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Preface

For structural engineers, earthquake engineering can be broadly divided into three areas, namely,

seismology (including ground effects), seismic analysis, and seismic design. These areas are big subjects

in themselves and deserve separate treatment in exclusive books. While there are many excellent books

that cover these three areas in varying proportions, none have been written exclusively on the seismic

analysis of structures for use in teaching an undergraduate elective or a postgraduate core course.

Furthermore, there are virtually no books that contain all aspects of the seismic analysis of structures,

combining new concepts with existing ones, which graduate students pursuing research in the area of

earthquake engineering would appreciate. Considering these major requirements, the present book has

been written despite the fact that a number of masterly textbooks on structural dynamics and earthquake

engineering, dynamics of soil structure interaction, and geotechnical earthquake engineering are already

available within the earthquake engineering community, and where many of the theoretical concepts

presented here have been covered more elaborately. The present book attempts to provide textbook

material for the learning and teaching of the seismic analysis of structures in totality. It offers a

comprehensive and unique treatment of all aspects of the seismic analysis of structures, starting with

seismology and through to the seismic control of structures. The materials in the book are arranged and

presented in a manner that is expected to be equally useful to both undergraduate and postgraduate

students, researchers, and practicing engineers. Depending on the particular requirements, it is possible to

structure courses at various levels on different aspects of seismic analysis based on the contents of this

book. It is presumed that the readers have some background of structural dynamics, preferably having

undergone a basic course in structural dynamics.

The book is presented in nine chapters. The first chapter, Seismology, deals with the fundamentals of

seismology that a structural engineer must know. The chapter deals with topics such as the earth and its

interior, plate tectonics, causes of earthquakes, seismic waves, earthquake measurement parameters, the

measurement of earthquakes, modification of earthquake waves due to the nature of the soil, and seismic

hazard analysis. The last topic describes both deterministic and probabilistic seismic hazard analyses, and

seismic risk at a site. The concept of microzonation based on hazard analysis is also included.

The second chapter, Seismic Inputs for Structures, provides an extensive coverage of the various types

of seismic inputs used for different types of seismic analysis. The seismic inputs discussed include time

history records and their frequency contents, power spectral density function (PSDF) of ground motion,

different types of earthquake spectra, design response spectra, probabilistic response spectra, site specific

spectra, and uniform hazard spectra. Generation of the time histories of synthetic ground motion from a

response spectrum and the PSDF of ground motion is also briefly discussed. Finally, predictive

relationships for different seismic input parameters such as peak ground acceleration (PGA), response

spectra, PSDFs, modulating functions, and coherence functions are given.

The third chapter, Response Analysis for Specified Ground Motions, deals with different methods of

analysis of single and multi-degrees of freedom systems for specified time histories of ground motion.

Methods include time domain analysis, frequency domain analysis using fast Fourier transform (FFT),

modal time domain, and frequency domain analyses for both single-point and multi-point excitations.



Methods of analysis are described for both second-order and state-space equations. The mode

acceleration method is also presented. At the end of the chapter, steps for developing a comprehensive

program using MATLAB� are outlined, which can solve single and multi-degrees of freedom systems

for a specified time history of ground motion using all of the methods of analysis discussed in the

chapter. In addition, use of the SIMULINK toolbox of MATLAB to solve problems is also

demonstrated.

The fourth chapter,FrequencyDomain Spectral Analysis, introduces the concept of spectral analysis of

structures, treating the ground motion as a stationary random process and deals with the subject in a

manner that does not require an in-depth knowledge of the theory of random vibration. Using FFT, the

fundamentals of frequency domain spectral analysis are introduced, and then the required concepts of

autocorrelation, cross correlation, power spectral density functions, and so on, are presented. The basic

relationship between multi-point input and output PSDFs of a structural system is given using a matrix

formulation. Direct and modal spectral analyses are described for single-point and multi-point excita-

tions. Furthermore, a method for the determination of the mean peak response from a spectral analysis is

outlined.

The fifth chapter, Response Spectrum Method of Analysis, discusses the response spectrum method of

analysis for single- and multi-point excitations of multi-degrees of freedom systems. Development of the

methods is presented after a brief background of the concept of equivalent lateral load. The necessary

explanation for including the effect of spatial correlation formulti-point excitation is duly incorporated in

the theory. Other topics discussed in this chapter include modal combination rules, the response spectrum

method of analysis for none classically damped systems and secondary systems, the base shear approach,

and comparison between the code provisions of a few codes in relation to the base shear and response

spectrum methods of analysis.

The sixth chapter, Inelastic Seismic Response of Structures, covers the methods of inelastic response

analysis of structures and the fundamental aspects of inelastic behavior of structural components for

earthquake forces. The topics include the hysteretic behavior of materials, the incremental method of

analysis of single- and multi-degrees of freedom systems accounting for the hysteretic effects, the

incremental analysis procedure with bidirectional interaction, pushover analysis, ductility demand,

inelastic response spectra, and ductility in multi-storey buildings.

The first part of the seventh chapter on Seismic Soil Structure Interaction, provides the background to

seismic wave propagation through the soil medium and gives the finite element analysis of the wave

propagation problem. Next, the dynamic soil–structure interaction is presented by explaining kinematic

interaction, inertial interaction, and the direct and multi-step method for bounded problems. Both the

finite element method and the substructure technique for solving soil–structure and soil–pile structure

interaction problems are described. The topics include time domain and frequency domain analyses using

direct, substructure, and modal analysis techniques for single- and multi-point excitations, analyses for

soil–pile structure interaction problems, and underground structures.

The eighth chapter, Seismic Reliability Analysis of Structures, dealswith the seismic reliability analysis

of structures in which the basic concept of reliability analysis is introduced first, followed by some

popularly used techniques such as the first order second moment (FOSM) method, the Hasofer–Lind

method, the second-order method, and a simulation based method for solving the reliability problems.

Uncertainties involved in the seismic reliability analysis of structures are then elaborated, and a number of

seismic reliability analysis techniques are presented. They include reliability analysis for threshold

crossing, the first passage failure of structures, risk assessment using a damage probability matrix, and

approximate probabilistic risk assessment of structures.

In the final chapter on Seismic Control of Structures, the concepts of passive, active, and semi-active

control of structures for earthquake forces are covered. The various topics discussed in the chapter

include: the design of base isolators and analysis of base isolated structures (both response spectrum and

non-linear time history analyses), different methods of analysis of building frames fitted with viscoelastic

dampers and tunedmass dampers, active control of structures with andwithout an observer using the pole

xiv Preface



placement technique, quadratic linear optimal control, and instantaneous optimal control. Finally, an

introduction to the semi-active control of structures using semi-active hydraulic dampers is presented.

In each chapter, a number of carefully selected example problems are solved in order to explain the

various concepts presented. In addition, many of the problems are solved using MATLAB and standard

software such as SAP2000 and ABAQUAS, demonstrating the use of the available software for solving

different types of problems in the seismic analysis of structures.

I would like to thank many of my students who directly or indirectly helped me in gaining insight and

carrying out research in the area of seismic analysis of structures. Their invaluable contributions are

hidden in every page of this book. The textbooks Dynamics of Structures by Professor R.W. Clough and

Professor J. Penzien, Dynamics of Structures – Theory and Application to Earthquake Engineering by

Professor A.K. Chopra,Geotechnical Earthquake Engineering by Professor S.L. Kramer, and Structural

Dynamics for Structural Engineers by Garry C. Hart have been valuable references in organizing the

many concepts of the book and clarifying many doubts. I am extremely grateful to these authors. I wish to

acknowledge my sincere thanks to Mr. Prakash Kedia and Dr. Deepak Kumar who worked untiringly

preparing the manuscript of the book. I am also thankful to many of myM.Tech students who helped me

solve the example problems. Finally, I thankDr. (Mrs.) SabitaKarunes for her support and encouragement

whilst preparing the book.

The author will be pleased to hear from readers who spot errors and misprints or who find ways of

improving the book. All such suggestions will be gratefully acknowledged, andwill be used selectively to

improve future versions of the book.
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1

Seismology

1.1 Introduction

An earthquake is a sudden and transient motion of the earth’s surface. According to geologists, the earth

has suffered earthquakes for hundreds of millions of years, even before humans came into existence.

Because of the randomness, the lack of visible causes, and their power of destructiveness, ancient

civilizations believed earthquakes to be supernatural phenomena – the curse of God. In terms of the

geological time scale, it is only recently (the middle of seventeenth century) that an earthquake has been

viewed as a natural phenomenon driven by the processes of the earth as a planet. Thus subsequent work,

especially in nineteenth century, led to tremendous progress on the instrumental side for the measurement

of earthquake data. Seismological data from many earthquakes were collected and analyzed to map and

understand the phenomena of earthquakes. These data were even used to resolve the earth’s internal

structure to a remarkable degree, which, in turn, helped towards the development of different theories to

explain the causes of earthquakes. While the body of knowledge derived from the study of collected

seismological data has helped in the rational design of structures to withstand earthquakes, it has also

revealed the uncertain nature of future earthquakes forwhich such structures are to be designed. Therefore,

probabilistic concepts in dealing with earthquakes and earthquake resistant designs have also emerged.

Both seismologists and earthquake engineers use the seismological data for the understanding of an

earthquake and its effects, but their aims are different. Seismologists focus their attention on the global

issues of earthquakes and are more concerned with the geological aspects, including the prediction of

earthquakes. Earthquake engineers, on the other hand, are concerned mainly with the local effects of

earthquakes, which are capable of causing significant damage to structures. They transform seismological

data into a form which is more appropriate for the prediction of damage to structures or, alternatively, the

safe design of structures. However, there aremany topics in seismology that are of immediate engineering

interest, especially in the better understanding of seismological data and its use for seismic design of

structures. Those topics are briefly presented in the following sections.

1.1.1 Earth and its Interiors

During the formation of the earth, large amounts of heatwere generated due to the fusion ofmasses. As the

earth cooled down, themasses became integrated together, with the heavier ones going towards the center

and the lighter ones rising up. This led to the earth consisting of distinct layers of masses. Geological

investigationswith seismological data revealed that earth primarily consists of four distinct layers namely:

Seismic Analysis of Structures T.K. Datta
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the inner core, the outer core, the mantle, and the crust, as shown in Figure 1.1. The upper-most layer,

called the crust, is of varying thickness, from 5 to 40 km. The discontinuity between the crust and the next

layer, themantle, was first discovered byMohorovi�ci�c through observing a sharp change in the velocity of
seismic waves passing from the mantle to the crust. This discontinuity is thus known as the Mohorovi�ci�c
discontinuity (“M discontinuity”). The average seismic wave velocity (P wave) within the crust ranges

from 4 to 8 km s�1. The oceanic crust is relatively thin (5–15 km), while the crust beneath mountains is

relatively thick. This observation also demonstrates the principle of isostasy, which states that the crust

is floating on the mantle. Based on this principle, the mantle is considered to consist of an upper layer that

is fairly rigid, as the crust is. The upper layer along with the crust, of thickness�120 km, is known as the

lithosphere. Immediately below this is a zone called the asthenosphere, which extends for another 200 km.

This zone is thought to be of molten rock and is highly plastic in character. The asthenosphere is only a

small fraction of the total thickness of the mantle (�2900 km), but because of its plastic character it

supports the lithosphere floating above it. Towards the bottomof themantle (1000–2900 km), thevariation

of the seismic wave velocity is much less, indicating that the mass there is nearly homogeneous. The

floating lithosphere does not move as a single unit but as a cluster of a number of plates of various sizes.

The movement in the various plates is different both in magnitude and direction. This differential

movement of the plates provides the basis of the foundation of the theory of tectonic earthquake.

Below the mantle is the central core. Wichert [1] first suggested the presence of the central core. Later,

Oldham [2] confirmed it by seismological evidence. It was observed that only P waves pass through the

central core, while both P and S waves can pass through the mantle. The inner core is very dense and is

thought to consist of metals such as nickel and iron (thickness�1290 km). Surrounding that is a layer of

similar density (thickness�2200 km),which is thought to be a liquid as Swaves cannot pass through it. At

the core, the temperature is about 2500 �C, the pressure is about 4 million atm, and the density is about

14 g cm�3. Near the surface, they are 25 �C, 1 atm and 1.5 g cm�3, respectively.

1.1.2 Plate Tectonics

The basic concept of plate tectonics evolved from the ideas on continental drift. The existence of mid-

oceanic ridges, seamounts, island areas, transform faults, and orogenic zones gave credence to the theory

Figure 1.1 Inside the earth (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.” Public domain, National
Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed April 16, 2009.)
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of continental drift. Atmid-oceanic ridges, two large landmasses (continents) are initially joined together.

They drift apart because of the flow of hot mantle upwards to the surface of the earth at the ridges due to

convective circulation of the earth’s mantle, as shown in Figure 1.2. The energy of the convective flow is

derived from the radioactivity inside the earth. As the material reaches the surface and cools, it forms an

additional crust on the lithosphere floating on the asthenosphere. Eventually, the newly formed crust

spreads outwards because of the continuous upwelling of molten rock. The new crust sinks beneath the

surface of the sea as it cools downand the outwards spreading continues. These phenomena gave rise to the

concept of sea-floor spreading. The spreading continues until the lithosphere reaches a deep-sea trench

where it plunges downwards into the asthenosphere (subduction).

The continentalmotions are associatedwith a variety of circulation patterns. As a result, the continental

motion does not take place as one unit, rather it occurs through the sliding of the lithosphere in pieces,

called tectonic plates. There are seven such major tectonic plates, as shown in Figure 1.3, and many

smaller ones. Theymove in different directions and at different speeds. The tectonic plates pass each other

at the transform faults and are absorbed back into the mantle at orogenic zones. In general, there are three

types of interplate interactions giving rise to three types of boundaries, namely: convergent, divergent, and

transform boundaries. Convergent boundaries exist in orogenic zones, while divergent boundaries exist

where a rift between the plates is created, as shown in Figure 1.4.

Figure 1.2 Local convective currents in the mantle (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.”
Public domain, National Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed
April 16, 2009.)

Figure 1.3 Major tectonic plates on the earth’s surface (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.”
Public domain, National Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed
April 16, 2009.)
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The faults at the plate boundaries are the most likely locations for earthquakes to occur. These

earthquakes are termed interplate earthquakes. A number of earthquakes also occur within the plate away

from the faults. These earthquakes are known as intraplate earthquakes, in which a sudden release of

energy takes place due to the mutual slip of the rock beds. This slip creates new faults called earthquake

faults. However, faults are mainly the causes rather than the results of earthquakes. These faults, which

have been undergoing deformation for the past several thousands years andwill continue to do so in future,

are termed active faults. At the faults (new or old), two different types of slippages are observed, namely:

dip slip and strike slip. Dip slip takes place in the vertical direction while strike slip takes place in the

horizontal direction, as shown in Figure 1.5.

Figure 1.4 Types of interplate boundaries (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.” Public domain,
National Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessedApril 16, 2009.)

Figure 1.5 Types of fault (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.” Public domain, National
Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed April 16, 2009.)
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Faults created by dip slip are termed normal faults when the upper rock bed moves down and reverse

faults when the upper rock bed moves up, as shown in Figure 1.5. Similarly, faults created by strike slip

are referred to as left lateral faults and right lateral faults depending on the direction of relative

slip. A combination of four types of slippage may take place in the faults. Some examples of earthquake

faults are:

a. 300 km long strike slip of 6.4m at the San Andreas fault;

b. 60 km long right lateral fault at Imperial Valley with a maximum slip of 5m;

c. 80 km long 6m vertical and 2–4m horizontal slip created by the Nobi earthquake in Japan;

d. 200 km long left lateral fault created by the Kansu earthquake in China.

1.1.3 Causes of Earthquakes

Movement of the tectonic plates relative to each other, both in direction and magnitude, leads to an

accumulation of strain, both at the plate boundaries and inside the plates. This strain energy is the elastic

energy that is stored due to the straining of rocks, as for elastic materials. When the strain reaches its

limiting value along a weak region or at existing faults or at plate boundaries, a sudden movement or slip

occurs releasing the accumulated strain energy. The action generates elastic waves within the rock mass,

which propagate through the elastic medium, and eventually reach the surface of the earth. Most

earthquakes are produced due to slips at the faults or at the plate boundaries. However, there are many

instances where new faults are created due to earthquakes. Earthquakes that occur along the boundaries of

the tectonic plates that is, the interplate earthquakes, are generally recorded as large earthquakes. The

intraplate earthquakes occurring away from the plate boundaries can generate new faults. The slip

ormovement at the faults is along both thevertical and horizontal directions in the formof dip slip or strike

slip. The length of the fault over which the slip takes place may run over several hundred kilometers. In

major earthquakes, a chain reaction would take place along the entire length of the slip. At any given

instant, the earthquake origin would practically be a point and the origin would travel along the fault.

The elastic rebound theory of earthquakegeneration attempts to explain the earthquakes caused due to a

slip along the fault lines. Reid first put into clear focus the elastic rebound theory of earthquake generation

from a study of the rupture that occurred along the SanAndreas fault during the San Francisco earthquake.

The large amplitude shearing displacements that took place over a large length along the fault led him to

conclude that the release of energy during an earthquake is the result of a sudden shear type rupture. An

earthquake caused by a fault typically proceeds according to the following processes:

a. Owing to various slow processes involved in the tectonic activities of the earth’s interior and the crust,

strain accumulates in the fault for a long period of time. The large field of strain at a certain point in time

reaches its limiting value.

b. A slip occurs at the faults due to crushing of the rock mass. The strain is released and the tearing

strained layers of the rock mass bounces back to its unstrained condition, as shown in Figure 1.6.

c. The slip that occurs could be of any type, for example, dip slip or strike slip. In most instances it is a

combined slip giving rise to push and pull forces acting at the fault, as shown in Figure 1.7. This

situation is equivalent to two pairs of coupled forces suddenly acting.

d. The action causes movement of an irregular rock mass leading to radial wave propagation in

all directions.

e. The propagating wave is complex and is responsible for creating displacement and acceleration of the

soil/rock particles in the ground. Themoment of each couple is referred to as the seismicmoment and is

defined as the rigidity of rock multiplied by the area of faulting multiplied by the amount of slip.

Recently, it has been used as a measure of earthquake size. The average slip velocity at an active fault

varies and is of the order of 10–100mm per year.
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Figure 1.6 Elastic rebound theory
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Figure 1.7 Earthquake mechanism: (a) before slip; (b) rebound due to slip; (c) push and pull force; and (d) double
couple
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Based on the elastic rebound theory, modeling of earthquakes has been a topic of great interest. Two types

of modeling have been widely studied, namely, kinematic and dynamic. In kinematic modeling, the time

history of the slip on the generating fault is known a priori. Several defining parameters such as shape,

duration and amplitude of the source, the velocity of the slip over the fault surface, and so on, are used to

characterize the model. In dynamic modeling, the basic model is a shear crack, which is initiated in the

pre-existing stress field. The resulting stress concentration causes the crack to grow.

The other theory of tectonic earthquake stipulates that the earthquake originates as a result of phase

changes of the rocks, accompanied by volume changes in relatively small volumes of the crust. Thosewho

favor the phase change theory argue that the earthquakes originated at greater depths where faults are

likely to be absent because of the high temperature and confining pressure. Therefore, earthquakes are not

caused because of a slip along fault lines or a rupture at weak regions.

Apart from tectonic earthquakes, earthquakes could be due to other causes, namely: volcanic activities,

the sudden collapse of the roof in a mine/cave, reservoir induced impounding, and so on.

1.2 Seismic Waves

The large strain energy released during an earthquake causes radial propagation of waves within the earth

(as it is an elastic mass) in all directions. These elastic waves, called seismic waves, transmit energy from

one point of earth to another through different layers and finally carry the energy to the surface, which

causes the destruction. Within the earth, the elastic waves propagate through an almost unbounded,

isotropic, and homogeneous media, and formwhat are known as bodywaves. On the surface, thesewaves

propagate as surface waves. Reflection and refraction of waves take place near the earth’s surface and at

every layer within the earth. The body waves are of two types, namely, P waves and S waves. P waves, as

shown at the top of Figure 1.8, are longitudinal waves in which the direction of particle motion is in the

same or opposite direction to that of wave propagation. S waves, also shown in Figure 1.8, are transverse

waves in which the direction of particle motion is at right angles to the direction of wave propagation. The

propagation velocities of P and S waves are expressed as follows:

VP ¼ E

r
1�u

ð1þ uÞð1�2uÞ
� �1

2 ð1:1Þ

VS ¼ G

r

� �1
2 ¼ E

r
1

2ð1þ uÞ
� �1

2 ð1:2Þ

inwhichE,G,r, and u are theYoung’smodulus, the shearmodulus, themass density, and the Poisson ratio

of the soil mass, respectively. As the Poisson ratio is always less than a half, P waves arrive ahead of S

waves. Near the surface of the earth, VP¼ 5–7 km s�1 and VS¼ 3–4 km s�1.

The time interval between the arrival of the P and S waves at a station is called the duration of

primary tremor.

This duration can be obtained by:

TP ¼ D
1

VS

� 1

VP

� �
ð1:3Þ

whereD is the distance of the station from the focus.During the passage of a transversewave, if the particle

motion becomes confined to a particular plane only, then the wave is called a polarized transverse wave.

Polarization may take place in a vertical or a horizontal plane. Accordingly, the transverse waves are

termed as SV or SH waves.
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Surface waves propagate on the earth’s surface. They are better detected in shallow earthquakes.

They are classified as Lwaves (Lovewaves) andRwaves (Rayleighwaves). In Lwaves, particlemotion

takes place in the horizontal plane only and it is transverse to the direction of propagation, as shown in

Figure 1.8. The wave velocity depends on the wavelength, the thickness of the upper layer, and the

elastic properties of the twomediums of the stratified layers. L waves travel faster than Rwaves and are

the first to appear among the surface wave group. In R waves, the particle motion is always in a vertical

plane and traces an elliptical path, which is retrograde to the direction of wave propagation, as shown in

Figure 1.8. The R wave velocity is approximately 0.9 times the transverse wave velocity. In stratified

layers, R waves become dispersive (wave velocity varying with frequency), as with the L waves.

Waves traveling away from the earthquake source spread in all directions to emerge on the earth’s

surface. The earthquake energy travels to a station in the form of waves after reflection and refraction at

various boundarieswithin the earth. The P and Swaves that arrive at the earth’s surface after reflection and

refraction at these boundaries, including the earth’s surface, are denoted by phases of thewave such as PP,

Figure 1.8 Motion caused by body and surface waves (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.”
Public domain, National Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed
April 16, 2009.)
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PPP, SS, PPS, and so on, as shown in Figure 1.9. PP and PPP are longitudinal waves reflected once and

twice, respectively. PS and PPS are phases that have undergone a change in character on reflection.

Earthquakewaves that are recorded on the surface of the earth are generally irregular in nature.A record

of a fairly strong earthquake shows a trace of the types of waves, as shown in Figure 1.10.

Strong earthquakes can generally be classified into four groups:

a. Practically a single shock: Acceleration, velocity, and displacement records for one suchmotion are

shown in Figure 1.11. A motion of this type occurs only at short distances from the epicenter, only on

firm ground, and only for shallow earthquakes.

b. A moderately long, extremely irregular motion: The record of the earthquake of El Centro,

California in 1940, NS component (Figure 1.12) exemplifies this type of motion. It is associated with

moderate distances from the focus and occurs only on firm ground. On such ground, almost all the

major earthquakes originating along the Circumpacific Belt are of this type.

c. A long ground motion exhibiting pronounced prevailing periods of vibration: A portion of the

accelerogram obtained during the earthquake of 1989 in Loma Prieta is shown in Figure 1.13 to

illustrate this type. Suchmotions result from the filtering of earthquakes of the preceding types through

layers of soft soil within the range of linear or almost linear soil behavior and from the successivewave

reflections at the interfaces of these layers.

d. A ground motion involving large-scale, permanent deformations of the ground: At the site of

interest there may be slides or soil liquefaction. Examples are in Valdivia and Puerto Montt during the

Chilean earthquakes of 1960 [3], and in Anchorage during the 1964 Alaskan earthquake [4].

PS

P
S

S

SP
P

SS

PP

Figure 1.9 Reflections at the earth’s surface

P PP SSS L

Figure 1.10 Typical strong motion record
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There are ground motions with characteristics that are intermediate between those described above.

For example, the number of significant, prevailing ground periods, because of complicated

stratification, may be so large that a motion of the third group approaches white noise. The nearly

white-noise type of earthquake has received the greatest share of attention. This interest in white

noise is due to its relatively high incidence, the number of records available, and the facility for

simulation in analog and digital computers, or even from the analytical treatment of the responses of

simple structures.
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Figure 1.11 Practically single shock: (a) acceleration; (b) velocity; and (c) displacement
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1.3 Earthquake Measurement Parameters

Seismic intensity parameters refer to the quantities by which the size of earthquake is described. There is

more than one intensity parameter that is used to represent the size and effect of an earthquake. With the

help of any or all of these intensity parameters, the size of an earthquake is described. Some of these

parameters aremeasured directly,while others are derived indirectly from themeasured oneswith the help

of empirical relationships. Thus,many empirical relationships have been developed to relate one intensity

parameter to another. In the following, intensity parameters along with some of the terminologies

associated with earthquake are described.
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Seismology 11



The focus or hypocenter is the point on the fault where the slip starts. The point just vertically above this

on the surface of the earth is the epicenter, as shown in Figure 1.14.

The depth of the focus from the epicenter is called focal depth and is an important parameter in

determining the damaging potential of an earthquake. Most of the damaging earthquakes have a shallow
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Figure 1.13 Records with a predominant frequency: (a) acceleration; (b) velocity; and (c) displacement
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focuswith a focal depth of less than 70 km.Depths of foci greater than 70 km are classified as intermediate

or deep, depending on their distances. Distances from the focus and the epicenter to the point of observed

ground motion are called the focal distance and epicentral distance, respectively. The limited region of

the earth that is influenced by the focus of earthquake is called the focal region. The larger the earthquake,

the greater is the focal region. Foreshocks are defined as those which occur before the earthquake (that is,

the main shock). Similarly, aftershocks are those which occur after the main shock.

The magnitude and intensity are the two very common parameters used to represent the size of an

earthquake. Magnitude is a measure of the strength of an earthquakes or strain energy released by it, as

determined by seismographic observation. It is a function of the amount of energy released at the focus and

is independent of the place of observation. The concept was developed byWadati and Charles Richter in

1935. Richter expressed the magnitude, M, of an earthquake by the following expression:

M ¼ log
A

T

� �
þ f ðD; hÞþCs þCr ð1:4Þ

where A is the maximum amplitude in microns; T is the period of the seismic wave in seconds; f is the

correction factor for the epicentral distance (D) and focal depth (h); Cs is the correction factor for the

seismological station; and Cr is the regional correction factor.

Themagnitude value obtained through Equation 1.4 is a unique value for a specific event and there is no

beginning or end to this scale. Natural seismic events have amaximumvalue ofM¼ 8.5 or slightly higher.

Except in special circumstances, earthquakes below a magnitude of 2.5 are not generally felt by humans.

Sometimes, the initial magnitude of an earthquake estimated immediately after the event will bemodified

slightly when more and more data from other recording stations are incorpotated. Since the first use of

Richter’s magnitude scale in 1935, several other scales have been proposed that consider various types of

waves propagating from the same seismic source. They are described in the following sections.

1.3.1 Local Magnitude (ML)

The local magnitudeML corresponds to the original formulation proposed by Richter [5] in 1935 for local

events in South California. TheML is defined as the logarithm of the maximum amplitude that is obtained

from the record of a seismic event using a Wood–Anderson torsional seismograph located 100 km from

the epicenter of the earthquake. This seismograph must have a natural period of 0.8 s, a magnification of

2800, and a damping coefficient of 80%of the critical damping. The relative size of the events is calculated

Epicenter Epicentral distance

Hypocentral distance

Focal depth

Focus/hypocenter

Site

Figure 1.14 Earthquake definitions
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by comparison with a reference event.

ML ¼ logA� logAo ð1:5Þ
whereA is themaximum trace amplitude inmicrons recorded on a standard short seismometer, andAo is a

standard value as a function of distancewhere the distance�100 km.Using this reference event to define a

curve, Equation 1.5 is rewritten in the form

ML ¼ logA� 2:48þ 2:7logD ð1:6Þ

where D is the epicentral distance.

TheML in its original form is rarely used today because Wood–Anderson torsional seismographs are

not commonly found. To overcome these limitations, the ML for near earthquakes recorded by high

frequency systems is now generally determined using the Coda length (T). The Coda length is defined as

the total signal duration in seconds from the onset time until the amplitude merges into the background

noise level. The suggested nature of the relationship between ML and T is given by:

ML ¼ aþ blogT ð1:7Þ
where a and b are constants.

1.3.2 Body Wave Magnitude (Mb)

Although the local magnitude is useful, the limitations imposed by instrument type and distance range

make it impractical for the global characterization of earthquake size. Gutenberg andRichter [6] proposed

Mb based on the amplitude of the compressional body wave, P, with periods in the order of a second. The

magnitude is based on the first few cycles of the P-wave arrival and is given by:

Mb ¼ log
A

T

� �
þQðh;DÞ ð1:8Þ

whereA is the actual groundmotion amplitude inmicrons, T is corresponding period in seconds, andQ is a

function of distance (D) and depth (h).

Occasionally, long-period instruments are used to determine the bodywavemagnitude for periods from

5 to 15 s, and these are usually for the largest body waves LP, PP, and so on.

1.3.3 Surface Wave Magnitude (MS)

The surface wave magnitude, MS, was proposed by Gutenberg and Richter [7] as a result of detailed

studies. It is currently the magnitude scale most widely used for great epicentral distances, but it is valid

for any epicentral distance and for any type of seismograph. This requires precise knowledge of the wave

amplitude as a function of distance. In order to utilize different seismographs, the amplitude of vibration

of the soil should be used, not the amplitude recorded.MS can be evaluated for surfacewaves with periods

in the order of 20 s by the following Praga formulation:

MS ¼ log
A

T

� �
þ 1:66 logDþ 2:0 ð1:9Þ

where A is spectral amplitude, the horizontal component of the Rayleigh wave, with a period of 20 s,

measured on the ground surface in microns, T is the period of the seismic wave in seconds, and D is the

epicentral distance in km.
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1.3.4 Seismic Moment Magnitude (MW)

A better measure of the size of a large earthquake is the seismic moment, Mo. A rupture along a fault

involves equal and opposite forces, which produce a couple. The seismic moment is

Mo ¼ GUA ð1:10Þ
where A is the fault area (length� depth) in m2; U is the longitudinal displacement of the fault in

m, and G is the modulus of rigidity (approx. 3� 1010Nm�2 for the crust and 7� 1010 Nm�2 for

the mantle).

The seismic moment is measured from seismographs using very long period waves for which even a

fault with a very large rupture area appears as a point source. Because the seismic moment is a measure of

the strain energy released from the entire rupture surface, a magnitude scale based on the seismic moment

most accurately describes the size of the largest earthquakes. Kanamori [8] designed such a scale, called a

moment magnitude, MW, which is related to a seismic moment as follows:

MW ¼ 2

3
log10Mo�6:0 ð1:11Þ

where Mo is in N m.

As shown in Figure 1.15, all the above magnitude scales saturate for large earthquakes. It is apparent

thatMb begins to saturate atMb¼ 5.5 and fully saturates at 6.0.MS does not saturate until approximately

MS¼ 7.25 and is fully saturated at 8.0.ML begins to saturate at about 6.5. Because of this saturation, it is

difficult to relate one type of magnitudewith another at values greater than 6. Up to a value of 6, it may be

generally considered thatMW¼ML¼Mb¼MS¼M. Beyond the value of 6, it is better to specify the type

of magnitude. However, in earthquake engineering many alternation and empirical relationships are used

without specificmention of the type of magnitude. The magnitude is simply denoted byM (orm). In such

cases, no specific type should be attached to the magnitude. It is desirable to have a magnitude measure

that does not suffer from this saturation.
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The frequency of occurrence of earthquakes based on recorded observations since 1900 is shown

in Table 1.1

1.3.5 Energy Release

The energy, E in joules (J), released by an earthquake can be estimated from the magnitude, MS as:

E ¼ 104:8þ 1:5MS ð1:12Þ
Newmark and Rosenblueth [9] compared the energy released by an earthquake with that of a nuclear

explosion. A nuclear explosion of 1 megaton releases 5� 1015 J. According to Equation 1.12, an

earthquake of magnitudeMS¼ 7.3 would release the equivalent amount of energy as a nuclear explosion

of 50megatons. A simple calculation shows that an earthquake of magnitude 7.2 produces ten timesmore

ground motion than a magnitude 6.2 earthquake, but releases about 32 times more energy. The E of a

magnitude 8.0 earthquake will be nearly 1000 times the E of a magnitude 6.0 earthquake. This explains

why big earthquakes are so much more devastating than small ones. The amplitude numbers are easier to

explain, and are more often used in the literature, but it is the energy that does the damage.

The length of the earthquake fault L in kilometers is related to the magnitude [10] by

M ¼ ð0:98 log LÞþ 5:65 ð1:13Þ
The slip in the fault U in meters is related to the magnitude [11] by

M ¼ ð1:32 logUÞþ 4:27 ð1:14aÞ
Surface rupture length (L), rupture area (A), and maximum surface displacement (D) are good

measurable indices to estimate the energy released and hence, the magnitude MW of the earthquake.

Therefore, several studies have beenmade to relateMW to L, A, andD. A few such relationships are given

in the reference [12]. From these relationships, the following empirical equations are obtained

Log L ¼ 0:69MW�3:22 ðsLog L ¼ 0:22Þ ð1:14bÞ
Log A ¼ 0:91MW�3:49 ðsLog A ¼ 0:24Þ ð1:14cÞ
LogD ¼ 0:82MW�5:46 ðsLog D ¼ 0:42Þ ð1:14dÞ

in which L is in km, A is in km2 and D is in m.

1.3.6 Intensity

The intensity of an earthquake is a subjectivemeasure as determined by human feelings and by the effects

of ground motion on structures and on living things. It is measured on an intensity scale. Many intensity

scales have been proposed and are used in different parts of the world. A few older scales are the Gastaldi

scale (1564), the Pignafaro scale (1783), and the Rossi–Forel scale (1883).

Table 1.1 Frequency of occurrence of earthquakes (based on observations since 1900)

Description Magnitude Average annually

Great 8 and higher 1
Major 7–7.9 18
Strong 6–6.9 120
Moderate 5–5.9 820
Light 4–4.9 6200 (estimated)
Minor 3–3.9 49 000 (estimated)
Very minor <3.0 Magnitude 2–3 about 1000 per day

Magnitude 1–2 about 8000 per day
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The last one, which has ten grades, is still used in some parts of Europe. The Mercalli–Cancani–Sieberg

scale, developed from theMercalli (1902) andCancani (1904) scales, is still widely used inWesternEurope.

A modified Mercalli scale having 12 grades (a modification of the Mercalli–Cancani–Sieberg scale

proposed by Neuman, 1931) is now widely used in most parts of the world. The 12-grade Medved–

Sponheuer–Karnik (MSK) scale (1964) was an attempt to unify intensity scales internationally and with

the 8-grade intensity scale used in Japan. The subjective nature of the modifiedMercalli scale is depicted

in Table 1.2.

Although the subjective measure of earthquake seems undesirable, subjective intensity scales have

played important roles in measuring earthquakes throughout history and in areas where no strong motion

instruments are installed. There have been attempts to correlate the intensity of earthquakes with

instrumentally measured ground motion from observed data and the magnitude of an earthquake. An

empirical relationship between the intensity and magnitude of an earthquake, as proposed by Gutenberg

and Richter [6], is given as

MS ¼ 1:3þ 0:6Imax ð1:15Þ
in which MS is the surface wave magnitude, and Imax is the maximum observed intensity. Many

relationships have also been developed for relating the intensity, magnitude, and epicentral distance,

r. Among them, that of Esteva and Rosenblueth [13] is widely used:

I ¼ 8:16þ 1:45M�2:46lnr ð1:16Þ
in which I is measured in the MM scale and r is in kilometers. Another relationship which provides good

correlation between magnitude and intensity is in the form of

I ¼ 1:44Mþ f ðRÞ ð1:17Þ
where f(R) is a decreasing function of R and varies slowly with M.

The other important earthquake measurement parameters are the measured ground motion parameters

at the rock outcrops. These ground motion parameters are the peak ground acceleration (PGA), peak

ground velocity, and ground displacement. Out of these, PGA has become the most popular parameter to

denote the measure of an earthquake and has been related to the magnitude through several empirical

relationships. The PGA at a site depends not only on the magnitude and epicentral distance of the

earthquake, but also on the regional geological characteristics. Therefore, the empirical constants are

Table 1.2 Modified Mercalli intensity (MMI) scale (abbreviated version)

Intensity Evaluation Description Magnitude
(Richter scale)

I Insignificant Only detected by instruments 1–1.9
II Very light Only felt by sensitive people; oscillation of hanging objects 2–2.9
III Light Small vibratory motion 3–3.9
IV Moderate Felt inside buildings; noise produced by moving objects 4–4.9
V Slightly strong Felt by most people; some panic; minor damage
VI Strong Damage to non-seismic resistant structures 5–5.9
VII Very strong People running; some damage in seismic resistant structures and

serious damage to un-reinforced masonry structures
VIII Destructive Serious damage to structures in general
IX Ruinous Serious damage to well-built structures; almost total destruction

of non-seismic resistant structures
6–6.9

X Disastrous Only seismic resistant structures remain standing 7–7.9
XI Disastrous in

extreme
General panic; almost total destruction; the ground cracks
and opens

XII Catastrophic Total destruction 8–8.9
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derived from the measured earthquake data in the region. As the PGAvalue decreases with the epicentral

distance, these empirical relationships are also called attenuation laws.

1.4 Measurement of an Earthquake

The instrument that measures the ground motion is called a seismograph and has three components,

namely, the sensor, the recorder, and the timer. The principle of operation of the instrument is simple.

Right from the earliest seismograph to the most modern one, the principle of operation is based on the

oscillation of a pendulum subjected to the motion of the support. Figure 1.16 shows a pen attached to the

tip of an oscillating pendulum. The support is in firm contact with the ground. Any horizontal motion of

the ground will cause the same motion of the support and the drum. Because of the inertia of the bob

in which the pen is attached, a relative motion of the bob with respect to the support will take place.

The relative motion of the bob can be controlled by providing damping with the aid of a magnet

around the string. The trace of this relative motion can be plotted against time if the drum is rotated at a

constant speed.

If x is the amplified relative displacement of the bob with an amplification of v and u is

the ground displacement, then the following equation of motion can be written for the oscillation of

the bob:

x€þ 2k _xþw2x ¼ �v u€ ð1:18Þ
in which x¼ vz, 2k is the damping coefficient, w is the natural frequency of the system, and z is the

unamplified displacement. If the frequency of oscillation of the system is very small (that is, the period of

the pendulum is very long) and the damping coefficient is appropriately selected, then the equation of

motion takes the form:

x ¼ �vu or x a u ð1:19Þ
Hence, x as read on the recorder becomes directly proportional to the ground displacement. This type of

seismograph is called a long period seismograph. If the period of the pendulum is set very short compared

Figure 1.16 Schematic diagram of an early seismograph (Source: Murty, C.V.R. “IITK-BMPTC Earthquake Tips.”
Public domain, National Information Centre of Earthquake Engineering. 2005. http://nicee.org/EQTips.php - accessed
April 16, 2009.)
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with the predominant period of the ground motion and the damping coefficient is appropriately adjusted,

then the equation of motion takes the form:

w2x ¼ �v u€ or x a u€ ð1:20Þ
Thus, x as read on the recorder becomes directly proportional to the ground acceleration. This type of

seismograph is called an acceleration seismograph or short period seismograph. If the natural period of the

pendulum is set close to that of the ground motion and the damping coefficient is set to a large value, then

the equation of motion takes the form:

x ¼ �v _u or x a _u ð1:21Þ
Hence, x as read on the recorder becomes directly proportional to the ground velocity.

The pendulum system described above is used to measure the horizontal component of the

ground motion.

To measure the vertical component of the ground motion, a pendulum with a weight hanging from

spring may be used, as shown in Figure 1.17.

Amplification of the pendulum displacement can be achieved by mechanical, optical or electromag-

neticmeans. Through opticalmeans, amplifications of several thousand-fold and through electromagnetic

means, amplifications of several millionfold are possible. Electromagnetic or fluid dampers may be used

to dampen the motion of the system. The pendulummass, string, magnet, and support together constitute

u

Horizontal pendulum
(a)

Vertical pendulum

(b)

u

Figure 1.17 Representation of the principle of a seismograph
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the sensor. The drum, pen, and chart paper constitute the recorder. The motor that rotates the drum at a

constant speed is the timer. All types of seismographs have these three components.

The more commonly used seismographs fall into three groups, namely, direct coupled (mechanical),

moving coil, and variable reluctance. The last two use a moving coil galvanometer for greater

magnification of the output from the seismographs. In the direct-coupled seismographs, the output is

coupled directly to the recorder using a mechanical or optical lever arrangement. The Wood–Anderson

seismograph, developed in 1925, belongs to this category. A schematic diagram of the Wood–Anderson

seismograph is shown in Figure 1.18. A small copper cylinder of 2mmdiameter and 2.5 cm length having

a weight of 0.7g is attached eccentrically to a taut wire. The wire is made of tungsten and is 1/50mm in

diameter. The eccentrically placed mass on the taut wire constitutes a torsion pendulum. A small plane

mirror is fixed to the cylinder,which reflects the beam froma light source. Bymeans of double reflection of

the light beam from the mirror, magnification of up to 2800 can be achieved. Electromagnetic damping

(0.8 of the critical) of the eddy current type is provided by placing the copper mass in a magnetic field of a

permanent horseshoe magnet.

The characteristics of ground motions near and far from the epicentral distances are different. In near

earthquakes, waves with a period less than 0.1 s and a very large amplitude are present. For far

earthquakes, periods up to 40 s may be commonly encountered with very low amplitude waves.

Commonly used seismographs can record earthquake waves within a 0.5–30 s range.

Strong motion seismographs (accelerographs) are used for measuring ground motions for far

earthquakes. Such accelerographs are at rest until the ground acceleration exceeds a preset value, and

thereby triggering the measurement of any strong earthquake. The earthquake ground motion is

recorded in three components of the vibration: two horizontal and one vertical. In general, these

accelerographs have:

a. period and damping of the pick up of 0.06–25 cps;

b. preset starting acceleration of about 0.005g;

c. acceleration sensitivity of 0.001–1.0g;

d. average starting time of 0.05–0.1 s.

N
S Horseshoe magnet

Suspension

Copper mass

Mirror

Light beam

Figure 1.18 Illustration of the torsion pendulum of a Wood–Anderson seismograph
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Micro-earthquake recording instruments also exist, which are able tomeasure feeble ground vibrations of

higher frequencies. These instruments have a lownoise to high gain amplifier and operate in the frequency

range of 0.1–100Hz.

1.5 Modification of Earthquakes Due to the Nature of the Soil

Local soil conditions may have a profound influence on the ground motion characteristics, namely,

amplitude, frequency contents, and duration. The extent to which this influence is observed depends

upon the geological, geographical, and geotechnical conditions. The most influential factors are the

properties of the overlying soil layer over the bedrock, topography of the region, the type of rock strata/

rock bed, and depth of the overlying soil. The effects of these factors in modifying the free field

ground motion have been observed from both theoretical analysis and instrumentally collected

earthquake data.

Data from two well recorded earthquakes, the Mexico City earthquake in 1985 and Loma Prieta

earthquake in 1989, amongmany others, revealed some interesting features of the local site effect on free

field ground motions. These can be summarized as below:

a. Attenuation of ground motion through rock over a large distance (of the order of 300 km) was

significant; a PGA of the order of only 0.03g was observed at a site having an epicentral distance of

350 km for an earthquake of magnitude 8.1.

b. For a soil deposit withVs� 75m s�1, themagnification factor for the PGAwas about 5 for a PGA at the

rock bed level, equal to 0.03g. Further, the predominant period was also drastically changed and was

close to the fundamental period of the soil deposit.

c. The duration of the shaking was also considerably increased at the site where a soft soil deposit

was present.

d. Over a loose, sandy soil layer underlain by San Francisco mud, the PGA amplification was found to be

nearly 3 for a PGA level at the rock bed, as 0.035–0.05g.

e. The shape of the response spectrum over soft soil becomes narrow banded compared with that at the

rock bed.

f. Spectral amplifications are more for soft soils as compared with stiff soils for longer periods (in the

range 0.5–2.0 s).

g. As the PGA at the rock bed increases, the amplification factor for PGA at the soil

surface decreases.

Someof the above observations can be substantiated by theoretical analysis,which is usually carried out to

obtain the soil amplification factor. It is obtained by one-dimensional wave propagation analysis of S-H

waves through the soil layer. For a homogeneous soil medium, closed form expressions may be obtained

for the PGA amplification for the harmonic excitation at the rock bed. For an irregular time history of

acceleration at the rock bed, free field ground accelerationmaybe obtained by numerical integration of the

equation of motion of the soil mass idealized as the discrete lumped mass shear beam model. The non-

linear soil behavior is incorporated into the analysis for a higher level of PGA at the rock bed. The reason

for this is that for strong ground shaking, the soil deformation goes into a non-linear range. Because of the

hysteretic behavior of soil mass in a non-linear range, the earthquake energy is lost as thewave propagates

upward. This loss of energy accounts for the low soil amplification factor for the higher level of PGAat the

rock bed.

In addition to the properties of the soil, the effects of the geography/topography of the local site are

important. In the San Fernando earthquake (ML¼ 6.4), the PGA recorded on the Pacoima damwas about

1.25 g, an unusually high value. Subsequent investigations revealed that such a high value of PGAwas due

to the location of the measuring instrument at the crest of a narrow rocky ridge. Increased amplifications
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near the crests of ridges were also measured in five more earthquakes in Japan. Theoretical evaluations

show that for vertically propagating S-H waves, apex displacements are amplified by a factor of 2p/j,
wherej is the vertex angle of the wedge of the ridge. Topographic effects for the ridge–valley terrain can

be treated approximately by using the above factor.

The basin effect is another important issue in local site amplification. The soil amplification factor

calculated by one-dimensional wave propagation analysis is valid only for the central region of

a basin/valley, where the curvature is almost flat. Near the sides of the valley, where the curvature of

the topography is significant, soil deposits can trap body waves and can cause some incident body

waves to propagate as surface waves. Thus, free field ground motion obtained by one-dimensional

vertical wave propagation analysis does not reflect the true free field ground motion amplitude and

duration. Two-dimensional wave propagation analysis is more appropriate to obtain the soil amplifi-

cation factors near the edges of the valley. Details of one- and two-dimensional analyses are given

in Chapter 7.

1.6 Seismic Hazard Analysis

A seismic hazard at a site is defined as a quantitative estimation of themost possible ground shaking at the

site. It may be obtained either by a deterministic approach or by a probabilistic approach. The possible

ground shakingmay be represented by peak ground acceleration, peak ground velocity, or ordinates of the

response spectrum. Whatever the approach or the representation of ground shaking are, the seismic

hazard analysis requires the knowledge/information about some important factors in the neighborhood of

the site. They include geologic evidence of earthquake sources, fault activity, fault rupture length,

historical, and instrumental seismicity. Geologic evidence of earthquake sources is characterized by the

evidence of ground movement of the two sides of a fault, disruption of ground motion, juxtaposition of

dissimilar material, missing or repeated strata, topographic changes, and so on. Fault activity is

characterized by movements of ground at the fault region; it is the active fault that leads to future

earthquakes. Past earthquake data regarding the relationship between the fault rupture length and the

magnitude of earthquake providevaluable information for predicting themagnitude of future earthquakes

and, thus, help in seismic hazard analysis. Historical records of earthquakes and instrumentally recorded

ground motions at a site also provide valuable information on potential future earthquake sources in the

vicinity of the site.

As mentioned above, seismic hazard analysis may be carried out using two approaches, namely,

deterministic seismic hazard analysis and probabilistic seismic hazard analysis.

1.6.1 Deterministic Hazard Analysis

Deterministic hazard analysis (DSHA) is a simple procedure which provides a straightforward

framework for the computation of ground motions to be used for the worst case design. For specialty

or special structures such as nuclear power plants, large dams, and so on, DSHA can be used to provide a

safe design. DSHA involves many subjective decisions and does not provide any information on the

likelihood of failure of the structure over a given period of time. Because of these reasons, its application

is restricted when sufficient information is not available to carry out any probabilistic analysis. DSHA

consists of five steps:

a. Identification of all potential earthquake sources surrounding the site, including the source geometry.

b. Evaluation of source to site distance for each earthquake source. The distance is characterized by the

shortest epicentral distance or hypocentral distance if the source is a line source.
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c. Identification of the maximum (likely) earthquake expressed in terms of magnitude or any other

parameter for ground shaking for each source.

d. Selection of the predictive relationship (or attenuation relationship) to find the seismic hazard caused

at the site due to an earthquake occurring in any of the sources. For example, the Cornell et al.

relationship [14] gives:

ln PGAðgalÞ ¼ 6:74þ 0:859m�1:80lnðrþ 25Þ ð1:22Þ
where r is the epicentral distance in kilometers and m is the magnitude of earthquake.

e. Determination of the worst case ground shaking parameter at the site.

The procedure is explained with the help of the following example.

Example 1.1

A site is surrounded by three independent sources of earthquakes, out of which one is a line source, as

shown in Figure 1.19. Locations of the sources with respect to the site are also shown in the figure. The

maximummagnitudes of earthquakes that have occurred in the past for the sources are recorded as: source

1, 7.5; source 2, 6.8; source 3, 5.0. Using deterministic seismic hazard analysis compute the peak ground

acceleration to be experienced at the site.

Solution: It is assumed that the attenuation relationship given by Cornell et al. [14] (Equation 1.22) is

valid for the region. The peak ground acceleration to be expected at the site corresponding to the

maximum magnitude of an earthquake occurring at the sources is given in Table 1.3:

On the basis of Table 1.3, the hazard would be considered to be resulting from an earthquake of

magnitude 7.5 occurring from source 1. This hazard is estimated as producing a PGA of 0.49g at the site.

(-50,75)

Source 1

(-15,-30)

(-10,78)

(30,52)

(0,0)

Source 3

Source 2

Site

Figure 1.19 Sources of earthquake near the site (DSHA)

Table 1.3 PGA at the site for different sources

Source m r (km) PGA (g)

1 7.5 23.70 0.490
2 6.8 60.04 0.10
3 5.0 78.63 0.015
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1.6.2 Probabilistic Hazard Analysis

Probabilistic hazard analysis (PSHA) uses probabilistic concepts to predict the probability of occurrence

of a certain level of ground shaking at a site by considering uncertainties in the size, location, rate

of occurrence of earthquake, and the predictive relationship. The PSHA is carried out using the

following steps.

The first step is to identify and characterize the earthquake sources probabilistically. This involves

assigning a probability of occurrence of an earthquake at a point within the source zone. Generally, a

uniform probability distribution is assumed for each source zone, that is, it is assumed that the earthquake

originating from each point within the source zone is equally likely. Secondly, the probability distribution

of the source to site distance, considering all points in the source zone to be potential sources of an

earthquake, is determined from the source geometry.

The second step is to characterize the seismicity of each source zone. The seismicity is specified by a

recurrence relationship indicating the average rate at which an earthquake of a particular size will be

exceeded. The standard Gutenberg–Richter recurrence law [7] is used for this purpose, that is,

lm ¼ 10a�bm ¼ expða�bmÞ ð1:23aÞ
where

a ¼ 2:303a
b ¼ 2:303b, and
l�1
m denotes the average return period of the earthquake of magnitude m

If earthquakes lower than a threshold value m0 are eliminated, then the expression for lm is modified

[15] as:

lm ¼ g exp½�bðm�m0Þ�m > m0 ð1:23bÞ
Similarly, if both the upper and lower limits are incorporated, then lm is given by:

lm ¼ g
exp½�bðm�m0Þ� � exp½�bðmmax �m0Þ�

1� exp½�bðmmax �m0Þ� m0 < m � max ð1:24Þ

where

g ¼ expða� bm0Þ

The CDF (cumulative distribution function) and PDF (probability density function) of the magnitude of

earthquake for each source zone can be determined from this recurrence relationship as:

FMðmÞ ¼ P M < m m0 � m � mmaxj½ � ¼ 1� exp½�bðm�m0Þ�
1� exp½�bðmmax �m0Þ� ð1:25Þ

fMðmÞ ¼ bexp½�bðm�m0Þ�
1�exp½�bðmmax �m0Þ� ð1:26Þ

In the third step, a predictive relationship is used to obtain a seismic parameter (such as the PGA) at the

site for a givenmagnitude of earthquake and source to site distance for each source zone. The uncertainty

inherent in the predictive relationship (attenuation law) is included in the PSHA analysis. Generally, the

uncertainty is expressed by a log normal distribution by specifying a standard deviation for the seismic

parameter and the predictive relationship is expressed for the mean value of the parameter.

Finally, the uncertainties in earthquake location, earthquake size, and ground motion parameter

prediction are combined to obtain the probability that the ground motion parameter will be
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exceeded during a particular time period. This combination is accomplished through the following

standard equation:

l�y ¼
XNS

i¼1

gi

ZZ
P½Y > �y m; r�j fMiðmÞfRiðrÞdmdr ð1:27Þ

where

l�y is the average exceedance rate of the seismic parameter Y

NS is the number of earthquake source zones around the site

gi is the average rate of threshold magnitude exceedance for ith source

P ½Y > �y m; rj � is the probability of exceedance of the seismic parameter y greater than �y for a given pair of
magnitude m and source to site distance r

fMiðmÞ and fRiðrÞ are the probability density functions of themagnitude of the earthquake and source to site

distance for the ith source zone

In Equation 1.27, the first term within the integral considers the prediction uncertainty, the second term

considers the uncertainty in earthquake size, and the third term considers the uncertainty in location of the

earthquake. The above uncertainties for all source zones are considered by way of the double integration/

summation. A seismic hazard curve is then constructed by plotting the rate of exceedance of the seismic

parameter for different levels of the seismic parameter.

The temporal uncertainty of an earthquake is included in the PSHA by considering the distribution of

earthquake occurrences with respect to time. For this purpose, the occurrence of an earthquake in a time

interval is modeled as a Poisson process. Note that there are other models that have also been used for the

temporal uncertainty of earthquakes. According to the Poisson model, the temporal distribution of

earthquake recurrence for the magnitude or PGA is given by:

PðN ¼ nÞ ¼ ðltÞne�lt

n!
ð1:28aÞ

where

l is the average rate of occurrence of the event

t is the time period of interest

n is the number of events

If n¼ 1, then it can easily be shown that the probability of exactly one event ½PðN ¼ nÞ� occurring
in a period of t years and the probability of at least one exceedance of the event ½PðN 	 1Þ� in a period are
given by:

PðN ¼ 1Þ ¼ lte�lt ð1:28bÞ

PðN 	 1Þ ¼ 1�e�lt ð1:28cÞ

Thus, the probability of exceedance of the seismic parameter, �y, in a time period, T, is given by:

P ½yT > �y� ¼ 1�e�l�yT ð1:28dÞ

Using Equation 1.28d, it is possible to calculate the probability of exceedance of a ground shaking level

in a given period of time for a site. Alternatively, the level of ground shaking that has a certain probability

of exceedance in a given period can be determined using the above equation and the hazard curve. The

PSHA is explained with the help of the following example.
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Example 1.2

The site under consideration is shown in Figure 1.20 with three potential earthquake source zones.

Seismicity of the source zones and other characteristics are also given. Using the same predictive

relationship as that considered for DSHA with slnPGA ¼ 0:57, obtain the seismic hazard curve for the

site (Table 1.4).

Solution: For the first source, the minimum source to site distance (r) is 23.72 km, themaximum distance

r is that of point (�50, 75) from the site, that is, r¼ 90.12 km.Dividing rmax� rmin into ten equal divisions

and finding the number of points lying within each interval, the histogram as shown in Figure 1.21 is

obtained. To obtain this, the line is divided into 1000 equal segments.

For the second source, rmin¼ 30.32 km and rmax¼ 145.98 km. Here the area is divided into 2500 equal

rectangular small areas of 2� 1.2 km and the center of the small area is considered as the likely point of

earthquake origin. The histogram of r for the second source is shown in Figure 1.22. Similarly, the

histogram of r for the third source is shown in Figure 1.23.

Source zone 1 g1 ¼ 104�1�4 ¼ 1

Source zone 2 g2 ¼ 104:5�1:2�4 ¼ 0:501

Source zone 3 g3 ¼ 103�0:8�4 ¼ 0:631

in which gi is the mean rate of exceedance of magnitude for source zone 1

(-50,75)

Source 1

(-15,-30)

(0,0)

Source 3

Source 2

Site

(5,80)
(25,75) (125,75)

(125,15)(25,15)

Figure 1.20 Sources of earthquake near the site (PSHA)

Table 1.4 Seismicity of the source zones

Source Recurrence law m0 mu

Source 1 log lm ¼ 4�m 4 7.7
Source 2 log lm ¼ 4:5�1:2m 4 5
Source 3 log lm ¼ 3�0:8m 4 7.3
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For each source zone,

P m1 < m < m2½ � ¼
ðm2

m1

fMðmÞdm ’ fm
m1 þm2

2

� �
ðm2 �m1Þ ð1:29aÞ

say, for source zone 1, the magnitudes of earthquakes mu and m0 are divided in ten equal divisions:

P 4 < m < 4:37½ � � 2:303e�2:303ð4:19�4Þ

1�e�2:303ð7:7�4Þ ð4:37� 4Þ ¼ 0:551

In this manner, the probabilities of the various magnitudes for each source zone can be computed and

are shown in the form of histograms in Figures 1.24–1.26.
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For source zone 1, if themagnitude of an earthquake corresponding to the lowest division and the source

to site distance corresponding to the lowest division are considered (Figures 1.21 and 1.24), then

P½m ¼ 4:19� ¼ 0:551
Pðr ¼ 27:04Þ ¼ 0:336

For this combination of m and r, the mean value of the PGA is given by Equation 1.22 as Ln
PGA¼ 3.225.

Assuming the uncertainty of predictive law to be log normally distributed, the probability of exceeding

the acceleration level of 0.01g for m¼ 4.19 and r¼ 27.04 km is:

P½PGA > 0:01g m ¼ 4:19; r ¼ 27:04j � ¼ 1� FZðZÞ
where

Z ¼ lnð9:81Þ � 3:225

0:57
¼ �1:65

and FZ(Z) is the normal distribution function.
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Thus, the above probability is given as

1� FZðZÞ ¼ 1� FZð�1:65Þ ¼ 0:951

The annual rate of exceedance of a peak acceleration of 0.01g by an earthquake of m¼ 4.19 and

r¼ 27.04 for source zone 1 is:

l0:01g ¼ g1P½PGA > 0:01g m ¼ 4:19; r ¼ 27:04j �P½m ¼ 4:19�P½r ¼ 27:04�
¼ 1� 0:9505� 0:55� 0:336 ¼ 0:176

In thismanner, l0.01g for 99 other combinations ofm and r for source 1 can be calculated. The procedure

is repeated for sources 2 and 3. Summation of all l0.01g, thus obtained provides the annual rate of
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exceedance of PGA¼ 0.01g at the site. This summation is equivalent to the numerical integration of

Equation 1.27 by converting it into

l�y ¼
XNS

i¼1

XNM

j¼1

XNR

k¼1

giP½y > �y mj ; rk
�� �P½m ¼ mj �P½r ¼ rK � ð1:29bÞ

in which NM and NR are the number of equal divisions of the ranges of magnitude and source to site

distance for each source. For other PGAs, the annual rate of exeedance can be similarly determined. The

plot of annual rate of exeedance versus PGA is generally known as the hazard curve.

Example 1.3

The seismic hazard curve for a region shows that the annual rate of exceedance for an acceleration of 0.25g

due to earthquakes (event) is 0.02. What is the probability that:

(i) Exactly one such event will take place in 30 years?

(ii) At least one such event will take place in 30 years?

Also, find the annual rate of exceedance of PGA that has a 10% probability of exceedance in 50 years.

Solution:

(i) PðN ¼ 1Þ ¼ kt e�kt ¼ 0:02� 30e�0:02�30 ¼ 33%
(ii) PðN 	 1Þ ¼ 1�e�0:02�30 ¼ 45:2%

Equation 1.28c may be written as:

l ¼ ln½1�PðN 	 1Þ�
t

¼ ln½1�0:1�
50

¼ 0:0021

1.6.3 Seismic Risk at a Site

Seismic risk at a site is similar in concept to that of a probabilistic seismic hazard determined for a site.

Seismic risk is defined as the probability that a ground motion XS that is equal to or greater than a specified

value X1 will occur during a certain period (usually one year) at the site of interest, that is, P(XS	X1), or it

can be definedby the returnperiodTX1,which is the inverseofP(XS	X1).The studyof seismic risk requires:

a. geotectonic information that provides estimates for the source mechanism parameters such as focal

depth, orientation of the causative fault rupture, and the earthquake magnitude;

b. historical seismicity presented in the form of a recurrence relationship, which allows the development

of the probability distribution of the magnitude of an earthquake and contains information related to

the relative seismic activity of the region;

c. a set of attenuation relationships relating the ground motion parameters at any site to the source

magnitude and epicentral distance.

Using the above information, the seismic risk can be calculated with the help of either:

a. Cornell’s [16] approach, in which the area is divided into zones based on the geotectonic information

and observed seismicity, or

b. Milne andDavenport’s [17] approach,where the amplitude recurrence distribution for a specified level

of shock amplitude is computed using a history of this shock amplitude reconstructed from the records
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of earthquake magnitude of observed earthquakes using some empirical relationships; attenuation

relationships are then combined with regional seismicity to arrive at seismic risk at a site.

Using the concept above, empirical equations have been derived by researchers to express seismic risk at a

site. These empirical equations are obtained using the earthquake data/information of certain regions.

Therefore, they are valid strictly for sites in these regions. However, these empirical equations can be used

for sites in other regions by choosing appropriate values of the parameters of the equations. A few

empirical equations are given below:

a. Milne and Davenport [17] and Atkinson et al. [18] proposed an expression for calculating

the average annual number of exceedances of a shock amplitude YS (YS may be a velocity or

an acceleration):

NðYSÞ ¼ ðYS=�cÞ��p ð1:30Þ

where �p and �c are constants established from the observation of N(YS) from past earthquake records.

b. Donovan and Bornstein [19] calculated the annual number of earthquakes (g1) of magnitude greater

than or equal to m1 as

v1ðm1Þ ¼ ea�bm1=T0 ð1:31Þ
where

a ¼ asln10

b ¼ bsln10, where b is the seismicity parameter

as and bs ¼Richter parameters derived for the region frompast observations for a period of durationT0
They also obtained the extreme value probability �P (which is the probability of maximum-size

events occurring every year) as:

�P ¼ exp½�expða1 � bm1Þ� ð1:32aÞ
a1 ¼ alnT0 ð1:32bÞ

c. Erel et al. [20] have provided the following expression to calculate the annual probability of

occurrence of an earthquake with intensity IS exceeding i1P(IS	 i1) for the eastern USA:

PðIS 	 i1Þ ¼ 47e�1:54i1 ð1:33Þ

Oppenheim [21] presented the following expression for P (IS	 i1) for the same region:

PðIS 	 i1Þ ¼ �Fe�1:28i1 6 < i1 < Imax ð1:34Þ

where �F and Imax depend on the regional expected peak acceleration (EPA).

d. Cornell and Merz [22] developed the following expression to calculate the annual seismic risk

P(IS	 i1) in Boston due to nearby earthquakes of intensity exceeding i1 and distant earthquakes of

higher intensity causing site intensity exceeding i1:

PðIS 	 i1Þ ffi
X�S
j¼1

Xdj
l¼1

Ajl

Aj

v1j ð1��ki1jÞf* Zj

s

� �
þ �ki1jf

* Zj�0:44

s

� �
e8:38r�1:43

1jl e�1:1i1

� �
ð1:35aÞ

in which Zj¼ i1 – (ISj)u and

ISJ ¼ Iej
ISJ ¼ 2:6þ Iej�ln r1j

	
r1j < 10 mile

r1j 	 10 mile
ð1:35bÞ
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where

Iej is the epicentral intensity of source j

ISj is the site intensity due to source j

(Iej)u and (Isj)u are their upper bound values

�kij ¼ ½1�expf�b½ðIejÞu�ðIejÞ0�g��1 ð1:36Þ
where

(Iej)0 is the lower bound intensity of the source area j

�s is the number of geometrical sources

dj is the number of point sources forming a discretized representation of source j

Ajl and r1jl are the area and epicentral distance of the point source l discretized from the source j

Aj is the total area of source j

v1j is the annual occurrence rate of earthquakes exceeding threshold magnitude

r is the standard deviation of errors between the expected and observed intensities (they assumed

s¼ 0.2)

f*ðxÞ ¼ 1�fðxÞ in which fðxÞ is the Gaussian cumulative distribution function

e. Cornell [16], Talebagha [23], and Kiureghian and Ang [24] presented the following expression for

calculating the cumulative distribution function FMS
ðm1Þ of an earthquake of magnitude m1:

FMS
ðm1Þ ¼ P MS � m1jM0 � m1 � Mu½ � ¼ 1�e�bðm1�M0Þ

1�e�bðMu�M0Þ ð1:37Þ

M0 andMu are the lower and upper bounds of the magnitudem1. The probability that the earthquake

magnitude MS exceeds or equals a certain value m1 is:

PðMS 	 m1Þ ¼ 1�FMS
ðm1Þ ð1:38Þ

For large values of Mu, P(MS	m1) can be obtained from Equations 1.37 and 1.38

PðMS 	 m1Þ ¼ e�bðm1�M0Þ ð1:39Þ
f. Talebagha [23] presented the following expression for the probability that the ground acceleration AS

equals or exceeds a certain value ai,

PðAS 	 aiÞ ¼ 1�FMS
ðmiÞ ð1:40aÞ

mi ¼ 1

b2
ln

ri

b1
ð1:40bÞ

ri ¼ ai½f ðr1Þ�b3 ð1:40cÞ
in which b1, b2, and f(r1) are given by b1¼ 1.83, b2¼ 1.15, b3¼ 1.0; f(r1)¼max(11.83, r1), and r1 is

the epicentral distance in km.

1.6.4 Concept of Microzonation Based on Hazard Analysis

Microzonation is the delineation of a region or a big city into different parts with respect to the variation of

the earthquake hazard potential. Most of the earthquake prone big cities of the world have been

microzoned, such as Tokyo and San Francisco. Various parameters are used to microzone a region.

Microzonation maps with respect to the variation of each parameter are prepared and then combined to

obtain an earthquake hazard index for each microzone by associating a damage weighting to each

parameter. Typical parameters used inmicrozonation include local soil characteristics, earthquake source

properties, epicentral distance, topographic structure, ground water and surface drainage, population and

construction density, types of construction, importance of the structure, and so on. Each of these

parameters contributes to the earthquake hazard potential of a microzone and varies across the region.
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Although each parameter has its own importance, the soil characteristics and earthquake source

properties, including the epicentral distance, are considered as very important parameters defining the

seismic risk or seismic hazard potential of a particular site. Thus, the seismic hazard analysis, described in

Sections 1.6.1 and 1.6.2, andmodification of an earthquake due to the local nature of the soil, described in

Section 1.5, are commonly combined together to obtain a microzonation map of a city. Clearly, the

microzonationmap thusmade is probabilistic or deterministic in nature depending uponwhether PSHAor

DSHA has been used.

The procedure for constructing a microzonation map consists of the following steps.

1. Divide the region or the city into a number of grids. Grids need not be uniform. They depend upon the

variation of the soil characteristics across the region.

2. Considering the centers of the grids as the sites, the PGAs at the sites are obtained by DSHA for the

given earthquake source properties surrounding the region.

3. Alternatively, a certain probability of exceedance in a given period is assumed. The PGAs at the sites

that have the assumed probability of exceedance are obtained by PSHA for the given uncertainties of

the earthquake source properties.

4. For each site, obtain the soil amplification factor by performing one-dimensional wave propagation

analysis. For higher values of PGA at the rock bed, the non-linear property of the soil is considered in

the analysis.

5. PGA at the free field for each site is obtained by multiplying PGAs obtained in step 2 or step 3 by the

corresponding amplification factors.

6. With free field PGAs at the sites, the region is finally divided into a number of microzones, as shown in

Figure 1.27.

Exercise Problems

1.4 Estimate the probabilities of surface rupture length, rupture area, and maximum surface displace-

ment exceeding 90 km, 60 km2 and 15m, respectively (use Equations 1.14b–d). Assume the rupture

parameters to be log normally distributed.

1.5 Asite is surrounded by three line faults as shown in Figure 1.28. Determine the expectedmeanvalue

of the PGA at the site using the attenuation relationship given by Cornell et al. (Equation 1.22).

0.35 g

0.1 g
0.25 g

0.4 g

Deterministic microzonation
(a)

Probability of exceedance = 0.1

0.15 g

0.4 g

0.25 g
0.2 g

0.1 g

0.3 g

Probabilistic microzonation
(b)

Figure 1.27 Microzonation: (a) deterministic; and (b) probabilistic

Seismology 33



1.6 A site is surrounded by two sources as shown in Figure 1.29. Determine the anticipated mean value

of the PGA and the probability of it exceeding the value of 0.2g using the same attenuation law used

in problem in Example 1.2.

1.7 A site has two earthquake sources, a point source (source 1) and segments of line sources (source 2).

The distributions of the magnitudes of the earthquake for source 1 and source 2 are shown in

Figure 1.30. The distribution of the source to site distance for source 2 is also shown in the same

figure. Occurrences of earthquakes for sources 1 and 2 are given by

log lm1
¼ 4�0:7m

log lm2
¼ 3�0:75m

Develop a seismic hazard curve for peak acceleration at the site using the attenuation relation-

ship given by Equation 1.22. Assume that magnitudes less than 4 do not contribute to the

seismic hazard.

1.8 A region, as shown in Figure 1.31 is to bemicrozonedwith respect to the PGA at the ground surface.

Use the attenuation relationship given by Equation 1.22 and assume it to be valid for the rock bed.

Formicrozination, the region is divided into 4 sub-areas. Determine the designPGA for the center of

each sub-region.

(-35,5) (0,0)

(15,-15)

(-20,25)
(-5,30)

(18,40)

(20,25)

Site

(-6-18)

(-10,-5)

M max=6.8

M max=7

M max=5.5

Figure 1.28 A site affected by three line sources of earthquakes

(0,0)

Site

Source
(-15,12)

M max=6.5

M max=7.5

(12,-3) (22,-3)

(22,-13)(12,-13)

Source

Figure 1.29 A site affected by a point source and an area source of earthquake
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Figure 1.30 Characteristics of the sources: (a) distribution of source to site distance for source 2; (b) distribution of
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Figure 1.31 Area to be microzoned using both DSHA and PSHA
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1.9 A site is 100 km away from a point source of an earthquake. The seismicity of the region is

represented by the following recurrence relationship:

log lm ¼ 3:0�0:75M

The attenuation relationship for the region is given by:

ln PGA ¼ �4:141þ 0:868M�1:09 ln½Rþ 0:0606 expð0:7MÞ�

a. What are the probabilities that at least one earthquakewill produce a PGA greater than 0.2g in 50

and 150 year periods?

b. What is the probability that exactly one earthquakewill produce a PGAgreater than 0.2g in a 100

year period?

c. Determine the PGA that would have a 10% probability of exceedance in 50 years.

1.10 The site shown in Figure 1.31 is assumed to have only the point source. The histogram for the

magnitude of the earthquake is taken to be the same as that shown in Figure 1.30. Using the same

attenuation and seismic occurrence (source 1) relationships (for Exercise Problem 1.4), make a

probabilisticmicrozonation of the area in terms of PGA for 10%probability of exceedance.Assume

the minimum magnitude of the earthquake as 4.

1.11 Seismic risk of a region with its epicentral distance measured from its center as 100 km is given by

Equation 1.40 in which FMs
ðMiÞ is given by Equation 1.37. Make a microzonation of the region for

its 4 sub-regions shown in Figure 1.32 for the probability of exceedance of PGA¼ 0.3g at the

ground surface. GivenM0 ¼ 4 andMu ¼ 8:5;b ¼ 1. Assume the empirical equations to be valid for

the rock bed.

1.12 State true (T) or false (F) for the following statements:

(i) Earthquake may occur due to–

(a) interplate movement

(b) intraplate movement

(c) rupture of plates at the fault

(d) underground explosion

(e) volcanic eruption

60 km

60 km

60 km

AF=3 AF=4

AF=3.5 AF=2.5

100 km

(Source)

Figure 1.32 Area to be microzoned using PSHA
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(ii) Movement of the plates during earthquake–

(a) is necessarily a strike slip

(b) is necessarily a dip slip

(c) could be a combination of the two

(iii) Fastest wave is–

(a) love wave

(b) primary wave

(c) Rayleigh wave

(d) S wave

(iv) Movement of soil particles is at right angles to the direction of wave propagation for–

(a) primary wave

(b) Rayleigh wave

(c) polarized wave

(v) Subduction is a process which is responsible for–

(a) formation of oceans

(b) formation of mountains

(c) mid-oceanic ridges

(vi) Moho discontinuity is the name of–

(a) discontinuity between inner core and outer core of the earth

(b) discontinuity between the outer core and the mantle

(c) discontinuity between the crust and the mantle

(vii) Surface waves are–

(a) largest for shallow focal depth

(b) increased with depth

(c) almost periodic at large epicentral distance

(d) having short period

(viii) Richter magnitude–

(a) is the same as moment magnitude

(b) is the same as body magnitude

(c) can be negative

(d) is open ended

(ix) Magnitude is–

(a) exponentially related to the PGA

(b) linearly related to the PGA

(c) directly related to the intensity

(d) directly related to the energy release

(x) Attenuation relationship depends upon–

(a) local geological conditions

(b) path of wave travel

(c) soil conditions

(d) epicentral distance

(xi) One-dimensional wave propagation through soil from rock bed provides–

(a) amplified PGA

(b) amplified ground displacement

(c) changed frequency contents

(d) lower value of PGA for strong rock bed motion in soft soil

(xii) One-dimensional wave propagation–

(a) is valid for ridges

(b) s valid for boundaries of the valleys
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(c) is valid for the center of basins

(d) is valid for highly non-homogenous soil mass with many disjointed layers in different

directions

(xiii) Both arrival of an earthquake and the magnitude of an earthquake may be modeled as–

(a) lognormal model

(b) Poisson model

(c) exponentially decaying model

(xiv) Seismic hazard of a site–

(a) primarily depends upon its epicentral distances from sources

(b) primarily depends upon both epicentral distances and magnitudes of earthquakes that

occurred at the sources

(c) depends largely on soil amplification

(d) does not depend on attenuation law

(xv) Ground damage in an earthquake can be–

(a) faulting

(b) fissures

(c) liquefaction

(xvi) How many seismograph station are needed to locate the epicenter of an earthquake–

(a) 1

(b) 2

(c) 3

(d) 4

(xvii) Mb is also known as Richter’s magnitude.

(xviii) Moment magnitude can be estimated from fault area only.

(xix) Attenuation relationships are developed based on theoretical analysis.

(xx) A seismic hazard curve is used for deterministic seismic hazard assessment.

(xxi) Love waves are slower than Raleigh waves and introduce retrograde elliptical motion.

(xxii) Earthquake intensity is usually higher at the epicenter and in loosely consolidated soil.
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2

Seismic Inputs for Structures

2.1 Introduction

Seismic inputs are the earthquake data that are necessary to perform different types of seismic analysis. In

the context of seismic analysis and design of structures, various earthquake data may be required

depending upon the nature of analysis being carried out. These data are presented in two different ways,

namely, in deterministic and probabilistic forms. Seismic inputs in deterministic form are used for

deterministic analysis and design of structures, while those in probabilistic form are used for random

vibration analysis of structures for earthquake forces, seismic risk analysis of structures, and damage

estimation of structures for future earthquakes. Seismic inputs for structural analysis are provided either in

the time domain or in the frequency domain, or in both time and frequency domains. In addition, a number

of earthquake parameters are also used as seismic inputs for completeness of the information that is

required to perform different types of analysis. They include magnitude, intensity, peak ground

acceleration/velocity/displacement, duration, predominant ground frequency, and so on. Further, certain

types of analysis, such as, seismic risk analysis, damage estimation of structures, and probabilistic seismic

analysis, the prediction of seismic input parameters for future earthquakes are essential. Such predictions

are provided in the form of empirical equations. In this chapter, different types of seismic input and

predictive relationships that are used in practice are described.

2.2 Time History Records

The most common way to describe a ground motion is with a time history record. The motion parameters

may be acceleration, velocity, or displacement, or all the three combined together. Generally, the directly

measured quantity is the acceleration and the other parameters are the derived quantities. However,

displacement and velocity can also be measured directly. The measured time histories of records include

errors resulting from many sources, such as noises at high and low frequencies, base line error, and

instrumental error. These errors are removed from the data before they are used. Further, measured data

are in an analogue form,which are digitized before they are used as seismic inputs. In recent years, digital

seismographs are more commonly used but the various errors mentioned above are equally present in the

analogue anddigital forms.Timehistories of groundmotions are useddirectly for the timedomain analysis

of structures subjected to deterministic seismic inputs. This analysis will be described in Chapter 3.

At any measuring station, ground motions are recorded in three orthogonal directions; two of them are

in horizontal directions and the third is in thevertical direction. Thus, three components of groundmotions

are available from any measuring station. For structural analysis, these three components of ground
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motions are transformed into those corresponding to the principal directions. It has been observed that

the major direction of ground motion lies in the direction of the line joining the measuring station and

the epicenter. The other two components of the groundmotion are decided accordingly. Stochastically, the

components of ground motions in the principal directions are uncorrelated. Based on this concept, three

principal components of ground motion are artificially generated in places where representative time

histories of the groundmotion are not available. Three components of the groundmotion for the El Centro

earthquake are shown in Figure 2.1. The digitized versions of time histories of many earthquakes are

available in web sites such as www.peer.berkeley.edu/sncat.

As discussed in Chapter 1, free field ground motions are the result of a complex phenomenon involving

wave reflection, refraction, and surfacewave propagation. Furthermore, they are combinations of P, S, and L

waves. Therefore, the trains of free field groundmotionwaves as recorded at different stations vary spatially

resulting in both homogeneous and non-homogeneous fields of ground motion. Homogeneous ground

motion is idealized asa single train of groundmotionmovingat a constant speed.Asa result, timehistoriesof

ground motion at two points, spatially separated, have only a time lag; the peak or rms (root mean square)

ground motions remain the same at the two stations. For a non-homogeneous field of ground motion, the

peak or rms value of the groundmotion varies between two stations in addition to a time lag effect. Because

of this spatial variation of ground motions, rotational and torsional (about a vertical axis) components of

ground motions are induced. The rotational and torsional components of ground motions are given by:

fðtÞ ¼ du

dy
þ dv

dx
ð2:1Þ

yðtÞ ¼ dw

dx
ð2:2Þ

in which u, v, and w are the ground motions in the x, y, and z directions, respectively; x and y are the two

horizontal components, with x being the major principal direction. The major principal direction may be at

an angle of inclination to the major principal direction of the structure and therefore, an angle of incidence

ðaÞ of an earthquake is also defined for the time history. Thus, complete information on time histories of

ground motion at a point as seismic input are defined as uðtÞ, vðtÞ, oðtÞ, fðtÞ, and yðtÞ and their time

derivatives. In addition, the angle of incidenceamay have to be defined for structures having irregular plans,

as shown in Figure 2.2.

2.3 Frequency Contents of Ground Motion

As the response of any structure depends on the ratio between the natural frequency of the structure and the

frequency of excitation, it is important to know the frequency contents of the ground motion. In fact, for

frequency domain analysis of structures (discussed in Chapter 3), seismic input is required in the form of

frequency contents of the ground motion. The most convenient and useful way of providing this

information is by way of a Fourier synthesis of the time history of the ground motion. Assuming that

the time history of the ground motion repeats itself with a period equal to the duration of the ground

motion, it can be represented as a sum of an infinite number of harmonic functions (known as the Fourier

series of expansion of a periodic function) by

xðtÞ ¼ a0 þ
Xa
n¼1

an cosontþ bn sinont ð2:3Þ

where

xðtÞ is the time history of ground motion (displacement, velocity or acceleration)

on is the nth frequency
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Figure 2.1 Three components of El Centro earthquake: (a) major (horizontal); (b) minor (horizontal); and
(c) minor (vertical)
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an and bn are the cosine and sine function amplitudes corresponding to the nth frequency

a0 is the amplitude corresponding to zero frequency, respectively.

The amplitudes a0, an, and bn are given by:

a0 ¼ 1

T

ðT=2

�T=2

xðtÞdt ð2:4Þ

an ¼ 2

T

ðT=2

�T=2

xðtÞ cosontdt ð2:5Þ

bn ¼ 2

T

ðT=2

�T=2

xðtÞ sinontdt ð2:6Þ

on ¼ 2pn
T

ð2:7Þ

where

T is the duration of the ground motion.

The Fourier amplitude gives the amplitude of the harmonic at frequency on and is given by:

A2
n ¼

2

T

ðT=2

�T=2

xðtÞ cosontdt

2
64

3
75
2

þ 2

T

ðT=2

�T=2

xðtÞ sinontdt

2
64

3
75
2

ð2:8Þ

Equation 2.3 can also be represented in the form

xðtÞ ¼ c0 þ
Xa
n¼1

cn sinðontþfnÞ ð2:9Þ

α = Angle of incidence

Major direction

x

y

Figure 2.2 Angle of incidence of earthquake
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in which cn is the same as An; c0 ¼ a0; and fn is given by:

fn ¼ tan�1 bn

an

� �
ð2:10Þ

The plot of cn versus frequencyon is called the Fourier amplitude spectrum and that offn versuson is the

Fourier phase spectrum.

To obtain the Fourier amplitude spectrum of a time history of ground motion, integrations given by

Equations 2.4–2.6 need to be performed. As x(t) is an irregular function of time, the integration is carried

out by a numerical technique. This operation is now performed very efficiently by discrete Fourier

transformation (DFT), which is programmed as FFTand available inmostmathematical software. In FFT,

the Fourier synthesis of a time history record is mathematically treated as a pair of Fourier integrals in the

complex domain (that is, with the help of a complex harmonic function) as given below [1].

xðioÞ ¼ 1

2p

ða

�a

xðtÞe�iotdt ð2:11Þ

xðtÞ ¼
ða

�a

xðioÞeiotdo ð2:12Þ

The first integral provides frequency contents of the time history in a complex form, while the second

one provides the time history back, given the complex frequency contents. The second one is performed

using IFFT (inverse Fourier transform).

The standard input for FFT is the time history of groundmotion sampled at a discrete time interval. IfN

is the number of discrete ordinates of the time history at an interval of time Dt given as the input to FFT,
thenN numbers of complex quantities are obtained as the output. The firstN/2 complex quantities provide

frequency contents of the time history with amplitude at frequency oj as:

Aj ¼ ða2j þ b2j Þ
1
2 j ¼ 0; . . . ;

N

2
ð2:13Þ

where aj and bj are the real and imaginary parts of the jth complex quantity, respectively; the phase fj is

given as:

fj ¼ tan�1 bj

aj

� �
ð2:14Þ

The frequency isoj¼ 2pj/T, where T is the length of the time history.on¼Np/T, is called the Nyquist
frequency, the frequency after which complex conjugates of the firstN/2 complex quantities are repeated.

Using MATLAB�, the FFT and IFFT of a discretized time history record of ground motion may be

Fourier synthesized.

A Fourier amplitude spectrum provides a good understanding of the characteristics of the ground

motion. Further, as the seismic input, both amplitude and phase spectra are required for the frequency

domain analysis of structures. A better input for the frequency domain analysis is the real and imaginary

components of frequency contents obtained by the FFT analysis. Fourier amplitude spectra for two

earthquake records are shown in Figure 2.3(a and b). It is seen from the figure that the amplitude spectrum

could be narrow or broad. The narrow spectrum (Figure 2.3a) shows the predominance of a certain

frequency in the groundmotion record, which can even produce a smooth, almost sinusoidal time history.

A broad spectrum corresponds to amotion that contains a variety of frequencies leading to a very irregular

time history. A narrow-band spectrum is typical of free field ground motion for very soft soil, while

a broad-band spectrum is generally characteristic of a hard soil. Fourier spectrum for groundmotion at the

rock bed resembles that of white noise (which has ideally the same frequency contents at all frequencies).
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In order to understand the general nature of the amplitude spectra of ground acceleration, they have

been constructed from several earthquake ground motions and smoothed and plotted on a logarithmic

scale, as shown in Figure 2.4. It is observed that the Fourier acceleration amplitudes tend to be largest over

an intermediate range of frequencies bounded by the corner frequency fc on the lower side and the cut-off

frequency on the higher side. From observations of earthquake data, it is seen that fc is inversely

proportional to the size of the earthquake [2].

Example 2.1

A small segment of the time history of ground acceleration sampled at an interval of Dt ¼ 0:02 s

is given below. With the help of diagrams, represent (i) the set of data for the use in FFT; (ii) the

output data from FFT; and (iii) the input data for IFFT. Also, obtain the Nyquist frequency, amplitude

spectrum, and phase spectrum. Note that such a small segment of the time history is used only for

illustrative purpose.
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Figure 2.3 Fourier amplitude spectrum: (a) narrow band; and (b) broad band
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Solution:

(i) Figure 2.5 shows the 32 sampled values of the time history of ground acceleration, which are given

as input to the FFT program in MATLAB as

YY ¼ 1

16
fftðy; 32Þ

in which y is the sampled values of the time history; YY is the output and is of the form a þ ib

(a real part; b imaginary part).

(ii) Figure 2.6a shows the real parts of the output. Note that it is symmetrical about point A. The last

ordinate of the symmetrical half is absent. This is because it is assumed that the sampled values
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Figure 2.4 Smooth Fourier amplitude spectrum in log scale
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repeat after N (¼32) values. Figure 2.6b shows the imaginary part of the output. Note that it is anti-

symmetric about point A. This shows that right half of the FFT of the input data is the complex

conjugate of the left half.

(iii) The real and imaginary parts of the output are combined together in the form of complex numbers

a þ ib. Therewill be 32 such data points. The right half of the data is a complex conjugate of the left

half as stated before. These data points constitute the input for IFFT. The output from the IFFT is the

same 32 sampled values of the time history shown in Figure 2.5. Note that unless input to IFFT is

data which constitutes complex conjugate data pairs as described above, the output from IFFTwill

not be real numbers. This lesson is important and is used in frequency domain seismic analysis of

structures using FFT.

Nyquist frequency ðonÞ ¼ Np
T

¼ 32p
ð31� 0:02Þ ¼ 335:04 rad s�1

do ¼ 2p
T

¼ 20:94 rad s�1
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The Fourier amplitude spectrum is the plot of ða2i þ b2i Þ1=2 i¼ 0 . . ., N/2 versus oið0�do�onÞ. In
order to get ai and bi , the outputs from the FFT of MATLAB are divided by N/2. The plot is shown in

Figure 2.7a. The phase spectrum is the plot of tan�1(bi/ai) versus oi and is shown in Figure 2.7b.

2.4 Power Spectral Density Function of Ground Motion

Frequency contents of ground motion can also be represented by a power spectrum or power spectral

density function. The difference between the frequency contents represented by a power spectrum and the

Fourier amplitude spectrum is that the former is used to provide a probabilistic estimate of the frequency

contents of groundmotions at a site, which are unknown.On the other hand, a Fourier amplitude spectrum

provides the frequency contents of the actual groundmotion at a site (unless any empirical formula is used

for predicting the same, where no earthquake data are available).

As future earthquakes are not known, it is reasonable to use a probabilistic model of seismic inputs. The

most common way of describing the seismic inputs probabilistically is by means of specifying an

expectedmean squarevalue or peak value of ground acceleration for future earthquakes at a site.However,

for analyzing structures using the methods of probabilistic dynamics, a more popular seismic input is the

power spectral density function of ground acceleration, which is defined as the distribution of its mean
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Figure 2.7 Fourier spectra: (a) amplitude spectrum; and (b) phase spectrum
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square value with frequency. For the purpose of describing the power spectral density function, future

earthquakes are assumed as a stationary random process.

How the power spectral density function (PSDF) of a stationary random process is derived requires the

knowledge of the theory of stochastic processes or random vibration and is dealt with in a number of

textbooks on the subject [1, 3]. Under the assumption of ergodicity, which means that any sample time

history of the stochastic process represents the second order statistics of the process, it is possible to derive

the PSDF of the process using the concept of Fourier series expansion. For many practical solutions,

a stationary stochastic process is also assumed to be ergodic. A brief description of the stationary

stochastic process, its PSDF, and other related concepts are given in Chapter 4.

The mean square value of a ground motion time history of duration T is given by:

l ¼ 1

T

ðT

0

½aðtÞ�2 dt ð2:15Þ

Using Parseval’s theorem, l can also be written as

l ¼ 1

2

XN=2
0

c2n ð2:16Þ

where

cn is the absolute value of the complex quantity (Equation 2.9) at a frequency o obtained from the FFT.

The power spectral density function (PSDF) SðoÞ is defined such that

l ¼
ðoN=2

0

SðoÞ do ¼
XN=2
n¼0

gnðoÞ ð2:17Þ

Comparing Equations 2.16 and 2.17, it is seen that

SðoÞ ¼ c2n
2do

ð2:18Þ

in which gðoÞ ¼ SðoÞdo and the integration is converted into a summation of discrete ordinates.

A close relationship between the power spectrum and Fourier amplitude spectrum is evident from

Equation 2.18 for an ergodic process. From Equation 2.17, the power spectral density function of

a stationary stochastic process can be defined as the distribution of its mean square value (which is unique

and time invariant) with frequency. A typical PSDF of ground acceleration is shown in Figure 2.8. Some

of the important parameters, which are used to characterize the groundmotion, are related to themoments

of the PSDF. The nth moment of the PSDF is given by:

ln ¼
ðoc

0

onSðoÞ do ð2:19aÞ

in whichoc is the cut-off frequency of the PSDF, that is, the frequency at which the tail end of the PSDF is

truncated. l0 is the mean square value of the ground acceleration. A parameter known as the central

frequency O is given by:

O ¼
ffiffiffiffiffi
l2
l0

s
ð2:19bÞ
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inwhichO is ameasure of the frequencywhere the PSDF is concentrated. UsingO, l0, and the duration Td
of the earthquake, the mean peak ground acceleration (PGA) may be obtained as:

u€gmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0 ln

2:8OTd
2p

� �s
ð2:19cÞ

The source of the above expression is discussed in Chapter 5. A related parameter that characterizes the

frequency content of ground acceleration is the predominant period or frequency. It is defined as the time

period where the Fourier spectrum peaks or the frequency where the PSDF peaks.

To obtain the response of multi-supported structures that have various types of excitations at different

supports, the PSDFs of excitations are not sufficient to analyze the structure. An additional input is

necessary, which is referred to as the lack of correlation between any two excitations. This lack of

correlation is represented by a cross correlation function or cross power spectral density function. The

latter is used in frequency domain analysis. The cross power spectral density function for any two

excitations x1 and x2 (assumed as stationary stochastic processes) is expressed as:

Sx1x2 ¼ S
1
2
x1S

1
2
x2cohðx1; x2;oÞ ð2:20Þ

where

Sx1ðoÞ and Sx2ðoÞ are the PSDFs of excitations x1 and x2
cohðx1; x2;oÞ is the coherence function which denotes the lack of correlation between x1 and x2 in the

frequency domain.

For a homogeneous field of excitation with a single train of a traveling earthquake wave, the PSDFs of

ground acceleration at different supports are the same but there is a lack of correlation between the

excitation at any two supports because of the time lag. Under such conditions, the cross power spectral

density function between two excitations is given by:

Sx1x2 ¼ S
1
2
x1S

1
2
x2cohðx1; x2;oÞ ¼ Sxcohðx1; x2;oÞ ð2:21Þ

in which SxðoÞ is the PSDFof the traveling train of ground acceleration.More discussions on cross power

spectral density functions are presented in Chapter 4.
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Figure 2.8 Power spectral density function of ground acceleration
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Records of actual strong motion time history show that modeling of an earthquake process as

a stationary random process is not well justified as the ensemble mean square value varies with time.

The mean square value gradually increases to a peak value, remains uniform over some time, and then

decreases as shown in Figure 2.9. Such type of behavior is often modeled as a uniformly modulated non-

stationary process [3]. Such a process is represented by an evolutionary power spectral density function.

The evolutionary spectrum is obtained by multiplying a constant spectrum with a modulating function of

time t and is given as:

Sðo; tÞ ¼ ��qðtÞ��2SðoÞ ð2:22Þ
From the analysis of collections of earthquake records, various forms of the power spectral density

functions, modulating functions, and coherence functions have been presented by different investigators.

They are presented in Sections 2.7.5 and 2.7.6.

Example 2.2

Assuming the short segment of the time history for the problem in Example 2.1 to represent an ergodic

process, obtain its PSDF.

Solution: Using Equations 2.9, 2.16 and 2.18, c2n is given by

c2n ¼ ða2n þ b2nÞ n ¼ 0; � � �;N
2

SðoÞn ¼
1

2do
c2n n ¼ 0; � � �;N

2

Values of c2n are obtained by squaring the ordinates of the Fourier spectrum given in Figure 2.7a. The

plots of SðoÞ versuso (PSDF) are shown in Figures 2.10 and 2.11. Note that thewidth of the bar shown in

Figure 2.10 becomes smaller for larger values of T.

The spectrum shown in Figure 2.10 is highly irregular. Generally, such irregular spectrums are

smoothed by a spectral smoothing technique. Here, a five-point smoothing procedure is adopted to obtain

the spectrum shown in Figure 2.11. For smoothing, the ordinate at a point is taken as the average of five

ordinates (average of the ordinate of the point and two ordinates on either side of the point). Ordinates at

the beginning and points towards the end are averaged over a fewer number of points. For example, the 1st

ordinate is averaged over 1st, 2nd, and 3rd ordinates; the 2nd ordinate is averaged over the 1st, 2nd, 3rd,

and 4th ordinates; the 16th ordinate is averaged over the 17th, 16th, 15th, and 14th ordinates, and so on. For

Time (s)

A
cc

el
er

at
io

n 
(m

/s
2 )

Figure 2.9 Variation of rms value of acceleration with time for uniformly modulated non-stationary process
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Figure 2.10 Raw PSDF of the time history of acceleration
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Figure 2.11 Smooth PSDF

a large number of ordinates, higher point averaging is possible. The resulting PSDF becomes smoother. If

necessary, a best-fit polynomial can be drawn as shown in Figure 2.11 to obtain a very smooth spectrum.

For this problem:

Sum of the areas of the bars ¼ 0:011 ðm s�2Þ2

Area under the smoothed PSDF ¼ 0:0113 ðm s�2Þ2

Area under the best fit polynomial curves ¼ 0:0112 ðm s�2Þ2

Mean square value of time history record ¼ 0:012 ðm s�2Þ2
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2.5 Response Spectrum of Earthquake

A third type of spectrum, which is used as seismic input is the response spectrum of an earthquake. In

fact, the response spectrum of an earthquake is the most favored seismic input for earthquake engineers.

There are a number of response spectra that are defined for representing the ground motion, such as,

displacement response spectrum, pseudo velocity response spectrum, absolute acceleration response

spectrum, and energy spectrum. These spectra also show the frequency contents of the ground motion,

but not as directly as the Fourier spectrum does. The absolute acceleration response spectrum is

commonly used as an input for the response spectrum methods of analysis of structures discussed in

Chapter 5.

2.5.1 Displacement, Velocity, and Acceleration Spectra

Derivation of the displacement response spectrum forms the basis for deriving other spectra. By

definition, a displacement response spectrum is the plot of maximum displacement of a single degree

of freedom system (SDOF) to a particular ground motion as a function of the natural frequency and

damping ratio of the SDOF.

The relative displacement of an SDOF system with respect to its base at any instant of time t for a

ground acceleration x€gðtÞwith the initial conditions xð0Þ ¼ _xð0Þ ¼ 0 is given by (details are given in the

next chapter):

xðtÞ ¼ � 1

on

ðt

0

x€gðtÞe�xonðt�tÞ sinodðt�tÞdt ð2:23Þ

The maximum value of xðtÞ may be expressed as:

xm ¼ Sd ¼ Sv

on

ð2:24aÞ

in which Sv is given by

Sv ¼
ðt

0

x€gðtÞe�xonðt�tÞ sinodðt�tÞdt
2
4

3
5
max

ð2:24bÞ

At the maximum value of displacement, the kinetic energy KE¼ 0. Thus, the total energy of the

system is

E ¼ 1

2
kS2d ð2:25aÞ

If this energy were expressed in the form of KE, then the equivalent velocity of the system would be

equal to

1

2
m _x2eq ¼

1

2
kS2d ð2:25bÞ
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which gives

_xeq ¼ onSd ð2:25cÞ
Comparing Equations 2.24a and 2.25b, it is seen that _xeq ¼ Sv. In earthquake literature, this velocity is

known as the spectral pseudo velocity and is different from the actual maximum velocity of the system.

For any given earthquake, plots of Sd and Sv for a full range of SDOF frequencies with a specified

damping ratio are called the displacement response spectrum and pseudo velocity response spectrum,

respectively. A closely related measure of the SDOF response to ground motion is the spectral

acceleration (also called pseudo acceleration) defined as:

Sa ¼ o2
n Sd ð2:26Þ

A plot of Sa for the full range of SDOF frequencies with a specified damping ratio is called the

acceleration response spectrum and is widely used for obtaining the maximum earthquake force induced

in structures. For an SDOF system, the maximum force developed in the SDOF spring is given by:

ð fsÞmax ¼ kSd ¼ mo2
n Sd ¼ mSa ð2:27Þ

Equation 2.27 shows that spectral accelerationmultiplied by themass of the SDOF gives themaximum

earthquake force induced in the system by the earthquake. Because of this reason, spectral acceleration

has been defined in a way as shown by Equation 2.26 and is different to the maximum acceleration of the

SDOF system. While a displacement response spectrum is a plot of the maximum displacement of the

SDOF system as a function of frequency, pseudo acceleration and pseudo velocity spectra are not the plots

of maximum acceleration and maximum velocity as a function of the SDOF frequency.

These three spectra, as shown in Figures 2.12(a–c), provide directly some physically meaningful

quantities. The displacement spectrum is directly related to the peak deformation of the SDOF system.

The pseudo velocity spectrum is directly related to the peak strain energy stored in the system during an

earthquake, Equation 2.25a. The pseudo acceleration spectrum is related directly to a peak value of the

earthquake force in the system, Equation 2.27.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time period (s)
(a)

D
is

pl
ac

em
en

t (
m

)

0% damping

5% damping

Figure 2.12 Response spectra of an earthquake: (a) displacement spectrum; (b) pseudo velocity spectrum; and
(c) pseudo acceleration spectrum

Seismic Inputs for Structures 55



2.5.2 Energy Spectrum and Fourier Spectrum

Another way of characterizing the ground motion is to obtain the maximum energy response spectrum.

The quantity

ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
m

r" #
max

plotted against a full range of the frequency (or the period) of the SDOF

system with a specified value of the damping ratio is called the maximum energy response spectrum. The
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energy EðtÞ at any instant of time t of the SDOF system is given by:

EðtÞ ¼ 1

2
m _xðtÞ2 þ 1

2
kxðtÞ2 ð2:28Þ

The quantity

ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
m

r" #
is then given by;

ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
m

r" #
¼ _xðtÞ2 þ onxðtÞ½ �2
n o1

2 ð2:29Þ

Themaximumvalue of the quantitymay be obtained for each frequency (or period) of the SDOF system

for a specified damping.

For x ¼ 0, it may easily be shown from Equations 2.29 and 2.23 that

ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ
m

r
¼

ðt

0

x€gðtÞ cosontdt

2
4

3
5
2

þ
ðt

0

x€gðtÞ sinodtdt

2
4

3
5
28<

:
9=
;

1
2

ð2:30Þ

Comparing Equations 2.8 and 2.30, the Fourier amplitude spectrum and energy response spectrum

have similar forms. Note that xðtÞ in Equation 2.8 could be any of the ground motion quantities,

namely, xgðtÞ, _xgðtÞ, and x€gðtÞ. The Fourier amplitude spectrum may be viewed as a measure of the total

energy of an undamped SDOF system at the end of time t (that is, t¼ T). Generally, the maximum energy

spectrum is greater than the Fourier amplitude spectrum as themaximum energy is achieved at some time

before the end of the earthquake.

Example 2.3

Compare the maximum energy spectrum, smoothed Fourier spectrum, and pseudo acceleration spectrum

(for n ¼ 0:05) for the El Centro ground acceleration record. Also, compare the time periods correspond-

ing to the maximum values of the spectral ordinates of the three spectra.

Solution: The energy spectrum, Fourier spectrum, and pseudo acceleration spectrum for the El

Centro earthquake record are shown in Figures 2.13–2.15. These spectra were obtained using Equa-

tions 2.20–2.22, 2.29 and 2.13. Using MATLAB, simple programs can be written to obtain these

spectra. Alternatively, Seismo signal (www.seismosoft.com) can be used to directly obtain the

Fourier spectrum and the pseudo acceleration spectrum. The energy spectrum can be obtained using

Equation 2.29 and the results of the seismo signal.

Tpeakðenergy spectrumÞ first peak ¼ 0:55 s; second peak ¼ 0:95 s

TpeakðFourier spectrumÞ ¼ 0:58 s

Tpeakðpseudo acceleration spectrumÞ ¼ 0:51 s

It is seen that the peaks of the spectra occur almost at the same period. This shows that the frequency or

the time period where the maximum energy of the earthquake is confined can be realized from any of the

above spectra.
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Figure 2.13 Energy spectrum of El Centro earthquake
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Figure 2.14 Fourier amplitude spectrum of El Centro earthquake

2.5.3 Combined D-V-A Spectrum

Each of the three spectra (displacement, pseudo velocity, and pseudo acceleration) in a way provides the

same information on structural response. However, each one of them provides a physically meaningful

quantity, as mentioned earlier. Therefore, all three spectra are useful in understanding the nature of an

earthquake and earthquake resistant design. More importantly, all three spectra are skillfully used in

defining or constructing the design response spectrum, which will be discussed later. Because of this

reason, a combined plot showing all three of the spectral quantities is desirable. This integrated

presentation is possible because of the relationship that exists between these three quantities.

Taking the log of Equations 2.21 and 2.26:

log Sd ¼ log Sv � log on ð2:31Þ
log Sa ¼ log Sv þ logon ð2:32Þ
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FromEquations 2.31 and 2.32, it is evident that a plot on logarithmic graph paper with logSv as ordinate

and logon as abscissa, the two equations are straight lines with slopes þ 45� and�45� for constant values
of logSd and logSa, respectively.

If log of time period T(2p/on), instead of logon, is considered, then these orthogonal straight lines

are interchanged. Thus, a four way log plot as shown in Figure 2.16 can be used to plot all three spectra
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Figure 2.15 Pseudo acceleration spectrum of El Centro earthquake

Figure 2.16 Earthquake response spectrum (displacement, pseudovelocity, and pseudo acceleration) in tripartite plot
(— for 0% and ---- for 5%)
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on one plot. If the data pairs of logSv and logT are used to plot the pseudo velocity spectrum on the

graph paper, then values of logSa and logSd for a particular value of T can be read from the same plot. For

plotting the curve, some limiting conditions should be realized as values of logT as T! 0 and T !1
cannot be shown.

The following limiting conditions help in constructing the plot on the graph paper.

lim
T !1

Sd ¼ ug max ð2:33Þ

lim
T ! 0

Sa ¼ u€g max ð2:34Þ

The two limiting conditions can be understood based on physical reasoning. For a very long period

system (that is, T !1), which means a very flexible system, the mass would be expected to remain

stationary while the ground below moves, thus, uðtÞ � �ugðtÞ and Sd ¼ ug max. For a very short period

structure, the mass moves rigidly with the support, and its peak acceleration will be the same as that of the

support. Thus,

u€t � u€g; u€tmax

��� ��� ¼ u€g max

��� ���
As u€tmax

�� �� ¼ o2Sd (Chapter 3), Sa ¼ u€g max.

Figure 2.17 shows the response spectrum for 5% damping for the El Centro earthquake. Furthermore,

the response spectrum has been idealized by a series of straight lines. It is seen from the figure that straight

lines below point “a” and that between points “b” and “c” are parallel to the Sd/ug max axis. The line below

Figure 2.17 Idealized response spectrum by a series of straight lines for El Centro earthquake
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point “a” shows constant Sa equal to u€gmax. Line between points “b” and “c” similarly show constant

acceleration, which is equal to a constant factor multiplied by u€gmax.

Thus, the portion of the response spectrum to the left of point “c” is most directly related to the

maximum ground acceleration. Similarly, the portion of response spectrum to the right of “d” is most

directly related to the maximum ground displacement. The intermediate portion (c–d) is most related to

the maximum velocity of the ground motion. Response spectra drawn for different earthquakes show

similar trends of idealization; the points a, b, c, d, e, f and the corresponding periods Ta, Tb, Tc, Td, Te, Tf ,

may vary from earthquake to earthquake and with the damping ratio.

Based on these observations, it is logical to divide the spectrum into three zones, namely, a displacement

sensitive region (that is, long period region), an acceleration sensitive region (that is, the short period

region), and a velocity sensitive region (that is, the intermediate period region). Earthquakes recordedunder

similar or dissimilar conditions show the same trend in the response spectrum in these three regions. It

should be noted from Figure 2.16 that the effect of the damping on the response spectrum is greatest in the

velocity sensitive region, and is least in the acceleration sensitive and displacement sensitive regions.

Idealization of the spectrum by a series of straight lines is not a precise way of defining the spectrum.

Such idealization or any smooth curve fitting technique to represent an idealized response spectrum may

not appear to be particularly rational in representing the actual spectrum. However, it will be seen in the

next section that such techniques are used to evolve the design response spectrum, which is of greater

importance in the seismic design of structures than the response spectrum of one particular earthquake.

Example 2.4

Draw the response spectra of ground acceleration for the Parkfield earthquake for n ¼ 5%. After

idealizing the curve by a series of straight lines, find Ta, Tb, Tc, Td, Te, and Tf ,and compare them with

those of the El Centro earthquake.

Solution: The Parkfield earthquake digitized acceleration record is taken from www.peer.berkley.edu/

smcat. The displacement, pseudo velocity and pseudo acceleration spectra were obtained using

Equations 2.23–2.26. Alternately, Seismo signal as mentioned in Example 2.3 may be used. The spectra

are then drawn in the tripartite plot and idealized by a series of straight lines as shown in Figure 2.18.

Thevalues ofTa,Tb,Tc,Td,Te, andTf as obtained from the plot are comparedwith those of theElCentro

earthquake, as shown in Table 2.1.

2.5.4 Design Response Spectrum and its Construction

The design response spectrum is different to a simple response spectrumof an earthquake. It should satisfy

some of the requirements as it is intended to be used for the design of new structures or the risk evaluation

of existing structures for future earthquakes, which are not known. These requirements may be stated

as below:

a. The spectrum should be as smooth as possible and devoid of high irregularities, as observed in the

response spectrum of an earthquake shown in Figure 2.16, for two reasons. Firstly, irregularities in the

spectra of two different earthquakes could be significantly different, leading to an erroneous estimate

of the spectral ordinates for future earthquakes. Secondly, for a highly irregular spectrum, spectral

ordinates may drastically change for a small change in frequency. As there is always a certain amount

of uncertainty in the determination of natural frequencies of structural systems, an irregular spectrum

can provide a very erroneous estimate of the earthquake forces calculated for the structures. Therefore,

a design spectrum in a fourway log plot is expected to consist of a series of straight lines, such as that of

an idealized spectrum shown in Figure 2.17.
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b. The design spectrum should be representative of spectra for past earthquake ground motions in the

region. If there are insufficient or no earthquake records available for the region, then records of other

sites under similar conditions may be used. The factors that should be considered for identifying

similar conditions include the magnitude of the earthquake, distance of the site from the fault, fault

mechanism, geology of the travel path of the seismicwaves from the source to the site, and the local soil

conditions of the site.

c. A single response spectrum may not be able to represent the variations in the spectra of all past

earthquakes in the region. Therefore, two response spectra, one mean spectrum, with the other being

the mean plus one standard deviation spectrum, should be considered as design spectra.

d. The design response spectrum should be a normalized response spectrum with respect to the peak

ground acceleration (PGA), as the PGAmay drastically vary fromone place to another. Furthermore, a

design response spectrum should be consistent with the specification of the level of the seismic design

force, or the deformation of structures experienced during previous earthquakes.

e. Finally, the design response spectrum should be consistent with seismic design philosophy. Currently,

a dual design philosophy is adopted (which will be discussed later). This requires specification of two

Figure 2.18 Comparison between the response spectra of Parkfield and El Centro earthquakes

Table 2.1 Comparison of periods (Ta� Tf) between Parkfield and El Centro earthquakes

Earthquake Ta (s) Tb (s) Tc (s) Td (s) Te (s) Tf (s)

Parkfield 0.041 0.134 0.436 4.120 12.0 32.0
El Centro 0.030 0.125 0.349 3.135 10.0 33.0

62 Seismic Analysis of Structures



design spectra, one for designing and the other for safety evaluation for an extreme event. Generally,

shapes of both spectra should be considered as being the same.

Following the above requirements and the observations derived from the idealized response spectrum

as discussed earlier, a procedure for constructing the design response spectrum has been evolved. The

procedure consists of the following steps:

1. Expected PGAvalues for design and maximum probable earthquakes are derived for the region using

the procedure of hazard analysis discussed in the previous chapter.

2. Peak values of the ground velocity and displacement are estimated using empirical relationships valid

for the region, which are given in the form of

_ug max ¼ c1
u€g max

g
; ug max ¼ c2

_u2g max

u€g max [6].

The values of c1 and c2 are determined from the recorded earthquake data. Typical values of c1 and

c2 may be taken as c1 ¼ 1:22 to 0:92 m s�1 and c2 ¼ 6.

3. On the four way log graph paper, plot the baseline showing u€g max, ug max and _ug max as shown in

Figure 2.19. Multiply u€gmax, ugmax, and _ugmax by the amplification factors aA, aD, and aV, respectively,
to obtain the lines bc, de, and cd.

Figure 2.19 Construction of elastic design spectrum
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4. Point b corresponds to frequency f2 ¼ 1=T2ð Þ, which may be taken as f2 ¼ 4f1 where f1 ¼ 1=T1ð Þ, is
the frequency corresponding to the intersection point (Figure 2.19). Note that intersection points c

and d are fixed by the relative values of aA, aD, and aV. Point a corresponds to the frequency

f3 ¼ 1=T3ð Þ, which may be taken as f3 ¼ 10f1. Points e and f are selected corresponding to very low

frequencies (large periods), and could be of the order of (1/10–1/15) and (1/30–1/35) Hz,

respectively.

5. Exact values of time periods corresponding to points a, b, e, and f depend upon recorded data in the

region. Similarly, values of aA, aD, and aV also depend upon the recorded earthquake data. In

reference [4] some representative values of aA, aD, and aV for mean and mean plus one standard

deviation spectra obtained from a set of large earthquake data are given. Note that the values of aA, aD,
and aV depend upon the damping, as expected.

6. Once the design spectrum is drawn in a four way log plot, the normalized acceleration response

spectrum can be obtained in an ordinary plot. A typical plot of the normalized pseudo acceleration

spectrum (derived from a log plot) as given in the codes of practice is shown in Figure 2.20. It is seen

from the figure that spectral accelerations (Sa) for a soft soil profile are more compared with those of

a hard soil profile at periods ofmore than 0.5 s. This is the case because the amplified factors aA, aD, and
aV substantially change with the soil conditions.

For some sites the design spectrum could be the envelope of two or more different spectra. Such sites

are affected by more than one active fault. The design spectra obtained by considering the earthquake

occurring from the two faults are different. Design response spectra for such a typical site are shown in

Figure 2.21. The first spectrum is the one corresponding to the nearby fault producing a small size

earthquake. The second spectrum corresponds to that for a far fault producing a large magnitude

earthquake. The design spectrum for the site is then defined as the envelope for the two spectra, as shown in

Figure 2.21.
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Figure 2.20 Design (pseudo acceleration) spectrum as given in IS Code
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Example 2.5

Construct design response spectra for the 50th percentile and the 84.1 percentile on four way log graph

paper for 5% damping for hard soil. Take Ta ¼ 1=33 s, Tb ¼ 1=8 s, Te ¼ 1=10 s, and Tf ¼ 1=33 s;
u€g max ¼ 0:6 g.

Solution:

_ug max ¼ 1:22

g
u€g max ¼ 0:732 m s�1

ug max ¼ ð0:732Þ2
0:6g

6 ¼ 0:546 m

with these values of ug max, _ug max, and u€g max, and aA ¼ 2:12, av ¼ 1:65 and aD ¼ 1:39 for 5% damping

for hard soil taken from reference [4], the plot of the design response spectrum (median) is shown in a

tripartite plot (Figure 2.22). In the same plot, the 84th percentile spectrum is also shown. For the latter,

aA ¼ 2:71, av ¼ 2:30, and aD ¼ 2:01.

2.5.5 Design Earthquakes

While response spectra or PSDF of ground motions are used as inputs for structural analysis, the level of

ground shaking is represented by the design earthquake. Generally, design earthquakes are associated

with the two level design concept, that is, in one level of motion, the structures remain serviceable

(damage is within acceptable limits) and in the other, catastrophic failure (or damage) of the structure

without collapse is envisaged. As quantification of the design earthquake requires many considerations,

the input response spectrum or the PSDF are provided in the normalized form. This allows different

purposes to be incorporated into the analysis.

Many different descriptions of the level of severity defining the design earthquake are available in the

literature. Maximum Credible Earthquake (MCE) is usually defined as the largest earthquake that can

reasonably be expected from a particular earthquake source. Safe Shutdown Earthquake (SSE) is used in
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Figure 2.21 Design spectrum defined as an envelope of two design spectra
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nuclear power plant design and is associatedwith the peak horizontal ground acceleration specified for the

design. Other terms that are used to denote similar levels of earthquakes are Credible Design Earthquake,

Safety Level Earthquake,MaximumDesign Earthquake, and so on. These levels of earthquake refer to the

upper limit of the design earthquake associated with two level design concepts. The lower limit is

generally known byOperating Basis Earthquake (OBE), which denotes an earthquake sizemost expected

during the lifetime of the structure. Other terms used for similar level earthquakes are Operating Level

Earthquake, Probable Design Earthquake, and Strength Level Earthquake. The OBE is often taken as half

of the SSE.

2.5.6 Probabilistic Response Spectra

It is evident from the preceding discussions that the design response spectrum for a region depends upon

many factors, chief among themare the active faults influencing the region, faultmechanisms,magnitudes

of earthquakes, geological characteristics of the region, and local soil conditions. Future earthquakes in

the region are indeed uncertain as most of these factors are uncertain. Therefore, a deterministic design

response spectrum as described previously is not considered to be sufficient for the safe design of

structures for future earthquakes that are essentially not known. As a consequence, a probabilistic model

of a response spectrumhas been attempted by various investigators. These response spectra are usedwhen

probabilistic seismic analysis and design are intended or when probabilistic risk analysis of already

designed structures is carried out. These response spectra are derived from statistical analysis of recorded

Figure 2.22 Design response spectrums for 50th and 84.1th percentile values
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earthquake data in the region and are generally provided in the form of empirical formulae. Some of the

empirical expressions for response spectra are given in Section 2.7.5.

2.5.7 Site Specific Spectra and Uniform Hazard Spectra

2.5.7.1 Site Specific Spectra

Site specific spectra are different from design spectra that are used for the general purpose design of

structures and are recommended in the codes of practices. Site specific spectra are those which are

exclusively used for the design of structures for that site. These structures are generally specialty

structures and require careful consideration of the site conditions at the time of design. Alternatively,

special geological, geophysical, and geotechnical conditions may exist at the site, which distinguish the

past earthquake records for the site as being distinctly different to other earthquake records of the region.

For such sites, site specific spectra are obtained from the family of accelerograms recorded near to the site.

If required, they are supplemented by using recorded accelerograms of other sites having similar

geological, seismological, and geophysical conditions. All accelerograms are scaled in order to adjust

them for single magnitude and single source to site distance of an earthquake. They are also scaled to

adjust for the specific site being represented. The scaling is accomplished by Fourier transforming each

accelerogram. The real and imaginary parts of the transformed results are multiplied by frequency

dependent scaling factors to account for the magnitude and site condition differences. The source to site

distance adjustment is done by multiplying the results by a frequency independent scaling factor. This

scaling factor is obtained from the attenuation relationships (expressing PGA as a function of magnitude

and epicentral distance) valid for the region. After applying three scaling factors, the results are inverse

Fourier transformed to obtain the full set of accelerograms compatible for the site. Response spectra

obtained from the accelerograms are averaged and then smoothened (using a curve fitting technique) to

derive the desired site specific spectrum.

The above procedure may not exactly cater to the actual site effects in terms of soil conditions. The

ground motion parameters and the generated time history will correspond to those of the sites in the

database for which predictive (attenuation law) relationships were developed. In order to bring the actual

soil conditions of the site into the picture, a deconvolution and conventional ground response analysis are

performed, as shown in Figure 2.23. Deconvolution is simply the ground motion analysis in the reverse

Rock outcroping motion

CC

Soil profile at
site of interest

Convolution

E

Surface motion at
site of interestSurface motion

DeconvolutionGiven soil
profile

B

Bedrock motion

A

D

Bedrock motion
same as point B

Figure 2.23 Deconvolution and convolution of ground motion to take into account local site conditions
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order and provides the time history of groundmotion at the rock bed. The same rock bedmotion is used at

O (Figure 2.23) to obtain the time history of the ground motion at the site of interest at E, which is

consistent with the local soil conditions.

Example 2.6

Three time histories of ground acceleration records are available in the vicinity of a site along with their

smoothed PSDFs shown in Figures 2.24–2.27. Soil conditions of the sites where earthquake records are

available are significantly different than the site for which the site specific response spectrum is to be

constructed. It is assumed that the attenuation law given by Toro (Equation 2.46) (Section 2.7.1) is valid

for the region at the bed rock level, and vertically propagating earthquake waves from the rock bed

predominantly constitute the motion at the ground surface. Construct the site specific response spectrum

forM¼ 7 from this limited information.Assume n for the soil to be 0.05 and the duration of the earthquake
to be 25 s.

Station 1
R=70 km
Vs=180 m/s

Station 2
R=80 km
Vs=100 m/s

Station 3
R=90 km
Vs=200 m/s

Site
R=100 km
Vs=260 m/s

Overlaying soil=20 m

Figure 2.24 Recording stations and the site
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Figure 2.25 Acceleration power spectrum (PSDF) for station 1
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Figure 2.26 Acceleration power spectrum (PSDF) for station 2
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Figure 2.27 Acceleration power spectrum (PSDF) for station 3

Solution: Power spectrums (PSDFs) at the rock bed corresponding to those of the surface stations are

shown in Figures 2.28–2.30. They are obtained using the following relationships (Chapter 4):

ðPSDFÞsurface ¼ ðPSDFÞrockbedðTFÞ2 ð2:35aÞ

ðPSDFÞrockbed ¼
ðPSDFÞsurface

ðTFÞ2 ð2:35bÞ

See the chapter on soil structure interaction, or Chapter 7 (Equation 7.13) of reference [26]:

ðTFÞ2 ¼ 1

½cos2ðoH=VsÞþ ðx2H2o2=V2
s Þ�

ð2:36Þ
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Figure 2.28 PSDF at the rock bed for station 1
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Figure 2.29 PSDF at the rock bed for station 2

where

H¼ depth of the overlying soil

From the area under the PSDF curves, the standard deviations of the accelerations are obtained as:

ðsx€g1Þrocked ¼ 0:12g p1 ¼ 3:2 ðPGA1Þrockbed ¼ p1 sx€g1 ¼ 0:384g

ðsx€g2Þrocked ¼ 0:08g p2 ¼ 2:9 ðPGA2Þrockbed ¼ p2 sx€g2 ¼ 0:24g

ðsx€g3Þrocked ¼ 0:15g p3 ¼ 3:4 ðPGA3Þrockbed ¼ p3 sx€g3 ¼ 0:51g

in which p1, p2, and p3 are the peak factors which can easily be obtained from Equation 2.19a–c.

Using the attenuation law given byToro, themagnitudes corresponding to the PGAs at the rock bed are:

M1 ¼ 6:2; M2 ¼ 5:8; M3 ¼ 7:3

The PGA at the rock bed below the sites for M¼ 7 and R¼ 100 km is obtained as PGA¼ 0.38g.
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The three PSDFs at the rock bed are scaled to have the same PGA of 0.38g by the following

relationships:

ðPSDFÞs ¼ ðPGAÞ2s
ðPSDFÞu
ðPGAÞ2u

ð2:37Þ

where

ðPSDFÞs is the scaled PSDF

ðPSDFÞu is the unscaled or original PSDF

ðPGAÞu is the PGA for the unscaled PSDF

ðPGAÞs is the PGA for the scaled PSDF.

In the above calculation, it is assumed that peak factors are the same for the scaled and unscaled PSDFs.

The three scaled PSDFs are shown in Figures 2.31–2.33. The corresponding PSDFs at the ground surface
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Figure 2.30 PSDF at the rock bed for station 3
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Figure 2.31 Scaled PSDF at the rock bed below the site for station 1
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(that is, at the site) are obtained with Equation 2.35a, that is,

ðPSDF1Þsite ¼ ðPSDF1ÞsðTFÞ2 ð2:38Þ

Three PSDFs thus obtained for the site are shown in Figures 2.34–2.36. The above procedure is

equivalent to scaling the Fourier components of the three time histories of ground motion near the site to

adjust for the site conditions, earthquake magnitude (of 7), and the surface to site distance as described in

Section 2.5.7.

From these three PSDFs, three time histories of ground motions are synthetically generated by the

procedure given in Section 2.6.2. The response spectra from these three time histories are obtained

(Section 2.5.1). These response spectra are shown in Figures 2.37–2.39. The average of the three spectra

is the site specific spectrum and is shown in Figure 2.40.
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Figure 2.32 Scaled PSDF at the rock bed below the site for station 2
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Figure 2.33 Scaled PSDF at the rock bed below the site for station 3
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2.5.7.2 Uniform Hazard Spectrum

To obtain the uniform hazard spectrum, statistical analyses are carried out on all spectra to obtain the

probability distributions of the PGA and spectral ordinates at discrete frequencies over the frequency

range of interest. Values of the spectral ordinates denoting the specifiedprobability of exceedance are used

to construct the uniform hazard spectrum.

An alternativemethod to obtaining the uniform hazard spectra is to perform the seismic hazard analysis

described inChapter 1. In place of obtaining the seismic hazard curve for PGA, hazard curves are obtained

for spectral ordinates for each time period for a specified damping. From these sets of hazard curves,

response spectra for a specified probability of exceedance are determined.
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Figure 2.34 PSDF at the site obtained from station 1
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Figure 2.35 PSDF at the site obtained from station 2
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Example 2.7

Construct a uniform hazard spectrum for acceleration with a probability of exceedance of 0.15 using the

following data:

(i) Seismic hazard curve for the region is given in Figure 2.41.

(ii) Normalized response spectrum ordinates to have a probability of exceedance of 0.15 is given by 2 for

0.05� T� 0.6 and 1.2/T for T	 0.6.

Solution: The hazard curve for the region is shown in Figure 2.41. From the figure, it is seen that annual

frequency of exceedance of 0.15 corresponds to a PGA¼ 0.12 g. A normalized response spectrum with

a uniform probability of exceedance of 0.15 (for all ordinates) is drawn in Figure 2.42. Normalized

ordinates are multiplied by the PGA¼ 0.12 g to obtain the required uniform hazard spectrum, shown in

Figure 2.43.
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Figure 2.36 PSDF at the site obtained from station 3
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Figure 2.37 Response spectrum (x¼0.05) at the site obtained from station 1
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When seismic design is to be performed for two simultaneous horizontal components of groundmotion,

the normalized design spectra described earlier can be used for both components. The design and

maximum probable intensity level of one component should be reduced by about 15% below the

corresponding level of the other component. Components of larger intensity should be directed along the

critical axis of the structure.

2.6 Generation of Synthetic Accelerograms

In many instances, the generation of synthetic time histories of the ground motion is desired for seismic

design and analysis of structures. Non-linear dynamic analysis of structures under earthquake excitation is

one such important case where the required input is the time history of ground motion. This time history

should be compatible with a specified response spectrum or a specified PSDF of ground motion. The
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Figure 2.38 Response spectrum (x¼0.05) at the site obtained from station 2
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Figure 2.39 Response spectrum (x¼0.05) at the site obtained from station 3

Seismic Inputs for Structures 75



specified response spectrum could be a design spectrum, a site specific response spectrum, or a uniform

hazard spectrum. In a similarway, the specifiedPSDFof groundmotionmay be site specific, region specific

or given by an empirical formula. Many standard programs are now available to generate a response

spectrum or PSDF compatible ground motions. Therefore, details of the procedure for generating such

ground motions are not included here. The basic principles from which they are developed are only

summarized below.

2.6.1 Response Spectrum Compatible Accelerogram

The basic steps involved in the generation of the accelerogram are:

(i) A set of Gaussian numbers are artificially generated having zero mean and unit variance. These

numbers are sampled at a time interval of Dt to provide a time history.
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Figure 2.40 Site specific response spectrum (averaged)
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Figure 2.41 Hazard curve for the region
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(ii) This time history is then multiplied by a modulating function in order to incorporate the non-

stationary nature of the earthquake in the accelerogram. The modulating function is selected such

that it is consistent with the expected magnitude of the earthquake and epicentral distance.

(iii) The generated time history zðtÞ is thenmodified to take into account the local soil conditions. This is

done by Fourier transforming zðtÞ andmultiplying the transformed complex numbers by the double

filter frequency response functions discussed in Section 2.7.5.

(iv) The resulting complex numbers are inverse Fourier transformed to obtain a time history bðtÞ and
normalized to a PGA value of 1g.

(v) A pseudo velocity/acceleration response spectrum is generated from the time history for the

specified damping ratio and it is comparedwith the design response spectrum or the target response

spectrum.

(vi) The generated response spectrum is iteratively matched with the target one by matching the

frequency contents of the two. The iteration is performed by multiplying the bðioÞ by the average
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Figure 2.42 Normalized response spectrum
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Figure 2.43 Uniform hazard spectrum for acceleration with a probability of exceedance of 0.15
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ratio of the ordinates of the target spectrum and the generated spectrum within a narrow band of

frequency centering aroundo, and then inverse Fourier transforming bðioÞ to obtain the new time

history. Step (v) is then performed to generate a new spectrum. The process is continued until a

reasonable convergence is achieved.

2.6.2 Power Spectral Density Function Compatible Accelerogram

Generation of the time history of acceleration for a specified PSDF of ground motion is based on the

technique of Monte Carlo simulation [5]. The steps involved in the generation are the following:

(i) Random numbers are generated between 0 and 2p, which are uniformly distributed.

(ii) The time history of acceleration is obtained using

aðtÞ ¼
X

i
Ai sinðoitþfiÞ ð2:39Þ

where

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SiDoi

p
oi ¼ the frequency that is randomly selected between 0 and the cut-off frequency

fi ¼ the randomly generated numbers in step (i)

Doi ¼ the small frequency interval centered around oi

The cut-off frequency is the frequency beyond which the PSDF ordinate Si has negligible value.

(iii) oi is a randomly generated number that is uniformly distributed between 0 andoc and then arranged

in an ascending order.

If time histories of acceleration are to be generated for the same specified design spectrum or PSDF at

a number of points that are spatially separated, then the spatial correlation or phase difference between the

time histories should be duly considered. Generation of such sets of accelerograms is somewhat involved as

it requires consideration of the appropriate correlation function (described in Section 2.7.7) and finding

suitablephase differencesbetweendifferent timehistories.Aprocedure is given in reference [6],whichmay

be programmed and added to the program for generating the accelerogram for a single-point excitation.

2.7 Prediction of Seismic Input Parameters

For the design of structures for earthquake forces, it is necessary to estimate the level of ground shaking for

which the structures should be designed. These levels of shaking are represented in various ways,

described as seismic inputs for structures in Sections 2.1–2.6. While some of these seismic input

parameters are directly available from the recorded earthquake data of the region, a number are obtained

using different empirical relationships, termed predictive relationships. In fact, predictive relationships

are extensively used for the determination of the seismic hazard of a region and for determining the

seismic inputs for the regions where available earthquake data are scanty.

Predictive relationships usually express the groundmotion parameters and seismic input parameters as

functions of magnitude, epicentral distance, and some other variables, if needed. The general form of the

predictive relationship expressing the parameter of interest Y is given by:

Y ¼ f ðM;R; siÞ ð2:40Þ
where

M¼ the magnitude of earthquake

R¼ the epicentral distance

si ¼ some other parameter used in the equation
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The predictive relationship is developed based on certain considerations such as: (i) peak values of strong

motion parameters are approximately log normally distributed; (ii) decrease in wave amplitude with

distance bears an inverse relationship; (iii) energy absorption due to material damping causes ground

motion amplitudes to decrease exponentially with epicenteral distance; and (iv) effective epicentral

distance is greater than R.

As the peak value of the parameter is log normally distributed, the estimated value of the parameter is

represented by a mean and a standard deviation. The mean value is given by the predictive relationship.

The probability that the parameter value will exceed a value Y1 would be governed by the equation

P½Y 	 Y1� ¼ 1�FpðpÞ ð2:41Þ

in which FpðpÞ is the cumulative distribution function of p defined by:

p ¼ ðln Y1�ln �YÞ
slnY

ð2:42Þ

where

ln�Y ¼ the mean value of the parameter (in ln) given by the predictive relationship

slnY ¼ the standard deviation of the parameter

2.7.1 Predictive Relationships for PGA, PHV, and PHA

Themost widely used predictive relationship is that for peak ground acceleration (PGA) as it is one of the

most commonly used ground motion parameters. As this parameter decreases with an increase in the

epicentral distance, it is also referred to as the attenuation relationship. A large number of attenuation

relationships for PGA have been developed over the years. All are best suited for conditions similar to

those in the data bases (valid for a particular region) from which they were developed. Attenuation

relationships become more refined and modified as more and more strong motion data are available.

Generally, the validity of attenuation relationships is dictated by the ranges of epicentral distance,

magnitude of earthquakes, and nature of earth medium. A few of the attenuation relationships for peak

horizontal ground acceleration (PHA), also known as PGA, peak ground velocity (PGV), and some of the

basic relationships between earthquake intensity parameters are given below. Note that in defining the

magnitude of earthquakes,M ¼ M1 ¼ MW (up toM¼ 9);M0 is defined as the seismic moment andMS is

defined as the surface magnitude (Chapter 1).

An early attenuation relationship for PHAwas proposed byEsteva [7] for groundmotion on firm soil as:

PHA ¼ 1230e0:8MðRþ 25Þ�2 ð2:43Þ

where

PHA is in cm s–1

M is the local magnitude

R is the epicentral distance measured in km.

Campbell [8] developed an attenuation relationship for PHA based on world-wide data in the form of

ln PHA ðgÞ ¼ �4:141þ 0:868M�1:09 lnðRþ 0:0606e0:7MÞ ð2:44Þ
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where

M is the local magnitude

R is the epicentral distance in km.

The relationship is valid for small epicentral distances within 50 km and for magnitudes varying between

5 and 7.7. slnPHA is given as a constant value of 0.37.

Cambell and Bozorgnia [9] developed a modified attenuation relationship, again based on the world-

wide data, for a greater range of magnitude of earthquake in the form of:

ln PHA ðgÞ ¼ �3:512þ 0:904MW � 1:328ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ½0:149 expð0:647MWÞ�2

q

þð1:125� 0:112lnR� 0:0957MWÞFþð0:440� 0:171lnRÞSSR
þð0:405�0:222lnRÞSHR

ð2:45aÞ

slnPHA ¼ 0:889� 0:0691M M � 7:4

0:38 M > 7:4

(
ð2:45bÞ

where

R¼ the short epicentral distance (preferably within 60 km)

F¼ zero for strike slip and normal faulting, and 1 for reverse oblique and thrust faulting

SSR ¼ 1 for soft rocks

SHR ¼ 1 for hard rocks

SSR ¼ SHR ¼ 0 for alluvium sites

Comparison of Equations 2.44 and 2.45 shows how the attenuation relationship is refined as more data

are available.

Toro et al. [10] developed an attenuation relationship for PHA based on the data available for eastern

North America in the form of:

ln PHA ðgÞ ¼ 2:20 þ 0:81 ðMW � 6Þ� 1:27lnRm þ 0:11max ln
Rm

100
; 0

� �
� 0:0021Rm ð2:46Þ

where

Rm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 9:32

p
R¼ the closest horizontal distance to the earthquake rupture (in km)

sM ¼ 0:36þ 0:07ðMW � 6Þ

and

sR ¼
0:54 R < 5 km

0:54� 0:0227ðR�5Þ 5 � R < 20 km

0:20 R > 20 km

8<
: ð2:47Þ

sln PHA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2M þ s2R

q
ð2:48Þ

One of the earliest attenuation relationships for PHV was given by Esteva [7] in the form of:

PHV ¼ 15eMðRþ 0:17e0:59MÞ�1:7 ð2:49Þ
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in which M is the local magnitude, R is the epicentral distance in km, and PHV is in cm s�1. The

attenuation relationship is valid for firm ground.

Another empirical relationship between PHV and earthquake intensity was proposed by Esteva and

Rosenblueth [11],

I ¼ log14 PHV

log 2
ð2:50Þ

where I is in the MM intensity scale and PHV is in cm s–1.

There are a number of other predictive relationships that relate intensity with various other seismic

parameters. The intensity and magnitude of an earthquake were related by Shinozuka [12]:

I ¼ 1:667M� 2:167 ð2:51Þ
Cornell [13] proposed another relationship between the two:

I ¼ 8:16 þ 1:45M� 2:46 ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ h2

p� �
ð2:52Þ

in which h is the depth of the focus.

An important relationship between the energy release (E) and the magnitude of earthquake (M) was

proposed by Gutenberg [14] in the form:

log10E ¼ 11:8þ 1:5M ð2:53Þ
Using Equations 2.51 and 2.53, the energy released can be related to intensity.

Trifunac and Brady [15] proposed a relationship between intensity and PGA (in cm s–1) as:

log ðPGAÞ ¼ 0:3I� 0:014 ð2:54Þ
Arelationship between intensity, andpeak horizontal ground velocity, PHV (in cm s�1)was given as [16]

PHV ¼ 0:3� 100:18I ð2:55Þ
Joyner and Boore [17] used strongmotion records from earthquakes ofM between 5 and 7.7 to develop

an attenuation relationship for PHV as:

log PHV ¼ j1 þ j2ðM� 6Þ þ j3ðM� 6Þ2 þ j4 logR þ j5R þ j6 ð2:56Þ
in which PHV (in cm s–1) is selected as randomly oriented or as a larger horizontal component depending

upon the coefficients j1– j7 as given inTable 2.2.R is takenas
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ j27

p
; r0 is theepicentral distance (in km).

McGuire [18] proposed empirical expressions for Vmax/amax (a measure of the equivalent period of an

earthquake), which were dependent onmagnitude and epicentral distance. The dependences are shown in

Table 2.3.

Table 2.2 Coefficients of the attenuation relationship for PHV

Component j1 j2 j3 j4 j5 j6 j7 slog PHV

Random 2.09 0.49 0.0 �1.0 �0.0026 0.17 4.0 0.33
Larger 2.17 0.49 0.0 �1.0 �0.0026 0.17 4.0 0.33

Table 2.3 Magnitude and distance dependence of Vmax/amax

Site conditions Magnitude dependence Distance dependence

Rock sites e0:40M R0:12

Soil sites e0:15M R0:23
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An empirical formula was also proposed by Esteva [7] to obtain the peak ground displacement (in cm)

on firm ground as:

PHD ¼ ðPHVÞ2
PHA

1þ 400

R0:6

� �
ð2:57Þ

Example 2.8

At epicentral distances of 75 and 120 km, find the PHA (PGA) by using the attenuation relationship given

byEsteva (Equation 2.43), Campbell (Equation 2.44), Campbell andBozorgnia (Equation 2.45), and Toro

(Equation 2.46) and compare them forMð¼ MW ¼ MSÞ ¼ 7. For the same magnitude of earthquake and

epicentral distances, compare between the PHVs obtained by the relationships given by Esteva

(Equation 2.49), Joyner and Boore (Equation 2.56 for random) and Esteva and Rosenblueth (Equa-

tion 2.50). Use Cornell’s equation (Equation 2.52) to obtain I from M. Investigate how the computed I

compares with that given by Shinozuka (Equation 2.51) and how the computed PGA given by Trifunac

and Brady (Equation 2.54) compares with PHAs obtained by different attenuation relationships.

Solution: It is assumed that the epicentral distance and the hypocentral distance are nearly the same.

According to Cornell (Equation 2.52), I values calculated for R¼ 75 and 120 km for M¼ 7 are 7.68

and 6.53, respectively. The distance independent empirical formula given by Shinozuka (Equation 2.51)

for calculating I gives a value of 9.5, much higher than those calculated above. Tables 2.4 and 2.5 compare

the PHAs and PHVs obtained by different empirical equations.

It is seen from Table 2.4 that PHAs calculated by Equations 2.43 and 2.45 give nearly the same values;

those calculated by Equations 2.44 and 2.46 compare reasonably well for the epicentral distance of

120 km, but they provide twice the values given by Equations 2.43 and 2.45. PHAs calculated by

Equation 2.54 based on intensity provide much higher values.

It seen from Table 2.5 that PHVs calculated by Equations 2.49, 2.56 and 2.50 vary widely; those

calculated by Equation 2.49 give the maximum values, while that calculated by Equation 2.50 gives the

least values.

Table 2.4 Comparison of PHAs obtained by different empirical equations for M¼ 7

Empirical relationship PHA (g)

75 km 120 km

Esteva (Equation 2.43) 0.034 0.015
Campbell (Equation 2.44) 0.056 0.035
Bozorgnia (Equation 2.45) 0.030 0.015
Toro (Equation 2.46) 0.072 0.037
Trifunac (Equation 2.54) 0.198 0.088

Table 2.5 Comparison of PHVs obtained by different empirical equations for M¼ 7

Empirical relationship PHV (cm s�1)

75 km 120 km

Esteva (Equation 2.49) 8.535 4.161
Joyner (Equation 2.56) 4.785 2.285
Rosenblueth (Equation 2.50) 2.021 1.715
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2.7.2 Predictive Relationship for Duration

The duration of strong ground motion increases with increasing magnitude. The relationship between

epicentral distance and duration of an earthquake depends upon how the duration is defined. Two

definitions for the duration of an earthquake are widely used. The first one is bracketed duration, which is

defined as the first and last exceedances of a threshold acceleration (usually 0.05 g). The second is

significant energy duration, which is defined as the time interval between the points at which 5 and 95%of

the total energy has been recorded. Other definitions of the duration of earthquakes also exist. Bracketed

duration is expected to decrease with distance, while duration based on the significant energy

recorded [15] is expected to increase with increasing distance. An early study by Chang and Krinitzs-

ky [19] is given in Figure 2.44, which shows that bracketed duration decreases with increasing distance.

Boore [20] prescribed the duration to be equal to the corner period (inverse of corner frequency).

No good correlation between the duration of earthquakewith magnitude and epicentral distance can be

obtained from recorded earthquake data. Some studies by Esteva and Rosenblueth [11] showed that the

duration of earthquake on firm ground/rock bed could be of the form:

T ¼ 0:02e0:74M þ 0:3R ð2:58Þ
where T is given in seconds and R is in km.

2.7.3 Predictive Relationships for rms Value of Ground Acceleration (Arms)

Hanks andMcGuire [21] obtained an attenuation relationship for rms acceleration forM of between 4 and

7 and hypocentral distances of between 10 and 100 km as:

Arms ¼ 0:119

ffiffiffiffiffiffiffiffi
fmax

fc

r

R
ð2:59Þ

where

fc is the corner frequency

fmax is the cut-off frequency

R is in km.
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Figure 2.44 Variation of bracketed duration with epicentral distance
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Kavazanjian et al. [22] obtained another relationship for Arms for

MW > 5 and R < 110 km

as

Arms ¼ 0:472þ 0:268MW þ 0:129 log
0:966

R2
þ 0:255

R

� �
� 0:1167R ð2:60Þ

Campbell and Duke [23] obtained an attenuation relationship for the Arias intensity Ia for MS of

between 4.5 and 8.5 and for R of between 15 and 110 km as:

Ia ðm s�1Þ ¼ 313
eMSð0:33MS�1:47Þ

R3:79
S ð2:61Þ

where S ¼

0:57R0:46 for basement rock

1:02R0:51 for sedimentary rock

0:37R0:81 for alluvium � 20 m thick

0:65R0:74 for alluvium > 20 m thick

8>>>><
>>>>:

ð2:62Þ

Ia is defined as

Ia ¼ p
2g

ða

0

½aðtÞ�2dt

in which aðtÞ is the ground acceleration.

2.7.4 Predictive Relationships for Fourier Spectrum and Response Spectrum

Ground motion parameters that reveal the frequency contents of the ground motion are the Fourier

amplitudespectra, powerspectra, and the response spectraofgroundmotion.Outof these three, the last two

arewidely used for seismic analysis of structures as it is not possible to provide any empirical relationship

for these parameters without incorporating frequency or period. Therefore, predictive relationships

contain the frequency/period as one of the key variables. McGuire and Hanks [24] and Boore [20]

provided a predictive relationship for Fourier amplitude spectra for a far field events at distance R as:

��Aðf Þ�� ¼ CM0

f 2

1�ð f=fcÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð f=fmaxÞ8
q

2
64

3
75
e�pfR=Qðf ÞVs

R

ð2:63Þ

where fc and fmax are the corner frequency and cut-off frequencies, respectively; Qðf Þ is the frequency
dependent quality factor; and C is a constant given by:

C ¼ r0FV

4prV3
S

ð2:64Þ

where

r0ð� 0:55Þ accounts for the relation pattern

Fð¼ 2Þ accounts for free surface effect

V ¼ 1ffiffi
2

p
� �

accounts for participating the energy into two horizontal components

r and Vs (in m s�1) are the density and shear wave velocity of the rock along the surface

M0 is the seismic moment in dyn cm

fmax is assumed constant for a region that may typically vary between 10 and 50Hz.
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M0 and fc are related by [2]:

fc ¼ 4:9*106VS

Ds
M0

� �1
3 ð2:65Þ

in which VS is in km s�1, M0 is in dyn cm, and Ds is the stress drop, which may vary between 50 and

100 bars.

Example 2.9

Compare between the smoothed normalized Fourier spectrum obtained from the El Centro earthquake

records and that obtained by the empirical equation given by McGuire and Hanks, and Boore

(Equation 2.63).

Solution: Assuming fc ¼ 0:2 Hz, fmax ¼ 10 Hz, and VS ¼ 1500 m s�1, the smoothed Fourier spectrum

obtained from Equation 2.63 is shown in Figure 2.45. The spectrum is obtained for MW ¼ 7 and the

correspondingM0 is calculated using Equation 1.11 (Chapter 1) as 35.4. In the same figure, a smoothed

Fourier spectrum obtained for the El Centro earthquake is compared. It is seen from the figure that the two

spectra resemble each other. Note that Equation 2.63 is obtained from the shape of an average spectrum

derived from the spectra of a number of earthquakes. Therefore, Equation 2.63 gives a smoother flat

portion in the central region.

Prediction of response spectra is generally based on the concept of developing the shape of smoothed

spectra for design purposes. The method of arriving at the smooth shapes has been discussed in

Section 2.5.4. Scaling the design spectral shapes by the ground motion parameter, for example, PHA

(PGA) which is obtained using a predictive relationship makes the response spectraM and R dependent.

However, the spectral shape remains invariant with M and R. With more recorded motions becoming

available, the magnitude dependence of spectral shapes has been increasingly recognized, particularly in
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Figure 2.45 Comparison between the smooth Fourier spectrum of El Centro earthquake and that obtained by
empirical Equation 2.63
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the long period range. Boore et al. [25] obtained predictive relationships for spectral ordinates for

different periods using regression analysis in the form:

log SVðTÞ ¼ b1 þ b2ðMW � 6Þþ b3ðMW � 6Þ2 þ b4Rþ b5log Rþ b6GB þ b7GC ð2:66Þ
in which R ¼ ðd2 þ h2Þ12; the epicentral distance is in km and GB ¼ 1 for VS within 360–750m s�1;

GC ¼ 1 for VS within 180–360m s�1; otherwise, GB ¼ GC ¼ 0. Values of the constants b1 to b7, h and

log SV for each time period T is given in reference [26]. SV0
is obtained in cm s�1. Ishii et al. [27] proposed

M andR dependent predictive relationships for spectral acceleration using regression analysis of available

earthquake motions in the form of:

log �SaðTÞ ¼ aðTÞþ bðTÞMþ cðTÞlogR ð2:67Þ

in which �Sa is the normalized ordinate of the acceleration response spectrum, normalized with respect to

PGA; aðTÞ, bðTÞ, and cðTÞ are coefficients given in the form of a graph.

Kanai [28] proposed a predictive relationship for the pseudo velocity spectrum at the surface of

soil as

SV ¼ 10ð0:61MS�1:73logr1�0:67Þ � 1þ 1þ �a
1��a

� �2

1� T

Tg

� �2
" #2

þ 0:3ffiffiffiffiffi
Tg

p
 !2

T

Tg

� �2

8<
:

9=
;

� 1
2

0
BB@

1
CCA ð2:68Þ

where

MS is the surface magnitude of the earthquake

R is the epicentral distance in km

T is the period

Tg is the predominant period of the wave

�a ¼ r1v1
r2v2

r1 and r2 are the mass densities

v1 and v2 are the wave velocities in the soil layer and the adjacent medium, respectively.

Example 2.10

Construct a design response spectrum using the expression given by Boore et al. (Equation 2.66) for

M ð¼ MWÞ ¼ 7 and R¼ 50 km. Take VS ¼ 400m s�1. Normalize the spectrum with respect to PHA

(PGA), which is obtained by the attenuation relationship given byCampbell (Equation 2.44) and compare

the spectrum with those of IBC, Euro-8, and IS 1893.

Solution: Values of b1 to b6 are taken fromTable 3.9 of reference [26];GC ¼ 0. For these values of b1–b6
and MW ¼ 7, the pseudo acceleration spectrum (pseudo velocity spectrum multiplied by frequency) is

constructed. Using Equation 2.44, the PGA is obtained as 0.35 g. The ordinates of the pseudo acceleration

spectrum are divided by 0.35 g to obtain the normalized spectrum and is shown in Figure 2.46. In the same

figure, the normalized spectrum is comparedwith those of IBC, Euro-8, and IS 1893 (Chapter 5). It is seen

from the figure that the shape of the normalized spectrum in the initial and end portions are similar to those

of the code recommended spectra.
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2.7.5 Predictive Relationships for PSDF of Ground Motion

Prediction of the power spectral density function of ground motion is again based on the shape of the

power spectrum obtained by averaging a number of power spectra from similar ground motions. In

predicting the power spectrum, it is tacitly assumed that the ground motion sample record is a typical

sample of a stationary ergodic process. However, actual strong motion accelerograms frequently show

that the intensity builds up to amaximumvalue in the early part of themotion, then approximately remains

constant for a period of time, and finally decreases near the end of the motion. Such a non-stationary

random process is modeled by multiplying a stationary random process by a deterministic modulating

function, that is, the non-stationary nature of the random process is represented by an evolutionary power

spectrum obtained by multiplying the stationary power spectrum by a modulating function.

Most of the expressions for power spectra are in the form of a power spectrum of filtered white noise.

Housner and Jennings [29] provided an expression for PSDF in the form of:

Su€gðoÞ ¼ �b
1þ 2xg

o
og

� �2

1� o
og

� �2
" #2

þ 2xg
o
og

� �2
ð2:69Þ

in which �b is a constant, and xg and og are the damping ratio and natural frequency of the filter,

respectively. The above expression was adjusted for earthquakes on firm ground as:

Su€gðoÞ ¼
11:5 1þ o2

147:8

� �

1� o2

242

� �� 	2
þ o2

147:8

ð2:70Þ

in which Su€gðoÞ is in cm2 s�3.

Newmark and Rosenblueth [30] proposed an expression for PSDF in a similar form as:

Su€gðoÞ ¼
25

o2

289

1� o2

242

� �� 	2
þ o2

289

ð2:71Þ
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Figure 2.46 Comparison between design response spectrums given by Boore et al., and various codes
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Kanai [28] suggested a PSDF in the form of

Su€gðoÞ ¼ H1ðioÞj2Su€0ðoÞ �1o < 1�� ð2:72Þ
in which the filter transfer function H1ðioÞj2

�� is given by:

��H1ðioÞ
��2 ¼

1þ 2xg
o
og

� �2

1� o
og

� �2
" #2

þ 2xg
o
og

� �2
ð2:73Þ

where

Su€0ðoÞ is the constant PSDF of white noise

Su€g is the PSDF of the filtered process u€g
og and xg are as defined previously.

He suggested og ¼ 5p rad s–1, xg ¼ 0:6 as being representative of firm soil conditions.

Clough and Penzien [6] modified the Kanai–Tajimi PSDF by passing white noise bed rock acceleration

(with PSDF Su€0 ) through two filters. This modification was made to prevent excessive velocities and

displacements at very low frequencies.

Su€gðoÞ ¼
��H1ðioÞ

��2��H2ðioÞ
��2Su€0ðoÞ ð2:74Þ

��H2ðioÞ
��2 ¼

o
of

� �4

1� o
of

� �2
" #2

þ 2xf
o
of

� �2
ð2:75Þ

where xf andof are the damping ratio and resonant frequency, respectively, of the second filter, andH1ðoÞ
remains the same as given by Equation 2.73.of and xf should be set such that correct filtering of the low
frequency contents is achieved. Generally, of may be taken as 0:1og and xf as between 0.4 and 0.6.

The above expressions may be madeM and R dependent by employing attenuation laws to predict the

expected PHA (or PGA). Note that the expected PHAmay be derived from Equation 2.44 and, finally, Su€0
can be expressed in terms of M and R.

Shinozuka et al. [31] provided an expression for PSDF of ground surface acceleration directly in terms

of M, R, and the soil condition in the following form:

Su€gs o;MS; r1; SCð Þ ¼ ðA1Þ2Ŝu€gsðo;MS; r1; SCÞ ð2:76Þ

S
_
u€gsðo;MS; r1; SCÞ ¼

â2ms

o
2p

� �
0:2 � o � 28p

0 otherwise

8<
: ð2:77Þ

âms

o
2p

� �
¼ Ĉ0âm

o
2p

� �
ð2:78Þ

log âm
o
2p

� �
¼ B0

o
2p

� �
þB1

o
2p

� �
MS �B2

o
2p

� �
logðr1 þ 30Þ ð2:79Þ

where C
_
0 is a modification factor given as a function of NðzÞ.

logC
_
0 ¼ 0:215

ðd1
0

exp ð�0:015NðzÞ�0:19zÞ dz�0:704 ð2:80Þ
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where

B0, B1, and B2 are listed functions of (o/2p)
NðzÞ is the N value obtained from a standard penetration test at a depth of z from the ground surface

d1 is the maximum depth at which the data of NðzÞ are available

A1 is a factor representing the statistical uncertainty of �ams due to scattering of data

log A1 is assumed to be frequency independent and normally distributed with zero mean and

standard deviation¼ 0.626.

Example 2.11

Compare the shapes of PSDFs of ground accelerations as obtained by empirical expressions given by

Housner and Jennings (Equation 2.70), Newmark and Rosenblueth (Equation 2.71), Kanai and Tajimi

(Equation 2.73), Clough and Penzien (Equation 2.75).

Solution: Figure 2.47 shows the shapes of the spectrums given by Equations 2.70, 2.71, 2.73 and 2.76.

Note that only the transfer function parts of the equations are compared (that is, all constantmultiplication

terms are removed). It is seen from the figure that Equations 2.73 and 2.75 provide almost identical shapes

except near the zero frequencies. The other two spectra also have almost the same shape.

2.7.6 Predictive Relationships for Modulating Function

Different types of modulating functions have been proposed based on the observations of ground motion

records. The commonly usedmodulating functions are box car type, trapezoidal type, and amodified form

of the trapezoidal type in which the beginning and end portions of the trapezoid are non-linear. A box car

type modulating function is expressed as:

AðtÞ ¼ A0 for 0 � t � T0
¼ 0 for t > T0

ð2:81Þ
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Figure 2.47 Comparison between PSDFs of ground acceleration (obtained by various empirical equations)
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in which A0 is the scaling factor and T0 is the strong motion duration of earthquake. A box car type

modulating function is shown in Figure 2.48.

A trapezoidal modulating function is expressed as:

AðtÞ ¼ A0

t

t1

� �
for 0 � t � t1

¼ A0 for t1 � t � t2

¼ A0

t�t3

t2�t3

� �
for t2 � t � t3

¼ 0 for t 	 t3

ð2:82Þ
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Figure 2.48 Box type modulating function
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Figure 2.49 Modified trapezoidal type modulating function
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in which A0 is the scaling factor and t1, t2, and t3 are the transition times of the modulating function. A

modified form of the trapezoidal type modulating function [29] is shown in Figure 2.49 and is given by

AðtÞ ¼ A0

t

t1

� �2

for 0 < t � t1

A0 for t1 � t � t2

A0e
cðt�t2Þ for t 	 t2

ð2:83Þ

Other forms of modulating functions have been proposed by various researchers.

An exponential type modulating function (Figure 2.50) is given by:

AðtÞ ¼ A0ðe�b1t � e�b2tÞ b2 > b1 ð2:84Þ

in which b2 and b1 control the shape of the modulating function and A0 is the scaling factor. The

parameters b2 and b1 are defined with the help of strong motion duration T0 and e, the fraction of the rise
time. Trifunac and Brady [15] defined the fraction of rise time as:

e ¼ tm

t95
ð2:85Þ

in which tm is the time at which AðtÞ attains the maximum value and t95 is the time at which the energy

content of the modulating function is 95%.

Kubo and Penzien [32] proposed the following modulating function:

A ¼ ate�bt ð2:86Þ

in which the values of a and b are given as 0.453 and 1/6, respectively. Nielsen and Kiremidjien [33] gave

an expression for modulating function as

AðtÞ ¼ btgeat ð2:87Þ
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Figure 2.50 Exponential type modulating function
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in which

a ¼ mdur
s2dur

and g ¼ mdur
s2dur

�1 and b ¼ g
a

� ��g
eg ð2:88Þ

where

mdur¼mean duration of earthquake motion

m2dur ¼ variance of the duration

Spanos and Vargas Loli [34] defined an envelope function of the form

AðtÞ ¼ t2e�at ð2:89Þ
in which a is the decaying coefficient.

2.7.7 Predictive Relationships for Coherence Function

The spatial effect of an earthquake representing the lack of correlation between ground motions at two

points that are spatially separated by a long distance has been investigated by various researchers in the

context of stochastic modeling of earthquake. The analysis of strong motion data recorded at several

stations led to different forms of correlation function to represent the lack of correlation between ground

motions at two points. Veletsos and Prasad [35] proposed a correlation function of the form

rð��r1�r2
��;oÞ ¼ Gð��r1�r2

��;oÞe�iod
c ð2:90Þ

where

d is the projected distance between the two points with position vectors r1 and r2
c is the apparent horizontal velocity of the form Vs/sin a
a is the angle of incidence of wave and Gð r1�r2j;oÞj is given by:

Gð��r1�r2
��;oÞ ¼ eð�eojrj=VSÞ2 ð2:91Þ

in which VS is the shear wave velocity and e is a factor taken between 0 and 0.5.

Harichandran and Vanmarcke [36] developed a correlation function of the form

rðr;oÞ ¼ Aexp
2r

ayðoÞ ð1�Aþ aAÞ
� 	

þð1�AÞexp 2r

yðoÞ ð1�Aþ aAÞ
� 	

ð2:92Þ

in which

yðoÞ ¼ K 1þ o
o0

� �b
" #�1

2

and where A ¼ 0:736, a ¼ 0:147, K ¼ 5210, o0 ¼ 1:09, b ¼ 2:278 are empirical values that can be

adjusted.

Hindy and Novak [37] used the following expression for the cross-correlation function between two

stations as:

rðx1; x2;oÞ ¼ exp �c
ro
2pVS

� �� 	
ð2:93Þ
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where

r ¼ x2�x1jj is the separation between two stations x2 and x1
VS is the shear wave velocity and o is the frequency of ground motion

c is a constant depending on the epicentral distance and inhomogeneity of the medium.

Typically, the value of c may vary between 0.5 and 4.

Loh [38] proposed expressions for the correlation function from the analysis of a SMART-1 array in the

following form:

rðDijÞ ¼ exp �ajDij j

 �

cos2pK0Dij ð2:94Þ
in which Dij is the separation distance; a and K0 are parameters that control the spatial correlation shape

and which depend on the direction of wave propagation, wave type, earthquake location, and magnitude.

Some reported values of a and K0 in the reference [38] are given as a ¼ 2.756; K0 ¼ 4.769. The above

expression is frequency independent and analysis developed for time domain analysis. For frequency

domain analysis, the following was suggested:

rðo; xÞ ¼ exp � a1 þ a2o xjj Þð �½ ð2:95Þ
in which a1 and a2 are constants and x is the separation distance. Banerji [39] introduced a spatial

coherence function in the form of:

rðd;oÞ ¼ exp½�ðao2dÞ0:75� ð2:96Þ
where d is the separation distance,o is the frequency, and a ¼ 5� 105. Abrahamson et al. [40] proposed a

spatial correlation function as:

rðd;oÞ ¼ tanh ða1 þ a2dÞ exp ðb1 þ b2dÞo½ �f gþ 1

3
oc þK

� 	
ð2:97Þ

in which a1 ¼ 2:535, a2 ¼ � 0:0118, b1 ¼ � 0:115, b2 ¼ 0:000837, c ¼ � 0:878, and K ¼ 0:35.
Clough and Penzien [6] suggested a correlation function of the form:

BijðioÞ ¼ exp �ajdij j

 �

exp �io
dij

VsðoÞ
� 	

ð2:98Þ

where

dijis the distance between two points i and j

a is a parameter reflecting the rate of loss of correlation

VsðoÞ is the frequency dependent apparent wave velocity

o is the frequency.

A simpler form of the above equation has also been suggested which considers VsðoÞ to be frequency

independent and the rate of loss of the correlation term is ignored. Thus, BijðioÞis given by:

BijðioÞ ¼ exp �io
dij

VS

� 	
ð2:99Þ

Equation 2.99 is a complex (function) form of Equation 2.93 proposed by Hindy and Novak [37].

Exercise Problems

(Use standard programs like MATLAB, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)
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2.12 Take the Lomaprieta earthquake acceleration record fromweb site www.pear.berkely.edu/scat and

obtain the Fourier amplitude and phase spectra using FFT. Retrieve the time history of acceleration

taking IFFT of the Fourier components. Find the values of the following:

(i) Maximum ordinates of Fourier amplitudes and frequencies of their occurrence before and

after smoothening.

(ii) Maximum phase angle and Nyquist frequency.

(iii) Rms acceleration obtained from the time history and Fourier components.

(iv) Absolute maximum ordinates of original time history and the retrieved one.

2.13 Assuming the above time history of acceleration to be a sample of an ergodic stationary process,

obtain a smoothed PSDF of acceleration. Find the rms and expected peak values of acceleration

from the PSDF and compare them with the rms and absolute peak values of the actual time history

of acceleration.

2.14 Take the San Fernando earthquake acceleration from web site www.peer.berkley.edu/smcat and

obtain the normalized smoothed Fourier spectrum, energy spectrum, and pseudo acceleration

spectrumðx ¼ 0:05Þ. Compare between the maximum values of the ordinates and the correspond-

ing time periods of the three spectra.

2.15 Draw the response spectrum of the earthquake given in Exercise problem, 2.14 in the tripartite plot,

and then idealize it by a series of straight lines. Compare Ta, Tb, Tc, Td , Te, and Tf with those of the

El Centro earthquake.

2.16 Construct design response spectra for the 50th and 84th percentiles on a four way log graph paper

for 5% damping for the hard soil for a site with R¼ 75 km andM¼ 7.5. Use Equations 2.44, 2.49

and 2.57 for finding PHA, PHV, and PHD. Take Ta ¼ 1=33 s;Tb ¼ 1=8 s; Te ¼ 10 s, and Tf ¼ 33 s.

2.17 For a site, the mean annual rate of exceedances of normalized ordinates of acceleration response

spectrum and PGA are given in Table 2.6 and 2.7. Obtain a uniform hazard spectrum that has a 10%

probability of exceedance in 50 years:

Table 2.6 Annual rate of exceedance (ar) of acceleration response spectrum ordinates

T �S

0.05 0.2 0.6 1 1.5 2 2.5 3

0.1 0.4 0.4 0.4 0.3 0.25 0.2 0.15 0.12
0.3 0.3 0.3 0.3 0.26 0.22 0.18 0.11 0.08
0.5 0.22 0.22 0.22 0.19 0.16 0.13 0.09 0.06
0.7 0.1 0.1 0.1 0.07 0.05 0.02 0.008 0.005
0.9 0.05 0.05 0.05 0.03 0.015 0.009 0.007 0.004
1.0 0.01 0.01 0.01 0.007 0.005 0.003 0.001 0.0008
1.2 0.008 0.008 0.008 0.006 0.005 0.004 0.0009 0.0007
1.4 0.005 0.005 0.005 0.004 0.003 0.002 0.0007 0.0005
1.6 0.004 0.004 0.004 0.004 0.003 0.0015 0.0006 0.0004
1.8 0.003 0.003 0.003 0.002 0.002 0.001 0.005 0.0003
2.0 0.0025 0.0025 0.0025 0.0025 0.001 0.0008 0.0004 0.0002

Table 2.7 Annual rate of exceedance (ar) of PGA

PGA 0.01 g 0.05 g 0.1 g 0.15 g 0.2 g 0.3 g 0.4 g 0.45 g

ar 0.45 0.2 0.1 0.05 0.02 0.006 0.002 0.001
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2.18 A site specific acceleration spectrum is to be constructed for a site that has a layer of soft soil over

a rock bed. Past earthquake records on the rock outcrop at some distance away from the site shows

that the pseudo velocity spectrum of the expected earthquake can be fairly represented by

Equation 2.69. The values of the ordinates of the pseudo acceleration spectrum are given in

Figure 2.45. The soft soil deposit has a predominant period of 2 s. The soil condition modifies the

shape of the normalized spectrum at rock level in the following manner.

(i) At the predominant period (T¼ 2 s) ordinate of themodified spectrum is three times that of the

rock bed spectrum.

(ii) At other periods, the ordinates of the modified spectrum are given by Si ¼ Soi � l in which

l � 1:5.
(iii) At T¼ 0, Soð0Þ ¼ Sð0Þ ¼ 1.

If the PGA amplification is 3.0 due to the soft soil deposit, construct the site specific acceleration

response spectrum for MW ¼ 7. Use the attenuation relationship (at the rock bed) proposed by

Esteva (Equation 2.43) for finding PGA with a value of R taken as 100 km.

2.19 Assuming of ¼ 0:1og, xg ¼ xf , og ¼ 10p, and xg ¼ 0:4, obtain an expression for the PSDF of

ground acceleration in terms of M, R, and the filter characteristics using double filter PSDF

(Equation 2.75) and attenuation relationship given by Campbell (Equation 2.44). From this

expression, find the peak values and corresponding frequencies of the PSDF for M¼ 7, R¼ 50

and100 km. If Equations 2.54 and 2.51were used in place ofEquation2.44, find the same expression

in terms of onlyM. Also, find the peak value and the corresponding frequency of thePSDF forM¼ 7.

2.20 A traveling train of seismic wave moves with a shear wave velocity of VS ¼ 150 m s�1. The

direction of wave propagation is at an angle of 20� with the line joining three bridge piers (A, B, C):
AB¼BC¼ 400 m. If the ground acceleration produced by the seismic wave is modeled as a

stationary random process, then find PSDF matrix of ground accelerations in the major principal

direction (assumed as the direction of wave propagation) at the base of the piers (A, B, C) using the

following data:

(i) PSDF of ground acceleration is represented by the expression given by Clough and Penzien

(Equation 2.75) with a PGA¼ 0.4 g.

(ii) Coherence functions to be used are

(a) that given by Hindy and Novak (Equation 2.94)

(b) that given by Clough and Penzien (Equation 2.99)

(c) that given by Harichandran and Vanmarcke (Equation 2.93)

(d) that given by Loh (Equation 2.95)

2.21 A time history of ground motion is artificially generated using the following Fourier series

coefficients for a duration of 20 s.

x€ðtÞ ¼
X16
n¼1

AnCos ðontþjnÞ; on is in rad s�1 and jn is in rad.

A1 ¼ 0:25g ðo1 ¼ 0:85; f1 ¼ 0:1Þ A9 ¼ 0:05g ðf9 ¼ 0:05Þ
A2¼ 0:2g ðf2 ¼ 0:18Þ A10 ¼ 0:2g ðf10 ¼ �0:12Þ
A3¼ 0:1g ðf3 ¼ 0:3Þ A11 ¼ 0:15g ðf11 ¼ �0:05Þ
A4¼ 0:05g ðf4 ¼ 1:25Þ A12 ¼ 0:1g ðf12 ¼ �0:02Þ
A5¼ 0:12g ðf5 ¼ 2Þ A13 ¼ 0:12g ðf13 ¼ 0:12Þ
A6¼ 0:18g ðf6 ¼ 2:6Þ A14 ¼ 0:08g ðf13 ¼ 0:15Þ
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A7 ¼ 0:2g ðf7 ¼ �0:2Þ A15 ¼ 0:04g ðf14 ¼ 0:4Þ
A8 ¼ 0:1g ðf8 ¼ �0:4Þ A16 ¼ 0:02g ðf16 ¼ 0:25Þ

o2–o16 is given by on ¼ no1n¼ 2–16

The generated time history is modulated bymodulating functions given by Equations 2.84, 2.85,

and 2.87. Find the absolute peak and rms values of acceleration and compare them. Also, make a

comparison between the times at which (absolute) peaks occur. Take the maximum value of the

modulating function to be unity. Take c¼ 0.5, t1 ¼ 5 s, t2 ¼ 10 s for Equation 2.84 and

b1 ¼ 0:412,; b2 ¼ 0:8 for Equation 2.85.
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3

Response Analysis for Specified
Ground Motions

3.1 Introduction

Different types of groundmotion inputs for the seismic response analysis of structures are described in the

previous chapter. Depending upon the available input information, methods for seismic response analysis

of structures may be classified under: (i) time history analysis; (ii) response spectrummethod of analysis;

and (iii) frequency domain spectral analysis. While the time history analysis is applicable for both elastic

and inelastic ranges of response, the other two methods are essentially valid within the elastic range.

However, both methods may be extended for the approximate response analysis in the inelastic range by

using suitable techniques. Time history analysis is performed to obtain the response of structures for a

specified time history of excitation using different techniques, such as the Duhamel integration, step-by-

step numerical integration, and the Fourier transform approach. The response spectrum method of

analysis uses response spectra of earthquakes as input and obtains a set of lateral equivalent (static) forces

for the structure, which will provide themaximum effect on it caused by the groundmotions. The internal

forces in the structure are obtained by a static analysis. Frequency domain spectral analysis is performed

when the earthquake ground motion is modeled as a stationary random process. Using the principles of

random vibration analysis, it provides the power spectral density function (PSDF) of any response

quantity of interest for a given PSDF of ground motion as the input. The root mean square response and

expected peak response are obtained from the moments of the PSDF of response. In this chapter, the time

history analysis of structures for a specified time history of ground motion is presented.

3.2 Equation of Motion for a Single Degree of Freedom
(SDOF) System

The equation of motion for the single degree of freedom system can be written in three different forms,

namely: (i) with relative motions of the mass with respect to the support as unknown variables; (ii) with

absolute motions of the mass as unknown variables; and (iii) with state variables as the unknown. Use of

the three different forms of the equation of motion depends upon the available input information, the

response quantity of interest, and the type of analysis performed.
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3.2.1 Equation of Motion in Terms of the Relative Motions of the Mass

The equation of motion of the single degree of freedom system, shown in Figure 3.1, for the support

acceleration defined by x€g can be written as:

mx€þ c _xþ kx ¼ �mx€g ð3:1Þ
in whichm, c, and k are the mass, the damping coefficient of the viscous damper, and the stiffness of the

spring, respectively; x, _x, and x€ are the relative displacement, velocity and acceleration of the mass with

respect to the support, respectively. The equation of motion can be derived using D’Alambert’s principle

and is given in any standard textbook on dynamics. It is evident from Equation 3.1 that only support

acceleration is to be specified as input for finding the relative motions. Furthermore, Equation 3.1 shows

that x€tj j ¼ o2
nxmaxj

�� in which x€t ¼ x€þ x€g and o2
n ¼ k=m, as _x ¼ 0 at x ¼ xmax.

3.2.2 Equation of Motion in Terms of the Absolute Motion of the Mass

The absolute motions can be obtained by adding the support motions to the relative motions, that is,

xt ¼ xþ xg; _xt ¼ _xþ _xg; x€t ¼ x€þ x€g ð3:2Þ
in which xt, _xt, and x€t are the total or absolute motions of the mass. Substituting for x, _x, and x€ in

Equation 3.1 and recognizing that the inertia force depends upon the absolute acceleration, Equation 3.1

can be rewritten as:

mx€t þ c _xt þ kxt ¼ c _xg þ kxg ð3:3Þ
The solution to Equation 3.3 provides the absolute motions of themass directly. The required inputs for

Equation 3.2 are both support displacement and velocity. Note that the expressions for the effective

dynamic force acting on the SDOF systemdue to earthquake excitation are different for the two equations,

that is, Equations 3.1 and 3.3. For the equation of motion written in terms of relative motions, the

equivalent dynamic force is the inertia force produced by the support acceleration only, while that written

in terms of absolute motions, the equivalent dynamic force is the sum of the damping force and spring

force (elastic force) produced by the velocity and displacement of the support, respectively.

3.2.3 Equation of Motion in State Space

Equations 3.1 and 3.2 are the second-order differential equations representing the equation of motion of

the SDOF system subjected to the support motion. These two equations can also be written in the form of

k

c

x

m

gx gx gx
(a)

Rigid beam

Lumped mass
All members are
inextensible

(b)

Figure 3.1 Models for a single degree of freedom (SDOF): (a) spring-mass-dashpot system; and (b) idealized single
frame
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a set of coupled first-order differential equations, known as the equations of motion in the state-space

form. The state-space form of Equation 3.1 is

_X ¼ AXþ f ð3:4aÞ
in which

X ¼
x

_x

( )
; A ¼

0 1

� k

m
� c

m

2
4

3
5; f ¼

0

�x€g

( )
ð3:4bÞ

The state of the system at any instant of time is represented by the vector X. Similarly, the state-space

form of Equation 3.3 is

_X t ¼ AX t þF�f ð3:5aÞ
in which

X t ¼
xt

_xt

( )
; F ¼

0 0

k c

" #
; �f ¼

xg

_xg

( )
ð3:5bÞ

The solution of the equation of motion written in state-space form is useful in many applications such

as, structural control problems, and is better suited for the use of certain computational schemes for

solving the equation of motion. Methods of solution for the three forms of the equations of motion will be

described later.

3.3 Equations of Motion for a Multi-Degrees of Freedom
(MDOF) System

For the extension of the equation of motion of the SDOF system to the multi-degrees of freedom system

(MDOF), the nature of the support motions (excitations) is important. Two types of support excitations

namely, single-support excitation andmulti-support excitations are possible. In the case of single-support

excitation, it is assumed that the ground motion is the same for all supports of the structure so that the

support points move as one rigid base, as shown in Figure 3.2. As a consequence, masses attached to

dynamic degrees of freedom are excited by the same ground motion (acceleration). Examples of such

systems are tall buildings, towers, chimneys, and so on, for which the distances between the supports are

not very large compared with the predominant wave length of the ground motion. In the case of multi-

support excitations, the ground motions or support excitations are different at different support points, as

shown in Figure 3.3. For the same traveling wave of an earthquake, the time histories of ground motion at

two supports could be different if the two supports are spatially separated by a large distance. This is the

case because the travel time of thewave between any two supports is not sufficiently negligible tomake the

assumption that the ground motions are the same at the two supports. Examples of such systems are a big

network of pipelines, underground pipelines, very long tunnels, trans-country pipelines carrying gas, long

dams, and bridges.

3.3.1 Equations of Motion for Single-Support Excitation

For single-support excitation, the same ground acceleration excites all masses. Therefore, the equation of

motion of the MDOF system in the matrix form can be written as:

MX€ t þC _XþKX ¼ 0 ð3:6Þ
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in which M, C, and K are the mass, damping, and stiffness matrices, respectively. If a lumped mass

idealization is made, then the mass matrix is a diagonal matrix;X€ t is the vector of absolute acceleration;
_X and X are, respectively, the vectors of relative displacement and velocity with respect to the supports.

Derivation of the equation of motion is available in any standard textbook on dynamics. For the ith degree

of freedom, the mass associated with it and the corresponding acceleration are mi and x€ti, where x€ti is
given by:

x€ti ¼ x€i þ x€gi ð3:7Þ

x5

x4

x3

x2

1x

gx

Figure 3.2 Multi-degrees of freedom system with single-support excitation

x5

x4

x3

x2

x1

x6

g2x g4xg3xg1x

Figure 3.3 Multi-degrees of freedom system with multi-support excitations
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in which x€i is the relative acceleration of the massmi with respect to the support and x€gi is the component

of ground acceleration in the direction of the ith degree of freedom. For single-component earthquake

excitation, that is, groundmotion applied only in one direction, x€gi ¼ x€g for degrees of freedom that have

the same direction as that of the applied ground motion; and x€gi ¼ 0 for other degrees of freedom. Then,

Equation 3.6 can be written as

MX€ þC _XþKX ¼ �MIX€g ð3:8Þ

in which X€ is the vector of relative acceleration and I is the influence coefficient vector, having 1 for

elements corresponding to degrees of freedom in the direction of the applied ground motion and zero for

the other degrees of freedom.

For the two-component and the three-component groundmotions, I is amatrix of the form, and T stands

for transpose:

IT ¼ 1 0 1 0 � � � � � �
0 1 0 1 � � � � � �
� �

ð3:9aÞ

for the two-component ground motion and

IT ¼
1 0 0 1 0 0 � � � �
0 1 0 0 1 0 � � � �
0 0 1 0 0 1 � � � �

2
664

3
775 ð3:9bÞ

for the three-component ground motion, in which 1 corresponds to degrees of freedom in the direction of

the component of ground motion. Then, X€g in Equation 3.8 is replaced by a vector of the form

X€g ¼ x€g1
x€g2

� �
ð3:10aÞ

for the two-component ground motion and

X€g ¼
x€g1
x€g2
x€g3

8<
:

9=
; ð3:10bÞ

for the three-component ground motion.

Example 3.1

Determine the influence coefficient vectors or matrices for the following structures subjected to ground

excitations as shown in Figure 3.4(a–c). The dynamic degrees of freedom are indicated in the figure.

Solution: For the structures shown in Figure 3.4(a–c), the degrees of freedom and the corresponding

influence coefficient vectors or matrices I are:

I ¼

1

0

1

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

u1

v1

u2

u3

Refer to Figure 3:4a

I ¼
1

1

1

8>><
>>:

9>>=
>>;

u1

u2

u3

Refer to Figure 3:4b
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I ¼

1

0

0

1

0

0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

u1

v1

y1

u2

v2

y2

Case 1; refer to Figure 3:4c

I ¼

1 0

0 1

0 0

1 0

0 1

0 0

2
6666666666664

3
7777777777775

u1

v1

y1

u2

v2

y2

Case 2; refer to Figure 3:4c

Case 1 refers to the single component ground motion acting along the direction of u1
Case 2 refers to the two-component ground motion acting along both u1 and u2 directions.

Example 3.2

The framed structure supporting a rigid slab as shown in Figure 3.5(a and b) can be modeled for dynamic

degrees of freedom in two different ways. For the first model (Figure 3.5a), three independent degrees

of freedom can be selected as u1, u2, and u3. For the secondmodel (Figure 3.5b), three dynamic degrees of

3u

2u

1u

(b)

2u
3u

1v

1u

gx
(a)

gx

2
θ

2v
2u

1
θ

1v

1u

(c)

Figure 3.4 Frame structure: (a) bracket frame; (b) shear building frame; and (c) 3Dmodel of a shear building frame
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freedom are considered at the center of mass (C.M.) of the rigid slab. In the same figure, the center of

resistance (C.R.) is shown. Determine the mass and stiffness matrices for the two models and the

corresponding influence coefficient vectors I. The lateral resistance provided by each column in both

directions are the same and is equal to k. Total mass of the slab ism (uniformly distributed over the area).

The masses of the columns are ignored.

Solution: The derivation of stiffness matrices for the two models follows the standard procedure for the

direct generation of the stiffness matrix of the structure.

3u

2u

1u

Lx
y

C.M.

L

k k

gx (a)

gx

θ

C.M. u
C.R.v

L

k k
(b)

1

1

11
c

c′

b

b ′

a

o

o′

d
d ′

(c)

2
m

2
m

6

mL

1
L

Figure 3.5 A rigid slab supported by three columns: (a) model 1; (b) model 2; and (c) unit acceleration
given to u1
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The mass matrix for model 2 is a diagonal matrix and is obtained by lumping the total mass

corresponding to the translational degrees of freedom and by finding the mass moment of inertia

corresponding to the torsional degree of freedom, y.
The mass matrix for model 1 is generated by applying a unit acceleration to a particular degree of

freedom keeping the other dynamic degrees of freedom locked. The mass inertia coefficients at different

degrees of freedom required to equilibrate the resulting inertia forces developed in themasses are arranged

in the matrix form to generate the mass matrix. For example, generation of the first column of the mass

matrix of model 1 is explained below. Other columns are similarly generated.

The slab abcd is given a unit acceleration consistent with the motion of the degree of freedom u1,

keeping u2 and u3 locked as shown in Figure 3.5c. Because of the rigid body motion, dwill move to d 0 in
a direction perpendicular to ad. Similarly, c and b will move to c0 and b0 in directions perpendicular to ac
and ab, respectively, and the centre o of the slab will move to o0 in a direction perpendicular to ao. Note
that b undergoes no displacement along the direction u2. As omoves to o0, the center of mass of the slab

has a rotational acceleration of 1=L and is displaced in the x and y directions such that the respective

inertia forces at the center ofmass are as shown in the figure.Anopposing rotational force is required in the

form of a couple of forces m=6 and m=6 at b and c, respectively, to equilibrate the rotational

inertia force at the centre. At b, the force is opposite to the direction of u2, while at c it is in the same

direction as u1.

Furthermore, amass inertia coefficient ofm=2 is to be applied at c to cause themotion in the direction of

u1 and to equilibrate the horizontal inertia force at the center of the slab. Similarly, a mass inertia

coefficient ofm=2 is applied at a to equilibrate the vertical inertia force at the center of the slab. Thus, the
total mass inertia coefficient corresponding to u1 is

m

6
þ m

2
¼ 4m

6

For u2, it is�m=6 and for u3, it is m=2. Note that the net vertical and horizontal forces form opposing

couples to hold the slab in rotational equilibrium. The mass matrix, stiffness matrix, and influence

coefficient vectors for the two models are given below.

For model 1

K ¼ k

4 �2 2

�2 3 �2

2 �2 3

2
664

3
775; M ¼ m

6

4 �1 3

�1 4 �3

3 �3 6

2
664

3
775; I ¼

0

0

1

8>><
>>:

9>>=
>>;

For model 2

K ¼ k

3 0 0:5L

0 3 0:5L

0:5L 0:5L 1:5L2

2
664

3
775; M ¼ m

1 0 0

0 1 0

0 0
L

6

2
6664

3
7775; I ¼

0

1

0

8>><
>>:

9>>=
>>;

Note that there is an inertia coupling between the three degrees of freedom for model 1 and therefore,

the mass matrix is not diagonal.

Effective force vectors for the two models are:

Peff ðmodel 1Þ ¼ �m

6

3

�3

6

8>><
>>:

9>>=
>>;
x€g; Peff ðmodel 2Þ ¼ �m

0

1

0

8>><
>>:

9>>=
>>;
x€g

106 Seismic Analysis of Structures



Thus, the mass matrix, the influence coefficient vector, and the effective force vector may be different

for different types of modeling. This is further illustrated by showing another example.

Example 3.3

A pitched roof portal frame has three masses lumped as shown in Figure 3.6(a and b). All members are

inextensible.EIc=L of the columns areK and those of the inclinedmembers are 0.5K (that is,EIb=l). Only
sway degrees of freedom are considered as the dynamic degrees of freedom. Obtain the mass matrix, the

influence coefficient vector, and the effective force vector.

2u

l

m
1u

m

L

L

gx (a)

2

m

3
L

(b)
gx

1u 2u
m

2

m

m

(c)

C

B
m m

D

A E

2

m

Instantaneous center

(d)

α
C

l

B
θ

D

A E

m m

2

m

secθ

Figure 3.6 Inclined portal frame subjected to the same support excitation: (a) model 1; (b) model 2; (c) unit
acceleration given to u1 (model 1); and (d) unit acceleration given to u2 (model 2)
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Solution: As the members are inextensible, there could be only two independent sway degrees of

freedom; the third one is dependent on the other two. Twomodels for choosing independent sway degrees

of freedomare possible, namely,model 1 andmodel 2. They are shown inFigure 3.6(a andb). The stiffness

matrix corresponding to the two independent sway degrees of freedom can be obtained by using the

standard procedure of direct generation of stiffnessmatrix and by condensing out the rotational degrees of

freedom at the three joints B, C, and D.

For model 1, the independent sway degrees of freedom (DOF) are shown in Figure 3.6a. The mass

matrix is generated by applying unit acceleration to one DOF keeping the other two DOF locked, and

finding the inertia forces developed at the two DOF. Generation of the first column of the mass matrix is

described below.

For unit acceleration applied at B, the inertia forces developed at the masses are shown in Figure 3.6c.

Themass inertia coefficients to equilibrate the inertia forces are shown by dotted lines. As the DOF atD is

not an independent DOF, no mass inertia coefficient can be attached to this DOF and, therefore, it is

resolved in two directions, one along DE and the other along DC. Thus,

fDE ¼ �1:20m fDC ¼ �0:67m

AtC, themass inertia coefficientm=2 and fDE are resolved in two directions, one alongCB and the other

in the vertical direction corresponding to the DOF, u2. Thus,

fCB ¼ �1:803m fu2 ¼ 1:67m

Finally at B, the inertia coefficientm and fCB are resolved in the two directions, one along BA and the

other in the horizontal direction corresponding to the DOF, u1. Thus,

fBA ¼ �m fu1 ¼ 2:5m

Hence, the net inertia coefficients m11 ¼ 2:5m and m21 ¼ 1:67m.

In a similar way, the second column of the mass matrix can be generated by giving unit acceleration to

the DOF u2. To determine the motion of the masses at the DOF, the rigid body rotation of the shaded area

about the instantaneous center of rotation may be considered as that shown in Figure 3.6d. The final mass

matrix is obtained by arranging the mass inertia coefficients corresponding to the independent DOF The

resulting mass matrix is obtained as:

M ¼
2:5 1:67

1:67 2:5

" #
m I ¼

1

0

( )

For model 2, the independent DOF are shown in Figure 3.6b. The mass matrix corresponding to these

DOF are obtained as:

M ¼
1:406 �0:156

�0:156 1:406

" #
m I ¼

1

1

( )

It is seen that the mass matrix provides the effective load vector as:

Peff ¼ �m
1:25

1:25

( )
x€g

When the two supports have the same excitation, the frame will have only one sway displacement

because of the inextensibility condition of the members. The effective force will then be �2:5mx€g.
Using the method of virtual work, the mass matrices can also be generated for the problems in

Examples 3.2 and 3.3. In Appendix 3.A, the method is applied for the problems in Examples 3.2 and 3.3.

Also, applying the same method the stiffness matrix for Example 3.3 is derived.
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3.3.2 Equations of Motion for Multi-Support Excitation

For multi-support excitation, the excitations at the various supports are different. In matrix form, the

equations of motion for the MDOF system with multi-support excitation can be written as:

Mss Msg

Mgs Mgg

" #
X€

t

X€g

( )
þ

Css Csg

Cgs Cgg

" #
_X t

_Xg

( )
þ

Kss Ksg

Kgs Kgg

" #
X t

Xg

( )
¼

0

Pg

( )
ð3:11Þ

where

Mss is the mass matrix corresponding to non-support degrees of freedom

Mgg is the mass matrix corresponding to the support degrees of freedom

Msg andMgs are the coupling mass matrices that express the inertia forces in the non-support degrees of

freedom of the structure due to the motions of the supports (inertia coupling)

Terms of damping and stiffness matrices are defined in similar ways

X t is the vector of total displacements corresponding to non-support degrees of freedom

Xg is the vector of input ground displacements at the supports; a dot denotes the time derivatives

Pg denotes forces generated at the support degrees of freedom.

For anMDOF systemwith single-support excitation, the total displacement of the non-support degrees

of freedom is obtained by simply adding the input support motion to the relative displacements of the

structures with respect to the support. For multi-support excitation, the support motions at any instant of

time are different for the various supports and, therefore, the total displacements of the non-support

degrees of freedom (NSDF) are equal to the sum of the relative displacements of the structurewith respect

to the supports and the displacements produced at NSDF due to quasi-static motions of the supports.

The latter are obtained by a quasi-static analysis of the structure for the support motions.

Therefore, the displacement X t is given as

X t ¼ Xþ rXg ð3:12Þ
where

r is an influence coefficient matrix of size n�m

n is the number of non-support degrees of freedom

m is the number of input support motions.

As the responses of NSDF are of interest, the first set of equations obtained from Equation 3.11 are

considered for the analysis, that is,

MssX€
t þMsgX€g þCss

_X t þCsg
_Xg þKssX

t þKsgXg ¼ 0 ð3:13Þ
or

MssX€
t þCss

_X t þKssX
t ¼ �MsgX€g�Csg

_Xg�KsgXg ð3:14Þ

Equation 3.14 is in terms of total displacements of NSDF with inputs as the support displacements,

velocities, and accelerations. If the effects ofmass and damping couplings are ignored, then Equation 3.14

takes the form

MssX€
t þCss

_X t þKssX
t ¼ �KsgXg ð3:15Þ

AsKsg can be determined, the right-hand side of the equation is known and Equation 3.15 can be solved

to obtain the total displacements.
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An equation of motion can also be written in terms of relative displacements of the structure by

substituting Equation 3.12 into Equation 3.14 leading to:

Mss X€ þCss
_XþKssX ¼ �ðMsg þ rMssÞX€g�ðCsg þ rCssÞ _Xg�ðKsg þ rKssÞXg ð3:16Þ

To find the quasi-static displacement Xs produced due to the support displacementXg, the quasi-static

equation of equilibrium can be written as:

KssXs þKsgXg ¼ 0 ð3:17Þ
The solution for Xs gives

Xs ¼ �K�1
ss KsgXg ¼ rXg ð3:18aÞ

Substituting Equation 3.18a into Equation 3.17, it is seen that

rKss þKsg ¼ 0 ð3:18bÞ
From Equation 3.18a, it is seen that the rmatrix can be obtained by knowing Kss and Ksg. It is evident

from Equation 3.18b that the last term of Equation 3.16 is zero. Furthermore, Msg denoting the inertia

coupling is generally neglected for most structures. The contribution of the damping term ðCsg þ rCssÞ _xg
for any rational damping to the response is found to be small and can be ignored [1]. With these two

assumptions, Equation 3.16 takes the form

Mss X€ þCss
_XþKssX ¼ �rMssX€g ð3:19Þ

Comparing Equations 3.19 and 3.8, it is seen that the forms of the two equations ofmotion are the same.

The coefficient vector or matrix I in Equation 3.8 can be obtained straight away without performing

any analysis of the structure, whereas the coefficient matrix r in Equation 3.19 is obtained from a static

analysis of the structure for relative support movements.

To solve Equation 3.19, the inputs are the time histories of ground accelerations to be applied at the

supports. The solution of the equation of motion provides the responses of the non-support degrees of

freedom relative to the support. In order to obtain the total (absolute) responses at the non-support degrees

of freedom, Equation 3.12 is used. The internal forces in the member are obtained using the absolute

responses (not the relative responses). Generation of themassmatrix formulti-support excitation remains

the same as that for single-support excitation. Some example problems are shownbelow for the generation

of the r matrix.

Example 3.4

Find the r matrices for the two frames shown in Figures 3.7 and 3.8. All members are inextensible.

EI (flexural rigidity) values are the same for all the members.

Solution: For the two-bay frame shown in Figure 3.7

Kss ¼
3 �3

�3 9

" #
k Ksg ¼

0 0 0

�2k �2k �2k

" #
Kgg ¼

2k 0 0

0 2k 0

0 0 2k

2
664

3
775

r ¼ �Kss
�1Ksg ¼ � 1

k

1

2

1

6

1

6

1

6

2
664

3
775

0 0 0

�2k �2k �2k

" #
¼ 1

3

1 1 1

1 1 1

" #
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For the inclined leg portal frame, shown in Figure 3.8, the stiffness matrix is written in the partitioned

form with r as rotational degrees of freedom and u as translational degrees of freedom as:

Krr ¼ EI

3:6

38:4 12 0

12 48 12

0 12 38:4

2
64

3
75 Kru ¼ EI

L2

�6 �20 6 0

0 0 0 0

�6 12 6 6

2
64

3
75

The derivation of the elements of the matrices Krr, Kru, and Kuu are given in Appendix 3.A

Kuu ¼ EI

L3

24 16 �12 �12

16 181 0 �16

�12 0 12 0

�12 �16 0 12

2
66664

3
77775 Krr

�1 ¼ L

EI

0:104 �0:028 �0:801

�0:028 0:266 �0:028

�0:801 �0:028 9:456

2
64

3
75

Kuu ¼ ½Kuu�KurK
�1
rr Kru�

Kuu ¼ EI

L3

24 16 �12 �12

16 181 0 �16

�12 0 12 0

�12 �16 0 12

2
66664

3
77775�

EI

L3

4:44 5:51 �4:05 �4

5:51 52 �11:84 6:33

�4:05 �11:84 3:74 0:36

�4 6:33 0:36 3:69

2
66664

3
77775

Kuu is partitioned with respect to non-support (s) and support (g) DOF. Thus,

Kus ¼ EI

L3

19:56 10:49

10:49 129

" #
Kusg ¼ EI

L3

�8 �8

11:84 �22:3

" #

r ¼ �Kus
�1

Kusg ¼
0:0034 �0:0043

�0:0043 0:0081

" #
�8 �8

11:84 �22:31

" #
¼ 0:479 0:331

�0:131 0:146

" #

Example 3.5

A simplified model of a cable stayed bridge is shown in Figure 3.9. Obtain the rmatrix corresponding to

the translational DOF 1, 2, and 3. Assume the towers to be inextensible. Properties of the members are

m

k k k

i

j

1u

2u

5u

2k2k2k

3u
4u

2m

g1x g2x g3x

Figure 3.7 Multi-bay portal frame subjected to different support excitations
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(1)

(2)

(3) 3L

D

(5)

C

(4)
B

A E

L
(6) (7)

(a)

1

C

(c)

1

D

(d)

1

A

(e)

E

1
(f )

1

B

(b)

Figure 3.8 Different support excitations: (a) kinematic DOF; (b) unit rotation given at B; (c) unit rotation given atC;
(d) unit rotation given at D; (e) unit displacement given at A; and (f) unit displacement given at E
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given below. Geometric non-linearity of the pre-tensioned cable members are ignored in obtaining the

stiffness matrix. Furthermore, there is no moment transfer between the deck and the pier, but the deck is

vertically supported by the towers.

Solution: To solve the problem, the following values are assumed.

EIt ¼ 1:25EId ¼ 1:25EI

AE

480

� �
deck

¼ 0:8
AE

L1

� �
cable

cos y ¼ 12

13
sin y ¼ 5

13

AE

l1
¼ 12EI

ð120Þ3

3EI

ð80Þ3 ¼
120m

80

12EI

ð120Þ3 ¼ 400m

With the above assumed values, the stiffness coefficients are calculated as

K11 ¼ 3:75EI

ð80Þ3 þ 2AE

l1
cos2y ¼ 1:875mþ 800mcos2y

K21 ¼ 0; K31 ¼ �AE

l1
cosy siny;

K41 ¼ �AE

l1
cos2y; K51 ¼ � 3:75EI

ð80Þ3

K61 ¼ K71 ¼ K81 ¼ K91 ¼ K101 ¼ 0

K22 ¼ K11; K32 ¼ �K31; K42 ¼ K52 ¼ 0;

K62 ¼ K51; K72 ¼ K41; K82 ¼ K92 ¼ K102 ¼ 0

K33 ¼ 24EI

ð120Þ3 þ 2AE

L1
sin2y ¼ 800mð1þ sin2yÞ;

K43 ¼ K53 ¼ K63 ¼ K73 ¼ 0

60 m

(3)

Cables
1l

20 m
(1)

(9)

240 m

20 m
(2)

(10)

3

(6)120 m

(7)

4

50 m

30 m

(5)

2

(8)

120 m

(4)

1gx
gx gx

gx

Figure 3.9 Simplified model of a cable stayed bridge
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K83 ¼ � 6EI

L2
¼ �24 000m; K93 ¼ 0; K103 ¼ 24 000m

K44 ¼ AE

480

� �
deck

¼ 320m; K74 ¼ �320m

K54 ¼ K64 ¼ K84 ¼ K94 ¼ K104 ¼ 0

K55 ¼ 3:75EI

ð80Þ3 ; K65 ¼ K75 ¼ K85 ¼ K95 ¼ K105 ¼ 0

K66 ¼ 3:75EI

ð80Þ3 ; K76 ¼ K86 ¼ K96 ¼ K106 ¼ 0

K77 ¼ 320m; K87 ¼ K97 ¼ K107 ¼ 0

K88 ¼ 7EI

120
¼ 7

12
� 400m� ð120Þ2; K98 ¼ 2

7
K88; K108 ¼ 0

K99 ¼ 8EI

120
¼ 8

7
K88; K109 ¼ 2

7
K88; K1010 ¼ K88

The resulting partitioned matrices for rotational and translational degrees of freedom are:

Kyy ¼ m

336 96 0

96 384 96

0 96 336

2
64

3
75� 104

KDD ¼ m

0:684

0 0:684 sym

�0:149 0:149 0:918

�0:342 0 0 0:32

�0:002 0 0 0 0:002

0 �0:002 0 0 0 0:002

0 �0:342 0 �0:32 0 0 0:32

2
666666666664

3
777777777775

� 103

KyD ¼ m

0 0 �2:4 0 0 0 0

0 0 0 0 0 0 0

0 0 2:4 0 0 0 0

2
64

3
75� 104

KDD ¼ KDD�KDyK
�1
yy KyD

KDD ¼ m

684 0 �149 �342 �2 0 0

0 684 149 0 0 �2 �342

�149 149 575 0 0 0 0

�342 0 0 320 0 0 �320

�2 0 0 0 2 0 0

0 �2 0 0 0 2 0

0 �342 0 �320 0 0 320

2
666666666664

3
777777777775
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Thefirst 3� 3 sub-matrix isKss and corresponds to non-support degrees of freedom.The last 4� 4 sub-

matrix is Kgg and corresponds to support degrees of freedom.

r ¼ �K�1
ss Ksg ¼

5:318 0:031 �0:002 �0:318

�0:318 �0:002 0:031 5:318

1:416 0:008 �0:008 �1:460

2
64

3
75� 10�1

3.3.3 Equations of Motion in State Space

Equations ofmotion in state space can bewritten by extendingEquations 3.4 and 3.5 for anMDOF system.

The state-space forms of Equations 3.19 and 3.15 are given by

_Z ¼ AZþ f ð3:20Þ
in which

Z ¼ x

_x

� �
; f ¼ 0

�rx€g

� �
; A ¼ 0 I

�KssM
�1
ss �CssM

�1
ss

� �
ð3:21Þ

and

_Z
t ¼ AZ t þ �f ð3:22Þ

in which

Z t ¼ xt

_xt

� �
; �f ¼ 0

�M�1
ss Ksgxg

� �
ð3:23Þ

Example 3.6

Write the equations ofmotion for the frame (Figure 3.7) of the problem inExample 3.4 in state space using

both relative and absolute motions of the structure.

Relativemotions of the structure:The solution of the eigenvalues for the problem in Example 3.4 gives

o2
1 ¼ 1:9

k

m
; o2

2 ¼ 19:1
k

m
.

Assuming 5% damping in each mode, a ¼ 0:105

ffiffiffiffi
k

m

r
; b ¼ 0:017

ffiffiffiffi
m

k

r

�KssM
�1
ss ¼ � 3 �3

�3 9

" #
1 0

0 0:5

" #
k

m
¼ � 3 �1:5

�3 4:5

" #
k

m

Css ¼ a
1 0

0 2

" #
mþ b

3 �3

�3 9

" #
k ¼ 0:156 �0:051

�0:051 0:205

" # ffiffiffiffiffiffiffi
km

p

A ¼
0 0 1 0

0 0 0 1

�3r2 1:5r2 �0:156r 0:026r
3r2 �4:5r2 0:051r �0:182r

2
6664

3
7775

r ¼
ffiffiffiffi
k

m

r
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f ¼

0

0

�0:33ðx€g1 þ x€g2 þ x€g3Þ
�0:33ðx€g1 þ x€g2 þ x€g3Þ

8>>><
>>>:

9>>>=
>>>;

For x€g1 ¼ x€g2 ¼ x€g3 ¼ x€g

f ¼
0

0

�x€g

�x€g

8>>><
>>>:

9>>>=
>>>;

Absolute motion of the structure:Matrix A remains the same. TakingKsg from Example 3.4 and using

Equation 3.23:

f ¼

0

0

0

ðxg1 þ xg2 þ xg3Þr2

8>>><
>>>:

9>>>=
>>>;

3.4 Response Analysis for Single Degree of Freedom (SDOF) System

The responses of a single degree of freedom for specified time histories of ground motions can be

obtained by:

a. Integration of the equation of motion in the time domain (time history analysis).

b. Fourier synthesis of the time histories of ground motion and the solution of the equation of motion in

frequency domain (Fourier method of analysis).

The first method is called the time domain analysis of structures under earthquake excitation. Themethod

of analysis can provide responses for both linear and non-linear structures. In particular, the method is

adopted for finding the seismic response of structures in the inelastic range. In this method, numerical

techniques (timemarching schemes) for the integration of the equation ofmotion are employed for finding

the responses at discrete time intervals. For linear systems, two such schemes are presented here namely,

the Duhamel integration and the Newmark integration schemes. Both numerical integration schemes are

popular in earthquake engineering. There are many other time marching integration schemes, such as

theWilson y-method, Houbolt’s method, Adam’s integration scheme, Alpha method, and Argary’s large

time step integration schemes [2, 3]. Using the SIMULINK toolbox ofMATLAB�, numerical integration

of the equation of motion can also be performed (Appendix 3.D).

The second method is called the frequency domain analysis for earthquake excitation. It requires the

knowledge of the complex frequency response function of the system. The method is not strictly

applicable for short duration excitations such as earthquake induced forces. This is the case because it

cannot account for the transient (homogeneous) part of the response produced due to the initial conditions,

which may significantly change the rms and peak values of the response. However, under certain

conditions, such as the period of the structure being small compared with the predominant period of

excitations, themethod is found to give good estimates of the rms and peak values of the responses. It may

be noted that the time histories of responses obtained by the time domain and frequency domain of

analyses are different in time, but the rms and peak responses obtained by the two may compare well.

Frequencydomain analysis for irregular excitations, such as earthquakes, is also called the Fouriermethod
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of analysis as it uses Fourier series analysis or discrete Fourier transform (DFT). The frequency domain

analysis or the Fourier method of analysis is not applicable for non-linear systems.

3.4.1 Time Domain Analysis using the Duhamel Integral

In this method, the excitation force produced by the earthquake is treated as a series of impulses of short

durationDt as shown in Figure 3.10. To derive themethod, the homogeneous solutions of a damped single

degree of freedom (SDOF) given by Equation 3.1 are considered. The displacement and velocity

responses of the SDOF are given in any standard textbook on dynamics and are given by:

xðtÞ ¼ e�xontðC0
1 cosodtþC0

2 sinodtÞ ð3:24Þ
_xðtÞ ¼ e�xont½ð�xonC

0
1 þC0

2odÞ cosodtþð�odC
0
1�xonC

0
2Þ sin odt� ð3:25Þ

where

x is the percentage critical damping and is given as x ¼ c

2mon

od is the damped natural frequency od ¼ on

ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 �
on is the natural frequency

C0
1 and C0

2 are integration constants.

For the initial conditions defined as xð0Þ ¼ 0 and _xð0Þ ¼ _x0, C
0
1 and C0

2 are evaluated as:

C0
1 ¼ x0; C0

2 ¼
xonx0 þ _x0

od

ð3:26Þ

and xðtÞ and _xðtÞ are given by

xðtÞ ¼ e�xont x0 cosodtþ xonx0 þ _x0
od

� �
sinodt

� �
ð3:27Þ

_xðtÞ ¼ e�xont _x0 cosodt� onx0 þ x _x0ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !

sinodt

" #
ð3:28Þ

gx

τ
dτ

t τ−

Figure 3.10 Idealization of earthquake excitation as a sum of a series of impulses
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For initial conditions of zero displacement and finite velocity _x0, the expressions simplify to

xðtÞ ¼ e�xont
_x0
od

sinodt ð3:29Þ

_xðtÞ ¼ e�xont _x0 cosodt� xffiffiffiffiffiffiffiffiffiffiffi
1�x2

p _x0 sinodt

" #
ð3:30Þ

For a very small damping ratio x, such as 0.02 for steel and 0.05 for concrete,od � on and
ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
� 1,

and the expressions could be further simplified to

xðtÞ ¼ e�xont
_x0 sinont

on

ð3:31Þ

_xðtÞ ¼ e�xont _x0½cosont�x sinont� ð3:32Þ
The ratio between velocity and displacement at any instant of time t is nearly equal to

rðtÞ ¼ _xðtÞ
xðtÞ � on cotont ð3:33Þ

Referring to Figure 3.1, the external force produced due to ground acceleration for an SDOF system

represented by Equation 3.1 isFðtÞ ¼ �mx€g. Let the response of the system at time tk be known, then the

intent is to obtain the response at time tkþ1. The time increment between tkþ1 and tk is

Dt ¼ tkþ1�tk ð3:34Þ
For a time increment t less than Dt between tkþ1 and tk, the excitation is given by:

F tð Þ ¼ Fk þ Fkþ1�Fk

Dt

� �
t ð3:35Þ

The response at time tkþ1 is the sum of the following responses:

(i) Responses due to damped free oscillation of the SDOF for initial conditions as xð0Þ ¼ xk and

_xð0Þ ¼ _xk.
(ii) Responses due to constant excitation Fk between time tk and tkþ1.

(iii) Responses due to the triangular variation part of the excitation given by FðtÞ between tk and tkþ1.

Therefore, the responses at tkþ1 depend uponxk, _xk,Fk, andFkþ1. As a result, the responses at tkþ1 may be

written in the following form:

xkþ1 ¼ C1xk þC2 _xk þC3Fk þC4Fkþ1 ð3:36Þ
_xkþ1 ¼ D1xk þD2 _xk þD3Fk þD4Fkþ1 ð3:37Þ
x€kþ1 ¼ �x€gkþ 1�2xon _xkþ 1�o2

nxkþ1 ð3:38Þ
C1, C2, D3, and so on are obtained from the solutions obtained from (i), (ii) and (iii) as stated above.

Solutions for (i) are given by Equations 3.27 and 3.28 after replacing x0 and _x0 with xk and _xk,
respectively. Solutions to (ii) and (iii) are given inAppendix 3.B. Adding up these solutions and collecting

the terms corresponding to xk, _xk,Fk, andFkþ 1 for the expressions of xkþ 1 and _xkþ 1, the expressions for

C1, C2 and so on, are given as:

C1 ¼ e�xonDt cosodDtþ xffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !

sinodDt

" #
ð3:39aÞ

118 Seismic Analysis of Structures



C2 ¼ e�xonDt 1

od

� �
sinodDt

� �
ð3:39bÞ

C3 ¼ 1

k

2x
onDt

� �
þ e�xonDt � 1þ 2x

onDt

� �
cosodDtþ 1�2x2

odDt
� xffiffiffiffiffiffiffiffiffiffiffi

1�x2
p

 !
sinodDt

" #( )

ð3:40Þ

C4 ¼ 1

k
1� 2x

onDt

� �
þ e�xonDt 2x

onDt

� �
cosodDtþ 2x2�1

odDt

� �
sinodDt

� �� �
ð3:41Þ

D1 ¼ e�xonDt � onffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !

sinodDt

" #
ð3:42Þ

D2 ¼ e�xonDt cosodDt� xffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !

sinodDt

" #
ð3:43Þ

D3 ¼ 1

k
� 1

Dt

� �
þ e�xonDt 1

Dt

� �
cosodDtþ onffiffiffiffiffiffiffiffiffiffiffi

1�x2
p þ x

Dt
ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
 !

sinodDt

" #( )
ð3:44Þ

D4 ¼ 1

kDt
1�e�xonDt cosodDtþ xffiffiffiffiffiffiffiffiffiffiffi

1�x2
p
 !

sinodDt

" #( )
ð3:45Þ

As Fk ¼ mx€k þ c _xk þ kxk, then xkþ 1 and _xkþ 1 may be written in the form

xkþ 1 ¼ C1xk þC2 _xk þC3ðmx€k þ c _xk þ kxkÞþC4Fkþ1

¼ ðC1 þ kC3Þxk þðC2 þ cC3Þ _xk þmC3x€k þC4Fkþ1 ð3:46Þ

_xkþ 1 ¼ D1xk þD2 _xk þD3ðmx€k þ c _xk þ kxkÞþD4Fkþ1

¼ ðD1 þ kD3Þxk þðD2 þ cD3Þ _xk þmD3x€k þD4Fkþ1 ð3:47Þ
Substituting the expressions for _xkþ 1 and xkþ 1 given by Equations 3.46 and 3.47 in Equation 3.38

results in

x€kþ1 ¼ Fkþ1

m
� 2xon ðD1 þ kD3Þxk þðD2 þ cD3Þ _xk þmD3x€k þD4Fkþ1½ �

�o2
n½ðC1 þ kC3Þxk þðC2 þ cC3Þ _xk þmC3x€k þC4Fkþ1�

ð3:48Þ

Now, arranging Equations 3.46–3.48 in matrix form, the displacement, velocity, and acceleration at

time tkþ 1 can be related to those of time tk by a recursive relationship:

qkþ 1 ¼ Aqk þHFkþ1 ð3:49Þ
where

qi ¼
xi

_xi

x€i

8>><
>>:

9>>=
>>;
; H ¼

C4

D4

1

m
�2xonD4�o2

nC4

8>>><
>>>:

9>>>=
>>>;

ð3:50Þ
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and

A ¼

fC1 þ kC3g fC2 þ cC3g mC3

fD1 þ kD3g D2 þ cD3 mD3

�o2
nðC1 þ kC3Þ

�2xonðD1 þ kD3Þ

( ) �o2
nðC2 þ cC3Þ

�2xonðD2 þ cD3Þ

( ) �mC3

�2xonmD3

( )

2
6666664

3
7777775

ð3:51Þ

3.4.2 Time Domain Analysis using Newmark’s b-Method

The secondmethod uses a step-by-step numerical integration scheme using Newmark’s b-method. In this

method, the equation of motion at the kþ 1th time is solved using the known displacement, velocity, and

acceleration at time k and the excitation Fkþ1 at kþ 1th time. For this, the following relationships are

used:

_xkþ1 ¼ _xk þð1�dÞx€kDtþ x€kþ1dDt ð3:52Þ

xkþ1 ¼ xk þ _xkDtþ 1

2
�b

� �
ðDtÞ2x€k þ bðDtÞ2x€kþ1 ð3:53Þ

These two relationships are derived by obtaining a general form of the solutions to

_xðtÞ ¼ _xðt0Þþ
ðt

t0

x€ðsÞds ð3:54Þ

or

_xkþ1 ¼ _xk þ
ðtkþ1

tk

x€SðdsÞ ð3:55Þ

and

xðtÞ ¼ xðt0Þþ
ðt

t0

_xðsÞds ð3:56Þ

or

xkþ1 ¼ xk þ
ðtkþ1

tk

_xðsÞds ð3:57Þ

with

Dt ¼ tkþ1�tk and _xðsÞ ¼ _xk þ ~x€ðs�tkÞ ð3:58Þ
in which ~x€ðs�tkÞ could be constant acceleration, average acceleration, linear acceleration or a general

form of linear acceleration over the time intervalDt. A linear variation of acceleration means that a cubic

variation of displacement over the time interval Dt is assumed. The difference between various types of

integration algorithms essentially lies in the assumption of the order of variation of displacement over the

time interval.
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Substituting Equations 3.52 and 3.53 into the equation of motion

_xkþ1 þ 2xon½ _xk þð1�dÞx€kDtþ x€kþ1dDt�

þo2
n xk þ _xkDtþ 1

2
�b

� �
ðDtÞ2x€k þ bðDtÞ2x€kþ1

� �
¼ Fkþ1

m

ð3:59Þ

Rearrangement of terms in Equation 3.59 gives

ð1þ 2xondDtþo2
nbðDtÞ2Þx€kþ1 ¼ �o2

nxk�½2xon þo2
nDt� _xk

� 2xonð1�dÞDtþo2
n

1

2
�b

� �
ðDtÞ2

� �
x€k þ Fkþ1

m

ð3:60Þ

Solving for x€kþ1,

x€kþ1 ¼ � o2
n

a

� �
xk� 2xon þo2

nDt
a

� �
_xk� g

a


 �
x€k þ 1

ma

� �
Fkþ1 ð3:61Þ

in which,

a ¼ 1þ 2xondDtþo2
nbðDtÞ2 ð3:62Þ

g ¼ 2xonð1�dÞDtþo2
n

1

2
�b

� �
ðDtÞ2 ð3:63Þ

Substituting x€kþ 1 into Equations 3.52 and 3.53, xkþ 1 and _xkþ 1 are given by

_xkþ 1 ¼ � o2
ndDt
a

� �
xk þ a�2xondDt�o2

ndðDtÞ2
a

 !
_xk

þ aDt�dðaþ gÞDt
a

� �
x€k þ dDt

ma

� �
Fkþ1

ð3:64Þ

xkþ 1 ¼ � a�o2
nbðDtÞ2
a

 !
xk þ aDt�2xonbðDtÞ2�o2

nbðDtÞ2
a

 !
_xk

þ
1

2
aðDtÞ2�bðaþ gÞðDtÞ2

a

0
B@

1
CAx€k þ bðDtÞ2

ma

 !
Fkþ1

ð3:65Þ

Arranging Equations 3.61, 3.64 and 3.65 in matrix form, a recursive relationship can be obtained as

before:

qkþ 1 ¼ FNqk þHNFkþ1 ð3:66Þ
in which

qi ¼
xi
_xi
x€i

8<
:

9=
;; HN ¼ 1

ma

� � bðDtÞ2
dDt
1

8<
:

9=
; ð3:67Þ

FN ¼ 1

a

a�o2
naðDtÞ2 Dt�2xonbðDtÞ2�o2

nbðDtÞ3
1

2
aðDtÞ2�bðaþ gÞðDtÞ2

�o2
ndDt a�2xondDt�o2

ndðDtÞ2 aDt�dðaþ gÞDt
�o2

n �2xon�o2
nDt �g

2
6664

3
7775 ð3:68Þ

For constant average acceleration between two time stations, the values of d ¼ 1=2 and b ¼ 1=4.
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3.4.3 Time Domain Analysis in State Space

The state-space equation for the SDOF system for earthquake excitation can be written as:

_Z ¼ AZþ fg ð3:69Þ
in which

A ¼
0 1

� k

m
� c

m

2
4

3
5; fg ¼

0

�x€g

( )
; Z ¼

x

_x

( )
ð3:70Þ

The solution to Equation 3.69 may be written in the standard form as:

ZðtÞ ¼ eAðt�t0ÞZðt0Þþ eAt
ðt

t0

e�AsfgðsÞds ð3:71Þ

in which t0 is the initial time.

To obtain a step-by-step solution, tkþ 1 ¼ t, tk ¼ t0, and Dt ¼ tkþ 1�tk are assumed. Then,

Zkþ1 ¼ eADtZk þ eAtkþ 1

ðtkþ 1

tk

e�AsfgðsÞ ds ð3:72Þ

The integration is performed numerically for the given digitized accelerations. This integrationmay be

performed numerically in two ways leading to the following two expressions for Zkþ1 [4].

Zkþ1 ¼ eADtZk þDteADtfgk ð3:73Þ

Zkþ1 ¼ eADtZk þA�1ðeADt�IÞfgk ð3:74Þ
The first one assumes that the forcing function is a series of delta functions within the time interval Dt.

The second one assumes constant forcing function within the time interval. As Equation 3.74 involves an

inversion procedure, Equation 3.73 is preferred to determine Zkþ1. Once Zkþ1 is obtained, the

displacement and velocity at time step kþ 1 are known. They are used directly in the second-order

equation of motion to obtain the acceleration at the time step kþ 1. To start the integration, the initial

values ofZk are to be defined or specified. In the above equations, computation of eAt is accomplished by

the standard procedure of finding the eigen values and eigen vectors of A. It can easily be shown that eAt

may be determined by

eAt ¼ fe
�k tf�1 ð3:75Þ

inwhichf is the eigenmatrix ofA and e
�l t is a diagonalmatrix havingdiagonal elements as eli t, inwhich li

is the ith eigen value.

3.4.4 Frequency Domain Analysis Using Fourier Transform

The frequencydomain analysis, which is not strictly valid for earthquake excitations, can be used to obtain

a good estimate of the rms and peak response of the SDOF system as mentioned before. To obtain the

response, the irregular time history of ground motion is decomposed into its frequency components

(harmonic components) and the SDOF is analyzed for each harmonic component. Responses obtained for

each harmonic component are superimposed to obtain the final response. For this purpose, a pair of

Fourier integrals is used. The pair of Fourier integrals for the arbitrary time history of ground acceleration
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may be written as:

x€gðioÞ ¼ 1

2p

ða

�a

x€gðtÞe�iotdt ð3:76Þ

x€gðtÞ ¼
ða

�a

x€gðioÞeiotdo ð3:77Þ

The first integral gives the frequency components of the time history of ground acceleration in complex

form, while the second integral retrieves back the time history from the complex frequency components.

For practical applications, the time history is of finite duration (T) and, therefore, discrete forms of the

Fourier transforms as given below are used with the finite duration of the time history [5].

x€gk ¼ 1

N

XN�1

r¼0

x€gre
�ið2pkr=NÞ ð3:78Þ

x€gr ¼
XN�1

k¼0

x€gke
�ið2pkr=NÞ ð3:79Þ

in which N is the discrete number of values of x€gðtÞ sampled at a Dt time interval, termed

x€gr ðr ¼ 1 . . .NÞ; x€gk ðk ¼ 1 . . .NÞ are the discrete values of complex quantities denoting amplitude

and phase of the kth harmonic sampled at a Do frequency interval; T ¼ ðN�1ÞDt, T being the finite

duration of the acceleration time history.

The computation of the pair of Fourier transforms using a discrete Fourier transform technique has been

coded effectively and is popularly known as fast Fourier transform (FFT) and inverse fast Fourier

transform (IFFT). FFT performs the first integral and IFFT performs the second one. Sampled values of

the time history (having N discrete ordinates) are given as input to FFT. The output provides N discrete

values of complex numbers, out of whichN=2 values are complex conjugates of the otherN=2 values. The
sampling interval ðDoÞ of the output is 2p=T , where T is the duration of the time history. Harmonic

components of the time history start with frequency ðoi ¼ 0Þ tooi ¼ N=2ð Þ�1½ �Do at an interval ofDo.
If aj þ bj is the value of the jth complex quantity for the frequencyoj, the amplitude, frequency, and phase

angle of the jth harmonic are ða2j þ b2j Þ2,oj , and yj ¼ tan�1 bj=aj
� 

. Note that if the input time history is to

be retrieved, then N complex numbers including the complex conjugates are to be given as inputs to the

IFFT (Equation 3.79).

If hjðioÞ is the complex frequency response function of the SDOF at frequency oj, then the response

due to jth frequency component of the excitation is:

xjðtÞ ¼ hjðioÞx€gjðioÞeioj t ð3:80Þ
in which

hðioÞj ¼ ½ðo2
n�o2

j Þþ 2ixonoj ��1

The total response is obtained by summing up the responses xjðtÞ; j ¼ 1 . . .N=2. This operation is

performed using FFT and IFFT as given in the following steps:

1. Sample x€gðtÞ at an interval of Dt to obtain N discrete values of the time history having a duration

T (preferably N ¼ 2n, where n is an integer).

2. Input x€gr ðr ¼ 1 . . .NÞ in FFT.
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3. Consider first N=2 values of the output from FFT; calculate the cut-off frequency oc as

oc ¼ N=2ð Þ�1½ �2p=T , where T is the duration of the time history.

4. Obtain the complex frequency response function hjðioÞ of the SDOF for j¼ 0 to N=2�1ð Þ at

frequencies oj ¼ 0 to N=2�1ð ÞDo.
5. Obtain xjðioÞ ¼ hjðioÞx€gjðioÞ, j ¼ 0 . . . N=2�1ð Þ.
6. Obtain the complex conjugate of xjðioÞ, such that xjðioÞ, j ¼ N=2 is the complex conjugate of xjðioÞ,

j ¼ N=2�1ð Þ and xjðioÞ, j ¼ N�1 is the complex conjugate of xjðioÞ, j¼ 0.

7. Input xjðioÞ; j ¼ 0 . . .N�1 in IFFT; output will be N values of xðtÞ sampled at Dt.

Frequency domain analysis using Fourier transform provides a relationship between the impulse response

functions hðtÞ and the complex frequency response function hðioÞ. In time domain analysis using the

Duhamel integral

xðtÞ ¼
ðt

�a

pðtÞ hðt�tÞdt ð3:81Þ

in which pðtÞ is the impulse at time t and hðt�tÞ is the impulse response function for unit impulse

response applied at time t.
In frequency domain analysis, xðtÞ is given by

xðtÞ ¼ 1

2p

ða

�a

hðioÞx€gðioÞeiotdo ð3:82Þ

Utilizing these two expressions ofxðtÞ, a relationship between function hðtÞ and the complex frequency

response function hðioÞ can be established as [5]:

hðioÞ ¼
ða

�a

hðtÞe�iotdt ð3:83Þ

hðtÞ ¼ 1

2p

ða

�a

hðioÞeiotdt ð3:84Þ

Thus, hðtÞ and hðioÞ form a Fourier transform pair.

Example 3.7

A single bay inclined portal frame with properties as shown in Figure 3.11 is subjected to El Centro

earthquake ground acceleration with sampled values given in Appendix 3.C. Find the response ðxÞ of the
frame by using the Duhamel integral, Newmark’s b-method, state-space time integration method, and

frequency domain analysis using FFT. Assume zero initial conditions, that is, xð0Þ ¼ 0, _xð0Þ ¼ 0, and

x ¼ 0:05.

Solution: Dt ¼ 0:02s; on ¼ 12:24 rad s�1; od ¼ on

ffiffiffiffiffiffiffiffiffiffiffi
1�x2

p
¼ 12:23 rad s�1

Duhamel integral–The constants work out to be (Equations 3.38–3.45)

C1 ¼ 0:98; C2 ¼ 3:448� 10�4; C3 ¼ �9:65� 10�3; C4 ¼ 9:77� 10�3

D1 ¼ �0:05; D2 ¼ 0:987; D3 ¼ �5:48� 10�3; D4 ¼ 5:99� 10�3
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Using the above values of the constants, A and H are determined as:

A ¼
0:0150 �0:0312 �0:0257

�0:5980 0:9696 �0:0146

�1:5153 3:4804 0:0436

2
664

3
775 H ¼

0:0098

0:0060

�1:0960

2
664

3
775

Using the recursive Equation 3.49, q for time stations 0�14Dt are given in Table 3.1.

Newmark’s b-method–Using d ¼ 1=2 and b ¼ 1=4, Fn and Hn are obtained as

Fn ¼
0:9854 0:0196 0:0001

�1:4601 0:9589 0:0097

�146:0108 �4:1124 �0:0265

2
664

3
775 Hn ¼

0:0001

0:0097

0:9735

2
664

3
775

Using the recursive Equation 3.66, q for time stations 0�14Dt are given in Table 3.1.
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Figure 3.11 Inclined portal frame

Table 3.1 Comparison of displacement (m) response obtained by different methods

Time (s) Duhamel Newmark State-space Frequency domain

0 0 0 0 0.0016
0.02 0 0 0 0.0010
0.04 0 0 0 0.0004
0.06 �0.0001 �0.0001 �0.0001 �0.0003
0.08 �0.0001 �0.0001 �0.0001 �0.0009
0.1 �0.00 025 �0.0002 �0.0002 �0.0015
0.12 �0.0003 �0.0002 �0.0002 �0.0020
0.14 �0.0004 �0.0004 �0.0004 �0.0024
0.16 �0.0005 �0.0005 �0.0005 �0.0027
0.18 �0.0006 �0.0006 �0.0006 �0.0027
0.2 �0.00 075 �0.0007 �0.0007 �0.0028
0.22 �0.0009 �0.0009 �0.0009 �0.0028
0.24 �0.0012 �0.0010 �0.0010 �0.0026
0.26 �0.0013 �0.0012 �0.0012 �0.0023
0.28 �0.0015 �0.0013 �0.0013 �0.0019

Displacement over duration (30 s)
Rms (m) 0.0150 0.0149 0.0149 0.0150
Peak (m) 0.0791 0.0784 0.0784 0.0754
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State-space time integration–

A ¼
0 1

�37:50 �1:2247

" #

f ¼
�0:0161�0:16045i �0:0161þ 0:16045i

0:9869 0:9869

" #

ekDT ¼
0:9805�0:1201i 0

0 0:9805�0:1201i

" #

eADT ¼
0:9926 0:0197

�0:7390 0:9684

" #

Using Equation 3.73, Z for time stations 0�14Dt and are shown in Table 3.1.

Frequency domain analysis–

Do ¼ 2p
T

¼ 2p
30

¼ 0:2093 rad s�1

For oi ¼ 0�17Do, hiðoÞ and x€giðoÞ are given in Table 3.2. After using steps 1–7, the responses

obtained are shown for time stations 0�14Dt in Table 3.1.

It is seen from the table that the responses obtained by the Duhamel integration, Newmark’s b-method,

and state-space integrations are nearly the same for time stations 0�14Dt. The sameparameters obtained by

the frequency domain analysis are slightly different than others. However, rms and peak values of the

responses obtainedby allmethods are nearly the same.Timehistories of displacements obtainedbydifferent

methods are shown in Figure 3.12(a–d). It is seen from the figure that the time history of displacement

obtained by the frequency domain analysis is little different than that obtained by other methods.

3.5 Response Analysis for Multi-Degrees of Freedom (MDOF) Systems

The response analysis for the SDOF system described in Section 3.4 can be easily extended to multi-

degrees of freedom systems. The analysis procedures remain the same for both single-point and

Table 3.2 Frequency components of ground acceleration, frequency response function, and frequency contents
of response for a few frequency steps (Do¼ 0.2093 rad s�1)

Frequency €XgjðoÞ (m s–2) hjðoÞ (m N–1) XjðoÞ (m)

R I R I R I

0 1.0979 0 0.0067 0 �0.0076 0
Do �1.009 �0.5237 0.0067 0 �0.0064 0.0050
2Do 0.9244 �0.744 0.0067 0 �0.0301 �0.0089
3Do �2.4291 �0.4405 0.0067 0 �0.0236 0.0166
4Do 4.4541 1.3565 0.0067 0 0.1214 0.0743
5Do 0.7064 �6.87 521 0.0067 �0.0001 0.1012 �0.154
6Do 3.4768 �2.4575 0.0067 �0.0001 0.1534 0.0591
7Do �0.1803 �19.3454 0.0068 �0.0001 0.1313 �0.0253
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multi-point excitations. Two types of analysis are possible, namely, direct analysis and modal analysis.

In the direct analysis, explicit knowledge of the damping matrix is required. For the linear analysis with

Rayleigh damping ðC ¼ aMþ bKÞ, themodal analysis is used, wherever possible, as it needs onlymodal

damping to be specified, which is generally assumed to be the same for all modes and is equal to the

specified material damping.
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Figure 3.12 Time histories of displacements obtained by different methods: (a) frequency domain FFT analysis;
(b) Newmark’s b-method; (c) Duhamel integral; (d) state-space analysis
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3.5.1 Direct Analysis

In the direct analysis, the equation of motion, Equation 3.19 at the kþ 1th time step takes the form

MX€kþ1 þC _Xkþ1 þKXkþ1 ¼ �MrX€gkþ1 ð3:85Þ
in which r is the influence coefficient matrix or vector, which can be defined for both the single-point and

multi-point excitations described in Section 3.3; M, C, and K are the same as Mss, Css, and Kss,

respectively; X€gkþ 1 is a single time history of ground motion or is a vector consisting of several time

histories of acceleration depending upon the type of excitation. Direct analysis is possible using both time

domain and frequency domain analysis. In the time domain, both Duhamel integration and Newmark’s

b-method can be used. However, use of Duhamel integration for direct analysis of multi-degrees of

freedom systems is not popular because it is somewhat complicated. Therefore, Duhamel integration is

generally used in modal time domain analysis. On the other hand, Newmark’s b-method is popular for

both direct analysis and modal analysis in the time domain.

Newmark’s b-Method: For the use of Newmark’s b-method, Equations 3.52 and 3.53 are written with

Xkþ 1, _Xkþ 1 as vector quantities denoting the responses of theMDOF system. Equations 3.52 and 3.53 are

rewritten as:

_Xkþ1 ¼ _Xk þð1�dÞX€kDtþX€kþ1dDt ð3:86Þ

Xkþ1 ¼ Xk þ _XkDtþ 1

2
�b

� �
ðDtÞ2X€k þ bðDtÞ2X€kþ1 ð3:87Þ

Substituting for _Xkþ1 and Xkþ1 into Equation 3.85,

MX€kþ1 þCf _Xk þð1�dÞX€kDtþX€kþ1dDtg

þK Xk þ _XkDtþ 1

2
�b

� �
ðDtÞ2X€k þ bðDtÞ2X€kþ1

� �
¼ �MrX€gkþ1

ð3:88Þ

Rearranging Equation 3.88:

fMþCdDtþKbDt2gX€kþ1 ¼ �KXk�fKDtþCg _Xk

� Cð1�dÞDtþK
1

2
�b

� �
Dt2

� �
X€k�MrX€gkþ1

ð3:89aÞ

X€kþ1 ¼ �G�1KXk�G�1 CþKDtf g _Xk�G�1 Cð1�dÞDtþK
1

2
�b

� �
Dt2

� �
X€k�G�1MrX€gkþ1

ð3:89bÞ
Substituting Equation 3.89b into Equations 3.86 and 3.87,

_Xkþ1 ¼ �dDtG�1KXk þ ½I�G�1fCþKDtgdDt� _Xk

þ ð1�dÞDt I�G�1 Cð1�dÞDtþK
1

2
�b

� �
Dt2

� �
dDt

� �
X€k

�dDtG�1MrX€g kþ1

ð3:90Þ

Xkþ1 ¼ ½I�aDt2G�1K�Xk þ ½IDt�G�1fCþKDtgbDt2� _Xk

þ 1

2
�b

� �
Dt2 I�G�1 C 1�dð ÞDtþK

1

2
�b

� �
Dt2

� �
aDt2

� �
X€k

�bDt2 G�1MrX€g kþ1

ð3:91Þ
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in which

G ¼ Mþ dCDtþ bKDt2

Assuming d ¼ 1=2 and b ¼ 1=4, the usual values adopted for d and b, Equations 3.89–3.91 can be

written in recursive form as:

Qkþ1 ¼ FNQk þHNX€gkþ1 ð3:92Þ
in which

Qk ¼ Xk
_Xk X€k �T

�
and

FN ¼

I� SDt2

4
I Dt�fQþS DtgDt

2

4
I
Dt2

4
� QDt

2
þ SDt2

4

� �
Dt2

4

� S Dt
2

I �fQþS DtgDt
2

I
Dt
2
� QDt

2
þ SDt2

4

� �
Dt
2

�S �fQþS Dtg � QDt
2

þ SDt2

4

� �

2
666666664

3
777777775

ð3:93Þ

S ¼ G�1K; Q ¼ G�1C; T ¼ G�1Mr; HN ¼
�T

Dt2

4

�T
Dt
2

�T

8>>>><
>>>>:

9>>>>=
>>>>;

ð3:94Þ

The size of the FN matrix is 3n� 3n and that of theHN matrix is 3n�m; in which n is the number of

degrees of freedom and m is the number of different support excitations.

Frequency Domain Analysis using Fourier Transform: The method outlined for an SDOF system can

be readily extended to an MDOF system. For single-point excitation, the influence coefficient matrix r in
Equation 3.85 is a vector and the right-hand side of the equation is a force vector of the form

Pg ¼ �fm1m2 . . .mngTx€g ð3:95Þ
in which mi is the mass associated with the ith degree of freedom in the direction of ground motion.

For a multi-point excitation system having, for example, n lumped masses and 3 support excitations,

Pg is given by:

Pg ¼ �MrX€g ¼ �fm1ðr11x€g1 þ r12x€g2 þ r13x€g3Þ; m2ðr21x€g1 þ r22x€g2 þ r23x€g3Þ; . . .gT ð3:96Þ

in which M is a diagonal matrix, r is a matrix of size n� 3, and X€g is a vector of 3� 1.

Extending the method of finding xðtÞ for SDOF to MDOF systems

XjðioÞ ¼ HjðioÞPgjðioÞ ð3:97Þ

in which XjðioÞ is the frequency component of displacement response vector due to the jth frequency

component of the excitation vector Pg; HðioÞj is the frequency response function matrix given by:

HjðioÞ ¼ ½K�Mo2
j þ iCoj ��1 ð3:98Þ

Using the same steps for the calculation as mentioned in Section 3.4.4, the response vector XðtÞ is
obtained with the help of FFT and IFFT.
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Example 3.8

For the multi-bay portal frame, shown in Figure 3.7, find the displacement responses u1 and u2 by using

direct integration (Newmark’s b-method) for the El Centro earthquake. Assume that the time delay

between the supports is 5 s; k=m ¼ 100 ðrad s�1Þ2, and the percentage critical damping as 5%.

Solution: As the time delays between the supports are considered to 5 s, the duration of the records of

x€g1, x€g2, andx€g3 is taken to be 40 s. Time history records are constructed from30 s records of El Centro by

adding zeros as given below:

(i) for x€g1, the last 10 s of record have zero values

(ii) for x€g2, the first 5 s and the last 5 s of records have zero values

(iii) for x€g3, the first 10 s of records have zero values.

Referring to Example 3.4, the equation of motion for the frame can be written as:

1 0

0 2

� �
m

x€1

x€2

� �
þ am

1 0

0 2

� �
þ b

3 �3

�3 9

� �
k

� �
x€1

x€2

� �
þ k

3 �3

�3 9

� �
x€1

x€2

� �

¼ �m

3

1 0

0 2

� �
1 1 1

1 1 1

� � x€g1
x€g2
x€g3

8><
>:

9>=
>;

For the given value of k=m ¼ 100, the first two frequencies are determined as o1 ¼ 12:25 rad s�1;

o2 ¼ 24:49 rad s�1. With these values of o1 and o2, the values of a and b are calculated as a ¼ 0:8161;
b ¼ 0:0027.

Direct integration method–Assuming Dt ¼ 0:02 s, d ¼ 1=2 and b ¼ 1=4, G is obtained from

Equation 3.91b. Then S, Q, and T are computed using Equation 3.94. The value of QKþ1 is obtained

from the recursive equation, Equation 3.92 in which Fn and Hn are computed as

Fn ¼

0:9712 0:0272 0:0193 0:0006 0:0001 0:0

0:0132 0:9581 0:0003 0:0192 0:0 0:0001

�2:8171 2:7143 0:9281 0:0611 0:0096 0:0003

1:3572 �4:1751 0:0302 0:8973 0:0002 0:0094

�281:7651 271:4872 �7:1831 6:1402 �0:0432 0:0343

135:7433 �417:5091 3:0701 �10:2531 0:0171 �0:0602

2
666666664

3
777777775

Hn ¼

�0:0 �0:0 �0:0

�0:0 �0:0 �0:0

�0:0033 �0:0033 �0:0033

�0:0032 �0:0032 �0:0032

�0:3301 �0:3301 �0:3301

�0:3182 �0:3182 �0:3182

2
666666664

3
777777775

With the above matrices and fxg, f _xg as zero

x€0 ¼ 0 0½ �T

QT
Dt ¼ �0:0 �0:0 �0:0002 �0:0002 �0:0204 �0:0197½ �

QT
2Dt ¼ �0:0 �0:0 �0:0005 �0:0005 �0:0113 �0:0086½ �

The time histories of responses ðu1 and u2Þ obtained are shown in Figure 3.13(a and b).
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It is seen from the figure that after 30 s, the time histories of the responses gradually decay to almost zero

at 40 s. The reason for this is attributed to: (i) the time delay between the excitations at the three supports;

and (ii) the total duration of 40 s of earthquake excitations at the supports are generated only from the 30 s

of the actual earthquake record by putting zeros in appropriate places, such as, the tail end of the record.

Example 3.9

For the pitched roof portal frame shown in Figure 3.8, obtain the displacement responses corresponding

to the sway degrees of freedom (4 and 5) shown in the figure for the El Centro earthquake. Consider

two cases: (1) the same excitations at both supports and (ii) excitations with a time delay of 5 s between

the two supports. Assume
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL3

p ¼ 2 rad s�1 and the percentage critical damping is 5%. Use direct

integration in the time domain (Newmark’s b-method).

Solution: Referring to Examples 3.3 and 3.4, the mass and stiffness matrices of the frame corresponding

to the sway degrees of freedom (4, 5) are

M ¼ 2:50 1:67
1:67 2:50

� �
m

K ¼ EI

L3
19:56 10:49
10:49 129

� �

r ¼ 0:479 0:331
�0:131 0:146

� �

Assuming
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=mL3

p ¼ 2, the natural frequencies are o1 ¼ 5:58 rad s�1; o2 ¼ 18:91 rad s�1. The

values of a andb are calculated as a ¼ 0:4311 and b ¼ 0:0041, respectively, for 5%modal damping.With

these values of a and b, the C matrix is obtained as before.
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Figure 3.13 Displacements obtained by direct integration method: (a) displacement u1; and (b) displacement u2
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With the above matrices, and Dt ¼ 0:02 s, and x, _x as zero

For case (i):

x€0 ¼ 0 0½ �T

QT
Dt ¼ �0:0 �0:0 �0:0005 �0:0 �0:0491 �0:0009½ �

QT
2Dt ¼ �0:0 �0:0 �0:0013 �0:0 �0:0275 �0:0005½ �

For case (ii):

fx€g0 ¼ 0 0 �T�
QT

Dt ¼ �0:0 �0:0 �0:0003 0:0001 �0:0291 0:0077 �½
QT

2Dt ¼ �0:0 �0:0 �0:0007 0:0002 �0:0153 0:0032 �½
Note that for case (ii) the time history of ground motion is taken to be of 35 s duration and excitations

at the two supports are different to that obtained in the problem in Example 3.8. The time histories of

displacements (4) and (5) are shown in Figure 3.14(a–d). It is seen from the figure that the effect of the time

delay between the two supports is more for the vertical displacement of the crown. Themaximumvalue of

the displacement of DOF 5 is more for the case of the time delay between the support excitations. For the

horizontal sway displacement, the opposite effect is observed.Themaximum response ismore for the case

of no time delay. Thus, the effect of the time delay could be different for different responses.

State-space solution: The state space solution for the SDOF system given in Section 3.4.3 may be

extended to theMDOF system by simply increasing the size of thematrices and the vectors. For anMDOF

system having n degrees of freedom, the size of matrixA is 2n� 2n and that of the vector z is 2n� 1. Note

that the excitationvector fg is also of size 2n� 1 and depends upon the type of excitation. For a single point

excitation fg takes the form

fg ¼
0

�r

� �
x€g ð3:99Þ

in which r is the influence coefficient vector of size n� 1, x€g is the specified time history of support

acceleration.

For a multi-point excitation system, fg is given by:

fg ¼
0

pg

( )
ð3:100Þ

in which pg is a vector of size n� 1 and is obtained as:

pg ¼ �rx€g

in which r is the influence coefficient matrix of size n� s; x€g is a vector of acceleration time histories of

supports of size s� 1; and s is the number of supports.

In the frequency domain, the state-space equation may be solved for an MDOF system by considering

the equation

_z ¼ A _zþ fg ð3:101Þ
in which

A ¼ 0 I

�KM�1 �CM�1

" #
; fg ¼

0

pg

( )
; z ¼ x

_x

( )
; and pg ¼ �rx€g ð3:102Þ
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By decomposing fg in a complex Fourier series, let the jth frequency component of fg be fgjðioÞ.
Then, the jth frequency component of the response is given by:

zjðioÞ ¼ HjðioÞfgjðioÞ ð3:103Þ
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Figure 3.14 Time histories of displacements for the degrees of freedom 4 and 5: (a) without time delay for DOF 4;
(b) without time delay for DOF 5; (c) with time delay for DOF 4; and (d) with time delay for DOF 5

Response Analysis for Specified Ground Motions 133



HjðioÞ ¼ ½ Îo�A��1 ð3:104Þ

in which Î is a diagonal matrix with ið¼ ffiffiffiffiffiffiffi�1
p Þ as diagonal elements. Using the same steps used in the

Fourier method of response analysis, zðtÞ may be obtained.

The equation of motion in terms of absolute responses can be solved in the time domain, frequency

domain, and in state space in the same way as described in Section 3.5.1. The right-hand side of

Equation 3.15 is converted into an excitation load vector Pg of the form

Pg ¼ �ðKsgxg þCsg _xgÞ ð3:105Þ
Note that Pg is of the size n� 1;Ksg andCsg are of the size n� s; xg and _xg are, respectively, the time

histories of displacements and velocities of size s� 1; s is the number of supports. Note that Csg is set to

zero in most cases.

Example 3.10

A segment of a pipeline supported on soil is modeled as shown in Figure 3.15. Find the displacement

responses corresponding to the dynamic degrees of freedom (1, 2 and 3) using (i) the frequency domain

state-space solution and (ii) the frequency domain solution for the second-order equation of motion for

El Centro earthquake. Take 3EI=mL3 ¼ 16 ðrad s�1Þ2; spring stiffness Ks ¼ 48m, and Cs ¼ 0:6m.

Consider the damping ratio to be 2%.

Solution: Condensed stiffness matrix corresponding to the dynamic degrees of freedom is

K ¼
56 �16 8

�16 80 �16

8 �16 56

2
4

3
5m

The natural frequencies are o1 ¼ 8:1 rad s�1, o2 ¼ 9:8 rad s�1 and o3 ¼ 12:2 rad s�1.

Considering the first two natural frequencies, the values of a and b are:

a ¼ 0:1761 and b ¼ 0:0022

The damping matrix for the structure is C ¼ aMþ bK.
The total damping matrix for the soil structure system is:

C ¼
0:813 �0:035 0:017
�0:035 0:952 �0:035
0:017 �0:035 0:813

2
4

3
5m

(1) (2) (3)

2m m (4) 2m

sk sc

gx

L L(5) (6) (7)

Wave propagation

sk sc

gx

sc sk

gx

Figure 3.15 Segment of a pipeline supported on soft soil and modeled as spring-dashpot system
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State space solution–

A ¼

0:0 0:0 0:0 1:0 0:0 0:0

0:0 0:0 0:0 0:0 1:0 0:0

0:0 0:0 0:0 0:0 0:0 1:0

�112:0 16:0 �16:0 �1:622 0:035 �0:035

32:0 �80:0 32:0 0:070 �0:952 0:070

�16:0 16:0 �112:0 �0:035 0:035 �1:622

2
66666664

3
77777775

fg ¼

0

0

0

�1

�1

�1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
x€g

For o ¼ 4� 0:2093 ¼ 0:8372 rad s�1

HðioÞ

¼

0:0152�0:0078i 0:0014þ 0:0014i �0:0012�0:0007i 0:0096�0:0001i 0:0018 �0:0009

0:0041þ 0:0022i 0:0131þ 0:0116i 0:0049þ 0:0028i 0:0035�0:0001i 0:0014�0:0002i 0:0035�0:0001i

�0:0012�0:0007i 0:0014þ 0:0014i 0:0156þ 0:0078i �0:0009 0:0018 0:0096�0:0001i

�1:0061þ 0:0132i �0:0012þ 0:0012i 0:0006�0:0011i 0:0001þ 0:0081i 0:0015i �0:0007i

�0:0024þ 0:0041i �1:0097þ 0:0112i �0:0024þ 0:0042i 0:0001þ 0:0032i 0:0001�0:0117i 0:0001þ 0:0031i

0:0006�0:0011i �0:0012þ 0:0012i �1:0066þ 0:0131i �0:0007i 0:0015i 0:0001þ 0:0081i

2
666666664

3
777777775

fgðoÞ ¼

0:0

0:0

0:0

�54:206�33:894i

�54:206�33:894i

�54:206�33:894i

2
66666664

3
77777775

and hence,

zðoÞ ¼

�0:574�0:347i

�1:153�0:697i

�0:574�0:347i

0:291�0:481i

0:584�0:966i

0:291�0:481i

2
66666664

3
77777775

For the solution of second-order differential equation

HðioÞ ¼ ½K�Mo2 þ iCo��1 Pg ¼
�1

�1

�1

8<
:

9=
;mx€g

For o ¼ 0:8372 rad s�1

HðioÞ ¼
0:0191�0:0003i 0:0035�0:0001i �0:0018

0:0035�0:0001i 0:0142�0:0002i 0:0035�0:0001i

�0:0018 0:0035�0:0001i 0:0192�0:0003i

2
4

3
5 pgðoÞ ¼

�27:103�16:947i

�54:206�33:894i

�27:103�16:947i

8<
:

9=
;m

XðoÞ ¼
�0:671�0:405i

�0:962�0:581i

�0:671�0:405i

8<
:

9=
;

Time histories of displacements for the degrees of freedom (1) and (2) obtained by the twomethods are

shown in Figures 3.16 and 3.17. It is seen from the figures that both methods provide almost the same

responses.
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Figure 3.17 Time histories of displacements for degrees of freedom 1 and 2 obtained by frequency domain state-
space solution: (a) displacement for DOF 1; and (b) displacement for DOF 2
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Figure 3.16 Time histories of displacements for degrees of freedom 1 and 2 obtained by frequency domain analysis:
(a) displacement for DOF 1; and (b) displacement for DOF 2
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3.5.2 Modal Analysis

In the modal analysis, the equation of motion, Equation 3.85, is decoupled into a set of n uncoupled

equations of motion using the normal mode theory. Each uncoupled equation of motion represents an

SDOF system.

The normal mode theory is well explained in all textbooks on structural dynamics. For the sake of

completeness, a brief outline of the normal mode theory used in the context of earthquake excitation is

presented below.

Normal mode theory stipulates that the response of an MDOF system is a weighted summation of its

undamped mode shapes. The weighting functions are functions of time and are known as generalized

co-ordinates (are also called modal co-ordinates). Thus, the displacement response of Equation 3.85 may

be written as:

X ¼ fz ð3:106Þ
where

X is the vector of displacement of size n� 1

f is the mode shape matrix of size n�m

z is the vector of generalized co-ordinates

m is the number of modes considered in the analysis.

Substituting for X in Equation 3.85 and pre-multiplying by fT, Equation 3.85 becomes

fTMf€zþfTCf_zþfTKfz ¼ �fTMrX€g ð3:107Þ
Using the orthogonality condition of mode shapes,

fTMf ¼ �M ; fTKf ¼ �K ð3:108Þ
inwhich �M and �K are diagonalmatrices. AssumingC to beRayleigh damping, that is, mass and stiffness

proportional

C ¼ aMþ bK ð3:109Þ
and

fTCf ¼ �C ð3:110Þ
in which �C also becomes a diagonalmatrix. This type of damping is also known as classical damping. By

virtue of �M , �K , and �C being diagonal matrices, Equation 3.107 is converted into a set of n uncoupled

equations of motion of the form

mi€zi þ ci _zi þ kizi ¼ �fT
i Mrx€g; i ¼ 1 . . .m ð3:111Þ

in which

mi ¼ fT
i Mfi; ci ¼ fT

i Cfi

ki ¼ fT
i Kfi; o2

i ¼
ki

mi

; ci ¼ 2xioimi ð3:112Þ

in which xi is the modal damping ratio.

Equation 3.111 can, therefore, be written as:

€zi þ 2xoi _zi þo2
i zi ¼ �

Xs
k¼1

likx€gk ði ¼ 1 . . .mÞ ð3:113Þ
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in which lik is the ith mode participation factor for the kth support excitation and is given by

lik ¼ fT
i Mrk

fT
i Mfi

ð3:114Þ

in which rk is the kth column of the r matrix and x€gk is the kth element of the vector x€g consisting of

s number of excitations.

For s ¼ 1, Equation 3.113 represents the equation for a single-point excitation system.

In general, Equation 3.113 representsm SDOF systems subjected to excitations given by the right-hand

side of the equation of motion. For the specified time histories of excitations x€gk, each of the SDOF

systems given byEquation 3.113 can be solved for zi usingDuhamel integration orNewmark’s integration

method, or frequency domain analysis using a Fourier series. Once ziði ¼ 1 . . .mÞ are obtained, X can be

determined from Equation 3.106.

Example 3.11

For the simplified model of a cable stayed bridge, shown in Figure 3.9, obtain the displacement responses

corresponding to the dynamic degrees of freedom (1, 2, and 3) shown in the figure for the El Centro

earthquakewith 5 s time delay between the supports. Usemodal time history (withNewmark’s b-method)

and modal frequency domain (with FFT) analyses with the percentage critical damping taken as 5%.

Solution: FromExample 3.6, the mass matrix, the stiffness matrix corresponding to the dynamic degrees

of freedom, and the r matrix are taken as:

K ¼
684 0 �149

0 684 149

�149 149 575

2
64

3
75m M ¼

20 0 0

0 20 0

0 0 60

2
64

3
75m

r ¼ 1

10

5:318 0:031 �0:002 �0:318

�0:318 �0:002 0:031 5:318

1:416 0:008 �0:008 �1:416

2
64

3
75

As a time delay of 5 s is considered between the supports, a total of 45 s of excitation is considered at

each support. As explained in Example 3.8, x€g1 will have the first 30 s as the actual El Centro record and
the last 15 s will consist of zeros. x€g3 will have first 10 s as zeros followed by 30 s of the actual record, and
the last 5 s of the record will be zeros. Similarly, x€g2 and x€g4 may be constructed.

The natural frequency and mode shapes are:

o1 ¼ 2:86 rad s�1 o2 ¼ 5:85 rad s�1 o3 ¼ 5:97 rad s�1

fT
1 ¼ �0:036 0:036 �0:125 �½
fT
2 ¼ 0:158 0:158 0 �½

fT
3 ¼ �0:154 0:154 0:030 �½

Using the mode shapes, the first modal equation is

€z1 þ 2Zo1 _z1 þo2
1z1 ¼ � fT

1Mr

fT
1Mf1

x€g1

x€g2

x€g3

x€g4

8>>><
>>>:

9>>>=
>>>;
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pg1 ¼ ½ 1:474 0:008 �0:0061 1:474 �

x€g1

x€g2

x€g3

x€g4

8>>><
>>>:

9>>>=
>>>;

Similarly, the other two modal equations are obtained.

Time histories of pg1, pg2, and pg3 are shown in Figure 3.18(a–c). It may be seen that the time histories

of the generalized forces are of 45 s durationwithout having successive zero values either at the beginning

or at the end of the time histories.

Time (s)
(b)

Time (s)
(c)

0 5 10 15 20 25 30 35

Time (s)
(a)

0 5 10 15 20 25 30 35

–1

–0.5

0

0.5

1

0 5 10 15 20 25 30 35

Se
co

nd
 g

en
er

al
iz

ed
 f

or
ce

 (
g)

–1

–0.5

0

0.5

1

Fi
rs

t g
en

er
al

iz
ed

 f
or

ce
 (

g)

–1

–0.5

0

0.5

1

T
hi

rd
 g

en
er

al
iz

ed
 f

or
ce

 (
g)

Figure 3.18 Time histories of generalized forces normalized with modal mass: (a) first generalized force (pg1);
(b) second generalized force (pg2); and (c) third generalized force (pg3)
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The modal equations may be solved like single degree of freedom systems. Thus, the three modal

equations are solved by Newmark’s b-method and frequency domain analysis using FFT. Using zero

initial conditions for z1, z2, and z3 and Dt ¼ 0:02s, the time histories of z1, z2, and z3 are shown in

Figure 3.19(a–c). It may be seen from the figure that the generalized displacements begin to die down after

30 s as expected.

The rms and peak values of the generalized displacements obtained by modal time history and

frequency domain solution are compared in Table 3.4.

It is seen from Tables 3.3 and 3.4 that the two methods of analysis provide nearly the same results.

3.5.3 Size Reduction

One of the advantages of the modal analysis procedure is that the size of the problem can be drastically

reduced without compromising much on the accuracy of the results. It has been observed that

consideration of the first few modes in Equation 3.113 gives results of sufficient accuracy; contributions
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Figure 3.19 Time histories of generalized displacements: (a) first generalized displacement (z1); (b) second
generalized displacement (z2); and (c) third generalized displacement (z3)

140 Seismic Analysis of Structures



Table 3.3 Results of a few frequency steps for frequency domain modal analysis (Do¼ 0.139 rad s�1)

Variables o

0 2Do 3Do 4Do 5Do 6Do 7Do

hz1 0.122 0.1228–0.0006i 0.1237–0.0012i 0.1252–0.0019i 0.1273–0.0026i 0.1302–0.0034i 0.1339–0.0043i
pg1 �0.183 0.1305–0.0456i 0.2943þ 0.3703i �0.7413–0.2186i 0.2102þ 0.9755i �0.8876þ 2.7771i 2.9898þ 1.8799i
z1 0.022 �0.0161þ 0.0057i �0.0368–0.0454i 0.0932þ 0.0261i �0.0293–0.1237i 0.1062–0.3646i �0.4084–0.2389i
hz2 0.029 0.0293–0.0001i 0.0293–0.0001i 0.0294–0.0002i 0.0295–0.0003i 0.0297–0.0004i 0.0298–0.0004i
pg2 0.305 �0.1453þ 0.0828i �0.2723–0.5062i 1.2288þ 0.3644i �0.4603–1.1269i 1.6648–3.1453i �4.9548–3.1031i
z2 �0.008 0.0042–0.0024i 0.0081þ 0.0148i �0.0362–0.0104i 0.0139þ 0.0331i �0.0482þ 0.0939i 0.1492þ 0.0905i
hz3 0.028 0.0281–0.0001i 0.0281–0.0001i 0.0282–0.0002i 0.0283–0.0003i 0.0285–0.0003i 0.0286–0.0004i
pg3 �0.226 0.1612–0.0564i 0.3636þ 0.4574i �0.9155–0.2698i 0.2596þ 1.2046i �1.0963þ 3.4293i 3.6921þ 2.3224i
z3 0.006 �0.0045þ 0.0016i �0.0103–0.0128i 0.0259þ 0.0074i �0.0077–0.0341i 0.0301–0.0981i �0.1067–0.0651i
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of higher modes to the response are not generally significant. This is the case because more energy is

required to excite higher modes that have higher frequencies and, generally, the energy contents of

excitations at higher frequencies are low. Furthermore, the mode participation factors given by Equa-

tion 3.114 become smaller with a higher number ofmodes. Therefore, only the first few equationsm< n are

solved to obtain the response, thereby reducing the size of the problem. The number of equations to be

solved is equal to the number of modeswhose contributions are considered to be significant in the analysis.

However, the number of modes to be considered depends upon the nature of excitation, dynamic

characteristics of the structure, and the response quantity of interest. For structures having well separated

natural frequencies, the first few modes (up to 5) may be sufficient to obtain the displacement response

fairly accurately. For structures having closely spaced frequencies, such as asymmetric tall buildings,

suspension or cable stayed bridges, a higher number of modes may have to be considered to obtain good

estimates of the responses.

Generally, more number of modes are also required to obtain good estimates of bending moments or

stresses compared with that required for displacements. This is the case because higher modes contribute

more to the curvature and therefore, contribute more to the bending response. One index, which is widely

used to determine the number of modes to be considered in the analysis, is the mass participation factor

defined by:

ri ¼

Xn
r¼1

mrfir

M
ð3:115Þ

where

mr is the mass attached to rth degree of freedom

fir is the ith mode shape coefficient for the rth degree of freedom

M is the total mass of the structure.

The number of modes, m, to be considered in the analysis, is determined such that

Xm
i¼1

ri � 1 ðwithin 5%Þ ð3:116Þ

One approach, termed the mode acceleration approach [6, 7], has been developed for obtaining a good

estimate of any response quantity (moment or displacement) using a lesser number of modes.

Consider the case of single-point excitation. Equation 3.113 can be written as:

zi ¼ 1

o2
i

�lix€g
� �� 1

o2
i

€zi þ 2xoi _zi½ � ð3:117Þ

Let fi be the ith mode shape coefficient for a response quantity RðtÞ, then

RðtÞ ¼ �
Xm
i¼1

fi

o2
i

lix€g�
Xm
i¼1

1

o2
i

ð€zi þ 2xoi _ziÞfi ð3:118Þ

Table 3.4 Comparison of generalized displacements

Solution z1 z2 z3

Rms (m) Peak (m) Rms (m) Peak (m) Rms (m) Peak (m)

Time history 0.0091 0.0369 0.0048 0.0261 0.0044 0.0249
Frequency domain 0.009 0.0368 0.0049 0.0265 0.0044 0.0250
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¼ RðtÞ�
Xm
i¼1

1

o2
i

ð€zi þ 2xoi _ziÞfi ð3:119Þ

RðtÞ is obtained by considering m to be equal to n, n being the number of dynamic degrees of freedom.

RðtÞ may be viewed as the response obtained by applying�Mr€Xg quasi-statically, that is, by ignoring

the effects of structural acceleration and velocity on the structure. This can be proved as below.

The quasi-static equation may be written as:

KXðtÞ ¼ �Mrx€gðtÞ ð3:120Þ
Using modal transformation, Equation 3.120 can be written as:

fTKf zðtÞ ¼ �fTMr x€gðtÞ ð3:121Þ
Equation 3.121 is the same as the set of uncoupled equations, given byEquation 3.107 inwhich €zi and _zi

are omitted and, therefore, zi given by Equation 3.121 is the quasi-static response of the ith SDOF system

and is given by:

zi ¼ �lix€g
o2

i

ð3:122Þ

As RðtÞ may be written as a weighted summation of all mode shapes (that is, m¼ n)

RðtÞ ¼
Xn
i¼1

fizi ¼ �
Xn
i¼1

fi

lix€g
o2

i

ð3:123Þ

Thus, the solution for RðtÞ consists of two steps:

1. Solution of RðtÞ obtained by the quasi-static analysis of the structure for the earthquake force�Mrx€g.

2. Solution of modal equations to obtain
Xm
i¼1

1

o2
i

ð€zi þ 2xoi _ziÞfi.

The second step of the solution may be obtained by finding zi from Equation 3.117 and then writing

1

o2
i

ð€zi þ 2xoi _ziÞ ¼ �lix€g
o2

i

�zi

� �
ð3:124Þ

The contribution of the second part of the solution fromhighermodes to the responseRðtÞ is very small.

This is the case because for higher modes, frequencies are very high and relative displacements are very

small. Because of these reasons, only the first few modes may be considered for the second part of the

solution.

It has been found that mode acceleration approach provides better responses with a smaller number of

modes compared with those obtained by the usual mode summation approach. The reason for this is that

the first part of the response considers contributions from all modes, while the contributions of higher

modes on the second part of the response are very small. In particular, responses such as bendingmoments

and shear forces at any cross-section of the structure can be obtained more accurately with a limited

number of modes using the mode acceleration approach.

3.5.4 Computation of Internal Forces

The determination of displacement and acceleration responses of the structure is straight forward using

normalmode theory. However, the bendingmoment and shear forces at any section of the structure cannot

be directly obtained. They are calculated from displacement responses of the structure and the stiffness

properties of the member. Oneway to obtain bending responses directly by weighted summation of mode
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shapes is to determine themode shape coefficients for the bendingmoment or any other response quantity

of interest. For this purpose, the structure may be statically analyzed for each mode with a static load

given by:

Pi ¼ Mfio
2
i ; i ¼ 1 . . .m ð3:125Þ

wherem is the number of modes being considered. The analysis provides a value of the bending moment

or the response quantity of interest. This value is themode shape coefficient for the bendingmoment in the

ith mode. If displacement mode shape coefficients are replaced by the mode shape coefficient in the usual

mode superposition technique or mode accelerations approach, the bending moment or the response

quantity of interest can be directly obtained as displacements.

When modal analysis is not used, that is, the responses are obtained by direct analysis, the response

quantities such as bending moment and shear forces are obtained from the element stiffness properties

and the dynamic displacements. While displacements for the dynamic degrees of freedom are directly

obtained from the dynamic response analysis, those of the degrees of freedom that were condensed out are

determined separately by using the condensation relationship.

It should be noted that modal analysis is not applicable for solving absolute displacements using

Equation 3.15. The reason for this is that normal modes are defined with respect to the relative

displacement of the structure with respect to the fixed supports. Therefore, if the advantage of the

modal analysis is to be taken in finding the absolute displacements of the dynamic degrees of freedom,

then Equation 3.19 is solved using the normal mode theory and support displacements are added to the

relative displacements.

3.5.5 Modal Analysis in Time Domain for State-Space Equation

The state-space equation, Equation 3.20, can also be solved by the usingmodal analysis technique. Let the

eigen values and eigen vectors of matrixA be denoted by li andfi ði ¼ 1 . . . 2nÞ;fi is a vector of size 2n.

Expressing ZðtÞ as a weighted summation of mode shapes, ZðtÞ can be written as:

ZðtÞ ¼ fq ð3:126Þ
in whichf is a 2n� 2nmatrix and q is a vector of size 2n. Equation 3.20 can then bewritten in the form of

f _q ¼ Afqþ fg ð3:127Þ

Pre-multiplying the left and right sides of Equation 3.127 by f�1, the following equation is obtained.

f�1f _q ¼ f�1Afqþf�1fg ð3:128Þ

As f�1f is an identity matrix of size 2n� 2n and f�1Af is the diagonal eigen value matrix of size

2n� 2n, and f�1fg becomes a vector fg of size 2n, Equation 3.128 is reduced to a set of 2n uncoupled

equations of motion in state space. The ith uncoupled equation takes the form

_qi ¼ liqi þ f gi ði ¼ 1 . . . 2nÞ ð3:129Þ
in which li is the ith eigen value and f gi is the ith modal load.

The solution of Equation 3.129 is obtained as described in Section 3.4.3.

To start the integration, the initial value of qk has to be specified. This is obtained by specifyingZ0 and

then obtaining q0 as:

q0 ¼ f�1Z0 ð3:130Þ
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3.5.6 Modal Analysis in Frequency Domain for State-Space Equation

When state-space modal analysis is carried out in the frequency domain, Equation 3.129 is solved in the

frequency domain. For this purpose, fgi is Fourier synthesized using FFT and qiðtÞ is obtained using the

Fourier analysis technique given in Section 3.4.4. Note that hjðoÞ is given by:

hjðoÞ ¼ ðio�l1Þ�1 ð3:131Þ

Once qiðtÞ is obtained, ZðtÞ may be obtained using Equation 3.126.

Example 3.12

For themulti-storey frame shown inFigure3.20, obtain the shear at thebase of the right-side column for the

El Centro earthquake. Obtain the response quantity of interest in the time domain using: (i) the mode

summation approach, (ii) the mode acceleration approach; and (iii) the modal state-space analysis.

Assume k=m ¼ 100 ðrads�1Þ2 and percentage critical damping as 5%.

Solution: Stiffness and mass matrices for the frame are:

K ¼

2 �2 0 0

�2 4 �2 0

0 �2 6 �4

0 0 �4 8

2
6664

3
7775k M ¼

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2
6664

3
7775m

The mode shapes and frequencies are: o1 ¼ 5:06 rad s�1; o2 ¼ 12:57 rad s�1; o3 ¼ 18:65 rad s�1;
and o4 ¼ 23:5 rad s�1.

k k

kk

2k 2k

2k2k

gx

4u

3u

2u

1u
m

2m

2m

2m

Figure 3.20 Multi-storey frame
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fT
1 ¼ �1:0 �0:871 �0:520 �0:278 �½
fT
2 ¼ �1:0 �0:210 0:911 0:752 �½

fT
3 ¼ �1:0 0:738 �0:090 �0:347 �½
fT
4 ¼ 1:0 �0:843 0:268 �0:145 �½

Using the first two frequencies, the damping coefficients are: a ¼ 0:3608; b ¼ 0:0057.

C ¼ aMþ bK ¼ m

1:500 �1:140 0:0 0:0

�1:140 3:001 �1:140 0:0

0:0 �1:140 4:141 �2:280

0:0 0:0 �2:280 5:281

2
6664

3
7775

For state-space analysis, matrix A is given as:

A ¼

0:0 0:0 0:0 0:0 1:0 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 1:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 1:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 1:0

�2:0 1:0 0:0 0:0 �1:454 0:567 0:0 0:0

2:0 �2:0 1:0 0:0 1:134 �1:495 0:567 0:0

0:0 1:0 �3:0 2:0 0:0 0:567 �2:062 1:134

0:0 0:0 2:0 �4:0 0:0 0:0 1:134 �2:630

2
6666666666664

3
7777777777775

Thefirst four eigenvalues of A are: l1 ¼ �1:793þ 1:571i; l2 ¼ �1:793�1:571i; l3 ¼ �1:157þ 1:461i;
l4 ¼ �1:157�1:461i; corresponding eigen vectors are shown in Table 3.5.

Mode superposition method–Using the zero initial condition, the solution for the first two modal

equations are obtained byNewmark’s b-method. Results for the first few time steps using contributions of

the first two modes only are given in Table 3.6.

Mode acceleration method–Equation 3.124 is written as:

Zbi ¼
1

o2
i

€zi þ 2xoizið Þ ¼ � lix€g
o2

i

�zi

� �
ð3:132Þ

Zbi for the first two modes, x4, and M for a few time steps are shown in Table 3.7.

Modal state-space solution–Using Equation 3.73 to solve the first four uncoupled equations of motion,

Equation 3.129, the results for the first few time steps are shown in Table 3.8.

Table 3.5 First four mode shapes

f1 f2 f3 f4

0.0158þ 0.0131i 0.0158–0.0131i �0.1562–0.1859i �0.1562þ 0.1859i
�0.0583–0.0507i �0.0583þ 0.0507i 0.2263þ 0.2857i 0.2263–0.2857i
0.1835þ 0.1607i 0.1835–0.1607i �0.0267–0.0381i �0.0267þ 0.0381i
�0.2175–0.1906i �0.2175þ 0.1906i �0.1064–0.1345i �0.1064þ 0.1345i
�0.0490þ 0.0013i �0.0490–0.0013i 0.4525–0.0131i 0.4525þ 0.0131i
0.1843–0.0007i 0.1843þ 0.0007i �0.6796 �0.6796
�0.5818þ 0.0002i �0.5818–0.0002i 0.0866þ 0.0051i 0.0866–0.0051i
0.6896 0.6896 0.3199þ 0.0002i 0.3199–0.0002i
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The time histories of the shearV obtained by the threemethods are shown in Figure 3.21(a–c). It is seen

from thefigure that all threemethods providenearly the same time histories of themoment. This is the case

because the frequencies of the structure are well separated.

3.5.7 Computational Steps for MATLAB� Programming

Using MATLAB, seismic responses of the MDOF system can be carried out by adopting either the time

domain or frequency domain approach including modal analysis and state-space formulation. Computa-

tional steps are detailed below:

I. Computation of Basic Elements

1. Generation of influence coefficient matrix r or I
(i) Stiffness matrix K is arranged such that the degrees of freedom to be condensed out ðdcÞ

appear at the end, that is, K is partitioned as:

K ¼ Kdd Kdc

Kcd Kcc

" #
ð3:133Þ

in which Kcc is the matrix corresponding to the dc degrees of freedom; Kdd is that

corresponding to dynamic degrees of freedom; Kcd and Kdc are coupling matrices.

(ii) Condensed stiffness matrix Kd corresponding to dynamic degrees of freedom dd is

obtained as:

Kd ¼ Kdd�KdcK
�1
cc Kcd ð3:134Þ

(iii) Condensed stiffness matrix Kd is arranged such that support degrees of freedom appear at

the end, that is, Kd is partitioned as:

Kd ¼ Knnd Knsd

Ksnd Kssd

� �
ð3:135Þ

Table 3.6 Responses obtained by mode superposition method

Response Time (s)

0 0.02 0.04 0.06 0.08 0.1

z1 0 0 0.0001 0.0002 0.0003 0.0004

z2 0 0 0 �0.0001 �0.0001 �0.0001

u4ðmÞ 0 0 �0.0001 �0.0002 �0.0002 �0.0003

V (in terms of mass m) 0 0 �0.0211 �0.0221 �0.0431 �0.0621

Table 3.7 Responses obtained by mode acceleration method

Response Time (s)

0 0.02 0.04 0.06 0.08 0.1

Zb1 0 0.0033 �0.0014 0.0019 3.2519e-004 0.0036

Zb2 0 �1.9204e-004 8.1083e-005 �1.1126e-004 �1.9204e-005 �2.1185e-004

u4 (m) 0 0 �0.0001 �0.00 012 �0.0002 �0.0003

V (in terms of mass m) 0 0 �0.021 �0.024 �0.042 �0.061
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Table 3.8 Responses obtained by modal state-space analysis

Response Time (s)

0 0.02 0.04 0.06 0.08 0.1

q1 0 �2.2742e-4� 1.1751e-4i �2.7956e-4� 2.7672e-4i �1.5686e-4� 3.9251e-4i �1.1375e-4� 5.0055e-4i �1.5377e-4� 6.4285e-4i
q2 0 �2.2742e-4þ 1.1751e-4i �2.7956e-4þ 2.7672e-4i �1.5686e-4þ 3.9251e-4i �1.1375e-4þ 5.0055e-4i �1.5377e-4þ 6.4285e-4i
q3 0 6.5931e-4þ 2.5793e-4i 9.0182e-4þ 6.2974e-4i 7.1469e-4þ 9.5577e-4i 0.0008þ 0.0013i 0.0010þ 0.0018i
q4 0 6.5931e-4� 2.5793e-4i 9.0182e-4� 6.2974e-4i 7.1469e-4� 9.5577e-4i 0.0008–0.0013i 0.0010–0.0018i
u4 (m) 0 0 �0.00 011 �0.00 012 �0.00 023 �0.00 029
V (in terms of mass m) 0 0 �0.021 �0.023 �0.046 �0.061

1
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in which Knnd is the matrix corresponding to non-support degrees of freedom; Kssd is that

corresponding to support degrees of freedom; Ksnd and Knsd are coupling matrices.

(iv) Influence coefficient matrix r is obtained as:

r ¼ �K�1
nndKnsd ð3:136Þ

(v) For uniform support excitations the I matrix may be generated separately by arranging 1

and 0 in the vector or matrix form as explained in Section 3.3.1. Alternatively, the Imatrix

may be constructed from the r matrix by considering that all support excitations are the

same. Note that the stiffness matrix to be used for the dynamic analysis is Knnd .

(vi) Once the rmatrix is obtained, it is possible to obtain any other response of the structure due

to unit displacement to any support DOF (keeping other support DOF locked) by the usual

static analysis.
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Figure 3.21 Time histories of shear V obtained by the three methods: (a) mode acceleration method; (b) Newmark’s
b-method; and (c) state-space method
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2. Generation of mass matrix M corresponding to the dynamic degrees of freedom

(i) Masses corresponding to the dynamic degrees of freedom are to be identified and obtained

using lumped mass approximation or consistent mass approximation.

(ii) Inertia coupling between different dynamic degrees of freedom is to be properly accounted

for, as explained in Section 3.3.1.

3. WithKnnd andM specified explicitly, the following quantities are obtained depending upon the

analysis to be performed

(i) Mode shapes and frequencies for modal analysis.

(ii) First two frequencies to obtain C matrix for direct analysis, that is, C ¼ aMþ bK.
(iii) Matrix A given by Equation 3.102 for state-space analysis and eigen values and eigen

vectors of matrix A.
II. Time Domain Analysis

1. Direct analysis

(i) Form C matrix as mentioned above.

(ii) Choose Dt appropriately and sample the given time history of ground acceleration at time

interval Dt, if required (by interpolation).

(iii) Form G matrix (defined along with Equations 3.90 and 3.91) and obtain G�1.

(iv) Obtain the response vector at time tþDt using Equations 3.92–3.94.

(v) Obtain dc from the dynamic degrees of freedom dd by

dc ¼ �K�1
cc Kcddd : ð3:137Þ

(vi) Obtain stress (moment, shear force, and so on) response quantities of interest at every time

step.

2. State-space analysis

(i) Choose Dt as before.
(ii) Use eigen values and eigen vectors of A to obtain eAt using Equation 3.75.

(iii) Use Equation 3.73 or 3.74 to obtain the response vector at each time step.

(iv) Follow steps (v) and (vi) of Direct Analysis to obtain the stress response.

3. Modal analysis

(i) Using mode shapes and frequencies obtain kik (Equation 3.114) and
P

kikx€gk
(Equation 3.113).

(ii) Choose Dt as before.
(iii) Solve for Ziði ¼ 1 . . .mÞ using Duhamel integration (Equations 3.49–3.51) or Newmark’s

b-method (Equations 3.66–3.68);m is the number of modes. Zero initial condition, that is,
_Z i0 and Zi0 are assumed to be zero.

(iv) Obtain XðtÞ using Equation 3.106.

(v) Obtain stress response as given in steps (v) and (vi) ofDirectAnalysis. Alternatively, obtain

the stress response using the mode shape coefficient for the response quantity of interest

(stress) as described in Section 3.5.3.

4. Modal state-space analysis

(i) Find the ith modal load fgiði ¼ 1 . . . 2nÞ.
(ii) qi is obtained using Equation 3.129 in which li is the eigen value of matrix A (I.3.iii).

(iii) Dt is chosen as before and the zero initial condition is used to solve Equation 3.129.

(iv) ObtainZðtÞ using Equation 3.126 and stress responses are obtained using steps (v) and (vi)
of Direct Analysis.

5. Mode acceleration approach

(i) Obtain RðtÞ by solving Equation 3.120 statically.

(ii) Obtain Zi as given in Modal Analysis (II.3.iii).

(iii) Obtain response quantity RðtÞ using Equation 3.119; fi is the mode shape coefficient for

the response quantity of interest (obtained by the procedure given in Section 3.5.4).
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III. Frequency Domain Analysis

1. Direct analysis

(i) Choose sampling interval Dt for the ground motion time histories and take FFT of the

sampled time history.

(ii) Take half of the sampled outputs from FFT (that is, N=2 values, if N values are input

to FFT).

(iii) Find PðoÞ ¼ �Mrx€gðoÞ; x€gðoÞ are the outputs from FFT at an interval of Do ¼ 2p=T ,
T being the length of the time history; note thatPðoÞ is a vector, each element of the vector

changes with o 0;Do; N=2ð Þ�1½ �Dof g.
(iv) ObtainHðoÞ ¼ ½K�Mx2 þ iCx��1

; o is taken at an interval of Do starting from zero to

o ¼ N=2ð Þ�1½ �Do.
(v) Obtain XðoÞ ¼ HðoÞPðoÞ; each element of the vector varies with o 0;Do;f

N=2ð Þ�1½ �Dog. Add N=2 complex numbers to the series of numbers that are complex

conjugates of the first set of N=2 numbers in the manner explained in Section 3.4.4.

(vi) Take IFFT of the vector XðoÞ generated as above to obtain XðtÞ.
(vii) Obtain the stress responses as before.

2. State-space analysis

(i) Choose sampling interval Dt appropriately.
(ii) Take FFT of the vector pgðtÞ as mentioned before and form the vector fgðoÞ

(Equation 3.102).

(iii) Obtain HðoÞ ¼ ½Io�A��1
(Equation 3.104) for o 0;Do; N=2ð Þ�1½ �Dof g.

(iv) Obtain ZðoÞ ¼ HðoÞfgðoÞ and arrange elements of ZðoÞ in the same way as mentioned

in step III.1.(v) of Direct Analysis.

(v) Take IFFT of ZðoÞ to obtain ZðtÞ.
3. Modal analysis

(i) Choose sampling interval Dt appropriately.
(ii) Obtain the modal load piðtÞ ¼ �P kikx€gk (Equation 3.113), sample it at Dt and take the

FFT of it to obtain piðoÞ.
(iii) Obtain hiðoÞ (Equation 3.80) for o 0;Do; N=2ð Þ�1½ �Dof g.
(iv) Obtain ZiðoÞ ¼ hiðoÞpiðoÞ and obtain ZiðtÞ by IFFT of ZiðoÞ as explained before.

(v) Obtain XðtÞ ¼ fZðtÞ and other stress quantities of interest as mentioned in step (v) of the

Modal Analysis in Time Domain.

4. Modal state-space analysis

(i) Choose sampling interval Dt appropriately.
(ii) Obtain fg ¼ f�1fg; f gi is the ith element of fg.

(iii) Obtain the FFT of f gi.

(iv) Obtain hjðoÞ ¼ ðio�kjÞ�1
(Equations 3.131 and 3.129).

(v) Obtain qjðoÞ ¼ hjðoÞ f giðoÞ and take IFFT of qjðoÞ to obtain qjðtÞ.
(vi) Obtain ZðtÞ ¼ fqðtÞ.

Exercise Problems

(Use standard programs like MATLAB, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

3.13 Find the effective mass and stiffness of the structure corresponding to the dynamic degree of

freedom x shown in Figure 3.22. All members are assumed as inextensible. Shear stiffness 12EI=l3

for thememberAB is k. The shear stiffness of othermembers are given in terms of k. If the damping

ratio is assumed as 0.05 and k=m is assumed as 200 ðrad s�1Þ2, find the peak and rms displacements
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of x for the El Centro earthquake by: (i) Duhamel integral; (ii) frequency domain analysis using

FFT; and (iii) state-space analysis in the time domain.

3.14 A rigid pipe embedded within non-uniform soil is modeled as a lumped mass system as shown in

Figure 3.23. The soil stiffness and damping are modeled with springs and dash pots. If the soil

damping ratio is assumed to be 0.06 andk=m is assumed as 50 ðrad s�1Þ2, then find the peak and rms

responses of y and y to the El Centro earthquake by: (i) direct frequency domain analysis using FFT,

and (ii) direct time domain analysis using Newmark’s b-method.

3.15 Figure 3.24 shows the stickmodel for a building shear frame. Shear stiffness coefficients are shown

in the figure. The base of the frame is subjected to both rotational and translational groundmotions.

Using the direct frequency domain analysis, find the peak values of moment at the base and

displacement of the top mass. Take the ground motion as the El Centro earthquake and the

rotational component of ground motion as the translational component divided by 50. Take

k=m ¼ 50 ðrad s�1Þ2 and the damping ratio as 0.02.

3.16 Figure 3.25 shows a two-storey shear frame that is subjected to different excitations at the three

supportsproduceddue toanarbitrarilyassumed timelag in theearthquakegroundmotion.Obtain the

peak and rms values of the top displacement for El Centro groundmotion by: (i) direct time domain

analysis using Newmark’s b-method, and (ii) state-space analysis in the time domain. Assume

k=m ¼ 60ðrad s�1Þ2; the time lag between supports as 2.5s; and the modal damping ratio as 0.05.

2m 2mm m

l = 3 m l = 3 m l = 3 mθ

y

k k2k 2.5 1.2k

gx
gx gx gx

Figure 3.23 Pipe embedded within non-uniform soil
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Figure 3.22 Inclined portal frame (idealized as SDOF)

152 Seismic Analysis of Structures



3.17 For the frame with a secondary system attached to the top floor as shown in Figure 3.26, find the

peak value of the displacement of themass of the secondary system for different support excitations

as shown in the figure by: (i) direct frequency domain analysis using FFT, and (ii) state-space

analysis in the frequency domain. Assume: earthquake ground motions as the El Centro

earthquake; time lag as 5 s; k=m ¼ 60ðrad s�1Þ2; and damping ratio for the frame and secondary

system as 0.02. Compare the result with that obtained for no time lag, that is, the same excitations at

the supports.

3.18 Using the modal time domain and frequency domain analyses, find the peak values of the

displacement of the top floor and the first-storey drift of the frame shown in Figure 3.27 for El

Centro earthquake excitation. Compare between the results obtained by considering contributions
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Figure 3.25 Three bay shear frame
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Figure 3.24 Stick model for shear building frame
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of the first two modes only and all modes. Also, find the times at which the peak values of the top-

storey displacement takes place when only two modes are considered and when all modes are

considered. Assume the modal damping ratio as 0.05 and k=m ¼ 40ðrad s�1Þ2.
3.19 Using the modal time domain analysis, find the rms and peak values of the dynamic degrees of

freedom of a simplified model of a cable stayed bridge shown in Figure 3.28. Use the El Centro
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Figure 3.27 Four-storey shear frame

(3)

m

m

(2)

(1)

k

k

k

k

gx g

4

k

4

m

Figure 3.26 Frame with a secondary system
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earthquake with time lag between supports 4 and 5 as 2.5 s, 5 and 6 as 5 s, and 6 and 7 as 2.5 s.

Assume the following relationships: AE=l1 ¼ 12EI=s3;m1¼ 1/3m; 12EI=s3m ¼ 20ðrad s�1Þ2; and
the modal damping ratio as 0.05; (EI)tower¼ 0.25(EI)deck¼ 0.25 EI;

�
AE
410


deck¼ 0.8

�
AE
l1


cable;

s ¼ 125; l1 is the cable length joining the top of the tower to the end of the bridge; m1 as the mass

lumped at the top of the tower and m as the mass lumped at the centre of the bridge.

3.20 A six-storey shear frame, as shown in Figure 3.29, is subjected to El Centro ground motion. Using

the mode acceleration method, find the rms and peak values of the top floor and the first-floor

displacements shown in the figure. For the analysis, consider contributions of the first three modes

only. Compare the results of the mode acceleration method with those of the mode superposition

method considering the contributions of all modes. Assume themodal damping ratio to be 0.05 and

k=m ¼ 40ðrad s�1Þ2.

2

k

2

k

2

k

2

k

2

k

2

k

2

k

2

k

2

k
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k

2

k

m

m

m

m

m

m
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Figure 3.29 Six-storey shear frame
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Figure 3.28 Model of a three span cable stayed bridge
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3.21 A two-storey 3D frame with rigid slab, as shown in Figure 3.30, is subjected to the El Centro

earthquake. Using the mode acceleration method, find the peak values of the rotation and x

displacement of the first floor and y displacement of its top floor. Lateral stiffness of the columns are

the same in both directions. Total mass lumped at each floor is taken asm and the mass moment of

inertia corresponding to the torsional degree of freedom is taken as ml2=6. Assume the modal

damping ratio as 0.05; k=m ¼ 80ðrad s�1Þ2; m ¼ 10 000 kg and l ¼ 3 m. Consider first three

modes for the response calculation and evaluate the accuracy of the results.

3.22 A rigid slab is supported by three columns as shown in Figure 3.31. Columns are rigidly connected

to the slab and have the same lateral stiffness k in both directions. Total mass of the slab is m and

k=m ¼ 80ðrad s�1Þ2. Find the time histories of displacements of the degree of freedom when

the base of the structure is subjected to two-component groundmotion as shown in the figure. Take

x€xg as the El Centro earthquake and assume x€yg ¼1 =2x€xg. Use direct time domain analysis by

employing Newmark’s b-method.

(3)

y
x (1)

(2)

xgx
kk

k

ygx

Figure 3.31 Rigid slab supported on three columns
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Figure 3.30 Two-storey 3D frame
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Appendix 3.A Direct Generation of Mass and Stiffness Matrices
using the Method of Virtual Work

Mass and stiffnessmatrices can be generated using themethod of virtualwork. For certain structures, such

as inclined portal frames, the method may prove to be more convenient compared with other approaches.

For illustration, the structures shown in Examples 3.2–3.4 are considered.

The method consists of two steps. In the first step, unit displacement or unit acceleration is given to a

particularDOFkeeping other degrees of freedom locked.As a result, the internal (elastic) or inertial forces

generated in the structure are calculated. In the second step, a virtual displacement is given to the DOF for

which the stiffness or mass inertia coefficient is to be evaluated keeping other degrees of freedom locked.

The stiffness or inertia coefficient is then obtained from the virtual work equation.

Example 3.2

Figure 3.32 shows the steps involved in the computation of inertia coefficients m11; m21, and m31. In

Figure 3.32b, unit acceleration is given to the DOF 1. The inertia forces generated in the mass are shown

in the same figure. If a virtual displacementD is given to the DOF 1, then the displacements at the corners

will beD (as shown in Figure 3.32c) and the central mass will move byD=2 in the directions of the arrows
as shown in the same figure; it will also undergo a rotational movement of D=L.

Δ

Δ

ΔΔ

2

Δ

2

Δ

L

Δ

(c)

Δ

Δ

Δ

(d)

(a)

m

1

2

3

L

Column Column

Column
31m

21m

11m

2
m

2

m

6
mL

1 1

1

1

(b)

Figure 3.32 Calculation ofm11, m21, andm31: (a) DOF 1, 2, and 3; (b) unit acceleration given to DOF 1; (c) virtual
displacement given to DOF 2; and (d) virtual displacement given to DOF 3
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The virtual work equation gives

m11D�m

2

D
2
�m

2

D
2
�mD

6
¼ 0 ð3:138aÞ

m11 ¼ m

2
þ m

6
¼ 4m

6
ð3:138bÞ

If a virtual displacement D is given to the DOF 2 as shown in Figure 3.32c, then the virtual work

equation gives

m21D ¼ m

2

D
2
�m

2

D
2
�mD

6
ð3:139aÞ

m21 ¼ �m

6
ð3:139bÞ

If a virtual displacement D is given to the DOF 3 as shown in Figure 3.32d, then the virtual work

equation gives

m31D�m

2
D ¼ 0 ð3:140aÞ

m31 ¼ m

2
ð3:140bÞ

Example 3.3

Figure 3.33 shows the steps involved in the computation of inertia coefficient m11 and m21 for DOF 1

and 2. In Figure 3.33b, unit acceleration is given to theDOF1,while theDOF2 is locked. Resulting inertia

forces generated in different masses are shown in the same figure. The mass inertia coefficients m11 and

m21 at theDOF 1 and 2 are also shown. In Figure 3.33c, a virtual displacement ofD is applied to theDOF 1

keeping the DOF 2 locked. The virtual work equation provides

m11Dþm21 � 0�2mD�m

2
D ¼ 0 ð3:141aÞ

m11 ¼ 5

2
m ¼ 2:5m ð3:141bÞ

In Figure 3.33d, a virtual displacement of D is applied to the DOF 2 keeping the DOF 1 locked. The

virtual work equation provides

m11 � 0þm21D�m

2

2D
3
�m

4D
3

¼ 0 ð3:142aÞ

m21 ¼ 5

3
m ð3:142bÞ

In Figure 3.34a, unit acceleration is given to the DOF 2 keeping the DOF 1 locked. Resulting inertia

forces generated in different masses are shown in the same figure. In Figure 3.34b, a virtual displacement
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Figure 3.33 Calculation of m11 and m21: (a) DOF 1 and 2; (b) unit acceleration given to DOF 1; (c) virtual
displacement (D) given to DOF 1; and (d) virtual displacement given to DOF 2
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Figure 3.34 Calculation of m22: (a) unit acceleration given to DOF 2; and (b) virtual displacement given to DOF 2
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D is given to the DOF 2 keeping the DOF 1 locked. The virtual work equation provides

m22D�
ffiffiffiffiffi
13

p
m

6

ffiffiffiffiffi
13

p

6
2D� 4m

3

4D
3

¼ 0 ð3:143aÞ

m22 ¼ 26

36
þ 16

9

� �
m ¼ 45

18
m ¼ 5

2
m ¼ 2:5m ð3:143bÞ

3.6.3 Example 3.4

Figure 3.8a shows the kinematic degrees of freedom 1–5 for the frame. The stiffness matrix for the frame

in the partitioned form is given in the solution for the probem in Example 3.4. Here the derivation of k33,

k35, and k55 are shown using the method of virtual work.

In Figure 3.35a,

M1 ¼ M2 ¼ M3 ¼ 6EI

l
y ¼ 36EIffiffiffiffiffi

13
p

L
� 2

L
¼ 72EIffiffiffiffiffi

13
p

L2
;M4 ¼ M5 ¼ 6EI

L2
4

3
¼ 8EI

L2

F3 ¼ F2 ¼ F1 ¼ M1 þM2

l
; F4 ¼ M4 þM5

L

For virtual displacement of D given to the DOF 5, the virtual work equation provides

k55D ¼ F1 � 2D
L

�
ffiffiffiffiffi
13

p
L

6
þF3 � 2D

L
�

ffiffiffiffiffi
13

p
L

6
þF4

4D
3

ð3:144aÞ

k55 ¼ 2ðM1 þM2Þ
L

þ 2ðM1 þM3Þ
L

þ 4ðM4 þM5Þ
3L

¼ 8M1

L
þ 8M4

3L
¼ 8ffiffiffiffiffi

13
p � 72EI

L3
þ 64EI

3L3
¼ 181EI

L3

ð3:144bÞ

m4

m3

3 1

m2

m1

(b)

F2

2
5

13
6

lL

l

m2
m1

1

L

F3

m3

m4

4
3
m5

(a)

Figure 3.35 Calculation of k33, k35, and k55: (a) unit displacement given to the DOF 5; and (b) unit rotation given to
the DOF 3
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For virtual rotation of y given to the DOF 3, the virtual work equation provides

k35y ¼ M3y�M4y ð3:145aÞ

k35 ¼ 72EIffiffiffiffiffi
13

p
L2

� 8EI

L2
� 12EI

L2
ð3:145bÞ

In Figure 3.35b,

M2 ¼ 4EI

l
¼ 24EIffiffiffiffiffi

13
p

L
; M3 ¼ 4EI

L

For virtual rotation of y, the virtual work equation provides

k33y ¼ M2yþM3y ð3:146aÞ

k33 ¼ 24EIffiffiffiffiffi
13

p
L
þ 4EI

L
¼ 38:4EI

3:6L
ð3:146bÞ

Appendix 3.B Derivation of the Response over the Time Interval Dt
in Duhamel Integration

(i) Response due to Constant Force F0 over the Time Interval t

xpðtÞ ¼ F0

mod

� �ðt

0

e�zonðt�sÞsinodðt�sÞds

¼ F0

mod

ode
�zonðt�sÞ cosodðt�sÞþ zone

�zonðt�sÞ sinodðt�sÞ
o2

n

� �s¼t

s¼0

¼ F0

kod

od�ode
�zont cosodt�zone

�zont sinodt
� �

¼ � F0

k

� �
e�zont cosodt� zF0

k
ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
 !

e�zont sinodt
F0

k

� �

ð3:147Þ

_xpðtÞ ¼ F0

m

� �ðt

0

e�zonðt�sÞ cosodðt�sÞ� zffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
 !

sinodðt�sÞ
" #

ds

¼ F0

m

�ode
�zonðt�sÞsinodðt�sÞþ zone

�zonðt�sÞcosodðt�sÞ
o2

n

�

�
zone

�zonðt�sÞsinodðt�sÞþ z2one
�zonðt�sÞcosod

ðt�sÞffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
o2

n

3
7775

s¼t

s¼0

¼ F0

k
� onffiffiffiffiffiffiffiffiffiffiffi

1�z2
p

 !
e�zonðt�sÞsinodðt�sÞ

" #s¼t

s¼0

¼ �
on

F0

kffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
0
B@

1
CAe�zontsinodt ð3:148Þ
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Combining Equations 3.147 and 3.148 with the homogeneous solutions given in Equations 3.29

and 3.30, it follows that

xðtÞ ¼ x0�F0

m

� �
e�zontcosodtþ

zon x0�F0

k

� �
þ _x0

on

ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
2
664

3
775e�zontsinodtþ F0

k

� �
ð3:149Þ

_xðtÞ ¼ _x0e
�zontcosodt�

on x0 � F0

k

� �
þ x _x0ffiffiffiffiffiffiffiffiffiffiffi

1�z2
p

2
664

3
775e�zontsinodt ð3:150Þ

(ii) Response due to Triangular Variation of Force ðFsÞ within Time
Interval t0

The force at any time s given by

Fs ¼ F0

t0
s ð3:151Þ

Using the convolution integral

xpðtÞ ¼
ðt

0

F0

modt0

� �
se�zonðt�sÞsinodðt�sÞds ð3:152Þ

_xpðtÞ ¼
ðt

0

F0

mt0

� �
se�zonðt�sÞ cosodðt�sÞ� zffiffiffiffiffiffiffiffiffiffiffi

1�z2
p
 !

sinodðt�sÞ
" #

ds ð3:153Þ

First, consider the displacement response as given in Equation 3.152. Performing the integration gives

xpðtÞ ¼
ðt

0

F0

modt0

� �
se�zonðt�sÞsinodðt�sÞ

¼ F0

modt0

e�zonðt�sÞ

ðo2
d þ z2o2

nÞ2
�2zonod þðo2

d þ z2o2
nÞods

� 
cosodðt�sÞ�(

þðo2
d�z2o2

n þðo2
d þ z2o2

nÞzonsÞsinodðt�sÞ�
)s¼t

s¼0

ð3:154Þ

Simplifying Equation 3.154, it follows that

xpðtÞ ¼ 2zF0

kont0

� �
e�zontcosod þ F0ð2z2�1Þ

kont0
ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
" #

e�zontsinodtþ F0

kt0

� �
t� 2zF0

kont0

� �
ð3:155Þ
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The velocity follows from the integration of Equation 3.153 which gives

_xpðtÞ ¼
ðt

0

F0

mt0

� �
se�zonðt�sÞcosodðt�sÞds� zffiffiffiffiffiffiffiffiffiffiffi

1�z2
p

ðt

0

F0

mt0

� �
se�zonðt�sÞsinodðt�sÞds

¼ F0

mt0

e�zonðt�sÞ

ðo2
d þ z2o2

nÞ2
 

½ðo2
d þ z2o2

nÞþ ðo2
d þ z2o2

nÞzons�cosodðt�sÞ�

þ 2zonod�ðo2
d þ z2o2

nÞods�sinodðt�sÞ� �1
!s¼t

s¼0

� zffiffiffiffiffiffiffiffiffiffiffi
1�z2

p F0

mt0

e�zonðt�sÞ

ðo2
d þ z2o2

nÞ2
½�2zonod þðo2

d þ z2o2
nÞods�

� 
cosodðt�sÞ

þ ðo2
d þ z2o2

nÞþ ðo2
d þ z2o2

nÞzons�sinodðt�sÞ� �!s¼t

s¼0

ð3:156Þ

Simplifying Equation 3.156 gives

xpðtÞ ¼ F0

kt0

� �
e�zontcosodt� zffiffiffiffiffiffiffiffiffiffiffi

1�z2
p � F0

kt0

" #
e�zontsinodtþ F0

kt0

� �
ð3:157Þ

Substituting t ¼ t0 ¼ Dt and F0 ¼ Fkþ1�Fk, Equations 3.155 and 3.157 are given as:

xpðDtÞ ¼ 2zðFkþ1�FkÞ
konDt

� �
e�zonDt cosodDt

þ ðFkþ1�FkÞð2z2�1Þ
konDt

ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
" #

e�zonDtsinodDtþ Fkþ1�Fk

k

� �
� 2zðFkþ1�FkÞ

konDt

ð3:158Þ

_xpðDtÞ ¼ � Fkþ1�Fk

kDt

� �
e�zonDtcosodDt

� zffiffiffiffiffiffiffiffiffiffiffi
1�z2

p ðFkþ1�FkÞ
kDt

" #
e�zonDtsinodDt þ Fkþ1�Fk

kDt

� � ð3:159Þ

Similarly, substituting x0 ¼ xk, _x0 ¼ _xk, t ¼ Dt, and F0 ¼ Fk into Equations 3.149 and 3.150

xðDtÞ ¼ � xk�Fk

k

� �
e�zonDtcosodDtþ

onz xk�Fk

k

� �
þ _xk

on

ffiffiffiffiffiffiffiffiffiffiffi
1�z2

p
2
664

3
775e�zonDtsinodDtþ Fk

k

� �
ð3:160Þ
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_xðDtÞ ¼ _xke
�zonDtcosodDt�

on xk�Fk

k

� �
þ z _xkffiffiffiffiffiffiffiffiffiffiffi

1�z2
p

2
664

3
775e�zonDtsinodDt ð3:161Þ

Adding the responses due to the constant forceFk and the triangular variation of forceFkþ1�Fk=Dt s over
the time interval Dt, that is, adding Equations 3.158–3.161 and then separating out the terms containing

xk, _xk, Fkþ1, Fkþ1, xkþ1, and _xkþ1, the responses are given as:

xkþ1 ¼ C1xk þC2 _xk þC3Fk þC4Fkþ1 ð3:162Þ

_xkþ1 ¼ D1xk þD2 _xk þD3Fk þD4Fkþ1 ð3:163Þ

in which expressions for C1, C2, D1, D2, and so on, are given by Equations 3.38–3.45.

Note that in arriving at the expressions given by Equations 3.162 and 3.163, homogeneous parts of the

solution are considered (once) only with constant variation of force Fk over the time interval Dt.

Appendix 3.C Digitized Values of the Ground Acceleration of El Centro
Earthquake

Table 3.9 contains ground acceleration data for the El Centro earthquake.

Table 3.9 Ground acceleration (in g unit) data for the El Centro earthquake, sampled at Dt¼ 0.02 s (read row wise)

0 0.0062 0.0036 0.001 0.0042 0.0074 0.0107 0.0067
0.0027 �0.0013 0.0036 0.0085 0.0133 0.0071 0.0009 0.0041
0.0022 0.0002 0.0044 0.0085 0.0127 0.0168 �0.0034 �0.0235
�0.0097 0.0041 0.0052 0.0162 0.0273 0.0383 0.024 0.0098
0.0094 0.0091 0.0088 �0.0048 �0.0183 �0.0318 �0.033 �0.0561
�0.0445 �0.0328 �0.0314 �0.03 �0.0286 �0.0271 �0.0404 �0.0536
�0.0669 �0.0801 �0.0672 �0.0542 �0.0413 �0.0418 �0.0423 �0.0238
�0.0053 0.0131 0.0316 0.0501 0.0685 0.087 0.0444 0.0018
�0.0409 �0.0835 �0.1261 �0.1688 �0.1266 �0.0845 �0.0873 �0.0902
�0.093 �0.0915 �0.0899 �0.093 �0.096 �0.1266 �0.0751 �0.0236
0.0279 0.0795 0.131 0.1825 0.234 0.2158 0.1975 0.1793
0.1611 0.1429 0.1584 0.1739 0.1296 0.0854 0.0412 �0.0031
�0.0473 �0.0916 �0.1358 �0.18 �0.2243 �0.2685 �0.3128 �0.2455
�0.1782 �0.1109 �0.0437 0.0236 0.0909 0.1582 0.2254 0.2927
0.2276 0.1624 0.0972 0.0321 �0.0331 �0.0982 �0.1634 �0.2286
�0.2937 �0.0041 0.2855 0.2195 0.1536 0.0877 0.0218 �0.0441
0.018 0.0801 0.1422 0.2042 0.1861 0.168 0.135 0.102
0.0689 0.0359 0.0029 �0.0301 �0.0055 0.0191 0.0437 0.0635
0.0832 0.1029 0.0578 0.0128 �0.0323 �0.0773 �0.0349 0.0076
0.05 0.0099 �0.0301 �0.0702 �0.1103 �0.1503 �0.111 �0.0717
�0.0323 0.007 �0.0623 �0.1316 �0.2009 �0.1224 �0.044 0.0345
0.1129 0.1914 0.1207 0.05 �0.0207 �0.0914 �0.0261 0.0392
0.1045 0.1698 0.1107 0.0516 �0.0076 0.0104 0.0284 0.0465
0.0645 0.0198 �0.0248 �0.0695 �0.0403 �0.0111 0.0028 0.0168
0.0307 �0.0223 �0.0754 �0.1285 �0.1815 �0.1407 �0.1 �0.0592
�0.0184 0.0224 �0.0098 �0.0419 �0.0211 �0.0002 0.0206 �0.0143
�0.0493 �0.0842 �0.1192 �0.1541 �0.1891 �0.224 �0.178 �0.132
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Table 3.9 (Continued)

�0.0859 �0.0399 0.0061 0.0521 0.0982 0.1442 0.0957 0.0472
�0.0014 0.0504 0.1022 0.154 0.2058 0.2576 0.1667 0.0759
�0.015 �0.1058 �0.1967 �0.0666 0.0636 0.0164 �0.0308 �0.0779
�0.1251 �0.1723 �0.2194 �0.2666 �0.1555 �0.0444 0.0667 0.1778
0.1419 0.1059 0.07 0.0341 0.0948 0.1556 0.2163 0.1795
0.1426 0.1058 0.0689 0.032 0.0652 0.0984 0.1316 0.1014
0.0712 0.041 0.0108 �0.0195 0.0435 0.1065 0.1695 0.1022
0.0348 �0.0325 �0.0999 �0.0712 �0.0426 �0.014 0.0146 �0.0199
�0.0544 �0.0889 �0.1234 �0.1579 �0.1924 �0.145 �0.0977 �0.0503
�0.0029 �0.0191 �0.0354 �0.0516 �0.041 �0.0305 �0.0285 �0.0265
0.0247 0.0174 0.0217 0.0261 0.0041 �0.0178 �0.0398 �0.0617
�0.0237 0.0143 0.0524 0.0238 �0.0047 �0.0332 �0.0055 0.0223
0.0067 �0.009 �0.0246 �0.0403 �0.0559 �0.0179 0.0201 0.0045
�0.0112 �0.0021 0.0069 0.0049 0.0028 0.0007 �0.0052 �0.0112
0.0035 0.0183 0.033 0.0477 0.0298 0.0119 �0.006 �0.0239
0.0135 0.0108 0.0081 0.0054 0.008 0.0106 �0.0068 �0.0241
�0.0415 �0.0589 �0.0762 �0.0936 �0.0609 �0.0283 0.0044 0.0371
0.0174 �0.0023 �0.0219 0.0176 0.0571 0.0367 0.0163 �0.0041
�0.0245 �0.0449 �0.0203 0.0042 0.0288 0.015 0.0177 0.0205
0.0078 �0.0049 �0.0176 �0.0303 �0.0181 �0.0058 0.0064 �0.0247
�0.0558 �0.0397 �0.0235 �0.0074 0.0088 0.0038 �0.0013 �0.0063
�0.0113 �0.0257 �0.04 �0.0544 �0.0428 �0.0313 �0.0683 �0.0553
�0.0422 �0.0292 �0.0161 �0.0031 0.01 0.0231 0.0361 0.0492
0.0239 �0.0014 �0.0266 �0.003 0.0206 0.0442 0.0677 0.0566
0.0455 0.0344 0.0329 0.0315 0.03 0.0319 0.0338 0.0357
0.0132 �0.0092 �0.0317 �0.0294 �0.0304 �0.0313 �0.0254 �0.0195
�0.0135 �0.0076 �0.0142 �0.0208 0.0149 0.0507 0.0865 0.1223
0.158 0.1274 0.0968 0.0661 0.0355 0.0049 0.0041 0.0034
0.0026 �0.0581 �0.1188 �0.1796 �0.1181 �0.0567 0.0047 0.0661
0.1275 0.0821 0.0367 0.0685 0.1002 �0.0345 �0.1692 �0.135
�0.1008 �0.0666 �0.0325 �0.0358 �0.0391 �0.0051 0.0289 0.063
0.097 0.131 0.0581 �0.0147 �0.0876 �0.1604 �0.0598 0.0408
0.0152 �0.0104 �0.036 �0.0617 �0.0873 �0.0533 �0.0192 0.0148
0.0488 0.0829 0.0493 0.0157 �0.0179 �0.0515 �0.085 �0.0664
�0.0478 �0.0291 �0.0105 0.0081 �0.0031 0.0291 0.0613 �0.0023
�0.0659 �0.0397 �0.0136 0.0125 0.0079 0.0297 0.0514 0.0231
�0.0053 �0.0337 �0.062 �0.0904 �0.1188 �0.0829 �0.047 �0.0112
0.0247 0.0606 0.0395 0.0184 0.0437 0.069 0.0943 0.1195
0.0623 0.0051 �0.0522 �0.0306 �0.0091 0.0124 0.0339 0.0322
0.0305 0.0288 0.0443 0.0597 0.0752 0.0906 0.0563 0.022
�0.0123 0.0067 0.0256 0.0446 0.0154 �0.0138 �0.0429 �0.0721
�0.0391 �0.0062 0.0267 0.0596 0.036 0.0123 �0.0113 �0.035
�0.0066 0.0217 0.05 0.0783 0.0678 0.0573 0.0468 0.0364
0.0259 0.0571 0.0884 0.1196 0.0988 0.0779 0.0571 0.0362
0.0153 �0.0055 �0.0264 �0.0473 �0.0681 �0.089 �0.1098 �0.113
�0.1162 �0.1194 �0.1226 �0.1619 �0.2012 �0.1541 �0.1071 �0.0601
�0.0131 0.0339 0.0809 0.0743 0.0677 0.0612 0.0857 0.1102
0.1347 0.1194 0.1041 0.0888 0.0736 0.0786 0.0836 0.0887
0.0609 0.0331 0.0054 �0.0224 �0.0534 �0.0395 �0.0257 �0.0118
�0.0199 �0.028 �0.0612 �0.0346 �0.0079 �0.0485 �0.0357 �0.0229
�0.033 �0.0184 �0.0038 0.0108 0.0254 0.0142 0.003 �0.0082
0.0045 0.0173 0.0301 0.0429 0.0212 �0.0004 �0.0221 �0.0437
�0.0357 �0.0277 �0.0196 �0.0116 �0.024 �0.0364 �0.0487 �0.0577
�0.0667 �0.0756 �0.0846 �0.0935 �0.0616 �0.0296 0.0023 0.0343
0.0432 0.052 0.0312 0.0103 �0.0105 �0.0314 �0.0522 0.0018
0.0559 0.0195 �0.0169 �0.0533 �0.0118 0.0297 0.0713 0.1128
0.071 0.0292 �0.0126 0.0119 0.0364 0.0345 0.0326 0.0182
0.0038 0.0034 �0.0214 �0.0461 �0.0709 �0.0956 �0.1204 �0.0816
�0.0428 �0.004 0.0348 0.0736 0.1124 0.0762 0.04 0.0038

(continued )
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Table 3.9 (Continued)

0.0028 0.0018 �0.0541 0.0464 0.0512 0.0561 0.0609 0.0657
0.0705 0.0265 �0.0175 �0.0614 �0.1054 �0.1494 �0.1235 �0.0976
�0.0717 �0.0458 �0.0199 0.006 0.0319 0.0084 �0.0151 �0.0386
�0.0621 �0.0326 �0.0031 0.0264 0.0117 �0.0029 0.0033 0.0095
0.0157 0.022 0.0413 0.0607 0.0801 0.0341 �0.0119 �0.0128
�0.0138 �0.0517 �0.025 0.0018 0.0286 0.0554 0.0822 0.0172
�0.0478 �0.0203 0.0071 0.0345 �0.0052 �0.0449 �0.0845 �0.0683
�0.052 �0.0358 �0.0195 �0.0033 0.013 0.0293 0.0108 �0.0077
�0.0261 �0.0055 0.0151 0.0357 0.0563 0.031 0.0057 �0.0195
�0.002 0.0156 �0.01 �0.0357 �0.0613 �0.0469 �0.0325 �0.0485
�0.0645 �0.0804 �0.0489 �0.0173 0.0143 0.0459 0.0775 0.0466
0.0157 �0.0152 �0.001 0.0132 0.0274 0.0416 0.0558 0.0371
0.0183 �0.0004 �0.0191 �0.0042 0.0108 0.0257 0.0407 0.0179
�0.005 �0.0086 �0.0366 �0.0645 �0.0255 0.0135 0.0526 0.0916
0.0577 0.0238 �0.0101 �0.0439 �0.0106 �0.0183 �0.026 �0.0338
�0.0246 �0.0153 �0.0061 �0.0099 �0.0137 0.0146 0.0429 0.034
0.0206 0.0072 �0.0062 �0.0196 0.0075 0.0346 0.0334 0.0322
0.031 0.0236 0.0161 0.0096 0.0032 �0.0033 0.0216 �0.019
�0.0597 �0.1003 �0.077 �0.0536 �0.0303 �0.0069 0.0165 0.0191
0.0217 0.0244 0.0177 �0.002 �0.0217 �0.0027 0.0162 0.0352
0.0542 0.0732 0.0609 0.0485 0.0362 �0.0014 0.0451 0.04
0.0349 0.0298 0.0356 0.0413 0.0471 0.0529 0.0485 0.0442
0.0398 0.0354 0.0311 0.006 �0.019 �0.044 �0.0691 �0.0941
�0.076 �0.0579 �0.0398 �0.0216 �0.0035 0.0146 0.0099 0.0051
0.0004 �0.0043 �0.0091 �0.0117 �0.0149 �0.0182 �0.0215 �0.0096
0.0022 0.014 0.0033 �0.0075 �0.0182 �0.0072 0.0038 0.0147
0.0257 0.01 �0.0058 �0.0215 �0.0012 0.0192 0.0395 0.0277
0.0159 0.0042 0.0019 �0.0003 �0.0025 �0.0048 �0.007 �0.0092
�0.0115 �0.0137 �0.0172 �0.0206 �0.0241 �0.0276 �0.0311 �0.0345
�0.0413 �0.048 �0.0349 �0.0219 �0.0088 0.0042 0.0173 0.007
�0.0033 �0.0136 0.0129 0.0393 0.0658 0.0473 0.0288 0.0102
�0.0083 �0.0268 �0.0453 �0.031 �0.0166 �0.0022 0.0122 0.0263
0.0404 0.0545 0.0319 0.0093 �0.0133 �0.014 �0.0148 �0.0155
�0.0413 �0.0263 �0.0114 0.0036 0.0185 0.0335 0.0306 0.0277
0.0286 0.0296 0.0305 0.0038 �0.0229 �0.0497 �0.0375 �0.0253
�0.0131 �0.0009 0.0112 0.0234 0.0356 0.0103 �0.0151 �0.0404
�0.0657 �0.0511 �0.0364 �0.0218 �0.0072 0.0075 0.0221 0.0368
0.0392 0.0418 0.0442 0.0467 0.0491 0.0446 0.04 0.0282
0.0164 0.0046 �0.0072 �0.0011 0.005 0.0111 0.0172 �0.0021
�0.0213 �0.0406 �0.0598 �0.079 �0.0686 �0.0582 �0.0478 �0.0373
�0.0251 �0.0129 �0.0006 0.0116 0.0239 0.0361 0.0483 0.0292
0.01 �0.0091 �0.0283 �0.0475 �0.0666 �0.0477 �0.0288 �0.0099
0.009 0.028 0.0469 0.0241 0.0013 �0.0215 �0.0443 �0.0671
�0.0488 �0.0306 �0.0124 0.0058 0.0241 0.0423 0.0605 0.0787
0.097 0.0633 0.0296 �0.0041 �0.0377 �0.0714 �0.0589 �0.0463
�0.0337 �0.0317 �0.0297 �0.0277 �0.0039 0.0199 0.0031 �0.0138
�0.0306 �0.0475 �0.0644 �0.0503 �0.0363 �0.0223 �0.0083 0.0058
0.0198 0.0265 0.0331 0.0398 0.0465 0.0532 0.0347 0.0162
0.0159 0.0157 0.0154 0.0073 �0.0008 �0.0089 0.0007 0.0103
0.0199 0.0295 0.0391 0.0341 0.0291 0.0241 0.0302 0.0362
0.0423 0.0484 0.0544 0.0605 �0.0052 �0.0708 �0.0622 �0.0535
�0.0448 �0.0361 �0.0361 �0.0361 �0.036 �0.0173 0.0014 0.0201
0.0388 0.0575 0.0349 0.0122 �0.0105 �0.0331 �0.0558 �0.0442
�0.0325 �0.0209 �0.0093 0.0023 �0.002 �0.0064 �0.0108 �0.0152
�0.0118 �0.0083 �0.0049 �0.0015 0.0019 0.0005 �0.0009 0.0111
0.0232 0.0352 0.0473 0.0593 0.0713 0.0279 �0.0155 �0.0589
�0.0497 �0.0406 �0.0314 �0.0308 �0.0301 �0.0295 �0.0183 �0.0071
0.0042 0.0154 0.0266 0.0378 0.0292 0.0205 0.0229 0.0253
0.0277 0.03 0.0324 0.0134 �0.0055 �0.0245 �0.0217 �0.0189
�0.0161 �0.0133 �0.0124 �0.0115 �0.0017 0.0082 0.018 0.0278
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Appendix 3.D Simulink Diagrams

Simulink diagrams for the solution of multi-degrees of freedom system under multi-support earthquake

excitation are shown in Figures 3.36 and 3.37 for the problem in Example 3.9. In Figure 3.36, Simulink

Table 3.9 (Continued)

0.0376 0.0475 0.0368 0.0261 0.0154 0.0047 �0.006 �0.0166
�0.0077 0.0013 0.0103 0.0193 0.0283 �0.0049 �0.0382 �0.023
�0.0078 0.0074 0.0227 0.0069 �0.0088 �0.0245 �0.0402 �0.0559
�0.0286 �0.0013 0.0259 0.0532 0.0352 0.0171 �0.0009 �0.019
�0.0371 �0.0224 �0.0077 0.007 0.0217 0.0364 0.0511 0.0657
0.0804 0.0303 �0.0199 �0.07 �0.1202 �0.0848 �0.0494 �0.014
0.0214 0.0568 0.0922 0.1276 0.0354 �0.0568 �0.0471 �0.0374
�0.0278 �0.0181 �0.0084 �0.0358 �0.0632 �0.0605 �0.0578 �0.0551
�0.0596 �0.064 �0.0454 �0.0268 �0.0081 0.0105 0.0291 0.0308
0.0324 0.0341 0.0357 0.0449 0.054 0.0632 0.0723 0.0815
0.0354 �0.0107 �0.0568 �0.0461 �0.0353 �0.0246 �0.0139 �0.0349
�0.056 �0.0771 �0.0618 �0.0466 �0.0314 �0.0162 �0.001 0.009
0.0191 0.0291 0.0392 0.0492 0.0593 0.0693 0.0794 �0.0019
�0.0831 �0.069 �0.0548 �0.0407 �0.052 �0.0632 �0.0745 �0.0857
�0.097 �0.0667 �0.0364 �0.0061 0.0242 0.0545 0.0848 0.1151
0.1453 0.0855 0.0257 �0.0342 �0.094 �0.0697 �0.0453 �0.0209
0.0035 0.0278 0.0522 �0.0046 �0.0614 �0.1182 �0.0977 �0.0772
�0.0567 �0.0363 �0.0158 0.0047 0.0252 0.0457 0.0662 0.0866
0.1071 0.1276 0.1079 0.0881 0.0684 0.0486 0.0393 0.03
0.0207 0.0114 0.0077 0.0039 0.0002 �0.0035 �0.0072 �0.0109
�0.0077 �0.0044 �0.0012 0.0021 0.0053 �0.0082 �0.0216 �0.0351
�0.0485 �0.062 �0.0495 �0.037 �0.0245 �0.012 0.0005 0.0047
0.009 0.0133 0.0176 0.0219 0.0087 �0.0045 �0.0177 �0.0309
�0.0223 �0.0137 �0.0052 0.0034 0.012 0.0206 0.0141 0.0076
0.0011 0.0081 0.0151 0.0221 0.0168 0.0115 0.0062 0.0135
0.0207 0.028 0.0352 0.0425 0.0339 0.0254 0.0168 0.0083
�0.0003 �0.0088 �0.0012 0.0063 0.0139 0.02 0.0261 0.0322
0.0383 0.0444 0.0357 0.027 0.0183 0.0096 0.0008 �0.0131
�0.027 �0.0409 �0.0276 �0.0143 �0.0009 0.0124 0.0257 0.0166
0.0074 �0.0017 �0.0109 �0.0201 �0.0292 �0.0384 �0.024 �0.0095
0.0049 0.0193 0.0337 0.0201 0.0066 �0.0069 �0.0205 �0.034
�0.0261 �0.0182 �0.0104 �0.0025 �0.0006 0.0013 0.0031 0.005
0.0098 0.0146 0.0078 0.0009 �0.0059 0.0034 0.0126 0.0219
0.0312 0.0405 0.0266 0.0126 �0.0013 �0.0152 �0.0292 �0.0431
�0.0354 �0.0277 �0.0201 �0.0124 �0.0047 0.003 0.0107 0.0097
0.0086 0.0075 0.0065 0.0121 0.0177 0.0233 0.029 0.0346
0.0273 0.02 0.0128 �0.0335 �0.0062 �0.0061 �0.006 �0.006
�0.0059 �0.0058 �0.0058 �0.0057 �0.0057 �0.0056 �0.0055 �0.0055
�0.0054 �0.0053 �0.0053 �0.0052 �0.0052 �0.0051 �0.005 �0.005
�0.0049 �0.0048 �0.0048 �0.0047 �0.0047 �0.0046 �0.0045 �0.0045
�0.0044 �0.0044 �0.0043 �0.0042 �0.0042 �0.0041 �0.004 �0.004
�0.0039 �0.0039 �0.0038 �0.0037 �0.0037 �0.0036 �0.0035 �0.0035
�0.0034 �0.0034 �0.0033 �0.0032 �0.0032 �0.0031 �0.0031 �0.003
�0.0029 �0.0029 �0.0028 �0.0027 �0.0027 �0.0026 �0.0026 �0.0025
�0.0024 �0.0024 �0.0023 �0.0022 �0.0022 �0.0021 �0.0021 �0.002
�0.0019 �0.0019 �0.0018 �0.0017 �0.0017 �0.0016 �0.0015 �0.0015
�0.0014 �0.0014 �0.0013 �0.0012 �0.0012 �0.0011 �0.0011 �0.001
�0.0009 �0.0009 �0.0008 �0.0007 �0.0007 �0.0006 �0.0006 �0.0005
�0.0004 �0.0004 �0.0003 �0.0002 �0.0002 �0.0001 �0.0001 0

Response Analysis for Specified Ground Motions 167



diagram for the solution using the state-space formulation is presented, while in Figure 3.37 the solution

of the second-order differential equation is presented. The out puts of the solutions are displacement,

velocity, and acceleration sampled at the time interval of Dt. They are stored in files 1–3.

acceleration.mat

To file3

velocity.mat

To file2

displacement.mat

To file1Mux

G2

Gain4

G1

Gain3

G1

Gain2

G0

Gain1[t,xg2]

From
work space

(earthquake ground
excitations)

[t,xg1]

From
work space

du/dt

Derivative1

du/dt

Derivative

Add

+
+

+

Figure 3.37 Simulink diagram for the solution of the second-order equation

acceleration.mat

To file3

velocity.mat

To file2

displacement.mat

To file1

x' = Ax+Bu
 y = Cx+Du

State-space
model of

structural system

Mux[t,xg2]

From 
work space

(earthquake ground 
excitations)

[t,xg1]

From 
work space

du/dt

Derivative

Demux

Figure 3.36 Simulink diagram for the solution of the state-space equation

Example 3.9

3.23. Solve Example 3.9 using theSimulink toolbox ofMATLAB� by (a) state-space solution and (b) solution of

second-order differential equations.

Solution:

M ¼ 2:5 1:67

1:67 2:5

� �
m

K ¼ 4
19:56 10:49

10:49 129

� �
m

r ¼ 0:479 0:331

�0:131 0:146

" #
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Cmatrix is generated with a ¼ 0:431 and b ¼ 0:0041. Excitations at the two supports are generated as
explained in Example 3.9, each of duration 35 s.

State-space solution–

A¼ 0 I

�KM�1 �CM�1

" #
4�4

B ¼ 0

�r

" #
4�2

where D¼ null matrix ð4� 2Þ and C¼ diagonal identity matrix ð4� 4Þ.
Solution of the second-order equation–

G0 ¼ r G1 ¼ MK�1 G2 ¼ CK�1
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4

Frequency Domain Spectral
Analysis

4.1 Introduction

Frequencydomain spectral analysis is performed in order to obtain the responses of structures subjected to

random/stochastic excitations. It is one of the most popular techniques for random vibration analysis of

structures in the frequency domain and is strictly applicable for linear systems. However, for non-linear

systems, the method of analysis has also been extended by applying suitable linearization techniques and

is found to work satisfactorily for mildly non-linear systems. The popularity of the method is primarily

due to its simplicity and elegance.

When the dynamic excitations are modeled as stationary random processes, they are characterized

by the moments of their probability density functions (PDFs), which remain invariant with the shift in

time. For most of the structural engineering problems, the second moment of the PDF, that is, the mean

square value of the process is of interest and, therefore, the second-order stationarity is sufficient

for modeling random dynamic excitations such as wind, earthquake, and wave forces. This permits the

use of frequency domain spectral analysis to find the responses of linear structural systems subjected to

these forces.

In this chapter, the spectral analysis of structures for earthquake forces is developed without going into

the rigors of the theory of randomvibration analysis. The objective of this treatment is to enable one to use

the spectral analysis of structures for earthquake forces without being a specialist in random vibration

analysis. The development of the method uses simple concepts, such as, the stationary random process,

auto correlation, and power spectral density functions, cross correlation and cross power spectral density

functions, ergodicity, and Fourier transforms. These concepts will first be introduced.

4.2 Stationary Random Process

A random process is one that deals with a number of random variables. For example, a fluctuating

component of wind velocity sampled at 2 s intervals between 12:00 and 12.15 p.m. every day for 365 days

will constitute a randomprocess. In this process, therewill be 451 randomvariables; each randomvariable

can assume 365 values. The random variables can be designated as xð0Þ; xð2Þ; xð4Þ; xð6Þ . . . ; xð900Þ;
xð0Þ and xð900Þ being the velocities measured at 12:00 and 12.15 noon respectively. Thus, the random

variation ofwind velocity in a year between 12 and 12.15 p.m. can be represented by a randomprocessx(t)
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having random variables xðt1Þ; xðt2Þ . . . ; xðtnÞ with n ¼ 451 and t1 ¼ 0. The sample size for each

variable is 365. In order to characterize a random process, the sample size should ideally be infinity. In

practice, this cannot be realized. Therefore, a sample size as large as possible is considered. If the random

variables xð0Þ; xð2Þ; xð4Þ; xð6Þ . . . ; xð900Þ are connected by a single function of time t, then the random

process is called a parametric random process (with parameter t). It is also called a stochastic process as

the parameter involved is the time. To characterize a stochastic process, the number of samples

constituting the ensemble should be infinity and each sample should also be of infinite duration. Again,

for practical purposes, the number of the sample size and duration of each sample should be as large as

possible to characterize the process.

An ensemble of time histories of a stochastic process xðtÞ is shown in Figure 4.1.As shown in the figure,
xðt1Þ; xðt2Þ . . . ; xðtnÞ and so on are the randomvariables that can assume anyvalue across the ensemble.A

stationary stochastic process (of order two) is one for which the ensemble mean square value remains

invariant with the time shift t. Thismeans that themean square value of xðt1Þ across the ensemble is equal

to that of xðt2Þ, in which t2 ¼ t1 þ t for any value of t. Thus, a stationary stochastic process can be

represented by a unique mean square value, which is the ensemble mean square value. If the mean square

value is obtained after deducting the ensemble mean (which also remains invariant with the time shift)

from the values of the random variables, then it is called the variance. For example, if the random variable

is xðtÞ, then the variance is

s2x ¼ E ½fxðt1Þ��xðt1Þg2�
in which E½ � denotes the expectation or average of the value and �xðt1Þ is the ensemble mean of xðt1Þ.
In this case, the stationary process is characterized by a unique value of the variance ðs2xÞ. Clearly, for a
zero mean process the variance is equal to the mean square value.

A stationary process is called an ergodic process if the ensemble mean square value (or variance) is

equal to the sample mean square value (or variance). that is,

s2x ¼ s2xi i ¼ 1 . . .N

t t1

x4 (t)

•

•

•

•

•

x3 (t)

x2 (t)

x1 (t)

Figure 4.1 An ensemble of time histories of stochastic process xðtÞ
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in which N is the number of sample s, i denotes ith sample, and

s2xi ¼
1

T

ðT

0

½xðtÞ��xðt1Þ�2i dt

If a stochastic process is an ergodic process, then any sample time history, taken from the ensemble,

represents the second-order statistics (that is, mean square value, variance, and second moment of PDF,

and so on) of the stochastic process. For the ergodic process, the development of the frequency domain

spectral analysis is simple, and will be explained subsequently.

4.3 Fourier Series and Fourier Integral

Anyarbitrary functionx(t) can be decomposed into a number of harmonic functions using thewell-known

equation:

xðtÞ ¼ a0

2
þ
Xa
k¼1

akcos
2pkt
T

þ bksin
2pkt
T

� �
ð4:1Þ

ak ¼ 2

T

ðT2

�T
2

xðtÞcos 2pkt
T

dt; a0 ¼ 2

T

ðT2

�T
2

xðtÞdt ð4:2Þ

bk ¼ 2

T

ðT2

�T
2

xðtÞsin 2pkt
T

dt ð4:3Þ

T is the duration of xðtÞ, and it is assumed that xðtÞ has a periodicity of T, that is, xðtþ TÞ ¼ xðtÞ.
Using Equations 4.2 and 4.3, it is possible to write Equation 4.1 in the form

xðtÞ ¼ a0

2
þ
Xa
k¼1

Do
p

ðT2

�T
2

xðtÞcosðoktÞdt

2
64

3
75cosðoktÞþ

Xa
k¼1

Do
p

ðT2

�T
2

xðtÞsinðoktÞdt

2
64

3
75sinðoktÞ ð4:4Þ

in which Do ¼ 2p=T and ok ¼ 2pkt=T .
For T ! a, Do! do and S becomes an integral. Therefore,

xðtÞ ¼ a0

2
þ

ða

o¼0

do
p

ða

�a

xðtÞcosðotÞdt
8<
:

9=
;cosðotÞþ

ða

o¼0

do
p

ða

�a

xðtÞsinðotÞdt
8<
:

9=
;sinðotÞ ð4:5Þ

Putting

AðoÞ ¼ 1

2p

ða

�a

xðtÞcosðotÞdt ð4:6aÞ

BðoÞ ¼ 1

2p

ða

�a

xðtÞsinðotÞdt ð4:6bÞ
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which gives

xðtÞ ¼ 2

ða

o¼0

AðoÞcosðotÞdoþ 2

ða

o¼0

BðoÞsinðotÞdo ð4:7aÞ

Recognizing that terms within the integration are even functions ofo, Equation 4.7a may bewritten as

xðtÞ ¼
ða

�a

AðoÞsinot doþ
ða

�a

BðoÞsinot do ð4:7bÞ

A negative frequency does not have a physical significance, but is a useful mathematical artifice

introduced to represent the form of the Fourier integral pairs in compact form.

Introducing the complex harmonic function

e�iot ¼ cosðotÞ�i sinðotÞ ð4:8Þ
An equation may be written as:

xðoÞ ¼ AðoÞ�iBðoÞ ¼ 1

2p

ða

�a

xðtÞe�iotdt ð4:9Þ

in which xðoÞ is a complex quantity. Using Equations 4.8 and 4.9, Equation 4.7b can be written as:

xðtÞ ¼
ða

�a

xðoÞeiotdo ð4:10Þ

In the above derivation, it is assumed that a0 ¼ 0. Equations 4.9 and 4.10 are known as Fourier

transform pair of integrals. For a Fourier integral to be strictly valid for any arbitrary function, the

following condition has to be satisfied:

ða

�a

xðtÞj jdt< a ð4:11Þ

However, this condition can be relaxed under many circumstances. For engineering applications,

Equations 4.9 and 4.10 are solved using discrete Fourier transform (DFT). The equivalent forms of

the Fourier integral in DFT are [1]

xkðoÞ ¼ 1

N

XN�1

r¼0

xre
�i

2pkr
N

� �
ð4:12Þ

xrðtÞ ¼
XN�1

k¼0

xke
i
2pkr
N

� �
ð4:13Þ

Fast Fourier algorithms (FFTand IFFT) are based on DFT. In FFT, xðtÞ is sampled at an interval of Dt
and discrete values of xðtÞ, that is, xr, are provided as inputs. The number of values should preferably be

N ¼ 2n, with n as an integer number. FFT solves Equation 4.12 and gives 2n complex numbers. If these

complex numbers are provided as inputs to IFFT, xðtÞ is retrieved as 2n discrete values sampled at Dt by
solving Equation 4.13. Of the (N ¼ 2n) complex numbers, the last set of N=2 numbers are complex

conjugates of the first set. For more details about FFTand IFFT, standard textbooks on the subject may be

referred to.
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Once xk is determined from the FFT, Fourier amplitudes can be determined from

Ak ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2k þ d2

kÞ
q

k ¼ 1; 2 . . .
N

2
�1 ð4:14Þ

in which xk ¼ ck þ idk, and

A0 ¼ c0 ð4:15Þ
Note that in FFT,A0 need not be zero as assumed in the heuristic development of a Fourier integral from

a Fourier series. In certain versions of FFT, xr is divided byN, that is, Equations 4.12 and 4.13 are used. In

this instance, Equations 4.14 and 4.15 remain valid. In other versions such as inMATLAB�, xr is divided

by N=2. In that situation

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2k þ d2

kÞ
q

ð4:16Þ

A0 ¼ c0

2
ð4:17Þ

According to Parsavel’s theorem, the mean square value of xðtÞ as given by Equation 4.1 is:

1

T

ðT

0

xðtÞ2dt ¼ a20
4

þ 1

2

X
ða2k þ b2kÞ ð4:18Þ

if xðtÞ is expanded using DFT,

1

T

ðT

0

xðtÞ2dt ¼ 1

N

XN�1

r¼0

x2r ¼
XN�1

k¼0

xkj j2 ð4:19Þ

Equation 4.18 may be interpreted as: mean square value of xðtÞ ¼ ðmean valueÞ2 þ half of the sum of

the amplitude squares of the harmonics. Equation 4.19may be interpreted as:mean square value ofxðtÞ ¼
the sum of absolute square values of the FFTof xðtÞ, provided FFT is obtained by dividing xðtÞ by N (not

N=2). The details of the Fourier series analysis both in the real and in the complex domain, and the Fourier

integral and DFT are available in many standard textbooks [1].

4.4 Auto Correlation and Cross Correlation Functions

The auto correlation function denotes the correlation between two random variables separated by a time

lag of t of a stochastic process xðtÞ. Let xðt1Þ and xðt2 ¼ t1 þ tÞ be the two random variables. The auto

correlation function for the process xðtÞ is given by:

RxxðtÞ ¼ E½xðt1Þxðt1 þ tÞ� ð4:20Þ
whereE½ � stands for the expected value, that is, the average of the products across the ensemble. It is clear

from Equation 4.20 that for t ¼ 0, RxxðtÞ ¼ Rxxð0Þ ¼ mean square value of the process and the two

variables are perfectly correlated. As t increases, it is expected that the correlation will decrease.

Figure 4.2 shows the autocorrelation function of the stochastic process xðtÞ. Note that the autocorrelation
function is a function of only the time separation t and from Equation 4.20, it can easily be seen that

RxxðtÞ ¼ Rxxð�tÞ, which is also depicted in Figure 4.2.

The cross correlation function between two randomprocessesxðtÞ and yðtÞmay similarly be defined as:

RxyðtÞ ¼ E½xðt1Þyðt1 þ tÞ� ð4:21Þ
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As with the auto correlation function, the cross correlation function is a measure of the correlation

between two processes. Figure 4.3 shows the cross correlation function between two random processes. It

follows from Equation 4.21 that

RxyðtÞ ¼ Ryxð�tÞ

4.5 Power Spectral Density Function ðSxxÞ and Cross Power
Spectral Density Function ðSxyÞ

Correlation functions and power spectral density functions form Fourier transform pairs as given below.

SxxðoÞ ¼ 1

2p

ð1

�1
RxxðtÞe�iwtdt ð4:22Þ

SxyðoÞ ¼ 1

2p

ð1

�1
RxyðtÞe�iwtdt ð4:23Þ

t

E[x2] = s2 + m2

–s2 + m2

m2

Rx (t)

o

Figure 4.2 Auto correlation function of the stochastic process xðtÞ

o

Rxy (t )

t
t0

sxsy + mxmy

–sxsy + mxmy

mxmy

Figure 4.3 Cross correlation function between two stochastic processes xðtÞ and yðtÞ
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RxxðtÞ ¼
ð1

�1
SxxðoÞeiwtdw ð4:24Þ

RxyðtÞ ¼
ð1

�1
SxyðoÞeiwtdw ð4:25Þ

From Equation 4.23, it follows that SyxðoÞ is the complex conjugate of SxyðoÞ.
Referring to Equation 4.24, for t ¼ 0

Rxxð0Þ ¼ r2x ¼
ð1

�1
SxxðoÞdo ¼ E½x2� ð4:26aÞ

Similarly,

Rxyð0Þ ¼
ða

�a

SxyðoÞdo ¼ E½xy� ð4:26bÞ

in which r2x is themean square value of the process;E½ � indicates the expected value, that is, the average or
mean value. Equation 4.26a provides a physical meaning of the power spectral density function. The area

under the curve of the power spectral density function is equal to the mean square value of the process.

In other words, the power spectral density function may be defined as the frequency distribution of the

mean square value. At any frequencyo, the shaded area as shown in Figure 4.4 is the contribution of that
frequency to the mean square value. If the square of xðtÞ is considered to be proportional to the energy of
the process [as in EðtÞ ¼1 =2KxðtÞ2], then the power spectral density function of a stationary random

process in away denotes the distribution of the energy of the processwith frequency. For randomvibration

analysis of structures in the frequency domain, the power spectral density function (PSDF) forms an ideal

input because of two reasons:

i. A second-order stationary random process is uniquely defined by its mean square value.

ii. Distribution of the mean square value with frequency helps in ascertaining the contribution
of each frequency content (energy) to the overall response.

S (w )

d (w ) w

w

Figure 4.4 Shaded area at frequency o contributing to the mean square value
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The concept of power spectral density function can be explained in simpler terms if the ergodicity is

assumed for the randomprocess. In that case, any sample time history of the ensemble represents themean

square value of the process. If a sample time history xðtÞ is considered, then use of Fourier transform and

Parsavel’s theorem (Equation 4.18) gives

Mean square value ¼ r2x ¼ 1

T

ðT

0

xðtÞ2dt ¼ a20
4

þ
X 1

2
ða2k þ b2kÞ ¼

XN�1

k¼0

jxkj2 ð4:27aÞ

for

T !1; xkj j2 ¼ Sxxdo ð4:27bÞ
X

jxkj2 ¼
ð1
0

Sxxdo ð4:27cÞ

For a zeromean process, a0 ¼ 0 and themean square value becomes equal to the variance. The variance

of the process is then the sum of the discrete ordinates shown in Figure 4.5a. As T !1, 2p=T ! 0 and

therefore, for a sufficiently large value of T, the ordinates becomemore packed as shown in Figure 4.5b. If

the kth ordinate is divided by do ¼ 2p=T, then the shaded areas as shown in Figure 4.5c are obtained. The
sum of such shaded areas k ¼ 1 toN=2ð Þwill result in the variance. A smooth curve passing through the

points in Figure 4.5c would then define the PSDF of the process, according to Equations 4.26a, 4.27b

and 4.27c.

This definition of PSDF using the assumption of ergodicity is useful in the development of the spectral

analysis technique for single-point excitationwith a limited knowledge of the theory of randomvibration.

Note that if a0 6¼ 0, then also this definition holds good and the area under the curve gives themean square

value of the process.

While a physical significance can be attached to the PSDF, no such physical significance can be

attached to the cross PSDF. However, some physical significance of the cross power spectral density

function can be understood from the effect of this function between two stochastic excitations on a

response quantity of interest. Consider a simply supported beam with two harmonic excitations as

shown in Figure 4.6. The phase lag f between the two excitations is a measure of the degree of

correlation between the two and it varies with the variation of f. For f ¼ 0, the two excitations are

perfectly correlated and they are additive. Furthermore, the bendingmoment at the center of the beam is

maximum. For f¼ 225�, the two excitations are subtractive, and the bending moment at the center will

be minimum Thus, for different values of f, that is the degree of correlation between the two

excitations, the response of the beam will be different. If these two excitations are replaced by two

random excitations p1ðtÞ and p2ðtÞ, then it is obvious from the above explanation that the response of the

beam will not only depend upon the power spectral density functions Sp1p1 and Sp2p2, but also upon the

cross power spectral density functions Sp1p2 and Sp2p1, which denote the degree of correlation between

the two.

4.6 Power Spectral Density Function (PSDF) Matrix

Now, consider a stochastic process y(t) to be a weighted summation of two stochastic processes given by:

y ¼ a1x1 þ a2x2 ¼ ½a1 a2� x1
x2

� �
ð4:28Þ
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If ywere equal to a1x1 only, then it is clear that E ½y2� ¼ a21E ½x21�. As y is a linear weighted summation of

two stochastic processes x1 and x2, it is easy to show that

E½y2� ¼ a21E½x21� þ a22E½x22� þ a1a2E½x1x2� þ a2a1E½x2x1�
¼ a21E½x21� þ a22E½x22� þ a1a2E½x1x2� þ a2a1E½x2x1�

ð4:29Þ

Sk

Sk

2p T (a)

wk w

w k w

w k w

Compacted ordinates

(b)

S (w )

(c)

Figure 4.5 Generation of power spectral density function from a Fourier spectrum: (a) Sk ¼ Xkj j2 at kth frequency;
(b) Sk at closer frequencies; and (c) kth ordinate of the power spectral density function
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Using Equations 4.26a and 4.26b, Equation 4.29 may be written as:

ða

�a

SyyðoÞdo ¼ a21

ða

�a

Sx1x1 ðoÞdoþ a22

ða

�a

Sx2x2ðoÞdo

þ a1a2

ða

�a

Sx1x2ðoÞdoþ a2a1

ða

�a

Sx2x1ðoÞdo
ð4:30Þ

or

ða

�a

SyyðoÞdo ¼
ða

�a

½a21Sx1x1ðoÞþ a22Sx2x2ðoÞþ a1a2Sx1x2ðoÞþ a2a1Sx2x1ðoÞ� do ð4:31Þ

As the PSDF of a stochastic process is always a function of o, o within the brackets is omitted from the

notation of the PSDF henceforth, for brevity. Thus, from Equation 4.31 it follows that

Syy ¼ a21Sx1x1 þ a22Sx2x2 þ a1a2Sx1x2 þ a2a1Sx2x1 ¼ f a1 a2 g Sx1x1 Sx1x2
Sx2x1 Sx2x2

	 

a1
a2

� �
ð4:32aÞ

or

Syy ¼ aSxxa
T ð4:32bÞ

inwhichSxx is the PSDFmatrix for thevectorx ¼ x1 x2 �T
�

and a ¼ a1 a2 �T
�

. Note that the diagonal

terms of the PSDF matrix are the PSDFs of x1 and x2, and the off diagonal terms are the cross PSDFs

between the two. For single to single variable transformation such as y ¼ ax, Equation 4.32b simplifies to

Sy ¼ a2Sx ð4:33Þ

Equation 4.32b can be easily extended to establish the relationship between PSDFs of two stochastic

vectors yðtÞ and xðtÞ. For example, if yðtÞ and xðtÞ are related by:

yðtÞn�1 ¼ An�mxðtÞm�1 ð4:34Þ
then PSDF matrices Syy and Sxx are related by:

Syy ¼ ASxxA
T ð4:35Þ

Extending it further, if yðtÞ is related to processes x1ðtÞ and x2ðtÞ as:
yðtÞ ¼ An�mx1ðtÞm�1 þBn�rx2ðtÞr�1 ð4:36Þ

P1 = A sinw t P2 = A sin(w t + j)

Figure 4.6 A simply supported beam with two harmonic excitations
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then, Syy is given by

Syy ¼ ASx1x1A
T þBSx2x2B

T þASx1x2B
T þBSx2x1A

T ð4:37Þ
Sx1x2 and Sx2x1 have the sizes of m� r and r�m, respectively.

Another relationship that is of interest in spectral analysis of structures is the cross power spectral

density function between y and x, that is, Syx and Sxy. For the relationship between y and x given by

Equation 4.34, it can be easily shown that Sxy is given by:

Sxy ¼ ASxx ð4:38Þ

in whichSxy is a matrix of sizem� n;Syx ¼ ST
xy. IfSxy is a complexmatrix, thenSyx ¼ S*T

xy . For a single

to single variable transformation, Equation 4.38 becomes Sxy ¼ aSxx.

4.7 PSDFs and Cross PSDFs of the Derivatives of the Process

The derivatives of the PSDF and cross PSDF, especially the first two derivatives, are useful in the spectral

analysis of structures. Therefore, they are derived below.

If xðtÞ is a stationary random process, the PSDFs of the derivatives of the process and cross PSDFs

between the original and derivatives of the process are obtained using the simple rules of differentiation

and Fourier transforms. The auto correlation of the process RxðtÞ is the ensemble average of xðtÞ and
xðtþ tÞ, that is,

RxðtÞ ¼ E½xðtÞxðtþ tÞ� ð4:39Þ
If xrðtÞxrðtþ tÞ is the product for the rth sample, then differentiation of the product with respect to t gives

d

dt
xrðtÞxrðtþ tÞf g ¼ xrðtÞ d

dt
xrðtþ tÞ ¼ xrðtÞ _xrðtþ tÞ ð4:40aÞ

Thus,

d

dt
RxðtÞf g ¼ E xðtÞ _xðtþ tÞ½ � ð4:40bÞ

As ensemble averages are independent of time t, it is possible to write

E ½xðtÞ _xðtþ tÞ� ¼ E ½xðt�tÞ _xðtÞ� ð4:41Þ
or

d

dt
RxðtÞf g ¼ E xðt�tÞ _xðtÞ½ � ð4:42Þ

From Equation 4.42, it is clear that

d2

dt2
RxðtÞf g ¼ �E _xðt�tÞ _xðtÞ½ � ¼ �R _xðtÞ ð4:43Þ

Differentiating the inverseFourier transform relationship betweenRxðtÞ andSx given byEquation 4.24,
the following relationships are obtained:

d

dt
RxðtÞf g ¼

ða

�a

ioSxeiotdo ð4:44Þ
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and

d2

dt2
RxðtÞf g ¼ �

ða

�a

o2Sxe
iotdo ð4:45Þ

use of Equations 4.43 and 4.45, gives

R _xðtÞ ¼
ða

�a

o2Sxe
iotdo ð4:46Þ

or

R _xðtÞ ¼
ða

�a

Sxe
iotdo ¼

ða

�a

o2Sxe
iotdo ð4:47Þ

or

S _x ¼ o2Sx ð4:48Þ
Proceeding further in this way, it can be shown that

Sx€¼ o2S _x ¼ o4Sx ð4:49Þ

4.8 Single Input Single Output System (SISO)

Consider the SDOF system as shown in Figure 4.7. The equation of motion for the system can be

written as:

mx€þ c _xþ kx ¼ pðtÞ ð4:50Þ
in which pðtÞ is a stationary stochastic process represented by its PSDF Sp. It is further assumed that

the process is also an ergodic process. Any sample time history of pðtÞ, therefore, can be considered to

obtain the PSDF of pðtÞ as described earlier. With these assumptions, pðtÞ is Fourier synthesized using

FFT. If pðoÞ is the FFTof pðtÞ, then the frequency contents xðoÞ of the response xðtÞ can be written as:
xðoÞ ¼ hðoÞpðoÞ ð4:51aÞ

in which hðoÞ ¼ ð�mo2 þ kþ icoÞ�1
. If pðtÞ is produced due to the support accelerations x€ðtÞ, then

pðtÞ ¼ �mx€gðtÞ and the equation of motion becomes (Chapter 3, Equation 3.1):

x€þ 2xon _xþo2
n ¼ �x€g ðafter dividing bymÞ ð4:51bÞ

c

k

m p (t)

Figure 4.7 A single degree freedom system

182 Seismic Analysis of Structures



hðoÞ ¼ ðo2
n�o2 þ 2ixonoÞ�1 ð4:51cÞ

pðoÞ ¼ �x€gðoÞ ð4:51dÞ
A sample time history of the stationary random process xðtÞ can be obtained by IFFT of xðoÞ, that is,

xðtÞ ¼
ð1

�1
xðoÞeiotdo ð4:52Þ

xðtÞ is also an ergodic process as the system is assumed to be linear, and therefore the probabilistic nature

of the output will be the same as that of the input. From Equation 4.51a, it is possible to write

xðoÞxðoÞ* ¼ hðoÞhðoÞ*pðoÞpðoÞ* ð4:53aÞ
or

jxðoÞj2 ¼ jhðoÞj2jpðoÞj2 ð4:53bÞ
Using Equation 4.19, the mean square value of xðtÞ may be given by:

1

T

ðT

0

xðtÞ2dt ¼ 1

N

XN�1

r¼0

xr
2 ¼

XN�1

k¼0

jxkj2 ¼
X

jxðoÞj2 ð4:54Þ

Using Equation 4.53b, Equation 4.54 can be written as:

1

T

ðT

0

xðtÞ2dt ¼
X

hðoÞj j2 pðoÞj j2 ð4:55Þ

for T ! a, use of Equations 4.27a and 4.27c in Equation 4.55 leads to

1

T

ðT

0

xðtÞ2dt ¼ r2x ¼
ð1
0

hðoÞj j2Spdo ð4:56Þ

Using Equation 4.26a, the above equation can also be written as:

ðo

0

SxðoÞdo ¼
ðo

0

hðoÞj j2Spdo ð4:57Þ

or

SxðoÞ ¼ hðoÞj j2Sp ð4:58Þ
or

SxðoÞ ¼ hðoÞSph*ðoÞ ð4:59Þ

if pðoÞ ¼ �x€gðoÞ (Equation 4.51d), then Sp is replaced by Sx€g, that is, the PSDF of the support

acceleration. Equations 4.58 and 4.59 provide the relationship between the PSDF of response xðtÞ and
that of excitation pðtÞ.
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If ergodicity is assumed, then the relationships given by Equations 4.48 and 4.49 can also be proved

making use of Equations 4.51 and 4.58 in the following way.

If xðtÞ is assumed to be an ergodic process, then the frequency contents of velocity can be related to

those of displacement as

_xðoÞ ¼ ioxðoÞ ð4:60Þ
Using Equations 4.51a, 4.58 and 4.38, the following relationships can be then established:

S _x ¼ o2Sx ð4:61Þ
Sx _x ¼ ioSx; S _xx ¼ �ioSx ð4:62Þ

Similarly, the following relationships can also be developed:

x€ðoÞ ¼ �o2xðoÞ ð4:63Þ
Sx€¼ o4Sx ð4:64Þ

Sxx€ ¼ �o2Sx; Sx€x ¼ �o2Sx ð4:65Þ
If the process x is a vector, the above relationships can be generalized to

S _x ¼ o2Sx ð4:66Þ
S _x ¼ o4Sx ð4:67Þ

Sx _x ¼ ioSx; S _xx ¼ �ioST
x ð4:68Þ

Sxx€¼ �o2Sx; S _xx ¼ �o2ST
x ð4:69aÞ

As Sx is a symmetric matrix, it is found that

Sx _x þS _xx ¼ 0 ð4:69bÞ

Example 4.1

For the frame of the problem in Example 3.7, shown in Figure 3.11, obtain a plot of the PSDF of the

displacement x and also, find the rms value of the displacement for the support excitation represented by

the PSDF of ground acceleration (for the El Centro earthquake) given in Appendix 4.A.

Solution: For the above problem, on ¼ 12:24 rad s�1 and Do ¼ 0:209 rad s�1. The digitized values of

the PSDF given in Appendix 4.A are obtained from the El Centro earthquake record by considering it as a

sample time history of an ergodic process. As the problem is effectively an SDOF system, hðoÞ is given by
Equation 4.51c and the use of Equation 4.58 gives the PSDF of the displacement.

The PSDFof excitation is shown in Figure 4.8 and the plot of the absolute value square of the frequency

response function (Equation 4.51c) for the displacement x is shown in Figure 4.9. It is seen from the figure

that the curve peaks at the natural frequency of the system. The PSDF of the displacement x is shown in

Figure 4.10. It is seen from the figure that the PSDF of displacement also peaks at the natural frequency of

the system, not at the frequency where the peak of the PSDF of excitation occurs. Note that the possible

positions of the peaks of the PSDF of response are: (i) where the peaks of the plot of the absolute value

square of the frequency response function occur, that is, at the points of the natural frequencies of the

structure, and (ii) where the peaks of the excitations occur.

The rms value of the displacement x ¼ square root of the area under the PSDF curve ¼ 0.014 m.
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The rms value obtained from the time history analysis is 0.015 m (Chapter 3, Example 3.7), which

matches well with the above rms value.

4.9 MDOF System with Single-Point and Multi-Point Excitations

4.9.1 Single-Point Excitation

For multi-storey buildings, towers, chimneys, and other tall structures under single-point earthquake

excitations, the equations of motion may be written as:

Mx€þC _xþKx ¼ �MIx€g ¼ PðtÞ ð4:70Þ

Extending Equation 4.51a to the MDOF system

xðoÞ ¼ HðoÞPðoÞ ð4:71Þ

inwhichHðoÞ is the complex frequency response functionmatrix described inChapter 3.As the system is

linear, xðoÞ is a vector of stationary random processes if PðoÞ is also a vector of a stationary random

process. The vector of a stationary random process is characterized by a power spectral density matrix,

that is, PSDF matrix as explained earlier. Thus, the PSDF matrix for xðoÞ is denoted by Sxx in which the

PSDF of the ith process is Sxixi , that is, the ith diagonal element and the element Sxixj is the cross power

spectral density function between the ith and jth processes of the vector xðoÞ.
Using Equations 4.35 and 4.71, Sxx and Spp are related by:

Sxx ¼ HðoÞSppHðoÞ*T ð4:72Þ
Note that � indicates a complex conjugate and it appears in Equation 4.72 becauseHðoÞ is a complex

matrix. For real matrices, Equation 4.35 holds good. Simplification of Equation 4.72 for SISO (single

input single output) leads to the same expression as given by Equation 4.59. As all PSDFs and frequency

response function matrices are invariably functions of frequency, o within the brackets is omitted from

them in subsequent derivations.

From Equation 4.70, PðoÞ is given by:

PðoÞ ¼ �MIx€gðoÞ ð4:73Þ
in which M is the mass matrix. Using Equation 4.35, Spp is given by

Spp ¼ MIITMTSx€g ð4:74Þ
in which Sx€g is the PSDF of the single ground acceleration input x€g. Substituting for Spp in Equation 4.72;

Sxx is obtained as:

Sxx ¼ HMIITMTH*TSx€g ð4:75Þ
The cross PSDF between the response and the excitation is given by:

Sx€gx ¼ �HMIS�xg ð4:76Þ

Example 4.2

For the frame of the problem in Example 3.8, shown in Figure 3.7, obtain the PSDFs of displacements u1,

and u2 for perfectly correlated ground motion at the three supports represented by the PSDF of

acceleration given in Appendix 4.A.
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Solution: From Example 3.8, the mass, stiffness and damping matrices are reproduced below.

M ¼ 1 0

0 2

	 

m C ¼ 0:816

1 0

0 2

	 

mþ 0:0027

3 �3

�3 9

	 

k K ¼ 3 �3

�3 9

	 

k

H ¼ ½K-Mo2 þ iCo��1;
k

m
¼ 100; IT ¼ 1 1f g

o1 ¼ 12:25 rad s�1 o2 ¼ 24:49 rad s�1

ThePSDFmatrixof displacement is obtainedbyusingEquation4.75. The diagonal elements of thematrix

provide the PSDFs of u1 and u2. The plots of the PSDFs of displacements u1 and u2, are shown Figure 4.11

(a and b). It is seen from thefigure that the peaks of the PSDFs of displacements occur near the first frequency

of the structure. Thismeans that the contribution of the first mode to the response is significantly higher than

the other mode. The rms values of the displacements u1 and u2 are 0.0154 and 0.0078m, respectively.

4.9.2 Multi-Point Excitation

For multipoint excitations,

Sxx ¼ HMrSx€g r
TMTH* T ð4:77Þ

Sx€g x ¼ �HMrSx€g ð4:78Þ
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Figure 4.11 PSDFs of displacements: (a) for u1; and (b) for u2
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where

Sx€g is a matrix of size s� s (number of supports)

r is a matrix of size n� s

H is a matrix of n� n.

In many applications, all displacement responses x may not be of interest. Thus, the frequency

response function matrix �H of interest is derived from the system frequency response function

matrix H by appropriately selecting the elements of the matrix H. For such systems, Equation 4.77

is revised as:

Sxx ¼ �Hm�nMrSx€g r
TMT �H

*T
n�m ð4:79Þ

in which m is the number of displacements of interest.

The relationships given by Equations 4.75–4.78 can be formally proved, without the assumption of

ergodicity, using the auto correlation and cross correlation functions of excitations, establishing their

relationshipwith those of responses with the help of the impulse response function (that is, IFFTof h), and

taking their Fourier transforms. Proofs are available in standard textbooks [1–3]. As the readers are not

expected to be well acquainted with the theory of random vibrations, these proofs are not given here.

Instead, a simpler approach (with the assumption of ergodicity) is adopted here to arrive at the

relationships given by Equations 4.75–4.78.

Example 4.3

a. For the same problemas inExample 4.2, find the PSDFs of displacements u1 and u2 and their rms values

when the excitations are assumed to be partially correlated with a time lag of 5 s between the supports.

Use the correlation function given by Equation 2.91.

b. For the problem inExample 3.9, shown inFigure 3.8, obtain the PSDFs of displacements corresponding

to the degrees of freedom 4 and 5. Consider two cases – (i) perfectly correlated excitation and (ii)

partially correlated excitations at the two supports for an arbitrarily assumed time lag of 5 s. Use the

correlation function given by Equation 2.91. For both problems, use the PSDF of excitation given in

Appendix 4.A.

Solution:

a. From Example 3.8, r matrix is taken as:

r ¼ 1

3

1 1 1

1 1 1

	 


Using Equation 4.77, the PSDFs and rms values of displacements are obtained. Note that in

Equation 4.77, Sx€g is a matrix of support excitations. For this problem, it is a 3� 3 matrix, elements

of the matrix are represented by cohði; jÞSx€g, in which i and j denote the two supports and Sx€g is the

PSDF of the ground acceleration. cohði; jÞ is calculated by Equation 2.93, that is,

cohði; jÞ ¼ exp

 
� rij
�� ��o
2pvs

!

In obtaining cohði; jÞ, rij=vs is replaced by the time lag between the supports i and j. Thus, for this

problem Sx€g is given by:
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Sx€g ¼
1 r1 r2
r1 1 r1
r2 r1 1

2
4

3
5Sx€g r1 ¼ exp � 5o

2p

� �
; r2 ¼ exp � 10o

2p

� �

The PSDFs and cross PSDFs are shown in Figure 4.12(a–d). It is seen from Figure 4.12d that the

imaginary component of the cross PSDFs between u1 and u2 is very small. The rms values of

displacements u1 and u2 are 0.0089 and 0.0045 m, respectively. These values are much smaller than

those for the case of fully correlated excitation (Example 4.2). This is expected, as the lack of

correlation between excitations at the supports generally reduces the displacement response. The rms

values are compared with those of the time history analysis carried out in Chapter 3 [time histories

shown in Figure 3.13(a and b)]. The rms values obtained from time history analysis are 0.0092m for u1
and 0.0048 m for u2, which match well with those obtained by the spectral analysis.

b. From the problem in Example 3.9, the mass, stiffness, and r matrices are reproduced below.

M ¼ 2:5 1:67
1:67 2:5

	 

m o1 ¼ 5:58 rad s�1; o2 ¼ 18:91 rad s�1

K ¼ EI

L3
19:56 10:5
10:5 129

	 
 ffiffiffiffiffiffiffiffiffi
EI

mL3

r
¼ 2 a ¼ 0:431; b ¼ 0:004

r ¼ 0:479 0:331
�0:131 0:146

	 

C ¼ aMþ bK

Matrix H is obtained as before (Example 4.2). Using Equation 4.77, the PSDF matrices of

displacement are obtained. The elements of the PSDF matrices at o ¼ 5:58 rad s�1 (first natural

frequency of the structure) are given below.

Fully correlated excitation
0:6336 0:0146
0:0146 0:0003

	 

10�3

Partially correlated excitation
0:3176 0:0073
0:0073 0:0002

	 

10�3

The plots of the PSDFs of displacement are shown in Figures 4.13 and 4.14. The PSDFs of

displacements are shown for both cases, that is, for perfectly correlated (case i) and partially correlated

(case ii) excitations. It is seen from the figures that there is a difference in the nature of the PSDFs between

the two cases for displacement corresponding to DOF 5. For the case i, the PSDF is characterized by a

single peak (Figure 4.14a) while for the case ii, it is characterized by two peaks (Figure 4.14b). The first

peak occurs at the first natural frequency, while the second peak occurs at the second natural frequency of

the structure. For DOF 4, the PSDFs are characterized by a single peak occurring at the first frequency of

the structure for both cases [Figure 4.13(a and b)]. The rms values of the displacements are:

Corresponding to DOF 4 ¼ 0:0237 m ðperfectly correlatedÞ and 0:0168 m ðpartially correlatedÞ

Corresponding toDOF 5 ¼ 0:0005 m ðperfectly correlatedÞ and 0:0009 m ðpartially correlatedÞ

4.9.3 Determination of the PSDF of Absolute Displacement

Once the PSDFs of displacements (relative) are obtained, the PSDF matrices of absolute (total)

displacements are determined by adding the ground displacements to the relative displacements, that is,

xa ¼ Ixþ rxg ð4:80Þ
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Using Equation 4.36, the PSDF matrix Sxa of absolute displacements may be written as:

Sxa ¼ Sxx þ rSxg r
T þ ISxxg r

T þ rSxgxI
T ð4:81Þ

in which I is a diagonal matrix of unity; Sxxg is the cross PSDF between the relative displacement and

ground displacement. In Equation 4.81, Sxg can be obtained from Sxg using Equation 4.49. Sxgx is

determined using the relationship between xðoÞ and xgðoÞ, that is,

xðoÞ ¼ �HMrx€gðoÞ ¼ HMro2xgðoÞ ð4:82Þ

Using Equation 4.38, SxxgðoÞ may be written as:

Sxgx ¼ HMro2Sxg and Sxxg ¼ ST
xgx

ð4:83Þ

Example 4.4

For the same problem as in Example 4.3, find the PSDFs of absolute displacements corresponding to the

DOF 4 and 5 for the case of partially correlated excitation.
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Figure 4.13 PSDFs of displacement for DOF 4: (a) without time lag; and (b) with time lag
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Solution: Let x and x€g represent

xT ¼ ½x4 x5� and x€g
T ¼ ½x€g1 x€g2�

inwhichx€g1 andx€g2 are the support excitations produced due to partially correlated groundmotions.Using

Equation 4.83, Sxgx is given by:

Sxgx ¼ HMro2Sxg ¼ HMro�2Sx€g ð4:84Þ

in which H, M, and r matrices are given in Exercise 4.3; Sx€g and Sxgx are given as:

Sx€g ¼ c11 c21
c12 c22

	 

Sx€g ; cij ¼ cohði; jÞ ð4:85Þ

which is obtained by Equation 2.91.

Sxgx ¼ Sxg1x4 Sxg2x4
Sxg1x5 Sxg2x5

	 

ð4:86Þ

Using Equation 4.81, anSxa matrix of size 2� 2 is calculated, inwhichSxx is obtained fromExercise 4.3.

The diagonal terms of the matrix provide the PSDFs of the absolute values of x4 and x5, which are plotted

in Figure 4.15(a and b). The rms values of absolute displacements of x4 and x5 are 0.052 and 0.015 m,

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4
x 10–7

Frequency (rad/s)
(a)

0 5 10 15 20 25 30
0

0.5

1

1.5

2
x 10–7

Frequency (rad/s)
(b)

PS
D

F 
of

 d
is

pl
ac

em
en

t (
m

2  s
/r

ad
) 

PS
D

F 
of

 d
is

pl
ac

em
en

t (
m

2  s
/r

ad
) 

Figure 4.14 PSDFs of displacement for DOF 5: (a) without time lag; and (b) with time lag
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respectively. It is seen that these values are much higher than those of the relative displacements obtained

in the problem in Example 4.3.

4.10 PSDF Matrix of Member End Forces

In dynamic analysis, the dynamic degrees of freedom are not the same as the kinematic degrees of

freedom. Many degrees of freedom are condensed out to obtain the desired dynamic degrees of freedom.

Consider a simple frame as shown in Figure 4.7. x is the vector of dynamic degrees of freedom, that is,

sway degrees of freedom and y as that of the condensed out degrees of freedom (rotations y at the joints). y
is related to x by:

y ¼ Ax ð4:87Þ
in which matrix A is obtained by a matrix condensation procedure.

Using Equations 4.35 and 4.38, Shh and Shx can be written as:

Syy ¼ ASxxA
T ð4:88Þ

Sxy ¼ ASxx and Syx ¼ ST
xy ð4:89Þ

Now, consider the column i–j in Figure 3.7. The displacements at the ends of the column are

represented by the vector

d ¼ ½xiyixjyj �T ð4:90Þ
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Figure 4.15 PSDFs of absolute displacements with time lag: (a) for DOF 4; and (b) for DOF 5
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Let the elemental stiffness matrix corresponding to the above degrees of freedom beK, so that member

end forces f are denoted by:

f ¼ Kd ð4:91Þ
The PSDF matrix of the member end forces is then given by:

Sff ¼ KSddK
T ð4:92Þ

in which the elements of the matrix Sdd are appropriately selected from those of matrices Sxx, Shh, Shx,

and Sxh.

Note that if d does not correspond to local co-ordinates of themember, then d is further transformed into
�d, the displacement vector in local coordinates by:

�d ¼ Td ð4:93Þ
in which T is the transformation matrix and Sff is then obtained as:

Sff ¼ KS�d�dK
T ¼ KTSddT

TKT ð4:94Þ

Example 4.5

For the problem in Example 3.10, shown in Figure 3.15, find the PSDFs of the relative displacements for 1

and 2. Also, find the PSDF of the bending moment at the center of the pipe.

Solution: The stiffness and the damping matrices of the soil structure system are taken from exercise in

Example 3.10 as below.

K ¼
56 �16 8

�16 80 �16

8 �16 56

2
4

3
5m �C ¼

0:813 �0:035 0:017
�0:035 0:952 �0:035
0:017 �0:035 0:811

2
4

3
5m

o1 ¼ 8:0 rad s�1; o2 ¼ 9:8 rad s�1 ando3 ¼ 12:0 rad s�1

Following the same procedure as described before, the PSDFs of displacements 1 and 2 are obtained

and are shown in Figure 4.16(a and b). It is seen fromFigure 4.16a that the PSDFof the displacement of the

end of the pipe is characterized by two peaks. The first peak occurs at the first natural frequency and

the second peak occurs at the third natural frequency of the structure. The PSDFof the displacement at the

center of the pipe is characterized by a single peak occurring at the first natural frequency of the structure

(Figure 4.16b).

To find the PSDF of the bending moment, the rotation y at the center of the pipe is obtained as below
(using the condensation relationship).

Let x1, x2, and x3 be the displacements of the DOF 1, 2, and 3 denoted by

xT ¼ x1 x2 x3 �½
Then,

y ¼ 3

4L
�1 0 1½ �x ¼ Ax

Using Equations 4.88 and 4.89, Shh and Sxh are obtained below for a frequency of o ¼ 8 rad s�1.

Syy ¼ 0; Sxy ¼ 0

Note that the Sxx required to calculate the above quantities are obtained corresponding to the absolute

displacements of the DOF 1, 2, and 3. They are obtained following the procedure described in the
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Example 4.4. BothSyy and Sxh are found to be zero as the excitation is perfectly correlated, and therefore,

the rotation at the center of the pipe is zero. Thus, the displacement vector given by Equation 4.90 is

d ¼ x1; y1; x2; 0½ �T

Taking advantage of the zero bendingmoment at the end support, thematrixKe for the element between

DOF 1 and 2 is modified (so that y1 is not required for calculating of the bending moment at the center).

Using Equation 4.92, the PSDF of the bending moment at the center is obtained and is shown in
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Figure 4.16 PSDFs of responses: (a) displacement for DOF 1; (b) displacement for DOF 2; and (c) bending moment
at the center of the pipe
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Figure 4.16c. It is seen that the PSDF of the bending moment is characterized by two peaks like that

observed for the PSDF of x1. The rms values of relative displacements x1, x2 and the bending moment at

the center of the pipe are obtained as 0.0637 m, 0.1192 m and 1.1037 times the mass m.

4.11 Modal Spectral Analysis

Modal spectral analysis has the advantage that it does not require the generation of a C matrix.

Additionally, computational effort may be reduced by truncating the number of modes to a limited few

depending upon the type of problem.

Consider the case of multi-point excitation. The modal equation for the system can be written as:

�miz€i þ 2xioi �mi _zi þ �mio2
i zi ¼ �uTi Mrx€g ð4:95Þ

or

z€i þ 2xioi _zi þo2
i zi ¼

�uTi Mr

�mi

x€g ¼ pi i ¼ 1 . . . r ð4:96Þ

where

�mi ¼ uTi Mji

r ¼ the influence coefficient matrix of size m� n

oi and xi ¼ the frequency and modal damping ratio of the ith mode

The generalized coordinate ziðoÞ can be related to piðoÞ by:

ziðoÞ ¼ hiðoÞpiðoÞ i ¼ 1 . . . r ð4:97aÞ

in which

piðoÞ ¼ �uTi Mrx€gðoÞ
�mi

ð4:97bÞ

Thus, elements of the PSDF matrix of z may be obtained as:

Szizj ¼
hihj

*i

�mi �mj

uTi MrSx€gr
TMTjj i ¼ 1 . . . r; j ¼ 1 . . . r ð4:98Þ

With the Szz matrix obtained as above, PSDF of the displacement matrix is derived using the modal

transformation matrix, that is, x ¼ fz and is given by:

Sxx ¼ fSzzf
T ð4:99Þ

in whichf is a matrix of sizem� r. The PSDF of absolute displacements and member end forces may be

obtained by the same procedure as described before.

Example 4.6

For the problem in Example 3.11, shown in Figure 3.9, obtain the PSDF of displacements

corresponding to DOF 1 (top of the left tower) and DOF 2 (center of the deck) by modal spectral

196 Seismic Analysis of Structures



analysis for the partially correlated ground acceleration with a time lag of 5 s between the supports.

The PSDF of ground acceleration is taken as that given in the Appendix 4.A and use Equation 2.93 as

the correlation function.

Solution: The mass, stiffness, and r matrices, and the mode shapes and frequencies of the structure are

taken from the exercise in Example 3.11 and are given below for convenience.

K ¼
684 0 �149

0 684 149

�149 149 575

2
4

3
5m M ¼

20 0 0

0 20 0

0 0 60

2
4

3
5m

r ¼ 1

10

5:318 0:031 �0:002 �0:318
�0:318 �0:002 0:031 5:318
1:416 0:008 �0:008 �1:416

2
4

3
5

o1 ¼ 2:86 rad s�1 o2 ¼ 5:85 rad s�1 o3 ¼ 5:97 rad s�1

fT
1 ¼ �0:036 0:036 �0:125 �½

fT
2 ¼ 0:158 0:158 0 �½

fT
3 ¼ �0:154 0:154 0:030 �½

The PSDFs are calculated using Equations 4.98 and 4.99. The plots of Sz1z1 and Sz1z2 (both real and

imaginary components) are shown in Figure 4.17(a–c). It is seen fromFigure 4.17c that the imaginary part

of Sz1z2 is very small compared with the real part. The PSDFs of displacements corresponding to DOF 1

and 2 are shown inFigure 4.18(a and b). The rms values of displacements obtained from themodal spectral

analysis and the direct spectral analysis are compared below.

Modal Direct

rms value of displacement for DOF 1 0:0139 m 0:0138 m
rms value of displacement for DOF 2 0:0150 m 0:0151 m

4.12 Spectral Analysis Using the State-Space Formulation

When the state-space equation (Equation 3.101, Chapter 3) is used, the PSDF matrix of responses, Szz is

obtained as:

Szz ¼ HSfgfgH
* T ð4:100aÞ

H ¼ ½ I_o�A��1 ð4:100bÞ

in which I
_
is a diagonal matrix with i

ffiffiffiffiffiffiffi�1
p� �

as diagonals; Sfgfg is the PSDFmatrix of the fg. Note that the
PSDF matrix Szz contains Sx _x and S _xx terms. Addition of these terms turns out to be zero because of

Equation 4.69b. For the state-space modal analysis, eigen values and eigen vectors of matrixA are used to

decouple the equation ofmotion and the samemodal spectral analysis technique described in Section 4.11

is used.
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Example 4.7

For the exercise in Example 3.12, shown in Figure 3.20, determine the PSDFs of the top- and the first-floor

displacements using the state-space spectral analysis for perfectly correlated ground acceleration

represented by the PSDF given in Appendix 4.A.
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Figure 4.17 PSDF and cross PSDF of generalized displacements: (a) first generalized displacement; (b) real part;
and (c) imaginary part of cross PSDF between first- and second-generalized displacement
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Solution: The mass and stiffness matrices and the modal properties are given in the example problem

3.12. For convenience, A is reproduced below.

A ¼

0:0 0:0 0:0 0:0 1 0:0 0:0 0:0

0:0 0:0 0:0 0:0 0:0 1 0:0 0:0

0:0 0:0 0:0 0:0 0:0 0:0 1 0:0

0:0 0:0 0:0 0:0 0:0 0:0 0:0 1

�2:0 1:0 0:0 0:0 �1:454 0:567 0:0 0:0

2:0 �2:0 1:0 0:0 1:134 �1:495 0:567 0:0

0:0 1:0 �3:0 2:0 0:0 0:567 �2:062 1:134

0:0 0:0 2:0 �4:0 0:0 0:0 1:134 �2:630

2
666666666666664

3
777777777777775

Equations 4.100a and 4.100b are used to calculate the PSDFs of the displacements. The PSDFs are

shown in Figure 4.19(a and b). The rms values of displacements obtained by the direct, modal and state-

space spectral analyses are compared below.

Modal Direct State-space

rms value of displacement for DOF 1 0:0903 m 0:0907 m 0:0905 m
rms value of displacement for DOF 4 0:0263 m 0:0259 m 0:0264 m

ð4:101Þ
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Figure 4.18 PSDFs of displacements: (a) top of the left tower; and (b) center of the deck
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4.13 Steps for Developing a Program for Spectral Analysis
in MATLAB� for Multi-Support Excitation

I. Computation of the “Basic Elements” as given in step I of Section 3.5.7 is common for both

frequency domain spectral analysis and the deterministic time history analysis.

II. Mode shape coefficient for any response quantity of interest is found out as outlined in

Section 3.5.4.

III. Find theHmatrix for the structure and then, use Equations 4.75, 4.77, 4.79 or 4.100a to obtain the

PSDF matrices of displacement responses.

IV. Cross PSDFs between the displacement and ground acceleration are obtained using Equations 4.76

and 4.78.

V. PSDF matrix of absolute displacements can be obtained using Equations 4.81 and 4.83.

VI. PSDF matrix of member end forces is obtained using Equations 4.92 or 4.94.

VII. Formodal spectral analysis, hi for the ith mode is obtained by the standardmethod. Elements of the

PSDFmatrix of generalized co-ordinates are obtained using Equation 4.98 and the PSDFmatrix of

displacements is obtained by Equation 4.99.
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Figure 4.19 PSDFs of displacements: (a) top storey; and (b) first storey
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VIII. If the state-space formulation is used, the Equations 4.100a and 4.100b are used to obtain the PSDF

matrix of the state vector.

Exercise Problems

(Use standard programs like MATLAB, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

4.8 For Exercise 3.1 (Chapter 3), obtain the plot of the PSDF of the relative displacement x for the

PSDF of ground acceleration, as given in Appendix 4.A, the same for the two supports. Compare

between the rms values of the response with that of the time history analysis.

4.9 Asuspended span of a submarine pipeline ismodeled as shown in Figure 4.20.Assuming 5%modal

damping, obtain a closed form expression for the PSDF of the relative displacement x. Assume the

PSDF of ground acceleration to be the same at the two supports and represented by a white noise

with constant PSDF S0. The cross spectral density function between supports 1 and 2 is given by

Sg1g2 ¼ S0e
�ioT and the equivalent stiffness corresponding to the DOF x is k with

k=m ¼ 100 ðrad s�1Þ2.

4.10 For the exercise problem 3.14, obtain plots of SyyðoÞ and SyyðoÞ (both real and imaginary

components) assuming: (i) the same PSDF of excitations at all supports (given in Appendix 4.A);

(ii) the same PSDF but partially correlated at the supports. For the latter, assume the same correlation

function given by Equation 2.93 having a time lag of 2.5 s between supports.

4.11 For the problem in Exercise 3.16, find the rms values of the top relative displacement and the drift

between the first and the second story. Assume the time lag between the supports as 2.5 s. Take the

correlation function and the PSDF as being thesame as those given in Exercise 4.10.

4.12 For the problem in Exercise 3.17, find the rms values of the absolute displacement of the secondary

system and the base shear for perfectly correlated support excitations represented by the PSDF

given in Appendix 4.A.

4.13 Using themodal spectral analysis, find the peak values of the displacement (relative) of the top floor

and the first-storey drift of the frame of Exercise 3.18 for perfectly correlated ground excitations

represented by the PSDF given in Appendix 4.A.

4.14 Using the modal and state-space spectral analyses, find the rms value of the deflection of the center

of the deck for Exercise 3.19. Compare the results for the two cases: (i) perfectly correlated

excitations at the supports and (ii) partially correlated excitations with a time lag between supports

as 2.5 s. Take the PSDF of ground excitation (horizontal) as that given in Appendix 4.A and use the

correlation function used in the Example 4.10.

Assumed as fixed end

x

m

Figure 4.20 Suspended span of submarine pipeline
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4.15 For Exercise 3.21, find the rms values of displacements and rotations of the top floor of the 3D tall

building using modal spectral analysis. Also, obtain a plot of Sxy (both real and imaginary

components). Take the excitation as the groundmotion, represented by the PSDFgiven inAppendix

4.A, applied in the x direction.

4.16 For the shear frame shown inExercise3.20, comparebetween the rmsvaluesof absolute accelerations

of the top floor and the bending moment at the base obtained by the direct, modal, and state-space

spectral analyses. Take the same PSDF of excitation that is used for other problems.

Appendix 4.A Digitized Values of the PSDF of the Ground Acceleration
of El Centro Earthquake

Table 4.1 provides the digitized values of the PSDFof the El Centro earthquake assuming it to be a sample

of an ergodic process.

Table 4.1 Digitized values of the PSDF ðm2 s�3 rad�1Þ of the El Centro earthquake acceleration record given in
Appendix 3.C at a frequency interval of 0.201 rad s�1 (read row wise)

1.13E-09 1.18E-05 0.000 442 0.000 988 0.000 889 0.001 664 0.003 397 0.003 424
0.003 678 0.003 996 0.003 952 0.004 042 0.004 172 0.004 598 0.004 859 0.00 476
0.004 837 0.005 039 0.006 083 0.006 752 0.007 215 0.007 957 0.009 187 0.009 486
0.009 495 0.009 453 0.00 958 0.009 357 0.009 875 0.00 995 0.009 948 0.010 551
0.011 874 0.012 146 0.012 598 0.012 623 0.012 785 0.013 486 0.013 679 0.014 088
0.014 443 0.015 289 0.015 662 0.015 695 0.016 283 0.016 527 0.01 647 0.016 974
0.016 915 0.016 163 0.016 505 0.016 887 0.017 107 0.016 297 0.017 287 0.017 635
0.017 721 0.017 499 0.017 407 0.016 865 0.016 892 0.01 687 0.016 661 0.016 164
0.015 786 0.01 516 0.015 281 0.015 223 0.014 571 0.014 381 0.014 092 0.013 486
0.012 894 0.012 197 0.012 068 0.011 422 0.011 184 0.011 426 0.011 143 0.01 104
0.010 975 0.010 439 0.010 034 0.00 904 0.008 627 0.007 367 0.007 553 0.007 548
0.007 526 0.007 497 0.007 216 0.006 954 0.006 939 0.006 338 0.005 555 0.005 697
0.005 693 0.005 349 0.005 371 0.005 753 0.005 758 0.006 063 0.006 076 0.006 178
0.006 208 0.006 529 0.006 415 0.006 492 0.00 633 0.006 146 0.006 274 0.006 089
0.005 879 0.005 512 0.005 444 0.005 621 0.006 008 0.005 549 0.005 581 0.005 741
0.005 616 0.005 639 0.005 809 0.006 023 0.005 955 0.006 023 0.00 582 0.005 826
0.005 825 0.005 725 0.005 212 0.005 057 0.004 741 0.004 972 0.004 751 0.004 684
0.004 239 0.004 228 0.004 429 0.004 322 0.004 339 0.00 418 0.00 425 0.004 388
0.004 321 0.004 439 0.004 938 0.004 633 0.004 544 0.004 661 0.004 437 0.00 458
0.00 457 0.004 398 0.004 191 0.004 313 0.004 156 0.004 184 0.004 279 0.00 426
0.004 232 0.004 281 0.004 535 0.004 609 0.004 446 0.004 574 0.004 569 0.00 456
0.004 897 0.004 699 0.004 756 0.004 916 0.005 171 0.005 106 0.004 746 0.004 671
0.004 559 0.003 994 0.004 021 0.004 019 0.003 808 0.003 891 0.00 373 0.003 925
0.004 045 0.004 299 0.0045 0.004 725 0.004 882 0.004 768 0.00 499 0.005 341
0.0053 0.005 008 0.004 745 0.004 847 0.004 557 0.004 345 0.004 361 0.004 107
0.003 937 0.003 906 0.00 365 0.003 391 0.003 462 0.00 343 0.003 439 0.003 451
0.003 334 0.003 193 0.003 192 0.003 166 0.003 039 0.003 043 0.002 859 0.002 728
0.002 496 0.002 265 0.002 102 0.001 922 0.001 849 0.001 654 0.001 376 0.001 367
0.00 136 0.001 389 0.001 215 0.001 197 0.00 121 0.001 147 0.001 028 0.001 001
0.001 006 0.001 009 0.001 018 0.000 901 0.0009 0.000 929 0.000 907 0.000 875
0.000 911 0.000 934 0.000 926 0.000 913 0.000 871 0.00 092 0.000 965 0.000 928
0.000 849 0.000 819 0.00 084 0.000 914 0.000 939 0.000 866 0.000 835 0.000 858
0.000 826 0.000 808 0.000 836 0.000 818 0.000 822 0.000 798 0.000 781 0.000 753
0.000 729 0.00 073 0.000 734 0.000 729 0.000 717 0.000 726 0.00 071 0.00 072
0.000 702 0.000 681 0.000 716 0.000 715 0.000 648 0.000 595 0.0006 0.000 573
0.000 527 0.000 501 0.000 449 0.000 432 0.000 439 0.00 043 0.000 409 0.000 409
0.000 421 0.000 402 0.000 402 0.000 384 0.000 386 0.000 393 0.000 395 0.000 411
0.000 417 0.000 422 0.000 441 0.000 422 0.000 414 0.000 436 0.000 389 0.000 368
0.00 037 0.000 337 0.000 341 0.000 352 0.000 362 0.000 356 0.000 354 0.000 373
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Table 4.1 (Continued)

0.000 378 0.000 364 0.000 334 0.000 338 0.000 334 0.000 368 0.000 368 0.000 336
0.000 326 0.000 326 0.000 326 0.000 334 0.000 334 0.000 343 0.000 316 0.000 302
0.000 295 0.000 271 0.000 268 0.000 268 0.000 244 0.00 024 0.000 248 0.000 241
0.00 024 0.000 238 0.000 225 0.000 227 0.000 228 0.000 238 0.000 228 0.000 226
0.000 228 0.000 217 0.000 205 0.000 203 0.000 168 0.000 174 0.000 176 0.000 187
0.000 185 0.000 186 0.000 186 0.000 184 0.00 017 0.000 167 0.00 017 0.000 171
0.000 173 0.00 017 0.000 171 0.000 171 0.000 172 0.000 165 0.000 159 0.000 158
0.000 167 0.000 171 0.000 162 0.000 164 0.000 153 0.000 142 0.00 014 0.000 133
0.000 142 0.000 146 0.000 157 0.000 169 0.000 167 0.000 167 0.000 169 0.000 174
0.000 173 0.000 169 0.000 166 0.000 169 0.000 186 0.000 181 0.000 179 0.000 181
0.000 189 0.000 194 0.000 194 0.000 196 0.000 214 0.00 022 0.000 219 0.000 211
0.0002 0.000 204 0.000 199 0.000 201 0.000 201 0.000 223 0.000 233 0.000 232
0.000 231 0.000 224 0.000 213 0.000 211 0.000 218 0.000 206 0.000 198 0.000 199
0.000 192 0.00 019 0.000 187 0.00 017 0.000 187 0.000 192 0.000 188 0.000 192
0.000 195 0.000 205 0.000 213 0.000 195 0.00 019 0.000 189 0.000 185 0.000 188
0.000 184 0.000 185 0.000 188 0.000 184 0.000 172 0.000 162 0.000 154 0.000 153
0.000 149 0.00 015 0.000 149 0.000 139 0.000 135 0.000 133 0.000 128 0.000 128
0.00 013 0.00 014 0.000 146 0.000 128 0.000 125 0.000 135 0.000 136 0.000 128
0.000 119 0.000 109 0.00 011 0.000 114 0.000 115 0.000 116 0.000 114 0.000 121
0.000 122 0.00 013 0.000 133 0.000 125 0.000 124 0.000 124 0.000 121 0.000 123
0.000 123 0.000 127 0.00 013 0.000 128 0.00 013 0.000 133 0.000 132 0.000 131
0.000 124 0.000 122 0.000 123 0.000 125 0.000 116 0.000 103 0.000 101 0.000 101
0.000 102 0.0001 9.75E-05 9.91E-05 0.000 104 0.000 102 0.000 101 0.000 104
9.63E-05 9.43E-05 9.11E-05 8.88E-05 8.87E-05 8.80E-05 8.82E-05 8.62E-05
8.30E-05 8.25E-05 8.38E-05 8.27E-05 8.26E-05 8.53E-05 8.52E-05 8.27E-05
7.84E-05 7.38E-05 6.87E-05 6.78E-05 6.72E-05 6.98E-05 7.38E-05 7.34E-05
7.68E-05 7.58E-05 7.64E-05 7.88E-05 8.30E-05 7.87E-05 7.28E-05 6.88E-05
6.84E-05 6.85E-05 6.87E-05 6.96E-05 6.94E-05 6.60E-05 6.58E-05 6.56E-05
6.41E-05 6.56E-05 6.65E-05 6.57E-05 6.15E-05 6.07E-05 6.02E-05 6.08E-05
6.16E-05 6.21E-05 6.32E-05 6.71E-05 6.41E-05 5.93E-05 6.16E-05 5.73E-05
5.71E-05 5.50E-05 4.67E-05 4.18E-05 3.77E-05 3.69E-05 3.85E-05 3.92E-05
4.25E-05 4.27E-05 4.28E-05 4.31E-05 4.30E-05 4.23E-05 4.01E-05 3.94E-05
3.71E-05 3.53E-05 3.45E-05 4.05E-05 4.00E-05 3.95E-05 3.99E-05 4.13E-05
4.34E-05 4.35E-05 3.88E-05 4.00E-05 4.18E-05 3.95E-05 4.19E-05 4.50E-05
4.81E-05 5.08E-05 5.25E-05 5.35E-05 5.33E-05 5.26E-05 5.16E-05 4.91E-05
5.21E-05 5.29E-05 5.79E-05 5.78E-05 5.85E-05 6.02E-05 6.12E-05 6.04E-05
6.14E-05 6.15E-05 5.90E-05 6.15E-05 6.29E-05 6.37E-05 6.16E-05 5.89E-05
5.76E-05 5.84E-05 5.63E-05 5.62E-05 5.60E-05 5.37E-05 4.99E-05 4.40E-05
4.15E-05 3.96E-05 3.89E-05 3.93E-05 4.00E-05 3.96E-05 3.89E-05 3.62E-05
3.52E-05 3.02E-05 3.20E-05 3.16E-05 2.98E-05 2.89E-05 2.98E-05 2.89E-05
2.88E-05 2.54E-05 2.65E-05 2.88E-05 2.91E-05 3.26E-05 3.20E-05 3.35E-05
3.32E-05 3.36E-05 3.35E-05 3.30E-05 3.30E-05 3.56E-05 3.95E-05 3.98E-05
4.00E-05 4.22E-05 4.19E-05 4.00E-05 4.07E-05 4.15E-05 4.19E-05 4.13E-05
4.21E-05 4.35E-05 4.39E-05 4.46E-05 4.66E-05 4.56E-05 4.79E-05 4.68E-05
4.78E-05 4.54E-05 4.22E-05 4.23E-05 3.85E-05 4.09E-05 3.99E-05 4.01E-05
4.07E-05 4.14E-05 4.17E-05 4.19E-05 4.01E-05 3.61E-05 3.59E-05 3.61E-05
3.39E-05 3.36E-05 3.39E-05 3.42E-05 3.33E-05 3.25E-05 3.22E-05 3.17E-05
2.88E-05 2.81E-05 2.74E-05 2.59E-05 2.72E-05 2.75E-05 2.78E-05 2.87E-05
2.73E-05 2.65E-05 2.56E-05 2.73E-05 2.47E-05 2.52E-05 2.44E-05 2.36E-05
2.20E-05 2.28E-05 2.36E-05 2.27E-05 2.39E-05 2.46E-05 2.45E-05 2.71E-05
2.96E-05 2.98E-05 2.89E-05 3.01E-05 2.98E-05 2.98E-05 3.14E-05 3.14E-05
3.15E-05 3.18E-05 3.34E-05 3.27E-05 3.06E-05 3.01E-05 2.80E-05 2.84E-05
2.92E-05 2.76E-05 2.60E-05 2.64E-05 2.63E-05 2.64E-05 2.59E-05 2.53E-05
2.59E-05 2.60E-05 2.79E-05 2.90E-05 2.91E-05 3.14E-05 2.95E-05 2.78E-05
2.84E-05 2.83E-05 2.76E-05 2.76E-05 2.81E-05 2.72E-05 2.73E-05 2.73E-05
2.69E-05 2.54E-05 2.50E-05 2.55E-05 2.60E-05 2.72E-05 2.70E-05 2.65E-05
2.73E-05 2.78E-05 2.85E-05 2.99E-05 2.99E-05 3.00E-05 2.99E-05 2.83E-05
2.88E-05 2.82E-05 2.63E-05 2.62E-05 2.40E-05 2.33E-05 2.37E-05 2.32E-05
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5

Response Spectrum Method
of Analysis

5.1 Introduction

In Chapter 2, different types of seismic inputs were described. Among them, the response spectrum of an

earthquake is considered as a very useful input for the seismic analysis of structures and is directly used for

the response spectrum method of analysis of structures, which is favored by earthquake engineers for a

number of reasons. Firstly, themethod provides a technique for performing an equivalent static lateral load

analysisof structures forearthquakeforces.Secondly, it allowsaclearunderstandingof thecontributionsof

different modes of vibration to the overall seismic response of structures. Thirdly, it offers a simplified

method for finding the design forces for the members of structures for earthquake forces. Finally, it is also

useful in the approximate evaluation of the reliability and safety of structures under earthquake forces.

The response spectrummethod of analysis is not an exactmethod of analysis in the sense that its results

are not identical with those of the time history analysis presented in Chapter 3. However, for most of the

cases, the results are accurate enough for structural design applications. Apart from this drawback, there

are other limitations to the method, namely: (i) it is strictly applicable for linear analysis and (ii) it cannot

be applied as such for the case of multi-support excitations. However, the method has been extended for

the latter with additional approximations.

In this chapter, development of the response spectrum method of analysis is first presented for single-

point excitation, and then its extension to multi-point excitations is briefly described. At the end of the

chapter, the equivalent lateral load analysis as specified in earthquake codes is presented and codal

provisions regarding the base shear coefficient and response spectrums of a few codes are given for a

comparative time study.

5.2 Concept of Equivalent Lateral Force and Response Spectrum
Method of Analysis

The equivalent lateral force for an earthquake is a unique concept used in earthquake engineering. The

concept is attractive because it converts a dynamic analysis into partly dynamic and partly static analyses

for finding the maximum displacement (or stresses) induced in the structure due to earthquake excitation.

For seismic resistant design of structures, thesemaximum stresses are of interest only, not the time history

of stresses. The equivalent lateral force for an earthquake is defined as a set of lateral static forces which

Seismic Analysis of Structures T.K. Datta
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will produce the same peak response of the structure as that obtained by the dynamic analysis of the

structure (Chapter 3) under the same earthquake. This equivalence is restricted only to a single mode of

vibration of the structure, that is, there a set of lateral force exist for each mode of vibration.

The equivalent (static) lateral force for an earthquake is obtained by carrying out a modal analysis of

structures, and then a static analysis of the structure with equivalent (static) lateral force in each mode of

vibration is performed to obtain the desired responses. The entire procedure is known as the response

spectrum method of analysis and is developed using the following steps.

1. A modal analysis of the structure is carried out to obtain the mode shapes, frequencies, and mode

participation factors for the structure.

2. An equivalent static load is derived to get the same response as themaximum response obtained in each

mode vibration, using the acceleration response spectrum of the earthquake.

3. The maximum modal responses are combined to find the total maximum response of the structure.

There are no approximations involved in the first two steps. Only the third one involves approximations.

As a result, the response spectrum method of analysis is called an approximate method of analysis. The

approximation introduces some errors into the computed response. The magnitude of the error depends

upon the problem (both the type of structure and the nature of earthquake excitation). However, seismic

response analysis of a number of structures have shown that for most practical problems, the response

spectrum method of analysis estimates reasonably good responses for use in design.

The method is primarily developed for single-point excitation with a single-component earthquake.

However, the method could be extended to multi-point – multi-component earthquake excitations with

certain additional assumptions. Furthermore, response spectrum method of analysis is derived for

classically damped structures. Therefore, its application to non-classically damped structural systems

is not strictly valid.However,with some other simplifying assumptions, themethod has been used for non-

classically damped systems.

5.3 Response Spectrum Analysis for Single-Point Excitation

5.3.1 Development of the Method

The equation of motion for an MDOF system with single-point excitation is rewritten below.

M€xþC _xþKx ¼ �MIx€g ð5:1Þ
Usingmodal transformation, Equation 5.1 can bewritten as a number of uncoupled equations ofmotion

representing a set of SDOF systems:

z€i þ 2xioizi þo2
i zi ¼ �lix€g i ¼ 1 . . .m ð5:2Þ

in which

li ¼ uTi MI

uTi Mui

and ui is the ith mode shape and m is the number of modes being considered.

The response of the system in the ith mode is given by:

xi ¼ fizi ð5:3Þ
The elastic force on the system in the ith mode is then specified as:

fsi ¼ Kxi ¼ Kfizi ð5:4Þ
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As the undamped mode shape fi satisfies the following equation

Kfi ¼ o2
i Mfi ð5:5Þ

Equation 5.4 can be written as:

fsi ¼ o2
i Mfizi ð5:6Þ

The maximum elastic force developed in the ith mode is then

fsi max ¼ Mfio
2
i zi max ð5:7Þ

Now, referring to the development of response spectrums of an earthquake (given in Chapter 2) zimax

may be written as:

zimax ¼ liSdi ðoi; xiÞ ð5:8Þ
in which Sdi ðoi; xiÞ denotes the ordinate of the displacement response spectrum for the ground

acceleration x€g corresponding to a damping of xi and a time period of Ti ¼ 2p=oi.

As the pseudo acceleration spectrum Sa ¼ o2Sd, Equation 5.7 may be written as:

fsi max ¼ liMfiSai ¼ Pei ð5:9Þ
Using Equation 5.4, xi max can be written as

xi max ¼ K�1fsi max ¼ K�1Pei ð5:10Þ
Equation 5.3 together with Equation 5.10 forms the basis of the response spectrum method of analysis

for an earthquake. It may be interpreted in the following way.

If theMDOF system subjected to a single-point ground excitationx€g is assumed to vibrate only in the ith

mode, that is, the contribution of the ith mode is only considered in evaluating the response, then the

maximum displacement of the response of the system can be obtained by analyzing the system statically

under an equivalent static load Pei .

From Equation 5.9, it is evident that there an equivalent lateral load vector Pei exists for each mode

of vibration. Furthermore, a pseudo acceleration response spectrum (loosely termed an acceleration

response spectrum) of an earthquake is required to obtain this load vector. Because of this reason, this

method of analysis is known as the response spectrum method of analysis. As the equivalent lateral

load is defined for each mode of vibration, it is also called the modal response spectrum method of

analysis. To obtain Pei using Equation 5.9, it is seen that fi and li are required in addition to the

acceleration response spectrum. Therefore, a modal analysis has to be performed for determining

frequencies, mode shapes, and mode participation factors for the structure. Subsequently, a static

analysis of the structure under the equivalent lateral load is required to obtain the maximum response in

each mode of vibration.

As the contributions of responses from different modes of variation constitute the total response, the

total maximum response is obtained by combining the modal quantities. This combination is done in an

approximatemanner because the actual dynamic analysis is now replaced by an equivalent static analysis.

The number of modes to be considered in the analysis is decided based on the total mass participation

factor discussed in Chapter 3.

5.3.2 Modal Combination Rules

Themaximum responses obtained in eachmode of vibration are generally combined using three different

types of modal combination rules, namely: (i) ABSSUM, (ii) SRSS, and (iii) CQC.
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5.3.2.1 ABSSUM

ABSSUM stands for absolute sum of maximum values of response. Thus, if x is the response quantity of

interest then

x ¼ S
m

i¼1
xijmax

�� ð5:11Þ

in which xijmax

�� is the absolute maximum value of response in the ith mode of vibration. The combination

rule gives an upper bound to the computed value of the total response for two reasons: (i) it assumes that

themodal peak responses occur at the same time; and (ii) it ignores the algebraic sign of the response. The

actual time history analysis shows that the peak responses (considering both negative and positive

peaks) occur at different times in differentmodes. Also, the total peak response occurs at a time different to

those of the modal peaks, as illustrated in Figure 5.1. Thus, the combination rule provides a conservative

estimate of the total peak response, and therefore it is not very commonly used in the seismic design

of structures.

5.3.2.2 SRSS

In SRSS, square root of sum of squares, the response x is given by:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
m

i¼1
x2imax

r
ð5:12Þ

The modal peak responses are squared, summed up, and then the square root of the sum is taken to

obtain the total peak response. This combination rule generally provides a good estimate of the total peak

response for structures with well separated natural frequencies.When the natural frequencies are not very

well separated, the error in estimation of the total peak response becomes considerable. The underlying

meaning of Equation 5.12 is that the modal peak responses are assumed to be independent random

variables. However, there is always some degree of correlation between the modal responses, which may

be very small, and hence can be ignored when the natural frequencies are well separated.

5.3.2.3 CQC

TheCQC, complete quadratic combination rule, is a generalization of the SRSS rule and is applicable for a

wider class of structures. It is specifically used for structures having closely spaced frequencies. The

response x is given by:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
m

i¼1
x2i þ S

m

i¼1
S
m

j¼1
rijxixj

r
ð5:13Þ

The second term in the above expression is valid for i 6¼ j. Thus, the second term includes the effect of

correlation between modal peak responses through the correlation coefficient terms rij . It is obvious that
0 � rij � 1. If xi and xj are of opposite sign, then rijxixj becomes negative. Therefore, CQCmay provide

less response than that provided by SRSS. Different expressions for the correlation coefficient rij have
been proposed in the literature. Here, two widely used expressions are given for the case when all modal

dampings are assumed to be the same (that is, xi ¼ xj ¼ x). The first one was proposed by Rosenblueth
and Elordy [1] and is given as:

rij ¼
x2ð1þ bijÞ2

ð1�bijÞ2 þ 4x2bij
ð5:14Þ
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in which bij ¼ oi=oj . The second one was proposed by Der Kiureghian [2] and is given as:

rij ¼
8x2ð1þ bijÞb3=2ij

ð1�bijÞ2 þ 4x2bijð1þ bijÞ2
ð5:15Þ

The plots of the two expressions are shown in Figure 5.2. It is seen from the figure that both expressions

provide almost the same value, especially near bij ¼ 1. Furthermore, for a small damping ðx < 0:1Þ, the
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Figure 5.1 Time histories of displacement of the problem in Example 3.12: (a) top-storey displacement; (b) first
generalized displacement; and (c) second generalized displacement
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value of rij rapidly decreases as bij moves away from unity. Thus, for well separated natural frequencies,

rij may be ignored as it is assumed in the SRSS combination rule.

SRSS and CQC rules for the combination of peak modal responses are best derived assuming a future

earthquake to be a stationary random process (Chapter 4). As both the design response spectrum and

power spectral density function (PSDF) of an earthquake represent the frequency contents of ground

motion, a relationship exists between the two. This relationship is investigated for the smoothed curves

representing the two, which show the averaged characteristics of many ground motions. If the ground

motion is assumed to be a stationary random process, then the generalized coordinate in each mode of

vibration is also a random process. Therefore, there a cross correlation (represented by cross PSDF)

between the generalized coordinates of any two modes is present. Because of this, it is reasonable to

assume that a correlation coefficient rij exists between the two modal peak responses. Derivation of rij
(Equation 5.15) as given by Der Kiureghian [2] is based on the above concept.

There have been several attempts to establish a relationship between the PSDF and the response

spectrum of ground motion. Here, a relationship proposed by Der Kiureghian and Neuenhofer [3] is

adopted for use and is given by:

Sx€gðoÞ ¼
oyþ 2

oy þoy
ff

2xo
p

þ 4

pt

� �
Dðo; xÞ
p0ðoÞ

� �2
ð5:16aÞ

p0ðoÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

2:8ot
2p

� �s
ð5:16bÞ

where

Dðo; xÞ is the displacement response spectrum ordinate for damping ratio x and T ¼ 2p=o
o is the frequency

t is the duration of the earthquake

p0ðoÞ is the peak factor for the response to white noise, which is given in terms of o; x and t [4]
off and y are two constants, some reasonable values, which may be taken, are 0.705 and 3, respectively

Sx€gðoÞ is the PSDF of ground acceleration.

Both the CQC and SRSS rules provide good estimates of peak response for wide band earthquakes with

durations much greater than the time period of the structure. Because of the underlying principle of

Figure 5.2 Variation of correlation coefficient rij with themodal frequency ratiooi=oj ; abscissa scale is logarithmic
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random vibration in deriving the combination rules, the peak responses would be better termed as the

mean peak response or expected peak value of response.

Example 5.1

Compare between the PSDFs obtained from the smoothed displacement response spectrum

(Equation 5.16a) and the Fourier spectrum of the El Centro earthquake.

Solution: Figure 5.3 shows the PSDFs obtained by Equation 5.16a using the displacement response

spectrum of the El Centro earthquake and the smooth PSDF obtained from the Fourier spectrum of the

same earthquake (refer to Section 4.5). It is seen from the figure that both PSDFs compare well. Thus,

Equation 5.16a can be used to obtain response spectrum compatible PSDFs.
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Figure 5.3 Comparison between the PSDFs obtained by Equation 5.16a and the Fourier spectrum of the El Centro
earthquake: (a) unsmoothed; and (b) 21-point smoothed
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5.3.3 Application to 2D Building Frames, Chimneys, and Stacks

The dynamic degrees of freedomof these structures are considered as the sway degrees of freedom and are

obtained by condensing out the rotational degrees of freedom. The single component of an earthquake is

assumed to act in the direction of the sway degrees of freedom. The response spectrummethod of analysis

of these structures can be carried out using the following steps.

1. Identify all kinematic degrees of freedom.

2. Generate a stiffness matrix K of the structure corresponding to the kinematic degrees of freedom.

3. Apply unit loads at the desired dynamic degrees of freedom (that is, sway degrees of freedom) one at a

time to generate the flexibility matrix (F) corresponding to the dynamic degrees of freedom. Also, the

desired response quantities (moments, shear forces, and so on.) are determined for each position of the

unit load and are arranged in the form of an influence coefficient matrixR of sizem� n, wherem is the

number of response quantities of interest and n is the number of sway degrees of freedom.

4. Form the diagonal mass matrixM corresponding to sway degrees of freedom and solve for the eigen

value problem with M and F.
5. For the ithmode, find li (Equation 5.2), and then obtainPei (Equation 5.9). For building frames, li may

be simplified to:

li ¼
S
N

r¼1
Wrfir

S
N

r¼1
WrðfirÞ2

ð5:17Þ

in whichWr is the weight of the rth floor and fir is the mode shape coefficient for the rth floor in the

ith mode.

6. Obtain Rj ¼ RPejðj ¼ 1 . . . rÞ, in which r is the number of modes considered, R is the influence

coefficient matrix explained above, and Rj is the modal peak response vector of size m.

7. Use either the SRSS or CQC rule for combining the modal peak responses.

Example 5.2

For the frame shown in Figure 3.20 (Example 3.12), find the mean peak values of top displacement, base

shear, and inter-storey drift between the first and second floors using the response spectrum method of

analysis andmake a comparison between the results obtained by SRSS, CQC,ABSSUM, and time history

analysis by considering two modes only, and by considering all modes. Use the digitized smoothed

response spectrum of the El Centro earthquake given in Appendix 5.A.

Solution: Applying the steps given in Section 5.3.3, the lateral load and the response quantities of interest

are obtained. The frequencies and mode shapes for the problem are given below.

o1 ¼ 5:061 rad s�1;o2 ¼ 12:560 rads�1;o3 ¼ 18:646 rad s�1

fT
1 ¼ �1 �0:871 �0:520 �0:278½ �

fT
2 ¼ �1 �0:210 0:911 0:752½ �

fT
3 ¼ �1 0:738 �0:090 �0:347½ �

fT
4 ¼ 1 �0:843 0:268 �0:145½ �

The results of the response spectrummethod of analysis are shown in Table 5.1. It is seen from the table

that ABSSUM provides much higher values compared with the others. Responses obtained by SRSS and

CQCare nearly the same; those of SRSS are on the higher side. The results obtained byCQCcomparewell

with those of time history analysis. As themodes arewell separated, SRSS and CQC rules of combination
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providenearly the same results. In addition, it is seen that contributions of highermodes to the response are

not significant as themass participation factor given byEquation 3.115 for thefirst twomodes is nearly 0.9.

5.3.4 Application to 3D Tall Buildings

For 3D tall buildings subjected to a single-component earthquake, the principal direction of the building is

aligned with the direction of ground motion, as shown in Figure 5.4(a and b).

Analysis is performed for ground motion applied to each principal direction separately, and the worst

combination of response quantities are considered for the design. The following steps are adopted for

the analysis.

1. Assume the floors as rigid diaphragms and find the center of mass of each floor.

2. Dynamic degrees of freedom at the center of mass of each floor are considered as two translations (in

the principal directions) and a rotation about a vertical axis. If the centers of masses of the floors do not

Table 5.1 Comparison of peak responses obtained by different approaches

Approach Displacement (m) Base shear in terms of
mass (m)

Drift (m)

2 modes All modes 2 modes All modes 2 modes All modes

SRSS 0.9171 0.917 1006.558 1006.658 0.221 0.221
CQC 0.9121 0.905 991.172 991.564 0.214 0.214
ABSSUM 0.9621 0.971 1134.546 1152.872 0.228 0.223
Time history 0.8921 0.893 980.098 983.332 0.197 0.198
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Figure 5.4 Dynamic degrees of freedom for asymmetric 3D tall buildings: (a) center of masses in one vertical axis;
(b) center of masses at different vertical axes
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lie on one vertical axis, find the c.g of the vertical lines for the centers of masses. Dynamic degrees of

freedom are then defined at the points where this vertical axis intersects the floors (Figure 5.4b).

3. Apply unit loads corresponding to each dynamic degrees of freedom one at a time as in the previous

case, and solve the 3D building statically to find the flexibility matrix.

4. Carry out steps 4–7 as in the previous case.

Example 5.3

For the 3D frame shown in Figure 3.30 (exercise in Example 3.9), find the mean peak values of top

displacements, torque at the first floor, and the two shear forcesVx andVy at the base of the columnAusing

the response spectrummethod of analysis and compare between the results obtained by SRSS, CQC, and

time history analysis by taking all modes. Use the digitized values of the response spectrum of the El

Centro earthquake given in Appendix 5.A.

Solution: Following the steps given in Section 5.3.4, the results of the response spectrum method

of analysis are obtained and are shown in Table 5.2. The natural frequencies of the frame are

obtained as:

o1 ¼ 13:516 rad s�1; o2 ¼ 15:138 rad s�1;o3 ¼ 38:731 rad s�1;

o4 ¼ 39:633 rad s�1;o5 ¼ 45:952 rad s�1;o6 ¼ 119:187 rad s�1

It is seen from the table that there is a difference between the results obtained by the SRSS and CQC

rules of combination. The SRSS rule provides higher responses. This is the case because the natural

frequencies of the structure are not well separated. The results obtained by the CQC combination rule are

closer to those of the time history analysis; the latter provides less responses.

5.4 Response Spectrum Analysis for Multi-Support Excitations

5.4.1 Development of the Method

The response spectrum method of analysis has been developed for single-point excitation with single-

component groundmotion. Therefore, the concept and the derivation of themethod are not valid formulti-

support excitation. However, there are many practical problems where the assumption of single-point

excitation is not correct. They include long pipelines, networks of pipelines, dams, continuous bridges,

and spatially long structures. Depending upon the distance between the supports, the ground motions at

the various supports of a structure could be different in terms of their rms values, phases, and frequency

contents. A travelling train of an earthquake wave moving with a shear wave velocity of Vs produces

different excitations at different supports that have the same frequency contents but have phase differences

(time lag). If the support excitations are assumed as random processes, then they form a set of partially

correlated random excitations having the same PSDF. Thus, the excitations at the supports are

characterized by a single response spectrum, which bears a relationship with the PSDF as given by

Table 5.2 Comparison of peak responses obtained by different approaches

Approach Displacement (m) Torque (rad) Vx (N) Vy (N)

(1) (2) (3)

SRSS 0.1431 0.0034 0.0020 214 547 44 081
CQC 0.1325 0.0031 0.0019 207 332 43 376
Time history 0.1216 0.0023 0.0016 198 977 41 205
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Equation 5.16. The effect of a time lag or phase shift or lack of correlation between the excitations is

included by defining a correlation function (Chapter 4).

Development of the response spectrum method of analysis for multi-support excitation follows the

principles of random vibration analysis and has been presented by Der Kiureghian and Neuenhofer [3].

The derivation of the method is somewhat complex and cannot be understood without a good knowledge

of the theory of random vibration. Therefore, it is not included here. However, some of the important

features of the development of the method and its use are as follows.

i. It is assumed that the future earthquake ground motions may be represented by an averaged smooth

response spectrum and an averaged smooth PSDF of groundmotion, both obtained from an ensemble of

time history records.

ii. The lack of correlation between the ground motions at two points is represented by a coherence

function (as that given by Equation 2.93).

iii. All peak factors, that is, the peak factor in each mode and the peak factor for the total response, are

assumed to be the same [3]. Several expressions for peak factors are available in the literature. One

expression, which is widely used, is given in Chapter 2 [5] and may be used here.

iv. A relationship between the ordinates of the displacement response spectrum Sdðo; xÞ and those of the
PSDF of acceleration Sg€ðoÞ of ground motion is established, as given by Equation 5.16.

v. The mean peak value of any response quantity of interest, r (which may be displacement or bending

moment or shear force) consists of two parts (Chapter 3), namely: (a) pseudo static response due to the

displacements of the supports and (b) dynamic response of the structure due to themotion of the structure

with respect to the supports.

vi. Equations ofmotion in terms of relative displacements arewritten as given by Equation 3.19 (Chapter 3).

vii. The normal mode transformation provides m sets of uncoupled equations (equal to the number

of modes considered) with the right-hand side of each equation containing an acceleration term,

which is theweighted sum of the support accelerations. Thus, a typical modal equation is written in

the form

z€i þ 2xoi _zi þo2
i zi ¼ S

s

k¼1
bkiu€k i ¼ 1 . . .m ð5:18Þ

in which s is the number of supports and bki is given by:

bki ¼
fT
i MRk

fT
i Mfi

ð5:19Þ

where Rk is the influence coefficient vector representing the displacements at the non-support

dynamic degrees of freedom produced due to unit displacement given to the kth support only. The

method for finding this vector is explained in Chapter 3. If the response of the SDOF oscillator

(Equation 5.18) to u€k alone is �zki, then

zi ¼ S
s

k¼1
bki�zki ð5:20Þ

viii. Introducing the quasi-static component of the response, the total value of any response (r) quantity of

interest at any instant of time t is given by:

rðtÞ ¼ S
s

k¼1
akukðtÞþ S

m

i¼1

�fiziðtÞ ð5:21Þ

in which ak is the response quantity of interest for unit displacement in the direction of ground

motion applied at the kth support only, and �fi is the ith mode shape coefficient for the response
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quantity of interest. Substituting for zi in Equation 5.21

rðtÞ ¼ S
s

k¼1
akukðtÞþ S

m

i¼1

�fi S
s

k¼1
bki�zki ð5:22Þ

In matrix form, Equation 5.22 may be written as:

rðtÞ ¼ aTuðtÞþfT
b�zðtÞ ð5:23Þ

in which a is a coefficient vector of size s denoting the response quantity of interest for unit

displacements applied at the supports (one at a time);uðtÞ is thevector of grounddisplacements at the

support s at time t; fb and �z are the vectors of size m � s, respectively and are of the form shown

below (for s¼ 2 and m¼ 3):

fT
b ¼ �j1b11 �j1b21 �j1b31 �j2b21 �j2b22 �j2b32½ � ð5:24aÞ

�zT ¼ �z11 �z21 �z31 �z11 �z22 �z32f g ð5:24bÞ
ix. Assuming rðtÞ, uðtÞ, and �zðtÞ to be stationary random processes, the PSDF of rðtÞ, Srr may be written

as (Chapter 4):

Srr ¼ aTSuuaþfT
bS�z�zfb þ aTSu�zfb þfT

bS�zua ð5:25Þ
in which Suu is the PSDFmatrix of support displacements u of size s� s and S�z�z is the PSDFmatrix

of generalized displacements �z of sizems�ms; S �uz is the cross PSDFmatrix between vectors u and
�z of size s�ms; and S�zu is the complex conjugate of Su�z.

x. PerformingintegrationofEquation5.25overtheentirerangeoffrequencies,writingthemeanpeakvalue

ofresponserðtÞaspeakfactormultipliedbythestandardderivationof theresponseandassumingallpeak

factors to be the same, the following expression for the mean peak response of rðtÞ may be obtained:

E max rðtÞjj � ¼ ½bT‘‘uubþ bT‘‘u�zfbD þfT
bD‘‘�z�zfbD þfT

bD‘‘�zub�1=2
h

ð5:26Þ

in which

bT ¼ ½a1up1 a2up2 a3up3 . . . aSupS � ð5:27aÞ

fT
bD ¼ �f1b11D11

�f1b21D21 � � � �f1bs1Ds1 . . . �fmb11D1m � � � � � � �fmbs1Dsm

� 	 ð5:27bÞ

Dij ¼ Diðoj ; xjÞ i ¼ 1; . . . ; s; j ¼ 1; . . . ;m ð5:27cÞ
In Equations 5.26 and 5.27a–5.27c, upi ði ¼ 1; 2; :::; sÞ is the peak ground displacement at the ith

support, Dij is the ordinate of the displacement response spectrum for the ground motion at support

i corresponding to time period Tj ¼ 2p=oj; ‘‘uu is the correlation matrix between the displacements

at the supports and is of size s� s; ‘‘u�z is the correlation matrix between the displacements at the

supports and modal displacement �zki and is of size s�ms; ‘‘�zu is the transpose of ‘‘u�z; ‘‘�z�z is the
correlation matrix between the modal displacements �zki and �zij . The elements of the correlation

matrices are given by:

‘‘uiuj ¼
1

suisuj

ða

�a

Suiuj ðoÞdo ð5:28Þ
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‘‘ui�zkj ¼
1

suis�zkj

ða

�a

h�j Suiu€ k
ðoÞdo ð5:29Þ

‘‘�zki�zlj ¼
1

s�z k i
s�z l j

ða

�a

hih
�
j Su€ k u€ l

ðoÞdo ð5:30Þ

in which hi is the frequency response function of the ith modal equation.

For a single component travelling wave train of an earthquake,

Suiuj ¼
1

o4
S
1=
2

u€ i
S
1=
2

u€ j
cohði; jÞ ¼ cohði; jÞ

o4
Su€g ð5:31Þ

Suiu€ k
¼ 1

o2
S
1=
2

u€ i
S
1=
2

u€ k
cohði; kÞ ¼ cohði; kÞ

o2
Su€g ð5:32Þ

Su€ k u€l ¼ S
1=
2

u€ k
S
1=
2

u€ l
cohðk; lÞ ¼ cohðk; lÞSu€g ð5:33Þ

in which Su€ i
is the PSDF of ground acceleration at support i; cohði; jÞ is the coherence function

between the ground motions at supports i and j; Su€ g
is the PSDF of ground acceleration of the

travelling wave train.Various forms of cohði; jÞ have been given in Chapter 2. Computation of the

elements of the correlation matrix given by Equations 5.28–5.30 requires Su€ g
ðoÞ and a coherence

function as evident from Equations 5.31–5.33. Further, in Equation 5.27c, Dij ¼ Dðoj ; xjÞ, that is,
D11 ¼ D21 ¼ DS1, and so on, for a single travellingwave train. For a specifieddisplacement response

spectrum, Su€ g
ðoÞ is obtained fromEquation 5.16. Therefore, additional input required for the case of

multi-support excitation is the coherence function between ground motions at any two supports.

xi. If only the expected peak value of the relative displacement (not the total displacement) is required, then

the third term of Equation 5.26 is retained only.

It can be seen from Equations 5.26–5.33 that the determination of the mean peak value of responses

by the response spectrummethod of analysis for multi-support excitation requires: (i) response spectra of

the excitations at the supports (Equation 5.27c) and (ii) correlation matrices ‘‘uu, ‘‘u�z, and ‘‘�z�z, which
consider the effect of spatial correlation between the excitations at the supports. For a single component

travelling wave train of an earthquake, the above inputs consist of describing a correlation function

(such as in Equation 2.93) and the PSDF of ground acceleration. The latter is approximated from the

displacement response spectrum of the earthquake by Equations 5.16a and 5.16b. As the approximations

involved in describing thePSDFaffect only the correlationmatrices ‘‘uu, ‘‘u�z, and ‘‘�z�z (Equations 5.28–5.33),
only a slight error is introduced into the computation of the mean peak value of the response

from Equation 5.26.

5.4.2 Steps for Developing Program in MATLAB�

1. Matrix r is constructed as given in Section 3.5.7 (part I.1.iv).

2. From the matrix r, the vector Rkðk ¼ 1 to sÞ is extracted; in which s is the number of supports.

3. bki is obtained from Equation 5.19 for k ¼ 1 to s, and i ¼ 1 tom in which m is the number of modes.

4. fT
b and fT

bD are obtained using Equations 5.24a and 5.27b for a response quantity of interest. fT
b and

fT
bD for other response quantities of interest are similarly obtained and stored. Note thatfi is obtained

by the procedure given in Section 3.5.4.
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5. The coefficient vector a is generated for any response quantity of interest following the procedure

outlined in Section 3.5.6 (part I.1.vi). a for other response quantities of interest are similarly obtained

and stored.

6. Thevectorb is obtained usingEquation 5.27a;upi is obtained fromEquations 2.19a–2.19c for the PSDF

of grounddisplacement at the support Sug ¼ Su€ g=o4

 �

;Su€g is obtained usingEquation 5.16a for a given

displacement response spectrum (derived from the acceleration response spectrum) of an earthquake.

7. Thematrices ‘‘uu, ‘‘u�z, and ‘‘�z�z are determined usingEquations 5.28–5.30, which provide the expressions

for the elements of the above matrices. Note that hi is the complex frequency response function for the

modal equation given byEquation 5.18, andEquations 5.31–5.33 are used to obtain the expressions for

Su€ i u€ j , Suiu€ j , and Suiuj . Integrations of Equations 5.28–5.30 are numerically carried out and the cross

terms, such as ‘‘�zkjui , are taken as the conjugate of ‘‘ui�zkj .
8. The mean peak value of the response is obtained by using Equation 5.26 and step (xi) of Section 5.4.1,

if appropriate.

Example 5.4

For the problem in Example 3.8, shown in Figure 3.7, find the mean peak value of the displacements u1
and u2 using the response spectrum method of analysis. Take the response spectrum of the El Centro

earthquake and assume a time delay between the supports of 5 s. Use the correlation function given by

Equation 2.93 and the digitized values of the response spectrum of the El Centro earthquake given in

Appendix 5.A.

Solution: An acceleration response spectrum compatible PSDF of the El Centro groundmotion is shown

in Figure 5.3. This PSDF and the correlation function are used to calculate the correlationmatrices ‘‘uu, ‘‘u�z,
and ‘‘�z�z. Following steps 1–8 as given above, the quantities required for calculating the expected peak

value of the responses are given as below.

f ¼ 1 1

0:5 �1

� �
; �f ¼ 1 1

0:5 �1

� �
; r ¼ 1

3

1 1 1

1 1 1

� �
;

w1 ¼ 12:24 rad s�1; w2 ¼ 24:48 rad s�1

aT ¼ 1

3

1 1 1

1 1 1

� �
; fT

b ¼ �j11b11 �j11b21 �j11b31 �j12b12 �j12b22 �j12b32
�j21b11 �j21b21 �j21b31 �j22b12 �j22b22 �j22b32

� �

fbD ¼ 0:0259 0:0259 0:0259 �0:0015 �0:0015 �0:0015
0:0129 0:0129 0:0129 0:0015 0:0015 0:0015

� �

D11 ¼ D21 ¼ D31 ¼ Dðo1 ¼ 12:24Þ ¼ 0:056 m;
D12 ¼ D22 ¼ D32 ¼ Dðo2 ¼ 24:48Þ ¼ 0:011 m

cohði; jÞ ¼
1 r1 r2
r1 1 r1
r2 r1 1

2
4

3
5; r1 ¼ exp

�5o
2p

� �
; r2 ¼ exp

�10o
2p

� �

With the above quantities, the correlation matrices are calculated as follows.

‘‘uu ¼
1 0:873 0:765
0:873 1 0:873
0:765 0:873 1

2
4

3
5;
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‘‘u�z ¼
0:0382 0:0061 0:0027 0:0443 0:0062 0:0029
0:0063 0:0387 0:0063 0:0068 0:0447 0:0068
0:0027 0:0063 0:0387 0:0029 0:0068 0:0447

2
4

3
5

and

‘‘�z�z ¼

1 0:0008 0:0001 0:0142 0:0007 0:0001
0:0008 1 0:0008 0:0007 0:0142 0:0007
0:0001 0:0008 1 0:0001 0:0007 0:0142
0:0142 0:0007 0:0001 1 0:0007 0:0001
0:0007 0:0142 0:0007 0:0007 1 0:0007
0:0001 0:0007 0:0142 0:0001 0:0007 1

2
6666664

3
7777775

Using Equation 5.26, mean peak values of the response quantities are determined. The responses are

obtained as:

. Mean peak value of total displacement of u1¼ 0.106m

. Mean peak value of total displacement of u2¼ 0.099m

. Mean peak value of relative displacement of u1¼ 0.045m

. Mean peak value of relative displacement of u2¼ 0.022m

For perfectly correlated ground motion, Equation 5.26 may be used for finding the mean peak value of

the response. In that case, ‘‘uu, ‘‘u�z, and ‘‘�z�z matrices only need to be changed in order to make the ground

motions the same at all supports and to remove the correlation between any two modes. For the problem

above, the matrices take the following values:

‘‘uu ¼
1 0 0

0 1 0

0 0 1

2
4

3
5; ‘‘u�z ¼ null matrix

and

‘‘�z�z ¼

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

2
6666664

3
7777775

Using the above correlation matrices, the mean peak values of the relative displacements of u1 and u2
are obtained as 0.078 and 0.039m, respectively. The response spectrum method of analysis for single-

support excitation for the same problem provides these responses as 0.079 and 0.041m, respectively. The

time history analysis of the same problem (Example 3.10 without the time lag) gives these values as 0.081

and 0.041m, respectively.

Example 5.5

Find the values of mean peak displacement and bending moment at the center of the pipeline, shown in

Figure 3.15, for the El Centro earthquake. Assume a time lag of 2.5 s between the supports. Use the

correlation function given byEquation 2.93 and use the digitized values of the response spectrumof the El

Centro earthquake given in Appendix 5.A.
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Solution: For the bending moment, the quantities required for the calculation of mean peak values are

given below (taken from Example 3.10).

f ¼
0:5 �1 1

1 0 �0:5
0:5 1 1

2
4

3
5; �f ¼ 1 0 �0:5

8mL 16mL �24mL

� �

r ¼
1 0:002 �0:152
�0:026 1 �0:026
�0:152 0:002 1

2
4

3
5; C ¼

0:8139 �0:0361 0:0182
�0:0361 0:9562 �0:0361
0:0182 �0:0361 0:8139

2
4

3
5m

w1 ¼ 8:1 rad s�1;w2 ¼ 9:8 rad s�1;w3 ¼ 12:2 rad s�1

aT ¼ �0:026 1 �0:026
16:42mL 0 16:42mL

� �

m and L are shown in Figure 3.15.

fT
b ¼ �f11b11 �f11b21 �f11b31 �f12b12 �f12b22 �f12b32 �f13b13 �f13b23 �f13b33

�f21b11 �f21b21 �f21b31 �f22b12 �f22b22 �f22b32 �f23b13 �f23b23 �f23b33

� �

fT
bD ¼ 0:0093 0:0501 0:0093 0 0 0 �0:0095 0:0109 �0:0095

0:0093 0:0501 0:0093 �0:0696 0 0:0696 �0:0576 0:0654 �0:0576

� �

D11 ¼ D21 ¼ D31 ¼ Dðo1 ¼ 8:1Þ ¼ 0:0621 m;
D12 ¼ D22 ¼ D32 ¼ Dðo2 ¼ 9:8Þ ¼ 0:0606 m;
D13 ¼ D23 ¼ D33 ¼ Dðo3 ¼ 12:2Þ ¼ 0:0548 m

cohði; jÞ ¼
1 r1 r2
r1 1 r1
r2 r1 1

2
4

3
5; r1 ¼ exp

�2:5o
2p

� �
; r2 ¼ exp

�5o
2p

� �

Because of the soil damping ofCs ¼ 0:6 m included in the dampingmatrix,C,fTCf does not become

a diagonal matrix. The modal damping ratios required for performing the response spectrum analysis are

approximately determined by ignoring the off-diagonal terms of the fTCf matrix. The resulting modal

damping ratios are calculated as x1 ¼ 0:0811, x2 ¼ 0:0812, and x3 ¼ 0:0823. As there is not much

difference between the three, a uniform damping ratio of 0.08 is adopted for all three modes.

With the above quantities, the correlation matrices are calculated as shown below.

‘‘uu ¼
1 0:9342 0:8735
0:9342 1 0:9342
0:8735 0:9342 1

2
4

3
5

‘‘u�z ¼
0:0562 0:0231 0:0122 0:0451 0:0184 0:0098 0:0442 0:0147 0:0078
0:0231 0:0562 0:0231 0:0184 0:0451 0:0184 0:0147 0:0442 0:0147
0:0122 0:0231 0:0562 0:0098 0:0184 0:0451 0:0078 0:0147 0:0442

2
4

3
5

and

‘‘�z�z ¼

1 0:0524 0:0051 0:3913 0:0207 0:0030 0:0746 0:0099 0:0021
0:0524 1 0:0524 0:0207 0:3913 0:0207 0:0099 0:0746 0:0099
0:0051 0:0524 1 0:0030 0:0207 0:3913 0:0021 0:0099 0:0746
0:3913 0:0207 0:0030 1 0:0278 0:0025 0:2895 0:0109 0:0017
0:0207 0:3913 0:0207 0:0278 1 0:0278 0:0109 0:2895 0:0109
0:0030 0:0207 0:3913 0:0025 0:0278 1 0:0017 0:0109 0:2895
0:0746 0:0099 0:0021 0:2895 0:0109 0:0017 1 0:0148 0:0014
0:0099 0:0746 0:0099 0:0109 0:2895 0:0109 0:0148 1 0:0148
0:0021 0:0099 0:0746 0:0017 0:0109 0:2895 0:0014 0:0148 1

2
6666666666664

3
7777777777775

220 Seismic Analysis of Structures



UsingEquation 5.26, themean peak values of the response quantities are determined. The responses are

obtained as:

. Mean peak value of the total displacement at the center¼ 0.1152m

. Mean peak value of the bending moment at the center¼ 3.253 (multiplied by mass m)

. Mean peak value of the relative displacement at the center¼ 0.055m

5.5 Cascaded Analysis of Secondary Systems using Response
Spectrum Method

Secondary systems are smaller (and lighter) structures attached to the main structure. Examples of

secondary systems are the piping systems,mechanical fittings, small towers, and so on,mounted on amain

industrial structure. In nuclear and chemical industries, seismic qualification of such secondary systems is

of great interest. Therefore, seismic response analysis of such secondary structures is routinely carried out.

The seismic analysis of the entire structure including the secondary structures is faced with two major

problems, namely, (i) the degrees of freedom become prohibitively large, and (ii) the entire system

becomes non-classically damped for which modal analysis or the response spectrum method of analysis

cannot be used directly. In order to circumvent these difficulties, cascaded analysis has been introduced

and it has become very popular for the seismic analysis of secondary structures (systems). In cascaded

analysis, the interaction effect between the secondary and themain structures is ignored. Two systems are

analyzed separately. Input for the secondary system is constructed from the response of the main system

(analyzed separately). In this regard, the concept of the floor response spectrum is a useful concept for

defining the input for the cascaded analysis of the secondary system using the response spectrummethod

of analysis.

If a secondary system is mounted on the floor of a building, as shown in Figure 5.5a, then the secondary

system can be analyzed separately using the response spectrum method of analysis. The input to the

Secondary system

  xf&&

  xg&& (a)   
a f gx x x= +&& && && (b)

k

c

m

Figure 5.5 Cascaded analysis for a secondary system: (a) secondary systemmounted on a floor on a building frame;
and (b) SDOF is to be analyzed to obtain floor response spectrum
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secondary system is the pseudo acceleration response spectrum of the floor. It is constructed by finding

the displacement response of an SDOF attached to the floor to the base motion of the building. If x€f is the
acceleration of the floor produced due to the base acceleration, x€g, then the absolute acceleration of the

floor is obtained as x€a ¼ x€f þ x€g.
The displacement response of the oscillator is obtained for the support acceleration as x€a, shown in

Figure 5.5b. From the maximum displacement of the oscillator for varying periods, the pseudo

acceleration response spectrum is determined. This is called the floor response spectrum and is used

for the response spectrum method of analysis of the secondary system.

Example 5.6

For Example 3.5, find the mean peak displacement of the oscillator for the El Centro earthquake using

cascaded analysis. Assume the damping coefficient for the secondary system (oscillator) to be x ¼ 0:02
and that for themain system (frame) to be 0.05. Compare the result with that of the time history analysis of

the total system.

Solution: Figure 5.6 shows the floor displacement response spectrum that is taken as the input for the

secondary system (oscillator). The floor displacement response spectrum is obtained by analyzing an

SDOF system of varying time period for x ¼ 2%, subjected to the time history of absolute acceleration of

the floor on which the secondary system is mounted. From the floor displacement response spectrum, the

floor acceleration response spectrum can be easily constructed. However, for the present problem, it is

easy to obtain the maximum displacement of the secondary system (which is an SDOF system) from the

displacement response spectrum itself. Time period of the SDOF is T ¼ 2p=
ffiffiffiffiffi
60

p ¼ 0:811 s. From
Figure 5.6, the maximum displacement corresponding to T¼ 0.811 s is 0.8635m.

The maximum displacement of the topmass obtained from the time history analysis of the total system

is 0.9163m, which compares fairly well with the response spectrum method of analysis. Note that the

damping matrix for the total system is obtained by assuming Rayleigh damping for the frame (main

system) and then, combining the damping of the secondary system with the main system.

2
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Figure 5.6 Floor displacement response spectrum
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5.6 Approximate Modal Response Spectrum Method of Analysis

For secondary systems and other structural systems, where structural components have different types of

damping, the response spectrummethod of analysis cannot be used directly. However, if different types of

damping present in the system are small, an approximate response spectrum method of analysis can be

performed. For this, the damping matrix of the entire structural system is derived by assembling damping

matrices of the substructures (each substructure has one type of damping only). Note that the coupling

terms between the damping matrices of the substructures are assumed to be zero. The overall damping

matrix of the system, thus constructed, does not become diagonal under modal transformation, that is,

fTCf is not a diagonal matrix, in which f is the undamped mode shapes of the entire structural system

and C is the overall damping matrix. In the approximate modal response spectrum method, the off-

diagonal terms of the transformed damping matrix are ignored and an approximate modal damping ratio

for each mode of vibration is computed. The response spectrum method of analysis is then carried out as

described previously.

5.7 Seismic Coefficient Method

Asdescribed in the preceding section, the response spectrummethod of analysis allows the designer to use

a set of equivalent lateral forces for each mode of vibration and carry out a static analysis to obtain a good

estimate of the mean peak response of the structure. The term equivalent lateral load analysis of tall

structures, such as buildings, chimneys, towers, and so on, is not only used for the response spectrum

method of analysis of structures, but also for another very popular method of analysis called the seismic

coefficient method prescribed in different codes. Most of the codes refer to three types of analysis for

earthquake forces, namely: (i) Response Spectrum Analysis (RSA), (ii) Response History Analysis

(RHA), and (iii) Seismic Coefficient Method of Analysis. In this section, the concept of the seismic

coefficientmethod prescribed in different codes is first presented.Next, the codal provisions given in some

of the codes for performing seismic coefficientmethods of analysis are discussed. Finally, a comparison of

the results of some example problems obtained by the seismic coefficient method, response spectrum

method, and time history analysis is shown.

5.7.1 Outline of the Method

The seismic coefficient method obtains a set of equivalent lateral forces for an earthquake using some

empirical formulae for a ground supported structure and analyzes it to find the seismic forces induced in

themembers of the structure. In thismethod, the total weight of the structure ismultiplied by a coefficient,

known as the seismic coefficient, to obtain the total base shear of the structure that is distributed as a set of

lateral forces along the height of the structure. This distribution of lateral force bears a resemblance (but

not the same) with that for the fundamental mode of the structure in RSA. It is obtained by an empirical

formula that varies from code to code. The method of analysis consists of the following steps.

(i) Maximum base shear is obtained as:

Vb ¼ W � Ch ð5:34Þ
in which, W is the total weight of the building; Ch is a seismic coefficient that depends on the

fundamental time period of the structure.

(ii) The lateral load along the height of the structure is distributed such that the sum of the lateral loads is

equal to the base shear Vb.

Thus,

Fi ¼ Vb � f ðhiÞ ð5:35Þ
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where, Fi is the lateral load corresponding to the ith lateral displacement degree of freedom of the

structure and hi is the height of the point of application of the lateral load above the ground.

(iii) Static analysis of the structure for the lateral forces Fi (1 to n) is carried out to find the response

quantities of interest.

Different codes of practice have different provisions for the value of the seismic coefficient Ch and the

distribution of the lateral load along the height of the structure. Furthermore, the fundamental timeperiod of the

structure, especially for buildings, is computed using some empirical formulae, which are derived from

prototypemeasurements/experimentalwork/approximate analysis.Variation of the seismic coefficientChwith

the time period, T, follows a shape close to the design response spectrum prescribed in the codes.

Although a perfect inter-relationship does not exist between the earthquake structural dynamics and the

development of the seismic coefficient method, an approximate relationship can be shown to exist

between the two in terms of the computation of the fundamental time period, T, distribution of the lateral

forces along the height of the structure, and the computation of the base shear. The approximate

relationships are described in the following sections.

5.7.2 Distribution of Lateral Forces

According to the response spectrummethod of analysis, the lateral force,Fj, for the jth floor, for firstmode

of vibration is given by (Equation 5.9):

Fj ¼ l1 �Wj � fj1 �
Sa1

g
ð5:36Þ

From Equation 5.36, it is possible to write

Fj

SFj

¼ Wj � fj1

SWj � fj1

ð5:37Þ

As SFj ¼ Vb, Fj may be written as:

Fj ¼ Vb �
Wj � fj1

SWj � fj1

ð5:38Þ

If the fundamental mode shape of the building is assumed to be linear, the above equation simplifies to:

Fj ¼ Vb

Wj � hj

SWj � hj
ð5:39Þ

in which hj is the height of the jth floor.

Although the fundamental mode shape is not linear, the above equation may be modified to take the

non-linearity into account by writing

Fj ¼ Vb

Wj � hj
k

SWj � hj
k

ð5:40Þ

in which k > 1, for k¼ 2, the fundamental mode shape varies quadratically along the height. Some codes

prescribe the variation of the lateral force as a combination of the above two equations. Thus, it is apparent

that the seismic co-efficient method of analysis considers only the contribution of the fundamental mode

of vibration of the structure in an approximate way.

5.7.3 Computation of the Fundamental Time Period

Most of the codes provide an empirical formula for finding the fundamental time period of the buildings

based on experimental and practical observations. However, some of the codes, such as the International
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Building Code, USA, and the National Building Code, Canada, allow calculation of the fundamental time

period of buildings using a formula which is almost the same as that used for calculating the approximate

fundamental time period of a building frame using Rayleigh’s method [6].

5.7.4 Computation of the Base Shear

According to the response spectrum method of analysis, the base shear in the ith mode is given by:

Vbi ¼ SFji ¼ SWj � fji �
Sai
g

� �
� li ð5:41Þ

As We
i ¼ li � SWj � fji, the ith effective weight of the structure (that is, effective weight of the

building in the ith mode), Vbi may be written as:

Vbi ¼ We
i

Sai
g

ð5:42Þ

Instead of using the SRSS combination rule, if the absolute sum of the response is used to find an upper

bound to the response quantity of interest, then

Vb � S Vbð Þjj ð5:43Þ

� S
Sai
g
We

i ði ¼ 1 to nÞ ð5:44Þ

If it is assumed that Sai=g for all modes are the same, and is equal to Sa1=g, then an upper bound estimate

of the base shear is given as:

Vb ¼ Sa1

g
�W ð5:45Þ

The base shear computed by the seismic coefficient method uses a similar formula, with Sa1=g replaced
by Ch. Thus, the seismic coefficient method is expected to provide a conservative estimate of the

base shear.

5.8 Comparison of Some Code Provisions Prescribed
by Different Earthquake Codes

Almost all countries have their own codes for seismic analysis and design of structures. It is difficult to

compare all of them. In this section, a comparison between the code provisions for the seismic base shear

coefficient, calculation of the fundamental time period of buildings, distribution of the lateral force along

the height, and the design response spectra given by the following codes is made in order to demonstrate

the type of variations that exist between the codes.

1. International Building Code, IBC – 2000 [7]

2. National Building Code of Canada, NBCC – 1995 [8]

3. Euro Code 8 – 1995 [9]

4. New Zealand Code, NZS 4203 – 1992 [10]

5. Indian Code, IS 1893 – 2002 [11]

The codes under consideration prescribe all three types of analysis, namely: the seismic coefficient

method, the response spectrummethod of analysis, and response time history analysis. The threemethods

of analysis require three different types of input. The seismic coefficient method requires seismic

coefficient Ch for different values of the time period, T. The response spectrum method requires the
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pseudo acceleration response spectrum. The time history analysis requires a suitable time history of the

ground acceleration. The codes provide design response spectra (either actual or normalized) and a curve

showing the variation of Ch with T. No specified time history of ground acceleration as such is provided

by any code. However, depending upon the requirement, the codes recommend considering any

appropriate time history of ground acceleration for the time history analysis. In the absence of any

such recommendation, the design response spectrum compatible time history should be used for the time

history analysis.

Apart from the specification of the design response spectrum and the seismic coefficient, the codes

specify a fewother recommendations in relation to the three analysesmentioned above. They are: (i) effect

of soil conditions; (ii) seismicity of a region; and (iii) reduction factor for the seismic design force. The

details of these factors are not covered here. The following brief outlines only are provided.

Effect of Soil Conditions As mentioned before, the local soil conditions modify the ground motion

significantly. This is included in the response spectrum or the seismic coefficient in a variety of ways in

different codes. Some codes specify different response spectrums for different soil conditions, while

others use multiplication factors to include this effect.

Seismicity of the Region Different regions are characterized by different PGAs. Therefore, normalized

response spectrums are generally preferred so that regional variation of the PGAmay be accounted for by

multiplying the normalized spectrum by the appropriate value of the PGA. Some codes recommend

multiplication of a specified response spectrum by multiplication factors to incorporate the regional

seismicity differences. In addition, multiplication factors are used to differentiate between design basis

and maximum credible earthquake spectra.

Reduction Factor A design seismic force for which the structure is analyzed is always less than the

actual seismic force. The philosophy behind this is to allow the structure to undergo inelastic excursion

under the design earthquake for an economic design. It also allows energy dissipation to take place due to

hysteretic behavior of thematerial during inelastic excursion, thereby helping to limit the displacement. In

order to realize the effect, the calculated seismic force by the seismic coefficient method or the response

spectrum method is multiplied by a reduction factor. Different codes recommend different reduction

factors for different types of structures.

5.8.1 International Building Code (2000)

Variation of Ch with T is given for different site classes such as A, B, C, D, E, and F. For the design basis

earthquake for site class B, the value of Ch is given as:

Ch ¼
1:0 T1 � 0:4 s
0:4

T1
T1 � 0:4 s

8<
: ð5:46Þ

For the same site, the design response spectrum is given by:

A

g
¼

0:4þ 7:5Tn 0 � Tn � 0:08 s

1:0 0:08 � Tn � 0:4 s
0:4

Tn
Tn > 0:4 s

8>><
>>:

ð5:47Þ

The plots of the variations of Ch and A=g with T are shown in Figure 5.7. It is seen from the figure that

except for the initial part, the shapes of the two are exactly the same. Furthermore, for almost rigid

structures, the seismic coefficientmethod recommends accelerationvalues of 0.5–1g to bemultipliedwith
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the total mass of the structure to obtain the base shear. For 1–4 storey buildings, the acceleration value is

taken to be nearly 1g.

The fundamental natural period of vibration may be computed by the formula:

T1 ¼ 2p
S
N

i¼1
Wiu

2
i

g S
N

i¼1
Fiui

2
664

3
775 ð5:48Þ

where

Wi is the weight of the ith floor

ui are the displacements due to static application of a set of lateral forces Fi at floor levels

N is the number of storey.

The distribution ofFi along the height could be any reasonable distribution, not necessarily the samegiven

in the code. The code also provides an alternative empirical formula for calculating the time period.

The distribution of the lateral forces over the height of the building is given as:

Fi ¼ Vb

Wjh
k
j

S
N

j¼1
Wjh

k
j

ð5:49Þ

in which Vb is the base shear; hj is the height of the jth storey from the base and k is a coefficient given as:

k ¼
1 T1 � 0:5 s

0:5ðT1 þ 1:5Þ 0:5 � T1 � 2:5 s

2 T1 � 2:5 s

8<
: ð5:50Þ

Using the base shear approach recommended by IBC, the distributions of the lateral forces along the

height of a nine-storey frame are determined byEquations 5.49 and 5.50 for time periods corresponding to

0.4, 1, and 2 s. The distributions are shown in Figure 5.8. It is seen from the figure that there is kink in the

curve at the eighth floor level. The reason for this is attributed to the sudden reduction in theweight of ninth

floor to half the value of the other floors.
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Figure 5.7 Variation of Ch and A=g with time period T
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5.8.2 National Building Code of Canada (1995)

The seismic coefficient is given by:

Ch ¼ CeU

R
ð5:51aÞ

Ce ¼ U SIF ð5:51bÞ
where

Ce is the basic seismic coefficient zone velocity ratio

I and F are importance and foundation factors, respectively

S is the seismic response factor.

S is different for the acceleration related seismic zone ðZaÞ and velocity related seismic zone ðZvÞ. The
country is divided into seven zones based on the above two criteria. Figure 5.9 shows the variation of S

with T as given in the code.

For v ¼ 0:4, I and F¼ 1 and Za ¼ Zv, the variations of S and A=g with T are compared in Figure 5.10.

Note that v ¼ 0:4 corresponds to a peak ground velocity of 0.4m s�1 for which a pseudo acceleration
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Figure 5.8 Distribution of lateral force along a nine-story building frame
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spectrum A=gð Þ is drawn. The expression for A=g is given as:

A

g
¼

1:2 0:03 � Tn � 0:427 s
0:512

Tn
Tn > 0:427 s

8<
: ð5:52Þ

In addition to empirical formulae for finding the natural period of vibration of the buildings, the code

provides the following formula (similar to Equation 5.49) for estimating the natural period:

T1 ¼ 2p
SN
1 Fiu

2
i

gSN
1 Fiui

� �1=2
ð5:53Þ

in which Fi are the set of lateral forces applied at the floor levels and ui are the corresponding floor

displacements (similar to Equation 5.48).
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Figure 5.9 Variations of the coefficient S with time period T
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Unlike the International Building Code, the basic seismic coefficient Ce and A=g differ for most of the

time periods. The response spectrummethod takes less accelerationvalue to compute the seismic force for

taller buildings (>8 storeys).

The distribution of lateral forces over the height of the building is given by:

Fi ¼ ðVb�FtÞ Wihi

S
N

i¼1
Wihi

ð5:54Þ

in which Fi is the additional top force applied to the top floor (over and above that calculated by

Equation 5.54

Ft ¼
0 T1 � 0:7 s
0:07T1Vb 0:7 < T1 < 3:6 s
0:25Vb T1 � 3:6 s

8<
: ð5:55Þ

5.8.3 Euro Code 8 (1995)

The seismic coefficient for base shear is calculated by

Cs ¼ Ce

q0
ð5:56Þ

in which q0 is the reduction factor and Ce is expressed as:

Ce ¼

A

g
0 � T1 � Tc

A

g

Tc

T1

� ��
1

3
T1 � Tc

8>>>><
>>>>:

ð5:57Þ

in which T1 is the fundamental period of the building, Tc is the period at the end of the constant pseudo

acceleration region, and A is the pseudo acceleration design spectrum given in the normalized form as:

A

u€g0
¼

1þ 1:5
Tn

Tb
0 � Tn � Tb

2:5 Tb � Tn � Tc

2:5
Tc

Tn

� �
Tc � Tn � Td

2:5
TcTd

T2
n

Tn � Td

8>>>>>>><
>>>>>>>:

ð5:58Þ

in which Tn is natural period of an SDOF system; Tb; Tc and Td denote the period at the beginning of the
constant pseudo acceleration, constant pseudo velocity, and constant displacement regions, respectively,

of the design spectrum. These period values ðTb; Tc; TdÞ for hard, medium, and soft soil conditions are

given as: (0.1, 0.4, 3.0) s for the hard soil; (0.15, 0.6, 3.0) s for the medium soil; and (0.2, 0.8, 3.0) s for the

soft soil. For soft soil,A=u€g0 values given byEquation 5.58 aremultiplied by 0.9. ThevariationsCe=u€g0 and
A=u€g0 with T1 or Tn are shown in Figure 5.11.

In addition to empirical formulae given for estimating the natural period of the buildings, the code

permits the use of Rayleigh’s method for the calculation of T1.

The formula for lateral force Fi is given by:

Fi ¼ Vb

Wifi1

S
N

i¼1
Wifi1

ð5:59Þ

in which fi1 is the mode shape coefficient of the ith floor in the first mode. The code also permits the

following formula to be used:

Fi ¼ Vb

Wihi

S
N

i¼1
Wihi

ð5:60Þ
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5.8.4 New Zealand Code (NZ 4203:1992)

The seismic coefficient and design response curves are the same and are given for different values of the

ductility factor. Seismic design forces are calculated for serviceability limit and ultimate load state. The

basic acceleration coefficientCbðT; mÞ is specified for three soil conditions, that is, stiff soil, medium soil,

and soft soil. For the serviceability limit, the seismic coefficient is given by:

CðTÞ ¼ CbðT1; 1ÞRzLs T1 � 0:45 s ð5:61aÞ
¼ Cbð0:4; 1ÞRzLs T1 � 0:45 s ð5:61bÞ

in whichR is the risk factor, z is the zone factor, and Ls is the limit state factor, all given in the code. For the

response spectrum method of analysis, T1 is replaced by T in Equation 5.61a.

The fundamental time period of the structure is computed using Rayleigh’s method (Equation 5.48) or

from experimental data. The lateral load at each storey level is determined using the same equation as

Equation 5.60 multiplied by a factor 0.92. The plot of the variation of Cb with T is shown in Figure 5.12

for m ¼ 1. Categories 1,2 and 3 denote soft, medium and hard soils respectively.
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5.8.5 Indian Code (IS 1893–2002)

The seismic coefficient for base shear is obtained from the design response spectrum curve, that is, the

variation ofCe withT is taken to be the same as that of Sa=gwithT. Thevariation of Sa=gwithT is given by:

Sa

g
¼

1þ 15T 0 � T � 0:1 s

2:5 0:1 � T � 0:4 s
1

T
0:4 � T � 4:0 s

8>><
>>:

for hard soil ð5:62Þ

Sa

g
¼

1þ 15T 0 � T � 0:1 s

2:5 0:1 � T � 0:55 s
1:36

T
0:55 � T � 4:0 s

8>><
>>:

for medium soil ð5:63Þ

Sa

g
¼

1þ 15T 0 � T � 0:1 s

2:5 0:1 � T � 0:67 s
1:67

T
0:67 � T � 4:0 s

8>><
>>:

for soft soil ð5:64Þ

The variation of normalized pseudo acceleration, Sa=g with T is shown in Figure 5.13.

The fundamental time period of the buildings are obtained by empirical formulae given in the code. The

base shear is distributed along the height of the building using a quadratic variation given by:

Fj ¼ Vb

Wjh
2
j

S
N

j¼1
Wjh

2
j

ð5:65Þ

Example 5.7

For the seven-storey frame shown in Figure 5.14, compare the base shears and storey displacements

obtained by IBC, NBCC, Euro Code 8, New Zealand Code and Indian Code using the response spectrum

method of analysis. Take the contributions of: (i) the first three modes only, and (ii) all modes. Use both

SRSS and CQC rules of combination of modal responses.
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Solution: In order to maintain the uniformity, all multiplying factors such as importance factor and

foundation factor are assumed to be unity. Furthermore, the reduction factor of R¼ 3 is considered, and

the maximum value of the spectral acceleration normalized with respect to g is taken as unity for the

response spectra given by different codes. This provides a uniform PGAvalue for different codes under

consideration to be 0.4g except the Canadian Codewhose PGA turns out to be around 0.65g. The spectral

accelerations are considered for the medium soil conditions (not hard rock). Dead load for the beams and

columns are obtained by assuming the density of the concrete to be 24 kNm�3; E value of the concrete is

assumed to be 2:5� 107 kNm�2. The effective live loads on the beams are taken as 1.4 kNm�1. For the

top three beams, 25% of the live load and for the rest of the beams, 50% of the live load are considered for

computing the mass matrix of the structure. The first three time periods of the structure are determined as

T1 ¼ 0:753 s, T2 ¼ 0:229 s and T3 ¼ 0:111 s.
It is seen that the first period of the structure is within the range of the falling portion of the spectral

acceleration curve. Although the maximum acceleration value is made the same for all codes under

comparison, the response spectrum curves are different in different codes in the falling range. As a result

spectral accelerations corresponding to the first period of the structure are found to be different for

different codes. As the contribution of the first mode predominantly governs the responses, it is expected

that differences in the responses obtained by different codes will be different. The results of the analysis

are compared in Table 5.3.

5 m 5 m 5 m

7@ 3 m

All beams:-23 cm × 50 cm
Columns (1-3):-55 cm × 55 cm
Columns (4-7):-45 cm × 45 cm

Figure 5.14 A seven-storey building frame for analysis

Table 5.3 Comparison of results obtained by different codes

Code Base shear
(kN)

First storey displacement
(mm)

Top storey displacement
(mm)

SRSS CQC SRSS CQC SRSS CQC

3 All 3 All 3 All 3 All 3 All 3 All

IBC 33.51 33.66 33.52 33.68 0.74 0.74 0.74 0.74 10.64 10.64 10.64 10.64
NBCC 35.46 35.66 35.46 35.68 0.78 0.78 0.78 0.78 11.35 11.35 11.35 11.35
NZ 4203 37.18 37.26 37.2 37.29 0.83 0.83 0.83 0.83 12.00 12.00 12.00 12.00
Euro 8 48.34 48.41 48.35 48.42 1.09 1.09 1.09 1.09 15.94 15.94 15.94 15.94
Indian 44.19 44.28 44.21 44.29 0.99 0.99 0.99 0.99 14.45 14.45 14.45 14.45
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The table shows that the values computed by both SRSS and CQC rules of combination are nearly the

same. This is the case because the time periods are widely spaced. Furthermore, it is observed that

considering the first three modes provides almost the same responses as those obtained by considering all

modes, that is, the contributions of the higher modes are insignificant.

From the table, it is seen that the responses obtained by the Euro Code 8 and the Indian Code are

comparable and are greater than those obtained by other codes. The results for IBC and NBCC are again

fairly comparable. The New Zealand Code provides higher responses compared with the IBC and NBCC

Codes, but are less than those obtained by the Euro Code 8 and the Indian Code. It is interesting to note that

the PGA value for the New Zealand Code is higher than the Euro Code 8 and the Indian Code, but the

computed responses are still lower than those of the latter. This is the case because the spectral acceleration

curve falls more sharply in the falling portion for the New Zealand Code. Figure 5.15 compares the storey

displacements obtained by different codes. The figure shows that the storey displacements obtained by

different codes vary in a similar way to those observed for other responses (Table 5.3).

Exercise Problems

(Use standard programs like MATLAB�, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

5.8 For the stickmodel of a building, shown in Figure 3.24, find themean peak values of the base shear,

base moment, and top displacement for the 5% response spectrum of El Centro earthquake. Take

the response spectrum for the rotational component of ground motion as 1
10
th of the translational

ground motion.

5.9 For the shear frame, shown in Figure 3.29, find themean peak values of base shear, top displacement,

inter-storey drift between the first and second floors, and column moments at the base considering

contributions from three modes only and all six modes. Use SRSS, ABSSUM, and CQC rules of

combinations and compare the results. Use a 5% response spectrum of the El Centro earthquake as

the basic input ground motion. Also, compare the results with those of the time history analysis.

5.10 For the 3D frame, shown in Figure 3.30, find the mean peak values of base shear, top floor

displacements, and moments at the base of column A. Take normalized design response spectrum

given in IBC (2000) for x ¼ 5% and assume that the angle of incidence of the earthquake is 30	with
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Figure 5.15 Comparison between the storey displacements obtained by different codes
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the x-axis. Compare the results with those obtained for zero angle of incidence. Use the CQC rule

of combination.

5.11 For the simplified model of a cable stayed bridge, shown in Figure 3.28, obtain the mean peak

values of thevertical displacement of the center of the deck, basemoments of the piers, and the axial

forces in the central cables. Assume the time lag between the supports as 5 s, the El Centro

earthquake spectrum ðx ¼ 5%Þ as seismic input, and correlation function given byEquation 2.93 to

be valid. Compare the results with those of the time history analysis.

5.12 For the pipeline, shown in Figure 3.15, find the mean peak values of displacements of the supports

for the El Centro earthquake response spectrum. Assume the time lag between supports as 5 s

and use Equation 2.93 as the correlation function. Compare the results with those of the time

history analysis.

5.13 For the framewitha secondary system, shown inFigure3.26,find themeanpeakvalueof thedisplacement

of the secondary system by cascaded analysis. Take the El Centro earthquake response spectrum as input

excitationwith a time lag of 5 s between two supports, and 5 and 2%dampings for primary and secondary

systems, respectively. Compare the results with those of the time history analysis.

5.14 For the same secondary system, as above, find the mean peak value of the displacement of the

secondary system using an approximate modal response spectrum analysis. Use the El Centro

earthquake response spectrum. Compare the results with those of the time history analysis.

5.15 For the frame, shown in Figure 3.27, find the base shear, top-storey displacement, and storey drift

between the second and first floor by the seismic coefficient method of analysis using the

recommendations of IBC (2000), NBCC (1995), IS1893 (2002), NZ 4203 (1992), and Euro 8.

Take R¼ 1, hard soil, and PGA¼ 0.2g.

5.16 For the frame, shown in Figure 3.29, find the mean peak values of the base shear, top-storey

displacement, andmoments at the bottom of the second storey using the response spectrummethod

of analysis. Compare the results between those obtained by using the above five codes. Take R¼ 1,

hard soil, and PGA¼ 0.2g. In addition, compare the results with those obtained by the seismic

coefficient method.

Appendix 5.A Digitized Values of the Acceleration Response Spectrum
of El Centro Earthquake

Table 5.4 provides digitized values of the response spectrum of El Centro earthquake.

Table 5.4 Digitized values of the acceleration response spectrum (g) of the El Centro earthquake (x ¼ 5%) record
given in Appendix 3.C at a time period interval of 0.02 s (read row wise)

0.3128 0.3163 0.3203 0.4945 0.5896 0.6391 0.7502 0.6545
0.7759 0.8677 0.804 0.5864 0.6949 0.8939 0.8041 0.749
0.7797 0.7684 0.7268 0.7243 0.7483 0.781 0.8084 0.825
0.8779 0.9054 0.9025 0.8689 0.8071 0.787 0.7545 0.713
0.6662 0.6171 0.5677 0.5191 0.4733 0.4468 0.4251 0.4454
0.4899 0.5358 0.5678 0.5779 0.5647 0.5275 0.4929 0.498
0.4924 0.4755 0.447 0.4218 0.4039 0.3804 0.3526 0.3226
0.292 0.2672 0.2516 0.2521 0.2541 0.2502 0.2421 0.2317
0.2205 0.2097 0.1997 0.1916 0.1854 0.1814 0.1799 0.1801
0.1814 0.1831 0.1849 0.1863 0.1869 0.1866 0.1856 0.1838
0.1812 0.1775 0.1732 0.1684 0.1631 0.1597 0.1557 0.1501
0.1471 0.1492 0.1501 0.1533 0.1546 0.1544 0.1529 0.1503
0.1467 0.1419 0.1369 0.1351 0.1355 0.1384 0.1414 0.1446
0.1477 0.1507 0.1537 0.1565 0.1589 0.1612 0.1633 0.1651
0.1666 0.1679 0.169 0.1697 0.17 0.1699 0.1696 0.1716
0.1732 0.1745 0.1755 0.1762 0.1765 0.1765 0.1763 0.1757
0.1748 0.1737 0.1722 0.1704 0.1685 0.1663 0.1641 0.1616

(continued )
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0.1591 0.1567 0.1543 0.1533 0.1525 0.1509 0.1484 0.1451
0.1411 0.1362 0.132 0.129 0.1263 0.1236 0.121 0.1184
0.1158 0.1132 0.1108 0.1085 0.1084 0.1082 0.1081 0.1078
0.1074 0.1069 0.1063 0.1057 0.105 0.1043 0.1035 0.1026
0.1017 0.1007 0.0998 0.0987 0.0977 0.0967 0.0957 0.0948
0.0937 0.0927 0.0916 0.0905 0.0894 0.0883 0.0871 0.0859
0.0847 0.0835 0.0823 0.0811 0.0798 0.0785 0.0773 0.076
0.0747 0.0734 0.0721 0.0708 0.0696 0.0683 0.067 0.0657
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6

Inelastic Seismic Response
of Structures

6.1 Introduction

A single degree of freedom systemmay undergo an inelastic excursionwhen subjected to a strong support

motion such as that produced by severe earthquakes. The inelastic excursion takes place when the

restoring force in the spring exceeds or is equal to the yield limit of the spring. For structural systems, it

means that the internal stress induced in the material exceeds or is equal to the yield stress of the material.

In the earthquake resistant design of structures, the current design philosophy is to design the structures

for forces that are much lower than the expected design earthquake forces, so that the structures undergo

inelastic deformation and damage under strong earthquakes without collapse. In order to allow the

structures to deform sufficiently in the inelastic range, the structural system should have sufficient

ductility,which is provided by the reinforcing steel in the case of reinforced concrete structures. In order to

properly understand the ductility demand imposed by an earthquake on to a structural system, a study of

the inelastic behavior of an SDOF system under earthquake excitation is of great help. For this purpose,

the time history analysis of an SDOF system having a non-linear restoring action is required. Similarly, to

understand the inelastic behavior of MDOF systems under earthquake forces, non-linear analysis of the

MDOF system becomes necessary. Furthermore, non-linear analysis of structures for earthquake forces is

required for many other reasons such as the determination of collapse state of structures, seismic risk

analysis, and so on. In this chapter, these topics, that is, inelastic seismic response analysis of SDOF and

MDOF systems, equivalent non-linear static analysis of MDOF system, and the concepts of ductility and

an inelastic response spectrum are presented.

6.2 Non-Linear Analysis of Structures for Earthquake Forces

Anumber of methods for the linear analysis of structures for earthquake forces have been discussed in the

previous chapters. These linear analyses pertain to structural systems which have linear inertia, damping

and restoring forces. Whenever the structural system has any or all of the three reactive forces having

non-linear variation with the response parameters (that is, displacement, velocity, and acceleration), a set

of non-linear differential equations are evolved and need to be solved. The most common non-linearities

among the three are the stiffness and the damping non-linearities. In the stiffness non-linearity, two types

of non-linearity may be encountered, namely, the geometric non-linearity and the material non-linearity.

Seismic Analysis of Structures T.K. Datta
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For the latter, restoring action shows a hysteretic behavior under cyclic loading. For the former no such

hysteretic behavior is exhibited; during unloading, the load deformation path follows that of the loading.

Figure 6.1 shows the case of load deformation behavior of the non-hysteretic type. Such types of restoring

action under cyclic loading are observed for large displacement (small strain) problems.

Figure 6.2 shows the hysteretic behavior of a non-linear restoring force under cyclic loading (material

non-linearity). In Figure 6.2(a and b), typical experimental curves of non-linear behavior material under

cyclic loading are shown. These experimental curves are often idealized to make them amenable to

mathematical modeling. A mathematical model of Figure 6.2b, known as an elasto-plastic model, as

shown in Figure 6.2c, is a popular model used to represent the non-linear behavior of many materials.

Provided the restoring force remains within the linear range, the unloading path follows that of the

loading. When the restoring force is in the plastic state (that is, the horizontal portion of the curve),

unloading follows a path parallel to the elastic path, as shown in Figure 6.2c. The mathematical model of

Figure 6.2a, popularly known as a bilinear model, as shown in Figure 6.2d, is used to represent the strain

hardening characteristics of the material after yielding. The unloading path, after the initial yielding has

taken place, is shown in the same figure. A general strain hardening model, which is not idealized as

bilinear or trilinear, looks like Figure 6.2(a and b).

Damping non-linearity may be encountered in dynamic problems associated with structural control,

offshore structures, and aerodynamics of structures. While most of the damping non-linearities are of

a non-hysteretic type, some of the damping non-linearities can exhibit hysteretic behavior. As most

structures under earthquake excitation undergo yielding, treatment of material non-linearity exhibiting

hysteretic behavior is discussed in this section after giving an introduction to the general non-linear

analysis of an SDOF system (without a hysteretic effect) under dynamic excitation.

6.2.1 Equations of Motion

Because the equations of motion for a multi-degrees of freedom system are a set of coupled non-linear

differential equations, their solutions are difficult to obtain analytically. Most of the solution procedures

are numerical based and obtain the solution by solving the incremental equations of motion. The

incremental equations of motion make the problem linear over the small time interval Dt. The solution is

f

Loading

Loading

Unloading

Unloading

x

xΔ

Figure 6.1 Non-linear restoring force (non-hysteretic type)
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then determined using the techniques for solving the linear differential equations. However, under certain

conditions, iterations are required at each time step in order to obtain the current solution. Incremental

equations of motion take the form:

MDx€ þCtD _xþKtDx ¼ �MrDx€g ð6:1Þ
where

M is the mass matrix as before

Ct is the damping matrix consisting of elements representing damping coefficients that are used for the

current time interval Dt
Kt similarly denotes the stiffness matrix for the current interval Dt
Dx represents the incremental displacement vector

Dx€g is the incremental ground acceleration vector over the time interval Dt.

6.2.2 Solution of the Equation of Motion for the SDOF System

The solution of the equation of motion is obtained in the time domain using the numerical integration

scheme. It will be first explained with the help of the SDOF system, and then it will be extended for the

MDOF system. For the SDOF system, the equation of motion becomes

mDx€þ ctD _xþ ktDx ¼ �mDx€g ð6:2Þ

yx

f

x

yf

(a)

yx

f

x

yf

(b)

yf

f

x
yx

(c)

yf

yx

f

x

(d)

Figure 6.2 Non-linear restoring force (hysteretic type): (a) and (b) variation of force with displacement under cyclic
loading; (c) idealized model of force-displacement curve for (b); and (d) idealized model of force-displacement curve
for (a)

Inelastic Seismic Response of Structures 239



in which ct and kt are the initial tangent damping coefficient and the initial tangent stiffness, respectively,

at the beginning of the time step. In fact, ct and kt should represent the average tangent values as shown in

Figure 6.1. As the values of Dx and D _x are not known in the beginning, an iteration procedure is required

to determine these values. IfDt is sufficiently small, then initial tangent values at the start of the time step

give results of sufficient accuracy, and therefore the iteration may be avoided. Using Newmark’s

b-method for numerical integration over the incremental time, Equations 3.52 and 3.53 (Chapter 3)

may be written as:

D _x ¼ Dt x€k þ d DtDx€ ð6:3Þ

Dx ¼ Dt _xk þ ðDtÞ2
2

x€k þ bðDtÞ2Dx€ ð6:4Þ

From Equation 6.4, Dx€ is obtained as:

Dx€ ¼ 1

bðDtÞ2 Dx�
1

bDt
_xk � 1

2b
x€k ð6:5Þ

Substituting the value of Dx€ into Equation 6.3 gives

D _x ¼ d
bDt

Dx� d
b
_xk þDt 1� d

2b

� �
x€k ð6:6Þ

Substituting D _x and Dx€ into Equation 6.2 gives

kDx ¼ Dp ð6:7Þ
in which

k ¼ kt þ d
bDt

ct þ 1

bðDtÞ2 m ð6:8aÞ

Dp ¼ �mDx€g þ m

bDt
þ d

b
ct

� �
_xk þ m

2b
þDt

d
2b

� 1

� �
ct

� �
x€k ð6:8bÞ

Solution of Equation 6.7 provides the incremental displacement, Dx.
Finally, the responses are obtained as:

xkþ1 ¼ xk þDx; _xkþ1 ¼ _xk þD _x; x€kþ1 ¼ x€k þDx€ ð6:9Þ
In order to get a more accurate value of the acceleration, the acceleration should be calculated from the

equation of motion once the displacement and the velocity are determined at a time station.

The above solution is valid provided the damping and restoring force non-linearities follow the same

path during loading and unloading. For a geometrically non-linear problem with linear damping, the

solution procedure remains the same as above. For material non-linearity with linear damping, which is

common in earthquake excitation, the solution procedure becomes different because of the hysteretic

behavior of the force-deformation relationship, which represents the restoring action as shown in

Figure 6.2c. The solution procedure is thenmodified and is illustrated for elasto-plastic material behavior.

Elasto-plastic material behavior representing the restoring action is most commonly used in solving

non-linear problems associatedwith the inelastic excursion of structures during an earthquake. For elasto-

plastic behavior, ct is assumed to be constant and kt is taken either as k or zero depending upon whether

the system is elastically loaded and unloaded (unloading follows the path of initial stiffness) or plastically

deformed. When the state transition takes place, the stiffness varies within the time step, the dynamic

equilibrium is violated, and the unbalanced forces are introduced. The treatment of such state transitions

together with the iterative scheme to minimize the unbalanced forces is described below.
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6.2.2.1 Elastic to Plastic State

If the system is elastic at the beginning of the time step and remains elastic at the end of the time step, then

the computation is not changed and the next time step is started. If it is found that the system has passed

from the elastic state to the plastic state, the computations are restarted for that time increment. First,

an elastic displacement increment ðDxÞe is obtained as a fraction of the displacement increment ðDxÞ0 that
was originally calculated as:

ðDxÞe ¼ aeðDxÞ0 ð6:10Þ
in which ae is a scalar (less than 1) such that the system just reaches yielding. Then, the plastic

displacement increment ðDxÞp is obtained by using Equation 6.7 for an incremental load of ð1� aeÞDp by
setting kt ¼ 0. The final incremental displacement is equal to the sumof the factored displacement and the

incremental plastic displacement.

6.2.2.2 Plastic to Plastic State

Once the system enters into the plastic state, it continues to remain in that state until the velocity of the

system is positive, that is, the displacement is increasing. Provided the velocity is positive,Dx is obtained
using Equation 6.7 with kt ¼ 0. When the velocity at the end of the time interval becomes negative,

unloading takes place and the system passes from a plastic to an elastic statewithin the same time interval.

In that case, the computation for the time interval is restarted by considering unloading of the systemwith

elastic stiffness equal to kt.

6.2.2.3 Plastic to Elastic State

When unloading takes place, the instant at which velocity becomes zero is to be identified. For that, Dx
obtained in the original calculation is factored bymultiplying by a factor e, so that the factored incremental

displacement provides a total displacement of xðtÞ for which _xðtÞ ¼ 0. Then, an incremental displace-

ment ðDxÞa is obtained using Equation 6.3 with a load increment as ð1� eÞDp (with kt 6¼ 0). The final

ðDxÞ for the time interval is obtained by adding the factored incremental displacement with ðDxÞa.

Example 6.1

The non-linear property of the spring of an SDOF system shown in Figure 6.3 is elasto-plastic with the

maximum spring force given as 0.15mg inwhichm is themass of the system. The frequency of the system

based on the initial stiffness is 10 rad s�1. Find the displacement of the system (i) at 1.52 s, given x, _x, x€,
and fx at 1.5 s as 0.01315m, 0.1902m s�1, �0.46964m s�2, and 1.354N, respectively, and (ii) at 1.64 s,

given x, _x, x€, and fx at 1.62 s as 0.029818m, 0.0283m s�1,�2.79246m s�2, and 1.4715N, respectively,

for the El Centro earthquake as excitation. For the computation, take Dt ¼ 0:02 s, x ¼ 2%, m¼ 1 kg,

d ¼ 0:5, and b ¼ 0:25.

Solution: (i) At time t ¼ 1:5 s, x ¼ 0:01315 m, _x ¼ 0:1902 m s�1, x€ ¼ �0:46964 m s�2 and fx ¼
1:354 N. As fxj < 0:15mgj and _x > 0, the stiffness of the system is in the elastic (ascending) range.

For the SDOF, ct¼ 2� 0.02� 10� 1¼ 0.4N sm�1;kt¼ 100Nm�1 and therefore,k (Equation 6.8a) is

calculated as:

k ¼ 10140 Nm�1

Dx€g ¼ ðx€gÞtþDt �ðx€gÞt ¼ 0:0312 g

Dp ðEquation 6:8bÞ ¼ 37:55 N
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Solution of Equation 6.7 gives Dx ¼ 0:0037 m, D _x ¼ � 0:01 m s�1, Df ¼ ktDx ¼ 0:37 N

ð fxÞtþDt ¼ ð fxÞt þDf ¼ 1:7243 N; fxj > 0:15mgj
Therefore, there is a transition point and the system goes from an elastic to a plastic state. The force is

brought down to 0.15mg by making

ð fxÞt þ eDxkt ¼ 0:15mg e ¼ 0:31761ð Þ

The value of Dx ¼ Dx1 þDx2 ¼ eDxþDx2, Dx2 ¼ Dxp is obtained by:

kDx2 ¼ ð1� eÞDp; in computing k; kt ¼ 0

The solution gives Dx2 ¼ 0:00373 m; D _x2 ¼ �0:00749 m s�1.

Thus,

xtþDt ¼ xt þDx1 þDx2 ¼ 0:017254 m; where _xtþDt ¼ 0:1827 m s�1

x€tþDt ¼
PtþDt � ct _xtþDt � f xðtþDtÞ

m
¼ 0:2789 m s�2; where fxðtþDtÞ ¼ fy ¼ 0:15mg

(ii) At time t ¼ 1:62 s, _x > 0 and fx ¼ 0:15mg. Therefore, stiffness of the system is zero and k is

calculated by setting kt ¼ 0 in Equation 6.8a. Thus,

k ¼ 10040 Nm�1; Dp ¼ �0:4173 N

Solution of Equation 6.7 gives

Dx ¼ �0:000042 m; D _x ¼ �0:061 m s�1

_xtþDt ¼ _xt þD _x ¼ � 0:0325 m s�1 < 0

Therefore, there is a transition point and the system is unloaded from a plastic to an elastic state. Using

Equation 6.6

D _x1 ¼ 2

Dt
eDx� 2 _xt ¼ 0

e ¼ 7:81; Dx1 ¼ eDx ¼ �0:000325 m

x

(a)

xf

m

c

gx

0.15 mg

0.147m x
(b)

xf

Figure 6.3 Non-linear analysis of SDOF system: (a) SDOF system with non-linear spring; and (b) force-
displacement behavior of the spring
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Now, Dx2 is obtained as:

kDx2 ¼ ð1� eÞDp; kt ¼ 100 Nm�1

The solution gives Dx2 ¼ 0:00028 m;

Dx ¼ Dx1 þDx2 ¼ �4:44� 10� 5 m; D _x ¼ �0:061 m s�1;

_xtþDt ¼ xt þDx ¼ 0:0298 m; _xtþDt ¼ _xt þD _x ¼ �0:033 m s�1;

x€tþDt ¼
PtþDt � c _xtþDt � fxðtþDtÞ

m
¼ 3:28 m s�2; fxðtþDtÞ ¼ fxt � ktDx2 ¼ 1:467 N

Note that if Dt is made very small, then the above corrections for transition points are not required.

Accumulated errors remain within a limit.

6.2.3 Solution of Equations of Motion for the MDOF System without
Bidirectional Interaction

The procedure mentioned above works well for single degree of freedom systems with elasto-plastic

force-deformation behavior. It also performs well for themulti-degrees of freedom systems, such as plane

frames, in which sections undergoing yielding are predefined. Such a problem is shown in Figure 6.4 for

a shear frame. The yield sections and their elasto-plastic force-deformation behavior are also shown in

the figure. For the solution of the incremental equations of motion (Equation 6.1), the state of the each

yield section is examined at the end of each time step.

Depending upon the states of the yield section of amember, the stiffness of that member is changed and

the stiffness matrix of the structure is assembled from the member stiffness matrix to calculate the

incremental displacement for the next time step. If required, the calculation is restarted for the current time

step with modified stiffness as described for the SDOF system. Note that Equation 6.3 for the SDOF

system can be easily extended to the MDOF system by writing it in the matrix form:

KDx ¼ Dp ð6:11Þ

0.5 k

    k

1.5 k

    k

0.5m

m

m

m

3yx

2yx

1yx

3pV

2pV

1pV
0.5 k

    k

1.5 k

    k

x

x

x

Figure 6.4 Idealized shear frame for analysis with elasto-plastic behavior of columns

Inelastic Seismic Response of Structures 243



in which

K ¼ Kt þ d
bDt

Ct þ 1

bðDtÞ2 M ð6:12aÞ

Dp ¼ �MrDx€g þ M

bDt
þ d

b
Ct

� �
_xk þ M

2b
þDt

d
2b

� 1

� �
Ct

� �
x€k ð6:12bÞ

Example 6.2

A three-storey frame shown in Figure 6.5 is subjected to the El Centro earthquake at the base. Elasto-

plastic behavior of the column sections are shown in the same figure. k=m ¼ 100;m is assumed to be 1 kg

(to simplify the calculation). Find the responses of the top storey of the frame at 3.54 s, given that at 3.52 s,

the responses are:

x1
x2
x3

8<
:

9=
;

k

¼
0:0169
0:0066
0:0107

8<
:

9=
;m;

_x1
_x2
_x3

8<
:

9=
;

k

¼
0:1870
0:1106
0:0689

8<
:

9=
;m s�1;

x€1
x€2
x€3

8<
:

9=
;

k

¼
�2:7713
�2:3492
�2:9660

8<
:

9=
;m s�2

f1
f2
f3

8<
:

9=
;

k

¼ fk ¼
1:44977
0:95664
0:63432

8<
:

9=
;N; fi is the shear force of a column in the ith storey

M ¼
1 0 0

0 1 0

0 0 1

2
4

3
5 kg Kt ¼

200 �100 0

�100 200 �100

0 �100 100

2
4

3
5Nm�1

From the first two frequencies of the structure, the values of a and b are calculated as 0.1312 and 0.002
364, respectively.

Ct ¼ aMþ bKt ¼
0:6040 � 0:2364 0

� 0:2364 0:6040 � 0:2364
0 � 0:2364 0:3676

2
4

3
5N s m�1

    k

    k

m

m

m
    k

    k

   k k

3 m

3 m

3 m

1x

2x

3x

(a)
yx x

yf

0.15 m gyf =

0.01475 myx =

(b)

Figure 6.5 Properties of three-storey frame: (a) three-storey frame; and (b) force-displacement curve of the column
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Note that the following units are consistently used in the solutions of all example problems in this

chapter unless otherwise mentioned:

. mass in kg

. stiffness in Nm�1

. displacement in m

. velocity in m s�1

. acceleration in m s�2

. rotation in rad

. rotational velocity and acceleration are in rad s�1 and rad s�2, respectively

. force in N

. moment in N m

. damping in N sm�1.

Solution: As

fk ¼
1:44977

0:95664

0:63432

8><
>:

9>=
>; <

0:15mg

0:15mg

0:15mg

8><
>:

9>=
>; and _x > 0

then the system is in an elastic state and force-displacement behaviors of all columns are in the ascending

portion of the of the yield curve shown in Figure 6.5 and therefore,

K ¼ Kt þ d
bDt

Ct þ 1

bðDtÞ2 M ¼
10260 sym

� 124 10260

0 � 124 10137

2
64

3
75

Dx€g ¼ 0:5913

Dp ¼ �MIDx€g þ M

bDt
þ d

b
Ct

� �
_xk þ M

2b
þDt

d
2b

� 1

� �
Ct

� �
x€k ¼

32:6224

18:0256

8:4376

2
4

3
5

Dx ¼ K
�1
Dp ¼

0:0032

0:0018

0:0009

2
4

3
5

and the relative incremental displacements at each floor (drift)

¼ Dx ¼
0:0032

� 0:0014

� 0:0009

2
4

3
5; Df ¼ kDx ¼

0:16

� 0:07

� 0:045

2
4

3
5

where k is the stiffness of each column.

fkþ1 ¼ fk þDf ¼
1:60977

0:88664

0:58932

2
4

3
5

It is seen that the shear forces for the first storey columns exceed the yield values. Therefore, the

displacements for this storey are scaled such that the shear forces in the columns become just equal to or
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less than the yield values. Thus,

fk þ eDf ¼ fk þ
e1ð0:16Þ
e2ð� 0:07Þ
e3ð� 0:045Þ

8<
:

9=
; k ¼

0:15mg

� 0:15mg

� 0:15mg

8<
:

9=
;

The solution provides

e1 ¼ 0:136; e2 ¼ 1 and e3 ¼ 1

With these values of e1, e2, and e3, the elastic components of displacements, Dxe ¼ Dx1 are

calculated as:

Dxe ¼ Dx1 ¼
e1Dx1
e1Dx1 þ e2ðDx2 �Dx1Þ
e1Dx1 þ e2ðDx2 �Dx1Þþ e3ðDx3 �Dx2Þ

8><
>:

9>=
>; ¼

e1Dx1
e2Dx2
e3Dx3

8><
>:

9>=
>; ¼

0:000435

�0:000965

�0:001865

8><
>:

9>=
>;

e1

e2

e3

8><
>:

9>=
>; ¼

0:1358

0:6893

3:07

8><
>:

9>=
>;

To obtain the second part of the displacement vector, Dx2, the Kt matrix is modified as:

Kt ¼
0 0 0

0 200 �100

0 �100 100

2
64

3
75

K ¼ 104 �
1:006 sym

�0:0024 1:026

0 �0:0124 1:0137

2
64

3
75

KðDx2Þ ¼
1� e1

1� e2

1� e3

8><
>:

9>=
>;� DP ¼

28:19187

27:69333

25:92593

8><
>:

9>=
>;

The solution gives:

Dx2 ¼
0:0028

0:0027

0:0026

8><
>:

9>=
>;

Dx ¼ Dx1 þDx2 ¼
0:00324

0:0018

0:00074

8><
>:

9>=
>;

xkþ1 ¼ xk þDx ¼
0:02009

0:00833

0:0114

8><
>:

9>=
>;

D _x ¼ d
bDt

Dx� d
b
_xk þDt 1� d

2b

� �
x€k ¼

0:� 0:0509

�0:0406

�0:0524

2
64

3
75
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_xkþ1 ¼ _xk þD _x ¼
0:1361

0:07

0:0165

2
4

3
5

The incremental forces in the columns are

Df ¼
e1ð0:16Þ
e2ð�0:07Þ
e3ð�0:045Þ

8<
:

9=
;þ

0:00

�0:005

�0:005

8<
:

9=
; ¼

0:0218

� 0:075

� 0:05

8<
:

9=
;

Note that the second part of the incremental forces in the columns is calculated by taking the stiffness

of the first storey column as zero and that for the other two storeys as k:

fkþ1 ¼ fk þDf ¼
1:4715

0:882

0:584

8<
:

9=
;

x€kþ1 ¼ M�1ðPkþ1 �Ct _xkþ1 �Fkþ1Þ ¼
�2:289

�1:7018

�2:2825

2
4

3
5

Fkþ1 is the restoring force vector and is equal to 2fkþ1 (for this problem).

After establishing Dx, the shear forces in the columns must be checked in order to find if any value has

exceeded the yield limit. If so, then a second iteration is required to satisfy the yield condition. For this

problem, the yield condition is not violated. Hence, the second iteration is not required.

6.2.4 Solution of Equations of Motion for the MDOF System with
Bidirectional Interaction

Themethod of analysis for the SDOF systemwith elasto-plastic material behavior can be easily extended

to multi-storey frames or other structures in which unidirectional forces are induced in the elements. For

two component earthquakes, elements of the structures invariably develop internal forces in two

orthogonal directions. Even for single component earthquakes, elements of structures such as asymmetric

buildings develop forces in two orthogonal directions. Yielding of such elements depends upon the

assumed yield criterion, which considers the bidirectional interaction of forces on yielding. If this

interaction effect is not included, then yielding of the element takes place in the two directions

independent of each other. The effect of bidirectional interaction on the yielding of the elements can

be included in the incremental dynamic analysis in the following way.

Consider a one-storey3D frame as shown inFigure 6.6. The deck is assumed to be rigid and can undergo

torsion about a vertical axis. Under unidirectional or bidirectional earthquake excitations, columns

translate in both the x- and y-directions. Let Kexi ð¼ 12EIxi=L
3
i Þ and Keyi ð¼ 12EIyi=L

3
i Þ of the four

columns be different. Similarly, the yield shear capacities of the columns are also different. The elastic

stiffness matrix for the system may be written as:

Ke ¼
Kex 0 Kexey

0 Key Keyex

Kexey Keyex Ky

2
64

3
75 ð6:13aÞ

in which

Kex ¼
X

Kexi ; Key ¼
X

Keyi ; Ky ¼
X

Kexi ey þ
X

Keyi ex ð6:13bÞ
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The transient stiffness matrix Kt, which remains constant within a given time interval Dt is given by:

Kt ¼ Ke �Kp ð6:14Þ
inwhichKp is themodification of the stiffness of the system due to yielding of themembers.Kp is amatrix

similar to the matrixKe with its elements represented byKpx,Kpy, andKpy. The modifications of stiffness

for the ith element in the x- and y-directions are given by [1]:

Kpxi ¼ B2
xi

Gi

; Kpyi ¼
B2
yi

Gi

; Kpxyi ¼ Kpyxi ¼ BxiByi

Gi

ð6:15Þ

where

Gi ¼ Kexih
2
xi þKeyih

2
yi ð6:16aÞ

Bxi ¼ Kexihxi; Byi ¼ Keyihyi ð6:16bÞ

hxi ¼ Vxi

V2
pxi

; hyi ¼ Vyi

V2
pyi

ð6:16cÞ

in which Vpxi and Vpyi are the yield shears in the x- and y-directions, respectively.

Because of the above modification, the Kt matrix takes the form

Kt ¼
Kex �Kpx �Kpxy Kexey �Kpxepy
�Kpxy Key �Kpy Keyex �Kpyepx
Kexey �Kpxepy Keyex �Kpyepx Ky �Kpy

2
4

3
5 ð6:17Þ

in which

Kpx ¼
X

Kpxi; Kpy ¼
X

Kpyi Kpxy ¼
X

Kpxyi ð6:18aÞ

Kpy ¼
X

Kpxiepy þ
X

Kpxiepx ð6:18bÞ
epx and epy are the plastic eccentricities, calculated in the same way as those for elastic eccentricities.

xe

ye
D

D

Colm. 1

Colm. 2

Colm. 3

Colm. 4

C.R.

Y

XC.M.

Figure 6.6 Plan of the one-storey 3D frame with a rigid slab
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When any of the columns is in the full plastic state which satisfies a yield criterion, the stiffness for that

element becomes zero, that is, it does not contribute to the transient stiffness matrix Kt.

During the numerical integration of the incremental equation of motion, the system passes from an

elastic state to a plastic state,moves fromone plastic state to another, and then passes from a plastic state to

an elastic state. Accordingly, the transient stiffnessmatrix changes following the elasto-plastic property of

the element and a specified yield criterion. The elasto-plastic property of the column elements are shown

in Figure 6.7.

The yield criterion could be of different forms for biaxial interaction of yielding of the columns. The

most popular yield curve, which represents yielding of the column member, is given by:

ji ¼
Vxi

Vpxi

� �2

þ Vyi

Vpyi

� �2

ð6:19Þ

ForVpxi ¼ Vpyi, the yield curve is represented by a circle. For Vpxi 6¼ Vpyi, the yield curve takes the form

of an ellipse.Whenji < 1, the element remains in the elastic range;ji ¼ 1 represents the plastic state; and

ji > 1 is inadmissible. During the integration of the equation of motion,ji is calculated for each element.

Ifji becomes greater than unity for any element, then the state of internal forces is pulled back to satisfy the

yield condition. Because of this, the equilibrium of forces is disturbed, and therefore some corrections are

required to restore the equilibrium. This requires an iterative process, which is discussed later.

For numerical integration of the equation of motion, the stiffness matrix of the system at the beginning

of the time interval Dt is determined with internal forces of the members known at time t. With

this stiffness matrix, an incremental displacement (DU0) is calculated using an equation similar to

Equation 6.11 (replacing Dx by DU). With the known values of DU0, internal forces DF0 in the member

are computed.

If the system is found to be elastic, both at the beginning and at the end of the time step, then the

computed incremental displacement and incremental internal forces are indeed the true displacements

and forces. If any element of the system is already in a plastic state at the beginning of the time step and/or

passes to another plastic state at the end of the time step, then the incremental displacement (DU0) and

internal force (DF0) are the first guesses and should be corrected. With DU0 and DF0, the element forces

calculated may very well be found to violate the yield condition, that is, ji > 1. The element forces are

then corrected such that the yield condition is not violated. There are several iteration schemes to

introduce this correction. The average stiffness predictor-corrector scheme is one of them [2]. In this

scheme, the transient stiffnessmatrix at tþDt is calculatedwith element forces at tþDt determined using

the first guess. Then an average stiffness matrix is obtained for the time interval Dt as

Kta ¼ 1

2
ðKt0 þK 0

tÞ ð6:20Þ

x
pyx

pxV

(a)

V

pyV

pyy

(b)

V

y

Figure 6.7 Elasto-plastic behavior of the column elements: (a) for x-direction; and (b) for y-direction
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in which Kt0 and K 0
t are the stiffness matrices calculated at the beginning and at the end of the time

interval Dt. The incremental displacements DU1 are obtained with Kta for the time interval Dt and the

incremental forces DF1 for the elements are then calculated. The incremental force vector (restoring) is

also calculated as:

DF1 ¼ KtaDU1 ð6:21Þ
The process is repeated until a certain convergence criterion is satisfied, that is,

DFiþ 1j � DFij � force tolerance
���� ð6:22aÞ

DUiþ 1j � DUij � displacement tolerancejj ð6:22bÞ
When the convergence criteria are satisfied, then forces in the elements are evaluated. If the yield

criterion is not satisfied for any element, then the element forces are pulled back such that

F 0
i ¼

1ffiffiffiffiffi
ji

p Fi ð6:23Þ

in which Fi are the forces before pull back and ji is calculated from Equation 6.19. The force vector

(restoring) is then re-evaluated. With the new forces, Kta is again obtained and the process is continued

until the yield criterion is satisfied for all elements.

If one or more elements pass from the the elastic state to the plastic state at the end of the time interval

Dt, then DU0 is scaled such that the elements remain elastic. Let the scaled DUe be denoted by:

DUe ¼ a0DU0 ð6:24Þ
Next a plastic displacement increment DUp is calculated corresponding to an effective load vector of

ð1� a0ÞDp. The procedure for calculating DUp remains the same as described above for elements that

pass from one plastic state to the other.

If one or more elements are unloaded from a plastic state to an elastic state, then the plastic work

increment Dwpi for the elements are negative for that time step.

The plastic work increment of an element is given by:

Dwpi ¼ FiDUpi ð6:25Þ

in which DUpi is the plastic displacement increment of element i which in turn is given by:

DUpi ¼ DUi �K�1
ei DFi ð6:26Þ

in which DUi is the total displacement increment of element i and Kei is its elastic stiffness. When an

element is found to have unloaded from a plastic state, its stiffness within that time step is assumed to be

the same as its elastic stiffness.

Example 6.3

A single-storey 3D frame as shown in Figure 6.8 is subjected to the El Centro earthquake record at the

base along the x-direction.

Assume: D ¼ 3:5 m; h ¼ 3:5 m; ðMpx ¼ Mpy ¼ MpÞA ¼ M0; ðMpÞB ¼ ðMpÞD ¼ 1:5M0; ðMpÞC ¼
2M0; ðkx ¼ ky ¼ kÞA ¼ k0; kB ¼ kC ¼ 1:5k0; kC ¼ 2k0; k0=m ¼ 50 in which mx ¼ my ¼
m ¼ 620 kg; mass moment of inertia ¼ mD2=6; ðVpÞA ¼ 152:05 N; and damping of the system as zero.

Find the initial stiffness matrix of the system and show the procedure for calculating the stiffness matrix

at time t ¼ 1:38 s, given that at t ¼ 1:36 s:
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Ux

Uy

y

8<
:

9=
;

k

¼
0:00336

0:00037

0:00003

8<
:

9=
; � � �

_Ux

_Uy

_y

8><
>:

9>=
>;

k

¼
0:13675

0:00345

0:00311

8<
:

9=
; � � �

U€x

U€y

�€

8<
:

9=
;

k

¼
�0:16679

�0:11434

�0:06153

8<
:

9=
;

Fk ¼
Vx

Vy

Vy

8<
:

9=
;

k

¼
627:27

70:888

773:51

8<
:

9=
;

VAx ¼ 102:83

VBx ¼ 154:24

VDx ¼ 158:66

VCx ¼ 211:54

VAy ¼ 10:10

VBy ¼ 19:56

VDy ¼ 15:15

VCy ¼ 26:08

x€gk ¼ �0:08613g. Consider the effect of bi-directional interaction on yielding columns.

Solution: Initial stiffness matrix is determined using Equations 6.13a and 6.13b

Kex ¼
X

Kexi ¼ 6k0; Key ¼
X

Keyi ¼ 6k0; Ky ¼
XKD2

4
¼ 3k0ð3:5Þ2

Ke ¼
186000 0 54250

0 186000 54250

54250 54250 1139250

2
4

3
5

To determine the stiffness matrix at t¼ 1.38 s, the yield condition for all column members are checked

for t¼ 1.36 s:

ji ¼
Vxi

Vpxi

� �2

þ Vyi

Vpyi

� �2

jA ¼ 0:462 jB ¼ 0:465 jC ¼ 0:491 jD ¼ 0:488

As none of the columns has yielded, Kt ¼ Ke

K ¼ Kt þ d
bDt

Ct þ 1

bðDtÞ2 M ¼ Kt þ 10000M ¼
638:6 sym

0 638:6
5:425 5:425 1379:76

2
4

3
5� 104

Dp ¼ �MDx€g þ M

bDt
þ d

b
Ct

� �
_Uk þ M

2b
þDt

d
2b

� 1

� �
Ct

� �
U€k ¼

16282

286

612

2
4

3
5

DU ¼ K
�1
Dp ¼

0:0025
0:000001
0:000001

2
4

3
5 and DF ¼ KtDU ¼

476:1
10:2
181:2

2
4

3
5
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Figure 6.8 Properties of the 3D frame: (a) 3D frame; and (b) force-displacement curve of column A
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Ukþ1 ¼ Uk þDU ¼
0:0059

0:0004

0:0001

8<
:

9=
;

Fkþ1 ¼ Fk þDF ¼
1103:36

81:09

954:75

8<
:

9=
;;

VAx ¼ 183:89

VBx ¼ 275:84

VDx ¼ 275:84

VCx ¼ 367:79

VAy ¼ 13:52

VBy ¼ 20:27

VDy ¼ 20:27

VCy ¼ 27:03

ji ¼
Vxi

Vpxi

� �2

þ Vyi

Vpyi

� �2

jA ’ 1:47 jB ’ 1:47 jC ’ 1:47 jD ’ 1:47

Thus, all the columns do not satisfy the yield criterion, and therefore DU, DVxi, and DVyi have to be

recalculated by pulling back the internal forces of the members such that they satisfy the yield criterion.

eA ¼
ffiffiffiffiffiffi
1

jA

s
’ 0:824 eB ¼

ffiffiffiffiffiffi
1

jB

s
’ 0:824 eD ¼

ffiffiffiffiffiffi
1

jD

s
’ 0:824 eC ¼

ffiffiffiffiffiffi
1

jC

s
’ 0:824

With the e values calculated as above, the forces in the columns are pulled back (Equation 6.23) so that

the yield condition is satisfied for each column.Accordingly, the displacements of each column are scaled.

From the scaled displacements of the columns, the displacements at the centers of mass of the system are

calculated and are given by:

DUe ¼
0:254

0:00122

0:00124

2
4

3
5� 10� 5; e is calculated as ’

0:83

0:83

0:83

2
4

3
5� 10� 3 in which ex ¼ DUxe

DUx

; and so on:

Dp2 ¼ ð1� eÞDp ¼
16268:57

285:76

631:48

2
4

3
5

ex ¼ ey ¼
X

KixiX
Ki

¼ 0:29167

hxi ¼ Vxi

V2
pxi

;

hxA ¼ 0:00795

hxB ¼ 0:0053

hxD ¼ 0:0053

hxC ¼ 0:00398

hyi ¼ Vyi

V2
pyi

;

hyA ¼ 0:00059

hyB ¼ 0:00039

hyD ¼ 0:00039

hyC ¼ 0:00029

Bxi ¼ Kexihxi;

BxA ¼ 246:56

BxB ¼ 246:56

BxD ¼ 246:56

BxC ¼ 246:56

Byi ¼ Keyihyi;

ByA ¼ 18:12

ByB ¼ 18:12

ByD ¼ 18:12

ByC ¼ 18:12

Gi ¼ Kexih
2
xi þKeyih

2
yi;

GA ¼ 1:972
GB ¼ 1:314
GD ¼ 1:314
GC ¼ 0:98
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Considering the first guess for the incremental responses, the modification of the tangent stiffness

matrix for yielding is obtained as:

Kpxi ¼ B2
xi

Gi

Kpyi ¼
B2
yi

Gi

Kpy ¼ D2

2

X
Kp Kpxyi ¼ Kpyxi ¼ BxiByi

Gi

KpxA ¼ 30833:45

KpxB ¼ 46250:17

KpxD ¼ 46250:17

KpxC ¼ 61666:9

KpyA ¼ 166:55

KpyB ¼ 249:83

KpyD ¼ 249:83

KpyC ¼ 333:1

KpxyA ¼ 1690:14

KpxyB ¼ 3802:82

KpxyD ¼ 3802:82

KpxyC ¼ 6760:574

KpyA ¼ 189875

KpyB ¼ 284812:5

KpyD ¼ 284812:5

KpyC ¼ 379750

Kpx ¼
X

Kpxi ¼ 185000 Kpy ¼
X

Kpyi ¼ 999:30 Kpxy ¼
X

Kpxyi ¼ 16056 Kpy ¼
X

Kpyi ¼ 1139250

exp ¼
X

KpyixiX
Kpyi

¼ 0:2917 eyp ¼
X

KpxiyiX
Kpxi

¼ 0:2917

The modified tangent stiffness matrix is given as:

Kt ¼ Ke �Kp

Kt ¼
1:0 sym

�16:06 185

0:29 53:96 0

2
4

3
5� 103

K ¼ Kt þ d
bDt

Ct þ 1

bðDtÞ2 M ¼ Kt þ 10000M ¼ 105 �
62 sym

�0:16 63:85
0 0:54 126:6

2
4

3
5

DU2 ¼ K
�1
Dp2 ¼

0:0026
0:0001
0:00

2
4

3
5 DUpx ¼

0:002598
0:002598
0:002602
0:002602

8>><
>>:

9>>=
>>;

DUpy ¼
0:0000983
0:0001018
0:0000983
0:0001018

8>><
>>:

9>>=
>>;

DU ¼ DUe þDU2 ¼
0:002602
0:0001
0:000001

2
4

3
5

DVpi ¼ Kex �Kpx �Kpxy

�Kpxy Key �Kpy

� �
i

DUpx

DUpy

� �
i

Revised shear forces in the column are obtained by adding the plastic components of the shear forces

as calculated abovewith shear forces determined after pulling back to the yield surface (for satisfying the

yield condition). The resulting revised shear forces are:

VAx ¼ 151:913

VBx ¼ 228:043

VDx ¼ 227:745

VCx ¼ 303:471

VAy ¼ 9:78

VBy ¼ 11:54

VDy ¼ 11:37

VCy ¼ 10:98

ji ¼
Vxi

Vpxi

� �2

þ Vyi

Vpyi

� �2

jA ¼ 1:002 jB ¼ 1:002 jC ¼ 1:0 jD ¼ 1:00
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Because the yield condition is practically satisfied for all columns, no further iteration is required.

Therefore, the calculated value of Kt is used to obtain the response for the next incremental time step at

t¼ 1.38 s.

6.3 Inelastic Earthquake Analysis of Multi-Storey Building Frames

Themulti-storey building frames idealized as 2D frames can be analyzed for earthquake excitations in the

inelastic range without too much complexity. For 3D building frames, the effect of bidirectional

interaction on yielding of the columns may have to be considered if the columns are weaker than the

beams. This leads to some complexity and more computational effort. This interaction effect is well

understood for the elasto-plastic property of the material. For other non-linear material characteristics,

this interaction effect is difficult to incorporate in a theoretical framework. Therefore, the procedure to

perform the non-linear seismic analysis of multi-storey frames will be discussed for the elasto-plastic

material property with bidirectional interaction and for other (materially) non-linear systems, without this

interaction effect.

For a 2D frame with elasto-plastic properties of the frame elements, potential sections where plastic

hinges can form are identified and themoment–rotation relationship for each section is specified as elasto-

plastic. During the integration of the incremental equation ofmotion, moments at the potential sections of

hinge formation are checked.When Mj ¼ Mp

�� (the plasticmoment capacity of the section), a plastic hinge

is formed at that section. For the next time interval, the stiffness matrix of the frame is generated by

assuming anordinary hinge at that section. If Mj > Mp

�� at any section at the endof a time interval, then Mjj
is set equal toMp and the stiffnessmatrix of the frame is generated as described above. The response for the

time interval is then re-evaluated with the average of the stiffness matrices at the beginning of the time

interval and at the end (with Mjj set equal toMp). This correction is not generally required if the time step is

taken as sufficiently small, because the accumulated error is then very small. The calculation for the next

time interval is then carried out.

At the end of each time interval, the velocity response at each potential section of hinge formation is

checked. If unloading takes place at a plastic hinge (indicated by the reversal of the sign of velocity) at the

end of a time interval, then for the subsequent time steps the section is assumed to behave elastically until

plastification again takes place.

Example 6.4

For the three-storey frame with elasto-plastic columns shown in Figure 6.9a, find the time history of

the moment at A and the corresponding (shear) force-displacement plot for the El Centro earthquake. If

the force-displacement backbone curve for the columns is modeled as that shown in Figure 6.9b, then

compare the results with those obtained for the elasto-plastic model.

Solution: The frame ismodeled in SAP2000,which requires force-displacement back bone curves for the

potential yield sections of the columns. They are shown in Figure 6.9. The integration is performed with

Dt ¼ 0:02 s.
The time history of the moment at A and the force-displacement plot of section A are shown in

Figures 6.10 and 6.11, respectively for elasto plastic condition. It is seen fromFigure 6.10 that the value of

the moment at A reaches the yield moment ðVp � l=2 ¼ 519:34 kNmÞ and stays at the same value over a

certain duration of time. Figure 6.11 shows the elasto-plastic nature of the hysteretic loops, as expected.

In Figure 6.12, the time history of moment at A for the bilinear back bone curve is shown. It is seen that

themoments do not remain constant for a duration of time, but change at each time step. Figure 6.13 shows

the bilinear characteristics of hysteretic curve for the force-displacement relationship.
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Figure 6.11 Shear force-displacement plot at A
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Figure 6.9 Properties of the three-storey frame: (a) three-storey frame; and (b) force-displacement curve of column
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Figure 6.10 Time history of moment at A
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When the non-linear moment–rotation relationship, as shown in Figure 6.14, is considered instead of

the elasto-plastic one, the tangent stiffness matrix for each time interval is calculated by considering the

slope of the curve corresponding to the beginning of the time interval, as explained in Figure 6.1. When

unloading takes place at the potential section of yielding, the section behaves elastically having a stiffness

property equal to the initial tangent stiffness of the moment–rotation curve. For ease of computation,

slopes of the back bone curve for different values of force or moment may be given as inputs to the

program. The slope for the in between values is obtained by interpolation. If the back bone curve is

bilinear, two (pre- and post-yield) slopes are given as input. The stiffness of the system is calculated using

one slope or the other depending upon its state.

Yieldingwith bilinear interaction takes place for column elements in 3D frames. If it is assumed that the

columns are weaker than the beams, then the top and bottom sections of the columns become the sections

for potential hinge formation. During the integration of the incremental equation of motion, the tangent

stiffness matrix for a time interval is written as:

Kt ¼ Ke �Kp ð6:27Þ

-500000

-400000

-300000

-200000

-100000

0

100000

200000

300000

400000

500000

0.00.0250.020.0150.010.0050-0.005 3

Displacement (m)

Sh
ea

r 
fo

rc
e 

(N
)

Figure 6.13 Shear force-displacement plot at A
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Figure 6.12 Time history of bending moment at A
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in whichKe is the condensed stiffness matrix of the frame corresponding to dynamic degrees of freedom

and Kp is the assembled correction matrix due to the plastification of potential sections in the columns.

Non-zero elements of the matrix Kp are arranged in such a way that they correspond to the degrees of

freedom which are affected by the plastification of column sections. Non-zero elements are computed

using Equations 6.15 and 6.16. The incremental solution procedure remains the same as that described for

inelastic analysiswith bidirectional interaction on yielding described previously. If the 3D frame is aweak

beam–strong column system, then bilinear interaction on yielding is not required as the beams undergo

only one way (vertical) bending. The analysis procedure remains the same as that of the 2D frame.

Note that for both 3D and 2D analyses, rotational degrees of freedom are condensed out if the mass

moments of inertia for the skeletal members are ignored and point mass lumping is assumed.

If rotational degrees are condensed out, then incremental rotations at the ends of the members are

obtained from the incremental displacement using the relationship between the displacements and

rotations. Rotational stiffness of themembers aremodified at the end of the time interval if plastification or

θyθ

pM

M

Figure 6.14 Non-linear moment–rotation relationship (not idealized by straight lines)

1M 2M

Figure 6.15 Weak beam–strong column frame with potential sections for hinge formation
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unloading takes place. The full stiffness matrix is then assembled and rotational degrees of freedom are

condensed out to obtain the tangent stiffness matrix to be used for the next time step.

The procedure is illustrated for a framed structure like that shown in Figure 6.15, but having only two

storeys. Column and beam length are equal to l. D1 and y1 stand for top storey displacement and joint

rotation. The frame is assumed to be a weak beam–strong column system. Therefore, beam ends are

potential sections for yielding. The sections that undergo yielding are shown in the figure. The

moment–rotation relationship for the sections is shown in Figure 6.16. The sections, other than the

ones that aremarked, remain elastic. Furthermore, it is assumed thatmasses are point lumped, that is, there

is no mass moment of inertia and all members are inextensible. Considering anti-symmetric bending, the

elastic stiffness matrix corresponding to the kinematic degrees of freedom is given by:

K ¼

k �k � kl

2
� kl

2

�k 2k
kl

2
0

� kl

2

kl

2

kl2

2
ða1 þ 0:67Þ kl2

6

� kl

2
0

kl2

6

kl2

2
ða2 þ 1:33Þ

2
666666666664

3
777777777775

D1

D2

y1
y2

8>>>><
>>>>:

9>>>>=
>>>>;

ð6:28aÞ

in which

12EIc

l3
¼ k;

EIb1
EIc

¼ a1;
EIb2
EIc

¼ a2

The condensed stiffness matrix corresponding to the sway degrees of freedom is

KD ¼ KD �KDyK
� 1
y KyD ð6:28bÞ

in which KD is the condensed stiffness matrix corresponding to the sway degrees of freedom; KD, KyD,

and so on, are the partitioned matrices according to D and h degrees of freedom. From Equation 6.28a,

it may easily be shown that

K� 1
h ¼ 6

kl2
3ða1 þ 0:67Þ 1

1 3ða2 þ 1:33Þ
� ��1

ð6:29aÞ

h ¼ 3

l

1 �1

1 0

� �
3ða1 þ 0:67Þ 1

1 3ða2 þ 1:33Þ

� ��1

D ð6:29bÞ

pθ

21, MM

pp2p1 MMM ==

θ

Figure 6.16 Idealized moment–rotation relationship of elasto-plastic beam
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Substituting for K� 1
y , KyD, and so on, into Equation 6.28b, KD is obtained as;

KD ¼ k
1 �1

�1 2

� �
� 3k

l

�1 �1

1 0

� �
3ða1 þ 0:67Þ 1

1 3ða2 þ 1:33Þ

� ��1
1 �1

1 0

� �
ð6:30Þ

The equation of motion for the frame may be written as:

MDx€ þCD _xþKDtDx ¼ �MIDx€g ð6:31Þ
in which

M ¼ m

1

2
0

0 1

2
4

3
5 C ¼ aKD0 þ bM ð6:32Þ

KD0 is the initial tangent stiffness matrix and is given by Equation 6.30, computed when the entire system

is elastic. When the system is unloaded, the tangent stiffness matrix is equal toKD0. For the time interval

Dt starting from ti, the computation of responses requires KDt to be obtained for time ti. Assume that the

responses for the previous time interval are Dxi�1, D _xi�1, DM1i�1, DM2i�1. Then,

xi ¼ xi�1 þDxi�1; _xi ¼ _xi�1 þD _xi�1 ð6:33aÞ
M1i ¼ M1i�1 þDM1i�1; M2i ¼ M2i�1 þDM2i�1 ð6:33bÞ

M1i and M2i are the bending moments at the ends of the beams at time ti.

Computation of DM1i�1 and DM2i�1 requires the responses Dy1i�1 and Dy2i�1, which are not directly

obtained from the solution of the incremental equation ofmotion. They are obtained using the relationship

given by Equation 6.29b. To determine Dy, a values in Equations 6.29a and 6.29b are obtained as:

a1 ¼ r1i�1l

6EIc
and a2 ¼ r2i� 1l

6EIc

in which

r1i�1 ¼ M1i�1

y1i�1

and r2 i� 1 ¼ M2i� 1

y2i� 1

Once Dh is known, DM1i�1 and DM2i�1 can be determined because M1i�1 ¼ r1i�1 y1i�1 and

M2i�1 ¼ r2i�1 y2i�1. With the values of M1i and M2i known, r1i ¼ M1i=y1i and r2i ¼ M2i=y2i can be

obtained. a1 and a2 are then calculated as a1 ¼ r1i l=6EIc and a2 ¼ r2i l=6EIc and the tangent stiffness

matrix KDt for time ti is obtained using Equation 6.30.

When the moment–rotation relationship for the beam is assumed to be elasto-plastic, then a1 and a2
are set to zero for M1j ¼ Mp1

�� and M2j ¼ Mp2

�� , respectively at the beginning of any time interval. When

unloading takes place, a1 and a2 are calculated based on the elastic stiffness of the beam given by

Equation 6.28a.

Example 6.5

The three-storey strong column–weak beam frame, shown in Figure 6.17, is subjected to El Centro

earthquake excitation. The elasto-plastic behavior of the beams are also shown in the same figure. Find the

stiffness matrix of the frame corresponding to sway DOF at t ¼ 1:36 s, given the response quantities

shown in Table 6.1.

Solution: It is seen from the table thatmoments at sections 1 and 6 reach the yieldmoment. Therefore, the

stiffness contributions (rotational) of the beams at these sections are taken as zero. For the next increment
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of time, the stiffness matrix for the system is computed by considering hinges at sections where yieldings

have taken place. After the total stiffness matrix is obtained as described above (Equation 6.28a), the

stiffness matrix is condensed to only the sway degrees of freedom. The total stiffness matrix and the

condensed stiffness matrix are given below:

K ¼ 4:83� 104 �

1:067

�1:067 2:133 sym

0 �1:067 2:133

0:8 �0:8 0 2:4

0:8 0 �0:8 0:8 4

0 0:8 0 0 0:8 3:2

0:8 �0:8 0 0:4 0 0 2:4

0:8 0 �0:8 0 0:4 0 0:8 4

0 0:8 0 0 0 0 0 0:8 3:2

2
66666666666666664

3
77777777777777775

D1

D2

D3

y1
y2
y3
y4
y5
y6

KD ¼ 4:83� 104 �
0:4451 sym

�0:6177 1:276

0:2302 �1:0552 1:811

2
64

3
75
D1

D2

D3

Table 6.1 Response quantities at t¼ 1.36 s. Yield moment for the beams is 50 kNm

Section Time
step (s)

x (m) _x
(m s�1)

x€
(m s�2)

y
(rad)

_y
(rad s�1)

_y_
(rad s�2)

M (kN m)

1 1.36 0.00293 0.0341 �1.2945 0.00109 0.013 �0.452 50
3 1.36 0.00701 0.0883 �2.8586 0.000946 0.014 �0.297 �23.18
5 1.36 0.00978 0.1339 �3.4814 0.000529 0.009127 �0.098 42.89
2 1.36 0.00293 0.0341 �1.2945 0.00109 0.013 �0.452 �50
4 1.36 0.00701 0.0883 �2.8586 0.000946 0.014 �0.297 23.18
6 1.36 0.00978 0.1339 �3.4814 0.000529 0.009127 �0.098 �42.89
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Figure 6.17 Properties of the three-storey frame: (a) three-storey frame; and (b) force-displacement curve
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6.4 Pushover Analysis

Pushover analysis is popular in earthquake engineering, as is the response spectrum method of analysis.

As the latter is a good equivalent static analysis (substitute) for the elastic dynamic analysis of structures to

a given earthquake, likewise pushover analysis is a good equivalent non-linear static analysis (substitute)

for the inelastic dynamic analysis of structures for the earthquake. Pushover analysis provides a load

versus deflection curve of the structure starting from the state of rest to the ultimate failure of the structure.

The load is representative of the equivalent static load of a mode (generally taken as the fundamental

mode) of the structure and may be conveniently taken as the total base shear of the structure. Similarly,

the deflection may represent the deflection of any storey and may be conveniently selected as the

top-storey deflection.

Pushover analysis could be force controlled or displacement controlled. In the force control, the

total lateral force is applied in increments. For each increment of the load, the stiffness matrix of the

structure may have to be changed, once the structure passes from the elastic state to the inelastic

state. In the displacement control, the displacement of the top storey of the structure is incremented,

such that the required horizontal force pushes the structure laterally proportional to the fundamental

horizontal translational mode of the structure in the direction of the lateral load. As in force

controlled pushover analysis, the stiffness matrix of the structure may have to be changed for each

increment of displacement. The displacement controlled pushover analysis is generally preferred

over the force controlled one because the analysis could be carried out up to the desired level of

the displacement.

The displacement controlled pushover analysis is explained with the help of an example of a building

frame. Consider the building frame shown in Figure 6.18. The fundamental mode shape is also shown in

the same figure. For the analysis, the following input data are required in addition to those shown in the

figure: (i) the assumed collapse mechanism (for example Figure 6.15); (ii) moment–rotation relationship

for the sections that are assumed to yield (for example Figure 6.16); (iii) the fundamental mode shape;

(iv) the limiting displacement, if displacement at the complete collapse is not desired; and (v) rotational

capacity of the plastic hinges.

(b)(a)

Figure 6.18 Example frame for pushover analysis: (a) bare frame; and (b) fundamental mode shape of the frame
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The analysis is carried out in the following steps:

i. Choose a suitable increment dD1 for the displacement to be applied at the top of the frame.

ii. Give the first increment of displacement at the top and find the corresponding displacements at

other floor levels by multiplying it with the mode shape coefficients, that is, dDr
1 ¼ dD1 � fr, in

which dDr
1 is the displacement increment of the rth floor andfr is the mode shape coefficient for the

rth floor.

iii. Obtain the load vector Dp ¼ KdD1 in which K is the elastic stiffness matrix of the frame and dD1 is

the incremental displacement vector corresponding to lateral degrees of freedom. From the load

vector, obtain DVB1 in which DVB1 is the incremental base shear.

iv. The top displacement is incremented in this manner and VBn ¼
Pn

i¼1 DVBi is obtained for any

stage (n) for the top-floor displacement, Dn ¼
Pn

i¼1 dDi.

v. At the end of each increment of displacement, moments are checked at each potential location of

the plastic hinges shown in the figure. For this purpose, yn at the ends of the beam are calculated

using the following relationship hn ¼ �K� 1
yy KyDDn in which Kyy and KyD are the partitioned

matrices used in the standard matrix condensation procedure to condense out rotations, and Dn is

the lateral displacement vector of the frame. If the moments at the potential sections of yielding

reach the yield moment, plastic hinges are assumed to form at those sections. For the subsequent

displacement increment, the stiffness matrix of the frame is modified by assuming ordinary hinges

at those sections.

vi. Whenever a plastic hinge is formed at a section, rotation at the hinge is calculated for the subsequent

displacement increment, and the total rotation in the hinge at any stage (n) is checked for the assumed

rotation capacity. If the rotation at any hinge exceeds its rotation capacity, then the displacement

increment is discontinued. A rotational hinge failure (partial collapse) preceeds the assumed

mechanism of failure. Assumption of unlimited rotation capacity in the plastic hinge is generally

made in order to avoid such a partial collapse.

vii. The load-deflection curve VB versus Dð Þ is traced up to the final collapse or up to the specified

displacement level.

Example 6.6

Carry out an equivalent static non-linear analysis of a seven-storey frame shown in Figure 6.19 by

displacement control pushover analysis for the elasto-plastic backbone curves given in the same figure.

The properties of the frame are given in Table 6.2.

Solution: The first mode shape for the structure is shown in Figure 6.20. SAP2000 is used to obtain the

displacement control pushover analysis. The moment-rotation curve for the yield sections is shown in

Figure 6.19b (with a specified rotational capacity). For a given displacement at the top, the displacements

at other floors are obtained using the first mode shape.

The plot of base shear versus top-storey displacement is shown in Figure 6.21. The sequence of the

formation of hinges is shown in Figure 6.22. In Table 6.3, plastic hinges formed at different displacement

stages are shown. It is seen fromFigure 6.22 that the frame collapses before an adequate number of hinges

are formed in the structure. This is so because joint failure takes place at the joint, where four hinges are

formed, much before the complete mechanism of failure. Furthermore, it is observed from Figure 6.21

that the load suddenly drops at certain values of the displacement. The reason for such drops is attributed

to the inputs given to SAP2000 for the analysis. In SAP, the moment–rotation curve for a yield section is

not specified exactly as elasto-plastic, but mildly bilinear as shown in Figure 6.19b. As a result, yield
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Table 6.2 Properties of the seven-storey frame: E ¼ 2:48� 107 kNm� 2; mass at each floor level is calculated by
lumping appropriate masses at each floor; C and B stand for columns and beams respectively

Cross section Location b (mm) d (mm) My (kN m) yy (rad) ymax (rad)

C1 Ground, first, second 400 400 168.9 9.025e-3 0.0271
C2 Third, fourth, fifth and sixth 300 300 119.15 0.0133 0.0399
B1 Ground, first, second 400 500 205.22 6.097e-3 0.0183
B2 Third, fourth, fifth and sixth 300 300 153.88 8.397e-3 0.0252

3 m

3 m

3 m

3 m

3 m

4 m4 m
(a)

3 m

3 m

(b)

yM

yθ
cθ

Figure 6.19 Properties of the seven-storey frame: (a) seven-storey frame; and (b) moment-rotation curve for beams
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Figure 6.20 First mode shape of the frame
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sections continue to take moment after the initial yielding, until the final rotational capacity of the section

is reached. The stiffness of the structure suddenly drops leading to a drop of the load carrying capacity

of the structure, when the rotational capacity of a yield section or those of a number of yield sections

are reached.
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Figure 6.21 Variation of base shear with top floor displacement
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Figure 6.22 Sequence of the formation of hinges
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6.5 Concepts of Ductility and Inelastic Response Spectrum

As shown in the elastic response spectrum method of analysis, the base shear induced in a single portal

frame is:

Vb ¼ mSa ¼ WSa

g
ð6:34Þ

whereW is theweight of themass and Sa is pseudo acceleration response spectrumordinate corresponding

to the natural period and damping of the system. If the system is designed for a base shearmuch lower than

Vb, for example,Vb=R, whereR could be 3–4, then the systemwill be deformed beyond the limit of elastic

behavior for the design earthquake whose spectrum is used to obtain the value of Sa=g. Under this
earthquake, the systemwill vibrate in a different way than it would havevibrated if it were designed forVb.

The nature of vibration will depend upon the material behavior represented by its force deformation

characteristics under cyclic loading. This force deformation behavior is discussed in Section 6.2. For such

non-linear force-deformation behavior of the materials, the equation of motion is written in incremental

form and solved for each time step assuming the stiffness of the system to remain the same within the

increment, as explained previously. In order to explain the concept of ductility and other related

parameters, two SDOF systems, one with elasto-plastic material behavior and the other with a

corresponding elastic (linear) material behavior are considered as shown in Figure 6.23.

6.5.1 Ductility

The ductility factor is defined as:

m ¼ xm

xy
ð6:35aÞ

where xm is the maximum absolute displacement of the elasto-plastic system during the earthquake and

xy is the yield displacement. The ductility factor is always greater than unity and is a measure of the

deformation of the system beyond the yield limit. An associated factor, known as the yield reduction

factor, Ry is defined as the inverse of f y, in which f y is the normalized yield strength of the elasto-plastic

system (Figure 6.23) given by:

f y ¼
fy

f0
¼ xy

x0
ð6:35bÞ

Table 6.3 Sequence of formation of hinges at different displacement stages

D (m) Base shear (kN) Plastic hinges at section

0.110891 316.825 1
0.118891 317.866 1,2
0.134891 319.457 1,2,3
0.142891 320.006 1,2,3,4
0.150891 320.555 1,2,3,4,5
0.174891 322.201 1,2,3,4,5,6
0.190891 323.299 1,2,3,4,5,6,7
0.206891 324.397 1,2,3,4,5,6,7,8
0.310891 331.498 1,2,3,4,5,6,7,8,9
0.318891 332.035 1,2,3,4,5,6,7,8,9,10
0.334891 333.11 1,2,3,4,5,6,7,8,9,10,11
0.350891 334.185 1,2,3,4,5,6,7,8,9,10,11,12
0.518891 342.546 1,2,3,4,5,6,7,8,9,10,11,12,13
0.534891 343.207 1,2,3,4,5,6,7,8,9,10,11,12,13,14
0.622891 346.843 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15
1.448699 307.822 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
1.456699 308.225 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17
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f0 is defined as the strength (or restoring force¼ kx0) of the SDOF system if it were to remain within the

elastic limit during an earthquake. A normalized strength of less than unity implies that the SDOF system

will deform beyond its elastic limit. If f ¼ 1, it denotes an elasto-plastic SDOF systemwith fy ¼ f0 so that

the system does not deform beyond the elastic limit. A system designed with Ry ¼ 2 means that the

strength of the SDOF system is halved compared with that for which the system would have remained

within an elastic limit during the earthquake.

The ratio between the peak deformations xm and x0 of the elasto-plastic system and the corresponding

elastic system may be written as a function of m and Ry as

xm

x0
¼ xm

xy
� xy

x0
¼ m f y ¼

m
Ry

ð6:36Þ

With the above definitions, the equation ofmotion of the elasto-plastic SDOFsystemmay be rewritten as:

x€þ 2xon _xþo2
nxy f ðx; _xÞ ¼ �x€g ð6:37Þ

in which f ðx; _xÞ ¼ f ðx; _xÞ=fy; on is the natural frequency of the system based on its initial stiffness, and

x is the damping ratio used to define the damping in the elastic range.Assuming that the deformation goes in

the inelastic range, the equation of motion can be written in terms of a ductility ratio, that is,

m€þ 2xon _mþo2
n f ðm; _mÞ ¼ �o2

n

x€g
ay

ð6:38Þ

in which xðtÞ ¼ mðtÞxy; ay ¼ fy=m is the acceleration of the mass necessary to produce the yield force.

m depends upon three parameterson, x, and ay for a givenx€g and formof f ðm; _mÞ. As ay¼ fy=m ¼ o2
nx0 f y,

the parameter ay is replaced by f y.

For different levels of f y, the time histories of the response for an elasto-plastic SDOF model will be

different and will give different values of the peak displacement. For example, for f y ¼ 1, the responses

remain within elastic limits. In many instances, the peak displacement observed for f y ¼ 1 is more than

f y < 1. However, this is not always true. The reason for the lower value of the peak response in the elastic-

plastic case is the energy dissipation due to hysteresis produced by cyclic excitation leading to increased

equivalent damping in the system.The opposing effect,which increases the displacement, is the decreased

equivalent stiffness of the system as cyclic effect continues in the inelastic range. The most important

effect of reduction of f y is on the drift (permanent deformation) that takes place at the end of the

earthquake. The less the value of f y, the more the system is forced to stay in the inelastic state and more

becomes the drift. The ductility can be easily calculated from xm=x0ð¼ m=RyÞ if peak deformations of

an elasto-plastic system with a specified f y and the corresponding elastic system are known.

f

x

fy

xy xo

fo

Stiffness k

Elastic

Elasto-plastic

xm

Figure 6.23 Elasto-plastic system and corresponding elastic system
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The effects of time period Tn ¼ 2p
on

on m, xm, x0, and f y are illustrated with the help of Figure 6.24

drawn for the El Centro earthquake. The figure shows the following:

i. For long period structures, xm and x0 are nearly the same and are almost independent of f y, that is,

displacements of elasto-plastic and elastic systems are nearly the same. Furthermore, peak deforma-

tion is equal to peak ground displacement, independent of f y and m ¼ Ry.

ii. In the velocity sensitive region, xm 6¼ x0; may be smaller or larger than x0; affected by f y (not to a

great extent); m may be smaller or larger than Ry.

iii. In the acceleration sensitive region, xm is greater than x0 and xm increases with decreasing f y and

decreasing period. m can bemuch greater thanRy. Thus, for a very short period structure, the ductility

demand imposed on the structuremay bevery large even though the system could have a strength only

slightly less than the corresponding elastic system.

These observations are found to be valid for many cases of ground motions; only the D-A-V zones may

vary from ground motion to ground motion.

6.5.2 Inelastic Response Spectrum

The inelastic response spectrum is plotted for

Dy ¼ xy Vy ¼ onxy Ay ¼ o2
nxy ð6:39Þ

whereDy is the yield deformation of the elasto-plastic system.A plot ofDy againstTn for a fixed value ofm
is known as the yield deformation response spectrum. Similarly, plots of Vy and Ay are, respectively,

termed pseudo velocity and pseudo acceleration spectra. These spectra are called inelastic response

spectra, and also ductility spectra. Because of the relationship betweenDy,Vy, andAy, they can be plotted

Figure 6.24 Response of an SDOF system for ElCentro groundmotion for different values ofTn: (a) normalized peak
deformations for elasto-plastic system and elastic system; and (b) ratio of the peak deformations
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in a tripartite plot. The yield strength of the elasto-plastic system, fy, is given by

fy ¼ mAy ð6:40Þ
Yield strength for a specified ductility is difficult to obtain. Reverse is possible. However, using an

interpolation technique the yield strength for a specified ductility can be determined and a ductility

spectrum can be constructed. The procedure may be summarized as follows.

i. For specified Tn and x, obtain the response of the elasto-plastic system for a number of f y values less

than equal to 1. Each response analysis will give a value of m. Choose f y such that the m values thus

obtained are in the vicinity of the desired m value. Note that f0 is obtained as kx0, where x0 is the

maximum elastic response for the specified time history.

ii. From the set of the pair of f y and m values, interpolate the desired m value and the corresponding

f y value.

iii. Using this f y value, obtain the response of the elasto-plastic system and find m. If the value of m is very
close to that which was obtained from interpolation, then the process may be stopped. Otherwise,

a pair of better interpolated values may be obtained and the process is repeated.

iv. For different values ofTn, the steps can be repeated to obtain the ductility curve as shown in Figure 6.25.

Note that w ¼ mg.

From the ductility spectrum, it is possible to obtain the yield strength to limit the ductility demand to an

allowable value for given Tn and x. Peak deformation is xm ¼ mxy and xy ¼ fy=k ¼ Ay=o2
n. With the

knowledge of the ductility spectrum for m ¼ 1, it is possible to plot f y versus Tn for different values of m.
This provides a direct idea about the strength reduction required for a particular ductility. Such a plot is

shown in Figure 6.26.

The effect of damping ratio from 0.02 to 0.01 is marginal on the ductility curve especially in the

acceleration and displacement zones of the spectrum. In the velocity zone the effect is observed, which is

reduced for higher values of m. It may be noted that the effect of yielding cannot be considered in terms of

a fixed amount of equivalent damping.

From the nature of the plot of f y with Tn for several earthquake records, researchers have provided

several idealized forms of the variation of f y with Tn. One such simple relationship is given by the

32.521.510.50
0

0.2

1

0.4

0.6

0.8

μ = 1

1.5

2
4

8

Tn (s)

f y
/w

=
A

y
/g

Figure 6.25 Constant ductility spectrum for elasto-plastic systems ðm ¼ 1; 1:5; 2; 4; 8Þ
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following and is shown in Figure 6.27.

f y ¼
1 Tn < Ta

ð2m� 1Þ� 1=2
Tb < Tn < Tc

m�1 Tn > Tc

8><
>: ð6:41Þ

Ta, Tb, Tc, and so on are those used for the elastic design spectrum.
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As yield strength reduction factor Ry ¼ 1=f y, it is possible to construct an idealized inelastic design

spectrum for a particular value of m from the elastic design spectrum. This inelastic design spectrum

compares well with many inelastic spectra for real earthquakes when smoothed. Construction of the

inelastic design spectrum for a givenvalue ofm from the elastic design spectrum is illustratedwith the help

of the example below.

Example 6.7

Construct an inelastic design spectrum in a tripartite plot for m ¼ 2 for the given elastic design spectrum

(Figure 2.22; 50th percentile; Chapter 2).

Solution: It is presumed that the elastic design spectrum a� b� c� d � e� f shown in Figure 6.28a has

been developed as explained in Section 2.5.4 (Chapter 2). From this elastic design spectrum, the inelastic

design spectrum a0 � b0 � c0 � d 0 � e0 � f 0 is obtained as shown below.

1. Divide the constant-A ordinate of segment b–c by Ry ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p
to obtain the segment b0 � c0.

2. Divide the constant-V ordinate of segment c� d by Ry ¼ m to obtain the segment c0 � d 0.
3. Divide the constant-D ordinate of segment d � e by Ry ¼ m to obtain the segment d 0 � e0.
4. Divide the ordinate at f by Ry ¼ m to obtain f 0. Join points f 0 and e0. Draw Dy ¼ xg0=m for Tn > 33 s.

5. Take the ordinate a0 of the inelastic spectrum at Tn ¼ 1=33 s as equal to that of point a of the elastic

spectrum. Join points a0 and b0.
6. Draw Ay ¼ x€g0 for Tn < 1=33 s.

The resulting inelastic response spectrum is shown in the Figure 6.28b.

6.6 Ductility in a Multi-Storey Structure

For a singledegree of freedomsystem, an inelastic response spectrum/ductility spectrumcanbedirectly used

for designing the system(that is, to determine theyield strength tobeprovided) for a specifiedductility.Once

it is designed, then the maximum displacement of the elasto-plastic system obtained from the time history

analysis is found to be exactly the same as muy. However, this is not the case for the multi-storey structures.

Firstly, it is very difficult to obtain design yield strength for all members of the structure corresponding to a

uniform ductility factor. Secondly, even if it could be done for some simplified cases, the ductility demands

imposed by the earthquake (as obtained from time history analysis) could be widely different from one

member to the other, and for some members may far exceed the designed (uniform) ductility.

Some studies on multi-storey frames are discussed here in order to show the variation of ductility

demands of different members of the framewhen it is designed using the inelastic response spectrum for a

specified (design) ductility [3]. Building frames of 5, 10, 20 and 40 storeys idealized as shear frames with

uniform floor mass are considered for study. The fundamental time periods of these frames are selected as

0.8, 1.6, 3.5 s, respectively. The lateral force and storey shears for the frames are obtained by the seismic

coefficient method in terms of base shear Vb. The value of Vby is obtained from the inelastic response

spectrum of the El Centro earthquake for a specified ductility.

The storey stiffness is obtained using the following considerations:

i. Base shear coefficient for the specified time period and damping using code provisions.

ii. Static application of lateral forces, assuming the structure to be elastic and storey drifts to be equal

resulting in a linearly varying deflection with height.

The storey yield shears are obtained from Vby and the storey shear distribution as given in the code.

These frames were analyzed assuming elasto-plastic behavior of the storey shear versus storey

displacement under the El Centro earthquake time history. The storey ductility demands were obtained

from the analysis and results were analyzed. The results show that:
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i. For taller buildings, the ductility demands are larger in the upper and lower storeys and decrease in the

middle storeys.

ii. The deviation of storey ductility demands from the allowable (design) ductility demand increases for

taller buildings.

Figure 6.28 Construction of inelastic design spectrum: (a) illustration of the method; and (b) inelastic design
spectrum for m ¼ 2
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iii. In general, the ductility demand is maximum at the first storey and could be 2–3 times the allowable

ductility.

In order that the ductility demand in the first storey remains within the allowable limit, Vby, as obtained

from the inelastic spectrum, should be increased. An idea of howmuch the increase should be can bemade

from the ratio between theVby of themulti-storey building and that of the corresponding SDOF system for

the allowable ductility. The corresponding SDOF system has the same natural period as that of the first

mode of the building frame. The mass and Vby of the SDOF system are the same as the total mass and

design Vby of the multi-storey frame. A detailed discussion is given in reference [3].

In general, an increase of base shear over and above the design base shear by some percentage tends to

keep the ductility demand imposed by the earthquake within the stipulated limit.

Exercise Problems

(Use standard programs like MATLAB�, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

6.8 An SDOF system has a non-linear spring having the bilinear force-displacement characteristics as

shown in Figure 6.29. Find the time histories of relative displacement and acceleration of the mass

for the El Centro earthquake. Also, find the ductility ratio. Take x ¼ 5% and m ¼ 10 kg.

6.9 A five-storey frame as shown in Figure 6.30 is subjected to the El Centro earthquake. The columns

are weaker than the beams and have the non-linear properties as shown in the figure. Find (i) the

envelope of the peak relative displacements of the floors; (ii) the time history of the base shear; and

(iii) the stiffness matrix of the system at time t ¼ 6:2 s. Assume x ¼ 5%.

6.10 A three-storey 3D framewith rigid diaphragms, shown in Figure 6.31, is subjected to the El Centro

earthquake acting along the x-direction. The elasto-plastic force-deformation characteristics of the

columns are also shown in the samefigure. Find (i) the time histories of rotation andx-displacement

of the top floor; (ii) the time histories of base shears of column A; (iii) the ductility demand of the

column A at each floor level; and (iv) the stiffness matrix of the system at time t ¼ 7 s. Assume

x ¼ 5%. To perform the analysis, the effect of bi-directional interaction on yielding of the columns

may be ignored.However, to compute the stiffnessmatrix at t¼ 7 s, this interaction effect should be

included and the responses obtained from the no interaction analysis at t¼ 7 s may be used.

6.11 For the frame shown in Figure 6.30, find the top-floor response spectrum (for 5% damping), and

compare itwith that if the columns are assumed to be un-yielding.Also, find the ductility demandof

xf
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pK
0.15mg

x0.0147 m

0.15p

i

K

K
=

Figure 6.29 Force-displacement curve of the non-linear spring
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each floor. [HINT: the floor response spectrum is the plot of pseudo acceleration of an SDOF

attached to the floor with its time period for a given value of x.]
6.12 Afive-storey strong column–weak beam frame, shown in Figure 6.32, is subjected to the El Centro

earthquake. The mass at each floor level is m ¼ 2500 kg. The potential locations of the plastic

hinges in the beams are shown in the same figure alongwith themoment–rotation backbone curves.

Obtain the time histories of (i) the top floor relative displacement; (ii) the base shear of the column

A; (iii) the moment–rotation plot for section B; and (iv) ductility demand of each beam.

6.13 Using the displacement control pushover analysis, obtain the plots of base shear versus top

displacement of the frames shown in Figure 6.32 (with changed beams and columns cross sections)

and Figure 6.30. Changed cross sections are: all columns– 40� 40 cm and all beams– 30� 30 cm.
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Floor masses are not changed. Take the values of My; yy and ymax from Table 6.4, which can be

interchanged between beams and columns. For the other problem (that is, Figure 6.30), take the

shear displacement capacity as three times the yield value. Also, show the formation of hinges at

different displacement stages. [NOTE: for pushover analysis, the flat portion of the elasto-plastic

curve is replaced by a line with a very mild slope.]

6.14 Construct an inelastic design response spectrum in tripartite plot for m ¼ 2; 3 and 4 for the

idealized elastic response spectrum of the El Centro earthquake (Figure 2.17; Chapter 2). Compare

the inelastic design response spectra with the actual inelastic response spectrums of the El Centro

earthquake for m ¼ 2 and 4 (for x ¼ 5%).
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Table 6.4 Properties of the five-storey frame

Member Cross section (mm) My (kN m) yy (rad) ymax (rad)

Beam 300� 300 153.88 8.397e-3 0.0252
Column 400� 400 168.9 9.025e-3 0.0271
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7

Seismic Soil Structure Interaction

7.1 Introduction

For the seismic analysis of overground and underground structures, consideration of the soil–structure

interaction becomes extremely important when the soil or the foundationmedium is not very firm.During

earthquake excitation, the structure interacts with the surrounding soil imposing soil deformations.

These deformations, in turn, cause the motion of the supports or the interface region of the soil and the

structure to be different to that of the free field groundmotion. These interactions substantially change the

response of the structure. For very stiff soil, this change is extremely small and can be neglected.

Therefore, consideration of base fixity remains a valid assumption for overground structures constructed

on firm soil. Similarly, the effect of soil–structure interaction on long buried structures. such as pipelines,

within firm soil is negligible as it takes the same profile as that of the soil during the earthquake motion.

In order to understand the soil–structure interaction problem properly, it is necessary to have some

knowledge of the earthquake wave propagation through the soil medium for two main reasons. Firstly,

the dynamic characteristics of the input ground motion to the structure depend upon the modification

of the bedrockmotion as it propagates through the soil. Thus, the knowledge of wave propagation through

the soil medium is essential to understand ground motion modifications due to soil properties. Secondly,

the knowledge of the vibration characteristics of the soil medium due towave propagation is important in

relation to the determination of the soil impedance functions and fixing the boundaries for a semi-infinite

soil medium, when the wave propagation analysis is performed by numerical techniques. Therefore, in

this chapter, wave propagation through soil is discussed first and then, seismic soil–structure interaction

problems are presented.

7.2 Wave Propagation through Soil

Referring to Figure 7.1, it can be easily shown that the unbalanced external forces in the x-direction are in

equilibrium with the internal force in the same direction and give

r
@2u

@t2
¼ ru€¼ @sxx

@x
þ @sxy

@y
þ @sxz

@z
ð7:1Þ

in which sxx, sxz, and so on are the stresses as shown in the figure and r is the mass density of the soil. In a

similar way, two more equations of equilibrium can be written for y- and z-directions respectively.
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Using strain displacement relationships, these three equations can be written in the following form:

ru€¼ ðlþ mÞ @e
@x

þ mr2u ð7:2Þ

rv€ ¼ ðlþ mÞ @e
@y

þ mr2v ð7:3Þ

rw€ ¼ ðlþ mÞ @e
@z

þ mr2w ð7:4Þ

where

u€, v€, and w€ are the accelerations in the x-, y- and z-directions, respectively

l and m are Lame’s constants

e ¼ exx þ eyy þ ezz, exx is the strain in the x-direction

r2 is the Laplace operator.

Solution of the above equations under different boundary conditions provides the ground motions in the

x-, y- and z-directions at any point within the soil due to earthquake wave propagation. Note that the two

Lame’s constants are related to E, G, and g (Young’s modulus, Shear modulus, and Poisson’s ratio,

respectively) as:

E ¼ mð3lþ 2mÞ
lþ m

; G ¼ m; g ¼ l
2ðlþ mÞ ð7:5Þ

The above wave equations (Equations 7.2–7.4) in an infinite soil medium can be combined to produce

twowave equations. The first type of wave equation is obtained by differentiating Equations 7.2–7.4 with

respect to x, y, and z and adding the results to give

r
@2exx
@t2

þ @2eyy
@t2

þ @2ezz
@t2

� �
¼ ðlþ mÞ @2e

@x2
þ @2e

@y2
þ @2e

@z2

� �
þ m

@2exx
@x2

þ @2eyy
@y2

þ @2ezz
@z2

� �
ð7:6Þ

or

r
@2e
@t2

¼ ðlþ mÞr2eþ mr2e ¼ ðlþ 2mÞr2e ð7:7Þ

dz

dx
dy

y

x

z

dz

∂z
sxz +

∂sxz

dy
∂y

sxy +
∂sxy

dx
∂x

sxx +
∂sxx

sxz

sxz

sxx

Figure 7.1 Stresses on an infinitesimal cube
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or

@2e
@t2

¼ V2
Pr2e; VP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

r

s
ð7:8Þ

This type of wave is called a P wave with VP as the P wave velocity in a three-dimentional wave

propagation. e is the volumetric strain, which involves no shearing or rotation. Thus, this wave equation

describes an irrotational wave having particle motion only in the direction of wave propagation, as shown

in Figure 1.8 of Chapter 1. By substituting for l and m, VP can be written as:

VP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gð1�gÞ
rð1�2gÞ

s
ð7:9Þ

For one-dimensional wave propagation, Equation 7.8 takes the form

@2ex
@t2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gð1�gÞ
rð1�2gÞ

s
@2ex
@x2

ð7:10Þ

or

@2u

@t2
¼

ffiffiffiffi
E

r

s
@2u

@x2
ð7:11Þ

in which VP ¼ ffiffiffiffiffiffiffiffiffi
E=r

p
as g does not enter in one-dimensional wave propagation.

The second type of wave equation is obtained by eliminating e from Equations 7.3 and 7.4. Differentiat-

ing Equations 7.3 and 7.4 with respect to z and y, respectively, and subtracting one from the other

r
@2yx
@t2

¼ G
@2yx
@x2

or
@2yx
@t2

¼ V2
S

@2yx
@x2

; VS ¼
ffiffiffiffi
G

r

s
ð7:12Þ

where

yx ¼ @w

@y
� @v

@z

� �
is the rotation about x-axis

Thus, this wave equation represents distortional wave propagation with rotation about the x-axis.

Similar expressions of wave propagation in the y- and z-directions can be obtained with rotations about y-

and z-axes, respectively. Thiswave is called anSwave or shearwavewith shearwavevelocity,VS. Particle

motion in this wave propagation takes place on a plane perpendicular to the direction of wave propagation

(Figure 1.8). S waves generally have two components, that is, S-H and S-V waves. If the particle motion

takes place only in horizontal direction perpendicular to the direction ofwave propagation, then it is called

an S-Hwave. Similarly, an S-Vwave has particle motion only in the vertical direction. In general, particle

motion can take place in both horizontal and vertical directions. It is usually observed that VP >VS.

As the earth is not an infinite body, seismic wave propagation within the earth does not follow strictly

the above wave propagation equations. While wave propagation well within the earth’s crest may nearly

follow the above equations, that near the surface allows additional wave equation forms due to the

presence of a free surface at the top boundary. The earth in this region is modeled as a semi-infinite body

with a planar free surface. Two types of additional wave equations are obtained in this region, one for a

Rayleighwave (named after Rayleigh) and the other for aLovewave. Bothwaves are called surfacewaves

and they attenuate with distance more slowly than body waves. In Rayleigh waves, all particle motions

take place in a vertical plane with an elliptical motion having axes in the vertical direction and in the

direction of wave propagation, as shown in Figure 1.8.
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The wave equation is derived using two potential functions giving

u ¼ @j
@x

þ @c
@z

ð7:13Þ

w ¼ @j
@z

� @c
@x

ð7:14Þ

With the two potential functions defined as above, it can be shown that they satisfy the wave equations

similar to those for P and S waves, and a Rayleigh wave is a combination of these two waves [1]. The

potential functions satisfy the following equations:

@2j
@t2

¼ V2
pr2j ð7:15Þ

@2c
@t2

¼ V2
s r2c ð7:16Þ

Solutions of Equations 7.15 and 7.16 provide the particle velocities u and w.

Love waves are essentially S-H waves that are trapped by multiple reflections within a surface layer of

material having a lower shear wave velocity than the layers below. The love waves satisfy the wave

equations of the S wave. The particle motion and the wave velocity can be obtained by solving this wave

equation.

Apart fromRayleigh and Lovewaves, there are a number of other surfacewaves, but they aremuch less

significant in terms of ground motions affecting the structures.

7.3 One-DimensionalWave Propagation andGroundResponse Analysis

The influence of local soil conditions in modifying the nature of free field ground motion has long been

recognized. This influence is studied by way of ground response analysis, which obtains the response at

the free ground surface using wave propagation analysis with bedrock motion as input. According to the

dimensionality of the problem, the ground response analysis could be three (3D), two (2D) or one

dimensional (1D). Depending upon the site conditions and geometry, itmay be decidedwhether 3D, 2Dor

1D ground response analysis would be required. It has been observed that one-dimensional ground

response analysis provides a reasonably good estimate of the free field ground motion in many cases. In

addition, one dimensional analysis is computationally simple. Because of these reasons, it is mostly used

for ground response analysis.

Figure 7.2 shows a schematic view of one-dimensional wave propagation analysis. As wave

propagation velocities near the surface of the earth are generally less than those beneath them, inclined

rays that strike horizontal boundaries are usually reflected to a more vertical direction. However,

horizontal groundmotions are of greater importance for seismic input to the structures. As a consequence,

one-dimensional wave propagation analysis is based on the assumption that the response of a soil deposit

is predominantly governed by S-H waves propagating vertically from the underlying bedrock. The soil

and bedrock surfaces are also assumed to extend in the horizontal direction. Some of the definitions

associated with the analysis are explained in Figure 7.2.

When the soil deposit behaves linearly, the analysis is simple and the solution of the wave equation

(Equation 7.12) can be used to obtain the free field ground motion. However, if the soil deposit behaves

non-linearly, which is often the case for strong groundmotion, a non-linear or equivalent linear analysis is

performed to obtain the ground response. For this purpose, the simple solution of thewave equation cannot

be used, and generally more involved analysis using FEM is carried out.

Referring to Figure 7.3, consider a uniform layer of homogeneous elastic soil overlying the rigid

bedrock. Harmonic horizontal motion of the bedrock will produce vertically propagating shear waves in
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the soil. For one-dimensional wave propagation equation of the form

@2u

@t2
¼ V2

S

@2u

@z2
ð7:17Þ

the solution for harmonic bedrock motion is given as [1]:

uðz; tÞ ¼ Aeiðotþ kzÞ þBeiðot�kzÞ ð7:18Þ
whereo is the frequency of excitation and k ¼ o=VS;A andB are the amplitudes ofwaves traveling in the

upward and downward directions, respectively. As the shear strain must vanish at the free surface

Ggð0; tÞ ¼ G
@uð0; tÞ

@z
¼ 0 ð7:19Þ

The above condition provides

GikðA�BÞeiot ¼ 0 ð7:20Þ
or

A ¼ B ð7:21Þ
The displacement at any depth uðz; tÞ then becomes

uðz; tÞ ¼ 2A cos kzeiot ð7:22Þ
Equation 7.22 shows a standing wave of amplitude 2A cos kz where amplitude decreases with

depth. Equation 7.22 can be used to obtain the ratio between the amplitudes of displacement

H

u

z Ae i(ω t + kz)

Be i(ω t − kz)

Figure 7.3 One-dimensional wave propagation analysis in linear elastic soil

Free surface motion

Rock
outcropping
motion

Bedrock motion Bedrock
outcropping motion

Rock
outcropping
motion

(a) (b)

Figure 7.2 Terminologies used in ground response analysis: (a) soil overlying bedrock; and (b) no soil overlying
bedrock
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between the top and bottom surface as:

RðoÞ ¼ umaxð0; tÞ
umaxðH; tÞ ¼

1

cos kH
ð7:23Þ

Equation 7.23 shows that if a harmonic ground motion is prescribed at the bottom, then its amplitude

will amplify as it travels upward to the surface.RðoÞ also denotes the transfer function for the propagating
harmonic wave from rock bed to the free field. The plot of the transfer function is shown in Figure 7.4.

The figure shows that amplifications at frequencies npVS=2Hðn ¼ 1; 3; 5; . . .Þ approach infinity. These
frequencies are the soil deposit frequencies starting from the fundamental frequency pVS=2H. Because of
zero damping (considered in the analysis), amplifications approach infinity at resonance points.

If soil damping is considered, the equation of wave propagation takes the form

@2u

@t2
¼ V2

S

@2u

@z2
þ Z

r
@3u

@z2@t
ð7:24Þ

in which Z is defined as the equivalent viscosity given by Z ¼ 2Gx=o and is the parameter of the

Kelvin–Voigt model to represent the stress–strain relationship in shear for soil given by:

t ¼ Ggþ Z
@g
@t

ð7:25Þ

in which g and t are the shear strain and stress, respectively. Equation 7.25 is used to represent the

stress–strain relationship because, for the purpose of viscoelastic wave propagation, soils are usually

modeled as Kelvin–Voigt solids (that is, materials whose resistance to shearing deformation is an addition

of the elastic and viscous components). Furthermore, the equivalent viscosity, Z, used in Equation 7.24, is
defined to be inversely proportional to frequency in order to make the soil damping ratio to be frequency

independent [1]. The relationship between Z and x at a frequency is derived from the energy dissipation in

the soil for harmonic oscillation. The second term on the right side of Equation 7.24 appears due to soil

damping, which arises due to the movement of soil particles during shear wave propagation. Solution of

the wave equation is of the form

uðz; tÞ ¼ Aeiðotþ kzÞ þBeiðot�kzÞ ð7:26Þ
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Figure 7.4 Modulus of transfer function for undamped elastic layer
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inwhichk is a complex number havingk1 andk2 as the real and imaginary parts. Using the same condition

of zero shear strain at the free surface, the transfer function RðoÞ can be shown to be [1]:

RðoÞ ¼ 1

cos kH
ð7:27Þ

in which kH ¼ oH=VS; VS is the complex shear velocity given by:

Vs ¼
ffiffiffiffi
G

r

s
; G ¼ Gð1þ i2xÞ ð7:28Þ

For small x, expanding ð1þ i2xÞ1=2 in a power series and neglecting higher order terms, it can be shown

that

VS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gð1þ i2xÞ

r

s
¼ VSð1þ ixÞ ð7:29Þ

Thus,

RðoÞ ¼ 1

cos
oH
VS

ð1þ ixÞ
� � ð7:30Þ

Using cosðaþ ibÞj j ¼ ½cos2aþ sin h2b�12, the absolute value of the transfer function can be expressed as:

RðoÞj j ¼ 1

cos2
oH
VS

� �
þ xoH

VS

� �2
" #1=2

ð7:31Þ

In the above equation, sinh2x � x2 is used, as x is small.

The plot of the absolute value of RðoÞ is shown in Figure 7.5. It is seen from the figure that RðoÞj j
reaches a peak value near the natural frequencies of the soil deposit (that is, on ¼ npVS=2H;

n ¼ 1; 3; 5 . . .) as in the undamped case. The peaks at the natural frequencies have finite values because

of the presence of damping. In addition, peaks also decrease with increasing natural frequencies. For the

soil deposit, the mode shapes corresponding to the first three natural frequencies are shown in Figure 7.6.

7.3.1 Ground Response Analysis Using FFT

With the transfer function known, the free field ground response due to a propagating S-H wave for a

specific time history of bedrock motion can be easily obtained using Fourier analysis. The steps to be
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Figure 7.5 Modulus of transfer function for damped elastic layer
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followed for performing the linear ground response analysis for a specified time history of groundmotion

are summarized below:

(i) Fourier synthesize the bedrock ground motion using FFT, which gives a set of complex numbers at

discrete interval of Do.
(ii) Take the first half of the numbers (the remaining half of the numbers are complex conjugates of the

first half).

(iii) Obtain the values of the transfer function at a frequency interval of Do starting from zero.

(iv) Multiply complex numbers of the Fourier transform with the corresponding values of the transfer

function.

(v) Multiplied numbers are complex; find complex conjugates of these numbers and sequence them in

an order as explained in Chapter 2.

(vi) Take an inverse Fourier transform of the series; the output provides the time history of the ground

response.

7.3.2 Ground Response Analysis (Linear and Non-Linear)
in the Time Domain

Ground response analysis can also be performed in the time domain. In this method, the soil medium is

discretized as a number of shear beam elements as shown in Figure 7.7. Appropriate soilmass is lumped at

Ground
surface

1.0

0.5

0.0
-0.5-1.0 1.00.50.0

n = 2 n = 1
n = 0z

H
Z
H

Figure 7.6 Mode shapes corresponding to first three natural frequencies

Free surface

Shear beam elementSoil medium

Bedrock
Bedrock motion

Shear wave propagation

Figure 7.7 Shear beam element for one-dimensional wave propagation analysis
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the nodal points. Assuming a reasonable damping ratio for the soil, the following equations of motion are

solved numerically to find the time history of response for the top node:

Mu€ þC _uþKu ¼ �MIu€g ð7:32Þ
in whichM,C, and K are, respectively, the mass, damping, and stiffness matrices for the equivalent shear

beam; u€g is the time history of ground acceleration at the bedrock level; and u is horizontal groundmotion.

The solution to Equation 7.32, for a specified time history of ground motion by using different methods,

has been explained in Chapter 3. To obtain the total (absolute) free field acceleration, the bedrock

acceleration is added to the acceleration of the top node.

For strong groundmotion, the non-linear behavior of the soil should be taken into account in the ground

response analysis. For non-linear response analysis, the equation ofmotion (Equation 7.32) ismodified as:

Mu€ þC _uþRðuÞ ¼ �MIu€g ð7:33Þ
inwhichRðuÞ is the non-linear force–displacement relationship of the soil under cyclic loading. This non-

linear relationship is represented by a backbone curve as explained in Chapter 6. For the case of soil, the

backbone curve represents the variation ofGwith the shear strain of the soil as shown in Figure 7.8a. The

non-linear equation ofmotion is solved numerically to obtain the free (relative) field ground response. The

method of analysis is explained in Chapter 6. The free field ground response obtained by the non-linear

analysis is generally less than that obtained by the linear analysis. The reason for this is the hysteretic

behavior of the non-linear soil under cyclic loading, which provides a force–deformation relationship

shown in Figure 7.8b. Because of this hysteretic behavior, more seismic energy is dissipated in addition to

that due to the material damping of the soil.
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Figure 7.8 Non-linear behavior of the soil: (a) backbone curve; (b) hysteresis loop under cyclic loading; (c) variation
of shear modulus with shear strain; and (d) variation of equivalent damping ratio with shear strain
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Anequivalent linearanalysis for thenon-linearproblemiswidelyusedingroundresponseanalysis. In the

equivalent linear analysis, an equivalent shear modulus and an equivalent damping ratio, representing the

energy loss in the hysteretic loops, are used in the analysis. The equivalent shearmodulus is the average of

the shearmodulus at every point of the hysteretic curve inFigure 7.8b. It can be approximated by the secant

modulus as shown in Figure 7.8a. The equivalent damping ratio at different strain levels are obtained from

the area of the loop. As the secant modulus decreases with increasing strain, there is a degradation of the

modulus as the strain increases. From cyclic experimental tests, the degradation of the equivalent shear

moduluswith the level of shear strain hasbeenobtainedas shown inFigure7.8c.Thus, the equivalent linear

analysis uses the straindependentGvalueasdepicted inFigure7.8c.Areasonable estimateofGmax is taken

to be equal to rV2
s . The equivalent damping also varies with the strain and can be obtained from laboratory

tests. A typical variation of the damping ratio with the shear strain is shown in Figure 7.8d.

Theequivalent linear analysis startswithavalueofGmaxandfinds thecomputedstrain in theelements. In the

next iteration, a strain compatiblemodulus (Figure7.8c) is used toobtain the solution.Theprocess is continued

until a convergence (defined by a norm) is achieved. Standard programs are available, such as FLAC for

performingbothequivalentlinearandnon-linearone-dimensionalwavepropagationanalysisforasoilmedium.

7.4 2D or 3D Response Analysis in the Time Domain

The solution of the one-dimensional wave propagation analysis can be easily extended to 2D or 3D

analysis by FEM. Instead of considering one-dimensional shear beam elements, if 2D or 3D elements are

considered for the analysis (Figure 7.9), then the responses in two or three directions can be obtained. For

2D analysis, plane strain elements are used. Ground motions are prescribed at the rock bed. For the 3D

analysis, eight node brick elements may be used. Appropriate boundaries for the soil medium are to be

defined depending upon the topography. 2D or 3D analysis is generally performed for regions with

irregular topography and near the ends of a basin. In the central region of the basin having regular

topography, 1D wave propagation analysis is sufficient for all practical purposes. Both linear and non-

linear analyses are possible for 2D and 3Dwave propagation problems. The interaction effect on yielding

and improved yield curvesmay be included in the non-linear analysis. Standard softwares such asANSYS

or ABAQUS can be used for this purpose. Note that responses obtained by 2D or 3D wave propagation

analysis for a single component vertically propagating ground motion will give slightly different results

than those obtained from 1D wave propagation analysis because of the Poisson effect.

B
ou

nd
ar

y

B
ou

nd
ar

y

Plane strain elements

(at all nodes)

(a)

u

v

w

8 noded brick element

B
ou

nd
ar

y

B
ou

nd
ar

y

(b)

u

v

w

Figure 7.9 FEM idealization of wave propagation in soil medium: (a) 2D approximation; and (b) 3D approximation
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Example 7.1

A vertically propagating shear wave travels through a uniform layer of soil deposit that is 50 m thick

lying over a rock bed. Take the damping ratio for the soil to be 5%, and three cases of soil properties

given by VS ¼ 80 m s�1, r ¼ 1600 kg m�3; VS ¼ 200 m s�1, r ¼ 1800 kg m�3; and VS ¼ 600 m s�1,

r ¼ 2000 kg m�3. Find (i) the plots of the ground amplification factor (modulus of transfer function);

(ii) the plots of the time histories of relative displacement and absolute acceleration at the surface using

1D wave propagation time history analysis for the El Centro earthquake as bedrock input; (iii) the PGA

amplification; and (iv) the free field absolute acceleration response spectra for VS ¼ 80 m s�1, 200m s�1,

and the input ground motion.

Solution:

(i) The modulus of transfer function, RðoÞj j, given by Equation 7.31, is plotted for VS ¼ 80, 200, and

600 m s�1 with x for soil taken as 5%. The plots are shown in Figures 7.10–7.12. It is seen from the

figures that forVS ¼ 80 m s�1 (soft soil), the first peak of the transfer function occurs at amuch lower

frequency compared with the frequencies at which the first peaks of the transfer functions occur for

VS ¼ 200 and 600m s�1. This is the case because the fundamental frequency ðpVS=2HÞ of the soil
deposit for VS ¼ 80 m s�1 is much lower.

(ii) Time histories of free field displacement (relative to the bedrock) and absolute acceleration

obtained by 1D wave propagation analysis (using integration of Equation 7.32 by Newmark’s

method with Dt ¼ 0:02 s) are shown in Figures 7.13 and 7.14. It is seen from the figures that the
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Figure 7.12 Transfer function for VS¼ 600m s�1
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free field ground displacement is more for VS ¼ 80 m s�1 (soft soil). Also, the time history of

ground displacement for VS ¼ 80 m s�1 shows a predominant period that is approximately equal

to the fundamental period for the soil deposit. This explains the reason why free field ground

motion for soft soil shows a narrow band spectrum. The time histories of the absolute ground

acceleration show that the accelerations are more for the stiffer soil; PGA is maximum for

VS ¼ 600 m s�1.

(iii) The PGA amplification ðpaÞ, that is, the ratio of peak free field absolute acceleration to the peak rock
bed acceleration for the three cases are pa ¼ 1:52 for VS ¼ 80 m s�1; pa ¼ 1:92 for VS ¼ 200 m s�1,

and pa ¼ 3:43 for VS ¼ 600 m s�1. Thus, PGA amplification is less for the softer soil.
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Figure 7.14 Time histories of absolute acceleration: (a) VS¼ 80m s�1; (b) VS¼ 200m s�1; and (c) VS¼ 600m s�1
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(iv) The pseudo acceleration response spectra for the free field ground acceleration for VS ¼ 80 m s�1;

200m s�1 and input bedrock acceleration are compared in Figure 7.15. It is seen that the frequency

contents of the three response spectra are significantly different showing that the soil characteristic

modifies the frequency contents of the ground motion to a great extent.

Example 7.2

For the above problem, compare between the free field responses obtained using 1D and 2D wave

propagation analyses.

Solution: Both 1D and 2D analyses are performed using ABAQUS. Plain strain elements have been used

for both analyses. In 2D analysis, two degrees of freedom (vertical and horizontal) at each node of the

element are considered. For 1D analysis, the vertical degree of freedom is restrained. A soil medium of

100m (width) and 50m (depth) is discretized into finite elements of size 5� 5 m. The time history of

acceleration is applied at the bedrock at every node. The responses are shown for the node at the center of

themedium on the ground surface. Time histories of responses are compared in Figures 7.16 and 7.17. It is

seen from the figures that some differences exist between the time histories of horizontal responses

obtained for the two cases. The reason for these differences is attributed to the Poisson effect.Difference in

the ground displacements is pronounced for the soft soil (VS ¼ 80 m s�1), while the difference in the

ground acceleration is pronounced for the stiff soil (VS ¼ 600 m s�1).

Example 7.3

If the soil has the non-linear characteristics modeled by an elasto-plastic stress–strain relationship

with yield shear stress¼ 40 960Nm�2; and yield strain¼ 0.002, obtain the free field acceleration

for the problem in Example 7.1 for VS ¼ 80 m s�1 and compare it with that obtained for the linear

soil.

Solution: Response of the non-linear soil can be obtained by incremental time history analysis as

explained in Chapter 6. Here, the response is determined using 1D time history analysis with the help of

ABAQUS. The input requires stress–strain behavior of the soil in addition to other inputs given for the
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Example 7.2. The result of the analysis is shown in Figure 7.18. It is seen from the figure that the free

field acceleration for the non-linear soil is less than the corresponding linear soil. The reason for this

is attributed to the dissipation of seismic energy due to the hysteretic behavior of the non-linear soil

during vibration.

7.5 Dynamic Soil–Structure Interaction

The effect of a dynamic soil–structure interaction depends on the stiffness and mass properties of the

structure, the stiffness of the soil, and the damping characteristics of both soil and structure. The dynamic

soil–structure interaction consists of two interactions, namely, kinematic interaction and inertial

interaction. The kinematic interaction is the result of the stiffness of the structure, while the inertial
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Figure 7.16 Time histories of ground displacement: (a) VS¼ 80m s�1; (b) VS¼ 200m s�1; and (c) VS¼ 600m s�1
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interaction is the result of themass of the structure. The kinematic interaction is explainedwith the help of

Figure 7.19(a–d). In Figure 7.19a, the massless mat foundation restrains the vertical movement of the

ground motion because of its flexural stiffness. As a result, the mat foundation moves differently than the

free field ground motion (that is, the ground motion is away from the foundation). Also, the nature of

groundmotion in the close vicinity and below the foundation is changed from that of the free field ground

motion because of this action. This interaction of the foundation with the ground motion is called the

kinematic interaction. Similar examples of kinematic interaction are shown in Figure 7.19(b and c). In

Figure 7.19b, a vertically propagating shear wave is restrained by the embedded foundation. In

Figure 7.19c, the axial stiffness of the slab prevents the incoherent ground motion produced below the

foundation due to the vertically propagating shear wave. The kinematic interaction can also induce

rotational movement in a foundation, as shown in Figure 7.19d for vertically propagating purely S waves.

The tau (t) effect, as explained by Clough and Penzien [2], is another example of kinematic interaction.

In Figure 7.20, the horizontally propagating shear wave in the y-direction produces ground motion in the
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Figure 7.17 Time histories of absolute acceleration: (a) VS¼ 80m s�1; (b) VS¼ 200m s�1; and (c) VS¼ 600m s�1
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x-direction which varies with y. Because of the rigidity of the slab, this varying motion is restrained and

themotion of the slab in the x-direction is different to that of the free field groundmotion. If t is defined as
the ratio between the amplitudes of rigid base translationalmotion and the free fieldmotion for a particular

harmonic component, then it is shown that [2]

t ¼ 1

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�cos aÞ

p
ð7:34aÞ

a ¼ oD
Va

¼ 2pD
lðoÞ ð7:34bÞ

where

lðoÞ ¼ 2pVa

o is the wavelength

D is the dimension of the base in the y-direction

Va is the apparent wave velocity in the y-direction.

It is shown that the values of t decrease from unity at a ¼ 0 (and l!1) to zero at a ¼ 2p (and l ¼ D).

This means that if the base dimension of the foundation is very small compared with the wavelength of

the ground motion, then the t effect is negligible. On the other hand, if the base dimension of the

foundation is sizable compared with the wavelength of the ground motion, then the t effect should be

considered and the base motion could be much smaller than the free field ground motion.

Inertial interaction is purely caused by the inertia forces generated in the structure due to themovement

of themasses of the structure during vibration (Figure 7.21). The inertia forces transmit dynamic forces to

the foundation. If the supporting soil is compliant, the foundationwill undergo dynamic displacement that

would not occur if the soil is very stiff (as assumed for the fixed base condition). Clearly, the dynamic

displacement at the foundation–soil interface is the sum total of the free field ground motion, the

displacement produced due to kinematic interaction, and the displacement produced due to inertial

interaction. As a portion of the soil adjacent to the foundation undergoes vibration produced by the inertial

effect, some portion of the energy, imparted to the structure by the ground motion, is lost in moving the

adjacent soil mass. The energy travels within the soil in the form of radiating waves and gradually dies
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Figure 7.21 Inertial effects
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downwith distance. This energy loss is popularly known as radiation damping of the soil and is one of the

important aspects of the inertial effect. The radiation damping and the resistance of the soil to the

movement of the foundation can be obtained theoretically by finding the impedance functions for the soil,

described later. All these interaction effectsmodify both the responses of the structure and themovements

of the ground below the foundation and are known as soil–structure interaction effects. Exclusive

treatment of the subject is available in reference [3].

7.5.1 Bounded Problem and Idealization of Realistic Problems

Dynamic soil–structure interaction problems can be treated in different ways. Exact or rigorous analysis

could be obtained only under certain specific conditions. Themost direct approach to solve the problem is

to include a layer of the soil alongwith the structure and use the finite element approach tomodel the entire

system. Such a model is shown in Figure 7.22. If the model can be assumed to be bounded as shown in the

figure, the equation of motion takes the usual form, that is,

MV€ þCV_ þKV ¼ �MIu€g ð7:35Þ

where

M, C, and K are the mass, damping, and stiffness matrices, respectively, of the soil–structure system

corresponding to the dynamic degrees of freedom

V is the vector of the relative displacements of the degrees of freedom with respect to the base

u€g is the ground motion applied at the base

I is influence coefficient vector (of unity).

For the specified time history of the groundmotion at the bed, the equation of motion can be solved either

in the time domain or in the frequency domain (by Fourier transform) to obtain the relative displacement

vector V. The absolute displacement or acceleration vector corresponding to the degrees of freedom may

be obtained by adding the groundmotion to the relative motions of the degrees of freedom. This approach

Foundation medium

Structure

Soil degrees of freedom

Rigid base

Interface

Free soil boundary

Input acceleration

Structure degrees of freedom 

Figure 7.22 FEM modeling of soil-structure as bounded problem
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is a direct method of solving the soil–structure interaction problem. However, this has certain dis-

advantages, which are discussed later.

In the multi-step method, the problem is solved in two stages as shown in Figure 7.23(a and b). In the

first stage, the problem of the kinematic interaction is solved in which mass of the superstructure is

ignored. The equation of motion takes the form:

MV€I þCV_I þKVI ¼ �MIu€g ð7:36Þ

in which M is the mass matrix with masses corresponding to the structure and foundation degrees

of freedom set to zero (that is, only soil masses are retained); and VI is the relative displacements

produced at the degrees of freedom. Thus, the elements of the vector of displacements fVI�uggT
corresponding to the structural degrees of freedom are themotions that are imparted to the structure due

to the ground motion. Owing to the kinematic interaction, the ground motion as such is not imparted to

the structure.

If VI at all structural degrees of freedom are nearly the same and are equal to those at the base of the

structure, then kinematic interaction is negligible (that is, no tau effect) and the free field ground motion

(that is, the motion at the base of the structure) is transferred as such into the structure.

In the second stage, the problem of the inertial interaction is solved in which the entire mass matrix is

considered on the left-hand side of the equation of motion with the effective earthquake force acting only

on the structure. Thus, the equation of motion takes the form

MV€II þCV_II þKVII ¼ �MsfV€I þ Iu€gg ð7:37Þ

inwhichMs is themassmatrix having non-zero elements for only structural degrees of freedom.Note that

V€I for structural degrees of freedomare zero as the structure and foundation behave quasi-statically during

the solution of the kinematic interaction. The solution provides the response VII produced due to the

inertial interaction. The final response of the system is the sum of the responses VI and VII . The total or

absolute response is obtained by adding ug to VI and VII . It can be easily shown that addition of

Equations 7.36 and 7.37 leads to original Equation 7.35.
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The direct method, as explained above, can be conveniently used for bounded problems in

which ground motions are prescribed at the boundaries. The multi-step method can also be used

for bounded problem as the prescribed free field ground motion can be expressed in terms of ground

motion prescribed at the boundaries. However, most of the soil–structure interaction problems

associated with the overground structures are different to those of the bounded problem. The difference

is due to:

(i) Mostly the ground motions are prescribed at the free field rather than at the rock bed below.

(ii) The superstructure is constructed over the ground, the ground extending to far distances on all sides

except the upward vertical direction.

(iii) The effect of soil–structure interaction on the response of the superstructure is of primary interest;

the response of the soil mass below is generally not of great concern. Also, the rock bed may be at a

much greater depth and, hence, a bottom boundary (not at the rock bed) may be provided.

(iv) For most of the foundations of the superstructure, the kinematic interaction is small and,

therefore, can be neglected. As a result, the soil–structure interaction problem is one of inertial

interaction.

The above factors have led to different methods of treatment of soil–structure interaction problems

associatedwith the overground structures.Note that the bounded problemcan also be formulatedwith free

fieldgroundmotionas input[3].Thesecondfactoraboveisofcrucial importanceas infinitesoilmasscannot

be included in a realistic model. Therefore, the optimum amount of soil mass should be incorporated in

the model so as to allow effective dissipation of radiation waves (Figure 7.21). Alternatively, an effective

mechanism to absorb radiation energy at the boundaries of the soilmass should be provided to perform the

same function. A small selection of methods, both exact and approximate, are discussed here. All these

methods solve the problem of the inertial effect only.

7.5.2 Direct Method

In the direct method, soil–structure foundation is modeled together using FEM, as shown in Figure 7.23.

The difference between the modeling shown in Figures 7.22 and 7.23 is that the boundary is not fixed and

there is no rock bed at the bottom in the latter. The ground motion, as shown in Figure 7.23, is specified at

the free field. It is assumed that kinematic interaction is insignificant and the free field groundmotion is the

motion with which the foundation blocks move. The inertia forces acting on the structure produce

vibration in the structure, foundation, and the soil masses, both at the soil–foundation interface and below

it. The equation of motion takes the form

Mu€ þC _uþKu ¼ �MsIu€g ð7:38Þ
where

M is the mass matrix for the entire structure–foundation and the soil

C is the damping matrix (material damping) of the structure and the soil

K is stiffness matrix of the entire system

Ms is the mass matrix having non-zero masses for the structural degrees of freedom

I is influence coefficient vector
u€g is the free field ground acceleration

u is the vector of relative displacement with respect to the base.

In Figure 7.23, the soil is modeled as an assemblage of rectangular plane strain elements having two

translational degrees of freedom at each node, while the building frame is modeled as an assemblage of
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beam elements. As soil elements do not admit rotational DOF, soil structure interface nodes require

special consideration, as shown in the figure. The stiffness matrix for the entire system can be generated

using the standard assembling procedure. To generate the damping matrix, damping matrices of the

structure and the soil are constructed separately from theirmodal damping ratios assuming them to follow

Rayleigh damping. Then, they are combined together to form the total damping matrix by assuming that

the coupling terms between the soil and structure are zero. Note that the damping coefficients

corresponding to the degrees of freedom of the interface nodes consist of two components, that is, the

components from the structural damping and those from the soil damping.

The inertia forces will be transferred to the base (foundation) in the form of a shear force and a

moment, which in turn will tend to deform the soil at the soil–structure interface. This vibratory

deformation of the soil at the interface propagates in the form of radiation waves through the soil in all

directions, giving rise to soil radiation damping. It is this damping which mostly affects the structure-

foundation responses. Contribution of the material damping of the soil to the response reduction of the

structure-foundation system is very insignificant. Unless these radiation waves travel for sufficient

distances, they do not die down. Therefore, the radiation waves reflect back if any boundary is provided

at a distance not far away from the structure and introduce error into the calculation of responses. In

other words, simulation of the semi-infinite elastic half space of the soil mass by finite element

modeling of the dynamic soil–structure interaction problem may become very large. From different

numerical studies carried out so far, a good approximation for fixing the boundaries is also shown in

Figure 7.23. In order to reduce the size of the problem, the concept of absorbing boundaries has been

introduced in the finite element formulation. The purpose of absorbing boundaries (which have dash

pots) is to dissipate the radiation energy effectively by placing the boundaries not far away from the

structure, thus reducing the size of the problem.

In the directmethod, the problem can be solved either in the time domain or in the frequency domain for

a specified free field ground motion. If the time histories of ground motion are different at different

supports, then also the problem can be solved by modifying the influence co-efficient vector fIg used in
Equation 7.38. The necessary modifications have been explained in Chapter 3.

Standard software packages are now available to solve dynamic soil–structure interaction problems by

direct methods. However, there are a few shortcomings of the direct method of analysis. Firstly, the

problem is one of non-classical damping, and therefore a good representation of the damping matrix for

the system is difficult. This is further complicated if absorbing boundaries are used. Secondly, a large

problem has to be dealt with to find the superstructure responses, which are the main interest. Thirdly, if

the superstructure is modeled as a 3D system, then not only does the size of the problem become very

large, but also modeling of interface elements becomes complex.

Example 7.4

The stick model, shown in Figure 7.24, is supported on a circular footing resting on a soil having

VS ¼ 80 m s�1,r ¼ 1600 kg m�3, and x ¼ 5% (for both structure and soil). The foundation has a radius of

1.5m.Using 2Ddirect analysis, find the time history of tip displacement (relative) and base rotation for the

El Centro earthquake applied at the base of the foundation.

Solution: The FEMmodeling of the stick and soil is shown in Figure 7.24. The stick is modeled by beam

elements, while the footing and the soil aremodeled by plane strain elements. The stick and the footing are

connected by the tie element with the rotational DOF locked. Contact surface interaction between the

footing and the soil is defined as (i) hard contact in the vertical direction, (ii) friction contact in the

tangential direction, and (iii) separation in the vertical direction, which is allowed for tension. The ground

motion is applied at the base of the structure.Appropriate boundaries for the soilmediumare also shown in

the same figure for proper attenuation of radiation waves. Direct integration of the equation of motion for

the soil structure system is carried out in ABAQUS.
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The results are shown in Figures 7.25–7.27. It is seen from the figures that the top displacement of the

stick is more and the bending stress at the base is less for the flexible base than the corresponding response

quantities for the fixed base. Also, the base rotation for the flexible base is found to be significant, as the

soil is soft.

7.5.3 Substructure Method of Analysis

Most of the disadvantages of the direct method of analysis can be removed if the substructure method is

employed. In the substructure method of analysis, the two systems, that is, the superstructure and the
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Figure 7.25 Time histories of top displacements of the stick for fixed base and flexible base (VS¼ 80m s�1)
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foundation medium, are treated as two independent models. The connection between the two models is

established by the interaction forces acting on the interface. The dynamic equilibriumequations are finally

written in terms of interface degrees of freedom and solved either in the time domain or in the frequency

domain. The foundation medium is treated as an elastic half space for which impedance functions are

known. Impedance functions for a massless circular flooring resting on an elastic half space have been

derived by many investigators [4, 5] and are available in the form of graphs. For rectangular footings,

approximate expressions for impedance functions may be derived from those of the (area) equivalent

circular footings. For rigid (massless) circular footings, the impedance function for the elastic half space

can be derived analytically by applying complex unit harmonic forces one at a time as shown in

Figure 7.28. The resulting displacements of the degrees of freedom of the plate are obtained as complex

numbers and are arranged in a column to form a complex flexibility matrix. The inverse of the matrix

provides the impedance matrix. In the impedance matrix, coupling terms exist only between the rotation

and the translation. Real and imaginary parts of the elements corresponding to a degree of freedom are

equal to the soil stiffness and damping corresponding to that degree of freedom. These impedance

functions are the key parameters for the substructure method of analysis.
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Figure 7.27 Time history of the base rotation for flexible base (VS¼ 80m s�1)
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Figure 7.26 Bending stresses at the base for fixed base and flexible base (VS¼ 80m s�1)
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The superstructure is modeled invariably by finite elements. Modeling for the substructure

method of analysis is shown in Figure 7.29. For some of the structures, a portion of the soil may

be included in the superstructure. For such structures two interfaces are dealt with, one at the free

ground surface and the other at the surface between the superstructure and foundationmedium as shown

in Figure 7.29b.

The substructure method of analysis is first explained with the single degree of freedom superstruc-

ture, before it is extended to the multi-degrees of freedom with multi-point excitation of the

superstructure.

7.5.3.1 SDOF Superstructure

Referring to Figure 7.30, the superstructure, which is modeled as an SDOF system, induces two forces at

the base, namely, a horizontal shear force and amoment. It is assumed that the base of the SDOF system is

attached to a rigid massless plate resting on an elastic half space. At the base, the SDOFwill undergo two

movements, that is, one translation produced by base shear, and the other a rotation produced by

the moment.

(b)(a)

Figure 7.29 Modeling for substructure method of analysis: (a) structure without any soil portion; and (b) structure
with a portion of soil attached

Massless rigid circular plate

2r

Half space

eiωt

eiωt

eiωt eiωt

Figure 7.28 Elastic half space solution for soil impedance function
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Dynamic stiffness (impedance function) for the rigid massless circular footing of radius r resting on an

isotropic homogeneous half space for translation and rotational (rocking) degrees of freedom are

represented by a stiffness matrix of the form

GdðoÞ ¼ Gvv Gvy

Gyv Gyy

� �
ð7:39Þ

inwhichGvv,Gvy, and so on, are the frequency dependent complex functions.Gvv,Gvy, and so on, have real

and imaginary parts in the form of

GðiaÞ ¼ GRðaÞþ iGIðaÞ ð7:40Þ
in which R and I denote real and imaginary parts and represent the soil resistance (stiffness) and damping

(radiation), respectively. a is the non-dimensional frequency given by:

a ¼ ro
VS

ð7:41Þ

in which VS is the shear wave velocity of the soil mass. Plots of GRðaÞ and GIðaÞ for the elements of the

GdðoÞ matrix are available in numerous publications, for example, in reference [2].

Let the base displacement and rotation caused by the soil structure interaction be vðtÞ andyðtÞ. Then, the
total base motion will be:

vt ¼ vðtÞþ ugðtÞ ð7:42Þ
in which ugðtÞ is the free field ground displacement, and vt is the total displacement at the base. Referring

to Figure 7.30, the equation of motion for the top mass of the SDOF system may be written as:

mu€þ 2monx _uþ kuþmh y€ þmv€t ¼ 0 ð7:43Þ
where

u is the relative displacement of the top mass with respect to the base

h is the column height

k is the total lateral stiffness of the mass with respect to the base

m is the lumped mass at the top

x is the percentage critical damping

on is the natural frequency of the SDOF, and v€t is defined by Equation 7.42.

v(t)

bV bV

bM
bM

Half space Rigid plate

bm
mbI

2
k

2
k

mIm,

h

(t)θ

(t)θ(t)gu  

Figure 7.30 Substructure method of analysis for SDOF system
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The interaction forces Vb and Mb between the superstructure and the half space can be written by

considering the equilibrium of the superstructure as:

mu€þmh y€ þðmþmbÞv€t�Vb ¼ 0 ð7:44Þ

mhu€þðmh2 þ Im þ ImbÞ y€ þmhv€t�Mb ¼ 0 ð7:45Þ

in which mb and Imb are the mass and mass moments of inertia of the base mass, respectively.

The interaction forcesMb and Vb are determined by considering the motions of the rigid plate attached

to the elastic half space, that is, uðtÞ and yðtÞ. As these forces are obtained with the help of the complex

frequency dependent impedance functions as described previously, Equations 7.43–7.45 arewritten in the

frequency domain using a Fourier transform as:

gðoÞuðoÞ�mho2yðoÞ�mo2vtðoÞ ¼ 0 ð7:46Þ

�mo2uðoÞ�mho2yðoÞ�ðmþmbÞo2vtðoÞ�VbðoÞ ¼ 0 ð7:47Þ

�mho2uðoÞ�Imo2yðoÞ�mho2vtðoÞ�MbðoÞ ¼ 0 ð7:48Þ

in which Im ¼ Im þ Imb þmh2 and gðoÞ is the inverse of complex frequency response function of an

SDOF system.Noting thatVbðoÞ andMbðoÞ can bewritten in terms of the impedancematrixGdðoÞ given
by Equation 7.39, the above three equations can be re-arranged in the following form

KgðoÞdðoÞ ¼ Mu€gðoÞ ð7:49Þ

where

KgðoÞ is a frequency dependent complex stiffness matrix of the soil structure system

dðoÞ is the complex frequency components of the displacement vector ½u; v; y�T
u€gðoÞ is the complex frequency components of the ground acceleration

M ¼ �½mðmþmbÞmh�T .

In obtaining the equations in the form of a matrix equation, use is made of the following

relationship:

Vb

Mb

� �
¼ GdðoÞ uðoÞ

yðoÞ
� �

ð7:50Þ

and o2vtðoÞ ¼ o2vðoÞþ u€gðoÞ. Elements of KgðoÞ are given as:

Kg 11 ¼ gðoÞ; Kg 12 ¼ Kg 21 ¼ �o2m; Kg 13 ¼ Kg 31 ¼ �o2mh ð7:51aÞ

Kg 22 ¼ �o2ðmþmbÞþGuuðoÞ; Kg 33 ¼ �o2Im þGyyðoÞ ð7:51bÞ

Kg 23 ¼ Kg 32 ¼ �o2mhþGuyðoÞ ð7:51cÞ

Solution of Equation 7.49 for each frequency provides the response vector dðoÞ given the Fourier

transform of the ground acceleration, u€gðtÞ. Inverse Fourier transform of dðoÞ gives the time histories of

the response quantities uðtÞ, vðtÞ, and yðtÞ.
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7.5.3.2 MDOF System with Multi-Support Excitation

Unlike the SDOF system, the MDOF system with multi-support excitations, as shown in Figure 7.31, is

characterized by the presence of a quasi-static component of the response in the total (absolute) response

of different degrees of freedom. The quasi-static component of the response is produced due to different

ground motions at different supports producing relative support motions. In order to formulate the

problem of dynamic soil–structure interaction using the substructure method, the total displacement is

written as the sum of three displacement components

vt ¼ vg þ vr þ vd ð7:52Þ

where

vg is the vector of displacements produced at all non-support degrees of freedom produced due to the

ground displacements at the supports

vr is the same due to displacements at the supports for maintaining elastic compatibility between the

foundation and the soil

vd is the vector of the relative dynamic displacements produced at all non-support degrees of freedom due

to the inertial action.

The first two displacement vectors are quasi-static in nature and therefore, involve the stiffness of the soil

structure systemonly.Aphysical interpretation of Equation 7.52 helps in the derivation of the equations of

motion and for solving them to obtain the three components of the displacement.

Initially, the free field ground motion tends to move the supports at positions the same as those of the

displaced ground beneath the supports. The relative motion between the supports, produced due to

different groundmotions at different supports, produces elastic forces in the structure. These elastic forces

give rise to the development of a set of equal and opposite reactions at the interface between the foundation

and the soil. These equal and opposite reactions produce deformations in the interface, thus inducing

compatible displacements both in the structure and the soil. In a similar way, the inertia forces developed

at the masses associated with each degree of freedom of the structure induce a pair of equal and opposite

dynamic forces at the foundation and soil interface. This pair of dynamic forces induces compatible

dynamic displacements in the structure and the soil. The dynamic displacement caused in the soil

Radiation

ug1
ug2 ug3

t
g r dv v v v= + +

bb

bb bb

Figure 7.31 Substructure method of analysis for MDOF system with multi-support excitation

302 Seismic Analysis of Structures



propagates in the form of a wave within the soil giving rise to the radiation damping in the dynamic soil

structure interaction problem, as mentioned previously.

With this background, the equation of motion of the superstructure, shown in Figure 7.31, can be

written as:

Mss Msf

Mfs Mff

� �
v€ts
v€tf

� �
þ Css Csf

Cfs Cff

� �
_vts
_vtf

� �
þ Kss Ksf

Kfs Kff

� �
vts
vtf

� �
¼ 0

ptf

� �
ð7:53Þ

in which the subscripts s and f refer to the structure and the foundation (base), respectively; ptf is the total

nodal forces at the base degrees of freedom; the opposite of these forces act on the soil substructure.

In order to obtain the quasi-static components of the responses, that is, vg and vr, only the stiffness terms

of the equation of motion are considered. Let the quasi-static response of non-support degrees of freedom

due to ground motion at the supports be denoted by vfg and the ground motions at the supports be denoted

by vfg ¼ ug. Let the quasi-static displacements at non-support degrees of freedom produced due to the

compatible displacements at the soil foundation interface be denoted by vsr, and the compatible

displacements at the supports be denoted by vfr. Then, the equilibrium of forces at the structure foundation

interface written in frequency domain is given by:

Kfsðvsg þ vsrÞþKff ðv f
g þ v f

r ÞþGff v
f
r ¼ 0 ð7:54Þ

in whichGff is the impedance matrix for the soil corresponding to the interface degrees of freedom. Note

that imaginary part of the impedancematrix is not included as the above equation is written only for quasi-

static motion. Simplification of the above equation leads to

Kfsv
s
r þðKff þGff Þvfr ¼ �Kfsv

s
g�Kff v

f
g ¼ �Pf ð7:55Þ

If the displacements of the non-support degrees of freedom due to the free field ground motion of the

supports are only considered, then

Kssv
s
g þKsf v

f
g ¼ 0 ð7:56Þ

or

vsg ¼ �K�1
ss Ksf v

f
g ¼ �K�1

ss Ksf ug ¼ 1

o2
K�1

ss Ksf u€g ð7:57Þ

Substituting for vsg given by Equation 7.57 in the right-hand side of Equation 7.55, the following

expression for Pf is obtained

Pf ¼ � 1

o2
ðKff�KfsK

�1
ss Ksf Þu€g ð7:58Þ

Thus, vr can be obtained by solving the following equation

Kss Ksf

Kfs Kff þGff

� �
vsr
v f
r

� �
¼ 0

�Pf

� �
ð7:59Þ

Equation 7.59 is obtained by adding Equation 7.60, given below, with Equation 7.55 as there are no

external set of forces acting on the structure.

Kssv
s
r þKsf v

f
r ¼ 0 ð7:60Þ
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To determine vd , v
t given by Equation 7.52 is substituted into Equation 7.53 and the equation of motion is

rewritten as:

Mss Msf

Mfs Mff

" #
v€sd

v€ f
d

( )
þ

Css Csf

Cfs Cff

" #
_vsd

_v f
d

( )
þ

Kss Ksf

Kfs Kff

" #
vsd

v f
d

( )

¼ �
Mss Msf

Mfs Mff

" #
v€sa

v€ f
a

( )
�

Css Csf

Cfs Cff

" #
_vsa

_vfa

( )
�

Kss Ksf

Kfs Kff

" #
vsa

v f
a

( )
þ

0

ptf

( ) ð7:61Þ

in which vsa ¼ vsg þ vsr and v f
a ¼ vfg þ vfr .

The damping terms on the right-hand side of Equation 7.61make little contribution to effective loading

for relatively low structural damping. Considering this fact and using Equation 7.54, Equation 7.61 may

be written in frequency domain as:

�o2
Mss Msf

Mfs Mff

� �
þ io

Css Csf

Cfs Cff

� �
þ Kss Ksf

Kfs Kff

� �� �
vsd

v f
d

( )

¼ þo2
Mss Msf

Mfs Mff

� �
vsa

v f
a

� �
þ 0

Pt
f�Prf

( ) ð7:62Þ

in which Prf ¼ �Gff v
f
r ; P

t
f�Prf may be viewed as the dynamic component of the load acting on the

foundation arising due to the dynamic compatibility of displacements at the interface. It may be obtained

in a similarway as that for the case of interface compatibility of quasi-static displacement (Equation 7.54),

that is,

Pt
f�Prf ¼ Pd

f ¼ �Gff v
f
d ð7:63Þ

Note that in Equation 7.63, Gff has both real and imaginary components. The imaginary component

denotes the radiation damping and it adds on to the overall damping of the system. Equation 7.62 can,

therefore, be written in the frequency domain as:

�o2
Mss Msf

Mfs Mff

" #
þ io

Css Csf

Cfs Cff

" #
þ Kss Ksf

Kfs Kff þGff

" #( )
vsd

vfd

( )

¼ þo2
Mss Msf

Mfs Mff

" #
vsa

v f
a

( ) ð7:64Þ

As vsa and v f
a have been obtained previously, vsd and v f

d can be determined from the solution of

Equation 7.64, which requires inversion of a complex matrix for each value of o. Once vsd and vfd are

solved for different frequencies, the vt vector can be obtained. Inverse Fourier transform of vt provides the
desired response vector vt.

Steps for Performing the Substructure Method of Analysis

1. Partition the condensed stiffness matrix of the structure–foundation system corresponding to the

dynamic DOF according to the structure(s) and foundation(s) DOF (Equation 7.53).

2. Obtain quasi-static component of displacements vsgðoÞ of the non-support degrees of freedom using

Equation 7.57.

3. Find Pf using Equation 7.58 and then find vsrðoÞ and v f
r ðoÞ from the solution to Equation 7.59.

4. Find vsa ¼ vsg þ vsr and v f
a ¼ v f

g þ v f
r ; note that v

f
g is the vector of earthquake ground displacement.

5. As vsa and v
f
a are known, solve Equation 7.64 by the frequency domain analysis technique using FFT

and IFFT (Chapter 3).
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Example 7.5

The shear frame, shown in Figure 7.32, is supported by two circular footings of radius 1 m below the two

columns. The footing rests on a soil with VS ¼ 80 m s�1; m ¼ 1=3 and r ¼ 1600 kg m�3. Using a

substructure technique, find the time histories of the first- and the top-floor displacements (relative to the

ground) for the El Centro earthquake acceleration applied at the base. Use a frequency independent

impedance function for the soil. Assume x¼ 5% for the frame.

Solution: As all the supports are subjected to the same excitation, vsg ¼ Iug. The requiredmatrices for the

solution are:

Kss ¼
5:6 �5:6 0 0

�5:6 11:2 �5:6 0

0 �5:6 16:8 �11:2
0 0 �11:2 22:4

2
664

3
775� 107 N m�1; Ksf ¼

0 0

0 0

0 0

�11:2 �16:8

2
664

3
775� 107 Nm�1

Kfs ¼ KT
sf ; Kff ¼ 11:2 16:8

16:8 33:6

� �
� 107 Nm�1; Mss ¼

1 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2

2
664

3
775� 28� 104 kg

I ¼ 1 1 1 1 �T	
in which Kff corresponds to base displacement and rotation (DOF).

The frequency independent Gff matrix is (which is formed using coefficients given in Equations 7.69a

and 7.69b)

Gff ¼ 98:32 6:88
6:88 81:19

� �
� 106 þ i

70:65 6:14
6:14 15:35

� �
� 104

Pf ðoÞ is obtained using Equation 7.58 and finding the FFT of u€gðtÞ. For example, Pf ðoÞ for

o ¼ 0:418 rad s�1 is obtained as:

k

k

2k

2k

m

2m

2m

2m

3 m

3 m

3 m

3 m

3 m
428 10 kgm = ×

7k    5.6 10 N/m= ×

Figure 7.32 Model of the four-storey building frame
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Pf ¼ �2:49 �i0:766
�0:17 �i0:0536

� �
� 109

vsr and v
f
r are determined by solvingEquation 7.59.Note thatGff in Equation 7.59 is taken as the real part of

Gff.

vsa ¼ vsg þ vsr ¼ Iug þ vsr ¼ � 1

o2
Iu€gðoÞþ vsrðoÞ

v f
a ¼ � 1

o2
Tu€gðoÞþ v f

r ðoÞ T ¼ 1 0 �T	

Equation 7.64 is then solved for vsd and vfd , in which

Cff ¼
70:65 6:14

6:14 15:35

" #
� 104 N s m�1; Gff ¼

98:32 6:88

6:88 81:19

" #
� 106 Nm�1;

Css ¼ aMss þ bKss; a ¼ 0:3608; b ¼ 0:0057

Css ¼
4:202 �3:192 0 0

�3:192 8:404 �3:192 0

0 �3:192 11:596 �6:384
0 0 �6:384 14:788

2
664

3
775� 105 N s m�1

Csf ¼ Cfs ¼ Mfs ¼ Msf ¼ Mff ¼ 0

The total displacements of different degrees of freedom are determined by Equation 7.52 in the

frequency domain and taking the IFFTof them.The time histories of relative displacementswith respect to

ground (that is, vsd þ vsr) for the top floor and the first floor are shown in Figures 7.33 and 7.34 respectively.
In subsequent problems, these time histories are compared with those obtained by other methods.

7.5.4 Modal Analysis Using the Substructure Technique

The solution to Equation 7.64 provides directly the dynamic displacements of the structure. However, the

size of the problemmay be large depending upon the degrees of freedomof the superstructure. Further, the

dampingmatrixCss has to be constructed from the fundamental frequencies of the superstructure. In view

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

302520151050

Time (s)

D
is

pl
ac

em
en

t (
m

)

Figure 7.33 Time history of top-floor displacement relative to the ground
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of this, a modal analysis can be performed using the frequencies and mode shapes of the superstructure,

which leads to the solution of a lower number of coupled equations. The number of equations depends

upon the number ofmodes being considered. Furthermore, the solution only requires the knowledge of the

damping ratio of the structure. In order to carry out the analysis, Equation 7.64 is written as:

�o2Mssv
s
d�o2Msf v

f
d þ ioCssv

s
d þ ioCsf v

f
d þKssv

s
d þKsf v

f
d

¼ o2Mssv
s
a þo2Msf v

f
a

ð7:65aÞ

�o2Mfsv
s
d�o2Mff v

f
d þ ioCsf v

s
d þ ioCff v

f
d þKfsv

s
d þðKff þGff Þv f

d

¼ o2Mfsv
s
a þo2Mff v

f
a

ð7:65bÞ

Assuming the superstructure to remain elastic, the dynamic displacement vsd of the structure relative to the
base (foundation) may be written as a weighted summation of mode shapes of the fixed base structure as:

vsd ¼ fz ð7:66Þ
inwhichf is themode shapematrix of size n�m and z is a vector of generalized co-ordinates of sizem;m

is the number of modes considered in the analysis. Substituting for vsd into Equations 7.65a and 7.65b and
pre-multiplying Equation 7.65a by fT, Equations 7.65a and 7.65b may be written as:

�o2
Mss Msf

Mfs Mff

" #
þ io

Css Csf

Cfs Cff

" #
þ Kss Ksf

Kfs Kff þGff

" #( )
z

v f
d

( )

¼ o2
fTMss fTMsf

Mfs Mff

" #
vsa

v f
a

� � ð7:67Þ

in which Mss ¼ fTMssf; Msf ¼ fTMsf ; Mfs ¼ Mfsf, Css, Kfs, and so on, are defined in a similar way.

Equation 7.67 is a coupled matrix equation in the complex domain of size ðmþ rÞ � ðmþ rÞ, in which
m is the number of modes considered for the superstructure and r is the number of support degrees of

freedom. Thus, the size of the matrix equation to be solved is greatly reduced by taking advantage of the

modal characteristic of the superstructure. The physical meaning of Equation 7.67 is that the motions of

the structural degrees of freedom are replaced by a few mode shapes of the structure. For most practical

problems,Msf ¼ Mfs ¼ 0 andCsf ¼ Cfs ¼ 0.With these simplifications, Equation 7.67 can bewritten as:

½hþKsf � z
v f
d

� �
¼ Ps ð7:68aÞ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

302520151050

Time (s)

D
is

pl
ac

em
en

t (
m

)

Figure 7.34 Time history of first-floor displacement relative to the ground
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½Kfs þKff � z
v f
d

� �
¼ Pf ð7:68bÞ

in which h is a diagonal matrix with diagonal elements as mj ½ðo2
j �o2Þþ 2ixojo�ðj ¼ 1 . . .mÞ; oj and

mj are the jth natural frequency and jth modal mass, respectively; x is the modal damping; and P s, P f

and Kff are given by:

Ps ¼ o2fTMssv
s
a ð7:68cÞ

Pf ¼ o2Mff v
f
a ð7:68dÞ

Kff ¼ ½Kff þGff þ ioCff � ð7:68eÞ

Solution of Equations 7.68a and 7.68b provide z and v f
d . Taking the IFFT of z and v f

d , using modal

superposition and utilizing Equation 7.52, the total displacement of the dynamic degrees of freedomof the

soil–structure system are obtained. Other response quantities of interest are determined from the

displacements as explained in Chapter 3.

Example 7.6

Using the modal substructure technique, solve the problem in Example 7.5 and compare the results with

those of the direct substructure analysis.

Solution: The first three mode shapes and frequencies of the undamped fixed base structure are given

below.

o1 ¼ 5:06 rad s�1; o2 ¼ 12:57 rad s�1; o3 ¼ 18:65 rad s�1

fT
1 ¼ 1 0:871 0:520 0:278½ �; fT

2 ¼ 1 0:210 �0:911 �0:752 �½
fT
3 ¼ 1:0 �0:738 0:090 0:347 �½

Taking the first three modes, the following matrices (Equation 7.67) are obtained.

Kss ¼ 107 �
2:305 0 0

0 17:152 0

0 0 22:842

2
4

3
5Nm�1

Mss ¼ 105 �
8:992 0 0

0 10:861 0

0 0 6:571

2
4

3
5 kg

Css ¼ 105 �
4:561 0 0

0 13:721 0

0 0 15:421

2
4

3
5N s m�1

Kfs ¼ �3:11 8:432 �3:891
�4:672 12:612 �5:842

� �
� 107N m�1

Ksf ¼ K
T

fs

Kff , Gff , Cff , and so on, remain the same as in the previous problem.

Solution of Equation 7.67 provides the responses zðoÞ and v f
dðoÞ. Using Equation 7.66, vsdðoÞ is

obtained with the help of zðoÞ. After vsdðoÞ and v f
dðoÞ are determined, the rest of the procedure remains
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the same as the previous problem. Results are obtained by considering all three modes and are shown in

Figures 7.35 and 7.36. It is seen that themodal analysis provides almost the same results as those obtained

by the direct substructure analysis.

7.5.5 Equivalent Spring–Dashpot Analysis

In the substructure method of analysis, it is seen that the stiffness and damping corresponding to the

foundation degrees of freedomare contributed by both the structure and the soil. The soil components are

derived from the frequency dependent impedance functions of the soil, which are readily available for

circular rigid mat (weightless) footings. For other types of footings, namely square and rectangular,

impedance functions can be approximately determined from the area of an equivalent circle as

mentioned previously. Frequency independent impedance functions, which are the values of impedance

functions very close to the zero non-dimensional frequency, are also widely used in soil–structure

interaction problems. The use of frequency independent impedance functions are popularmainly for two

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

302520151050

Time (s)

D
is

pl
ac

em
en

t (
m

)

Modal substructure analysis

Direct substructure analysis

Figure 7.35 Time histories of top-floor displacement relative to the ground obtained by direct substructure andmodal
substructure analyses
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Figure 7.36 Time histories of first-floor displacement relative to the ground obtained by direct substructure and
modal substructure analyses
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reasons: (i) it permits a time domain analysis to be performed for soil–structure interaction problems, and

(ii) it allows the soil to be replaced by a spring and a dashpot. The stiffness and damping coefficients of the

spring anddashpot are obtained from the real and the imaginary parts of the impedance function close to the

zero value of a0, respectively. For circular rigid footings, these values are available in many textbooks.

Gazetas [6] provided a very useful series of charts and tables for estimating the spring and dashpot

coefficients for a variety of foundation types and soil conditions. For easy reference, the coefficients for a

circular rigid mat are given below.

kv ¼ 4Gr

1�m
; kh ¼ 8Gr

2�m
; kf ¼ 5:3Gr3; ky ¼ 8Gr3

3ð1�mÞ ; kyh ¼ 0:56Gr2

ð2�mÞ ð7:69aÞ

cv ¼ 3

1�m
rVSr

2; ch ¼ 4:6

2�m
rVSr

2; cf ¼ 0:8rVSr
4; cy ¼ 0:4

1�m
rVSr

4; cyh ¼ 0:4

2�m
rVSr

3

ð7:69bÞ

where

v, h, y, and j stand for vertical, horizontal rocking, and torsion, respectively

VS is the shear wave velocity

G is the shear modulus

r is the mass density.

The values given are mostly valid for m ¼ 1=3.
In equivalent spring–dashpot analysis, the soil–foundation system is replaced by a spring and a

dashpot, as shown in Figure 7.37. For the dynamic analysis of the soil–structure system, the stiffness and

damping coefficients of the springs and dashpots are included in the stiffness and damping matrices of

the total system. The response for the equivalent spring–dashpot analysis can be carried out using the

direct integration method (Chapter 3). An approximate modal analysis can also be performed by

ignoring the off-diagonal terms of the transformed damping matrix (fTCf). Note that the undamped

mode shapes and frequencies of the systems are determined with the help of the stiffness and mass

matrices of the structure obtained by considering the springs at the base. Using these mode shapes,

frequencies, and approximate modal damping, a response spectrum analysis of the soil–structure system

can also be carried out.

Ch

kh

kθ

Cθ

Cνkν

Figure 7.37 Equivalent spring–dashpot analysis
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Example 7.7

Consider the frame shown in Figure 7.32. It is assumed that the columns are supported by circular footings

of diameter of 1 m resting on a soil having the same properties as those given in the problem in

Example 7.5. Determine the stiffness and damping matrices of the soil–structure system by replacing the

soil by spring–dashpot and obtain the responses for the El Centro earthquake.

Solution: It is assumed that the members are inextensible and that vertical degrees of freedom are

ignored. For 1mdiameter footings, the following values of the spring stiffness and dashpot coefficients are

obtained using Equations 7.69(a-b)

Kh ðhorizontal stiffnessÞ of the spring ¼ 98:3� 106 Nm�1

Ky ðrotational stiffnessÞ of the spring ¼ 81:19� 106 Nm rad�1

Kyh ¼ 6:88� 106; Ch ¼ 70:65� 104 N s m�1; Cy ¼ 15:35� 104 Nm s rad�1; Cyh ¼ 6:14� 104

The stiffness matrices of the soil structure system is:

K ¼

5:6 �5:6 0 0 0 0

�5:6 11:2 �5:6 0 0 0

0 �5:6 16:8 �11:2 0 0

0 0 �11:2 22:4 �11:2 �16:8
0 0 0 �11:2 21 17:5
0 0 0 �16:8 17:5 41:7

2
6666664

3
7777775
� 107 Nm�1

MatrixC turns out to be the same as that in Example 7.5. The first two undamped natural frequencies of

the spring supported frame are o1 ¼ 4:31 and o2 ¼ 10:99 rad s�1.

The responses obtained by integrating the equation of motion in the time domain for the structure–

spring dashpot system subjected to the El Centro earthquake are compared with those obtained for

Example 7.5 by the frequency domain substructure technique. The results are shown in Figures 7.38

and 7.39. It is seen from the figures that the time histories of the two analyses differ. Further, rms and peak

values of the displacements obtained by the two methods are also not the same. The reason for the

difference between the results of the two analyses is that one is obtained in the frequency domain (which

does not require any initial conditions) and the other is obtained by time domain analysis (which requires

initial conditions to start the integration process).
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Figure 7.38 Time histories of top-storey displacements obtained by direct substructure and equivalent spring-
dashpot analyses
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Also, in Figure 7.40 the time history of the top-storey and first-storey displacements for the fixed base

conditions are compared with those of the flexible base conditions. It is seen from the figures that the top-

storey displacement for the flexible base is, generally, less than that for the fixed base, while the opposite

result is observed for the first-storey displacement. Thus, the displacement response of the flexible base
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Figure 7.39 Time histories of first-storey displacements obtained by direct substructure and equivalent spring–
dashpot analyses
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Figure 7.40 Comparison of the time histories of displacements between the fixed base and the flexible base: (a) top
storey; and (b) first storey
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frame need not necessarily be more compared with the fixed base frame. This is the case because two

counteractive effects influence the response of flexible base frame, namely: (i) increase of displacement

due to base flexibility; and (ii) decrease of displacement due to radiation damping. The increase or

decrease of displacement depends upon the relative contributions of the two on the total response.

7.5.6 Approximate Analysis Using Equivalent Modal Damping

This method of analysis was proposed byNovak [7] and can be used both for time history analysis and the

response spectrum method of analysis. It can be explained with the help of a 3D tall building [8]. The

equation of motion of a 3D tall building can be written in the usual form:

Mx€ þC _xþKx ¼ �MIx€g ð7:70Þ
where

M is the diagonal lumped mass matrix

K is the stiffness matrix corresponding to the dynamic DOF as shown in Figure 7.41

C is the damping matrix not explicitly known but it will be defined in terms of an equivalent modal

damping

x is the displacement vector, which also includes the base DOF

x€g is the ground acceleration.

Assume that each mass of the building is free to undergo horizontal translations, uxi, uyi, rocking about

horizontal axes, yxi, yyi and twisting about a vertical axis, yzi, and that the building and footing are

harmoniously vibrating in the ith mode with the natural frequency oi. The footing has the following

displacements corresponding to baseDOF shown for one direction (Figure 7.41) namely, uoxi, yoyi. For the
other direction, similar motions are present, that is, uoyi, yoxi. In addition, there is a rotation yozi about the
vertical axis.
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Figure 7.41 Model of flexible base 3D building
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In general, the work done Wd by the damping forces FðxÞ, during a period of vibration Ti ¼ 2p
oi

is

given by:

Wdi ¼
ðTi
0

Fð _xÞdxðtÞ ð7:71Þ

This formula can be used to find the work done by the footing’s equivalent damping (dash pots) during

the vibration of the building in a natural mode. During harmonicmotions, the damping forces acting at the

footing are:
Pð _uxÞ ¼ cxx _uoxi ¼ cxxuoxioi cosðoitÞ ð7:72aÞ
Pð _uyÞ ¼ cyy _uoyi ¼ cyyuoyioi cosðoitÞ ð7:72bÞ

Pð _yxÞ ¼ cyyx
_yoxiðtÞ ¼ cyyxyoxioi cosðoitÞ ð7:72cÞ

Pð _yyÞ ¼ cxyy
_yoyiðtÞ ¼ cxyyyoyioi cosðoitÞ ð7:72dÞ

Mð _uxÞ ¼ cyyx _uoxiðtÞ ¼ cyyxuoxioi cosðoitÞ ð7:72eÞ
Mð _uyÞ ¼ cyxy _uoyiðtÞ ¼ cyxyuoyioi cosðoitÞ ð7:72fÞ

Mð _yxÞ ¼ cyxyx
_yoxiðtÞ ¼ cyxyxyoxioi cosðoitÞ ð7:72gÞ

Mð _yyÞ ¼ cyyyy
_yoyiðtÞ ¼ cyyyyyoyioi cosðoitÞ ð7:72hÞ

Tð _yzÞ ¼ cyzyz
_yoziðtÞ ¼ cyzyzyozioi cosðoitÞ ð7:72iÞ

According to Equation 7.71, the total work done by these forces during a period of vibration is:

Wdi¼
ðTi
0

cxxu
2
oxio

2
i cos

2ðoitÞdtþ
ðTi
0

cyyu
2
oyio

2
i cos

2ðoitÞdtþ
ðTi
0

cyxyxy
2
oxio

2
i cos

2ðoitÞdt

þ
ðTi
0

cyyyyy
2
oyio

2
i cos

2ðoitÞdtþ
ðTi
0

cxyyyoyiuoxio
2
i cos

2ðoitÞdt

þ
ðTi
0

cyyxyoxiuoyio
2
i cos

2ðoitÞdtþ
ðTi
0

cyxyyoxiuoyio
2
i cos

2ðoitÞdt

þ
ðTi
0

cyyxyoyiuoxio
2
i cos

2ðoitÞdtþ
ðTi
0

cyzyzy
2
ozioi cos

2ðoitÞdt

ð7:73Þ

Integration over the period leads to

Wdi ¼ po2
i ðcxxu2oxi þ cyyu

2
oyi þ cyxyxy

2
oxi þ cyyyyy

2
oyi þ cyzyzy

2
ozi þ 2cyxyuoyiyoxi þ 2cyyxuoxiyoyiÞ ð7:74Þ

Themaximumpotential energy of thewhole building in the ithmode can be calculated as themaximum

kinetic energy fpi given by:

fpi ¼
Xn
j¼0

1

2
mjxu

2
jxio

2
i þ

Xn
j¼0

1

2
mjyu

2
jyio

2
i þ

Xn
j¼0

1

2
Ijxy

2
jxio

2
i þ

Xn
j¼0

1

2
Ijyy

2
jyio

2
i þ

Xn
j¼0

1

2
Ijzy

2
jzio

2
i ð7:75Þ

where

n is the number of masses

mjx and mjy are the translational masses at the jth floor level in the x- and y-directions, respectively

Ijx, Ijy, and Ijz are the mass moment of inertias of the jth floor about the x-, y- and z-axes, respectively

j ¼ 0 indicates the foundations.

314 Seismic Analysis of Structures



The damping ratio Zgi of the structure due to the radiation damping of the soil is defined for the response in

the ith mode as:

Zgi ¼
Wdi

4pfpi

ð7:76Þ

Substituting Wdi and fpi from Equations 7.74 and 7.75 into Equation 7.76, gives

Zgi ¼
1

2
moi

� �
ðcxxu2oxi þ cyyu

2
oyi þ cyxyxy

2
oxi þ cyyyyy

2
oyi þ cyzyzy

2
ozi þ 2cyxyuoyiyoxi þ 2cyyxuoxiyoyiÞ

ð7:77Þ

in which mi is the generalized mass given by:

mi ¼
Xn
j¼0

ðmjxu
2
jxi þmjyu

2
jyi þ Ijxy

2
jxi þ Ijyy

2
jyi þ Ijzy

2
jziÞ ð7:78Þ

In the above equations, ujxi, ujyi, yjxi, yjyi, and yjzi are the modal displacements of the building, while

uoxi, uoyi, and yozi are the modal displacements of the footing obtained from the solution of the undamped

equation ofmotionwith the equivalent soil stiffness represented by the real part of the impedance function

(Equation 7.69); cxx, cyy, cyxyx , and so on, are the soil damping constants that can be obtained from the

imaginary parts of the impedance functions. The frequency independent constants (Equation 7.69) are

considered in the analysis.

The damping due to the soil Zgi (determined above) can be added to the other component of damping,

that is, the modal damping Zi of the building to obtain the total damping Zti :

Zti ¼ Zi þ Zgi ð7:79Þ
With the equivalent modal damping for the flexible base structure defined as above, the ith modal

equation in generalized coordinates can be written as:

€qiðtÞþ 2Ztioi _qiðtÞþo2
i qiðtÞ ¼

piðtÞ
mi

ð7:80Þ

where

qiðtÞ is the generalized displacements (over dots denote time derivates)

piðtÞ is the generalized force producing a response in the ith mode only

mi is the generalized mass.

Making use of Equation 7.80, an approximate response spectrum method of analysis can also be

performed for a given response spectrum of earthquake.

Example 7.8

Using equivalent modal damping for the soil structure interaction problem, solve the problem in

Example 7.5 by modal time history analysis and compare the results with those of Example 7.7.

Solution: It is assumed that the members are inextensible, and therefore vertical degrees of freedom are

ignored. Frequency independent damping coefficients for the footing are obtained from Equation 7.69 as:

Ch ¼ 70:65� 104 N s m�1; Cy ¼ 15:35� 104 N m s rad�1; Cyh ¼ 6:14� 104
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The stiffness matrix of the soil–structure system with soil replaced by a spring is

K ¼

5:6 �5:6 0 0 0 0

�5:6 11:2 �5:6 0 0 0

0 �5:6 16:8 �11 0 0

0 0 �11 22:4 �11 �16:8
0 0 0 �11 21 17:5
0 0 0 �16:8 17:5 41:8

2
6666664

3
7777775
� 107 Nm�1

Undamped mode shapes and frequencies of the system are: o1 ¼ 4:31, o2 ¼ 10:99, o3 ¼ 18:15,
o4 ¼ 21:61, o5 ¼ 27:30, and o6 ¼ 125:38 rad s�1.

fT
1 ¼ �1 �0:938 �0:760 �0:624 �0:196 �0:169 �½

fT
2 ¼ 1 0:475 �0:547 �0:772 �0:321 �0:180 �½

fT
3 ¼ 1 �0:576 �0:336 0:313 0:817 �0:232 �½

fT
4 ¼ 0:601 �0:500 0:232 0:173 �1 0:531 �½

fT
5 ¼ �0:247 0:393 �1 0:890 �0:443 0:613 �½

fT
6 ¼ 0 �0:0001 0:003 �0:071 0:113 1 �½

Considering last two coefficients of themode shapes corresponding to base translation andbase rotation

and using Equation 7.73,

Wd1 ¼ 2:08� 106; Wd2 ¼ 3:22� 107; Wd3 ¼ 4:73� 108; Wd4 ¼ 1:00� 109;

Wd5 ¼ 3:87� 108; Wd6 ¼ 8:72� 109

Using Equation 7.75 (with Ijx ¼ mj � 32=12 and I0 � 0),

fp1 ¼ 1:38� 107; fp2 ¼ 9:13� 107; fp3 ¼ 2:84� 108; fp4 ¼ 4:36� 108;

fp5 ¼ 5:88� 108; fp6 ¼ 1:23� 1010

Using Equation 7.76

Zg1 ¼ 0:012; Zg2 ¼ 0:028; Zg3 ¼ 0:133; Zg4 ¼ 0:183; Zg5 ¼ 0:052; Zg6 ¼ 0:056

li ¼ fT
i M

fT
i Mfi

; l1 ¼ �1:253; l2 ¼ �0:347; l3 ¼ 0:272; l4 ¼ �0:304;

l5 ¼ �0:016; l6 ¼ 0:959

Using the total modal damping ratios obtained by Equation 7.79 and mode participation factors

calculated as above, the responses are obtained by considering all modes. The results are compared with

those of Example 7.7 in Figures 7.42 and 7.43. It is seen from the figures that the difference between the

two results is not very significant; the equivalentmodal dampingmethod provides a fewmorevalues of the

displacements.
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7.6 Soil–Pile Structure Interaction

Many structures are supported by pile foundations in place of isolated footings or mat foundations. The

use of pile foundations is dictated primarily by the soil conditions. Large and heavy superstructures on soft

soils are generally pile founded. While the length and the size of the piles are mostly governed by the

gravity load design, the lateral resistance of the pile to earthquake induced forces on the superstructure is

also a major concern. Therefore, all important pile founded structures are analyzed for earthquake forces.

For structures with pile foundations, the superstructure may directly rest on the pile cap covering all piles

or individual columns of the structure may be directly connected to each pile or a group of piles as shown

in Figure 7.44. In the former, the pile cap acts like a raft.

Seismic response analysis of structures including soil-pile-structure interaction can be performed using

direct analysis, substructure technique, approximate modal analysis and equivalent spring-dash pot

analysis. Analysis procedures are similar to those applied for the soil structure interaction problems

except for the additional consideration of the piles. Brief outlines of different procedures are presented

below:
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Figure 7.43 Time histories of first-storey displacement obtained by equivalent modal damping and equivalent
spring–dashpot analyses
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Figure 7.42 Time histories of top-storey displacement obtained by equivalent modal damping and equivalent
spring–dashpot analyses
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7.6.1 Direct Analysis

In the direct analysis, soil, pile, and structure are modeled together using FEM. The soil and the structure

are modeled as described previously. Piles are modeled as beam elements and connected to the soil

elements using the master-slave DOF or using interface or connecting elements (available in standard

software). If the bottom of the piles rest on the rock bed, then the vertical and the horizontal displacements

of the piles are prescribed as zero. The boundaries for the soil domain are prescribed as described

previously. Pile caps are modeled as beam elements connected to the soil by interface or connecting

elements (Figure 7.44). The ground motion is applied at the foundation level.

bb

Pile head

Frame

Piles (a)

bb

bbbb
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Frame

(b)Piles

bb bb

bbbb

Figure 7.44 Soil–pile structure modeling using FEM: (a) with pile cap as a raft; and (b) with individual piles
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7.6.2 Substructure Technique

The substructure technique for solving the soil–pile structure interaction problem is similar to that for

solving the soil–structure interaction problem. In this case, the impedance functions for the pile head or

pile cap are found by a separate analysis of the soil–pile system. Once the impedance functions are

obtained, the structure-foundation analysis is solved exactly in the same way as the substructure analysis

described previously (Section 7.5.3).

To find the impedance function of the pile head, a finite element model of a single pile or a group of

piles, along with the soil, is made as shown in Figure 7.45. The pile head is then subjected to unit complex

harmonic forces in the direction of the DOF one at a time in order to obtain a complex flexibility matrix.

The inverse of the flexibilitymatrix gives the impedance function matrix corresponding to the DOF of the

pile head. Thismatrix has coupling terms between the translational and the rotational degrees of freedom.

For each value of the frequency, the impedance function matrix is derived and is used to solve the seismic

soil–pile structure interaction problem in the frequency domain (Equation 7.64) for a prescribed ground

motion at the foundation level. The analysis provides the responses of the superstructure including the

displacement of the pile heads or pile cap.With the help of the impedance functions for the pile cap or the

pile head, equivalent spring and dash pot coefficients for the soil-pile system can be obtained. Springs and

dash pots may be used to replace the soil-pile system at the pile cap level as shown in Figure 7.46.

In order to obtain the stresses in the piles, a separate analysis of the soil–pile system is carried out for the

time histories of pile head displacements applied to the top nodes of the piles. Alternatively, the response

quantities of interest of the piles are stored as a complex frequency response function matrix while

impedance functions for the pile head is determined. These may be used to obtain the time history of the

response quantity of the interest. For example, say the bending moment at a section A of a pile is required

(Figure 7.45). For finding the bending moment at A, following steps may be carried out:

(i) Determine the bendingmoment atA for unit complex harmonic forces applied at the top of the pile as

shown in Figure 7.45. Store the bending moment as a complex number for each frequency.

(ii) Foundation forces are obtained as complex number for each frequency after obtaining the

displacements by solving Equation 7.64.

(iii) The bending moment determined from step (i) as a complex quantity, for each harmonic force, is

multiplied by the corresponding foundation force (obtained as a complex quantity).

(iv) IFFTof the complex numbers in step (iii) provides the time history of the bendingmoment at A for a

foundation force.
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Figure 7.45 Modeling for finding soil–pile impedance
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The same steps are repeated for other foundation forces and the corresponding time histories of the

bending moment are obtained. The sum of all time histories thus obtained is the final time history of the

bending moment at A.

7.6.3 Equivalent Spring–Dashpot Analysis

In this analysis, soil is replaced by springs and dashpots as shown in Figure 7.46. The segment of the pile

between two springs is modeled as a beam element and the stiffness matrix for the entire system

corresponding to the dynamic degrees of freedom is determined following the standard procedure.

Assuming Rayleigh damping, the damping matrix is obtained from the mass and stiffness matrices.

Dashpot coefficients are added to the diagonal elements of the damping matrix. The total system

(superstructure and the piles with springs and dashpots) is analyzed for the ground motion applied at the

foundation level. Analysis may be carried out using the direct time integration method. As the method of

analysis is straightforward and the number of degrees of freedom is less as compared with the direct finite

element analysis, thismethod of analysis is preferred formost cases. Furthermore, the non-linear property

of the soil can be easily incorporated into the analysis by replacing the linear springs with non-linear

springs having the same force-displacement behavior as that of the soil. A non-linear dynamic analysis of

the total system is performed using the procedure described in Chapter 6.

To obtain the frequency independent constants of the springs and dashpots, Equations 7.81 and 7.82

given in the next section may be used. The values of Su, Sw, Su and Sw are obtained from Figure 7.56.

Example 7.9

It is assumed that the building frame of Exercise 7.5 is pile founded in a soft soil medium with

VS ¼ 80 m s�1 and r ¼ 1600 kg m�3 as shown in Figure 7.47a and is subjected to El Centro ground

motion at the base of the building. Other properties of the soil and pile are shown in the same figure. Using

the time domain analysis, find the time histories of the top displacement of the frame and the horizontal

displacement of the base by: (i) direct analysis, and (ii) replacing the soil by linear springs and dashpots.

Solution: The soil–pile structure system is modeled as shown in Figure 7.47b. The structure and the pile

are modeled as beam elements, while the soil and the pile cap are modeled by plane strain elements.

Contact elements are used between (i) the soil and the pile, and (ii) the soil and the structure. The same

kθ

kν
Ch

kh

Cθ

Cν

Figure 7.46 Equivalent spring–dashpot model for soil–pile structure interaction
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Figure 7.47 Pile founded building frame: (a) properties; (b) modeling of soil–pile frame together; and (c) modeling
by replacing soil by spring–dashpot
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properties of the contact elements as those mentioned in Exercise 7.4 are used. A tie element is used

between the frame and the pile cap. The finite element modeling of the soil–pile structure is shown in

Figure 7.47b. The results are obtained by ABAQUAS (for soil, pile and structure damping ratio taken as

5%) and are shown in Figures 7.48 and 7.49.

Figure 7.47c shows the modeling of the pile founded frame, when the soil is replaced by springs and

dashpots. The coefficients of the lateral springs and dashpots attached to the piles are calculated using

Equations 7.81 and 7.82 (given in Section 7.7.2). For this purpose, the total pile length is divided into five

equal segments. The constants Su and Su are calculated for five segments by considering soil depths as

those of the centers of the five segments. The spring and dashpot coefficients are assumed to remain the

samewithin each segment. The coefficients of springs and dashpots attached below the raft are determined

using Equation 7.69. The calculation of the constants is as follows.

Pile length is divided into five segments. The depth of the center of each segment and the corresponding

values of Su and Su are obtained as shown in Table 7.1. The spring stiffness and damping constant are

Figure 7.49 Comparison between the time histories of base displacement obtained by the direct method and
equivalent spring–dashpot analysis

Figure 7.48 Comparison between the time histories of top-storey displacement obtained by the direct method and
equivalent spring–dashpot analysis

Table 7.1 Depth of centers of segments and corresponding values of Su and Su for pile lengths

Depth (m) Su Su

1.5 3.15 7.3
4.5 3.6 8.2
7.5 3.8 8.5
10.5 3.9 8.9
13.5 4 9
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calculated using the following expressions (Equations 7.81 and 7.82 given in Section 7.7.2),

Ks ¼ GSul; l ¼ 0:5 m

Cs ¼ GSu
rl

VS

; r ¼ 0:75 m; VS ¼ 80 m s�1

The constants of the springs and dashpots attached below the raft are determined as:

kv ¼ 4Gr

1�m
; cv ¼ 3

1�m
rVSr

2; G ¼ 1:024� 107Nm�2; m ¼ 0:38

kh ¼ 8Gr

2�m
; ch ¼ 4:6

2�m
rVSr

2; r ¼ 1600 kg m�3; r ¼ 4 m

Calculated values of kh, cv, and so on are divided by 20 to obtain the spring and dashpot constants for

each of the 20 spring dashpot systems placed below the raft.

The model of Figure 7.47c is analyzed by ABAQUS. The results are also shown in Figures 7.48

and 7.49. It is seen from the figures that the equivalent spring dashpot solution provides responses fairly

comparable to those obtained by the direct analysis.

7.7 Seismic Analysis of Buried Structures

Buried structures form a different class of structures for the seismic analysis and design. Examples of

buried structures are buried pipelines called lifelines, tunnels, underground liquid storage tanks,

underground nuclear shelters, and so on. Seismic behavior of such structures is very different from

that of the overground structures in many respects, such as:

i. The inertia forces, which are the main factors for designing the overground structures, are mainly

resisted by the surrounding soil in the case of the buried structures.

ii. For the overground structure, it is generally (not always) assumed that the foundation follows the

ground motion and, therefore, the relevant response is the relative displacements between the

foundations and the structure. In the case of buried pipelines, tunnels, and so on, a relativemovement

between the pipe and the surrounding soil is expected because of the long length of the structure, and,

thereforetotaldisplacementof thestructurebecomesimportant forfindingthestresses inthestructure.

However, forasimplifiedanalysis it isoftenassumedthat thestructurefollowsthegrounddeformation

producedby the traveling trainof theearthquake.Becauseof thisassumption, theburiedstructuresare

under deformation control as the stresses induced in the structures are primarily governed by the

deformationof thesoildue to theearthquake.On theotherhand,overgroundstructuresareunder force

control because the inertia forces govern the stresses induced in the structure.

iii. The ground motion is considered as being coherent for most overground structures, while it is

considered as incoherent for buried structures such as pipelines because of the phase difference

between the excitations at different stations and changes in soil properties along the pipeline.

iv. The buried structures are heavily damped because of the embedment within the soil. As a result, the

frequency amplification is insignificant.

v. As the soil mass being replaced by the structure is comparatively very large (with respect to themass

of the structure), the inertial actions of the structure do not contribute much to the response. As a

result, a quasi-static analysis may be sufficient in certain instances.

There have been considerable studies on the seismic analysis of buried pipelines and tunnel type

structures [9–11]. 3D analysis of buried pipelines using shell elements have also been proposed [10]. The

proposed methods of analysis are also applicable to other types of buried structures. In general, it is

convenient to divide the analysis of a buried structure into two parts, namely: a plane strain or plane stress
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analysis along the cross-section of the structure, and a bending analysis of the structure in the longitudinal

direction.With the availability of standard software, both analyses can be easily performedusing FEM.As

the soil and the structure do not loose contact at any point of time, the option of “no loss of contact” is used

in many software packages when the problem is treated as a contact problem between the two mediums.

However, the analyses can also be performed without considering it as a contact problem. The salient

features of the two analyses are described below.

7.7.1 Plane Strain Analysis

Figure 7.50 shows cross-sections of a tunnel and a buried pipeline. For vertically propagating Swaves, the

cross-sections of the structures are deformed and two-dimensional stresses are developed in the cross-

sections. If the cross-section is large, then seismic excitations differ substantially between the top and the

bottom of the cross-sections. In this case, the time history of ground acceleration is preferably prescribed

at the rock bed. For smaller cross-sections, variation in the groundmotions at different nodes of the cross-

section is ignored and the same time histories of excitations are applied at all nodes. In addition, if the

buried depth is not large, then the free field ground motion (which is generally known and can be

measured) is uniformly applied to all nodes of the structure for most practical cases.

(a)

Tunnel

bb bb

bbbb

Rock

All free meshing
(b)

Figure 7.50 Plane strain analysis for the cross-section of buried structures: (a) tunnel; and (b) pipeline
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For the analysis, the structure is divided into plane strain elements as for the soil. In order to include the

radiation effect properly, the soil boundaries are appropriately selected as discussed previously. Software

such asABAQUSmay be used for the analysis. In the case of pipelines, generation of compatible 2Dplane

strain elements for the soil and structure may be difficult. The option of automatic mesh generation with

freemeshing, available inmost software can be used for such cases.Analysis of a buried pipe line is shown

as an example problem for illustration.

Example 7.10

Across-section of a circular buried pipeline as shown inFigure 7.51a is subjected to vertically propagating

earthquakewave, taken as the acceleration of the El Centro earthquake, from the bedrock. The properties

of the pipe and soil are shown in the same figure. Find the envelope of maximum stresses of the cross-

section of the pipe in the x- and y-directions, and the time history of displacement of the point A. In

addition, determine the same time history of displacement by replacing the soil by a spring and dashpot,

and by applying a time history of acceleration at the spring supports the same as the free field acceleration

at a height of 49.25mabove the rock bed (that is, at the level of the center of the pipeline). Compare the two

time histories of the displacements.

Solution: Amodel of the buried pipeline is shown in Figure 7.51b. Both the soil and structure aremodeled

by plane strain elements. Contact elements are used between the soil and the pipe. The option of free

meshing is used for automatic mesh generation of plane strain elements. The solution is obtained by

ABAQUS.The stresses (maximum) in thex- and y-directions are shown in Figures 7.52 and 7.53. It is seen

from the figures that maximum stresses are developed in the central region of the pipe cross-section and

the stresses are anti-symmetric about the vertical axis through the center of the cross-section. Further-

more, the stresses in the y-direction are much smaller than those in the x-direction, as expected.

The time history of displacement of point A obtained by the direct analysis is shown in Figure 7.54. To

obtain the same time history by the equivalent spring–dashpot analysis, the constants of the springs and

dashpots are obtained as below.

As the pipe diameter is not very large, the constants of the spring and dashpot at the level of the center of

the pipe cross-section are determined and are equally distributed to the total number of springs and

dashpots used as shown in Figure 7.51c. To calculate the constants, Equations 7.81 and 7.82 (given in

Section 7.7.2) are used. Thevalues of the constants are obtained as d=r ¼ 5:75=0:75 ¼ 7:66; for this value
of d=r ratio, Su ¼ 3:5 and Su ¼ 8:1.

Ks ¼ rV2
s Sul ¼ 1600� 802 � 3:5� 1¼ 35:84� 106N m�1

Cs ¼ rVsSurl ¼ 1600� 80� 8:1� 0:75� 1 ¼ 77:76� 104N s m�1

These values of the constants are divided by the number of springs and dashpots in order to obtain

individual spring and dashpot coefficients.

The analysis is performed by ABAQUS and the results are compared in Figure 7.54. It is seen from

the figure that the two time histories of the displacements do not differ significantly. This shows that a

simpler approximate plane stress analysis of the cross-section of the buried pipeline for a vertically

propagating earthquake wave can be carried out using an equivalent spring–dashpot model as shown in

Figure 7.51c.

7.7.2 Analysis for the Longitudinal Direction

In the longitudinal direction, the structure undergoes a bending action due to (i) the inertia forces

developed in the structure, and (ii) the variation of ground displacement along the length of the structure.
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If the ground motion is assumed to be the same and perfectly correlated along the length of the structure,

then the bending action is due to the former alone. However, for long pipelines and tunnels, the assumption

of perfectly correlated homogeneous ground motion is not justified because of the expected variation of

soil properties along longitudinal direction of the structure.

Soil

5 m

1.5 m

10 cm A

(a)

31600 kg/m=ρ

80 m/ssV =

  N/cmE = 2   10 26×

ζ = 5%
55 m

All free meshing

Contact
element

(b)

Ground

(c)

Free field acceleration due to
wavepropagating vertically 

from bedrock

Figure 7.51 Cross-section of a buried pipeline: (a) properties; (b) modeling of soil-pipe together; and (c) modeling
by replacing soil by spring–dashpot
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The transverse bending analysis of long lengths of buried pipelines and tunnels for seismic forces has

been an interesting topic of research [12–14]. A convenient and widely used method of analysis is

presented here.

The analysis replaces the soil by spring–dashpots as shown in Figure 7.55. The spring stiffness and

damping coefficients of the dashpots are derived by combining Mindlin’s static analysis of the soil

pressure at a depth within the soil and the soil impedance functions. The details of the derivation are

given in references [12, 13]. The stiffness and damping coefficients of thematrices corresponding to the

DOF are coupled unlike the condition of Winkler’s bed. However, a simplified analysis can be

performed by ignoring the off-diagonal terms and by using the diagonal terms to assign stiffness and

yy
direction

In N/m²
A= +1.21e+5
B= +1.01e+5
C= +8.08e+4
D= +6.06e+4
E= +4.04e+4
F= +0.00
G= - 6.06e+4
H= - 8.08e+4
I=  - 1.01e+5
J=  - 1.21e+5

A

B
C

D
E F G H

I

J

Figure 7.53 Maximum stresses in the y-direction

xx
direction

A

B
C

D
E F G H

I

J

In N/m²
A= +4.85e+5
B= +4.04e+5
C= +3.23e+5
D= +2.42e+5
E= +1.61e+5
F= +0.00
G= - 2.42e+5
H= - 3.23e+5
I=  - 4.04e+5
J=  - 4.85e+5

Figure 7.52 Maximum stresses in the x-direction
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damping coefficients to individual springs and dashpots at the nodes. In this case, the model simplifies

to the one given in Example 3.10. The effect of ignoring the off-diagonal terms is illustrated in

references [12, 13].

Extensive analysis of buried pipelines to traveling seismic waves has shown that the stresses and

deformations in the middle of the pipeline for long lengths remain nearly constant. As a result, long

lengths of pipelines are designed for these constant stresses. Keeping this in mind, an adequate length of

the pipeline is analyzed for any specified end conditions such that the nature of the end condition does not

igu

iu
u

(a)

(b)

Displaced pipe

Ground motion

Pipe at rest

imu
1m

i
l

nCnK2C2K

1K

Lumped mass at the node

i
1

2 1n − n

1C

Figure 7.55 Longitudinal pipeline model on springs and dashpots: (a) deformations of soil and pipeline; and
(b) spring–dashpot model of the soil pipeline problem
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Figure 7.54 Time histories of the displacement at point A obtained by direct analysis and equivalent spring-dashpot
analysis
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change the deformations and stresses of the pipeline in the middle. A rough guideline for the required

length is specified as 30–40r; where r is the radius of the pipeline. The element length should be less than

2r to obtain good results. Once the pipeline or the tunnel is modeled in this manner, the seismic response

analysis of the structure can be performed as described in Chapters 3 and 4.

The pipeline is also subjected to axial vibration along the length of the pipe due to P waves traveling

along the pipeline. Analysis as described above can be carried out for axial vibration of the pipeline, with

the soil being replaced by equivalent springs and dashpots. The stiffness and damping coefficients of the

springs and dashpots are similarly obtained as for the case of transverse oscillation. For a simplified

analysis, stiffness and damping coefficients of the springs and dashpots may be obtained by ignoring the

off-diagonal terms of the soil stiffness and damping matrices. Figure 7.56 provides the frequency

independent stiffness and damping coefficients of the equivalent springs and dashpots for transverse and

axial vibrations of buried pipelines [12]. These coefficients may be used to obtain the stiffness and

damping coefficients as follows:

ksl ¼ G� Su � l; csl ¼ G� Su � rl

VS

ð7:81Þ

ksa ¼ G� Sw � l csa ¼ G� Sw � rl

VS

ð7:82Þ

inwhich l is the length of the element, r is the radius of the pipe cross-section, and d is the buried depth. For

d � r, Su ¼ 4; Su ¼ 9; Sw ¼ 2:7 and Sw ¼ 6:7.
With the help of these coefficients, the stiffness and damping matrices of the buried pipeline for lateral

and axial motion can be derived as:

Ksl ¼ kslBl ; Csl ¼ cslBl ð7:83Þ

Ksa ¼ ksaBa; Csa ¼ csaBa ð7:84Þ

The matrices Bl and Ba are normalized coefficient matrices and are obtained usingMindlin’s equation.

The details of the derivation are given in references [12–14]. For ready reference, the matrices for 18

element discretization is given in Appendix 7.A.
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Figure 7.56 Variation of frequency independent spring and damper coefficients with d=r
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Example 7.11

A segment of an underground pipeline is shown in Figure 7.57. For illustrative purposes, the pipeline is

divided into four elements. Determine the stiffness and dampingmatrices for the pipe for axial and lateral

vibration. Take EI and EA values for the pipe cross-section as 10:4� 105 kNm�2 and 6:9� 106 kN,

respectively; r ¼ 0:5 m; embedment depth d ¼ 8 m; pipe length ¼ 10 m; x for the pipe ¼ 5%,

VS ¼ 200 m s�1; r ¼ 1800 kg m�3; and lumped masses at the nodes¼ 2156 kg.

Solution: As d � r, the following values for the coefficients are considered: Su ¼ 4; Su ¼ 9;
Sw ¼ 2:7 and Sw ¼ 6:7
From Appendix 7.A

½B�l ¼

1 �0:213 �0:044 �0:028 �0:019
1 �0:213 �0:044 �0:028

1 �0:213 �0:044
sym 1 �0:213

1

2
66664

3
77775

½B�a ¼

1 �0:217 �0:043 �0:027 �0:019
1 �0:217 �0:043 �0:027

1 �0:217 �0:043
sym 1 �0:217

1

2
66664

3
77775

Soil stiffness and damping matrices are:

G ¼ rV2
S ¼ 1800� 4� 104 ¼ 72� 106 Nm�2

½Ks�l ¼ GSul½B�l ¼ 720� 106½B�l Nm�1

½Ks�a ¼ GSwl½B�a ¼ 486� 106½B�a Nm�1

From Equations 7.81–7.84

½Cs�l ¼
72� 106 � 9� 0:5� 2:5

200
½B�l ¼ 4:1� 106½B�l N sm�1

½Cs�a ¼
72� 106 � 6:7� 0:5� 2:5

200
½B�a ¼ 3� 106½B�a N s m�1

2.5 m

1Δ 2Δ 3Δ 4Δ 5Δ
1θ 2θ

2.5 m 2.5 m 2.5 m

3θ
m m m

mm

Figure 7.57 Model of a segment of a buried pipeline
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Stiffness matrix for the structure corresponding to the DOF, shown in Figure 7.57, is obtained as:

3

2

22

22

1

21

20

200 0
12EI 1000 ;[K]

2 00000
32

21
0000

362
21

000 0
22 36

l

K

sym

m

m

mM

θ

Δ

l l ml
m

l
ll

ll
ll

–

1–

1–

1–

–

==

½K�a ¼
EA

l

1

�1 1 sym

0 �1 1

0 0 �1 1

0 0 0 �1 1

2
66664

3
77775

½Ks�l is added to theK part of the ½K�l matrix and then rotational degrees of freedom are condensed out.

The resulting stiffnessmatrix is the soil–pipe stiffnessmatrix. For axial vibration, ½Ks�a is directly added to
½K�a. To construct the damping matrix, ½K�l is condensed to eliminate y degrees of freedom. Assuming

Rayleigh damping, ½C�l for the pipe is obtained using the first two frequencies of the soil–pipe system.

Note that the eigen value problem cannot be solved without adding spring stiffness to the pipe stiffness

matrix. ½Cs�l is added to ½C�l to obtain the damping matrix of the soil–pipe system. In a similar way, a

damping matrix for the axial vibration can be determined. Results of the computation are given below.

The first two frequencies of the soil–pipe system and a and b values are:

Axial : o1 ¼ 358:87 rad s�1; o2 ¼ 825:7 rad s�1; a ¼ 10 and b � 0

Lateral : o1 ¼ 370:3 rad s�1; o2 ¼ 568:4 rad s�1; a ¼ 8:76 and b � 0

Soil–pipe lateral stiffness matrix:

Kl ¼

11:97 �8:66 �0:53 �0:21 0:08
�8:66 19:75 �8:66 �0:31 �1:05
�0:53 �8:66 19:96 �9:52 2:89
�0:21 �0:31 �9:52 23:17 �9:52
0:08 �1:05 2:89 �9:52 11:97

2
66664

3
77775� 108 N m�1

Soil–pipe axial stiffness matrix:

Ka ¼

32:42 �28:61 �0:21 �0:13 �0:09
�28:61 6 �28:61 �0:21 �0:13
�0:21 �28:61 6 �28:61 �0:21
�0:13 �0:2 �28:61 6 �28:61
�0:09 �0:13 �0:21 �28:61 32:42

2
66664

3
77775� 108 Nm�1
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Soil–pipe lateral damping matrix:

Cl ¼

42:57 �9:95 �1:81 �1:15 �0:78
�9:95 43:75 �9:95 �1:81 �1:15
�1:81 �9:95 43:75 �9:95 �1:81
�1:15 �1:81 �9:95 43:75 �9:95
�0:78 �1:15 �1:81 �9:95 42:57

2
66664

3
77775� 105 N s m�1

Soil–pipe axial damping matrix:

Ca ¼

31:31 �7:47 �1:29 �0:81 �0:57
�7:47 32:24 �7:47 �1:29 �0:81
�1:29 �7:47 32:24 �7:47 �1:29
�0:81 �1:29 �7:47 32:24 �7:47
�0:57 �0:81 �1:29 �7:47 31:31

2
66664

3
77775� 105 N s m�1

Exercise Problems

(Use standard programs like MATLAB�, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

7.12 Avertically propagating shearwave travels through a soil deposit of 50m thick lying over a rock bed.

The soil deposit consists of two equal layers, the properties of the upper and bottom layers are given

as: VS ¼ 80m s�1, r ¼ 1600 kg m�3; and VS ¼ 400 m s�1, r ¼ 1800 kg m�3, respectively and

x¼ 5%. Find: (i) the plot of the square of the modulus of transfer function for absolute acceleration

versus frequency using 1Dwave propagation time history analysis; (ii) the PSDFof free field ground

acceleration, if a stationary random ground motion represented by double filter PSDF of ground

acceleration with og ¼ 15 rad s�1, xg ¼ xf ¼ 0:5, of ¼ 0:1og, and S0 ¼ 1 is applied at the rock

bed; and (iii) the PGA amplification and the amplification of peak ground displacement

7.13 For the same soil deposit as given above, if the El Centro earthquake is applied at the rock bed, find:

(i) the plots of the time histories of relative displacement and absolute acceleration at the surface

using 1D time history analysis; (ii) the plots of the same time histories by considering non-linear

behavior of the top layer of soil with yield stress¼ 35000Nm�2 and yield strain¼ 0.002; (iii) the

PGA amplification for the linear and non-linear cases; and (iv) the difference between the free field

response spectra for the linear and non-linear soil conditions. Assume zero damping for the soil.

7.14 The frame shown in Figure 7.32 rests on footings of 1 m diameter. Soil properties are specified by

VS ¼ 200 m s�1 andr ¼ 1800 kg m�3.Using themethodofdirect analysis, obtain the timehistories

of base shear, base rotation, and total displacement of the top storey for the El Centro earthquake

applied at the base of the frame. Use beam elements for the superstructure, plane strain elements for

the foundation and the soil, and contact elements at the interface between the soil and the structure.

Take soil boundaries at appropriate distances for adequate dissipation of the radiation waves.

7.15 Solve the same problem, Exercise 7.14, by considering plane strain elements for both soil and

structure. [HINT: divide the frame elements into several layers depth wise.]

7.16 Solve the problem in Exercise 7.14 by the substructure technique and compare the results with

those of the direct analysis.

7.17 The multi-bay portal frame of Example 3.8 (Figure 3.7; Chapter 3) is supported at the base by

circular footings of 1m diameter resting on a soil having VS ¼ 100 m s�1 and r ¼ 1700 kg m�3.

Find the displacement responses u1 and u2 using the substructure technique. Base masses are equal

to m=10; k ¼ 5ks, in which ks is the real part of the impedance function corresponding to the

horizontal base degree of freedom; k=m ¼ 100 ðrad s�1Þ2. Take the earthquake excitation to be

same as that for Example 3.8.
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7.18 Solve the problem in Exercise 7.14 using themodal substructure technique and compare the results

with those of Exercise 7.16.

7.19 Solve the problem in Exercise 7.14 by replacing the soil by an equivalent spring–dashpot system

and compare the results with those of the Exercise 7.16.

7.20 A soil–pile structure system, as shown in Figure 7.47, is subjected to El Centro ground motion at

the foundation level. Piles have individual pile heads, not connected to a common one. The

columns are directly connected to the pile heads, which are of size 2� 2m. Soil characteristics

remain the same as those shown in Figure 7.47. Replacing the soil by equivalent spring–dashpot

systems, obtain: (a) the impedance functions for the pile head; and (b) using the same impedance

function, find the displacement of the top of the frame and base shear at the pile head by the

substructure technique.

7.21 A pipeline of diameter 1m, as shown in Figure 7.51, is buried at a depth of 5m in a layer of soil

deposit of 20 m. VS and r are given as 200m s�1 and 1800 kg m�3. For the vertically propagating

S wave as the El Centro earthquake: (a) find the free field motion at the level of the center of the

pipeline; (b) obtain the radial and circumferential stresses at point A of the pipe; (c) obtain the

bendingmoment at the center of the pipeline of length 30m, assuming fully correlated excitation

and pinned support at the two ends; and (d) also, find the rms and peak values of the bending

moments at the two adjacent nodes on either side of the center, and compare their values with

those at the center.

Appendix 7.A

Normalized coefficient matrix Bl (symmetric matrix; rows are given starting from diagonal element):

½B�l ¼

Row 1

þ 1:0 �0:2134 �0:0437 �0:0277 �0:0186 �0:0136 �0:0104

�0:0084 �0:0069 �0:0058 �0:005 �0:0044 �0:0039 �0:0035

�0:0031 �0:0028 �0:0026 �0:0024 �0:0023

8><
>:

Row 2

þ 1:0 �0:2134 �0:0437 �0:0277 �0:0186 �0:0136 �0:0104

�0:0084 �0:0069 �0:0058 �0:005 �0:0044 �0:0039 �0:0035

�0:0031 �0:0028 �0:0026 �0:0024

8><
>:

Row 3

þ 1:0 �0:2134 �0:0437 �0:0277 �0:0186 �0:0136 �0:0104

�0:0084 �0:0069 �0:0058 �0:005 �0:0044 �0:0039 �0:0035

�0:0031 �0:0028 �0:0026

8><
>:

and so on

2
66666666666666666664

3
77777777777777777775

½B�a ¼

Row 1

þ 1:0 �0:2169 �0:0426 �0:0275 �0:0189 �0:0140 �0:0108

�0:0086 �0:007 �0:0058 �0:005 �0:0043 �0:0038 �0:0033

�0:003 �0:0027 �0:0025 �0:0023 �0:0021

8><
>:

Row 2

þ 1:0 �0:2169 �0:0426 �0:0275 �0:0189 �0:0140 �0:0108

�0:0086 �0:007 �0:0058 �0:005 �0:0043 �0:0038 �0:0033

�0:003 �0:0027 �0:0025 �0:0023

8><
>:

Row 3

þ 1:0 �0:2169 �0:0426 �0:0275 �0:0189 �0:0140 �0:0108

�0:0086 �0:007 �0:0058 �0:005 �0:0043 �0:0038 �0:0033

�0:003 �0:0027 �0:0025

8><
>:

and so on

2
66666666666666666664

3
77777777777777777775
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8

Seismic Reliability Analysis
of Structures

8.1 Introduction

Reliability analysis of structures implies estimation of the limit state probabilities of a structure under

adverse/environmental loading for its intended period of use. There is a synonymous nomenclature, called

safety, which is used to indicate reliability. However, safety is a more traditional concept, while reliability

is a relatively newone and offers a probabilisticmeaning to the traditional concept. Similarly, risk analysis

and reliability analysis of structures are simultaneously used in many publications to express their

probabilities of failure. However, they are not actually one and the same thing. Risk analysis of structures

is an extension of the reliability analysis to include the consequences of failure. Typically in the seismic

risk analysis of structures, the limit state probability of the structure (obtained from the reliability

analysis) is integrated with the seismic risk of the site. An associated term that is used in connection with

the seismic reliability or risk analysis of structures is the fragility analysis. Fragility analysis is aimed at

finding the probability of failure of structures for different levels of PGA at the site and is closer to the

seismic risk analysis of structures. Despite these finer distinctions, seismic risk, reliability, safety, and

fragility analysis of structures are used loosely in the literature to denote the seismic probability of failure

of structures, failure being defined by different limit state conditions.

The most important aspect of the reliability analysis is the consideration of uncertainties that make

structures vulnerable to failure for a predefined limit state. Accuracy of the reliability analysis depends

upon how accurately all the uncertainties are accounted for in the analysis. Firstly, it is practically

impossible to identify all uncertainties; however, important ones can be identified. Secondly, and most

importantly, methods for modeling and analyzing them are not easy and some amount of uncertainty

always remains associated with their modeling. Finally, analytical formulation of the limit state surface

and integration of the probability density function within the domain of interest are complex resulting in

various approximations. As a result, varying degrees of simplifications are made in the reliability analysis

leading to the development of different reliability methods. Therefore, it is not possible to obtain the exact

probability of failure of a structure for any event except for very simple ones.

In this chapter, seismic reliability analysis of structures is briefly discussed. As the subject is vast and

considerable research has taken place in this area, it is not possible to cover the entire subject in one small

chapter. Only some of the fundamental concepts of seismic reliability of structures, and a few simpler
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methods of computing the probability of failure of structures for seismic forces, which are of practical

importance, will be discussed.

8.2 Uncertainties

Generally there are three types of uncertainties, which are dominant in seismic reliability analysis,

namely: (a) randomness and variability of excitation; (b) statistical uncertainty, which arises due to

estimation of parameters describing statistical models; and (c) model uncertainty, which arises due to

imperfection of mathematical modeling of the complex physical phenomena. In addition to these

uncertainties, there are some others which result from simplification of the problem at hand, for example,

non-linear analysis may be replaced by equivalent linear analysis, continuums may be represented by a

discrete model with limited degrees of freedom, and so on.

In the main, the uncertainty arising due to (a) is irreducible but those arising due to (b) and (c) can be

reduced. For example, collection of more data or samples helps in providing better statistical parameters.

Likewise, use of a more refined model may reduce the uncertainty due to (c). Other uncertainties, as

mentioned above, may be reduced by performing more rigorous analysis with more sophisticated models

of structures. A unified approach for treating statistical and model uncertainties in the reliability analysis

is discussed in the literature [1] in which the Bayesian updating rule is described to update model

parameters and models by developing likelihood functions. With the help of these functions, posterior

parameters or models are obtained from prior ones, which are then supposed to have less uncertainty as

they are developed using more data and with more observations.

In the seismic reliability analysis of structures, uncertainties of earthquake or ground intensity

parameters are considered to affect the reliability estimates significantly and to assume more importance

over other uncertainties. As a result, seismic reliability analysis of structures is found to bemostly carried

out by considering the randomness of ground motion, the uncertainties inherent in the occurrence of an

earthquake and in defining its different intensity parameters. However, many problems have also been

solved in which uncertainties of material behavior and modeling of the physical phenomenon have also

been included along with the uncertainties of ground motion and earthquakes. The complexity of the

analysis increases manifold as more sources of uncertainties are included.

In the seismic reliability analysis of structures, the randomness of ground motion, the uncertainties of

earthquake, and its intensity parameters are included in several ways by considering some or all of the

following elements of seismicity:

i. Probability density function (PSDF) of ground motion.

ii. Risk consistent or uniform hazard response spectrum.

iii. Model of the occurrence of an earthquake.

iv. Attenuation laws.

v. Probability density functions of the magnitude of an earthquake, epicentral distance, and sources of

an earthquake.

vi. Hazard curve.

vii. Empirical relationships to describe the response spectrum ordinates as a function of magnitude and

epicentral distance.

The probabilistic models that arewidely used to describe the distributions of different uncertain parameters

are uniform distribution, extreme value distribution, log normal distribution, and Poisson distribution.

Procedures for performing the reliability analysis vary with the selection of the above elements. When

material and other uncertainties are introduced, the procedure for the analysis may significantly differ, for

example,stochasticFEManalysisforrandomloadingmaybeused.However,materialandotheruncertainties

may also be included by simple procedures in an approximate manner. In fact, various levels of approxima-

tions are often used to simplify the reliability analysis procedure consistent with the desired accuracy.
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8.3 Formulation of the Reliability Problem

Seismic reliability analysis of structures can be formulated in different ways. The formulations can

broadly be divided in two groups, namely, time invariant problems and time variant problems. In both, a

limit state function is defined which could be based on serviceability criterion or ultimate stress criterion,

or some other criterion. The reliability problem seeks to find out the probability of limit state failure, that

is, violating the limit state condition. For the time invariant problem, let gðxÞ ¼ 0 describe the limit state

function inwhich x denotes a set of randomvariables x1; x2; . . . xn and gðxÞ � 0 denotes the failure event.

The probability of failure is then defined as:

Pf ¼ P½gðxÞ � 0� ¼
ð
D

f ðxÞdx ð8:1Þ

inwhich f ðxÞ is the joint probability density function of gðxÞ ¼ 0 and the integration is performed over the

domain D where gðxÞ < 0. The reliability is defined as:

R ¼ 1�Pf ð8:2Þ

Figure 8.1 shows the concept for the special case of two random variables. Integration of a suitable

probability density function within the shaded area is the reliability against failure defined by the limit

state function, gðx1; x2Þ ¼ 0.

A reliability problem is said to be time variant if the limit state function is also a function of time, that is,

the limit state function is defined by gðx; yðtÞÞ, in which x is a set of random variables and yðtÞ denotes a
vector of stochastic processes. The failure event for such problems may constitute the out crossing of the

vector processes, yðtÞ, through the limit state surface gðx; yÞ ¼ 0 as shown in Figure 8.2.

The probability of failure is given by

Pf ¼
ð

0<t�T

P½min gðx; yðtÞÞ � 0 xj �f ðxÞdx ð8:3Þ

in which T denotes the structure’s lifetime, f ðxÞ is the joint probability density function of x, and the

conditional probability within brackets is obtained by stochastic analysis of the structure for the random

( ) 0g x >

( , ) 0g x1 x2 =

x1

x2

( ) 0g x ≤
D

Figure 8.1 Concept of reliability with two random variables
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loading yðtÞ. The exact solution of the out crossing analysis is very difficult for two reasons: (i) evaluation
of the conditional probability within the bracket, and (ii) determination of the joint probability density

function f ðxÞ. In fact, the latter is also the reason for not being able to obtain the exact integration of

Equation 8.3. Therefore, various levels of approximations and assumptions are made in the reliability

analysis problems. In particular, different types of seismic reliability analysis of structures have been

formulated and solved, which make reasonable approximations to arrive at good estimates of the

probability of failure of structures. Before they are described and illustrated with examples, popular

methods of finding the probability of failure in structural reliability are described.

8.4 Methods of Finding Probabilities of Failure

There aremanymethods of finding the probabilities of failure of structures involving functions of random

variables. The accuracies of the methods depend upon how correctly the joint probability functions of the

random variables are determined and how correctly the integrations such as Equations 8.1 and 8.3 are

evaluated. Further, depending upon how the joint probability functions are derived, analytically or

numerically, the methods could be classified as analytical methods or numerical methods. Some of the

widely used methods in the structural reliability analysis are given in the following sections.

8.4.1 First Order Second Moment Method (FOSM)

In the FOSM, a first order Taylor series approximation of the limit state function is used and only second

moment statistics of the random variables are employed to obtain the probability of failure. In its original

form, Cornell [2] used two random variables to derive the method. The limit state function is defined as:

Z ¼ R� S ð8:4Þ
Assuming that R and S are statistically independent normally distributed random variables, Z is also

normally distributed. Its mean and covariance are obtained as:

mZ ¼ mR � mS and s2Z ¼ s2R þ s2S ð8:5Þ
The probability of failure is given by:

Pf ¼ P½Z < 0� ¼ P½ðR� SÞ < 0� ð8:6Þ

Out crossing the failure
surface

y1

y2

( ), 0D g x y≡ ≤

( )y t

( ),  0g x y =

Figure 8.2 Time variant reliability problem
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If Z is a normal variate, then it may be easily shown that Pf is given by:

Pf ¼ f � mZ
sZ

� �
ð8:7Þ

in which f is the cumulative distribution function for a standard normal variable.

The ratio of mZ=sZ is denoted by b and is familiar as the reliability index (safety index) in the theory of

reliability. Then, Pf is also popularly expressed as:

Pf ¼ fð� bÞ ð8:8Þ
If the variables R and S are log normally distributed, then the limit state function is defined as:

Z ¼ ln
R

S

� �
ð8:9Þ

Z is again a normal variable, and the probability of failure can be expressed as [3]:

Pf ¼ 1�f

ln
mR
mS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2S
1þ d2R

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1þ d2RÞlnð1þ d2SÞ

q

8>>>><
>>>>:

9>>>>=
>>>>;

ð8:10Þ

in which dR and dS are the coefficient variations of R and S.

The above formulation may be generalized to many random variables, denoted by a vector X. Let the
performance function be written as:

Z ¼ GðXÞ ð8:11Þ
The Taylor series expansion of the performance function about the mean values gives

Z ¼ GðXÞþ
Xn
i¼1

qG
qxi

ðxi � xiÞþ 1

2

Xn
i¼1

Xn
j¼1

q2G
qxiqxj

ðxi � xiÞðxj � xjÞþ � � � ð8:12Þ

in which xi is the mean of the variable xi. Truncating the series at the linear terms, the first-order

approximation of the mean and variance of Z are obtained as:

Z ¼ GðXÞ ð8:13Þ

s2Z ¼
Xn
i¼1

Xn
j¼1

q2G
qxiqxj

covðxi; xjÞ ð8:14Þ

in which covðxi; xjÞ is the covariance of xi and xj . If the variables are assumed to be statistically

independent, then

s2Z ¼
Xn
i¼1

qG
qxi

� �2

s2xi ð8:15Þ

Partial derivatives are obtained at the mean values.

8.4.2 Hasofer–Lind Method

While the method of finding the first order approximate mean and variance using Taylor series expansion

about the mean values is valid for a non-linear performance function, the safety index b thus obtained
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cannot be directly related to the exact probability of failure. The safety index, b, provides the exact

probability of failure when all random variables are statistically independent normal variables and the

performance function is a linear combination of the random variables. The Hasofer–Lind method is an

improvisation over the FOSM method described earlier [3]. The method is centered around the

computation of the design point or the minimum distance of the performance function from the origin.

This minimum distance is shown to be the safety index b for the case of normal random variables with

linear performance function.

The method uses reduced variables defined as:

x 0
i ¼

xi � xi

sxi
ði ¼ 1; . . . ; nÞ ð8:16Þ

Thus, the reduced variable has a zero mean and unit standard derivation. With the help of the reduced

variable, the original limit state or performance function GðXÞ ¼ 0 is converted into GðX 0Þ ¼ 0.

The minimum distance, termed bHL, can be expressed as:

bHL ¼ ½ðXdÞðXdÞT �
1
2 ð8:17Þ

in which Xd is the minimum distance point on the limit state function and is called the design point or

checking point.

The importance of finding bHL can be explained with the help of the linear limit state function of two

variables. Consider the limit state function as:

Z ¼ R� S ¼ 0 ð8:18Þ
The reduced variables are then defined as:

R 0 ¼ R� mR
sR

ð8:19Þ

and

S 0 ¼ S� mS
sS

ð8:20Þ

Substituting for R and S, the limit state equation may be expressed in terms of R 0 and S 0 as:

sRR 0 � sSS 0 þ mR � mS ¼ 0 ð8:21Þ

In the space of reduced variables, the limit state function can be plotted as shown in Figure 8.3. It is

apparent from Figure 8.3 that if the limit state line is near to the origin, the failure region is larger and the

probability of failure is increased. The converse is the case for a lesser probability of failure. Theminimum

distance of the line from the origin is computed as:

bHL ¼ mR � mSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2R þ s2S

p ð8:22Þ

Note that bHL is the same as b defined for the normal variables R and S. Thus, bHL can be regarded as a
measure of the safety index.

The Hasofer–Lind reliability index can be used to calculate a first-order approximation to the failure

probability as Pf ¼ fð� bHLÞ. This is the integration of the standard normal density along the ray joining

the origin and X 0
d.
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When the limit state function is non-linear, the computation of the minimum distance becomes an

optimization problem, that is,

Minimize D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX 0ÞTðX 0Þ

q
ð8:23Þ

Subject toGðX 0Þ ¼ 0 ð8:24Þ
Shinozuka [4] obtained an expression for the minimum distance as:

bHL ¼ �

Xn
i¼1

x 0
di

qG
qx 0

di

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qG
qx 0

di

� �2
s ð8:25Þ

where the derivatives qG=qx 0
di

� �
are evaluated at the design point ðx 0

d1; x
0
d2; . . . x

0
dnÞ. The design point is

given by:
x 0
di ¼ adibHL; ði ¼ 1; 2; . . . nÞ ð8:26Þ

where

adi ¼
qG
dx 0

di

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

qG
qx 0

di

� �2
s

are the direction cosines along the co-ordinate axesx 0
i . In the space of original variables, the design point is

x 0
di ¼ mxi � adisxibHL ð8:27Þ

Themethod constructs a linear approximation of the limit state function at the design point, as shown in

Figure 8.4. With the bHL, as obtained above, an estimate of Pf is given by Pf ¼ fð� bHLÞ. If all the
variables are not normally distributed, then it is difficult to relate bHL to the exact probability of failure.

Rackwitz and Fiessler [5] suggested that an improved estimate of the probability of failure may

be obtained by transforming the non-normal variables into equivalent normal variables. They estimated

the parameters of the equivalent normal distribution mNxi and sNxi by imposing two conditions, namely:

(i) the cumulative distribution functions, and (ii) the probability density functions of the original variables

and the equivalent normal variables should be equal at the checking point x 0
d1; x

0
d2; . . . x

0
dn

� �
on the

β

S′

Limit state

R′

Failure state

Safe state0Z >

0Z =

0Z <

Figure 8.3 Hasofer–Lind reliability index with linear performance function

Seismic Reliability Analysis of Structures 341



limit state surface. The mean values and the standard deviations of the equivalent normal variables are

given by:

sNxi ¼
fff� 1½FiðxdiÞ�g

fiðxdiÞ ð8:28Þ

mNxi ¼ xdi �f� 1½FiðxdiÞ�sNxi ð8:29Þ

in which Fi and fi are the non-normal cumulative distribution and density functions of xi; andf andf are

the cumulative distribution and density functions of the standard normal variate, respectively.

With this modification of the random variables, the following algorithm may be used to compute bHL:

i. Assume the initial values of the design point xdiði ¼ 1; 2; . . . nÞ. To start with, the meanvalues of the

random variables may be considered as the design point.

ii. Obtain the reduced variable x 0
di ¼

ðxdi � mxi Þ
sxi

.

iii. Evaluate qG
qx 0

di

� �
and adi at x 0

di.

iv. Obtain the new design point xdi in terms of bHL (use Equation 8.26).

v. Substitute the new xdi into the limit state equation GðXdÞ ¼ 0 and solve for bHL.
vi. Using the bHL value obtained in step (v), evaluate x 0

di ¼ � adibHL.
vii. Repeat steps (iii)–(vi) until convergence is achieved.

viii. Obtain sNxi and mNxi (use Equations 8.28 and 8.29).

ix. Use Equation 8.27 to obtain the equivalent normal variables in terms of bHL. Note that mxi and sxi
in Equation 8.27 should be replaced by mNxi and sNxi .

x. Solve GðXdÞ ¼ 0 to obtain bHL.
xi. Obtain Pf ¼ fð� bHLÞ.

8.4.3 Second Order Reliability Method

The limit state function could be non-linear for many reasons, such as: (i) non-linear relationship between

random variables and the limit state function, (ii) transformation of non-normal variables to standard

normal variables, and (iii) transformation from correlated to uncorrelated variables. If the limit state

function is highly non-linear and the joint probability density function does not decay rapidly as it moves

away from the minimum distance point, then a higher order approximation is required for the failure

probability computations.

′∗X (Design point)

HLβ

X ′2

X ′1

g(X) < 0

g(X) > 0

Figure 8.4 Hasofer–Lind reliability index with non-linear performance function
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There are many second order reliability methods proposed by various researchers [6, 7] that obtain the

Pf by using different assumptions and approximations. One of the popular and easy to apply method is

described here.

In this method, the curvature of the limit state function around the minimum distance point is

approximated by a quadratic function. Fiessler et al. [8] explored the use of various quadratic

approximations. A closed form solution for the probability of failure of a region bounded by a quadratic

limit state is given by Breitung [9] using asymptotic approximations as [3]:

pf � fð� bÞ
Yn� 1

i¼1

ð1þ bkiÞ�
1
2 ð8:30Þ

in which ki denotes the ith main curvature of the limit state function at the minimum distance point. The

main curvature ki is the ith eigen value of the second derivative matrix A of the limit state surface at the

design point in rotated normal space. The elements of the matrix A are given by:

ai j ¼
ðRDRTÞi j
rGðY*Þj j ði; j ¼ 1; 2; . . . ; n� 1Þ ð8:31Þ

in whichR is the orthogonal transformation matrix for which the nth row is selected to be Y*=ðY* TY*Þ1=2.
A standard Gram–Schmidt algorithmmay be used to determineR;D is the n� n second derivativematrix

of the limit state surface in the standard normal space evaluated at the design point;rGðY*Þ is the gradient
vector in the standard normal space.

8.4.4 Simulation Based Reliability Method

Let the performance function or limit state function be given by gðXÞ ¼ 0. The probability of failure Pf

is obtained as:

Pf ¼
ðð

� � �
ð

gðXÞ�0

fxðXÞdX ð8:32Þ

in which fxðXÞ is the joint density function of variables x1; x2; . . . xn and dX stands for

dx1; dx2; dx3; . . . ; dxn.
The simulation procedure consists of Monte Carlo simulation of basic variables according to their

probabilistic characteristics and then feeding them in the limit state function. The number of failures Nf

[that is, gðXÞ < 0] is counted for the set of random variables generated. The probability of failure is

calculated as:

Pf ¼ Nf

N
ð8:33Þ

in whichN is the total number of simulation cycles. The estimated probability of failure depends upon the

number of cycles of simulation used. For sufficiently accurate result, a large number of simulationsmaybe

needed. Therefore, it is better to approximately compute the variance of the estimated probability of

failure. This is done by assuming each simulation cycle to constitute a Bernoulli trial. Therefore, Nf in N

trials can be considered to follow a binomial distribution. Variance of the estimated probability of failure

can be computed approximately as:

varðPf Þ ’ ð1�Pf ÞPf

N
ð8:34Þ
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The statistical accuracy of the estimated Pf is measured by the coefficient of variation given by:

covðPf Þ ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1�Pf ÞPf

N

r

Pf

ð8:35Þ

The smaller the coefficient of variation, the better the accuracy is. Accordingly, N is decided.

8.5 Seismic Reliability Analysis

Seismic reliability or risk analysis of structures can be performed with different degrees of complexity

as outlined previously. Uncertainties that could be considered in the analysis are shown in Figure 8.5. It

is practically impossible to consider all uncertainties in one analysis. Further, the estimated probability

2.

1.

(c)

(b)

(a)
Uncertainty in point of

occurrence along the fault

Uncertainty of size of
earthquake

Uncertainty in time

Uncertainty of
earthquake

Uncertainties associated
with seismic hazard

estimates

Uncertainty of
empirical laws used

Uncertainty of
attenuation laws

Uncertainties of site
amplification

(a) (b) (c)

3.

Risk consistent spectrum

Hazard curve

Design spectrum with
a return period

PSDF of ground motions
and envelope function

Uncertainty of ground
motion input

(a)

(b)

(c)

(d)

Figure 8.5 Different types of uncertainties in seismic risk analysis
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of failure obtained by any reliability analysis technique cannot be accurate because of the approxima-

tions involved in each method. Thus, the calculated seismic reliability is at best a good estimate of the

actual reliability of structures against the failure event. In view of this, many simplified seismic

reliability analyses have been proposed by various researchers [10, 11]. They are useful in obtaining

an estimate of the seismic reliability of structures considering some (but not all) of the uncertainties at a

time. Some of them are described here. They include: (i) reliability analysis of structures considering

uncertainty of ground inputs only; (ii) reliability analysis of structures using seismic risk parameters of

the site; (iii) threshold crossing reliability analysis of structures for deterministic time history

of ground motion; (iv) first passage reliability analysis of structures for random ground motions;

(v) reliability analysis using damage probability matrix; and (vi) simplified probabilistic risk analysis

of structures.

4.

Mass modeling

Stiffness modeling

Damping modeling

Uncertainty of
modeling of structures

(a)

(b)

(c)
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Figure 8.5 (Continued)
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8.5.1 Reliability Analysis of Structures Considering Uncertainty
of Ground Input

The simplest analysis that can be performed is that of finding the seismic reliability of a structure using a

risk consistent spectrum (or uniform hazard spectrum) that considers the uncertainty of ground motion

input [uncertainty 3(a)] of Figure 8.5 only. The probability of failure of the structure designed with this

spectrum is the exceedance probability of the response spectrum ordinate being used for the design. If a

uniform hazard spectrum or risk consistent response spectrum is constructed using seismic hazard

analysis, then it is implicit that the analysis also considers uncertainties (2) and (1) of Figure 8.5. Thus, if a

rigorous seismic hazard analysis has been performed for a site and the resulting seismic input in the form

of a risk consistent spectrum is used in the seismic analysis of the structures, then the uncertainties

indicated in (1), (2), and (3a) are mostly included in the reliability estimate. Note that the estimated

probability of failure does not include other uncertainties of Figure 8.5 and that the failure of the structure

is assumed to take place under the load, determined from the spectrum.

Example 8.1

Consider amulti-storey frame as shown in Figure 8.6. Three alternative designs of the frame aremadewith

the help of three risk consistent response spectrums, which have 10, 5 and 2% probabilities of exceedance

in 50 years, respectively. It is assumed that the frame collapses under the earthquake loads obtained by the

response spectrums. Determine the probabilities of failure of the frame.

Solution: As the frame collapses under the lateral loads determined using the response spectra, the

probabilities of exceedance of the response spectrumordinates are the probabilities of failure of the frame.

The probability of exceedance of at least one or more in t years, for the response spectrum ordinates, is

given by the commonly used equation

Pe ¼ 1� 1� 1

t

� �t

ð8:36Þ

in which Pe is the probability of exceedance (PE) in t years and t is the average recurrence interval. Using
the above equation, the average recurrence intervals are calculated as:

. 475 years for 10% PE in 50 years

. 975 years for 5% PE in 50 years

. 2475 years for 2% PE in 50 years

x

Figure 8.6 Probable mechanism of failure for weak beam–strong column frame under lateral load
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The corresponding probabilities of failure are 2:10� 10� 3, 1:025� 10� 3 and 4:040� 10� 4,

respectively.

8.5.2 Reliability Analysis of Structures Using Seismic Risk
Parameters of the Site

Seismic risk analysis of a structure located in a region surrounded by a number of faults may be obtained

by integrating the concepts of reliability analysis and seismic risk analysis for the region. Consider a

structure in a region as shown in Figure 8.7. There are n earthquake point sources with mean occurrence

rate of gjð j ¼ 1 . . . nÞ. For each earthquake source, the probability density function of the magnitude of

earthquake is given by:

fMðmÞ ¼ b exp½� bðm�m0Þ�
1� exp½� bðmj �m0Þ� ð8:37Þ

where mj is the upper limit of the magnitude of earthquake for the jth source. The occurrence of an

earthquake in time is assumed to be a Poisson process. The attenuation law for the response spectrum

ordinate is given in the form of

Log SðTÞ ¼ aðTÞþ bðTÞMþ cðTÞlog R ð8:38Þ

in which SðTÞ is the response spectrum ordinates at time period T; aðTÞ, bðTÞ, and cðTÞ are period

dependent constants; M is the magnitude of earthquake; and R is the epicentral distance in kilometers

(shortest distance of the site from the rupture length if it is a line source). Other forms of attenuation laws,

which are available in the literature, may also be used.

If thematerial property of the structure is assumed to be deterministic, then the performance function of

the structure is a function of the seismic parameters M and R, that is,

gðYÞ ¼ gðM;RÞ ð8:39aÞ

The lifetime probability of failure of the structure within ð0; tÞ is given by:

P½gðM;RÞ � 0� in ð0; tÞ ð8:39bÞ

Structure

(Source)(Source)

(Source)

(Source)

0, ,j jM M γ

jR

Figure 8.7 Structure in a region surrounded by a number of earthquake sources
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If the occurrence of an earthquake is assumed to be a Poisson process with mean occurrence rate

g then

P½gðM;RÞ � 0� in ð0; tÞ ¼ 1� expf� gtP½gðM;RÞ � 0�g ð8:40aÞ

� gtP½gðM;RÞ � 0� for small probabilities ð8:40bÞ

The return period for the failure event is then given by:

T ¼ 1

gP½gðM;RÞ � 0� ð8:40cÞ

When more than one source of an earthquake is involved, then the probability of failure is obtained by

conditioning on the source and summing up for all sources. In this case, P½gðM;RjÞ � 0jEj � is the

probability of failure for the earthquake event occurring at source j and

P½gðM;RÞ � 0� ¼
X
j

P½gðM;RjÞ � 0jEj �PðEjÞ ð8:41aÞ

in which

PðEjÞ ¼
gjP
gj

ð8:41bÞ

where Rj is the shortest distance of the site from the rupture length of source j.

The conditional probability of failure is given by:

P½gðM;RÞ � 0jEj � ¼
ðmj

m0

P½gðM;RÞ � 0jEj ;M�f ðMÞdM ð8:42Þ

The conditional probability is obtained by finding the minimum distance of the performance function

(surface) from the origin.

Example 8.2

A two-storey frame, as shown in Figure 8.8, is subjected to earthquake ground motion. The uncertainties

of the ground motion in terms of the occurrence and magnitude of the earthquake are to be considered to

obtain the probability of failure of the frame. The following data are provided for the analysis.

i. Two-point earthquake sources 1 and 2 exist for the site where the frame is located

ii. g1 ¼ 1=year; g2 ¼ 2=year; m1 ðupper limitÞ ¼ 7; m2 ðupper limitÞ ¼ 8:5; m0 ðlower limit for both

sourcesÞ ¼ 4.

iii. Regional seismicity parameter b ¼ 1:5; R1 ¼ 20 m, and R2 ¼ 50 m.

iv. Use the following attenuation laws for the displacement response spectrum ordinates [11].

S1 ¼ 0:01168 exp ð0:82MÞðRþ 25Þ� 1:2 ð8:43aÞ

S2 ¼ 0:02565 exp ð0:51MÞðRþ 25Þ� 1:34 ð8:43bÞ

sSi ¼ 0:35 ð8:43cÞ
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in whichM is the mean value of earthquake magnitude, R is the epicentral distance in kilometers and

Si is the mean value of spectral ordinate in meters for time period Ti.

Modal correlation; r12 ¼ r21 ¼ 0:012

v. Threshold values for the floor displacement and the storey shear are 64mm and 623 kN, respectively.

Solution: The frame is analyzed using the response spectrum ordinates given by the attenuation

laws shown above. For given values of M and R, the attenuation laws provide the mean values of the

response spectrum ordinates with a coefficient of variation of 0.35. They are assumed to be log normally

distributed.

The responses of the frame are obtained by using the response spectrum method of analysis with CQC

rule of combination. Let rmax be the response quantity of interest. Then,

rmax ¼
X2
i¼1

X2
j¼1

fifjrijSiSj

" #1=2

inwhichfi is themode shape coefficient for the response. The two frequencies of the frame areo1 ¼ 12:5
and o2 ¼ 33 rad s� 1 and the mode shape coefficients for top displacement and base shear are:

fd1 ¼ 1:17 ðdisplacementÞ fd2 ¼ � 0:171 ðdisplacementÞ
fb1 ¼ 12:67� 103 ðbase shearÞ fb2 ¼ 4:84� 103 ðbase shearÞ

The performance function may be written as:

gðM;RÞ ¼ r20 �f2
1S

2
1 � 2r12f1f2S1S2 �f2

2S
2
2

Failure surface for given values of M, R is gðM;RÞ ¼ 0.

The plots of the failure surfaces on the S1 and S2 axes for displacement and base shear are shown in

Figure 8.9. The figure shows that the plots are ellipses with major and minor axes almost coinciding with

the S2 and S1 axes, respectively. The angle y of themajor andminor axeswith respect to the S1 and S2 axes

may be shown to be as [11]:

y ¼ 1

2
tan� 1 4r12f1f2

f2
1 �f2

2

" #

For given values ofM and R, the minimum distance of the failure surface (plotted on S 0
1 and S

0
2 axes; S

0
1

and S 0
2 being S1 � S1=sS1 and S2 � S2=sS2 , respectively) from the origin is the safety index b. As the

m

1x

2x

m

k

k

1

4m =4.205×10  kg

4k=1.752×10  kN/m

Figure 8.8 A two-storey shear frame
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minimum distances for both response surfaces nearly coincide with the S1 axis,

b ¼
ln

S1

S1

� �

slnS1

in which lnðS1Þ is the mean value of the response spectrum calculated from the attenuation law given

above; lnðS1Þ is the logarithmic value of theminor axis of the ellipse. The probability of failure is given by:

P½gðM;RÞ � 0jEj � ¼ fð�bÞ
For each source of earthquake ðEjÞ, the computed values of fð� bÞ for different assumed values ofM

and a given value of R are shown in Tables 8.1 and 8.2.

dM ¼ 0:5 Pfd1 ¼
P

fð�bÞf ð ~MÞdM ¼ 1:38� 10� 3

Pfb1 ¼
P

fð� bÞf ðMÞdM ¼ 0:244� 10� 3

dM ¼ 0:5 Pfd2 ¼
X

fð�bÞf ðMÞdM ¼ 1:48� 10� 3:

Pfb2 ¼
X

fð� bÞf ðMÞdM ¼ 1:95� 10� 3

Base shear

Displacement

S1

S2

2 4 6-2-4-6

2

4

6

8

-2

-4

-6

-8

cm

cm

Figure 8.9 Plots of the failure surfaces

Table 8.1 Results of computation for source-1 ðR ¼ 20; g1 ¼ 1Þ
M f ðMÞ Displacement Base shear

lnðS1Þ lnðS1Þ fð� bÞ lnðS1Þ lnðS1Þ fð�bÞ
4 1.50 �2.91 �5.73 3.8E-16 �3.012 �5.73 3.8E-15
4.5 0.72 �2.91 �5.33 2.4E-12 �3.012 �5.33 1.8E-11
5 0.34 �2.91 �4.92 4.7E-09 �3.012 �4.92 2.5E-08
5.5 0.16 �2.91 �4.51 2.4E-06 �3.012 �4.51 9.3E-06
6 0.076 �2.91 �4.1 3.4E-04 �3.012 �4.1 9.4E-04
6.5 0.036 �2.91 �3.69 0.01 �3.012 �3.69 0.03
7 0.017 �2.91 �3.28 0.14 �3.012 �3.28 0.22
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P½gðM;RÞ � 0�d ¼ Pfd1

g1
g1 þ g2

þPfd2

g2
g1 þ g2

¼ 1:45� 10� 3:

P½gðM;RÞ � 0�b ¼ Pfb1

g1
g1 þ g2

þPfb2

g2
g1 þ g2

¼ 1:38� 10� 3:

8.5.3 Threshold Crossing Reliability Analysis of Structures
for Deterministic Ground Motion

The threshold crossing reliability analysis is the out crossing analysis inwhich exceedance probability of a

threshold value of the response is determined. Oneminus the value of the threshold crossing probability is

defined as the threshold crossing reliability of the structure.

Consider a frame that has uncertain properties represented by the uncertainties of theEI values of beams

and columns. The time history of excitation is deterministic. The problem is formulated as a time variant

reliability problem with a limit state function defined as:

gðx; tÞ ¼ u0 � uðx; tÞ ð8:44Þ
in which u0 is the threshold value of the top displacement of a frame and uðx; tÞ is the top-storey

displacement of the frame at any given time, t, which is a function of a number of random variables given

by the vector x. Assuming the random variables to be independent normally distributed variables, and the

Taylor series expansion of the limit state function to be truncated at the first-order term (Equation 8.12),

the mean and variance of gðx; tÞ can be determined as described previously.

The integration of Equation 8.42 is carried out numerically for different assumed values of x. As it is
assumed that the random variables in x are independent variables, f ðxÞ is given by:

f ðxÞ ¼ f ðx1Þf ðx2Þ . . . f ðxnÞ ð8:45Þ
For a particular set of x,gðx; tÞ is a deterministic function and therefore, Equation 8.42 can bewritten as:

Pf ¼
ð

0<t<T

P½gðx; tÞ � 0jx�f ðxÞdx ð8:46Þ

P½gðx; tÞ � 0� can be obtained easily as:

P gðx; tÞ � 0½ � ¼ tu

T

in which tu is the total time for which uðx; tÞ � u0.

Table 8.2 Results of computation for source-2 ðR ¼ 50; g2 ¼ 2Þ
M f ðMÞ Displacement Base shear

lnðS1Þ lnðS1Þ fð� bÞ lnðS1Þ lnðS1Þ fð�bÞ
4 1.50 �2.91 �6.35 5.1E-23 �3.012 �6.35 5.9E-22
4.5 0.72 �2.91 �5.94 2.4E-18 �3.012 �5.94 3.1E-17
5 0.34 �2.91 �5.53 4.0E-14 �3.012 �5.53 3.2E-13
5.5 0.16 �2.91 �5.12 1.5E-10 �3.012 �5.12 8.7E-10
6 0.076 �2.91 �4.71 1.4E-07 �3.012 �4.71 6.1E-07
6.5 0.036 �2.91 �4.30 3.6E-05 �3.012 �4.30 1.2E-04
7 0.017 �2.91 �3.89 0.002 �3.012 �3.89 0.006
7.5 7.89E-3 �2.91 �3.48 0.05 �3.012 �3.48 0.09
8 3.72E-3 �2.91 �3.07 0.32 �3.012 �3.07 0.43
8.5 1.76E-3 �2.91 �2.66 0.76 �3.012 �2.66 0.84
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An alternative formulation for the above problem can be made without conditioning on x. The limit

state surface gðx; tÞ ¼ 0 will have a different position for different values of x and t. The nearest point of
the limit state surface from the origin will give the b value. For this purpose, the Hasofer–Lind algorithm
may be used to obtain bHL by iteration. Note that transforming the random variables to normal variables is

not required as the variables x are assumed to be normally distributed.

The same problemmay be posed as a time invariant reliability problem, if the probability of (material)

failure of a section is desired. Consider a column Section-1, as shown in Figure 8.8. The failure is defined

by the exceedance of the moment beyond the yield moment of the beam. The maximum bending moment

at Section-1 produced by the earthquake is a function of the random variables x. The moment capacity of

Section-1 is another random variable y, which is assumed to be normally distributed. The limit state

function gðx 0Þ is then given by:

Z ¼ gðx 0Þ ¼ y�MðxÞ ð8:47Þ
in which MðxÞ is the moment induced at Section-1 due to an earthquake and x 0 is the vector of random
variables, which contain both x and y. Using the Taylor series expansion about the mean value and

truncating the series at the first-order term,

Z ¼ gðx 0 Þ ¼ y�MðxÞ ð8:48aÞ
and

sz ¼
Xn
i¼1

qg
qx 0

i

varðx 0
i Þ; b ¼ Z

sz
ð8:48bÞ

It is assumed that the random variables are independent of each other in the preceeding expressions.

A threshold crossing reliability analysis for a frame undergoing inelastic deformation under a given

earthquake excitation is solved by Der Kiureghian [10] in which the threshold value is considered for the

top displacement of the frame.

Example 8.3

A two-storey frame as shown in Figure 8.10 is subjected to the El Centro earthquake. EIc and EIb are

assumed to be normally distributed independent random variable with mean values as 5:617� 107 Nm2

and 2:509� 107 Nm2, respectively, and coefficients of variation as 0.1. The mass of each floor, m ¼
12 000 kg, is assumed to be deterministic. The threshold value for the top displacement is given as 19mm.

Find the threshold crossing reliability of the frame.

bEI
cEI

cEI

cEI

cEI

m

m

x

bEI

3 m

3 m

6 m

Figure 8.10 A two-storey frame
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Solution: The probability of failure is given by Equation 8.46. The random vector x consists of

independent variables EIb and EIc. Thus,

f ðxÞ ¼ f ðEIbÞ f ðEIcÞ
Ten combinations of EIb and EIc values are considered for the analysis. To perform the integration of

Equation 8.46 numerically, these values are selected at a regular interval and f ðEIbÞdEIb and f ðEIcÞdEIc
are written as FðEIcÞ and FðEIbÞ. Equation 8.46 is then converted into

Pf ¼
X10
j¼1

P½ðgðx; tÞ � 0Þj jxj �FðEIbÞjFðEIcÞj

P½gðx; tÞ � 0�j is obtained by analyzing the frame for the jth combination of EIb and EIc values for the

earthquake, and finding tuj=T , in which tuj is the total time for which top displacement of the frame

remains above the threshold value and T¼ 30 s (duration of earthquake). A sample time history of the top

displacement of the frame is shown in Figure 8.11. Computation is performed in tabular form, Table 8.3.

Pf ¼
X

¼ 9:42� 10� 4

Reliability ¼ 1�Pf ¼ 0:999
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Figure 8.11 A typical time history of the top displacement of the frame

Table 8.3 Results of computation for threshold crossing failure

1 2 3 4 5 6 7 8

S. No. EIb (Nm
2) EIc (Nm

2) tu(s)
tuj

T
f EIbð Þ f EIcð Þ F EIbð Þ F EIcð Þ Product

4� 7� 8ð Þ
1 2.13E+ 07 4.77E+ 07 0.780 0.0250 5.05E-08 2.26E-08 4.04E-02 3.84E-02 3.88E-05
2 2.21E+ 07 4.94E+ 07 0.640 0.0205 7.78E-08 3.41E-08 5.45E-02 5.80E-02 6.48E-05
3 2.28E+ 07 5.11E+ 07 0.480 0.0154 1.04E-07 4.70E-08 8.35E-02 7.99E-02 1.03E-04
4 2.36E+ 07 5.28E+ 07 0.480 0.0154 1.33E-07 5.91E-08 9.30E-02 1.00E-01 1.44E-04
5 2.43E+ 07 5.45E+ 07 0.420 0.0135 1.51E-07 6.78E-08 1.21E-01 1.15E-01 1.88E-04
6 2.51E+ 07 5.62E+ 07 0.340 0.0109 1.59E-07 7.10E-08 1.11E-01 1.21E-01 1.46E-04
7 2.58E+ 07 5.79E+ 07 0.240 0.0077 1.53E-07 6.78E-08 1.22E-01 1.08E-01 1.02E-04
8 2.66E+ 07 5.95E+ 07 0.240 0.0077 1.33E-07 5.97E-08 9.30E-02 1.02E-01 7.28E-05
9 2.73E+ 07 6.12E+ 07 0.220 0.0071 1.08E-07 4.78E-08 8.66E-02 8.12E-02 4.99E-05
10 2.81E+ 07 6.29E+ 07 0.200 0.0064 7.78E-08 3.49E-08 6.22E-02 5.93E-02 2.36E-05
11 2.89E+ 07 6.46E+ 07 0.180 0.0058 5.05E-08 2.32E-08 4.04E-02 3.95E-02 9.26E-06
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Example 8.4

For the same problem as above, find the probability of failure of the column sectionX, given that themean

and coefficient of variation of the moment capacity of the section are 361 kN m and 0.1, respectively.

Assume moment capacity to be normally distributed.

Solution: For the different combinations ofEIb andEIc values shown in Table 8.3, themaximum bending

moments at X are obtained. Eleven values of maximum bending moments, their mean and standard

derivation are given in Table 8.4.

b ¼ Mc �Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Mc

þ s2M
q ¼ 3:8

Pf ¼ fð�bÞ ¼ 1� 10�4

8.5.4 First Passage Reliability Analysis of Structures
for Random Ground Motion

The first passage (excursion) is defined as the event that a random process, for the first time, crosses an

upper threshold value or a lower threshold value. The problem is one of finding the probability structure of

the random time Twhen such an event takes place. If the uncertainties of the properties of the structure are

considered alongwith the stochastic nature of the groundmotion (uncertainties 6 and 3 of Figure 8.5), then

the first passage reliability analysis can be posed as a reliability analysis of the structure for a defined limit

state function gðx; yðtÞÞ, in which x is the vector of random variables representing the uncertainties of the

properties of the structure and yðtÞ is the vector of random ground motion inputs. Thus, the problem

requires a time variant reliability analysis in which the limit state function is also a function of time. At

every time instant, the limit state function changes. Maximum probability of failure for the first excursion

takes place at the earliest instant of time t when the limit state function gðx; yðtÞÞ ¼ 0 is nearest to

the origin.

Usually, the probability of failure is obtained by conditioning on the random variables x and the

problem is formulated as:

Pf ¼
ð

0�t�T

P½mingðx; yðtÞÞ � 0jx� f ðxÞdx ð8:49aÞ

in which T is the duration of the earthquake. The exact solution of the problem is complex and difficult to

findout even for simple linear systems. However, the problemmay be solvedwith certain approximations,

which depend upon the desired solution.

For illustration, a simpler problem of the first excursion reliability analysis of a structure subjected to

random ground motion ygðtÞ is considered with the material property of the structure taken to be

deterministic. The intensity/magnitude of an earthquake occurring in the region is also considered to be a

random variable. Consider the frame shown in Figure 8.12. Assume the moment at the fixed base is the

Table 8.4 Bending moment at X for different combinations of EIb and EIc

1 2 3 4 5 6 7 8 9 10 11 M sM

M (kN m) 214 218 222 224 224 228 230 226 227 225 221 223.54 4.61
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response quantity of interest and the probability of first excursion failure for a threshold limit of M0 is

desired. The limit state function is defined as:

gðygðtÞÞ ¼ M0 �MðygðtÞÞ ð8:49bÞ
and Pf ¼ P½gðygðtÞÞ � 0� ð8:49cÞ

The solution to the problem first involves passage analysis of the response in random vibration analysis

of structures [12, 13]. The exact solution for the first passage excursion failure is difficult as mentioned

previously. However, under certain simplified assumptions, the solution to the problem can be achieved.

The important assumptions are [12]:

i. It is assumed that the structure can recover immediately after suffering failure (threshold crossing).

ii. It is assumed that such failures arrive independently, that is, they constitute a Poisson process.

iii. It is assumed that the probability of failure (that is, threshold crossing)within a time interval [0,t] is the

distribution function of the random time T (crossing time).

Following the above assumptions, the first excursion reliability analysis can be performed. The analysis

requires the zeroth, first and second moment of the response obtained from its PSDF. These moments are

defined as (Chapter 4):

ln ¼
ð1

0

onSmðoÞdo ð8:50Þ

in which SmðoÞ is the PSDF of the base moment. With these three moments, the following parameters

are obtained.

g0 ¼
1

2p

ffiffiffiffiffi
l2
l0

s
ð8:51Þ

and

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l21

l0l2

s
ð8:52Þ

m

m

m

m

k

k

k

k

Figure 8.12 Example frame for obtaining the damage probability matrix
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in which g0 is defined as the mean rate of zero crossing at positive slope, and q is defined as the dispersion

parameter [12].

The mean rate of crossing a specified threshold levelM0 at a positive slope by a stationary zero mean

Gaussian process MðtÞ can be expressed as [12, 13]:

gM0
¼ g0e

�C2

2 ; c ¼ M0

sM0

ð8:53Þ

in which sM is the variance of the moment MðtÞ
It has been confirmed by theoretical and simulation studies that the probability of a stationary response

process remaining below a specified barrier decays approximately exponentiallywith time as given by the

relationship [14]

LðTÞ ¼ L0e
� aT ð8:54Þ

where L0 is the probability of starting below the threshold, a is the decay rate, and T is the duration of the

process. At high barrier levels, L0 is practically one and the decay rate is given by the following

expressions with double barrier ðaDÞ and one sided barrier ðaSÞ respectively [12],

aD ¼ 2gM0
and aS ¼ gM0

ð8:55Þ

The above relationships are asymptotically exact as the ratioC of the threshold level and the standard

derivation of the response becomes large. However, whenC 	 1, the Poisson process assumption is no

longer valid. In the case of relatively low threshold levels, improved expressions for L0, aD and aS are

given by Vanmarcke [15].

L0 ¼ 1� e�
C2

2 ð8:56Þ

aD ¼ 2gM0

1� e�
ffiffi
p
2

p
qC

L0
ð8:57Þ

aS ¼ gM0

1� e�
ffiffiffiffi
2p

p
qC

L0
ð8:58Þ

The probability of first excursion failure is then given by:

Pf ¼
ð
P½gðygðtÞÞ ¼ M0 �MðygðtÞÞ � 0jM�f ðMÞdM ð8:59Þ

or

Pf ¼
ð
P½MðygðtÞÞ � M0jM�f ðMÞdM ð8:60Þ

¼
ð
½ð1� LðTÞÞjM�f ðMÞdM ð8:61Þ

in which LðTÞ is given by Equation 8.54 andM is the magnitude of the earthquake. Note that the PSDF of

ygðtÞ may be expressed in terms of the intensity parameter M using the empirical equations given in

Chapter 2.

In the above problem, if material uncertainty is included then the limit state function takes the form

gðx; ygðtÞÞ ¼ M0 �Mðx; ygðtÞÞ ð8:62Þ
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in which x is the vector of random variables denoting the flexural rigidities of the beams and columns, and

M0 is the threshold value of the columnbasemoment. The probability offirst passage failure is obtained by

conditioning on both magnitude M and x, and is given by:

Pf ¼
ð
P½gðx; ygðtÞÞ � 0jM; x�f ðxÞf ðMÞdx dM ð8:63Þ

If x consists of normally distributed independent random variables, then f ðxÞ can be expressed as given
by Equation 8.45.

Example 8.5

If the frame shown in Figure 8.8 is subjected to a randomground excitation represented by the double filter

PSDFwithog ¼ 15:7 rad s� 1, Zg ¼ Zf ¼ 0:6, andof ¼ 0:1og, find the probability offirst passage failure

of the frame for a threshold value of top displacement of 12.8mm. The PDF of the magnitude of the

earthquake is given by Equation 8.37; with b ¼ 1:5, mj ¼ 8, m0 ¼ 4, and the attenuation law for the

region is given by Equation 2.44 (Chapter 2) with R¼ 75 km.

Solution: The PSDF of ground motion is given by Equation 2.74 (Chapter 2). Considering a cut-off

frequency of 30 rad s�1, the first three moments of the PSDF, that is, l0, l1, and l2 (Equation 8.50) are

obtained as:

l0 ¼ 37S0; l1 ¼ 506S0; l2 ¼ 8980S0

in which S0 is defined in Equation 2.74

Using Equation 2.19c and duration of the earthquake as 30 s, the peak factor is calculated as 3.27. Thus,

PGA ¼ psx€g . Using the attenuation law given by Equation 2.44, the PGA for different values of the

magnitude, M, and the corresponding values of sx€g and S0 are shown in Table 8.5.

Using the computed values of S0, the PSDF of the top displacement of the frame is determined using

spectral analysis presented in Chapter 4. Calculation of the first passage failure probability for

displacement ðdÞ is shown in tabular form in Table 8.6 (Equations 8.50–8.58).

Pf ¼
X9
i¼1

½1� LðTÞ�iFðMÞi ¼ 0:00788

in which

FðMÞi ¼ f ðMÞidMðdM ¼ 0:5Þ

Table 8.5 Results of computation of PGA, sx€g and S0

M PGA (g) sx€g (g) S0ðg2 rad s� 1Þ
4 0.0046 0.0014 5.26E-08
4.5 0.007 0.0021 1.24E-07
5 0.0107 0.003 2.90E-07
5.5 0.0163 0.005 6.75E-07
6 0.0248 0.0076 1.56E-06
6.5 0.0374 0.0114 3.54E-06
7 0.0559 0.0171 7.91E-06
7.5 0.0826 0.0253 1.73E-05
8 0.1202 0.0368 3.65E-05
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8.5.5 Reliability Analysis of Structures Using
a Damage Probability Matrix

Another problem of interest, which is closely associated with the reliability analysis, is the determination of

damage probability matrix of structures. In this problem, it is assumed that the material behavior is elasto-

plastic and themajor damageof a sectionoccurswhen theyieldmoment is reachedat that section.Furthermore,

it is assumed that the material property is deterministic, but the groundmotion is random, with the earthquake

intensity parameter also defined as a random variable. Consider the frame, shown in Figure 8.12, and it is

desired to construct a damage probability matrix for the moment at the support of the columns.

If the random ground motion is assumed as a stationary Gaussian process, then the response (moment)

of the frame is also a stationaryGaussian process so long it is in the elastic range or it just reaches the yield

state. As the response is a stationaryGaussian process, a Gumbel type I distribution [12, 13] can be used to

express the distribution of its peak value. The probability density of the peak value is given by [16]:

f ðMÞ ¼ a 0exp½ � a 0ðM� b 0Þ � expf� a 0ðM� b 0Þg� ð8:64Þ
in which a 0 and b 0 are related to the mean ðmMÞ and standard deviation ðsMÞ, respectively, of the peak
values MðTÞ of the process mðtÞ of duration T as:

a 0 ¼ pffiffiffi
6

p
sM

; b 0 ¼ mM � 0:5772

a 0 ð8:65aÞ

mM and sM are given by [17]:

mM ¼ K 0 þ 0:5772

K 0

� �
sm ð8:65bÞ

sM ¼ pffiffiffi
6

p
K 0 sm ð8:65cÞ

K 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln g0T

p
ð8:65dÞ

in which sm is the standard deviation of the processmðtÞ, and g0 is themean rate of the zero crossing of the

process mðtÞ (Equation 8.51).

Using the standard results of integration, the cumulative distribution function may be expressed as:

P½M � M0� ¼ exp½ � expf� a 0ðM0 � b 0Þg� ð8:66Þ
The probabilities of moderate and minor damage may be defined by specifying threshold levels for

them. If the threshold level for moderate damage is defined as aM0, then the probabilities of major ðP1Þ,

Table 8.6 Results of computation of first passage failure for displacement

M l0 l1 l2 g0 C L0 gd aD ¼ 2gd L Tð Þ f M
� �

4 9.92E-08 1.27E-06 1.67E-05 2.07 4.06E+ 01 1 0.00E+ 00 0.00E+ 00 1 1.50E+ 00
4.5 2.34E-07 2.98E-06 3.95E-05 2.07 2.65E+ 01 1 1.60E-152 3.20E-152 1 7.20E-01
5 5.47E-07 6.98E-06 9.23E-05 2.07 1.73E+ 01 1 1.89E-65 3.71E-65 1 3.40E-01
5.5 1.27E-06 1.62E-05 2.15E-04 2.07 1.13E+ 01 1 2.36E-28 4.40E-28 1 1.60E-01
6 2.94E-06 3.75E-05 4.97E-04 2.07 7.46E+ 00 1 1.68E-12 2.79E-12 1 7.60E-02
6.5 6.68E-06 8.52E-05 1.13E-03 2.07 4.95E+ 00 1 9.72E-06 1.35E-05 1.000 3.60E-02
7 1.49E-05 1.90E-04 2.52E-03 2.07 3.31E+ 00 0.996 8.53E-03 9.35E-03 0.752 1.70E-02
7.5 3.26E-05 4.16E-04 5.51E-03 2.07 2.24E+ 00 0.919 1.68E-01 1.51E-01 0.010 7.89E-03
8 6.88E-05 8.78E-04 1.16E-02 2.07 1.54E+ 00 0.696 6.29E-01 5.56E-01 0.000 3.72E-03
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moderate ðP2Þ, andminor ðP3Þ damage, respectively, due to the earthquake intensity parameter I (could be

intensity or magnitude or any other parameter) can be calculated as:

P1; I ¼ 1�PðM � M0Þ ð8:67Þ
P2; I ¼ 1�P1; I�PðM � aM0Þ ð8:68Þ

P3; I ¼ 1�P1; I�P2; I ð8:69Þ
A damage probability matrix can then be obtained for different intensities of the earthquake.

The damage probability matrix is combined with the annual probability of occurrencePðIS � IÞ of an
earthquakes of different levels of intensity to obtain the annual probability of each damage state, known as

the damage index and is obtained as:

Pk ¼
XIU
I¼IL

P½IS � I�Pk; I k ¼ 1; 2; 3 ð8:70Þ

in which Pk is the damage index for the kth damage state; IL and IU are the lower and upper bounds,

respectively, of the earthquake intensity.Mashaly andDatta [16] used an empirical relationship to express

standard derivation su€g (cm/s2) of ground acceleration in terms of intensity of the earthquake. This

enables the PSDF of ground motion to be defined as a function of the intensity of the earthquake as:

su€ g
¼ 10

K*

I
3
� 0:5ð Þ

ð8:71Þ

in which

K* ¼ K 0 þ 0:5772

K 0 ; K 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnðg0TÞ

p
ð8:72Þ

Using attenuation laws such as that given by Equation 2.44 (Chapter 2) and a relationship between the

peak and rms values, sx€g can also be related to the magnitude of the earthquake.

Example 8.6

A pipe segment (of radius r0 and thickness t) is modeled as shown in Figure 8.13. It is assumed that the

pipe is subjected to the same (perfectly correlated) ground acceleration at all supports and is represented

by the double filter PSDF with: og ¼ 15:7 rad s� 1; Zg ¼ Zf ¼ 0:6; of ¼ 0:1og. The same attenuation

law used in the previous example is utilized to relate the magnitude of an earthquake with PGA. The

properties of the pipe are: E ¼ 2:1� 108 kNm� 2; r0 ¼ 0:685 m; t=r0 ¼ 0:0162; x ¼ 0:05;
rp ¼ 2500 kg m� 3 and L ¼ 70 m. The value of the spring stiffness Ks ¼ 8:417� 103 kNm� 1. Find

the damage probability matrix and damage indices for the displacement at the center of the pipe for

M ¼ 4� 8. Maximum allowable displacement (dmax) is prescribed as 150mm. Moderate damage is

15 m 15 m 15 m 15 m

1Δ 2Δ 3Δ
4Δ 5Δ sK

1θ 2θ

sK sKsK sK

Figure 8.13 A segment of a buried pipeline
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considered at displacement ¼ 0.7 dmax. The CDF of the magnitude of the earthquake is given by:

FMðM < mÞ ¼ 1� exp½ �bðm�m0Þ�
1� exp½ �bðmu �m0Þ� ; take b ¼ 1:5; mu ¼ 8; m0 ¼ 4

Solution: As the same PSDF of ground motion and the attenuation law as that of the previous example

problem are considered, the values of S0 for different values ofM remain the same as shown in Table 8.6.

ThePSDFof the displacement at the center of pipe shown in Figure 8.13 is obtained for the randomground

motion using the procedure given in Chapter 4. The response quantities of interest and the computation of

the damage probability matrix are shown in Table 8.7.

Annual damage index for major damage:

ðP1Þ ¼
X8
M¼4

ð8Þð11Þ ¼ 0:0917

Annual damage index for moderate damage:

ðP2Þ ¼
X8
M¼4

ð9Þð11Þ ¼ 0:172

Annual damage index for minor damage:

ðP3Þ ¼
X8
M¼4

ð10Þð11Þ ¼ 1:612

8.5.6 Simplified Probabilistic Risk Analysis of Structures

As discussed previously, it is practically impossible to consider all uncertainties in one analysis in a

rigorous way. The complexities involved are unsurmountable. Therefore, an attempt has been made by

Shinozuka et al. [18] to evolve a simplified procedure for seismic risk analysis of structures in whichmost

of the uncertainties are included in an approximate manner. The method is useful for a preliminary

estimate of the probability of failure of structures and can be readily used by practicing engineers. It is

widely practiced under the name of a PRA (probability risk analysis) procedure. The simplified PRA of

structures for an earthquake presented here is similar to that presented by Shinozuka et al. [18] except that

the random vibration analysis of the structures is replaced by an equivalent static lateral load analysis

Table 8.7 Results of computation of damage probability matrix

M sd g0
Eqn. 8.51

mD
Eqn. 8.65b

sD
Eqn. 8.65c

a 0
Eqn. 8.65a

b 0
Eqn. 8.65a

P1

Eqn. 8.67
P2

Eqn. 8.68
P3

Eqn. 8.69
PE
of M

4 0.0182 3.11 0.058 0.008 165.490 0.055 0.000 0.000 1.000 1.000
4.5 0.024 3.12 0.077 0.010 125.541 0.072 0.000 0.016 0.984 0.471
5 0.0317 3.12 0.102 0.013 95.047 0.096 0.006 0.328 0.666 0.221
5.5 0.0412 3.16 0.132 0.018 73.233 0.124 0.141 0.842 0.016 0.103
6 0.0552 3.14 0.177 0.023 54.621 0.166 0.914 0.086 0.000 0.047
6.5 0.0729 3.15 0.234 0.031 41.374 0.220 1.000 0.000 0.000 0.021
7 0.0962 3.16 0.309 0.041 31.364 0.290 1.000 0.000 0.000 0.009
7.5 0.127 3.16 0.407 0.054 23.758 0.383 1.000 0.000 0.000 0.003
8 0.1676 3.16 0.538 0.071 18.002 0.506 1.000 0.000 0.000 0.000

sd =Standard deviation of displacement at the centre. mD =Mean peak value of the displacement at the centre.
sD =Standard deviation of the peak displacement at the centre. PE=Probability of exceedance.
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using the risk consistent response spectrum to obtain the expected peak response. Themethod includes the

following uncertainties:

i. Variability of input ground motion (represented by a risk consistent spectrum) is included by a

random variable, F1. Its median value is taken as unity and logarithmic standard deviation b1 is

calculated as b1 ¼ ln r84=r50ð Þ; in which r84 and r50 are the responses of the structure for 84th

percentile and mean input response spectrums, respectively.

ii. Variability of the system parameters, including structural and soil properties used in the analysis, is

introduced by a random variable F2. Its median value is unity and b2 is calculated in a similar way as

above.

iii. Uncertainty involved inmodeling of the system and in the analytical method is included by a random

variable F3. Its median value is taken as unity and coefficient of variation may be taken between 0.2

and 0.3 [19].

iv. Uncertainty resulting from the actual simulation analysis being replaced by equivalent linear analysis

(or other approximate analysis) is included by the random variable F4 with unit median and the

coefficient of variation may be taken as 0.15.

v. Uncertainty in the capacity of the sections of the structure due to ductility (as non-linear analysis is

not performed) is included by a random variable F5. Its median value is taken as 0:6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p
where m

is the ductility factor and the coefficient of variation may be taken as 0.2 [19].

vi. Uncertainty in the overall capacity of the structure due to the multiple formations of plastic hinges is

included by a random variable F6 with a median value taken as 1.13, and the coefficient of variation

may be taken as 0.1.

vii. Uncertainty of material strength leading to variable section capacity is included by the mean section

capacity S, and a specified coefficient of variation.

Note that the coefficients of variation given above are taken from reference [19]. Depending upon

structures and the construction practices adopted in different countries, the values of these coefficients

may vary. These values are best obtained from the statistical analysis of collected data.

For an assumed value of the PGA, the base shear for the frame shown in Figure 8.6 is obtained with

the help of the risk consistent normalized response spectrum given in Figure 8.14. The fundamental time

period of the frame is obtained using themeanvalues of the properties of the frame. Furthermore, the base

shear is obtained for the 84th percentile response spectrum andb1 is computed as described in (i) as above.
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Figure 8.14 Risk consistent response spectrum
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In the next step, b2 is calculated by obtaining the base shear corresponding to the mean plus one

standard deviation value of the properties of the frame. Note that the 50th percentile response spectrum is

used to calculate the base shear.

In the third step, the equivalent lateral load for the frame is obtained for the base shear calculated in the

first step (for the 50th percentile response spectrum) and the response quantity of interest, for example, the

moment at a section X as shown in Figure 8.6 is obtained. The response (that is, the moment) RðaÞ for the
section is a random variable given by:

RðaÞ ¼ rðaÞF1F2F3F4 ð8:73Þ
inwhich rðaÞ is the computedmoment at the sectionX for the assumed value of the PGA (a);F1,F2,F3 and

F4 were defined earlier.

Similarly, the capacity for the section is a random variable, which is a product of three variables,

namely:

C ¼ S F5 F6 ð8:74Þ
in which S is the mean value of themoment capacity of the section calculated based on the mean values of

the material property with a coefficient of variation as b7; F5 and F6 were defined earlier.

The distributions of the random variables RðaÞ and C are log normal if all random variables as

described above are assumed to be log normal. Using FOSM, the probability of failurePf for the section is

given by:

Pf ¼ P½ðC�RðaÞÞ � 0� ¼ fð� bÞ ¼ 1�fðbÞ ð8:75Þ

in which b ¼
ln

C

RðaÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2lnR þ s2lnC

q ð8:76Þ

RðaÞ and C are the mean values of RðaÞ and C, respectively. For small values of s2lnR and s2lnC it can be

shown that:

slnR � CovðRÞ and slnC � CovðCÞ
Thus, the denominator of Equation 8.76 can be replaced by:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23 þ b24 þ b25 þ b26 þ b27

q

The following steps are adopted when performing the analysis:

i. Potential sections of the plastic hinges are identified for the expected mechanisms of failure of the

frame (partial or total). This is obtained by a pushover analysis of the frame. The section where the

last hinge is formed is noted (for example, X in Figure 8.6).

ii. Assume a value of PGA and obtain the equivalent lateral load.

iii. The load is applied to the frame, and moments at the potential sections for the plastic hinges are

obtained. If the moments are less than the mean values of the moment capacities of the sections, then

Pf is calculated for each section. Thevalue ofPf for the sectionXprovides the probability of failure of

the frame for the assumed value of PGA. If the moments at some sections are greater than their

moment capacities, then an incremental analysis is performedwith sequential formation of the plastic

hinges. For the last increment of loading, the Pf value is calculated for the section X.

iv. Steps (ii) and (iii) are repeated for increased values of PGA until the complete failure takes place for

the assumed mechanism of failure.

v. The probabilities of failure thus obtained are conditional probabilities with respect to the assumed

value of PGA.
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vi. Annual frequencies of exceedance of the PGAvalues are obtained separately from the seismic hazard

curve for the site as explained in Chapter 1.

vii. Using the hazard curve, a curve showing the variation of probability of failure of the frame with the

annual frequencyofexceedance isobtained.Eachpointon thecurveshows theannual frequencyof the

probability of failure of the frame corresponding to an assumed failure mode (partial or complete).

Example 8.7

For the frame, shown in Figure 8.15, obtain the fragility curve showing the variation of the probability of

failure of the frame with the PGA corresponding to an assumed failure mechanism (partial or complete).

Meanvalues ofEIb,EIc, andm are shown in the figure. The coefficients of variation forEIb,EIc, andm are

assumed to be the same and taken as 0.1. The coefficient of variation of the moment capacity of the

sections is assumed to be b7 ¼ 0:15. The normalized risk consistent spectrum to be used for analysis is

shown in Figure 8.14.

Solution: A pushover analysis is performed for the framewith mean values of the properties of the frame

as shown in Figure 8.15. From the push over analysis, the sectionwhere the last hinge that is formed for the

collapse of the frame is marked as X in the figure. To obtain the fragility curve, the probability of failure at

X for different assumed values of PGA is calculated. A sample calculation for PGA¼ 200 cm s–2 is shown

below.

Time period for the frame ðbased on mean values of the propertiesÞ ¼ 0:39 s

The corresponding spectral acceleration ðSaÞ50 ¼ 400 cm s�2; ðSaÞ84 ¼ 600 cm s�2

Base shear ðVÞ : ðVÞ50 ¼ 72:52 kN ðVÞ84 ¼ 107:28 kN

Load at different storeys ðPTÞ : ðPT Þ50 ¼ 46; 20:4; 5:12 kN

ðPTÞ84 ¼ 69; 30:6; 7:68 kN

An incremental analysis of the framewith the above loads is performed andmoments at X are obtained

as M50 ¼ 101:32 kNm and M84 ¼ 152 kNm.

b1 ¼ ln
M84

M50

� �
¼ 0:405

x

bEI

6 m

3 m

3 m

3 m

, m

Moment capacity of
columns=362 kN m

Moment capacity of
beams=209 kN m

cEI

cEI

cEI

cEI

cEI

cEI

bEI , m

bEI , m

7 22.51 10 N mbEI = ×

7 25.6 10 N mcEI = ×

6000 kgm =

Figure 8.15 A three-storey frame
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To calculate b2,M84 is determined using themean plus one standard deviationvalue of the properties of

the frame. Thus, b2 ¼ ln M84

M50

� �
¼ ln 105:

101

� � ¼ 0:039

For an assumed ductility of m ¼ 3, median value of F5 ¼ 0:6
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m� 1

p ¼ 1:34 and median value of

F6 ¼ 1:13 (given in step vi). Thus,

Rð200Þ ¼ M50 ¼ 101:32 kNm

C ¼ 361� 1:34� 1:13 ¼ 546:62 kNm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ln R þ s2ln C

q
¼ b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23 þ b24 þ b25 þ b26 þ b27

q
¼ 0:548

b ¼
lnC

ln Rð200Þ
b

¼ 3:072; Pf ¼ fð� bÞ ¼ 1:06� 10� 3

Following the above calculation procedure, Pf is determined for each assumed value of PGA. The

calculated values are shown in Table 8.8.. The fragility curve showing the variation of Pf with PGA is

shown in Figure 8.16.

Table 8.8 Results of computation of the probability of failure

PGA (cm s� 2) M50 ¼ R (kN m) C (kN m) ln C=R
� �

b Pf

0 0.000 546.63 0 0 0
50 25.33 546.63 3.072 5.599 1.08E-08
100 50.66 546.63 2.378 4.336 7.26E-06
150 75.99 546.63 1.973 3.597 1.6E-04
200 101.32 546.63 1.685 3.072 1.06E-03
250 126.65 546.63 1.462 2.666 3.8E-03
300 151.98 546.63 1.280 2.333 9.8E-03
350 177.31 546.63 1.126 2.052 2.0E-02
400 202.65 546.63 0.992 1.809 3.5E-02
450 227.97 546.63 0.874 1.594 5.5E-02
500 253.30 546.63 0.769 1.402 8.0E-02
550 279.0 546.63 0.672 1.226 1.1E-01
600 304.0 546.63 0.586 1.069 1.42E-01
650 329.0 546.63 0.508 0.925 1.77E-01
700 358.0 546.63 0.423 0.772 2.20E-01
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Figure 8.16 Fragility curve for the example frame
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Exercise Problems

(Use standard programs like MATLAB�, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

8.8 The three-storey frame shown in Figure 8.17 is designed using the normalized response spectrum

shown in Figure. 8.14. It is designed for a PGAof 0.3 g,which has 10%probability of exceedance in

50 years. Assuming themoment capacity of the column at the base and the load calculated from the

response spectrum to be a normally distributed random variable, find the probability of failure of

the column at the base. Coefficients of variation of themoment capacity and loads are assumed to be

0.15 and the mean value of the moment capacity of the column is assumed to be 362 kNm.

8.9 For the three-storey frame shown in Figure 8.17, find the threshold crossing probabilities of

maximum drift and the base moment for the El Centro earthquake, given the threshold crossing

values as 3.5mm, 1050 kNm, respectively.

8.10 For the frame shown in Figure 8.10 and the properties of the frame given in the problem in

Example 8.3, find the threshold crossing probability of the base moment for the El Centro

earthquake given that: (i) the threshold crossing value is 150 kNm; (ii) columns are stronger than

beams such that yielding take place in the beams; (iii) plasticmoment capacities of the beams (Mpb)

and columns (Mpc) are normally distributed random variables with mean and coefficient of

variation as 100 kNm, 360 kNm and 0.15, respectively; and (iv) yield rotation ¼ Mpbl=6EIb.
8.11 The three-storey frame shown inFigure 8.17 is subjected to a randomground excitation represented

by the double filter PSDF with og ¼ 15:7 rad s� 1; Zg ¼ Zf ¼ 0:6; of ¼ 0:1og. Find the proba-

bility of first excursion failure for the top displacement of the frame for a threshold value of 5mm.

Take the PDFof themagnitude of the earthquake and the attenuation lawof the region same as those

for problem in Example 8.5.

8.12 If the major damage criterion for the above frame is taken as first-storey drift exceeding 3.5mm

ðdmÞ and moderate damage as 0:75dm, find the damage probability matrix and damage indices

considering I ¼ 6� 12. Take the relationship between sx€g and I given by Equation 8.71 and

probability of exceedance of I given by Equation 1.33 (Chapter 1).

8.13 The three-storey frame shown in Figure 8.17 is subjected to uncertain groundmotion.Uncertainties

of the ground motion are represented by:

i. A point earthquake source and a line source as shown in Figure 8.18 with seismic properties as

given in the figure; lower bound magnitude for both sources are assumed to be 4 and b ¼ 1:5.

m

m

m

k

k

k

m =105 kg
8k 2.6 10  N/m= ×

Moment capacity of
column =1362 kN m

3 m

3 m

3 m

6 m

Figure 8.17 A three-storey shear frame
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ii. The site specific response spectrum is given by Equation 8.38 with the constants a, b and c as:

aðT1Þ ¼ � 1:5 bðT1Þ ¼ 0:3 cðT1Þ ¼ 0:15

aðT2Þ ¼ 0:8 bðT2Þ ¼ � 0:1 cðT2Þ ¼ 0:1

aðT3Þ ¼ 0:08 bðT3Þ ¼ � 0:05 cðT3Þ ¼ 0:04

slns ¼ 0:3

iii. Threshold values of displacement and base moment are 20mm and 1600 kNm.

Find the probabilities of failure of the frame for the top displacement and the base moment.

8.14 If the beams of the three-storey frame shown in Figure 8.17 are not infinitely rigid but have the

flexural rigidity of half of the column flexural rigidity and the floor mass is reduced to 2� 104 kg,

find the fragility curve showing the variation of probability of failure with PGA using the simplified

PRA procedure. Use the risk consistent response spectrum to be the same as that shown in

Figure 8.14. The mean value of the moment capacity of the beams is 300 kN m with coefficient

of variation as 0.15. Thevalue ofm is taken as 3.5. The coefficient of variation for themass and theEI

values of the frame is 0.1. Thevalues ofmass andEI values shown in the figure are theirmeanvalues.
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9

Seismic Control of Structures

9.1 Introduction

It is gradually being recognized that effectivemeans of protecting structures fromearthquake forces are by

way of using various methods of structural control. They are not only effective for mitigating earthquake

forces, but also are equally useful in controlling undesirable vibrations of structures produced due towind

and other dynamic excitations. In addition, there are a number of other factors that have emerged in recent

years that require the control of the structural response. These factors include increased flexibility of the

structural systems, increased safety levels, stringent performance level, and economic considerations. As

a result, research in the area of structural control has intensified since the 1980s and many structural

control methodologies have been developed, with some now being implemented in practice. Broadly,

methods of structural control can be classified as passive and active control methods. In the passive

control, the mass or the damping or stiffness or a combination of any two or all are modified by adding

some components into the structure. These components are actuated by the movements of the structure

and provide control forces according to their dynamic characteristics. No external source of energy is

required to activate the system. In the active control, an external source of energy is used to activate the

control system by providing an analog signal to it. This signal is generated by the computer following a

control algorithm that uses measured responses of the structure. Combination of these two methods of

structural control has been used to evolve semi-active and hybrid control methods. While methods of

structural control are applicable for all types of dynamic forces, their applications for protecting structures

from seismic forces and wind induced vibrations are challenging areas of study and research in civil

engineering. In this chapter, some of the widely used passive and active control methodologies for

earthquake applications will be discussed. At the end of the chapter, the more promising semi-active

controls of structures will be briefly presented.

9.2 Base Isolation

Base isolation of structures is one of the most popular means of protecting structures against earthquake

forces. It is a passive control device that is installed between the foundation and the base of the building.

For bridges, the base isolators are installed between the deck and the pier, as with bridge bearings. In

buildings, the base isolator protects the structure from earthquake forces in twoways: (i) by deflecting the

seismic energy and (ii) by absorbing the seismic energy. The seismic energy is deflected by making the

base of the building flexible (instead of fixed) in lateral directions, thereby increasing the fundamental

time period of the structure. As buildings with longer time periods attract less seismic force (Chapter 5),
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the isolation system deflects the seismic energy. In particular, high energy in the groundmotions at higher

mode frequencies are deflected. The seismic energy is absorbed by the isolator because of its non-linear

response to earthquake excitation. The (internal) force–displacement curve of isolators under sinusoidal

excitation exhibits hysteretic behavior and, therefore,much of the input energy to the isolators is lost in the

hysteresis loop. Because of these two properties of the isolators, they have become very attractive passive

control devices to be used in the control of seismic response of structures, especially the building

structures. Extensive research, both theoretical and experimental, has been carried out in the area of base

isolation of structures. As a result of these research projects, many base isolation devices have evolved and

implemented in practice. Generally, the base isolators can be grouped under (i) laminated bearings, and

(ii) friction bearings. Among the laminated bearings, laminated rubber bearing (LRB), and New Zealand

(NZ) rubber bearings are used extensively in practice. Of the friction type, elastic sliding bearings, friction

pendulum systems (FPS), resilient friction systems (R-FBI), and pure friction (P-F) systems are popular.

The characteristics of these isolators are briefly discussed below [1].

9.2.1 Laminated Rubber Bearing (LRB)

The basic components of the LRB are steel and rubber plates built into alternate layers (Figure 9.1a).

Generally, an LRB system exhibits high damping capacity, horizontal flexibility, and high vertical

stiffness. For low damping rubber bearings, a lateral force–deformation relationship is modeled as linear,

as shown in Figure 9.1b. A temperature independent model for the lateral stiffness of the bearing is given
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Figure 9.1 Laminated rubber bearing system: (a) section and elements; (b) idealized force deformation behavior for
low damping rubber; and (c) idealized force deformation behavior for high damping rubber
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by that at 15 �C, that is,

Kr ¼ GA

H
ð9:1Þ

in whichG, A, andH are the shear modulus, the cross-sectional area, and the total thickness of the rubber,

respectively. The vertical stiffness Kv is given by:

Kv ¼ aA
H

E0ð1þ 2kS21ÞEb

E0ð1þ 2kS21ÞþEb

� �
ð9:2Þ

where

S1 is the primary shape factor (10–15)

k is the correction modulus of rubber hardness (1–0.5)

E0 and Eb are the longitudinal and the bulk modulus of elasticity, respectively

a is the correction modulus for longitudinal elasticity (0.8–1).

The linear damping coefficient may be taken to be about 10%. For a high damping rubber bearing, the

equivalent damping is considerably increased due to the hysteretic effect as shown in Figure 9.1c. It could

be of the order of 15–20%.

9.2.2 New Zealand Bearing System

ANewZealand bearing is similar to a laminated rubber bearing, butwith a central lead core or rubber core

in order to increase the size of the hysteresis loop and, hence, to provide additional dissipation of energy

(Figure 9.2a). A typical idealized force–displacement relationship of lead–rubber bearing is shown in

Figure 9.2b. The initial stiffness Ku is given by:

Ku ¼ bKd in which b ¼ Ku

Kd

ð9:3Þ

and Kd is given by:

Kd ¼ CdðKr þKpÞ ð9:4Þ

(a)

Top cover plate

SteelRubber
Bottom cover plate

Lead

(b)

δ

Kd

Ku

Q

P

Figure 9.2 Lead rubber bearing (NewZealand system): (a) section and elements; and (b) idealized force deformation
behavior
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in which

Kr ¼ GA
H

Kp ¼ a Ap

H

Ap ¼ the area of the flow plug

a¼ the shear modulus of lead

Cd ¼
0:78 g�0:43

g�0:25

g�0:12

9>=
>;

g < 0:25

0:25 � g < 1:0

1:0 � g < 2:5

ð9:5Þ

in which g is the maximum shearing strain.

The yield force, Q, is given by:

Q ¼ CqspAp ð9:6Þ
in which sp is the yield shear stress of lead,

Cq ¼
2:04 g0:41

1:11 g0:145

1

9>=
>;

ðg � 0:1Þ
ð0:1 < g < 0:5Þ

ðg � 0:5Þ
ð9:7Þ

The equivalent stiffness (keq) and damping (xeq) for the linear analysis are given by

Keq ¼ Q

gH
þKd ð9:8Þ

xeq ¼
2

p

Q gH� Q

ðb�1ÞKd

� �

KeqðgHÞ2 ð9:9Þ

The size of the lead core, diameter (area), thickness, and number of the rubber layers and thin plates are

determined using the procedure given in reference [2]. For the convenience of the readers, the essential

formulae are given below:

9.2.2.1 Area of Rubber Layer

Maximum of sc ¼ PDLþ LL

A0

; gDLþ LL ¼ 6S
PDLþ LL

EcA1

� eb
3
; Asf ðreducedÞ ¼ KrH

G

� �
ð9:10aÞ

in which A0 and A1 are the areas of rubber layer, Asf is the load free area [2], g is the shear strain, S is the
shape factor, and eb is the elongation of rubber at break.

Area of lead plug : Ap ¼ Qd

fpy
ð9:10bÞ

inwhich fpy is the yield shear stress for lead. Thickness of each rubber layer (circular) can be obtained from

S ¼ loaded � area
load � free � area ¼

ðpd2=4Þ
ðpdÞt ¼ d

4t
ð9:10cÞ
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where t is the thickness of each rubber layer and d is the diameter of the rubber layer.

Number of rubber layers; N ¼ H

t
where H ¼ Sd

gmax

ð9:10dÞ

in which Sd is the design displacement and H is the total thickness of the rubber layers.

Thickness of steel shim plates ts � 2ðti þ tiþ 1ÞðDLþ LLÞ
AreFs

� 2 mm ð9:10eÞ

in which

ti and tiþ 1 are the thicknesses of the rubber layers at the top and the bottom of a steel plate

Are is the area of the steel plate

Fs is the shear yield strength of steel.

9.2.3 Resilient Friction Base Isolation (R-FBI)

The friction base isolator consists of concentric layers of teflon coated plates that are in friction contact

with one another, and it contains a central core of rubber (Figure 9.3a). It combines the beneficial effect of

friction dampingwith that of resiliency of rubber. The rubber core distributes the sliding displacement and

velocity along the height of the R-FBI bearing. The system provides isolation through the parallel action

of friction, damping, and restoring force, and is characterized by natural frequency ðobÞ, damping

constant ðxbÞ, and coefficient of friction ðmÞ. Recommended values of these parameters are

ob ¼ 0:5p rad s�1; xb ¼ 0:1, and 0:03 � m � 0:05. The force deformation behavior of the isolator is

shown in Figure 9.3b.

9.2.4 Pure Friction System

A pure friction (P-F) base isolator is based essentially on the mechanism of sliding friction (Figure 9.4a).

The horizontal frictional force offers resistance tomotion and dissipates energy. The coefficient of friction

depends on the nature of the surface over which the sliding takes place. The force–deformation behavior

of the isolator is shown in Figure 9.4b.

Peripheral rubber
           core

Sliding ringsBottom connecting
          plate

Central rubber
        core

Bottom cover plate

Top connecting
          plate

Top bolt hole
Top cover plate

Rubber cover

(a)

P

(b)

δ

Figure 9.3 Resilient friction based isolator system: (a) section and elements; and (b) idealized force deformation
behavior
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9.2.5 Elastic Sliding Bearing

This is principally composed of rubber layers, connective steel plates, slidingmaterial, a sliding plate, and

a base plate. The sliding material is set between the sliding plate and the connective plate as shown in

Figure 9.5(a and b). Under the lateral force, the shearing deformation is limited to the laminated rubber

(a)

Flange plateLaminated rubber

Connective steel plateSliding plate

Sliding material

Base plate

(b)

Flange plateLaminated rubber

Connective steel plateSliding plate

Sliding material

Base plate

δ

Ku

P

Q

(c)

Figure 9.5 Elastic sliding bearing: (a) round type; (b) square type; and (c) idealized force deformation behavior

(a)

mb

δ

P

(b)

δ

Figure 9.4 Pure friction system: (a) schematic diagram; and (b) idealized force deformation behavior
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until the yield force associatedwith sliding is exceeded.After the yield force has been reached, the bearing

assembly slides. Thus, the force–deformation curve takes the shape as shown in Figure 9.5c. The initial

stiffness is governed by Kr given by Equation 9.1.

The yield force,Q of the bearing is given byQ ¼ mW; whereW is the vertical force, andm has stress and
velocity dependency and is given by:

m ¼ ½0:0801� 0:437exp ð�0:005vÞ�s�0:33 ð9:11Þ
in which v is the velocity and s is the stress.

The equivalent stiffness is given by:

Keq ¼ Q

gH
ð9:12Þ

in which g is the maximum shearing strain of the rubber.

9.2.6 Friction Pendulum System (FPS)

The FPS consists of a concave plate, a slider, sliding material, and a dust proof cover as shown in

Figure 9.6a. It is based on the principle of pendulummotion and uses geometry and gravity to achieve the

desired seismic isolation. The force–deformation behavior of the isolator is shown in Figure 9.6b. The

secondary stiffness, K2 is given by:

K2 ¼ W

2R
ð9:13aÞ

R ¼ g
Td

2p

� �2

ð9:13bÞ

inwhichW is thevertical load andR is the spherical radius of the sliding surface, andTd is the target design

period. The yield force of the curved plane sliding bearing, Q is determined from

Q ¼ mW ð9:14Þ

Concave plate

Dust proof cover
Slider

Sliding material

Sliding surface

(a)

δ

P

K2

(b)

Q

Figure 9.6 Curved plane sliding bearing (FPS): (a) section and elements; and (b) idealized force deformation
behavior
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in which m is velocity and stress dependent. One of the empirical formulae to determine m is

given as:

m ¼ ½0:197�0:121 exp ð�0:009vÞ�s�0:57 ð9:15Þ
in which v is the velocity and s is the stress.

Equivalent stiffness is obtained as

Keq ¼ Q

gH
þK2 ð9:16Þ

9.3 Base Isolators and their Characteristics

The load deformation behavior of the isolator is obtained from the experimental test and is modeled for

theoretical analysis. The laboratory test is carried out under cyclic loading and the hysteresis loop

obtained from the experimental test is used to characterize the isolator stiffness and damping. The

isolator’s equivalent stiffness envelope and the equivalent damping for different displacement levels are

constructed from the experimental results for use in the design.

A general idealized load deformation curve for an isolator is shown in Figure 9.7a. An isolator is

termed a linear isolator if the equivalent stiffness envelope is a straight line, as shown in Figure 9.7b.

For a non-linear isolator, the equivalent stiffness envelope is not a straight line, but could be bi-linear

or tri-linear (Figure 9.7c). The equivalent stiffness (secant stiffness) varies with displacement, and can

be obtained for any displacement as shown in Figure 9.7c. Similarly, equivalent damping of a non-

linear isolator also varies with deformation level. The equivalent stiffness and damping of an isolator

can be computed by:

keq ¼ Fþ�F�

Dþ�D� ð9:17aÞ

xeq ¼
1

2p
area of loop

FmaxDmax

� �
ð9:17bÞ

in which D is the displacement shown in Figure 9.7a.

Typical variations of equivalent stiffness and dampingwith displacement are shown in Figure 9.8(a and

b). An isolator is designed to have a desired equivalent stiffness and damping characteristics. Empirical

expressions for keq and xeq depending upon the material properties and characteristics of the isolator are

also given in some texts [1,2]. Some of these expressions are given above.

Example 9.1

For a seven-storey building frame as shown in Figure 9.9, design the lead core laminated rubber bearings

that satisfy the required criteria for practical implementation and manufacturing. The response spectrum

to be used is shown in Figure 9.10. Take PGA¼ 0.36g and damping modification coefficient for 10%

damping as 0.8.

Solution: The total vertical load on the isolators¼ 1750 kN. Maximum vertical reaction ðRÞ is found
under the interior column after gravity load analysis (dead þ live)¼ 853.76 kN. Fixed base time period

ðTÞ of the frame is 0.875 s. A time separation of 3 is considered for the base isolated structure, that is,

Tb ¼ 3T ¼ 2:6 s.
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From the maximum vertical reaction R and Tb, the effective stiffness of the isolator is

Keff ¼ R

g

4p2

T2
b

¼ 508:25 kNm�1

From the given response spectrum shown in Figure 9.10, the design (maximum) displacement of the

isolator corresponding to the target time period is (for xeff ¼ 10%),

Sd ¼ SaT
2
b

4p2
¼ 0:186 m

Referring to Figure 9.11, the energy dissipation per cycle, WD can be approximately calculated by

assuming Q � Qmax for a very small post yield stiffness as [2]:

WD ¼ 2pKeffS
2
dxeff and WD ¼ 4QðSd �DyÞ
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Figure 9.7 Load deformation curve of isolator under cyclic loading: (a) hysteretic curve; (b) linear isolator; and (c)
non-linear (bilinear or trilinear, and so on.) isolators
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Figure 9.8 Variation of equivalent stiffness and damping with displacement: (a) stiffness variation; and (b) damping
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Beam dimensions 50x30 cm
Column dimensions 50x50 cm
Bay width 5 m
Storey height 3 m
Live load on beams 5 kN/m
Dead load on beams 20 kN/m

Figure 9.9 Properties of the base isolated frame
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Figure 9.10 Acceleration response spectrum for 5% damping

A2

A3 A1

A2

Dy

A3A1Q

Qmax

D

Fo
rc

e

Displacement

Figure 9.11 Idealized force–deformation plot for the isolator

in which Dy ¼ Q=Ku�Kd andKu � 10Kd ; Ku and Kd are the pre- and post-yield stiffness.

Neglecting Dy, a first approximation for the short term yield force QD is

QD ¼ WD

4Sd
¼ p

2
KeffxeffSd ¼ 14:86 kN

As Sd ¼ gH, the post yield horizontal stiffness can be obtained as (Equation 9.8):

Kd ¼ Keff�QD

Sd
¼ 428:42 kNm�1

Using the expression for Dy and the approximate value of Ku as given above, Dy can be calculated as:

Dy ¼ QD

9Kd

¼ 0:00385 m and Fy ¼ Ku 	 Dy ¼ 16:51 kN
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Correcting the first estimate of QD for Dy, gives

Q ¼ WD

4ðSd �DyÞ ¼ 15:71 kN

9.3.1 Geometric Design

Assuming the material properties to be:

E ¼ 4:45	 103 kNm�2; eb ¼ 500%; G ¼ 1:06	 103 kNm�2; k ¼ 0:57ðmodification factorÞ
Design shear strain gmax ¼ 50%; effective damping ratio xeff ¼ 10%

Yield strength of lead core fpy ¼ 8:82	 10 3 kN m� 2

Allowable normal stress sc ¼ 7:84	 10 3 kN m� 2

Yield strength of steel plates F y ¼ 2:74	 10 5 kNm�2; Fs ¼ 0:6 Fy ¼ 1:65	 105 kNm�2

Using Equations 9.10a–9.10e

The lead plug area;Ap ¼ Q

fpy
¼ 1:72	 10�3 m2; dp ¼ 0:047 m

Use dp ¼ 5 cm

Total height of the rubber layers;H ¼ Sd

gmax

¼ 0:37 m

Select the shape factor in such a way that Eð1þ 2kS2Þ=G > 400; S> 9.09; use S¼ 10. The compression

modulus of rubber-steel composite,

Ec ¼ Eð1þ 2kS2Þ ¼ 511750 kNm�2:

The effective area A0 of the bearing based on the allowable normal stress under the vertical load case:

sc ¼ PDLþ LL

A0

� 7:84 kNm�2; A0 ¼ 0:11 m2

Effective area A1 from the shear strain condition for the vertical load case:

gDLþ LL ¼ 6S
PDLþLL

EcA1

� eb
3

A1 > 0:06 m2

Kd is related to Kr by

Kd ¼ Kr 1þ 12
Ap

A0

� �
; Kr ¼ 360:16 kNm�1

Area of the rubber layer;A ¼ KrH

G
¼ 0:126 m2; d ¼ 0:40 m

b ¼ 2 cos�1 Sd

d

� �
¼ 2:18; Are ¼ d2

4
ðb� sin bÞ ¼ 0:055 m2

A ¼ max ðA0;A1;A2Þ ¼ 0:11 m2 ðA2 is the same as AreÞ
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d ¼ 0:32 m; use d ¼ 0:50 m

A ¼ 0:196 m2

Single layer thickness : S ¼ d2=4

pdt
¼ d

4t
; t ¼ 1:25 cm

Number of layers : N ¼ H

t
¼ 29:8; useN ¼ 30

Steel plate thickness,

ts � 2ðti þ tiþ 1ÞðDLþ LLÞ
AreFs

� 2 mm

in which ti and tiþ 1 are the thicknesses of the rubber layers on the top and the bottom of the steel plate.

Use ts ¼ 2:5 mm

Total height of the isolator, h ¼ HþN 	 ts þ 2 (cover plate thickness)¼ 41.49 cm.

Diameter of the cover plate is taken as 60 cm> diameter of the rubber core (50 cm).

According to the design shown above, the final dimensions of different components of the base isolator

are shown in Figure 9.12.

9.4 Analysis of Base Isolated Buildings

For the analysis of base isolated buildings, two types of base isolation are considered namely,

base isolation at the isolated footings (Figure 9.13) and base isolation with a base slab

(Figure 9.14a).

For base isolation at the isolated footings, the bottom end of the column is idealized as shown in

Figure 9.13b. The lateral non-linear springs have the force–deformation behavior under cyclic loading the

same as that of the isolator. For base isolation with a raft, three reactive forces are assumed to act

corresponding to the three degrees of freedom at the center of mass of the raft. These three reactive forces

are the resultants of the forces developed in each isolator due to the deformations of the isolators produced

by the basemotion (Figure 9.14b). These three reactive forcesmay ormay not be coupled depending upon

the spatial distribution and characteristics of each isolator. The lower ends of the columnsmay be assumed

to be fixed against rotation about the horizontal axes.

60 cm
50 cm

h=49.7 cm

2.5 cm thick
 steel cover plate

5 cm lead core

2.5 mm thick steel plates

1.25 cm thick
rubber layers

Figure 9.12 Design dimensions of the lead core rubber bearing
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9.4.1 Analysis of Base Isolated Buildings with Isolated Footings

Since the force–deformation behavior of the isolators can mostly be idealized as bilinear, the backbone

curve of the isolator at the base may be considered as that shown in Figure 9.15b. The other possible

variations of the backbone curves are shown in Figure 9.15(c and d). The equation of motion for a multi-

storey 2D frame with base flexibility can be written in incremental form of

mss msb

mbs mbb

� �
D__vts
D__vtb

� �
þ css csb

cbs cbb

� �
D _vts

D_vtb

( )
þ kss ksb

kbs kbb

� �
Dvts
Dvtb

( )
þ 0 0

0 kbb

� �
Dvs
Dvb

� �
¼ 0

0

� �

ð9:18Þ
inwhichmss andmbb are the diagonalmatrices corresponding to the non-support (vs) and base (vb) degrees

of freedom, respectively. In a similar way, elements of the damping and stiffness matricesmay be defined.

kbb is a diagonal or a non-diagonal matrix of the size equal to the number of base degrees of freedom.

Elements of thematrix are determined from the tangent stiffness of the base isolators corresponding to the

displacements of the lateral degrees of freedom.

Isolator

Foundation

(a)

Cb
1

Cb
2

Cb
1

Cb
2

(b)

Kb
1

Kb
2

Kb
2

Kb
1

Figure 9.13 Base isolation at the isolated footings: (a) isolators in position; and (b) mathematical model with
effective stiffness and damping
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The total incremental displacements are given by:

Dvts ¼ Dvs þDvsg ð9:19aÞ
Dvtb ¼ Dvb þDvg ð9:19bÞ

in which Dvs and Dvb are the dynamic displacements with respect to the support; Dvg are the ground

displacements, and Dvsg are the quasi-static displacements produced at the non-support degrees of

freedom (DOF) due to the movements of the support DOF. Substituting for Dvts and Dv
t
b in Equation 9.18

and putting msb and mbs as zero, the resulting equations of motion become

mss 0

0 mbb

2
4

3
5 Dm€s

Dm€b

8<
:

9=
;þ

css csb

cbs cbb

2
4

3
5 D _vs

D_vb

8<
:

9=
;þ

kss ksb

kbs kbb þ kbb

2
4

3
5 Dvs

Dvb

8<
:

9=
;

¼ �
mss 0

0 mbb

2
4

3
5 Dm€sg

Dm€g

8<
:

9=
;�

css csb
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Figure 9.14 Base isolation with a raft: (a) isolators in position; and (b) based degrees of freedom
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Equation 9.20 may be split into two equations:

mssDm€s þ cssD _vs þ csbD _vb þ kssDvs þ ksbDvb ¼ �mssDm€sg�cssD _vsg�csbD_vg�kssDvsg�ksbDvg ð9:21Þ
mbbDm€b þ cbsD _vs þ cbbD_vb þ kbsDvs þðkbb þ kbbÞDvb ¼ �mbbDm€g�csbD _vsg�cbbD_vg�kbsDvsg�kbbDvg

ð9:22Þ

Equation 9.21 can be written as:

mssDm€b þ cssD_vs þ kssDvs þ ksbDvb ¼ �mssDm€sg ¼ �mssrDm€g ð9:23aÞ
in which

r ¼ �k�1
ss ksb ð9:23bÞ

and csb, that is, the coupling term in the damping matrix between support and non-support degrees of

freedom, and the effect of damping terms on the right-hand side of the equation are ignored as explained in

Chapter 3.

By considering kbsDvsg þ kbbDvg ¼ 0 for the quasi-static analysis of the superstructure due to the

movement of the supports (isolators not undergoing any dynamic motion), Equation 9.22 can be

written as:

mbbDm€b þ cbbD _vb þ kbsDvs þðkbb þ kbbÞDvb ¼ �mbbDm€g ð9:24Þ

Vb

Fb

(a)

Vb

Fb

(b)

Pre

Post

Vb

Fb

(c)

Vb

Fb

(d)

Figure 9.15 Backbone curves for the isolators: (a) linear; (b) bilinear; (c) elastoplastic; and (d) non-linear
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Equations 9.23a and 9.24 can now be combined to give

mss 0

0 mbb

� �
Dm€s
Dm€b

� �
þ css 0

0 cbb

� �
D _vs

D_vb

� �
þ kss ksb

kbs kbb þ kbb

� �
Dvs
Dvb

� �
¼ � rmss

mbb

� �
Dm€g ¼ pðtÞ

ð9:25Þ

in which cbb is the linear damping of the isolator. In many problems, cbb is neglected, and therefore the

damping matrix consists of the damping matrix of the superstructure. Furthermore, when the ground

motion is assumed to be the same for all supports, the influence coefficient matrix becomes a vector of

unity. Then, the right-hand side of Equation 9.25 becomes

pðtÞ ¼ � mss 0

0 mbb

� �
fIgDv€g ð9:26Þ

in which Dv€g is the same ground acceleration at all supports.

9.4.2 Method of Solution

For buildings, the ground motion is generally assumed to be the same for all supports, and therefore

Equations 9.25 and 9.26 are solved to find the response of base isolated buildings. The solution of the

incremental equation of motion provides vs and vb. In order to obtain the solution, the incremental

equations are solved in the same way as explained in Chapter 6. At each incremental step, kbb is only
changed depending upon the displacements of the isolators; the rest of the stiffness sub-matrices

remain the same as the building frame does not enter into an inelastic state. As the force–displacement

behavior of most of the isolators can be idealized as bilinear (including friction isolators), the method

of solution outlined in Chapter 6 can be used, with the only change being that beyond the initial

yielding, kbb is not taken equal to zero but is set to a value depending upon the post- to pre-yielding

ratio ð< 1Þ.
For theNZ system,which does not exhibit bilinear hysteresis, the samemethod of solutionmay be used.

During loading, the tangent stiffness of the isolator at the beginning of the increment is used for the

incremental time step. During unloading, the initial tangent stiffness of the isolator is used over the

incremental time step. Iterations may be required at an incremental time step when the transition from

loading to unloading takes place. The procedure is described in Chapter 6.

Example 9.2

The same building frame as shown in Figure 9.9 is subjected to the El Centro earthquake. The columns of

the frame are connected to the isolators resting on isolated footings. The backbone curve, that is, the

envelope curve showing the force–displacement behavior of the isolators is shown in Figure 9.16. Obtain

the time histories of the top displacement of the frame, the base isolator displacement, and the base shear

for the right outer column.

Solution: As no moment is transferred to the isolator, the bases of the columns resting on the isolator are

assumed to be hinged. Themass of the isolators is taken to be negligible. The stiffness matrix of the frame

corresponding to only the sway degrees of freedom is given by:

K ¼ Kss Ksb

Kbs Kbb

� �
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K ¼ 105x

1:492

�1:711 3:421 sym

0:281 �1:992 3:421

�0:085 0:313 �1:742 2:84

�0:172 0:221 �0:221 �0:96 2:281

0:201 �0:258 0:258 0�0:587 �0:962 3:092
�0:004

0

0:006

0

�0:006

0

0:231

0

0�0:198

0

�1:822

0

2:281

�0:431

�����������������������
0:431

2
6666666666666666664

3
7777777777777777775

kNm�1

In forming the abovematrix, it is assumed that all columnbasesmoveby the same amount at every instant

of time, t. Therefore, there is effectively one base degree of freedom at the base. The stiffnessmatrix for the

isolated structure is obtained by adding the total stiffness of the isolators to the last diagonal term.Note that

this added stiffness varieswith thedisplacement according to the loaddisplacement behavior of the isolator.

Fundamental time period of fixed base building is computed to be 0.875 s.

Fundamental time period of the isolated structure is assumed to be 2.6 s.

Damping of the isolator is assumed to be 10%.

The Css matrix for the structure is obtained by assuming Rayleigh damping with coefficients

(determined using the first two modes of the structure having K as Kss) as a ¼ 0:6758; b ¼ 0:00267.
The C matrix of the isolated structure is obtained as:

C ¼ Css 0

0 Cbb

� �

C ¼ 104x

1:9951

�0:0003 1:9952 sym

0:0001 �0:0004 1:9952

0 0:0001 �0:0003 1:9952

0 0 0 �0:0002 1:9952

0 0 0 �0:0001 �0:0002 1:9952

0 0 0 0 0 �0:0003 1:9952

0 0 0 0 0 0 0 8:10

2
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3
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Figure 9.16 Backbone curve of the isolator
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Cbb is the effective damping of the isolator for linear analysis. In the case of non-linear analysis, the

damping of the isolators is generally taken as that provided by the hysteretic effect. Thus, once the

backbone curves of the isolators are specified for non-linear analysis, theCbb part of the matrixC is set to

zero.

The equation of motion given by Equations 9.25 and 9.26 are solved using numerical integration,

explained in Chapter 6. Bi-direction interaction of yielding of isolators is not considered. Here, the

integration is performed using SAP 2000 with Dt ¼ 0:02 sec. The required SAP inputs are

1. Properties of the frame.

2. End connection of the columns with the isolators.

3. Backbone curves of the isolators (force versus displacement envelope curve) in terms of initial

stiffness, yield force, and post-yield stiffness ratio.

4. The time history of ground acceleration.

The isolators are placed just below the columns as shown in Figure 9.17.

The time histories of the uncontrolled and controlled (isolated) top floor displacements are shown in

Figure 9.18. It is seen from the figure that there is
46% reduction in top floor displacement. Figure 9.19

compares the time histories of controlled and uncontrolled base shears of the right outer column. It is seen

from the figure that there is 80% reduction in the base shear. Figure 9.20 shows the time history of isolator

displacements (all isolators have the same time histories). The maximum base displacement is 6.3 cm.

9.4.3 Analysis of Base Isolated Building with Base Slab

A model of a base isolated building with a base slab is shown in Figure 9.14a. The base slab rests over a

number of isolators. All isolators may not have the same load-deformation behavior. Therefore, even

under unidirectional ground motion, the base slab undergoes three motions at the base as shown in

Figure 9.14b. The restoring action to these three motions are provided by the base isolators. The dynamic

degrees of freedom of the superstructure are defined as shown in Figure 9.14a. The equations of motion

Figure 9.17 Model of the base isolated frame
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take the form

Mm€t þC _vþKv ¼ 0 ð9:27Þ
Mbm€bg þC_vb þR�V ¼ 0 ð9:28Þ

in which M, C, and K are, respectively, the mass, damping, and stiffness matrices corresponding to

the dynamic degrees of freedom of the superstructure; v is the relative displacement vector of the

superstructure with respect to the base slab; vb is the vector of the displacement of the base slab due

to the displacement of the isolators;R is the restoring force vector provided by the isolators; andV, vt and
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Figure 9.20 Time history of displacement of the base isolator
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vbg are defined by:

V ¼ C _vþKv ð9:29Þ
vt ¼ vþ Ibvb þ Ivg ð9:30aÞ
vbg ¼ vb þ Ivg ð9:30bÞ

Substituting for vt and vbg in Equations 9.27 and 9.28, the equations of motion take the form

Mm€þC _vþKv ¼ �MIm€g�MIbm€b ð9:31Þ
Mbm€b þCb _vb þR�V ¼ �MbIm€g ð9:32Þ

in which I and Ib are appropriate influence coefficient matrices/vectors; for a two component earthquake

m€g ¼ ½m€gx; m€gy�, and for a single component earthquake m€g is a scalar. The restoring force vector R is

obtained from the force–deformation behavior of the isolators. The restoring forces Fxi and Fyi of the ith

isolator are given by the relationship

Fxi

Fyi

� �
¼ aKoi

uxi

uyi

� �
þð1�aÞKoiqi

zxi

zyi

� �
ð9:33Þ

In abbreviated form, Equation 9.33 may be written as:

Fi ¼ aKoiui þð1�aÞKoiziqi ð9:34Þ
in which uxi and uyi are the lateral displacements of the ith isolator; zxi and zyi are the hysteretic

displacement components of restoring forces in the x- and y-directions, respectively; a is the post- to pre-
yielding stiffness ratio; Koi is the initial stiffness¼Qi=qi; Qi and qi are the yield force and yield

displacement of the ith isolator, respectively; zxi and zyi are the hysteretic displacement components and

satisfy the following coupled non-linear differential equations:

zi ¼ Gi _ui ð9:35aÞ

Gi ¼ A�bsgnð _uxiÞ zxij jzxi�tzxi2 �bsgnð _uyiÞ zyi
�� ��zxi�tzyizxi

�bsgnð _uxiÞ zxij jzyi�tzxizyi A�bsgnð _uyiÞ zyi
�� ��zyi�tzyi2

� �
ð9:35bÞ

in which b, t, and A are the parameters that control the shape and size of the hysteresis loop and sgn

denotes signum function.

By properly selecting the parametersQ; q; a; b; t; and A, the force–deformation behavior of different

types of isolators may be modeled. The sum of the initial stiffness of the isolators corresponding to the

base degrees of freedom (Figure 9.14b) is

Kbx ¼ Kby ¼
X
i

Koi ð9:36Þ

Kby ¼
X
i

Koix
2
i þKoiy

2
i ð9:37Þ

The uncoupled base isolation frequencies of the isolator based on initial stiffness are

obx ¼ oby ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KbxP
j

mj þMb

vuut ð9:38Þ

oby ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KbyP
j

mjr
2
j þMbr

2
b

vuut ð9:39Þ

inwhich j is the floor number;mj is the floormass;Mb is the basemass; rj is the radius of gyration for the jth

floor mass; and rb is the radius of gyration of base mass. The restoring force vector for the three base
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degrees of freedom changes with the isolator displacements, which are governed by Equation 9.35a. As

a result, the equations of motion are solved in incremental form. The incremental equations may be

written as:

M Dm€þ IbDm€bf gþCD _vþKDv ¼ �MIDv€g ð9:40Þ
MbDm€b þCbD_vb þDR�DV ¼ �MbIDv€g ð9:41Þ

Because the isolator stiffness change with displacements, and also during loading and unloading, DR
over the increment is obtained based on the tangent stiffness of the isolator and a pseudo force vector. In

general, DR can be split into two parts, that is,

DR ¼ KtDvb þDRs ð9:42Þ

Kt and DRs are given by

Kt ¼
X
i

TT
i RtiTi ð9:43Þ

in which

Rti ¼ diag ðaKoi;aKoi;Þ ð9:44Þ

Ti ¼
1 0 �yi

0 1 xi

� �
ð9:45Þ

where xi and yi are the x and y coordinates of the ith isolator.

Similarly,

DRs ¼
X
i

TT
i RsiTi ð9:46Þ

in which

Rsi ¼ diag ½ð1�aÞqKoiDzxi; ð1�aÞqKoiDzyi� ð9:47Þ
As the computation of DR involves the hysteretic displacement component Dz of each isolator for

incremental displacement vectorDvb, an iterative procedure is required at every increment of the solution.

The steps of the procedure are summarized at the end of this section [3].

To solve Equations 9.40 and 9.41, Newmark’s method is used with incremental vector Dm€, and D _v
given as:

Dm€¼ a0Dvþ a1 _vðtÞþ a2m€ðtÞ ð9:48Þ
D_v ¼ b0Dvþ b1 _vðtÞþ b2m€ðtÞ ð9:49Þ

in which

a0 ¼ 6

ðDtÞ2 ; a1 ¼ � 6

Dt
; a2 ¼ �3; b0 ¼ � 3

Dt
; b1 ¼ �3; b2 ¼ �Dt

2

Similarly, Dm€b and D_vb can be obtained in terms of Dvb, _vbðtÞ, and m€bðtÞ; note that _vðtÞ, _vbðtÞ, and so on,
denote velocities at the previous time station.

Using Equations 9.48 and 9.49, Equations 9.40 and 9.41 can be written as:

Kvv Kvvb

Kvbv Kvbvb

� �
Dv

Dvb

� �
¼ DPv

DPvb

� �
ð9:50Þ
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in which

Kvv ¼ a0Mþ b0CþK ð9:51Þ
Kvvb ¼ a0IbM ð9:52Þ

Kvbv ¼ �boC�K ð9:53Þ
Kvbvb ¼ a0Mb þ b0Cb þKt ð9:54Þ

DPv ¼ �MIDm€g�½a1Mþ b1C� _vðtÞ�½a2Mþ b2C�m€ðtÞ�a1MIb _vbðtÞ�a2MIbm€b ðtÞ ð9:55Þ
DPvb ¼ �MbDm€g�½a1Mb þ b1Cb� _vbðtÞ�½a2Mb þ b2Cb�m€b ðtÞþ b1C _vðtÞþ b2Cm€ðtÞ�DRs ð9:56Þ

9.4.3.1 Iteration at Each Time Interval

In order to solve the incremental Equation 9.50 to obtainDv andDvb,DRs is required. The computation of

DRs involvesDz for the time intervalDt. The Runga–Kutta method is employed to obtainDz iteratively as
given below.

i. Assume ðDzÞj ¼ 0 in iteration number j¼ 1.

ii. Substitute ðDzÞj in Equations 9.46 and 9.47 and solve Equation 9.50 for Dv and Dvb.
iii. Calculate velocity vector _vbðtþDtÞ.
iv. Compute ðDzÞjþ1 for each isolator by solvingEquation 9.35 using theRunga–Kuttamethod using the

following steps:

Dzi ðfor x and yÞ ¼ Koi þ 2K1i þ 2K2i þK3i

6
ð9:57Þ

Koi ¼ DtGðziÞTT
i _vbðtÞ ð9:58Þ

K1i ¼ DtG zi þ K0i

2

� �
TT
i _vb tþ Dt

2

� �
ð9:59Þ

K2i ¼ DtG zi þ K1i

2

� �
TT
i _vb tþ Dt

2

� �
ð9:60Þ

K3i ¼ DtG zi þ K2i

3

� �
TT
i _vbðtþDtÞ ð9:61Þ

in which _vbðtþDt=2Þ is obtained by interpolation.

v. Iteration is continued until convergence is reached. The convergence criterion is specified for each

bearing as:

ðDziÞjþ1

��� ���� ðDziÞj
��� ���

zm
� tolerance ð9:62aÞ

zm ¼
ffiffiffiffiffiffiffiffiffiffiffi
A

bþ t

s
ð9:62bÞ

in which zm is the maximum value of the hysteretic displacement of the isolator; A, b, and t are
defined earlier.

vi. With Dzi known, DRs can be obtained from Equations 9.46 and 9.47.

After the incremental displacement vectors Dv and Dvb are obtained, DR is obtained from Equation 9.42

and vðtþDtÞ, vbðtþDtÞ, RðtþDtÞ, ziðtþDtÞ, and ith isolator forces are computed.
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The advantage of modeling the isolator force–deformation behavior by Equations 9.34 and 9.35 is that

bidirectional interaction on yielding of isolators for a 3D solution can be included for all cases, that is,

bilinear, elasto-plastic, perfectly plastic (friction isolator), and purely hysteretic types. If bidirectional

interaction is ignored, then off-diagonal terms of Equation are set to be zero.

Example 9.3

The 3Dmodel of the seven-storey building frame shown in Figure 9.21 is base isolated using a base slab at

the base of the columns. The arrangement of the isolators is also shown in the same figure. The backbone

curves of the isolators in both directions are the same and are shown in Figure 9.16. Find the time histories

1 1

2

2
(a)

x
y

θ

A

5 m5 m5 m

4 m

4 m

Beam dimensions 40x30 cm
Column dimensions 30x30 cm
Slab thickness 10 cm
Storey height 3 m
Live load on beams 10 kN/m
Modulus of elasticity 2.48    107 kN/m2×

x

y

(b)

x
y

(c)

Figure 9.21 3D frame and its properties: (a) plan; (b) frame elevation 1-1; and (c) frame elevation 2-2
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of displacements of column A at the top floor level and at the base slab for a two-component earthquake.

Take x€g as the El Centro earthquake; and y€g¼ 1=2x€g. Ignore bi-directional interaction of the yielding

of isolators.

Solution: The ends of the columns are assumed to be rigidly connected to the base slab. The slab has

3 DOF at the center of mass as shown in Figure 9.21. The displacements of the isolators in the x-

and y-directions relative to the foundation are governed by the motion of the slab. If the isolators

are not symmetrically arranged (geometrically and characteristics wise) about the center of mass,

then additional eccentricities at the level of the slab are produced at each time step due to

this effect.

As bilinear interactions onyielding of the isolators are ignored here, the problem is solvedby using SAP

2000 (which cannot take this interaction into account). Note that the base slab is modeled as a rigid

diaphragm. The isolators are placed below the rigid diaphragm and beneath each column. If bilinear

interaction is included, then a computer code has to be developed for the iterative method presented in

Section 9.4.3.

Figure 9.22(a and b) shows the time histories of responses of the column at the top floor level. The

figures also show the responses of the fixed-base structure. It is seen that there is 28% reduction in top

displacements (x- and y-translations).
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Figure 9.22 Comparison between controlled and uncontrolled displacements of the column at the top floor level:
(a) x-direction; and (b) y-direction
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Figure 9.23(a and b) shows the time histories of displacements at the base of the column. It is

seen from the figures that maximum base displacements in the x- and y-directions are 0.026 and

0.0113m, respectively. As the building is symmetric and is supported on a symmetrically placed

isolator having the same characteristics, the building vibrated along the x- and y-directions

without any torsional coupling. As expected, the base movement in the y-direction is less than that

in the x-direction.

The force–deformation behaviors of the isolator A in the x- and y-directions for the entire duration

of the earthquake are shown in Figure 9.24. It is seen from the figure that the hysteretic loop for the

x-direction is bigger than that for the y-direction.

9.5 Design of Base Isolated Buildings

The design of base isolated buildings consists of three steps, namely: (i) design of isolator; (ii) design of

base isolated building; and (iii) checking of the design by non-linear time history analysis. The last step

ensures that the design of base isolator and base isolated building satisfy the desired criteria. Thus, in

principle, iterations are involved through steps (i) and (ii) and finally, through steps (i), (ii), and (iii). The

iterations are explained in subsequent sections.

The design of an isolator is aimed at finding the required (equivalent) stiffness and damping of the

isolator. With a non-linear isolator, which is more common in practice, both parameters depend upon the

displacement of the isolator. For design purposes, equivalent stiffness is taken as the secant stiffness

corresponding to the desired displacement level. In a preliminary design, estimates of the equivalent

stiffness and damping of the isolator are obtained for a given design criterion. The values of these

parameters are successively improved by iteration.
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Figure 9.23 Time histories of displacements of the base of the column: (a) x-direction; and (b) y-direction
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9.5.1 Preliminary Design (Design of Isolator and Initial Sizing
of the Isolated Structure)

For the preliminary design, the superstructure is assumed to be a rigid blockmounted on the isolator so that

isolator period can be determined by considering it as a single degree of freedom system.A bi-spectrum is

used for the design of the isolator. This spectrum (that is, plot of spectral acceleration versus spectral

displacement) is obtained by combining the acceleration response spectrum and the displacement

response spectrum. Time period (T) axis being common for both, any point on the bi-spectrum denotes

a set of compatible spectral displacement and spectral acceleration, and a corresponding time period.Abi-

spectrum is shown in Figure 9.25.

Many criteria could be used for the design of the isolator. However, the following three criteria are

generally used: (i) good separation of time periods between the fixed base structure and the base isolated

structure; (ii) specified maximum displacement of the isolator; and (iii) specified maximum spectral

acceleration of the isolator.
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Figure 9.24 Hysteretic behavior of the isolator A: (a) for x-direction; and (b) for y-direction
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For the first criterion, the fundamental period (T) of the superstructure as a fixed base is calculated. The

isolator period is then obtained as nT so that there is a good separation between the two periods. Typically

n is kept around 3–4 and the isolator period is kept above 2 s (as per UBC). Once the time period of the

isolator is decided and an equivalent damping of the isolator is assumed, the maximum isolator

displacement and the absolute acceleration (spectral acceleration) are obtained from the bi-spectrum,

as shown in Figure 9.25. An approximate base shear for the isolated building can be calculated from the

spectral acceleration and the totalmass of the superstructure. It is possible then to see howmuch reduction

is achieved in the base shear of the isolated building as comparedwith the fixed base structure by providing

the isolator. The equivalent stiffness of the isolator is obtained as Keq ¼ 4p2M=ðnTÞ2 in which M is the

total mass of the building.

A preliminary design for the superstructure (sizing) can be carried out by equally distributing the base

shear at all floor levels to obtain the equivalent lateral load. This means that the fundamental mode shape

of the isolated structure is taken as unity along the height. The lateral load analysis for the preliminary

design of the superstructure may be carried out as per the code provision using 2D or 3D idealization and,

if necessary, by incorporating the provision for torsion. For the analysis, the base of the frame is either

fixed against rotation or is hinged, vertical motion is restrained and lateral movements are controlled by

lateral springs having stiffness equal to the isolator stiffness. If the column ends are connected to isolated

footings resting on isolators, then bases are idealized as hinged. If the columns are connected to the base

slab, the bases may be fixed against rotation.

For the second criterion, the maximum permissible displacement of the isolator is stipulated from

practical considerations. Once the maximum isolator displacement is known, it is possible to obtain the

spectral acceleration and the isolator time period from the bi-spectrum, as shown in Figure 9.26 for an

assumed value of the equivalent damping of the isolator. The time period is checked against the code

provision. With the time period being known, the equivalent stiffness of the isolator can be calculated

as before. The preliminary design of the superstructure using lateral load analysis is carried out as

described previously.

The third criterion is generally required for buildings that house sensitive equipment and machines

requiring stringent control on the floor acceleration. Acceleration control may be required for human

comfort as well. For the third criterion, themaximum isolator displacement and time period of the isolator

are obtained as shown in Figure 9.27 for an assumed value of the equivalent damping.With the time period

known, the equivalent stiffness of the isolator and the preliminary design of the superstructure are

obtained as before.

After the preliminary design of the frame and isolators are complete, a response spectrum analysis of

the base isolated structure is carried out in order to obtain a better estimate of the isolator displacements.
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Figure 9.25 Use of design bi-spectrum for isolator design (first criterion)
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9.5.2 Response Spectrum Analysis of Base Isolated Structure

For the case of isolated footings, Equation 9.24 is modified for the response spectrum analysis.

Modification consists of writing cbbi and kbbi (elements of diagonal matrices cbb and kbb) as:

cbbi ¼ cbbi þ cbeqi ð9:63Þ

kbbi ¼ kbeqi ð9:64Þ
in which cbbi is the linear damping of the ith isolator and cbeqi is the equivalent damping of the ith

isolator for the hysteretic effect; similarly, kbeqi is the equivalent stiffness of the ith isolator. The

structural damping matrix css is obtained by assuming Rayleigh damping for the structure. As the

damping matrix for the building–isolator system is non-classical, the application of normal mode

theory gives a non-diagonal damping matrix. By ignoring the off-diagonal terms, a modal damping in

each mode of vibration can be computed and the response spectrum method of analysis, as described

in Chapter 5, can be carried out.

For the case of base isolation with a base slab, the base of the 3D model of the building is attached to

three springs and three dashpots. Referring to Figure 9.14, the spring stiffness are obtained from the
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Figure 9.27 Use of design bi-spectrum for isolator design (third criterion)
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equivalent spring stiffness of each isolator as given below:

Kxeq ¼
Xn
i¼1

Kxeqi ; Kyeq ¼
Xn
i¼1

Kyeqi ð9:65Þ

Kyeq ¼
Xn
i¼1

Kxeqiy
2
i þKyeqix

2
i ð9:66Þ

The damping coefficient of the dashpots can be similarly obtained from the equivalent damping of

each isolator.

By assuming three degrees of freedom at each floor level (with floors assumed as rigid diaphragms),

equations of motion for the flexible base building can be obtained using standard procedures. The

damping matrix for the entire system becomes non-classical. By ignoring the off-diagonal terms of the

modal damping matrix, the response spectrum method of analysis can be performed as before.

From the response spectrum method of analysis, mean peak displacements of the base isolators are

obtained and are compared with those of the isolator displacements obtained from the preliminary design

of the isolators. If the difference between the two is significant, then the isolator characteristics are

changed. New equivalent stiffness and damping are computed corresponding to the displacement of

the isolators obtained from the response spectrummethod of analysis. A corresponding new time period of

the isolator is checked against the code provision. The preliminary design and response spectrum analysis

are then repeated. The procedure is continued until a convergence is achieved.

9.5.3 Non-Linear Time History Analysis

After completion of the above stage, the isolator characteristics are finalized. The non-linear time history

analysis is then performed as mentioned in Section 9.4 for the response spectrum compatible ground

motion. Generally, the peak displacements obtained by the time history analysis are less than those of the

response spectrum method of analysis. This is the case because damping due to the hysteretic effect is

more than the equivalent damping considered in the response spectrum method of analysis. If the

maximum base displacement obtained from the time history analysis is found to be very different from

that of the response spectrum analysis, then the entire process of preliminary design, response spectrum

analysis, and time history analysis are repeated until satisfactory results are obtained.

Example 9.4

The seven-storey building frame as shown in Figure 9.9 is to be base isolated using a base slab. Design the

base isolation system and the base isolated structure, starting from the preliminary design to the last stage

of non-linear analysis. For seismic analysis, consider 50% of the live load. Use the response spectrum as

shown in Figure 9.10 with PGA¼ 0.36g and damping modification as given in Table 9.1.

Solution: Total load of the structure¼ 1575 kN. Fixed base fundamental period of the frame is 0.75 s.

Assuming a time period separation of 3, the fundamental time period of the frame is 2.25 s.

Assuming a damping of 10% for the isolator, the response spectrum provides a value of

Sa

g
¼ 0:356 for T ¼ 2:25 s

Base shear ðW=gÞSa ¼ 1575	 0:356	 0:36 ¼ 201:63 kN (fixed base shear¼ 756.12 kN).

Table 9.1 Multiplying factors for damping (spectral ordinates to be multiplied by this factor)

Damping (%) 0 2 5 7 10 15 20 25 30
Factor 3.2 1.4 1 0.9 0.8 0.7 0.6 0.55 0.5
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Sd (maximum base displacement)¼ SaT
2=4p2 ¼ 16 cm (base displacement from preliminary design).

Isolator is designed for W ¼ 853:76 kN (Example 9.1). Assuming the mass of the isolator to be

negligible in comparison with the mass of the structure, effective stiffness of the isolator is

Keq ¼ 4p2W=gT2 ¼ 678:63 kNm�1. Assume a pre- to post-yield stiffness ratio of 10.

Using the method for designing isolator as illustrated in Example 9.1,

QD ¼ WD

4Sd
¼ p

2
KeffxeffSd ¼ 678:63	 p

2
	 0:1	 0:16 ¼ 17:11 kN

Kd ¼ Keff�QD

Sd
¼ 678:63� 17:1

0:16
¼ 571:75 kNm�1; Dy ¼ QD

9Kd

¼ 0:0033 m

Fy ¼ Ku 	 Dy ¼ 10Kd 	 Dy ¼ 18:86 kN

The back bone curve for the isolator is shown in Figure 9.28. It is seen from the figure that for a base

displacement of 16 cm, Keq of the isolator is the same as that obtained above.

9.5.3.1 Initial Design

The base shear for the isolated frame is distributed equally to all floors and the base of the frame is

horizontally restrained by a spring of stiffness 3Keq. A static analysis is carried out to obtain the bending

moments and shear forces in beams and columns for the gravity and lateral loads. The bending moment

diagram is shown in Figure 9.29. Based on the worst combination of moments, the sizes of column and

beam cross-sections are modified (compared with the fixed base frame). Both original cross-sections and

the revised ones are shown in Figure 9.30.

9.5.3.2 Response Spectrum Analysis

It is assumed that the changed cross-sections do not significantly change the mass of the frame (that is,

vertical load). The response spectrum analysis of the frame with a revised cross-section is carried out by

assigning a horizontal spring (of stiffness 3Keq) at the base.

As the system becomes non-classically damped because of two different types of damping present in

the system, a response spectrum analysis is carried out with an approximate equivalent modal damping

calculated for each mode. For this, a damping matrix of the total system is constructed by assuming

Fo
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e 
(k

N
)

Displacement (m)

0.0033

18.86

108.6

0.16

Figure 9.28 Backbone curve for the designed isolator
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Original
Beam dimensions 50x30 cm
Column dimensions 50x50 cm
Bay width 5 m
Storey height 3 m
Dead load on beams 20 kN/m
Live load on beams 5 kN/m

Revised
Beam dimensions 50x30 cm
Column dimensions

1st to 4th storey 40x40 cm
5th to 7th storey 30x30 cm

Figure 9.30 The base isolated frame with revised dimensions

Figure 9.29 Bending moment (kN m) diagram for the initial design of the base isolated frame
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Rayleigh damping for the frame with a ¼ 0:676 and b ¼ 0:0027 and the isolator damping (assuming

x ¼ 10%). The resulting C matrix for the structure isolator system is given below.

C ¼ 104	

1:3956

�0:0249 1:4297 sym

0:0071 �0:0339 1:4350

0:0009 0:0062 �0:0404 1:4447

�0:0014 0:0021 0:00093 �0:0409 1:4367

0:0012 �0:0027 0:0027 0:0054 �0:0348 1:4367

�0:0028 0:0044 �0:0004 �0:0036 0:0076 �0:0432 1:4541

0 0 0 0 0 0 0 8:900

2
666666666666664

3
777777777777775

The undampedmode shapes and frequencies of the isolated structure modeled by a horizontal spring at

the base with stiffness equal to 3Keq are obtained. The first two undamped mode shapes of the spring

supported frame are:

fT
1 ¼ 1 0:986 0:964 0:936 0:90 0:858 0:810 0:770 �½

fT
2 ¼ 1 0:736 0:356 �0:085 �0:508 �0:833 �1:010 �1:050 �½

Using these two mode shapes, the equivalent modal damping in the first two modes, after ignoring the

off-diagonal terms of the transformed modal damping matrix, are obtained as x1 ¼ 0:084; x2 ¼ 0:0167.
By considering the first two modes, the response spectrum analysis is carried out using SAP 2000.The

envelope of the bending moment diagram is shown in Figure 9.31. The base displacement is obtained as

Figure 9.31 Envelope of the bending moment (kN m) diagram obtained from the response spectrum analysis
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0.11m, which is not much different than the base displacement obtained from the preliminary design.

Thus, there is no significant change in Keq. If the base displacement obtained by the response spectrum

method of analysis is substantially different to the initial displacement, then the isolator backbone curve is

to be suitably changed, and the preliminary design and response spectrum analysis are to be repeated until

satisfactory results are obtained.

9.5.3.3 Non-Linear Time History Analysis

The frame along with the base slab and isolators shown in Figure 9.30 are analyzed for the response

spectrumcompatible time history of acceleration shown in Figure 9.32.Abackbone curve of the isolator is

shown in Figure 9.28. Analysis is carried out using SAP 2000. The envelope of the bending moment is

shown in Figure 9.33. It is seen from the figure that the time history analysis provides less bending

moments compared with the response spectrum analysis. The time history of the base displacement is

shown in Figure 9.34. It is seen from the figure that the maximum base displacement is 0.096m, little less

than the maximum base displacement obtained by the response spectrum method of analysis. If the two

displacements are found to be very different, then the entire procedure may have to be repeated starting

from the initial design. In this case, the iteration is not needed.

9.6 Tuned Mass Damper

Tuned mass dampers (TMDs) are passive control devices that are generally installed at the roof tops of

buildings to control the responses of buildings produced due to wind or an earthquake. TMDs may be

installed in other structures also, such as, flexible bridges (suspension/cable stayed bridges) to control

the wind induced vibration [4]. TMDs have been successfully implemented to control the responses

of some well known towers (buildings) produced by winds, such as Citicorp Tower, Sydney Tower,

and so on.

TMD consists of a mass, a spring, and a damper, which is attached to one side of the building as

shown in Figure 9.35. To control the responses in two directions, TMDs may be placed in two

directions on the top of a building. Furthermore, by placing the TMDs eccentrically, the torsional

response of the building may also be controlled. The most important feature of the TMDs is the tuning

of frequencies, that is, the frequency of the TMD is made equal to the fundamental frequency of the

structure. Because of various uncertainties inherent in the properties of both the TMD and the

structure, perfect tuning is very difficult to achieve. As a consequence, multi-tuned mass dampers

(MTMDs) have been developed for better tuning.
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Figure 9.32 Response spectrum compatible simulated time history of the ground acceleration (for PGA¼ 0.36g)
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In order to understand how theTMDworks in controlling the response of the building or any structure in

which it is installed, consider a two degrees of freedom undamped system subjected to the support

excitation as shown in Figure 9.36. In the absence of the second system, the amplitude of the response of

the first system can easily be shown to be:

x01 ¼ F1

k1ð1�g2Þ ; F1 ¼ �m1x€g ð9:67Þ

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

302520151050

Time (s)B
as

e 
di

sp
la

ce
m

en
t (

m
)

Figure 9.34 Time history of the base displacement

Figure 9.33 The envelope of the bending moment (kN m) diagram obtained from the time history analysis
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in which g ¼ o=o1 ando2
1 ¼ k1=m1. If both systems are present, the responses x1 and x2 (relative to the

support) will be harmonic having the same phase as that of the excitation as there is no damping. The

amplitudes of responses will be given by:

X0 ¼
x01

x02

� �
¼ H�1F ð9:68aÞ

in which

H ¼ k1 þ k2 �m1o2 �k2

�k2 k2 �m2o2

" #
; F ¼ �m1

�m2

� �
x€g ð9:68bÞ

1x

2x

m1

m2

k1

k2

sin ωtx x=  g0  g

Figure 9.36 A two DOF undamped system
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Figure 9.35 A tuned mass damper as passive control device
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Inverting the matrix H, performing the matrix multiplication, and carrying out the required algebraic

manipulations, the amplitudes of responses are given by:

x01 ¼ �m1x€g
k1

ð1þ n�g22Þ
1�g21�g22�

k2

k1
g22 þ g21g

2
2

� � ð9:69aÞ

x02 ¼ �m1x€g0
k1

ð1þ nÞþ k1

k2
� 1

n
g22

� �
n

1�g21�g22�
k2

k1
g22 þ g21g

2
2

� � ð9:69bÞ

in which n is themass ratio, that is,m2=m1; g2 ¼ o=o2; g1 ¼ o=o1;o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
; ando2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
.

If it is assumed that the two systems are perfectly tuned, that is, k1=m1 ¼ k2=m2 or o2
1 ¼ o2

2, then

k2=k1 ¼ m2=m1 ¼ n and g1 ¼ g2 ¼ g ¼ o=o1. Thus, for perfect tuning, Equations 9.69a and 9.69b may

be written as:

x01 ¼ � x€g0
o2

1

ð1þ n�g2Þ
1�g2ð2þ nÞþ g4½ � ð9:70aÞ

x02 ¼ � x€g0
o2

1

ð2þ n�g2Þ
1�g2ð2þ nÞþ g4½ � ð9:70bÞ

From Equations 9.70a and 9.70b, the ratio between the absolute values of the amplitudes of the two

systems is given as:

x01

x02

����
���� ¼ ð1þ n�g2Þ

ð2þ n�g2Þ
����

���� ð9:71aÞ

For g ¼ 1, that is, the condition of resonance under perfect tuning, the ratio becomes

x01

x02

����
���� ¼ n

1þ n
n > 0 ð9:71bÞ

For n ¼ 0, an SDOF system is realized with the response given by Equation 9.67. Under the condition of

resonance, the amplitude of the response of the SDOF system tends to infinity. When a second system is

attached and tuned to this SDOF system (the first system), the response of the first system becomes finite.

Its amplitude of response becomes a fraction of that of the second system if n < 1 (Equation 9.71b). This

means that there is a transfer of energy from the first system to the second one. ATMD operates based on the

above principle. During the oscillation of a building or any other structure fitted with a TMD, there is a

significant transfer of the energyof the near resonating components of groundexcitation from themain system

to the TMD. Thus, there is a reduction in response of the main structure due to the presence of the TMD.

Figure 9.37(a and b) shows the plot of the variation of the response ratio with the frequency ratio g for
different values of the mass ratio (n). It is seen from the figure that for near resonating conditions, that is,

g ¼ 1�1:1, the response ratios for different values of n becomeminimum. Figures 9.38 and 9.39 show the

plots of the absolute normalized amplitudes

x01 ¼ x01o2
1

x€g0

����
���� and x02 ¼ x02o2

1

x€g0

����
����

of the two systems with the mass ratio (n) for different values of g. It is seen from the figures that the

normalized amplitude of the first system reaches a minimum value (almost to zero) for g ¼ 1:05 and

n ¼ 0:1. The corresponding normalized amplitude of the second system is about 10. If this amplitude of

displacement for the second system is within the permissible limit, then it is possible to obtain the
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minimum value of the amplitude of the first system by appropriately choosing the mass ratio. Otherwise,

an optimummass ratio is selected based on the permissible limit of the displacement of the second system.

In that case, the minimum response of the first system will not be achieved, but the response can be

significantly reduced.

Although in practice both TMD (the second system) and the building or themain structure (represented

by the first system) have damping and the earthquake excitation is irregular in nature, yet it is observed that

a mass ratio exists for which optimum reduction of the response of the main structure may be achieved

with the help of a TMD.

Now, consider a building frame with a TMD installed at the roof top as shown in Figure 9.35. The

equation of motion takes the form

M€XþC _XþKX ¼ �MIx€g þGs ð9:72aÞ
in whichGs is a vector of size n	 1where all elements are zero except the last element. The last element

is given by:

ctð _y� _xnÞþ ktðy� xnÞ ð9:72bÞ
The equation of motion for the TMD is given by:

mt y€þ ctð _y� _xnÞþ ktðy� xnÞ ¼ �mtx€g ð9:73Þ
in which mt, ct, and kt are the mass, damping, and stiffness of the TMD, respectively; y, _y, and y€are,
respectively, the displacement, velocity, and acceleration of the mass of the TMD.

The solution of the equations of motion can be carried out in various ways. Three different types of

solution procedure are given below.

9.6.1 Modal Coupled Analysis

If the advantage of modal decoupling of the equations of motion of the frame without TMD is used, then

the equations resulting from Equation 9.72a are:

z€i þ 2xoi _zi þo2
i zi ¼ �lix€g þfT

i Gs ði ¼ 1 . . .mÞ ð9:74Þ
in which fi and oi are the ith natural mode and frequency of frame, respectively; li is the ith mode

participation factor.

Using Equations 9.74 and 9.73, reduced order coupled equations of motion involving the generalized

coordinates ziði ¼ 1 . . .mÞ and TMDdisplacement y are obtained. For saym¼ 3, the equations ofmotion

take the following form

M€qþC _qþKq ¼ �Px€g ð9:75aÞ
in which

qT ¼ ½z1 z2 z3 y�; PT ¼ ½l1 l2 l3 mt�; M ¼ diag½1 1 1 mt� ð9:75bÞ

C ¼

2xo1 þ ctj2
n1 ctjn1jn2 ctjn1jn3 �ctjn1

ctjn2jn1 2xo2 þ ctj2
n2 ctjn2jn3 �ctjn2

ctjn3jn1 ctjn3jn2 2xo3 þ ctj2
n3 �ctjn3

�ctjn1 �ctjn2 �ctjn3 ct

2
6664

3
7775 ð9:75cÞ

K ¼

o2
1 þ kj2

n1 kjn1jn2 kjn1jn3 �kjn1

kjn2jn1 o2
2 þ kj2

n2 kjn2jn3 �kjn2

kjn3jn1 kjn3jn2 o2
3 þ kj2

n3 �kjn3

�kjn1 �kjn2 �kjn3 kt

2
6664

3
7775 ð9:75dÞ
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jni is the mode shape coefficient of the nth floor in the ith mode. Solution of Equation 9.75a provides

the generalized co-ordinates z1, z2, z3 and the TMD displacement y. The storey displacements of the

frame are determined from the generalized co-ordinates using normal mode transformation.

9.6.2 Direct Analysis

Equations 9.72a and 9.73 can be combined to obtain the following equation of motion:

MX€ þC _XþKX ¼ �MIx€g ð9:76aÞ
in which

X ¼ ½x1 . . . xn; y�T ; I ¼ ½1 . . . 1�T ; M ¼ diagðm1 . . .mn;mtÞ ð9:76bÞ

C ¼

c1 � � � � �� ..
. ..

.

..

. ..
. ..

.

..

. � � � cn þ ct �ct

� � � � � � �ct ct

2
6666664

3
7777775
; K ¼

k1 � � � � �� ..
. ..

.

..

. ..
. ..

.

..

. � � � kn þ kt �kt

� � � � � � �kt kt

2
6666664

3
7777775

ð9:76cÞ

TheCmatrix is obtained by combining theCmatrixwith the damping elements introduced due toTMDas

shown in Equation 9.76c. The C matrix is obtained by assuming Rayleigh damping for the bare frame.

Note that except for the non-zero elements shown for the last rows and last columns ofK andCmatrices,

the other elements of those rows and columns are zero. Solution of Equation 9.76a provides the responses

of both the TMD and the frame.

9.6.3 State-Space Analysis

In the state space, the governing equation of motion can be written as:

_v ¼ AvþE ð9:77aÞ
in which v ¼ ½X; _X; y; _y�T is a 2ðnþ 1Þ state vector; A is a 2ðnþ 1Þ 	 2ðnþ 1Þ system matrix; E is a

2ðnþ 1Þ excitation vector. Matrices A and E are given as:

A ¼ 0 I

�M
�1
K �M

�1
C

� �
E ¼ 0

�MI

� �
ð9:77bÞ

The state-space equationmay be solved using themethods, such as SIMULINK diagrams, described in

Chapter 3.

Further, a modal analysis in the complex frequency domain may also be carried out to obtain the

response by using FFT of the ground motion (described in Chapter 3).

Example 9.5

The building frame shown in Figure 9.40 is provided with a tuned mass damper (TMD) to control its

response. Using the direct method of analysis, compare between the controlled and uncontrolled

responses for the El Centro earthquake. Mass of the TMD is mt ¼ 5% of the total mass of

the structure.
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Solution: The fundamental frequency of the bare frame is 11.42 rad s–1. For perfect tuning,

kt

mt

¼ ð11:42Þ2 ¼ 130:4; mt ¼ 0:05	 675	 103 ¼ 33:75	 103

kt ¼ 130:4	 33:75 ¼ 4:42	103 kNm�1; ct ¼ 2	 0:02	 33:75	 11:42	 103 ¼ 15:42	 103 Nsm�1

The mass, stiffness, and damping matrices of the frame-TMD system are:

K ¼

400 �200 0 0 0 0

�200 400 �200 0 0 0

0 �200 400 �200 0 0

0 0 �200 400 �200 0

0 0 0 �200 204:4 �4:4

0 0 0 0 �4:4 4:4

2
666666664

3
777777775
	 106 Nm�1

M ¼

150 0 0 0 0 0

0 150 0 0 0 0

0 0 150 0 0 0

0 0 0 150 0 0

0 0 0 0 75 0

0 0 0 0 0 33:8

2
666666664

3
777777775
	 103 kg

C ¼

1024:7 �448:6 0 0 0 0

�448:6 1024:7 �448:6 0 0 0

0 �448:6 1024:7 �448:6 0 0

0 0 �448:6 1024:7 �448:6 0

0 0 0 �448:6 512:3 0

0 0 0 0 0 15:4

2
66666664

3
77777775
	 103 N s m�1

tc

tk

tm

4 m

4 m

4 m

4 m

4 m

4 m

k

k

k

k

k

m

m

m

m

m/2

3 kg10150m = ×
3 kN/m10200k = ×

Figure 9.40 Frame with TMD at the top floor
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The C matrix for the bare frame is determined by assuming Rayleigh damping for the structure,

obtained with the help of the first two natural frequencies o1 and o2. The responses of the system are

obtained by solving the state-space equation, Equation 9.77a using SIMULINK of MATLAB�. The

matrix A is given by:

A ¼

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

�2666:71 1333:31 0 0 0 0 �6:83 2:99 0 0 0 0

1333:32 �2666:72 1333:32 0 0 0 2:99 �6:83 2:99 0 0 0

0 1333:32 �2666:71 1333:32 0 0 0 2:99 �6:83 2:99 0 0

0 0 1333:32 �2666:71 1333:32 0 0 0 2:99 �6:83 2:99 0

0 0 0 2666:71 �2725:43 58:73 0 0 0 5:98 �6:83 0

0 0 0 0 130:52 �130:52 0 0 0 0 0 �1:14

2
6666666666666666666666664

3
7777777777777777777777775

The controlled and uncontrolled responses are compared in Figures 9.41 and 9.42. It is seen from the

figure that the peak displacement of the top floor of the frame is controlled by about 30%. The
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Figure 9.41 Controlled and uncontrolled displacements of first floor
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Figure 9.42 Controlled and uncontrolled displacements of fifth floor
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corresponding control of the first floor is also about 30%, and hence the base shear is also controlled by the

same amount. Figure 9.43 shows the time history of the excursion of the TMD mass. The maximum

displacement of the TMD mass is 0.21m, 3.62 times the controlled peak displacement of the frame.

9.7 Viscoelastic Dampers

Viscoelastic dampers (VEDs) are passive control devices that can be incorporated in building frames with

relative ease compared with other passive control devices. VEDs are good alternatives to base isolation in

retrofitting damaged or old buildings. They are especially attractive for buildings made of steel frames.

A number of studies have been carried out to investigate the performance of VEDs in controlling the

seismic response of buildings [5–7]. These studies dealt with: (i) the mechanical behavior of dampers;

(ii) analysis, both exact and approximate, of framed structures fitted with VEDs; and (iii) optimal

placement of VEDs is building frames. In this section, the seismic response analysis of building frames

fitted with VEDs is discussed. As introduction of VEDs in the frames makes the systems non-classically

damped,many approximatemethods have been proposed to carry out the seismic analysis of such frames.

A few of them, both in the frequency and the time domain, are presented here.

9.7.1 Modeling of Viscoelastic Dampers

There are various types of viscoelastic dampers (VEDs) reported in the literature, such as hydraulic

dampers, friction dampers, Teflon coated friction dampers, and so on. A model of a Teflon coated VED is

shown in Figure 9.44. Various types of mathematical models have been proposed to explain the

mechanical behavior of VEDs. Of these, three linear models are described in the following sections.

9.7.1.1 Linear Models for Viscoelastic Damper

The linearmodel uses a linear spring thatmodels the potential energy, quadratic in deformation, and linear

dashpot, which models a dissipative force, proportional to deformation rate. Viscoelastic damper

elements are modeled as parallel and series combinations of these linear springs and dashpots. The

rate dependence is introduced by using the time derivative of the deformation and/or force.

In general, series and parallel combinations of linear springs and dashpots provide a force–deformation

relation of the form [5]

C½ f ðtÞ� ¼ D½dðtÞ� ð9:78Þ
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Figure 9.43 Time history of the excursion of the mass of TMD
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where C½:� and D½:� are linear differential operators with constant coefficients. Using a Laplace

transformation, Equation 9.78 provides a transfer function HðsÞ in the form of

FðsÞ ¼ DðsÞ
CðsÞ dðsÞ ¼ HðsÞdðsÞ ð9:79Þ

which relates force FðsÞ to the deformation dðsÞ.
The frequency response function of theviscoelastic element is then obtained by substituting s ¼ jo into

Equation 9.79, where j ¼ ffiffiffiffiffiffiffi�1
p

to yield

Hð joÞ ¼ EsðoÞþ jElðoÞ ð9:80Þ
in which EsðoÞ is referred to as the storage modulus; and ElðoÞ is called the loss modulus (Figure 9.45).

These moduli provide a physical understanding of the element resistance as composed of a frequency-

dependent spring KdðoÞ and a frequency-dependent dashpot CdðoÞ given by:

KdðoÞ ¼ EsðoÞ; CdðoÞ ¼ ElðoÞ
o

ð9:81Þ
where EsðoÞ is an even function of frequency, while ElðoÞ is an odd function of frequency. The dynamic

characteristics of the three different models of VEDs used in the study are given next.

Teflon coated plate

Figure 9.44 A model of Teflon coated viscoelastic damper
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Figure 9.45 Storage and loss moduli of viscoelastic damper
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9.7.1.2 Kelvin Element

TheKelvinmodel ofVED (element) consists of a linear spring in parallelwith a viscous damper. The force

in the element satisfies [5]

fðtÞ ¼ kddðtÞþ cd _dðtÞ ð9:82Þ
In the frequency domain, Equation 9.82 can be written as:

Fð joÞ ¼ ðkd þ jcdoÞdð joÞ ð9:83Þ
The dissipation of energy per cycle in harmonic deformation is linearly proportional to the deforma-

tion frequency:

Wcycle ¼ d2maxcdpo ð9:84Þ
The main disadvantage of this model in modeling the viscoelastic material is that it defines a loss

modulus linearly dependent on the frequency and a storage modulus independent of frequency that is not

an accurate representation for most materials and, in particular, for polymers or rubbers.

9.7.1.3 Linear Hysteretic Element

In this model, the force satisfies the following equation in the frequency domain [5]

Fð joÞ ¼ kdð1þ jxsgnðoÞÞdð joÞ ð9:85Þ
The loss factor x (ratio of the loss and the storage moduli of the element) is frequency independent for

this element. This model has the property of frequency independence of the dissipated energy in a

deformation cycle

Wcycle ¼ d2maxxpkd ð9:86Þ
Thus, the linear hysteretic element model is more versatile than the Kelvin model as many materials

exhibit energy dissipation, independent of the frequency of the deformation. The fact that frequency-

domain techniques may have to be used for many situations constitutes its most significant limitation.

9.7.1.4 Maxwell Element

AMaxwell element consists of a linear spring with constant b in series with a linear viscous dashpot with
constant tb. This model satisfies the following differential equation [5]

_f ðtÞþ 1

t
f ðtÞ ¼ b _dðtÞ ð9:87Þ

In the frequency domain, it may be represented as:

Fð joÞ ¼ boj
joþ 1=t

dð joÞ ð9:88Þ

From Equation 9.88, the storage modulus and the loss modulus for the Maxwell model may easily be

obtained. Using a Maxwell model, the mechanical behavior of the viscoelastic damper can be modeled

withmuchmore accuracy as both storagemodulus and lossmodulus are fully dependent on the excitation

frequency. The main mechanical characteristic of a Maxwell model is its relaxation time t. The energy
dissipation in one cycle is given by:

Wcycle ¼ dmaxbp
ot

1þðotÞ2 ð9:89Þ
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Equation 9.89 shows that the energy dissipated in a cycle in this model increases with frequency for

frequencies less than 1=t and monotonically decreases with frequency for frequencies greater than 1=t.

9.7.2 MDOF System with Viscoelastic Damper

Consider a linear, dampedmulti-degrees of freedom structure containing linear energydissipation devices

as shown in Figure 9.46. The system can be described by the following differential equations:

My€þC _yþKyþBT f ¼ �MI0x€gðtÞ ð9:90Þ
where

y is a vector of displacement

M, K, and C represent the mass, the stiffness, and the damping matrices, respectively

x€g represents the ground acceleration

I0 is the influence coefficient vector

f is the vector of forces in the energy dissipation devices

B is the location coefficient matrix of size ne 	 n

n is the degree of freedom

ne is the number of energy dissipation devices.

The element forces in the energy dissipation devices are related to the deformations of the devices by one

of the models of the linear constitutive relations described previously.

In the frequency domain, Equation 9.90 may be written as:

½�o2Mþð joÞCþK�Yð joÞþBTFð joÞ ¼ �MI0x€gð joÞ ð9:91Þ
inwhichYð joÞ,Fð joÞ, andx€gð joÞ are the Fourier transforms of y, f, andx€g, respectively.WritingFið joÞ
in terms of storage and loss moduli (Equation 9.80) as:

Fið joÞ ¼ Hið joÞdið joÞ ð9:92aÞ

y1

yn–1

ny

( )gX t

Figure 9.46 Idealized building frame with viscoelastic dampers
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and relating dð joÞ to Yð joÞ by:
dðjoÞ ¼ BYðjoÞ ð9:92bÞ

Equation 9.91 may be written in the form

SðjoÞYðjoÞ ¼ �MI0x€gðjoÞ ð9:92cÞ

in which

SðjoÞ ¼ �o2Mþ joCþKþBTEsðoÞBþ jBTElðoÞB ð9:92dÞ
EsðoÞ and ElðoÞ are the diagonal matrices containing the storage and loss moduli of all dampers and

depend upon the modeling of the dampers. Equations 9.92c and 9.22d may be solved in direct frequency

domain using FFT to obtain YðjoÞ. IFFT of YðjoÞ provides yðtÞ.
If modal analysis is used, then YðjoÞ may be written in terms of modal co-ordinates as:

YðjoÞ ¼ FqðjoÞ ð9:93Þ

where F is the mode shape matrix of size N 	m and qðjoÞ is the Fourier transform of the modal

coordinates ql , l ¼ 1; 2; . . . ;m. Using the modal transformation, and pre-multiplying Equation 9.92a by

FT the following equation is obtained,

GðjoÞqðjoÞ ¼ �FTMI0x€gðjoÞ ð9:94aÞ

where

GðjoÞ ¼ FTð�o2Mþ joCþKþBTEsðoÞBþBTElðoÞBÞF ð9:94bÞ

9.7.2.1 Conditions for Modal Decoupling and Coupling

GðjoÞ will not be diagonal for any modal matrix F, unless C, BTEsðoÞB, and BTElðoÞB are classical for

all o. When these terms are classical, GðjoÞ would be diagonal and the following equations could be

written in modal co-ordinates:

qlðjoÞ ¼
�fT

l MI0x€gðjoÞ
fT
l SðjoÞfl

¼ �fT
l MI0x€gðjoÞ
GllðjoÞ ; l ¼ 1; 2; . . . ;m ð9:95Þ

GllðjoÞ ¼ fT
l ð�o2Mþ joCþKþBTEsðoÞBþBTElðoÞBÞfl ð9:96Þ

The solution of Equations 9.92c and 9.92d can then be obtained by solving m independent modal

equations in the frequency domain. Using FFT techniques and modal combination, the time histories of

responses can be obtained. The conditions under which the modal equations can be decoupled is

illustrated by the following example.

Consider a two-storey building frame fitted with VEDs as shown in Figure 9.47. The dampers have the

same relaxation time t. The stiffness matrix is characterized by the parameters k1 and k2. Location of two

viscoelastic dampers modeled by Maxwell elements provide

BT ¼ cos a cos a �cos a �cos a

0 0 cos a cos a

� �
; Esi ¼ bio

2

o2 þ 1

t

� �2
; Eli ¼

bi
o
t

o2 þ 1

t

� �2
ð9:97Þ

Defining

g1ðoÞ ¼ 2o2

o2 þð1=tÞ2 cos
2a and g2ðoÞ ¼ 2o=t

o2 þð1=tÞ2 cos
2a
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the following equation in the frequency domain may be written:

ðjoÞ2MþðjoÞCþKþ
b1 þ b2 �b2

�b2 b2

" #
g1ðoÞþ j

b1 þ b2 �b2

�b2 b2

" #
g2ðoÞ

" #
YðjoÞ

¼ �MI0x€gðjoÞ
ð9:98Þ

in which

M ¼ m1 0

0 m2

� �
; C ¼ c1 þ c2 �c2

�c2 c2

� �
; K ¼ k1 þ k2 �k2

�k2 k2

� �
; I0 ¼

1

1

� �
ð9:99Þ

If b2=b1 ¼ k2=k1 andC is mass and stiffness proportional, the system can be uncoupled into twomodal

equations. Let f1 and f2 be normalized with respect to the mass matrix, then for b2=b1 ¼ k2=k1 the

following equations hold:

qiðjoÞ ¼ fT
i MI

GiiðjoÞ x€gðjoÞ i ¼ 1; 2 ð9:100Þ

GiiðjoÞ ¼ �o2 þo2
i þo2

i

b1
k1

g1ðoÞþ jo2
i o

2
i

b1
k1

g2ðoÞ i ¼ 1; 2 ð9:101Þ

When the damping matrix or the resistance scheme of the viscoelastic elements of the structure is non-

classical,GðjoÞ is not diagonal and them	m coupled equation (Equation 9.94a) can be solved to directly

obtain the responses y by some approximate methods. There are various approximate methods [8–10] to

solve the coupled equations of motion as given by Equation 9.94a. The simplest solution for

Equation 9.94a can be obtained by ignoring the off-diagonal terms of the coupled equations of motion

and solving a set of uncoupled equations, equal to the number modes considered in the analysis. The

accuracy of the response thus obtained depends upon the relative magnitude of the off-diagonal terms in

the coupled equations of the motion. Here, two approximate methods, namely, the iterative pseudo-force

method and modal strain energy method, which are supposed to provide a good estimate of responses are

presented. The reason for choosing these two methods is that both use undamped mode shapes and

frequencies and solve a set of uncoupled set of equations equal to the number of modes.

( )gX t

1( )y t

2 ( )y t

1m

2m

12

34

1k

2k

Figure 9.47 Model of a two DOF structure with viscoelastic damper
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9.7.3 Iterative Pseudo-Force (P-F) Method

In this method of solution, themodal coupling introduced by the off-diagonal terms are treated as pseudo-

force and are transferred to the right-hand side of Equation 9.94a. The equations of motion are solved

iteratively, each time solving a set of uncoupled equations of motion. At the nth iteration, the following

equations of motion are solved:

qðnÞðjoÞ ¼ qð0ÞðjoÞþAðjoÞqðn�1ÞðjoÞ n ¼ 1; 2; 3; . . . ð9:102Þ
where

qðnÞ
T ðjoÞ ¼ q

ðnÞ
1 ðjoÞ q

ðnÞ
2 ðjoÞ � � � q

ðnÞ
m ðjoÞ �T

h
ð9:103Þ

The elements of the matrix AðjoÞ are:

Aij ¼ GijðjoÞ
GiiðjoÞ if i 6¼ j ð9:104Þ

Aij ¼ 0 if i ¼ j ð9:105Þ
and q

0ð Þ
i ðjoÞ is given by:

q
ð0Þ
i ¼ �MfT

i I0
GiiðjoÞ x€gðjoÞ i ¼ 1; 2; . . . ;m ð9:106Þ

It can be shown that the necessary and sufficient condition for the algorithm to converge to the exact

solution for any excitation x€gðtÞ is that the eigen values of AðjoÞ be in the unit circle for

ð�1 < o < 1Þ [8]. A sufficient condition for the convergence of the algorithm is given by [10]:

Xm
i¼1

AliðjoÞj j < 1 l ¼ 1; 2; . . . ;m ð9:107Þ

Furthermore, this condition can be stated in terms of the matrixGðjoÞ, because from Equation 9.104 it

is clear that the condition given by Equation 9.107 holds if, and only if, the matrix GðjoÞ is diagonal
dominant, that is if

fT
i SðjoÞfi

�� �� > Xm
l¼1;l 6¼i

fT
i SðjoÞfl

�� ��; i ¼ 1; 2; . . . ;m; �1 < o < 1 ð9:108Þ

The above method can be used for solving any other non-classically damped system using the mode

superposition technique.

9.7.4 Modal Strain Energy Method

Modal strain energy method is a procedure to determine a set of real-valued mode shapes, natural

frequencies, and damping ratios for linear structures with frequency-dependent stiffness and damping

matrices to approximate the dynamics of those structures. In this approach, the mode shapes and

natural frequencies of the approximate system are obtained by solving an eigen value problem that

neglects the loss modulus (Equation 9.80) of the viscoelastic elements of the structure. Once a set of

mode shapes and natural frequencies are obtained, the modal damping ratios of the approximate

system are computed, equating the loss modulus of the viscoelastic elements of the structure at the

natural frequencies of the modes to that of the modal equations. As a consequence, the modal strain

energy method seeks a set of uncoupled modal equations to approximate the response of the system

described by Equation 9.92a.
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Consider the vector f
_

l and natural frequency, o_l that solve the following eigen value problem:

o
_2

l Mf
_

l ¼ ðKþBTEsðo_lÞBÞf_l l ¼ 1; 2; . . . ;m ð9:109Þ
Here, the values of Esðo_lÞ are necessarily non-negative, non-decreasing, and bounded as in the case of

viscoelastic materials.

Let f
_¼ ½f_1 . . .f

_

m�. With thesef
_
, the modal transformation of Equation 9.92c will be the same as that

given byEquations 9.94a and 9.94b except thatF is replaced byf
_
. By neglecting the off-diagonal terms of

the transformed equation, taking o ¼ o_l in EsiðoÞ in the lth equation, and dividing the lth equation of

Equation 9.94a by f
_T

l Mf
_

l, the following equation is obtained:

�o2 þ jo
1

f
_T

l Mf
_

l

f
_T

l CþBT ElðoÞ
o

B

� �
f
_

l þ o
_2

l

( )
q
_
lðjoÞ

¼ �f
_T

l MI0x€gðjoÞ
f
_T

l Mf
_
l

l ¼ 1; 2; . . . ;m ð9:110Þ

By taking o ¼ o_l in the term ElðoÞ=o of Equation 9.110, the lth modal equation can then be

transformed back into the time domain in the form of a second-order differential equation to yield

q€ lðtÞþ 2o
_
lx
_
l _qlðtÞþ o

_2

l q1ðtÞ ¼ �f
_T

l MI0x€gðtÞ
f
_T

l Mf
_

l

l ¼ 1; 2; . . . ;m ð9:111Þ

where the modal frequency o_l and damping ratio x
_
l can be expressed as:

o
_2

l ¼
f
_T

l ðKþBT Esðo_lÞBÞf_l
f
_T

l Mf
_

l

x
_
l ¼

f
_T

l ðo_lCþBT Elðo_lÞBÞf_l
2f

_T

l ½MðKþBT Esðo_lÞBÞ�1=2f_l
ð9:112Þ

Once q1ðtÞ is obtained, the response yðtÞmay be determined as before by modal superposition. Note that

the eigen value problem given by Equation 9.109 has to be solved using the iteration technique.

9.7.5 State-Space Solution

If VEDs are modeled as Maxwell elements, then a direct solution of the problem is possible in the time

domain through state-space representation of the equation of motion.

Equation 9.90 together with Equation 9.87 to represent the behavior of theVED,may bewritten in state

space as:

_Z ¼ AZþE ð9:113Þ
where Z is a ð2nþ neÞ state vector, A is a ð2nþ ne; 2nþ neÞ systemmatrix and E is a ð2nþ neÞ excitation
vector, respectively, given by:

Z ¼
y

_y

f

2
664

3
775; E ¼

0n

In

0m

2
664

3
775x€g; ð9:114aÞ

A ¼
0 I 0

�M�1K �M�1C �M�1BT

0 PB � I

s

2
664

3
775 ð9:114bÞ
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in which f is the vector damper forces ði ¼ 1; . . . neÞ; P is the diagonal matrix with diagonal terms as bi.
The state-space equation may be solved using direct or modal methods of analysis as described in

Chapter 3. Note that the solution provides not only the responses of the structures but also the forces in

each damper.

Example 9.6

The same bare building frame except the top storey mass taken asm, shown in Figure 9.40, is fitted with

VEDs in all floors in the form of X bracings. Properties of the VEDs are given as s ¼ 0:2, and
b=m ¼ 1000. Using the Maxwell model for the VEDs, find the responses of the frame under the El

Centro earthquake using state-space analysis and compare them with uncontrolled responses.

Solution: M,K, andCmatrices of the bare frame are taken from the Example 9.4 by considering the first

5	 5 portion of the corresponding matrices of the same problem with appropriate change of the mass.

Note that the last diagonal term of the K matrix will be 200 (in place of 204.4). Referring to

Equations 9.113 and 9.114

BT ¼

0:707 0:707 �0:707 �0:707 0 0 0 0 0 0

0 0 0:707 0:707 �0:707 �0:707 0 0 0 0

0 0 0 0 0:707 0:707 �0:707 �0:707 0 0

0 0 0 0 0 0 0:707 0:707 �0:707 �0:707

0 0 0 0 0 0 0 0 0:707 0:707

2
666666664

3
777777775

P ¼ diag ½15	 107�10	10;
I

t
¼ diag ½5�10	10

With the above values of the matrices, matrix A is given by:

A ¼ A1 A2

A3 A4

� �

where

A1 ¼

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

�2666:71 1333:32 0 0 0 �7:32 3:27 0 0 0

1333:32 �2666:71 1333:32 0 0 3:27 �7:32 3:27 0 0

0 1333:32 �2666:71 1333:32 0 0 3:27 �7:32 3:27 0

0 0 1333:32 �2666:71 1333:32 0 0 3:27 �7:32 3:27

0 0 0 1333:32 �1333:32 0 0 0 3:27 �4:05

2
6666666666666666666666664

3
7777777777777777777777775
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A2 ¼

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

�4:714 �4:714 4:714 4:714 0 0 0 0 0 0

0 0 �4:714 �4:714 4:714 4:714 0 0 0 0

0 0 0 0 �4:714 �4:714 4:714 4:714 0 0

0 0 0 0 0 0 �4:714 �4:714 4:714 4:714

0 0 0 0 0 0 0 0 �4:714 �4:714

2
66666666666666666664

3
77777777777777777775

	 10�6

A3 ¼

0 0 0 0 0 1:0607 0 0 0 0

0 0 0 0 0 1:0607 0 0 0 0

0 0 0 0 0 �1:0607 1:0607 0 0 0

0 0 0 0 0 �1:0607 1:0607 0 0 0

0 0 0 0 0 0 �1:0607 1:0607 0 0

0 0 0 0 0 0 �1:0607 1:0607 0 0

0 0 0 0 0 0 0 �1:0607 1:0607 0

0 0 0 0 0 0 0 �1:0607 1:0607 0

0 0 0 0 0 0 0 0 �1:0607 1:0607

0 0 0 0 0 0 0 0 �1:0607 1:0607

2
66666666666666666664

3
77777777777777777775

	 108

A4 ¼ diag ½�5�10	10

Using SIMULINK of MATLAB, the responses are obtained for the El Centro earthquake. The block

diagram for the state-space solution using SIMULINK is shown in Chapter 3.

The results are shown in Figures 9.48–9.51. It is seen from Figure 9.48 that the peak value of the fifth-

floor displacement is controlled by about 48%. The corresponding control for the first-floor displacement

is about 50%. The maximum control force developed in the fifth-floor VEDs is 3:834	 105 N, while that

for the first floor is 1:28	 106 N. Thus, it is observed that the control of the displacement response is
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Figure 9.48 Controlled and uncontrolled displacements of fifth-floor
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Figure 9.49 Time history of control force in the fifth-floor VEDs
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Figure 9.50 Controlled and uncontrolled displacements of first-floor
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nearly the same for all floors. However, the maximum control forces developed in the VEDs installed in

different floors are different.

9.7.6 Response Spectrum Method of Analysis

In order to obtain the response spectrum method of analysis, both damping and stiffness of the system

should be frequency independent. Thus, in order to implement the response spectrum method, the modal

equation of motion, Equation 9.111, derived by the modal strain energy method can be used. However,

because of the approximations involved in the modal strain energymethod, the responses obtained by the

response spectrum method using Equation 9.111 are approximate. Using o_and x
_
of Equation 9.112, the

response spectrummethod of analysis can be performed as described in Chapter 5. The equivalent lateral

load for a frame fitted with VED is given by:

Qr
i ¼ li f

_r

i Wr Sai
g

ð9:115aÞ

li ¼

XN
r¼1

f
_r

i Wr

XN
r¼1

Wrðf_r

i Þ2
ð9:115bÞ

where

li is the mode participation factor for the ith mode

Wr is the weight of the rth floor including appropriate live load

Sai=g is the normalized spectral acceleration in the ith mode

f
_r

i is the mode shape coefficient for the rth floor in the ith mode.

The mode shape coefficients are obtained from Equation 9.109 and Sai=g is the normalized spectral

acceleration for the time period Ti ¼ 2p=o_i and damping ratio x
_
i.

9.8 Active Structural Control

Asmentioned in the introduction, active control of structures requires anexternalpower source to activate and

actuate the active control system. The signal that drives the actuator of the control system is generated by the

computer according to a control algorithm. The control algorithm requires, apart from other structural data,

online measured responses of the structure as feedback. A typical schematic diagram of the active control of

structures for seismic forces is shown in Figure 9.52. It is seen from the figure that the active control of

structures has three distinct components, namely:measurements, computation, and actuation.Measurements

are accomplished by sensors that measure (generally) the acceleration response of the structure and the

ground acceleration (if needed). Computation is performed by a computer that computes the control force

signal to be applied at every instant of time to the actuator according to a desired control algorithm.Measured

responses of the structure and ground acceleration (if needed) are fed into the control algorithm as one set of

inputs. If only structural responses are measured and used as feedback information to the control algorithm,

then it is called a closed loop control (that is, only the right loop of Figure 9.52 operates). On the other hand, if

only measured excitations are used as information to the control algorithm, then it is called an open loop

control (that is, only left loop operates). If both loops are operative, then it is called closed–open loop control.

There aremany control algorithms that have been developed for the active control of structures.Most of

them use the closed loop control strategy. Some of the popularly used algorithms are: linear quadratic
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regulator (LQR) control, pole placement technique, instantaneous optimal control, discrete time control,

sliding mode control, independent modal space control, bounded state control, predictive control, Ha

control, and so on [11,12]. The control mechanisms, which have been developed and used in experiments

and in practice, include actuated mass damper (AMD), actuated tuned mass damper (ATMD), active

tendon system (AT), and so on (Figure 9.53).

Active control algorithms generate the required control signal that drives the actuators of the control

device. Before describing the control algorithms, it is desirable to understand the effect of control forces

on the response of a structure under ideal conditions. Consider the equation of motion of a multi-degrees

of freedom system under a set of control forces u:

Mx€þC _xþKx ¼ Du�MIx€g ð9:116Þ
where

M, C, and K are n	 n mass, damping, and stiffness matrices, respectively

x is the n dimensional displacement vector

x€g is the vector ground accelerations of size r

I is the influence coefficient matrix of size n	 r

D is the location matrix of size n	m

u is a vector of control force of size m.

It is assumed that the control force vector u is linearly proportional to the responses x and _x and the

excitations x€g. Then, u may be written as:

u ¼ K1xþC1 _xþEx€g ð9:117Þ
in whichK1,C1, andE are time independent matrices of sizem	 n andm	 r, respectively. Substituting

Equation 9.116 into Equation 9.117 results in

Mx€þðC�DC1Þ _xþðK�DK1Þx ¼ ðDE�MIÞx€g ð9:118Þ
Equation 9.118 shows that the active control in a way modifies the stiffness and damping properties of

the system and excitations, such that the responses of the system are reduced. The degree of reduction

depends upon how K1, C1, and E are obtained. The objective of a control algorithm is to find these

quantities so that the response of the system satisfies the desired criterion. In practice, closed loop control

can be more readily implemented, and, therefore K1, C1 matrices are generated by the control algorithm

for obtaining the control force. Furthermore, it is observed from Equation 9.116 that complete control of

Environmental load Structure
Response

Actuators

Computation of control forces

U t  = qF t  + GZ t( ) ( ) ( )

Z t( )
F t( )

Figure 9.52 Schematic diagram of active control of structures for seismic forces
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response of the systemmay be achieved theoretically by generating control force at each instant of time t

that is equal and opposite to the earthquake force. However, in reality it is not realizable for several

reasons, which will be discussed in the limitations of the active control scheme. Therefore, control of the

response is achievedwith respect to a certain norm. The choice of the norm dictates the control algorithm.

As the control of the response is achieved by applying the control force that depends upon the state of the

system (that is, x and _x), three factors are extremely important in relation to the design of the controlled

system. They are stability, controllability, and observability, that is, the system should be stable,

controllable, and state observable. These three attributes are elaborated further in the following sections.

To examine these factors, the controlled equations ofmotion, Equation 9.116, iswritten in state-space as:

_X ¼ AXþBuþHx€g ð9:119Þ
in which

A ¼ 0 I

�M�1K �M�1C

� �
; B ¼ 0

M�1D

� �
; H ¼ 0

�I

� �
ð9:120Þ

where I is an identity matrix of appropriate size; the other matrices have already been defined.

1y

1ny −
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u
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Figure 9.53 Active control devices: (a) active tuned mass damper; (b) actuated mass damper; and (c) active tendon
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9.8.1 Stability

The controlled equation, Equation 9.119, in state space can also be written in the following form if u is

assumed to be of the form of Equation 9.117,

_X ¼ AXþHx€g ð9:121Þ
in which

A ¼ Aþ ½BK1 þBC1�; H ¼ BEþH ð9:122Þ
Stability of a dynamic system may be loosely stated as the boundedness of the state of the system in

time. The stability of the system is examined by studying its intrinsic dynamic properties (and irrespective

of the excitation). Therefore, it is adequate to consider the state equation:

_X ¼ AX Xðt0Þ ¼ X0 ð9:123Þ
The equilibrium state of the system is described by:

AXe ¼ 0 ð9:124Þ
that is, Xe ¼ 0 is its unique equilibrium state if A is non-singular.

An equilibrium state is said to be stable in the sense of Lyapunov if, for any t0 and any small value e > 0,

there exists a real number d > 0 such that ����X0�Xe

���� � d ð9:125Þ
which implies

����XðtÞ�Xe

���� � e for t � t0;
���� ���� indicates Euclidean norm.

Thus, the Lyapunov stability guarantees that the system state remains close to the equilibrium state for

any time t by selecting the initial state close to the equilibrium state [13].

An equilibrium state is said to be asymptotically stable if it is stable and if for any t0, there is d > 0

such that ����X0�Xe

���� � d ð9:126Þ
which implies that

����XðtÞ�Xe

����! 0 as t!1.

Thus, in addition to being stable, the state asymptotically converges to Xe when the initial condition is

chosen close enough to the equilibrium state [13]. Also, it can be easily shown that the stability of the

equilibrium state implies stability in any solution.

The requirements for the first stability condition are: (i) all eigen values of A have non-positive real

parts; and (ii) for any eigen value of zero real part with multiplicity k, there exist exactly k linearly

independent eigen vectors [11]. The second stability condition requires that all eigen values of A have

strictly negative real parts.

9.8.2 Controllability and Observability

Asystem is said to be controllable at time t0, if it is possible bymeans of an unconstrained control vector to

transfer the system from any initial state xðt0Þ to any other state in a finite interval of time.

A system is said to be observable at time t0, if with the system in state xðt0Þ, it is possible to determine

this state from the observation of the output over a finite time interval.

The concepts of controllability and observabilitywere introduced byKalman et al. [14]. The solution of

the control design problem may not exist at all if the system is not controllable. While most physical

problems are controllable and observable, the corresponding mathematical models may not always

preserve the property of controllability and observability. Thus, it is necessary to know the mathematical

conditions under which a mathematical model is controllable and observable.
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Consider the system represented by:

_X ¼ AXþBu ð9:127Þ
Note that Equation 9.127 is without any excitation but the unconstrained control forces are applied to

change the state of the system. If the system is controllable, then it can be shown that the controllability

matrix given by [13]:

½B...AB... � � � � � �...An�1B�n	nr ð9:128Þ
is of rank n; in which n is the size of the A matrix and r is the size of the vector of control force u.
Alternatively, the matrix contains n linearly independent column vectors.

Alternative forms of the condition for complete state controllability exist, for example, if the eigen

values of A are distinct, and therefore eigen vectors are also distinct, then it is possible to find a

transformation matrix P such that

P�1AP ¼ D ¼ diag l ð9:129Þ
inwhich diag l is a diagonalmatrix of eigenvalues.With this transformationmatrix, a new set of variables

may be defined as:

Z ¼ PX ð9:130Þ
and a new set of equations in the transformed variable may be obtained as:

_Z ¼ DZþFu ð9:131Þ
F ¼ P�1B ð9:132Þ

The system is state controllable only if the matrix F does not possess a row that has all zero elements.

Proofs of the above conditions are available in reference [13].

In the practical design of a control system, the control of the output is rather more important than the

control of the state. Consider the system described by:

_X ¼ AXþBu ð9:133Þ
Y ¼ CXþDu ð9:134Þ

inwhichY is a vector of sizem. Accordingly, sizes of othermatrices are determined. The systemdescribed

by Equations 9.133 and 9.134 is said to be completely output controllable, if it is possible to construct an

unconstrained control vector u that will transfer any given initial outputYðt0Þ to anyfinal outputYðt1Þ in a
finite time interval t0 � t � t1. The mathematical condition for the controllability requires that the

controllability matrix

½CB...CAB...CAnB..
. � � � � � �...CAn�1B..

.
D�n	ðnþ 1Þr ð9:135Þ

is of rank m.

To study the observability, the equation of motion for the unforced system is sufficient to examine.

Therefore, consider the equations

_X ¼ AX ð9:136aÞ
Y ¼ CX ð9:136bÞ

The system is said to be completely observable, if every state XðtÞ can be determined from the

observation ofYðtÞ over a finite interval t0 � t � t1. The concept of observability is important, because in

practice only a limited number ofmeasurements are possible (of sizem) and a complete state of the system

may be required to generate the control signal by means of the control algorithm.
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It can be shown that the system presented by Equations 9.136a and 9.136b is completely observable, if

and only if, the n	 nm matrix

½C*..
.
A*C*..

. � � � � � �...ðA*Þn-1C*� ð9:137Þ
is of rank n or has n linearly independent column vectors.

9.8.3 State Observer

A state observer estimates the non-measurable state variables from the measured variables. If the state

observer observes all state variables regardless of whether some state variables are available for direct

measurement, it is called a full-order state observer. Generally, a full order observer is not required as the

output variables are available for measurement.When the number of state variables to be estimated is less

than the size of the full state, the observer is called a reduced-order state observer. A state observer can be

designed only if the observability condition is satisfied.

Consider the state-space equation given by:

_X ¼ AXþBu ð9:138Þ
Y ¼ CX ð9:139Þ

in which Y is the output vector, which is measured. In order to design the observer, X is introduced as the

estimated state by the observer. The mathematical model of the observer is

_X ¼ AXþBuþKeðY�CXÞ ð9:140Þ
¼ ½A�KeC�XþBuþKeY ð9:141Þ

in which CX is the estimated output; Ke is the observer gain matrix. The inputs to the observer are the

output Y and the control force u.Ke is a weighting matrix designed in such a way that the correction term

ðY�CXÞ continuously corrects the output of the observer.

To design a full-order observer, an error equation can be written by subtracting Equation 9.140 from

Equation 9.138 and making use of Equation 9.139, as:

_X� _X ¼ AX�AX�KeðCX�CXÞ ð9:142Þ
_X� _X ¼ ½A�KeC�ðX�XÞ ð9:143Þ

The above equation can be put in the form

_e ¼ ½A�KeC�e ð9:144Þ
in which e ¼ X�X. Equation 9.144 is similar to Equation 9.136a. For complete state controllability, that

is, ½A�KeC� to be a state matrix, ½A�KeC� has arbitrarily desired eigen values. Thus,Ke can be designed

to yield the desired eigenvalues. The problem is similar to finding the gainmatrixG for the pole placement

technique (discussed later) and can be solved by Ackerman’s formula [13]. Using Ackerman’s formula,

the gain matrix Ke can be obtained as:

Ke ¼ jðAÞ

C

CA

..

.

..

.

CAn-2

CAn-1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�1
0

0

..

.

..

.

0

1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9:145aÞ
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in which jðAÞ is given by Equation 9.153b (pole placement technique). Note that the gain matrix for the

pole placement technique is a row matrix, while Ke is a vector. However, in most control problems, the

state feedback to generate the desired control vector uses the observed state vector X (not X).
If a minimum order (reduced order) observer is used, then the reduced order observer becomes n�m,

where n is the size of the state vector and m is the size of measurable output vector. Thus,

_xa

_xb

� �
¼ Aaa Aab

Aba Abb

� �
xa

xb

� �
þ Ba

Bb

� �
u ð9:145bÞ

Y ¼ 

1 0

� xa

xb

( )
ð9:145cÞ

in which xa refers to themeasurable state vector, and xb refers to un-measurable state vector. The equation

for the measured portion of the state becomes

_xa ¼ Aaaxa þAabxb þBau ð9:146aÞ
or

Aabxb ¼ _xa�Aaaxa�Bau ð9:146bÞ
FromEquation 1.146b, xb can be obtained as xa and _xa are measured and therefore, Equation 1.146b is

used as the output equation for the un-measured portion of the state given by:

_xb ¼ Abaxa þAbbxb þBbu ð9:147Þ
Thus, for the reduced order observer, the state equation and the output equations are given by Equations

1.146b and 1.147, respectively. Proceeding in the same way as for the case of the full order observer, the

error equation may be written in the following form

_e ¼ ðAbb�KeAabÞe ð9:148aÞ
in which e ¼ xb�xb; xb is the estimated state of the un-measured variables.Ke as before can be obtained

using Ackerman’s formula and is given by [13]:

Ke ¼ jðAbbÞ

Aab

AabAbb

..

.

..

.

AabAbb
n-3

AabAbb
n-2

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

�1
0

0

..

.

..

.

0

1

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ð9:148bÞ

MATLAB computation to find the Ke is explained with the following example.

Example 9.7

For a control system, represented by Equations 9.138 and 9.139, find the reduced order and full order state

observer using MATLAB:

A ¼
0 1 0

0 0 1

�6 �11 �6

2
664

3
775 B ¼

0

0

1

8>><
>>:

9>>=
>>;

C ¼ 1 0 0 �½
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Eigen values of the matrix A are:

l1 ¼ �1; l2 ¼ �2; l3 ¼ �3

The desired observer poles are at S1 ¼ �2þ i2
ffiffiffi
3

p
; S2 ¼ �2�i2

ffiffiffi
3

p
; S3 ¼ �5 for the full order

observer and S2 ¼ �10; S3 ¼ �10 for the reduced order observer.

Solution: MATLAB program (for the full order observer)–

A ¼ 0 1 0; 0 0 1; �6 �11 �6 �;½
B ¼ 0; 0; 1 �;½

L ¼ �2þ i � 2 � sqrtð3Þ �2�i � 2 � sqrtð3Þ �5 �;½
Ke ¼ ackerðA0; C 0; L Þ0;

Ke ¼
3

7

�1

8><
>:

9>=
>;

For the reduced order observer–

A ¼
0 1 0

0 0 1

�6 �11 �6

2
64

3
75; B ¼

0

0

1

2
64

3
75

Hence

Abb ¼ 0 1; �11 �6 �;½
Aab ¼ 1 0 �;½

L ¼ �10 �10 �;½
Ke ¼ acker ðAbb0 Aab0 L Þ0

Ke ¼
14

5

� �

9.9 Active Control Algorithms

There are a number of algorithms developed for finding the control force uðtÞ. Most of the algorithms

derive the control force by minimizing the norm of some responses or some appropriate performance

index, and therefore are termed as optimal control algorithms. The derived control force is obtained as a

linear function of the state vector, and hence they are also called linear optimal control algorithms. There

are other control algorithms that are not based on any optimal criterion, but are based on a stability

criterion or some other different considerations. Also, there are control algorithms that have control forces

defined in terms of non-linear functions of the state vector. Here, three simple control algorithms are

presented in order to demonstrate how they are developed. These control algorithms are formulated in the

time domain and have been implemented for many control problems.

9.9.1 Pole Placement Technique

Consider the state-space equation for the controlled system

_X ¼ AXþBuþHx€g ð9:149Þ
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Eigen values ofA are called the poles of the original system. Similarly, if u is written as a function of state
vector with the help of a gain matrix G, that is, u ¼ GX, then the state-space equation takes the form

_X ¼ AXþHx€g ð9:150Þ
in whichA ¼ AþBG. The eigen values of thematrixA are called the poles of the controlled system. The

poles of the system can be written as:

S ¼ l ¼ �xon � iod od ¼ on

ffiffiffiffiffiffiffiffiffiffiffi
1�x2

q
ð9:151Þ

in which x is the damping ratio, and on is the undamped natural frequency. The problem of

absolute stability can be solved by choosing the poles of the closed loop system to lie on the left-hand

side of the S-plane as shown in Figure 9.54. The further away the dominant poles are from the imaginary

axis, the faster is the decay of the transient response of the system.

Accordingly, poles of the closed system are selected and the gain matrix G is obtained to generate the

control force. There are differentmethods to obtain the gainmatrixG, given the desired values of the poles
of the closed loop system. Note that the desired values of the poles are chosen after obtaining the poles of

the uncontrolled system, that is, by finding the eigenvalues of thematrixA. The choice of the desired poles
of the controlled systems consists in shifting the poles of the uncontrolled system to the farthest points on

the left-hand side of the S-plane. Thus, the gain matrix G that is generated from the desired poles is not

unique. Different Gmatrices can be generated by placing the poles at various locations and each of them

provides a different control of the responses and different peak values of the control force. A tradeoff

between the percentage control of the response and the peak control force is, therefore, an important

consideration in the control procedure. There are differentmethods for generating the gainmatrixG. Here
determination of the G matrix by using Ackermann’s formula is described as MATLAB has a standard

program for this. Consider the system

_X ¼ AXþBu ð9:152Þ
The controllability matrix for the system given by Equation 9.152 is obtained and its rank or linear

independency of column vectors is checked for the sufficient condition of controllability. Once the

sufficient condition for controllability is ensured, the characteristic equation of the uncontrolled system is

determined as:

SI�Aj j ¼ 0 ð9:153aÞ

S-plane

Unstable regionStable region

mI

eR

Figure 9.54 Stable and unstable regions for the poles of the system
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which leads to the equation

Sn þ a1S
n�1 þ a2S

n�2 þ � � � þ an ¼ 0 ð9:153bÞ

Solution of the characteristic equation or eigen values of the matrix A will provide the poles of the

original system. Knowing the poles of the original system, the desired poles of the closed loop system are

assumed. Let the desired poles be denoted by m1 . . . mn. Then,

ðS�m1ÞðS�m2ÞðS�m3Þ � � � ðS�mnÞ ¼ 0 ð9:154Þ

will provide the characteristic equation for the closed loop system as

Sn þ a1Sn�1 þ a2Sn�2 þ � � � þ an ¼ 0 ð9:155Þ

The feedback gain matrix G is then given by [13]:

G ¼ ½00 � � � 1�½B...AB... � � � ...An�1B��1fðAÞ ð9:156aÞ

in which fðAÞ ¼ An þ a1An-1 þ a2An-2 þ � � � anI ð9:156bÞ

In MATLAB, two commands are used, namely, acker and place for the computation of feedback gain

matrix. The acker command is used for uðtÞ as scalar (that is, single input). The place command can handle

multiple input, that is, uðtÞ as a vector. For single input, both acker and place give the same results.

However, place in certain cases is preferable over acker, such as when the system is marginally

controllable. In addition to A and B matrices, the program requires the J matrix given as:

J ¼ ½m1 . . . mn� ð9:157Þ

Example 9.8A

For a control system described by Equation 9.149, obtain theGmatrix using MATLAB for the following

values of A,B, and J [13]. Note that the output matrix, that is,K of MATLAB is theGmatrix. As a result,

both K and G are used to denote the same gain matrix.

A ¼
0 1 0

0 0 1

�1 �5 �6

2
664

3
775 B ¼

0

0

1

2
664

3
775

J ¼ �2þ j*4 �2�j*4 �10 �½

Solution: MATLAB program, acker–

A ¼ 0 1 0; 0 0 1; �1 �5 �6 �½
B ¼ ½0; 0; 1�

J ¼ �2þ j*4 �2�j*4 �10 �½
K ¼ acker ðA; B; JÞ
K ¼ 199 55 8 gf
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MATLAB program, place–

A ¼ 0 1 0; 0 0 1; �1 �5 �6 �½
B ¼ ½0; 0; 1�

J ¼ �2þ i � 4 �2�i � 4 �10 �½
K ¼ place ðA; B; JÞ

place: n digits¼ 15

K ¼ 199:0 55:0 8:0 �½

Example 9.8B

The bare frame of Figure 9.40 is controlled by an actuator applied at the top-storey level. Find the time

histories of the controlled displacements of the top storey and the first storey by the pole placement

technique for the El Centro earthquake.

Solution: Using the mass, damping and stiffness matrices of the frame described in the Example 9.6, A
and B matrices for the state-space Equation 9.149 are given as:

A ¼

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

�2666:71 1333:32 0 0 0 0 �6:83 2:99 0 0

1333:32 �2666:71 1333:32 0 0 0 2:99 �6:83 2:99 0

0 1333:32 �2666:71 1333:32 0 0 0 2:99 �6:83 2:99

0 1333:32 �2666:71 1333:32 0 0 2:99 �6:83

2
66666666666666666664

3
77777777777777777775

BT ¼ 0 0 0 0 0 0 0 0 0 0 � 10�3

75

� �

The original poles of the system are obtained as:

�6:2603 þ 71:8581i; �6:2603�71:8581i; �5:1738 þ 64:8642i; �5:1738�64:8642i;

�3:4158 þ 51:5271i; �3:4158�51:5271i; �1:6577 þ 33:1131i; �1:6577�33:1131i; �0:5712
þ 11:4112i; �0:57122�11:4112i

The control force is designed such that the desired poles of the system are shifted as

J ¼ �10þ 71i; �10�71i; �10þ 70i;�10�70i; �10þ 30i; �10�30i; �10þ 12i; �10�12i; �22; �22

The corresponding gain matrix K is obtained using MATLAB function placeðA; B; JÞ. Thus, the K
matrix is obtained as:

K ¼ ½4:8271eþ 008; �5:0206eþ 008; �1:5987eþ 008; 4:2424eþ 008; �1:1362eþ 008;

�1:5581eþ 007; �6:7431eþ 005; 1:4914eþ 007; �1:6061eþ 006; �6:7382eþ 006�
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The controlled responses are obtained by solving the following state-space equation using SIMULINK

_X ¼ ðAþBKÞXþHx€g or _X ¼ ðAþBGÞXþHx€g ð9:158Þ
The time histories of the controlled and uncontrolled displacements are shown in Figures 9.55 and 9.56.

It is seen that the reductions of peak displacements of the first and the top storeys are about 68%. The time

history of control force is shown in Figure 9.57. The peak control force is 1	 106 N (about 15% of the

weight of the frame). By adjusting the poles of the system, a better result may be obtained, that is, better

control with less control force.

9.9.2 Classical Linear Optimal Control

In classical linear optimal control, the control force is assumed to be a linear function of the state vector

and the control of the responses is obtained byminimizing a quadratic performance function. Therefore, it

is popularly known as linear quadratic regulator (LQR) control. Assuming the state vector to be zero at

time t ¼ 0, the performance index is defined as:

J ¼
ðtf

0

½xTQxþ uTRu� dt ð9:159Þ
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Figure 9.56 Controlled and uncontrolled displacements of first floor using pole placement technique
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Figure 9.55 Controlled and uncontrolled displacements of fifth floor using pole placement technique
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in which tf is the duration of the earthquake excitation; Q is a 2n	 2n semi-definite matrix, and R is an

n	m positive definitematrices. ThematricesQ andR are termedweightingmatrices. The relative values

of the elements of the matrices are selected according to the importance attached to the different

parameters of control. For example, largevalues of the elements ofQ comparedwith those ofR denote that

response reduction is givenmoreweightage at the cost of control force. The opposite is indicatedwhen the

elements of R are relatively large. Similarly, in the Q matrix, relatively large values of the diagonal

elements corresponding to displacement response denote that the velocity response is penalized in the

minimization procedure.

From Equation 9.159, it is clear that the time histories of controlled response and the control force are

such that they provide a minimum value for the performance index J. Furthermore, Equation 9.159 shows

that the performance index J is in a way equivalent to the total energy of the system, including that of the

external force over the entire duration of the excitation. Thus, the control algorithm in some sense obtains

the control force by minimizing the total energy of the system over the duration of the excitation. This

algorithm is also known as linear quadratic regulator (LQR) algorithm as the control force is a linear

function of the state vector and the performance function is a quadratic function of the state variable and

the control force.

Many of the control laws are obtained independent of the excitation because future earthquakes are not

known. Also, the development of the control algorithm becomes simpler by setting the excitation as zero.

Thus, J in Equation 9.159 is minimized subject to the constraint

_X ¼ AXþBu ð9:160Þ
The constrainedminimization problem is firstly converted into an unconstrainedminimization problem

using a lagrangian multiplier l and the lagrangian L is defined as:

L ¼
ðtf

0

fXTQXþ uTlT ½AXþBu� _X�g dt ð9:161Þ

The necessary conditions for optimal solution are given by dL ¼ 0, that is,

dL ¼ �lTðtf ÞdXðtf Þþ lTdXð0Þþ
ðtf

0

_l
T þ dH

dX
dXþ dH

du
du

� �
dt ¼ 0 ð9:162Þ

in which H is the integrand of Equation 9.161.
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Figure 9.57 Time history of the control force using pole placement technique
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As Xð0Þ is specified, dXð0Þ ¼ 0. Thus, for dL ¼ 0,

dH
du

¼ 0 0 � t � tf ð9:163aÞ

_l
T þ dH

dX
¼ 0 ð9:163bÞ

with the boundary condition lTðtf Þ ¼ 0.

By carrying out the necessary partial derivatives of H with respect to X and u, and algebraic

manipulations, the following pair of equations are obtained:

_l ¼ �ATl�2QX lðtf Þ ¼ 0 ð9:164Þ

u ¼ � 1

2
R�1BTl ð9:165Þ

The three sets of unknowns, that is, X, u, and l are determined by making use of Equations 9.164

and 9.165.

Set the lagrangian multiplier l as a function of the state vector, that is,

lðtÞ ¼ PðtÞXðtÞ ð9:166Þ
in which PðtÞ is an unknown matrix to be determined. Equation 9.164 yields an equation of the form

_PþPA� 1

2
PBR�1BTPþATPþ 2Q

� �
XðtÞ ¼ 0 ð9:167Þ

with

Pðtf Þ ¼ 0 ð9:168Þ
Equation 9.167 provides the well known matrix Riccati equation

_PþPA� 1

2
PBR�1BTPþATPþ 2Q ¼ 0 ð9:169Þ

Formost structural engineering problems, it is observed thatP remains fairly constant over the duration

of excitation tf . Thus, PðtÞ can be approximated by time invariant matrix P and Equation 9.169 becomes

PA� 1

2
PBR�1BTPþATPþ 2Q ¼ 0 ð9:170Þ

Solution of the Riccati matrix equation gives the solution for P. The control force is then given by:

u ¼ � 1

2
R�1BTl ¼ � 1

2
R�1BTPX ¼ �KX ð9:171Þ

in which K ¼1=2R
�1BTP is called the control gain matrix.

By substituting Equation 9.171 in Equation 9.149, the controlled response is obtained by solving the

following equation

_X ¼ ½A�BK�XþHx€g ð9:172Þ

Example 9.9

Consider the system given by

_X ¼ AXþBu
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Using MATLAB, obtain the positive definite solution matrix P of the Riccati equation, the optimal

feedback gainmatrixK and the eigenvalues of thematrixA�BK for the following values of thematrices:

A ¼
0 1 0

0 0 1

�35 �27 �9

2
64

3
75 B ¼

0

0

1

8><
>:

9>=
>;

Q ¼
1 0 0

0 1 0

0 0 1

2
64

3
75 R ¼ ½1�

Solution: MATLAB program (design of quadratic optimal regulator system)–

A ¼ 0 1 0; 0 0 1; �35 �27 �9 �;½
B ¼ 0; 0; 1 �;½

Q ¼ 1 0 0; 0 1 0; 0 0 1 �½
R ¼ 1½ � K; P; E½ � ¼ lqrðA; B; Q; R Þ
K ¼ 0:0149 0:1107 0:0676 � ðGain matrixÞ½

P ¼
4:2625 2:4957 0:0143

2:4957 2:8150 0:1107

0:0143 0:1107 0:0676

2
64

3
75

E ¼
�5:0958

�1:9859þ 1:7110i

�1:9859�1:7110i

2
64

3
75 ðEigen valuesÞ

Example 9.10

Solve example problem 9.8B by using LQR control.

Solution: Q matrix and R are selected as:

Q ¼ Q1 Q2

Q3 Q4

� �
; Q1 ¼ 1:8	 1014I5	5; Q2 ¼ Q3 ¼ Q4 ¼ 05	5; R ¼ 1

Using lqrðA; B; Q; RÞ of MATLAB, the gain matrix K is obtained as:

K ¼ �105 3:21 7:61 1:39 2:43 1:52 1:52 3:11 4:78 6:85 3:72 �½
The controlled state space Equation 9.172 is solved using SIMULINK. The time histories of responses

are shown in Figures 9.58–9.60. The reductions in the peak displacements of the top and the first storey are

56 and 50%, respectively. The reduction in peak absolute acceleration of the top floor is 46%.

The time history of the control force is shown in Figure 9.61. It is seen from the figure that the peak

control force is 8:26	 105 N, which is about 12% of the weight of the frame. More response reduction

may be achieved (which may or may not be at the expense of more control forces) by choosing different

values of Q and R.
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9.9.3 Instantaneous Optimal Control

The classical optimal control does not take into account the excitation in obtaining the control force as it is

not known a priori. However, it is possible to utilize the measured excitation up to time t in order to arrive

at an improved control algorithm [11]. Such an improved algorithmmay be developed by defining a time
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Figure 9.59 Controlled and uncontrolled displacements of first floor using LQR control
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Figure 9.58 Controlled and uncontrolled displacements of fifth floor using LQR control
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Figure 9.60 Controlled and uncontrolled absolute accelerations of the fifth floor using LQR control
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dependent performance index JðtÞ as:

JðtÞ ¼ XTðtÞQXðtÞþ uTðtÞRuðtÞ ð9:173Þ
The optimal control law is derived byminimizing JðtÞ at every instant of time t over the entire duration

of excitation. For this purpose, a modal transformation of the state space Equation 9.160 is accomplished

by defining

XðtÞ ¼ fzðtÞ ð9:174Þ

in which f is 2n	 2n modal matrix. The decoupled state-space equation is written as:

_zðtÞ ¼ AzðtÞþ qðtÞ; zð0Þ ¼ 0 ð9:175Þ

in which A is a 2n	 2n diagonal matrix with diagonal elements as the complex eigen values

sjðj ¼ 1 . . . 2nÞ of matrix A and qðtÞ is given by:

qðtÞ ¼ f�1½BuðtÞ�MIx€g� ð9:176Þ
Over a time interval Dt, solution of Equation 9.175 provides

zðtÞ ¼
ðt�Dt

0

exp ½Aðt�tÞ�qðtÞ dtþ
ðt

t�Dt

exp ½Aðt�tÞ�qðtÞ dt ð9:177Þ

� expðADtÞzðt�DtÞþ Dt
2

exp ðADtÞqðt�DtÞþ qðtÞ
 � ð9:178Þ

From the modal response, the state vector XðtÞ for the time interval Dt is obtained as:

XðtÞ ¼ fEðt�DtÞþ Dt
2

BuðtÞ�MIx€g

 � ð9:179Þ

in which

Eðt�DtÞ ¼ exp ðADtÞf�1 Xðt�DtÞþ Dt
2

Buðt�DtÞ�MIx€gðt�DtÞ
 �� �
ð9:180Þ

Note that Eðt�DtÞ contains quantities at the previous time station in the time marching algorithm.
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Figure 9.61 Time history of the control force using LQR control
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Minimization of the performance index is carried out subject to the constraint given by Equation 9.179.

Introducing the lagrangian multiplier l, Hamiltonian H is obtained as

H ¼ XTðtÞQXðtÞþ uTðtÞRuðtÞ
þ lTðtÞ XðtÞ�fEðt�DtÞ�Dt

2
BuðtÞ�MIx€g

 �� � ð9:181Þ

Minimizing the Hamiltonian with respect to the variables, that is,

dH
dX

¼ 0;
dH
du

¼ 0;
dH
dl

¼ 0 ð9:182Þ

provides,

2QXðtÞþ lðtÞ ¼ 0 ð9:183Þ

2RuðtÞ�Dt
2
BTlðtÞ ¼ 0 ð9:184Þ

XðtÞ ¼ fEðt�DtÞþ Dt
2

BuðtÞ�MIx€g

 � ð9:185Þ

For closed loop control, the control force vector is regulated by the state vector as before, that is, by

Equation 9.171. Comparing Equations 9.183 and 9.166, it follows that

PðtÞ ¼ �2Q ð9:186Þ
Equation 9.184, thus, provides

uðtÞ ¼ �Dt
2
R�1BTQXðtÞ ð9:187Þ

and the response XðtÞ is obtained by using Equation 9.185 as:

XðtÞ ¼ Iþ Dt2

2
BR�1BTQ

� �
fEðt�DtÞ�Dt

2
MIx€g

� �
ð9:188Þ

9.9.4 Practical Limitations

There are many practical problems related to the implementation of the control laws for actual control of

structural responses produced by an earthquake. Some of the important ones include modeling errors,

spillover effects, limited number of response measurements, and time delay effect. Each one of them

deteriorates the efficiency of the control system andmay evenmake the response of the structure unstable.

Therefore, appropriate compensation for each one of these effects should be accounted for in the control

algorithm leading to amodified algorithm.Details of themodifications for different effects are available in

the control literature [11]. Here, compensation for two effects will be discussed namely, time delay effect

and the effect due to limited measurements of responses.

The effect due to limited measurements of responses may be incorporated using the concept of state

observer presented in Section 9.8.3. From the limited responses that are measured, the full state of the

system is estimatedwith the help of the state observer and used in the control algorithm. Thus, the effect of

limited measurements of responses is compensated in the control problems.

9.9.4.1 Time Delay Effect

The feedback algorithms developed assumed that all operations in the control loop can be performed

instantaneously. In reality, there is a time difference between the measurement of responses and the
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application of the control force on the structure. This time difference is due to the time required for

processing the measured information, performing online computation, and in executing the control force

on the structure according to the control signal produced by the algorithm. The time difference or the time

delay not only reduces the effectiveness of the control system but also may cause dynamic instability.

The expected time delay may be incorporated in the control algorithm. The technique is called time

delay compensation. There are many methods to incorporate the time delay effect into the control

algorithm.A simplemethod based on aTaylor series expansion is described here. Consider the state-space

equation for the structural control with a time delay as given below:

_XðtÞ ¼ AXðt�tÞþBuðt�tÞ�MIx€g ð9:189Þ
If Xiðt�tÞ is one of the state variables, its Taylor series expansion about t is given by:

XiðtÞ ¼ Xiðt�tÞþ t _Xiðt�tÞþ t
2
€Xiðt�tÞ ð9:190Þ

Similarly, uðt�tÞ may be expanded in Taylor series.

In order to control the response at time t, say the control force at time t�t, that is, uðt�tÞ is used. As a
result of application of this control force, the controlled responses are XðtÞ, _XðtÞ, and X€gðtÞ, which are

measured. Accordingly, control force uðtÞ at time t is calculated and is applied to control the response at

time ðtþ tÞ. The equation of motion in state space can be written as:

_XðtÞ ¼ AXðtÞþBuðt�tÞ�MIx€g ð9:191Þ
Expanding uðtÞ by Taylor series

uðtÞ ¼ uðt�tÞþ t _uðt�tÞþ t2

2
u€ðt�tÞ ð9:192Þ

uðt�tÞ can be expressed as a function of uðtÞ, _uðt�tÞ, that is,

uðt�tÞ ¼ uðtÞ�t _uðt�tÞ� t2

2
u€ðt�tÞ ð9:193Þ

Substituting for uðt�tÞ in Equation 9.191 and defining a new state variable

ZðtÞ ¼ XðtÞ
uðt�tÞ

� �
ð9:194Þ

in which uðt�tÞ ¼ ½uðt�tÞ _uðt�tÞ�T , a new state space equation may be formed as:

_ZðtÞ ¼ AZðtÞþBuðtÞþHx€g ð9:195Þ
in which

A ¼

0 I 0 0

�KM�1 �CM�1 M�1 0

0 0 0 I

0 0 � 2

t2
� 2

t

2
66664

3
77775 ð9:196Þ

B
T ¼ 0 0 0 � 2

t2

� �
HT ¼ 0 �I 0 0½ � ð9:197Þ

Equation 9.195 is a state-space equation for a control system forwhich the control force can be obtained

using an LQR algorithm as:

uðtÞ ¼ KZ ð9:198Þ
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where K is the gain matrix. Equations 9.197 and 9.194 show that control force uðtÞ is a function of

measured responses at time t, uðt�tÞ, and _uðt�tÞ (which are known). By substituting Equation 9.198 into
Equation 9.195, the state of the system XðtÞ can be obtained as previously.

9.10 Semi-Active Control

This originates from the passive control system, modified to allow for the adjustment of mechanical

properties based on feedback from the excitation or themeasured response. As an active control system, it

monitors the feedback measurement, and generates an appropriate command signal. As a passive control

system, control forces are developed as a result of the motion of the structure. Control forces primarily act

to oppose the motion, and are developed through appropriate control algorithms. Semi-active control

generally requires a small amount of external power for the operation (of the order of few watts in

comparison to tens of kilowatts).

9.10.1 Semi-Active Control Devices

Different types of semi-active control devices include:

a. Stiffness Control Devices: These devices are utilized to modify the stiffness, and hence, natural

frequency of the system. This establishes a new resonant condition during an earthquake. The devices

includes additional stiffness bracings, which are engaged or released so as to include or not to include

the additional stiffness in the system, and operate generally through fluid control within tubes by

valves [15–17].

b. Electro-Rheological Dampers/Magneto-Rheological Dampers: They consist of a hydraulic cylin-

der containing micron-size dielectric particles suspended within a fluid. In the presence of current,

particles polarize andoffer an increased resistance toflow (achange fromaviscousfluid to a yielding solid

within milliseconds). The magneto-rheological dampers are magnetic analogues of electro-rheological

dampers, and have electro-magnets located within the piston head, which generates the magnetic

field [18–22].

c. Friction Control Devices: They are energy dissipaters within the lateral bracing of a structure, or are

as components within the sliding isolation system. The coefficient of friction of sliding is controlled by

the modulation of fluid pressure in a pneumatic valve [23,24].

d. Fluid Viscous Devices: They consist of a hydraulic cylinder, with a piston dividing it into two sides.

The cycling piston forces oil through an orifice, creating the output force. The output force is

modulated by an external control valve, which connects two sides of the cylinder [25,26].

e. TMDs and TLDs The dynamic characteristics of the TMDs are controlled by the external current. In

the TLDs, the length of the hydraulic tank is modified by adjusting the rotation of the rotatable baffles

in the tank, and thus, the sloshing frequencies of the fluid are changed [27].

In general, the equation of motion for the semi-active control of structure takes the form

M€XþðCþCvÞ _XþðKþKvÞX ¼ �MIx€g ð9:199Þ
in which Cv and Kv are variables. These can take positive discrete values (within specified bounds), and

depend on the state. Most of the algorithms for semi-active control are studied for the variable damping.

Different control algorithms developed for the variable dampers include: (i) Lyapunov stability approach,

(ii) decentralized bang-bang control, (iii) clipped optimal control, and (iv) modulated homogenous

friction control. RecentlyNi et al. [28] developed semi-active vibration control by using neural networks.

Fuzzy control has also been used for the semi-active variable devices [29]. The semi-active control of

structures includes applications on building frames and bridges. An excellent state-of-the-art review on

semi-active control system has been given in reference [30].
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9.10.2 Control Algorithms

Except for the Lyapunov stability approach, other control algorithms are mostly Riccati based, that is, use

of Riccati matrix solution is made to obtain an optimal control force. However, application of the

algorithms varies with the control devices being used. For example, clipped optimal control or bang-bang

control are applied in a different way forMRdampers than for hydraulic dampers. In this section, a simple

control algorithm is presented for the semi-active control of building frames using hydraulic dampers [31].

For the semi active control of building frames using MR dampers, development of different control

algorithms may be found in a number of publications [19–22].

Consider the building frame fitted with semi active hydraulic damper (SHD) as shown in Figure 9.62a.

The SHD is a damping device in which the variable damping force proportional to the velocity of the

movement of the pistonmay be generated by controlling the opening of a valve. According to the opening

of the valve, the damping coefficient cðtÞ of the damper at each instant of time t can be changed. The

opening of the valve requires a very small power of the order of 70W. The damping force f ðtÞ is given by
cðtÞvðtÞ, in which vðtÞ is the piston velocity. The SHDs are designed for values of fmax and cmax.

9.10.2.1 Simple LQR Control

The state-space equation for the frame fitted with SHD (Figure 9.62a) is written as:

_X ¼ AXþBuþDf ð9:200Þ
in whichX is the vector of the state of the system; u is the control force vector;B is the locationmatrix, and

D is the coefficient vector or matrix of the excitation force. Using the method of classical optimal control

given in Section 9.9.2, the control force vector may be written as (Equation 9.171):

u ¼ �KX ð9:201aÞ

K ¼ 1

2
R�1BTP ð9:201bÞ
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Figure 9.62 Semi-active control with SHD: (a) frame fitted with SHDs; (b) SHD in a floor; and (c) modeling of
SHD
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The weighting matrices Q and R in Equation 9.170 may be selected as:

Q ¼ Qd 0

0 Qv

� �
Qv ¼ diagð1Þ Qd ¼ 0 ð9:202aÞ

R ¼ diagðrÞ ð9:202bÞ
Various values of r may be selected to obtain the optimal control.

Substituting Equation 9.201 a into Equation 9.200, the controlled equation ofmotionmay bewritten as:

_X ¼ ðA�BKÞXþDf ð9:203Þ
The above controlled equation of motion is no different than the active control of the frame with

actuating forces (vector u) applied at different floor levels using various control devices that are operated
by an external source of energy. The difference between the semi-active control and the active control

consists in the actuation of the SHD and controlling of its damping coefficient to regulate the damping

force developed in the damper. They are described below.

Themodeling of the SHD, bracing, and the frame stiffness is shown in Figure 9.62(b and c).As shown in

the figure, the bracing stiffness, damping stiffness, and the damping coefficient are in series. This bracing

stiffness is made so high compared with the frame stiffness at floor levels that the horizontal piston

velocity can be assumed to be equal to the relative horizontal velocities between the two floors connected

by the bracing. Thus, the piston of the SHD is activated by the relative horizontal movement between any

two floors. Furthermore, it is assumed that the damping elements of the damper predominantly control the

response of the structure (that is, damper stiffness is neglected for the computation of the control force).

The control force is obtained from Equation 9.201a and the value of ci is determined from

Equation 9.204. The damping coefficient to be generated in the SHD is regulated by a control command.

Let fdi be the damping force in the ith SHD. Then fdi is controlled by the following command:

fdi ¼

fmaxsgnðviÞ uivi > 0; uij j > fmax

cmaxvi uivi > 0;
ui

vi

����
���� > cmax; uij j � fmax

civi uivi > 0;
ui

vi

����
���� � cmax; uij j � fmax

0 uivi < 0

8>>>>>>><
>>>>>>>:

ð9:204Þ

where

ui is the control force obtained from the LQR control algorithm

vi is the damper velocity obtained from the measured floor velocity feedback (for the theoretical analysis,

the feedback velocity from the state-space solution is used)

fmax and cmax are the upper limits for the damper force and damper coefficients, respectively.

The damper coefficient is changed by regulating the valve of the manifold of the damper.

The above control command is one of the simplest commands developed for semi-active control of the

building frames using SHD.Many other control force commands can be developed, such as those given in

clipped optimal control, bang-bang control, fuzzy control, and so on [29,30].

Example 9.11

The frame shown in Figure 9.62a is controlled by four SHDs (no SHD is used on the top floor). The

frame is subjected to the El Centro earthquake, scaled to have a peak velocity of 10 cm s�1. Find the

time histories of controlled acceleration and displacement of the top floor. Also, obtain the peak
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control force generated in the SHD for the first storey. The following dynamic characteristics of the

frame are given.

K ðEquation 9:201bÞ ¼ 106 	

260 �113 0 0 0

�113 212 �99 0 0

0 �99 188 �89 0

0 0 �89 173 �84

0 0 0 �84 84

2
666664

3
777775
Nm�1

M ¼ 102 	

2152 0 0 0 0

0 2092 0 0 0

0 0 2070 0 0

0 0 0 2048 0

0 0 0 0 2661

2
666664

3
777775
kg

C ¼ 1:843	102 	

545:2 0 0 0 0

0 530:0 0 0 0

0 0 524:4 0 0

0 0 0 518:9 0

0 0 0 0 674:2

2
666664

3
777775
N sm�1

The bracingmay be assumed to be almost rigid such that the pistonvelocity of the damper is equal to the

relative velocity between the two floors. The damper capacity is set at fmax ¼ 900 kN and the maximum

damping coefficient is set at cmax ¼ 200 kN s m�1.

Solution: Using linear quadratic control with Q and R matrices taken as:

Q ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

R ¼ 10�14 	

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
666664

3
777775

the gain matrix K (Equation 9.201b) is obtained as:

K¼105	

3:2517 3:2217 2:3981 3:4018 4:4409 2:8591 2:7456 2:4769 2:3412 3:0935

�0:1889 4:2173 4:1709 3:0864 5:8678 �0:0347 3:3874 3:3519 3:1578 3:9810

�0:2337 �0:2218 5:6832 3:7692 5:3781 �0:2493 �0:2422 3:8252 3:8007 4:5753

�1:5895 �1:2469 0:7352 7:6013 3:4396 �0:1150 �0:2736 �0:2544 4:1805 5:4089

0 0 0 0 0 0 0 0 0 0

2
666664

3
777775
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The solution of the controlled state-space equation using SIMULINK provides the state of the system.

The controlled command for SHD, given by Equation 9.204, is used to obtain the appropriate values of ci
and generate control forces in the feed back loop.

The time histories of controlled and uncontrolled responses are shown in Figures 9.63 and 9.64. It is

seen from Figure 9.63 that the peak displacement of the top floor is reduced by 58%. The corresponding

reduction in absolute acceleration is about 47%. The time histories of the displacements of the first floor

are shown in Figure 9.65. It is seen that the reduction in the peak displacement of the first floor is 56%, and

hence the base shear is also controlled by the same amount. The time history of the control force generated

in the SHD for the first floor is shown in Figure 9.66. It is seen from the figure that the peak control force is

about 175 kN, much less than the maximum capacity of the damper. Better control may be achieved by

using different trial values of cimax, fimax, Q, and R.
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Figure 9.64 Time histories of controlled and uncontrolled absolute accelerations of the top floor using semi-active
control
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Figure 9.63 Time histories of controlled and uncontrolled displacements of the top floor using semi-active
control
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Exercise Problems

(Use standard programs like MATLAB, SAP2000 and ABAQUAS to solve the problems; you may also

use your own program developed using the methods presented in the chapter.)

9.12 For the five-storey building frame, as shown in Figure 9.67, design: (i) the New Zealand rubber

bearing; and (ii) friction pendulum isolation systems satisfying the required criteria for practical

implementation for a PGA of 0.36g.

9.13 The same building frame, as shown in Figure 9.67, is subjected to the El Centro earthquake. The

columns of the frame are connected to the base slab as shown in the figure. The backbone curve of the

isolator which is used to isolate the building is given in Figure 9.16. Obtain the time histories of: (i)

the top-floor displacement; (ii) the displacement of the base slab; and (iii) the base shear.

9.14 The same building frame, as shown in Figure 9.67, is to be base isolated usingNewZealand isolators

at the bases of the columns. Analyze the base isolated system starting from the preliminary design to

non-linear analysis. Use the response spectrum given in Figure 9.10 and damping modification

coefficient given in the Example 9.4.Take the damping of the structure as 5% and PGA as 0.36g.

9.15 The response of the building frame shown in Figure 9.68 is controlled by a TMD placed at the top of

the frame for the El Centro earthquake.mt is taken as 6%of the total mass of the frame and ct is taken

as being equivalent to a damping ratio of 4%. The TMD is tuned to the fundamental frequency of the

bare frame. Obtain the time histories of controlled: (i) the top-floor displacement; (ii) the top-floor

absolute acceleration; and (iii) first-storey drift by both modal and state-space analyses.
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Figure 9.65 Time histories of controlled and uncontrolled displacements of the first floor using semi-active control
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Figure 9.66 Time history of the control force generated in the first floor SHD
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9.16 The building frame shown in Figure 9.68 is fitted with VEDs in the first four floors from the bottom.

Using theMaxwell model for the VEDs, find the response of the frame for the El Centro earthquake

given b=m ¼ 1200; t ¼ 0:1 by both frequency and time domain analyses.

9.17 The same frame shown in Figure 9.68 is actively controlled by an actuator placed at the first storey.

The frame is subjected to the El Centro earthquake. Find the controlled displacements of the top

tc

tk

tm

4m

4m

4m

4m

4m

4m

k

k

k

k

k

m

m

m

m

m/2

4m
m

k

3 kg10160m = ×
3 kN/m10250k = ×

5%ξ =

Figure 9.68 Details of the frame-TMD system

Beam dimensions 50x30 cm
Column dimensions 50x50 cm
Bottom slab thickness 10 cm
Bay width 5 m
Storey height 3 m
Live load on beams 5 kN/m
Dead load on beams 15 kN/m

2.4    10  kN/m27E = ×

Figure 9.67 Properties of the frame to be base isolated
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storey and the first storey using the pole placement techniquewith a full order observer and a reduced

order observer corresponding to the responses of the first three floors. Assume the desired close loop

poles such that at least 35% reduction in displacement of the first floor is achieved. Also, obtain the

peak control force.

9.18 If the same frame as above is actively controlled by an actuator at the top storey, then obtain the time

histories of controlled: (i) top floor displacement and acceleration; (ii) base shear; and (iii) of control

force using LQR algorithm, and compare themwith those obtained by the pole placement technique.

9.19 If two semi-active hydraulic dampers (SHDs) are employed at the first and the second floors of the

same frame as above using the bracings as shown in Figure 9.62a, then obtain the time histories of

controlled: (i) first floor displacement and absolute acceleration; (ii) top floor absolute acceleration;

and (iii) of control forces in the two dampers. The specifications of the SHDs are fmax ¼ 900 kN;

cmax ¼ 150 kN s m�1. Assume the bracings to be rigid so that the relative velocity between the two

floors can be taken as equal to the damper velocity.
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transient part of response, 116

tripartite plot, 61, 65, 94

tuned mass damper, 402, 408, 423

tuning, 405

two component ground motion, 103

two dimensional ground response analysis, 278

uncertainties, 335–336, 360

underground structure, 275

uniform distribution, 336

uniform hazard spectrum, 73, 76, 98

unit impulse response, 124

variance, 172–173, 178

velocity, 100, 168, 292, 448

velocity spectrum, 55, 60, 86, 95

virtual displacement, 157–160

viscoelastic damper, 411, 414–415

viscous damper, 100

wave propagation, 42, 278, 280

white noise, 45, 87–88, 201

Wood Anderson seismograph, 20

x bracing, 419

yield limit, 237, 247, 265

yield strain, 288, 332

yield stress, 237, 332

yielding, 238, 253, 272
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