership.

The	ScrumMaster	also	helps	resolve	potential	issues	and	make	improvements	on	the
projects	by	following	Scrum.	He	also	makes	sure	that	the	team	is	protected	from	any
outside	interference	and	removes	anything	that	may	hamper	productivity.	However,	this
does	not	mean	that	the	ScrumMaster	has	total	control	over	the	team	–	he	acts	as	a	leader,
and	not	as	a	traditional	project	manager.

Since	the	main	task	of	the	ScrumMaster	is	to	serve	as	coach,	there	would	be	a	point	in	the
day-to-day	activity	when	the	ScrumMaster	does	not	need	to	actively	guide	the
development	team	anymore,	especially	when	the	Scrum	team	has	accomplished	multiple
sprints.

Because	Scrum	is	designed	to	prevent	variances	and	make	work	in	progress	more
efficient,	the	development	team	would	arrive	to	that	point	when	they	do	not	need	coaching
anymore.	However,	the	ScrumMaster	would	be	very	valuable	whenever	the	Scrum	team	is
about	to	start	a	new	sprint	and	the	entire	team	needs	to	incorporate	a	product	backlog	that
they	have	not	encountered	before.

Development	team

The	development	team	determines	methods	on	delivering	what	the	product	master	has
asked	for.	This	team	is	comprised	by	different	people	with	different	job	descriptions,	such
as	designer,	tester,	and	database	administrator,	and	architect,	which	allows	them	to	cross-
function	and	become	dynamic	when	it	comes	to	designing,	testing,	and	building	the
product	required	by	the	product	owner.	Because	of	their	task,	it	is	important	that	the
development	team	is	capable	of	being	self-organized	to	decide	on	the	best	way	to	meet	the
goals	that	are	set	by	the	product	owner.

Here	are	the	responsibilities	that	the	development	team	has	within	the	Scrum	framework

1.	Execute	the	sprint

When	a	sprint	happens,	all	members	of	the	development	team	do	the	designing,
integrating,	building,	and	testing	of	all	items	in	the	product	backlog	by	working	in
increments	and	producing	potentially	shippable	features.	In	order	for	them	to	do	all	these
tasks,	they	need	to	be	self-organized	and	work	as	a	collective	to	make	their	own	decisions
when	it	comes	to	communicating,	managing,	planning,	and	carrying	out	work.	Majority	of
their	time	is	spent	on	sprint	execution.

2.	Grooming	the	backlog



Whenever	a	sprint	planning	happens	or	before	they	start	producing	features,	the
development	team	allots	its	time	to	assist	the	product	owner	when	it	comes	to	refining,
prioritizing	items,	and	creating	items	on	the	product	backlog.

3.	Planning	the	sprint

The	development	team	works	with	the	product	owner	and	the	ScrumMaster	to	develop	the
goals	that	they	need	to	achieve	during	the	next	sprint.	The	team	would	be	responsible	for
identifying	which	subset	of	the	product	backlog	should	be	prioritized	in	order	to	achieve
the	goals	they	have	identified.

4.	Inspect	and	Adapt

When	a	sprint	ends,	the	development	team	becomes	involved	in	reviewing	the	features
they	have	accomplished	in	the	previous	sprint	and	what	technical	and	process	practices
they	need	to	adapt	in	their	next	sprint.

Because	of	these	responsibilities,	the	development	team	needs	to	be	self-sufficient	and
capable	of	cross-functionality.	That	means	that	it	may	be	necessary	for	the	team	to	be
made	up	of	people	that	come	from	different	backgrounds	that	equip	them	different
cognitive	skills.	While	the	members	of	the	team	have	their	own	specialties,	they	should
also	be	able	to	adapt	as	individuals	to	tasks	that	are	outside	of	their	core	discipline.

It	is	also	important	that	the	development	team	has	the	right	size.	Scrum	prefers	that	the
development	team	is	small	(just	about	five	to	nine	members)	in	order	to	maintain	its
efficiency.	By	keeping	the	team	small,	there	is	no	chance	for	members	to	do	any	social
loafing	or	slack	around	with	the	thought	that	there	would	always	be	someone	that	would
do	the	work	for	them.

Less	time	is	also	spent	on	communicating	efforts	on	other	team	and	constructive
interaction	is	also	promoted	in	a	group	with	a	small	number.	In	addition,	everyone	in	the
team	realizes	how	important	everyone	in	the	team	is,	which	makes	harmful	specialization
less	likely	to	happen.

What	About	Managers	and	the	QA?

Scrum	does	not	need	to	have	a	number	of	managers	in	order	to	make	the	entire	Scrum
team	sustainable.	All	that	they	need	is	to	make	sure	that	the	product	owner	and	the
ScrumMaster	works	together	well	when	it	comes	to	ensuring	that	the	development	team	is
doing	all	the	work	needed.

Some	organizations	try	to	still	implement	separate	testing	or	install	a	QA	team	while	they
are	adapting	the	Scrum	framework.	While	there	are	some	instances	that	a	separate	team
that	performs	testing	on	features	may	be	necessary,	it	is	often	the	case	with	Scrum	that
there	would	be	no	need	for	such.	Because	testing	is	already	interwoven	with	work	that
happens	in	every	sprint,	the	development	team	can	already	test	the	features	while	they	are
still	working	on	them.

	

	





Chapter	4:	Activities	and	Artifacts
When	an	organization	decides	to	adhere	to	the	Scrum	framework,	everyone	involved,
including	all	stakeholders	and	members	of	the	Scrum	team	must	make	sure	that	all	tasks
are	completed.	To	measure	that,	they	need	to	follow	a	protocol	that	would	allow	them	to
keep	track	of	activities	and	artifacts	that	they	need	to	accomplish.

While	Scrum	makes	it	a	point	that	the	workflow	in	any	given	project	is	dynamic,	it	still
needs	to	follow	a	specific	of	events.	By	following	this	flow,	people	would	be	able	to
determine	what	tasks	they	are	doing	and	what	needs	should	be	fulfilled	in	the	process	of
producing	a	product.	This	flow	also	shows	them	when	they	need	to	adapt	a	better	practice,
scrap	a	feature	altogether,	or	launch	the	product	for	the	end	users	to	receive	them.

Here	are	the	activities	and	artifacts	that	each	member	of	the	team	needs	to	take	care	of	in
order	to	create	a	product	or	complete	a	project:

a)				Product	backlog

	

This	is	the	list	that	contains	all	the	things	that	are	needed	to	be	accomplished	in	a
product	or	project.	To	obtain	this	list,	the	product	owner,	with	the	help	of	the	input	from
the	stakeholders	and	the	Scrum	team,	creates	a	sequence	of	tasks	that	are	arranged
according	to	importance.	The	product	backlog	contains	the	initial	vision	of	the	product
master	before	any	work	is	done,	and	after	a	few	iterations,	may	contain	changes	to	alter
features	that	are	not	working	out,	required	repairs,	possible	improvements,	and	so	on.

	

Some	Scrum	teams	refer	to	their	product	backlog	as	“user	story”	since	that	reminds
them	better	that	they	build	products	or	finish	projects	to	satisfy	the	end	user’s	needs.	In
creating	the	items	or	stories	in	the	backlog,	the	product	owner	defines	the	following:

i.					which	types	of	users	will	the	item	benefit
ii.			what	needs	to	be	built
iii.	the	reason	why	the	feature	is	important
iv.		how	much	work	the	item	needs	to	be	implemented
v.				standard	that	will	tell	that	the	item	has	been	implemented	correctly

	

Before	all	these	are	finalized,	you	need	to	look	at	the	size	of	each	item	that	you	have
placed	in	the	backlog.	If	the	item	in	the	backlog	is	huge,	then	it	entails	a	higher	cost.	In
any	project,	cost	needs	to	be	determined	in	order	to	tell	if	it	should	be	a	priority	or	not.

For	that	reason,	a	lot	of	teams	use	a	term	called	relative	size	measure,	which	you	may
encounter	as	ideal	days	or	story	points.	Using	this	measure,	you	can	tell	the	overall	size
of	an	item	in	the	backlog	and	then	compare	it	to	the	size	of	other	items.

	

b)			Sprints



	

In	Scrum,	the	sprint	is	the	iteration	that	exists	within	a	particular	timeframe.	Within
sprints,	the	team	aims	to	create	something	that	is	already	valuable	to	the	end	user.

	

Within	the	sprint	is	a	sprint	backlog	which	serves	as	the	to-do	list	that	needs	to	be
done	within	a	particular	duration.	Within	the	sprint	timeframe,	the	ScrumMaster
makes	it	a	point	that	there	would	be	no	reason	for	the	development	team	to	not	meet
any	of	the	items	in	the	sprint	backlog.

	

To	do	this,	it	becomes	a	practice	to	make	sure	that	there	is	no	alteration	in	the	goals
that	have	been	expressed	earlier	–	there	should	be	no	changes	done	in	the	sprint
backlog	and	there	should	be	no	changes	in	personnel	involved.	For	that	reason,	the
product	master	and	the	ScrumMaster	agrees	on	what	should	be	in	the	sprint	backlog,
and	then	the	development	team	reviews	which	high-priority	items	can	be
realistically	achieved	while	doing	the	job	in	a	sustainable	pace.

	

That	means	that	the	development	team	has	a	say	on	what	kind	of	pace	they	should
be	working	on	to	comfortably	achieve	what	is	said	in	the	backlog.	To	be	able	to
determine	the	suitable	pace,	the	development	team	divides	the	items	that	the	product
owner	and	the	ScrumMaster	agreed	to	do	on	a	specific	sprint	into	smaller	tasks,
which	becomes	the	items	on	the	sprint	backlog.

	

When	the	development	team	plans	their	sprint	backlog,	they	usually	define	how
many	hours	they	need	in	order	to	accomplish	the	task.	Since	sprints	are	supposed	to
be	done	fast,	they	do	not	want	to	take	too	much	time	in	planning	–	the	sprint	plan	for
a	month	should	be	completed	in	less	than	8	hours.

	

The	development	team	should	be	able	to	see	if	the	tasks	they	need	to	do	would	fit	in
the	sprint	timeframe	that	the	ScrumMaster	gave	them.	If	it	does,	they	would	be	able
to	repeat	the	work	and	check	if	they	can	accommodate	more	tasks.

	

c)				Execution

	

Once	the	Scrum	team	is	done	with	planning	and	everyone	is	set	with	the	tasks	that	they
need	to	accomplish	on	the	next	sprint,	the	development	team	goes	to	work	under	the
guidance	of	the	ScrumMaster.	The	team	would	only	consider	a	task	done	if	they	are
confident	that	all	tasks	necessary	to	create	quality	features	are	accomplished.



	

At	this	phase,	nobody	tells	the	development	team	what	to	do	in	order	to	achieve	all
items	specified	in	their	sprint	backlog.	Instead	of	being	directly	managed,	the
development	team	organizes	itself	according	to	what	can	make	them	achieve	their	tasks
efficiently.

	

d)			Daily	Scrum

	

The	development	team	members	hold	a	specific	portion	of	the	day	to	inspect	their
methods	and	see	if	there	is	a	better	practice	they	can	adapt	to	improve	the	quality	of
the	product	they	are	making	on	a	particular	sprint.	This	normally	happens	as	a	15-
minute	(or	less)	huddle	within	the	development	team.	The	ScrumMaster	assists	them
on	their	huddle	by	asking	each	member	the	following:

i)							Accomplishment	since	the	last	daily	scrum

ii)				Plans	for	the	next	scrum

iii)		Any	obstacles	that	prevents	progress

When	team	members	address	these	issues,	they	become	better	aware	of	the	bigger
picture	–	they	see	if	they	are	making	any	progress	or	if	there	are	any	modifications
they	need	to	make	in	their	activities	and	immediately	put	them	into	action	without
having	to	go	back	to	the	drawing	board	and	redo	the	plan	all	over	again.	By	taking
note	of	any	improvements	or	additional	good	practices	that	they	can	perform,	they
know	that	they	can	do	a	much	better	product	on	the	next	sprint.

e)				Done

	

All	people	in	different	roles	need	to	agree	on	the	concept	of	“done”	before	they
move	on	to	other	items	in	the	backlog	that	they	agreed	to	resolve	on	the	next	sprint.
When	everyone	agrees	on	the	concept	of	“done”,	they	should	be	able	to	reach	that
level	of	confidence	that	the	amount	of	work	they	have	completed	is	good	quality
work	and	has	the	potential	to	be	shipped.

	

When	you	think	about	the	concept	of	potentially	shippable	product,	it	does	not	have
to	be	a	product	that	the	team	would	already	deploy	to	the	client	or	customers.	It	only
means	that	when	all	other	things	are	satisfactory	in	business	(the	customers	can
absorb	another	change	that	may	happen	to	a	product	they	have	deployed	or	the
organization	has	reached	a	good	amount	of	features	to	justify	deployment	to
customers),	the	product	that	the	team	has	created	is	ready	to	go	public.

	



In	Scrum,	a	product	is	potentially	shippable	when	everyone	is	aware	that	the	amount
of	work	accomplished	in	sprint	is	satisfactory	and	there	is	no	work	or	feature
neglected	in	the	work	process.	That	means	that	the	work	accomplished	is	already
enough	to	generate	feedback,	which	would	determine	if	they	need	to	add	features	in
the	product	backlog	or	that	they	are	ready	for	launch.

	

f)					Sprint	Review

	

When	a	sprint	is	accomplished,	it	becomes	necessary	for	everyone	to	inspect	and
adapt	the	project	or	product	that	everyone	is	building.	At	this	point,	the	Scrum	team,
sponsors,	customers,	stakeholders,	and	other	interested	parties	hold	a	conversation
to	review	the	completed	features	based	on	the	context	of	the	development’s	overall
effort.

	

If	the	sprint	gets	a	successful	review,	everyone	who	is	not	on	the	Scrum	team	would
be	contributing	ideas	on	how	the	development	can	improve.	This	is	that	point
wherein	stakeholders,	customers,	sponsors,	and	other	concerned	parties	can	pitch	in
to	the	development’s	direction.

	

g)				Sprint	Retrospective

	

When	the	Scrum	team	has	received	the	review	and	feedback	from	others,	then	they
would	be	doing	their	own	inspect	and	adapt	process.	At	this	point,	everyone	in	the
team	would	be	discussing	what	worked	and	what	they	need	to	throw	out	of	the
process.

	

Once	they	are	done	with	this	phase,	they	are	ready	to	plan	their	next	sprint	based	on
the	assessment	of	their	previous	workflow	and	technical	processes.

	





Chapter	5:	Agile	Principles	at	Work
How	do	you	know	if	the	Scrum	framework	is	going	well?	Since	this	is	an	agile
framework,	you	would	need	to	see	if	the	practices	that	all	stakeholders	and	members	of
the	Scrum	team	works	well	with	the	agile	principles	that	they	need	to	follow.

The	Principles	of	Agile

Going	back	to	the	traditional	Waterfall	system,	following	a	plan-driven	development	only
works	when	every	challenge	an	organization	meets	are	already	predictable,	well-defined,
and	very	unlikely	to	change.	While	a	plan-driven	approach	such	as	the	Waterfall	would	be
useful	for	many	scenarios,	you	can	think	of	it	as	an	extremely	measurable,	accountable,
and	orderly	means	of	embarking	into	a	project.	However,	you	would	need	agile	methods
when	you	are	already	aware	that	things	are	not	likely	to	be	predictable.

For	this	reason,	frameworks	like	Scrum	adhere	to	an	entirely	different	set	of	practices	and
principles	in	order	to	address	uncertainty.	Agile	principles	are	divided	into	these	categories

1.	Variability	and	uncertainty

Agile	processes	are	created	to	embrace	any	variability	that	may	help	produce	a	better
feature.	In	order	to	address	variances	and	the	unknown,	they	apply	iterations	and	pursue
developments	in	increments	in	order	to	make	sure	that	they	are	going	to	meet	well-defined
goals	in	time.

By	embracing	variability,	they	turn	it	into	a	leverage	to	pursue	adaptation	during	work	by
transparency	in	processes	and	constant	inspection.	Because	variances	would	become
predictable	in	time	by	adapting	it	when	necessary,	it	is	possible	to	reduce	different	forms
of	uncertainty	simultaneously	in	an	agile	framework	such	as	Scrum.

2.	Prediction	and	adaption

In	an	agile	framework	such	as	Scrum,	you	would	need	to	keep	all	options	open	and	accept
the	fact	that	it	may	be	impossible	to	get	flawless	features	in	a	single	go.	In	order	to	achieve
a	potentially	shippable	feature,	frameworks	like	Scrum	would	need	to	explore	and	adopt
changes,	as	long	as	they	are	economically	sensible.	It	also	means	that	agile	processes	need
to	create	a	balance	between	predictable	work	upfront	and	an	adoptive	work	that	meets	the
schedule.



	

3.	Validated	learning

In	an	agile	framework,	all	people	involved	need	to	validate	all	their	assumptions	and	they
need	to	do	it	fast.	They	also	need	to	leverage	different	simultaneous	learning	loops	to
make	work	rendered	faster.	Because	of	this,	it	is	necessary	for	a	very	organized	workflow
to	make	timely	feedbacks	possible.

4.	Work	in	Process	(WIP)

Work	in	Process	refers	to	any	work	that	has	already	started	but	is	not	yet	finished.	When
dealing	with	WIP,	it	is	important	that	you	commit	to	work	that	is	economically	sensible	so
that	teams	can	finish	batches	of	work	within	the	timeframe	and	budget	that	they	need.	In
an	agile	framework	such	as	Scrum,	small	batches	of	work	are	generally	favored	to
promote	the	following	benefits:

1.	Reduced	cycle	time	–	small	amount	of	work	produces	lesser	amount	of	tasks	that	needs
to	be	processed	in	a	sprint,	which	means	that	there	is	less	waiting	time	for	a	team	member
when	he	needs	to	get	another	person’s	output	before	he	gets	started.	This	means	that
everyone	in	the	team	gets	work	done	faster.

2.	Reduced	flow	variability	–	when	smaller	amount	of	work	is	done	in	batches,	they	flow
nicely	within	team	members	since	they	can	count	on	resources	to	accommodate	a	batch.

3.	Accelerated	feedback	–	work	done	in	small	batches	can	already	receive	feedback	since
they	are	accomplished	faster.	This	minimizes	error	risk

4.	Reduced	overhead	–	when	teams	work	in	smaller	batches	of	work,	they	do	not	need	to
spend	too	much	on	their	overhead	to	complete	a	cycle,

5.	Increased	sense	of	urgency	and	motivation	–	small	batches	makes	it	possible	for
everyone	involved	to	see	possible	causes	of	delays,	mistakes,	and	development	progress.
Since	they	can	already	correct	mistakes	and	see	their	progress,	people	get	more	motivated
to	work	on	the	next	batch	immediately.

When	you	consider	all	these,	you	would	also	be	able	to	compute	the	cost	of	delays	more
effectively	by	seeing	the	amount	of	resources	that	you	have	lost	because	of	unfinished
work.	This	allows	you	to	reprioritize	items	that	you	need	to	take	care	of.

At	the	same	time,	you	also	get	to	focus	on	idle	work	instead	of	having	the	management
feel	bothered	by	idle	workers.	By	looking	at	work	that	is	still	not	done,	you	would	be	able
to	calculate	overhead	costs	that	go	to	waste	and	delegate	tasks	more	efficiently.



	

5.	Progress

When	you	use	Scrum	as	a	framework,	you	would	be	able	to	measure	progress	at	work
according	to	what	teams	have	already	delivered	and	what	is	already	validated.	That	means
that	you	do	not	need	to	be	too	concerned	about	how	far	teams	are	in	a	production	phase	or
if	things	are	going	according	to	plan.	When	you	look	at	progress	at	work	this	way,	you	do
the	following	things:

a.	Adapt	to	what	you	know	now

Since	you	do	not	have	to	follow	a	plan	so	faithfully,	you	are	already	aware	that	things	may
not	go	as	expected.	In	Scrum,	you	need	to	make	provisions	for	replanning	as	soon	as	you
get	the	information	that	you	need	to	adapt	to	certain	changes,	especially	if	you	have	an
economically	important	detail	that	you	need	to	consider	within	the	development.

b.	Measure	through	validation	of	working	assets

You	would	only	be	able	to	measure	progress	when	you	create	validated	assets	that	work.
They	should	be	able	to	deliver	the	value	that	your	clients	and	end-users	need,	instead	of
simply	meeting	your	budgets	and	deadlines.	In	the	end,	this	would	allow	you	to	receive
the	feedback	that	you	need	to	identify	what	your	next	step	in	the	project	should	be.

c.	Focus	on	value-centric	delivery

A	process	does	not	matter	if	the	development	plan	would	not	be	able	to	deliver	anything	of
value.	Since	agile	frameworks	such	as	Scrum	define	progress	according	to	satisfaction	and
value,	artifacts	that	are	defined	earlier	can	change	if	the	situation	has	already	changed	for
the	customer.

That	means	that	when	you	adhere	to	Scrum,	you	would	always	have	to	validate
assumptions	and	turn	them	into	knowledge	of	what	is	perceived	to	give	customer	value.	In
Scrum,	every	artifact	that	does	not	present	a	value	does	not	provide	you	any	useful
assumption	to	aid	you	in	knowing	what	you	should	do	next.

6.	Performance

In	Scrum,	there	are	different	work	characteristics	that	describe	what	good	performance	is.
You	are	aware	that	you	are	doing	excellent	performance	when	you:

a.	Do	work	fast,	but	not	in	a	hurry

While	agile	processes	require	quick	feedbacks,	the	quickness	of	doing	work	in	a
framework	such	as	Scrum	does	not	mean	that	you	quickly	move	from	Step	1	to	Step	2.
That	only	happens	in	a	scenario	with	zero	variances,	which	is	while	desirable,	less	likely
to	happen.	In	Scrum,	your	goal	is	to	be	speedy	in	development,	without	neglecting	the
need	to	be	flexible	and	highly	adaptive.

Time	is	very	important	for	Scrum	to	work,	since	people	are	working	within	timeboxed



sprints.	However,	you	would	not	want	to	rush	things	in	this	framework	in	order	to	make
sure	that	you	are	working	in	a	sustainable	pace.	When	you	stick	to	the	principle	of
sustainable	pace,	you	stick	to	the	idea	that	you	would	work	at	a	pace	that	would	allow	you
to	keep	on	working	for	an	extended	amount	of	time.	This	prevents	exhaustion	from	team
members,	unpredictable	expenses,	and	the	risk	of	making	quality	suffer.

b.	Create	quality	products

Traditional	frameworks	like	Waterfall	believe	that	careful	planning	and	doing	everything
according	to	plan	is	the	secret	sauce	in	creating	a	high-quality	product.	However,	it	is
important	to	know	what	quality	really	is,	and	you	cannot	do	that	until	a	latter	phase	in	the
process.	If	testing	tells	that	the	product	lacks	quality,	then	it	would	be	important	to	do	the
very	expensive	test-and-fix	method.

In	Scrum,	a	cross-functional	Scrum	team	owns	the	quality	of	the	results	and	they	make	it	a
point	that	they	build	according	to	it	in	every	sprint.	When	they	produce	increments	of	the
product,	everyone	is	already	aware	that	it	is	done	with	a	high	level	of	confidence	and	it
already	has	the	potential	for	shipping.	Because	of	this	good	practice,	there	is	no	more	need
to	test	features	later	in	the	process	and	the	risk	of	incurring	additional	costs	for	revising	is
dramatically	reduced.

c.	Observe	ceremonies	as	minimal	as	possible

Ceremonies	or	formalities	often	play	a	big	role	in	tradition-driven	working	processes.	In
methods	like	Waterfall,	the	success	of	a	phase	is	often	measured	by	adapting	checkpoints,
creation	of	documents,	or	making	a	new	team	to	work	on	the	product’s	aspect.	This
increases	the	costs	of	delays	and	blow	up	the	overhead.

In	an	agile	framework	like	Scrum,	organizations	make	it	a	point	that	they	minimize	these
ceremonies	as	often	as	possible.	Since	there	is	no	need	for	any	checkpoint,	apart	from	the
end	of	the	sprint	wherein	teams	meet	up	with	the	stakeholders,	work	is	done	faster.
Moreover,	confidence	among	stakeholders	already	exist	and	they	already	are	aware	that
features	produced	in	each	sprint	are	about	to	be	ready	for	production.

By	learning	these	principles,	you	become	aware	of	how	to	turn	your	organization	into	a
Scrum	environment.	Now,	it’s	time	to	understand	how	to	optimize	performance	and	ensure
confidence	in	a	Scrum	process.





Chapter	6:	The	Product	Backlog
As	you	have	already	read	in	an	earlier	chapter,	the	product	backlog	is	the	list	that	contains
all	the	priorities	in	a	project.	It	also	is	the	very	thing	that	provides	a	shared	understanding
of	what	people	should	be	creating	and	in	what	way	they	should	be	building	it.	In	Scrum,	as
long	that	there	is	a	system	or	a	product	that	is	in	the	process	of	being	created,	improved,	or
supported,	the	product	backlog	exists.

What	Should	Be	In	It?

Product	backlog	items,	or	PBIs,	are	functionality	items	or	features	that	have	a	real	value	to
a	customer	or	user.	These	items	are	often	told	as	“user	stories”.	PBIs	may	also	be	in	the
form	of	defects	that	need	to	be	repaired,	knowledge-acquisition	work	or	research,	or
technical	enhancements.

Good	and	efficient	product	backlogs	all	have	the	same	traits.	These	are	the	following:

1.	Detailed	appropriately

Not	all	PBIs	will	all	have	the	same	detail	that	the	Scrum	team	and	the	stakeholders	are
aware	of	at	the	same	time.	The	PBIs	that	are	needed	to	be	worked	on	as	soon	as	possible
are	those	that	are	small	in	size	and	are	very	detailed	so	that	they	can	be	accommodated	in
the	nearest	sprint.	Those	that	are	not	yet	defined	and	still	not	divided	into	smaller	sets	of
tasks	are	those	that	belong	to	the	bottom	of	this	priority	list.

2.	Emergent

The	product	backlog	should	not	be	frozen	or	seen	as	complete	as	long	as	there	is	still	a
product	being	built,	repaired,	or	maintained.	It	should	be	continuously	updated	according
to	all	the	information	that	an	organization	receives,	and	that	means	that	it	will	be	updated
as	often	as	possible,	especially	when	competitors	make	a	bold	move	to	challenge	the
product,	customers	provide	poor	feedback	about	a	feature,	or	an	unforeseen	technical
problem	arises.

While	these	scenarios	may	be	problematic,	the	product	backlog	must	always	be	flexible
enough	to	adapt	to	these	scenarios.

3.	Estimated

Each	PBI	should	have	a	size	estimate	which	equals	to	the	amount	of	effort	everyone
involved	in	the	product	creation	should	exert	to	make	it	possible.	These	estimates	would
be	one	of	the	most	important	factors	that	the	product	owner	needs	to	consider	in	making
priorities	in	the	product	backlog.

For	a	product	owner	to	put	an	item	above	the	rest	means	that	that	item	has	already	been
measured	to	be	within	the	working	capacity	and	budget	of	the	organization	and	has
foreseen	economic	benefits	that	can	be	cashed	in	as	soon	as	the	next	sprint	is	done.

4.	Prioritized

While	the	product	backlog	is	known	to	be	a	list	of	project	priorities,	you	need	to
understand	that	not	all	items	in	there	will	be	prioritized	in	the	sprints.	It	is	however	very



useful	to	prioritize	PBIs	that	everyone	has	already	decided	to	belong	to	the	foreseen	and
upcoming	sprints,	or	items	that	needs	to	be	taken	care	of	until	the	initial	release	of	the
product.	However,	afterthought	features	that	may	be	done	after	the	release	should	not	be
included	in	the	product	backlog.

Grooming	the	Product	Backlog

Grooming	refers	to	the	following	activities:

1.	creating	and	refining	PBIs

2.	estimating	items

3.	ordering	items	in	the	backlog	according	to	priority

All	items	in	the	backlog	need	to	be	estimated	in	order	to	identify	the	rank	in	the	backlog
and	decide	whether	the	Scrum	team	needs	to	do	any	additional	work	to	refine	an	item.	At
the	same	time,	when	an	important	information	comes	in,	new	items	would	be	created	in
the	backlog	and	inserted	in	this	list	according	to	how	they	should	be	prioritized.

When	you	get	closer	to	a	large	item,	you	would	need	to	refine	it	into	smaller	items	to
know	how	you	can	fulfill	it.	You	might	also	just	decide	that	an	item	in	the	backlog	is	not
necessary	to	spend	resources	on	and	should	be	deleted	from	the	list.

When	the	product	owner,	the	development	team,	and	stakeholders	decide	to	groom	the
product	backlog,	they	do	not	agree	on	when	grooming	should	take	place.	When	the	work
has	already	started,	grooming	happens	as	an	out-of-the-flow	activity,	since	Scrum	has	an
uncertain	environment	where	everyone	should	be	prepared	to	constantly	inspect	features
that	are	being	worked	on	and	adapt	changes	or	good	practices	when	necessary.

Taking	the	time	to	stop	work	and	meet	up	for	grooming	should	only	happen	when	it	is
very	necessary;	otherwise,	it	would	disrupt	Scrum’s	fast	workflow.

When	is	the	Backlog	Ready?

When	the	product	owner	is	done	grooming	the	backlog	and	the	development	team	is
confident	that	they	can	achieve	assigned	products	on	the	next	sprint,	then	the	backlog	is
considered	as	ready.	That	means	that	the	following	criteria	have	been	satisfied:

1.	the	business	value	of	the	items	are	clearly	stated

2.	details	of	items	are	understood	by	the	development	team	and	they	are	able	to	make	a
decision	that	they	can	complete	items	in	the	backlog

3.	team	is	adequately	and	appropriately	staffed	to	fulfill	in	the	backlog

4.	the	PBI	is	small	enough	and	estimated	to	be	fulfilled	in	a	sprint

5.	the	product	owner	has	made	clear	and	testable	acceptance	criteria

6.	the	Scrum	team	knows	how	to	demonstrate	the	item	during	the	sprint	review.





Chapter	7:	Estimating	Work	and	Measuring	Velocity
When	you	are	managing	or	planning	how	a	product	should	be	built,	you	need	to	answer
questions	like	“How	many	features	should	be	done?”	“When	will	all	the	work	become
finished”	and	“How	much	budget	will	the	tasks	use?”

To	use	Scrum	to	answer	these	questions,	you	would	need	to	have	an	estimate	of	the	size
that	you	need	to	build	and	measure	the	velocity	or	the	rate	at	which	you	will	be	able	to	get
the	work	accomplished.	Once	you	have	all	those	details,	you	are	likely	to	come	up	with
the	overall	time	needed	for	development	and	its	corresponding	cost.

How	Long	and	Costly	is	Work?

You	can	easily	derive	the	product	development	duration	by	simply	following	this	formula:

(estimated	size	of	feature	set)	/	(team’s	velocity)

Wherein:

Estimated	size	of	feature	set	=	the	total	of	size	estimate	for	each	product	backlog	item
(PBI)

Team’s	velocity	=	the	amount	of	work	the	Scrum	team	completes	each	sprint

The	velocity	is	easily	measured	by	adding	the	size	estimates	of	all	the	PBIs	that	was
accomplished	during	the	sprint.

What	You	Need	to	Measure

In	Chapter	4,	you	have	read	that	relative	size	measure	is	done	in	order	to	calculate	the
amount	of	work	to	be	done.	Since	items	in	the	backlog	are	also	called	“stories”,	the
estimated	amount	of	effort	that	needs	to	be	done	in	order	to	complete	a	feature	is	called
“story	points”.	Alternatively,	you	can	also	get	the	relative	size	measure	by	knowing	the
“ideal	days”	of	work.	Here	is	how	these	measurements	work:

1.	Story	points

These	are	numbers	assigned	to	a	particular	item	in	the	backlog,	which	shows	the
relationship	of	other	items	that	also	needs	to	be	accomplished.	For	example,	if	you	need	to
create	a	title	for	your	project,	it	could	have	a	story	point	of	2.	Getting	the	details	for
publicity	copy	for	your	project	may	have	a	story	point	of	8.

That	means	that	the	effort	that	needs	to	be	done	to	do	research	for	your	publicity	is	4	times
larger	than	creating	the	title.	Take	a	look	at	this	diagram	to	have	a	visual	idea	on	how	the
story	points	are	assigned	depending	on	the	size	of	a	construction:	



Image	from	manifesto.co.uk

2.	Ideal	Days

Ideal	days	are	the	number	of	days	that	you	need	to	work	on	a	specific	PBI.	Take	note	that
ideal	days	are	not	necessarily	consecutive	calendar	days	–	it	represents	the	number	of	days
that	a	person	needs	to	work	on	a	story,	and	is	not	the	same	as	the	elapsed	time.

You	can	take	a	football	game	as	an	example	for	this	–	while	four	quarters	into	the	game
are	supposed	to	last	for	only	15	minutes	each,	it	may	take	the	game	three	hours	to	play.	By
measuring	work	done	according	to	ideal	days,	you	have	room	for	possible	interruptions	or
distractions	that	may	happen	within	the	sprint	that	you	are	planning	to	do.

What	should	you	use	as	a	measure	in	your	organization?	There	is	no	right	or	wrong
answer	to	this,	and	you	need	to	find	out	the	method	that	works	best	for	you.	If	there	is	no
reason	for	people	to	misunderstand	a	personnel’s	idea	of	ideal	days,	then	you	can	adopt
that	measure	with	no	problem.	However,	if	you	think	that	there	would	be	a
misunderstanding	when	you	use	this	term,	then	you	can	stick	to	using	story	points	instead.



	

Playing	the	Planning	Poker

The	Planning	Poker	is	a	technique	employed	to	measure	PBI	sizes.	In	this	method,	you	are
using	a	technique	that	relies	on	the	consensus	to	have	an	estimate	on	the	effort	that	needs
to	be	exerted	for	every	PBI.	Experts	or	knowledgeable	people	are	also	tapped	by	the
product	manager	to	expose	assumptions	about	the	effort	and	for	everyone	in	the	Scrum
team	to	have	a	more	accurate	understanding	on	how	much	work	should	really	be	done.

In	this	planning	activity,	the	entire	Scrum	team	works	together	to	group	items	in	the
backlog	that	have	the	similar	size.	Afterwards,	the	team	will	use	all	the	details	that	they
have	found	out	from	the	Planning	Poker	to	estimate	the	rest	of	the	items	in	the	product
backlog.

These	are	the	cards	that	are	used	in	Planning	Poker:

Image	from:	check.burdenis.net

	

These	numbers	are	ordered	through	the	Fibonacci	sequence,	but	there	are	some	cards	that
simply	show	the	relationship	of	sizes	for	a	particular	PBI.	When	you	see	numbers	on	a
Planning	Poker	set,	they	simply	mean	the	following:

a.	0	–	the	item	is	already	done	or	is	too	small	to	assign	it	a	number.

b.	½	-	the	item	is	tiny

c.	1,	2,	3	–	points	assigned	for	small	items



d.	5,	8,	13	–	points	assigned	for	medium-sized	items.	A	lot	of	teams	consider	that	13	points
worth	of	an	item	would	be	the	biggest	size	that	they	would	put	in	a	sprint.	If	an	item
scores	more	than	13,	they	would	want	to	break	it	into	smaller	items	instead.

e.	20	and	40	–	points	assigned	for	large	items.	Organizations	typically	call	these	story
items	a	feature	or	theme-level	stories

f.	100	–	points	assigned	to	a	very	large	story	which	is	also	referred	to	as	an	epic

g.	∞	-	indicated	that	an	item	is	too	large	that	it	doesn’t	correspond	to	any	number

h.	?	–	shows	that	the	team	member	does	not	comprehend	what	the	item	is	and	is	asking	the
product	owner	to	define	or	clarify	it	for	him.

i.	π	–	this	doesn’t	mean	the	mathematical	pi,	but	rather	somebody	wants	to	take	a	break,	or
have	a	“pie”.	Some	decks	use	a	coffee	cup	image	instead.	When	someone	raises	this	card,
the	team	needs	to	take	a	break.

Here	are	the	rules	for	the	Planning	Poker:

1.	The	product	owner	reads	the	PBI	to	the	team

2.	The	development	team	discusses	the	item	and	asks	for	any	clarifications	to	the	product
owner

3.	Each	member	of	the	team	selects	a	card	that	represents	his	estimate.	Each	member
should	hide	their	card	from	his	teammates.

4.	Once	everyone	is	done	selecting	their	card,	the	team	members	simultaneously	show
their	cards	to	expose	private	estimates.

5.	If	everyone	on	the	team	shows	the	same	card,	then	a	consensus	is	reach.	The	number	on
the	card	would	be	the	PBI	estimate.

6.	If	a	different	card	is	shown	by	a	member,	the	team	needs	to	discuss	any	assumptions	or
misunderstanding	regarding	the	PBI.	This	discussion	usually	starts	by	asking	why	the
person	who	showed	a	different	card	made	his	estimate.

7.	When	the	discussion	is	done,	repeat	step	3	until	the	team	makes	a	consensus.

Defining	Velocity

As	mentioned	earlier,	the	term	velocity	refers	to	the	amount	of	work	completed	in	a	sprint.
It	is	normally	measured	by	adding	the	sizes	of	the	PBIs	that	are	done	by	the	end	of	a	sprint
session.	The	numbers	to	be	added	will	not	include	any	partially	done	PBI	since	they	do	not
get	any	value	out	of	it	anyway.

Because	of	this	definition,	velocity	is	a	way	to	measure	the	output	and	not	the	outcome	or
the	value	of	what	is	delivered.	It	is	a	way	for	the	team	to	measure	how	many	sprints
should	they	make	in	order	to	complete	everything	on	the	backlog	and	have	the	entire
discussed	feature	released.

It	is	also	a	way	to	determine	the	capacity	of	everyone	to	commit	to	work	during	the	next
sprint.	Because	of	this,	the	team’s	velocity	becomes	a	very	useful	diagnostic	measure	that



the	Scrum	team	can	use	to	improve	and	evaluate	the	usage	of	the	Scrum	framework	to
deliver	what	the	customer	or	end	user	truly	needs.	By	taking	a	look	at	the	team’s	velocity
over	time,	the	team	can	see	how	any	process	change	affects	how	they	can	deliver	an	item
that	has	measurable	value	to	customers.

Calculating	for	the	Velocity	Range

Whenever	you	plan	an	upcoming	sprint,	you	would	benefit	from	expressing	the	range	by
saying	“the	team	can	most	likely	accomplish	30	to	40	points	every	sprint”.	This	way,	you
can	remain	accurate	in	your	estimate	and	not	stick	to	a	precise	time	on	when	the	PBIs	can
be	accomplished.

To	calculate	the	range,	you	would	need	to	have	two	velocities	from	the	team,	which	is	the
estimate	of	the	team’s	faster	velocity	and	their	slower	velocity.	You	can	also	infer	that
when	the	team	would	be	required	to	do	more	sprints	on	their	slower	velocity,	and	vice
versa.	If	the	team	has	been	working	using	Scrum	for	a	long	time,	it	would	be	easier	to
predict	its	future	velocities.	However,	if	there	are	new	members	on	the	team,	there	may	be
some	discrepancies	in	this	forecast.

One	way	to	tell	a	team’s	velocity	is	to	have	them	perform	a	sprint	planning	to	tell	what
PBIs	the	team	can	commit	to	in	a	single	sprint.	If	the	commitments	are	reasonable	enough,
then	you	can	add	the	sizes	of	these	PBI	commitments	and	use	the	forecasted	velocity.

Now,	since	you	also	want	to	know	the	velocity	range,	you	can	have	the	team	plan	out	two
different	sprints.	You	can	use	one	of	the	estimated	velocity	number	as	the	high,	and	have
the	other	one	as	your	low	number.	You	can	also	make	some	adjustments	once	you	can
already	measure	the	actual	velocities	and	use	that	as	your	team’s	historical	velocity.

What	Affects	the	Velocity?

Most	people	that	are	starting	out	with	Scrum	think	that	a	team’s	velocity	is	bound	to
improve	over	time.	This	trend	is	often	based	on	the	reason	that	if	a	team	constantly
inspects	and	adapts,	and	in	the	process	assumes	more	good	practices	in	the	sprints,	the
velocity	should	go	up	after	a	couple	or	so	sprints.

While	teams	can	have	that	aggression	when	it	comes	to	improving	and	focusing	on
delivering	quality	features	with	low	technical	debt,	then	it	is	reasonable	to	judge	that	their
velocity	would	improve.	However,	the	trend	would	not	always	be	in	an	upward	direction	–
in	some	cases,	the	trend	might	plateau.

It	doesn’t	mean,	however,	that	when	a	team’s	velocity	plateaus	means	they	no	longer	have
the	potential	to	improve	their	velocity.	There	are	different	ways	to	improve	a	team’s
velocity,	such	as	activating	new	policies	that	would	lessen	distractions,	or	creating
provisions	for	technology	to	come	in	and	improve	development	time.	However,
introducing	changes	like	this	can	also	mean	that	the	velocity	would	drop	for	a	time,	and
then	improve	once	the	team	becomes	used	to	these	changes.

Some	organizations	make	it	a	point	that	they	improve	their	development	time	by	making
the	team	take	overtime	shifts;	however,	there	is	an	associated	risk	that	comes	with	this.
While	it	is	possible	that	the	team’s	velocity	may	improve	during	the	first	instances	of



overtime,	it	is	also	likely	that	the	velocity	would	drastically	drop	and	the	quality	would
suffer	after	consecutive	overtime	shifts.

When	you	want	to	determine	factors	that	may	increase	a	team’s	velocity,	you	may	want	to
find	methods	that	would	have	long-term	benefits	to	the	organization.

When	is	Velocity	Misused?

Velocity	is	good	as	a	planning	tool	and	in	diagnosing	a	team’s	metrics.	However,	it	is	not
great	as	a	performance	metric	that	would	gauge	any	team’s	productivity.	When	velocity	is
used	in	an	organization	as	a	gauge	of	productivity,	velocity	can	motivate	bad	performance
behaviors.

For	example,	if	you	have	made	it	a	point	to	give	a	large	performance	bonus	to	a	team	that
has	the	best	velocity,	you	might	be	thinking	that	it	is	only	fitting	to	reward	a	great	work
behavior.

However,	if	you	are	comparing	teams	by	velocity	and	not	the	size	of	the	PBIs	that	they	are
taking	care	of	in	a	sprint,	While	Team	A	may	be	faster	than	Team	B,	it	would	depend	on
how	they	are	taking	the	same	amount	of	tasks	in	the	same	way.	For	example,	team	A	may
give	a	PBI	a	story	point	of	2,	while	the	other	team	may	feel	that	it	is	worth	20.

At	the	same	time,	the	velocity	of	the	team	should	be	judged	according	to	the	definition	of
done	in	order	to	produce	a	better	feature	or	product,	and	not	merely	to	meet	a	high
velocity.	While	teams	need	to	improve	on	the	numbers	that	they	are	hitting	in	a	particular
duration,	it	is	also	important	that	organizations	motivate	teams	to	lower	technical	debt.

In	the	end,	you	should	think	of	velocity	on	how	it	should	assist	development	by	using
accurate	planning	and	how	it	should	help	teams	to	promote	development	within	their
groups.	Otherwise,	it	would	promote	behaviors	that	would	be	wasteful	to	the	organization.





Chapter	8:	Going	Bigger	with	Scrum
Scrum	teams	are	the	probably	the	best	assets	of	every	Scrum-based	organization.	By
structuring	them	and	making	sure	that	they	work	well	with	one	another,	you	can	guarantee
that	the	Scrum-based	project	that	you	are	running	is	going	to	achieve	success.	However,
what	if	your	organization	is	planning	to	release	more	than	one	product?

If	you	are	only	trying	to	create	one	product	with	a	single	deadline	for	release	that	you	are
trying	to	meet,	then	you	would	only	need	to	build	one	cross-functional	team.	However,	if
you	are	going	to	work	using	the	Scrum	framework	for	a	long	time,	you	would	want	your
scrum	team	to	turn	into	a	high-performance	group	that	would	deliver	high	business	value.

You	are	also	likely	to	experience	growth	in	your	organization.	That	would	require	you	to
manage	multiple	Scrum	teams,	which	will	intersect	with	one	another	in	order	to	generate
bigger	business	value.

Feature	vs.	Component	Teams

When	you	have	a	feature	team,	you	have	a	cross-component	and	cross-functional	team
that	can	create	end-user	features	out	of	the	product	backlog	and	create	them.	A	component
team,	on	the	other	hand,	is	largely	focused	on	the	development	of	a	subsystem	or	a
component	that	can	be	utilized	in	creation	of	a	single	part	of	an	end-user	feature.

For	that	reason,	component	teams	are	also	called	as	asset	teams.	These	people	are
normally	bound	together	by	similar	skills.	Members	of	this	type	of	team	are	also	likely	to
report	to	a	single	manager	and	use	a	centralized	resource	shared	by	others.	Most
organizations	favor	building	these	teams	in	order	to	put	all	experts	at	work	and	create	a
part	of	a	product,	until	every	component	is	done	and	ready	to	be	assembled	in	a	timely
manner.

However,	the	problem	with	component	teams	is	that	they	need	to	rely	on	another	team	to
work	on	a	feature.	There	is	no	way	you	can	operate	a	business	with	the	thinking	that
production	should	be	put	on	halt	because	the	other	component	team	is	not	finished	with
their	share	of	work.	Instead	of	an	idle	component	team	being	able	to	solve	the	problem	of
delay,	the	entire	business	would	have	to	compensate	for	the	time	that	they	need	to	wait	for
the	other	team	to	finish	their	backlogs.

Scrum,	on	the	other	hand,	puts	favor	to	feature	teams,	while	most	organizations	that	are
running	on	traditional	framework	are	likely	to	favor	component	teams.	Traditional
organizations	think	that	when	there	is	a	person	that	is	unfamiliar	with	how	a	code,	for
example,	is	produced,	then	there	is	a	possibility	of	an	error.

However,	when	there	are	two	or	more	teams	that	are	exclusively	concerned	about	the
components	that	they	are	supposed	to	deliver,	you	can	probably	predict	that	the	teams	are
more	likely	to	prioritize	their	own	backlogs	and	increase	the	risk	that	the	feature	that	you
are	trying	to	build	won’t	get	finished.

The	reason	is	that	the	more	component	teams	you	have,	the	more	points	of	failure	exist	in
creating	that	feature.	Since	Scrum	dictates	that	you	only	have	a	single	feature	team,	you
only	have	to	be	concerned	with	one	possible	failure	location.



The	solution	to	this	problem	is	to	create	feature	teams	that	are	capable	of	cross-
functioning	because	they	have	the	skills	needed	to	work	on	different	end-user	features	and
achieve	them,	without	having	to	supply	the	pieces	of	the	feature	to	several	component
teams.

In	time,	you	would	be	creating	more	developed	feature	teams	that	are	capable	to	become
trustworthy	custodians	of	the	feature,	instead	of	sourcing	out	experts	that	can	only	work
on	a	particular	component.	To	produce	these	feature	teams,	you	need	to	establish	an
approach	that	would	allow	your	organization	to	transition	to	creating	a	multi-feature	team
that	will	manage	the	logistics	in	getting	the	feature	done.

How	to	Produce	the	Feature	Team

If	your	organization	is	created	with	several	component	teams	with	different	priorities,	you
can	create	a	feature	team	that	has	all	the	skills	that	you	need	to	get	a	desired	feature	done.
The	component	teams	that	have	established	themselves	to	be	trustworthy	in	achieving
their	tasks	can	remain	to	maintain	an	individual	component’s	integrity.	To	make	sure	that
component	teams	are	working	with	each	other	to	meet	the	needs	of	a	feature,	a	member	of
each	component	team	can	be	assigned	as	member	of	the	feature	team.

Component	team	members	that	are	also	assigned	to	the	feature	team	will	fulfill	two	roles:

1.	Pollinator	–	the	component	team	member	will	provide	feature	team	members	with	the
knowledge	that	they	share	in	his	component	team.	By	doing	so,	he	shares	ownership	of	his
knowledge	and	allows	shared	ownership	in	the	feature	team.

2.	Harvester	–	the	component	team	member	collects	all	the	changes	that	the	feature	team
need	to	make	within	component	areas,	and	makes	sure	that	his	component	team	knows	all
the	changes	that	they	need	to	make	to	meet	the	requirements	of	the	feature	team.	When	the
component	team	discusses	these	changes,	the	team	makes	sure	that	they	can	avoid	any
conflicts	by	making	sure	that	their	tasks	are	coherent	with	the	feature	team	backlog.

If	you	have	a	large	organization	that	has	about	50	component	teams,	you	may	be	thinking
that	you	would	be	putting	50	people	in	a	single	feature	team,	which	goes	against	Scrum’s
tradition	of	keeping	large	teams.	If	you	have	multiple	teams	that	intersect	with	a	creation
of	a	single	feature,	you	can	produce	multiple	feature	teams	instead	and	divide	the	number
of	component	teams	among	them.

This	way,	you	can	form	feature	teams	around	smaller	clusters	of	component	teams	and
promote	better	coordination	within	these	clusters.	If	your	organization	has	small	cluster
teams	and	it	doesn’t	make	sense	that	you	assign	one	of	its	members	to	a	feature	team,	then
you	can	reduce	the	number	of	products	that	are	being	produced	simultaneously,	or	hire
more	people	who	have	expertise	in	a	component	area.

In	the	end,	there	is	no	single	solution	that	organizations	can	use	when	solving	the	issue	of
creating	feature	teams	while	maintaining	multiple	component	teams.	Large	Scrum
organizations	that	has	remained	successful	over	time	tend	to	adapt	a	blended	model	which
are	composed	of	multiple	feature	teams,	and	then	produce	component	teams	only	when
needed,	which	is	when	the	economics	of	producing	a	component	team	for	a	central



resource	is	sensible.

Making	Multiple	Teams	Work	Together

In	Scrum,	scalability	happens	not	by	making	larger	development	teams,	but	by	creating
multiple	Scrum	teams	that	are	made	up	with	the	right	number	of	people.	When	you	have
more	than	one	Scrum	team,	you	would	need	to	create	a	method	on	how	these	teams	can
coordinate.	You	can	use	these	techniques	to	do	that:

1.	Scrum	of	Scrums	(SoS)

In	an	earlier	chapter,	you	have	read	that	development	teams	perform	a	daily	scrum	during
sprint	execution.	To	coordinate	multiple	teams	and	make	sure	that	they	are	committed	to
having	backlogs	that	work	well	with	each	other,	these	teams	can	perform	a	Scrum	of
Scrums,	or	SoS.

In	this	coordination	technique,	teams	may	opt	to	send	a	member	of	the	development	team
and	their	ScrumMaster	(which	can	actually	be	shared	by	two	or	more	Scrum	teams)	to	the
SoS.	However,	they	need	to	be	sure	that	the	number	of	members	attending	the	SoS	is	not
too	large.

In	SoS,	the	members	answer	questions	like:

a.	What	has	the	team	done	since	the	last	meeting	that	could	affect	other	teams?

b.	What	will	the	team	do	before	the	next	meeting	that	can	affect	the	other	teams?

c.	What	problems	is	the	team	having	that	can	be	resolved	with	another	team’s	help?

Like	the	individual	team’s	daily	scrum,	the	SoS	can	be	timeboxed	to	be	done	in	just	about
15	minutes.	However,	the	SoS	can	extend	beyond	this	time	period	if	the	teams	need	to	do
collective	problem	solving	before	heading	to	their	corresponding	sprints.

2.	Release	Train

A	release	train	is	a	coordination	method	that	is	useful	when	it	comes	to	aligning	planning,
interdependence,	and	visions	of	feature	teams.	With	this	method,	a	cross-team
synchronization	happens,	which	allows	teams	to	have	a	fast	and	flexible	flow	when	they
are	tasked	to	achieve	a	large	product.

The	term	“train”	refers	to	the	published	schedule	on	when	agreed-upon	set	of	features	are
supposed	to	leave	its	“station”.	All	teams	that	participate	in	the	development	of	a	product
should	fulfill	their	backlogs,	or	place	their	“cargo”	on	this	train	at	a	specific	schedule.
Scrum	makes	it	a	point	that	all	these	cargoes	gets	into	the	train	at	a	specific	schedule;
however,	if	a	team	misses	the	train	schedule,	there’s	no	reason	to	panic	since	another	train
will	arrive	at	the	station	anyway.

a)					An	effective	release	train	follows	these	rules:

b)					Planning	should	be	periodic	and	frequent,	and	the	release	dates	for	solutions	should	be
fixed.	While	the	schedule	and	the	quality	is	fixed	for	potentially	shippable	increments
(PSI),	the	scope	can	be	variable



c)						All	teams	need	to	apply	the	same	iteration	lengths.

d)					Objective,	global,	and	intermediate	milestones	should	be	established.

e)					PSIs	should	be	available	at	regular	intervals	for	system-level	quality	analysis,	internal
review,	and	customer	preview

f)							Use	of	system-level	iterations	is	available	to	reduce	any	technical	debt	and	for	teams
to	have	more	time	for	specialty	release-level	testing	and	validation.

g)					Some	infrastructure	components	should	typically	track	ahead	to	enable	build	on	top	of
the	same	constructs

h)				A	continuous	integration	of	the	system	is	implemented	at	all	levels

You	can	divide	a	really	large	enterprise	backlog	into	three	levels:	portfolio	backlog
(portfolio	management	with	epics),	program	backlog	(program	management	has	features),
and	team	backlogs	(product	owners	has	user	stories	that	they	can	work	out	in	a	sprint).
Using	a	Scrum	of	Scrums,	you	can	coordinate	and	integrate	all	the	tasks	of	feature	teams
that	are	within	the	feature	area	and	integrate	their	jobs	at	ever	sprint.

Whenever	it	is	practical,	testing	and	a	full	system-wide	integration	should	happen	across
feature	areas.	Some	teams	would	want	to	use	their	last	sprint	to	send	their	work	on	a
“train”	in	order	to	have	some	time	to	harden	what	they	have	developed	over	the	previous
sprints	and	integrate	and	test	the	results	across	different	feature	areas.	When	teams	have
already	matured,	they	would	lessen	their	need	for	a	hardening	sprint.

Since	all	sprint	durations	of	different	teams	participating	in	the	release	train	are	the	same,
they	all	start	and	end	on	the	same	schedule.	This	allows	them	to	synchronize	not	only
within	the	feature	area,	but	also	with	other	teams	that	are	working	on	the	product.

	





Chapter	9:	How	to	Cater	to	Multiple	Products
Since	most	organizations	are	required	to	produce	more	than	one	product	at	a	time,	they
need	to	create	choices	that	are	economically	sensible	when	it	comes	to	managing	product
portfolios.	To	do	that,	they	need	to	create	governance	or	management	processes	that	go
well	with	core	agile	practices	to	prevent	any	disconnect	from	agile	approaches	that	are
done	at	individual	product	levels.	In	this	chapter,	you	will	see	how	organizations	can
strategize	portfolio	planning	and	how	to	determine	whether	teams	can	still	accommodate
additional	work.

What	is	Portfolio	Management?

Portfolio	management	is	used	to	determine	which	portfolio	backlog	items	should	the
organization	work	on.	In	creating	this	plan,	it	is	necessary	that	managers	to	determine	the
order	of	priority	PBIs	and	how	long	groups	should	work	on	them.

When	you	are	doing	portfolio	planning,	you	need	to	consider	these	aspects	to	ensure	that
teams	would	be	able	to	work	on	your	portfolio’s	backlog	items:

1.	Timing

Planning	the	portfolio	is	a	continuous	activity	in	any	organization	–	as	long	as	you	have	a
product	that	you	need	to	maintain	or	develop	you	have	a	portfolio	that	requires	managing.

Since	planning	a	portfolio	requires	dealing	with	a	collection	of	products	and	is	much
larger	in	scope	compared	to	individual	portfolios,	managers	need	to	consider	new	products
that	they	are	going	to	incorporate	in	the	portfolio.	However,	it	does	not	mean	that	portfolio
planning	should	go	before	product	planning.	By	making	use	of	the	data	collected	in
product	envisioning,	the	portfolio	management	makes	it	possible	for	you	to	know	whether
you	should	fund	the	product	and	how	you	can	prioritize	its	items	in	the	portfolio	backlog.

Portfolio	planning	does	not	happen	only	when	there	is	an	envisioned	product.	It	happens	at
scheduled	regular	intervals	to	review	products	that	are	already	in	development,	in
production,	or	being	sold.

2.	Participants

Because	portfolio	management	deals	with	new	and	in-process	products,	the	planning
participants	would	include	product	owners	of	individual	products	and	internal
stakeholders.	Adding	technical	leads	and	senior	articles	can	be	a	welcome	addition	to	the
planning	team.

Stakeholders	need	to	have	enough	wide	business	perspective	to	enable	them	to	make
decisions	when	it	comes	to	prioritizing	items	in	the	portfolio	backlog	and	what	should
happen	to	the	in-process	products.	Some	organizations	opt	to	have	stakeholder	approval
committee	or	an	equivalent	group	to	oversee	the	portfolio	planning	process.

Product	owners	are	needed	in	planning	the	portfolio	to	see	that	their	own	products	are
being	prioritized	well	within	the	portfolio	backlog.	According	to	how	the	portfolio
management	goes,	they	would	also	be	able	to	advocate	necessary	resources	needed	to
create	products	that	they	own.



Process

Two	outputs	are	produced	during	portfolio	planning,	which	are	the	portfolio	backlog	(list
of	items	for	future	products,	according	to	priority)	and	the	set	of	active	activities	(new
products	that	are	approved	and	are	decided	to	be	developed	immediately,	as	well	as
products	that	are	in-process).	In	order	to	determine	what	these	outputs	should,	contain,
participants	need	to	do	a	strategy	for	these	activities:

1.	Scheduling

This	refers	to	having	a	great	plan	when	it	comes	to	determining	the	sequence	of	products
that	should	go	in	the	portfolio	backlog.	With	this	plan	comes	the	consideration	that	the
organization	has	limited	resources	to	produce	these	products	in	an	economical	way.	While
there	are	a	lot	of	strategies	when	it	comes	to	planning	product	sequence	in	the	portfolio
backlog,	these	three	strategies	may	prove	to	be	very	effective	to	your	organization.

a.	Make	Schedules	Optimized	for	Lifecycle	Profits

The	key	to	this	strategy	would	be	having	the	right	decisions	on	which	variable	to	measure
to	see	whether	optimization	efforts	are	working.	When	you	are	creating	scheduling
strategies,	you	would	want	to	look	at	all	trade-offs	that	come	with	all	decisions	using	a
standard	unit	of	measure,	which	is	the	lifecycle	profit.	In	this	strategy,	you	would	be	able
to	schedule	the	items	in	your	portfolio	backlog	in	such	a	way	that	lifecycle	profits	are
maximized.

Lifecycle	profits	are	the	total	profit	potential	of	a	product	in	its	entire	existence.	However,
in	the	case	of	portfolio	planning,	you	are	interested	in	making	the	entire	portfolio
optimized	for	profit,	instead	of	focusing	on	a	single	product.	Because	you	are	not
interested	in	the	success	of	just	a	single	product,	you	will	want	to	find	the	sequence	of
backlog	items	that	will	give	you	the	most	profit	possible.

Two	variables	are	considered	in	assessing	lifecycle	profits:	the	cost	of	delay,	and	the	cost
of	duration.	Based	on	these	variables,	you	can	use	these	scheduling	strategies:

a.	Cost	of	delay	is	same	across	all	products,	but	products	have	different	sizes	–	take	the
shortest	job	first

b.	Cost	of	delay	varies	among	products,	but	all	products	have	the	same	size	–	take	the	high
delay	cost	first

c.	Both	cost	of	delay	and	size	varies	among	products	–	take	the	weighted	shortest	job	first
(calculated	by	this	formula:	cost	of	delay	/	duration)

2.	Calculate	for	the	Cost	of	Delay

When	you	sequence	items	on	the	portfolio	backlog,	you	need	to	work	on	some	products
over	others.	However,	you	need	to	remember	that	those	products	that	you	are	putting	off
for	later	will	have	a	delayed	start	and	a	delayed	delivery	date.	Those	delays	come	with	a
cost.	When	determining	the	schedule	for	the	portfolio	product	backlog	items,	you	need	to
answer	this	question:	What	is	the	cost	of	delay	in	lifecycle	profits	when	you	delay	a
product	deployment	by	___	days/months?



When	you	look	closely	at	this	strategy,	you	would	know	that	taking	the	highly	profitable
item	first	is	not	always	the	right	strategy.	For	example,	if	you	have	Project	X	that	has	20%
ROI,	and	a	Project	Y	that	has	15%	ROI,	you	may	immediately	think	that	you	need	to	take
care	of	Project	X	first.	However,	the	planning	should	not	stop	there.

If	you	are	aware	that	delaying	Project	X	would	mean	losing	$5,000	and	pushing	back
Project	Y	for	a	month	will	make	you	lose	$70,000,	you	know	that	this	huge	cost	of	delay
discrepancy	will	eventually	impact	the	lifecycle	profitability	of	your	portfolio.

How	do	you	calculate	for	the	cost	of	delay,	anyway?	To	do	that,	consider	these	product
attributes	and	assign	a	value	for	the	cost	of	delay	(1	being	the	lowest;	10	the	highest):

a.	user	value	–	potential	value	that	customer	thinks	the	product	has

b.	time	value	–	how	the	customer’s	perceived	value	of	the	product	decays	over	time

c.	opportunity	enablement	or	risk	reduction	–	the	value	in	terms	of	taking	advantage	of
opportunities	or	mitigating	risks

The	total	product	cost	of	delay	would	be	equal	to	the	sum	of	these	individual	delay	costs.

If	you	think	that	there	is	no	fixed	value	that	you	can	assign	for	individual	delay	costs,	then
you	can	create	a	product	delay	portfolio	and	use	that	in	determining	scheduling	decisions.
You	can	use	these	profile	descriptions:

a.	Linear	–	product	will	have	a	cost	of	delay	that	will	increase	at	a	constant	rate

b.	Large	fixed	cost	–	product	will	accumulate	a	one-time	cost	if	not	done	immediately.
This	may	happen	if	you	get	a	large	portion	of	payment	only	after	you	have	delivered	the
product.

c.	Fixed	date	–	product	should	be	delivered	by	a	particular	date	in	the	future	and	will	have
zero	cost	of	delay	until	that	date	is	reached	and	the	product	is	still	not	fulfilled.

d.	Logarithmic	–	the	product’s	cost	of	delay	is	the	highest	at	a	very	early	time.	The	cost
will	also	have	less	incremental	cost	with	additional	delays.

e.	Intangible	–	product	has	no	obvious	cost	of	delay	for	a	long	time,	but	you	will
experience	a	high	delay	cost	during	an	unexpected	time.

3.	Have	Inflow	Strategies

Inflow	strategies	largely	deal	with	how	an	organization	should	balance	the	rate	wherein
portfolio	backlog	items	are	inserted	and	the	rate	items	are	pulled	out.	By	having	this
strategy,	you	will	be	able	to	see	whether	additions	to	the	portfolio	backlog	are	already
causing	bottlenecks.	You	will	also	be	able	to	balance	the	amount	of	products	coming	out
by	having	smaller	yet	frequent	releases.

a.	Economic	Filter	Application

When	you	have	a	product	vision	that	goes	along	with	the	information	that	you	need	in
order	to	produce	with	confidence,	you	can	make	decisions	on	whether	you	should	fund	a
development	of	a	particular	product.	When	you	do	this,	you	are	creating	an	economic



filter	and	apply	it	to	see	if	it	meets	the	organization’s	funding	requirements.

Although	every	organization	out	there	is	required	to	create	an	economic	filter	that	goes
well	with	its	funding	policies,	you	know	that	you	have	a	working	economic	filter	of	you
are	able	to	quickly	tell	that	you	should	approve	an	opportunity	because	it	will	deliver	an
overwhelming	value	compared	to	its	development	cost.	If	you	achieve	this	certainty,	then
there	is	no	need	to	talk	about	whether	a	project	being	laid	out	should	be	developed	or	not.

b.	Arrival	and	Departure	Rate	Balance

Any	organization	desires	to	create	a	steady	stream	of	products	that	enter	and	leave	the
portfolio	backlog.	However,	you	don’t	want	to	overload	the	portfolio	backlog	by	having
too	many	products	that	you	need	to	take	care	of	at	the	same	time.

A	lot	of	businesses	conduct	strategic	planning	events	annually,	which	usually	takes	place
during	the	third	quarter	of	their	fiscal	year.	One	of	the	usual	results	of	this	strategic
planning	is	a	list	of	products	that	they	will	work	on	for	the	next	year.	These	products	are
usually	placed	with	their	existing	portfolio,	which	tends	to	overwhelm	the	portfolio-
planning	process.

It	doesn’t	mean	that	organizations	shouldn’t	do	any	strategic	planning	–	organizations
should	define	their	strategic	direction,	but	they	do	not	have	to	identify	all	the	details	that
they	need	to	take	to	do	that	strategy.	Deciding	what	the	portfolio	of	products	at	one	time
also	violates	the	principle	of	using	economical	sensible	batch	sizes.

Processing	a	large	group	of	products	right	away	and	determining	how	they	should	be
sequenced	on	the	portfolio	backlog	can	be	expensive	and	possibly	wasteful	since	a	large
number	of	products	can	possibly	complicate	the	scheduling.	Finding	out	what	the
sequence	of	what	should	be	placed	in	your	portfolio	backlog	is	a	lot	simpler	if	you	have
fewer	items	to	manage.

To	prevent	overwhelming	the	portfolio	backlog,	you	can	opt	to	introduce	new	products	to
your	portfolio	at	frequent	intervals	instead.	When	you	have	more	instances	of	introducing
new	products,	you	effectively	reduce	the	cost	and	effort	you	need	to	spend	to	review	and
insert	products	in	the	portfolio,	making	the	planning	stable	and	predictable.

Now,	when	the	size	of	the	product	backlog	begins	to	grow,	you	can	start	throttling	the
product	flow.	To	do	this,	you	can	tweak	the	economic	filter	to	improve	product	approval
standards	in	such	a	way	that	only	high	quality	products	are	allowed	to	pass	through.	This
will	reduce	the	tendency	of	new	and	random	products	from	coming	in	and	establish	better
balance	with	the	product	departure	rate.

c.	Embrace	Opportunities	Right	Away

When	planning	portfolios,	you	need	to	embrace	emergent	opportunities,	or	opportunities
that	are	previously	unknown	to	your	organization	or	unlikely	to	occur	in	your
organization;	hence,	something	not	worth	spending	for	today.

For	example,	if	your	organization	thrives	in	an	online	betting	marketplace,	you	know	that
your	business	operates	on	an	environment	that	is	highly	regulated	by	jurisdictions	and
regulations.	You	may	be	aware	that	regulations	when	it	comes	to	casinos	can	be



unpredictable,	depending	on	government	policies.	Now,	if	these	regulations	change,	you
need	to	embrace	any	opportunities	that	might	suddenly	emerge.

If	you	see	that	there	is	an	unexpected	change	in	your	organization’s	environment	and	it
would	likely	affect	profit	or	the	amount	of	effort	that	a	team	needs	to	spend	for	items	in
their	backlogs,	then	you	need	to	make	the	appropriate	insertions	and	releases	in	the
portfolio	backlog	right	away.	Doing	so	would	not	only	allow	you	to	create	better	working
plans,	but	also	stay	ahead	of	the	competition	who	might	not	take	action	regarding
opportunities	right	away.

Now,	if	you	have	a	frequent	schedule	for	evaluating	these	opportunities	right	away,	such
as	a	monthly	meeting,	and	you	have	enough	economic	filters	in	your	organization	to	work
on	them	right	away,	then	you	do	not	have	to	spend	a	lot	of	time	when	it	comes	to
considering	emergent	opportunities.

d.	Go	for	Smaller,	More	Frequent	Releases

As	discussed	earlier,	there	are	a	lot	of	economic	benefits	that	any	organization	can	enjoy
whenever	they	opt	for	smaller	and	frequent	releases.	One	important	benefit	is	that	they	can
increase	profit	that	they	can	get	from	lifecycles	they	divide	a	product	into	a	series	of
smaller	and	incremental	releases.	It	also	helps	prevent	the	portfolio	from	experiencing	a
convoy	effect.

What	is	a	convoy	effect?	This	phenomenon	is	similar	to	the	experience	of	having	to	drive
behind	a	large,	slow	moving	vehicle.	If	you	are	trapped	behind	one,	then	there	is	a	chance
that	other	drivers	of	smaller	vehicles	will	get	the	same	experience	when	they	all	pile	up
behind	you.

When	you	allow	large	products	into	your	portfolio	backlog,	you	are	likely	to	create	a	long
queue	of	smaller	products	behind	it.	Since	all	products	are	going	to	be	delayed	because	of
the	large	product,	the	smaller	ones	would	begin	to	accrue	considerable	costs	of	delay	over
time,	which	will	make	profit	suffer.

Creating	Outflow	Strategies

When	you	want	to	create	better	management	that	will	help	you	decide	when	you	should
pull	out	products	from	your	portfolio	backlog,	you	can	use	the	following	strategies:

1.	Pay	attention	to	idle	work

Traditional	organizations	tend	to	release	products	into	production	by	taking	these	steps:

a.	Select	a	product	from	the	backlog	and	assign	people	to	deal	with	it.

b.	If	everyone	is	not	working	at	100	percent	capacity,	repeat	the	previous	step.

This	approach	is	only	designed	to	make	everyone	busy,	but	it	does	not	mean	that	people
will	work	faster	and	error-free	on	a	product.	Instead	of	sticking	to	this	old	and	risky
method,	you	can	instead	aim	to	work	on	a	product	when	you	are	sure	that	this	item	on	the
portfolio	backlog	can	truly	ensure	that	it	will	not	cause	any	disruption	in	the	flow	of	work
that	has	already	begun.



2.	Limit	the	WIP

You	have	read	in	an	earlier	chapter	that	it	is	wise	to	only	get	work	from	the	product
backlog	when	you	are	sure	that	the	development	team	has	the	capacity	to	work	on	it.	The
same	rule	applies	in	the	portfolio	backlog	–	you	should	only	start	pulling	out	from	this	list
if	you	have	a	feature	team	that	can	accommodate	it.

Knowing	how	many	Scrum	teams	are	available	and	learning	what	types	of	products	they
can	handle	will	help	you	get	the	information	you	need	to	know	about	how	much	products
can	feature	teams	accommodate	on	their	individual	backlogs	without	requiring	them	to
spread	too	thinly	to	meet	release	deadlines.

3.	Get	a	Complete	Team

Having	a	couple	of	people	freed	up	from	their	tasks	does	not	mean	that	you	need	to	give
them	tasks	already.	If	you	want	to	pull	out	a	product	from	the	portfolio	backlog,	then	see
to	it	that	you	have	an	entire	team	ready	to	commit	to	work	on	a	new	set	of	tasks.

Even	if	you	have	two	or	three	developers	that	are	ready	to	deal	with	the	next	product,	they
are	not	the	only	ones	who	are	going	to	work	on	it.	Making	them	start	making	progress	that
requires	an	entire	team	to	work	on	only	increases	the	risk	of	miscommunication	and
planning	revision,	which	will	only	slow	down	work.

Managing	In-Process	Items

Having	the	right	strategy	that	caters	to	products	that	are	already	in	process	will	give	you
guidance	on	whether	you	still	need	to	deliver,	preserve,	or	revise	a	product	that	teams	are
working	on	or	just	terminate	it.	Making	these	decisions	should	be	made	regularly	(every
end	of	sprint)	or	occasionally	during	off-cycle	times,	especially	when	you	are	getting
results	that	you	do	not	expect	from	products	that	are	being	worked	on.

Using	marginal	economics	is	one	strategy	that	you	can	use	to	guide	you	in	decision-
making	and	remain	aligned	with	core	Scrum	principles.	Using	marginal	economics,	you
will	be	making	decisions	about	in-process	items	according	to	the	return	of	investment	that
it	will	generate.	Since	you	are	thinking	about	the	profit,	you	will	need	to	make	a	decision
on	whether	you	can	afford	to	spend	additional	resources	to	continue	developing	these
products.

In-process	products	can	be	dealt	with	using	these	options:

1.	Preserve	–	continue	product	development.	You	want	to	take	this	option	when	the
product	justifies	the	resources	it	has	taken	from	you	and	you	know	that	continuing
development	will	give	you	better	ROI.

2.	Deliver	–	cease	development	and	deliver	the	product.	You	can	take	this	option	if	the
product	has	the	minimum	releasable	features	that	bring	value	to	the	end-users	and	great
ROI	on	your	end,	without	needing	additional	investment.

3.	Pivot	–	change	directions	according	to	new	data	you	have	learned.	This	is	an	option	that
is	only	viable	when	your	investment	is	not	justified	and	the	product	has	no	releasable
features	yet,	but	you	have	another	path	that	you	can	try	to	ensure	the	success	of	the



product.

4.	Terminate	–	cease	development	and	kill	the	product.	This	is	the	option	that	you	have	if
the	resources	spent	are	not	justifiable,	the	product	has	no	foreseeable	value	to	you	and	the
end-user,	and	you	do	not	have	any	other	reasonable	idea	to	change	its	process	path	to
make	it	work.

However,	there	are	a	lot	of	subjective	and	foolish	behaviors	that	may	prevent	you	from
making	the	right	decisions	for	products	that	you	have	already	spent	time	and	effort	for.	For
example,	there	are	just	too	many	people	who	will	not	dare	terminate	a	project	that	has
already	spent	too	many	resources	but	does	not	create	a	clear	picture	on	whether	it	will
work	or	not.	Some	will	not	even	think	of	terminating	a	product	just	because	they	already
spent	their	first	dollar	on	it.

Accounting	systems	have	a	lot	to	do	with	these	risky	assumptions.	For	example,	if	a
company	has	started	developing	a	software	that	they	initially	thought	would	have	a	100%
value	to	their	customers	and	will	cost	about	$500,000	to	develop.	After	spending	half	a
million,	they	found	out	that	the	product	will	only	provide	15%	value	to	their	consumers
and	would	actually	cost	$5,000,000	to	develop.

Despite	that	overwhelming	difference,	some	would	still	pursue	the	development	even	with
the	knowledge	that	the	value	of	the	product	that	they	are	producing	is	a	lot	lower	than	they
have	expected	and	the	cost	is	not	justifiable	at	all.	To	some	accounting	systems,	they	are
willing	to	protect	expense	budgets	of	their	departments	and	then	wait	for	their
expenditures	to	be	capitalized.	Of	course,	this	move	is	not	sensible	at	all.

When	you	stick	to	using	marginal	economics,	you	would	be	able	to	expose	every	wasteful
behavior	that	you	have	and	use	your	common	sense	on	what	will	truly	bring	you	and	your
customers’	value.	Instead	of	wasting	your	time	and	money	on	something	that	will	not	give
anyone	a	good	return	for	their	investments,	you	can	have	the	right	strategy	on	whether	you
should	spend	more	time	on	development	or	save	your	resources	for	something	better.

	





Chapter	10:	What	Products	Should	You	Produce?
Before	you	even	start	a	sprint	and	start	developing	anything,	you	know	that	you	need	to
have	a	product	backlog.	However,	to	generate	a	product	backlog,	you	need	to	have	a
product	vision.	You	will	never	know	what	you	will	want	to	accomplish	if	you	do	not	do
any	envisioning	about	the	very	thing	that	you	want	to	create.

Envisioning’s	Goal

When	you	envision	a	product	using	Scrum,	you	are	not	doing	a	ceremonial	and	very
intense	chartering	of	a	project.	After	all,	you	do	not	believe	that	you	can	possibly	know
everything	that	you	need	to	do	right	away.	You	will	have	to	have	sufficient	confidence	to
subject	the	idea	of	portfolio	planning	and	make	decision	if	you	can	decide	whether	to	fund
the	next	level	of	development	to	add	more	details	to	the	product.

At	this	point,	you	know	that	you	understand	that	funding	cannot	move	forward	without
first	having	a	vision	of	the	product	and	if	you	do	not	have	enough	details	that	will	lead	you
to	understand	high-quality	solutions,	features,	customers,	and	cost.

You	also	do	not	want	to	spend	too	much	time	and	effort	on	envisioning	because	you	want
to	get	past	this	stage	where	there	is	too	much	guesswork	and	thinking	that	you	are	already
aware	of	the	cost	and	customer	needs.	You	would	want	to	move	immediately	towards
sprints	where	you	can	immediately	get	feedback	and	know	whether	your	solutions	are
working	or	not.

After	all,	you	can	only	start	implementing	real	solutions	when	you	have	validated	learning
based	on	environments	in	which	you	want	your	product	to	exist.

Envisioning’s	Timing

Envisioning	is	an	ongoing	activity	–	you	do	not	only	envision	your	product	at	the
beginning	of	making	plans.	However,	it	will	begin	with	the	process	of	ideation,	or	that
moment	wherein	someone	or	some	people	has	generated	an	idea	on	how	a	product	can	be
created	or	improve.

This	idea	is	passed	through	your	organization’s	strategic	filter	to	see	if	it	is	consistent	with
the	organization’s	existing	strategies.	If	the	idea	goes	with	your	organization’s	strategies,
then	that	is	the	time	that	people	will	want	to	start	investigating	on	why	it	is	worth	the
investment.

Once	that	seed	of	idea	has	successfully	passed	the	strategic	filter,	then	that	is	the	time	to
start	initial	envisioning	or	the	process	where	you	get	just	enough	understanding	on	how
the	desired	future	product’s	initial	release	should	be.	When	you	do	that,	you	can
immediately	have	a	vision	of	how	you	can	deliver	quality	value	to	your	customers	without
spending	too	much.

That	also	gives	everyone	a	tangible	idea	on	how	this	product	will	appeal	to	end	users	and
customers	and	give	you	enough	details	to	allow	you	to	give	feedback	or	refute
assumptions	that	you	have	about	customers	and	your	overall	solution.	When	this	happens,
you	can	see	if	a	project	that	you	want	to	develop	will	allow	you	to	persevere	with	your



current	vision,	or	of	you	should	pivot	away	from	your	original	solution	and	modify	plans.

Who	Should	Participate?

The	product	owner	is	the	only	person	that	is	required	to	attend	initial	envisioning.	The
product	also	normally	oversees	the	initial	envisioning	together	with	a	stakeholder	who
serves	as	a	collaborator	in	performing	this	process.	Specialists	such	as	market	researchers,
user-design	experts,	and	architects	can	also	participate	in	different	envisioning	tasks.

The	ScrumMaster	and	the	rest	of	the	development	team	are	also	ideal	participants	in	initial
envisioning.	This	is	because	these	people	will	provide	the	feedback	that	stakeholders,
experts,	and	the	product	owner	needs	to	have	a	more	empirical	data	on	how	a	product
would	proceed	into	development,	without	having	the	need	to	hand	off	the	vision	that	is
going	to	be	created	to	another	team.

However,	what	happens	often	is	that	the	organization	waits	for	the	initial	envisioning
being	finished	before	it	can	move	to	funding	the	Scrum	team,	making	it	hard	to	include	the
Scrum	team	to	be	part	of	this	process.	However,	when	the	product	development	is	already
underway,	the	entire	Scrum	team	should	be	participants	in	any	product	re-envisioning.

Envisioning	Process

The	main	input	needed	to	start	initial	envisioning	is	an	approved	idea	which	has	cleared
your	organization’s	strategic	filter.	When	your	product	needs	to	be	re-envisioned,	you	need
to	have	a	pivoted	idea,	or	an	idea	about	the	product	that	has	been	revised	or	updated	based
on	changes	that	influence	how	the	product	would	do	once	it	goes	through	continued
development	or	releases.	These	influences	can	be	customer	feedback,	funding	changes,
competitor	strategies,	and	a	whole	lot	more.

When	envisioning	or	re-envisioning	products,	you	need	to	have	other	inputs,	such	as

1.	indication	of	planning	horizon,	or	a	time	frame	to	consider	for	envisioning

2.	deadline	for	completion	of	envisioned	products,	if	applicable

3.	availability	of	resources	needed	for	envisioning

4.	confidence	threshold	or	how	to	determine	whether	an	envisioned	product	can	be	done
right,	which	gives	stakeholders	and	other	decision	makers	enough	trust	that	the	product
should	push	through.

Envisioning	is	also	composed	of	different	kinds	of	activities	that	are	made	to	produce	an
important	output,	such	as	the	exact	product	vision	or	how	the	initial	product	backlog
should	be	like.	It	is	also	ideal	to	create	a	simple	product	roadmap	that	will	show	a	set	of
near-term	releases	that	can	be	produced	in	increments.

Here	is	an	illustration	of	how	the	initial	envisioning	should	be	performed,	using	a	fictional
product	idea	called	One	Big	Onion:

The	company,	which	is	called	Nameless	Media,	is	known	as	a	leader	in	producing	quality
documentary	and	PR	marketing	materials,	with	its	core	business	being	a	provider	of	AVPs
and	similar	services	to	its	clients.	The	revenues	of	Nameless	Media	are	moving	at	a



modest	pace	for	a	couple	of	years,	but	it	remains	profitable.

However,	its	main	competitors	have	launched	features	in	a	surprising	frequency,	which
may	make	Nameless	Media’s	clientele	move	to	them	instead.	Now,	what	Nameless	Media
needs	is	to	have	a	brand	new	innovative	service	offer	that	will	allow	them	to	strategically
leapfrog	the	steep	competition.

The	marketing	team	of	Nameless	Media	thought	of	One	Big	Onion,	which	is	a	way	to	use
both	music	and	graphics	revolutionarily	in	materials	that	clients	will	receive.	The
marketing	team	believes	that	this	idea	could	be	an	innovative	service	to	their	clientele,
which	is	fond	of	using	rehash	photos	and	remixed	music	in	their	ads.

The	marketing	team	then	sent	their	idea,	together	with	a	one-page	description	of	One	Big
Onion	that	states	its	high-level	target	features,	targeted	niche,	and	advantages,	to	the	New
Product	Approval	Committee.	This	committee	reviews	the	new	product	in	a	regularly
schedules	Idea	Review	Meeting,	which	is	done	every	third	Thursday	of	the	month.

The	senior	management	agrees	that	the	One	Big	Onion	represents	a	great	opportunity	to
make	the	company	stand	out	in	the	marketplace.	After	making	this	decision,	the
committee	assigns	Lauren,	a	business	representative	from	the	company’s	strategic
marketing,	as	the	product	owner	of	One	Big	Onion.

The	management	has	also	allowed	two	weeks	to	complete	the	product	envisioning,	after
which	the	approval	committee	members	will	review	the	results	and	decide	if	the	project’s
initial	development	should	be	funded	or	not.	In	addition	to	Lauren,	the	management	has
also	assigned	two	subject	matter	experts	to	do	the	filtering,	a	group	of	stakeholders,	and
also	a	market	researcher	to	join	the	envisioning.	However,	the	management	did	not
authorize	the	larger	expenditure	of	the	full	Scrum	team	during	the	envisioning.

Lauren	is	asked	to	use	the	resources	given	to	her	to	produce	these	items:

1.	 Initial	product	backlog,	product	roadmap,	and	product	vision
2.	 Evidence	for	the	initial	assumption	that	users	want	One	Big	Onion’s	ability	to	offer

premium	graphics	and	sound	design	as	added	services
3.	 Description	of	other	critical	assumptions	about	potential	users	of	the	product	and	the

feature	set	that	should	be	tested	on	the	first	product	release
4.	 A	few	actionable	and	important	measures	that	will	be	used	to	test	assumptions	and	to

see	whether	the	initial	release	of	One	Big	Onion	is	meeting	expectations	or	not
5.	 A	list	of		unknown	items	that	should	be	answered

The	management	needs	this	information	to	assume	confidence	in	making	an	informed
decision	on	whether	the	company	should	allow	One	Big	Onion	to	go	through	initial
development.

Visioning

Taking	the	example	scenario	for	One	Big	Onion,	the	first	thing	that	Lauren	and	the
stakeholders	need	to	put	together	is	a	compelling	and	shared	vision	for	the	product	that
they	are	working	on.



However,	they	do	not	have	to	create	a	100-page	document	for	their	vision	–	since	they	are
using	Scrum,	they	are	aware	that	they	do	not	need	to	create	a	complex	document	to
solidify	a	vision.	Visions,	even	for	the	most	complex	products,	should	be	stated	simply
and	presented	with	a	coherent	direction	to	the	people	who	will	be	tasked	to	realize	them.



Visions	are	commonly	expressed	in	terms	that	tell	how	stakeholders	achieve	value.	You
can	use	this	format	to	write	your	vision:

Format Description

Elevator	statement Have	a	short	pitch	(about	30	seconds
to	one	minute)	of	the	product	vision.

Product	datasheet Try	to	come	up	with	the	product
datasheet	on	the	first	day	on	the	front
of	a	one-page	marketing	piece

User	conference	slides Create	2-3	presentation	slides	that
you	can	use	to	introduce	your	product
in	a	public	presentation.

Press	release Write	a	press	release	that	you	want	to
be	released	once	your	product	is
available.	It	should	contain
newsworthy	content	and	as	long	as	a
page	or	less

Magazine	review Draft	a	fictional	magazine	review
bylined	by	the	solution	reviewer

	

When	you	look	at	this	format,	you	would	notice	that	everything	that	the	management
needs	to	know	is	already	in	there:	what	the	product	is	about,	what	features	it	would
contain,	how	you	think	the	customers	would	see	it,	how	it	is	going	to	be	launched	to	the
public,	and	a	projection	of	customer	feedback.

Making	a	High-Level	Backlog

Once	you	already	have	a	vision,	you	are	ready	to	create	product	backlog	items.	Using	the
terminology	of	user	stories,	and	since	you	are	working	on	a	high	level,	you	would	want	to
create	epics	or	extremely	large	user	stories	that	go	well	with	the	product	level	planning.
These	epics	align	with	the	vision	and	provide	the	next	level	of	product	detail	for	both	the
Scrum	team	and	the	senior	management.

The	people	who	will	create	these	stories	will	be	the	same	ones	who	made	the	vision	–	the
product	owner	and	the	stakeholders,	and	if	possible,	with	the	development	team	and	the
ScrumMaster	who	will	work	on	the	product.	However,	if	the	project	development	has	not
yet	been	funded	or	approved,	like	in	the	case	of	One	Big	Onion,	there	is	a	chance	that	the
Scrum	team	may	not	be	available	in	making	the	backlog	for	the	envisioning.



When	that	happens,	the	product	owner	may	want	to	make	it	an	option	to	ask	for	help	with
technical	personalities	available	that	may	have	an	interest	in	the	product	development	to
help	him	out.



Defining	the	Product	Roadmap

Once	you	are	done	creating	the	initial	vision	and	the	backlog,	you	are	ready	to	define	how
you	can	do	series	of	releases	that	will	make	you	achieve	some,	or	possibly	all,	of	your
product	vision.	A	product	roadmap	will	serve	as	an	overview	of	all	the	incremental
deployments	that	you	will	perform.	Of	course,	it	also	follows	that	if	you	are	doing	a	small
product	that	can	be	delivered	in	a	single	release,	then	there	is	no	need	to	do	a	product
roadmap.

Keep	in	mind	though	that	even	if	you	intend	to	make	frequent	releases,	you	do	not	need	to
be	strict	about	deadlines.	What	you	should	focus	on	instead	is	the	minimum	releasable
features	(MRFs),	which	is	a	small	set	of	features	that	is	deemed	to	be	must-haves	in	order
to	meet	quality	expectations	and	deliver	immediate	value	to	stakeholders	and	end	users.

You	may	also	call	MRFs	as	your	minimum	viable	product	(MVP)	or	minimum	marketable
features	(MMFs).	When	you	plan	your	releases	this	way,	customers	and	clients	will	be
able	to	perceive	that	there	is	value	to	the	product	that	you	want	to	develop.	At	the	same
time,	you	can	also	couple	this	plan	by	releasing	other	features	in	a	fixed	and	periodic
manner;	say	every	quarter,	to	set	expectations	on	when	end	users	can	expect	to	receive	the
complete	product.

Other	Activities	in	Envisioning

Envisioning	can	also	include	any	other	tasks	that	may	be	deemed	relevant	in	meeting	the
confidence	threshold	that	needs	to	be	targeted.	You	may	want	to	do	additional	market
research	or	even	do	a	competitive	analysis	to	see	how	your	product	would	do	on	the
market	when	pitted	against	products	of	competitors.	You	may	also	want	to	develop	a
rough	business	model	of	the	product	to	see	if	it	will	pass	your	organization’s	economic
filter	and	convince	stakeholders	to	proceed	to	funding	your	Scrum	team.

Making	Envisioning	Economically	Sensible

Envisioning	is	an	investment	–	you	need	to	do	it	to	get	all	the	information	that	the
management	requires	to	make	the	decision	that	your	project	is	worth	funding.	If	you	do
too	little	work	in	envisioning,	you	may	find	yourself	clueless	on	what	you	should	do	when
you	do	the	first	sprint	and	fail	to	meet	customer-quality	value	that	you	are	expected	to
achieve.

If	you	do	too	much	work	on	envisioning,	you	may	unintentionally	create	too	much	product
artifacts	and	be	prompted	to	revise	or	discard	them	when	you	proceed	to	validated
learning,	which	you	would	do	when	you	are	ready	to	trim	down	your	high-level	product
backlog.

While	you	may	think	that	you	need	a	lot	of	data	in	preparing	your	envisioned	product,
keep	in	mind	that	you	are	still	using	Scrum	–	you	only	need	to	have	upfront	predictive
planning	that	will	allow	everyone	involved	to	understand	what	you	are	trying	to	create	and
the	risk	that	everyone	may	be	taking	once	the	project	is	underway.



That	means	that	you	are	only	aiming	to	obtain	reasonable	information	that	you	can
achieve	within	the	budget	and	time	that	you	have	been	given.	Moreover,	you	have	to
remember	that	in	Scrum,	the	product	can	and	will	change	once	you	are	already	in	the
process	of	sprinting	and	once	you	have	received	the	necessary	feedbacks	required	to
achieve	quality.

Aim	for	a	Realistic	Confidence	Threshold

The	confidence	threshold	is	the	minimum	level	of	information	that	decision	makers	need
to	receive	from	you	in	order	for	them	to	be	confident	enough	to	release	their	decision	on
whether	they	should	fund	or	not	fund	the	product	that	you	want	to	propose.

You	can	think	of	it	as	the	bar	that	you	need	to	pass	so	that	you	can	exit	envisioning	and
enter	the	portfolio	planning.	As	you	can	remember,	portfolio	planning	is	the	part	wherein
you	need	to	apply	economic	filters	to	a	product	to	see	if	it	fits	your	organization’s	funding
criteria.	If	it	does,	then	you	can	proceed	to	validating	assumptions	and	proceed	building
the	product.

The	height	of	this	bar	has	legitimate	economic	consequences.	If	you	set	the	bar	high,	then
you	need	more	effort	to	clear	it	–	you	need	more	time	for	envisioning,	which	will	delay	the
product	shipping	and	entail	costs	to	your	organization	especially	if	you	are	trying	to
envision	a	product	that	is	truly	needed.

At	the	same	time,	you	need	to	think	that	envisioning	is	already	being	paid	for,	and	the
longer	it	takes,	the	more	costly	it	becomes,	since	predictive	tasks	like	this	adds	up	to	the
entire	organization’s	WIP.	Additionally,	setting	the	bar	higher	does	not	mean	that	you
become	more	certain	about	the	product	that	would	be	eventually	released,	or	inform	the
management	better	that	approval	is	their	best	decision	to	make.	Because	of	these	reasons,
you	need	to	set	the	bar	to	just	the	helpful	level.



	

You	need	to	do	the	following	to	set	the	bar	to	a	helpful	level:

Look	at	a	short	horizon

	

Don’t	try	to	envision	too	much	about	the	product	at	a	single	moment.	Focus	on	what
features	you	need	to	produce	on	the	first	candidate	release	to	prevent	wasting	your
time	thinking	about	features	that	may	never	be	released	in	the	future.	Since	most	of
your	assumptions	are	not	yet	validated	and	you	cannot	subject	the	product	yet	for
customer	validation,	better	think	that	you	can	adapt	knowledge	that	you	will	find	out
later	on	to	improve	the	product	that	you	have	in	mind.

	

Act	fast

	

Envisioning	should	be	fast	and	efficient,	just	like	everything	else	in	Scrum.	The
sooner	you	get	done	with	this	phase,	the	sooner	you	get	to	build	something	tangible
that	will	help	you	find	out	if	your	assumptions	are	true	or	not.	By	acting	quickly,
you	create	a	sense	of	urgency	for	everyone	to	reach	a	product	decision.

	

You	can	create	this	urgency	by	setting	a	realistic	time	for	your	team	to	finish
envisioning,	which	tells	everyone	that	you	are	determined	to	cut	the	costs	of
planning	and	move	on	to	validation	instead.

	

Spend	for	validated	learning

	

When	you	are	doing	predictive	tasks,	such	as	trying	to	create	hypothesis	on	how
customers	will	probably	like	your	product	or	how	much	revenue	your	product	could
make,	you	are	trying	to	tell	the	management	what	they	are	comfortable	with	in	order
to	perceive	your	data	as	the	baseline	plan.	However,	you	are	aware	that	you	may	just
be	wasting	time	trying	to	present	data	that	can	be	just	a	wild	guess	out	of	your
assumptions,	which	can	be	found	invalid	when	you	get	to	portfolio	planning	and
product	development.

	

If	there	is	something	that	you	need	to	spend	for	during	envisioning,	better	spend	for
validated	learning	and	get	as	much	certain	information	as	you	can.	Work	on	the	core
value	that	you	are	trying	to	present	to	your	organization	–	if	you	think	that	users



prefer	a	feature	that	you	are	trying	to	offer	in	your	product,	then	conduct	a	research
on	that	hypothesis	as	early	as	possible	to	make	the	right	adjustments	to	your
roadmap.

	

Use	provisional	or	incremental	funding

	

Always	see	to	it	that	you	are	using	your	funding	in	increments.	When	you	use
incremental	funding,	you	would	just	be	allotting	resources	to	the	initial	small	part	of
development	and	then	go	back	to	your	budget	when	you	learn	that	what	you	have
spent	for	is	validated.	This	will	allow	you	to	limit	your	spending	on	envisioning	and
also	lessen	the	time	to	complete	it.

	

You	only	need	a	portion	of	the	money	that	you	are	going	to	get	for	validated
learning,	which	prevents	you	from	falling	into	the	temptation	of	spending	time	and
budget	for	all	possible	assumptions	all	at	once.	It	also	follows	that	when	you	have
validation	for	the	minimum	assumptions	that	you	need	to	meet	to	hit	confidence
threshold,	then	there	is	no	point	to	spend	for	the	others.

	

Fail	fast

	

You	do	not	want	to	start	a	product	that	you’re	not	sure	of	its	success	rate	–	while	you
cannot	know	everything	that	is	going	to	happen	with	your	project,	you	would	want
to	get	as	much	certainty	as	possible	during	the	envisioning	process.

	

Fail	fast	is	one	of	the	things	that	you	can	do	to	prevent	too	much	spending	in	the
future	for	things	that	would	probably	not	do.	When	you	try	to	learn	as	quickly	as
possible	and	make	revisions	early	into	envisioning,	you	can	produce	a	more
appropriate	product,	or	decide	to	kill	the	idea	and	do	something	that	would	most
probably	work	out	better.	You	do	not	want	to	spend	resources	for	something	just	for
the	sake	of	approval,	to	be	just	killed	off	in	portfolio	planning	later	on.

Once	you	are	able	to	do	efficient	product	envisioning,	you	would	be	able	to	think	of
products	that	work	best,	without	merely	relying	on	guesswork.	The	more	you	use	an
efficient	envisioning	process,	the	more	products	that	will	give	you	quality	ROI	you	can
produce.

That	means	that	when	your	ideas	get	approved	and	you	are	ready	to	conduct	sprints,	you
will	have	the	confidence	that	the	idea	that	you	wanted	to	develop	is	realistic	and	relevant
enough	to	your	organization’s	growth,	and	that	it	would	return	substantial	benefits	to	your
organization.



At	this	point,	you	have	all	the	skills	that	you	need	to	learn	in	order	to	produce	anything
fast	and	efficient.	Once	you	are	done	with	envisioning	your	product,	you	are	ready	to	start
building	with	confidence!





Conclusion
Thank	you	for	reading	this	book!

I	hope	that	this	book	has	helped	you	learn	how	you	can	use	Scrum	when	you	tackle
activity,	whether	with	a	small	group	of	people	or	involving	an	entire	organization.	I	also
hope	that	this	book	has	helped	you	make	planning	and	building	almost	anything	more
efficiently,	even	when	you	are	starting	with	zero	knowledge	about	what	you	are	supposed
to	do.

Learning	how	to	do	tasks	using	Scrum	(or	any	other	agile	framework	out	there)	effectively
takes	time,	since	a	lot	of	people	that	you	encounter	are	probably	still	doing	the	traditional
method	of	planning	and	building	products.

The	next	step	that	you	can	do	is	to	inform	people	that	you	are	working	with	how	they	can
be	more	efficient	and	resourceful	by	adhering	to	Scrum	principles.	Scrum	also	requires	a
lot	of	practice	to	get	it	right,	but	once	you	commit	to	its	principles	habitually,	you	will	be
able	to	sprint	your	way	to	achieving	goals.


	Introduction
	Chapter 1: Why Scrum is Probably the Most Efficient System Out There
	Chapter 2: Will Scrum Work?
	Chapter 3: The Scrum Team
	Chapter 4: Activities and Artifacts
	Chapter 5: Agile Principles at Work
	Chapter 6: The Product Backlog
	Chapter 7: Estimating Work and Measuring Velocity
	Chapter 8: Going Bigger with Scrum
	Chapter 9: How to Cater to Multiple Products
	Chapter 10: What Products Should You Produce?
	Conclusion

