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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technol-
ogy transfer in control engineering. The rapid development of control technology
has an impact on all areas of the control discipline. New theory, new controllers,
actuators, sensors, new industrial processes, computer methods, new applications,
new philosophies, . . . , new challenges. Much of this development work resides in
industrial reports, feasibility study papers and the reports of advanced collaborative
projects. The series offers an opportunity for researchers to present an extended ex-
position of such new work in all aspects of industrial control for wider and rapid
dissemination.

Concerns about energy independence, CO2 emissions and climate change and the
engineering risks associated with nuclear power stations have all contributed to the
political push to prioritise the exploitation of renewable energy resources in the de-
veloped nations. Key technologies in the renewable energy field for electrical power
generation that can be considered commercially mature include hydro-power, tidal
power, biomass digester technology and the use of wind turbines and the develop-
ment of large-scale wind farms.

A technological field that is now finding wider terrestrial application is that of so-
lar energy systems where an installation uses the Sun’s radiant energy as the “fuel”
of the system. Roof-top solar panels are a common sight in small-scale systems for
domestic water and space heating, but what of industrial-scale solar energy sys-
tems? Progress on developing such systems and their control can be found in this
very timely Advances in Industrial Control monograph, Control of Solar Energy
Systems by Eduardo F. Camacho, Manuel Berenguel, Francisco R. Rubio and Diego
Martínez. Given the very many specialised and small-scale applications of solar en-
ergy collectors, it cannot be stressed too strongly that the plants and installations de-
scribed in this monograph are proposed for industrial-scale operation. Just as wind
turbines have grown in size and have been integrated in large-scale wind farms to
enable the generation of usefully significant amounts of electrical power, so too will
the basic mechanisms of solar energy capture need to be developed to industrial
dimensions to ensure a significant contribution.

In this monograph, we learn that there are really two candidate solar energy cap-
ture principles. The first of these uses photovoltaics to generate a voltage directly,
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viii Series Editors’ Foreword

and the second uses a solar thermal collector to capture the Sun’s radiant energy us-
ing one or other of two main process architectures; either a heat transfer fluid (HTF)
is taken to the vicinity of the locally focused radiant energy as in the parabolic
trough, or the Sun’s radiant energy is focused globally as in a central (tower) receiver
system. This simple framework of concepts provides the structure of the monograph.
Consequently, Chaps. 1 and 2 present the solar energy basics and some specific con-
trol fundamentals for solar energy systems. Chapter 3 looks at the control of photo-
voltaic plants, while Chaps. 4 and 5 focus on the control and the advanced control
of parabolic trough systems. Chapter 6 examines central receiver systems with other
possible systems and potential applications of solar energy (primarily as a furnace
or for refrigeration) collected and described in Chap. 7. Finally, the critical topic of
integrating these plants and installations into a larger-scale market-based network
is considered in Chap. 8. This involves the control of plants with a diurnal opera-
tional characteristic or a highly variable generation profile and considers the issue
of global plant control, so it is not surprising that upper-level supervisory process
control makes an appearance in this chapter. The authors state quite early in the
monograph “. . .the integration of solar energy plants in the electrical grid is a chal-
lenging problem”; in fact, it is a problem for many of the renewable energy systems,
but one where the field of control systems theory and practice is capable of making
significant contributions.

The monograph is a valuable compendium of process knowledge for the control
of the various solar energy systems and can function as a reference book for those
interested in learning more about these systems; it is especially valuable for the
control research and engineering community working in the solar energy system
field. Control researchers and students might note that although a wide range of
advanced control solutions are studied in Chap. 5, there remains an obvious need
for a common case study problem prescription to benchmark the different control
schemes proposed. The monograph has the valuable attribute of describing many
real plant installations and applications. These installations provided the test-beds
for many of the control solutions described and results from control trials appear
frequently in the monograph to amplify simulation results and to illustrate real-
world implementations.

In 1997, the Advances in Industrial Control series published the first monograph,
entitled Advanced Control of Solar Plants (978-3-540-76144-6) by the authors Ed-
uardo F. Camacho, Manuel Berenguel, and Francisco R. Rubio. In the intervening
years, the subject has matured and developed further. This new monograph shows
how the authors and the control community are continuing to make a significant and
substantial contribution to the control engineering involved in solar energy systems.

M.J. Grimble
M.A. Johnson

Industrial Control Centre
Glasgow, Scotland, UK



Preface

During the last 30 years, considerable research effort has been devoted to improve
the efficiency of solar power plants from the control and optimization viewpoint.
This book presents techniques to model and control solar energy systems. The book
contains results obtained in several solar plants located at the Plataforma Solar de
Almería (PSA), South-East Spain, which is the largest European center for research,
development and testing of concentrating solar technologies.

The book is mainly aimed at practitioners, both from the solar energy community
and the control engineering community, although it can be followed by a wide range
of readers, as only basic knowledge of control theory and sampled data systems is
required.

The book is organized as follows: Chap. 1 gives a brief introduction to solar en-
ergy fundamentals, including solar radiation related concepts and a classification
of solar thermal technologies and energy storage systems. Chapter 2 presents con-
trol issues in solar systems, where the main Sun tracking mechanisms are studied,
a brief overview of solar radiation estimation and forecast techniques is included,
the control of fundamental variables is explained, as well as how the integrated
control of solar energy systems should be addressed. Chapter 3 briefly introduces
the photovoltaic plants, focused on automatic tracking strategies. Chapter 4 ex-
plains the basic modeling and control approaches related to thermal solar plants
with parabolic trough distributed collectors. After reviewing different modeling ap-
proaches for these kinds of system, the basic control algorithms are explained, high-
lighting their main advantages and drawbacks: feedforward control, PID control and
cascade control. In Chap. 5, parabolic troughs advanced control techniques are de-
veloped, covering a wide range of control schemes that have been tested at the PSA
following a classification of these techniques. Some of these strategies are adap-
tive control, model-based predictive control, nonlinear control, fuzzy logic control
and so on. Chapter 6 deals with the control of power towers with central receiver
systems. After explaining the main control issues of these kinds of plant, including
a general description of the control system, and types of receiver and model, both
the heliostat field control and aiming strategies are explained, including basic con-
trol approaches. Chapter 7 briefly explains the main control issues related to other
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x Preface

interesting solar energy applications, such as solar furnaces and solar refrigeration
systems. Finally, Chap. 8 presents recent approaches to the integrated control of
solar systems.

The text is composed of material collected from articles written by the authors,
technical reports and lectures given to graduate students.

E.F. Camacho
M. Berenguel

F.R. Rubio
D. Martínez

Seville, Almería
Spain
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ambient
J 8

ΔEcm energy change due to conduction among wall
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Chapter 1
Solar Energy Fundamentals

1.1 Introduction

The use of renewable energy, such as solar energy, experienced a great impulse
during the second half of the 1970s just after the first big oil crisis. At that time,
economic issues were the most important factor and so interest in these types of
process decreased when oil prices fell. There is renewed interest in the use of re-
newable energies nowadays, driven by the need of reducing the high environmental
impact produced by the use of fossil energy systems.

As pointed out in [369], renewable spending has increased 30% in 2010 to a total
of $243 billion. Nine-tenth of that is in the G-20 advanced industrial countries. The
European region was the leading recipient of clean energy finance. Next comes Asia,
while the Americas region is distant third in the race for clean energy investment.
Globally, the solar sector grew fastest in 2010, attracting 53% more investment than
the year before. Wind investment, in second place, grew 34%. Altogether, clean en-
ergy generating technology has doubled in the period 2008–2010 and now exceeds
total global nuclear capacity. In terms of actual electricity produced, green energy
still is only about a third or fourth of nuclear, but the progress in renewables is
impressive indeed [369].

Global energy demand is about 16 TW approximately and is expected to dou-
ble in the next twenty years. While increased energy production via traditional
methods together with improved efficiency and conservation may alleviate some
of the needs, such measures by themselves cannot meet the expected demand in the
long run. The most abundant, sustainable source of energy is the Sun, which pro-
vides over 150000 TW of power to the Earth; about half of this energy reaches the
Earth’s surface while the other half gets reflected to outer space by the atmosphere
(Fig. 1.1). Only a small fraction of the available solar energy reaching the Earth’s
surface would be enough to satisfy the global energy demand expected. Although
most renewable energies derive their energy from the Sun, by solar energy we refer
to the direct use of solar radiation. One of the greatest scientific and technological
opportunities facing us today is to develop efficient ways to collect, convert, store
and utilize solar energy at affordable costs. However, there are two main drawbacks

E.F. Camacho et al., Control of Solar Energy Systems, Advances in Industrial Control,
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Fig. 1.1 Earth’s energy budget (eosweb.larc.nasa.gov)

of solar energy systems: (i) the resulting energy costs are not yet competitive and
(ii) solar energy is not always available when needed [89].

Considerable research efforts are being devoted to techniques which may help to
overcome these drawbacks; control is one of these techniques. While in other power
generating processes the main source of energy (the fuel) can be manipulated as
the main control variable, in solar energy systems the main source of power, solar
radiation, cannot be manipulated [85] and, furthermore, it changes in a seasonal
and on a daily basis acting as a disturbance when considered from a control point
of view. Solar plants have all the characteristics needed to use advanced control
strategies able to cope with changing dynamics, non-linearities and uncertainties.
The use of efficient control strategies resulting in better responses would increase
the number of operational hours of solar plants and thus reduce the cost per kWh
produced.

This chapter briefly describes solar radiation fundamentals, the main ways of
collecting solar energy and related technologies, and a description of the solar plants
of the Plataforma Solar de Almería (PSA, South-East Spain) that are used as test-bed
plants throughout the text.

1.2 Solar Radiation

The Earth receives most of its energy from the Sun in the form of solar electromag-
netic radiation. The Sun contains 99.9% of the total mass of the solar system. The
average density of the Sun is surprisingly low (1.4 g/cm3), the reason being that it
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is mostly composed of the lightest elements, hydrogen (70% by mass) and helium
(27% by mass). The Sun’s core is mostly composed of helium (65% by mass) while
the hydrogen is reduced to 35% by mass because of being consumed in fusion re-
actions. Most of the other renewable sources of energy, such as wind energy, wave
energy and bio-fuels depend on the Sun’s energy. Furthermore, some of the non-
renewable energy sources such as fossil fuels were originated by solar energy in the
past. Solar energy originates from nuclear fusion reactions occurring at the core of
the Sun where hydrogen atoms are fused into helium. The gravity at the core creates
an intense pressure, which is high enough to force the fusion of hydrogen atoms.
About 700 million tons per second of hydrogen is converted into helium. About half
of the hydrogen found at the Sun’s core has already been converted into helium. The
remaining life expectation of the Sun is 5 billion years. The fusion reaction creates
immense heat giving rise to temperatures at the core close to 15 million degrees
Celsius (°C). At those temperatures, photons are emitted from the atoms and travel
a very short distance before being absorbed by another atom causing the neighbor-
ing atom to heat and the subsequent emission of another photon. It takes a photon
around 100000 years to reach the surface and about 8 minutes to travel the 149.5
million kilometers separating the Sun from the Earth.

The rate at which solar energy reaches a unit area at the Earth is called the solar
irradiance or insolation and is measured in W/m2. The integral of the solar irradiance
during a period of time is called solar radiation or irradiation and is measured in
J/m2. Very frequently, solar irradiance is also denominated as solar radiation using
the same units (W/m2).

The total power emitted by the Sun’s surface is about 63 MW/m2. The photo-
sphere has an average temperature of about 5800 K and delivers radiation with a
spectrum similar to the spectrum of radiation emitted by a black body at 5800 K;
most of the energy is emitted in the visible (450–700 nm) bands. A significant por-
tion of solar energy is emitted in the infrared (IR) and ultraviolet (UV) and smaller
quantities of energy are transmitted on radio, microwave, X-ray and gamma ray
bands.

Solar radiation is absorbed by the atmosphere, soil and oceans. Wind and waves
come from solar energy. A small portion of solar energy is transformed to kinetic
energy of winds used by wind power systems. Wind also causes wave and currents
which are used by waves or current generators.

Some of the solar energy is transformed by plants into biomass by photosynthe-
sis, this is ultimately converted into heat energy by oxidation. The remaining part of
the biomass produces organic sediments which will be transformed into fossil fuels
in the future.

The Earth’s disk intercepts solar radiation with an area πR2; where R is the
radius of the Earth. For a thermal equilibrium, the absorption of solar radiation must
be equal to the energy emitted from the Earth to space. When the solar radiation
hits the atmosphere, part of it is reflected, another part is scattered or absorbed by
the air. The radiation that reaches the surface directly and is not absorbed, reflected
or scattered, is called direct solar radiation. The reflected and scattered radiation
reaching the ground is called diffuse radiation. The albedo factor is defined as the
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Fig. 1.2 The divergence of energy from the Sun to the Earth, [359]

fraction of radiation reaching the ground that is reflected back to the atmosphere.
The power of direct solar irradiance on a clear day can be around 1 kW/m2.

1.2.1 Solar Constant

The radiation intensity on the surface of the Sun is approximately 6.33 · 107 W/m2.
Since radiation spreads out as the distance squared, by the time it travels to the Earth
(1496 · 1011 m or 1 AU is the average Earth–Sun distance, D0), the radiant energy
falling on 1 m2 of surface area is reduced to 1367 W as depicted in Fig. 1.2 [359].
The intensity of the radiation leaving the Sun is relatively constant. Therefore, the
intensity of solar radiation at a distance of 1 AU is called the solar constant Ec and
has a currently accepted value of 1367 W/m2 [359].

1.2.2 Extraterrestrial Solar Irradiance

As the Earth’s orbit is elliptical, the intensity of solar radiation received outside
the Earth’s atmosphere varies as the square of the Earth–Sun distance D. The solar
irradiance variation can be approximated by [359]

Eext = Ec

[

1 + 0.034 cos

(

360Nd

365.25

)]

[

W/m2] (1.1)

where Eext is the extraterrestrial solar irradiance outside the Earth’s atmosphere and
Nd is the day number (starting at January 1st).

The extraterrestrial solar irradiance falling on a surface parallel to the ground
(Fig. 1.3) is [359]

Eext,h = Eext cos(θz) (1.2)
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Fig. 1.3 The cosine effect as it relates to the concept of extraterrestrial horizontal irradiance, [359]

where θz the angle between the two surfaces, which is the solar zenith angle. Reduc-
tion of radiation by the cosine of the angle between the solar radiation and a surface
normal is called the cosine effect.

Because of the cosine effect, the extraterrestrial solar irradiance on a horizontal
plane varies cyclically as the Earth spins on its axis. The amount of solar radiation
received on a horizontal surface outside the atmosphere forms an upper limit to the
amount of radiation that will fall on a horizontal surface below the Earth’s atmo-
sphere. It also describes the cosine effect without the complication of air mass and
cloud cover [359].

1.2.3 Measurement of Solar Irradiance

Pyranometers are the sensors used to measure global solar irradiance, that is, the
Sun’s energy coming from all directions in the hemisphere above the plane of the
instrument. The measurement is of the sum of the direct and the diffuse solar irradi-
ance.

To measure the direct normal component of the solar irradiance only, an instru-
ment called a normal incidence pyrheliometer (NIP), or simply pyrheliometer is
used.

The diffuse irradiance can be measured by modifying a pyranometer using a
shadowing device large enough to block the direct irradiance onto this sensor.

The description of different pyranometers and pyrheliometers can be found in
[359].

1.2.4 The Sun’s Position

Along with the weather conditions, another factor that determines the amount of
incident radiation on a solar collector is the apparent movement of the Sun across
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Fig. 1.4 Movement of the Earth’s rotation around the Sun

the sky during the day. The Earth’s orbit around the Sun has an elliptical trajectory,
with 3% eccentricity. The imaginary line that represents the orbit described by the
Earth is called the ecliptic. As it orbits, the axis of terrestrial rotation always forms
the same 23.45° angle between the perpendicular and the ecliptic plane. The angle
formed by the ecliptic plane and the equator varies during the year as shown in
Fig. 1.4. This angle, known as the declination, varies from −23.45° on the winter
solstice to 23.45° on the summer solstice. The Tropic of Cancer (23.45° north) and
the Tropic of Capricorn (23.45° south) are the farthest latitudes at which the Sun
is located on the perpendicular to the horizon one instant per year, at noon on the
summer and winter solstices, respectively.

1.2.5 Geometry of the Sun’s Movement

From the point of view of an observer on the Earth’s surface, the Sun seems to
describe an arc from sunrise to sunset. The local meridian plane by definition is lo-
cated in the middle of this path at solar noon. The vertical direction of the observer’s
position on the Earth’s surface intersects the sky vault at a point called the zenith.
The Earth’s axis forms an angle equal to the latitude of the location (φ) with the
observer’s horizontal plane.

The latitude angle φ is the angle between a line drawn from a point on the Earth’s
surface to the center of the Earth and the Earth’s equatorial plane. The intersection
of the equatorial plane with the surface of the Earth forms the equator and is desig-
nated as 0° latitude. The Earth’s axis of rotation intersects the Earth’s surface at 90°
latitude (North Pole) and −90° latitude (South Pole). Any location on the surface of
the Earth then can be defined by the intersection of a longitude angle and a latitude
angle.

The Sun position may be referred to by two systems of coordinates centered
on the observer, according to the system of reference selected: time coordinates
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Fig. 1.5 Time celestial
coordinates

(δs : declination, ωs : solar hour) and horizontal coordinates (hs : solar elevation,
as : azimuth). These coordinates determine the solar vector, understood as a vector
going from the observer to the Sun.

Figure 1.5 shows the time coordinates, where:

• δs is the solar declination [°]: Sun position angle with the terrestrial equatorial
plane at solar noon.

• ωs is the solar hour angle [°]: angular movement of the Sun on the plane of the
solar trajectory. The origin of the hour angle is taken as solar noon and widens in
the direction of movement of the Sun. Each hour is equal to 15°.

Figure 1.6 shows the horizontal coordinates, where:

• hs is the solar elevation [°]: angle formed by the direct solar radiation and the
horizontal plane. The complementary angle is the solar zenith angle θz.

• as is the solar azimuth [°]: angle formed by the direct solar radiation and the ob-
server meridian. The origin of the azimuth is solar noon and is widens clockwise
facing north from south of the location (in the northern hemisphere).

1.2.5.1 Calculating the Time Coordinates

The horizontal coordinates of the Sun vary depending on the time of day, day of
year and latitude of the location. On the contrary, the time coordinates are easier to
find, as the declination depends only on the day of the year and the hour angle at
the time. The time coordinates are determined as a preliminary step for calculating
the horizontal coordinates. Most solar calculations require solar time but our clocks
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Fig. 1.6 Horizontal celestial
coordinates

show the local time. There is a convention for using time, setting the civilian time
in different cities with different solar times. The solar time (ts ) is calculated by

ts = local standard time + 4(Lref − Lloc) + Δt [min] (1.3)

where Lref is the geographic longitude of the reference meridian [°] and Lloc the
longitude of the local meridian [°]. A second correction is necessary because the
Sun gets ahead of or behind the mean solar time. This equation is known as the
equation of time:

Δt = 9.87 sin2(B) − 7.52 cos(B) − 1.5 sin(B) [min] (1.4)

where B = 360(J − 81)/364 [°] and J the Julian day of the year. The equation of
time is the difference between the local apparent solar time and the local mean solar
time. There exist different approximations with different degrees of error [359].

When the solar time is known, the hour angle is calculated recalling that the
origin of the coordinates is at the local meridian and that one solar hour is 15°.

ωs = 15(ts − 12) [°] (1.5)

where ts here is the solar time in hours.
The hour angle is negative in the morning and positive in the afternoon. The

declination of the Sun depends on the day of the year as expressed by

δs = 23.45 sin

(

360
284 + J

365

)

[°] (1.6)
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1.2.5.2 Calculating the Horizontal Coordinates

The horizontal coordinates (hs , as ) are calculated using spherical trigonometry
based on the time coordinates, related by the equations

sin(hs) = sin(φ) sin(δs) + cos(φ) cos(δs) cos(ωs)

sin(hs) cos(as) = sin(φ) cos(δs) + cos(ωs) − cos(φ) sin(δs) (1.7)

sin(hs) sin(as) = cos(φ) sin(ωs)

From these equations the maximum solar elevation for a determined day and latitude
can be found. At noon the hour angle and the solar azimuth angle are zero, ωs = 0°
and as = 0°, corresponding to the maximum elevation (hs,max). Using these values
in Eq. (1.7) gives

hs,max = 90° − φ + δs [°] (1.8)

In [342], also meteorological, topographic and astronomic effects are studied.

1.3 Technology Classification

Solar energy has been used throughout time, mainly for heating and lighting but
also for many other purposes such as refrigeration [413], detoxification [55], de-
salination [131, 415] and primarily for the generation of electricity. Solar powered
electrical generation can be achieved either directly, by the use of photovoltaic (PV)
cells, or indirectly, by collecting and concentrating solar power (CSP) to produce
steam which is then used to drive a turbine to provide electrical power [139]. In
[254] various advanced solar thermal electricity technologies are reviewed with an
emphasis on new technology and new market approaches.

Figure 1.7 shows a diagram of basic solar energy conversion systems [359], able
to convert the solar resource into a useful form of energy. The function of a solar
collector is to intercept the incoming solar radiation and to change it into a usable
form of energy. Storage or auxiliary systems are necessary if solar energy conversion
systems are not connected to an electrical transmission grid [359].

In [205] various types of solar thermal collector and of application are presented,
including flat-plate, compound parabolic, evacuated tube, parabolic-trough, Fres-
nel lens, parabolic dish and heliostat field collectors. This is followed by an op-
tical, thermal and thermodynamic analysis of the collectors and a description of
the methods used to evaluate their performance. Regarding the applicability of the
collectors, some applications are related, like solar water heating (which comprise
thermosyphon, integrated collector storage, direct and indirect systems and air sys-
tems), space heating and cooling (which comprise, space heating and service hot
water, air and water systems and heat pumps, refrigeration), industrial process heat
(which comprise air and water systems and steam generation systems), desalination,
thermal power systems (which comprise the parabolic trough, power tower and dish
systems), solar furnaces and chemistry applications. As can be seen, solar energy
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Fig. 1.7 Diagram of solar energy conversion systems, [359]

systems can be used for a wide range of applications and provide significant bene-
fits.

In [342] a summary of solar energy sources and conversion methods is presented.
Applications of solar energy in terms of low and high temperature collectors are
given with future research directions. PV devices are discussed for future electric
energy generations based on solar power site-exploitation and transmission by dif-
ferent means over long distances such as fiber-optic cables. Another use of solar
energy is its combination with water and as a consequent electrolysis analysis gener-
ation of hydrogen gas, which is expected to be another form of clean energy sources.
Combination of solar energy and water for hydrogen gas production is called solar-
hydrogen energy. Possible future new methodologies are also mentioned in [342].

Most of the experiments described in this book have been performed at the
Plataforma Solar de Almería (PSA, www.psa.es). This experimental facility be-
longs to the Centro de Investigaciones Energéticas Medioambientales y Tecnológ-
icas (CIEMAT) and is the largest European center for research, development and
testing of concentrating solar technologies. The PSA has two tower plants (CESA-1
and CRS), various linear focusing facilities and distributed solar collector fields
(DISS and ACUREX), a solar furnace, a few solar dishes and a number of other
experiments (Fig. 1.8).

1.3.1 Electricity Generation

1.3.1.1 Photovoltaic Plants

The direct generation of electricity from solar energy is based on the photovoltaic
effect which refers to the fact that photons of light hitting certain materials will
knock electrons into a higher state of energy producing an electrical current.

Although the first PV cells were used to generate electrical power for spacecrafts,
there are many PV power generation systems for more normal applications such as
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Fig. 1.8 Aerial view of the PSA facilities (courtesy of PSA, www.psa.es)

Fig. 1.9 Types of photovoltaic plant

houses isolated from the grid, pumps for water extraction, electric cars, roadside
emergency telephones, remote sensing and cathodic protection of pipelines. When
the power generated by the PV cells is transmitted to the grid, an inverter to convert
the direct current (DC) to alternating current (AC) is required. PV cells are usually
protected by a glass sheet and are connected together to form solar panels. Multiple
solar panels or modules must be assembled as arrays when more power production
is required. The prices of solar panels are still too high to compete with other non-
renewable fuels. However, in most places, significant financial incentives such as
the feed-in tariff (FIT) have triggered a huge increase in the demand for PV pan-
els. Photovoltaic production is the fastest-growing energy technology. It has been
increasing by almost 50% percent every year. At the end of 2010, the cumulative
global amount of PV installations reached 15200 MW. Figure 1.9 shows the main
types of photovoltaic plant according to the selected mechanism for tracking the
Sun (in Chap. 2 the Sun tracking fundamentals are studied).

1.3.1.2 Thermosolar Plants/Concentrating Solar Thermal Systems

Concentrating solar thermal (CST) systems use optical devices (usually mirrors)
and Sun tracking systems to concentrate a large area of sunlight onto a smaller
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receiving area. The concentrated solar energy is then used as a heat source for a
conventional power plant. A wide range of concentrating technologies exists. The
main concentrating concepts are: (a) parabolic troughs, (b) solar dishes, (c) linear
Fresnels and (d) solar power towers. The main purpose of concentrating solar energy
is to produce high temperatures and, therefore, high thermodynamic efficiencies.

Parabolic Troughs

Parabolic-trough systems are the most used CSP technology. A parabolic trough
consists of a linear parabolic mirror that reflects and concentrates the received solar
energy onto a tube (receiver) positioned along the focal line. The parabolic mirror
follows the Sun by tracking along a single axis. The heat transfer fluid (HTF), typ-
ically synthetic oil or water, is pumped through the receiver tube and picks up the
heat transferred through the receiver tube walls. Then, it is routed either to a heat ex-
changer when this fluid is oil, to produce steam that feeds an industrial process (for
instance a turbine), to an ash tank when the fluid is pressurized water, to produce
steam for an industrial process, or to a turbine when superheated and pressurized
steam is produced directly in the solar field [416].

In [139] an overview of the parabolic-trough collectors that have been built and
marketed during the past century, as well as the prototypes currently under devel-
opment are studied. It also presents a survey of systems which could incorporate
this type of concentrating solar system to supply thermal energy up to 400°C, es-
pecially steam power cycles for electricity generation, including examples of each
application.

In order to provide viable power production, parabolic troughs have to achieve
their task despite fluctuations in energy input, i.e. solar radiation. An effective con-
trol scheme is needed to provide operating requirements of a solar power plant.
Most of the plants that are for the currently operational, such as the SEGS (Solar
Electricity Generating System) plants in California [304], provide this energy in the
form of oil heated by a field of parabolic-trough collectors. However, the processes
usually connected to such fields for electricity generation [304, 398] or sea-water
desalination [415] are most efficient when operated continuously. To do this, they
must be provided with a constant supply of hot oil at some pre-specified temperature
despite variations in the ambient temperature, the inlet temperature and the direct
solar irradiance. This requirement prompted the use of a storage tank as a buffer
between solar collection and the industrial process at early plants such as the SSPS
system at the PSA, Spain [398] and SEGS I in California.

For this purpose, later plants (SEGS II–IX) operated a gas fired boiler running
in parallel to the solar field in order to make up any shortfalls in the solar produced
steam [304]. While these facilities enable the overall power output of the plant to be
maintained during shortfalls, they do not remove the requirement for a fixed quality
energy output from the field, in the form of tight outlet temperature control.

Maintaining a constant supply of solar produced thermal energy in the face of
disturbances is not the purpose of this control because it is not a cost effective strat-
egy; in theory, oversized collector fields could be used with parts only operating
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Fig. 1.10 Parabolic troughs
at the PSA (courtesy of PSA)

during periods of low solar radiation. The aim of a control scheme should rather
be to regulate the outlet temperature of the collector field by suitably adjusting the
oil flow rate [398]. This is beneficial in a number of ways. Firstly, it supplies any
available thermal energy in a usable form, i.e., at the desired operating temperature,
which improves the overall system efficiency and reduces the demands placed on
auxiliary equipment such as the storage tank. Secondly, the solar field is maintained
in a state of readiness for the resumption of full scale operation when the intensity
of sunlight rises once again; the alternative is unnecessary shutdowns and startup
procedures which are both wasteful and time consuming. Finally, if the control is
good, i.e., fast and well damped, the plant can be operated close to design limits,
thereby improving productivity.

During the last thirty years considerable effort has been devoted by many re-
searchers to improve the efficiency of solar thermal power plants with distributed
collectors from the control and optimization viewpoints. Most of the work carried
out and summarized in [85, 87, 88] (and extended in this book) has been devoted to
improve the operation of the ACUREX field of the SSPS plant located in the PSA,
Spain, which uses a parabolic-trough system using industrial oil as the HTF because
commercial plants for electricity production [300] and the facilities available to tests
automatic controllers are using this fluid. However, there are also some recent expe-
riences of controlling parabolic-trough systems using water/steam as the HTF, like
the DISS plant at the PSA shown in Fig. 1.10, [130, 226, 383, 384, 416, 419], or
distributed collector solar fields using molten salt as the HTF [301]. The DISS plant
consists of a parabolic-trough collector where the feed water is preheated, evap-
orated and converted into superheated steam as it circulates through the absorber
tubes. The field consist of a single 665 m long row of parabolic-trough collectors
with a total solar collecting surface of 3838 m2. The modeling and control of these
installations is dealt with in this book in Chaps. 4 and 5.

Fresnel Collectors

Linear Fresnel reflectors use various thin mirror strips to concentrate sunlight onto
tubes where fluid is circulating (Fig. 1.11). Higher concentration can be obtained
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Fig. 1.11 Fresnel linear
reflector at the School of
Engineers of Seville
University

and these mirrors are cheaper than parabolic mirrors, but a more complex tracking
mechanism is needed. Absorbers are located at the focal point of the mirrors and
consist of an inverted air cavity with a glass cover enclosing insulated tubes. In
some cases there are multiple absorbers to improve system efficiency.

Tower Plants with Central Receiver Systems

Solar power towers have an array of reflectors (heliostats) that are able to track the
Sun’s movement with two axis and concentrate solar radiation onto a central receiver
at the top of a tower. The working fluid in the receiver is heated and then used for
power generation. Power tower development is less advanced than trough systems
but they offer higher efficiency and better energy storage capability.

A Solar Power Tower (SPT) plant consists of the heliostat field, receiver unit,
heat transfer, exchange and storage unit, steam and electricity production units and
the integrated control system. Usually, each of the units has its specific control de-
vice. The integrated control system communicates with the different subsystems to
coordinate the different units in such a way that the plant operates in a safe and effi-
cient way. Typically, a plant control system includes heliostat control and heliostat
field dispatch optimization, water level control in receivers, main steam temperature
control, steam supply pressure and temperature in heat storage system control un-
der heat releasing condition and the main steam pressure control. At present, there
are only two commercial tower power plants in operation, the 10 MW (PS10) and
the 20 MW (PS20) plants, designed, built and operated by Abengoa Solar close to
Seville in Southern Spain (Fig. 1.12).

The PSA has two exceptional facilities for testing and validating central receiver
technology components and applications, the CRS and CESA-1. The SSPS-CRS
plant was inaugurated in 1981 and it was originally an electricity production demon-
stration plant using a receiver cooled by liquid sodium which also served as a ther-
mal storage fluid. The 43 m high metal tower has two test platforms. The CESA-I
project, was built in 1983. Direct solar radiation is collected by the collector field
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Fig. 1.12 PS20: 20 MW
solar power tower (courtesy
of Abengoa,
www.abengoasolar.com)

of 300 heliostats (with 39.6 m2 reflective surface each, Fig. 1.13). A maximum of
7 MW thermal power can be delivered by the field onto the receiver. The 80 m high
concrete tower has three test levels, at 45 m, at 60 m and at 80 m. The modeling and
control of these installations will be treated in Chap. 6.

Dish Collectors

A dish engine system consists of a parabolic collector dish that concentrates light
onto a receiver positioned at the focal point of the reflector. The reflector is able
to track the Sun along two axes. A Stirling engine positioned at the focal point of
the parabola is used to generate power. Solar dish systems are modular and have

Fig. 1.13 CESA-1 tower
plant at PSA (courtesy of
PSA)
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Fig. 1.14 Dish collector at
PSA (courtesy of PSA)

comparatively high conversion efficiency and can be deployed either individually or
grouped together.

Dish concentrators approximate a paraboloid of revolution. The mirrors require
relatively high curvature because the focal length of the dish is only a few me-
ters. Some concentrators use multiple mirrors to approximate the ideal concentrator
shape. Other concentrators use a thin reflective membrane which is given the right
shape by using vacuum. The concentration ratio of solar dish systems is usually
around 2000 suns. The receiver, located at the focal point of the collector, absorbs
energy reflected by the concentrator (Fig. 1.14).

The conversion of heat to mechanical energy in solar dish systems is done by
compressing a working cold fluid, heating the compressed fluid and finally expand-
ing it in a piston or turbine to produce work. An electric generator is used to convert
the mechanical power to electrical power. The electrical power output in current
Stirling dish systems is about 25 kWe.

1.3.2 Other Applications

1.3.2.1 Solar Furnaces

Solar energy has been used to produce high temperatures in solar furnaces. Solar
radiation is collected by an array of mirrors which concentrate the solar radiation
light onto a focal point. The largest solar furnace is Odeillo furnace built in 1968 in
the Pyrenees, a mountain range between France and Spain. The furnace has a 16000
concentration factor and is capable of reaching temperatures of up to 3500°C. It uses
an array of mirrors to collect and reflect solar radiation onto a larger curved mirror
which focuses onto an area the size of a few square decimeters where samples are
placed for material testing purposes (Fig. 1.15).

The PSA has a solar furnace facility which is able to reach concentrations of
over 10000 suns. The main application field is materials testing. The solar furnace
consists of a continuously solar-tracking heliostat field, a parabolic concentrator
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Fig. 1.15 Solar furnace in Odeillo, France (www.sollab.eu/doctoralcolloquium6/)

mirror, an attenuator or shutter and the test zone located in the concentrator focus.
In Chap. 7, Sect. 7.2, the modeling and control of the solar furnace of the PSA will
be studied in detail.

1.3.2.2 Solar Cooling

Solar energy cannot only be used for heating but also for cooling purposes. Solar
cooling also has the advantage of requiring little energy storage, because the needs
of cold air match solar radiation very well.

There are various ways in which solar energy can be used for cooling [177, 209].
Absorption technology is the most popular and consists of using solar thermal en-
ergy to feed thermally driven chillers. Absorption chillers use a refrigerant which
is absorbed by a liquid sorbent. The thermal solar energy is injected in the gen-
erator where the refrigerant is desorbed from the refrigerant–sorbent solution. The
refrigerant vapor pressure generated is sufficient to condense the refrigerant in the
condenser. The refrigerant vapor is absorbed back into the solution which is cooled
in the absorber. The solution is pumped to the generator by a pump. Most absorp-
tion chillers use water as refrigerant and lithium bromide as solvent or ammonia as
refrigerant and water as solvent. If water is used as the refrigerant (water/lithium
bromide pair), the cold temperature is above 0°C. The absorption chillers using am-
monia/water can generate evaporator temperatures as low as to −60°C and can be
used for industrial cooling systems. Another type of chiller, adsorption chillers, uses
water as a refrigerant which is adsorbed in a solid sorbent such as silica gel (among
disposal of latent heat on the surface). The latent heat can decrease to zero when
enough water molecules are added and then only evaporation heat is dissipated. The
desorption of the stored water and the generation of enough pressure for the conden-
sation can be done at temperatures below 70°C and the technology is appropriate for
solar thermal technology with little concentration factors.

In a typical solar absorption cooler with a water/lithium bromide pair (Fig. 1.16),
the solar energy collected is used at the generator to boil water from the lithium bro-
mide and water solution. The water vapor is cooled down in the condenser and from
there it goes to the evaporator where it is evaporated at low pressure providing the
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Fig. 1.16 Solar cooling system at CIESOL R&D Center, University of Almería

required cooling. The heat of the strong lithium bromide solution is used to preheat
the weak solution entering the generator. The water vapor leaving the evaporator is
absorbed by the strong solution in the absorber. An auxiliary energy source, usually
a gas boiler, is used to supply hot water to the chiller when the solar radiation is not
sufficient.

Double or triple effect absorption cooling cycles have been used in different so-
lar chillers to increase efficiency. Double effect absorption chillers require hot water
temperatures of around 180°C. Since a flat-plate solar collector can only heat wa-
ter up to 80°C, some concentration is needed. Fresnel and parabolic troughs are
normally used. Solar cooling control systems will be treated in Chap. 7, Sect. 7.3.

1.3.2.3 Water Treatment and Solar Desalination Plants

One interesting field of solar chemistry applications is the solar photochemistry. So-
lar photochemical processes make use of the spectral characteristics of the incoming
solar radiation to effect selective catalytic transformations which find application in
the detoxification of air and water and in the processing of fine chemical commodi-
ties [205]. In solar detoxification photocatalytic treatment of non-biodegradable per-
sistent chlorinated water contaminants typically found in chemical production pro-
cesses is achieved. For this purpose parabolic-trough collectors (PTC) with glass
absorbers are employed and the high intensity of solar radiation is used for the
photocatalytic decomposition of organic contaminants. The process uses UV en-
ergy, available in sunlight, in conjunction with the photocatalyst, titanium dioxide,
to decompose organic chemicals into non-toxic compounds. Another application
concerns the development of a prototype employing lower concentration compound
parabolic concentrators (CPC) [205].

An example are the photo-reactors placed in the PSA (Fig. 1.17(a)), where ad-
vanced oxidation processes allow to oxidize and mineralize almost any organic con-
taminant. Among them, the Photo-Fenton method is known for its high reaction
rates and its applicability with natural sunlight, which is a cheap, sustainable pho-
ton source and an adequate solar technology developed to pilot-plant scale. The
process cost may be considered the main reason that serious doubts are harbored as
to its feasibility for commercial application. Research, therefore, focuses on ways
to reduce these costs, through the application of sunlight instead of expensive UV
lamps as a source of the required photons, study of the influence of process param-
eters on the reaction rates in order to increase reactor throughput, or the evolution
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Fig. 1.17 Solar desalination plant at water detoxification loop at the PSA (courtesy of PSA)

of toxicity and biodegradability during treatment to determine the best point for
discharging waste water or coupling with subsequent biological treatment. Exper-
imental design approaches have been employed for pilot-plant experimentation to
upscale the process and optimize pilot-plant experimentation strategies [7].

Water desalination can be achieved by using a number of techniques. These may
be classified into the following categories: (i) phase-change or thermal processes and
(ii) membrane or single-phase processes [205]. In the phase-change or thermal pro-
cesses, the distillation of sea water is achieved by utilizing a thermal energy source.
In the membrane processes, electricity is used either for driving high pressure pumps
or for ionization of salts contained in the sea water. Desalination processes require
significant quantities of energy to achieve separation. This is highly significant as it
is a recurrent cost which few of the water-short areas of the world can afford.

Solar energy can be used for sea-water desalination either by producing the ther-
mal energy required to drive the phase-change processes or by producing electricity
required to drive the membrane processes. Solar desalination systems are thus clas-
sified into two categories, i.e. direct and indirect collection systems. As their name
implies, direct collection systems use solar energy to produce distillate directly in
the solar collector, whereas in indirect collection systems, two subsystems are em-
ployed (one for solar energy collection and one for desalination) [205].

In [318] a description of a technical development in desalination that combines
a thermal desalination system and a solar field with a double effect absorption heat
pump to reduce the cost of water production is presented. Figure 1.17(b,c) shows the
AQUASOL plant at the PSA, where a solar distillation technology based on a multi-
effect distillation (MED) plant with 3 m3/h nominal distillate production. The MED
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plant (Fig. 1.17(b)) consists of 14 effectors in vertical arrangement at decreasing
pressures from cell 1 to cell 14. Sea water is preheated and pumped to the first cell
where it goes down to the following cells by gravity at the same time that part of
the water is evaporated. For optimal operation, the feed-water inlet temperature in
the first cell must be 66.5°C. It is possible to reach this temperature with heat from
a solar field and also by steam generated by an auxiliary gas boiler coupled to a
double effect absorption heat pump, which can work at variable loads of the steam
(from 30% to 100%). Solar collector field consists of CPC collectors (Fig. 1.17(c))
coupled to two water storage tanks, 12 m3 capacity each one, used as heat storage
system. Energy supplied by the solar field and double effect absorption heat pump
is transferred to a thermal storage tank using water as HTF. The AQUASOL plant
can operate in three different modes; solar, fossil and hybrid (for more details see
[318]).

1.4 Energy Storage

Intermittent energy sources are, in general, unpredictable as the generated power
depends on the weather. In electrical grid energy sources, stored energy has to be
used to balance the mismatch between the energy production from intermittent en-
ergy sources and the demand [185]. Energy is stored in fuels (coal, oil, gas) or other
systems which store electrical, mechanical, thermal or chemical energy. Battery sys-
tems have been used in grid isolated small, usually domestic, systems. Batteries are
expensive with high maintenance costs and limited lifespan. Hybrid and electric cars
will also be able to store a substantial amount of energy if they are mass-produced.
Electric utilities are planning to use plug-in vehicle batteries to store electricity.
Mechanical energy can be stored as compressed air, flywheel or by pumped hy-
dro storage. Water is pumped to a high storage reservoir using the excess capacity.
Pumped storage is the most cost effective way of mass power storage, recovering
about 75% of energy. Its main drawback is that two adjacent reservoirs with a sig-
nificant difference in height are required. Energy from pumped water storage can
be delivered very rapidly, normally in less than one minute and they are appropriate
for grid regulation. Hydrogen can be produced by the electrolysis of water into hy-
drogen and oxygen or by reforming natural gas with steam and then converted back
to electricity by fuel cells. Thermal energy storage is used by solar thermal plants
which can use oil or molten salt as a heat store (Fig. 1.18) or directly store the steam
produced. This stored energy can be used to generate electricity at night or when
solar radiation is not sufficient to cover the production program. In thermal solar
power plants, thermal storage and/or fossil backup act as the following [359].

• An output management tool to prolong operation after sunset, to shift energy
sales from low revenue off-peak hours to high revenue peak demand hours and to
contribute to guaranteed output.

• An internal plant buffer, smoothing out insolation charges for steadying cycle
operation and for operational requirements such as blanketing steam production,
component pre-heating and freeze protection.
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Fig. 1.18 Examples of energy storage systems ((a) courtesy of PSA, (b) courtesy of ACS,
http://www.protermosolar.com/boletines/boletin08.html)

In general, thermal storage is a physical or chemical process which takes place in
the storage tank during system charging and discharging. The storage system con-
sists of the storage tank, the storage medium and the specific charge and discharge
devices. Thermal energy is transferred from the solar receiver to storage (charging)
and from storage to the conversion system (discharging) by a HTF.

Thermal storage systems employed in solar thermal power plants, whether for
power tower or parabolic-trough collector technologies, are based on:

• Sensible heat storage in saturated liquids.
• Sensible heat storage in solids.
• Latent heat storage.
• Thermochemical storage.

Both liquids and solids are used for storage of sensible heat. In addition to the ther-
mophysical properties of the material employed, the cost of this material also be-
comes relevant to selection [185]. For temperatures up to 300°C, the most econom-
ical solution is mineral thermal oil at atmospheric pressure. For temperatures up to
410°C, synthetic or silicon oils are used, but they must work at low pressure and are
more expensive. Molten salt and sodium are used between 300 and 550°C at atmo-
spheric pressure, but they require antifreeze systems [402]. At higher temperatures,
ceramic materials begin to be a competitive alternative.
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Table 1.1 Overview of thermal storage systems that have been tested on large scale

Location Storage Primary coolant Design temperature (°C) Design

SEGS-1 Ca Oil Oil 240–307 2 tanks: hot/cold

SSPS Al Oil Oil 225–295 1 thermocline tank

SSPS Al Oil/cast iron Oil 225–295 1 hybrid tank

Solar-1 Ca Oil/rock/sand Steam 224–304 1 hybrid tank

CESA-1 Al Molten salt Steam 220–340 2 tanks: hot/cold

Solar-2 Ca Molten salt Molten salt 288–566 2 tanks: hot/cold

SSPS Al Liquid sodium Liquid sodium 270–530 2 tanks: hot/cold

TSA Al Ceramic balls Air 200–800 1 hybrid tank

Phase-change materials (PCM) offer important advantages, for example, high
volumetric capacities and rather stable temperatures. Numerous latent heat storage
systems using expendable metals or salt have been proposed and studied, but they
have never been tested on large scale due to their difficult heat exchange [31, 124].

The use of reversible chemical reactions has great potential for offering a highly
efficient, high-density thermal storage system. Chemical storage is especially ap-
propriate for high temperatures and for long-term storage (several days or weeks).
They generally require reactions that are completely reversible and for the equilib-
rium temperature to be the same as the charge/discharge temperatures in the spe-
cific system. The reactions may be homogeneous gas or heterogeneous solid–gas or
liquid–gas reactions [222].

The basic operating strategy of a solar thermal plant is the one in which solar
only operates the power block. If the solar field has exactly the right size to provide
the energy the conversion unit needs at rated power, it is called a solar multiple
equal 1. The solar multiple is closely related to the plant design point. If a solar
multiple equal 1 is selected for June 21st, the plant will only operate at its rated
power one day a year (northern hemisphere). If, on the contrary, it is selected for
December 21st, the plant will operate all year at rated power but the extra energy
will be wasted. Thermal storage systems provide the possibility of employing this
excess energy at certain times of the year (summer) without increasing the solar
field.

The specific solar plant technology, operating temperature and coolant chosen
significantly affect thermal storage, which may either:

• use the same fluid as primary coolant and for thermal storage;
• use different fluids for coolant and storage.

In the first case only a storage tank or cold tank/hot tank design is used, while for
the second there must be a hybrid storage system or regenerator. Table 1.1 gives an
overview of thermal storage systems that have been tested on large scale.

In [185] the main characteristics of the different electricity storage techniques
and their field of application (permanent or portable, long- or short-term storage,
maximum power required, etc.) are analyzed. These characteristics serve to make
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comparisons in order to determine the most appropriate technique for each type of
application.

1.5 Summary

In this chapter, solar energy fundamentals have been briefly introduced highlighting
those aspects that are used in the following chapters. An overview of the main solar
thermal technologies has also been performed, including general descriptions and
examples, as well as an introduction to those facilities at the PSA that are used in
this book to show illustrative examples of modeling and control techniques.





Chapter 2
Control Issues in Solar Systems

2.1 Introduction

This chapter is devoted to introduce the main issues involved in the control of solar
energy systems. Four different levels can be distinguished: (i) the control of the
solar collector units, (ii) solar radiation estimation and forecast, (iii) the control of
the energy conversion systems and (iv) the overall control of the complete process.

The control of the solar collecting systems consist of controlling the solar col-
lectors movements in such a way that the maximum solar energy is collected at any
time. In the case of dish collectors with two degrees of freedom, the controls sys-
tem keeps the collector surface perpendicular to the solar vector. In the case of solar
trough or collectors with one degree of freedom, the mission of the controller is to
maintain the solar collector surface normal as close as possible to the Sun vector.
The controller has to compute the Sun vector, which depends of the geographical
position of the collector and the date and time of day. The position of the collectors
is then determined with a trigonometrical computation and this is sent to the servo
controlling the collector axes. Fine tracking is obtained in some cases by using sig-
nals which depend on the angle formed by the collector surface normal and the solar
vector.

In the case of solar power towers or Fresnel linear solar collectors, the reflecting
mirrors have to be moved in such a way that the solar radiation is reflected on the
central receiver or the receiver tube. The heliostats have to be controlled in such a
way that the solar radiation is reflected on the central receiver. The heliostat surface
normal should be in the bisectrix of the angle formed by the solar vector and the
vector joining the center of the heliostat reflecting surface and the central receiver.

In order to control solar energy system, it is very important both to know the ac-
tual values of solar irradiance and even to be able to forecast this variable within dif-
ferent time windows to be used for control and operation planning purposes. Thus,
adequate sensors to obtain values for solar irradiance are used in these kinds of
plant (mainly pyranometers and pyrheliometers) and different algorithms to provide
estimations of future values of solar irradiance where the solar plant is located.

The control of the variables associated to the solar conversion units depends very
much on the type of system. In the case of photovoltaic (PV) systems, this involves
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the control of the voltage and intensity produced by the solar cells in order to op-
erate at the maximum efficiency point and the controls of the associated DC/AC
conversion power electronics. In the case of thermal solar plants, the solar energy
heats up a fluid which is then used to produce steam necessary to drive the turbines.
The variables to be controlled at this level are the temperatures and flows of the
heat collecting fluid. The main difference with other power plants is that the main
source of energy, the solar radiation, cannot be manipulated. An important part of
this book is dedicated to this issue. The heated HTF is then used to produce steam
and from this point, the controls at this level do not differ much from the control of
other thermal plants.

The upper control level takes care of the operation of the complete solar system.
The control decides what amount of energy is produced and delivered and what
amount is stored and which are the set points of the main process variables at any
given moment. Since the solar radiation varies along the day, the plant is rarely
at a steady state condition and the determination of the optimal operating points
should be done dynamically. Solar energy is intermittent and is not available when
needed and where needed, and because of this the integration of solar energy plants
in the electrical grid is a challenging problem. An efficient operation of solar plants
with energy storage systems could allow a closer match between solar plants power
generation and electrical power demand. Furthermore, proposals of new price mech-
anisms are appearing continuously with the liberalization of the energy prices and
they are considered to be a fundamental part of the Smart Grid concept. The price
fluctuations tend to correlate well with the demand and an efficient operation of a
solar power plant installation requires all of these aspects to be considered.

2.2 Sun Tracking

2.2.1 The Need for Tracking the Sun

In order to collect solar energy on the Earth, it is important to know the angle
between the Sun’s rays and a collector surface (aperture). The collector aperture
is defined as the surface of the plane normal to the Sun rays through which non-
concentrated radiation enters the collector where it is reflected. The aperture angle
in parabolic trough collectors (PTC) is the angle between the axis of the parabola
and the line connecting the focus with one end of that parabola.

When a collector (its aperture normal) is not pointing directly at the Sun, some
of the energy that could be collected is being lost [359].

In Sect. 1.2.5 the Sun’s position angles relative to Earth-center coordinates (φ, δs ,
and ωs ) were defined. In the design of solar energy systems it is important to be able
to predict the angle between the Sun’s rays and a vector normal (perpendicular) to
the aperture of the collector. This angle is called the angle of incidence θi . The
tracking angle ρt is the amount of rotation that collectors require to place their
aperture normal to the Sun’s central ray.
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A characteristic fundamental to the capture of solar energy is that the amount of
energy incident on a collector is reduced by a fraction equal to the cosine of the
angle between the collector surface and the Sun’s rays. Knowing the position of the
collector and the position of the Sun, equations may be used to predict the fraction
of incoming solar energy that falls on the collector [359].

Concentrating solar technologies can make use of only direct solar irradiance,
that is, the beam that come directly from the solar disk and not those that could be
reflected from the surroundings. Therefore, solar collectors must be equipped with
systems that enable the collecting surface to maintain the orientation necessary to
reflect and concentrate the beam on the receiver. The Sun’s position in the sky vault
varies slowly during the day, in a trajectory above the horizon. Such a trajectory is
different every day of the year.

2.2.1.1 The Solar Incidence Angle

Each of the CSP systems considered here tracks the Sun in a different way. As
described in Chap. 1, the Sun’s position with respect to the observer can be described
by two angles, the azimuth angle and the elevation angle. A third angle is crucial to
calculate the effective solar power usable by a solar collector; this is the incidence
angle (θi ). The effective collecting area is reduced by the cosine of the angle formed
by the normal to the collecting surface and the Sun position vector at any instant.
The incident solar power must by reduced by applying the factor cos(θi) in the
calculations. This is clearly a reducing factor as −1 ≤ cos(θi) ≤ 1. Most of the
systems considered in this book are tracking the Sun, but most of them do not face
it directly, so this imperfect tracking leads to the effect of the cosine factor. Then,
the way to calculate the incident power on the receiver is

Psol = EbG cos(θi) (2.1)

where Eb is the direct normal irradiance [W/m2], G is the collector aperture area
[m2] and cos(θi) is the cosine of the incidence angle.

2.2.1.2 The Cosine Factor Effect in the Different Solar-Tracking Systems

A PTC tracks the Sun on azimuth or elevation. The collector can be oriented East–
West and track the Sun on elevation, or vice versa. The reflected beam is incident on
a tube placed in the focal line of the collector, which moves along with it. Once the
horizontal coordinates of the Sun are known, cos(θi) can be calculated as follows
[184]:

• For a collector with axis oriented East–West:

cos(θi) = (

1 − cos2(δs) sin2(ωs)
) 1

2 (2.2)
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• For a collector with axis oriented North–South:

cos(θi) = ((

sin(φ) sin(δs) + cos(φ) cos(δs) cos(ωs)
)2 + cos2(δs) sin2(ωs)

) 1
2

(2.3)

Linear Fresnel collectors are quite similar, except that the receiver, located well
above a set of mobile flat mirrors, does not move, so tracking is on one-angle, or
single-axis.

In a central receiver system, a heliostat tracks the Sun in such a way that the re-
flected rays are incident on a single receiver located on top of a tower. Although this
tracking is two-axis, the cosine factor also appears, as the normal to the reflecting
surface has an angle of deviation with respect to the Sun position vector.

The following formula can be used to calculate the cosine factor for a given
heliostat [161]:

cos(θi) = nT · H
‖n‖ · ‖H‖ (2.4)

n = [

cos(αn) sin(an),− cos(αn) cos(an), sin(αn)
]T

H = [

cos(ht ) sin(at ),− cos(ht ) cos(at ), sin(ht )
]T

S = [

cos(hs) sin(as),− cos(hs) cos(as), sin(hs)
]T

where hs and as are the solar altitude and azimuth angles, ht and at are the fixed
tower vector altitude and azimuth angles shown in Fig. 2.1 and hn and an are
the heliostat-normal altitude and azimuth angles, measured in the same way as hs

and as .
The most efficient tracking is done by the parabolic dish systems, in which track-

ing is two-axis and the parabola faces the Sun directly when in tracking mode, so
there is no cosine factor effect. This is possible because the parabola has a single
focal point, where the receiver may be placed.

2.2.2 Tracking Systems

A solar tracker is a device that points a solar collector mechanism toward the Sun
or directs a reflector mechanism in such a way that it reflects the maximum energy
onto a collector device. The relative position of the Sun in the sky changes both with
the seasons and the time of day. As has been mentioned in the previous section, the
solar power received by a solar collector is equal to the solar irradiance received at
that location multiplied by the device surface and by the cosine of the angle formed
by the Sun’s rays and the normal surface. There are many types of solar-tracking
mechanism with different accuracies. Solar tracking can be implemented by using
one-axis and for higher accuracy, two-axis Sun-tracking systems.

Power tower heliostats need a good degree of accuracy to ensure that the power
is reflected onto the receiver which can be situated hundreds of meters from the
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Fig. 2.1 Tracking and incidence angles for a heliostat

heliostat. Little accuracy is required for non-concentrating applications; in fact, most
of these applications work without any solar tracking at all.

Tracking can significantly increase the amount of energy produced, especially in
the early morning and late afternoon when the cosine of the angle of the direct solar
irradiance with the surface normal is smaller.

In [263], a review of principle and Sun-tracking methods is developed focused
on PV panels, but useful for other kinds of solar device. All tracking systems have
all/some of the following characteristics:

• Single column structure or of parallel console type.
• One or two moving motors.
• Light sensing device.
• Autonomous or auxiliary energy supply.
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• Light following or moving according to the calendar.
• Continuous or step-wise movement.
• Tracking all year or all year except winter.
• Orientation adjustment with/without the tilt angle adjustment.

Sun-tracking systems are usually classified into two categories [263]:

• Passive (mechanical) solar trackers are based on thermal expansion of a mat-
ter (usually Freon) or on shape memory alloys. Usually this kind of tracker is
composed of couple of actuators working against each other which are, by equal
illumination, balanced.

• Active (electrical) trackers can be categorized as microprocessor and electro-
optical sensor based, computer-based controlled date and time, auxiliary bifacial
solar cell based and a combination of these three systems. Electro-optical so-
lar trackers are usually composed of at least one pair of anti-parallel connected
photo-resistors or PV solar cells which are, by equal intensity of illumination of
both elements, electrically balanced so that there is either no or negligible control
signal on a driving motor. In auxiliary bifacial solar cell, the bifacial solar cell
senses and drives the system to the desired position and in PC controlled date and
time based, a computer calculates the Sun positions with respect to date and time
with algorithms and create signals for the system control.

Many fast algorithms for calculating the Sun position used in engineering appli-
cations requiring little computation can be found in the literature. The well-known
Spencer formula has a maximal error greater than 0.25°. There have been a number
of algorithms proposed in literature [56, 102, 163] which increase precision without
incurring high computational efforts. These algorithms work correctly for limited
periods of time. There are also high-precision astronomical algorithms to compute
the Sun’s position with an error of less than 0.0003° over a very long period of time
(2000 B.C.–6000 A.C.); they require a large amount of computation.

2.3 Solar Irradiance over a PTC

The global solar irradiance Eg over a horizontal surface that does not collect ra-
diation due to reflection or diffusion is composed of the direct solar irradiance Eb

(coming directly from the solar disc and measured over a plane normal to the direc-
tion of the solar irradiance) and the diffuse irradiance Ed (that subjected to absorp-
tion/diffusion processes in the atmosphere and measured over a horizontal plane)
according to

Eg = Eb cos(θi) + fdiEd (2.5)

where fdi is the amount of diffuse irradiance intercepted by the surface. For con-
centrating collectors [305]:

fdi = 1

Cg

→ Eg = Eb cos(θi) + 1

Cg

Ed (2.6)
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where Cg is the geometrical concentration factor, that is, the ratio between the col-
lector aperture surface and that of the absorbent tube (the part of the solar collector
receiving the concentrated solar radiation and transforming it in thermal energy).
For PTC with concentration factors over 14, the second term in the right hand of the
equation can be neglected, so that Eg ≈ Eb cos(θi).

2.3.1 Optical and Geometrical Losses in a PTC

Optical efficiency ηopt is defined as the factor that takes into account energy losses
between the reference solar power, Psol, and the power absorbed by the receiver,
Pabs. These energy losses are optical and geometric and are due to the following:

• Primary concentrator parabolic mirrors are not perfect reflectors, so their specular
reflectivity, r , has to be taken into account.

• The glass cover is not perfectly transparent, but lets only part of the incident
radiation through, which is determined by its transmissivity, τsol,c .

• The absorber surface has a certain solar radiation absorptance αsol,A.
• There may be errors in the positioning of the receiver on the axis of the parabola

which is formed by the mirrors, errors in the parabolic mirror shape itself, errors
in solar tracking which cause reflected rays not to intercept the absorber, etc. All
of these possible errors are included in the intercept factor, γA.

Power absorbed by the receiver, Pabs, may therefore be said to be given by

Pabs = GEb cos(θi)r(θi)τsol,c(θi , λ)αsol,A(θi, λ)γA(θi) (2.7)

This equation emphasizes that the variables in it depend on the angle of incidence
of the irradiance, θi , and for absorptance of the absorber and transmittance of the
cover, on wavelength range, λ, which characterizes the incident radiation. Adding
αsol,A(θi) and τsol,c(θi) to the integrated absorptance of the absorber and transmit-
tance of the cover, respectively, in relation to the solar radiation spectrum, the above
expression may be simplified as

Pabs = GEb cos(θi)r(θi)τsol,c(θi)αsol,A(θi)γA(θi) (2.8)

According to the definition of optical efficiency, ηopt, and according to the nomen-
clature used above, we have

ηopt = Pabs

Psol

→ if Psol = GEb cos(θi)

→ ηopt|Eb cos(θi ) = r(θi)τsol,c(θi)αsol,A(θi)γA(θi)

if Psol = GEb

→ ηopt|Eb
= r(θi)τsol,c(θi)αsol,A(θi)γA(π) cos(θi) = ηopt

(2.9)
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The definition of efficiency uses direct irradiance, Eb, as the reference, so the second
equation in (2.9) is used. The incidence angle modifier, κ(θi), is the factor that takes
all of the geometric and optical measurements into account, because the incident
irradiance is at a certain angle θi , that is,

κ(θi) = ηopt(θi)

ηopt(θi = 0°)
= ηopt

ηopt,0°
(2.10)

Optical efficiency that considers normal incident irradiance (θi = 0°) is called nom-
inal optical performance, ηopt,0°. Optical performance can thus be expressed as

ηopt = ηopt,0°κ(θi) (2.11)

ηopt,0° = r
(

0°
)

τsol,c
(

0°
)

αsol,A
(

0°
)

γA

(

0°
)

(2.12)

and according to the second equation in (2.9),

κ(θi) = r(θi)

r(0°)

τsol,c(θi)

τsol,c(0°)

αsol,A(θi)

αsol,A(0°)

γA(θi)

γA(0°)
cos(θi) (2.13)

The incidence angle modifier can also be provided as a polynomial expression on
the incidence angle θi . Some authors, however, prefer to distinguish cos(θi) in the
modifier by the angle of incidence, κ(θi), writing Eq. (2.11) as

ηopt = ηopt,0°κ(θi) cos(θi)

considering κ(θi) = r(θi)

r(0°)

τsol,c(θi)

τsol,c(0°)

αsol,A(θi)

αsol,A(0°)

γA(θi)

γA(0°)
(2.14)

One of the geometric losses included by definition in the intercept factor, γA(θi), is
the irradiance at the ends (because the collector has a finite length). Some authors
[305] also prefer to distinguish this term in the modifier by the angle of incidence
since it is merely a geometric reduction factor. They would therefore write Eq. (2.11)
as

ηopt = ηopt,0°κ(θi)Γ (θi), where Γ (θi) = 1 + fd

L

(

1 + G

48f 2
d

)

tan(θi) (2.15)

where fd is the focal distance of the parabolic mirrors, G is the aperture width and
L is the collector length. In any case, with a constant loss coefficient, the higher the
optical efficiency, the higher collector performance is. Thus, the higher the variables
that define it, the better the performance of the collectors will be. Mirror reflectivity
and transmittance of the cover are largely determined by how clean the collector is.
It is therefore important to have suitable collector maintenance and cleaning strategy
in a PTC plant.

In this book, the measured direct solar irradiance and the corrected solar irradi-
ance will be denoted I . The value of this variable is obtained directly from a pyrhe-
liometer I = Eb and it is going to be used for feedforward control purposes within
a control algorithm I = Eb cos(θi)S, where S = Sref ηopt, Sref being the reflecting
surface of the collector field’s mirrors. A more detailed description of the model can
be found in [38].
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2.3.2 Thermal Losses in a PTC

Besides optical and geometric losses, thermal losses are important in PTC and they
are occurred mainly in two places: in the absorber tube and in the HTF pipe.

Heat losses associated with the absorber tube are made of: heat loss by conduc-
tion through the pipe supports, losses by radiation, convection and conduction from
metal tube into the glass cover and losses by convection and radiation from the tube
crystal to the environment. In those absorber tubes in which vacuum exists between
the metal tube and the glass, convection losses from the metal tube into the glass are
eliminated and only losses by radiation and small ones by conduction between the
glass-metal joint exist.

Although each of the heat losses could be calculated analytically, in practice a
global heat losses coefficient from the absorber tube to the ambient is defined, in
such a way that

Pm→a = HlπDmL(T̄f − Ta) = HlπDmL�̄T (2.16)

where T̄f = Tout+Tin
2 is the mean temperature of the HTF (notice that some authors

use instead the mean temperature of the metal absorber T̄m), Ta is the ambient tem-
perature, Tout the outlet HTF temperature, Tin the inlet HTF temperature, Dm is
the outside diameter of the absorber pipe and L is the length of the tube (length
of the PTC). In (2.16) the global heat loss coefficient is given by surface unit of
the absorber tube [W/(m2 K)]. It can be defined by collector aperture surface unit
Hlcol = Hl/Cg [W/(m2

col K)]. In both cases, the coefficient can be obtained from
experiments within the design temperature range. It can be expressed also in poly-
nomial form as

Hl = a + b(T̄f − Ta) + c(T̄f − Ta)
2 [

W/
(

m2K
)]

2.3.3 PTC Efficiency

The incident power on a PTC was given in Eq. (2.1). The thermal power given by
a PTC can be computed in terms of enthalpy increment that the HTF experiments
when flowing through the collector:

Pm→f = ṁ(hout − hin) [W] (2.17)

where ṁ is the mass flow rate [kg/s], hin is the specific enthalpy of the HTF at the
collector inlet [J/kg] and hout is the specific enthalpy of the HTF at the collector
outlet [J/kg].

Three different efficiencies can be defined in a PTC: global efficiency ηglobal =
ηcol, optical efficiency with an incidence angle of 0° (ηopt,0°) and the thermal effi-
ciency (ηth), plus the incidence angle modifier κ(θi). The global efficiency considers
all the losses (optical, geometrical and thermal) and can be obtained as

ηcol = Pm→f

Psol
= ηopt,0°κ(θi)ηth (2.18)
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The thermal efficiency ηth depends on the working temperature of the metallic ab-
sorber tube and can be given as a function of the ambient temperature and the ab-
sorber tube temperature for a determined value of the direct solar irradiance.

Considering the reference solar irradiance to be equal to the global irradiance,
the efficiency of a PTC is given by

η|Eb cos(θi ) = ηopt|Eb cos(θi ) − Hl

Cg

(T̄f − Ta)

Eb cos(θi)
(2.19)

Many authors [305] use for tracking PTC as reference solar irradiance the direct
solar irradiance; the efficiency is given by

η|Eb
= ηopt|Eb

− Hl

Cg

(T̄f − Ta)

Eb

(2.20)

2.4 Solar Irradiance Estimation and Forecast

Nowadays, there exist many systems where disturbance estimation would be needed
to improve the overall performance of the control system. Some examples can be
found in control systems for renewable power generation, especially for solar ther-
mal and photovoltaic energy, where the solar radiation is used as the main energy
source. Solar irradiance is a changing variable that can be perturbed by clouds, tem-
poral dust concentration, vapor concentration, etc. Many of these changes have a
temporal presence and can vary from one season to another. For this reason, some
estimations about the future behavior of the solar radiation is required to optimize
the process performance and minimize the use of auxiliary energy sources [288].

As a first approach, solar radiation estimation can be used for the following pur-
poses:

1. Selection of the best location to build the solar plant (maximization of the solar
resource).

2. Long-term operation planning, to estimate the power that can be supplied to the
electrical network (daily and monthly prediction values [248]). At these higher
decision-making levels, weather information is exploited indirectly by mapping
it to economic variables such as user power demands [420].

3. Short-term operation planning, grid integration and operational control under
FIT regulations (the regional or national electricity utilities have to buy renew-
able electricity at above-market rates set by the government). The prediction
horizon in this case can be considered as short-term for prediction up to several
hours. As pointed out in [311], short-term forecasts are needed for operational
planning, switching sources, programming backup and short-term power pur-
chases, as well as for planning for reserve usage and peak load matching. Also,
actual measurements or estimations of the solar radiation are used to control the
fundamental variables.
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Table 2.1 Basic characteristics of solar radiation forecasting

Forecasting horizon: Short-term Long-term

Purpose (spatial nature): Local Global

Kinds of model: Physics-based models Statistical models

Fig. 2.2 Spatial and temporal scales of target applications, [175]

The previous objectives are also related to the existing methods to estimate solar
radiation, which can be characterized by the prediction horizon length, their spatial
character and the selected methodology (Table 2.1). Figure 2.2 shows typical target
applications for solar radiation forecasting and their respective spatial and temporal
scales [175]. Notice that, as pointed out in [420], major weather prediction cen-
ters, such as the European Centre for Medium-Range Weather Forecasts (ECMWF)
and the US National Centers for Environmental Prediction (NCEP), are capable of
producing high-precision weather forecasts several times a day, thanks to improved
models of the atmosphere, greater availability of atmospheric data, increased com-
putational power and the continued improvement of state estimation algorithms.
Anyway, the models must be reconciled to the most recent observations. This state
estimation problem is called in the weather forecast literature the data assimilation
problem, where stochastic approaches as those treated in this section are used inter-
nally.

In the first case (location optimization), the most common methods to estimate
the solar resource are based on the combination of local measurements (climate
stations), satellite images and digital elevation models [62, 193, 374], where mainly
physics-based models and artificial neural networks (ANN) are used for data fusion.
In the second case (operation planning), the main approaches are based on the Na-
tional Meteorological Institutes forecasts, historical datasets and satellite images to
provide long-term solar radiation forecast. In [312] a comparison of different meth-
ods for two-days forecast is performed. The methods are based on the National
digital forecast database (NDFD) of NOAA (http://www.weather.gov/ndfd/), the
ECMWF (http://www.ecmwf.int) and the Weather research and forecasting (WRF)
model (http://www.wrf-model.org) with first input of Global Forecast System (GFS)
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model. In the third approach (short-term operation planning and control), direct
measurements from solar irradiance sensors (mainly pyrheliometers and pyranome-
ters) are used both for feedforward control and short-term solar irradiance forecast,
sometimes combined with fish-eye cameras (total sky imagers that take hemispheri-
cal sky photographs), ceilometers (recording cloud height) and satellite images [175,
214].

In this book the interest is focused on easy methods to perform a short-term solar
irradiance forecast (daily solar radiation estimation). The estimation of solar irra-
diance on a horizontal surface can be mainly performed based on physical models
or data-driven models. As pointed out by [378] and references therein, there exist
mainly three methodologies for the estimation of horizontal global solar irradiance:

1. Estimation based on physical processes including complex radiative transfer
models. The physical interactions between solar radiation and the terrestrial at-
mosphere (such as Rayleigh scattering, radiative absorption by ozone and water
vapor and aerosol extinction) are considered. These models are also known as
parametric models [399].

2. Approaches based on the traditional and long-utilized Ångström’s linear ap-
proach and its modifications which is based on measurements of sunshine du-
ration [14], providing empirical relationships between the ratio of the global so-
lar radiation on a horizontal surface at the Earth’s surface and at the top of the
atmosphere and the percent possible sunshine (i.e. observed bright sunshine to
maximum possible sunshine hours). These models are also known as decompo-
sition models [399], as they usually use information only on global radiation to
predict the beam and sky components.

3. Estimation based on data and statistical models represented by time-series or
ANN, which can be based on sunshine duration measurements but also on other
climatological parameters.

In [399] and cited references, solar radiation models for predicting the average daily
and hourly global irradiance, beam irradiance and diffuse irradiance are reviewed.
Examples of estimation based on the first two categories indicated previously are
developed to predict the beam component or sky component based on other more
readily measured quantities.

In what follows, selected examples of the mentioned models are developed based
on the authors’ experience.

2.4.1 Physics-Based Models

As pointed out by [399], parametric models require detailed information of atmo-
spheric conditions. Meteorological parameters frequently used as predictors include
the type, amount and distribution of clouds or other observations, such as the frac-
tional sunshine, atmospheric turbidity and precipitable water content. Two well-
known parametric models used for solar energy applications are:
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• The ASHRAE algorithm [20], used by the engineering and architectural commu-
nities.

• The Iqbal model [188], which offers extra-accuracy over more conventional mod-
els.

Several approaches are now being developed based on NDFD created by differ-
ent countries. In [291] a preliminary evaluation of a simple solar radiation forecast
model using sky cover predictions from the NDFD of the USA as an input. The
models developed by [165–168] provide predictions of clear-sky direct and diffuse
broadband irradiance with great accuracy when detailed and accurate input data are
available.

2.4.2 Decomposition Models

Development of correlation models that predict the beam or sky radiation using
other solar radiation measurements is possible [399]. Decomposition models nor-
mally use information only on global irradiance to predict the beam and sky compo-
nents. These relationships are usually expressed in terms of the irradiation which are
the time integrals (usually over 1 h) of the radiant flux or irradiance. Examples of
different decomposition models developed to estimate direct and diffuse irradiance
from global irradiance can be found in [6, 399] and cited references.

2.4.2.1 An Example of a Model of the Solar Irradiance

Solar radiation undergoes changes due to its daily cycle and to passing clouds. In this
subsection, the approximation given by [101] has been adopted to obtain a clear-day
prediction of the solar irradiance.

The magnitude of the solar radiation at a determined point on the Earth’s surface
varies mainly with the geographical localization and the day of the year and also
with the meteorological characteristics of the chosen instant. To calculate the global
irradiance level on a surface, the extraterrestrial irradiance level Ec (solar constant1)
must be known. This value reaches the atmosphere of the Earth with a small modi-
fication Eext , due to the elliptical trajectory of the Earth around the Sun.

As the radiation heats the atmosphere, fragmentation is produced, one part is
reflected outside and another part is absorbed by the atmosphere; the rest penetrates
the atmosphere. One part of this is dispersed, the other is reflected and the rest
reaches the Earth in the form of direct irradiance Eb .

1This is the amount of total energy that contains the extraterrestrial solar irradiance, integrated in
all the spectrum of wave lengths. The value used is Ec = 1367 W/m2.
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Fig. 2.3 Direct solar irradiance and clear-day prediction

Part of the amount of irradiance reflected and dispersed reaches the Earth in the
form of diffuse irradiance. The irradiance that reaches the atmosphere is the solar
constant multiplied by the eccentricity correction factor exc:

Eext = Ec

(

D0

D

)2

= Ecexc; exc = 1 + 0.033 cos

(

2πJ

365

)

(2.21)

D being the Sun–Earth distance at a determined instance and D0 its mean value and
J is the Julian Day.

An approximation to the instantaneous value of direct solar irradiance is the one
obtained by [101]:

Eb = 0.9751EextTb (2.22)

where Tb is the transmittance of the direct normal irradiance, which depends on
factors such as the ozone cover thickness, the thickness of the water steam cover,
two coefficients of atmospheric cloudiness and the air mass at standard pressure.

Expression (2.22) has been used to predict the evolution of the solar irradiance
and then compared to the actual direct solar irradiance measured at the PSA. Fig-
ure 2.3(a) corresponds to a day with high solar radiation levels in which, at the end
of the daily operation, large clouds appeared, while Fig. 2.3(b) corresponds to a
day with low solar radiation levels, due to the presence of contamination in the air,
but without the presence of passing clouds. As can be seen, lines have been drawn
depending on the local hour. By using the prediction model, a filtered value of the
solar radiation evolution is directly obtained.

2.4.3 Statistical Models

The perturbation variables are usually represented as time-series structures due
mainly to their stochastic behavior. Using time-series models is one of the ways
to estimate future values of disturbances. These models are obtained using past data
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and are used to estimate the future behavior along a prediction horizon [311]. Time-
series models are based on the assumption that the modeled data are autocorrelated
and characterized by trends and seasonal variations. Thus, well-known autocorre-
lated models (ARMA, ARIMA, ARMAX, ARIMAX) could be also used for dis-
turbance estimation [261, 311, 410]. On the other hand, ANN provides also a good
solution to perform estimations because its design is based on training and no sta-
tistical assumptions are needed for the source data. Neural networks are widely ac-
cepted as a technology to predict time-series offering an alternative way to solve
complex problems [283, 409]. In [311] a comparison between several types of
time-series model was performed: regression models, unobserved component mod-
els (UCM), ARIMA models, transfer function models, neural networks and hybrid
models (combining regressions and neural nets). In [132] a total of 18 empirical
models in linear, quadratic, cubic, logarithmic, exponential and hybrid forms using
only sunshine hours, latitude and altitude were compared to estimate monthly aver-
age daily global solar radiation on a horizontal surface for 159 weather stations in
Turkey.

In this section, a summary of the results in [288] is included, where four differ-
ent well-known time-series methods are analyzed and compared, namely, Discrete
Kalman Filter [337], Discrete Kalman Filter with Data Fusion [279], Exponentially
Weighted Moving Average [381] and Double Exponential Smoothing [268]. These
methods are used to obtain forecasts of the direct solar irradiance using real data.
The nomenclature that will be used in next sections is the following: z(k) is the
measurement in the discrete-time instant k and x̂(k + 1) is the predicted value one
sample ahead.

2.4.3.1 Discrete Kalman Filter

The Kalman Filter (KF) addresses the general problem of trying to estimate the state
x ∈ R

n of a discrete-time process that is governed by a linear stochastic difference
equation. Matrix A in the difference equation, Eq. (2.23), relates the state at the
previous time step k − 1 to the state at the current step k and matrix H in (2.24)
relates the state to the measurement value z(k) ∈ R

n [337].

x(k) = Ax(k − 1) + w(k − 1) (2.23)

z(k) = Hx(k) + v(k) (2.24)

The random variables w(k) and v(k) represent the process and measurement noise,
respectively. They are assumed to be independent (of each other), white and with
normal probability distributions. The KF estimates a process by using a form of
feedback control: the filter estimates the process state at some time and then obtains
feedback in the form of noisy measurements. As such, the equations for the KF
fall into two groups: time update equations and measurement update equations. The
discrete KF time update equations are [337]

x̂(k)− = Ax̂(k − 1) (2.25)

P(k)− = AP(k − 1)AT + Q (2.26)
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and the discrete KF measurement update equations:

K(k) = P(k)−HT
(

HP(k)−HT + R
)−1 (2.27)

x̂(k + 1) = x̂(k)− + K(k)
(

z(k) − Hx̂(k)−
)

(2.28)

P(k) = (

I − K(k)H
)

P(k)− (2.29)

where P(k)− is the a priori estimate error covariance, P(k) is the a posteriori esti-
mate error covariance, x̂(k)− is the a priori estimate, and I is the identity matrix of
the appropriate size. In practice, the process noise covariance Q and measurement
noise covariance R matrices might change with each time step or measurement,
however here we assume they are constant. Detailed information about KF imple-
mentation can be found in [396].

2.4.3.2 Discrete Kalman Filter with Data Fusion

The main structure of the discrete Kalman Filter with Data Fusion (KFDF) has the
same formulation as in the previous section, with the exception that data fusion is
performed. Assume now that we are dealing with two different measurements that
provide a reading for some variable of interest z. We call z1 the measure from the
first source and z2 the measure from the second source. If both measurements are
equally good (the quadratic standard deviation σ 2

1 = σ 2
2 ), we just take the average

of both numbers. In this case, a weighted average of both measurements can be
obtained to generate an estimation of z, x̂(k + 1). One possibility is weighting each
measurement inversely proportional to its precision, that is [279],

x̂(k + 1) = z1(k)σ 2
2 + z2(k)σ 2

1

σ 2
1 + σ 2

2

(2.30)

Note that the above estimation can be also rewritten as

x̂(k + 1) = z1(k) + K
(

z2(k) − z1(k)
)

(2.31)

where now K = σ 2
1 /(σ 2

1 + σ 2
2 ). The update equation has the same general form as

in the previous paragraph (see [279] for further information). In what follows, the
measurement z1 is a real value from a sensor and z2 is an estimated value calculated
using a theoretical model [288].

2.4.3.3 Exponentially Weighted Moving Average

Exponentially Weighted Moving Average (EWMA) is commonly used with time-
series data to smooth short-term fluctuations and highlight longer-term trends or cy-
cles. The threshold between short and long terms depends on the application and the
parameters of the moving average will be accordingly set. Mathematically, a mov-
ing average is a type of convolution and so it is also similar to a low-pass filter used
in signal processing [68]. The arithmetic assumption of moving average assumes
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that only the latest values have an effect on the current value. However, the moving
average assigns equal weight to each value as compared to the trend line that gives
weight to only the first and the last values for determination. The long-term moving
averages can be useful for measuring the trend whereas the short-term averages can
be utilized for measuring the changes in the trend [63, 381]:

x̂(k + 1) = z(k) + (1 − βs)z(k − 1) + · · · + (1 − βs)
Nz(k − N)

1 + (1 − βs) + · · · + (1 − βs)N
(2.32)

where N is the sample window size and βs ∈ (0,1) is the smoothing parame-
ter. The sample window is composed by the N most actual samples of analyzed
variable from z(k) to z(k − N). When the prediction for time instant k + 1 is
done, its value is located at first place in a sample window which is organized as
[x̂(k + 1), z(k), z(k − 1), . . . , z(k − N + 1)]. This sample window is used to make
the prediction of value in time instant k +2 and so on. When the process reaches the
prediction horizon, a new sample window is formed from the last N measurements.

2.4.3.4 Double Exponential Smoothing

The Double Exponential Smoothing (DES) is described by the following equations
[268]:

χ(k) = αDz(k) + (1 − αD)
(

χ(k − 1) + bD(k − 1)
)

(2.33)

bD(k) = γD

(

χ(k) − χ(k − 1)
) + (1 − γD)bD(k − 1) (2.34)

where χ(k) is the unadjusted forecast, bD(k) is the estimated trend, αD is the
smoothing parameter for data and γD is the smoothing parameter for trend. Note that
the current value of the series is used to calculate its smoothed value replacement in
double exponential smoothing. The one-period and m-periods ahead forecasts are
given, respectively, by

x̂(k + 1) = χ(k) + bD(k) (2.35)

x̂(k + m) = χ(k) + mbD(k) (2.36)

There are a variety of schemes to set initial values for χ and bD in double smoothing,
but in [288] χ(1) = z(1) and bD(1) = (z(1) + z(2) + z(3))/3 as suggested in [268].
The first smoothing equation adjusts χ directly for the trend of the previous period,
bD(k −1), by adding it to the last smoothed value, χ(k −1). This helps to eliminate
the lag and brings χ to the appropriated base of the current value. Then, the second
smoothing equation updates the trend, which is expressed as the difference between
the last two values. The equation is similar to the basic form of single smoothing,
but here it is applied to the updating of the trend. The values for αD and γD ∈ (0,1)

can be obtained via optimization techniques as described in [268].
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Table 2.2 Performance indices (courtesy of A. Pawlowski et al., [288])

MSE RMSE nRMSE R2

1
N

∑N
k=1(x̂(k) − z(k))2

√

1
N

∑N
k=1(x̂(k) − z(k))2

√

1
N

∑N
k=1(x̂(k)−z(k))2

√

1
N

∑N
k=1(z(k))2

∑N
k=1(x̂(k)−z̄)2

∑N
k=1(z(k)−z̄)2

2.4.3.5 Illustrative Results

The predicted results for each combination were compared statistically using four
different parameters [283]: the Mean Square Error (MSE), the Root Mean Square
Error (RMSE), the normalized RMSE (nRMSE), and the Coefficient of Determi-
nation R2 (Table 2.2). When a zero value is obtained for MSE, it means that the
estimator x̂(k) predicts observations of the parameter z(k) with perfect accuracy.
The unbiased model with the smallest MSE is generally interpreted as the one best
explaining the variability in the observations. RMSE is a frequently used measure-
ment of the differences between root mean square error values predicted by a model
(or an estimator) and the values actually observed from the variable being modeled
or estimated. The nRMSE measurement is useful for comparison while R2 is used
in the context of statistical models, where its main purpose is the prediction of future
outcomes on the basis of other related information (it is the proportion of variability
in a data set that is accounted for by the statistical model). It provides a measurement
of how well future outcomes are likely to be predicted by the forecast method.

Additionally, two measurements of the error are used to show the quantitative
variation of the forecasts. These measurements are the average absolute error ē and
the average percent error ē%:

ē = 1

N

N
∑

k=1

∣

∣z(k) − x̂(k)
∣

∣, ē% = 1

N

N
∑

k=1

|z(k) − x̂(k)|
|z(k)| 100% (2.37)

The meteorological data used in this section have been recollected during one
year by a meteorological station located at the Almería, Spain, 36°46′N2°48′W. For
this database, solar irradiance samples are acquired every minute. As commented
above, the KFDF technique requires a theoretical model to obtain data for fusion
purposes. In this case, the model for direct irradiance explained in Sect. 2.4.2.1 has
been used [42, 85].

All the presented methods have some parameters to be set and which have a
great influence on the overall performance and accuracy of the forecast. Therefore,
a calibration stage with 10 days was performed in order to set up the appropriated
values for these parameters, where the minimization of the RMSE error was selected
as a reference measurement. The selected days for this calibration process include
diverse situations of the solar radiation from different year seasons.

Figures 2.4 and 2.5 present the results for a day with clouds alteration for two
prediction horizons of 5 and 15 samples, respectively. The original solar irradi-
ance time-series is characterized by many local changes of trend caused by pass-
ing clouds. For the 5-sample horizon, the DES, KF and EWMA methods produce a
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Fig. 2.4 Day with passing
clouds and a 5-sample
horizon (courtesy of
A. Pawlowski et al., [288])

Fig. 2.5 Day with passing
clouds and a 15-sample
horizon (courtesy of
A. Pawlowski et al., [288])

small predicted signal delay. The KFDF technique keeps the theoretical data trend
despite of changes in real signal and produces only a slow decrease of the forecasted
value. Comparing Figs. 2.4 and 2.5, it can be observed that the signals are charac-
terized by a delay, which is more visible for the last case. In comparison with the
rest of the methods, the DES technique produces forecasts that slightly surpass the
magnitude of real solar irradiance signal.

Table 2.3 compares the performance indices for the day with passing clouds. The
RMSE and nRMSE measurements indicate that the best results for all techniques
are generated by the DES method. The second one according to this measurement
is the EWMA method. The R2 for the maximal horizon reaches the highest value
0.9848 for the DES method. However, the worst value is obtained by the KFDF.
Furthermore, for this analysis, the lowest value of the average absolute error ē for
15-sample horizon is obtained for the DES technique with a value of 26.22 W/m2.
The outcome of average percentage error ē% is 32% for the DES method and for the
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Table 2.3 Performance comparison for a day with passing clouds (courtesy of A. Pawlowski et
al., [288])

Index Horizon KF KFDF EWMA DES

MSE

5 676.7 2966 470.5 461.8

10 1563 3700 1323 1280

15 2508 4296 2260 2167

RMSE

5 26.01 54.46 21.69 21.49

10 39.54 60.83 36.38 35.78

15 50.08 65.54 47.54 46.55

nRMSE

5 0.080 0.168 0.067 0.066

10 0.122 0.188 0.112 0.110

15 0.155 0.202 0.147 0.144

R2

5 0.9949 0.9858 0.9965 0.9966

10 0.9883 0.9827 0.9901 0.9909

15 0.9812 0.9805 0.9831 0.9848

ē [W/m2]

5 13.86 31.43 11.09 10.70

10 21.90 35.31 19.59 18.59

15 28.56 38.37 26.45 24.69

ē% [%]

5 14.89 77.37 10.89 17.21

10 26.07 89.55 22.12 26.22

15 37.18 100.76 33.42 32.37

EWMA and KF it is 33% and 37%, respectively. The KFDF technique produces an
unacceptable percentage error for the 15-sample horizon.

2.4.3.6 Computational Intelligence-Based Models

Several methods for forecasting solar irradiance in different time scales have ap-
peared recently [250] based on ANN, fuzzy logic and hybrid system such as AN-
FIS, ANN-wavelet and ANN-genetic algorithms (GA). These approaches can be
classified into three different types [249, 250].

• The first one can estimate the solar irradiance (in different scale times) based on
some meteorological parameters such as air temperature, relative humidity, wind
speed, wind direction, cloud, sunshine duration, clearness index, pressure and
geographical coordinates as latitude and longitude. Multilayer Perceptron (MLP)
network, Radial Basis Function (RBF) network and fuzzy logic can resolve this
problem [249, 250].

• A second approach allows predicting the future solar irradiance (in different scale
times) based on the past observed data [250]. Therefore, in this case recurrent
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neural networks (RNN), wavelet-networks and wavelet-networks-fuzzy are very
suitable.

• The last one combines the two previous approaches, so that different ANN-
architectures and ANFIS are adequate.

Other examples of these approaches can be found in [250] and the cited references.
Representative cases can be found in [409], where the thermal energy collection of
solar heat energy utilization system based on solar radiation forecasting at one-day
ahead 24-hours thermal energy collection is performed using three different ANN
models trained by weather data based on tree-based model and tested according to
forecast day. Selected models are feedforward neural network (FFNN), radial basis
function neural network (RBFNN) and RNN. In [250] a practical method for so-
lar irradiance forecast using ANN is presented. The proposed MLP model makes
it possible to forecast the solar irradiance on a base of 24 h using the present val-
ues of the mean daily solar irradiance and air temperature. In [123] ANN are ap-
plied to multi-step long-term solar radiation prediction. The networks are trained
as one-step-ahead predictors and iterated over time to obtain multi-step longer-term
predictions. Auto-regressive solar radiation models and solar radiation models auto-
regressive with exogenous inputs are compared, considering cloudiness indices as
inputs in the latter case. These indices are obtained through pixel classification of
ground-to-sky images. The input–output structure of the ANN models is selected
using evolutionary computation methods.

As pointed out by [311], several problems with ANN have been noted in the liter-
ature, related with the existence of local minima, noise over-fitting and others. The
problems with neural nets have been one motivating factor in the development of
new classes of model combining nets with other techniques. One idea is to combine
ANN with wavelets [91, 92], and regressions and ANN [180, 421]. Typically, in
these hybrid models, an initial regression or ARIMA is estimated and the residuals
are then processed using a neural net. The forecasts from the two separate stages are
then combined.

2.5 Control of the Energy Conversion Units

As pointed out in the introduction of the chapter, the control of the variables asso-
ciated to the solar conversion units depends very much on the type of system. In
the case of photovoltaic (PV) systems, this involves the control of the voltage and
intensity produced by the solar cells in order to operate at the maximum efficiency
point and the control of the associated DC/AC conversion power electronics.

In the case of thermal solar plants, a HTF is heated and thus associated tempera-
tures and flows have to be controlled, as well as temperature, flow, and pressure of
the produced steam. Values of solar irradiance are used to compensate for its varia-
tions. Once the steam is produced, the controls at this level do not differ much from
the control of other thermal plants. In most cases oil is used as energy conversion
fluid and because oils decompose and generate dangerous inflammable fumes at rel-
ative low temperatures, the maximum operating temperatures have to be kept below
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these temperatures, which are rather low. In order to increase the performance of
the steam generating units, the solar field has to be operated close to the maximum
operating temperatures.

The control of energy conversion units will be treated in detail in the following
chapters.

2.6 Integrated Control

Solar energy is intermittent and is not always available when needed and where
needed. Because of that, the integration of solar energy plants in the electrical grid
is a challenging problem. Energy storage is a potential solution to the integration
problems. An efficient operation of solar plants with energy storage systems could
allow a closer match between solar plants power generation and electrical power
demand. In thermal solar power plants, energy is usually stored as heat. Heat stor-
age systems allow solar thermal plants to produce electricity at night and on cloudy
days. Additionally, the equipment (steam generators turbines and electrical gener-
ator) does not need to be designed for the peak power but for the average power
and thus installation costs are reduced. Furthermore, equipment can operate con-
tinuously with smaller payback periods. When collected solar power is higher than
the demanded energy, excess heat is transferred to a thermal storage medium and
stored in an insulated reservoir. The stored heat can be withdrawn for power gen-
eration when needed. Different systems have been used in solar power plants such
as molten salts, pressurized steam, change materials and concrete. Energy storage
tanks are usually well insulated and can store energy for a few days and provide
enough thermal storage for a few plant operational hours.

The price of electricity is determined by a variety of methods which change not
only from place to place, but also with the commissioning date of the plants. Fur-
thermore, proposals of new price mechanisms are appearing continuously with the
liberalization of the energy prices and they are considered to be a fundamental part
of the Smart Grid concept. In the electrical energy market, the price fluctuations will
tend, usually, to correlate well with the hourly demand because the prices will try
to cover the marginal cost of generation which will normally increase with demand.
Risk factors are also considered for establishing prices, for example, the available
generators to cope with unexpected demand peaks will affect the electricity price.

The use of renewable energies is encouraged in many countries by different poli-
cies such as FIT which guarantees grid access and long-term contracts for the elec-
tricity produced by renewable sources at the cost of renewable energy generation
and which tends toward market prices with time. The electrical utilities or regional
or national authorities are obliged to buy the renewable electricity from the renew-
able energy producer. The FIT are determined to make it possible for an installation
to be operated cost-effectively if the installation is managed efficiently and state
of the art techniques are used. FIT may therefore differ depending on the sources,
location, project size and other important factors.
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Solar plant operators can benefit from energy storage systems by shifting genera-
tion from valley periods to peak periods taking advantage of the corresponding price
variations. Two different scenarios will be analyzed in Chap. 8: (a) non-committed
production, where the electrical utilities buy all the production of the solar power
plant at prices at fixed prices and, (b) committed production, where the solar plant
and the utility agree to a production and price in advance. The electrical utility pe-
nalizes the deviation with the agree contract.

If the prices are constant, the best option would be to produce as much electri-
cal energy as possible. Storage can be used in those situations where more solar
energy can be collected than energy converted and delivered. This may be due to
maintenance operation or turbines or generator having been designed for nominal
conditions below the maximum solar conditions.

If prices vary with the time of day or if the production is committed with pe-
nalization errors, the energy storage can be used to maximize profits. The electrical
energy produced depends basically on the solar radiation during that sampling pe-
riod and on the operating conditions of the plant. For example, when the plant is
starting up, some of the solar energy will need to be used to warm up the plant
systems to the operative stage while if the plant was already generating electricity
in the previous period, no energy will be needed for warming up. Furthermore, the
warming up of the plant will require some time.

The electricity market works with different models. In many of them, the hourly
daily price is fixed by a negotiation procedure. First, usually in the morning, a period
opens for filing buying and selling offers for the energy for every hour of the day.
There are two types of decision that have to be taken. First, at the beginning of the
day, to determine the offer for the next 24 hours and once this have been agreed, the
next problem is to determine, for each time period, the power to be delivered and
the power to be stored in order to maximize profits and fulfill all operational objec-
tives. Since solar energy cannot be exactly predicted in advance, the optimization
problems involved have to be formulated in an uncertain framework. The perfor-
mance of solar plants depends on the environmental and plant operating conditions.
Plant operation conditions (modes and set points of fundamental variables) have to
be determined by the control system in order optimize plant performance.

All these issues will be discussed in Chap. 8.

2.7 Summary

This chapter has been devoted to describing the control problems found in solar
energy systems. Four different levels can be distinguished: (i) the control of the
solar collector units, (ii) solar radiation estimation and forecast, (iii) the control of
the energy conversion systems and (iv) the overall control of the complete process.
In the case of the control of the solar collector units and solar radiation estimation
and forecast, an overview of the fundamentals and techniques has been carried out,
including some illustrative results. The next chapter will deal with the modeling and
control of the energy conversion systems and the overall control of the complete
process.





Chapter 3
Photovoltaics

3.1 Introduction

Electrical energy can be obtained directly from sunlight using photovoltaic (PV)
devices (cells). The cells convert solar energy into electrical energy via the photo-
voltaic effect. PV cells are large area p–n diodes which are assembled in modules
(panels). PV installations have no moving parts and do not vibrate, produce noise,
or require cooling or tall towers. Since the production of the actual PV cells re-
quires crystalline silicon, their cost is high. However, the cost of PV cells has been
decreasing steadily from US $20 per W in 1990 to less than US $5 per W nowadays
(2011). The world wide PV generating capacity has been increasing steadily in the
last 20 years. The process of manufacturing PV cells is energy intensive. Every cell
consumes a few kWh before it is placed facing the Sun and produces a kWh of en-
ergy. The first application of photovoltaic cells was to provide operating power to
satellites and other spacecrafts; after this, many applications of a PV system able to
provide power to small electrical appliances were developed.

The power that one cell, or module, can produce is not usually enough to cover
the needs of a home or a business. Modules are normally connected together to form
an array. Most PV arrays use an inverter (see Fig. 3.1) to convert the direct current
(DC) produced by the cells into alternating current (AC) that can be injected into
the existing lines to power domestic or business loads such as lights and motors.
The modules in a PV array are usually connected in series to obtain the appropriate
voltage and then in parallel to produce the desired current.

A grid-connected PV system is shown in Fig. 3.2 [231]. The load can be fed by
the electrical utility and by a PV system. The power not consumed by the load can
be fed to the electrical utility.

3.2 Power Point Tracking

In PV power systems, maximum power point tracking (MPPT) is essential because
it takes full advantage of the available solar energy. A MPPT is a high efficiency DC
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Fig. 3.1 Boost DC/AC inverter

Fig. 3.2 Topologies of a
grid-connected PV system

to DC converter that presents an optimal electrical load to a solar panel or array and
produces a voltage suitable for the load.

PV cells have a single operating point where the values of the current (I ) and
voltage (V ) of the cell result in a maximum power output. These values correspond
to a particular resistance, which is equal to V/I . A PV cell has an exponential rela-
tionship between current and voltage and the maximum power point (MPP) occurs
at the knee of the curve, where the resistance is equal to the negative of the differen-
tial resistance (V/I = −dV/dI), see Fig. 3.3. Maximum power point trackers use
some type of control system to search for this point and, thus, allow the converter to
extract the maximum power available from a cell.

Fig. 3.3 Characteristic PV
array power curve
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Traditional solar inverters perform MPPT for an entire array as a whole. In such
systems, the same current, dictated by the inverter, flows though all the panels in
the string. However, because different panels have different I–V curves, i.e. dif-
ferent MPP (due to manufacturing tolerance, partial shading, etc.), this architecture
means some panels will be performing below their MPP, resulting in a loss of en-
ergy. Some companies are now placing peak power point converters into individual
panels, allowing each to operate at peak efficiency despite uneven shading, soiling
or electrical mismatch.

At night, an off-grid PV power system uses batteries to supply its loads. Although
the battery pack voltage when fully charged may be close to the peak power point
of the PV array, this is unlikely to be true at sunrise when the battery is partially
discharged. Charging may begin at a voltage considerably below the array peak
power point and a MPPT can resolve this mismatch.

When the batteries in an off-grid system are full and PV production exceeds local
loads, MPPT can no longer operate the array at its peak power point as the excess
power has nowhere to go. The MPPT must then shift the array operating point away
from the peak power point until production exactly matches demand. An alternative
approach commonly used in spacecraft is to divert surplus PV power into a resistive
load, allowing the array to operate continuously at its peak power point.

In a grid-tied photovoltaic system, the grid is essentially a battery with infinite
capacity. The grid can always absorb surplus PV power and it can cover shortfalls
in PV production (e.g. at night). Batteries are thus only needed for protection from
grid outages. The MPPT in a grid-tied PV system will always operate the array at
its peak power point, unless the grid fails when the batteries are full and there are
insufficient local loads. It would then have to move the array away from its peak
power point, as in the off-grid case (which it has temporarily become).

MPPTs can be designed to drive an electric motor without a storage battery.
They provide significant advantages, especially when starting a motor under load.
This can require a starting current that is well above the short-circuit rating of the
PV panel. A MPPT can step the relatively high voltage and low current of the panel
down to the low voltage and high current needed to start the motor. Once the motor
is running and its current requirements have dropped, the MPPT will automatically
increase the voltage to normal. In this application, the MPPT can be seen as an
electrical analogue to the transmission in a car; the low gears provide extra torque
to the wheels until the car is up to speed.

Figure 3.3 shows the characteristic power curve for a PV array. The problem
considered by MPPT techniques is to automatically find the voltage VMPP or cur-
rent IMPP at which a PV array should operate to obtain the maximum power output
PMPP under a given temperature and irradiance. It is noted that under partial shading
conditions, it is possible in some cases to have multiple local maxima, but overall
there is still only one true MPP. Most techniques respond to changes in both ir-
radiance and temperature, but some are specifically more useful if temperature is
approximately constant. Most techniques would automatically respond to changes
in the array due to aging, though some are open-loop and would require periodic
fine-tuning. In our context, the array will typically be connected to a power con-
verter that can vary the current coming from the PV array.
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Fig. 3.4 Block diagram

There are several MPPT techniques. Two of them are popular tracking meth-
ods based on power measurement which are widely adopted in PV power systems:
the perturbation and observation method (P&O) [401] and the incremental conduc-
tance method (IncCond) [134]. In fact, P&O and IncCond are based on the same
technology, regulating the voltage of the PV array to follow an optimal set point,
which represents the voltage of optimal operating point VOOP, as shown in Fig. 3.4.
In some of the literature, VOOP is also symbolized by VMPOP which stands for the
voltage of the maximum power operating point.

The local maximum power operating point is continuously tracked and updated
by the MPP tracker to satisfy dP/dV = 0. By investigating the power–voltage re-
lationship, which is the P –V curve of a typical PV module, the MPP can always
be tracked if we keep dP/dV equal to zero for any solar insolation or temperature
since all local MPP have the same mathematical attribute.

3.3 Solar Tracking

As has been analyzed in Chap. 2, a solar tracker is a device for orienting a PV panel
toward the Sun, thus increasing the effectiveness of such equipment over any fixed
position, at the cost of additional system complexity. There are many types of solar
tracker of varying cost, sophistication and performance.

The application of high-concentration solar cell technology allows a significant
increase in the amount of energy collected by solar arrays per area unit. However, to
make this possible, stricter specifications on the Sun’s pointing error are required.
In fact, the performance of solar cells with concentrators decreases drastically if this
error is greater than a small value. These specifications are not fulfilled by simple
tracking systems, due to different sources of errors (e.g. small misalignments of the
structure with respect to geographical North) that appear in practice in low-cost,
domestic applications.

Thanks to technical advances, reasonably priced high-concentration solar PV ar-
rays should soon be available. However, the future use of this kind of solar PV
array in low-cost installations will bring with it a new type of problem: the neces-
sity for high-accuracy solar pointing. High-concentration solar PV arrays require
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greater solar tracking precision than conventional photovoltaic arrays and therefore,
a relatively low pointing error must be achieved for this class of installation. Since
design and installation are optimized in large plants, this error requirement is usu-
ally achieved. Nevertheless, the cost of such optimization is prohibitive for low-cost
installations.

Several classes of structure can be distinguished, depending on the classification
criteria:

• Regarding movement capability, three main types of Sun tracker exist [176]: fixed
surface, one axis trackers [303] and two axis trackers [1]. The main difference
among them is their ability to reduce the pointing error, increasing the daily ra-
diation that the solar cells receive and, thus, the electric energy that they pro-
duce. A theoretical comparative study between the energy available to a two axis
tracker, an East–West tracker and a fixed surface was presented in [267]. As main
result, it concluded that the annual energy available to the ideal tracker is 5–10%
higher than the East–West tracker and 50% higher than the fixed surface.

• With regards to the control units, the main types of solar tracker are [328]: passive,
microprocessor and electro-optical controlled units. The first ones do not use any
electronic control or motor [114]. The second ones use a mathematical formula to
predict the Sun’s movement and do not need to sense the sunlight. An example of
this kind of unit can be found in [1]. Finally, the electro-optical controlled units
use information from some kind of sensor (e.g., auxiliary bifacial solar cell panel,
pyrheliometer) to estimate the Sun’s real position which is used in the control
algorithm [303, 327].

3.4 Automatic Tracking Strategy

A control strategy for two-axis trackers is presented in this section, which is exe-
cuted in a microprocessor. The correct pointing is inferred from the electrical power
generated, which must be sensed on-line. The control strategy consists of a combi-
nation between:

1. An open-loop tracking strategy which corresponds to a microprocessor con-
troller in the classification [328]. This controller is based on the solar movement
model.

2. A closed-loop strategy, which corresponds to electro-optical controller in the
previous classification. This strategy consists of a dynamic controller that feeds
back generated power measurements. Furthermore, in order to make the system
autonomous, a search mode is included that operates when the tracking error
is too high. To prevent the system going into search mode too often, a reduced
table of errors is also stored that is updated every half an hour if there is enough
radiation.

The control algorithm takes into account the different types of error that can
appear in practice in low-cost, domestic systems, e.g. the placement of and problems
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Fig. 3.5 Operation in
tracking mode [335]

with the mechanical structure and errors of time and location. As a result, whatever
the type of error, the controller can make the tracker follow the Sun. In fact, the
proposed algorithm is also valid for large high-precision trackers since it contributes
to reducing these errors.

A hybrid tracking strategy [335] that basically consists of two modes is used:
in one mode, normal Sun tracking is carried out, maintaining a tracking error of
less than a pre-specified value. In the other, a Sun search is undertaken by means
of an ever-widening rectangular spiral; this is necessary when the Sun needs to be
located because of some external disturbance (for example, a period of prolonged
cloud cover). Each of these modes is described in greater detail below.

3.4.1 Normal Tracking Mode

This mode is effective whenever the Sun tracking error is smaller than a specified
bound and the solar radiation large enough for the system to produce electric energy.
It is a hybrid tracking system that consists of a combination of open-loop tracking
strategies based on solar movement models (feedforward control) and closed-loop
control strategies using a feedback controller. The feedback controller is designed
to correct the tracking errors made by the feedforward controller in the open-loop
mode. The operation in this mode is shown schematically in Fig. 3.5.

In this figure, u represents the position (azimuth and elevation) the tracking sys-
tem assumes the Sun is in. It can be seen that this estimated position of the Sun is
obtained by adding two values: û, which is the position obtained from the equations
that model the Sun’s movement and ũ, which is a correction of that position based
on the estimated position of the Sun, ŷ.

As has been explained in Chap. 2, there are several algorithms for calculating the
position of the Sun (û) based on the date and time provided by an auxiliary clock
and geographical data (longitude and latitude of the point used to estimate the po-
sition of the Sun). In this section the PSA algorithm, developed by the Plataforma
Solar de Almería [56], has been used. This algorithm has improved the calculation
of universal time as well as the treatment of leap years and it also makes the calcula-
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Fig. 3.6 Basic scheme for
the movement of the
mechanical structure [335]

tion more quickly and robustly, eliminating unnecessary operations by using simple,
valid equations in both hemispheres.

However, despite the precision of this algorithm, errors in estimating the Sun’s
position are possible for several reasons, such as variations in the time given by the
auxiliary clock with regard to actual solar time, lack of precision in the geographical
location of the driver (errors in the estimation of latitude and longitude, although
usually small if global positioning systems–GPS—technology is used) and errors
in the alignment of the mechanical structure with respect to geographical North
(different from magnetic North). In fact, this last kind of error is very frequent in
low-priced installations if no specialized staff is employed for set-up adjustment, or
if the wind causes any misalignment.

This fact justifies the necessity of including a correction (ũ) for the Sun’s feed-
forward position (û) in order to obtain a better estimate of its real position (u),
especially when it is important for the tracking error to be very low, as is in this
case. This correction is provided by the Controller block, which will be analyzed
later.

Once a realistic estimate of the Sun’s position is obtained (u), the Motor Con-
trol block gives the necessary commands to the motor driver in order to move the
platform according to the solar trajectory. For energy reasons, as the main objective
of the strategy is the generation of energy using the Sun as a source, the tracker is
not commanded to follow the Sun at all times, because this would cause continu-
ous movement of the driver motors, which would in turn result in excessive energy
consumption. Instead, to prevent unnecessary movement of the mechanical structure
(see [27, 336]), the strategy implemented in the controller is the following (Fig. 3.6):
the structure does not move so long as the tracking error is less than a certain tol-
erance assuming that the Sun is where the u signal says it is. When this error is
greater than this tolerance, the controller orders the driver to move to a point which
the Sun will arrive at in a certain amount of time. Thus, the tracker waits for the Sun.
This process is identical and independent for each axis. However, the two axes never
move at the same time: before ordering the movement of one of the axes, a check
is made to ensure that the other axis is not moving. The two axes are not allowed
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to move simultaneously because of the type of sensor used to indicate whether the
tracking of the Sun is correct, as will be seen later.

As the Sun moves along its trajectory throughout the day, signals are sent so
that the driver moves appropriately, thus generating the electrical energy that the
system was designed for. The power is used as a Sensor to confirm that the driver
is tracking the Sun correctly, so a decrease in the power generated (under normal
external conditions, i.e. without taking into account extended cloudy periods, for
example) indicates tracking problems. It is known that the greater the error in either
of the two coordinates (azimuth and elevation) is, the less the power generated. As a
result, if the driver moves on either of the coordinates (while the other remains fixed)
it can be assumed that the real position of the Sun for that coordinate corresponds
to the point where the maximum power was produced during that movement. This
is why both motors cannot move simultaneously. In this way, the power generated
is used as a sensor to determine the Sun’s position.

Finally, the Controller block was designed in order to close the feedback control
loop; this implements a proportional and integral (PI) control strategy for each coor-
dinate independently and its purpose is to bring about a difference of zero between
the u signal and the real position of the Sun. This controller uses an estimate of this
difference, calculated as follows: as the system moves from one position to the next
(keep in mind that the system moves ahead to wait for the Sun), the control system
samples the power generated by the power sensor. It is assumed that the point at
which the maximum amount of power is produced is equal to the position of the
Sun at the coordinate where the mechanical structure is being oriented (as explained
in the preceding paragraph). Thus, by comparing the Sun’s position according to
this system with the value given by the corrected solar equations, the tracking error
for each axis is obtained.

The error estimate is computed taking past and present error measurements into
account, it is defined by the PI controller, applied in a discrete way:

ũ(k + 1) = KP

(

ỹ(k) + 1

TI

SI (k)

)

(3.1)

SI (k) = SI (k − 1) + Tsỹ(k) (3.2)

ũ(k + 1) being the present error estimate, ỹ(k) the last tracking error measurement,
SI (k) the integral of the time varying discrete error signal, Ts the present sampling
period and KP and TI constants tuned to give an adequate relative weight to the
proportional and integral parts in the computation of the error estimate.

Regarding the sampling process for the power signal generated, it should be
noted that it needs to be quick enough to have enough points to estimate the real
position of the Sun for each coordinate with a certain amount of precision.

With regard to the PI control strategy employed in the Controller block, it is
worth noting that the control laws (one for each coordinate) will not be carried out
with a constant sampling time, as is usually the case with conventional discrete-
time control systems, even though changes in the sampling time are small. In this
case, the PI controllers will only operate when each incremental movement of the
structure has finished and the structure has reached its final reference point. Given
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Fig. 3.7 Evolution of the
coordinate elevation [335]

that these movements are determined by a certain tolerance in the orientation error
(taking into account the strategy followed by the Controller) and that the velocity of
the Sun (for both coordinates) is not constant throughout the day, the time that the
structure must wait for the Sun and, consequently, the corresponding PI sampling
time will vary depending on the position of the Sun. Furthermore, since both motors
cannot move simultaneously, there is yet another delay in the movement of one of
the motors if the other one is already moving.

Given the proposed control law, that the controller has an integral effect regard-
less of the sampling time used and that the variations of the sampling time are small,
this controller will incorporate the error measured between the Sun’s real position
and the estimated position, u, providing a correction, ũ, that will cause the estimated
position of the Sun to move toward the real position. Also note that this controller
provides a continuous error of almost zero when taking into account that the usual
time of the correction carried out by the controller is well below the characteristic
time of the variations in the Sun’s position throughout the day.

This tracking strategy obtains a close approximation to the evolution of the Sun’s
elevation and azimuth, even if the solar equations yield quite large errors. Fig-
ures 3.7 and 3.8 show a simulated example of the evolution of the three variables
(the Sun’s real movement (SMv), the progression of the values yielded by the solar
equations (SEq) and the evolution obtained after the corrections (CEq)).

From the result of these simulations, it can be seen that the correction provided by
the PI causes the corrected trajectory, which was initially the same as the trajectory
calculated based on the solar movement equations (feedforward control), to tend
toward the Sun’s real trajectory, both with regard to the azimuth and the elevation
coordinates. It can also be seen that the update time of the corrected trajectory (the
PI sampling time) varies because of the type of strategy employed in the Controller
that moves the mechanical structure.
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Fig. 3.8 Evolution of the
coordinate azimuth [335]

3.4.2 Search Mode

As was mentioned above, the normal tracking mode operates so long as the Sun
tracking error is small enough and the solar radiation great enough for the system
to produce electric energy, and then the previous strategy is possible. If the tracking
error is larger, no electric energy is produced and the sensor strategy will not work.
Thus, for the system to function autonomously, how the system will react when one
of these premises ceases to be true has also to be taken into account.

This section will describe how the search mode was designed. This mode will
only operate when the tracking error is not small enough but solar radiation is great
enough for the system to produce electric energy. Note that for this to occur, there
must be an additional solar irradiance sensor (e.g., a pyrheliometer) that indicates
whether irradiance exceeds the minimum threshold required.

Thus, if the Sun tracking error is too great (greater than a given upper bound) due
to a combination of time errors, errors in the alignment of the mechanical structure
and external disturbances, the solar arrays will not produce electric power and it
will not be possible to feedback any information about the tracking errors. A clear
example of this problem would be the presence of clouds for a prolonged period of
time. During this time interval, no corrections are produced as a result of feedback
from the system and the reference will be that provided by the equations (in open
loop) that are available when the clouds disappear. If it remains cloudy for a long
period of time and the errors associated with the equations are great, the misalign-
ment between the Sun and the position sought by the positioner when the structure
begins to move again may be rather great; consequently, the power sensor will not
provide adequate information with which to correct this problem.

It is thus necessary to create a procedure which allows the Sun to be found when,
for whatever reason, feedback does not occur. This is the search mode algorithm. An
exception is the case in which the lack of energy produced by the inverter is a result
of low solar irradiance (caused, for instance, by the presence of clouds); this case
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Fig. 3.9 Search mode [335]

will be analyzed in the next section. In this case, no matter how great the tracking
error, the search mode should not be used, because the low solar irradiance keeps us
from detecting when the mechanical structure is at the correct tracking point.

In search mode, the movement of the structure follows a square spiral in the
azimuth–elevation plane in order to try to detect the position of the Sun (see
Fig. 3.9). As the movement takes place, a check is made as to whether the sys-
tem is generating electric power. As soon as electric power is produced, this mode
is abandoned and the controller enters into the normal tracking mode.

As Fig. 3.9 shows, the structure movement in the azimuth–elevation plane is
completely rectangular, because of the alternation in the movement of both mobile
axes.

The amount by which the range of the movement is increased with each step is
important. Special care must be taken in order not to increase the distance so much
as to not detect the Sun between one movement and the next along the same side
of the spiral. If the specifications require the Sun to be found within, for example,
one degree, an increment in the spiral cannot be allowed too close to this value, or
the risk of not detecting the Sun in the first step and going too far with regard to the
Sun’s position in the second step is taken. An example of this is shown in Fig. 3.10.

Thus, special care has to be taken when choosing how much to increment the
step for the spiral. The most delicate point is at the end or the beginning of each step

Fig. 3.10 Incorrect search
step [335]
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because at these points, the distance between one trajectory and the next is the value
of the step multiplied by the square root of two, as is shown in the figure above.
Furthermore, it should be taken into account that during this search the Sun does
not remain fixed, but rather continues along its trajectory. These two circles should
overlap enough to ensure that the Sun is not by-passed without realizing it.

3.4.3 Other Situations

This subsection briefly presents the actions taken when the solar irradiance level is
lower than the minimum level established for generating electrical energy by means
of the system.

There are different possible actions in this case, each one with advantages and
disadvantages. However, the option of not moving the mechanical structure to fol-
low the movement of the Sun so long as the irradiance threshold is not met has been
chosen. The main advantage of this option is that no energy is consumed by mov-
ing the structure; the main disadvantage is that no energy is produced until there is
sufficient irradiance again and the structure has tracked the Sun.

With this strategy, the main problem comes when it is time to track the mechan-
ical structure, because during the cloudy period there has been no feedback on the
actual solar position, i.e. the Controller block has not been operating.

This means that, at first, the estimated position of the Sun would be the position
generated using the solar equation along with the last correction generated by the PI.
Theoretically, there should not be any problems with the automatic operation of the
system; if the position given by the solar equations is not precise enough, the system
will go into search mode until proper tracking is achieved and then the system will
return to normal tracking mode.

However, in practical implementation, the system might go into search mode too
often and thus waste energy. To prevent this, a small table was incorporated, where
every so often (in this case, every half hour), the calculated errors from the periods
when there are no clouds are stored. Simulations have shown that using this table
prevents the excessive use of the search mode after prolonged cloudy periods.

The main difference between this tracking system and other systems (e.g., [327,
328, 336]) is that it is not necessary to store the errors with regard to each of the
structure positions.

To illustrate the behavior of this strategy, the result of several simulations which
were carried out is shown in the following. In the simulations, there is a cloudy
period between 9:00 and 11:00 (solar time) approximately. Furthermore, different
sources of error were introduced: time error, tracking errors, etc. The results of two
simulations are shown: one without and the other with the error table mentioned
above. It can be noticed that without the table, the behavior is worse than when it
is used. This is because without the table, the corrections made in the equations are
not good enough to prevent a considerable misalignment.

Figures 3.11 and 3.12 show simulations of the evolution of the Sun (SMv) and
the corrected equation (CEq), which corresponds to signal u in Fig. 3.5 as well as the
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Fig. 3.11 Mechanical
structure movement without
using error table (elevation)
[335]

Fig. 3.12 Mechanical
structure movement without
using error table (azimuth)
[335]

movement of the mechanical structure (PMv) when the error table is not used. Since,
for the sake of clarity, the structure was kept still during the cloudy period (from
about 9:00 to 11:00), there is a great discrepancy among the curve for mechanical
structure movement and the other curves. This discrepancy will not have much of
an effect because the system cannot generate energy when the Sun is hidden by the
clouds. At the end of the cloudy period, the structure moves toward the Sun and,
except for an overshoot evident in the graphs, the curves appear to overlap the rest
of the time. The overshoot is a result of the search mode, as will be seen in Figs. 3.15
and 3.16.

When the error tables are used, the corrections as a result of feedback are much
better and a search is unnecessary. Thus, a series of movements is avoided that would
consume part of the energy generated. This can be observed in Figs. 3.13 and 3.14.
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Fig. 3.13 Mechanical
structure movement using
error table (elevation) [335]

Fig. 3.14 Mechanical
structure movement using
error table (azimuth) [335]

Figures 3.15 and 3.16 show the same movements illustrated in Figs. 3.11–3.12
and 3.13–3.14 in the azimuth–elevation plane. The system starts from similar ini-
tial conditions (i.e. from the search mode) in both cases. It can be seen that when
the error table is not included, there is a great discrepancy between the value of the
corrected equations and the position of the Sun at the moment when the clouds dis-
appear. This fact makes the search mode necessary again. However, when the error
table is used, these discrepancies are not significant, which implies that a second
call to the search mode is no longer necessary.

Obviously, the tables of error have limited validity in time. Apart from possible
changes in origin or values of error, it has to be taken into account that the trajectory
that the Sun follows varies with time and this variation is different, depending on
the time of year.
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Fig. 3.15 Mechanical
structure movements in
elevation and azimuth
coordinates (without using
the error table) [335]

Fig. 3.16 Mechanical
structure movements in
elevation and azimuth
coordinates (using the error
table) [335]

Having carried out different simulations, if the table for when there is no need
for a search to resume tracking after an extended cloudy period is considered valid,
it is possible to consider about a margin of 25 to 30 days valid when the date is near
the winter or summer solstices and 15 to 20 days when the date is near the spring or
autumn equinoxes.

This means that after 15 to 20 days of continuous, total cloud cover, when the
Sun comes back out the operation will be normal, with no need for a search. For
longer periods of cloudiness, a search would be necessary before resuming normal
tracking but, in general, the system will be adequate.

Finally, it should be noted that additional questions, such as safety routines to
preserve the mechanical structure, e.g. the inclusion of a predetermined defense
position in which the structure would offer minimal aerodynamic resistance, were
not considered. The mechanical structure could adopt this position for instance, if
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Fig. 3.17 Control loop
scheme [335]

wind speeds endangered the structure itself (which would also imply the inclusion
of an anemometer in the sensor system) or at night, when the Sun is not out.

3.4.4 Experimental Results

Operation of the prototype of the control unit (Fig. 3.17) developed was tested using
the mechanical structure shown in Fig. 3.18. This low-cost positioning system is lo-
cated on the roof of the Department of Systems and Automatic Control Engineering
Laboratories at the University of Seville, in Spain. It was checked to make sure that
it worked correctly with regard to both hardware (movement of both axes, decoding,
etc.) and software (execution of basic programs, monitoring, etc.).

As can be seen in Fig. 3.18, the positioning system supports flat plate PV arrays
instead of a concentrating PV system. Since high-concentration solar arrays were
not available, several cells of slender-built tubes were mounted on the arrays. These
cells guarantee that no solar irradiance gets to the arrays when the tracking error is
greater than some degrees.

The different strategies tested in simulation were carried out in the control unit in
order to fine-tune the controllers. To check the robustness of the algorithms, several
error sources were included in the experiments, such as an offset in the time given
by the auxiliary clock and a misalignment on the mechanical structure orientation
with respect to the geographical North.

Figures 3.19 and 3.20 show the experimental power attained using the open-loop
tracking strategy, as well as that obtained using the proposed hybrid strategy. Solar
irradiance graphs are also included, showing that the experiments were performed
under similar solar irradiance conditions during the first four hours. In this period of
time the electric power generated using the hybrid strategy is, in mean values, 55%
higher than the open-loop one.

It can be observed that the power generated by the solar arrays using the open-
loop strategy has a maximum level of about 65 W for almost two hours at noon.
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Fig. 3.18 Mechanical
structure of the solar tracker
(front face) [335]

Fig. 3.19 Experimental
results using an open-loop
and the proposed hybrid
strategy (electric power
generated) [335]

However, the positioner loses the Sun from the afternoon onwards, which means
that the cells of slender-built tubes throw shadow upon some of the solar cells with
consequent decrease in the level of electric power generated.

The above mentioned fact does not occur when the proposed hybrid tracking
strategy is used. Besides the fact that the level of power generated is about 90 W
at noon (a benefit of about 40% with respect to the open-loop strategy, despite the
low quality of the mechanical structure), the arrays not only do not lose the Sun but
also their alignment is corrected, with the consequent increment of electric power
generated (with a maximum greater than 100 W).
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Fig. 3.20 Experimental
results using an open-loop
and the proposed hybrid
strategy (solar irradiance)
[335]

The reader may be surprised that the amount of generated power is so low. This
is due to the fact that the experiments were carried out using a constant non-optimal
electric load. Of course, the level of power could have been increased if an MPPT
device had been used (see, for example, [183] and references therein). However,
since the goal of these experiments is to evaluate the Sun’s pointing error using
different tracking strategies, the comparison between the level of generated power
was taken into consideration, but not the level of power per se.

3.5 Summary

This chapter has dealt with the fundamentals of PV systems. After a general
overview of the related concepts, a new Sun tracking strategy which provides small
Sun tracking errors (needed by high-concentration solar arrays) has been introduced.
The algorithm consists of two tracking modes: a normal tracking mode, used when-
ever the Sun tracking error is small enough and the solar irradiance is great enough;
and a search mode, which operates when the first of the above conditions is not ful-
filled but there is sufficient solar radiation to produce a minimum amount of electric
power. Energy saving factors have been taken into account in the tracking strategy
design. Simulated and experimental results have been shown, which demonstrate
the benefits of the strategy with respect to a classical open-loop one, when errors in
the estimation of the Sun’s position (such as variations in the time given by the aux-
iliary clock or lack of precision in the alignment of the mechanical structure with
respect to geographical North) are included.



Chapter 4
Basic Control of Parabolic Troughs

4.1 Introduction

Parabolic trough collectors (PTC) concentrate sunlight onto a receiver pipe located
along their focal line. A heat transfer fluid (HTF), typically synthetic oil, water or
molten salt, is heated as it flows along the receiver pipe and is routed either to a
heat exchanger when this fluid is oil or molten salt to produce steam that feeds
an industrial process (for instance a turbine), or to a flash tank when the fluid is
pressurized water, to produce steam of up to 200°C for an industrial process, or get
again to a turbine when superheated and pressurized steam is produced directly in
the solar field [416–418]. In order to provide viable power production PTC have to
achieve their task despite fluctuations in energy input, i.e. the sunlight. An effective
control scheme is needed to provide the operating requirements of a solar power
plant. A prototype that has been used as a test-bed plant for the development of the
new generation of solar plants with PTC is the ACUREX field of the PSA that will
be used to briefly describe the technology and associated subsystems. Information
about modeling and control of the new generation of collectors using direct steam
generation (DSG), represented by the DISS plant of the PSA, is included at the end
of the chapter.

As was commented in Chap. 1, the main difference between a conventional
power plant and a solar plant is that the primary energy source, although variable,
cannot be manipulated. The intensity of the solar radiation, in addition to its seasonal
and daily cyclical variations, also depends on atmospheric conditions such as cloud
cover, humidity and air transparency. Due to this fact, a solar plant is required to
cope with certain problems that are not encountered in other thermal power plants.
The objective of the control system in a distributed solar collector field (DSCF) is
to maintain the outlet HTF temperature of the field (or the highest outlet HTF tem-
perature reached by one of the collectors at each sampling time) at a desired level in
spite of disturbances such as changes in the solar irradiance level (caused by clouds),
mirror reflectivity or inlet HTF temperature. This is achieved by adjusting the fluid
flow and the daily solar power cycle characteristics are such that the HTF flow has
to change substantially during operation. This leads to significant variations in the
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dynamic characteristics of the field such as the response rate and the dead time,
which cause difficulties in obtaining adequate performance over the operation range
with a fixed parameter controller. Thus, from the control point of view, the main
characteristics of this kind of plant are:

• Non-linearities, complexities, requiring modeling simplifications, changing dy-
namics and changing environmental conditions: (i) the solar radiation acts as a
fast disturbance in respect to the dominant time constant of the process; (ii) the
existence of time-varying input/output transport delay, since the delay in action
depends on the manipulated variable (HTF flow rate); this type of delay ap-
pears both in the field and in the pipe connecting the loops to the storage tank;
(iii) when modeling simplifications are made, there are strong unmodeled dynam-
ics and the linearized dynamics vary with the operating point; indeed, the plant
is best modeled as a distributed parameter system and, furthermore, there are res-
onance modes (frequencies at which the magnitude of the frequency response
has a maximum or minimum value) in the frequency response of the collector
field within the control bandwidth, such that when the system is excited by a
signal (HTF flow or solar irradiance) with principal frequency components corre-
sponding to those of the resonance modes, oscillations may appear at the system
output.

• A PTC is essentially a very large heat exchanger and these types of system are
quite common in the process industry; thus, most of the experience gained by the
control of solar collector fields can be used for other, more common, industrial
processes.

These aspects render the control problem in question a difficult one and call
for the use of carefully designed control algorithms, robust enough to cope with
the high levels of uncertainty present in the plant. The activities performed by the
control groups related to this field [87, 88] cover modeling, identification and sim-
ulation, classical proportional-integral-derivative control (PID), feedforward con-
trol (FF), cascade control (CC), adaptive control (AC), gain-scheduled control
(GS), internal model control (IMC), time delay compensation (TDC), optimal con-
trol (LQG), non-linear control (NC), robust control (RC), model-based predictive
control (MPC), fuzzy logic control (FLC), neural network controllers (NNC) and
hierarchical control (HC). The basic control approaches (PID, CC and FF) are
briefly commented on this chapter, while the rest are described in the following
one.

4.2 Description of the Technology and Subsystems

Most of the DSCF plants are composed of a distributed collector system (DCS),
a thermal storage system and the power block (Fig. 4.1) governed by a control sys-
tem.



4.2 Description of the Technology and Subsystems 69

Fig. 4.1 Schematic diagram of the ACUREX solar collector field

4.2.1 Distributed Collector Field

The ACUREX DSCF consists of 480 East–West aligned single axis tracking collec-
tors forming 10 parallel loops with a total mirror aperture area of 2672 m2. Each of
the loops is formed by four 12-module collectors suitably connected in series. The
loop is 172 m long, the active part of the loop (those parts receiving beam irradi-
ance) measuring 142 m and the passive part (those not receiving beam irradiance)
30 m. The HTF used is Therminol� 55 thermal oil, capable of supporting temper-
atures of up to 300°C; this is pumped from the bottom of a storage tank through the
solar field where it picks up the heat transferred through the receiver tube walls to
the top of the tank. The heated HTF stored in the tank is used to boil water, which
is utilized in a steam turbine to drive an electricity generator or to feed the heat
exchanger of a desalination plant (Figs. 4.1 and 4.2). The operation limits for the
HTF pump are between 2.0 and 12.0 l/s. The minimum value is there for safety,
mainly to reduce the risk of the HTF decomposing, which happens when the HTF
temperature exceeds 305°C. Another important restricting element in this system
is the difference between the inlet and outlet HTF temperatures of the field that
must be less than 80°C. If the difference is higher than 100°C there is a significant
risk of HTF leakage due to high HTF pressure in the pipe system. The field is also
provided with a Sun tracking system (as those commented on in Chap. 1) which
causes the mirrors to revolve around an axis parallel to that of the pipe. The seeking
mechanism can reach three possible states: (i) Track: The mechanism seeks the Sun
and the collectors focus on the pipe. (ii) Desteer: The mechanism steers the col-
lector several degrees away from the Sun and continues tracking with the receiver
out of focus. This protects the field from over-heating in case of a pump failure.
(iii) Stow: The mechanism moves the collector to an inverted position at the end of
each day or in the event of a serious alarm. The system takes about 5 min to take



70 4 Basic Control of Parabolic Troughs

Fig. 4.2 ACUREX
distributed solar collector
field (courtesy of PSA)

the field from stow to track. A more detailed description of the field can be found
in [206].

4.2.2 Storage

The storage tank was included in order to allow flexible electricity production and to
provide a buffer between electricity generation and fluctuating solar input [206]. For
the initial start-up of the plant, the system is provided with a three-way valve, which
allows the HTF to circulate in the field until the outlet temperature is adequate for
entering the storage tank.

The tank used in this collector field has a capacity of 140 m3 which allows for
storing of 2.3 thermal MWh for an inlet field temperature of 210°C and an outlet
field one of 290°C. The good thermal stratification of this HTF allows it to be stored
for various days.

4.2.3 Control System

In the case of the ACUREX field, a supervisory control and data acquisition
(SCADA) system runs in a computer, working automatically except in certain op-
erations at the start and at the end of the operation. Every 3 s more than 150 data
are registered and processed. The SCADA provides a supervisory module which
controls the various alarms which may be produced during daily operation.

The direct control system of the pump which impels the fluid is an analog PI
adjusted to the design point corresponding to 12 noon (solar time), March 21st with
direct beam irradiance of 920 W/m2. Evidently, the environmental conditions under
which a solar plant has to operate are very different from the design conditions.

Typical sample times used in this installation are either 15 or 39 s, being a good
trade-off both for set point tracking and disturbance rejection.
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Fig. 4.3 Response to an open
loop oil flow step [85]

4.3 Modeling and Simulation Approaches

Several classifications of modeling approaches can be found in the literature, that
presented in [69] being widely accepted. The hierarchy of process models has been
used for different purposes in this type of solar plant: control models, simulation
models, set point optimization models, fault tolerance, etc. Models for control pur-
poses range from the simplest ones based on steady-state relationships or on linear
low-order approaches to non-linear empirical or first principles-based ones. In prac-
tice, the DCS has been modeled both by using first principles or empirically by
conducting practical tests. In this second case, when introducing a step input signal
in the HTF flow in an open loop configuration (reaction curve method) while the
rest of disturbances are in quasi-steady state, the response can be approximated by
that of a first-order system or overdamped second-order system with a delay de-
pending on the fluid velocity, as will be seen in Fig. 4.3. This kind of step response
suggests the use of low-order linear descriptions of the plant (as is the norm in the
process industry) to model the system and design diverse control strategies. When
using persistent excitation signals (e.g. random binary sequences) or analytically
examining the dynamics of the system [241, 242] it can be seen that the plant ex-
hibits a number of resonance modes within the control bandwidth. Thus, non-linear
models (both mechanistic and empirical ones) or high-order linear models around
different operating points have to be used [85, 87]. All these modeling approaches
are discussed in this chapter.

4.3.1 Fundamental Models

A DSCF, under general assumptions and hypotheses, may be described by a distrib-
uted parameter model of the temperature [38, 81, 85, 97, 99, 100, 213, 280, 325],
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using the following system of partial differential equations (PDE) describing the
energy balance:

ρmcmAm

∂Tm

∂t
(t, �) = ηcolGI (t) − Prc − Df πHt

(

Tm(t, �) − Tf (t, �)
)

(4.1)
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∂�
(t, �) = Df πHt
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Tm(t, �) − Tf (t, �)
)

(4.2)

where the subindex m refers to the metal and that of f to the fluid; ρm,f is the
density, cm,f is the specific heat capacity, Am,f is the cross-sectional area, Tm,f the
temperature, t the time, � the space, ηcol is the global collectors’ efficiency, G is
the collectors’ aperture, I is the corrected direct solar irradiance, Prc are convective
thermal losses of pipe exterior per unit length, Dm,f is the pipe diameter, Ht is the
convective heat transfer coefficient of pipe interior and q is the HTF pump volumet-
ric flow rate (in the table of variables and parameters defined at the beginning of the
book, the corresponding units are included). A simplified energy balance neglecting
heat losses and assuming incompressibility of the fluid and no diffusion has also
been used by several authors [135–138, 195, 196, 351, 352, 388, 389], described by

Af

∂Tf

∂t
(t, �) + q(t)

∂Tf

∂�
(t, �) = ηcolG

ρf cf

I (t) (4.3)

where Tf (t, �) is the HTF temperature at position � along the tube, with boundary
condition Tf (t,0) = Tin(t) (inlet HTF temperature to the DSCF).

The objective is to control the outlet HTF temperature variable Tout(t) = Tf (t,L)

to its specified set point. The incoming energy depends on the global collectors’
efficiency and thus, on the peak optical efficiency of the collectors, on the mirror
reflectivity, on the effective reflecting surface and on the effective irradiance onto
the collector I (t). These last two variables depend on the incidence angle between
solar rays and the vector normal to the collector surface (θi), this angle being a
function of the solar hour and date (see Chap. 2).

Both lumped and distributed parameter versions of the models obtained from
Eqs. (4.1), (4.2) and (4.3) have been used both for control and simulation purposes.
Depending on the applications, the properties of the HTF are considered constant
or functions of the temperature. The development of numerical simulation models
of the plant has played an important role in the design of different control strategies
avoiding a number of expensive and time consuming controller tuning tests at the
solar power plant. Based on Eqs. (4.1) and (4.2), a distributed parameter model of
the ACUREX field was developed [81, 97] and implemented [38, 85] and has been
used for simulation purposes by many researchers. This model is summarized in the
following section.

4.3.2 Distributed Parameter Model

The dynamic behavior of a collector of the DSCF is simulated by 100 lumped-
parameter submodels. Temperatures of the HTF and the tube walls are modeled
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separately. The model also takes Sun position, field geometry, mirror reflectivity,
solar irradiance and the inlet field HTF temperature into account [38, 81]. The col-
lector loop is the basic subsystem which determines the behavior of a collector field.
If it is possible to model a loop, the behavior of the whole field can be determined
by simply adding the parallel loops and allowing for transport delays in the inter-
connecting tubes. The present model has been developed to fulfill the following
objectives:

• Simulation of the field behavior in order to optimize the temperature regulation
system.

• A study of the behavior of the system under specific operational conditions such
as passing clouds.

• A study of extreme situations by simulation of failures, desteer mechanisms, etc.
• Application to other collector fields by modifying the corresponding parameters.

The model simulates the temperature distribution in the absorption tube and in the
HTF along the collector loop at a point in time, as well as the temporary variation
of the temperatures at determined points of the collector. The following hypotheses
have been made:

• The properties of the HTF are considered as functions of the temperature.
• The flow in each section is presumed to be circumferentially uniform and equal

to the average value.
• Variations in the radial temperature of the tube wall are not taken into account.

This assumption is reasonable in the case of a thin wall with good thermal con-
ductivity.

• The HTF flow and the irradiance are considered as time functions and are always
the same for each element (an incompressible fluid is presumed).

• Losses caused by the conduction of axial heat on both sides of the wall and from
the fluid are negligible. Axial conduction in the tube should be slight given that
the wall is thin, having high heat resistance. Axial conduction in the fluid is rela-
tively slight as the HTF conductivity is poor.

Using the above hypotheses and applying the conservation of energy in the metal
tube of a length control volume (CV) Δ� over a time interval Δt described by
Eqs. (4.1) and (4.2) and supposing Prc = DmπHl(Tm − Ta), where Hl is the con-
vective heat transfer coefficient of pipe exterior, Dm the outside diameter of pipe,
Tm the temperature of metal of pipe wall and Ta the ambient temperature (see the
table of variables and parameters defined at the beginning of the book), the sim-
ulation model for the active zones (those receiving concentrated solar irradiance)
can be obtained. The equations which describe performance in a passive element
(non-irradiated) are similar except that solar energy entrance is nil and the heat loss
coefficient is much less because of thermal insulation. Thus, the model for the com-
plete field is built of a series of active and passive elements. Equations generated
can be solved using an iterative process with finite differences. The temperatures of
the fluid and of the absorbency tube are calculated for each time interval and for
each element. Each segment is 1 meter long and the integration interval is 0.5 s.
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A two stage algorithm has been chosen to solve the temperature equations. At the
first stage, the temperatures of the fluid and of the metal are calculated presuming
the fluid to be in a steady state. At the second stage the fluid temperature is corrected
in function of the net energy transported by the fluid.

• First Stage

Tm(k,n) = Tm(k − 1, n) + Δt

ρmcmAm

(

ηcolGI (k)

− DmπHl

(

Tm(k − 1, n) − Ta(k)
)

− πDf Ht

(

Tm(k − 1, n) − T1f (k − 1, n)
))

Tf (k,n) = T1f (k − 1, n) + πDf HtΔt

ρf cf Af

(

Tm(k − 1, n) − T1f (k − 1, n)
)

• Second Stage

T1f (k, n) = Tf (k,n) − q(k)Δt

Af Δ�

(

Tf (k,n) − Tf (k,n − 1)
)

In these difference equations, Tf (k,n) and Tm(k,n) are the temperatures of fluid
and metal in segment n during the k time interval. The different constants and co-
efficients used in the previous equations have been determined using real data from
the plant. Many of them are adjusted to polynomial functions of the temperature by
a least squares (LS) method [97].

Properties of Thermal Fluid One of the main characteristics of Therminol� 55
oil is its low thermal conductivity. Furthermore, its density is highly dependent on
its temperature, which permits the use of just one storage tank to contain both hot
and cold oil in thermal stratification (the thermocline effect). From data supplied by
the oil producer [206], its physical properties have been obtained as the following
polynomial function of the temperature [°C]: density: ρf = 903−0.672Tf [kg/m3],
specific thermal capacity: cf = 1820 + 3.478Tf [J/(kg °C)], thermal conductivity:
kf = 0.1923 − 1.3 · 10−4Tf [W/(m °C)], dynamic viscosity: μf = 1.41 · 10−2 −
1.6 · 10−4Tf + 6.41 · 10−7T 2

f − 8.66 · 10−10T 3
f [Pa s], Prandtl number: Pra = 212 −

2.2786Tf + 8.97 · 10−3T 2
f − 1.2 · 10−5T 3

f .

Convective Heat Transfer Coefficient of Inside Pipe This coefficient can be
expressed as a function Ht = Hvq

0.8, where

Hv(Tf ) = 2.17 · 106 − 5.01 · 104Tf + 4.53 · 102T 2
f − 1.64T 3

f + 2.1 · 10−3T 4
f

Global Coefficient of Thermal Losses The losses have been evaluated by var-
ious tests carried out on the ACUREX field with the oil circulating. In the steady
state losses are calculated by multiplying the enthalpy lost in the oil by the mass
flow. Using the data, the loss coefficient is given by

Hl = 0.00249Δ̄T − 0.06133
[

W/
(

m2 °C
)]

where Δ̄T is the difference in temperature between the average inlet and outlet
temperature and the ambient temperature (Δ̄T = (T̄f − Ta) = ( Tout+Tin

2 − Ta)). In
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Fig. 4.4 Comparison simulator-real plant [85]

the model the thermal loss coefficient is calculated by applying the above equation
to each element of length and having Δ̄T equal to the temperature of this element
minus the ambient temperature.

Model Validation A complete study in which results obtained by the simulation
model are compared to real experimental data can be found in [81]. In these ex-
periments, the response of the simulator is compared to that of the real plant under
various different conditions (changes from track to desteer position, from desteer to
track position, response to HTF flow steps, etc.). As an illustrative example, Fig. 4.4
shows the output of the model in an open loop configuration and that obtained by
the real system under the same conditions of HTF flow, solar irradiance and inlet
HTF temperature (without any intermediate correction using the real plant output).
As can be seen, after an initial transient in which the temperatures of the model and
the real system differ substantially (mainly due to the fact that it is impossible to
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know the initial temperature profile both in the tubes and at the lower thermocline
of the storage tank and to the degradation of the thermal properties of the HTF at
low temperatures), the model tends to follow the system behavior with a logical dif-
ference which tends to zero as the system approaches the steady state. At the end of
the operation (which normally finishes at four pm local time), a discrepancy appears
between the outlet of the model and that of the plant due to the progressive decrease
in solar irradiance, a case in which the coefficients of the model are not as exact as
could be desired.

The temperature increase experimented with by both the model and the field at
about 14.25 was due to the inclusion of a loop that was closed at the beginning of
the operation. Due to this fact, the HTF flow circulating through each loop exper-
imented a sudden decrease. The second significant change in the HTF flow signal
and, indeed, in the output of the system was produced at about 15.4, due to a set
point change. As can be seen, the behavior of the non-linear distributed parameter
model in both situations is very similar to that of the real plant. From the control
viewpoint, in order to ensure a secure operation, the controlled variable is the out-
let temperature of the loop with the highest value at each sampling time and not
the global outlet HTF temperature. This fact can introduce additional dynamics if
the highest temperature loop changes occur during operation, but avoids any of the
loops exceeding the maximum allowable temperature, in which case the mirrors
are sent to stow position by the supervisory system, causing heavy losses in daily
operation.

Some authors have modified this original simulation model or performed dif-
ferent implementations using other numerical methods or taking into account the
dynamics of the tubes connecting the outlet of the DSCF with the storage tank. As
shown in [309], the dynamic characteristics of the tube joining the output of the
loops to the top of the storage tank are given by a gain of less than one, a time con-
stant and a variable delay. This approximation has been adopted in order to modify
the basic formulation of the non-linear model to account for dynamic characteristics
introduced by the tube. The modified model has been validated with data obtained
at the plant in closed-loop operation [309]. In [274] a modification was performed
on this non-linear model of parabolic trough collectors in [38, 85] to include varying
transport delay. In [241], a modification of the original model was also developed,
as it was limited by being unable to adequately represent transport delay effects
and the inconvenience of not having a steady-state finder. When using the model
for transient studies, the initial conditions are found simply by running the model
over a period to permit initial transients to decay. To overcome this, the discrete
model equations were reformulated to provide the capability of direct calculation of
steady-state conditions using an implicit trapezoidal approximation instead of a two-
step Euler approximation such as that used by [38, 85]. All the models mentioned
are based on standard fluid flow and thermodynamic considerations, but considering
incompressible fluid. Nowadays, emphasis is placed on modeling PTC with direct
steam generation, as will be seen in Sect. 4.5.2.

Dynamic validation of the models has been carried out in various ways. Most
of the authors have used typical step-response test performed at the plant. In [247]
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dynamic validation was achieved by making a comparison between the plant and a
model in the frequency domain. The frequency response of the plant was obtained by
a Fourier analysis of measured input and output data during transients. The method
of excitation used was the simple pulse test. This was chosen in preference to pe-
riodic signals such as the common pseudo random binary sequence (PRBS) simply
because it extracts dynamic information very quickly. In comparison, a PRBS signal
takes well over an hour to extract the relevant data with sufficient accuracy, suffer-
ing from the influence of solar irradiance drifts. In order to use PRBS type signals,
computer models have to be used, as in [84]. Equations (4.1) and (4.2) have also
been used for control purposes [85, 87] in the development of feedforward con-
trollers [38, 82, 85, 100, 195, 196, 247, 325, 329, 331, 334, 348, 382], non-linear
PID controllers including real-time numerical integration of the distributed plant
model [195, 196], non-linear model-based predictive controllers [16–18, 34, 35, 40,
42, 84, 295, 297, 298], internal model control [135–138], time delay compensation
[274], feedback linearizing controllers [29, 99, 107, 109, 186, 349], multirate con-
trollers [350, 351] (all these strategies are treated in other sections) and for set point
optimization purposes.

4.3.3 Analysis of the Dynamic Response of the Plant

An analysis of both the time and frequency responses was carried out to characterize
the system. A summary is included in the following subsections.

4.3.3.1 Analysis of the Time Response

One of the tests carried out to characterize the field dynamically consists of intro-
ducing a step input signal in the HTF flow in an open loop configuration (without
flow recirculation). The response to a change in HTF flow from 8 to 7 l/s can be seen
in Fig. 4.3 (at solar midday). As can be appreciated, the response can be approxi-
mated by that of a first-order system or an overdamped second-order system with a
delay. This kind of step response suggests the use of low-order linear descriptions
of the plant (as is usual in the process industry) to model the system and to design
diverse control strategies.

4.3.3.2 Analysis of the Frequency Response

To achieve a greater knowledge of the plant dynamics, PRBS tests were carried out
in order to obtain input–output data to calculate the frequency response of the plant
corresponding to different operating conditions. Figure 4.5 shows the frequency re-
sponse1 obtained by a spectral analysis of the input–output data for a PRBS test on

1The frequency response corresponds to the system constituted by the feedforward studied in
Sect. 4.4.1 in series with the plant.
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Fig. 4.5 Frequency response
of the plant under a fixed
operating condition

the plant corresponding to a mean flow condition of 6 l/s. As can be seen, the plant
exhibits a number of resonance modes within the control bandwidth.

Figure 4.6 shows the theoretical (without taking into account thermal losses)
and real frequency response at one of these operating points. As can be seen, the
amplitude decreases at certain frequencies but does not reach zero because the field
thermal losses dampen this decrease.

The resonance behavior can be analyzed by considering an approximate simple
system which consists of a tube through which fluid is pumped. If this tube is di-
vided into n elements measuring Δ� meters long, considering fluid properties to
be constant (in reality they are functions of the temperature) and the thickness of
the tube walls equal to zero (or infinite thermal conductivity), by making an energy
balance in each of these elements:

∂(ρf Af Δ�cf Tf (t, �))

∂t
= I (t) − ρf cf q(t)

(

Tf (t, � + Δ�) − Tf (t, �)
)

(4.4)
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Fig. 4.6 Real and theoretical
frequency responses [85]

Fig. 4.7 Amplitude of
temperature wave in each one
of the tube elements (ω rad/s)
[85]

Considering a small disturbance model around an equilibrium point (q0, Tf 0(�))
and neglecting second-order terms (Tf (t, �) ≈ Tf 0(�) + T̃ (t, �);q(t) ≈ q0 + q̃(t)),
if the flow perturbation is made equal to a sine wave q̃(t) = Q sin (ωt) and Eq. (4.4)
is solved numerically for different values of the excitation frequency, the results
can be seen in Fig. 4.7, which shows the amplitude of the sine wave obtained for
the temperature of the HTF T̃ (t, �) along the pipe. As can be seen, the outlet HTF
temperature has a zero response in a pipe of length L = 100 m for a frequency
of 0.62 and 1.25 rad/s. In practice, these frequencies are lower and the drops are
attenuated by the field losses.

Another way of analyzing the resonance modes is by considering a sinusoidal
solar irradiance profile and studying variations produced in the outlet temperature,
as in [242]. In order to summarize the physical mechanism which quantitatively
accounts for resonance modes, solar irradiance is presumed to be a sinusoid signal
to study its effect on the outlet temperature when steady-state conditions in the HTF
flow are considered. The variation in outlet HTF temperature T̃out of one of the loops
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is a function of the energy accumulated by the fluid when pumped through the tube.
If air thermal losses and the thermal capacity of the tube are neglected, the variation
in the outlet temperature due to a change in solar irradiance can be expressed as the
integral of the energy absorbed by the fluid (h̃) when circulating through the tube:

T̃out ≈ Kh

∫ tr

0
h̃ dt

where tr is the residence time of the fluid in the field (tr ≈ L/v), with L being the
tube length and v the fluid velocity. If solar irradiance is a sinusoid of frequency ω,
when ω = 2π/tr (period equal to the residence time), the value of T̃out is zero and
so, no changes are observed in the outlet temperature. Extending this result, if the
period is considered to be 1.5 times the residence time (ω = 3π/tr ), the integral and
thus the variations, in the output amplitude, will be maximum for a determined mag-
nitude of the input signal. These situations are valid for high frequencies. In general,
if thermal losses are neglected, a minimum will be obtained for ω = 2nπ/tr and a
maximum for ω = 2π(n + 1/2)/tr , with n being a positive integer. However, ther-
mal losses cause these maximum and minimum to be not exactly in these points. In
practice, air thermal losses and the thermal capacity of the tube cannot be neglected
and attenuate the variations in the outlet temperature.

From the control viewpoint, the plant can be approximated by simplified linear
models when considering the operation around a set point (small signal model). As
has been seen in the analysis of the step response, the plant can be approximated by
a simplified first-order model and a dead time, as in [82, 84]. This is a good approx-
imation if only low frequencies are excited. If this is not the case, as when more
demands are made on the plant response time, the resonance modes (unmodeled
dynamics) may give rise to unacceptable oscillatory behavior.

4.3.4 Simplified Fundamental Models

4.3.4.1 Lumped-Parameter Model

Supposing a lumped description of the plant, the variation in the internal energy of
the field can be described by

c1
dTout(t)

dt
= c2I (t) − c3q(t)

(

Tout(t) − Tin(t)
) − c4Δ̄T (t) (4.5)

where all the variables are known and the coefficients ci , ∀i ∈ {1, . . . ,4} can be
determined by experimental tests (for the ACUREX field they were determined in
[329]).
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4.3.4.2 Bilinear Models

As has been pointed out in Sect. 4.3.1, many authors use a simplified PDE model
of the PTC such as that shown in Eq. (4.3). Rearranging terms [29], this can be
expressed as

∂Tf

∂t
(t, �) + v(t)

∂Tf

∂�
(t, �) = γ I (t) (4.6)

where γ = ηcolG
ρf cf Af

. As in [29], assuming a smooth variation of HTF temperature
along the pipe, the temperature distribution can be approximated by

∂Tf

∂�

∣

∣

∣

�∈(�i−1,�i ]
≈ Tfi

− Tfi−1

l
, i = 1, . . . , n (4.7)

where l is the length of each segment, n is the number of segments, �i = il, L = nl

is the pipe length and Tfi
= Tf (t, il). Defining the state variables xi = Tf (t, il),

i = 1, . . . , n, the process dynamics can be described by a system of bilinear ordinary
differential equations:

dxi

dt
= −v

(xi − xi−1)

l
+ γ I, i = 1, . . . , n, x0 = Tin (4.8)

This model can be written as
dx

dt
= f (x) + g(x)u (4.9)

where x = [x1, . . . , xn]T and

f (x) = γ I

⎡

⎢

⎢

⎣

1
1
...

1

⎤

⎥

⎥

⎦

, g(x) = −1

l

⎡

⎢

⎢

⎣

x1
x2 − x1

...

xn − xn−1

⎤

⎥

⎥

⎦

f (x) is independent of x, f (0) �= 0 and g(x) = Bx where

B = −1

l

⎡

⎢

⎢

⎢

⎣

1 0 · · · 0

−1
. . .

...
...

. . .
. . . 0

0 · · · −1 1

⎤

⎥

⎥

⎥

⎦

For the number of states n high enough, this model reasonably describes the
transport and heating phenomena inside the pipe and can be used for feedback lin-
earization control purposes [29].

It is also possible to use a lumped-parameter physical model of the plant for con-
trol purposes [109, 318, 319], obtained from the distributed parameter non-linear
model based on partial differential equations (PDE) to model transport phenomena.
Equation (4.10) describes a simplified balance of the variation of the internal en-
ergy of the plant. This model has been obtained by removing the dependence on
space in the original PDE model. Moreover, some experiments to obtain parame-
ters such as the thermal loss coefficient given by Eq. (4.11) and the time delay of
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Fig. 4.8 Time delay between
the inlet temperature sensor
measurement and the ten
outlet temperatures of the
field as function of the flow
(courtesy of C.M. Cirre et al.,
[109])

the inlet temperature were performed at the actual plant. Equation (4.11) shows an
empirical function that provides the global thermal losses [W], with a coefficient
of determination of 0.98. Depending on the loop, the coefficients will vary. In this
illustrative case, the coefficients related to loop number 2 of the ACUREX field are
shown.

ρf (T̄f )cf (T̄f )Af

dTout

dt
= ηcolGI − ρf (T̄f )cf (T̄f )Af v(t − td )

Tout − Tin(t − tr )

L

− ˜Hl(T̄f , Ta)

L2
(4.10)

˜Hl = c1Δ̄T − c2 (4.11)

where v is the HTF velocity, tr is the inlet–outlet temperature transport delay or res-
idence time, td the flow–outlet temperature HTF related dead time, L is the collector
length, L2 the inlet–outlet loop number 2 distance, ˜Hl a global thermal loss func-
tion and c1 and c2 coefficients obtained from experimental tests. Previous lumped-
parameter models [85, 97] designed for control did not take into account the variable
delay between the measured inlet and outlet temperatures due to HTF transport from
the inlet (near the storage tank) to the solar field outlet. Experiments at the real plant
in steady state show that a relationship between flow rate, loop number and delay can
be approximated as an exponential expression (see Fig. 4.8). Equation (4.12) gives
an expression obtained experimentally from the inlet–outlet transport delay tr [s]
which is dependent on the HTF flow rate. This equation includes residence time
calculations based on different sections of pipe and approximates a per-piece ex-
pression. Coefficients A1, q1 and y0 vary, depending on the collector loop in which
the temperature is being controlled. For loop 2, these coefficients are A1 = 2008 [s],
q1 = 0.00182 [m3/s] and y0 = 184 [s]. The maximum delay occurs in loop 10 with
minimum flow and the minimum delay (maximum flow) in loop 1. Notice that the
delay (td ) between a change in HTF flow rate and the outlet temperature response
is also taken into account. This delay is due to several factors: delays in pump re-
sponse, delays associated to sensors, and the residence time between the loop outlet
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and outlet temperature sensor measurement. At present, technology is insufficient
to evaluate actuator uncertainty, so based on experimental measurements, this delay
is around 30 s.

tr = A1e
−(q(t−td )/q1) + y0 (4.12)

This stationary approximation of the input–output temperature delay can be used
for control if the HTF flow rate does not change much on the corresponding time
scale. If a wide range of operating conditions has to be covered, the variable time
delay can be estimated by numerical integration using the method proposed by [274]
for this type of plant. As the flow rates change at each sampling time, the system
transport delay can be estimated as an integer multiple n of the sampling time. At
each sampling time k, the new required flow q(k) is calculated by the controller. The
distance Δ�k that can be covered by the fluid during one sample Ts with a corre-
sponding flow rate q(k) is given in Eq. (4.14). Using a discrete-time approximation
of the equation which accounts for the flow rates during different sampling intervals,
the value of n can be computed for each sample as follows:

Δ�k = Tsq(k)/Af (4.13)

L =
∫ tr

0
v(t) dt → Ts

Af

i=n−1
∑

i=0

q(k − i) = L (4.14)

where the values of q(i) are found from those measured previously (q(k) is the
current flow rate, q(k − 1) was the flow demanded at the previous sampling time
and consequently, q(k − n + 1) was the flow demanded at n previous sampling
times, so that nTs ≈ tr ). Thus, the transport delay can be estimated because the
digital implementation of Eq. (4.14) is quite simple. This approximation is very
useful for finding an approximation of the input–output temperature transport delay
tr and for modeling one of the causes producing input flow–output temperature
delay, as will be commented on in the following paragraphs. This method was thus
implemented and improved to take the number of loops working during the test,
the different cross-sections of the pipes, and the loop being controlled into account.
Figure 4.9 shows the comparison of the results obtained both in experiments (4.12)
and by numerical integration (4.14) under steady-state conditions. The sample time
was 39 s. In this figure it can be seen that for HTF flow levels of 8 · 10−3 m3/s
and 9 · 10−3 m3/s the transport delay is almost the same, with greater differences
appearing at low flow rates. It must be kept in mind that the plant is composed
of different parts and pipes with different cross-sections and that to implement the
method proposed in [274] only the most important parts have been used. Notice that
the method accuracy depends on the sample time. As the sample time increases, the
transport delay calculation becomes less accurate. However, for typical sample times
used in the facility (between 15 and 39 s), this approach was shown to work well.
The inclusion of the variable input–output temperature transport delay in the model
plays an important role, mainly during operation start-up. The delay (td ) is added to
the residence time (tr ), which varies with the HTF flow and can be estimated using
(4.14).
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Fig. 4.9 Comparison
between the transport delay
obtained by experimental
methods (subscript ‘M’) with
the time delay obtained by
theoretical calculations
(subscript ‘T ’) (courtesy of
C.M. Cirre et al., [109])

For a single collector loop, the flow through it is given by q(t − td )/nope, where
nope is the number of operative loops. The system controllability canonical form
[354] is shown in Eq. (4.15) and can be used for feedback linearization control
purposes, as will be shown in Chap. 5:

dTout(t)

dt
= ηcolGI (t)

ρf (T̄f )cf (T̄f )Af

− q(t − td )(Tout(t) − Tin(t − tr ))

Af nopeL

− ˜Hl(T̄f , Ta)

ρf (T̄f )cf (T̄f )Af L2
(4.15)

4.3.4.3 Models of Resonances

This section outlines the gray-box models developed in [8, 11, 12]. A gray-box
model is a hybrid physical and empirical modeling approach, which can set ad-
justable parameters that can be physically interpreted [230]. The gray-box model
for a DSCF is equivalent to that of a tubular heat exchanger in which the outlet tem-
perature does not vary with space but with time, i.e., condensers. It is important to
highlight that, in contrast to heat exchangers where the fluid outlet temperature can
be controlled either by the fluid velocity or the output power supply, in a DSCF, the
fluid outlet temperature can only be controlled using the fluid velocity, because the
main energy source, solar radiation, cannot be manipulated and is, therefore, treated
as a system disturbance.

Figure 4.10 shows a cross-section of a PTC in which warm fluid flows at a veloc-
ity v(t) which could vary over time. At the same time, the fluid is heated by solar
radiation incident on the outside of the tube. The hot fluid leaves the solar collector
at the end of tube � = L and the temperature of the fluid varies with time and space
Tf (t, �), while direct solar irradiance I (t), the ambient temperature Ta(t) and the
tube temperature Tm(t) are taken to be only time dependent. Some more simplify-
ing assumptions are that the fluid is incompressible, its specific heat capacity and
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Fig. 4.10 PTC cross-section

density are considered constant and the thermal resistance of the tube wall is ig-
nored. Only fluid velocity, solar irradiance, ambient temperature and incoming fluid
temperature are considered to dynamically influence the outgoing fluid temperature.
The aim of the mathematical analysis is to find transfer functions which relate the
controlled variable Tf (t,L) = Tout(t) to the manipulated variable v(t) and distur-
bance variables I (t), Ta(t), Tf (t,0) = Tin(t). The table of variables and parameters
defined at the beginning of the book summarizes model variables and parameters
described in Fig. 4.10, while the mathematical analysis for the model is given in the
following.

Based on Eqs. (4.1) and (4.2), after simplification and Taylor series expansions
to arrive at linear approximations of the non-linear terms, Eqs. (4.16) and (4.17) are
found [8, 11]:

∂Tm

∂t
= Iγ − 1

τ2
(Tm − Ta) − 1

τ12
(Tm − Tf ) (4.16)

∂Tf

∂t
= −(v − vs)

dTfs

d�
− vs

∂Tf

∂�
+ 1

τ1
(Tm − Tf ) (4.17)

The subscript s denotes the steady-state value and τ1 = Af ρf cf

πDf Ht
, τ12 = Amρmcm

πDf Ht
, τ2 =

Amρmcm

πDmHl
and γ = ηcolG

Amcmρm
. Equations (4.16) and (4.17) can be expressed in terms of

deviation variables around steady-state conditions:

0 = Isγ − 1

τ2
(Tms

− Tas
) − 1

τ12
(Tms

− Tfs
) (4.18)

0 = −vs

dTfs

d�
+ 1

τ1
(Tms

− Tfs
) (4.19)

Thus, the steady-state temperature Tfs is only a function of �:

Tfs = Isγ τ2 + Tas + (Tfso − Isγ τ2 − Tas )e
− �

c (4.20)
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where Tfso = Tfs (� = 0) = Tf (t = 0, � = 0) and c = vsτ1(1 + τ2
τ12

). By subtracting
Eq. (4.18) from Eq. (4.16) and Eq. (4.19) from Eq. (4.17), and introducing deviation
variables:

∂T̃m

∂t
= Ĩ γ − 1

τ2
(T̃m − T̃a) − 1

τ12
(T̃m − T̃f ) (4.21)

∂T̃f

∂t
= −ṽ

dTfs

d�
− vs

∂T̃f

∂�
+ 1

τ1
(T̃m − T̃f ) (4.22)

where T̃f = Tf − Tfs , ṽ = v − vs , Ĩ = I − Is , T̃m = Tm − Tms and T̃a = Ta − Tas .
Through a Laplace transform, previous PDE are converted into ordinary differential
equations (ODE):

sT̃m(s) = Ĩ (s)γ − 1

τ2

(

T̃m(s) − T̃a(s)
) − 1

τ12

(

T̃m(s) − T̃f (s)
)

(4.23)

sT̃f (s) = −ṽ(s)
dTfs

d�
− vs

dT̃f (s)

d�
+ 1

τ1

(

T̃m(s) − T̃f (s)
)

(4.24)

Rewriting Eqs. (4.23) and (4.24) to remove T̃m(s):

dT̃f (s)

d�
+ a

vs

T̃f (s) = − ṽ(s)

vs

dTfs

d�
+ τ2bγ

vs

Ĩ (s) + b

vs

T̃a(s) (4.25)

where a(s) = s + 1
τ1

− τ2
τ1(τ12τ2s+τ12+τ2)

and b(s) = τ12
τ1(τ12τ2s+τ12+τ2)

. Equation (4.25)

is an ODE, with boundary condition T̃f (s, �) = T̃f (s,0) at � = 0, which is solved
giving

T̃f (s)e
a
vs

� = − ṽ(s)

vs

∫

dTfs

d�
e

a
vs

�
d� + τ2bγ

vs

Ĩ (s)

∫

e
a
vs

�
d�

+ b

vs

T̃a(s)

∫

e
a
vs

�
d� + T̃f (s,0) (4.26)

It is easy to find
dTfs

d�
from Eq. (4.20), in such a way that

− ṽ(s)

vs

∫

dTfs

d�
e

a
vs

�
d� = −ṽ(s)

Tas + Isγ τ2 − Tfso

ac − vs

[

e
�( a

vs
− 1

c ) − 1
]

(4.27)

Equation (4.26) can be solved providing a general equation:

T̃f (s) = −ṽ(s)
Tas

+ Isγ τ2 − Tfso

ac − vs

[

e− �
c − e

− a
vs

�] + Ĩ (s)τ2γ
b

a

[

1 − e
− a

vs
�]

+ T̃a(s)
b

a

[

1 − e
− a

vs
�] + T̃f (s,0)e

− a
vs

� (4.28)

It is possible to extract a single-input single-output (SISO) transfer function which
relates the fluid outlet temperature to the only manipulated variable, its velocity,
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when solar irradiance, ambient temperature, and incoming fluid temperature do not
vary:

T̃f (s)

ṽ(s)
= −Tas + Isγ τ2 − Tfso

ac − vs
︸ ︷︷ ︸

Le(s)

[

e− �
c − e

− a
vs

�]

︸ ︷︷ ︸

Ri(s)

(4.29)

For a better understanding, Eq. (4.29) can be split into two transfer functions which
are labeled as Le(s) (for the left side) and Ri(s) (for the right side).

Focusing attention on the left side, Le(s):

Le(s) = −Tas + Isγ τ2 − Tfso

ac − vs

= − Tas + Isγ τ2 − Tfso

(τ1τ12τ2s
2+(τ1(τ12+τ2)+τ12τ2)s+τ12)c−vs(τ1τ12τ2s+τ1(τ12+τ2))

τ1τ12τ2s+τ1(τ12+τ2)

(4.30)

Expanding terms and after a few simplifications [11], it is possible to obtain

Le(s) = − (Tas + Isγ τ2 − Tfso)

c

(τ1τ2s + τ12 + τ2)

τ12τ2s2 + (

τ12 + τ2 + τ12τ2
2

τ1(τ12+τ2)

)

s

= − (Tas + Isγ τ2 − Tfso)

c

(

s + τ12+τ2
τ1τ2

)

s2 + (

τ12+τ2
τ12τ2

+ τ2
τ1(τ12+τ2)

)

s
(4.31)

On the other side, the term e
− a

vs
� in Ri(s) can be expanded in [11]

e
− a

vs
� = e− �

c e
− �

vs

(

s+ τ2
τ1(τ12+τ2)

( s

s+ τ12+τ2
τ12τ2

))

(4.32)

Obtaining the common factor e− �
c in Ri(s):

Ri(s) = [

e− �
c − e

− a
vs

�] = e− �
c

[

1 − e
− �

vs

(

s+ τ2
τ1(τ12+τ2)

( s

s+ τ12+τ2
τ12τ2

))

]

(4.33)

Finally, if Eqs. (4.31) and (4.33) are put together and the substitution � = L is made,
the transfer function relating fluid outlet temperature to its velocity (assuming that
the rest of the disturbance variables do not vary) is obtained:

G(s) = T̃f (s,L)

ṽ(s)
= −Tas − Tfso + Isγ τ2

c
e−L

c

(

s + τ12+τ2
τ12τ2

)

s2 + (

τ12+τ2
τ12τ2

+ τ2
τ1(τ12+τ2)

)

s

×
[

1 − e
− L

vs

(

s+ τ2
τ1(τ12+τ2)

( s

s+ τ12+τ2
τ12τ2

))

]

(4.34)

Equation (4.34) is the transfer function relating the controlled variable to the only
manipulated variable and it can be used to design a feedback controller for the plant,
as will be seen in Chap. 5. In [11], similar transfer functions relating the fluid out-
let temperature to the disturbance variables are obtained, assuming the remaining
variables are in steady state:
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T̃f (s,L)

Ĩ (s)
= τ2γ

b

a

[

1 − e
− a

vs
L]

(4.35)

T̃f (s,L)

T̃a(s)
= b

a

[

1 − e
− a

vs
L]

(4.36)

T̃f (s,L)

T̃f (0, s)
= e

− a
vs

L (4.37)

where a(s) and b(s) are transfer functions, as explained previously. Equations (4.35),
(4.36), and (4.37) can be used to find simplified feedforward controllers to compen-
sate for measurable disturbances. Notice that Eqs. (4.34) to (4.37) are simplifica-
tions, as each was found assuming that the rest of the input/disturbance variables are
in steady state which is never true in a solar plant. Nevertheless, this kind of simpli-
fication allows fundamental transfer functions capturing the main system dynamics
and the influence of disturbances to be found that can be used for implementing
high-performance control schemes [8, 11, 12]. Equations (4.36) and (4.37) yield the
same results as those in [115], whereas Eq. (4.34) is similar to that in [8], Eq. (4.37)
shows almost a total delay between the fluid outlet temperature and its input temper-
ature. Equations (4.34), (4.35) and (4.36) predict a resonance effect when the fluid
outlet temperature is related to its velocity, solar irradiance or ambient temperature.
In these three equations, the function in brackets represents system resonance dy-
namics. Equations (4.34) to (4.37) have a complex expression in Laplace transform
s of:

e
−L
vs

Q(s) =
{

e
−L
vs

(xb(
xas

xbs+1 ))
if Eq. (4.34)

e
L
vs

(
xa

xbs+1 )
if Eqs. (4.35), (4.36) or (4.37)

(4.38)

with variables xa = τ2
τ1(τ12+τ2)

[1/s] and xb = τ12τ2
τ12+τ2

[s].
The complex expression e

− L
vs

Q(s) is not easy to invert but, with the help of its
frequency response and taking into account that the transfer function can be closely
approximated by another transfer function with one pole and one zero [8], the ex-
pression can be approximated by

e
−L
vs

Q(s) ≈ K
−βs + 1

τs + 1
(4.39)

which can be considered a first-order Padé approximation of Eq. (4.38), where pa-
rameters β and τ are the same for Eqs (4.34) to (4.37), whereas static gain K of the
transfer function has different values depending on the equation

K =
{

1 if Eq. (4.34)

e
L
vs

(
τ2

τ1(τ12+τ2)
)

if Eqs. (4.35), (4.36) or (4.37)
(4.40)

Therefore, the transfer functions in Eqs. (4.34) to (4.37) could be represented as
Eqs. (4.41) to (4.44):

G(s) = T̃f (s,L)

ṽ(s)
= −Tas − Tfso + Isγ τ2

c
e− L

c

(

s + τ12+τ2
τ12τ2

)

s2 + (

τ12+τ2
τ12τ2

+ τ2
τ1(τ12+τ2)

)

s
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×
[

1 − e
− L

vs
s

(−βs + 1

τs + 1

)]
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T (s) = T̃f (s,L)
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4.3.5 Data-Driven Models

Linear black-box models have been obtained from parameter identification by many
authors for control purposes [87]. Low-order linear models have commonly been
used for adaptive control [77, 82, 83, 274, 292, 334], while high-order linear models
are used for gain-scheduled controllers [73, 75, 76, 84, 85, 197, 264, 295, 296, 308],
and all these are dealt with in the next chapter.

Regarding non-linear models, several methodologies, including numerous types
of artificial neural network (ANN), have been proposed for building a non-linear
model of the solar power plant, which was later used for simulation purposes or as
a core element in various model-based prediction schemes.

In [70] a black-box identification of the solar collector field of an air conditioning
plant is carried out. As the collectors have non-linear dynamics and flow variant
time delay, a method for compensating the flow variant time delay similar to that of
[274] is proposed and thereafter, a black-box method for non-linear systems without
time delays can be applied. The obtained non-linear model describes the collector
dynamics well.

In [203, 204] a comprehensive review of applications of ANN to renewable en-
ergy systems is performed. Within the scope of solar plants with distributed col-
lectors, the application of the general identification methodology to obtain neural
predictors for use in a non-linear predictive control scheme is shown in [16, 18].
Non-linear autoregressive models with exogenous input (NARX) models are used
in this work, where several algorithms for selecting past signal values as inputs are
developed for multilayer perceptron (MLP) and radial basis function (RBF) net-
works, while in [17] a comparison is made between different types of RBF neural
network (NN) for the same plant. In [42], a static NN is used in an autoregressive
configuration and a selection method is proposed based on the reduction of the es-
timated gradient for determining the past values that the network needs to construct
the prediction. The works [289, 290] implied a neuro-fuzzy system based on a RBF
network with support vector learning, while [179] used a recurrent network in com-
bination with an on-line learning strategy to update both the weights of the network
and the current state. In [339, 400], the identification of a DSCF is performed both
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by using ANN and by physical models. The non-linear identification problem is
tackled by decomposing the complex system into two main components: an active
part and a passive part. For the active part of the solar power plant, a model based
on the parallel connection of ten ANN is built while for the passive part, a white-
box model and a NN black-box model are developed. All models are identified and
validated using measurement data. In [187] a model of the overall solar power plant
is also developed using NN, to avoid overheads generated by training each of the
networks presented in the work of [339, 400].

4.3.5.1 Linear Plant Models

When considering operation around a particular set point and after linearization
most SISO plants, can be described in the discrete-time domain by linear models
based on transfer functions G(z−1) = B(z−1)/A(z−1) (with z−1 being the back-
ward shift operator), relating the sampled system output y(k) to the system in-
put u(k) by A(z−1)y(k) = B(z−1)u(k) with A(z−1) = 1 + a1z

−1 + a2z
−2 + · · · +

anaz
−na and B(z−1) = b0 + b1z

−1 + b2z
−2 + · · · + bnbz

−nb , with na ≥ nb. This
description is valid both for stable and unstable processes and has the advantage of
needing few parameters to model the system, although it is fundamental to have an
a priori knowledge of the system, mostly of the order of polynomials A(z−1) and
B(z−1).

If noises and disturbances that can act on the system are taken into account, other
types of linear model can be obtained, such as the following:

A
(

z−1)y(k) = z−dB
(

z−1)u(k − 1) + C
(

z−1)e(k) (4.45)

where u(k) and y(k) are the control and output sequence of the plant, d is the
dead time in discrete time of the system and e(k) is a zero mean white noise with
C(z−1) = 1 + c1z

−1 + a2z
−2 + · · · + cncz

−nc . This model is known as a Controller
Auto-Regressive Moving-Average model (CARMA). It has been argued [113] that
for many industrial applications in which disturbances are non-stationary, an inte-
grated CARMA (CARIMA) model is more appropriate. A CARIMA model is given
by

A
(

z−1)y(k) = B
(

z−1)u(k − 1) + C
(

z−1)e(k)

Δ
; Δ = 1 − z−1 (4.46)

The indicated structures of linear models (4.45) and (4.46) have been used for con-
trol design purposes. In the following paragraphs, several linear models obtained
from input–output data of the plant are obtained.

Low-Order Linear Plant Models Low order models are adequate for many con-
trol structures, although their simplicity can produce unacceptable behavior if fast
responses are required for the system, due to the influence of unmodeled dynamics
(resonances).

When small changes around a particular set point are considered, most of the
industrial processes can be described by a normally high-order linear model. The
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justification of this affirmation lies in the fact that the majority of the processes
are composed of many dynamic elements, usually first order, so that the complete
model has an order equal to the number of elements. In fact, each energy or mass
storing element gives rise to a first order element in the model. For instance, a heat
exchanger can be modeled by dividing it into tube segments each one being con-
sidered a first-order system. The resulting model will have an order equal to the
number of segments the tube has been divided into. These high-order models are
very difficult to cope with in control but, fortunately, the behavior of such processes
can often be modeled by a system with a fundamental time constant and a delay.

Let us consider a process with n first-order elements in series, each one having a
time constant τ/n. The system transfer function will be given by

G(s) = 1

(1 + τ
n
s)n

If n is varied from 1 to ∞, the type of response changes from that of a first-order
system to that of a pure delay (equal to τ ). If, as happens in many processes, one of
the time constants is greater than the rest, the smaller time constants join to produce
a time lag which acts as a pure delay. In this situation, the dynamics are dominated
by the major time constant. So, it is possible to approximate the high-order model
of a complex dynamical system by a first-order process with a delay element.

For control design purposes, several linear models which relate changes in outlet
HTF temperature to changes in the control variable (flow)2 have been obtained.
These models were obtained from the reaction curve after the injection of a step in
the HTF flow signal (Fig. 4.3) at several operating points and can be approximated
by a first-order transfer function with a pure delay:

G(s) = e−std
K

(1 + τs)
(4.47)

Obviously, this is an approximate model, because the system is non-linear, but the
approximation is made to obtain control schema in function of few parameters to
simplify the identification mechanism in the case of adaptive controllers. From the
transfer function of Eq. (4.47) the discrete-time transfer function can be obtained
taking into account the zero-order hold. Two models that have been used in this
kind of plant using high values of the sampling time (e.g. 39 s) [332] are given by

GA

(

z−1) = z−d (bz−1)

(1 − az−1)
; GB

(

z−1) = z−2 (b0 + b1z
−1)

(1 − az−1)
(4.48)

with a = e−T/τ and b = K(1 − a). The values of d depend on the flow level condi-
tions and the factor (b0 +b1z

−1) acts as a discrete first-order Padé approximation to
a delay term (useful for modeling a time delay non-integer multiple of the sampling
period, e.g. Ts < td < 2Ts ).

2If the feedforward analyzed in Sect. 4.4.1 is placed in series with the plant, the control signal will
be the reference temperature to the feedforward controller.



92 4 Basic Control of Parabolic Troughs

These simplified linear models are based on the step response of the plant. Nev-
ertheless, if the frequency response of one of the models mentioned is compared to
that of the real plant or to the non-linear distributed parameter model at an operat-
ing point, it can be seen that the approximation made in this section is only valid
for a narrow frequency range. The consequences of this will be commented on in
following chapters.

High-Order Linear Plant Models A method complementary to that shown in
Sect. 4.3.4.3 to account for resonances is to use high-order linear models. By us-
ing input–output data obtained with PRBS tests, degrees of polynomials A(z−1)

and B(z−1) and that of the delay which best describe the system and minimize
Akaike’s Information Theoretic Criterion (AIC) [230], were found to be na = 2,
nb = 8, and d = 0. The value of the coefficients which define the previous polyno-
mials in the backward shift operator z−1 were calculated using a LS algorithm.
As an example, using the input–output data with which the frequency response
shown in Fig. 4.5 was calculated (HTF flow around 6 l/s), the values of polyno-
mials A(z−1) and B(z−1) given by the identification algorithm were: A(z−1) =
1 − 1.5681z−1 + 0.5934z−2 and B(z−1) = 0.0612 + 0.0018z−1 − 0.0171z−2 +
0.0046z−3 + 0.0005z−4 + 0.0101z−5 − 0.0064z−6 − 0.015z−7 − 0.0156z−8.

4.3.5.2 Non-linear Plant Models Based on Artificial Neural Networks

As has been mentioned in Sect. 4.3.5, ANN have demonstrated to be a good approx-
imation of the system behavior and able to be used for output prediction purposes.
This subsection presents a brief overview of an application of ANN identification to
obtain models of DSCF, useful for use within MPC schemes [16, 18, 42]. Given a
non-linear dynamic system, the identification problem will be posed here as the task
of obtaining a mapping between past values of measured variables of the system and
future values of some of those variables. In discrete time, the set of past measured
variables of a multiple-input, single-output (MISO) system is a vector:

ϕ(k) = [

yT (k) . . . yT (k − my)uT (k) . . .uT (k − mu)pT (k) . . .pT (k − mv)
]

(4.49)

where u is the vector of input variables, y is the output variable, and p is a vector
of measurable disturbances. The identification problem consists of obtaining a rela-
tionship f such that y(k + 1) ≈ f (ϕ(k)). The orders my,mu and mp in (4.49) are
presumed to be known in many situations, but in the general case they have to be
obtained from observations made about the system. To use the model for prediction
purposes, the future values of the measurable disturbances and model inputs have to
be known.

For non-linear system identification, several steps have to be followed [230]: data
collection, selection of the model family, selection of the structural parameters of
the model in the family (which is equivalent to finding the structure and size of the
ANN), the selection of approximate values for the parameters of the model (training
of the network) and the validation of the model obtained and its implementation in
a control system.
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Data Collection In the case of DSCF, the data collection problem involves mea-
suring HTF flow, ambient, inlet and outlet temperatures and direct solar irradiance.
To develop a model that is well suited for all operating regimes, care has to be taken
in order to collect data that cover most of the working ranges of the variables. This
will normally be the case when using ANN. In the case of DSCF, it is necessary
to have data from clear and cloudy days to ensure that most operating regimes are
covered. These data have to be filtered and normalized. The measurement of direct
solar irradiance poses a problem, since the reflectivity of the mirrors is not constant,
due to the accumulation of dust. For this reason, the most reliable data are those
collected in experiments immediately after cleaning the mirrors, as there is less
differences between the values of the measured solar irradiance and the effective
irradiance. Normalization (usually within the [−1,+1] range) is a very important
step when using NN. Inputs with mainly dissimilar values cause neural learning to
be very slow. Also, noisy data can be a source of problems during learning unless
care is taken.

Non-linear Black-Box Models The problem in question is the identification of
NARX models. The prediction of the output of the plant ŷ(k + 1 | k) is obtained as
a non-linear function g acting over past values of the variables of interest. The TDL
blocks are Tapped Delay Lines that provide an appropriate number of past values,
ny , nu and np . It is easy to see that a NARX model can represent a non-linear system
of the form given by Eq. (4.49).

Selection of Past Signal Values as Inputs When using static NN to predict fu-
ture outputs of a system based on input–output information, the temporal domain
is considered, treating past values of variables as different inputs and feeding them
into a static network. When the order of the system is not known, most applications
rely on one of its upper bounds. Such procedures can lead to inefficient models,
due to the large number of inputs needed. The problem of finding the optimal num-
ber of past values has been widely investigated. In [313] the false nearest-neighbor
method is developed. In respect to an input/output point (ϕ, y) consisting of a re-
gression vector and the future output of the system, a false neighbor is another point
(ϕf , yf ) that, although close to ϕ in the input space, is far away in the output space.
This condition is tested using a threshold for the quotient |y − yf |/‖ϕ − ϕf ‖. The
algorithm allows the model orders ny , nu and np to be determined by examining the
percentage of false neighbors in the data. A similar method is used in [18], based on
the descent in the gradient needed to explain the observed output when a new TDL
is added. The method chooses the variable that provides the greatest descent at each
stage. Pairs of points are considered neighbors only if the distance in the input space
is less than a threshold.

In the case of the ACUREX plant, the number of past values has been denoted
as nu for the input variable q , ny for the output variable Tout, np1 for direct solar
irradiance I and np2 for the inlet HTF temperature Tin [18]. In Table 4.1(a), the
approximation capabilities of several linear models are shown. In the first column,
a short-hand notation is used to indicate the input variables used in the model. For
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Fig. 4.11 Structure of the
NARX model (courtesy of
M.R. Arahal et al., [18])

example: 2111 is a model with nu = 2, ny = 1, np1 = 1, np2 = 1, so the regres-
sion vector is ϕ(tk) = [q(k), q(k − 1), Tout(k), I (k), Tin(k)]T . The second and third
columns in the said table show the sum of the squared errors (SSE) in the one-step
ahead prediction e(i) = y(i +1)− ŷ(i +1 | i). This quantity is a figure of merit nor-
mally used to assess the quality of models and is expressed as SSE = ∑nP

i=1 e(i)2,
nP being the number of patterns. The SSE is measured by two sets of data coming
from experiments performed at the plant on different days. The training set (TS)
contains the input–output patterns (ϕ, y) used to fit the model while the validation
set (VS) is the set used to validate the model and contains patterns not used for ad-
justing the model. The table has been constructed testing all possible combinations
of inputs for a total of input variables nu + ny + np1 + np2 ≤ 9 (only some of these
combinations are shown) [18].

From Table 4.1(a), it is easy to select the inputs for a linear model of order
up to 9. However, the optimality of the one-step ahead prediction does not guar-
antee good results when using the model recursively to obtain predictions over
an horizon (as is needed in the model-based predictive control schema). A re-
cursive predictor gives the N -step ahead prediction using the one-step predictor
N times. For instance, the two-step ahead recursive prediction is ŷ(k + 2 | k) =
f̂ (ϕ(k), ŷ(k + 1 | k),uT (k + 1),pT (k + 1)), where ŷ(k + 1 | k) = f̂ (ϕ(k)).

In Table 4.1(b), the SSE for the one-step prediction and the recursive 25-step
prediction are given for all linear models that use a total of eight input variables. The
notation for the models is the same as before. It can be seen that the best one-step
ahead predictor does not yield the best 25-step ahead predictions. The explanation is
simple: obviously, for the one-step ahead prediction, the variable that best explains
the output of the model Tout(k + 1) is Tout(k). However, this value is affected by
noise measurement that is propagated to successive predictions. This leads to less
accurate results than if a variable less affected by noise, such as the HTF flow, is
used. This observation points to the use of the input variables q and I as inputs for
the model. Table 4.2 shows the errors for different prediction steps N .

It is good practice to start the search for input variables using linear models,
because they serve as an indication of the non-linear case, reducing the number
of trials. Care has to be taken when analyzing these latter results since, unlike the
linear case, they depend not only on the input vector but also on the size of the neural
network and on the training procedure. The results reported above were obtained by
averaging over 10 runs.

Neural Architecture There are many kinds of neural network, most of them with
a biological inspiration. Static nets perform a mapping from the input to the output
space that does not depend upon past history. They can be used to represent dynamic
behavior simply by being fed with delayed values of the variables, as shown in
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Table 4.1 (a) SSE for linear (left) and non-linear (right) models using different input variables.
The non-linear models are neural networks of size 8-6-3-1. (b) SSE in the VS for the one-step
prediction N = 1 and the recursive 25-step ahead prediction (N = 25) for all models that use a
total of eight input variables. The columns on the left correspond to linear models and the ones on
the right to neural networks (courtesy of M.R. Arahal et al., [18])

Model
input

Linear Non-linear

TS VS TS VS

1111 2.232 0.481 2.221 0.482

2111 1.963 0.412 1.801 0.410

1211 0.391 0.081 0.385 0.079

1121 2.191 0.474 1.967 0.472

1112 2.190 0.465 2.034 0.469

2211 0.232 0.051 0.221 0.050

1311 0.261 0.058 0.217 0.052

1221 0.362 0.086 0.331 0.078

1212 0.394 0.086 0.385 0.079

3211 0.231 0.051 0.196 0.044

2311 0.172 0.035 0.165 0.030

2221 0.202 0.046 0.184 0.033

2212 0.231 0.051 0.211 0.050

3311 0.155 0.032 0.136 0.029

2411 0.167 0.035 0.142 0.030

2321 0.166 0.035 0.138 0.029

2312 0.171 0.035 0.147 0.030

4311 0.154 0.032 0.131 0.028

3411 0.148 0.032 0.129 0.025

3321 0.154 0.032 0.136 0.028

3312 0.155 0.032 0.132 0.028

(a)

Model
input

Linear Non-linear

N = 1 N = 25 N = 1 N = 25

1151 0.531 10.1 0.345 8.01

1241 0.089 25.3 0.076 15.0

1331 0.057 13.2 0.045 14.1

1421 0.056 15.1 0.042 12.3

1511 0.055 14.4 0.039 10.1

2141 0.431 7.21 0.331 6.21

2231 0.049 9.44 0.028 9.02

2321 0.036 4.31 0.030 5.04

2411 0.036 6.12 0.031 5.23

3131 0.344 4.80 0.291 4.70

3221 0.049 9.20 0.026 8.91

3311 0.032 4.51 0.029 3.20

4121 0.291 3.80 0.025 2.96

4211 0.052 12.0 0.301 9.04

5111 0.270 4.03 0.092 2.90

(b)

Fig. 4.11. The block marked g can be carried out by a neural network. In this case,
function g depends on a parameter vector Wg , which contains all the parameters in
the neural network.

The two neural nets that have been most intensively used for identification are
the MLP and the RBF network.

The MLP is a compound of several layers of neurons, as shown in Fig. 4.12(a).
The first layer is called the input layer and serves only as a fan-out device propagat-
ing the input of the net x = [x1, . . . , xN1]T . Hidden layers have non-linear activation
functions, more precisely, each node performs a non-linear function of a weighted
sum of its inputs from the previous layer and from a special node that provides
a constant output. The connections to this node are called bias weights and they
help in building the approximated function. Furthermore, in many cases the output
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Table 4.2 SSE in VS for models that favor input variables. The last column is an average calcu-
lated for N = 1,5,10,15,20 (courtesy of M.R. Arahal et al., [18])

Linear models Non-linear models

Input N = 1 N = 10 N = 20 Average Input N = 1 N = 10 N = 20 Average

5171 0.045 1.34 2.49 1.12 5171 0.035 1.11 1.79 0.722

6161 0.041 1.37 2.56 1.14 6161 0.032 0.99 1.86 0.781

5181 0.045 1.32 2.47 1.12 5181 0.040 1.05 1.27 0.531

6171 0.043 1.35 2.53 1.13 6171 0.033 1.15 1.21 0.529

5191 0.044 1.32 2.48 1.11 5191 0.027 0.89 1.28 0.512

6181 0.043 1.33 2.51 1.12 6181 0.030 0.93 1.11 0.511

Fig. 4.12 (a) Multilayer perceptron with two hidden layers, bias weights and a linear output node
with short-cut connections from the input layer. (b) A radial basis function network with three
nodes in the hidden layer (courtesy of M.R. Arahal et al., [18])

nodes are linear and include short-cut connections from the input layers. This struc-
ture is capable of approximating any smooth non-linear mapping, provided that a
sufficiently large number of nodes is used. This property, known as Universal Ap-
proximation, enables the use of the network by simply taking x = ϕ.

RBF nets are one-hidden layer feedforward networks with linear output nodes
(see Fig. 4.12(b)). Each neuron in the hidden layer receives as input the whole input
vector x and performs a non-linear function of this vector and an inner vector c re-
ferred to as center. The most used basis function is a Gaussian of the distance from
the input vector to the center. The output of the network is the weighted sum of the
outputs of all N nodes NN(x), where σi is the width of the ith basis function and
wi the output weight. This neural scheme also holds the Universal Approximation
property; hence, it can be used in the same way as MLP. However, since the approx-
imation with RBF has local support, they are better suited to on-line identification,
where fast adaptation is needed. On the other hand, the MLP structure usually needs
fewer nodes to obtain the desired accuracy.

Network Training In black-box identification, the observed data are used to pro-
duce an estimation of the parameters of the model; this procedure is called training.
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Selection of training examples among the available data reduces the computational
time needed for estimating the parameters of a model. This is an important issue
when using ANN, since its training typically involves a large number of cycles
through the set of available examples. For this reason, it is convenient to have a
small TS with the highest information content.

When the input–output patterns come from a system under control, the variables
are highly correlated to each other and the information content is low. Passive learn-
ing consists of selecting patterns randomly. Active selection procedures use the ex-
perience already gained by a model to direct the selection of new training patterns
[18].

To manage the problem in the way normal to the process industry, in the case
of identification of the DSCF, the available input–output data were restricted to a
number of sampled signals obtained from closed-loop operation [18]. The available
data were divided into two sets in such a manner that most operating regimes are
included in both sets. The main problem is the existence of redundant patterns in the
training set. For the purpose of training an ANN to identify the plant, a procedure
was devised [15] to extract a compact, yet sufficiently informative, data set. The
main idea behind the method is that only input–output patterns with a great enough
distance from other patterns already in the set should be included. The distance can
be taken as the Euclidean distance in the input–output space but, since not all signals
affect the output to the same extent, it is more convenient to use some weighted
metric using a priori knowledge about the plant. This metric takes into account the
fact that some signals (q , Tout, I ) are more relevant than others (Tin) in the evolution
of the plant. The application of the algorithm provided a TS with just 30% of the
data, reducing the training time. The details can be found in [40].

In the case of MLP, there are two mainly types of training algorithm: those that
select the neural structure during learning and those that do not. Algorithms in the
first type are called constructive. Most applications of ANN, however, use a large,
fully connected network and wait for the algorithm to set unnecessary weights to
values close to zero. Some techniques exist to later prune those connections [18].
Non-constructive algorithms just select a value for the vector including all adjustable
parameters of the network, including the popular backpropagation. For the present
application the RPROP algorithm [314] has been selected because of its good per-
formance and ease of implementation.

In Table 4.3(a), the SSE in the one-step ahead prediction in the TS and VS are
shown for different networks. The input of the network is the regressor with nu = 5,
ny = 1, np1 = 9 and np2 = 1. The network structure corresponds to an MLP with
two hidden layers, one linear output and short-cut connections. The number of nodes
in each layer is indicated in the first column by numbers separated by dashes. Thus,
a 16-6-3-1 network has sixteen inputs, six and three nodes in the hidden layers and
one output node. The neural structure refers to the number of nodes, the connections
among them and the activation function used in ANN. Training of the network con-
sists, in most cases, of selecting a set of weights that make the network behave in
some desired way. In the case of the solar plant, a simple trial and error procedure
has been used to determine the size of the MLP. The results obtained are shown in
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Table 4.3 (a) SSE in the TS and VS for different networks; (b) SSE for the TS and VS for
networks with a different number of nodes; (c) The same as (b) using the weighted metric (courtesy
of M.R. Arahal et al., [18])

Size Cycles
(·103)

TS VS

16-6-3-1 5 0.5729 0.2963

16-6-3-1 10 0.2668 0.1485

16-6-3-1 50 0.1339 0.0905

16-10-5-1 5 0.6312 0.2854

16-10-5-1 10 0.2701 0.1245

16-10-5-1 50 0.0986 0.0172

16-20-10-1 5 0.7821 0.3012

16-20-10-1 10 0.4565 0.1310

16-20-10-1 50 0.0916 0.0173

(a)

Nodes 1
2σ 2 TS VS

0 – 0.155 0.032

1 15 0.150 0.032

2 15 0.143 0.032

5 15 0.129 0.030

8 20 0.123 0.030

10 50 0.121 0.030

15 15 0.116 0.029

20 25 0.109 0.028

(b)

Nodes TS VS

0 0.155 0.032

5 0.119 0.022

10 0.113 0.022

15 0.107 0.021

20 0.101 0.021

(c)

Table 4.3(a), where the third and fourth columns indicate the SSE in the TS and in
the VS, respectively. The number of training cycles is shown in the second column.

The learning procedure for RBF networks can be data-driven for all parameters or
just for some of them, the rest being selected by heuristics. In the application shown
in this section, an intuitive technique has been used for the construction of RBF
networks. The procedure begins with a linear model and progressively adds RBF
nodes, selecting centers among input patterns that produce large errors in the linear
model. The output weight of every new node is initially set to the value of the error,
so that the RBF included helps to reduce the error of the linear model locally. The
width is chosen so as to maximize the fall in the SSE. After the insertion of a node,
the output weights can be fine-tuned. Table 4.3(b) presents the SSE of the one-step
ahead prediction in the TS and VS for networks with a different number of nodes.
The table begins with the results obtained by the linear approximation. The RBF
network is used to approximate the residuals of said linear model as commented
above. The second column indicates the value of 1

2σ 2 . It can be seen in the above
table that the large descents in the SSE are given by nodes with larger σ . This obser-
vation can easily be explained: the greater the width, the greater the area covered by
the RBF and the greater the improvement due to its addition. Hence, choosing the
points where wider RBF can be placed produces a saving in the number of nodes. In
other words, adding nodes with progressively narrower widths at points where the
error exceed a threshold leads to networks that grow parsimoniously. In this way,
the final network is close to optimality because of its small number of nodes [18].

Another issue to be considered is the choice of the distance for the RBF. In the
previous results, the Euclidean distance has been used. A weighted metric allows a
linear transformation of the input vector to be performed in order for its more rele-
vant components to be better taken into account. In this way, instead of using the Eu-
clidean distance: ‖z‖2 = zT z, the following norm can be used: ‖z‖2

W = zT WT Wz.
A diagonal matrix with components [wq,wq,wq,wTout ,wTout ,wTout ,wI ,wTin] is
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Table 4.4 Results obtained in the prediction with RBF networks over different horizons (courtesy
of M.R. Arahal et al., [18])

Nodes N = 1 N = 5 N = 10 N = 20 Average

0 0.0449 0.5912 1.3229 2.483 1.110

5 0.0456 0.5548 1.2300 2.494 1.081

10 0.0410 0.4931 1.0804 2.078 0.923

15 0.0392 0.4751 1.0684 2.146 0.932

20 0.0390 0.4735 1.0670 2.145 0.931

proposed. Physical considerations allow one to determine that I and Tin have less
influence on the output than q and Tout. To diminish the importance of I and Tin in
the norm, the following values were chosen after a process of trial and error: wq = 1,
wTout = 1, wI = 0.5 and wTin = 0.2. Using this metric and the idea of only allocating
nodes with large widths expounded above, the results shown in Table 4.3(c) were
obtained using nodes with 1

2σ 2 = 15 showing the convenience of the scheme.

Model Validation The adequacy of a model to observed input/output data is nor-
mally assessed using the SSE as figure of merit. The error is calculated as the dis-
tance from the output pattern of the model ŷ(i) = NN(x(i)) and the correct output
y(i). The tuning of the parameters of a parametric model is done, in many cases,
guided by the SSE. Iterative procedures such as gradient descent adjust the value of
the parameter vector, step by step, seeking a minimum of the SSE. Once at a local
minimum, residual analysis can be used to decide if a given model can still improve
its performance; that is, if the SSE can be further reduced. The residuals, or predic-
tion errors given by a model in a set not used for training, should be independent
of the signals used as model inputs. Any correlation is an indication that the model
does not correctly explain the influence of some inputs on the system output.

Cross validation has been used to choose among different MLP sizes and to stop
the training procedure. Table 4.3 shows that by stopping training before overtraining
it is possible to obtain different neural structures as models for the DSCF.

Long-Range Predictors As stated previously, in model predictive control algo-
rithms it is necessary to obtain a sequence of predictions {ŷ(k + i | k) i = 1, . . . ,N}
using information from the system up to time k. These predictions can be obtained
using a one-step ahead predictor recursively or using a bank of predictors. In Ta-
ble 4.4, the results obtained in the prediction with RBF networks over different
horizons are presented. The values in the first column indicate the number of RBF.
Columns 2 to 5 show the SSE on the VS for different prediction horizons using the
model recursively and the last column is the average. The first row shows the results
of a linear model corresponding to a network with short-cut connections and zero
non-linear nodes.

Figure 4.13 has been set up to check the influence of the addition of new nodes
to the RBF in the 10-step ahead prediction. The first value corresponds to a network
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Fig. 4.13 SSE in the
validation set for the 10-step
ahead predictor realized by
RBF networks with different
number of nodes (courtesy of
M.R. Arahal et al., [18])

Fig. 4.14 Output of the plant
and predicted output (horizon
N = 10) in the VS using RBF
networks with 20 nodes
recursively and
non-recursively (courtesy of
M.R. Arahal et al., [18])

with zero basis functions; that is, just a linear model. It can be seen that the addition
of certain nodes makes the 10-step ahead prediction worse because they were allo-
cated and tuned using information from the plant just one step ahead in the TS. The
quality of a 20 node RBF network as a 10-step ahead predictor in the TS is shown
in Fig. 4.14.

The results of using the one-step predictor for long horizons recursively indicate
the convenience of developing long-range predictors. As before, a linear model is
first developed and then radial basis functions with progressively narrower widths
are added. The model is able to produce the 10-step ahead prediction without itera-
tions. In Figs. 4.13 and 4.14 it can be seen that the performance of the non-recursive
predictor is better [18].
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4.3.6 Object-Oriented Modeling

In [407, 408], a model of the thermohydraulic part of the system was developed,
skipping the remaining subsystems (pneumatic, mechatronic, etc.) needed to main-
tain the proper instantaneous orientation of the PTC group and assuming a known
input radiation power in the absorber pipe, as a consequence of the radiation re-
flected in the PTC mirrors. Due to the fact that the main phenomenon of interest is
the thermofluid dynamics, the object-oriented Modelica language [257] was used to
develop these models with the Dymola tool [127]. Within this modeling language
the ThermoFluid library [128, 377] is a framework that helps to develop one’s own
libraries and final component models ready to be instantiated as components for
simulations. The work analyzes each of the components of the thermohydraulic cir-
cuit and explains the modeling assumptions, trying to justify each one as they are
oriented to get, by means of symbolic manipulations performed by the Dymola tool,
a not too high index differential algebraic equation (DAE) system for the complete
model in which the number of non-linear algebraic loops is minimized. For this
purpose, all the components are classified following the modeling methodology de-
rived from the Finite Volume Method (FVM) [287], in Control Volumes (CV in
ThermoFluid nomenclature) and Flow Models (FM in ThermoFluid nomenclature).
In some cases, information about the future control system architecture to be imple-
mented is introduced in the modeling phase. This methodology, helps to simplify
the design of the models and enhances the numerical behavior of the whole mod-
eled system in the simulation execution phase without a significant loss of accuracy.
Due to the existence of components with internal implementation which may vary
according to the modeling hypotheses depending on the experimental framework,
the polymorphism and the Modelica language constructs for classes and compo-
nents parametrization has been extensively used and specifically applied in PTC
models.

The main modeled components of a PTC are described in [408]: parabolic trough
reflector surface, metal absorber pipe, energy loss rate to the environment by con-
duction, convection and radiation, HTF model, distributed CV, with a discretization
level n in which mass, energy and momentum are conserved. Mass and energy con-
servation are stated in a dynamic formulation and the momentum (simplified) is in
steady state with a staggered grid approach [287]. For modeling purposes, this com-
ponent is considered to be a heat exchanger composed of one pipe with a HTF as the
medium and a circular wall allowing thermal interaction with the fluid. This heat is
fed by solar energy through the outer perimeter of the circular wall and, at the same
time, some energy flow leaves through this external perimeter by conduction, con-
vection and radiation. Models of other components (storage tank, pump, valves), are
also developed in [407, 408].

4.4 Basic Control Algorithms

Although DSCF have all the characteristics needed for using advanced control
strategies able to cope with changing dynamics (non-linearities and uncertainties) to
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allow the number of operational hours to be increased, most of them are controlled
by detuned PID controllers producing sluggish responses or, if they are tightly tuned
they may produce high oscillations when the dynamics of the process vary, due to
changes in environmental and/or operating conditions. Thus, when the control spec-
ifications are very tight and the control system makes the process work at high fre-
quencies where uncertainties are greater, more sophisticated or advanced control
techniques are needed [340].

This chapter, describes the results obtained with standard control strategies that
have been widely used for several decades (feedforward, proportional-integral-
derivative and cascade control).

4.4.1 Feedforward Control (FF)

Feedforward controllers are extensively used in industry to correct the effect caused
by external and measurable disturbances. The disturbances are sensed and used to
calculate the value of the manipulated variable required to maintain control at the set
point. The first step in designing a feedforward control system is to obtain a mathe-
matical model of how the disturbances affect the process. Using the perturbation (or
load) model and the process model, the manipulated variable is computed in order to
cancel the effect of the disturbance in the process output. The offset resulting from
modeling errors can be eliminated by adding feedback. DSCF suffer from changes
in the received energy which can be slow, such as daily radiation variations, mirror
reflectivity changes due to accumulation of dust, etc. or fast, mainly due to passing
clouds and changes in the inlet HTF temperature at the starting phase of the power
conversion system. These disturbances force the HTF flow to change, producing a
variable residence time of the fluid within the field. Feedforward has been widely
used in the control of DSCF [38, 82, 85, 100, 247, 325, 348, 382]. Both dynamic
and static feedforward terms (and also white/black-box models) have been devel-
oped within this scope. The steady-state gain of the plant, although a function of the
irradiance, ambient temperature, the inlet temperature, and the volumetric flow rate,
can be predicted using simple static models of the plant [82, 98, 133]. The most ex-
tensively used feedforward compensation, both in parallel (Fig. 4.15(a)) and series
(Fig. 4.15(b)) configurations, uses a steady-state energy balance from Eq. (4.5) and
experimental data derived from a correlation for the HTF flow as function of the
inlet and outlet HTF temperatures and direct solar irradiance [82, 97, 382],

(Tout − Tin)q = 0.7869I − 0.485(Tout − 151.5) − 80.7 (4.50)

where the constants that appear in the equation have been determined experimen-
tally from the basic formulation [329]. Thus, the corrected direct solar irradiance
and inlet HTF temperature serve to directly adjust the HTF flow to the values calcu-
lated to maintain the outlet temperature at the desired level. This restricts the outlet
temperature excursions, which is desirable from the control viewpoint and ensures
that the outlet temperature is predominantly a function of the HTF flow, which is the
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Fig. 4.15 Feedforward configurations

manipulated variable. These feedforward controllers have proved to be effective in
many of the tests performed at the plant and have been used by many of the control
algorithms tested at the plant [77, 83, 94, 195, 196, 208, 234, 333, 360].

4.4.1.1 Parallel Feedforward Compensation

The basic structure of a parallel feedforward controller is shown in Fig. 4.15(a),
where variable uFF is the flow calculated to provide the desired outlet temperature
(Tref ) for the prevailing values of I and Tin and q(t) = u(t) + uFF(t); that is, the
flow demanded to the pump is the sum of the contribution of the feedback and
feedforward controllers. The calculation employed is

uFF = 0.7869I − 0.485(Tref − 151.5) − 80.7

Tref − Tin
(4.51)

When variations occur in I and Tin, signal uFF is changed to a value which, in
steady state, would maintain the desired outlet temperature at the desired value. This
feedforward element serves to significantly reduce the dynamic variations in Tout

due to changes in I and Tin and provides quick response to reference temperature
changes.
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4.4.1.2 Series Feedforward Compensation

An alternative approach to provide the essential compensation for variations in I

and Tin is to introduce a serial element as shown in Fig. 4.15(b). The output of this
serial element forms the desired HTF flow signal q(t) = uFF(t) and is calculated
from the following expression:

uFF = 0.7869I − 0.485(u − 151.5) − 80.7

u − Tin
(4.52)

The variable u(t) is the output of the feedback controller (reference temperature for
the feedforward controller, also denoted as Trff ) and thus the input variable used for
parameter estimation in the adaptive control schema, as shown in Chap. 5. If the con-
troller incorporates integral action then, in steady state, the output temperature Tout

is equal to the reference temperature Tref . Incorporating a series compensator, the
model employed in the control schema will always have a steady-state gain of ap-
proximate unity and dynamic information for estimation purposes can be provided
simply by injecting appropriate variations in Tref . The introduction of filters into the
serial compensation can be employed to approximate dynamic characteristics.

4.4.1.3 General Comments About Feedforward Control

The feedforward signal provides control benefits when disturbances in solar irradi-
ance and inlet temperature occur, but another reason for its inclusion is to preserve
the validity of the assumed system models in those control schema that use a SISO
description of the plant.

In order to illustrate the benefits of using feedforward compensation, three sim-
ulations of PID control are presented (using the distributed parameter model de-
veloped in Sect. 4.3.1: without feedforward, with parallel feedforward and with
series feedforward compensation (the design of these controllers is presented in
the next section trying in all cases to obtain the same closed-loop response). In
the three cases, data from one typical operation day at the plant have been used
(see Figs. 4.21 and 4.22). The reason for using data from this test to make the
comparison between three PID-based control schemes is that it covers a wide
range of HTF flow conditions (from 2 to 10 l/s), allowing the benefits achieved
by using feedforward control to be demonstrated. Figure 4.22 shows direct solar
irradiance corresponding to a real test that is also used for simulation purposes
(data of the inlet temperature are not shown because it barely changed during the
test).

Figure 4.16 shows in simulation how the fixed PID controller (without feedfor-
ward) works correctly at the middle operation point for which it was designed but,
as can be seen, oscillations in the system response are present at high temperatures.
This zone corresponds to low flow conditions where the plant is more difficult to
control. Disturbances produced in the radiation level directly affect the outlet tem-
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Fig. 4.16 Response without
feedforward compensation,
[85]

perature, therefore, the feedback controller reacts to these disturbances, although
with a certain delay. Feedforward control provides corrective action before the dis-
turbance is seen as an error in the controlled variable. Figures 4.17 and 4.18 show
the same simulation with the incorporation of a parallel feedforward controller in
one case and a series compensation in the other. As can be seen, good results have
been obtained in both cases, the main design objective being achieved in spite of
disturbances acting during operation, that is, to obtain a response with small over-
shoot.

The use of series feedforward compensation has been considered to be more
advantageous since the whole plant and the controller become a system that ap-
proaches a linear one (at least in terms of small variations around an operation point)
which provides large benefits when using an identification mechanism. In fact, the
series feedforward controller acts as a static version of a feedback linearization con-
troller. When variations occur in I or Tin, the series feedforward calculates the value
of flow needed to maintain the desired outlet temperature.
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Fig. 4.17 Response with
parallel feedforward
compensation [85]

4.4.2 PID Control

Due to the significant variations in the dynamic characteristics of DSCF mentioned
in Sect. 4.3.1, it is difficult to obtain a satisfactory performance over the total oper-
ation range with a fixed parameter controller, mainly if well damped responses are
required, due to the existence of resonance dynamics. The use of PID controllers
(Fig. 4.19) with fixed parameters has been restricted to safe operation conditions
(backup controllers) [85, 98], but they cannot cope with nominal operation of the
plant without including additional compensators in the control loop [28, 29, 87].
Even in these cases, performance is restricted by the excitation of resonance modes,
but good results have been achieved in the reported literature both in terms of set
point tracking and disturbance response when restricting the bandwidth of such con-
trollers. Practically all the tested PID-based control schemes incorporate a feedfor-
ward term in the control loop to account for the effect of measurable disturbances
[34, 82, 85, 334]. In [105, 106] a class of PID structure combined with a feedforward



4.4 Basic Control Algorithms 107

Fig. 4.18 Response with
series feedforward
compensation, [85]

term and a block for automatic generation of a set point has been satisfactory tested
at the plant. Adaptive or gain-scheduling PI controllers [82, 85, 391], switching
fuzzy logic or neural network based PID controllers [94, 178, 239], fuzzy logic PID
controllers [41, 44, 360], and robust PID controllers [104, 111] are good examples
of this philosophy of including a feedforward action and some kind of adaptation to
plant dynamics when using PID controllers. In [391] a PID controller with gain in-
terpolation is developed, while in [195, 196] a mixed feedback/feedforward energy
based control using PID control is implemented in the form of a PID feedback with
time-varying/non-linear gain. Some of these control schemes will be explained in
the next chapter.

4.4.2.1 Fixed Ziegler–Nichols Rule Based PID Controllers

With this kind of fixed controller, good behavior can be achieved when operating
near the design or nominal flow conditions, but when operating under other condi-
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Fig. 4.19 Basic PID + anti-windup control scheme

tions behavior deteriorates. As an initial simple development, the Ziegler–Nichols
(ZN) [423] rules have been used. The PID controller transfer function in the time
domain can be written as

GPID(s) = KP

(

1 + 1

TI s
+ TDs

)

where KP is the proportional gain of the controller, TI is the integral time and
TD the derivative time. The derivative part can include a filter, with time constant
TD/ND , as in [24]. The discrete-time transfer function can be obtained by apply-
ing the discretization Forward-Euler approximation for the integral term and the
Backward-Euler approximation for the derivative [24], with a sampling time Ts and
the value of the derivative filter design parameter ND = 5.

u(k) = KP

(

1 + Ts

TI (z − 1)
+

(

TD

Ts + TD

ND

)(

z − 1

z − TD

(NDTs+TD)

))

e(k)

The open loop Ziegler–Nichols rules have been used to obtain the controller parame-
ters, due to the fact that the system (the DSCF plus the series feedforward controller)
presents an open loop overdamped type of step response with delay. The calculation
of the parameters is made by previously modeling the plant as a first-order system
with a pure delay td , time constant τ and gain K (see Fig. 4.20) and then by applying
the heuristic expressions contained in Table 4.5.

The controllers designed by this method usually provide fast responses with over-
shoots of about 25%. Thus, it is usual to reduce the value of the proportional gain in
order to avoid highly underdamped responses.

The PID controller designed by the ZN rules can be improved by modifying the
controller parameters after the first tests carried out at the plant. Several years of
experience and the availability of the non-linear distributed parameter model has
allowed a fixed PID controller to operate at medium flows (between 6 and 7 l/s)
to be tuned. As will be seen, this controller has been tuned so that the responses
obtained are as fast as many advanced control strategies based on low-order models
around the nominal design point. At operation points other than the nominal one,
the behavior deteriorates, producing high oscillations when operating at low flows.

As an illustrative example, Fig. 4.21 shows the results obtained when control-
ling the plant including the series feedforward controller with a PID controller with
parameters (KP = 0.5, TI = 75 s, TD = (TI /4) s) during an operation covering dif-
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Fig. 4.20 First-order system response characterization

Table 4.5 Open loop
Ziegler–Nichols heuristic
rules

CONTROLLER P PI PID

KP
τ

Ktd

0.9τ
Ktd

1.2τ
Ktd

TI – 3td 2td

TD – – 0.5td

ferent working points. Figure 4.22 shows the direct solar irradiance conditions and
the HTF flow pumped through the field in this test.

As can be seen, the results obtained when operating around medium flows
(6–7 l/s) are excellent, but the behavior of the system controlled deteriorates un-
der other operation conditions (high or low flow). Notice that in conditions of low
HTF flow (at the end of operation), a large overshoot and settling time appear in the
response.

By looking at the responses obtained from the system under different operation
conditions the following comments can be made:

• Under low flow conditions, the controlled systems tend to have an oscillatory
response, mainly due to the following reasons: (i) As shown by the models, at
low flow, the residence time of the fluid through the field is greater than with
higher flow levels, the resonance modes lying at lower frequencies. This fact can
be observed in the plant Bode plots, in which the first resonance mode lies at
lower frequencies as the flow decreases. (ii) At low flow conditions, the system is
more sensitive to pumped flow variations (the system gain increases as the flow
decreases). The curves showing the response of different controllers show how, at
low flow conditions, a variation of about 0.15 l/s produces a variation in the outlet
HTF temperature of 5°C, while at medium and high flow conditions, variations
of 0.6 and 1.6 l/s are required to obtain the same variation (5°C) in the outlet
temperature due to the bilinear nature of the system. It is important to point out
that this comment does not contradict the supposition made throughout the book
that the system with series feedforward has an almost unitary steady-state gain
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Fig. 4.21 Test with the fine-tuned fixed PID controller (27/03/96), [85]

and is mainly dependent on the steady-state conditions of direct solar irradiance
and inlet HTF temperature. This is due to the formulation relating flow to given
reference temperature to feedforward controller.

• At high flow level conditions the delay decreases. The resonance modes are not
significant in this case as these modes lie at high frequencies.

• From the point of view of disturbance rejection capabilities, it can be seen that a
great amount of the contribution needed to compensate for disturbances is pro-
vided by the series feedforward controller. The rest of the contribution is provided
by the feedback controllers (especially when coping with large low-frequency-
gain controllers).

The conclusion that can be drawn from this study is that a fixed PID controller
(even a series feedforward controller) does not work appropriately at all operation
points and more advanced controllers should be designed in order to take into ac-
count the variations in process dynamics and the resonance modes.
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Fig. 4.22 Test with the fine-tuned fixed PID controller (27/03/96) [85]

4.4.3 Cascade Control (CC)

Cascade control is a traditional control technique aimed at canceling the effects of
disturbances on the controlled output by splitting the control problem in two time
scales and two control loops: an inner control loop (slave) devoted to compensating
for disturbances and the outer control loop (master) controlling the process output.
Few applications of cascade control are reported in the literature and are mainly de-
veloped in the scope of the cascade control of a DSCF for controlling the average of
the temperatures at the outlet of the loops and the temperature of the HTF entering
the storage tank. In [309, 347], the inner loop uses an adaptive model-based pre-
dictive controller exploiting the information conveyed by accessible disturbances
(irradiance changes and inlet HTF temperature), while in the outer loop a PID is
employed. The difference in the dominant time constants of the inner (faster) and
outer (slower) control loops is explored by employing different sampling rates in
each of them. Cascade control has recently been used in the scope of controlling
solar plants with distributed collectors with direct steam generation [384], as dealt
with in the following section.

4.5 New Trends: Direct Steam Generation (DSG)

As has been commented before, within the range of 200–400°C, present day PTC
technology uses oil as a HTF in the absorber tubes, whereas a mixture of water and
ethylene glycol can be used for lower temperatures. The working fluid is heated as
it passes through the absorber tube of the solar collectors, thus converting direct
solar irradiance into thermal energy. The hot working fluid is then sent to a heat
exchanger, where its thermal energy is transferred.

A new PTC system prototype was implemented at the PSA to investigate the use
of water as the working fluid in the solar field of a thermal power plant using a direct
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Fig. 4.23 The DISS plant (courtesy of PSA)

steam generation (DSG) process [418]. Different operating strategies and configura-
tions were evaluated taking several parameters (efficiency, cost, controllability, etc.)
into consideration, and promising results were obtained for the commercial imple-
mentation of this new system, which at present constitutes the most advanced plant
of this type. It is being industrialized mainly in Rankine-cycle electricity generation
in which steam is delivered by the PTC. The DSG process increases overall system
efficiency while reducing investment costs, since it eliminates the oil used at tradi-
tional plants as HTF between the solar field and the power block. The electricity
generation cost will be reduced by 26% according to current available data [418].
Furthermore, a DSG solar field can be used to feed any other industrial process re-
quiring thermal energy in the form of saturated or superheated steam at T ≤ 400°C,
P ≤ 100 bar.

The main task of the control system for this type of plant is to provide a steady
supply of live steam conditions at the outlet of the solar field under all operation
conditions [384–386].

4.5.1 The PSA DISS Facility

The PSA DISS facility is a solar system that serves as a test-bed for investigating
the DSG process in PTC, constituting the leading facility of this kind worldwide.
Figure 4.23 shows two views of the facility; its main characteristics are listed in
Table 4.6.

Although the solar field can be operated over a wide temperature/pressure range,
the three main operation points investigated in the DISS project are listed in Ta-
ble 4.7. The thermohydraulic behavior and system performance of three basic oper-
ation modes (once-through, recirculation and injection modes; see Fig. 4.24) were
investigated under actual conditions to identify the specific advantages and disad-
vantages of each mode [384].

• In the once-through mode, feedwater is preheated, evaporated and converted into
superheated steam as it circulates from the inlet to the outlet of the collector loop.
The main disadvantage of this concept, which is the simplest of the three, is the
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Table 4.6 Technical data for
the PSA DISS test loop
(courtesy of L. Valenzuela et
al., [384])

Parameter Value

Collectors row length 500 m

Collectors type Modified LS-3

Collector aperture 5.76 m

Number of collectors 9,50-m-long collectors
2,25-m-long collectors

Orientation of the solar collectors North–South

Absorber pipe outer diameter 70 mm

Absorber pipe inner diameter 50 mm

Optical efficiency of solar collectors 73%

Total mirror surface 2760 m2

Maximum pressure at the field outlet 100 bar

Maximum outlet temperature 400°C

Maximum steam production 0.85 kg/s

controllability of the superheated steam parameters at the collector field outlet.
A water injector is placed in front of the last collector to control the outlet steam
temperature. The selective coating of the absorber pipes would be degraded if the
metal piping reached temperatures of around 450°C, which is possible when the
system is working in operation mode 3 (Table 4.7).

• In the injection mode, water is injected at several points along the row of collec-
tors. The measurement system necessary to assist the control scheme designed for
this mode did not work properly during experiments [129, 418]. The complexity
and cost of this operating mode make it advisable to discard it in favor of new
developments.

• In the recirculation mode, the most conservative of the three, a water-steam sepa-
rator is placed at the end of the evaporation section of the row of solar collectors.
The amount of water fed in at the inlet of the evaporator is greater than the amount
that can be evaporated. In the intermediate separator, the excess water is recircu-
lated to the collector loop inlet where it is mixed with the preheated water. The
excess water in the evaporation section guarantees good wetting of the absorber
tubes and makes stratification impossible. The steam produced is separated from

Table 4.7 Operating points studied in the DISS solar field (courtesy of L. Valenzuela et al., [384])

Solar field conditions

Inlet conditions Outlet conditions

Pressure [bar] Temperature [°C] Pressure [bar] Temperature [°C]

Mode 1 40 210 30 300

Mode 2 68 270 60 350

Mode 3 108 300 100 375
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Fig. 4.24 Basic concepts for
direct solar steam generation
in parabolic trough collectors
(courtesy of L. Valenzuela et
al., [384])

the water by the separator and fed into the inlet of the superheater section. This
type of DSG system is highly controllable [384], but the excess water that must be
recirculated, the middle water-steam separator and the water recirculation pump
all increase the parasitic load of the system.

The preheating, evaporation and superheating sections are not precisely defined
in the once-through and injection modes. The length of these zones depends on
the inlet water flow rate and temperature, the pressure in the solar field and the
radiation available. In the recirculation mode, the superheating process starts in the
next to last collector but the length of the preheating section and, consequently, the
starting point of the evaporation section are not exactly defined. This also depends
on the operation conditions. All three modes present advantages and disadvantages
that have been studied during the DISS project. One of the objectives of the DISS
project has been to demonstrate that it is possible to operate the plant under the once-
through operating mode guaranteeing flow stability and acceptable controllability
[384].

4.5.2 Simulation Models

As in the case of DSCF using oil as HTF, both first principles-based models for
simulation and simple models for control purposes (as those shown in the next sub-
section) were developed for this kind of plant. Regarding models based on energy,
mass and moment balances, the DSG process poses new challenges as discontinu-
ities due to two-phase flow may lead to numerical integration problems.

This facility has been modeled using the object-oriented Modelica language with
the Dymola tool [406]. The main features of this approach are:

• The base component is the CV, modeled as a class in which mass, energy and
momentum conservation equations are taken into account. There are two different
CVs in which both mass and energy are conserved. In addition, there are prede-
fined usage rules for connecting them. All the classes constituting the DISS row
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are generated from the interconnection of these components which are developed
based on the ThermoFluid framework [377].

• The FVM [287] is used for the spatial independent variable discretization. It is
the discretization level that has been used for the major longitudinal independent
variable. This discretization is fixed and does not depend on either the space or
time independent variables.

• The thermodynamic properties of the medium are those of the IAPWS-IF97 stan-
dard [393] which is currently the most precise reference for their calculation.

• Several experimental correlations developed at PSA were used for calculating
energy flux to the ambient.

The final purpose of the model in [406] is to predict the transient behavior of
the thermodynamic variables associated to the thermohydraulic output power of
the evaporator (temperature, pressure, specific enthalpy, etc.), when external distur-
bances (mainly concentrated solar irradiance, ambient temperature, subcooled water
inlet temperature and subcooled injector inlet water temperature) and controllable
input (subcooled inlet mass-flow rate, final injector inlet mass-flow rate and outlet
superheated steam pressure) change [406].

After compiling the model using the Dymola tool, a set of parameterized non-
linear differential equations are obtained:

dx
dt

= F(x,u,p); y = G(x,u,p) (4.53)

where p is a vector with 26 parameters that are not completely determined from
first principles and are subjected to uncertainty, x is the vector of state variables of
dimension 3NCV , where NCV is the number of CV in the complete model of the
DISS row. It is constituted by the pressure and specific enthalpies of each volume
and the temperature of each section of absorber tube in thermo contact with each CV.
y is the vector of output variables of the models. The vector of boundary conditions
u is constituted by row input pressure, temperature of the water at the row inlet,
direct solar irradiance normal to the collector, ambient temperature, pressure and
temperature at the entrance of the injector, mass flow at the field inlet, mass flow at
the injector input and outlet steam pressure. From the control viewpoint, the mass
flows are manipulated variables to control the outlet temperature of the last collector
and the outlet pressure is a controlled variable.

The model includes several components for pumps and injectors, but the main
components are those of the PTC: (i) PTC mirror surface: reflects the direct solar
irradiance incident on the focal line of the mirror, (ii) metal absorber pipe: absorbs
most of the energy reflected by the mirror, (iii) energy loss to the environment by
conduction-convection and radiation, (iv) HTF model medium: in the case at hand,
this medium is water-steam, (v) distributed CV, with discretization level n in which
mass, energy and momentum are conserved.

For modeling purposes, this component could be considered a heat exchanger
with only one pipe with water and/or steam as the media fluid and a circular wall
for thermal exchange with the fluid. This heat exchanger is fed by solar energy en-
tering through the outer perimeter of the wall and, at the same time, some energy
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flow leaves through this outer perimeter by conduction-convection and radiation.
The water/steam pipe is 50 m long and under normal operation conditions, the in-
let/outlet flow may be in any of the three states of water, two-phase mix of saturated
liquid and vapor, or superheated steam. This depends on the position of the PTC in
the row as well as the incident solar irradiance on it.

Thus, the dynamic behavior of each PTC varies along the DISS row depending
on the thermodynamics and transport state of the water/steam in each PTC. Most
of the length of the PTC is fully discretized in n CVs, in which mass, energy and
momentum balances are given. Momentum conservation is stated in CVs staggered
half spatial grid with regard to mass and energy balance CVs. To solve the PDE
system stated from balance equations, ThermoFluid provides partial classes [377]
in which the discretization with the FMV is applied. To close the equation system,
the heat transfer coefficient for the water-steam flow and the solid media must be
entered. This coefficient depends on heat transfer correlations using adimensional
fluid numbers (Reynolds, Prandtl, Pecklet, . . .), geometry of the contact surface and
thermodynamic and transport properties of the fluid (i.e. water–steam). Some of
the correlation parameters depend strongly on the experimentation and parameter
adjustment stage of modeling. In developing experimental correlation classes for
the heat transfer coefficients, sliding modes have appeared with some frequency
around the water/steam-CV phase boundaries.

These phenomena are more frequent when CVs go from subcooled (Region 1
in IAPWS-IF97 standard for water/steam properties) to saturated (Region 4 in
IAPWS-IF97), for two reasons: firstly, the existence of discontinuities in the heat
transfer coefficients on the boundary between water and walls and secondly, the
opposite gradients in the state velocity vectors present around the phase-change
boundaries. To avoid chattering in the simulation, another polymorphic evapora-
tor model has been developed in which the subcooled and saturated regions of the
water/steam pipe are replaced by an equivalent Moving Boundary Model (MBM)
[404]. Although the mixed model reduces the likelihood of finding chattering dur-
ing integration, it is theoretically less accurate, it is harder to find consistent initial
DAE conditions experimentally and the model’s range of validity is more limited
than that of the fully discretized one [60].

The boundary conditions are defined by reservoir components for pressure, spe-
cific enthalpy and temperature boundary conditions. For one-phase flow, the (pres-
sure, temperature) pair is selected and in two-phase flow the (pressure, specific en-
thalpy) pair is selected. Representative results of this model are shown in [406].

4.5.3 Control Problem

Added to the control problems associated to solar plants with distributed solar col-
lectors studied in this chapter (using synthetic oil as HTF), the control in DSG sys-
tem is still more complex because of the two-phase flow which complicates not only
the engineering of the system but also the control system that must be designed for
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the solar field. In the DISS test loop, both the temperature and pressure of the fluid
must be controlled to maintain the desired steam conditions at the outlet (i.e., tur-
bine specifications). The main objective of the control system is to obtain steam at
a constant temperature and pressure at the outlet of the solar field in such a way that
changes produced in the inlet water conditions and in the solar radiation will only
affect the amount of steam produced by the system and not its quality.

4.5.3.1 Control Scheme for the Once-Through Mode

As the first step, the main dynamics were approximated by linear models [384, 386].
After studying the control schemes and analyzing possible loop interactions, SISO
transfer functions of all relevant control loops (Table 4.8) were experimentally in-
vestigated for three different operation points defined in Table 4.7. The identifica-
tion method followed was to find in open loop the process parameters (gains, dead
times and time constants) that experimentally fit step-response data. Based on the
low-order models obtained, the various PI controller parameters were chosen using
the reaction curve method, studying the closed-loop responses by simulation and
modifying the parameters when necessary to provide safe stability margins. A final
optimization of the parameter values was made in subsequent tests at the plant. Ad-
ditionally, the control scheme designed for the once-through mode includes mixed
feedforward-cascade control schemes to control the outlet steam temperature. The
PI controllers were implemented using a classical interactive formulation including
anti-windup, bumpless proportional band tuning.

The process diagram including the most important feedback loops for the once-
through operating mode is shown in Fig. 4.25. The main control loops for the solar
field in the once-through operating mode are as follows:

• Feed pump control loop: The rotational speed of the feed pump is adjusted to
maintain a specific pressure drop in the feed valve. With a constant pressure drop
in a feed valve, its flow in steady state is directly proportional to its valve opening.
The feed pump control loop, therefore, provides a linearized flow relationship
between valve position and flow (PI control).

• Outlet steam pressure control: The steam produced by the collector row feeds
a steam separator and the outlet steam pressure is kept constant by adjusting a
steam control valve (PI control).

• Outlet steam temperature control loops: The outlet temperature control is
achieved by both inlet feed flow control and by water injection in the superheater.
The former control ensures that the steady-state inlet flow matches radiation con-
ditions, whereas the latter control provides the means for rapid response to sudden
disturbances (PI-feedforward control-based loops) via a water injection point at
the inlet of the last collector of the solar field.

PI functions for the first two control loops have been implemented based on the
reaction curve method and study of the stability margins using simplified linearized
models (see Table 4.7). Outlet steam temperature control required a more detailed
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Fig. 4.25 Schematic diagram of the DISS test loop configured in the once-through mode (courtesy
of L. Valenzuela et al., [384])

design because the process is strongly affected by disturbances at the inlet and by
disturbance variables and acceptable control cannot be achieved with conventional
PI or PID schemes. Contrary to the recirculation mode (the process diagram with
the most important feedback loops is shown in Fig. 4.26 [385]), in the once-through
mode there is no intermediate separator in the field that muffles disturbances occur-
ring in the preheating and evaporation sections and the starting point of the super-
heating section is not precisely defined.

This reduces the controllability of this operating mode when compared to the
recirculation one in which the control loops are based on simple PI controllers:

• Recirculation pump control loop: recirculation flow is controlled by PI control of
the rotational speed of the recirculation pump.

• Feed pump control loop: the rotational speed of the feed pump is adjusted by a PI
controller to maintain a specific pressure drop across the feed valve.

• Middle steam separator liquid level control loop: to maintain the level around a
nominal value, the feed flow is adjusted to control the aperture of the feed valve
whose pressure drop is being controlled by the feed pump, PI control.

• Outlet steam pressure control loop: by adjusting using a PI a steam control valve
in the steam separator.

• Outlet steam temperature control loop: by water injection in the inlet of the last
collector using PI control of the injector valve.
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Table 4.8 Once-through mode: Models and PI control loops parameters (courtesy of L. Valenzuela
et al., [384])

Control loop Model PI parameters

KP TI [s]

Feed pump G(s) = 0.1375
s2+1.332s+0.3329

1.1 %/bar 10

Outlet steam pressure G(s) = −4.543·10−3s−5.05·10−5

s2+4.976·10−2s+9.693·10−5 −5.3 %/bar 184

Outlet steam
temperature control via
injector valve
(G1 master loop,
G2 slave loop)

G1(s) = −a
s+b

e−cs

where a ∈ [3.12,8.13],
b ∈ [5 · 10−3,6.6 · 10−3]
and c ∈ [70,100]

−0.0015 kg/s/°C 600

G2(s) = −3.2·10−4

s+0.2 −500 %/kg/s 12
Outlet steam
temperature control via
feed valve (G1 master
loop, G2 slave loop)

G1(s) = −a
s+b

e−cs

where a ∈ [1.365,2.526],
b ∈ [1.8 · 10−3,9.6 · 10−4]
and c ∈ [395,750]

−8 · 10−5 kg/s/°C 250

G2(s) = 3·10−2

s+0.1 20 %/kg/s 12

The last two control loops are the main controllers of the system in recirculation
mode for guaranteeing the steam quality at each time. The rest of the controllers are
required to improve the behavior of the whole control system and for operational
feasibility. The method for obtaining the PI parameters has been the same as that
explained for the case of the PI controllers for the once-through mode.

Regarding the once-through mode, the solution adopted in the DISS project has
been to control the outlet steam temperature with control schemes based on forward
action. The parameters of the PI functions appearing in these schemes were also
chosen using the reaction curve method and by studying the closed-loop system
stability margins. Parameters a, b, and c in Table 4.8 are related to the uncertainty
of the models obtained. Depending on the operation conditions (outlet steam flow
production, temperature, pressure and solar radiation available) the gain, time con-
stants and time delays vary. The different model parameters influence the PI control
design. Therefore, once a set of PI parameters was chosen, closed-loop simulations
were performed varying the model parameters to guarantee wide stability margins
for the whole range of model parameters. In this way, the selection of the PI param-
eters was conservative.

The detailed schemes are discussed in the two following subsections. Although
interactions among loops do exist, they are small (as can be seen in the results) be-
cause the two slave loops explained in the following sections are very fast (compared
to the other loops) and able to rapidly reject slow disturbances due to the interac-
tions caused by other loops. The outlet steam pressure loop is also faster (faster time
constant and no dead time) and is also able to reject the somewhat slow disturbances
coming from the slower temperature loops. The temperature loops also have an in-
herent interaction reduction mechanism (see following sections). As a result, the
interactions are canceled by the control strategy designed.
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Fig. 4.26 Schematic diagram of the DISS test loop configured in the recirculation mode (courtesy
of L. Valenzuela et al., [384])

4.5.3.2 Feedforward Control of Outlet Steam Temperature via Feed Valve
Adjustment

The great variations in solar radiation and the long residence time of the fluid in
the field call for the use of forward action to anticipate the effect of load changes
on the controlled outputs; that is, the control system should calculate the adequate
value of the inlet mass flow in advance so that the outlet steam temperature remain
within the range of desirable reference values. The performance of the system in
the once-through mode is very dependent on the inlet flow control. Changes in solar
irradiance, inlet fluid temperature, and so on, require the flow rate to change in order
to maintain the desirable output. If changes involve wide oscillations, the solar field
performance is strongly affected. Not only are thermal and pumping losses increased
but the relatively narrow margin between the design maximum outlet temperature
and the actual temperature, which triggers the alarm signal, may be bridged by wide
oscillations [384].

To manage these instabilities, the designed and tested outlet steam temperature
control loop is a mixed cascade-feedforward control loop aimed at guaranteeing a
desired flow in the face of valve non-linearities and changes in disturbances affect-
ing the loop (see Fig. 4.27 and nomenclature). The feedforward term uses a model
of the process to make changes in the controller output in response to measured
changes in a major load variable without waiting for the error to occur. The outer
loop is composed of a feedforward function, FFFV , in parallel to a PI controller
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Fig. 4.27 Outlet steam temperature control scheme based on forward action (feed valve) (courtesy
of L. Valenzuela et al., [384])

of fixed parameters. Block FFFV calculates a nominal mass flow ṁff and the par-
allel PI controller corrects this value according to the current output Tout. In a set
point change, this PI controller only uses the integral part because the new temper-
ature reference also passes to the FFFV block that calculates the nominal flow ṁff .
The flow calculated by this master loop, ṁin_dem, is the input for the inner slave
PI control loop which calculates a new aperture of the feed valve, afv. The satura-
tion included in front of the PI inner control loop limits the inlet water flow to a
minimum value of 0.3 kg/s; this guarantees a turbulent flow in the absorber pipes
and consequently limits the temperature gradients in the cross-sectional area of the
pipes (below 50°C, which is a temperature gradient limit from the point of view of
the pipe thermal stress).

As has been previously mentioned, the PI parameters of the outer and inner loops
were calculated from open loop responses using the reaction curve method as for
feed pump control and pressure control loops. Very conservative parameters were
chosen for the PI controller of the master loop, reducing interactions with the tem-
perature control loop using the injector. The feedforward action is obtained from a
simplified steady-state energy balance formulation for the collector row. The energy
collected is corrected using an efficiency factor estimated for the collector row that
implicitly considers the optical efficiency and consequently the optical losses. Then,
the simplified energy balance equation can be written as

(ṁin + ṁinj)hout − (ṁinhin + ṁinjhinj) = ηcolAf LI − HlSabs(T̄f − Ta) (4.54)

In this equation, the specific enthalpy at the outlet, hout, is substituted by the outlet
enthalpy reference, href , and the water flow rate injected in the last collector, ṁinj,
by the nominal injection flow established in the temperature control loop via the
injector valve, ṁinj_set , to avoid a feedback of the variations (which could be oscil-
latory) dictated by the temperature control loop via the injector valve in block FFFV .
Such feedback would deteriorate the temperature response obtained. Then, taking
these substitutions into account, the feedforward control equation used to calculate
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Table 4.9 Specific enthalpy of the fluid: Parameters of the linear regressions (courtesy of L. Valen-
zuela et al., [384])

Pressure
[bar]

Phase Temperature
[°C]

a1 a2 R2 Standard deviation
[kJ/kg]

30 Water 100 < Tf < 234 −21 4.38 0.99989 3

Steam 234 < Tf < 400 +2225 2.54 0.99868 7

60 Water 100 < Tf < 276 −34 4.48 0.99965 7

Steam 276 < Tf < 400 +1940 3.12 0.99686 11

100 Water 100 < Tf < 312 −54 4.61 0.99905 12

Steam 312 < Tf < 400 +1480 4.10 0.99415 15

the nominal feed water flow, ṁff in order to achieve the desired outlet temperature,
Tref , is the following

ṁff = ηcolAf LI − HlSabs(T̄f − Ta) − ṁinj_set(href − hinj)

href − hin
(4.55)

where ηcol has been estimated from experimental data as 0.53; Af , L, Sabs are geo-
metric parameters (see the table of variables and parameters defined at the beginning
of the book); I is a corrected value of the measured direct solar irradiance; href , hinj,
and hin are specific enthalpy values calculated from the outlet pressure P and the
corresponding temperatures Tref , Tinj and Tin as follows: hf |P = a1 +a2Tf [kJ/kg],
where a1 and a2 are coefficients estimated performing linear regressions using the
enthalpies and temperature values in the thermodynamic tables (Table 4.9). Hl is
a factor related to the thermal losses which for an LS-3 type collector can be ap-
proximated by [384] Hl = b1 + b2(T̄f − Ta) + b3(T̄f − Ta)

2, where b1, b2, and b3
depend on the average temperature of the fluid in the absorber pipes (Table 4.10).
To simplify the control loop structure, the average temperature, T̄f , of the fluid in
the field is approximated by a constant value for the three different operation points.
Values calculated considering inlet and outlet conditions and the conditions in the
preheating, evaporation and superheating sections are listed in Table 4.11.

4.5.3.3 Feedforward Control of Outlet Steam Temperature via Injector Valve
Adjustment

The outlet steam temperature can also be controlled by injecting preheated water
into the last collector providing another degree of freedom to allow a fast reaction

Table 4.10 Thermal loss
factor Hl in LS-3 collectors:
b1, b2 and b3 values (courtesy
of L. Valenzuela et al., [384])

Fluid average
temperature [°C]

b1 b2 b3

T̄f < 200 0.687257 0.00194 0.000026

200 < T̄f < 300 1.433242 −0.00566 0.000046

300 < T̄f 2.895474 −0.01640 0.000065
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Table 4.11 Average
temperature values used in
the FFFV controller for the
three operation points of the
DISS test loop (courtesy of
L. Valenzuela et al., [384])

Pressure
[bar]

Inlet
temperature
[°C]

Outlet
temperature
[°C]

T̄f [°C]

30 210 300 237

60 240 350 277

100 280 400 316

in the outlet temperature; however, there are regular changes in the outlet steam
temperature of the previous collector, in the steam flow rate, or in the injection
water temperature influencing the behavior of this single loop. These changes are
more frequent and stronger in the once-through mode than in the recirculation mode
due to the lack of an intermediate separator, as previously mentioned. A controller
based on forward action was also designed for this loop. The feedforward block
corrects the injection water flow rate at the inlet of the last collector taking into
account changes in the collector inlet temperature and mass flow, the injection water
temperature and the outlet temperature reference. The mixed cascade-feedforward
control scheme designed is shown in Fig. 4.28 (again, the cascade structure is used
to compensate for actuator non-linearities).

The outer loop is composed of a feedforward function, FFIV , in parallel to a PI
controller with fixed parameters. The output of the block FFIV , Δṁff _iv, corrects
the PI controller output, ΔṁeT . When the controller is set in automatic mode, a
nominal injection water flow ṁinj_set is established (around 10% of the expected
steam mass production). The outer control loop corrects this nominal value and a
new injection water flow value, ṁinj_dem, is calculated and dictated from the injector.
This value is the input for the inner loop, a PI control loop which calculates a new
aperture of the injection valve, aiv. Injection valve non-linearity detected during
experiments is compensated by the cascade structure. The saturation included in
the master loop avoids the flow rate dictated by the injector valve being zero, as this
would deteriorate the control action due to the non-linearity of the injector when this
actuator is nearly closed, as was observed in real tests. The PI parameters of the outer

Fig. 4.28 Outlet steam temperature control scheme based on forward action (injector) (courtesy
of L. Valenzuela et al., [384])
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and inner loops were also calculated from open loop responses using the reaction
curve method. Linearized models detailed in Table 4.8 were used to simulate the
closed-loop responses and study the stability margins in the worst cases (considering
the uncertainty of the models). The final selection of values for the PI parameters
was made in a conservative way to avoid instabilities in the system and to diminish
interactions with the rest of controllers [384].

As in the case of the feedforward function formulated for the feed valve control
loop, this feedforward action is obtained from a simplified steady-state energy bal-
ance formulation for the collector. In this case, the energy collected is also corrected
by the global efficiency of the collector ηcol that implicitly considers the thermal
and optical efficiency and consequently the thermal and optical losses. The simpli-
fied energy balance equation can then be written as

(ṁin_c + ṁinj)hout − (ṁin_chin_c + ṁinjhinj) = ηcolAf LI (4.56)

where the right term of the equation includes the energy collected and losses.
Substituting the specific enthalpy at outlet hout with the outlet enthalpy reference

href that is directly calculated from the temperature and pressure references, the
corresponding injection flow in steady state should be

ṁinj = ηcolAf LI − ṁin_c(href − hin_c)

href − hinj
(4.57)

Using this equation, the thermodynamic tables for calculating the enthalpies cor-
responding to each temperature, pressure and data obtained using the data series
detailed in Table 4.12, a regression analysis has been performed to obtain the feed-
forward function implemented to calculate the injection flow rate correction. The
multiple regression model stated is

Δṁff _iv = c1Tin_c + c2ṁin_c + c3Tref + c4Tinj + c5 (4.58)

The values obtained for the parameters c1, c2, c3, c4 and c5 at the various op-
eration points are listed in Table 4.13. These parameters depend not only on the
thermodynamic properties of the fluid, but also on the geometry and global effi-
ciency of the collector. Table 4.13 includes the correlation coefficient and standard
deviation of the residual errors. A good approximation is obtained within the opera-
tion ranges listed in Table 4.12, but outside these ranges the quality of the model is
not guaranteed due to the non-linear characteristics of the process.

Both temperature control loops are working in parallel. Both are necessary, as
pointed out above, because the temperature control via the feed valve adjustment
calculates a nominal inlet flow rate for the field but it cannot react rapidly to sud-
den disturbances due to the long time delay caused by the length of the collector
loop. Temperature control via the injector valve provides a faster control to sud-
den changes and allows the outlet temperature to be adjusted more accurately to the
reference. Interactions between both controllers are avoided by the inclusion of pa-
rameter ṁinj_set in block FFFV and by choosing conservative PI parameters in the
case of the temperature control via the feed valve.
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Table 4.12 Design of the FFIV : Input data sets (courtesy of L. Valenzuela et al., [384])

Input 30 bar 60 bar 100 bar

Direct solar irradiance1 [650, 1000] W/m2 [650, 1000] W/m2 [650, 1000] W/m2

Global collector efficiency1 [0.40, 0.60] – [0.40, 0.60] – [0.40, 0.60] –

Collector inlet mass flow [0.35, 0.70] kg/s [0.35–0.70] kg/s [0.35, 0.70] kg/s

Outlet temperature reference [280, 320] °C [320,370] °C [340, 400] °C

Collector inlet fluid temperature [250, 310] °C [290, 370] °C [330, 390] °C

Injection water temperature [180, 215] °C [220, 260] °C [260, 300] °C

1Changes in this parameter do not have significant influence on the adjusted model.

Table 4.13 Outlet steam temperature control with injector valve: FFIV parameters (courtesy of
L. Valenzuela et al., [384])
Outlet steam
pressure [bar]

c1 c2 c3 c4 c5 R-square Standard
deviation
[kg/s]

30 6.212 · 10−4 0.00313 −1.7 · 10−6 3.0 · 10−6 −0.00171 0.95035 0.00112
60 8.457 · 10−4 0.00505 −4.4 · 10−6 7.1 · 10−6 −0.00279 0.95219 0.00146

100 8.942 · 10−4 0.00494 −4.2 · 10−6 5.8 · 10−6 −0.00261 0.95167 0.00117

4.5.4 Representative Experimental Results

Figure 4.29 shows the results obtained during an experiment in the once-through
mode with 30 bar of outlet steam pressure. The objective of the experiment was to
evaluate the response of the control system to a defocusing of one collector of the
evaporation section that is equivalent to producing a decreasing 10% step change
in the inlet energy to the field. Collector number 6 was defocused at 13:15 and
stayed out of focus for 5 min. The resulting outlet temperature deviation was 21°C
(7% of the reference). When the temperature came close to the reference again,
the irradiance dropped 300 W/m2, taking the temperature close to the saturation
temperature value and changing the outlet steam pressure about 0.8 bar (2.6% of
the reference). The nominal conditions of the system later recovered in only 15 min.
Prior to defocusing, the irradiance had dropped around 150 W/m2 at 12:30, which
mainly affected steam flow, but the outlet steam pressure was maintained constant
and the maximum outlet steam temperature deviation was 4.5°C.

The dead time in the response of the steam temperature observed in Fig. 4.29
is due to the fact that the temperature control via the feed valve was in manual
mode during the start-up and the feed flow established by the operator was too high
according to solar radiation available.

In [384] more results are shown, where all set points could be maintained dur-
ing steady-state conditions and even with short transients in solar radiation. During
longer solar radiation transients it is more difficult to maintain the steam temperature
as a minimum flow must be guaranteed to avoid high temperature gradients in pipe
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Fig. 4.29 Actual control loop responses during operation at 30 bar (April 26th, 2002) (courtesy of
L. Valenzuela et al., [384])

cross-sections when solar radiation recovers (in any case, null values of inlet mass
flow lead to zero production, which is commercially undesirable). In this situation, a
mixed steam/water flow feeds the separator tank where it condenses, returning to the
feed water via the separator drain valve. This increases the parasitic load of the sys-
tem but also increases security. A control system configured to operate the system
with zero inlet flow would have to satisfy very stringent specifications (mostly under
actuator saturation) and it would probably be necessary to defocus all the collectors
to avoid dangerous conditions in the solar field.

4.6 Summary

The main features of the different modeling and basic control approaches used dur-
ing the last twenty five years to control DCS have been outlined. The DCS may be
described by a distributed parameter model of the temperature. It is widely recog-
nized that the performance of PI and PID type controllers will be inferior to model-
based approaches [85, 245]. Even when the plant is linearized about some operation
point and approximated by a finite dimensional model, the frequency response con-
tains resonance modes near the bandwidth that must be taken into consideration in
the controller in order to achieve high performance [243, 245]. Thus, the “ideal”



4.6 Summary 127

controller should be high-order and non-linear. The simplest control techniques are
outlined in this chapter, others, with high complexity, are studied in the following
one, looking for a trade-off between commissioning time and performance [87].

As the main example of the new generation of PTC, the DISS project has demon-
strated that it is possible to directly produce high-pressure high-temperature steam
in parabolic trough solar collectors. A leading plant using this type of technology
has been operated in two different modes. Using a scheme based on PI and feed-
forward controllers, the controllability of the plant is guaranteed on clear days and
even during short transients in the solar radiation. Longer transients in solar radia-
tion make it difficult to maintain the steam temperature in favor of guaranteeing a
minimum flow in the field to avoid high temperature gradients in the cross-sectional
area of the pipes when the solar radiation level recovers. A structure partially based
on classical controllers was chosen because the plant operators are familiar with this
type of controller and are able to adapt the controller parameters in the face of sit-
uations affecting plant dynamics and controller performance, such as modifications
in plant layout or system changes over time. The control structure developed has
demonstrated the technical controllability of the system.





Chapter 5
Advanced Control of Parabolic Troughs

5.1 Introduction

In the previous chapter, the main features of solar plants with a distributed collector
system (DCS) have been studied from the viewpoints of modeling, simulation and
basic control. A classification of control strategies introduced by [340], has been
considered to explain the different control approaches used successfully to control
this kind of plant [88]. This chapter is devoted to overviewing advanced control
techniques aimed at taking into account the special dynamic features of distributed
solar collector fields (DSCF). Many of the applications included in this chapter have
been tested at the ACUREX field of the PSA (see the previous chapter for a complete
description).

5.2 Adaptive Control (AC)

The main idea behind AC is to modify the controller when the process dynamics
changes. It can be said that adaptive control is a special kind of non-linear control
where the state variables can be separated into two groups moving in two differ-
ent time scales. The state variables which change faster correspond to the process
variables (internal loop), while the state components which change more slowly
correspond to the estimated process (or controller) parameters. Adaptive controllers
have traditionally been classified into one of the following families: model refer-
ence adaptive controllers (MRAC, Fig. 5.1(a)) and self-tuning controllers (STC,
Fig. 5.1(b)) [25]. As has been mentioned, when controlling DSCF, the control
schemes that vary the HTF flow rate applied to the collector field generally use
a combination of feedback and feedforward control, incorporating a non-linear
mechanism to operate effectively. Initial studies conducted on the ACUREX field
attributed the oscillatory behavior obtained with classical proportional-integral-
derivative (PID) controllers to the variability of plant dynamics with operating point
[82, 329, 331, 332, 334]. Different adaptive-control schemes were thus developed
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Fig. 5.1 Block diagrams of adaptive-control (AC) schemes

to cope with this problem of changing dynamics. The major role played by changes
of solar radiation and plant uncertainty lead to the approach of [82] where a pole-
placement self-tuning PI controller with the series feedforward compensator given
in Sect. 4.4.1 is used, also using a modified recursive least squares (LS) identifi-
cation mechanism and low-order discrete transfer functions representing plant dy-
namics, as on-line estimation based upon high-order transfer function models tends
to perform poorly with slow parameter convergence being the norm. Thus, lower-
order transfer function models have been used when desirable control bandwidths
are not too stringent, but decreasing the commissioning time of the controller and
producing a simple control law. Simulation results prove the advantage of the adap-
tive controller above a fixed PI controller, as will be treated in this section. The
same feedforward term and identification mechanism were then embedded within an
adaptive predictive-control scheme providing very simple control laws [83]. In [77]
an adaptive robust predictive controller is developed based on a simplified transfer
function model of the plant, where the pole location is fixed and the parameters of
the numerator are on-line robustly identified, in such a way that the uncertainty of
the closed-loop system decreases quickly.

Different forms of the multivariable self-tuning multipredictor adaptive regulator
MUSMAR [162] were also demonstrated with success [116, 117, 308, 309, 347].
In [310, 344, 348], a new dual version of the MUSMAR algorithm is presented
based on a bicriterial optimization, in order to improve start-up transients. The
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adaptive MUSMAR controller proposed in [116, 117], which includes the acces-
sible disturbances from the irradiance and the HTF inlet temperature, shows good
results especially for experiments at fast changing values for the irradiance. How-
ever, the complexity of this controller is also high. Many of the proposed adaptive-
control schemes show oscillatory behavior when requiring fast responses to set point
changes and disturbances. In [242] it is established that the cause of these problems
was the existence of resonance dynamics lying at a low frequency, as commented
in the previous chapter. A simple linear transfer function model of these character-
istics was developed by [243, 244] from a system representation derived from its
basic thermodynamic equations. Using this model, a series cancelation controller
was developed, which in simulation studies achieved faster control than a PI con-
troller, while maintaining a similar level of damping. However, the controller was
seen to oscillate the input signal vigorously. This controller was tuned using exper-
imental frequency response data and implemented as a prescheduled scheme [241,
245]. This controller, when combined with feedforward, was shown to be capable of
effectively regulating the outlet temperature during both irradiance and inlet temper-
ature disturbances. In [36, 37] an application of adaptive frequency-based internal
model control (IMC) for accounting the resonance characteristics is developed. The
key idea of the method is to implement both the model of the plant and the con-
troller with frequency-based interpolation models, in such a way that a determined
frequency response of the system controlled is imposed at the chosen interpolat-
ing points. This can be obtained by using banks of band filters for the input and
output of the plant. For estimating the parameters describing these simple models
of the plant at each interpolating frequency, a common recursive LS algorithm was
used. With this approach, the problem of identifying high-order polynomials is de-
composed into a few simple problems in which only low-order models need to be
identified.

The rest of this section deals with describing of the parameter estimation al-
gorithm used in all the developed adaptive-control schema and the application of
self-tuning PID control, which mainly consists of calculating controller parameters
taking the system model parameters to be those obtained by the identification algo-
rithm. The conventional adaptive-control scheme can be seen in Fig. 5.1(b). At each
sampling time, the adaptive-control strategy consists of:

1. Estimating the linear model parameters using input–output data from the process.
2. Adjusting controller parameters (this does not necessarily have to be done at each

sampling time).
3. Calculating the control signal.
4. Supervising the correct behavior of the controlled system.

5.2.1 Parameter Identification Algorithm

System identification can be defined as the process of obtaining a model for the be-
havior of a plant based on plant input and output data. If a particular model structure
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is assumed, the identification problem is reduced to obtaining the parameters of the
model. The usual way of doing this is by optimizing a function that measures how
well the model fits the existing input–output data with a particular set of parameters.
When process variables are perturbed by noise of a stochastic nature, the identifica-
tion problem is usually interpreted as a parameter estimation problem. This problem
has been extensively studied in literature for the case of processes which are linear
on the parameters to be estimated and perturbed by a white noise.

If we suppose that the system can be modeled as a stable, single-input single-
output (SISO) linear time invariant process (LTI), it can be described by an auto-
regressive moving average (ARMA) process given by

y(k) = B(z−1)

A(z−1)
z−du(k) + C(z−1)

A(z−1)
e(k) (5.1)

where A(z−1) = 1 + a1z
−1 + a2z

−2 + · · · + anz
−n, B(z−1) = b1z

−1 + b2z
−2 +

· · · + bnz
−n and C(z−1) = 1 without loss of generality; u(k) = U(k) − U∞, y(k) =

Y(k) − Y∞, U(k) and Y(k) being the system input and output signals at the kth
discrete-time instant, U∞ the mean value of the input signal, Y∞ is the mean value
of the output signal and e(k) mean signal statistically independent and stationary is
a noise with normal distribution and zero mean. Equation (5.1) can be represented
as

y(k) = ϕT (k)θ(k) + e(k) (5.2)

where θT = [a1, a2, . . . , an, b1, b2, . . . , bn] and

ϕT (k) = [−y(k − 1),−y(k − 2), . . . ,−y(k − n),u(k − d − 1), u(k − d − 2),

. . . , u(k − d − n)
]

with d being the pure discrete-time input–output delay and the residual error is
supposed to be uncorrelated to the elements of ϕ(k).

The first term in the right hand of Eq. (5.2) can be interpreted as the one-step
prediction ŷ(k/k − 1) of the output y(k) with data available at time k − 1, thus,
the error is the difference between the real output and its prediction: e(k) = y(k) −
ŷ(k/k − 1). Suppose we have a set of measurements y(k), y(k + 1), . . . , y(k + N).
The problem is solved by finding the set of parameters θ which minimizes the sum
of the weighted square errors:

J (θ) =
N
∑

j=0

w(j)e(k + j)2

which can be written as

J (θ) = (Y − Φθ)T W(Y − Φθ)

where

W =

⎡

⎢

⎢

⎢

⎣

w(0) 0 . . . 0

0 w(1) . . .
...

... . . .
. . . 0

0 . . . 0 w(N)

⎤

⎥

⎥

⎥

⎦

; Y =
⎡

⎢

⎣

y(k)

y(k + 1)

. . .

y(k + N)

⎤

⎥

⎦
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Φ =
⎡

⎢

⎣

ϕT (k)

ϕT (k + 1)

. . .

ϕT (k + N)

⎤

⎥

⎦

The weight factors w(j) are used to penalize the errors of the different measure-
ments taken. If the process is time variant, these factors can be chosen in order
to give more weight to the latest measurements. Usually w(j) is chosen to be
w(j) = f N−k where f is a constant smaller than one known as the forgetting factor.

The minimum can be found by solving dJ (θ)/dθ = 0, which proves to be

θ = (ΦT WΦ
)−1

︸ ︷︷ ︸

P

ΦT WY (5.3)

As the plant is a non-linear system which is going to be identified as a linear
one, parameters of the linear model will change with the plant operating point and
the linear model will be time variant. Equation (5.3) can be solved recursively by
the well known recursive least squares identification (RLS) algorithm [25, 145]. In
the RLS algorithm, the estimation of parameters (θ) is given by the values of the
previous estimation corrected by a linear term in the error between the output and
the prediction, L being the gain of the correction. The RLS method has been chosen
with a variable forgetting factor in order to reduce the identifier memory and to
avoid the identifier gain reaching zero. This factor is made equal to 1 if the trace of
the covariance matrix P exceeds a certain value. Furthermore, the trace must not be
less than a priori selected value. The algorithm is well known and consists of the
following steps in the recursive version [330]:

1. Select initial values of P(k), θ̂(k) and f (k) (covariance matrix, estimated param-
eters vector and forgetting factor, respectively).

2. Read the new values of y(k + 1) and u(k + 1) (identifier inputs).
3. Calculate the a priori residual error:

e(k + 1) = y(k + 1) − ϕT (k + 1)θ̂(k)

4. Calculate L(k + 1) given by expression

L(k + 1) = P(k)ϕ(k + 1)

f (k) + ϕT (k + 1)P(k)ϕ(k + 1)

5. Calculate the new estimated parameters given by

θ̂(k + 1) = θ̂(k) + L(k + 1)e(k + 1)

6. Calculate the new forgetting factor f (k + 1):

f (k + 1) = 1 − (1 − ϕT (k + 1)L(k + 1)
)e(k + 1)2

So

If f (k + 1) < fmin then f (k + 1) = fmin.
If f (k + 1) > 1 then f (k + 1) = 1.
Parameter So must be a priori known [143] and is related to the sum of the square
errors.
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7. Actualize the covariance matrix:

P′(k + 1) = (I − L(k + 1)ϕT (k + 1)
)P(k)

f (k)

If trace
(P′(k+1)

f (k+1)

)

> tracemax then f (k + 1) = 1 → P(k + 1) = P′(k+1)
f (k+1)

.
8. Make k = k + 1 and return to step 2.

Values of tracemax and the initial forgetting factor will depend on the system and
the desired convergence speed and stability. Notice that for a value of the forget-
ting factor equal to unity, the covariance matrix decreases monotonously, allowing
the identifier gain to be zero. Moreover, if the operating point is fixed, the product
P(k)ϕ(k) can be zero and therefore P(k + 1) = P(k)/f (k), which for f (k) < 1 will
make P(k) increase excessively, making the identifier very sensitive to any change.
These reasons justify the selection of a variable forgetting factor in the identifica-
tion algorithm so that, if the trace of the covariance matrix exceeds a determined
value, the forgetting factor is fixed f (k) = 1. Similarly, the trace of the covariance
matrix is not allowed to decrease below a certain prefixed value. This is done by a
supervisory level of the identification process and by adding some heuristic consid-
erations [85]. UDU factorization [49] can also be used to avoid ill conditioning of
the calculation of P(k + 1) [85].

In order to obtain stability increases, several modifications have been carried out
in the algorithm originally designed for the ideal case. An increase in the robust-
ness of the adaptive-control schema can be achieved by using data prefiltering for
identification purposes to obtain better behavior of the adaptive controller and to
ensure the validity of the assumed low-order model. An excellent development and
overview of all these techniques can be found in [262]. In [85] a summary of simple
modifications that can be performed to increase the robustness of the RLS identifi-
cation mechanism is included.

Moreover, some improvements can be achieved in the performance of the closed-
loop controlled system if, parallel to the identification algorithm, a certain super-
visory mechanism is implemented to check the evolution of fundamental process
parameters. Several methods to characterize DSCF have been studied in Chap. 4.
This characterization, when extended to the whole range of possible operating con-
ditions, provides relevant information not only for controller design purposes but
also for supervising the correct behavior of the identification mechanism in the case
of adaptive-control strategies. The following supervisory mechanisms have been
implemented when controlling the distributed solar collector field [85]:

• Supervision of the estimated parameters as they have to be within a pre-specified
range provided by known dynamical responses.

• Supervision of the evolution of the identifier, that is, of the trace of the covariance
matrix and low-pass filtering of the signals used for identification purposes.

• Stopping identification during the starting phase of the operation or when a con-
siderable decrease in solar irradiance occurs due to passing clouds. Under these
circumstances, the disturbances cannot be completely compensated for by the
feedforward controller and may cause the identification of dynamics not corre-
sponding to those modeled by the simplified linear models.
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• Stopping identification when the input and output signal do not contain enough
dynamical information; the basic idea is to identify only at those moments in
which input signal changes are produced (changes in the reference temperature
to the feedforward controller).

5.2.2 Adaptive PID Controllers

As an initial development of adaptive controllers, the Ziegler–Nichols (ZN) [423]
rules have been used within the control scheme shown in Fig. 5.1(b). The PID con-
troller transfer function is the same as that explained in Sect. 4.4.2. In the adaptive
version of the algorithm, two different adaptation mechanisms have been used:

1. In the first approach, both the integral and derivative constants are fixed (that is,
the time delay is considered to be fixed) and only a proportional gain adaptation
is performed from the estimation of the pole and gain of the system linear model
(Type A model including the series feedforward controller as part of the plant,
GA, given in Eq. (4.48) with parameters a = e−Ts/τ , b = K(1 − a)). In the im-
plementation, parameters a and b are estimated on-line using the RLS algorithm.
The pure delay td is considered to be fixed (between 39 and 78 s), causing the
integral and derivative constants of the PID controller to be fixed and equal to
TI = 2td and TD = TI /4. The proportional gain is calculated using the ZN rules
with a scale factor αPID to avoid oscillatory behavior: KP = αPID1.2τ

Ktd
.

2. In the second approach, integral and derivative constants are also estimated by
adding a zero to the transfer function of the system (Type B model including
the series feedforward controller as part of the plant, GB , given in Eq. (4.48)
and represented by three parameters a, b0 and b1) in order to estimate a variable
delay by using a first order Padé approximation to a delay. The estimation of a,
b0 and b1 allows for the adaptation of all the controller parameters. The estimated
plant parameters are τ = −Ts/ log(a), K = (b0 + b1)/(1 − a) and the dead-time
is approximated by td = T [1 + |b1/(b0 + b1)|], which can be used to calculate
the controller parameters (KP ,TI and TD) on-line using ZN rules.

Another kind of PID design strategy is the pole-placement approach, developed
in [397] and [3] and used by some of the authors in [332]. By using a Type B model,
the following controller design procedure can be developed. The control structure
used with this controller is shown in Fig. 5.1(b). The discrete-time transfer function
of a PI controller is given by

GPI(z) = g0(1 + (g1/g0)z
−1)

(1 − z−1)
(5.4)

If the zero of the controller is chosen such that it cancels the plant pole, that is,
a = −g1/g0, the system closed-loop characteristic polynomial Pcl(z) is given by
P(z) = z3 − z2 + g0b0z + g0b1. If the closed-loop system is required to have its
dominant pole at z = A, then the desired closed-loop characteristic polynomial can
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be expressed as Pd(z) = (z−A)p(z), where p(z) is a second-order polynomial in z.
Equating P(z) and Pd(z) gives

p(z) = z3 − z2 + g0b0z + g0b1

(z − A)

For (z−A) to be a factor of Pd(z), the remainder term in the previous equation must
be zero. Hence the closed-loop system will have a pole at z = A, if g0 is chosen such
that

g0 = A2(1 − A)

(b0A + b1)
(5.5)

and g1 = ag0. Hence, knowing a, b0 and b1 from the model, the controller parame-
ters g0 and g1 can be calculated to provide a specified closed-loop dominant pole at
z = A. Analysis of p(z) provides the location of the other two system poles:

p(z) = [z2 − (1 − A)z + g0b0 − A(1 − A)
]

Root locus analysis of the system indicates that apart from the pole at z = A, the
system will have two other real poles. Solving p(z) enables the locations of these
poles to be determined to ensure that they correspond to rapidly decaying modes
and that the specified pole at z = A is the dominant pole.

The previous development is valid for both Type A and Type B models (the
Type A model being a particularization of the Type B model by making b0 = 0 or
b1 = 0).

In order to show the behavior of the adaptive-control schema described in the
previous paragraphs, the results of simulation tests showing the evolution of outlet
temperature, flow and estimated parameters are shown in Fig. 5.2 using data from
a reference test where the main disturbances are shown in Fig. 5.3. This simulation
serves to draw two logical conclusions about the behavior which can be expected
from any adaptive-control scheme using a reduced linear model of the system:

• When the HTF flow increases, the delay decreases and the response speed in-
creases. Thus, when direct solar irradiance I is high (usually corresponding to a
high flow), the delay is reduced and also the effective time constant associated to
the plant model. This corresponds to a small value of the estimated plant pole a.

• The parameter variations show that the expected trends in the values are obtained.

At the highest flow condition (the central part of the operation), the estimated
system pole decreases, corresponding to a faster system. In the operation around
255°C, less flow is needed to achieve a higher outlet temperature and the evolution
of this variable follows the daily solar cycle. The gain is mainly dependent on the
relation between the irradiance level and the flow. Theoretically, the existence of
the feedforward controller in series with the plant will provide a system with near
unitary gain as, in fact, happens. Changes around this value are due to the fact that
the adjustment of the feedforward controller is not perfect. With the HTF flow near
10 l/s, the gain is slightly less than that corresponding to medium flows, because of
the value of the ratio effective irradiance/flow.
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Fig. 5.2 Simulation with adaptive PID controllers [85]
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Fig. 5.3 Disturbances used in the simulation of the adaptive PID controllers [85]

As can be observed, at the first two set point changes, the output temperature fol-
lows the set point but a peak appears in the response after which the output follows
the previous evolution. In most control texts, this kickback effect is attributed to a
wrong estimation of the gain. However, it has been observed that this effect may
not only be due to this but also to the existence of resonance characteristics of the
plant controlled. This effect is manifested when a fast response is required from the
controlled system. In this case, the first resonance mode is excited, producing peaks
and oscillations in the time response.

Figure 5.4 shows plant results using the pole-placement adaptive controller in-
corporating the series feedforward element. These results are significant since they
show performance over a 3-hours test period when the irradiance level is changing
substantially, due to scattered cloud conditions. Injected disturbances take the form
of step changes in the reference temperature. These generate dynamic information
for estimation purposes and the resulting HTF outlet temperature responses also
serve to demonstrate the quality of the control performance achieved.

The period from 11:39 am to 12:46 pm (local time) covers the starting-up phase
of the plant when HTF is recirculated. After this initial period well-damped step
responses are obtained and the HTF outlet temperature is maintained close to the
reference values in spite of the significant changes experienced in the irradiance
level. This latter feature demonstrates the beneficial effects of the series feedfor-
ward element, which not only serves to reduce unwanted variations in the outlet
temperature, but also reduces erroneous excursions in the estimated parameters.

This can be seen in the estimated parameter response of Fig. 5.4, in which the
estimated parameter (a) is shown to be smoothly adjusted during the test period.
This follows the expected variation needed to match the changing system response
characteristics. The levels of irradiance and the required outlet temperature deter-
mine the HTF flow rate, which, in turn, influences both the speed of response of the
system and its time delay. The normalized term |b0/(b0 + b1)| will increase with an
increase in the direct irradiance level I (the HTF flow increases and the delay time
decreases). The response obtained at the plant can be seen to follow the variation
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Fig. 5.4 Test with the adaptive PI controller (04/08/91) [82]
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at I and to give an indication of how the model adapts to the variation in the time
delay.

5.3 Gain Scheduling (GS)

Some controllers have the ability of adapting to changes in process dynamics but are
not considered to be proper adaptive controllers. This is the case of gain-scheduling
(GS) controllers (Fig. 5.5), where process dynamics can be associated to the value
of some process variables that can be measured related to the operating point or
to environmental conditions. If the dynamic characteristics of the process can be
inferred from measurable variables, the controller parameters can be computed from
these variables. Notice that only the inner loop appears in this control structure
and the parameter updating can be considered as a sort of feedforward term which
changes controller gains. When dealing with DSCF control, due to the presence of
resonance modes, conventional discrete transfer functions must be approximately
tenth order to represent the resonance dynamics. Scheduling avoids the problems
that arise when using AC with high-order models. First steps in this direction were
made by employing gain-scheduling control using high-order models of the plant
[74, 75, 84, 197, 244, 245, 296] and switched multiple model supervisory controllers
[225, 285].

As will be shown in Sect. 5.9.3, where the main results in [39, 84] are sum-
marized, high-order discrete plant auto-regressive models with exogenous inputs
(ARX) were used for four operating conditions defined by fluid flow values (because
the feedforward in series was used) and the parameters of a generalized predic-
tive controller (GPC) are determined based on this model. The experimental results
show quite good reference tracking without an offset of the output temperature. An
adaptive gain-scheduled linear quadratic design approach, also based on local linear
ARX models depending on HTF flow conditions, was investigated by [295].

A control strategy based on switching between multiple local linear models and
controllers was suggested and tested by [308], using the MUSMAR adaptive algo-
rithm in the design of the controllers. The control structure consists of a bank of
candidate controllers and a supervisor. Each of the candidate controllers is tuned in
order to match a region in the plant operating conditions. The MUSMAR adaptive
controller is applied off-line to a plant model corresponding to the operating condi-
tion considered. The candidate controller gains are obtained as the MUSMAR con-
vergence gains. The supervisor consists of a shared-state estimator, a performance
weight generator and a time switching logic scheme.

In [264], supervised linear quadratic Gaussian (LQG) multicontrollers were de-
veloped, where third-order ARX models were identified for six HTF flow condi-
tions. Simpler approaches such as that presented in [391] can also be found, where
a PID controller with gain interpolation is developed. In [197] the authors elegantly
showed that gain-scheduling can effectively handle plant non-linearities using high-
order local linear ARX models that form the basis for the design of local linear con-
trollers using pole placement and flow rate and direct solar irradiance as scheduling
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Fig. 5.5 Block diagram of
gain-scheduling (GS)
controllers

variables. They also pointed out that slow variation of the scheduling variables is
a sufficient condition for stability of gain-scheduled control, but the input used for
scheduling in the solar plant varies at approximately the same rate as the output,
thus stability is proven by experiments. Results in this work are similar to those in
[84] and better than those in [295, 308] as more accurate higher-order local models
are used while the lower-order models used in [295] and [308] cannot be expected to
capture the resonance modes. Another reason is that the local controllers are sched-
uled on the actual HTF flow rate rather than the predicted steady-state HTF flow
rate, as in [295], or local model performance measures, as in [308], both of which
correspond to lower bandwidth in the scheduler.

In [296], the application of indirect adaptive control (LQG controller) is shown.
The region of operation is split up into five operating points which are represented
by five different dynamical linear third-order auto-regressive moving average with
exogenous inputs (ARMAX) models to describe the plant characteristics. The ac-
tual operating point of the plant is determined by a characteristic value combining
several measurements. The algorithm contains an on-line identification procedure to
determine and to update the respective model of the operating point. If the operating
conditions change slowly, a soft transition between the different operating points is
carried out.

In [178] a hierarchical control strategy consisting of the supervisory switching
of PID controllers, simplified using the c-Means clustering technique is developed,
providing real results. To guarantee good performance at all operating points, a lo-
cal PID controller is tuned to each operating point and a supervisory strategy is
proposed and applied to switch among these controllers according to the actual
measured conditions. Each PID controller is tuned off-line by combining dynamic
recurrent non-linear artificial neural network (ANN) model with a pole-placement
control design.

A control scheme that employs a fuzzy PI controller with feedforward is devel-
oped in [360] for the highly non-linear part of the operating regime and the gain-
scheduled control over the more linear part of the operating envelope, only showing
simulation results based on the model developed in [38]. In [154, 179] a hybrid
scheme is presented combining the potentialities of ANN for approximation pur-
poses with PID control. As in other gain-scheduling control schemes, the HTF flow
is considered to be the main variable governing the switching of the controller, but
to account for the other variables affecting this value, the scheduling variable is ob-
tained from an ANN having as inputs the values of direct solar irradiance, inlet HTF
temperature and reference (or outlet) temperatures. Thus, the scheduler implements
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Fig. 5.6 Block diagram of
internal model controllers
(IMC)

an inverse of the plant at steady state and uses this signal to select the adequate PID
controller.

5.4 Internal Model Control (IMC)

The generic structure of an IMC controller is shown in Fig. 5.6. If there are no
modeling errors and there are no external disturbances (p = 0), the output (y) of
the plant coincides with the output of the model (ym) and as there is no feedback
signal, then the controller can be designed in an open-loop manner and the resulting
control structure is stable if, and only if, the process is open-loop stable and the
controller is also stable. The feedback signal is included to account for uncertainties
and disturbances. IMC [260] has the advantages of open-loop (the controller is easy
to design) and closed-loop design methods (the feedback signal in this structure
represents the uncertainty about the process and the disturbances). In [135, 136]
a model based on non-linear partial differential equations (PDE) was developed and
used as a part of the control design along with its realizable inverse (static version
of the model) as the controller.

5.4.1 An IMC-Based Repetitive Control of DSCF

This section describes the design, based on the models of the resonances described
in Chap. 4 of a repetitive-control scheme able to improve control system perfor-
mance in distributed systems like solar collectors characterized by the presence of
resonances [8, 11].

First of all, an IMC PI controller is designed based on an approximate first-order
model to show that performance deteriorates due to resonance when fast responses
are required and resonance has not been taken into account. Secondly, a repetitive
controller structure is used to counteract system resonance dynamics. Repetitive
control arises from the model of resonances developed in Chap. 4, Sect. 4.3.4.3
(Eqs. (4.41)–(4.44)), not from the approximate first order model used with IMC PI,
as a logical way to cancel out the resonance dynamics. The fact of using a repetitive
controller avoids the need for a main controller with an integrator term, as will be
seen later. For this reason, the control system includes, as main controller, an IMC
PD controller in the feedback loop for tracking step changes at set point without
steady-state error. The control system is supplemented by several parallel feedfor-
ward controllers which compensate for disturbances, based on Eqs. (4.42) to (4.44).
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5.4.1.1 IMC PI Design

As mentioned above, a first-order approximation of the low-frequency system dy-
namics was used to design an IMC PI controller according to the rules in [260, 315].
Following Fig. 5.6, it is possible to set a relation between a classic feedback con-
troller, C and an IMC controller, C∗:

C = C∗

1 − C∗Gm

, C∗ = C

1 − CGm

(5.6)

Usually, the IMC controller is specified as

C∗ = 1

Gm
− F (5.7)

where Gm
− is the model invertible part and F is a low-pass filter usually of the

form:

F = 1

(εs + 1)n
(5.8)

The fact of augmenting the IMC controller by a low-pass filter ensures closed-
loop robustness if the filter parameter, ε, is adequately chosen based on the model
uncertainty (mainly at high frequencies). Moreover, the filter parameter can be ad-
justed on-line if necessary. The complexity of C∗ and, similarly, the complexity of
the equivalent classic controller C is determined by the complexity of the model.
So, simple models give rise to simple controllers. In particular, for several simple
models the IMC design procedure yields classic PI and PID controllers [315].

Two issues should be highlighted when applying this technique to control DSCF
and, in particular, the ACUREX plant, (i) the manipulated variable is not the fluid
velocity but the volumetric flow. However, it is not difficult to change Eq. (4.41) to
another are relating output fluid temperature to volumetric flow by dividing by the
tube cross area, Af . (ii) There is a small delay between output fluid temperature and
volumetric flow in the experiments due to the position of the temperature sensor in
the field, which introduces a transport delay, although this is relatively small com-
pared to the fundamental time constant. To design an approximate model, Eq. (4.41)
is rewritten in standard form as

G(s) = T̃f (L, s)

q̃(s)
= Ka

−βas + 1

s(τas + 1)
e−td s

︸ ︷︷ ︸

P(s)

[

1 − e−tr s

(−βs + 1

τs + 1

)

︸ ︷︷ ︸

R′(s)

]

︸ ︷︷ ︸

R∗(s)

(5.9)

where it is easy to see from Eq. (4.41) that

Ka = − 1

Af

Tas − Tfso + Isγ τ2

c
e

−L
c

τ1(τ12 + τ2)
2

τ1(τ12 + τ2)2 + τ12τ
2
2

(5.10)

βa = − τ12τ2

τ12 + τ2
(5.11)

τa = τ12τ2τ1(τ12 + τ2)

τ1(τ12 + τ2)2 + τ12τ
2
2

(5.12)
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Fig. 5.7 Comparison of the Bode diagram of G(s) model versus its approximated first-order
model Ga(s) (courtesy of J.D. Álvarez et al., [11])

tr = L/vs , td ≈ 30s, P(s) is a low-order transfer function without including reso-
nances and R∗(s) is a transfer function which models the resonance modes.

The variable td is not really a fixed delay, but inversely proportional to fluid
velocity, although its variations are very small when compared to the fundamental
time constant. The value chosen is the mean calculated from model steady-state
conditions. Therefore, the approximate first-order model must have the same gain
as the gray-box model, given by

lim
s→0

G(s) = Ka[tr + β + τ ] (5.13)

From these results, it can be deduced that the gray-box model gain depends on fluid
residence time tr . Moreover, the response time of the gray-box model also depends
on tr . In other words, as tr = L

vs
, the HTF flow value establishes a “natural” time

scale for the system, this fact was previously pointed out in [351]. Consequently, the
approximate first-order model chosen for control in the ACUREX plant taking the
volumetric flow rate as control input is

Ga(s) = K

τs + 1
e−td s = −6.55

174s + 1
e−30s (5.14)

Figure 5.7 compares Bode plots for G(s) and Ga(s), in which it may be ob-
served that the approximate function Ga(s) can model the low-frequency dynamics
of G(s), but cannot capture resonance dynamics at medium or high frequencies.

In [260, 315] there are several design rules to calculate IMC PI and IMC PID
controllers based on model parameters. The IMC PI controller parameters were cal-
culated using the model in Eq. (5.14) and row “A” in [315], this row establishes
that KP = τ/Kε and TI = τ , where K and τ are first-order system characteristic
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Fig. 5.8 Control system structure with IMC PI plus feedforward controllers (courtesy of J.D. Ál-
varez et al., [11])

Table 5.1 IMC PI controller and model parameters (courtesy of J.D. Álvarez et al., [11])

IMC-PI K [°C s/l] τ [s] ε KP [l/(s °C)] TI [s]

1st controller −6.55 174 1330 −2 ·10−2 174

2nd controller −6.55 194 1480 −2 ·10−2 194

3th controller −6.55 174 2655 −1 ·10−2 174

4th controller −6.55 174 1770 −1.5 ·10−2 174

parameters and KP and TI are the controller gain and integral time parameters of
a classic PI controller. Several IMC PI controllers were developed by changing the
filter parameter ε and performing two ±10°C step changes in the reference. Notice
in Eqs. (4.42) to (4.44) that there are several disturbance variables which influence
the outlet HTF temperature and, once more, fast changes in solar energy excite reso-
nances causing oscillation. For this reason, classical parallel feedforward controllers
were designed based on transfer functions from Eqs. (4.42) to (4.44), in the form of
D(s)/G(s) where D(s) is the transfer function relating outlet temperature changes
to disturbance variable and G(s) is the transfer function relating outlet temperature
changes to control variable changes. Due to the non-causal nature of the feedforward
controllers obtained, a causal version of the resulting controllers was implemented.
These parallel feedforward controllers were used along with the IMC PI controller
to counteract possible changes in the disturbance variables, mainly solar irradiance
and fluid inlet temperature, during operation; disturbances generated by ambient
temperature are insignificant and can be neglected. This control system structure is
shown in Fig. 5.8.

Four different IMC PI controllers were developed based on Eq. (5.14) and dif-
ferent ε and τ (model parameters) were used to achieve fast responses. Table 5.1
summarizes IMC PI controller and model parameters used during operation.

Figure 5.9 shows real results from the ACUREX plant. The IMC PI controllers
designed stabilize the system, but with oscillation and up to 20% overshoot in the
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Fig. 5.9 IMC PI controllers representative results (courtesy of J.D. Álvarez et al., [11])

1st and 4th controllers and a settling time of 15 to 20 min depending on the case.
If overshoot is not desirable, ε must be increased as in the 3rd controller, which
reduces the settling time by up to 15 min, but even in this case, the closed-loop
system has an oscillatory behavior and kickback typical of resonance.

From the results, it can be seen how the models developed capture system fea-
tures. If the reference is increased, the controller must decrease the volumetric flow
and, therefore, the fluid velocity is diminished to reach the new set point. This fact
causes residence time tr to increase and, as Eq. (5.13) shows, the system gain in-
creases as well. At the same time, the increment in the residence time causes reso-
nance dynamics at lower frequencies, amplifying oscillatory system behavior.

Obviously, to avoid the oscillatory behavior, the IMC PI controllers could be
detuned, but the aim of this section is to show how the model developed can be used
to achieve well-damped, closed-loop responses with broad bandwidths.

5.4.1.2 Repetitive Control-Based Scheme

Repetitive control has demonstrated its ability to counteract resonance dynamics by
treating them as internal system disturbances [8, 307]. Figure 5.10 shows the scheme
for a typical discrete repetitive controller, where z−d is a discrete-time delay of d
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Fig. 5.10 Repetitive-control scheme (courtesy of J.D. Álvarez et al., [11])

Fig. 5.11 Simplified repetitive-control scheme (courtesy of J.D. Álvarez et al., [11])

sampling periods, F(z) is a low-pass finite impulse response (FIR) filter with a null
period, which attempts to reduce uncertain frequency gains, L(z) is the internal
repetitive-control loop transfer function, Gx(z) is a linear filter to ensure system
stability, Gc(z) is the main controller and G(z) is the system to be controlled.

A more detailed description of such control systems is provided in [122]. Suitable
choices for filters F(z) and Gx(z) can be found in [8], such that the repetitive-
control transfer function is equal to the discrete form of the inverse transfer function
in brackets in Eq. (5.9). In a perfect model, the repetitive controller is able to cancel
the term in brackets in Eq. (5.9) completely and, thereby, the resonance dynamics of
the system. Figure 5.11 shows the scheme resulting from a suitable choice of filter
parameters for canceling out the resonance dynamics.

Although a perfect model is impossible and total resonance cancelation cannot
be achieved, it is possible to damp it; the main controller needs only to concentrate
on P(s), in Eq. (5.9), which is a low-order transfer function with an integrator plus
a small dead-time. For this reason, an IMC PD was chosen as the main controller,
unlike Sect. 5.4.1.1 in which an IMC PI was the main controller because the simpli-
fied plant model Ga(s) in Eq. (5.14), was used. In this case row “P ” in [315] was
used, this row establishes that KP = 1/Ka(β + ε) and TD = τa , where Ka and τa

are characteristic parameters of P(s).
The repetitive-controller uncertainty, is taken into account when filter parameter,

ε, of the IMC PD is adjusted. In this way no additional filter is necessary. Moreover,
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Fig. 5.12 Control system structure with IMC PD plus repetitive controller (courtesy of J.D. Ál-
varez et al., [11])

in [260] it is stated that the correct choice of the filter parameter ensures closed-
loop robust stability against model uncertainty; at the same time, closed-loop per-
formance is increased by means of a repetitive controller. As has been pointed out
previously, the absence of an integral term in the main controller is justified by the
integral term in the transfer function P(s) in Eq. (5.9) if step changes are performed
at the set point.

Furthermore, to avoid problems due to actuator saturation, the repetitive con-
troller incorporates anti-windup action, consisting of adjusting repetitive-controller
output by means of ‘actuator error’ (the difference between the actual actuator out-
put and the desired control action) modulated by a parameter Nr/Ko, Ko being the
static gain of G(z) transfer function and Nr is a parameter that modulates the veloc-
ity at which the repetitive controller is reset (when saturated, the repetitive controller
acts like an integrator). As in the IMC PI controller, the control system was supple-
mented with classical feedforward controllers in order to compensate for both solar
irradiance and fluid inlet temperature, based on Eqs. (4.42), (4.43) and (4.44), as
explained in [8, 11, 12]. Figure 5.12 shows the control system structure consisting
of a repetitive-control block, an IMC PD controller in the forward path and the par-
allel feedforward controllers, whereas Fig. 5.13 shows the results achieved when the
ACUREX plant is controlled by this control system configuration.

The control system was tested using ±10°C step changes in the reference. Re-
sults shown in Fig. 5.13 are better than those with an IMC PI controller. There is
only one overshoot of less than 15% and the settling time is reduced to 7–9 min.
Notice that the control signal oscillates as it attempts to avoid overshoots in the con-
trolled signal. Theoretically, the frequencies of these oscillations should match those
of the resonance modes. However, although results are better, they are not as good as
expected. Plant behavior is slightly oscillatory and non-linear, as can be observed in
the plant response to the two step changes. This is because the manipulated variable
dictates the resonance dynamics frequencies and so they are not totally canceled
out.
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Fig. 5.13 Representative repetitive-controller results (courtesy of J.D. Álvarez et al., [11])

5.4.1.3 Adaptive and Robust Versions of the Basic Control Scheme

Further improvements of the basic algorithm presented can be found in [11] where
an adaptive version of the basic algorithm is developed and implemented. In the
above paragraphs, resonances are dealt with using a linear repetitive controller with
a fixed frequency, but the resonance frequency modes change at the same time as
the volumetric flow or velocity does because they are associated with fluid residence
time inside the collector. In [242] the physical mechanism behind the resonance
phenomena is explained. Moreover, an estimation of the frequencies in which the
resonance modes are located is provided. So, as treated in Sect. 4.3.3.2, the mini-
mum resonance modes are located around frequencies ωmin = 2nπ/tr , whereas the
maximum resonance modes are located around frequencies ωmax = 2(n+1/2)π/tr ,
where n is a positive integer and tr is the residence time of the fluid within the tube.

In solar collectors, the fluid output temperature can only be controlled by fluid
velocity. This makes the resonance mode frequencies change with the control signal
values. One way to cope with this problem is to implement an adaptive repetitive-
control scheme which changes its working frequency according to fluid residence
time. However, the fluid residence time is a parameter which is not easy to calculate,
under the assumptions that the fluid is incompressible and its specific heat capacity
and density are constant and the thermal resistance of the tube wall is neglected, it is
possible to estimate a residence time value from the volumetric flow which is mea-
sured. So tr = L/v where L is the pipe or collector length and v is the fluid velocity,
which, at the same time, is estimated by v = q/Af where q is the volumetric flow
and Af the cross-sectional area for flow inside the pipe.
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Two main repetitive-control techniques have been reported to deal with vari-
able frequency disturbances [57, 93, 358]. In general, controller design is based on
multirate concepts but, while the main controller works with an invariable sample
time (Ts), the repetitive controller can use either the same sample (Ts) or a variable
sample time. In both cases, the general adaptive repetitive-controller development
methodology is:

1. Estimate the frequency of either the repetitive disturbance signal to reject or
repetitive reference to track.

2. Decimate and interpolate the samples necessary for repetitive control with either
a variable or fixed sample time.

3. Calculate the control signal.
4. Interpolate and decimate the control signal to the fixed main controller frequency.

Following this methodology, an adaptive repetitive control with a fixed sample
time was designed in [11], providing real results when tested at the ACUREX field
of the PSA.

A robust approach was developed and also tested at the ACUREX DSCF in [12],
where an alternative structure of the repetitive controller is proposed which also
works with a fixed frequency but is tuned taking into account the uncertainty in the
resonance mode frequencies in order to achieve fast, well-damped system responses.

5.4.2 Adaptive Frequency-Domain IMC

Another approach to cope with resonances within an IMC framework are those de-
veloped in [36, 37, 85], where an adaptive frequency-domain IMC controller is de-
veloped to cope with resonances, both the plant and the controller using frequency-
domain interpolating models. In the frequency-based IMC control structure, the er-
ror signal is fed to a bank of comb filters (CF) where it is separated into its spectral
components. Each of the components is then multiplied by a complex gain and fed
to the process and model. The calculation of the complex gain can be made by
imposing a determined frequency response of the closed-loop system at the interpo-
lating points. As the frequency response of the plant is needed at all interpolating
points, banks of band filters are used for the input and the output of the plant, such
that simple models of the plant can be used in each interpolating frequency, using a
common recursive least squares (RLS) identification algorithm to estimate only two
parameters describing these models (using a regressor in each band).

Figure 5.14 outlines the method that is fully developed in [85] and not included
here to save space. For each frequency ωi , the frequency response of the com-
pensated system at the interpolating points (Gd ) is imposed to fulfill the closed-
loop specifications and, thus, the controller frequency response is obtained from
Ci(ωi) = Gd(ωi)/Gmi(ωi), i = 0, . . . ,L, where Gmi(ωi) is obtained from an in-
terpolation model with two parameters ci and di that are identified using a standard
RLS algorithm.
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Fig. 5.14 Adaptive-control scheme in the frequency domain, [37]

The scheme includes the design of the controller in the frequency domain, fre-
quency response estimation, banks of bandpass filters and time-varying controller.
All the development and results achieved at the ACUREX field can be found in [85].

The main advantages are that the estimation is concentrated in frequencies used
for design purposes, the disturbances with frequency components out of these bands
are filtered, it is not necessary to over excite in cases with processes of high-order
because only a few points of the Nyquist curve are estimated, low-order models can
be used to control high-order processes, the order of the process need not be known,
and the control scheme can respond to changes in plant dynamics.

The main drawbacks that have been encountered in the control scheme are that
the existence of resonance characteristics causes the identification of the frequency
response of the plant close to these modes to reach very low values. Due to the
fact that the control scheme obtains the control signal using the inverse of the esti-
mated plant, very high values of the control signal can be obtained, thus requiring
a supervising scheme. On the other hand, the choice of the transfer function which
provides the desired behavior of the controlled system and, particularly, the choice
of the desired magnitude and phase values of the system near the resonance modes
is critical, leading to a different kind of behavior in function of the chosen values.

5.5 Time Delay Compensation (TDC)

Time delay compensation (TDC) schemes (Fig. 5.15) aim at designing controllers
without taking the pure delay of the plant into account and obtaining a closed-loop
response after the delay to be that expected from the design without considering the
delay in the dynamics of the process. Dead-times appear in many industrial pro-
cesses, usually associated with mass or energy transport, or due to the accumulation
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Fig. 5.15 Block diagram of time delay compensators (TDC)

of a great number of low-order systems. Dead-times produce an increase in the sys-
tem phase, therefore decreasing the phase and gain margins. When using classical
methods to control processes where the effect of dead-time is dominant, the con-
troller must be detuned so as to achieve stability, providing a slow behavior. In these
cases, it is convenient to use a dead-time compensator (DTC). The Smith Predic-
tor (SP) is perhaps the best known and most widely used algorithm for dead-time
compensation. With this structure (Fig. 5.15 without the filter block), if there are no
modeling errors or disturbances, the error between the current process output and
the model output will be null and the controller can be tuned as if the plant had no
dead-time.

Several TDC schemes have been developed for controlling DSCF. In [246], an
alternative-control scheme using a simplified transfer function model including the
resonance characteristics has been developed. This controller adopts a parallel con-
trol structure similar to that of a SP. This parallel structure is shown to effectively
counter the resonance dynamics of the system while avoiding the excitable control
signal of the controller developed by [243, 244].

In [274], an easy-to-use PI controller with dead-time compensation that presents
robust behavior and that can be applied to plants with variable dead-time is applied
to control the temperature entering the storage tank of the ACUREX field. The for-
mulation is based on an adaptive SP structure plus the addition of a filter acting on
the error between the output and its prediction in order to improve robustness. The
implementation of the control law is straightforward as the controller has only three
tuning parameters that can be tuned using a classical step identification test and the
filter needs no adjustment. In this approach, the system is described by a first-order
plus dead-time (FOPDT) transfer function G(s) = Ke−td s/(1 + τs). With the addi-
tion of the PI, the resulting controller has therefore five tuning parameters: the three
plant coefficients K , τ and td and the two PI parameters KP and TI . This can con-
stitute an increase in operational complexity compared with a PID controller, so in
[171] a predictive PI controller (PPI) is proposed with only three adjustable param-
eters, choosing the controller gain equal to the inverse of the process gain and the
integral time equal to the process time constant. This results in a simple controller
that has the same advantages as the PID controllers since it can easily be tuned
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manually and it is also suitable for the control of processes with long dead-times.
However, this formulation does not take the robustness of the closed-loop system
into account and presents stability problems when uncertainties exist in the plant
parameters, mainly in the dead-time.

A robustness analysis of the PPI can be found in [273], where the authors have
shown that the PPI controller has undesirable closed-loop behavior when dead-time
uncertainties (high-frequency modeling errors) are considered. Some modifications
to the PPI controller were introduced to improve robustness: a filter F(s) with uni-
tary static gain (F(0) = 1) was introduced (filter block in Fig. 5.15), maintaining
the structure in [171]. Filter F can be used to improve the robustness of the system
at the desired frequency region. If it is desirable to maintain the simple structure of
the PPI in order to use the filtered PPI (FPPI) controller in industrial applications,
then filter F will be defined as a first-order filter with only one parameter (the time
constant τf ) related to td . The relation between τf and td was computed in [273]
as τf = td/2. This choice of τf gives good results for error in the dead-time of up
to 30%. However, if the changes in the dead-time are greater than 50% of the nom-
inal value and robust closed-loop performance specifications are defined, the FPPI
will not give a satisfactory solution. As in most industrial cases, high varying dead-
times are associated to the transport of mass or flow and so an adaptive scheme can
be used to improve the performance of the FPPI.

This is the case of DSCF in some applications. As was mentioned in Chap. 4, in
order to ensure safe operation, the controlled variable in this kind of plant is usu-
ally the outlet temperature of the loop with the highest value at each sampling time.
Nevertheless, situations may exist in which hot HTF should be used for directly
feeding the heat exchanger of the electricity generation system or a desalination
plant. In these situations, it is preferable to control the temperature of the HTF en-
tering the top of the thermal storage tank. In this way, the considerable length of
the tube joining the output of the collector field to the top of the tank introduces
a large variable delay within the control loop which depends on the value of the
flow. If the system is modeled as a FOPDT process, part of the dead-time can be
used to model the effect of high-order dynamics and the other part correspond to
the actual transport of fluid. Thus, the estimated dead-time td can be computed as
td = td0 + g(q). It is assumed that td0 has only small variations around its nom-
inal value (less than 30%) and the FPPI can cope with the effects of these model
uncertainties. The relation between the flow and the dead-time, g(q), is given by
Eq. (4.14), where L ≈ Ts

Af

∑i=n−1
i=0 q(k − i), q(k − i) being the flow rate demanded

by the ith previous sampling time, so that tr ≈ nTs and the dead-time of the process
can be estimated as td = td0 + nTs .

Notice that: (i) the digital implementation of the previous relationship is very
simple and does not need any tuning parameter; (ii) the complete tuning procedure
for the controller is the same as in the FPPI and only the values of L and Af must
be given for the adaptive part of the control law; (iii) in general, the estimated value
of td will be different from the real dead-time because of approximation errors, but
the filter can cope with these modeling errors.

In order to use the distributed-parameter model given by Eqs. (4.1) and (4.2)
to account for longer passive tube lengths for comparing different DTC control
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Fig. 5.16 Validation of the
non-linear model accounting
for transport delays (courtesy
of J.E. Normey-Rico et al.,
[274])

schema, it has been taken into account [309] that the dynamic characteristics of
the tube joining the output of the loops to the top of the storage tank are given by
a gain of less than one, a time constant (of about 2 or 3 min) and a variable de-
lay. This approximation was adopted in order to modify the basic formulation of
the non-linear model to account for dynamic characteristics introduced by the tube.
The modified model was validated with data obtained at the plant in closed-loop
operation [309]. Figure 5.16 shows representative results obtained in closed-loop
operation at the ACUREX field. Both the outlet temperature of the collector field
and the inlet temperature at the top of the storage tank are shown and compared
with those obtained from the non-linear modified model. As can be seen, results are
quite approximate (mostly around solar midday) and so the model has been used as
an appropriate test-bed for dead-time compensation control schema.

To illustrate the performance of the FPPI controller some simulation results are
shown. When the controlled variable is the temperature of the HTF entering the top
of the storage tank (Tst), classical PID control schema performance deteriorates, as
the dead-time dynamics become dominant. One way to cope with this problem is
to detune PID controllers to obtain stable operation in the whole range of operating
conditions and with a bounded set of possible values of the varying delay, providing
sluggish responses. In [274] results using a detuned PID controlling Tst are provided,
where performance deteriorates at low flow conditions.

The performance of classical PID controllers can be improved by including
some kind of dead-time compensation. The complete control structure proposed
for the adaptive FPPI is shown in Fig. 5.17 for a digital implementation, where
a = e−Ts/τ , b = K(1 − a); af = e−Ts/τf and d is the discrete-time representation
of the dead-time td . The identification of step tests has been used to obtain differ-
ent models of the plant (including the series feedforward controller) without the
varying dead-time for different operating points. In the application shown in this
section, the model for the predictor without the varying dead-time has been chosen

as Gn(s) = 1.2e−78s

1+320s
and so the control parameters were: KP = 0.833, TI = 320 s

and td0 = 78 s. The sampling time was chosen as Ts = 39 s and the measurement
of the equivalent length and section of the tube (which at the solar plant has differ-
ent sections at different parts of the tube) gives the following values: L = 200 m
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Fig. 5.17 Structure of the filtered PPI (courtesy of J.E. Normey-Rico et al., [274])

and Af = 5.30929 · 10−4 m2. The time constant of the filter (τf ) was chosen ac-
cording to the value of the estimated delay. In Fig. 5.18 the results obtained with
the basic design of the FPPI are presented. As can be seen, the controlled system
accounts for the (estimated) varying dead-time (which varies according to the HTF
flow changes) and ensures acceptable, good operation under the whole range of
working conditions. It must be noted that the tuning of the adaptive FPPI is simpler
than the procedure used to obtain the detuned PID and gives better performance and
robustness.

To analyze the effect on performance when dead-time estimation errors occur,
a non-adaptive FPPI controller was implemented by using two extreme fixed values
of the dead-time: one near the maximum possible value and other near the mini-
mum one, obtaining the results shown in Fig. 5.19. As can be seen, the performance
deteriorates but the control scheme can cope with the operation covering a wide
range of operating conditions without leading the system to instability, proving the
robustness inherent in the design of the controller.

5.6 Optimal Control (LQG)

In the framework of controlling DSCF, [325] and [280] suggested an optimal con-
trol formulation where the objective is to maximize net produced power when
the pumping power is taken into consideration. An alternative approach is taken
by [99, 100], where a quadratic control Lyapunov function is formulated for the
distributed-parameter model and a stabilizing control law is derived. In [330], a
LQG/LTR controller using the series feedforward controller explained in Chap. 4
was developed to obtain a robust fixed-parameter controller, able to acceptably
control the distributed solar collector field under a wide range of operating con-
ditions. A similar approach to that of [100] was developed by [195, 196], but re-
lies on using a storage function with a physical interpretation leading to a con-
ceptually simpler stabilizing control law with more transparent tuning parame-
ters and less involved analysis. In [388, 389] a finite dimensional approxima-
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Fig. 5.18 Results obtained
with the nominal FPPI
controller (courtesy of
J.E. Normey-Rico et al.,
[274])
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Fig. 5.19 Results obtained with the fixed dead-time FPPI controller (courtesy of J.E. Normey-Rico
et al., [274])

tion of the physical description of the system is used to control the plant. De-
spite the high dimension of the model, the digital optimal reduced-order con-
troller design procedure enables an optimal controller with just one state vari-
able to be synthesized. The synthesis of the digital optimal reduced-order con-
troller takes place at two levels. At the first level, based on the full non-linear
model representing the finite-difference approximation, the associated initial state
and the cost function to be minimized, a digital optimal control is computed as
well as the associated state trajectory and the output trajectory, this computa-
tion being performed off-line. At the second level, based on the linearized dy-
namics about the digital optimal control and state trajectory computed at the first
level, a quadratic cost function and a description of the model and measure-
ment uncertainties by small additive white noise, a digital optimal reduced-order
LQG compensator is computed. This compensator is used to attenuate on-line er-
rors.
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5.7 Robust Control (RC)

In the previous section, some aspects of the application of a robust optimal
LQG/LTR control scheme [330] have been commented on. Robust control tries to
apply principles and methods that allow the discrepancies between the model and
the real process to be explicitly considered. There are many techniques for designing
feedback systems with a high degree of robustness, some of which are commented
on in [85] in the scope of the control of solar plants. In [282], a controller based
on the H∞ theory was developed and successfully tested at the ACUREX field. The
approach used in this work takes advantage of the assurance of high stability mar-
gins in the face of a norm bounded perturbation and uses the feedforward controller
in series with the developed controller. One particular approach to robust control
design is the so-called sliding mode control methodology, which is a particular type
of variable structure control system (VSCS), which is characterized by a suite of
feedback control laws and a decision rule (termed the switching function) and can
be regarded as a combination of subsystems where each subsystem has a fixed con-
trol structure and is valid for specified regions of system behavior. In sliding mode
control, the VSCS is designed to drive and then constrain the system state to lie
within a neighborhood of the switching function. In [292], the application of three
predictive sliding mode controllers is presented (reaching law approach, equivalent
control approach and a non-linear GPC law that forces the reachability of a differen-
tial predicted surface) using a first-order plus dead-time model for controller tuning
purposes. Thanks to a predictive strategy, these control laws provide optimal per-
formance, even in presence of constraints that cannot be considered in the classical
sliding modes theory.

5.7.1 QFT Control (QFT)

Based on the quantitative feedback theory (QFT), in [104] a robust controller was
developed for the ACUREX field incorporating the series feedforward controller to
solve a simplified problem in which a non-linear plant subjected to disturbances is
treated in the design as an uncertain linear plant with only one input (the reference
temperature to the feedforward controller). The frequency response of the plant was
analyzed for different operating points using dynamic tests performed on the simu-
lator of the field [38]. In this way, in the process design of the QFT controller, the
disturbances affecting the plant are not explicitly taken into account, as the feed-
forward term partially compensates them. A set of plant models was obtained and
used to design a robust controller to maintain the desired response within specific
frequency-domain bounds and taking into account the uncertainties of the system in
the process design. This work was improved in [111] by incorporating an automatic
set point generator plus anti-windup to avoid the system entering into saturation.
For each operation point and using the series feedforward, a model of the plant is
estimated, obtaining a set of plant models with the same structure where all the op-
erating points are included as the parameter values vary from one model to another
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Fig. 5.20 A 2DoF control
system with uncertain plant
including the series
feedforward controller [111]

so that the ACUREX field model can be expressed as a model with uncertain pa-
rameters (as they depend on the flow rate). Therefore, in order to control the system
with a fixed-parameter controller, the following model has been used:

℘(s) =
{

P(s) = Kω2
n

s2 + 2ζωns + ω2
n

e−td s : ζ = 0.8,

td = 39s, ωn ∈ [0.0038,0.014] rad/s, K ∈ [0.7,1.05]
}

(5.15)

where the chosen nominal plant is P0(s) with ωn = 0.014 [rad/s] and K = 0.7.
The robust control technique QFT [182] was used to obtain a controller fulfilling

a set of performance and stability specifications, so that all the uncertainty in the
process is taken into account in the design process. This technique allows robust
controllers to be designed which fulfill some minimum quantitative specifications
taking into account the presence of uncertainties in the plant model. The Nichols
chart is used to achieve the desired robust design over the specified region of plant
uncertainty where the aim is to design a compensator C(s) and a prefilter F(s)

(if necessary) according to Fig. 5.20, so that performance and stability specifications
are achieved for the family of plants.

Thus, once the uncertain model has been obtained, the specifications must be
determined in time domain and translated into the frequency domain for the QFT
design. In this case, the tracking and stability specifications were established [182].
By tracking specification the effect of the uncertainties will be reduced. It is only
necessary to impose the minimum and maximum values for the magnitude of the
closed-loop system in all frequencies. With respect to the stability specification, the
desired gain (GM) and phase (PM) margins are set. The tracking specifications were
required to fulfill a settling rise time of between 5 and 35 min and an overshoot of
less than 30% after 10–20°C set point changes for all operating conditions (real-
istic specifications, see [85]). These specifications are translated to the following
frequency conditions using the QFT framework obtaining [111]

∣
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F(jω)
P (jω)C(jω)

1 + P(jω)C(jω)
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∣

≤ ∣∣Bu(jω)
∣

∣, ∀ω > 0, ∀P ∈ ℘ (5.16)

where Bl(jω) and Bu(jω) are the minimum and maximum values for the magnitude
of the closed-loop system in all frequencies to fulfill tracking specifications.
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Table 5.2 Tracking specifications for the C compensator design (courtesy of C.M. Cirre et al.,
[111])

ω [rad/s] 0.0006 0.001 0.003 0.01

�(ω) 0.55 1.50 9.01 19.25

For stability specification, the following condition must be fulfilled:
∣

∣

∣

∣

P(jω)C(jω)

1 + P(jω)C(jω)

∣

∣

∣

∣

dB

≤ �(ω) = 3.77, ∀ω > 0, ∀P ∈ ℘ (5.17)

in order to guarantee a phase margin of 35° for all operating conditions.
In order to design the compensator C(s) the tracking specifications in (5.18) are

transformed into
∣

∣

∣

∣

P(jω)C(jω)

1 + P(jω)C(jω)

∣

∣

∣

∣

≤ ∣∣Bu(jω)
∣

∣− ∣∣Bl(jω)
∣

∣= Δ(ω), ∀ω > 0, ∀P ∈ ℘ (5.18)

Table 5.2 shows the specifications in (5.18) for each frequency in the set of de-
sign frequencies W . Using these specifications, the stability specification in (5.17),
system uncertainties, tracking and stability boundaries are computed using the algo-
rithm in [269]. The computed boundaries are shown in Fig. 5.21, as well as stability
and tracking boundaries with the shaped L0(jω) = C(jω)P0(jω) satisfying all of
them for all frequencies in W .

The resulting compensator C(s) synthesized in order to achieve the stability
specifications in (5.17) and the tracking specifications in (5.18) is the following
PID-type controller C(s) = 0.75(1 + 1

180s
+ 40s). In order to satisfy the specifica-

tions in (5.16), the prefilter F(s) must be designed, where the synthesized prefilter
is given by F(s) = 0.1

s+0.1 .
Figure 5.22 shows that the tracking specifications (5.16) are fulfilled for all un-

certain cases. Note that the different appearance of Bode diagrams in closed-loop for
five operating conditions is due to the changing root locus of L(s) when the PID is
introduced. The time response for these operation conditions is shown in Fig. 5.23.

Assuming the 2DoF controller given by compensator C(s) and prefilter F(s),
stability problems can appear when HTF flow rate saturates at umin = 2 l/s or umax =
12 l/s. Moreover, the absolute stability cannot be ensured using QFT due to the flow-
outlet temperature dependent time delay present in the process [182] (this is small

Fig. 5.21 Tracking and
stability boundaries with the
designed L0(jω) (courtesy of
C.M. Cirre et al., [111])
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Fig. 5.22 Tracking
specifications (dashed-dotted)
and magnitude Bode diagram
of some closed-loop transfer
functions (courtesy of
C.M. Cirre et al., [111])

Fig. 5.23 Time step
responses for some operation
conditions (courtesy of
C.M. Cirre et al., [111])

when compared to the main time constant of the system). Therefore, two strategies
have been included to deal with this problem: the use of an anti-windup mechanism
and the development of a reference governor to avoid flow saturation to be used as
a support decision tool by the operator.

Figure 5.24 shows the anti-windup scheme used (where Tr is the tracking con-
stant of the anti-windup term). This mechanism is a soft modification of the classical
anti-windup [23]. In this case, saturation is located between the feedforward term
and the plant and the compensator is placed in front of the feedforward term. Thus,

Fig. 5.24 Control scheme with anti-windup and reference governor, [111]
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Fig. 5.25 Results provided by the reference governor to avoid input and output constraints viola-
tion (courtesy of C.M. Cirre et al., [111])

when the actuator saturates to umax (or umin) value the corresponding feedforward
term input, Trff , which would provide an output umax (or umin) taking into account
the measurable instantaneous solar irradiance, is computed using the term FF−1,
which implements the inverse of the feedforward compensator.

The second element used to try to avoid control signal saturation and to maxi-
mize outlet power taking into account the security constraints is the use of a refer-
ence governor to support the decision of the operator on the actual set point (also
shown in Fig. 5.24). The reference governor supplies the reference r taking into ac-
count the actual operating conditions (outlet temperature, inlet temperature, direct
solar irradiance, ambient temperature and both the maximum allowed temperature
gradient ΔT = (Tout − Tin) and the PTC global efficiency ηcol). This reference is
used by the operator in order to take decisions about set point changes. This ele-
ment uses static models of the DSCF based on mass and energy balances as those
developed in Sects. 4.3.4.1 and 4.3.4.2, see [111] for a detailed description. As will
be seen in Sect. 5.12, another advantage when using the reference governor is that
it is a very useful tool for giving adequate set points during one of the most diffi-
cult parts of the operation, the start-up, where control signals are usually saturated
during long intervals and the inlet temperature suffers from the greatest changes dur-
ing operation due to the existence of cold HTF inside the tubes. Figure 5.25 shows
an example of the reference obtained by the reference governor and the set point
used by the operator, also including the outlet temperature and HTF flow demanded
when operating with the QFT-based control scheme. Notice that during start-up the
operator took a more conservative set point control policy than the reference gover-
nor.

In order to prove the fulfillment of the tracking and stability specifications of the
control structure, experiments in the ACUREX plant were performed at several op-
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Fig. 5.26 Test with PID without anti-windup (24/03/2009) (courtesy of C.M. Cirre et al., [111])

erating points and under different conditions of disturbances. The outlet controlled
was the loop with the maximum temperature for all the experiments. The sampling
time was chosen equal to 15 s. Figure 5.26 shows an experiment with the robust
controller but without anti-windup. At the beginning of the experiment, the flow is
saturated until the outlet temperature is higher than the inlet one (the normal situa-
tion during the operation). This situation always appears due to the fact that the HTF
inside the pipes is cooler than the HTF from the tank. Once the HTF is mixed in the
pipes, the outlet temperature reaches a higher temperature than the inlet one. During
the start-up, steps in the reference temperature are made until reaching the nominal
operating point. The overshoot at the end of this phase is 18°C approximately and
thus the specifications are fulfilled. Analyzing the time responses, a settling time
between 11 and 15 min is observed at the different operating points. Therefore, time
specifications, overshoot and settling time are properly fulfilled. Disturbances in the
inlet temperature (from the beginning until t = 12.0 h), due to the temperature vari-
ation of the stratified HTF inside the tank, are observed during this experiment and
correctly rejected by the feedforward action.

Finally, in order to check the behavior of the control structure in the most com-
plicated situation, changing radiation due to clouds passing, a new test under these
conditions is presented in Fig. 5.27. When the step responses are analyzed, it can be
seen that the settling time is between 12 and 30 min in this case and the overshoot is
under 15% in all cases. Hence, the tracking and stability specifications are fulfilled
for a cloudy day despite the system uncertainty in presence of different operating
points. At t = 12.39 h, a change in the inlet temperature is observed due to a varia-
tion in the three-way valve, causing an increment of 6°C in the outlet temperature.
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Fig. 5.27 Test with PID with anti-windup (07/10/2009) (courtesy of C.M. Cirre et al., [111])

However, the error was reduced in 17 min thanks to the feedforward action. From
14 h to the end of the test, the direct solar irradiance was too low and it was impos-
sible for the controller to track the proposed reference (the operator did not change
the reference according to that suggested by the reference governor).

5.8 Non-linear Control (NC)

As has been mentioned, explicit recognition of plant non-linearities and their ex-
ploitation could lead to performance and robust stability improvements but at the
cost of increasing the controller complexity. Steps in this direction were made by
employing traditional non-linear control strategies where non-linear transformations
of input or output variables take place. In [28, 29], a feedback linearization (FL)
scheme is proposed including Lyapunov-based adaptation and using a simplified
plant model. For dealing with plant non-linearities and external disturbances, a non-
linear transformation is performed on the accessible variables such that the trans-
formed system behaves as an integrator, to which linear control techniques are then
applied. In [195, 196], a control design is proposed based on a distributed model,
using ideas from passivity theory, that is using internal energy as a storage func-
tion and then using energy considerations and Lyapunov-like arguments to derive
stable and robust control laws relying on feedback from the distributed collector
field’s internal energy. It is shown that if the internal energy is controlled, the outlet
temperature is under control as well.
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The design also incorporates feedforward from the measured disturbances in or-
der to achieve passivity and high disturbance rejection performance. In [349], a PDE
physical plant model is used for non-linear control purposes. Two situations are con-
sidered: in the first, a constant space discretization is imposed, this causes the sam-
pling period to vary according to the flow; in the second, constant sampling in both
space and time causes temperature to be a function of flow and direct solar irradi-
ance, linearizing this function by a convenient variable transformation suggests the
use of FL techniques. The first situation considered is exploited in [351, 352], where
the key point is the observation that the value of HTF flow establishes a natural time
scale for the system. This is achieved in discrete time by indexing the sampling rate
to the value of flow. As a consequence, the model equations become linear and
it is possible to achieve good performance on step responses of big amplitude. In
the approach followed by [186], the PDE describing the field is approximated by a
lumped parameter bilinear model whose states are the temperature values along the
field. By using feedback exact linearization together with a Lyapunov approach, an
AC is designed. This paper improves the previous work of [29] by using a better
approximated model, which takes into account that, in the field considered, tem-
perature measures are only made at the input and at the output and not along the
pipe.

In [107] an automatic control approach using a simple FL method and a lumped
parameter model of a DSCF is also developed. The control scheme resembles that
of a feedforward controller in combination with a classical feedback controller as
those presented in [82], but with the difference that an embedded feedback from
the output is used both for linearization and feedforward purposes, as shown in the
next subsection. All the control schemes based on FL have shown excellent results
when tested at the real plant and are very adequate for the starting-up phase of the
operation. Model predictive-control (MPC) extensions of the basic algorithm will
be treated in Sect. 5.9.5, while non-linear ANN-based controllers based on output
regulation (OR) theory are commented on in Sect. 4.3.5.2.

5.8.1 Feedback Linearization Control of DSCF

Using the simplified bilinear model accounting for varying delays given by
Eq. (4.15) developed in Sect. 4.3.4.2, input–output linearization can be used to
control the DSCF when the design of the controller is performed on a linear repre-
sentation of the system as the non-linear dynamics are embedded in the definition
of a virtual control signal. Conditions for the existence of an FL controller are met
if the inlet and outlet HTF temperatures are different, this is always true during
nominal operation and it is ensured during the start-up stage by replacing the real
outlet HTF temperature by the reference temperature, thus helping to improve the
dynamical response of the system during this phase. Any linear controller could be
used in the design of the linear part of the control system.

The basic idea of the feedback linearization technique [189, 354] is to treat non-
linear systems as linear ones by means of algebraical transformations and feedback.
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Considering that the coordinate transformation (or mapping) is represented by a
function Ω depending on the new virtual control signal u′ and the system state x,
the control signal is obtained as u = Ω(x,u′). Moreover, if the non-linear system in-
cludes disturbances (p) with a linear dependence (such as in the case of the DSCF),
this algebraical transformation, Ω , will also depend on these disturbances and thus,
u = Ω(x,u′,p). Following this interpretation, FL technique may be applied to track
a desired outlet reference temperature using the HTF volumetric flow as the control
signal. For this purpose, the outlet temperature model (4.15) is transformed into the
canonical form, where the functions g and b also depend on the system disturbances,
p = (I, Tin, Ta):

dx

dt
= g(x,p) + b(x,p)u (5.19)

y = h(x) (5.20)

where x = Tout, u = q(t − td ), h(x) = x and

g(x,p) = ηcolGI (t)

ρf (T̄f )cf (T̄f )Af

− ˜Hl(T̄f , Ta)

ρf (T̄f )cf (T̄f )Af L2

b(x,p) = Tout(t) − Tin(t − tr )

Af nopeL

This yields a simple input–output relationship:

dTout(t)

dt
= u′(t − td) (5.21)

which represents a pure integrator with time delay where the input is the virtual
signal u′. Then, in this case, the equivalent linear dynamics takes the following
form:

ψ̇(t) = u′(t − td )

η(t) = ψ(t)
(5.22)

with ψ = x = Tout. Thus, it is possible to use any linear control over the system
(5.22), which represents the evolution of the outlet solar field temperature. The vir-
tual signal u′ must be mapped into the real control signal q . From Eq. (5.19), the
control input needed to compensate for non-linearities would be

q(t − td) = Af nopeL

(Tout(t) − Tin(t − tr ))

(

ηcolGI (t)

ρf (T̄f )cf (T̄f )Af

− ˜Hl(T̄f , Ta)

ρf (T̄f )cf (T̄f )Af L2
− u′(t − td)

)

(5.23)

with no thermal inversion in the solar field, Tout(t) − Tin(t − tr ) 
= 0, so that the
control law is valid in the state space defined by the operation range. Only plant
start-up has to be supervised to avoid numerical problems. Therefore, q(t) does
not only depend on the actual value of u′(t), but also on both the future values
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of the disturbances p(t + td) and the output, Tout(t + td). For disturbances, it is
assumed that p(t) ≈ p(t + td). On the other hand, the prediction of Tout(t + td ) may
be estimated by using a discrete Euler approximation (as the system is going to be
implemented in discrete time) such as

T̂out(k + d) = Tout(k) + Ts

d
∑

i=1

u′(k − d + i) (5.24)

in such a way that the actual control signal can be computed as

q(k) = Af nopeL

(T̂out(k + d) − Tin(k − n))

(

ηcolGI (k)

ρf (T̄f )cf (T̄f )Af

− ˜Hl(T̄f , Ta)

ρf (T̄f )cf (T̄f )Af L2
− u′(k)

)

(5.25)

with nTs ≈ tr − td .
A basic I-PD control structure was employed to control the linearized system.

This structure is a modification of a classical PID, but only the integral term is in
the direct trajectory between the input and the output. The proportional and deriva-
tive terms are in the feedback trajectory. When the reference input is a step func-
tion, PID control involves a step function in the manipulated signal which may not
be desirable. Therefore, I-PD moves the proportional and derivative actions to the
feedback path so that these actions affect the feedback signal only. In the absence
of the reference input and noise signals, the closed-loop transfer function between
the disturbance input and the output is the same as for PID control. A first set of pa-
rameters of the I-PD controller [276] was obtained by using the plant simulator [85]
and tuning the parameters using the minimum integral of time-weighted absolute
error (ITAE) rules [277], that were subsequently refined at the real plant to improve
the response of the system. The I-PD parameters were fixed to KP = 0.015 [1/s],
TI = 300 [s], TD = 50 [s] [109]. A diagram of the final control structure is shown
in Fig. 5.28. A sampling time of Ts = 39 s was chosen.

As mentioned above, the inlet temperature may be higher than in the outlet during
start-up. This could cause a negative temperature difference in (5.23). Therefore,
a variation in the control structure used during normal plant operation, Fig. 5.28
(top), has been developed to control Tout during start-up. This structure, shown in
Fig. 5.28 (bottom), is very similar to the one used for normal operation except for
the inputs to the non-linear block change. Notice that Tref is a new input in this
block and also that this makes the difference in enthalpy positive, which is normal
during operation. Once the outlet temperature reaches the set point, the control is
switched to routine control as shown in Fig. 5.28 (top). The transition between the
two controllers is made safely by bumpless transfer.

Since the limits of the virtual signal depend on the actual conditions affecting
non-linear mapping, the method’s performance decreases if they are not properly
set (see [219]). So the physical limits imposed by the pump can be mapped into
limits in the virtual control signal u′, again using the non-linear mapping represented
by Eq. (5.23). The physical limits in the real control signal are transformed into
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Fig. 5.28 Feedback linearization controller (top) and modification for start-up stage (bottom)
(courtesy of C.M. Cirre et al., [109])

variable constraints in the virtual control signal which depends on the operating
conditions. Equations (5.26) and (5.27) represent the corresponding limits of the
virtual signal u′ (u′

max, u
′
min) depending on the lower and upper physical limits of the

pump (qmax, qmin). This mechanism can be considered an anti-windup strategy, so it
has therefore been included to account for possible saturation in the control signal.
Virtual signal limits estimated at each sample time have provided very useful results,
mainly during operation start-up. Notice that a global efficiency modifier can also,
easily be included to modulate the scheme’s disturbance rejection capabilities.

u′
min = min

qmin≤q≤qmax
u′ (5.26)

u′
max = max

qmin≤q≤qmax
u′ (5.27)

The control scheme in Fig. 5.28 resembles feedforward controllers explained in
Chap. 4, which were also based on a simplified physical system model but consid-
ered steady-state conditions in such a way that an HTF flow correlation could be
derived as a function of the inlet and outlet HTF temperatures, corrected for direct
solar irradiance and ambient temperature. Thus, the main difference in the scheme
presented here is that internal feedback is now included both for linearizing and
disturbance cancelation, providing smoother control.

Figure 5.29 shows the controller responses under real conditions used as plant
simulator input. The figure illustrates the part of the test where the behavior of three
control schemes (see Table 5.3) is compared. The set point step responses of the
three controllers seem to be very similar, but, the IPDFL (see Fig. 5.28) controller
output overshoots the reference temperature less and so would seem to provide bet-
ter inlet disturbance rejection. In [109] a complete comparison is carried out using
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Fig. 5.29 Simulation with test on July 15th, 2004, of I-PD with a series and parallel feedforward
and the feedback linearization controller (courtesy of C.M. Cirre et al., [109])

Table 5.3 Parameters tuned for the simulated control schemes (courtesy of C.M. Cirre et al.,
[109])

Controller KP TI [s] TD [s]

I-PD series feedforward (IPDFFSER, Eq. (4.52)) 1 140 30

I-PD parallel feedforward (IPDFFPAR, Eq. (4.51)) −0.15 [l/(s °C)] 400 110

Feedback linearization (IPDFL) 0.012 [1/s] 300 50

as indices the integral of the square error (ISE), the integral of time-weighted square
error (ITSE), the integral of the absolute error (IAE) and the ITAE [277] for the same
period of time when there is a step in the reference temperature and a variation in
the inlet temperature is considered a disturbance.

The FL controller was tested at the ACUREX solar field. Both the set point track-
ing features and the disturbance rejection capabilities were tested under operating
conditions varying due to changes in set point, direct solar irradiance and inlet HTF
temperature variables. Start-up and full-day operation are also shown. The operating
procedure is the same in all experiments using the scheme in Fig. 5.28. First, the set
point temperature is used as the actual temperature in the non-linear mapping block
(arrow from Tref to that block in Fig. 5.28) to improve the starting phase and avoid
problems that could arise if the conditions for the applicability of the FL technique
were not fulfilled. Once Tref is reached, the actual temperature is then used in the
non-linear mapping block and during this transition period, bumpless transfer guar-
antees good current controller tracking. Parameters TI and TD of both controllers
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Fig. 5.30 Test on July 21th, 2004 with strong inlet HTF temperature disturbance (courtesy of
C.M. Cirre et al., [109])

Fig. 5.31 Test on October 1st, 2004 with solar irradiance momentary variations and inlet HTF
temperature disturbances (courtesy of C.M. Cirre et al., [109])
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are the same, but controller parameter KP , used for start-up, was tuned to provide
a more conservative response. Figure 5.30 shows experiment results from start-up
to the end of the test where Tout is controlled automatically by the control schemes
described above. At first, the cold HTF in the pipes in the field is sent to the bottom
of the storage tank instead of the top, which prolongs start-up. Therefore, the first
reference temperature set was diminished to avoid long controller output saturation
at minimum flow, which is normal when operating under these circumstances (even
with manual operation). As may be observed, the system then reached steady state
without overshooting. To reject the fast increase in the inlet HTF temperature, the
controller had to perform fast changes in the required HTF flow rate over the whole
operating range. The performance of the rest of the operation can be described by
settling times of around 10 min without overshooting with set point changes of
10°C. Smooth changes in direct solar irradiance of about 70 W/m2 and inlet HTF
temperature increases were compensated in such a way that no tracking errors (more
than ±1°C) were found.

The test in Fig. 5.31 shows the behavior of the controller when there are slow
inlet HTF increases and fast variations in solar irradiance. Two inlet HTF temper-
ature disturbances occurred during the test. The first one started at 12:05 and the
second one at 15:03 h. In both cases, the tracking error was always less than ±1°C.
The rejection of solar radiation disturbances for a period of approximately 50 min
with variations of 390 W/m2 is good, as the maximum tracking error is less than
4°C. The output settling time (±5%) is around 10 min after a set point step of 25°C.
Throughout the test, the controller provided an HTF flow that produced a smooth
output response (in spite of disturbances), which is desirable in this kind of system.
The next test in Fig. 5.32 shows the controller behavior with continuous solar radia-
tion disturbances along with a steep rise in inlet HTF temperature. Test start-up with
this controller was short (around 30 min). The output response shows a small over-
shoot of less than 5°C. At approximately 13:05 h, the inlet temperature started to rise
very quickly so the operator had to make a step change in the reference temperature
(45°C) due to the safety conditions of the operation and not to help the operation
of the automatic controller. The controller regulated the HTF flow correctly during
the whole test, but at about 13:05 h, there was a fast and big increase in the inlet
temperature because the HTF inside the tank is stratified depending on its density.
To track the same reference temperature with a very small ΔT = (Tout − Tin) and
with large values of irradiance, a very high flow is required, irrespective of whether
it is demanded from an automatic controller or from manual mode and the pump
will saturate to its physical limits, causing the system to operate in open loop; thus,
to prevent this situation, the set point was increased; in fact, automatic set point
governors should avoid this problem [46, 105, 106, 108, 110].

In spite of these disturbances, including solar irradiance, the tracking error was
less than 1.5°C. The settling time in this step was 9.1 min. This is a good result, tak-
ing into account the disturbances affecting the plant and the wide set point change,
as steps are not usually more than 20°C. The importance of calculating the virtual
signal limits, depending on the conditions affecting the plant such as solar irradiance
and inlet HTF temperature, can be checked in the test shown in Fig. 5.32. Due to
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Fig. 5.32 Test on October 7th, 2004 with solar irradiance continuous disturbances added to inlet
HTF temperature disturbances (courtesy of C.M. Cirre et al., [109])

Fig. 5.33 Test on October 7th, 2004 the respective virtual signal and its limits (courtesy of
C.M. Cirre et al., [109])
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the small difference between the reference temperature set and the inlet HTF tem-
perature (at 13:50), the controller had to increase the HTF flow to track properly.
This situation involved varying the virtual signal limits as the external conditions
had also changed. Figure 5.33 shows the test shown in Fig. 5.32 with the virtual
signal calculated at each sample time. Note how the virtual signal is displaced from
zero, however, it increases or decreases correctly as the derivative of Tout increases
or decreases. This is because the non-linear mapping parameter ηcol, which cannot
be measured and depends on how clean the mirrors are, is not fine-tuned. This fact
is studied in depth in [109], where more experimental results can be found.

5.9 Model-Based Predictive Control (MPC)

Many different MPC strategies (Fig. 5.34) have been applied to control DSCF. The
ideas appearing in greater or lesser degree in all the predictive-control family are
basically [80]: explicit use of a model to predict the process output at future time
instants (horizon), calculation of a control sequence minimizing a certain objective
function subject to constraints and receding strategy so that at each instant the hori-
zon is shifted toward the future, which involves the application of the first control
signal of the sequence calculated at each step. Most of the MPC strategies applied
to the control of DCS are in adaptive, robust, or non-linear fields and include a feed-
forward term as part of the controller [34, 85]. Few implementations of MPC con-
trollers with fixed parameters have been reported in the literature (e.g. [74, 75, 85]).
In [366], a linear model predictive controller is developed to cope with the control
of the 30 MWe SEGS VI parabolic trough collector plant. A non-linear distributed-
parameter model is discretized and linearized obtaining a set of ordinary differential
equations (ODE) that are then used within an MPC framework including a state es-
timator. The differences between the collector outlet temperatures as predicted by
the linear model and the detailed model are multiplied by an observer gain and fed
back to the linear model to minimize the difference. The observer gain is calculated
as the discrete steady-state Kalman filter gain with the intention of minimizing the
mean-square error of the state estimate. For offset-free control, the set point used
in the receding horizon regulator has to be updated with respect to the measured
disturbance and the estimated difference between the collector outlet temperature
prediction and the measurement. The latter represents the second part of the inte-
gral action implementation. The target calculation is formulated as a mathematical
program to determine the new set point.

The most important applications to DSCF are: MPC adaptive control [74, 75,
83, 116, 117, 246, 308–310, 347, 366], MPC gain-scheduling control [34, 39, 84,
225], MPC robust control [77, 228, 291] and MPC non-linear control, including
NN and FL approaches [16–18, 40, 42, 76, 192, 297, 299, 344–346, 351, 352],
all these techniques we briefly summarized in the following section, based on the
Generalized Predictive Control (GPC) approach.
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Fig. 5.34 Block diagram of a model-based predictive controller (MPC) and MPC strategy

5.9.1 Generalized Predictive Control (GPC)

5.9.1.1 Internal Model

Most SISO plants, when considering operation around a particular set point and after
linearization, can be described by a controlled auto-regressive integrated moving
average model with an exogenous inputs (CARIMA) model accounting for non-
stationary disturbances:

A
(

z−1)y(k) = z−dB
(

z−1)u(k − 1) + T
(

z−1)e(k)

Δ
(5.28)

where u(k) and y(k) are the control and output sequence of the plant, d is the dead-
time of the system and e(k) is a zero mean white noise. A,B and T are polynomials
in the backward shift operator z−1 (see Chap. 4) and Δ = 1 − z−1. The polyno-
mial T (z−1) usually equals one in GPC formulations. To enhance robustness, the
T -polynomial is used as a design element, acting as a filter to attenuate the pre-
diction error caused by high-frequency unmodeled dynamics and unmeasured load
disturbances. If there are not modeling errors, the T -polynomial affects only the
disturbance rejection; it does not affect the algorithm’s tracking ability. T can thus
be used as a design parameter to increment robust stability [80, 326].

5.9.1.2 Cost Function

The quadratic cost function in the GPC algorithm accounts for the error between the
predicted trajectory and a prescribed reference, as well as for the control effort. This
cost function has the form

J = E

{

N2
∑

j=N1

δ(j)
[

ŷ(k + j | k) − r(k + j)
]2 +

Nu
∑

j=1

λ(j)
[

Δu(k + j − 1)
]2

}

(5.29)

where E{·} denotes expectation, ŷ(k + j | k) is an optimal system output prediction
sequence performed with data known up to discrete time k, Δu(k + j − 1) is a
future control increment obtained from cost function minimization, N1 and N2 are
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the minimum and maximum prediction horizons, Nu is the control horizon and δ(j)

and λ(j) are weighting sequences that penalize the future tracking errors and control
efforts along the horizons, respectively. The horizon and weighting sequences are
design parameters used as tuning knobs. The reference trajectory, r(k + j), can be
the set point or a smooth approximation from the current value of the system output
y(k) toward the known reference by means of a first-order system [80].

5.9.1.3 System and Performance Constraints and GPC Solution

MPC techniques enable constraints to be included in the algorithm during the design
stage. As stated above, the control increments calculated by the GPC strategy are
obtained by minimizing a quadratic function of the form

J = δ(y − r)T (y − r) + λΔuT Δu

where δ(j) = δ and λ(j) = λ for all j in the GPC cost function. The sequence
of future predictions y = [ŷ(k + 1 | k) . . . ŷ(k + N2 | k)]T consists of the free and
forced response y = GΔu + f, where Δu = [Δu(k) . . .Δu(k + Nu − 1)]T , matrix
G contains the system open-loop step response coefficients and f contains terms
that depend on past and present plant outputs and past inputs. By substituting the
sequence of future outputs in

J = 1

2
ΔuT HΔu + bT Δu + f0 (5.30)

with H = 2(δGT G + λI), bT = 2δ(f − r)T G and f0 = δ(f − r)T (f − r), the optimal
solution with no constraints is linear and given by Δu = −H−1b. When constraints
are taken into account, there is no explicit solution; a quadratic programming (QP)
problem must be solved using a quadratic cost function with linear inequality and
equality constraints of the form RΔu ≤ c and AΔu = a in the control increment
Δu. The different constraints considered are shown in Table 5.4 [80, 169], where Γ

is a N -dimensional vector (N being the receding horizon) the elements of which are
all equal to one and Υ is an N × N lower triangular matrix in which all elements
equal one. The GPC treatment of constraints is conceptually simple and can be
included systematically during the design process. An interactive tool, GPCIT, was
developed in [169] where all the GPC-related concepts can easily be understood,
also including closed-loop relationships.

5.9.2 Adaptive Generalized Predictive Control

One of the main reasons of the success of traditional PID controllers in the industry
is the easiness of their implementation and syntonization using in most cases cer-
tain heuristic rules, Ziegler–Nichols rules being the most commonly used in control
engineering practice. The development of suitable controllers to be implemented
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Table 5.4 Constraints in GPC [169]

Variable Linear constraint

Control signal amplitude
umin ≤ u(k) ≤ umax

Γ umin ≤ Υ Δu + u(k − 1)Γ ≤ Γ umax

Control signal increment
Δumin ≤ u(k) − u(k − 1) ≤ Δumax

Γ Δumin ≤ Δu ≤ Γ Δumax

Output signal amplitude
ymin ≤ y(k) ≤ ymax

Γymin ≤ GΔu + f ≤ Γymax

Envelope constraints
ymin(k) ≤ y(k) ≤ ymax(k)

GΔu ≤ ymax − f
ymax = [ymax(k + 1) . . . ymax(k + N)]
GΔu ≥ ymin − f
ymin = [ymin(k + 1) . . . ymin(k + N)]

Output overshoot y(k + j) ≤ γ r(k);
j = No1 . . .No2

GΔu ≤ Γ γ r(k) − f

Output monotone behavior
y(k + j) ≤ y(k + j + 1) if y(k) < r(k)

y(k + j) ≥ y(k + j + 1) if y(k) > r(k)

GΔu + f ≤ [0T ,G′]Δu + [y(k), f′],
G′ and f′ are the result of eliminating the
last row of G and f

Limit inverse response (NMP)
y(k + j) ≤ y(k) if y(k) > r(k)

y(k + j) ≥ y(k) if y(k) < r(k)

GΔu ≥ Γy(k) − f

Final state
y(k + N + 1) . . . y(k + N + m) = r

ym = [y(k + N + 1) . . . y(k + N + m)]T
ym = GmΔu + fm, GmΔu = rmfm

in the process industry is becoming an important motivation in a great amount of
research work [79]. In this section an adaptive generalized predictive controller is
presented. The adaptive controller has been developed by a method that makes use
of the fact that a generalized predictive controller using a quadratic function results
in a linear control law that can be described by a few parameters. These parame-
ters can be computed over the range of interest of the process parameters [75, 83].
A Ziegler–Nichols-type function which relates the generalized predictive-controller
parameters to the process parameters is used to obtain an approximation of the real
controller parameters. The method avoids the heavy computation requirement of
this type of controller. The method can be applied to processes that can be modeled
by the reaction curve method, that is, a wide range of processes in industry.

5.9.2.1 Application to the ACUREX DSCF

According to the method described in [79] and the requirements for self-tuning con-
trol, a first-order CARIMA model is used:

(

1 − az−1)y(k) = bz−1u(k − 1) + e(k)

Δ
(5.31)

This expression can easily be transformed into

y(k + 1) = (1 + a)y(k) − ay(k − 1) + bΔu(k − 1) + e(k + 1) (5.32)
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For simplicity, fixed values of the weighting sequences have been chosen (λ(j) = λ,
j = 1, . . . ,N2 −d and δ(j) = 1, j = N1, . . . ,N2). Taking into account the values of
the fundamental time constant and sampling period used for control purposes and
that the system considered has a dead-time of d = 1 sampling periods, values of
N1 = 2, N2 = 16 and Nu = 15 are chosen (notice that a lesser value of Nu could be
chosen, but in this case, the value of the sampling time allows high control horizons
to be used). The range of possible values of λ has been obtained via simulation
(3 ≤ λ ≤ 7). If λ diminishes faster controllers are obtained. Equation (5.32) can be
applied to obtain the expected value of y(k + j + 1):

ŷ(k + j + 1 | k) = (1 + a)ŷ(k + j | k) − aŷ(k + j − 1 | k)

+ bΔu(k + j − 1) (5.33)

If Eq. (5.33) is applied recursively for j = 1,2, . . . , i we get

ŷ(k + i + 1 | k) = Gi

(

z−1)ŷ(k + 1 | k) + Di

(

z−1)Δu(k + i − 1) (5.34)

where Gi(z
−1) is of degree 1 and Di(z

−1) is of degree i − 1.
If ŷ(k + i + 1 | k) is introduced in Eq. (5.29), J is a function of ŷ(k + 1 | k),

y(k), Δu(k + 14),Δu(k + 13), . . . ,Δu(k) and the reference sequence. Minimizing
J with respect to Δu(k),Δu(k + 1), . . . ,Δu(k + 14) leads to

M

⎡

⎢

⎢

⎣

Δu(k)

Δu(k + 1)
...

Δu(k + 14)

⎤

⎥

⎥

⎦

= P
[

ŷ(k + 1 | t)
y(k)

]

+ R

⎡

⎢

⎢

⎣

r(k + 2)

r(k + 3)
...

r(k + 16)

⎤

⎥

⎥

⎦

(5.35)

where M and R are of dimension 15 × 15 and P of dimension 15 × 2. Let us call q
the first row of matrix M−1. Then Δu(k) is given by

Δu(k) = qP
[

ŷ(k + 1 | t)
y(k)

]

+ qR

⎡

⎢

⎢

⎣

r(k + 2)

r(k + 3)
...

r(k + 16)

⎤

⎥

⎥

⎦

(5.36)

If the future references r(k + j) are unknown and are considered to be equal to the
current reference r(k), the control increment Δu(k) can be written as

Δu(k) = l1ŷ(k + 1 | k) + l2y(k) + l3r(k) (5.37)

where qP = [l1l2] and l3 =∑15
i=1 qi

∑15
j=1 rij .

Notice that if future references were known, l3 = qR would be a gain vector
multiplying future references. The coefficients l1, l2, l3, are functions of a, b, δ

and λ. If the GPC is designed considering the system to have a unit static gain, the
coefficients in (5.37) will only depend on δ and λ (which are supposed to be fixed)
and on the pole of the plant which will change for the adaptive-control case. Notice
that by doing this, a normalized weighting factor λ is used which should be corrected
accordingly for systems with different static gains. Most of all, for systems with a
static gain different from unity, the GPC can be obtained in this way by changing
coefficients in Eq. (5.37) accordingly.
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Fig. 5.35 Adaptive GPC control scheme [83]

The value ŷ(k+1 | k) is obtained by the use of the predictor described previously
(5.33). The control scheme proposed is shown in Fig. 5.35. The plant’s estimated
parameters (â, b̂) are used to compute the controller coefficients (l1, l2, l3) via the
adaptation mechanism. Notice that in this scheme, the series feedforward term de-
veloped in Chap. 4 is considered as part of the plant (the control signal is the set
point temperature for the feedforward controller instead of the HTF flow). This sig-
nal is saturated and filtered before its use in the estimation algorithm. The control
signal is divided by the estimated gain because the design has been performed pre-
suming a system with unitary static gain.

As suggested in [78, 83], the controller coefficients can be obtained by interpo-
lating in a set of previously computed values. The number of points of the set used
depends on the variability of the process parameters and on the accuracy needed.
The set does not need to be uniform and more points can be computed in regions
where the controller parameters vary substantially in order to obtain a better approx-
imation or to reduce the computer memory needed.

A set of GPC parameters (l1, l2, l3) were obtained for δ = 1, λ = 5 and N = 15.
The pole of the system has been changed with a 0.0005 step from 0.8 to 0.95, which
are values that guarantee the system stability if the parameter set estimation is not
accurate enough (the same procedure has been performed for different values of
λ between 3 and 7). Notice that owing to the fact that the closed-loop static gain
must equal the value unity, the sum of the three parameters equals zero. This result
implies that only two of the three parameters need to be known.

The curves shown in Fig. 5.36 correspond to the controller parameters l1, l2, l3
for the values of the pole mentioned above. A set of simple Ziegler–Nichols-type
functions which approximate the computed values of l1, l2 and l3 has been obtained
as follows. By looking at Fig. 5.36, it can be seen that the functions relating the
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Fig. 5.36 GPC controller
parameters for λ = 5, [83]

controller parameters to the process pole can be approximated by functions of the
form

li = k1i + k2i

a

(k3i − a)
, i = 1,2 (5.38)

The coefficients kji can be calculated by a least squares adjustment using the set of
known values of li for different values of a.

For the selected design parameters, the controller coefficients are given by

l1 = 0.4338 − 0.6041â/(1.11 − â)

l2 = −0.4063 + 0.4386â/(1.082 − â)

l3 = −l1 − l2

(5.39)

These expressions give a very good approximation to the true controller parame-
ters and fit the set of computed data with a maximum error of less than 0.6% of the
nominal values for the range of interest of the open-loop pole.

In each sampling period k, the adaptive controller consists of the following steps:

1. An estimation of the parameters of a linear model by measuring the inlet and
outlet values of the process.

2. The adjustment of the parameters of the controller using expressions obtained
for li (5.39).

3. The computation of ŷ(k + d | k) using the predictor (5.33).
4. The calculation of the control signal using (5.37).
5. The supervision of the correct working of the control.

5.9.2.2 Plant Results

When operating with the real plant, the objective is to obtain a response as quickly as
possible, trying to avoid oscillations due to the excitation of the resonance modes or
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to a wrong controller parameter tuning. Due to the fact that simplified linear models
have been used at the design stage of the control strategy, when a fast response
is required, oscillations may appear in the outlet temperature due to unmodeled
dynamics.

The disturbance rejection capabilities of this controller are similar to those of
controllers analyzed in Chap. 4 (notice that in all these control schema the feedfor-
ward controller in series with the plant has been used).

As an example, Fig. 5.37 shows the outlet HTF temperature and reference tem-
perature when controlling the plant with an adaptive GPC with a value of λ = 5.
As can be seen, quite a fast response is obtained (rise time of about 6 min). The
evolution of the direct solar irradiance in this test can be seen in the same figure. It
corresponds to a day with scattered clouds. The HTF flow changed from 4.5 l/s to

Fig. 5.37 Test with the
adaptive GPC controller
(10/03/92) [83]
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Fig. 5.37 (continued)

7 l/s and the controller was able to maintain good behavior of the system controlled
in spite of changes in the process dynamics.

Figure 5.38 shows the evolution of the controller parameters l1 and l2 (l3 is lin-
early dependent on l1 and l2). As can be observed, the controller parameters follow
the evolution of the HTF flow, which is the variable that mainly dictates the behavior
of the system. More simulations and real results including constraints can be found
in [85].

5.9.3 Gain Scheduling Generalized Predictive Control

The working principle of basic gain-scheduling controllers is simple and has been
studied in Sect. 5.3. It is based on the possibility of finding auxiliary variables which
guarantee a good correlation with process changing dynamics. In this way, it is
possible to reduce the effects of variations in the plant dynamics by adequately
modifying the controller parameters as functions of auxiliary variables. In the case
of DSCF, the dynamics mainly depend on the HTF flow if the series feedforward
controller is considered as a part of the plant, so that this variable can be used as
the gain-scheduling auxiliary variable. Different sets of model parameters can be
found for several operating conditions dictated by the volumetric flow so that a ta-
ble of controller parameters can be computed for the defined operating points (in this
case using GPC methodology). When coping with gain-scheduling control schema,
stability and performance of the controlled system is usually evaluated by simula-
tion studies [262]. A crucial point here is the transition between different operating
points. In those cases in which non-satisfactory behavior is obtained, the number of
inputs to the table of controller parameters must be augmented. As has been men-
tioned, it is important to point out that there is no feedback from the behavior of
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Fig. 5.38 Test with the
adaptive GPC controller
(10/03/92), [83]

the system controlled to the controller parameters. Thus, this control scheme is not
considered as an adaptive one but as a special case of a non-linear controller.

The control structure proposed is shown in Fig. 5.39. As can be seen, the output
of the generalized predictive controller is the input (Trff ) of the series compensation
controller which also uses the solar irradiance and inlet HTF temperature to compute
the value of the HTF flow which is sent to the pump controller.

The controller parameters were obtained from a linear model of the plant. Data
for identification purposes was obtained from pseudo random binary sequence
(PRBS) tests (see Sect. 4.3.3.2), so that the degrees of the polynomials A and B

and the delay (of a CARIMA plant model) that minimizes Akaike’s Information
Theoretic Criterion (AIC) were found to be na = 2, nb = 8 and d = 0. By a least
squares estimation algorithm, the following polynomials were obtained using input–
output data of one test with HTF flow around 6 l/s (which Bode diagram is shown
in Fig. 4.5):
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Fig. 5.39 Control scheme using high-order models [84]

A
(

z−1)= 1 − 1.5681z−1 + 0.5934z−2

B
(

z−1)= 0.0612 + 0.0018z−1 − 0.0171z−2 + 0.0046z−3

+ 0.0005z−4 + 0.0101z−5 − 0.0064z−6 − 0.015z−7 − 0.0156z−8

The tuning knobs selected in the GPC algorithm were N1 = 1, N2 = Nu = 15, λ ∈
[6,7]. Following the design procedure of the linear GPC methodology, the controller
parameters corresponding to λ = 7 were obtained (Table 5.5).

The control law can be written by

Trff (k) =
2
∑

i=0

l[i]Tout(k − i) +
9
∑

j=1

l[j + 2]Trff (k − j) + l[12]Tref (k) (5.40)

The behavior of this fixed-parameter controller was analyzed with these values,
in the operation with the distributed solar collector field [85], showing good results
around the design operating point but when operating conditions in the field change,
the dynamics of the plant also change and the controller should be redesigned to
cope with control objectives.

Table 5.5 Fixed GPC controller coefficients

l[0] l[1] l[2] l[3] l[4] l[5] l[6]

−4.7091 6.8215 −2.4483 1.0553 0.0231 −0.0631 0.0311

l[7] l[8] l[9] l[10] l[11] l[12]

0.0161 0.0629 −0.0084 −0.0526 −0.0644 0.3358
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Fig. 5.40 Frequency
response of the field in
different operating conditions
[84]

The dynamics of the field are mainly dictated by HTF flow which depends on
the general field operating conditions: solar irradiance, reflectivity, HTF inlet tem-
perature, ambient temperature and outlet HTF temperature. Figure 5.40 shows the
frequency response of the non-linear distributed-parameter dynamic model of the
field in series with the feedforward controller, obtained by a spectral analysis of the
input–output signals of the model at different operating points (PRBS signals were
used for the input). As can be seen, the frequency response changes significantly for
different operating conditions. The steady-state gain changes for different operating
points, as well as the location of the resonance modes.

Taking into account the frequency response of the plant and the different linear
models obtained from it, it is clear that a self-tuning controller based on this type of
model is very difficult to implement [85].

With the input–output data used to obtain the frequency responses shown in
Fig. 5.40 and using the method and type of model previously described for the case
of a high-order fixed-parameter controller, process (a[i] and b[i]) and controller
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Table 5.6 Coefficients of
polynomials A(z−1) and
B(z−1)

HTF flow [l/s] q1 q2 q3 q4

Model parameters

a[1] −1.7820 −1.438 −1.414 −1.524

a[2] 0.81090 0.5526 0.5074 0.7270

b[0] 0.00140 0.0313 0.0687 0.0820

b[1] 0.03990 0.0660 0.0767 0.0719

b[2] −0.0182 −0.0272 −0.0392 −0.0474

b[3] −0.0083 0.0071 0.0127 0.0349

b[4] 0.00060 0.0118 0.0060 0.0098

b[5] −0.00001 0.0138 −0.0133 −0.0031

b[6] 0.00130 0.0098 −0.0156 0.0111

b[7] 0.00160 0.0027 −0.0073 0.0171

b[8] 0.00450 −0.0054 0.0037 0.0200

(l[i]) parameters were obtained for several HTF flow conditions (q1 ≈ 2.8 [l/s],
q2 ≈ 5.2 [l/s], q3 ≈ 7.9 [l/s] and q4 ≈ 9.3 [l/s]), using different values of the weight-
ing factor λ. Tables 5.6 and 5.7 contain model and control parameters, respectively,
for a weighting factor λ = 6. A value of λ = 7 has also been used to obtain responses
with less overshoot.

The controller parameters which are applied in the real operation are obtained by
using a linear interpolation with the data given in Table 5.7. It is important to point
out that to avoid the injection of disturbances during the controller gain adjustment,

Table 5.7 GPC controller coefficients in several operating points (λ = 6)

HTF flow [l/s] q1 q2 q3 q4

Controller coefficients

l[0] −9.5455 −2.7794 −2.6527 −2.0142

l[1] 16.2223 3.84390 3.48440 3.02280

l[2] −7.0481 −1.4224 −1.1840 −1.3603

l[3] 0.82620 0.83010 0.89360 0.87390

l[4] 0.36470 0.16410 0.19600 0.12480

l[5] −0.1575 −0.0822 −0.0869 −0.1098

l[6] −0.0793 0.00880 0.03980 0.05070

l[7] −0.0016 0.02480 0.02630 0.00460

l[8] −0.0070 0.03390 −0.0239 −0.0197

l[9] 0.00560 0.02610 −0.0352 0.01080

l[10] 0.00980 0.00830 −0.0184 0.02730

l[11] 0.03910 −0.0139 0.00860 0.03740

l[12] 0.37130 0.35800 0.35230 0.35170
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Fig. 5.41 Test with the gain scheduling GPC controller; λ = 7 (21/03/93) [84]

it is necessary to use a smoothing mechanism of the transition surfaces of the con-
troller gains. In this case, a linear interpolation in combination with a first-order fil-
ter has been used, given a modified flow qf (k) = 0.95qf (k − 1) + 0.05q(k), being
qf (k) the filtered value of the volumetric flow in discrete time k used for controller
parameter selection. The linear interpolation has also been successfully applied by
[194]. Another kind of gain-scheduling approach can be obtained by switching from
one controller parameter to another depending on the flow conditions, without in-
terpolating between controller parameters. The set of controller parameters c can
be obtained by choosing between one of the sets ci in Table 5.7, related to flow
conditions qi (i = 1,2,3,4):

if
qi−1 + qi

2
< q ≤ qi + qi+1

2
then c = ci, i = 2,3

if q ≤ q1 then c = c1

if q ≥ q4 then c = c4

The optimal realization of the gain-scheduling controller consists of calculating the
controller parameters in a number of operating conditions and taking the values
of the controller coefficients to be constant among different operating conditions,
generating a control surface based on an optimization criterion which takes into
account the tracking error and control effort. It is evident that if the procedure is
applied at many working points, an optimum controller will be achieved for these
operating conditions if there is a high correlation between the process dynamics
and the auxiliary variable. The problem of this solution is that the design process
becomes tedious. This is one of the main reasons for including a linear interpolation
between the controller parameters.

As examples of the application of this technique to the ACUREX DSCF, Fig. 5.41
shows the results of a test corresponding to a day with sudden changes in the solar
irradiance caused by clouds. As can be seen the controller (designed with λ = 7) is
able to handle different operating conditions and the sudden perturbations caused
by the clouds.
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Fig. 5.42 Test with the
gain-scheduling GPC
controller; λ = 6 (29/05/95)
[84]

Figures 5.42 and 5.43 show the results obtained in the operation on a day with
normal levels of solar irradiance but in which a wide range of operating conditions
is covered (HTF flow changing between 2 and 8.8 l/s) by performing several set
point changes. At the start of the operation there is an overshoot of 6°C, due to the
irregular conditions of the HTF flow through the tubes because the operation starts
with a high temperature level at the bottom of the storage tank. After the initial

Fig. 5.43 Test with the gain scheduling GPC controller; λ = 6 (29/05/95) [84]
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transient, it can be observed that the controlled system responds quickly to set point
changes in the whole range of operating conditions with a negligible overshoot.
The rise time is about 6 min with a set point change of 15°C, as can be seen in
Fig. 5.42 (in which a zoom of the response is presented), with smooth changes in
the control signal, constituting one of the best controllers implemented at the plant.
It is important to note that the controller behaves well even with great set point
changes. In Fig. 5.43, the evolution of one of the thirteen controller parameters
(l[0]) is presented to show its variation in function of the operating conditions.

Figure 5.44 shows a test in which the solar desalination plant was connected to
the field. The HTF coming from the desalination plant produced a decrease in the
values of the temperature of the HTF entering the field. In this case, a decrease of
60°C was produced and the controller was able to cope with it. The outlet HTF
temperature suffered an oscillation of less than 10°C. Moreover, the solar irradiance
changes considerably and this disturbance was rejected by the control scheme. An
operation with a highly constant temperature level (adequate for operating with the
desalination plant) can be achieved. A change in the reflectivity value with which
the feedforward controller calculates the adequate HTF flow was produced in order
to analyze the controller robustness. At 10:50 am, the value of programmed reflec-
tivity changed from 0.8 to 0.72. The transients generated were very small because
of the corrections performed by the gain scheduling of the controller. More tests and
simulations including disturbances and constraints can be found in [85].

5.9.4 Robust Adaptive Model Predictive Control with Bounded
Uncertainties

In Sect. 5.7, classical robust control techniques have been commented on within
the framework of control of DSCF, aimed at design controllers, which preserve sta-
bility and performance in spite of model inaccuracies or uncertainties. There are
different approaches for modeling uncertainties, mainly depending on the type of
technique used for designing the controllers. The most widespread types are fre-
quency response uncertainties and transfer function parametric uncertainties. Most
of the approaches assume that there is a family of models and that the plant can be
exactly described by one of the models belonging to the family. That is, if the family
of models is composed of linear models, the plant is also linear.

In [228] a robust MPC is developed for tracking piece-wise constant references
applied to the ACUREX DSCF. The real plant is assumed to be modeled as a linear
system with additive bounded uncertainties on the states. Under mild assumptions,
the proposed controller can steer the uncertain system in an admissible evolution
to any admissible steady state, that is, under any change of the set point. This al-
lows constant disturbances to be rejected, compensating for their effect by changing
the set point. The feasibility, stability and asymptotical convergence of the proposed
controller for any admissible set point is achieved by adding an artificial steady state
as decision variable, penalizing the deviation between this artificial steady state and



5.9 Model-Based Predictive Control (MPC) 189

Fig. 5.44 Test with the gain-scheduling GPC controller, λ = 6 (12/06/95), [84, 85]
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the real one in the cost function and using an invariant set for tracking as a terminal
constraint. Robust constraint satisfaction is guaranteed by the tube-based approach;
a nominal control problem is defined whose solution (a trajectory) defines the center
of a tube; and where the cross-section of the tube is an invariant set. The state trajec-
tory of the controlled system will be forced to lie in this tube by the control. At each
instance, a new tube is determined by solving a control optimization in which, the
decision variables are the initial state of the nominal system, the control sequence
over a finite horizon and the artificial steady state.

This section presents the application of a robust adaptive-control scheme which
uses a robust identification mechanism combined with a finite receding horizon con-
troller to cope with the process dynamics with bounded uncertainties [77]. Uncer-
tainties about the prediction capability of the model can be defined. The uncertain-
ties will be considered to affect the transfer function parameters and the 1-step ahead
prediction equation.

The robust controller is used in connection with a robust identification technique,
which consists of determining membership sets for the parameter of the plant. Sev-
eral robust identification methods have been proposed in the literature. These meth-
ods can be classified into three kinds, depending on the form of the membership
sets: polyhedric, ellipsoidal and hypercubic methods. An estimation method based
on a hypercubic parameter uncertainty set will be used here [252].

The key idea of the controller is that the identification algorithm determines (and
progressively reduces) the uncertainty level about plant parameters. These uncer-
tainty levels are used by a robust model predictive controller which optimizes the
objective function for the worst possible case of the uncertainties.

5.9.4.1 Robust Identification Mechanism

Consider a SISO process whose behavior is dictated by the following equation:

y(k) =
na
∑

i=1

aiy(k − i) +
nb
∑

i=0

biu(k − d − i) + e(k) (5.41)

where y(k) and u(k) are the output and input of the system, respectively, at discrete-
time instant k; e(k) is the modeling error, which is unknown but bounded (UBB);
ai and bi are the parameters of the plant and d is the delay time. Let us define ϕ(k)

and θ as

ϕ(k) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

y(k − 1)
...

y(k − na)

u(k − d)

u(k − d − 1)
...

u(k − d − nb)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; a =

⎡

⎢

⎢

⎣

a1
a2
...

ana

⎤

⎥

⎥

⎦

; b =

⎡

⎢

⎢

⎣

b0
b1
...

bnb

⎤

⎥

⎥

⎦

; θT = [aT bT
]
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with n = na + nb + 1; ϕ(k), θ ∈ R
n; a ∈ R

na ; b ∈ R
nb+1 so that Eq. (5.41) can be

rewritten as

y(k) = ϕT (k)θ + e(k) (5.42)

The modeling UBB errors are defined by

emin ≤ e(k) ≤ emax (5.43)

and taking into account Eq. (5.41) the fundamental inequality of the systems with
bounded uncertainties can be written:

y(k) − emax ≤ ϕT (k)θ ≤ y(k) − emin (5.44)

This relation implies that at each sampling instant k and after a new output is known,
two hyperplanes are generated in R

n and the parameter vector θ belongs to the
region included between both hyperplanes. In this way, after ι sampling times, a set
S(ι), which is delimited by the ι pairs of hyperplanes, will be generated. This set
S(ι) must be consistent with the known error bounds (5.43) and the measurements
(5.41).

S(ι) = {θ/y(k) − emax ≤ ϕT (k)θ ≤ y(k) − emin, k = 1, . . . , ι
}

When the number of measurements is too large, S(ι) becomes too complex to be
used. In this case, S(ι) can be approximated by a hypercube. The determination
of this hypercube, which must include the set S(ι), is carried out by applying the
method proposed in [256]. This method has three steps:

1. Make P(0) the initial hypercube, defining its vertices vi(0), i = 1, . . . ,2n, which
must be large enough to include S(ι), ∀ι ≥ 0.

2. Acquire y(ι) and calculate ϕ(ι).
3. Determine the components of the vertices of the geometrical form resulting from

the intersection of the hypercube P(ι−1) and the two new hyperplanes. Then the
hypercube P(ι) is determined by the maxima and minima of the components of
the previous vertices. Let V(ι) be the matrix that includes the components of all
vertices of the geometrical form resulting from the intersection of the hypercube
P(ι − 1) and the two new hyperplanes generated. This matrix has n columns but
its number of rows is variable at each sampling instant. Then, if rv is the number
of rows of V(ι):

P(ι) = {θ/θ
j
min(ι) ≤ θj ≤ θj

max(ι), j = 1, . . . , n
}

(5.45)

with θ
j
min(ι) = mini v

j
i (ι) and θ

j
max(ι) = maxi v

j
i (ι), i = 1, . . . , rv where v

j
i (ι) is

the j th component of the vertex vi(ι); θ
j
min(ι) is the minimum of the j th compo-

nent of θ and θ
j
max(ι) is the maximum of the j th component of θ .

By using this robust identification mechanism the uncertainty level about plant pa-
rameters can be progressively reduced.
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5.9.4.2 Robust Adaptive Model Predictive Control

In MPC techniques, the usual way of operating when considering a stochastic type
of uncertainty is to minimize a function J for the most expected situation; that is,
supposing that the future trajectories are going to be the future expected trajectories
(as when using Eq. (5.29)). When bounded uncertainties are considered explicitly,
bounds on the predictive trajectories can be calculated and it would seem that a
more robust control would be obtained if the controller were to try to minimize the
objective function for the worst situation. That is, by solving the following min–max
problem:

min
u

max
θ ,e

J (θ , e,u) (5.46)

subject to:

(1) emin ≤ e(k + j) ≤ emax, j = d, . . . , d + N − 1
(2) θ ∈ P(k)

(3) umin ≤ u(k + j) ≤ umax, j = 0, . . . ,N − 1

Define

u =

⎡

⎢

⎢

⎣

u(k)

u(k + 1)
...

u(k + N − 1)

⎤

⎥

⎥

⎦

, e =

⎡

⎢

⎢

⎣

e(k + d)

e(k + d + 1)
...

e(k + d + N − 1)

⎤

⎥

⎥

⎦

, θ∗ =
[

θ

e

]

u, e ∈ R
N, θ∗ ∈ R

N+n

where θ∗ is the vector of generalized uncertain parameters and N is the prediction
horizon. If we take into account that the error vector e must be included in the error
hypercube Ξ , which is defined by the bounds emin and emax, then we can define the
generalized hypercube T(k) as

T(k) = {θ , e: θ ∈ P(k), e ∈ Ξ
}

(5.47)

Then the min–max problem (5.46) can be rewritten as

min
u∈U

max
θ∗∈T(k)

J
(

θ∗,u
)= min

u∈U
J ∗(u) with J ∗(u) = max

θ∗∈T(k)
J
(

θ∗,u
)

(5.48)

The function to be minimized J ∗(u) is the maximum of a quadratic norm that mea-
sures how well the process output follows the reference trajectories. Let us consider
a finite horizon quadratic criterion

J
(

θ∗,u
)=

N2
∑

j=N1

(

y(k + j | k) − r(k + j)
)2 + λ

Nu
∑

j=1

(

Δu(k + j − 1)
)2 (5.49)

where r = [r(k + d), . . . , r(k + d + N − 1)]T is a vector containing the future ref-
erence sequences and y(k + j | k) is the worst case prediction output, taking into
account that the future sequence error {e(k + d), . . . , e(k + d +N − 1)} is evaluated
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in the vertices of the hypercube Ξ . Other types of objective function have been used
in literature. In [90] a ∞–∞ norm is used while in [4] a 1–∞ norm is proposed.

On the other hand, we define the following matrices:

Ga =

⎡

⎢

⎢

⎣

g(1) 0 · · · 0
g(2) g(1) · · · 0

...
...

. . .
...

g(N) g(N − 1) · · · g(1)

⎤

⎥

⎥

⎦

, Ga ∈R
(N,N)

g(i) =
min(i−1,na)
∑

j=1

a(j)g(i − j)

g(1) = 1; ϑ = [ϑy ϑu IN ]; ϑ ∈ R
(N,n+N)

Matrix ϑy depends on past output values {y(k + d − 1), . . . , y(k + d − na)},
ϑu is a matrix depending on past and future input values {u(k + N − 1), . . . ,

u(k), . . . , u(k − nb)} and IN is the identity matrix of order N . In this way, if the
prediction Eq. (5.41) is used, then

y =

⎡

⎢

⎢

⎣

y(k + d)

y(k + d + 1)
...

y(k + d + N − 1)

⎤

⎥

⎥

⎦

= Gaϑθ∗ (5.50)

Equation (5.49) can now be written as

J
(

θ∗,u
)= (Gaϑθ∗ − r

)T (Gaϑθ∗ − r
)+ Ju with Ju = λ

N
∑

j=1

(

Δu(k + j − 1)
)2

(5.51)

The function J (θ∗,u) can be expressed as a quadratic function of the parameters
bi , i = 0, . . . , nb and the errors e(k + d + j), j = 0, . . . ,N − 1, for each value of
the vector u:

J
(

θ∗,u
)= 1

2
θ∗T Hθ (a)θ∗ + qT

θ (a)θ∗ + pθ (5.52)

where the matrix Hθ (a) and the vector qθ (a) depend on the parameters ai , i =
1, . . . , na . The Hessian matrix of function J (θ∗,u) with respect to parameters b
and e is H′

θ (a) = 2(Gaϑ
′)T (Gaϑ

′), which is a positive semidefinite matrix, and
where ϑ ′ = [ϑuIN ]. Since matrix H′

θ (a) is positive semidefinite, function J (θ∗,u)

is convex in the hypercube of the parameters b and e [30] and we can assume the
maximum of J (θ∗,u) will be reached on one of the vertices of the hypercube of the
parameters b and e.

For a given u the maximization problem is solved by determining which of the
2(N+nb+1) vertices of the hypercube of b and e produces the maximum value of
J (θ∗,u). This operation is carried out by evaluating J (θ∗,u) at all the 2(N+nb+1)

vertices of the hypercube of b and e and by looking for the maximum of J (θ∗,u)

at an interior point of the hypercube of a, due to the convexity of J (θ∗,u) with
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respect to parameters a is not guaranteed. Also the maximum of J (θ∗,u), at an
interior point of the hypercube of a, can be found by applying a grid of precision
pna because of the application of a robust identification algorithm, which yields a
very small hypercube at a. If a finite truncated impulse model is used the convexity
of J (θ∗,u) is guaranteed with respect to all the parameters [4, 90].

A method was presented in [392], which looks for the maximum of J at the ver-
tices of the hypercube of the predictor parameters. However, there are N(N +n+1)

predictor parameters and therefore the hypercube of the predictor parameters has
2N(N+n+1) vertices. On one hand, this algorithm can be too conservative because
there are vertices of the hypercube of the predictor parameters that do not corre-
spond to the vertices of the hypercube of the real parameters and on the other hand,
when N is big the amount of computation required becomes too large. When na is
small and N big, the algorithm explained here can be faster than the above method.

The prediction vector can be written as

y = Guu + f (5.53)

where matrix Gu depends on parameter vector θ and vector f depends on θ and past
values. In this way, Eq. (5.49) can now be expressed as

J
(

θ∗,u
)= (Guu + f − r)T (Guu + f − r) + Ju (5.54)

where Ju = λ(Mu − m)T (Mu − m) with

M =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

...

0 0 · · · −1 1

⎤

⎥

⎥

⎥

⎥

⎦

, m =

⎡

⎢

⎢

⎣

u(k − 1)

0
...

0

⎤

⎥

⎥

⎦

, M ∈R
(N,N), m ∈R

N

Thus, Eq. (5.54) can now be rewritten as

J
(

θ∗,u
)= 1

2
uT Huu + qT

u u + pu (5.55)

with

Hu = 2
(

GT
u Gu + λMT M

)

qu = 2
[

GT
u (f − r) − λMT m

]

pu = (f − r)T (f − r) + λmT m

where Hu = Hu(θ∗),qu = qu(θ∗) and pu = pu(θ∗). Note that J (θ∗,u) is a
quadratic function of u.

It can easily be seen that function J ∗(u) is a piece-wise quadratic function of u.
Let us divide the u domain U into different regions Up so that u ∈ Up if the max-
imum of J (θ∗,u) is attained for the vertex θ∗

p (note that θ∗
p is only a vertex with

respect to vectors b and e). For region Up the function J ∗(u) is defined by

J ∗(u) = 1

2
uT Hu

(

θ∗
p

)

u + qu
(

θ∗
p

)T u + pu
(

θ∗
p

)

(5.56)
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The Hessian matrix of function J ∗(u), Hu(θ∗
p) can be ensured to be positive definite

by choosing a value of λ > 0. This implies that function J is strictly convex and
that there are no local optimal solutions other than the global optimal solution [30].
These results imply that the maximum function has no local optimal minimum other
than the global optimal minimum. In this way, it can be ensured that the solution of
the min–max problem is unique and it is the minimum of function J ∗(u). One of the
main problems of numerical optimization, the existence of local minima, is avoided
and any non-linear optimization method can be used to solve the problem.

5.9.4.3 Application to the ACUREX DSCF

This method was applied in the ACUREX DSCF. The model chosen to implement
the algorithm has been a simplified one obtained from the characterization of the
step response of the plant (Type B Model including the series feedforward con-

troller, Eq. (4.48)), given by GB(z−1) = z−1 b0z
−1+b1z

−2

1−az−1 . In [85], simulation studies
were carried out to analyze the performance of the technique, varying the static gain
within the range [0.9 1.2] and the pole (a) within [0.8 0.95]. An analysis of a large
number of tests at the real plant indicated that the maximum level of uncertainty
for the UBB errors is about emin = −0.5 and emax = 0.5. The design values chosen
for the robust adaptive GPC controller were: weighting factor λ = 15, prediction
and control horizons N1 = 1, N2 = Nu = 7. With these values of the tuning knobs,
the computational effort was quite high (the number of vertices to be analyzed was
2N(N+n+1) = 270 and applying a grid of precision p = 5 results in 1280 vertices)
to allow a real time implementation of the algorithm [85] (at the time of the tests,
nowadays, there are more efficient algorithms and computing facilities to implement
the min–max approach).

In the real tests, in order to diminish the computational effort required to imple-
ment the robust adaptive controller, parameter a was fixed at a value of 0.85. Pa-
rameters b0 and b1 may change between limits chosen to take into account the max-
imum and minimum value of the static gain. These values were 0.14 ≤ b0 ≤ 0.16,
−0.005 ≤ b1 ≤ 0.005, which produce 0.9 ≤ K ≤ 1.06. Changes in the gain of the
process and delay time (the zero acts as a Padé approximation of a non-integer delay
time [82]) are therefore taken into account. In this case, the design values chosen
were: λ = 5, N1 = 1, N = N2 = 4, emin = −0.5, and emax = 0.5. A gradient method
was used to find the optimal constrained control sequence. The problem could be
solved in real time because only two parameters (b0, b1) were identified and a small
control horizon (N = 4) was used. Notice that to calculate J ∗(u) requires the com-
putation of a quadratic function at p · 2N+nb+1 points.

Figure 5.45 shows the evolution of the outlet temperature when controlling the
plant with the proposed control scheme. The starting phase has been carried out
using a fixed-parameter GPC (a = 0.85, b0 = 0.15 and b1 = 0) to avoid a large
overshoot. As can be seen, the response is slow and takes a long time to reach the
first set point. The inlet HTF temperature changes substantially during this phase,
because the field had been out of operation for a long period before this test. After
this phase, a change in the set point is performed, freezing the evolution of the
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Fig. 5.45 Test carried out with the robust adaptive GPC controller (20/10/95) [77]

limits of b0 and b1, as can be seen in the same figure. The inlet HTF temperature
changes at this point due to non-uniformities in the storage tank. The outlet HTF
temperature shows a considerable offset because of the increase of the inlet HTF
temperature and the increase of solar irradiance according to its daily cycle. After
this intermediate phase of the test, the set point value is augmented 20°C to reach
the final operating point. The limits of the polytope are opened up to allow the
robust identification mechanism to choose the correct parameters corresponding to
the dynamics of the new operating point. As can be seen, the evolution of the limits
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of b0 and b1 is such that the volume of the hypercube decreases with time and the
level of uncertainty of the closed-loop system decreases quickly. Some disturbances
due to changes in solar irradiance are produced between half past twelve and half
past two. The feedforward controller diminishes the effect of these disturbances,
but some large changes of about 200 W/m2 affect the outlet HTF temperature. The
controller reaches the set point again before the next big disturbances are produced.

5.9.5 Non-linear MPC Techniques (NMPC)

Because the majority of controlled processes have inherently non-linear behavior,
there are incentives to develop MPC control strategies based on non-linear pro-
cess models, both obtained from physical principles or data, in this last case mainly
black-box models based on ANN (see [203, 204] for a comprehensive review of
applications of ANN in renewable energy systems). In these cases, a non-linear pro-
gramming problem must be solved in real time at every sampling period instead
of the quadratic linear problem typical of standard MPC. The main difficulties of
these methods are that the theoretical analysis of properties of the closed-loop such
as stability and robustness is very complicated because of the appearance of non-
linear models in the formulation (application or simulation examples are, therefore,
usually used which do not guarantee the generality of the results or are not represen-
tative of them) and that if the solution of solving a non-linear programming problem
at each sampling period is adopted, it is difficult to guarantee the convergence of the
algorithm in an adequate lapse of time.

In [76] a MPC control scheme is presented where the response of the plant is
divided into the forced and free terms. This division allows the use of a linear model
for the forced response, from which the optimal sequence of control actions is ob-
tained without a need for numerical methods. Also, the effect of disturbances is
taken into account, thanks to a non-linear model of the free response. In [34] a non-
linear model based on first principles is used to obtain the free response of the plant
and in [18] an ANN. In [297–299] a non-linear model-based predictive controller
(NMPC) is developed using a simplified mathematical model of the plant and a
search strategy minimizing a cost function for a given prediction horizon. The pa-
rameters of the non-linear model are estimated on-line in order to compensate for
time-varying effects and modeling errors. In [319], an improved FL strategy is pro-
posed based on the simplified bilinear models developed in Sect. 4.3.4.2 and used
in a basic FL approach in Sect. 5.8.1. The benefits of input–output FL are improved
using a FSP-MPC algorithm [275] with embedded variable constraints mapping
in order to take advantage of: (i) using a linear control without loosing the intrin-
sic non-linearities typical of thermal power plants; (ii) including input amplitude
constraint handling capabilities due to control signal saturations induced, for exam-
ple, by hard irradiance disturbances or plant start-up; and (iii) avoiding unstable or
highly oscillatory responses caused by plant–model mismatch.

In [71] a non-linear optimal feedforward control of the solar collector field of
an air conditioning plant is developed. The controller operates in an MPC frame-
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work, without feedback and constraints, to highlight feedforward controller perfor-
mance gains. To reduce the computational complexity, state extension is avoided
when modeling the time delays. The motivation for this is provided by a proof of
the equivalence between state extension and direct prediction in optimal control
for non-linear multiple-input multiple-output (MIMO) systems with time delays in
disturbances and controls. The solar collector controller also uses flow-dependent
sampling to reduce the time variation of the delays. To obtain an accurate model for
feedforward controller design, a black-box recursive prediction error identification
algorithm was used for modeling the non-linear plant using measured data [70]. Ex-
perimentally, accurate feedforward control was obtained when the controller design
was tested by simulation, using measured disturbances from the plant. About two-
third of the control effort needed appears to be available by feedforward control only.
In order to evaluate the algorithms under difficult conditions, the evaluation was per-
formed on data obtained during a day with partly cloudy weather, this caused large
flow variations and consequently large time delay variations.

In [146] an NMPC extended with a DTC is proposed to control a DSCF using
data of the ACUREX field while in [372] the approach is applied to the collector
field of a solar desalination plant. This non-linear controller uses the non-linear ex-
tended prediction self-adaptive-controller (NEPSAC) algorithm. A non-linear gray-
box model of the plant, based on first principles (Eqs. (4.1) and (4.2)) and tuned
according to real measurements, is used in the simulation tests, including a model
of the transport delay given by Eq. (4.14) [274]. The resulting controller is compared
to other architectures based on DTC, showing very good performance for reference
tracking and for disturbance rejection.

In [301], the temperature control of DSCF which employs molten salt as HTF
is developed, based on a hybrid adaptive-control scheme and a time-warped pre-
dictive controller, where the HTF temperature can be effectively controlled within
prescribed constraints and also in presence of uncertainty in model parameters
and faults on collectors. This work illustrates how the uncertainty on the local
flow rate can be incorporated into a distributed state-space model of the loop.
Then a novel adaptive-control scheme is formulated in order to accomplish the re-
quirements of the distributed individual control for molten salt solar plants. This
scheme relies on the coupling of a non-linear filter with a time-warped controller.
The state estimation and the parameter identification problems are addressed by
a Dual Unscented Kalman Filter, designed on the basis of a constant sampling
time distributed-parameter bilinear model. A variable sampling time Lagrangian
model can be constructed with the same parametrization of the Eulerian one. The
Lagrangian approach provides an exact linearization of the plant dynamics, so it
is suitable for the design of a predictive controller. The prediction of the opti-
mal control action is performed in a time-warped time scale, whereas the control
moves can be calculated whenever a new estimate of system state and parame-
ters is available. In this way the cycle time of the controller is made equal to the
arbitrary sampling period of the filter. In [155] a non-linear adaptive constrained
MPC scheme is presented where the methodology exploits the intrinsic non-linear
modeling capabilities of non-linear state-space ANN and their on-line training by
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Fig. 5.46 Non-linear prediction control scheme [76]

means of an unscented Kalman filter. In [154, 155] another non-linear adaptive con-
strained MPC scheme with steady-state offset compensation is developed and im-
plemented.

5.9.5.1 GPC Scheme with Non-linear Prediction of the Free Response

MPC of non-linear processes leads to non-linear and usually non-convex optimiza-
tion problems which are computationally very demanding. This section describes a
method which makes use of the fact that although the plant characteristics change
from operating point to operating point, linearity can be assumed in the neigh-
borhood of a particular operating point. The GPC control algorithm is modified
to include a kind of free response obtained from a non-linear model at the opti-
mization stage of the algorithm. This control strategy allows for including the ef-
fect of measurable disturbances within a GPC framework [76]. This scheme does
not use the series feedforward controller developed in Chap. 4, but includes the
disturbance dynamics within a non-linear process model used for prediction pur-
poses.

The control structure can be seen in Fig. 5.46. A non-linear model of the plant
such as that given by Eqs. (4.1) and (4.2) is used to generate the free response of
the plant due to past control actions and past and future disturbances (calculated by
using a convenient predictor) and considering the control signal as being at the last
value. Notice that the predictive nature of the GPC and the availability of a model
of the process make it possible to incorporate the dynamic disturbances caused by
changes in solar irradiance and inlet HTF temperature into a GPC framework. A lin-
ear incremental model is used to generate the forced response (in this case a first-
order model with a delay of one sampling period). The incremental control actions
are obtained from the linear model by minimizing:
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J = E

{

N2
∑

j=N1

[

ŷfree(k + j | k) +
i=j
∑

i=N1

Δŷforced(k + i | k) − r(k + j)

]2

+
Nu
∑

j=1

λ(j)
[

Δu(k + j − 1)
]2

}

(5.57)

where ŷfree(k + j | k) is a j -step ahead prediction of the free response on data up
to time k and Δŷforced(k + i | k) is a i-step ahead prediction of the forced response
on data up to time k. The output of the plant is used to update the non-linear model
state vector.

A good load disturbance prediction model is also necessary. As justified in [85],
for prediction purposes, the inlet HTF temperature has been considered constant
at the prediction horizon in the optimization part of the algorithm, while two ap-
proaches for solar irradiance prediction were adopted: (i) considering a constant
value during the prediction horizon equal to the last measured value, (ii) using the
beam solar irradiance prediction model explained in Sect. 2.4.2.1.

The completely free response prediction scheme consists mainly of the following
steps:

1. Calculate off-line the clear day direct solar irradiance prediction. Values obtained
from this calculation are called Im(k).

2. Calculate direct solar irradiance prediction increments ΔIm(k) = Im(k) −
Im(k − 1).

3. During the operation, at each sampling time k:
a. Measure the inlet HTF temperature and consider it constant along the predic-

tion horizon.
b. Measure the real direct solar irradiance I (k).
c. Perform the direct solar irradiance predictions Î (k + j), j = 1, . . . ,N in the

following way:
i. Î (k + 1) = I (k) + ΔIm(k + 1).

ii. Î (k + j) = Î (k + j − 1) + ΔIm(k + j) with j = 2, . . . ,N .
In this way, an implicit feedback of the disturbance values is obtained. Notice
that these computations are not necessary if the approach Î (k + j) = I (k),
j = 1, . . . ,N is adopted.

d. Use the predicted values in the non-linear model to calculate the free response
(calculated considering u(k) = u(k + 1) = · · · = u(k + N − 1)).

When applying this technique to the ACUREX DSCF, a forced response
CARIMA model for medium flows was obtained using polynomials A(z−1) =
1 − 0.89973z−1, B(z−1) = −0.629035z−2. Model polynomials have to be changed
to take into account other different operating points. In this particular case, due to
the strong influence of solar irradiance on the absolute value of the control sig-
nal, the contribution of the linear part in the control signal is smaller than that of
the free response. In this way, even in cases of erroneous estimation of A and B

polynomials, good results can be achieved. As can be seen, the model has nega-
tive steady-state gain because of the relation between HTF flow changes and outlet
temperature variations.
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The minimization of the cost function (5.57) provides the vector of control incre-
ments Δu = (GT G+λI)−1GT (yfree −r), where matrix G contains the step response
coefficients of the forced response model.

The control algorithm presented in this section has been applied to control the
DSCF ACUREX. Figure 5.47 presents the results obtained with the proposed con-
trol scheme considering the CARIMA model in the forced response calculation.
This figure shows the evolution of set point temperature, inlet HTF temperature,
outlet HTF temperature, HTF flow, HTF flow increments, direct solar irradiance
and clear day prediction of this variable. The operation corresponds to that of an
almost clear day. The rain of previous days had cleaned the collectors, originating
high values of reflectivity (not known when the test was performed). The inclusion
of the integral effect in the controller contributed to obtaining offset-free control.
The rise time obtained was quite fast (less than 5 min in changes of 10°C in the
set point temperature), with overshoot of less than 3°C and small settling time. The
greatest overshoot occurs after the last set point change, because of fall in the solar
irradiance levels. The HTF flow evolution is such that sudden changes are avoided. It
is very important to mention that with these control algorithms, fairly fast responses
are obtained with little control effort (small oscillations in the HTF flow), which is
a very desirable property.

Figure 5.48 shows the evolution of the outlet HTF temperature and its predictions
(5th and 10th). In this case, the predictions are very similar to the actual values
obtained.

The same approach was used in [16] using as non-linear model of the free re-
sponse an ANN.

5.9.5.2 Robust Constrained Predictive Feedback Linearization Controller

The FL technique developed and tested in Sect. 5.8.1 can be combined with GPC
to control the outlet temperature of the solar field, where the constraints can be
computed using the predicted future outputs and the state and disturbances at each
sampling time using similar ideas to those in [218, 219]. This combination of GPC
with FL allows constraint management but, as in all MPC techniques, it is necessary
to bear in mind that unmodeled dynamics may lead to aggressive control actions
or even unstable responses. Hence, a modification of the GPC algorithm to cope
with uncertain dead-time processes was used, namely, the DTC-GPC [270]. In this
algorithm, the GPC is modified so that a FSP [270] is used for the predictions up to
the dead-time. The algorithm provides the following benefits [319]:

• By using a typical non-linear mapping of the FL technique, a linear control may
be used over the non-linear plant without loosing the intrinsic non-linearities of
the process.

• An on-line constraint-mapping treatment with state and disturbance dependences
is embedded in the controller algorithm.

• Dead-time errors are handled using a robust solution.
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Fig. 5.47 Test with the non-linear GPC controller (03/11/95) [76, 85]
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Fig. 5.48 Test with the non-linear GPC controller (03/11/95) [85]

Fig. 5.49 DTC-GPC-FL control diagram (courtesy of L. Roca et al., [319])

The control algorithm is depicted in Fig. 5.49. The DSCF model used is the
same as that in Sect. 5.8.1, including the estimation of variable transport delay (see
[319] for more details when applied to the DSCF of a solar desalination plant).
A DTC-GPC algorithm acts as the linear control for the outlet solar field temperature
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Fig. 5.50 DTC-GPC structure for the unconstrained case, [270]

using the virtual signal, u′, as the control signal. The non-linearities of the plant are
included in the non-linear mapping block in which the state and disturbances must
be added as inputs to obtain the real control signal of the plant (solar field flow, q).
On the other hand, the DTC-GPC algorithm provides a vector, u′, with the future
predictions of the virtual signal that, together with the actual state and disturbances,
are used to recalculate at each sampling time the suitable constraints over the virtual
signal, u′LIM . The calculation of the FL control law (involving both the real q and
virtual u′ control signal) is performed following the same approach explained in
Sect. 5.8.1, providing the actual control signal q(k) given by Eq. (5.25).

The DTC-GPC algorithm is used in combination with the FL technique to con-
trol the outlet temperature of the solar field despite disturbances and system un-
certainties. As the traditional GPC control technique, the DTC-GPC algorithm
consists of applying a control sequence that minimizes the multistage cost func-
tion given by Eq. (5.29) using an incremental model of the form ΔA(z−1)y(k) =
z−dB(z−1)Δu(k − 1).

The prediction of the output of the plant up to k + d is computed using an
FSP structure such as the one shown in Fig. 5.50, where S(z−1) = Gn(z

−1)[1 −
Fr(z

−1)z−d ] is the filter tuning parameter and Gn(z
−1) = z−1B(z−1)/A(z−1) is

the dead-time free process model. The prediction can be written in a compact form
as

ŷ(k + d | k) = S
(

z−1)u(k) + Fr

(

z−1)y(k) (5.58)

In the unconstrained case the final structure of the controller can be drawn as
in the block diagram of Fig. 5.50. This scheme is a linear dead-time compensator
equivalent to the FSP where the primary controller is tuned using an optimization
procedure. As has been shown in [270], the tuning of the filter can be used to im-
prove closed-loop robustness and also to allow the use of the controller with unsta-
ble open-loop dead-time processes. Note that when the process model is unstable,
S(z−1) must be implemented with a stable transfer function [270]. The previous
structure is useful for analysis and in practice, the control law can be computed us-
ing the step and free response of the system, as in the GPC algorithm [112]. In this
case, the prediction is considered as y = Gu + f, where the free response, f, is com-
puted as follows. From k + 1 to k + d , f is computed using the FSP structure and
from k + d + 1 to k + N2 it is calculated using the normal procedure in the GPC.
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In the unconstrained case, the following two-step procedure can be used for tun-
ing the controller, based on ideas of dead-time compensation control [272]:

• Compute the horizons and weighting factors in order to obtain the desired set
point performance for the nominal plant.

• Estimate the uncertainties of the plant and tune the filter Fr(z) in order to obtain
robust stability and the highest bandwidth for the disturbance rejection perfor-
mance.

Following the ideas in [271, 272, 319], for the particular case of an integra-
tive process resulting from the FL approach (using the virtual control signal u′,
Gn(z) = Ts/(z − 1) as the input and considering step disturbances) a second-order
filter is selected

Fr(z) = fb1z + fb0

(z − af )2 (5.59)

where fb0 = (1 − af )2d + 2(1 − af ), fb1 = (1 − af )2 − fb0 and af is a free pa-
rameter.

S(z) = Gn(z)z
−d [zd −Fr(z)] must be implemented without canceling of the root

at z = 1.

S(z) = Ts
z−d

z − 1

[

zd − fb1z + fb0

(z − af )2

]

S(z) = Ts

(z − af )2
z−d
[

zd+1 + (1 − 2af )zd + (1 − a2
f

)

zd−1 + · · ·
+ (1 − a2

f

)

z + fb0
]

(5.60)

Therefore, the predictor output ŷ(k) = Fr(z)y(k) + S(z)u(k) is computed as

ŷ(k) = Fr(z)y(k) + [z−1 + (1 − 2af )z−2 + (1 − af )2z−3 + · · · + (1 − af )2z−d−1

+ fb0z
−d−2] Ts

(1 − af z−1)2
u(k) (5.61)

Thus, Eq. (5.61) is used to compute the predictions up to the dead-time.
In the constrained case, the effect of the predictor structure on the controller can

be interpreted using the scheme in Fig. 5.51. As can be observed from this figure,
the predictor on the DTC-GPC only affects the computation of the free response.
Thus, qualitatively, the influence of the internal DTC structure of the controller is
the same as in the unconstrained case. Notice that if the DTC-GPC solution does not
breach any constraints in the vicinity of the process operating point, the properties
and tuning of the predictor can be analyzed using the closed-loop transfer functions
of the system.

As usual in GPC, constraints can be handled easily. Three main kinds of con-
straint have to be taken into account when controlling DSCF: (i) the outlet temper-
ature must be below a maximum value, (ii) the temperature difference between the
outlet and inlet HTF temperature should be upper limited to avoid stress on the ab-
sorber tube material and lower limited to allow for applying FL, as mentioned in
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Fig. 5.51 MPC structure for
the constrained case [270]

Sect. 5.8.1, (iii) a minimum flow is required in order to maintain, as far as possi-
ble, hydraulic equilibrium in all the collectors and a maximum water flow is limited
because of the pump characteristics. All these constraints are amplitude constraints
included in Table 5.4.

Although the feedback linearization technique produces quite good responses
with a low computational cost in respect to other control strategies, the constraint
treatment is very limited [319]. The control design is carried out without taking
into account different constraints such as actuators or limits in the process variables.
This can mean a final control far removed from the desired ideal one. In [109, 318],
the dynamics of the outlet temperature, Tout, is regulated using a PI linear control
to obtain the virtual control signal u′ of the FL controller. In this case, constraints
related to the physical limits of the water flow pump are included using an anti-
windup mechanism over this variable. Although saturation is applied to the control
signal, input and output limits are transformed into virtual signal saturation values
using Eqs. (5.26) and (5.27). In this case, the constraints obtained following this
procedure are just for the control signal, whereas the output variable constraints are
taken into account in the reference choice.

As commented above, predictive control provides a clear advantage over the FL
technique, being possible to include constraint handling during the design phase in a
systematic way. Therefore, the DTC-GPC algorithm described in the previous para-
graph is used for this purpose. Nevertheless, as the FL technique is used to obtain a
linear model equivalent to the system, the predictive algorithm uses the virtual signal
control, u′ as control input, which will be mapped using the transformation Ω(x)

to compensate for process non-linearities and transform into the real control signal
(the inlet solar field flow). This method implies that although the constraints over
the output variable do not suffer from variations, the constraints over the control
signal, u, must be mapped into constraints over the virtual signal, u′.

In this section, the solution proposed by [218] has been used. Considering the
virtual signal such as

u′(k) = α1x(k + d) + α2x(k + d)u(k) + α3p(k + d) (5.62)

with α1, α2, and α3 constants, the constraints over u′ may be calculated every sam-
pling time along the whole control horizon using the future control predictions ob-
tained with the predictive controller.

Assuming that the DTC-GPC algorithm is developed over a linear system written
such as that in Eq. (5.22), the objective is to obtain the future constraints in u′ over
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the entire control horizon. Let us consider the control signal sequence generated at
time instant k − 1 by the DTC-GPC:

u′(k − 1 | k − 1) = [u′(k − 1 | k − 1) u′(k | k − 1)

. . . u′(k + Nu − 2 | k − 1)
]

(5.63)

Whereas the first element of the sequence u′, u′(k−1 | k−1), is used to evaluate the
signal control u(k − 1) by means of the Ω transformation, the following elements
may be used to make estimations about the future values of the state variables, ψ and
about the output, η, from the discretized version of the linear system (5.22):

Ψ (k + d | k + d − 1) = [ψ(k + d | k + d − 1) ψ(k + d + 1 | k + d − 1)

. . . ψ(k + d + Nu − 1 | k + d − 1)
]T

H(k + d | k + d − 1) = [η(k + d | k + d − 1) η(k + d + 1 | k + d − 1)

. . . η(k + d + Nu − 1 | k + d − 1)
]T

From these future state variable values, Ψ and the inverse coordinate transformation
Ω−1, it is possible to calculate the future state variables x of the non-linear system:

x(k + d | k + d − 1) = [x(k + d | k + d − 1) x(k + d + 1 | k + d − 1)

. . . x(k + d + Nu − 1 | k + d − 1)
]T

Therefore, the constraint values over u′:

u′
min(k | k − 1) = [u′

min(k | k − 1) u′
min(k + 1 | k − 1)

. . . u′
min(k + Nu − 1 | k − 1)

]T

u′
max(k | k − 1) = [u′

max(k | k − 1) u′
max(k + 1 | k − 1)

. . . u′
max(k + Nu − 1 | k − 1)

]T

are computed, every sample time, solving the optimization problem in the variable
u as follows [319]:

u′
min(k + d + j | k + d − 1) = min

u

[

α1x(k + d + j | k + d − 1) + · · ·
+ α2x(k + d + j | k + d − 1)u + α3p(k + d)

]

u′
max(k + d + j | k + d − 1) = max

u

[

α1x(k + d + j | k + d − 1) + · · ·
+ α2x(k + d + j | k + d − 1)u + α3p(k + d)

]

with 0 ≤ j ≤ Nu − 1, subject to the constraint umin ≤ u ≤ umax and where the dis-
turbances are assumed to be constant and equal to the last measured value along the
prediction horizon.

Note that in the case of the solar field, the sequences Ψ , H and X are simi-
lar due to the chosen coordinate transformation (5.22). Moreover, the input–output
relationship has the following discretized form:

T̂out(k + d + 1) = Tout(k + d) + Tsu
′(k) (5.64)
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Fig. 5.52 Experimental disturbances. August 12, 2008 (courtesy of L. Roca et al., [319])

facilitating evaluation of the virtual constraints for the solar field case using the
procedure above. Note also that the variable T̂out(k + d) in Eq. (5.64) is the same
prediction as that obtained for the control signal mapping in Eq. (5.24).

More details of the technique can be found in [319], including simulation re-
sults, robustness analysis and real tests. As a representative example, the DTC-GPC
strategy with dynamic mapping constraints has been tested at the DSCF of a so-
lar desalination plant (described in [318, 319] with similar bilinear models as those
used in the ACUREX field using water as HTF) using Ts = 5 s, λ = 100, δ = 1,
d = 8, N2 = d + 50, Nu = 8 as tuning knobs and af = 0.925 as the free parameter
of the FSP filter. For the real experiments, it is important to mention that the control
target is to reach an outlet–inlet temperature gradient in order to maximize solar
field efficiency. The storage system configuration in the field produces a continuous
increment in inlet temperature when the distillation unit is off and thus, this outlet–
inlet temperature gradient requirement involves ramp-reference tracking rather than
constant or step-type references.

The disturbances for the experiment on August 12th, 2008 are depicted in
Fig. 5.52 between the 8.6 h and 10.2 h, whereas the output system and the con-
trol signal are shown in Fig. 5.53. At the beginning of the day, the ramp reference
was chosen to maintain a difference of 5°C with the inlet water temperature, but the
good level of irradiance and the high input temperature (around 65°C) produces the
saturation of both virtual and control signals. After 8.77 h, the reference is changed
to obtain a gradient temperature of 6°C. Although the reference is reached with a
low overshoot of 0.2°C, the control signal is again super-saturated so that a new
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Fig. 5.53 Experimental results with DTC-GPC-FL, August 12, 2008 (courtesy of L. Roca et al.,
[319])

ramp reference of 7°C is selected. Notice how this reference is perfectly tracked
despite the small changes in irradiance (due to the solar cycle) and the hard inlet
temperature fall at 9.01 h.

It is important to mention that the first three reference changes produce some
oscillations of the control signal. Notice that, in these cases, the system is super-
saturated when the reference change takes place and the controller tries to move the
system out of saturation using a hard control action. In addition, FL technique is
based on a model of the plant and it may show aggressive behavior under reference
changes due to plant–model mismatches. In the middle of the experiment, when
the outlet temperature reaches 77.5°C, the decision is to maintain that reference in
order to avoid a higher temperature difference. At 10 h GMT, a new ramp reference
is chosen with good tracking performance. Notice that the virtual constraints vary at
each sample time so that the inlet solar field flow is always within the defined limits.

5.10 Fuzzy Logic Control (FLC)

Fuzzy logic provides a conceptual base for practical problems where the process
variables are represented as linguistic variables which can only present a certain
limited number of possible values and then be processed using a series of rules.
FLC seems to be appropriate when working with a certain level of imprecision, un-
certainty and partial knowledge and also in cases where the knowledge of operating
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Fig. 5.54 Block diagrams of typical fuzzy logic controllers (FLC)

with the process can be translated into a control strategy that improves the results
reached by other classical strategies. In the framework of this type of system, FLC
has attracted much attention since it was first applied to the control of DSCF [333].
In this seminal work, a direct FLC was developed incorporating a feedforward term
[82], aimed at finding a non-linear control surface to control the output tempera-
ture of the field using previous knowledge about the system. In this case, a special
subclass of fuzzy inference systems, the triangular partition and triangular partition
with evenly spaced midpoints, was used to obtain adequate control signals within
the whole range of possible operating conditions.

An FLC is commonly described by a set of fuzzy rules that constitute the con-
trol protocol. With these rules, the interconnected relationships between measurable
variables and control variables can be expressed. In Fig. 5.54(a), three parts can be
seen which constitute the design parameters of the FLC: the block fuzzifier, the con-
trol block (fuzzy rule base and inference procedure) and the block defuzzifier. The
fuzzification interface converts the numerical values of the input variables into lin-
guistic variables (fuzzy sets). The conversion requires scale mapping that transforms
the range of values of input variables into corresponding universes of discourse. The
rule-based fuzzy control algorithm provides definitions of linguistic control rules
which characterize the control policy. The block includes decision making logic,
which infers fuzzy control actions employing fuzzy implication and the inference
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rules. The defuzzification block converts the inferred control action, which interpo-
lates between rules that are fired simultaneously, to a continuous signal. The control
scheme uses the error between the output of the plant and the set point signal and
its increment as inputs for the FLC. The output variable of the FLC is the increment
in the control signal (reference temperature for the feedforward controller). The im-
plementation of the controller was made by means of a fuzzy associative memory
(FAM) the centers of which were heuristically obtained.

After this first application of FLC, the same idea was used in [233] to obtain di-
rect FLC and in [41] to obtain fuzzy logic based PID controllers, where the param-
eters of PID controllers were modified according to a fuzzy logic inference mech-
anism (Fig. 5.54(b)). In [160], the application of genetic algorithms (GA) was first
introduced to automatically tune the FLC developed by [333], by obtaining the cen-
ters of the FAM describing the controller using an optimization algorithm with in-
tensive use of data obtained in closed-loop under manual and automatic operation.
A comprehensive overview of these developments can be found in [44, 86, 334]. In
[239], PID-type fuzzy controllers similar to that of [41] were used in series with a
feedforward controller developed by [382] in order to maintain a reference temper-
ature in the ACUREX DSCF. The controller was tuned and tested on the non-linear
computer model of the plant [38] and then tested on the actual plant. Reference
[208] used a unique hierarchical GA (HGA) for the design and optimization of an
FLC similar to that developed by [333], minimizing the number of fuzzy member-
ship functions and rules applied. HGA is used to optimize the fuzzy membership
functions, while the fuzzy rules also undergo an evolution process for the realiza-
tion of a set of fuzzy rules that can be obtained optimally. In [234], GA are again
used to develop an FLC which rule base encompasses an empirical set of if-then
rules. The authors of [360] and [232] developed a control scheme that employs a
fuzzy PI controller for the highly non-linear part of the operating regime and gain
scheduled control over the more linear part of the operating envelope. In order to
satisfy performance characteristics for the plant at different points in the operating
regime, a multiobjective GA is used to design the parameters of the fuzzy controller.
The resulting controller is shown to both satisfy the desired performance criteria and
have a reduced number of terms compared to a conventional design approach. All
these works use the feedforward controller and the simulator developed by [38]. In
[343] a DSCF is modeled using GA. The relation among temperature, pressure and
flow rate, time, day and Sun heat flux is modeled and the heat flux is expressed ver-
sus other variables through genetic optimization. To control the outlet temperature,
adaptive network-based fuzzy inference system (ANFIS) was employed including
fuzzy switching control to prevent chattering phenomena in the multi-loop plant
where switches between loops take place complicating HTF cycle control. Simula-
tion results of the solar power plant and the control system show that the applied
control system can manage the HTF cycle in different situations with safe operating
conditions and with better performances.

For the linguistic equation approach presented in [198, 200–202, 278], the fuzzy
rules are replaced by linguistic equations. In fuzzy linguistic equations, fuzziness is
taken into account by membership functions—the linguistic equation approach does



212 5 Advanced Control of Parabolic Troughs

not necessarily need any uncertainty or fuzziness. Real valued linguistic equations
provide a basis for sophisticated non-linear systems where fuzzy set systems are
used as a diagnostic tool. The linguistic equation controller applied in [198, 200–
202, 278] is based on the PI-type fuzzy controller. Non-linearities are introduced
to the system by membership definitions that correspond to membership functions
used in FLC; this is the main difference to the FLC presented in [333], where the
non-linearities are handled through the rule base. Operation of the controller is mod-
ified by variables describing operating conditions (temperature difference between
inlet and outlet temperatures and solar irradiance); the implemented controller con-
sists of a three level cascade controller. The linguistic equation controller reacts very
efficiently to variable irradiance conditions since the control surface is only gradu-
ally changed. In [199], new results of the multilevel linguistic equation controller
are shown. The controller smoothly combines various control strategies into a com-
pact single controller. Control strategies ranging from smooth to fast are chosen by
setting the working point of the controller. The controller takes care of the actual set
points of the temperature. The operation is very robust under difficult conditions:
start-up and set point tracking are fast and accurate under variable radiation condi-
tions. Reference [94] developed a fuzzy switching supervisor PID control approach
using a feedforward compensator. The use of a supervisor is easy to implement
because it needs very little knowledge about the process, it can lead to a highly non-
linear control law increasing the robustness of the control system and it can provide
a user interface for precisely expressing the specifications in terms of closed-loop
performance. The supervisor was implemented using a Takagi–Sugeno fuzzy strat-
egy to implement an on-line switching between each PID controller according to
real time conditions. The local PID controllers were previously tuned off-line using
an ANN approach that combines a dynamic recurrent non-linear ANN model with a
pole-placement control design. The number of local controllers to be employed by
the supervisor is reduced using the c-Means clustering technique. The feedforward
controller proposed by [82] was used in parallel configuration. The same approach
was used by [178]. In [289, 290], a neuro-fuzzy system based on a radial basis func-
tion (RBF) network and using support vector learning is considered for non-linear
modeling and applied to the output regulation problem. In [152], the application of
a neuro-fuzzy identification for predictive control is performed. The same idea is
exploited in [191, 192], where an intelligent predictive controller is proposed. How-
ever, in both cases, only simulation results are provided using the simulator in [38].
In [142] a fuzzy predictive-control scheme is developed. The proposed predictive
controller uses fuzzy characterization of goals and constraints based on the fuzzy
optimization framework for multiobjective satisfaction problems. This approach en-
hances MPC allowing the specification of more complex requirements.

5.10.1 Heuristic Fuzzy Logic Controllers

Since Mamdani [237] published his experiences using a FLC on a test-bed plant of
a laboratory, many different control approaches have appeared based on this theory
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Fig. 5.55 Fuzzy logic inference scheme

and also many applications of this type of controller to a diversity of processes. An
extensive introduction to the historical development, state and concepts involving
fuzzy control systems can be found in [223, 224].

Many advantages of FLC have been mentioned in literature. One relevant advan-
tage is the possibility of converting a linguistic control strategy based on experience
and expert knowledge into an automatic control strategy. Another advantage is that
FLC can easily be implemented. Moreover, it has been demonstrated [367] that by
using fuzzy inference systems with triangular partition rule bases with evenly spaced
midpoints (TPE systems) like those used in this chapter, the amount of computation
required for processing input is independent of the number of rules.

The methodology of fuzzy controllers seems to be the most adequate in cases
where the process is difficult to control and there is wide experience in operating the
plant, due to the possibility of incorporating such knowledge in terms of qualitative
rules. This is the case of the control schema presented in this chapter.

A special subclass of fuzzy inference systems, the TP and TPE systems, are
used both in the development of an incremental fuzzy PI controller (IFPIC) and
in the implementation of a FLC strategy which provides an adequate control signal
over the entire range of possible operating conditions. Both strategies have been im-
plemented in connection with the simple series feedforward controller analyzed in
Sect. 4.4.1.2, which allows for compensating effects of the disturbances acting on
the system.

5.10.1.1 Fuzzy Logic Inference Scheme

A fuzzy logic inference scheme is commonly described by a set of fuzzy rules that
constitute the control protocol. With these rules, the interconnected relationships
between measurable variables and control variables can be expressed.

In Fig. 5.55 three parts constituting the design parameters of a FLC can be seen:
the block fuzzifier, the control block (fuzzy rule base and inference procedure) and
the block defuzzifier.

• The fuzzification interface converts the numerical values of the input variables
into linguistic variables (fuzzy sets). The conversion requires scale mapping that
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transforms the range of values of input variables into corresponding universes of
discourse.

• The rule-based fuzzy control algorithm provides definitions of linguistic control
rules which characterize the control policy. In this case, the block includes deci-
sion making logic which infers fuzzy control actions employing fuzzy implication
and the inference rules mentioned.

• The defuzzification block converts the inferred control action which interpolates
between rules that are fired simultaneously into a continuous signal.

The expert knowledge usually takes the form:

if (a set of conditions are satisfied) then (a set of consequences can be in-
ferred)

The set of conditions (fuzzy sets) belongs to the input domain and the set of conse-
quences to the output domain. The fact that various rules can be fired simultaneously
is due to the conversion of values obtained from sensors to linguistic terms, assign-
ing a membership function μA to each one. If triangular partition rule bases are
used [367], the input and output universes are subdivided using triangular member-
ship functions of the form

μAi
(x) =

⎧

⎨

⎩

(x − ai−1)/(ai − ai−1) if ai−1 ≤ x ≤ ai

(−x + ai+1)/(ai+1 − ai) if ai ≤ x ≤ ai+1

0 otherwise

(5.65)

the membership values of Ai 
= 0 being only at interval (ai−1, ai+1). Point ai is
the unique element that has membership value 1 at Ai (midpoint of Ai). A triangu-
lar decomposition of a universe consists of a sequence of triangular fuzzy subsets
A1, . . . ,An such that the leftmost and rightmost fuzzy regions satisfy μA1 = 1 and
μAn = 1 at its midpoints (we are assuming that the triangular decomposition forms
a fuzzy partition of the underlying universe, that is:

∑n
i=1 μAi

(u) = 1 for every u

belonging to the universe). A decomposition of the input and output domains that
satisfies these requirements is called a TP (triangular partition) system. The infer-
ence process can be made more efficient by requiring the membership functions to
be isosceles triangles with bases of the same width. These fuzzy inference systems
with evenly spaced midpoints are called TPE systems.

The inference mechanism in a TP or TPE system is very straightforward and
efficient. As is demonstrated in [367], considering SISO systems (the extension to
MIMO system is straightforward), if Ai and Ai+1 are two fuzzy sets (with midpoints
ai and ai+1, respectively) providing non zero membership for x, the appropriate ac-
tion for any input at an interval [ai, ai+1] using weighted averaging defuzzification
is given by

z = μAi
(x)cr + μAi+1(x)cs

μAi
(x) + μAi+1(x)

= x(cs − cr) + ai+1cr − aics

ai+1 − ai

(5.66)

with cs and cr being the midpoints of Cs and Cr (fuzzy regions in the output space).
Equation (5.66) shows that only two completely determined constants (cs − cr)/

(ai+1 −ai) and (ai+1cr −aics)/(ai+1 −ai), are required to obtain the control action,
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allowing a fuzzy inference system to be represented in tabular form. The amount of
computation required for processing input is independent of the number of rules
with a TPE system. The tabular information can be stored in a manner that permits
direct addressing, avoiding searching procedures to find the appropriate rules in the
inference table.

A fuzzy associative memory (FAM) can be used instead of the table. A FAM is
a k-dimensional table where each dimension corresponds to one of the input uni-
verses of the rules. The ith dimension of the table is indexed by the fuzzy sets that
comprise the decomposition of the ith input domain. The FAM representation may
be modified to produce a numeric inference (NI) table. In this way, the indices will
represent the corresponding midpoints of the set. The entries in the table are the
midpoints of the consequent of the associated rule.

5.10.2 Incremental Fuzzy PI Control (IFPIC)

In this section, a control scheme to improve performance of classical PI controllers
is used. The approach assumes that nominal controller parameters are available (ob-
tained from classical tuning methods, as in [380]). By using an appropriate fuzzy
matrix, small changes in each controller parameter are performed in order to im-
prove transients and steady-state performance of the closed-loop system. From ex-
perience of operating the field, a fuzzy matrix that contains this knowledge (in con-
densed rule form) is obtained for each parameter of a PI controller. These matrices
describe the changes that the nominal controller parameters experiment.

In [380], three different classical PID tuning techniques were used (Ziegler–
Nichols, analytical and Kalman PID tuning techniques). Here, another approxima-
tion based on pole-placement techniques is used. Empirical rules are used to build a
7 × 7 fuzzy matrix for each parameter, which gives an acceptable quantization. The
basis for the control rules is the error r − y = Tref − Tout and its increment. In order
to obtain good performance, two main rules have to be taken into account:

• To decrease overshoot, the integral term has to be decreased when the output is
approaching the set point. To diminish the rise time, the integral term has to be
increased during the transient.

• To decrease rise time, the proportional term has to be increased during the tran-
sient and decreased when the output is approaching the set point.

These rules and previous knowledge of the behavior of the controlled system pro-
duces the control matrix of each parameter. Each matrix can be described by the
midpoint element of each region (if triangular partitions are chosen for the input
and output universes of discourse). The inputs chosen are the error e and its incre-
ment Δe. In this way, the proportional and integral terms (controller parameters)
can be defined:

KP = KPnominal + ΔKP {e,Δe}
TI = TInominal + ΔTI {e,Δe}

(5.67)
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where KP denotes the proportional term, TI denotes the integral time, the subindex
nominal refers to nominal parameters, ΔKP ,ΔTI are the values obtained from the
matrices.

5.10.2.1 Application to the ACUREX DSCF

The fuzzy logic inference scheme described in the previous section has been used to
control the distributed solar collector field, ACUREX. In order to define input and
output signals of the fuzzy logic inference scheme, the series feedforward controller
developed in Sect. 4.4.1.2 has also been used here as part of the plant.

From step response observations and stability analysis, it was found that ap-
propriate parameters that describe the system model within the range of operating
points (including the series feedforward term) are 0.8 ≤ a ≤ 0.95, 0.9 ≤ K ≤ 1.2. In
order to obtain nominal PI control parameters, the type A model given in Eq. (4.48)
was used to represent the system dynamics in discrete time and a PI transfer func-
tion given by C(z) = (g0 + g1z

−1)/(1 − z−1), where g0 = KP (TI + Ts)/TI and
g1 = −KP . If the controller zero is chosen to cancel the plant pole, i.e., choosing
g1/g0 = −a, the system closed-loop transfer function is given by

Gcl(z) = g0b

z2 − z + g0b

The closed-loop characteristic polynomial roots are z1,2 = 0.5 ± 0.5
√

1 − 4g0b. By
making the dominant pole of the closed-loop system faster than the open-loop one
(zcl = γcla), with 0.9 ≤ γcl ≤ 1 in order to avoid high oscillations), one obtains

g0 = 1 − (2(γcla − 0.5))2

4b
(5.68)

which gives another relation ship of the controller parameters limited to the system
ones (remember that g1/g0 = −a). With these relationships and taking into account
the possible values achievable by a, b and γcl, the range of possible values of con-
troller parameters can be obtained:

g1

g0
= −a = − TI

Ts + TI

Then TI = aTs

(1−a)
, obtaining from the relationship 0.8 ≤ a ≤ 0.95 the following in-

equalities: 156 ≤ TI ≤ 741 [s]. With Eq. (5.68) and the relationship g1/g0 = −a,

KP = γcla
2

b
(1−γcla) can be obtained, which gives 0.188 ≤ KP ≤ 3.65. These theo-

retical ranges have been slightly modified, using experience in operating the plant to
avoid extremely low or fast responses, to 0.5 ≤ KP ≤ 3.5 and 150 ≤ TI ≤ 675 [s].

As has been mentioned, nominal controller parameters are needed to implement
an IFPIC. A conservative fixed PI controller used as a backup controller at the start-
ing phase of the operation has been used as the nominal one. This conservative con-
troller gives the response shown in Fig. 5.56 (dotted-line) and is included in the fam-
ily of possible controllers, being designed with a = 0.95, b = 0.05, and γcl = 0.95,
which gives values of g0 = 1.65 and g1 = −1.56 (KP = 1.56 and TI = 675 s).
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Fig. 5.56 Comparison between fixed PI control and incremental fuzzy PI control [41]

Fig. 5.57 Membership functions of the antecedents (e and Δe) [41]

The control scheme is shown in Fig. 5.54(b). The error between the output of
the plant and the set point signal (e) and its increment (Δe) are considered to be
the inputs for the fuzzy inference mechanism. The output variables of the fuzzy
controller are the increments in the controller parameters.

TP and TPE systems have been chosen for the inference mechanism. A triangu-
lar decomposition of the input universes of discourse can be seen in Fig. 5.57. As
can be seen, the extremes of the input universes of discourse (corresponding to e

and Δe) are [−21,21]. Those of the output have been chosen to be [−1,1] (cor-
responding to ΔKP ) with centers [1.95,1.40,1.20,1.0,−0.1,−1.0] and [−525,0]
(corresponding to ΔTI ), with centers [0,−220,−250,−320,−450,−525]. In this
case (two-input single-output system), the rules take the form (e.g. with KP ):

if error is positive large and the change in error is negative small then make
the KP change positive large

where terms small, large, medium, etc. are used to describe the fuzzy variables and
the control action. As mentioned previously, because of the partial matching at-
tribute of fuzzy control rules and the fact that the preconditions of rules do overlap,
four rules can fire at the same time.
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Table 5.8 FAM of the controller parameters [41]

Assuming that the algebraic product operator is used as the conjunction oper-
ator, each rule recommends an action (ΔP PI

i,j , P PI denoting a PI parameter) with
a membership function μΔP PI

i,j
= μei

μΔej
, where μei

and μΔej
are calculated by

Eq. (5.65). The methodology used in deciding what control action should be taken
results in the firing of four rules. The combination of these rules produces a non-
fuzzy action ΔP PI , which is calculated using the weighted averaging defuzzification
method. Then, the resulting action can be calculated by

ΔP PI =
∑i+1

i

∑j+1
j (μΔP PI

i,j
ΔP PI

i,j )

∑i+1
i

∑j+1
j μΔP PI

i,j

(5.69)

and, as in this case,
∑i+1

i

∑j+1
j μΔP PI

i,j
= 1, we have

ΔP PI =
i+1
∑

i

j+1
∑

j

(

μΔP PI
i,j

ΔP PI
i,j

)

Taking into account these maximum and minimum values and using the exposed
inference mechanism (using triangular partitions in the input and output spaces and
the weighted averaging defuzzification method), a description of the fuzzy control
system can be obtained. A two-dimensional FAM for each one of the controller
parameters can be used (Table 5.8).

Here, we also show gain and integral time constant increment surfaces, obtained
after a few simulations (Fig. 5.58). The midpoints were slightly changed from the
initial chosen values in order to achieve good results in the controller performance.

Results showing the behavior obtained with this approach have been given in
Fig. 5.56, comparing them to the behavior obtained with the fixed nominal PI con-
troller. As can be seen, the overall performance is greatly improved, with faster rise
times and with less than 3°C of overshoot when great changes in the set point signal
occur.
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Fig. 5.58 Gain (KP ) and integral time constant (TI ) increment surfaces [41]

5.10.2.2 Plant Results

The proposed control algorithm has been tested at the ACUREX DSCF with very
acceptable results. Figures 5.59 and 5.60 show the characteristic variables in a test
in the presence of passing clouds. As can be seen, the outlet HTF temperature fol-
lows the reference temperature without great changes in the HTF flow that could
deteriorate this actuator. The estimated controller gain KP and integral time TI evo-
lution are shown in Fig. 5.60, following the tendency pointed out by the rules used
to design the IFPIC.

Figures 5.61 and 5.62 show operation with the IFPIC on a day with strong distur-
bances caused by large passing clouds which produce drastic changes in the direct
solar irradiance level. Under these conditions, the effect of the feedforward con-
troller in series with the IFPIC allows for very acceptable behavior even under such
extreme conditions (with deviations from the set point of less than 10°C with long
time direct solar irradiance changes greater than 300 W/m2). Figure 5.62 shows the
evolution of the direct solar irradiance, HTF flow and controller parameters.

5.10.3 Fuzzy Logic Controller (FLC)

This section introduces a FLC which directly calculates the control signal. In this
case, the FLC has been applied in an incremental form in series with the feedforward
controller, that is, the signal obtained from the FLC is the increment needed in the
control signal (reference temperature to the feedforward controller) to provide a
desired behavior (the output universe is related to control increments).

The control scheme is shown in Fig. 5.54(a). As in the previous section, the error
between the output of the plant and the set point signal (e) and its increment (Δe)
are considered to be the inputs for the fuzzy controller. The output variable of the
fuzzy controller is the increment in the control signal (reference temperature for the
feedforward controller). The fuzzy controller could give the control signal directly,
but it has been chosen in incremental form in order to introduce an integral effect
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Fig. 5.59 Test with the IFPIC controller (17/01/95) [41]

Fig. 5.60 Test with the IFPIC controller (17/01/95), [41]
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Fig. 5.61 Test with the IFPIC controller (03/03/95), [41]

Fig. 5.62 Test with the IFPIC controller (03/03/95), [41]
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in the control action and to reduce the fuzzy partition of the output domain. TP and
TPE systems have also been chosen for the inference mechanism.

The triangular decomposition of the input universes of discourse has been shown
in Fig. 5.57. Again, the extremes of the input universes of discourse (corresponding
to e and Δe) are [−21,21]. Those of the output have been chosen to be [−10,10]
(corresponding to Δu = ΔTrff ), with centers [±10,±6,±4,±2,±0.7,0]. The do-
mains under consideration are not normalized. The discretization of the universes of
discourse plays an important role in the final behavior of the controlled system. In
this case, the discretization has been selected taking into account the operating range
of possible HTF flows (between 2 and 12 l/s), the outlet temperature (with a max-
imum of 300°C) and previous knowledge of the plant dynamics. As is commented
below, there is great experience in controlling of the plant with other control ap-
proaches. This fact and the existence of the non-linear distributed-parameter model
for simulation purposes, allows for good discretization of the universes of discourse
and testing the controller behavior before its actual implementation at the plant. In
this way, few changes were made when implementing the controller at the plant.

In this case (two-input single-output system), the rules take the form:

if the error is positive large and the change in error is negative small then
make the control signal change positive large

Terms small, large, medium, etc. are used to describe the fuzzy variables and the
control action. As mentioned previously, due to the partial matching attribute of
fuzzy control rules and the fact that the preconditions of rules do overlap, four rules
can fire at the same time.

Again, the algebraic product operator is also used as the conjunction opera-
tor, each rule recommends a control action (Δui,j ) with a membership function
μΔui,j

= μei
μΔej

, where μei
and μΔej

are calculated by Eq. (5.65). The method-
ology used in deciding what control action should be taken results in the firing of
four rules. The combination of these rules produces a non-fuzzy control action Δu,
which is calculated using the weighted averaging defuzzification method, as men-
tioned before. Then the resulting control action can be calculated by

Δu =
∑i+1

i

∑j+1
j (μΔui,j

Δui,j )
∑i+1

i

∑j+1
j μΔui,j

(5.70)

and, as in this case,
∑i+1

i

∑j+1
j μΔui,j

= 1, we have

Δu =
i+1
∑

i

j+1
∑

j

(μΔui,j
Δui,j )

A 2-dimensional FAM can also be used in this case (Table 5.9). The controller
surface obtained from the resulting NI table can be seen in Fig. 5.63.

The first step in the design procedure was to produce the FAM table shown in
Table 5.9 and the centers of Δu as [±20,±15,±10,±6,±3,0]. These values were
chosen based on previous experience in controlling the plant. The resulting control
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Table 5.9 FAM of the controller [333]

Fig. 5.63 Fuzzy control
surface [333]

was simulated by the non-linear computer model and the results shown in Fig. 5.64
(dotted line) were obtained. The simulations of the first FLC designed showed an
undesirably high overshoot. Thus, the centers of the FAM were reduced, taking the
following new values in the intermediate design: [±13,±10,±8,±5,±3,±1.2,0].
With these values and the help of the non-linear computer model, results shown in
Fig. 5.64 (dashed line) were obtained. This result can be considered to be good, but,
due to the characteristics of the solar plant, the main design objective is to achieve a
response with low overshoot. Thus, the centers of the FAM were again reduced, ob-
taining the definitive ones mentioned above [±10,±6,±4,±2,±0.7,0]. The sim-
ulation which corresponds to these values can also be seen in Fig. 5.64 (solid line).
This figure includes the values of the HTF flow in order to show the control effort
obtained by each of the designs. These values have been used in the control of the
ACUREX DSCF, as shown in the next paragraph.

5.10.3.1 Plant Results

Figure 5.65 (outlet HTF temperature, inlet HTF temperature, set point temperature,
direct solar irradiance and HTF flow, respectively) corresponds to a step response
test (27/04/94), covering a wide range of HTF flow conditions (from 5 to 7.5 l/s).
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Fig. 5.64 Simulation with different designs of the FLC, [333]

As can be seen, very good results are obtained in all cases without oscillations in the
system response. These curves show a small offset (less than 1.5°C) in the system
response.

One possible explanation for the appearance of the offset in the output signal is
the use of a wrong value of mirror reflectivity (used in calculating the effective so-
lar irradiance) in the feedforward controller. Mirror reflectivity is usually measured
once a week, thus, if dust accumulates on the mirror surfaces between measure-
ments, the real value of mirror reflectivity can vary from the one last measured used
by the feedforward controller. This fact leads to an error in the outlet signal of the
feedforward controller (HTF flow demanded to the pump) that depends on the ef-
fective solar irradiance. Theoretically, as the feedforward controller is placed in the
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Fig. 5.65 Test carried out with the FLC controller (27/04/94), [333]
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control loop, this error should be corrected for, but the integral term action is not
fast enough to do so.

The dependence on effective solar irradiance can be observed in Fig. 5.65, in
which the offset is positive when solar irradiance increases and negative when it de-
creases, achieving a value near zero at solar midday. Even though this small offset is
not important in terms of heat transference, some variations in the initial implemen-
tation were performed to achieve faster responses without offset. The values used in
the inference table were slightly modified and two new rules were added in the FLC
implementation in order to increase the integral action. These rules take the form:

if abs(e(k)) > 2 and e(k) > 0 and e(k − 1) > 0 and . . . and e(k − 4) > 0
then Δu(k) = Δu(k) +∑4

i=0 e(k − i)/100

The same rule was also implemented changing the greater than sign for a less than
sign.

Results obtained by performing these modifications are shown in Fig. 5.66,
which show the outlet HTF temperature, inlet HTF temperature, set point temper-
ature, direct solar irradiance and HTF flow. It corresponds to a test carried out the
21th December, 1994. As can be seen, very good results were obtained under all
operating conditions in spite of the heavy perturbations produced by changes in the
direct solar irradiance (200 W/m2 drops) caused by clouds and in the inlet HTF
temperature (45°C increment).

5.11 Neural Network Controllers (NNC)

Some of the approaches to control DSCF using NNC have been commented on in
the previous sections. In [17, 18] and [42] an application of ANN identification
is presented to obtain models of the free response of the solar plant to be used
in the algorithm proposed by [76], see Fig. 5.46. In [179] an ANN-based indirect
adaptive-control scheme is developed. The output regulation (OR) theory aims to
derive a control law such that the closed-loop system is stable and, simultaneously,
the tracking output error converges to zero. This technique leads to a straightforward
method for solving non-linear control problems. However, the OR theory assumes
perfect model knowledge. Given the ANN model plant mismatch, an on-line adap-
tation of ANN weights is considered in order to improve the discrepancies between
the output of a previous off-line model and the actual output of the system.

By means of a Lyapunov analysis, a stability condition for weight updating is
employed. In [94], the local PID controllers of a switching strategy were previously
tuned off-line using an ANN approach that combines a dynamic recurrent non-linear
ANN model with a pole-placement control design (Fig. 5.67). In [153] the authors
used recurrent ANN aimed at obtaining a pseudo inverse of the plant to apply FLC
techniques. Further improvements led to the works of [155], where a non-linear
adaptive constrained MPC scheme is presented using non-linear state-space ANN
and their on-line training. The identification of the ANN is performed at two lev-
els. First, a parameterization is obtained for the selected topology by training the
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Fig. 5.66 Test carried out with the FLC controller (21/12/94), [333]
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Fig. 5.67 Block diagram of neural/fuzzy switching control, [94]

ANN on a batch mode, following an on-line estimation of weights in order to elim-
inate any model/plant mismatch due to the quality of the off-line training set or the
time variant nature of some plant parameters. In [156], another non-linear adaptive
constrained MPC scheme with steady-state offset compensation is developed and
implemented. The ANN training is carried out on-line by means of a distribution
approximation filter approach.

In [154, 179], an NNC strategy is applied. The ANN is trained based on mea-
sured data from the plant providing a way of scheduling between a set of PID con-
trollers, a priori tuned in different operating points by means of Takahashi rules.
The scheduling variable is obtained from an ANN having as inputs the values of di-
rect solar irradiance, inlet HTF temperature and reference (or outlet) temperatures.
Thus, the scheduler implements an inverse of the plant at steady state. In [179] the
modeling capabilities of a recurrent ANN to replace the unknown system and the
effectiveness and stability of the OR control theory (geometric approach) are com-
bined.

5.12 Monitoring and Hierarchical Control

Recently, hierarchical multilayer control systems are being developed
[46, 106, 108, 110], aimed at automatically determining the optimal plant operat-
ing points for maximizing economic profit from the sale of the electricity produced.
Early detection of faults (system malfunctions) combined with a fault tolerant con-
trol strategy can help to avoid system shut-down, breakdown and even catastrophes
involving human fatalities and material damage. The first trends in the application
of this kind of technique to DSCF have been performed in two directions. On one
hand, in [156] the robustness of a constrained MPC was tested in the face of several
faults on the actuator, sensors and system parameters. Further works [95, 96] incor-
porate a fault diagnosis module and a supervisory system in order to detect, identify
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and accommodate these types of fault. On the other hand, related works are cur-
rently being performed within the scope of data-mining and monitoring techniques
[47, 215, 235, 236], aimed at providing software tools to facilitate operation and
data exploitation and to predict possible failures in the system. These last works are
based on the new generation of plants using water/steam as heat transfer fluid [130,
226, 383, 384, 416, 419], such as the DISS plant explained in Sect. 4.5.

In [280, 325] an optimal control formulation is suggested where the objective
is to maximize net power produced when the pumping power is taken into consid-
eration. In [105, 106] a compensator was introduced to automatically compute set
points for the whole range of operating conditions of the ACUREX DSCF, looking
for the maximum achievable temperature taking into account operational constraints
such as the maximum constructive temperature (305°C), the saturation of the con-
trol signal (HTF flow between 2 and 12 l/s), the maximum temperature gradient
between the inlet and outlet HTF temperature (80°C), and accounting for the actual
values of the disturbances (mainly in direct solar irradiance, inlet HTF temperature
and mirror reflectivity). An enthalpy balance is used for set point optimization pur-
poses taking into account the aspects mentioned. The advantages of using this kind
of set point optimization strategy are evident in the starting phase of the operation
when the largest variation in the inlet HTF temperature occurs, due to the existence
of cold HTF in the pipes and recirculation using the three-way valve until the mini-
mum temperature to be entered at the top of the storage tank is reached.

5.12.1 Reference Governor Optimization and Control of a DSCF

This subsection describes the design and implementation of two-layer hierarchical
control strategies for a distributed solar collector field, as well as representative ex-
perimental results in which the benefits of using this approach compared to current
operations are highlighted [110]. The upper layer of the hierarchical strategy was
implemented using two different approaches, fuzzy logic and physical model-based
optimization. Both calculate the optimum plant operating point automatically, tak-
ing operating constraints into account while maximizing profit from selling the elec-
tricity generated. The lower layer uses the output generated by the upper layer as set
point to automatically track the operating point despite any disturbances affecting
the plant.

Hierarchical control consists of decomposing the original task into hierarchically
structured subtasks and then handling each subtask with a specific control [67]. This
decomposition can be spatial or functional. Due to the nature of the problem of the
solar field, functional (or multilayer) hierarchical control is applied. Figure 5.68
shows the generic hierarchical control scheme planned for the ACUREX field. The
upper layer is aimed at generating the trajectories that the system should follow
and monitoring them (previously done manually by the operator). The lower layer
involves reference tracking and disturbance rejection.
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Fig. 5.68 Multilayer control
structure with regulatory and
reference governor layers

The lower or regulatory control layer is related to automatic control of the HTF
outlet temperature (as in all previous control algorithms studied in this and the pre-
vious chapter). Using the desired output temperature (Tref ) calculated by a reference
governor (layer 2 in Fig. 5.68), the automatic control has to regulate the HTF flow
q to reach a Tout as near as possible to Tref , in spite of disturbances affecting it
(mainly solar irradiance and inlet HTF temperature). In the examples developed in
this section, the PI + FF and FL algorithms studied in Sect. 5.8.1 have been used.

An upper layer in the hierarchical control system (reference governor) is useful
to take into account more aspects of the operation. Some situations, such as start-up,
periods when there are solar radiation disturbances or variations in the inlet tempera-
ture, require the total attention of the plant operator. Forcing the plant to unreachable
temperatures can reduce the life of its materials and lead the actuators to saturation,
producing undesired oscillation and, in general, deteriorated performance. On the
other hand, establishing a set point that is too safe may cause production losses.
This subsection shows two different approaches for automatic computation of the
best set point for the lower layer Tref , taking into account plant safety constraints,
input conditions and, finally, attempting to minimize the final production costs.

5.12.1.1 Fuzzy Reference Governor (FRG)

The first approach to designing a reference governor consisted of ‘imitating’ what
the plant operator does during operation. The main inputs taken into account of the
plant operator (besides the actual flow rate) are solar irradiance and inlet temper-
ature, thus, these were the signals used as inputs to the fuzzy reference governor
(FRG) (see Fig. 5.69). Parameter I gives the solar energy currently available which
is used to calculate the maximum solar field output temperature and the inlet tem-
perature is related to temperature increment constraints. Another approach would
be to add q as input, however, there is not enough improvement to compensate for
the complexity in the design of the fuzzy logic inference mechanism. Moreover, the
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Fig. 5.69 Control structure including the FRG (courtesy of C.M. Cirre et al., [110])

design of the fuzzy sets is easier and more intuitive using Tin for the safety mecha-
nism related to ΔT = (Tout −Tin). The goal of the FRG is to find the maximum Tref

according to inputs I and Tin allowed by current safety constraints.
Only three membership functions were needed for direct solar irradiance since

more than three made the reference governor too sensitive to changes in this vari-
able, strongly influencing its output. The design of the inlet and reference tempera-
ture fuzzy sets was made taking into account the plant safety constraints in temper-
ature increments. The universe of discourse of the corrected direct solar irradiance
covers the most significant levels where the minimum can be set at 0 W/m2 and
the maximum at 1100 W/m2. The membership function is triangle-shaped, the left
end is L-shaped and the right Γ -shaped. Figure 5.70 shows the membership func-
tions for inlet temperature, corrected direct solar irradiance and reference tempera-
ture, with the following linguistic labels: L (Low), M (Medium) and H (High). This
number of sets is enough to establish the maximum Tref that fulfills the safety con-
straints and can be reached with the solar radiation levels. Tin universe was designed
using triangle-shaped fuzzy sets. The universe of Tin covers all the usual HTF inlet
temperatures, from 15°C to 250°C (Fig. 5.70). The distribution of the membership
functions takes the maximum temperature increments allowed during operation into
account (ΔT ≈ 70–80°C). After several tests with the DSCF simulator, this num-
ber of fuzzy sets was found to be the best because it is the smallest that covers the
whole range of possible inlet HTF temperatures within the set of allowed ΔT incre-
ments. There are the same number of fuzzy sets for Tref and Tin. Tref fuzzy sets were
designed for an output providing good process start-up performance within ΔT con-
straints. To deal with these goals, the design of the Tin fuzzy sets was mapped with
ΔT and the fuzzy set designed for low Tref temperatures usually related to start-up
was enlarged (Fig. 5.70). Several shapes were tested with the plant simulator, but
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Fig. 5.70 Membership functions for inlet temperature, corrected direct solar irradiance and refer-
ence temperature (courtesy of C.M. Cirre et al., [110])

Table 5.10 FRG: rule table
to describes a relationship
between the inputs and the
output (courtesy of
C.M. Cirre et al., [110])

VL L LM M H VH

L VL VL L L LM H

M VL VL L LM M H

H VL L LM M H VH

there was no significant improvement (over the triangle-shaped membership func-
tions). The linguistic labels mean: VL (Very Low), L (Low), LM (Low Medium), M
(Medium), H (High) and VH (Very High). The FRG output is Tref (Fig. 5.69). To
reduce the effect of variation in solar radiation on the FRG output, I and Tref are
filtered with a low-pass filter. A broad ranking of different I and Tin was used to
check output calculated by the FRG. The results are shown in Fig. 5.71.

Table 5.10 shows the rule table defined based on past experience with manual
settings. In all, 18 inference rules were devised to describe the behavior of the entire
system. The output of the rule-based model is computed by the max–min relational
composition [207, 286].

5.12.1.2 Optimizing Reference Governor (ORG)

The optimizing reference governor (ORG) tries to find the set point for the lower
layer that maximizes the energy the solar field is able to provide while minimizing
costs; that is, a trade-off between the cost of electricity generation and profit from its
sale. The purpose of the optimizing reference governor is to calculate the reference
temperature Tref (or the future Tout at the solar field outlet) that meets plant safety
constraints while maximizing the cost function represented in Eq. (5.71), where
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Fig. 5.71 Tref surface
generated by the FRG with
the inputs Tin and I (courtesy
of C.M. Cirre et al., [110])

Pr(Tout) gives the production [We] and Pload (Tout) represents the main energy con-
sumption [We] (related to production costs):

J = Pr(Tout) − Pload(Tout) (5.71)

The solution given by the minimization of the cost function J (Tout) (desired Tref )
must obey a set of constraints. The first is related to the physical limits of the pump:
g1(Tout) + 2 ≤ 0 and g2(Tout) − 12 ≤ 0, the second to ΔT : Tmin ≤ Tout ≤ Tmax

safety conditions, where Tmin = Tin + 30 and Tmax = max{Tin + 80,300} [°C] and
where Tmin and Tmax are the minimum and maximum Tout achievable by the system.
A constrained non-linear function solver was used to find the solution. The thermal
power provided by the solar field is shown in Eq. (5.72), where ṁout and ṁin are the
outlet and inlet mass flow [kg/s], respectively:

Pth = ṁoutcf (Tout)Tout − ṁincf (Tin)Tin [Wt ] (5.72)

In steady state, ṁout should be equal to ṁin. As the variable manipulated in the
solar field is q (volumetric HTF flow, l/s), for simplification, the volumetric flow
related to ṁin, is measured and the volumetric flow at the inlet of the solar field is
considered the same as the volumetric flow at the outlet (qin = qout = q).

The function Pth(q, Tref ) must only be calculated as a function of temperature.
The simplified model of the solar field, in Eq. (4.10) in Sect. 4.3.4.2, is used to
find the relationship between HTF flow q and the rest of the model parameters. In
steady state, Eq. (4.10) can be substituted in Eq. (5.72), yielding the approximation
in Eq. (5.73):

Pth(Tout) =
[

ηcolGI − ˜Hl(Tout, Tin, Ta)

L2

]

Lnope [Wt ] (5.73)

As the cost function J (Tout) is designed in We, the thermal-to-electric power (W)
conversion is made using historical plant efficiency reported when operating and
producing electricity. The thermal storage efficiency chosen is ηa = 0.98 and the
thermal-to-electric power conversion is ηb = 0.22 [341], thus obtaining the rela-
tionship between Pr and Pth [110].
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Fig. 5.72 Hierarchical control structure with ORG (courtesy of C.M. Cirre et al., [110])

The cost model includes electricity consumed by the HTF pump which is re-
quired by the control system. A function providing the relationship between the
HTF flow and electricity consumed was found experimentally with the help of the
lumped parameter model in Eq. (4.10). Equation (5.74) shows the cost function
model [We]. Function F provides the HTF flow required to maintain Tout at a level
depending on I , Ta and Tin. In Eq. (5.74), Ci , i = 1, . . . ,6, are coefficients related
to the features of the pump, HTF and physical characteristics of the solar field [110]:

Pload(Tout) = (C1e
(C2F(Tout,Tin,Tamb,I )−C3) − C4

)
√

3 cos(C5)C6 (5.74)

Figure 5.72 shows the entire hierarchical optimization structure implemented. The
regulation layer is the same as for the control structure shown in Fig. 5.69. An
improvement in this scheme would be to limit ΔTref , thereby avoiding any signifi-
cant change in the ORG output. Figure 5.73 shows an all-day test with the scheme
presented in Fig. 5.69. It is worth mentioning results during start-up, where it can
be seen how the Tref generated by the FRG changes with Tin and I . Around 12:75
(in Fig. 5.73), there is a fast increase in Tin (60°C in 30 min). Note how Tref increases
very smoothly compared to Tin. Setting Tref manually and under these conditions,
the pump will probably become saturated.

Figure 5.74 shows the results with the control scheme developed for Layer 1
(Figs. 5.69 and 5.72) at the actual plant, but with Tref inserted manually by the plant
operator during operation (no reference governor was used). On this day, solar radi-
ation varied greatly due to clouds and fog. The response of the automatic controller
makes it possible to track the reference with errors of less than 5°C, which may be
considered a good result. However, it must be mentioned that the increment in Tin
at start-up, while maintaining the same Tref , does not provide a desirable system re-
sponse because the HTF pump becomes saturated. Human operators cannot change
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Fig. 5.73 Test developed at the real plant with the hierarchical fuzzy control scheme (courtesy of
C.M. Cirre et al., [110])

Fig. 5.74 Test developed at the real plant where the human operator impose Tref and the automatic
controller is formed by a feedforward in parallel with an I-PD (courtesy of C.M. Cirre et al., [110])
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Fig. 5.75 Test developed in simulation with the input conditions presented in Fig. 5.74 and the
control structure shown in Fig. 5.72 (courtesy of C.M. Cirre et al., [110])

the set point as frequently and their decisions cannot be very accurate during op-
eration, so it is very difficult to know if the set point is the best or not as external
conditions are constantly changing.

Figure 5.75 shows simulation with the ORG hierarchical control structure under
the input conditions of the operation day shown in Fig. 5.74. The input conditions
are the same and so is the control structure. In this case, Tref was calculated using
the ORG structure and, in spite of disturbances, the response of the pump is not as
abrupt, the pump never becomes saturated and safety constraints are maintained at
all times. A comparison of the response obtained with a manual Tref established in a
real test and that obtained for the same conditions with the ORG is given in Fig. 5.76.
Manual maintenance of a set Tref means that the plant operator has to pay close
attention to operating and safety constraints at all times. As seen in this experiment,
the outlet temperature could have been higher during the real test without damaging
the solar collector field and this might also have been more profitable.

Figure 5.77 represents the net power calculated with the output given by the ORG
hierarchical structure (NPORG) for each sample time and its respective accumulative
sum

∑

NPORG at the bottom versus the output found with a fixed Tref (NPFTref ) and
the cumulative sum

∑

NPFTref for the results in Fig. 5.76. All units are in MWe. As
may be observed in Fig. 5.77, the net power estimated with the output calculated
by the ORG, is higher than the net power estimated with the fixed Tref throughout
the experiment. This can also be verified in Fig. 5.77, where the cumulative sum
of NPORG increases faster than the cumulative sum of NPFTref . The parts of the ex-
periment where NPFTref are higher than NPORG are due to the output not remaining
within the constraints.
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Fig. 5.76 Comparison between the experiment shown in Fig. 5.74 (with Tref imposed by the
human operator) and Fig. 5.75, with the ORG (courtesy of C.M. Cirre et al., [110])

Fig. 5.77 Net power
calculated for the results
shown in Fig. 5.76 (top) and
their respective accumulative
sum (bottom) (courtesy of
C.M. Cirre et al., [110])

5.12.2 Hierarchical Control

The reference governor strategies explained in the previous section calculate Tref at
all times during operation (including plant start-up), staying within the plant safety
constraints and with only two data inputs. An improvement on these schemes will
be studied in Chap. 8, where other elements belonging to the DSCF system are
taken into account to allow for operational planning using prediction and forecasting
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models (radiation, electricity demand, . . .), models of the storage system and models
of the power conversion system.

5.13 Summary

The main features of the different advanced control approaches used during the last
30 years to control DSCF have been outlined and are summarized in this chapter. It
is difficult to demonstrate the relative merits of one controller in respect to the others
since they are based on different conceptual and methodological approaches and the
exact conditions in which the tests are performed are different (mainly in terms of
solar radiation and inlet HTF temperature conditions) [88]. As has been mentioned,
the DSCF may be described by a distributed parameter model of the temperature.
It is widely recognized that the performance of PI and PID type controllers will be
inferior to model-based approaches [85, 245], taking into account that the plant is
highly non-linear as well as of infinite dimension [195, 196]. Even when the plant
is linearized about some operating point and approximated by a finite dimensional
model, the frequency response contains resonance modes near the bandwidth that
must be taken into consideration in the controller in order to achieve high perfor-
mance [242]. Thus, the ideal controller should be high-order and non-linear. The
control techniques outlined in this chapter try to find a trade-off between commis-
sioning time and performance. Different characteristics have been studied and are
the basis for the selection of each technique, mainly depending on the knowledge
the user has of the process and on the techniques: degree of difficulty in obtaining
the model/controller tuning, degree of difficulty in the model/controller implemen-
tation, degree of acceptance by the operators, robustness, stability and performance
results, use of design and/or implementation constraints, disturbance rejection ca-
pabilities, starting up of the operation, and existence of real tests [88].



Chapter 6
Control of Central Receiver Systems

6.1 Introduction

As commented on in Chap. 1, power generation by solar thermal systems consists of
converting the Sun’s energy into heat by means of solar concentrators that focus the
solar radiation on a receiver, where it is absorbed by the working fluid. Usually this
fluid is sent to a steam generator in combination with a conventional power block
to generate electricity. Solar thermal power generation systems are characterized
by which of three basic types of concentrator is used: (i) central receiver system,
(ii) Dish/Stirling engine systems and (iii) parabolic-dish collector systems. Central
receiver systems (CRS) employ an array of two-axis solar-tracking reflectors called
heliostats to concentrate the solar radiation on a focal point located on top of a tower
to avoid their interfering with each other. These systems are made up of the follow-
ing components, which are commented on in the next section: (i) collector field,
(ii) thermal storage and/or hybrid system, (iii) heat transfer system, (iv) receiver,
and (v) control system. Figure 6.1 shows a flow diagram of a central receiver plant
with storage.

Its heliostats and tower distinguish this type of power plant from other solar
thermal power plants. The CRS is characterized by having a fixed off-axis focus
(the Sun, the mirror and the focus form an angle that has a system cosine factor at
all times).

If it is for electricity generation, the conventional part can be inserted at either
of two points in the cycle. The solar part can send the energy already transformed
into steam or gas directly to the turbine, or there can be intermediate equipment
that transforms the solar output characteristics into those required by the power
conversion system (steam generator).

The design and operation of a power tower plant are strongly affected by the na-
ture of the incident solar radiation cycle. The prediction of the power to be supplied
by the plant and the production costs depend in large part on the site selected and
their meteorological characteristics, so there must be a long enough meteorological
data series for the site selected to reduce uncertainty.

The control system is more complicated than for a conventional thermal power
plant, since in addition to the power block, it must include controls for heliostat
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Fig. 6.1 Flow diagram of a central receiver plant with storage

field, receiver, thermal storage and steam generator. This complicates component
interaction, especially during start-up and shutdown, which are the most critical
periods.

Because of the high incident radiation flux (300–1000 kW/m2), central receiver
systems can work at high temperatures and be integrated into more efficient cycles
by steps, they may easily be combined in hybrid systems in a wide variety of options
and have the potential for generating electricity with high capacity factors through
the use of thermal storage, which can today surpass 4500 equivalent hours per year.

Solar power plants can easily be represented by functional block diagrams, where
the main variants are determined by the heat transfer fluids (HTF) and the solar
receiver-power block interface through the corresponding heat exchange and energy
storage and/or fossil hybridization systems. Four alternatives can be considered de-
pending on the HTF: air, water/steam, molten salt and liquid sodium. And there is a
fifth option: in which sodium is used as the working fluid in the receiver and molten
salt is used for thermal storage (binary sodium/molten salt system).

6.2 Description of the Technology and Subsystems

6.2.1 Collector Subsystem: The Heliostat Field

The basic function of the power tower collector subsystem is interception, redirec-
tion and concentration of direct solar irradiance incident on the receiver subsystem.
As has been pointed out, it consists of a field of mobile mirrors called heliostats (see
Fig. 6.2) and a system that controls their movements so they track the Sun and keep
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Fig. 6.2 Rear view of a
heliostat focusing on the
tower target (courtesy of
PSA)

the solar irradiance constantly focused on the receiver while the plant is in opera-
tion. The general characteristics of the heliostat field are based on cost studies and
field behavior, which attempt to minimize the annual cost of energy collected per
collector. These studies must include the shape and type of receiver, the tower, the
whole hot fluid piping system, as well as the collector field and its associated equip-
ment. There are different types of field; circular, completely surrounding the tower,
or being located on one side of it (in the northern hemisphere, the field is located
north of the tower and in the southern hemisphere, to the south), see Fig. 6.3. In
the circular field, the heliostats surround a central tower, normally displaced to the
south of the field to optimize its overall efficiency.

Historically, two lines of heliostat development directed at lowering manufactur-
ing costs without diminishing their performance are clearly differentiated. The first
of these is directed at the construction of faceted heliostats and reflective surfaces of
over 100 m2, with the resulting reduction in price per m2 of structure, mechanisms,
wiring and foundations. This has some optical problems related to large surfaces and

Fig. 6.3 Typical layout obtained with the NSPOC tool [306]
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operational problems (for example, heliostat washing). The second line is heliostats
made of new reflective materials, such as the stretched membrane (heliostats with a
very thin stretched-metal surface on a ring support frame).

6.2.1.1 Characteristics

All the heliostats have a series of features in common [216, 359, 395]:

• Facets: Facets, which are the reflective part of the heliostat, may be different
shapes and sizes. They are basically made of low-iron glass to prevent rusting,
since the heliostat has to undergo outdoor conditions, on which a reflective layer
of silver or aluminum is deposited, with an outer layer of protective paint. They
are usually attached to the structural supports at three or four anchor points.

• Structure: The facets are screwed to a grid support frame attached to a horizontal
cylindrical axis which is connected to the heliostat drive by a reduction mecha-
nism. Two-axis movement, azimuth and elevation, is driven by two motors con-
nected to the reduction mechanism. The stretched-membrane heliostat structure
consists of a metal-membrane ring support frame joined to a gear wheel for posi-
tioning elevation and wheels on a rail for azimuth. Pressure inside the ring can be
varied to control the focal distance of the heliostat.

• Driver: The typical drive mechanism usually has independent azimuth and ele-
vation gears driven individually. These elevation and azimuth gears are the same
type, with the same shape cogs and reduction rate. The first step in reduction is
a planetary gear system, while the second (output) is a worm drive (worm-worm
wheel). The planetary gear, which provides high reduction rates related to the
heliostat aiming quality, occupies very little space. The worm gear also provides
high reduction rates, as well as a high capacity for momentum, but its efficiency
is reduced by the great friction it undergoes. Linear hydraulic drives are also
used, but this type of positioner is less precise than worm-worm wheel drives.
Stretched-membrane heliostat positioners consist of a toothed ring connected to
a planetary gear which controls the elevation and wheels that move on a rail to
control the azimuth.

• Control system: To focus properly on the desired target at all times during power
tower operation, heliostat movement on both axes must be independent and fully
controlled. This control can be accomplished by a centralized system based on a
central computer which handles all of the tasks or by a distributed control system
in which more importance is given local controls, relieving the central computer
of a large part of the tasks. These tasks, regardless of which of the two versions,
are:
– Sun position calculation.
– Heliostat position calculation (azimuth and elevation) for its location.
– Measurement of the current heliostat position (azimuth and elevation).
– Correction of the closed-loop position.
– Management of heliostat communication.
– Heliostat operating modes.
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– Detection of errors and breakdowns.
– Emergency action and alarms.
The heliostat position must be corrected periodically depending on the distance of
each from the aiming target in order to maintain aiming accurate to 1–2 mrad. The
heliostat position is found by two coders (azimuth and elevation) which send a
signal to the corresponding control, where it is compared to the position it should
have according to calculations. A position adjustment command according to the
result of the comparison is then sent to the drive motors.

6.2.2 Receiver Subsystem

In power tower systems, the irradiance incident on the heliostat field is reflected at
all times on a receiver located at the top of a tower. The incoming energy can have
up to several hundreds of MW, depending on the size of the receiver and the size of
the heliostat field. The receiver absorbs the solar radiation and heats a HTF (thermal
energy conversion) at temperatures that may be over 1000°C and can be used in
industrial facilities as process heat, converted into electricity, or used in chemical
reactions. This thermal energy is then sent to a steam generator or stored in a storage
system. This takes place at high temperatures and high incident solar flux, so it must
be done with the least possible loss of energy absorbed (radiation, convection), with
the least consumption of electricity and avoiding loss or degradation of the transfer
fluid, keeping in mind the long distances it has to cover to go up and down the
50–150 m tower.

Many solar receivers with different configurations and adapted to different HTF
have been proposed and tested. There are direct exchange receivers (in which the
fluid is exposed directly to the solar radiation) and indirect exchange (when a com-
ponent converts the solar radiation into heat which is the convectively yielded to
the HTF). Receiver construction configurations may be oriented (which only accept
irradiance from a certain direction) or circular (which receive irradiance from any
angle around them).

Receivers can be classified by their configuration into flat and cavity systems and
by their technology as tube, volumetric, panel/film and direct absorption [359]. The
heat exchange process can take place in the following basic ways:

• Through tubes that receive the irradiance on the outside, absorb the energy
through their walls and transmit it to the heat fluid circulating through them.
These receivers in turn may be cavity or flat and operate as an indirect recov-
ery heat exchanger.

• Converting the heat and transferring the thermal energy by convection to the air
that flows through the volume of a metal or ceramic absorber which may have
different shapes. These volumetric receivers operate like a convective heat ex-
changer.

• Through the use of particles in fluids or jets that receive the irradiance directly in
their volume or on their surface. This type of receiver operates like a direct heat
exchanger.
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Solar receiver designs are thus closely related to the type of plant and thermody-
namic cycle. Flat receivers are absorbent surfaces directly exposed to the solar irra-
diance. In cavity receivers, the solar irradiance passes through an aperture to a box
type structure before being absorbed by the receiver surface. Both types have differ-
ent thermal loss mechanisms (spillage, convective, reflective, radiative and conduc-
tive). In tube and panel receivers, the working fluid circulates through them and is
heated by conduction. Tube technologies make high temperatures or high pressures
possible, but not both at the same time. In volumetric receivers, the fluid (usually
air) flows through a metal or ceramic mesh and is heated convectively. Volumetric
receivers can achieve the highest temperatures at pressures up to 30 bar. Finally, in
direct absorption receivers, the solar irradiance is absorbed directly by the working
fluid and the receiver is merely a support for it. Working fluids used up to now and
at present are: air, water/steam, molten salt and liquid sodium.

The receiver is the real core of a power tower system and the most technically
complex component, because it has to absorb the incident irradiance with the least
loss and under very demanding concentrated solar flux conditions. A large number
of configurations have been tested around the world, most of them at the PSA, with
liquid sodium, molten salt, saturated steam, superheated steam, atmospheric air and
pressurized air as the coolant [324].

6.2.2.1 Volumetric Receivers

Volumetric receivers consist of a set of different-shaped metal or ceramic structures,
prepared to fill a volume. They may be open to the outside or have a front window.
They can work at outlet temperatures of 700°C to 850°C with metal absorbers and
over 1000°C with ceramic absorbers.

The volumetric receiver works by causing a fluid, usually air, to flow through
the absorber volume. The radiation incident on the absorber heats it to high tem-
peratures and the air is heated convectively as it flows through. Usually, the air that
flows through the absorber is adjusted to the incident flux density distribution, so
that the outlet temperature of the absorber does not form a steep gradient between
two different points. When air is sucked through the volumetric matrix, the con-
vective loss is practically nil. As the gas flows through the absorber volume, its
temperature increases at the same time as the temperature of the material also in-
creases with depth. Thus the highest temperatures are in the interior of the absorber
matrix, thereby minimizing loss.

An additional advantage of the volumetric receivers is that since heat is ex-
changed throughout the internal volume of the matrix, working incident radiation
flux can be similar to and even higher than conventional receivers. Maximum flux
of 1000 kW/m2 has been surpassed, so that receiver design sizes can be equivalent
to salt or steam receivers, even though the thermal properties of air are worse.

The main advantages of a volumetric air receiver are:

• Air is an easily available fluid.
• It does not freeze.
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Fig. 6.4 A volumetric receiver (courtesy of PSA)

• There is no phase change.
• High-temperature applications are possible, with the advantage that Rankine cy-

cles can be connected by steps and afterwards directly to a gas turbine in a closed-
cycle.

• Easy operation and maintenance.
• Simplicity of the system.
• Fast response to transients from changes in incident flux.
• Does not require any special safety measures.
• Does not affect the environment.

Figure 6.4 shows a volumetric receiver in operation [387].

6.2.2.2 The Tube Receiver

The first pilot solar plants had tube receivers in which the heat transfer medium (gas
or liquid) flows through the tubes to extract the solar power absorbed on the outside
of the tubes. Therefore, the physical processes in this receiver are related to the use
of two transfer surfaces: the solar radiation is absorbed on the outside of the tubes
and the heat is extracted on the inside. The heat is transferred from the tube walls
by conduction, which is intrinsically associated with a difference in temperature
between two surfaces.

In these receivers, there is a wide temperature difference between the front
(which is exposed to the irradiance) and the back, so the materials are subjected
to strong thermal stress which often leads to their deformation or even breakage.
Some solutions employed to minimize this problem consist of introducing auxiliary
fossil energy on the back (gas burner, etc.) to equalize the temperatures on both sides
of the tube.
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The configuration may be flat or cavity, but the trend is to manufacture cavity
receivers since due to the large surfaces exposed to radiation, there is higher thermal
loss in the flat receivers and this loss is minimized in the cavity receivers, which may
even be constructed with movable doors so they can be closed when the receiver is
not in use to keep the temperature inside and minimize radiation and convection
losses.

Depending on which working fluid is used, they operate in a range of up to
120 bar pressure and temperatures up to 550°C for flat receivers and 1000°C for
cavity receivers, while average incident flux hardly surpasses 0.5 MW/m2. This flux
is limited by the low heat transfer coefficient between the tube and the coolant,
which impedes high temperatures being reached. Its use is limited to generating
steam, either directly in the receiver or introducing the working fluid in a steam
generator for integration in Rankine cycles.

6.2.3 Storage Subsystem

Thermal storage, which may be considered the third specific element of a CRS, is
necessary to buffer any transient from weather conditions and to accelerate start-
up and makes operation possible at night when there is no energy incident on the
system. Optimum dimensioning of storage capacity to meet the demand curves of a
specific application is an essential part of plant design (Fig. 6.1).

In a solar power plant, the output must be kept stable at all times, regardless of
the energy absorbed in the receiver, that is, regardless of fluctuations due to changes
in weather. Storage allows continuous power system operation and at the same time
protects the system from damage from fluctuation in the solar energy. Solar thermal
plants require efficient, economical thermal energy storage to improve plant opera-
tion. These systems can increase the solar contribution to the power from the plant
and at the same time increase revenues (market introduction strategies are based on
hybrid solar/fossil configurations). Furthermore, it increases plant capacity by ex-
tending its daily operation without recurring to fossil fuel backup. At the same time,
it allows plant production to be adapted to the power demand and simplifies plant
operation. If there are discrepancies between the primary supply and secondary en-
ergy user, some system that can temporarily absorb these differences is necessary. If
the discrepancies are due to change in the secondary energy demand, the problem is
one of peak plant load. This can be solved by an energy storage system, because an
energy storage system is cheaper than designing a plant to work at full load which
is working most of the time at medium load. If the differences between energy sup-
ply and demand are due to the changes of primary energy source, the storage sys-
tem must smooth out the variations in energy entering the plant and ensure specific
power production. In the case of solar thermal plants, they must be equipped with
a storage system and/or a fossil fuel backup supply. Due to the strong relationship
between plant design and the technical solution of the storage system, the specific
type of plant must be considered when selecting the storage system, including the
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heat transfer system, receiver operating conditions and conversion units. Only this
way is it possible to define an efficient thermal storage system which best adapts to
plant conditions.

6.2.4 Control Subsystem

Operation of a solar thermal power tower plant requires installation of control sys-
tems for such a diverse tasks as weather data acquisition and integration in control,
automatic cloud detection system, compensation for heliostat field defects (auto-
matic offset correction system), basic heliostat positioning for aiming at the solar re-
ceiver through interaction between the central control system with local controllers
(heliostat control system), control of flux on the receiver to avoid deterioration of
its components from high temperature gradients (may include flux and temperature
artificial-vision measurement systems), interaction with conventional steam gener-
ation and power conversion control systems, etc. The best option, including all of
the components necessary for operation and optimization of solar power tower plant
functioning, must be based on hardware and software combining different control
subsystems. The data from each of the subsystems are received by a central control
system which coordinates and supervises functioning of the whole. Communication
among the different subsystems and the central system is by a digital communica-
tions network that transmits the necessary information among them.

6.2.4.1 Central Controller, SCADA and Communications

The central control unit controls the heliostat field, supervises basic solar receiver
functions and interacts with its supervisory control and data acquisition system
(SCADA), which integrates the information received from local controllers in the
heliostat field, operating position, other subsystems, etc. The operating position,
from which the signals are sent to the various control subsystems that carry out
daily routine plant operation, is integrated in it. In the first control systems devel-
oped, the central control did most of the control tasks, while local controls were only
for communications for which very powerful central controls were required. With
the development of microprocessors, it is possible to integrate these operations in
the local controls, so the trend has reversed and central control is now in charge of
communications and interaction with the operator (in addition to data acquisition),
while the rest of the control operations are almost exclusively done locally in the
various subsystems (distributed control).

6.2.4.2 Heliostat Field Positioning Control System

The heliostat field control system aims the heliostats at the solar receiver (normal
tracking), or at the standby points (points located outside of the solar receiver where
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the heliostats aim before focusing on the receiver and just after defocusing in emer-
gencies), controls tracking or sends them into stow position when they are out of
service. This control is carried out by the heliostat local control boxes, which are
devices located at the foot of the heliostats that control their movement and commu-
nications with the central control. Their basic purpose is to position the heliostat so
that the reflected rays incident on it remain on the desired focal point.

The calculation functions for proper positioning of the heliostats and for system
evaluation are [359]:

• Calculation of the Sun position and the solar vector at predetermined times, which
requires permanent time synchronization with the central control and the rest of
the heliostat local controls.

• Calculation of the flux that each heliostat provides based on a database built up
from the original field characterization for different seasons and times of year and
of the main heliostat variables (reflectivity) and irradiance.

• Provide data to the central control to facilitate the calculation of the parameters
for evaluating solar system performance (effective field cosine, effective reflective
surface, energy reflected by the collector field, power incident on the receiver
aperture, etc.).

The local control has to solve all heliostat actions described in addition to commu-
nications with the central control using the corresponding protocols. As mentioned,
the current trend is to increase the amount of local heliostat control intelligence for
greater autonomy from the central control and also to employ radio-control systems
that eliminate the kilometers of wiring otherwise necessary for communications.

6.2.4.3 Flux and Temperature Estimation and Measurement Subsystem

To optimize and design a CRS it is essential to know the performances of the sub-
system formed by the tower and the heliostat field [147]. Modeling tools for CRS
can be divided into two main categories: those dedicated to system optimization and
those designed to deep analysis of the optical performances. In [147] an overview
of codes for solar flux calculation dedicated to CRS applications is performed. One
important topic is to select the best layout to maximize the collected solar energy
or to minimize the cost of that energy. Another one is to be able to estimate the
power reflected by the field and arriving on the receiver aperture (performance cal-
culation) [147]. Thus maps on the receiver aperture have to be determined, as well
as efficiency matrices on the solar field. The solar field efficiency is usually defined
as the reflected power arriving on the receiver aperture divided by the product of
the incident solar power by the total area of mirrors. It includes reflectivity of the
mirrors, cosine factor due to the incident angle of the Sun on the heliostats, atmo-
spheric attenuation between the heliostats and the receiver, shadowing and blocking
effects and spillage of the flux around the receiver aperture. For the mean annual
efficiency, heliostat availability is also taken into account. A solar field efficiency
matrix is a bi-dimensional matrix giving the solar field efficiency as a function of
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Sun position (azimuth and elevation). Integrated in tools for performance analysis
of CSP systems, such a matrix makes it possible to assess the solar field efficiency
all year long [147]. The field layout use to be optimized based on costs criteria (cost
of produced kWh, cost of installed kW).

The optical components of a CRS are designed to form an image of the solar
disk on a focal plane. The obtained solar spot has neither the same size nor the same
luminance as the Sun, due to [147]: Sun and collector geometry, size and luminance
of the Sun (varying every day by diffusion in the atmosphere), specific defects of
solar facilities, optical aberrations (like heliostat astigmatism, caused by the design
of the reflective surfaces), microscopic errors of reflective facets, often considered
as negligible, pointing (or tracking) errors, curvature and canting errors of facets or
modules.

The usual approaches to calculate concentrated solar irradiance are ray-tracing
and convolution methods. The principle of ray-tracing methods (or statistical or
Monte Carlo methods) is to choose randomly a bundle of rays coming from a sur-
face 1 and then to determine which of them arrive on surface 2. The irradiance of
an elementary surface is proportional to the number of impacting rays. In the case
of a concentrator with one reflection, this algorithm is used twice, first between the
Sun and the reflective surface with an energetic distribution corresponding to the
Sun shape, then between the heliostat facet and the receiver with a statistic law for
the error distribution related to the defects of the facet. Precision and calculating
time increase with the number of rays and the complexity of geometry. In convolu-
tion methods (or cone optics), reflected rays from elementary mirrors are considered
with error cones calculated by convolutions of normal Gaussian distributions corre-
sponding to each error (Sun shape and heliostat errors). A systematic comparison
shows that with the same hypothesis similar results can be reproduced with ray-
tracing and convolution methods (as shown in [147] and references therein). Sim-
ulation errors often come from an incomplete description of reflective surfaces and
Sun shape properties. Nevertheless ray-tracing methods are more flexible and are
able to model non-ideal optics (non-imaging concentrators). Indeed, they have the
advantage of reproducing real interactions between photons and therefore of giv-
ing accurate results for small or complex systems but they need higher calculating
time and computing power. That is why it is not recommended to use ray-tracing
techniques for system optimization [147].

On the other side, it is important to maintain temperature distribution on the re-
ceiver surface as uniform as possible to reduce thermal gradients in the receiver and
increase its useful lifetime. At the same time incident solar flux distribution must fol-
low a predefined pattern and not separate too much from it. Both parameters, along
with the thermal performance of the absorber define the effectiveness of the receiver
which is very important for commercial power generation. Artificial-vision systems
(using coupled charge devices—CCD—and infrared cameras) or thermocouples in-
stalled at various points on the receiver can be used to control both distributions
[150]. The information from this system is processed by the central control or by
other subsystems (offset correction [45]) to calculate aiming-point modification of
one or several heliostats or even to detect the presence of clouds. Knowledge of the
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temperatures profile makes it possible to modify receiver aiming-point coordinates
and keep the required temperature distribution within a defined range.

6.2.4.4 Automatic Offset Adjustment System

The error calculated between the command sent to a heliostat and the real focusing
position on each heliostat axis is called the offset or quasi-stationary error. In exist-
ing solar plants, the offset correction is a periodic, time-consuming task due to the
large number of units to be corrected in a heliostat field. It is done by a specialized
operator with the help of an image from a camera located in the heliostat field aim-
ing at an auxiliary target. The operator manually changes the azimuth and elevation
angles of the heliostat according to the image projected so its reflection coincides
with the center of the target. This task can now be done automatically using a black
and white CCD camera which determines the position of the centroid of the solar
image projected by the heliostat and its deviation from the center of the target, and
then depending on the heliostat coordinates, the offset is estimated and aiming is
corrected [45].

6.2.4.5 Power System Control

The power system control in a power tower system is analogous to that of a con-
ventional power plant, since they have the same systems and components (steam
generator, turbine, etc.). However, while in conventional plants, the fuel can be ma-
nipulated to keep the turbine requirements constant, in the solar plant the fuel (the
solar radiation) cannot be manipulated, it changes seasonally and even daily and is
considered a disturbance from the point of view of control. Therefore, the PID con-
trollers, normally used with good performance in conventional plants in a multitude
of industrial processes, are sometimes insufficient for good control of the power
tower systems, since they cannot provide a fast response to changes in irradiance,
and results differ significantly from the set point.

This is why feedforward control (FF), model predictive control (MPC), intel-
ligent control (IC) and other techniques are being introduced into today’s control
systems to increase response speed and accuracy in plant control, minimize system
start-up and shutdown times, reduce operating and maintenance costs and optimize
the system operating parameter set points for maximum energy efficiency.

All the information from this control system is sent to the central control for
interaction with the rest of the control subsystems to keep turbine steam pressure
and temperature requirements and react to any alarm tripped in the power block.

6.3 Advances in Modeling and Control of Solar CRS

The modeling and control schemes object of this and the following sections are
focused on the CESA-1 facility, a central receiver solar thermal power plant belong-
ing to CIEMAT and located at the PSA. This test-bed plant was shown in Chap. 1
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(Fig. 1.13) and it is an experimental prototype for electricity generation, among
other research projects.

The CESA-1 facility collects direct solar irradiance by means of a field of 300
heliostats (39.6 m2 surface) distributed in a 330×250 m2 north field into 16 rows.
The heliostats (see Fig. 6.2) have a nominal reflectivity of 92%, the solar-tracking
error on each axis is 1.2 mrad and the reflected beam image quality is 3 mrad. North
of the heliostat field there are two additional test zones for new heliostat prototypes,
one located 380 m from the tower and the other 500 m away. The maximum thermal
power delivered by the field onto the receiver aperture is 7 MW. At a typical design
irradiance of 950 W/m2, a peak flux of 3.3 MW/m2 is obtained. In addition, the 99%
of the power is focused on a 4 m diameter circle, 90% in a 2.8 m circle.

The 80 m high concrete tower has a 100 ton load capacity. The tower is complete
with a 5 ton capacity crane at the top and a freight elevator that can handle up to
1000 kg loads. For those tests that require electricity production, the facility has a
1.2 MW two-stage turbine in a Rankine cycle designed to operate at 520°C 100 bar
superheated steam.

The TSA is a receiver system located on top of the CESA-1 tower at the PSA. The
volumetric receiver is constituted of packages of thin wire. These packages are com-
pacted in hexagonal cells, so that the profile offered by the receiver is that presented
in Fig. 6.5(a). The main receiver characteristics are: open cycle wire pack volumetric
air receiver, modular and metallic wire mesh absorber, 700°C mean hot air temper-
ature, 2500/3000 kW nominal/maximum absorber power, 800 kW/m2/100 kW/m2

heat flux density maximum/rim, 3400/3000 mm aperture/absorber diameter, 30° re-
ceiver tilt angle, 0.6 air return ratio, and 86 m elevation above ground level. When
the beam irradiance received from the heliostat field reaches the receiver surface,
the wire packages are heated and then energy can be transferred to the air flow,
as the packages are quite porous and air easily circulates through them. Thirty-six
thermocouples were placed behind elements of the receiver in order to measure the
temperature of the air, so that the supervision of the state of the receiver during the
operation could be carried out (as the absorber temperature is close to the measured
air temperature). An overview of the operation of this kind of plant may be found in
[150, 170].

The power stage of the TSA system is illustrated schematically in Fig. 6.6. It is
composed of an air circuit and a water–steam circuit. The air circuit supplies the
power demanded by the steam generator from the receiver and the thermal storage
and return to the receiver the output cold air from the steam generator.

To achieve the desirable flux distribution, a five point aiming strategy is used
in the heliostat field. This heats the absorber ceramic cups, which transfer their
heat to the air flow behind them by the volumetric principle and the hot air leaves
the receiver at 700°C, blower G1 controls the air mass flow through the receiver.
A thermal storage unit in the air circuit, which provides standby power, is charged
during plant start-up and then discharged to feed the steam generator, either during
cloud transients or when the power supply from the receiver is not enough to feed
the steam generator at nominal conditions. Blower G2 controls the air mass flow
through the steam generator and thereby, incoming power. The once-through steam
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Fig. 6.5 TSA solar receiver (courtesy of F.J. García-Martín et al., [150])

generator, which is part of the water–steam circuit, has a nominal operation of 340°C
and 45 bar. The steam produced is sent to a turbine, which is part of a Rankine cycle.
Steam outlet temperature is controlled by means of a feedwater pump and the steam
outlet pressure by means of valve PV123 in Fig. 6.6.

6.4 The Heliostat Field Control System

As pointed out before, the CESA-1 heliostat field operation requires the utilization
of approximately 180 heliostats for TSA specific field layout. These heliostats are
used to concentrate the solar irradiance onto five aimpoints of the volumetric re-
ceiver. These aimpoints are described by a set of coordinates having origin at the
base of the tower and will be treated in the next section. As well as the aimpoints,
other points exist in the space called standby points (Fig. 6.5(c)), located outside the
solar receiver onto which the heliostats are aimed at before pointing the aimpoints
and just after being defocused. The use of these standby points allows the heliostats
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Fig. 6.6 Schematic diagram of the TSA system (courtesy of J.D. Álvarez et al., [10])

to be moved so that the concentrated irradiance is moved from the standby points
into the receiver following security paths and avoiding accidents caused by the re-
flection of a large amount of energy over undesired points. These standby points are
also used in emergency situations in which the heliostats have to be quickly defo-
cused. The position of a heliostat can be classified into three different states: normal
tracking if the heliostat is aimed at an aimpoint of the solar receiver, transferring
energy to the system; phase-out tracking or defocused, if the heliostat is aiming at a
standby point; and finally stow if the heliostat is out of service.

A series of factors that hinder the constant concentration inside the receiver (nec-
essary for a good operation of the system) exist. The temporary dependence of the
systems that use solar energy (the radiation intensity varies along the day) and the
possible interferences (for example, for cloud presence) are among these factors. In
a general way, the basic operations that a heliostat carries out are to be positioned in
a fixed orientation or the tracking of a coordinate. The tracking allows the concen-
tration of the incident solar irradiance on the heliostats in the field to be aimed in a
wanted point of the space. The tracking involves the calculation of the elevation and
azimuth set point values for the heliostat. The calculated values will depend on:

1. The coordinates where one wants to aim,
2. The heliostat location in the field (regarding the tower) and
3. The date and hour with the one it can obtain the position of the Sun in the sky.

Although the coordinates where it is wanted to make impact the reflected ray do
not change, it is periodically necessary to recalculate the elevation and azimuth set
points because of the Sun constantly changes its position in the sky. These calcula-
tions together with the necessity to be able to indicate some emergency set points
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quickly when a dangerous situation happens (for example the elevation of the tem-
perature above certain limits in certain places) make that a hard real time support is
required.

The following main operation modes are defined [59]:

• Waiting: The heliostat is waiting for an input message. In this mode, the heliostat
may be moving to a position.

• Request: The heliostat sends an output message including position information.
• Reset: When the heliostat is in reset mode, updates its positions moving to zero

position for azimuth and elevation, moving firstly in the azimuth direction. Once
it get to zero-azimuth position, it begins moving in the elevation axis. In this
operation mode, the heliostat does not send any output message until the reset
time is reached.

• Stow: If the heliostat does not receive an input message during before the timeout,
it moves to stow (zero) position. In this case, the movement is in the two axes at
the same time.

• Control: The heliostat moves to the position reference specified in the input mes-
sage.

• Request + Control: Request and Control modes at the same time.
• Request + Reset: Request and Reset modes at the same time.

6.4.1 Heliostat Field Simulators

In [58, 59] a real time heliostat field simulator, based on a hybrid model, using Mod-
elica [257, 258] as the modeling language, was presented for the CESA-1 plant,
mainly aimed as a tool for the enhancement of advanced control algorithms but also
useful for training purposes. The developed real time heliostat field simulator is ba-
sically the union of an hybrid heliostat field model (combining the system dynamic
continuous variables with operation mode discrete variables) and a wrapped model
which handles the real time simulation and communication issues between the he-
liostat field simulator and HelFiCo (Heliostat Field Control) software [159], which
is in charge of manipulating and controlling the heliostat field according to an au-
tomatic control strategy. The real time heliostat field simulator provides a virtual
system, with the same response as the real plant.

6.4.2 Tracking the Sun

The problem of modeling the flux distribution in the receiver brings about the pre-
vious resolution of the following subproblems that are described below.
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6.4.2.1 Computing the Solar Vector

At present, there are many algorithms to compute the solar vector (vector pointing
toward the Sun). The one used in the applications shown in this book is the called
PSA algorithm [56], which input is time and location (this algorithm has already
been used in the PV solar tracker developed in Chap. 3). The time for the instant un-
der consideration is given as the date (year, month and day) and the Universal Time
(hours, minutes and seconds). The location is given as the longitude and latitude of
the observer in degrees. Latitude is considered positive to the north and longitude to
the east. The main features of this algorithm are [56]:

1. It incorporates an efficient method of computing the Julian Day (J ) from the
calendar date and Universal Time.

2. Memory management was improved by controlling the scope and life span of
variables.

3. Speed and robustness was improved by using robust expressions for calculating
the solar azimuth, which are valid for both hemispheres.

4. Accuracy was improved by modifying the simplified equations of the Nautical
Almanac used by Michalsky with the introduction of new coefficients and new
terms and including parallax correction.

The ecliptic coordinates of the Sun are computed from the Julian Day and then are
converted to celestial coordinates using standard trigonometric expressions [56] and
also to horizontal coordinates (see Chap. 1 for the definition of this coordinates). The
algorithm is available in electronic form at http://www.psa.es/sdg/sunpos.htm.

Heliostats are oriented so that for any position of the Sun, the rays are reflected
directed to a fixed point some distance above the level of the field. The fundamental
relations governing the heliostats movement must satisfy the laws of reflection and,
therefore, the angles of the incident and reflected sunlight, with respect to the normal
of each mirror surface, must be equal. The defining vectors must be located in a same
plane at every moment. In Chap. 2, Sect. 2.2, these defining vectors were analyzed.

6.4.2.2 Identification of the Shape of the Facets

The heliostats are composed of mirrors, or facets aligned along, required to concen-
trate the Sun’s rays into an aimpoint defined in the receiver. The tolerances of these
facets are measured using large accuracy probes or a laser before being installed
at the solar field to determine their actual geometry. With this information, the sur-
face of each facet can be built and thus the normal to each element of area can be
determined.

However, it seems obvious that after the assembly process of each facet onto the
heliostat, errors in the normal vectors may appear. In fact, there are multiple error
sources affecting the computing of the normal vector to each element of area, from
the influence of wind to noise in the test probe or laser. This is the reason of why
all these errors are embedded into one, called slope error, as a Gaussian random
deviation in the normal of each element of area. This value has to be adjusted from
field tests and will be independent for each facet [259].
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6.4.2.3 Sun Model

The Sun, as light source, must be modeled and sampled as a circular solid. In the
literature there are various techniques to estimate the solar brightness distribution
as a function of solar radius in steradians [72]. One of these approaches makes the
assumption that the distribution of the solar intensity can be modeled as a circular
Gaussian of the form:

z(x, y) = 1√
2πσ 2

exp

(−(x2 + y2)

2σ 2

)

; σ = 2.325

where the standard deviation is considered as one half of the mean solar radius
(4.65 mrad).

Another possibility is to use brightness profiles of the circumsolar radiation
(CSR) as those obtained by the Lawrence Berkeley Laboratory (LBL) [72] or the
German Aerospace Center (DLR) [266].

Solar radiation, when passing through the atmosphere, is affected by scattering
processes such as Mie or Rayleigh ones, which creates a halo around the solar disk.
The CSR is a simple description of the distribution of solar intensity that determines
the percentage of integrated intensity of the halo respect to the total [259]:

CSR = ICS

ISun + ICS

where ICS represents the intensity of radiation of the halo and ISun the intensity of
radiation of the solar disk. This way several profiles can be created using different
values of the CSR from data captured using image cameras.

6.4.2.4 Computing the Flux Density at the Receiver

The total power reflected by a heliostat onto a receiver can be approached by

Ph = IAm cos(θi)fatr [kW] (6.1)

where I is the direct solar irradiance [kW/m2], Am the mirrors area [m2], cos(θi) the
cosine of the incidence angle of the solar rays on the heliostat, fat is an attenuation
factor due to turbidity of the atmosphere and r is the mirror reflectivity.

At present, there exists approaches that simplify the calculation of the flux den-
sity [118, 147] due to its computational load. When a good accuracy is required,
ray-tracing techniques are used.

6.5 Basic Offset Correction Techniques

6.5.1 Introduction

As will be seen in Sect. 6.7 (aiming strategies), when controlling the temperature
and flux distribution in a volumetric receiver, the algorithms calculate the amount
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of the shift using an equation appropriate for each heliostat depending on its current
temperature dependent focal length and orientation dependent aberrations in addi-
tion to beam errors and Sun size. As a first approximation, a heliostat aiming-point
strategy providing a desired energy flux correlated with the air mass flow through
the receiver can be selected to solve the control problem. Nevertheless, there are er-
ror sources that increase the complexity of the control system [363]: time, ephemeris
equations (Sun model), site location (latitude and longitude), heliostat position in the
field, time-varying astigmatism and cosine effects, processor accuracy, atmospheric
refraction, control interval, and structural, mechanical and installation tolerances.
Some of these error sources are systematic ones, mainly due to tolerances (joints,
encoder, etc.), wrong mirrors facets alignment (optical errors), errors due to the ap-
proximations made when calculating the solar position [56], etc. Heliostat beam
quality error sources are analyzed in [210]. The approximation adopted in this sec-
tion to overcome some of these error sources (mainly those related to the calculation
of the solar position and to tolerances) is based on the use of a Black/White (B/W)
CCD camera which captures images of the Sun reflected by each of the heliostats
of the field onto a target devoted to the task of offset correction [45]. The reflection
of the light coming from the Sun produces a shape that continuously changes due
to the Sun–Earth relative movement. The obtained images serve as feedback infor-
mation that allows the automatic calculation of the distance between the center of
the target and the sunbeam centroid in such a way that this error signal can be used
for adjustment purposes. The use of artificial-vision algorithms permits the calcu-
lation of the center of the target and the sunbeam centroid. After the calculation of
the required displacement of the motors of the heliostats (encoder steps), the sys-
tem sends this information to the central control system to perform the correction.
There exist several works from the late 1970s and early 1980s on the Solar One Ten
Megawatt Solar Central Receiver Power Plant at Daggett, California in which the
fundamental approach presented in this section was originally developed, not only
aimed at compensating offsets of the heliostats but also to characterize total beam
power, irradiance distribution, beam centroid, tracking error, overall mirror reflec-
tivity and the Sun’s radiance distribution, which could be used to compare the actual
flux distribution with the theoretical flux distribution for each of the 1818 heliostats,
at any time during the day [172, 210, 211, 361]. The approach was based on the
Beam Characterization System (BCS) [51, 54, 294, 364, 370]. The BCS, originally
termed the Digital Image Radiometer (DIR), was conceived and developed by Mc-
Donnell Douglas (now a wholly owned subsidiary of The Boeing Company) and
installed at Solar One as part of the DOE/Sandia contract (DE-AC03-798f10499).
The Solar One BCS determined the irradiance distribution of the reflected beam
from a heliostat on one of four trapezoidal targets mounted below the central re-
ceiver. Each of the 1818 heliostats was sequentially moved automatically onto the
target such that image grabs could be taken with a digitizer and the centroid of the
beam determined and compared with the theoretical position. From this position
difference on the target, the tracking error was determined and the heliostat tracking
aim point was then corrected, based upon various algorithms. The video camera was
modified to provide for background subtraction, control of black level (which can
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vary with temperature), elimination of automatic gain control and to allow its use
for various purposes [52, 53, 362, 363]. Various algorithms were used to assess and
validate data, or discard them and retake the measurements. Factors such as wind
speed, mean and standard deviation of the centroid variation, solar irradiance vari-
ations, etc., were taken into account. These steps were necessary to have accurate
determinations of the net irradiance distribution and thus accurate corrections for
the heliostat tracking. The BCS provided a number of data displays for the plant
operators and was capable of operating in both manual and automatic data acquisi-
tion modes and it was integrated with the Data Acquisition System (DAS) and the
Heliostat Array Controller (HAC) such that automatic updates of heliostat aim point
biases could be made and overall heliostat optical performance monitored.

Later, Sandia developed a system for use at their test facility in Albuquerque.
These systems are more complete and accurate than that presented in this section,
which is less ambitious and has a different objective from those previously pub-
lished in the literature in the sense that its objective is simply to replace the operator
in the task of performing offset correction. The system tries to imitate the way in
which operators perform the offset correction, that is, by watching an image on a TV
screen obtained from a typical B/W CCD camera installed in the field and trying to
center the centroid of the reflected Sun image with the center of a target. That is the
reason of why the system presented in this section only does offset correction based
on this simple image obtained from the CCD, without including modifications to the
video camera and without using more complex aiming algorithms, as the objective
was only to facilitate the operation, relying on the corrections that the aiming-point
strategy makes during nominal operation (that implicitly compensates for tracking
errors and low accuracy). The daily operation is based on selecting several groups
of heliostats that have to focus reflected solar irradiance onto fixed aimpoints de-
fined on the receiver surface (for instance, five aimpoints are defined for CESA-1
operation with TSA configuration). The selection of these groups is based on the-
oretical studies to achieve desired flux and temperature distribution in the receiver
(this last related to security reasons, as temperature gradients within the receiver
must be bounded). During operation, an aimpoint strategy is used to try to achieve
the mentioned desired flux and temperature distribution, based on the assumption
that the heliostats focus the Sun rays on the pre-defined aimpoint (see Sect. 6.7). If
large offsets exist, more corrections will have to be done by the aimpoint strategy,
increasing the complexity of the operation with the system. Thus, the main impact
of the corrections on receiver performance is that a smaller number of corrections
should be carried out by the aiming-point strategy, diminishing the transients that
could lead to undesired temperature gradients within the solar receiver. The section
tries to explain different aspects of the developed work as: (i) the technique used
to calculate the position of the centroid of the projected image of the Sun, (ii) the
strategy followed when the offset is such that the centroid lies out of the view field
of the camera, (iii) other problems that appear in the application (lens distortion,
vibrations in windy days, Sun reflections in the tower, etc.), (iv) the software tool
used by the operators, (v) etc. As has been mentioned before, the task of detecting
and eliminating the heliostats offsets is performed by operators at the PSA, increas-
ing their workload (this is a time-consuming task) and consuming hours that cannot
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be devoted to nominal operation, as the offsets have to be corrected under the same
conditions (daylight). If high accuracy is required, some corrections should be per-
formed during each day due to time-dependent drift [238]. After the work of [56],
the aiming algorithms were changed at PSA and smaller aiming errors were ob-
tained, thus decreasing the frequency of offset correction tasks. The development
and implementation of an automatic closed-loop control system using images cap-
tured by the CCD camera to perform the automatic offsets correction became an
important issue, allowing the operator to be kept out of this task and only perform-
ing the supervision of the control results.

6.5.2 The Offset Correction Problem

The problem that the systematic errors produce in the operation of the solar plant
is manifested in a deviation of the projected Sun shape, which can be far from the
expected point. Each heliostat has a pre-defined aimpoint to which it has to point
at the beginning of the operation. As is pointed out in [361], the offset correction
problem consists of comparing the actual sunbeam centroid position on a target to
a command reference position to determine the error in the sunbeam centroid lo-
cation. The sunbeam centroid position error is then analyzed to correlate the error
to errors in the heliostats’ track alignment system. In other works referenced in the
introduction of this section, a DIR evaluates the heliostat by measuring the total
beam power, irradiance distribution, beam centroid, tracking accuracy and overall
mirror reflectivity. New coefficients are established for the heliostats’ track align-
ment system to automatically correct for errors in the system, this eliminates the
need for resurveying and field work normally associated with aligning heliostats.
In the alignment program, calculations are made for the Sun’s position based upon
the stored time data when the measurements were made. Such factors as the Sun’s
azimuth and elevation are calculated. The program then calculates the orientation of
the heliostat based upon the Sun’s position and the command position of the sun-
beam. Once the program has calculated the optimum heliostat position, this infor-
mation is compared with the stored measurements made. In the error transformation
routine, errors between the command position and the measured positions are used
to calculate the alignment error coefficients. The aimpoint errors are corrected by
changing the database stored values. A target placed below the volumetric receiver
of the CESA-1 plant (Fig. 6.7) is used to test the accuracy of the heliostats posi-
tioning typically once a week to ensure a correct and safe operation. In order to do
so, a B/W CCD camera (equipped with a pan-tilt mechanism and with an automatic
contrast/brightness adaptation mechanism) is used by an operator who modifies the
azimuth and elevation coordinates (encoder steps) of the heliostat by a trial and
error procedure till the sunbeam centroid coincides with the center of the target.
The commands are sent by the operator using different programs implemented in a
workstation, that processes these control actions and sends the appropriate signals to
the local controllers (microprocessors) of the servomotors to move the heliostats to
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Fig. 6.7 Details of the target and different shapes of the image of the Sun projected by the he-
liostats: (a) centered ellipsoids (the shape orientation changes during the day), (b) ellipsoids out of
the target due to aiming errors [45]

the positions indicated by the control program. The system can also be used during
operation, as one heliostat can be deviated from its spot to correct its offset in real
time. In the applications in which these corrections are manually performed, it is
impossible or quite expensive to carry out this correction during operation, as more
than one operator should be needed. In the next section, an automated system for
offset compensation is explained.

Figure 6.8 shows a scheme of the architecture of the offset correction system.
The corrective actions are generated in a PC devoted to the offset correction prob-
lem and are finally sent to the workstation via a serial port (see Fig. 6.8). The work-
station processes these control actions and sends the appropriate signals to the local
controllers of the servomotors to move the heliostats to the positions indicated by
the control program. The implementation of the automatic control system allows
the simplification and optimization in the operation, as the control program devel-
oped automatically decides the correct control actions, then interrogates the operator
about the proposed correction (optional) and sends the corresponding commands to
the workstation to achieve the desired heliostat movements.

6.5.3 Offset Adjustment Mechanism

6.5.3.1 Database

The movement of the heliostats is discrete (resolution limited by the encoders). The
database of the central controller contains, for each one of the 300 heliostats of the
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Fig. 6.8 Diagram of the offset compensation system [45]

field, the following information: row and column (position in the field), (XYZ)hel

heliostat center of rotation related to the base of the tower, kind of heliostat (he-
liostats from different manufacturers are currently in use), nominal elevation and
azimuth angles in encoder step units and related information not relevant for the
purpose of offset compensation. The encoder resolution is limited to π/4096 rad.
The nominal angles are used in the solar vector calculation in such a way that, in an
ideal situation, the heliostats should aim at a target placed on the tower at the be-
ginning of the operation. Notice that due to the discrete nature of the movement of
the motors, it is impossible to exactly correct the deviations. The process followed
to correct the offset is shown in Fig. 6.9.

6.5.3.2 Calculation of the Center of the Target

As the CCD camera is used for different purposes, the operator should manually
adjust its position (by remotely acting on pan-tilt motors) in such a way that the
captured image can show the target. The algorithm that calculates the center of the
target is based on threshold detection techniques in such a way that in a first stage,
the grey level of the points belonging to the target are determined. To facilitate this
task, the algorithm makes use of the fact that the target should be centered (with
some tolerances) in the image (as this is done by the operators acting on the cursors
placed at the operation room). First, the image of the target without illumination
from the heliostats is captured and the histogram (number of pixels versus grey-
level intensity) of a portion of this image is calculated (using values of a rectangle
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Fig. 6.9 Flow diagram of the offset correction problem, [45]

around the center of the image). Once the most representative grey-level intensity of
the pixels in the selected rectangle has been obtained, two thresholds are defined to
distinguish those pixels belonging to the target (intensity between both thresholds)
from those of its environment. The selection of two thresholds is necessary due to
the fact that the segments of the target do not produce the same intensity color (grey
level), mainly due to mechanical and mounting distortions and also due to the fact
that only a part of the target is being used for threshold selection purposes. These
thresholds (TH1 and TH2) are selected to be near the peak with the maximum value
of grey intensity (grey_max) in the histogram: low TH1=grey_max-SHIFT,
high TH2=grey_max+SHIFT. The amount of SHIFT (30) has been heuristically
obtained by a trial and error procedure using different experiments in different oper-
ating conditions (different illumination levels) and thus is not a general recommen-
dation, as it depends on the camera settings. The reason for using a fixed SHIFT
instead of exploring the histogram is due to the fact that if the target is not ade-
quately centered, it is possible to obtain pixels with many different intensity levels,
producing a wide threshold that leads to errors in the discrimination of the target.
Figure 6.10 shows one of the obtained histograms (many of them have been ob-
tained) under hard operating conditions (early in the morning with the Sun far from
the solar midday). In a second step the central row of the target is calculated, that
is, the horizontal line crossing the center of the target. The same applies to the cen-
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Fig. 6.10 (a) Example of an image of the target, (b) the corresponding histogram and (c) the result
of applying the threshold detection algorithm [45]

Fig. 6.11 Simple calculation of the center of the target [45]

tral column. These processes are calculated simultaneously to the application of the
threshold detection algorithm (the resulting image is shown in Fig. 6.10(c)). The
steps followed in the calculation of the central row and column were (Fig. 6.11):

1. Taking into account the size of the image (576 × 768 pixels), in a first step a ver-
tical scan is performed taking into account only those pixels belonging to rows
over the middle of the image (< 576/2) and those belonging to the central col-
umn (= 768/2). In this way, a detection of the pixels belonging to this vertical
line with grey level belonging to the threshold interval is performed, starting with
the central pixels (bottom–up). The discontinuity border between pixels belong-
ing to the threshold interval and those out of the target is found in this simple
way. As the dimensions of the target are known (both in XY coordinates and in
pixels—the camera is not provided with any zoom mechanism and the distance
between the camera and the target is fixed) and the upper horizontal line has been
detected, the horizontal line containing the center of the target can be easily cal-
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culated. Notice that this simple algorithm is valid for those cases in which the
center of the complete image contains part of the target, which is always true
because the camera is manually positioned using the pan-tilt mechanism.

2. The process followed to calculate the central column of the target is quite similar,
but uses the known position of the upper row of the target in such a way that an
horizontal line belonging to the image (for instance, 20 rows below the upper
one) is selected and is scanned from the center of the image to the right, looking
for consecutive pixels belonging to the threshold interval. The central column
can thus be obtained knowing the size of the target both in meters and pixels.

3. The intersection of the central row and column provides the center of the target.

Once the center has been calculated, it is shown to the operator in order to test if
the calculation is correct. If due to hard operating conditions (mainly producing
changes in illumination) the center of the target is not adequately estimated, the
operator has only to slightly modify the brightness and contrast of the image using
a menu provided in the software tool (see next subsection).

6.5.3.3 Calculation of the Sunbeam Centroid

The next step consists of sending a heliostat from a standby point to the target (which
is predefined as an aimpoint, in this case number 9). Figure 6.7 shows zones of dif-
ferent images obtained from the CCD camera in which: (a) the heliostat has nearly
correct offset coordinates, (b) and (c) the heliostat has wrong offset coordinates. No-
tice that the intensity of the shape is much higher than that of the other elements in
the image, in such a way that the calculation of the sunbeam centroid is simplified
using, for instance, threshold detection techniques, as done in the case of the target.
Depending on the selected heliostat, the time elapsed in reaching the target will vary
between 18 and 60 s, depending of the kind of heliostat and its position in the field.
So, an upper bound of the time the system has to wait till performing the acquisition
of a new image is 60 s, this being the first approximation adopted. After several
tests, another algorithm was implemented, in such a way that after the first 18 s,
each 5 s the center of the centroid was calculated and compared with the previous
obtained one (when it appears in the image). When the difference between two con-
secutive centers was small (less than a small constant selected to take into account
the camera vibration due to the wind), the automatic system considered that the he-
liostat was in its final position. This second algorithm worked well when images
were obtained around solar midday. Nevertheless, it did not give good results when
direct projections of Sun rays impinged on the tower (as happens early in the morn-
ing in clear days, e.g. Fig. 6.10(a)), before the reflected shape of the Sun appeared
in the image. Due to the automatic brightness/contrast adaptation mechanism of the
CCD, once the reflected shape enters in the view field of the camera, the relative
intensity of other Sun projections different from the main shape is largely dimin-
ished (e.g. those due to the incidence of Sun rays on the side of the tower early in
the morning or late in the evening). Another problem is the case of those heliostats
which projection is out of the view field of the camera and does not appear in the
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Fig. 6.12 (a) Histogram used to calculate the sunbeam centroid, (b) result of the application of the
segmentation algorithm, (c) shows the centroid position on the real image calculated using (b) [45]

captured image. These heliostats are labeled as wrong pointing ones and their off-
set can be corrected using a modification of the main algorithm commented later in
the subsection. The calculation of the sunbeam centroid was also performed using a
threshold detection technique (based on histogram information), as the intensity of
the image was near 255. Different more complex image pre-processing algorithms
were used, but the added complexity and processing time did not justify their use,
because the obtained improvements were not relevant. In order to avoid that other
Sun projections different from the main one should lead to wrong results, the pixels
with intensities over the threshold are grouped according to their intensity level and
the existence of neighbors with the same intensity (segmentation). The figure with
largest area is selected as that corresponding to the sunbeam shape and its center is
calculated. Regarding this criterion of largest area, in the application shown in this
work a situation with most of the radiation falling on surfaces that are not essentially
perpendicular to the line of sight of the camera does not appear due to the heliostat
field–tower–target layout (this has been verified in the tests). In larger plants other
criteria should be used, for instance those related with intensity weighting of the
image, requiring more sophisticated hardware (cameras, frame grabbers, etc.) than
those used in this subsection. Figure 6.12(a) shows the histogram of the image in
Fig. 6.7(b), where the shape of the Sun projected by a heliostat can be observed. An
intermediate buffer (or auxiliary file) is used to store the different elements of the
image. The steps followed in the calculation of the sunbeam centroid were:

1. Determination of the threshold using the histogram.
2. Bottom–up/left–right scans are performed comparing each pixel with the thresh-

old, in such a way that if the grey level of the pixel is below the threshold, it is
saved in the auxiliary buffer as a black one (0 intensity). If the intensity of the
pixel is greater than the threshold, a fixed intensity value is assigned to it (start-
ing at 255 level) and to all the consequent pixels meeting the threshold condition,
until a pixel below the threshold is found (and saved as a black one). The fixed
intensity value is decremented and the algorithm continues looking for pixels
fulfilling the threshold condition till finding the end of the row. This last pro-
cessed row is stored into memory, in such a way that the procedure is repeated
for the following row, not only comparing the intensities of the pixels with the
threshold, but also with the intensities of the pixels belonging to the previous
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Fig. 6.13 Approximated
calculation of the vertical
displacement [45]

processed row, in order to group and label with the same intensity level all the
adjacent neighbors (backward modification of the assigned intensity is required
in the current processing line to assign the same grey level to pre-processed ones
belonging to the same object in the figure). Figure 6.12(b) shows the result (nega-
tive image) of the application of the algorithm to the image shown in Figs. 6.8(b)
and 6.12(c).

3. The completely processed rows are stored in an auxiliary buffer, also saving the
number of pixels belonging to the used intensities (histogram), in such a way
that when the process finishes, the grouped pixels with the predominant intensity
should be selected as belonging to the main shape and the corresponding center
will be calculated.

4. The intermediate buffer is scanned but only looking for pixels with the selected
intensity (belonging to the shape after the segmentation process). The extreme
pixels (up, low, left and right) are selected and an approximation to the centroid
of the figure is obtained by using the center of the outer box including all the
pixels of the shape (Fig. 6.12(b)), using a simple formula as the intersection of
the central column ((right + left)/2) and row of the figure ((up + low)/2).

5. As is mentioned in the next subsection, once the centroid has been calculated, this
is indicated in the image shown to the operator, in such a way that the decision of
correcting the offsets is done by the operator, depending of the results given by
the algorithm. In the mentioned case, in which the shape lies out of the view field
of the camera, the system returns (0,0) as the sunbeam centroid and the operator
is asked about the inclusion of this heliostat in the group of wrong pointing ones,
to be corrected with an alternative algorithm.

6.5.3.4 Offset Correction

The final correction consists of minimizing the distance between the center of the
target and the sunbeam centroid. In order to do so, it is necessary to calculate the
following data:

• mm/pixel relationship: as the camera does not use a zoom mechanism and the di-
mensions and position of the target are fixed, this is a known relationship. The in-
clination (Fig. 6.13) of the target (0.61 rad) and that of the camera (0.35 rad) have
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been taken into account in this calculation, providing a value of 3700 mm/200 pix-
els.

• mm/encoder steps relationship: this is calculated using the Cartesian coordinates
of the heliostats related to the base of the tower.

Knowing these values, a relationship can be established between the number of
horizontal/vertical pixels in the image corresponding with an azimuth/elevation he-
liostat movement (encoder steps). The relationship mm/encoder steps varies, not
only between heliostats, but depending on the actual elevation and azimuth coordi-
nates of each heliostat. The calculation of this relationship uses the Cartesian co-
ordinates of each of the heliostats of the field (x, y, z stored in the database) and
those of the target in relation to the base of the tower (Xtarget = 0, Ytarget = 8180,
Ztarget = 64200 [mm]). The z coordinate of the heliostats stored in the database
has to be augmented with their corresponding height (Zhel = 3650 mm). In what
follows, the calculations that the algorithm implements are summarized. It is impor-
tant to point out that due to the actual architecture of the control system when the
algorithm is implemented (in which commands can be sent to the workstation via
RS-232 communication, but no information has to be received from it, as the main
control program installed twenty years ago should be modified), an approximate cal-
culation had to be carried out. The exact calculation could be performed by knowing
the azimuth and elevation angles of the heliostats (related to the stow position) in
real time when obtaining the solar vector each 4 s (the α angle in Fig. 6.13 should
correspond in this case to the angle measured from the stow position minus π/2).
As no information can be obtained from the workstation, the calculations were done
based on initial angles stored in a database. The recursivity included in the algo-
rithm helps to correct the errors induced by the approximation. The steps followed
to calculate this relationship are summarized in Table 6.1. In the left column the
approximated calculations used in the algorithm are included. The right column
provides the equations that should be used in the case of knowing the azimuth and
elevation coordinates of the heliostats in real time, obtained from the calculation
of the solar vector. Once these calculations have been performed, the mm/encoder
steps approximated relationships are obtained both in vertical and horizontal axes.
As a simplification to find a trade-off between accuracy and performance, it has been
supposed that when an elevation movement is performed, the revolution surface cor-
responds to a plane, and so its intersection with the plane of the target is a line. In the
case of an azimuth movement (maintaining the elevation angle to a fixed value), the
revolution surface can be approximated by a cone and its intersection with the plane
of the target does not correspond with a horizontal line (in the plane of the target).
Nevertheless, the error of approximating this movement by a horizontal one is neg-
ligible compared to other sources of errors like the discretization of the movement
of the heliostats. If a high accuracy is required, the heliostat position, target center,
beam on target and Sun position are required to compute tracking errors with vec-
tor math [210]. Once the relationship mm/pixel and mm/encoder steps are known
(and thus pixel/encoder steps relationship), the algorithm to calculate the number of
encoder steps is easy to implement and is based on successive approximations, by
subsequently calculating the distance in pixels (both in vertical and horizontal axes)
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Table 6.1 Offset correction calculations [45]

Vertical axis

Approximated calculation Exact calculation

1. Calculation of the angle between the helio-
stat and the center of the target.

tanα = Ztarget−z−Zhel√
x2+(y−Ytarget)2

→ α

1. The z coordinate of the point of the target to
which a heliostat points for an elevation angle
α is calculated.

tanα = Ztarget−z−Zhel√
x2+(y−Ytarget)2

→ α

2. Add to the calculated angle the increment
corresponding to a encoder step. Obtain the
height corresponding to the new angle α′ =
α + π

4096 .
(√

x2 + (y − Ytarget)
2
)

tanα

= Ztarget − z′ − Zhel → z′

2. The point z+Δz in the target corresponding
to a heliostat elevation angle of α + π/4096 is
calculated (corresponding to a encoder step).

tan
(

α + π
4096

) = z+Δz√
x2+y−Ytarget)2

→ z + Δz

3. The encoder step indicates a vertical change
of the shape corresponding to Δz = z′ − z in
the z-axis.

3. By subtracting both quantities the mm/
encoder steps relationship can be obtained in
the vertical axis (Δz).

As the target is inclined 0.61 rad, the obtained increment has to be multiplied by cos(0.61) to
obtain the real increment related to the plane of the target (Δz∗).

Horizontal axis

Approximated calculation Exact calculation

1. Calculation of the angle between the helio-
stat and the center of the target.

tanβ = x√
(y−Ytarget)2+(Ztarget−z−Zhel)

2
→ β

1. The x coordinate of the point of the target to
which a heliostat points for an azimuth angle α

is calculated.

tanβ = x√
(y−Ytarget)2+(Ztarget−z−Zhel)

2
→ x

2. Add to the calculated angle the increment
corresponding to a encoder step. Obtain the
horizontal displacement corresponding to the
new angle β ′ = β + π

4096 .
(√

(y − Ytarget)2 + (Ztarget − z − Zhel)2
)

× tanβ = x′ → x′

2. The point x +Δx in the target corresponding
to a heliostat azimuth angle of β + π/4096 is
calculated (corresponding to a encoder step).

tan
(

β + π
4096

)

= x+Δx√
(y−Ytarget)

2+(Ztarget−z−Zhel)
2

→ x

3. The encoder step indicates a horizontal
change of the shape corresponding to Δx =
x′ − x in the x-axis.

3. By subtracting both quantities the mm/
encoder steps relationship can be obtained in
the horizontal axis (Δx).

between the center of the target and the sunbeam centroid and calculating the re-
quired displacement in encoder steps to minimize this distance (as the effect in mm
of a encoder step is known from the previous relationships). Notice that consecutive
calculations have to be performed each time a encoder step is performed, as the real
displacement in mm changes with the angle of the heliostat, as has been previously
mentioned. Once the number of encoder steps both in elevation and azimuth have
been calculated, the system tests the effects of these actions, as accumulated errors
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Fig. 6.14 Flow diagram of the offset correction mechanism [45]

in the calculations (approximations done in the mm/encoder steps relationships) and
the discrete nature of the control signal can lead to the need of further adjustments,
selected by the operator. The performed tests show that maximally three steps are
needed in extreme cases. Figure 6.14 shows a flow diagram of the complete pro-
cess.

Once the offset correction has been calculated, the database is modified with the
new values of elevation and azimuth (requires the operator’s authorization).

The correction of the offset of heliostats for which the reflected Sun shape does
not appear in the view field of the image requires the modification of the previous
algorithm. Three possible cases are taken into account:

1. The ellipsoid does not appear in any of the captured images each 5 s (during
60 s).

2. Only one image of the shape has been obtained in the intermediate captures.
3. Some images of the shape have been obtained in the intermediate captures.

In the first case, the search is started at an arbitrary zone of the eight neighbor zones
defined with the same size of the frame captured by the camera. In the second and
third cases, the zone in which the search may start can be automatically found.
Heliostat displacements are thus produced and once the ellipsoid enters the image,
the normal procedure for offset correction is applied.
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Fig. 6.15 Software tool [45]

6.5.4 Experimental Results

6.5.4.1 Software Tool and System Implementation

The system has been implemented using a windows-based software tool that allows
the operators of the plant to supervise the offset correction task through a user-
friendly graphic interface (in Spanish). Figure 6.15 shows the main window of the
application, which is divided into four sections: (1) devoted to show real time images
of the target and the reflected ellipsoid, including different processing stages of the
algorithm, (2) zone of the window showing the commands sent to the workstation,
(3) a window showing the main characteristics of the test: heliostat number, azimuth
and elevation angles, angle/mm and angle/pixel relationships, etc., (4) results of the
processing: center of the target, sunbeam centroid, etc.

The main operational problems when implementing the system were:

1. The positioning system of the camera, due to strong fluctuations produced by the
wind.

2. Optical errors produced by the camera lens (superposed images due to mechani-
cal problems).
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3. Illumination variations due to the Sun displacement.
4. The implementation of the correcting system for wrong pointing heliostats.

The first two problems were mainly overcome by the plant personnel by both adjust-
ing the mechanical fit of the camera and calibrating the lens. Nevertheless, a modifi-
cation to the software was included to account for these possible error sources. In the
first case, the possibility of performing a redundant calculation of the center of the
target was included (using different snapshots of that) and in the second case it was
noticed that the threshold algorithm discriminated between the real and the super-
posed image, due to the different intensity levels of both images. The third problem
is due to the Sun movement and the direct exposure of the tower to Sun rays, chang-
ing from the east side near sunrise to the west side near sunset and lying out of the
field of the camera during a significant portion of the operation. Due to this fact, the
first version of the algorithm for calculating the sunbeam centroid sometimes pro-
vided wrong results when the Sun reflection from the tower was visible. This first
version did not include the segmentation part, which was included after noticing this
problem thus including two degrees of freedom for determining the real projected
Sun image (intensity and size). The fourth source of problems is related to the third
one previously commented on, due to the fact that the Sun reflection can confuse
the algorithm when searching for the reflected Sun shape each 5 s. So, the modified
algorithm was only used in the case of wrong positioning heliostats, waiting 60 s in
the standard case to start the processing of the image.

6.5.4.2 Tests and Results

As a summary of the obtained results with the algorithms explained in this work,
Fig. 6.16(a) shows the differences between the real target center and that calculated
by the algorithm in several representative tests. The maximum obtained difference
has been 7.4 cm (notice that the target dimensions are 370 cm × 366 cm). In the
case of the sunbeam ellipsoid, Fig. 6.16(b) contains representative results of 30 tests
performed with two heliostats (8,11) (8,12) located in the center of the field (east
and west) from 11 to 16 hours local time. The largest errors correspond to situations
in which the sunbeam centroid is far from the center of the target. As the projected
shape approximates the center of the target (as a consequence of the application of
the iterative algorithm in less that four steps), the results in the calculations are more
precise. It is interesting to mention that in the set of performed test, a percentage of
about 90% successful results (similar to those manually obtained by the operators)
were obtained when correcting heliostats if the corresponding ellipsoid appears in
the image. In the case of wrong pointing heliostats this percentage of success is
about 50% (only two tests were performed).

6.6 Heliostat Beam Characterization

A heliostat is a quite complex optical system. It must provide high-quality concen-
trated solar beam into a receiver located on top of a tower, perhaps several hundred
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Fig. 6.16 Representative tests: (a) absolute value of errors in the calculation of the center of the
target, (b) the sunbeam centroid. The tests have been performed at different local times during
several days [45]

meters far and exposed to outdoor conditions, i.e. wind, dust, . . . Prototype heliostats
must be tested in order to evaluate performance and durability of the devices and to
seek answers to a number of related questions: would the heliostat perform accord-
ing to its specifications? How much power would it be capable of delivering to a
receiver? What would be the overall size of the heliostat beam? Would the heliostat
perform within specifications under windy conditions? Typical test campaigns study
[365]: heliostat beam quality, wind effects on tracking accuracy, heliostat drives and
controls, mirror module performance and durability, overall operational and mainte-
nance characteristics and evaluation of changes in beam quality throughout the day
(due to gravity effects as the heliostat elevation angle varied, changes in insolation
and sunshape and changes in heliostat-to-receiver orientation).

6.6.1 The Beam Characterization System

The Beam Characterization System (BCS), see Fig. 6.17, is a primary tool used at
test facilities for evaluating the performance characteristics of solar concentrators
and their mirror modules or facets. It can be used for several kinds of prototype
heliostat test, including beam quality, dynamic wind effects, tracking accuracy and
repeatability tests. The BCS is employed to image the beam of concentrated solar
energy as it is tracked by the heliostat on a flux target. The result of the BCS process
is a flux map of that beam. The information obtained includes: (i) the location of
both the beam centroid and peak, (ii) the flux densities over the entire beam, (iii) the
peak flux, (iv) the total beam power and (v) the nominal diameter of a circle that
contains all flux equal to or greater than 10% (or any specified percentage) of the
peak flux.
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Fig. 6.17 The BCS PROHERMES at PSA [259]

The flux target used by the BCS is a white, non-specular reflective surface with
unique optical properties. The relative position of the target approximates the posi-
tion of a solar receiver in a central receiver plant.

Images of the heliostat beam on the target are captured using a CCD-type camera
positioned at a convenient location with a normal or near-normal view of the target.
The target surface is painted with a high-temperature titanium-oxide paint. Because
of the diffuse (Lambertian) reflectance characteristics of the target, the intensity of
the reflected light reaching the camera from each point on the surface of the target is
directly (linearly) proportional to the intensity of the light reaching that same point
on the target from the concentrator. This characteristic of the BCS target is essential
to the measurement technique and ensures the desired result: the image of the flux
beam captured by the camera is a scaled version of the actual flux incident upon the
target. The target and the collector beam are imaged on the camera’s sensor, digi-
tized by a commercial frame-grabber and processed by image analysis software that
is resident on the BCS’ high-end computer. A flux gauge mounted on the surface
of the BCS target provides a single absolute measurement of flux at one point in
the BCS image. Together with the value of the picture element (pixel) intensity at
that location in the image, the flux gauge reading is used to establish a conversion
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factor, which can be applied to the BCS image. Using this factor, the intensity value
of every pixel in the image is converted into an absolute flux density value. In this
manner the BCS image becomes a flux map. The analysis functions of the commer-
cial image analysis system (IAS) produce most of the required BCS information,
including the locations of the beam centroid and peak flux and the diameter of the
beam. When multiple images are analyzed, such as in tracking error or dynamic
wind effect tests, the IAS can compute and display the movement of the beam cen-
troid from image to image. As stated before, the magnitude of the peak power and
the total beam power is obtained by applying the conversion factor (pixel-level-to-
flux-density) to the IAS’s results (which are in relativistic, pixel-intensity units). The
BCS also has analog data acquisition capability, which is employed to measure the
flux gauge mentioned above and relevant environmental condition including wind
speed, wind direction and normal incident insolation. Some other necessary tools
for adequate evaluation are:

• A flux gauge (reference calorimeter)
• Heliostat simulation code
• Meteo-station (pyrheliometer, pyranometer, thermometer, wind speed and direc-

tion, humidity)
• Reflectometer
• Electrical counter.

6.6.2 A Prototype Heliostat Test Campaign

As mentioned before, the goal of a heliostat test program is to compare the clas-
sical central receiver heliostat performance aspects of a heliostat: optics, tracking,
flux distribution and power consumption. In the following, all of them are briefly
described.

6.6.2.1 Optics

Any irradiance distribution I (x, y) projected by the heliostat onto a plane normal
to the direction of propagation of the principal reflected ray can be mathematically
characterized by a merit number which shows how much I (x, y) distribution has
been dispersed around any given reference point, usually the irradiance distribution
centroid. The nature of I (x, y), ideally continuous, has to be treated in discrete
manner because of the digital image acquisition devices, which deliver I (x, y) as a
matrix of numbers representing the spatial distribution of intensity. A proper merit
number that fulfills that condition is the so-called total dispersion error of intensity
distribution (usually asymmetric), defined as

ρx =
√

∑

Ii(xg − xi)2
∑

Ii

, ρy =
√

∑

Ii(yg − yi)2
∑

Ii

(6.2)
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where xg = ∑

Iixi/
∑

Ii , yg = ∑

Iiyi/
∑

Ii are the mentioned coordinates of the
centroid distribution. The units of ρ, initially longitudes from centroid, are converted
into angular units (subtended angle by ρ from the center of the heliostat in mrad)
in order to make the characterization of I (x, y) independent of the plane where it
was projected by the heliostat. ρ is usually called the total beam dispersion error
and will be represented by the Greek letter σtotal.

Taking into account that the so-called image constituents, i.e. sunshape, astig-
matic aberration, waviness, gravity loads influence, etc., can be assumed to be sta-
tistically independent [50] and the similar properties of σ to the standard deviation,
it can be demonstrated that the total beam dispersion error of the distribution is
expressible as

σ 2
total = σ 2

sun + σ 2
aberr + σ 2

BQ (6.3)

where σBQ is the so-called reflected beam dispersion error. The contribution of the
optic errors to the dispersion of the reflected beam can also be expressed in its own
individual effects:

σ 2
BQ = σ 2

waviness + σ 2
canting + σ 2

grav_loads + · · · (6.4)

With the help of a digital acquisition and processing system, the numbers σtotal and
σsun can be calculated from the experimental data (images). Taking the real sunshape
as an input file, a heliostat simulation program should be able to estimate σaberr with
quite good approximation. So, the optical quality σBQ of the heliostat usually called
the Beam Quality is

σBQ =
√

σ 2
total − σ 2

sun − σ 2
aberr (6.5)

Figure 6.18 shows the isoflux lines of the reflected sunshape onto the 12 × 12 m2

white Lambertian target at PSA by a prototype heliostat. The mathematical analysis
of such picture allows to unfold the σBQ.

6.6.2.2 Tracking

Heliostat tracking analysis is usually done by studying the daily and seasonal evolu-
tion of the image centroid on a reference target. As with the optical quality, a merit
number can be defined to quantify the expected centroid deviations with time. An
appropriate one that fulfills this condition is the so-called RMS-error of the distri-
bution of centroid coordinates (usually asymmetric) related to the expected aiming
point (x0, y0) defined as

eRMSx =
√

∑

(x0 − xi)2
∑

ni

, eRMSy =
√

∑

(y0 − yi)2
∑

ni

(6.6)

where (xi, yi) are the successive centroid coordinates of the image and N = ∑

ni

the total number of computed points involved in the test. Figure 6.19 shows the an-
gular deviation of the real impact point from the expected one (target center) for
a prototype around solar noon, whereas Fig. 6.20 shows the accumulated RMS-
tracking error taken in successive time intervals around noon for a prototype at
PSA.
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Fig. 6.18 Front view of a
focal spot at noon Almería
(courtesy of R. Monterreal,
[259])

Fig. 6.19 Angular deviation
from an expected point
(courtesy of R. Monterreal,
PSA)

6.6.2.3 Flux Measurement

Under this topic those tests involving the analysis of the concentrated heliostat beam
are usually presented in physical units. For this purpose, a reference calorimeter
embedded in the white Lambertian target is used. An analytical function for cal-
ibrating the relative intensity grey-level map captured by the video system has to
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Fig. 6.20 Daily accumulated
RMS-tracking error (courtesy
of R. Monterreal, PSA)

Fig. 6.21 Flux density
distribution map (courtesy of
R. Monterreal, PSA)

be studied. The flux density distribution map of a prototype heliostat is shown in
Fig. 6.21.

6.7 Aiming Strategies

6.7.1 Introduction

One of the main problems in operating volumetric receivers is to obtain an appropri-
ate flux distribution in order to avoid deterioration due to excessive thermal gradi-
ents. To account for this problem, this section presents the development and imple-
mentation of a heuristic knowledge-based heliostat control strategy aimed at opti-
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mizing the temperature distribution within a volumetric receiver in the PSA CESA-1
plant. The development of the PHOEBUS Technology Program Solar Air Receiver-
TSA, produced a technology for optimization of the receiver and steam generator
control, but this technology did not allow for achieving and maintaining an appropri-
ate flux distribution on the TSA absorber. The development of an automatic control
system to control the flux distribution within the receiver became an important issue.
At the Solar Two plant in Barstow (California), two software systems were devel-
oped for the receiver protection mechanism: SAPS (Static Aim Processing System)
and DAPS (Dynamic Aim Processing System). Each heliostat has been assigned to a
predetermined aim level (top, center or bottom) to provide a reasonable flux density
everywhere on the receiver, dropping to a low level at each end. For all heliostats
assigned by the operator, SAPS calculates the amount of the shift from the equator
appropriate for each heliostat depending on its current temperature dependent focal
length and orientation dependent aberrations in addition to beam errors and Sun size.
DAPS interrogates the receiver inlet and outlet temperatures and also computes the
flux distribution on the receiver based on the current assignment of heliostats, using
the appropriate reflectivity, Sun position, beam errors from all sources (entered as a
sigma), temperature dependent focal lengths, insolation, and visual range. Using the
known salt enthalpy, DAPS estimates the temperature at each of 21 nodes on each
of the 24 panels and uses this temperature and the known (or calculated) salt flow
rate to determine the allowable flux at each node of the receiver using an algorithm
based on the receiver designers specifications. DAPS then compares these two val-
ues, locates nodes where the allowable is exceeded and searches for the heliostat
producing the maximum flux density at that point and removes it from the active
list. This process of search and removal is continued as long as excess flux exists
on the receiver. In March of 1997 various issues which prevented DAPS from being
used in the preliminary operation of Solar Two were resolved and DAPS has been
in operation since that time [379, 390]. The control approximation adopted in this
section is different from that of the Solar Two plant (as is the technology, based on
an open air volumetric receiver) and is less restrictive both from the computational
requirements and the instrumentation viewpoint. The task of maintaining an ade-
quate flux distribution has been performed at the PSA by expert operators in manual
mode since the system was operated. This involved important operating costs, as
three skilled operators devoted to this task were necessary. As has been pointed out
by [387], the adjusting of individual heliostat group aiming-point coordinates and
the number of heliostats in each group to keep absorber temperatures within the de-
sired range is the most time-consuming operation activity. On the other hand, the
control of the flux distribution in the receiver constitutes a complex task, leading
to frequent errors or deviations in the operation, even when an expert is operating
the plant. Due to these facts, the development and implementation of an automatic
closed-loop control system to perform a continuous control and supervision of the
solar receiver became an important issue, allowing the operator to be kept out of
this task, only supervising the control results. The objectives of the automatic con-
trol system are:
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• The manufacturer of the receiver (L&C STEINMÜLLER) proposes as the control
objective in steady state that the maximum and minimum temperatures in the
receiver should differ less than or equal to 100°C (for preserving the integrity of
the solar receiver), which in fact is an ambitious objective from the point of view
of skilled operators.

• To compensate for the heliostat field deficiencies.
• To optimize the efficiency of the solar receiver.
• To minimize man-power dedication to this task and to avoid the risk of possible

errors in operation.

From the control viewpoint, the system to be controlled presents high complexity,
mainly due to:

• The control system involves a large number of inputs and outputs. The system
inputs are the positions of each one of the 180 heliostats of the field used in this
application, which have to point to a specific position on the volumetric receiver.
The system outputs are the values given by forty thermocouples adhered to the
surface of the volumetric receiver. Four of these thermocouples are placed on
the receiver surface receiving direct solar irradiance and the other thirty-six are
placed on the back side of the absorber measuring the temperature of the air
flowing through the receiver.

• The difficulty of obtaining dynamic models for a system with such a high number
of inputs and outputs.

Due to these problems, the design effort was concentrated on the development and
implementation of a heuristic knowledge-based control strategy in order to repro-
duce the performance of a skilled operator during the tests, instead of using classical
automatic control systems as done in other kind of solar plants [85, 150].

6.7.2 Functional Diagram of the System

Figure 6.22 shows the functional diagram of the system. The solar irradiance is re-
flected by the heliostat field and concentrated on the volumetric receiver surface.
In consequence, the wire packages or ceramic cups which make up the receiver are
heated, transferring the heat to the air that circulates through them. The nominal out-
let temperature of the air leaving the volumetric receiver is 700°C and the working
power depends on the number of heliostats aiming at the receiver and on the value
of solar irradiance at each instant. Other working temperatures can be specified dur-
ing operation in order to evaluate the performance of new elements installed in the
receiver. The maintaining of an operating regime which ensures constant power en-
ergy production can be achieved by classical automatic feedback control systems
of both the outlet air temperature (by using blower G1) and the mass flow which
circulates through the steam generator (by using blower G2). The control of the
power stage will be treated in the next section (for more details on basic control see
[387]).
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Fig. 6.22 Functional diagram of the system [150]

The main elements of the TSA receiver are shown in Fig. 6.5. As has been pointed
out in the description of the receiver, the temperatures measured by the installed
thermocouples can be used as feedback signals by the control strategy as they are
distributed in two PCs of the control room of the CESA-1 facility in which a SCADA
runs. A weighted mean (labeled CT060) of the value of all the thermocouples in-
stalled on the back face of the receiver is used by blower G1 (Fig. 6.22) for control
purposes and is also a main reference for the control system designed and explained
in this section. There is another important signal (labeled CT015) which consti-
tutes the mean value of four thermocouples symmetrically placed (one at the center
and the others spaced at 120° from one to the other) on the pipe through which air
leaves the receiver. If the value of this signal surpasses the nominal set point (typi-
cally 800°C) by more that 10°C (the alarm threshold), a field shutdown is produced.

6.7.3 Heuristic Knowledge-Based Control System

6.7.3.1 Problem Statement

The control problem mainly consists of optimizing the efficiency and security in
operation of the volumetric receiver. This problem arises due to the fact that it is not
possible to concentrate the power from all the operating heliostats of the field onto
one single point of the receiver, as too high temperatures could be reached at this
point leading to the receiver destruction. As pointed out in [357], in concentrating
solar receivers with heliostat reflectors aiming all heliostats to the same point leads
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to peaked non-uniform distribution. One way to overcome a non-uniform irradiance
profile is the multi-aiming strategy, that is, deliberately aiming the individual he-
liostats to different aiming points, in such a way that the peaked irradiance profile
due to central aiming is spread to a more uniform irradiance profile over a much
larger aperture area. This strategy has been implemented at PSA receiver [170] us-
ing a parallel fluid flow under non-uniform irradiance with a higher mass flux in the
center of the absorber in order to adapt to the higher irradiance. The design of the
volumetric receiver was carried out based on an ideal flux profile, which was used
by the HELIOS software package [50, 65] to obtain the number and coordinates
of aimpoints and number of heliostats aiming at each one of them. The conclusion
was obtained that only five aimpoints were necessary to obtain the ideal flux profile
(Fig. 6.5). Four of the aimpoints are placed on the periphery of the volumetric re-
ceiver (with 22 heliostats aiming at them) and the fifth at the center (with the rest,
92 heliostats, aiming at it). The number of orifices made in the absorber elements
at the center was greater than those of the periphery in order to obtain a higher
mass flux according to the flux conditions. In this way, the orifices made in the ab-
sorber segments adapt the mass flow through the absorber segment to the irradiance
onto the segment. At design average outlet temperature each segment should have
approximately the same outlet temperature. The manufacturer proposed maximum
and minimum nominal steady-state temperatures in different points of the receiver
in order to guarantee the integrity of the solar receiver avoiding high temperature
gradients. As mentioned before, a heliostat aiming-point strategy providing a de-
sired energy flux correlated with the air mass flow through the receiver could be
selected to resolve the control problem, but subjected to many error sources [45,
363] that produce variations in the flux distribution and non-homogeneity of the
air mass flow through the receiver. As indicated by [357], an interesting point of
practical value is what happens to an optimally controlled receiver under off-design
conditions. It is possible that the optimal flow distribution changes; therefore, an op-
timum based on daily or annual performance may be different from the optimum for
design conditions. In [363] an analytical method of correcting for many of the struc-
tural, mechanical and installation errors that affect an open loop heliostat tracking
control system is presented. The method involves the development of an error model
for the particular heliostat/concentrator design, the obtaining of beam centroid in-
formation and the use of the error model in the open loop command calculation. The
closed-loop configuration of the control system presented in this subsection allows
to reduce structural, mechanical and installation requirements, to account for other
error sources and to obtain adequate tracking accuracy and no need for periodic
updating at a low computational cost. The theoretical aimpoints configuration indi-
cated in Fig. 6.5(c) has been taken into account to develop the control system. The
aimpoints are points numbered 1, 2, 3, 4, and 6. As has been mentioned, an off-line
selection of the heliostats associated to these aimpoints was performed. Deviations
in the flux distribution and real air mass flow profile due to error sources mentioned
above lead to a non-uniformity of the temperatures measured on the surface of the
volumetric receiver. It has therefore been crucial to include an automatic control
system to correct these deviations and to maintain the uniformity of the temperature
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profile as far as possible within the receiver during operation according to the manu-
facturer indications, that is, the control system must continuously adapt the incident
energy flux to the real air mass flow which circulates through the receiver during
operation to avoid large temperature gradients in the receiver.

6.7.3.2 Control Architecture

From the control viewpoint, the outputs of the plant are the temperatures measured
by the forty thermocouples placed in the volumetric receiver and the input or con-
trol variables are the positions of the different heliostats of the field used for this
application. Due to the configuration of the system for different uses when the appli-
cation was developed [150] the measurements of the temperatures were introduced
in two PCs running a SCADA, which were then sent via the serial port to another
PC in which the heuristic knowledge-based control program used these values to
obtain the control actions that were finally sent to the workstation via the serial port
(see Fig. 6.23). The workstation processed these control actions and sent the ade-
quate signals to the servomotors to move the heliostats to the positions indicated
by the control program. During manual operation (without using the automatic con-
trol system), one operator must be devoted to controlling the heliostat movement by
introducing commands using the workstation keyboard as a consequence of the ob-
servation of the temperature profile in the volumetric receiver on the screens of the
two PCs. The implementation of the automatic control system allows the simplifi-
cation and optimization in the operation, as the control program developed automat-
ically decides the correct control actions, then sends the corresponding commands
to the workstation to achieve the desired heliostat movements. The usual commands
accepted by the workstation are: Aimpoint change (change the coordinates of an
aimpoint), deselection or selection of heliostats individually or by groups, introduc-
tion of heliostats onto an aimpoint, change the aimpoint onto which the selected
heliostats are aimed at and defocusing of selected heliostats. The few commands
mentioned are the only ones necessary to execute all the possible control actions,
which mainly consist of: moving an aimpoint, changing one or several heliostats
from one aimpoint to another and sending heliostats to standby points due to emer-
gency situations. At present, all these actions are performed in a unique workstation
(see Fig. 6.29).

6.7.3.3 Control Algorithm

The thermocouples are grouped according to the aimpoint (focus) which they are
mainly influenced by. The analysis of the state of the volumetric receiver is per-
formed by groups of thermocouples, taking into account the deviations of tempera-
ture with respect to the nominal working point for each one of the aimpoints. Two
main control actions are used: (a) Heliostat adjustment: change one heliostat from
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Fig. 6.23 Control architecture [150]

one aimpoint to another. (b) Aimpoint adjustment: produces an aimpoint displace-
ment. The thermocouples located in the volumetric receiver measure the air temper-
ature on the back of several of the hexagonal wire packages which form the receiver.
Even in those cases in which the incident energy flux is equal to the theoretical ideal
one, due to the fact that the air mass flow through the receiver is different from the
desired one (due to manufacturing and assembly imperfections in the absorber ele-
ments and wind effects), important temperature differences appear on the receiver
surface. As indicated by [357], the multi-aiming strategy may be required if the re-
ceiver’s capability of absorbing and removing radiative flux is limited, e.g., due to a
limitation of the mass flux occurring at high solar flux or due to instabilities in the
presence of a non-uniform solar flux distribution. In [217], a study of flow instabili-
ties is performed using a simple mathematical model. They show that the volumetric
absorbers have inherent limitations and are prone to failure under certain conditions.
For reasonable efficiencies control of mass flow or outlet temperature of the absorber
may be required. In contrast, in [181], a modified numerical model is used and con-
trasted with real data. They show that up to around 800°C, the wire mesh absorber
structure combines stable working conditions with high efficiency. To achieve the
situation of maximum efficiency, the control algorithm should transform the energy
flux profile provided by the heliostat field in order to perform an adequate correlation
with the air mass flow through the receiver in order to homogenize the temperatures
on the receiver. The objective of maintaining all the temperatures of the receiver el-
ements near the values given by the manufacturer according to the ideal flux profile
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is a utopian situation for several reasons which are commented in the next paragraph
and the objectives of the control system have to be reduced (other control policies
should be adopted, as shown in [357]). As has been mentioned above, in this kind of
solar receiver, an absorber element may present a temperature quite different (more
than 50°C) from its neighboring elements. Due to the fact that the image projected
by the heliostats over the receiver covers more than one absorber element, the heat-
ing of a cold element can lead the neighboring elements surpass their maximum
allowable values. Moreover, the resistance to the circulation of air of an absorber
element increases as its temperature augments. This is in part due to the variation
of the fluid’s dynamic viscosity with temperature. When the heat source increases,
the temperature as well as the viscosity increase. This reduces the mass flow rate for
the given pressure drop and reduces the heat removal capacity, providing a positive
feedback for further temperature increase [217]. These are some of the reasons of
why the homogenization of all the temperatures of the elements within the receiver
becomes an impossible task and so, the control objective is to maintain the tem-
peratures of the thermocouples in the receiver within an admissible pre-specified
range (defined with the ideal objective of achieving similar temperatures in mind).
A different operating range is defined for each thermocouple, depending on its spe-
cific characteristics, position in the receiver, etc. Because of the heterogeneity in
the operating ranges of the thermocouples the measurements must be scaled and
normalized to enable comparison and thus the identification of hot and cold zones
of the receiver. This has been achieved by defining the working temperature ranges
of each thermocouple. The temperature of each thermocouple is considered to be
controlled if it belongs to the pre-specified range. These temperature ranges have
been defined from data obtained during a great amount of previous tests. The upper
limit of the temperature of each thermocouple has been selected as the maximum
of the arithmetic mean values of all the measured values of the pattern tests. Notice
that the pattern tests have been selected so that they correspond to the steady-state
operation close to the set point (optimum operation from the manufacturer spec-
ifications), with stationary conditions of solar irradiance, without wind, etc. The
same criterion has been used to select the lower limit (minimum of the arithmetic
mean values). All these limits have been expressed in relation to the temperature
given by the mean temperature of the thermocouples in the receiver (CT060), in
such a way that different outlet air temperatures produce different operating ranges
of the thermocouples. This is due to the fact that at the start-up, the aiming-point
strategy control system is activated before the outlet temperature of the air reaches
the nominal set point. In order to obtain temperature ranges valid for all operating
conditions and not depending on the working power, the maximum and minimum
values allowed change with the outlet air temperature for each thermocouple. Once
the control program has obtained the temperatures from the SCADA, the following
transformation applies to each one:

• If the thermocouple i measures a temperature that is within the pre-specified
range: tp[i] = 0, where tp[i] is the scaled or normalized temperature assigned
to thermocouple i.
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• If the thermocouple i measures a temperature that is below the pre-specified
range: tp[i] = 100(T [i] − Tmin[i])/Tmin[i], where T [i] is the temperature mea-
sured by thermocouple i and Tmin[i] is the minimum temperature allowable by
the pre-defined ranges.

• If the thermocouple i measures a temperature that is over the pre-specified range:
tp[i] = 100(T [i] − Tmax[i])/Tmax[i], where Tmax[i] is the maximum temperature
allowable by the pre-defined ranges.

In this way, the percentage of deviation over the temperature ranges defined as the
normal ones is obtained for each thermocouple, this being a scaled value useful
for the comparison of the temperature of all the thermocouples. If the normalized
temperature of thermocouple i (tp[i]) is considered as cold, the value obtained for
this index is negative. If the thermocouple is hot, then the value of tp[i] is positive.
The control algorithm works with these normalized temperatures or indices. Notice
that with this approximation a cold section is weighted more heavily than a hot
one. This has been the first approximation used having in mind that actions adopted
to correct deviations more heavily weighted should also help to correct the other
deviations, as will be treated next (for instance, change of a heliostat from a hot zone
to a cold one). Another logical possibility is to scale both temperature deviations
relative to (Tmax[i] − Tmin[i]). In order to ensure the correct performance of the
control program, an image of the state of the plant must be stored in memory at
each sampling interval. This image contains:

• A list of the heliostats susceptible to suffering a change (those assigned to an
aimpoint).

• A table with the actual position of each aimpoint on the receiver, defined by its
coordinates.

• A table with the actual state of each heliostat of the field (normal tracking, defo-
cused, etc.).

• A map of each aimpoint (focus), which consists of a 11×11 matrix which repre-
sents the receiver region which is influenced by the aimpoint. The temperatures
of the thermocouples are placed on this matrix so that their position in the ma-
trix is representative of their real position on the solar receiver with respect to the
aimpoint. In this representation the aimpoint is placed in the center of each matrix
(Fig. 6.24).

The first action of the control program is to build this representation of the state of
the system into memory. To do this, data containing the default state of the plant (po-
sition and limits of the aimpoints, list of heliostats and the default aimpoint which
they have to aim at, etc.) are used. Modifications of this first representation have to
be automatically performed by the control program to account for possible changes
locally performed by the operators (change of the aimpoint coordinates or the he-
liostats assigned to an aimpoint during the start-up to achieve a fast response during
this phase, etc.) and to avoid differences between the real state of the system and its
image in memory which would produce undesired actions such as the displacement
of an aimpoint over its allowed limits, the erroneous change of a heliostat from
an aimpoint to another, etc. Once the image of the system has been mounted, the
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Fig. 6.24 Map of the aimpoints (focus) [150]

control program must subsequently analyze the situation of the solar receiver, infer
from it the adequate control action, verify if the control action can be performed
and send the corresponding commands to the workstation to achieve the adequate
heliostat movements. As has been mentioned, two different control actions have
been implemented: heliostat adjustment and aimpoint adjustment. The first action
can be performed to compensate for a situation in which the average temperature
of one aimpoint (focus) is much higher than the mean temperature of another one.
In this case, one heliostat is changed from the hot aimpoint to the cold one. The
second action leads to movements of the aimpoint of a fixed magnitude in the three
directions of the space (so that it belongs to the target plane, with existing limits
in the allowable displacement to avoid the aimpoint moving out of the receiver)
and it is carried out in order to compensate for a situation in which an important
internal disequilibrium within an aimpoint influence region exists. In this case, the
aimpoint is displaced from the hot zone to the cold region. The analysis of the state
of the receiver consists of determining which are the hot and cold zones. Once the
disequilibria have been detected, the associated control actions are ordered taking
into account the magnitude of the deviations, that is, the first action executed is that
which corrects the major temperature difference existing within the receiver and
so on. If a control action cannot be applied, the control program automatically se-
lects the following one to be implemented. To carry out all this analysis, the control
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algorithm uses the indices or homogenized temperatures calculated for each thermo-
couple, as has been explained above. This index is indicative of the temperature of
each thermocouple and can be used for comparison purposes. The control algorithm
uses two pre-specified parameters denominated dTh and dTf , which are thresholds
that indicate if a situation is susceptible of generating a control action. The first
one serves as a threshold to indicate that a heliostat adjustment is necessary and the
second one to produce an aimpoint adjustment. The reason for including thresholds
in the control actions is to create control deadbands that prevent excessive cycling.
The values of parameters dTh and dTf were experimentally determined with the
help of a skilled operator. The procedure is simple: starting with a fixed value of
these parameters, their values are reduced if a necessary control action (from the
viewpoint of the operator) is not selected by the control program. The lower limit of
these parameters is given by the appearance of limit cycles, indicating the necessity
of using higher values of the thresholds. A trade-off solution can easily be found.
In order to analyze the state of the solar receiver the first action is to determine the
average temperature of each one of the aimpoints (foci), adding the indices associ-
ated to the thermocouples belonging to the matrix representative of each aimpoint
and dividing the sum by the number of thermocouples associated to that aimpoint.
This average value can produce a positive number, indicating that the aimpoint is
hot, a negative number, indicating that the aimpoint is cold, or zero, indicating that
all the thermocouples belonging to the aimpoint are within the allowed range (note
that heterogeneity within a determinate aimpoint influence region will be treated
later). Then, the aimpoints are ordered in descending order in relation to the value
of the calculated average. To compensate for a situation in which an aimpoint has
an average temperature much higher than that of another aimpoint of the receiver,
the most convenient action is to change one heliostat from the hot aimpoint to the
cold one. To determine if the disequilibrium existing between two aimpoints should
be corrected by a heliostat adjustment, the mean index calculated for the cold aim-
point is subtracted from the mean index calculated for the hot one. If this index
exceeds the threshold, the control action is accepted. Notice that the only case in
which this control action cannot be implemented is that in which the hot aimpoint
does not have heliostats aiming at it. This would seem to be a ridiculous situation,
but it could be produced under certain circumstances during operation with the sys-
tem on days with high level irradiance in the case of aimpoint number 6 (the central
aimpoint), as the influence zone of the other aimpoints can be such that the tem-
perature at the center of the receiver would achieve high values. A comparison is
performed between the ordered aimpoints and the normalized temperature of the
coldest aimpoint; if the threshold dTh is exceeded, the control action is accepted.
Each one of the accepted control actions has an associated characteristic value cal-
culated taking into account which percentage the threshold dTh is surpassed at.
Once the previous process has been carried out, the control program analyzes the
inner part of the aimpoints using the matrix descriptive of each one. The matrix is
first divided into upper and lower parts and a calculation of the average value of the
indices associated to the thermocouples contained in each part is performed. The
mean value corresponding to the lower part is subtracted from the one associated
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to the upper part. If the absolute value is higher than the threshold dTf then, in a
first approximation, a vertical aimpoint movement is necessary from the hot part to
the cold part. To characterize this possible control action, the percentage in which
the threshold is surpassed is calculated. The same process is performed by divid-
ing the matrix into the right and the left part, calculating the average of the indices
for each one of these parts, subtracting them and calculating if the threshold dTf

is exceeded and at what percentage. Finally, the maximum of these percentages is
taken as a characteristic of the control action. As a result of this process, a list of
possible actions for aimpoint adjustment is generated, each one characterized by
an index and ordered in descending value of this index. All the possible control
actions oriented both to a heliostat adjustment and to an aimpoint adjustment are
reordered in a unique list using the associated index, in such a way that the first
one to be carried out is that which corrects the highest disequilibrium within the
receiver temperatures. If the first action cannot be accomplished, the algorithm tries
to execute the following one and so on. If the selected action is to move a heliostat
from one aimpoint to another, it is convenient to determine which of the heliostats
aiming at the hot aimpoint is selected to be changed to another aimpoint. In order
to avoid certain disorder in the heliostat field, a selection method is applied search-
ing for: (1) one heliostat which, aiming at the hot aimpoint, belongs by default to
the cold one. (2) If search (1) does not match, a heliostat belonging to a aimpoint
other than the hot one is searched for. (3) If searches (1) and (2) do not match, any
heliostat is changed from the hot aimpoint to the cold one. In the case of an aim-
point adjustment, there are situations in which this action cannot be accomplished,
because the aimpoint can be situated at coordinates lying within the limits allowed
in order to avoid interferences of the different aimpoints and to avoid the aimpoints
moving out of the target plane. Also, emergency situations can be produced during
daily operation, when any of the temperatures of the solar receiver exceeds a pre-
specified value. The solar receiver can be damaged and to avoid this situation the
control algorithm sends all the heliostats to the defocused position (standby points),
finalizing the operation. The values of the temperatures in the receiver are measured
and analyzed every second. The control actions are discretely implemented, that is,
each control action is implemented and the following one is implemented after a
predetermined sampling time. The value of the sampling time for heliostat adjust-
ment actions is 80 s and for aimpoint adjustment is 150 s. These values have been
chosen close to the corresponding temperature settling times produced by each kind
of control action to avoid over-correction. Once the most adequate control action
has been selected, it can be effectively implemented. The control program allows
the plant operation manager to select two operation modes: supervisory automatic
control or fully automatic control. In the first case, the control program asks the
operator for confirmation of the proposed control action. In the second case, the se-
lected control action is directly implemented. Finally, once the control action has
been implemented, the image of the system in memory is refreshed by modifying
the representative tables of the system to account for the new state of the system.
The flow diagram of the control algorithm is shown in Fig. 6.25.
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Fig. 6.25 Flow diagram of
the control algorithm [150]

6.7.4 Experimental Results

The man–machine interface of the control system includes an image of the solar
receiver with the temperatures of the different thermocouples (which are measured
and changed on-line), a window in which the last ten proposed control actions ap-
pear and another window in which the value of the different control parameters and
a command line can be found. Different commands are admitted in order to start
automatic or manual control operation, fully or supervised automatic control opera-
tion, on-line modification of values of control parameters, etc. Before commenting
on different results, it is important to point out again that the final objective of the
developed control algorithm is to maintain the difference between the maximum
and minimum temperatures in the receiver below 100°C, keeping the temperatures
of the different thermocouples within pre-specified ranges. As illustrative results,
the evolution of the temperature measured by different representative thermocou-
ples of the solar receiver is shown for one selected test performed on March 14th,
1997 with changes in direct solar irradiance of less than 100 W/m2 during the test.
The criterion used for comparison purposes is the following: for each thermocouple
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Fig. 6.26 Temperature of representative thermocouples under automatic operation (14/03/97)
[150]

both the maximum and minimum temperatures achieved during the operation are
selected. The first criterion is given by the average value of this range for all the
thermocouples. This index indicates the variability of the mean temperature range
of the thermocouples in the receiver. On the other hand, the difference between the
maximum and minimum temperatures within the receiver every 5 s throughout the
test is calculated. The average of these values is also calculated and used as an in-
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dex indicating the homogeneity of the different temperatures in the receiver during
the test. Figure 6.26(a) corresponds to the evolution of CT020 thermocouple dur-
ing a daily operation. This thermocouple is placed at the center of the volumetric
receiver, belonging by default to aimpoint number 6. As can be seen, the figure
represents the value of the temperature measured and the maximum and minimum
temperatures within which the temperature of this thermocouple can be considered
as normal (remember that these limits change with the outlet air temperature in-
dicated by CT060). The moments in which a control action was implemented to
correct deviations of the temperature of this thermocouple are indicated by a solid
square box. Notice that at each sampling time, the most important corrective control
action is implemented and thus those moments at which the temperature of the ther-
mocouple is out of range and no control action has been implemented correspond to
the application of a control action which corrects other more important deviations
in the receiver. The previous comments are applicable to all the figures presented.
Another example of the results achieved with the proposed control scheme is pre-
sented in Fig. 6.26(b) in which the evolution of the temperature of thermocouple
CT047 placed near the border of the receiver belonging to aimpoint number 1 is
represented. Figures 6.26(c), 6.26(d) and 6.26(e) represent the temperature of ther-
mocouples CT054, CT051 and CT050 placed near the border of the receiver and
belonging to aimpoints numbers 2, 3, and 4, respectively. In every case, it can be
seen that the control algorithm implements control actions in order to maintain the
temperature of the different thermocouples within their pre-specified ranges in such
a way that the distribution of temperatures within the solar receiver is also con-
trolled. In the following, the evolution of the difference between the maximum and
minimum temperatures in the receiver during operation are presented for differ-
ent tests (in which similar experimental conditions have been used). As has been
previously indicated, this index gives a measure of the homogeneity of the tempera-
tures in the receiver during a test, allowing for a comparison of the results obtained
by the implementation of the heuristic knowledge-based control scheme with man-
ual control operation. The first result corresponds to the operation on March 14th,
1997 (Fig. 6.27(a)). The arithmetic mean value of this index during the test was
of 92°C and the maximum difference in temperature during operation was below
100°C about 74.61% of the test time. On the other hand, the value of the differ-
ence between the maximum and minimum temperatures measured by a thermocou-
ple during the whole test was obtained for all thermocouples, providing an average
value of about 79°C (notice that this index depends upon the value of solar irra-
diance). Figure 6.27(b) shows the results obtained on March 6th, 1997. The maxi-
mum difference in temperature in average was 84°C, this index being below 100°C
for 90.23% of the operation time. In this case, the value of the difference between
the maximum and minimum temperatures measured by a thermocouple during the
whole test was also obtained for all thermocouples, providing an average value of
62°C. After a period of tests carried out in order to adjust the different control pa-
rameters, the heuristic knowledge-based automatic control system performance was
evaluated with data from operation during 1997, from February 21st to March 14th.
During this evaluation period, eight tests covering about twenty operation hours
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Fig. 6.27 Tests showing the maximum temperature difference within the receiver under automatic
operation [150]

were performed. During these 20 h, the maximum temperature difference existing
within the receiver, in average, was of about 89°C. The percentage of time dur-
ing which this maximum temperature difference in average remained below 100°C
was of about 78%. The temperatures of the thermocouples varied within a range
of about 74°C in average. In order to perform a comparison of the results obtained
with the heuristic knowledge-based automatic control scheme with the operation
under manual control, a representative test manually performed on September 7th,
1995 is included (Fig. 6.28). This corresponds to a typical test, with similar experi-
mental conditions than those under which tests shown in Fig. 6.27 were performed
(number of heliostats used, set point temperature, irradiance conditions, etc.). The
maximum temperature difference within the solar receiver during the test is shown
in Fig. 6.28, which in average was about 140°C, evolving below 100°C for only
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Fig. 6.28 Maximum temperature difference within the receiver under manual operation (07/09/95)
[150]

0.25% of the total duration of the test. As can be understood, the implementation of
the automatic control scheme not only allows the operator to avoid this task, but also
widely optimizes the operation of the system, reducing the arithmetic mean value of
the maximum temperature difference about 50°C and considerably augmenting the
time during which this difference remains below 100°C.

6.8 Power Stage Control

6.8.1 Introduction

In many electricity generation facilities, whether based on fossil fuels or renewable
energies, a buffer or energy storage system is used as a backup source of power for
a heat exchanger or steam generator when the primary power supply is not ready to
use or is subjected to strong changes or oscillations. This is the case of renewable
power plants supplied by wind or solar energy as the primary energy source. Under
primary energy shortfalls, the system must be kept at standby if the primary power
support is going to be available soon, or stopped and restarted as soon as possible
if the shortfall lasts too long. This stop–restart sequence is a very expensive process
in terms of cost and time and it is therefore highly desirable that this situation arise
as little as possible. To reduce the frequency of stops and restarts, a standby power
buffer, is added to the system. This buffer, usually thermal storage, is loaded during
plant start-up with excess power and it is used when the primary power support is not
able to feed the system with the minimum energy needed to keep it at operating point
or other desirable state. This standby power buffer is able to keep the plant in normal
operation for a limited period of time, when appropriate switching controllers are
used to diminish the oscillation associated with the change in supply.
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In spite of the great advantage of adding a power buffer to the system, from
both modeling and control viewpoints, the system dynamics are modified due to
the presence of discrete events associated with the changes between the different
energy sources. Thus, the nature of the process combines continuous and discrete
dynamics so that it can be modeled by a hybrid model useful for control purposes.
Compared with purely continuous systems, the switched nature of these systems
makes them more difficult to describe, analyze and control [227]. The modeling
of hybrid systems has been traditionally carried out by using several continuous
models, one for each operation mode and the transitions among models are based
on the discrete events of the system (producing discrete transitions between modes
where continuity and stability among transitions cannot be guaranteed). So, hybrid
models, which involve both continuous and discrete dynamics in a unique model,
come up as a natural way to model this kind of system. It ensures, at the same time,
continuity and stability among the different plant operation modes.

A wide range of hybrid renewable energy systems were reviewed in [125] and
several matters related to hybrid renewable energy systems, such as simple static
models (based on mathematical equations), costs and feasibility are also described.
However, in the works cited in [125] the term hybrid system refers to any energy
system with more than one supply source; normally one of them is a conventional
diesel generator and the other a renewable energy supply source, or even, the two
are renewable energy supply sources, usually solar and wind energy source.

In order to control the power stage represented in Fig. 6.29, a mixed logical
dynamical (MLD) model, which is a modeling tool for the representation of hybrid
systems, it is used to represent the combined continuous and discrete dynamics of
the plant. The model results are compared with real data acquired from the plant in
Sect. 6.8.3.

6.8.2 Object-Oriented Modeling of the TSA System

In [405] a model of the thermohydraulic part of the system is developed assuming
a known input radiation power in the receiver as a consequence of the irradiance
reflected in the heliostat mirrors and the aiming-point strategy previously presented.
The Modelica language has been used to develop these models including the Ther-
moFluid library [128, 257]. The work analyzes each of the components of the ther-
mohydraulic circuits of air and water–steam and explains the modeling assumptions,
trying to justify each one as they are oriented to get, by means of the symbolic ma-
nipulations that Dymola tool performs, a not too high index DAE system for the
complete model, in which the number of non-linear algebraic loops is minimized.
For this purpose, all the components are classified, following the modeling method-
ology derived from the Finite Volume Method (FVM) [287], in control volumes
(CV in ThermoFluid nomenclature) and flow models (FM in ThermoFluid nomen-
clature). In some cases information about the future control system architecture to
be implemented is introduced in the modeling phase. An example of components
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Fig. 6.29 SCADA system of the TSA layout (courtesy of PSA)

that are modeled using this kind of information are the blowers in the air circuit, in
which a cascade control will help avoid the multivariable non-linear dependence of
the constitutive equations and let consider them like quasi ideal flow rate genera-
tors. Due to the existence of components whose internal implementation may vary
depending on the modeling hypotheses, the polymorphism and the Modelica lan-
guage constructs replaceable/redeclare have been specially used in some of them,
for example in the evaporator.
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The following components are modeled: blowers, storage tank, solar receiver,
evaporator, control valve, sensors, pipes and connections. All of them are directly
instantiated and parameterized, or inherited from ThermoFluid classes. The air cir-
cuit is composed of a solar receiver, tubes, tank and evaporator; and the water–steam
circuit with a water pump, a control valve, tubes and reservoirs with boundary con-
ditions. For more details of the development of the model see [405].

6.8.3 Hybrid Modeling of the TSA System

The TSA system has been described in Fig. 6.6 and its components enumerated in
the previous subsection. It is composed of an air circuit and a water–steam circuit.
The air circuit supplies the power demanded by the steam generator from the re-
ceiver and the thermal storage and return to the receiver the output cold air from
the steam generator. At the same time, in the water–steam circuit, the water which
is used to cool the hot air into the steam generator flows by the feedwater pump,
whereas the produced steam leaves the system through the pipes.

To operate the plant, solar irradiance is reflected by the heliostat field and con-
centrated onto the receiver’s ceramic absorber cups following the aimpoint strategy
explained in Sect. 6.7. The hot air leaves the receiver at 700°C and blower G1 con-
trols the air mass flow through the receiver. The thermal storage unit in the air circuit,
which provides standby power, is charged during plant start-up and then discharged
to feed the steam generator, either during cloud transients or when the power supply
from the receiver is not enough to feed the steam generator at nominal conditions.

Blower G2 controls the air mass flow through the steam generator and thereby,
incoming power. The once-through steam generator, which is part of the water–
steam circuit, has a nominal operation of 340°C and 45 bar. The steam produced
is sent to a turbine, which is part of a Rankine cycle. Steam outlet temperature is
controlled by means of a feedwater pump and the steam outlet pressure by means of
valve PV123.

The simplified modeling work mainly deals with the pipes connecting the steam
generator to its power sources, and not modeling the system power supplies (the
volumetric receiver and the thermal storage), but the control-related problems which
arise, due to the hybrid nature of the TSA system. Clearly the steam generator can
be fed by the energy from the receiver, from the thermal storage, or even by both
simultaneously. The power supply depends on the relationship between the speeds
of blowers G1 and G2. Signal ṁ12, which is the difference between blower G1
air mass flow (ṁ1) and blower G2 air mass flow (ṁ2), is used to determine the
direction of air through the thermal storage system (see Fig. 6.30). When mass flow
from blower G1 is equal to the mass flow from blower G2, all the power supplied
to the steam generator comes from the receiver. Otherwise, if blower G1 mass flow
is greater than that of blower G2, the power from the receiver feeds both the steam
generator and thermal storage. Finally, if blower G2 mass flow is greater than that
of blower G1, the power to the steam generator comes from both the receiver and
thermal storage.
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Fig. 6.30 Air flow direction based on the signal ṁ12 (courtesy of J.D. Álvarez et al., [10])

So, the source from which the power is supplied to the steam generator can
change dynamically according to the relationship between the speeds of G1 and G2.
This system feature cannot be modeled with traditional dynamic models, so it would
be necessary to introduce the system’s discrete nature by means of either ‘switch’
blocks or ‘if-then-else’ rules. However, from a control point of view this particular
solution does not ensure stability in the transitions between the different dynamics.
With hybrid models, such as that described in this work, there is no problem in han-
dling both discrete and continuous dynamics in the same model; moreover, stability
is ensured with the use of this kind of model.

6.8.3.1 TSA Air Mass Flow Distribution Dynamic Model

The TSA air mass flow distribution dynamic model is presented in two parts [10]. In
the first one, the general equation which relates the output variable (steam generator
input power) to the input and disturbance variables is calculated. In the second,
the simplest case, in which the steam generator input power comes from only one
source, is validated with real data by means of transfer functions.

Model validation when the steam generator input power comes from different
sources and can change dynamically is explained in the following section with using
a hybrid model.

Air Circuit Model

In order to model the air circuit, a model of the pipes which form a part of it must be
constructed. Figure 6.31 shows the scheme of a single pipe in which a fluid is cooled
while the outside temperature of the pipe is kept constant. Inside the pipe, the hot
fluid which flows through it feeds a heat exchanger or a steam generator. The result
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Fig. 6.31 Pipe schematic
diagram

of applying the law of conservation of energy to the pipe shown in Fig. 6.31 is very
similar to a tubular heat exchanger where the internal fluid is heated by saturated
steam at constant temperature, with the difference that the heat is transferred in the
opposite direction. The differential energy balance of the fluid flow through the pipe
over the volume element of length Δx is given by

vAf ρf cf Tf − vAf ρf cf

(

Tf + ∂Tf

∂

Δ


)

− πDf HtΔ
(Tf − Tm)

= ∂

∂t
(Aiρf Δ
cf Tf ) (6.7)

where the terms involved are summarized in the table of variables and parameters
defined at the beginning of the book. Similarly, an energy balance for the pipe wall
over the volume element Δ
 can be written as follows:

πDf HtΔ
(Tf − Tm) − πDmHlΔ
(Tm − Ta) = AmΔ
ρmcm

∂Tm

∂t
(6.8)

where the terms are also those summarized in the table of variables and parameters
defined at the beginning of the book.

From the analysis above, after linearizing Eqs. (6.7) and (6.8) in terms of
the deviation variables around a steady-state value {vs, Tms , Tas }, it is possible to
find transfer functions relating the output variable (the outlet fluid temperature,
Tout = T (L, t)) to the input or disturbance variables (the incoming fluid tempera-
ture Tin = T (0, t), the ambient temperature (temperature outside pipes), Ta(t), and
the fluid velocity, v(t)). As in Chap. 4, the easiest way to find these transfer func-
tions is to analyze single input–single output relationships while keeping the rest of
input/disturbances constant. In the first case, if the fluid velocity and the ambient
temperature are considered constant, the relationship between the input and output
fluid temperatures is given by

T̃out(s)

T̃in(s)
= e

− a(s)
vs

L (6.9)

where T̃out(s) and T̃in(s) represent the Laplace transform of the deviation vari-
ables T̃out = Tout − Touts and T̃in = Tin − Tins , respectively; subscript ‘s’ denotes the

steady-state value; a(s) = s+ 1
τ1

− τ2
τ1(τ12τ2s+τ12+τ2)

and τ1 = Af ρf cf

πDf Ht
, τ12 = Amρmcm

πDf Ht
,

τ2 = Amρmcm

πDmHl
. On the other hand, if the temperature and the velocity of the fluid
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entering the pipe do not vary, the transfer function relating the outgoing fluid tem-
perature to the ambient temperature becomes

T̃out(s)

T̃a(s)
= b(s)

a(s)

(

1 − e
− a(s)

vs
L)

(6.10)

where T̃a(s) represents the Laplace transform of the deviation variable T̃a = Ta −
Tas

and b(s) = τ12
τ1(τ12τ2s+τ12+τ2)

. Finally, if both input fluid temperature and ambient
temperature do not vary, the transfer function relating the fluid velocity to its output
temperature is given by

T̃out(s)

ṽ(s)
= G(s) = − (Tas

− Ts0)

c
e

L
c
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(6.11)

where parameters c, f1 and g are given by c = vsτ1(1 + τ2
τ12

), f1 = τ12+τ2
τ12τ2

and
g = τ2

τ1(τ12+τ2)
. A more detailed procedure of this model can be found in [8], as it

has been the same used for modeling parabolic trough collectors in Chap. 4. It is
possible to verify that Eq. (6.9) represents almost pure delay. On the other hand,
although Eqs. (6.10) and (6.11) have a step input response similar to a first order
system, a frequency study shows that these transfer functions have resonance dy-

namics modeled by terms between bracket (1 − e
− L

vs
sQ(s)

), Q(s) being a transfer
function with different values for Eqs. (6.10) and (6.11). The frequencies, in which
this resonance dynamics appears, are inversely proportional with the value of L/vs ,
these resonance modes being found on lower frequencies for higher values of L/vs

and vice versa. However, for this case L/vs has a low value, which allows us to
consider the response of Eqs. (6.10) and (6.11) as a first order system.

The equation that relates the temperature to steam generator air input power is
(see the table of variables and parameters defined at the beginning of the book for
parameter definitions)

dP

dt
= d(ṁCF Tf )

dt
= d(vρf Af cf T )

dt
(6.12)

If ρf , Af and cf are considered constant at an operating point, the following result
is obtained:

dP

dt
= ρf Af cf

d(Tf v)

dt
= ρf Af cf

(

Tf

dv

dt
+ v

dTf

dt

)

(6.13)

The terms T dv/dt and v dT /dt in Eq. (6.13) are non-linear. The Taylor series ex-
pansions at point (v = vs, Tf = Tfs

) are used to obtain the linear approximation:

dP

dt
= ρf Af cf

(

Tfs

dv

dt
+ vs

dTf

dt

)

(6.14)

Representing the function in terms of deviation variables around steady-state condi-
tions and applying the Laplace transform:
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d(P − Ps)

dt
= ρf Af cf

(

Tfs

d(v − vs)

dt
+ vs

d(Tf − Tfs )

dt

)

→ dP̃

dt
= ρf Af cf

(

Tfs

dṽ

dt
+ vs

dT̃f

dt

)

→ sP̃ (s) = ρf Af cf

(

Tfs sṽ(s) + vssT̃f (s)
)

⇒ P̃ (s) = ρf Af cf

(

Tfs ṽ(s) + vs T̃f (s)
)

(6.15)

where T̃f = Tf − Tfs , ṽ = v − vs , P̃ = P − Ps , and the dependent variables T̃f (s),
ṽ(s), and P̃ (s) in the previous equations represent the Laplace transform of the
deviation variables. Equation (6.15) yields two equations, one of them relating the
fluid power to the fluid velocity when the fluid temperature is constant and the other
relating the fluid power to its temperature when the fluid velocity does not vary:

P̃ (s)

ṽ(s)
= ρf Af cf Tfs

(6.16a)

P̃ (s)

T̃f (s)
= ρf Af cf vs (6.16b)

Considering that the temperature is related to the velocity by Eq. (6.11), it is possible
to find an overall equation which involves the fluid power and its velocity in the
following way:

P̃ (s)

ṽ(s)
= ρf Af cf

(

Tfs + vsG(s)
)

(6.17)

However, when the steam generator input power comes from both receiver and ther-
mal storage, two pipe models are necessary in Eq. (6.12), one for each branch and
the resulting power is as shown in the following equation:

dP

dt
= d(ṁ1cf1Tf1 + ṁ2cf2Tf2)

dt
= ρf1Af1cf1

d(v1Tf1)

dt

+ ρf2Af2cf2

d(v2Tf2)

dt
(6.18)

The subscripts ‘1’ and ‘2’ denote the receiver branch and the thermal storage branch,
respectively. For a better understanding of the model, the model inputs, disturbances
and outputs delimiting the model boundary conditions are listed below:

• ṁ2: air mass flow from blower G2 [kg/s], which is the only operator-controllable
variable.

• ṁ1: air mass flow from blower G1 [kg/s], which is responsible for the air mass
flow through the receiver, so it is considered a boundary condition disturbance
signal.

• Tin1: mean receiver air outlet temperature [°C]; this signal is supposed to be con-
trolled by blower G1 air mass flow, but in this case it is considered a disturbance
that merges the influence of the aiming-point strategy [149], solar irradiance, and
ambient temperature changes that are difficult to model and changes air mass flow
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in blower G1, so this measurable temperature is used as a boundary condition both
for modeling and control.

• Tin2: thermal storage outlet temperature [°C], which depends on air mass flow
from blowers G1 and G2, the mean receiver air outlet temperature (and thus on
the aiming-point strategy and disturbances) and the heat exchanger state, in such
a way that this measurable signal is considered a boundary condition disturbance
signal in the hybrid model and related control algorithms.

• Ta : ambient temperature [°C], which is the constant temperature outside the pipes,
which cannot be manipulated and is therefore considered another disturbance.

• P : steam generator air input power [kW], which is the model output signal.

Equation (6.18) must be modified such that its inputs change with signal ṁ12,
as described previously. That is, if ṁ12 is equal to or greater than zero, the receiver
branch mass flow is equal to ṁ2, whereas the thermal storage branch mass flow
is zero. On the contrary, if ṁ12 is less than zero, the receiver branch mass flow is
equal to signal ṁ1, whereas the thermal storage branch mass flow is the difference
between signals ṁ2 and ṁ1.

Modeling the Simplest Case

The simplest case is when the steam generator input power comes only from the re-
ceiver, ṁ12 ≥ 0 (the primary supply) and no power is transferred to or from thermal
storage (standby power). In this case, signals ṁ1 and Tin2 are not model boundary
conditions; so the model has one input (signal ṁ2(s)), two disturbances (signals
Tin1(s) and Tg(s)) and one output (signal Power(s)), as shown in Fig. 6.32. The
model has been validated with real TSA system data saved by the SCADA during
typical operating sequences. Figure 6.33 shows a typical operation day, where solid
lines represent model data and dotted lines represent real data. As well as showing
the model output variable, steam generator air input power, Fig. 6.33 shows both
input and disturbance signals, like mean receiver air outlet temperature and air mass
flow. Ambient temperature is not shown in this figure because it does not change sig-
nificantly during plant operation. In the operation with date and label 2004-05-07
(left charts in Fig. 6.33), the input variable which has a wider range is the input
temperature; its changes, during operation, are reproduced by steam generator inlet
power, changes that, at the same time, are captured by the model. On the opposite,
in the other operation day, labeled 2004-06-18 (right charts in Fig. 6.33), the input
variable which changes most frequently, and inside a wider range, is the mass flow;
its changes are reproduced by incoming power variable and, the same as in the previ-
ous case, these changes are captured by the model. So, there is excellent agreement
between the real data and the modeled steam generator input power dynamics.

On the other hand, in order to handle all the possible cases (power from differ-
ent sources), the model must be modified according to the logical ṁ12 conditions.
‘Switch’ blocks must therefore be added to allow inputs to be switched to the appro-
priate pipe model. The new model scheme is shown in Fig. 6.34, where the power
from the two different supplies is added to calculate the overall steam generator
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Fig. 6.32 Model scheme
when the steam generator
inlet power only comes from
the receiver (courtesy of
J.D. Álvarez et al., [10])

input power and it is possibly observed as each branch has its own transfer func-
tions relating mass flow with output temperature (G(s) and N(s) with the structure
of Eq. (6.11) divided by Aiρ to pass from mass flow to velocity), input tempera-
ture with output temperature (H(s) and J (s) with the structure of Eq. (6.9)) and
ambient temperature with output temperature (M(s) and R(s) with the structure
of Eq. (6.10)) and another one to relate output temperature with output power too
(P(s) and T (s) with the structure of Eq. (6.16b)).

Fig. 6.33 Comparison of model results versus real data when air mass flow only comes from the
receiver (courtesy of J.D. Álvarez et al., [10])
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Fig. 6.34 Model scheme when the steam generator inlet power comes from both the receiver and
the thermal storage (courtesy of J.D. Álvarez et al., [10])

As modeling of whether the addends in Eq. (6.18) are active or not is based on
the ṁ12 signal, several discrete events which capture the dynamic changes must be
virtually implemented. Hybrid models allow these logical conditions to be system-
atically combined with the different dynamics using a single overall model. This
kind of model is suitable for designing future hybrid control algorithms, for exam-
ple, using the well-known MATLAB hybrid toolbox [32]. The following subsection
describes how the different dynamics of the TSA system can be represented with a
hybrid model.

6.8.3.2 Hybrid Model

Hybrid systems are loosely defined as dynamic systems whose state has two com-
ponents, one that evolves in a continuous set such as R (typically, according to a
differential or difference equation) and another one that evolves in a discrete set
such as N (typically, according to some transition logic-based rule). Also, complex,
hierarchically organized systems, where discrete planning algorithms interact on a
higher level with continuous control algorithms and are processed at a lower level,
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are another example of hybrid systems [33]. Perhaps the simplest model of a hybrid
system is [227]

ẋ(t) = fσ(t)

(

x(t)
)

, x ∈R
n,

σ (t) = lim
τ→t−

φ
(

x(τ), σ (τ )
)

, σ ∈ N,
(6.19)

where x and σ denote the continuous and discrete state components, respectively.
Usually, {fp: p ∈ ℘} is a family (normally finite) of sufficiently regular functions
from R

n to R
n that is parameterized by some index set ℘ and σ : [0,∞) → ℘ is a

piecewise constant function of time, called a switching signal. In specific situations,
the value of σ at a given time t might just depend on t or x(t), or both, or may
be generated using more sophisticated techniques such as a hybrid feedback with
memory in the loop. Standard assumptions in this context are that the solution x(t)

is continuous everywhere and that there are finite switches in finite time [227]. The
particular value for σ may be chosen by some higher process, such as a controller,
computer or human operator, in which case the system is said to be controlled. It
may also be a function of time or state or both, in which case the system is said to
be autonomous. A more general formalism is that hybrid systems are hierarchical
systems consisting of dynamic components at the lower level, governed by upper
level logical/discrete components [64, 164].

The most common class of hybrid systems is known as Discrete Hybrid Au-
tomata (DHA), which is described by the interconnection of linear dynamic sys-
tems and automata providing the discrete part of the system and a set of logical
rules [373].

DHA is able to generalize many oriented computational models for hybrid sys-
tems and is therefore the starting point for solving problems of complex hybrid
system analysis and synthesis. From this representation, an abstract representation
in a set of constrained linear difference equations involving integer and continuous
variables may be found that yield the equivalent Mixed Logical Dynamical (MLD)
model. This kind of model is very useful for optimization problems and for optimal
control purposes [33].

The MLD modeling tool is a relevant framework for the representation of hybrid
systems. From this framework, it is possible to model the evolution of continu-
ous variables through linear dynamic discrete-time equations, the discrete variables
through propositional logic statements and automata and the interaction of both.
The main idea of this approach is to embed the logical part in the state equations
by transforming Boolean variables into 0–1 integers and by expressing the rela-
tionships as mixed-integer linear inequalities. Therefore MLD systems are able to
model a broad class of systems arising in many applications: linear hybrid dynamic
systems, hybrid automata, non-linear dynamic systems where the non-linearity can
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be approximated by a piecewise linear function, and some classes of discrete event
systems. The general MLD representation is given by

x(k + 1) = Φx(k) + G1u(k) + G2ς(k) + G3z(k)

y(k) = Hx(k) + D1u(k) + D2ς(k) + D3z(k)

E2ς(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

(6.20)

where x(k) ∈ R
nc × {0,1}nl is a vector of continuous and binaries states, u(k) ∈

R
mc × {0,1}ml are the inputs, y(k) ∈ R

pc × {0,1}pl the outputs, ς(k) ∈ {0,1}rl ,
z(k) ∈ R

rc , represent auxiliary binary and continuous variables, respectively, which
are entered when transforming logical relationships into mixed-integer linear in-
equalities and Φ , G1, G2, G3, H, D1, D2, D3, E1, E2, E3, E4, E5 are matrices of
suitable dimensions.

There are other techniques to model hybrid systems, like Linear Complementar-
ity (LC) systems, PieceWise Affine (PWA) systems, Extended Linear Complemen-
tarity (ELC) systems, and Max-Min-Plus-Scaling (MMPS). However, it has been
proved that the resulting different hybrid models, using the different techniques
enumerated previously, could be considered mathematically equivalent under well-
determined suppositions [173, 174]. So, the MLD framework has been chosen, due
to its wide use in modeling hybrid systems and to be able to use the MLD model, in
the future, to develop a controller for the plant [61, 126, 422].

The following describes the different steps to obtain a MLD model of the TSA
system.

Operating Modes

As mentioned above, hybrid dynamics deals precisely with systems that result from
the interconnection of differential equations with logic-based decision rules. These
logic-based decision rules cause the hybrid systems to have different operating
modes as commented on in previous sections. The different TSA system operating
modes are based on the difference between blower G1 air mass flow (ṁ1) and the
blower G2 air mass flow (ṁ2). These operation modes are summarized as follows:

1 Receiver 100% / Thermal storage 0% / Steam generator 100%: In this operating
mode, all the power supplied by the receiver is sent to the steam generator. The
air mass flow from the two blowers is the same, so it does not go through thermal
storage in either direction.

2 Receiver 0% / Thermal storage 100% / Steam generator 100%: No air mass flow
is supplied by blower G1, therefore, all the power supplied to the steam generator
comes from thermal storage and this power depends exclusively on the blower
G2 air mass flow.

3 Receiver 100% / Thermal storage 100% / Steam generator 0%: In this configura-
tion, all the receiver outlet power is used to charge thermal storage. Blower G1 is
running and blower G2 is stopped, so there is no air mass flow through the steam
generator branch.
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Table 6.2 Air mass flow
through the system branches
in the different operation
modes (courtesy of
J.D. Álvarez et al., [10])

Receiver branch Thermal storage branch

Mode 1 ṁ1 = ṁ2 0 = ṁ2 − ṁ1

Mode 2 ṁ1 = 0 ṁ2 = ṁ2 − ṁ1

Mode 3 ṁ2 = 0 0 = ṁ2

Mode 4 ṁ1 ṁ2 − ṁ1

Mode 5 ṁ2 0

4 Receiver n% / Thermal storage (100 − n)% / Steam generator 100%: Thermal
storage is discharging and the power supplied to the steam generator comes from
both the receiver and the thermal storage. The blowers are running at different
speeds, but blower G2 speed must be greater than blower G1 speed.

5 Receiver 100% / Thermal storage n% / Steam generator (100 − n)%: This op-
erating mode, which charges thermal storage, is used when the receiver outlet
power is higher than power demanded, so the part not needed is sent to thermal
storage. So, all the power to steam generator comes from the receiver branch. For
this, the two blowers are switched on and the air mass flow supplied by blower
G1 must be greater than the blower G2 air mass flow.

Logical Rules and Automata

From the section above, it is easy to create some Boolean rules to detect the system
modes based on the difference between the mass flows in the two blowers. These
Boolean rules can be described in the following way:

1 ṁ1 = ṁ2 �= 0 → (equalG1G2 ∧ ¬zeroG1 ∧ ¬zeroG2)

2 ṁ2 �= 0 and ṁ1 = 0 → (zeroG1 ∧ ¬zeroG2)

3 ṁ1 �= 0 and ṁ2 = 0 → (zeroG2 ∧ ¬zeroG1)

4 ṁ2 > ṁ1 and ṁ1 �= 0 → (G2gtG1 ∧ ¬zeroG1)

5 ṁ1 > ṁ2 and ṁ2 �= 0 → (G1gtG2 ∧ ¬zeroG2)

where equalG1G2 means that the air mass flow is the same in blowers G1 and G2,
zeroGi indicates that the air mass flow in blower Gi is 0 and GjgtGi means that the
air mass flow in blower Gj is greater than that in blower Gi.

With these Boolean rules and the different operating points, system automata,
such as those shown in Fig. 6.35(a), can be found. In each different operating point,
the air mass flow through the branches changes as shown in Table 6.2, where the
mass flow in the branches which goes to the heat exchanger is equal to blower G2
air mass flow, ṁ2, for all the operating modes.

However, careful examination of the DHA in Fig. 6.35(a) reveals that modes
2 and 3 are particular cases of modes 4 and 5, respectively. Hence, the previous
automata can be reduced to a new one with only three modes to simplify the rep-
resentation. The reduced automata are shown in Fig. 6.35(b) and the air mass flow
through the branches is shown in Table 6.3. The dynamics of different states of these
automata is described in the next section.
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Fig. 6.35 Discrete hybrid automata (DHA) and reduced DHA (courtesy of J.D. Álvarez et al.,
[10])

Table 6.3 Air mass flow
through the system branches
for the reduced DHA
(courtesy of J.D. Álvarez et
al., [10])

Receiver branch Thermal storage branch

Mode 1 ṁ1 = ṁ2 0 = ṁ2 − ṁ1

Mode 2 ṁ1 ṁ2 − ṁ1

Mode 3 ṁ2 0

TSA Steam Generator Inlet Air Power Dynamics

As described above, the TSA steam generator inlet air power dynamics can be rep-
resented by the pipe model in Eq. (6.17). However, and as also described above,
two pipe models are necessary, one for the receiver branch and another one for the
thermal storage branch, where the inputs of these models change with the operating
mode as described in Eq. (6.18). So, from the discrete-time version on z-domain
of the transfer function in Eq. (6.17), these two pipe models can be represented by
their equivalent space-state representation as follows:

ẋr = Arxr + Brur , ẋst = Astxst + Bstust

yr = Crxr + Drur , yst = Cstxst + Dstust

(6.21)

where the subscripts r and st denote the receiver branch and the thermal storage
branch, respectively; x and y represent the fluid power states and outputs due to the
velocity and A, B, C and D are matrices of corresponding size.

Consider the following extended state vector including xr , xst:

xg = [xr xst]T (6.22)

It is possible to include the dynamics of the two branches in a single overall model
represented by Eq. (6.23):
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ẋg = Agxg + Bgug

yg = Cgxg + Dgug

(6.23)

where Ag , Bg , Cg , Dg are diagonal matrices easily found from Eq. (6.21) as

Ag =
[

Ar 0
0 Ast

]

, Bg =
[

Br 0
0 Bst

]

,

Cg = [ Cr Cst ] , Dg = [ Dr Dst ]
(6.24)

On the other hand, the input model ug is a variable, including system dynamics,
which changes in the following way:

ug = [(

ṁ1αd + ṁ2(1 − αd)
)

︸ ︷︷ ︸

ur

(

(ṁ2 − ṁ1)αd

)

︸ ︷︷ ︸

ust

]T (6.25)

where αd ∈ [0,1] is the discrete variable allowing the commutation between op-
erating modes. The value of αd at each sampling time is found directly from the
Boolean rules and is described as

αd =
{

1 if (equalG1G2 ∨ G2gtG1)

0 if G1gtG2
(6.26)

Therefore, in view of the above, the TSA steam generator inlet air power dynamics
can be modeled as a hybrid system, where the input is switched based on the rela-
tionship between blower G1 air mass flow, ṁ1 and blower G2 air mass flow, ṁ2.
Hence, the whole hybrid description of the system can be expressed as Eq. (6.20):

ẋg =
[

Ar 0
0 Ast

][

xr

xst

]

+
[

Br 0
0 Bst

][

ṁ1αd + ṁ2(1 − αd)

(ṁ2 − ṁ1)αd

]

yg = [ Cr Cst ]

[

xr

xst

]

+ [ Dr Dst ]

[

ṁ1αd + ṁ2(1 − αd)

(ṁ2 − ṁ1)αd

]

s.t. αd = (ṁ2 ≥ ṁ1) (6.27)

In the next paragraph an abstract representation of the model in Eq. (6.27) is found
as the equivalent MLD model useful for control purposes.

Mixed Logical Dynamical (MLD) Model

As mentioned above, MLD representations are the standard way to model hybrid
systems for control purposes. The rules and properties proposed in [174, 253] are
used to translate the TSA hybrid system into the MLD representation using the
MATLAB hybrid toolbox [32]. The resulting MLD model for the discrete version
of the system is shown in Eq. (6.28):

x(k + 1) = Φx(k) + G3z(k)

y(k) = Hx(k)

E2ς(k) + E3z(k) ≤ E1u(k) + E5

(6.28)



6.8 Power Stage Control 309

Fig. 6.36 Comparison of MLD results versus real data (courtesy of J.D. Álvarez et al., [10])

where values of matrices Φ , H, G3, E1, E2, E3, and E5 are presented in the
Appendix and in [10].

The MLD model was validated by comparing simulations with real data. The
results of the comparison are shown in Fig. 6.36 with model inputs, output and
disturbance signals as in Fig. 6.33, as well as model state signal. It may be ob-
served that the MLD model faithfully captures the system dynamics in the dif-
ferent operating modes. The MLD model also ensures continuous transitions be-
tween the operating modes, which is a very important feature for control pur-
poses.

Figure 6.36 shows simulations corresponding to two different operation days. At
the beginning of the first operation day (date and label 2003-11-13) the air mass flow
from blower G1, ṁ1, is greater than the air mass flow supplied by blower G2, ṁ2,
so the MLD model is in mode 3 according to the DHA shown in Fig. 6.35(b). After
that, ṁ2 increases and exceeds the value of ṁ1, passing the MLD model to mode 2.
Finally in the middle of the operation day ṁ1 is again greater than ṁ2, for a short
time, and this causes the MLD model to go into mode 3, ṁ1 quickly drops to less
than ṁ2 and the MLD model goes back into mode 2 again. It is important to notice
that, in this operation, where most of the time the plant is in mode 2 (ṁ1 < ṁ2), the
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changes in ṁ1 are reproduced by the steam generator inlet power, because through
the thermal storage branch there is an air mass flow with the value of (ṁ2 − ṁ1),
according to Table 6.3.

On the second operation day (date and label 2004-07-19), as the same that
the previously one, ṁ1 is greater than ṁ2 at the beginning, so the MLD model
is in mode 3. Afterwards ṁ1 value progressively decreases and for the time pe-
riod over 3200–3700 s both ṁ1 and ṁ2 have almost the same value, and this
fact causes the MLD model to go from mode 3 to mode 2 and vice versa for
a couple of times. Finally, the last 1500 s, ṁ2 is greater than ṁ1 and MLD
model remains in mode 2. In this operation day, with different features from
the previous one, most of the time the plant is in mode 3, where ṁ1 > ṁ2,
so, the changes in ṁ1 do not affect to the steam generator inlet power since
through the thermal storage branch there is not any air mass flow, according
to Table 6.3. This system feature can only be reproduced by a hybrid model,
like the MLD one developed. Therefore, this MLD model can be used for con-
trol or design purposes. A great advantage to design a controller based on this
kind of hybrid model is that the controller is able to take into account the dif-
ferent operating modes and discrete events which are used to switch between
modes.

6.8.4 Hybrid Control of the TSA System

The MLD model allows developing a MPC controller for the system. Due to
restrictions in the use of the CESA-1 installation, only simulation tests are
shown in this section [9]. Using the Hybrid Toolbox [32] it is possible to de-
velop a receding horizon MPC controller solving a Mixed-Integer Programming
(MIP) optimization problem [33]. For those cases in which on-line optimiza-
tion is not possible, multiparametric programming may be useful for optimal
PWA controller synthesis. The optimal control problem can be formulated as fol-
lows:

min
{u,ς,z}N−1

0

J
({u, ς, z}N−1

0 ,x(k)
)

�
∥

∥QxT

(

x(k + N |k) − xr

)∥

∥

p
+

N−1
∑

j=1

∥

∥Qx

(

x(k + j) − xr

)∥

∥

p

+
N−1
∑

j=0

∥

∥Qu

(

u(k) − ur

)∥

∥

p
+ ∥

∥Qz

(

z(k + j) − zr

)∥

∥

p
+ ∥

∥Qy

(

y(k + j) − r
)∥

∥

p

(6.29)
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such that
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x(0 | k) = x(k)

x(k + j + 1 | k) = Ax(k + j | k) + B1u(k) + B2ς(k + j | k) + B3z(k + j | k)

y(k + j | k) = Cx(k + j | k) + D1u(k) + D2ς(k + j | k) + D3z(k + j | k)

E2ς(k + j | k) + E3z(k + j | k) ≤ E1u(k) + E4x(k + j | k) + E5

umin ≤ u(k + j) ≤ umax, j = 0,1, . . . ,N − 1

xmin ≤ x(k + j | k) ≤ xmax, j = 1, . . . ,N

ymin ≤ y(k + j) ≤ ymax, j = 0,1, . . . ,N − 1

Sxx(k + N | k) ≤ Tx
(6.30)

where y(k) is the system output in discrete time k, r is the reference, xr , ur

and zr are the references to states, inputs and auxiliary variables, N is the pre-
diction horizon, x(k + j | k) is the state predicted for time k + j at sampling
time k resulting from input u(k + j), umin, umax, ymin, ymax and xmin, xmax are
the limits for inputs, outputs and states, respectively; {x: Sxx ≤ Tx} is a poly-
hedrical subset of the final state space R

n. The weighting factors in Eqs. (6.29)
and (6.30) have the same interpretation as those of a typical GPC controller: Qy

and Qx have the same effect: δ and they should equal 1, Qu is the control sig-
nal weighting factor, equivalent to λ in GPC. QxT is a weighting factor penal-
izing the state at the end of the horizon (j = N ) if this is far from the refer-
ence.

6.8.4.1 Illustrative Results

The variable to be controlled is the air power at the input of the steam generator,
while the manipulated variable is the mass flow provided by blower G2 ṁ2. In this
case, the mass flow given by blower G1 ṁ1, that is, the manipulated variable of
the controller described in the previous subsection, is considered as a disturbance,
because its use is only devoted to maintain a desired air temperature at the receiver
outlet.

Figure 6.37 shows two illustrative simulations. It can be seen how the closed-
loop time constant (relating air power to blower G2 mass flow) is quite small (when
ṁ2 > ṁ1). This feature allows rejecting disturbances (mainly those coming from
changes in ṁ1 trying to control the air temperature at the receiver outlet). The trans-
fer functions relating blower G1 mass flow and outlet receiver temperature are en-
capsulated into the hybrid model of the air circuit, so that the controller is able to
compensate for their changes. When ṁ2 < ṁ1 all the power comes from the receiver
(Table 6.2) using a flow at the steam generator input equal to ṁ2. This is the main
reason of why a multivariable controller has not been used, because it could not
account for the different operating modes.
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Fig. 6.37 Results with the hybrid controller (courtesy of J.D. Álvarez, [9])

6.8.5 Steam Generator Control

The TSA steam generator has a once-through configuration to transfer energy from
hot air to water. This heat exchanger has been modeled following the same ap-
proaches explained in Chap. 4, obtaining both non-linear and black-box linear mod-
els obtained from Taylor series expansions and parametric identification validating
use of multisine signals [66, 255, 316, 317]. Figure 6.38 shows a comparison be-
tween the frequency response of the non-linear model and that of a linear model
of order 20 (also reduced order models have been obtained for controller synthesis
purposes). Notice that resonances are not so important in this case and robust PID
controllers are able to control this kind of system [277].

6.9 Summary

This chapter has dealt with modeling and control problems associated to thermoso-
lar plants with central receiver system. All the components of a typical installation
have been explained, as well as the associated control schemes: control of the he-
liostat field (and offset correction problems), control of the receiver and control of
the power stage. Illustrative examples of control solutions for the CESA-1 plant of
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Fig. 6.38 Comparison of the frequency response of non-linear and linear models of the steam
generator (courtesy of J.D. Álvarez, [9])

the PSA have been included. These algorithms have served as a reference for the
industrial facilities that have been put into operation recently.





Chapter 7
Other Solar Applications

7.1 Introduction

For the last twenty years, solar energy has been used for a wide range of applica-
tions. In [205, 371], a review of solar thermal technologies is carried out. Two of the
most promising fields for solar energy are that of solar furnaces for material testing
and treatment and solar-based refrigeration systems.

A solar furnace is a high concentrating facility made up of a collector system
with tracking (usually with a varying number of flat-faceted heliostats) and a static
parabolic concentrating system at the focal spot of which a high percentage of the
solar energy collected by the collector system is concentrated within a small area.
One attenuator (shutter) can be used between the collector system and the concen-
trator to control the amount of energy used for heating samples placed at the focal
spot. A test table, movable in three dimensions, is placed in the area of the focal spot
within the test zone. Solar furnaces have received great attention since the 1950s
[141, 158, 265, 302, 375]. An excellent description and overview of different solar
furnaces can be found in [240], where open loop computer-based control systems
are used [157].

Tests in a solar furnace usually aim at improving the mechanical properties such
as hardness and wear resistance by melting and/or casting different samples (steel,
cast-iron, ceramic composites such as alumina, etc.) [320, 368, 403], sintering [5]
or processing of silicon cells [140, 376], by means of heating the samples following
many different temperature patterns. The study of physical-thermal properties of
materials at high temperatures can be made with innovative treatments impossible
to carry out using conventional heating processes, improving the results of industrial
material treatments such as laser surface tempering in the case of materials which
have to work under very severe conditions.

Due to the complexity and diversity of sample materials and temperature trends
such research plants are usually manually controlled by expert operators. Obviously,
the efficiency of the operations depends on the operators’ skill and, therefore, the
presence of a properly designed automatic control system would have the advantage
of providing adequate results for different operating conditions. In Sect. 7.2 different
modeling and control approaches applied to solar furnaces are developed.

E.F. Camacho et al., Control of Solar Energy Systems, Advances in Industrial Control,
DOI 10.1007/978-0-85729-916-1_7, © Springer-Verlag London Limited 2012
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7.2 Solar Furnaces

7.2.1 Introduction

This section presents automatic control system strategies for controlling the tem-
perature of a solar furnace. As has been pointed out, solar furnaces are manually
controlled by skilled operators due to the variety of sample materials and temper-
ature profiles. In recent years, different control strategies have been developed to
allow automatic control of solar furnaces, ranging from adaptive control [13, 43,
120, 121], fuzzy logic control [220, 221] and predictive control [48]. Many of these
techniques are based on the physical model developed in [43].

This section shows the results obtained in the application of proportional-integral
(PI) and fuzzy logic controllers (FLC) to a solar furnace. In the case of PI con-
trollers, both fixed and adaptive versions of the controllers have been developed,
incorporating feedforward (FF) action, anti-windup and slew-rate constraint han-
dling mechanisms.

From the control viewpoint, a solar furnace is a system which presents several
interesting characteristics making the control problem a difficult task:

• The characteristics of the samples are quite different depending on their nature
(steel, alumina, etc.). Obtaining a fixed parameter controller which allows differ-
ent samples to be controlled becomes a difficult task.

• The dynamic characteristics of each sample greatly depend on the temperature
and introduce a high non-linearity which makes the behavior of the system con-
trolled change with the operating conditions.

• The control specifications are quite severe (rate of temperature increase, rate of
temperature decrease, variable step changes, etc.) and have to be achieved with
small errors.

• The system suffers from strong disturbances caused by solar irradiance variations
(slow variations due to the daily cycle or fast and strong variations due to passing
clouds), which make the exact reproduction of the conditions of a determined test
impossible.

• Limitations exist in the maximum temperature achievable by the materials and
different constraints (non-linearities) in the actuator (amplitude, slew rate, etc.).

Recently, there have been extensions to solar-driven thermochemical processes
[293], in which high-temperature process heat is supplied by concentrated solar en-
ergy, providing an efficient route for fuel and material production. In this case, a lin-
ear feedback controller was implemented using an optimal control design method
(LQG/LTR).

7.2.2 The Solar Furnace at the PSA

The PSA Solar Furnace is mainly devoted to material treatment. Samples of different
kinds of material have been quenched or sintered at its high flux focal spot, improv-
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Fig. 7.1 Solar furnace (courtesy of PSA)

ing their hardening properties and wear resistance. Many research institutions have
carried out several test campaigns on metallic and ceramic samples [321].

The PSA solar furnace facility structure and layout is summarized below. Es-
sentially, it is composed of a huge heliostat to reflect sunshine onto the furnace
chamber. Its main components include a 150 m2 heliostat which reflects sunlight
onto the concentrator disk, with 90% reflectivity and controlled azimuth and pitch
positioning mechanism, plus an implemented Sun tracking algorithm. There is also
a louvered shutter (control actuator) made out of 30 steel parallel panels which allow
the amount of incoming light to be adjusted onto the concentrator, with a dimension
of 11.5 m × 11.2 m, and 15896 positions between 0° (open) and 55° (closed). At
the back of the chamber, a concentrator convex mirror gathers most of the incoming
sunlight from the outdoor heliostat onto a 22 cm diameter focal spot. The physical
properties to be highlighted are that it has a 98.5 m2 reflecting area with 94% re-
flectivity and a concentration peak of 3000 MW/m2. Samples are placed on top of a
precision 3-D adjusting table, capable of accurate positioning on three axes (space
dimensions) with a work area comprising (0.86, 0.6, 0.5) m in dimensions X, Y , Z,
respectively.

Figure 7.1 shows a model representation of the plant layout depicting the solar
radiance concentration process and the main components involved. It also shows
an outer view of the PSA solar furnace. It can be seen how the heliostat concen-
trates solar irradiance onto the shutter which controls the fraction of beam irradi-
ance which goes into the furnace for material testing purposes. The fraction of the
solar irradiance collected by the heliostats is incident on a static parabolic receiver
to concentrate the irradiance onto a small surface. The sample is situated at the focal
point and the mobile table serves to position it to collect maximum energy before
starting the tests. Once the sample has been placed within the focus on which solar
irradiance is concentrated, the table stands at a fixed position. The main system dif-
ficulties lie in the disturbances present and persistent in every solar power plant, i.e.
the energy source itself is an endless disturbance (due to its daily and yearly cycles,
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as well as passing clouds). In addition, each distinct sample brings its own physi-
cal properties such as heating-up and down ratios or light absorption capacity. If all
this were not enough, the aforementioned actuator adds a variable slew-rate non-
linearity to its intrinsic physical aperture limitation. From the control viewpoint it is
a single-input single-output (SISO) system where the output variable is the sample
temperature measured by welded thermocouples, while the input variable is the de-
gree of aperture at the shutter that regulates the amount of sunlight incident on the
concentrator.

When the task of controlling the temperature of the sample is manually per-
formed by a skilled operator, efficiency in the operation and the results obtained
depend on human capabilities. The development of an automatic control system for
these kinds of plant presents many advantages, such as simplifying operation of the
whole system. This is important, because the operator has to perform many tasks
before and during operation, and test different kinds of sample and for different
operating specifications.

7.2.3 Dynamical Models of the System

As a first step in the development of an automatic control scheme for the solar
furnace, a simplified model of the system was obtained to be used for control design
purposes. In this case, the model was obtained from first principles and compared to
input/output data measured in the system. A simplified energy balance is introduced
in the following. For the sake of clarity, the dependence on time of different variables
has not been explicitly written. Figure 7.2(a) shows a schematic diagram of the
energy balance (conservation principle), which is given by Pi − Pr − Pc = dE/dt ,
where E is the thermal energy of the sample, Pi is the input power that the sample
receives (this term takes into account the incident flux attenuation due to mirror
reflectivity, shutter aperture, etc.), Pr are radiation losses and Pc convection losses.
The following paragraphs show the mathematical expressions of the different terms
of the energy balance.

7.2.3.1 Input Thermal Power

The heliostats reflect a fraction Is = rhI of the direct solar irradiance I coming
from the Sun (rh: mirror reflectivity). The shutter aperture limits the reflected solar
irradiance which goes through it. The attenuation which the incident flux suffers is
equal to the percentage of the total area of the panels (blind) which is open. The
shutter opening is performed using an AC motor which rotates the axle to which
the panels are linked between 0° (fully open) and 55° (fully closed). The vari-
able given by the control program is the aperture percentage. As can be seen in
Fig. 7.2(b) the relationship between the aperture angle (α) and the aperture (A) is
A = Ls(sinα0 − sinα), where Ls is the length of the panel, α0 is the angle at which
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Fig. 7.2 Energy balance and shutter aperture [43]

the shutter is completely closed (zero aperture) and α is the angle which indicates
the aperture percentage. The encoders are such that the control signal to the motor
which moves the shutter is the percentage of rotated angle (U ) in respect to α0, that
is, α = (1−U/100)α0, the aperture A related to the control signal U is given by A =
1 − (sin[(1 − U/100)α0]/ sinα0), where U is the input to the system. This conver-
sion introduces a non-linearity, as the attenuation of the input flux does not linearly
vary with the input but follows a sinusoidal relationship. The power density behind
the shutter is Ic = IsA = Irh[1− (sin[(1−U/100)α0]/ sinα0)]. This power density
is collected by the concentrator in proportion to its surface Sc and is projected to-
ward the focus with different losses due to its reflectivity rc. The power obtained at
the concentrator output is P = IcScrc = IrhrcSc[1 − (sin[(1 −U/100)α0]/ sinα0)].
The energy received by the sample depends upon its surface (Ss ). Due to the flux
distribution at the focus of the system, 90% of the power is concentrated within a
circumference with a diameter of about 20 cm. Supposing that the energy flux is
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uniformly distributed within the focus (this is obviously an approximation, as in
reality the distribution is of Gaussian type), the input power is

Pi = rhrcSc

Sf (90%) sinα0
ISsαa

[

sinα0 − sin
[

(1 − U/100)α0
]]

being Sf (90%) and αa the focus area and absorption capacity of the sample, respec-
tively.

7.2.3.2 Radiation and Convection Thermal Losses

The radiation losses depend on the emissivity of sample αe , which is a parameter
that determines the capacity of the sample to irradiate energy. The irradiated power
is Pr = αeσSs(T

4 − T 4
a ) where σ is the Stephan–Boltzmann constant,1 Ta is the

environmental temperature and T is the temperature (supposedly uniform) of the
sample given in Kelvin degrees. As can be seen, the previous relationship is of a
non-linear nature.

Convection losses depend linearly on the sample temperature and on a constant
αc which indicates the capacity of the sample to interchange heat with the air. This
constant depends on the position of the sample and on the properties of the air:
temperature, viscosity, etc. The power lost by convection mechanisms can be ap-
proximated by Pc = αcSs(T − Ta).

7.2.3.3 Energy Balance

As has been previously pointed out, the energy balance is given by Pi − Pr − Pc =
dE/dt (where E = mscsT , m being the mass of the sample, cs the specific heat
and T the temperature in Kelvin degrees). By substituting each one of the terms, we
have

d(mscsT )

dt
= rhrcSc

Sf (90%) sinα0
ISsαa

[

sinα0 − sin
[

(1 − U/100)α0
]]

− αeσSs

(

T 4 − T 4
a

) − αcSs(T − Ta) (7.1)

The energy variation in time is null at the equilibrium point (U0, T0). If a small per-
turbation around the equilibrium point is produced (U = U0 + u and T = T0 + ξ ),
a linearized model which reproduces the behavior of the system around a deter-
mined operating point can be obtained and some consequences can be interpreted.
Notice that all parameters which determine the thermal characteristics of a body
depend on the temperature. Nevertheless, if small deviations from the equilibrium
point are supposed, constant values of the parameters can be used. In reality, this is
another focus of non-linearities in the system as, depending on the operating point,
different values of these parameters are obtained. By merging Eq. (7.1) and the one

1σ = 5.67 · 10−8 W/(m2 K4).
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that which can easily be obtained for the equilibrium point and by linearizing the
sinusoidal term and all those terms with high powers, the following relationship can
be obtained:

mscs

dξ

dt
= rhrcScα0

100Sf (90%) sinα0
ISsαa cos

[

(1 − U0/100)α0
]

u

− 4αeσSsT
3
0 ξ − αcSsξ (7.2)

The fraction in the first term in Eq. (7.2) is constituted of characteristic parameters
of the system, independently of the type of material. By a few calculations, this
term can be embedded in a constant K1 = (rhrcScα0)/(100Sf (90%) sinα0) = 24.95
for this system so that, if null initial conditions are supposed and the Laplace Trans-
form is applied to this linearized model (u(t) → U(s); ξ(t) → T (s)), the following
transfer function can be obtained:

T (s)

U(s)
= K1ISsαa cos[(1 − U0/100)α0]

mscss + 4αeσSsT
3
0 + αcSs

(7.3)

which represents a first-order model T (s)/U(s) = K/(1 + τs), where

K = K1αaI cos[(1 − U0/100)α0]
4σαeT

3
0 + αc

and τ = mscs

Ss(4σαeT
3
0 + αc)

(7.4)

Some simple but important conclusions can be drawn from this simplified model:

• The gain of the system depends proportionally on the solar irradiance and the
linearized system time constant is independent of it.

• The variation in the gain of the system with the cosine of a term involving the
initial aperture angle and the equilibrium operating point aperture models the
shutter non-linearity, so that, the higher the aperture of the shutter the higher
the system gain.

• Both the system gain and the characteristic time constant depend inversely on the
cube of the temperature. Furthermore, samples with high emissivity and convec-
tion loss rate values (great capacity of the material to lose energy) have lower
values of the system gain and time constant than those samples with low emissiv-
ity and convection loss rate values.

• The value of the area of the sample exposed to the concentrated solar irradiance
does not influence the value of the gain of the simplified model. Nevertheless,
the value of the time constant is influenced by the area of the sample, so that for
samples of the same material, the larger the area of the sample the smaller the
corresponding time constant.

• Those samples with high specific heat lead to an increase in the time constant of
the system.

• The ambient temperature does not influence the linearized transfer function of the
system.

Notice that all these conclusions are valid under the assumptions made to obtain
the linearized model. As indicative values, Table 7.1 shows typical gain and time
constant ranges estimated using data from different tests performed on different
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Table 7.1 Example of off-line estimated parameters, K in °C/%, τ in s

Zone A
(200–400°C)

Zone B
(400–600°C)

Zone C
(600–800°C)

Zone D
(800–1000°C)

Small steel
sample

K = [70,50] K = [55,30] K = [35,20] K = [25,15]
τ = [100,85] τ = [90,45] τ = [45,30] τ = [40,25]

A 316-L steel K = [140,100] K = [105,65] K = [70,50] K = [55,35]
τ = [120,100] τ = [105,80] τ = [85,70] τ = [75,60]

White zirconia K = [65,50] K = [55,45] K = [50,30] K = [40,20]
τ = [130,125] τ = [125,120] τ = [120,115] τ = [115,100]

Silicon carbide K = [80,60] K = [60,40] K = [45,20] K = [20,10]
τ = [150,130] τ = [135,125] τ = [130,120] τ = [120,100]

kinds of sample under various temperature conditions (as commented at the end of
the section).

Another aspect relevant to modeling the system refers to the shutter activating
mechanism (AC motor) which introduces two non-linearities: one of saturation type
with minimum (0%) and maximum (100%) aperture and the other of slew-rate type,
where the aperture rate response of the shutter is fixed at 5% per second, taking
20 s to open from 0% to 100%. These non-linearities influence the behavior of
the different control schemes. As is well known, the existence of saturation non-
linearities within control loops incorporating integral action can cause the integral
term to achieve undesired values producing long-lasting oscillations when set point
changes are performed (if adequate anti-windup mechanisms are not included). The
effect of the slew-rate constraints is also harmful from the control viewpoint, as the
limitation of the speed of response can also lead to undesired performance of the
controlled system.

It is difficult to validate these types of model, because the thermodynamic char-
acteristics of the materials tested vary with temperature and quite often information
including tables with these characteristics (specific heat, emissivity, absorption coef-
ficient, etc.) is not provided for such a wide range of temperatures as that covered in
these types of application. Different simplified approaches using input/output data
from manual tests have been used to validate these models. These approaches have
been based on open loop step and pseudo random binary sequence (PRBS) tests
used to obtain input/output data for model validation purposes. Step tests are use-
ful to validate first order models (usually carried out by the reaction-curve method)
as it is simple to estimate the gain and characteristic time constant of the system
by inspection of the response of the system. They are also useful for studying the
variation of the system characteristic parameters under operating conditions, such
as changes in working (temperature) conditions, solar radiation, etc. For example,
Fig. 7.3 shows open loop step tests performed with a small steel sample. A zoom of
several zones of the plot has been included showing both the real response and that
obtained by using first-order models with the estimated parameters shown in Ta-
ble 7.2. These characteristic parameters have been obtained for different operating
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Fig. 7.3 Step tests for model validation [43]

conditions (given by mean temperature T0 in degrees Celsius, mean shutter aperture
U0 and mean direct solar irradiance I0) by identifying each of the step responses
shown in Fig. 7.3. This table provides information for model validation purposes
(notice that these values are subject to errors as they have been estimated from in-
put/output data). As can be seen, slightly different dynamic behavior is obtained
when heating the samples than in the case of cooling them. The values of both the
estimated steady state gain and characteristic time constant decrease as temperature
increases and for a similar value of the temperature conditions, the value of the static
gain increases as the mean solar irradiance augments. The static gain should also in-
crease as the shutter aperture augments, but the corresponding temperature increase
counteracts this effect. These conclusions are in accordance with those obtained
from the energy balance.
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Table 7.2 Estimated model parameters for a steel sample

Heating-up steps Cooling-down steps

T0 U0 I0 K τ T0 U0 I0 K τ

410 5.9 981 55 80 413 5.0 966 55 92

458 6.9 980 53 74 459 5.9 962 47 89

507 8.0 981 50 73 500 7.0 956 36 88

550 8.9 992 46 70 535 9.0 946 31 77

591 10.0 984 37 45 562 6.0 1003 40 60

625 11.0 991 32 46 565 10.0 937 30 62

651 12.0 988 30 42 696 9.9 1005 28 42

698 14.0 991 28 40 801 13.9 1005 25 40

751 15.9 993 21 38 887 18.0 1002 20 31

794 18.0 992 23 32 957 22.0 1003 18 29

864 21.9 996 23 31

950 25.9 1002 20 25

More comments can be made on model validation. The inverse of the time con-
stant can be written as (see Eq. (7.4))

1

τ
= a1T

3
0 + a2 (7.5)

with a1 = 4σαeSc

mscs
and a2 = αcSc

mscs
. If the coefficients αe, αc and cs are considered

to be constant (this is a reasonable assumption for small temperature ranges), the
coefficients a1 and a2 can be computed by a linear regression algorithm using the
data given in Table 7.2. Figure 7.4 shows the plot of the values of the identified time
constants (inverse of Eq. (7.5)). The deviations observed are due to noise and the
dependence of coefficients αe , αc and mainly cs on temperature (which was ignored)
and are small enough to justify the assumptions made to obtain the simplified model.

As has been previously mentioned, other types of test performed for model val-
idation purposes are PRBS ones in order to obtain input/output data with enough
dynamic information for model parameter identification purposes. For example,
Fig. 7.5 shows one of these tests around 750°C (also including the response ob-
tained with the identified model). A standard least-squares identification method
was used in order to obtain the values of the parameters of the model. In the case
shown in this example, supposing a first-order model structure, the values of the
identified parameters were: K = 25°C/% and τ = 38 s.

7.2.3.4 Improvements to the Model and Sintering Tests

The basic model presented in this section can be modified to take into account spe-
cial requirements of a test, as is the case of copper sintering, where a sample is
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Fig. 7.4 Real and approximated relationships between τ and T0 [43]

Fig. 7.5 Model validation using PRBS signals [43]

exposed to long high-temperature set points so that small particles bond together
and the aggregate shrinks resulting in a decrease in surface area and energy; al-
lows for this an ulterior study on a number of topics, such as volume diffusion of
atoms. A lengthier discussion on this topic that has been around in the field of ma-
terial processing since the mid-1950s can be found in [2]. Sintering is a well-known
complex material processing technique. It involves multiple simultaneous physical
processes, including various diffusion paths (along surface and through bulk lat-
tice), vapor transport (evaporation and condensation), particle rigid body motions
(translation and rotation) and grain growth through boundary migration [151, 212].
The sintering kinetics depend on interactions among these processes as well as the
specifics of sample microstructure. Computer modeling of the sintering process to
account for the competing phenomena of either grain growth or neck formation and
densification is an active subject of research [394] and, currently, it is limited to par-
tial solutions imposing ad hoc assumptions dependent on specifics, i.e. shape, size,
relative location and crystallographic orientation of individual particles.
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In the case treated in this section, the thermal profile is modeled using the energy
balance given by Eq. (7.1) including the effect of conduction along the dimension of
incident irradiance. Test sample structure consists of a multi-layered copper spool
of straightened 2-mm-diameter, 50-mm-long wires placed in a specifically designed
container. The sample and its container are placed inside a vacuum chamber which
is provided with a gas preparation system for working in a controlled atmosphere.
In sintering tests a slightly reductive atmosphere of HYD45 gas (5% H2–95% N2)
is employed to prevent the sample from corruption, i.e. rusting or outer layer film
decomposition.

Manual tests are performed under heating temperatures ranging from 850 to
1050°C and for varied exposure times. In general, with temperatures around 1000°C
and for periods of 2 to 180 min, necks are formed at a limited number of contacts,
the length of which depends on the treatment time.

The previous formulas included the sample effect by means of three unknown pa-
rameters, viz., absorption, emissivity and convection indices. It is known that these
empirical factors are somewhat variable depending on temperature. Therefore, after
a careful investigation of dimensionless Nusselt numbers and the ventilation system,
it can be safely concluded that this convection process follows a forced, turbulent
type. From these converging facts, the convection index has been approximated as

αc = cc(T − Ta)
1
3 , where cc is to be estimated as a constant factor.

Once T has been obtained, bearing in mind that the sample is mainly an intercon-
nected mesh of copper wires, a simple estimation of the temperature gradient con-
duction [323] along the longitudinal dimension may take the form of a differential
equation where the temperature of an intermediate region T2 is the target, T3 being
the temperature at the base (non-irradiated) of the sample. The actual position of
the target layer is an input option, by means of variable distances (d1, d2) (Fig. 7.6).
The sample conduction index also needs to be taken into account and since the tem-
perature gradient can reach several hundred degrees, a distinct parameter for each
layer has been chosen (c1, c2). In short, by substituting terms and denoting T = T1
(Fig. 7.6), the model formulas could be written as

mscs

dT1

dt
= rhrcSc

Sf

ISsαa

[

1 − sin (1 − U/100)α0

sinα0

]

− ccSc(T1 − Ta)
4
3 − αeσSs

(

T 4
1 − T 4

a

)

(7.6)

m2cs

dT2

dt
= c1

d1
(T1 − T2) − c2

d2
(T2 − T3) (7.7)

There are so far six unknown parameters, viz., αa , αe, cc, cs , c1, and c2, that can be
found by identification using, for instance, least squares (LS) methods or genetic al-
gorithms (GA). There are some physical data about them that may narrow down the
search. First, αa and αe are both thermodynamic properties of the sample that must
be of the same order of magnitude with αa > αe. Regarding the specific heat of the
sample (cs ), some useful data was gathered. The sample is mainly composed of cop-
per wires as well as some amount of refrigerant gas. This gas, used for preventing
sample corruption and rusting, is slightly reductive and is composed of 95% nitro-
gen and 5% hydrogen, which gives a compound specific heat of 2423.3 [J/(kgK)].



7.2 Solar Furnaces 327

Fig. 7.6 Model improvement
estimating conduction
parameters (courtesy of
D. Lacasa et al., [220])

By contrast, that of copper is considerably lower, being 383 [J/(kgK)] at ambient
pressure. As a result, the sample’s specific heat is somehow bounded and known
to be closer to that of copper. Regarding the conduction parameters (c1, c2), these
could be safely assumed to be very similar because none of the sample elements
vary, which signifies that any existing change can be considered to be due to a tem-
perature difference.

Since the aim was to arrive at an approximate thermal model for control pur-
poses, a practical cross-validation with a separate data set from that of the real test
was also carried out. These tests represent both manned and automatic controlled
experiments performed on vessels interweaving actual samples and thermocouple
sensors. Steep variable temperature gradients between the front and back sections
are shown along the entire length down the midplane of the sample. The energy dis-
position at the vacuum chamber is graphically examined through infrared scanning.
The model has yielded satisfactory results at simulation, given that it exhibits a good
tracking of the real system trends. In addition, extremely rare peak errors are kept
under 35°C, which account for less than 3% of the output variable range. Figure 7.7
shows a couple of comparative charts with simulated vs. real data.

Fig. 7.7 Augmented model validation tests (courtesy of D. Lacasa et al., [220])
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7.2.4 Simple Feedforward and Feedback Control Schemes

Many different temperature profiles are required for a wide class of tests [321] cov-
ering melting experiences, production of a super alloy wear resistant coating for
high-temperature applications, etc. The ideal specifications for operation in these
kinds of plant can be translated into classical control specifications as follows:

• The steady state error for a ramp input should be as small as possible as temper-
ature profiles of this type (or more complex ones) are frequently requested.

• A fast settling time after a step in the reference temperature is desirable. The
required settling time (depending on the kind of sample) is approximately that
obtained by a very skilled operator and of the same order as the characteristic
time constant of selected samples.

• A minimal overshoot for the closed-loop system is desirable. This requirement
comes from the fact that there are no active cooling mechanisms and it is some-
times necessary to work at temperatures close to melting point and so overshoots
or other types of oscillatory response would destroy the sample.

A sampling time of 3 seconds has been used for control purposes and relevant
signals are stored every second by the data acquisition system running in the central
control computer.

7.2.4.1 Feedforward Control (FF)

As has been demonstrated in other types of solar plant [82, 83, 85], the use of feed-
forward controllers is fundamental for systems subjected to measurable disturbances
(as is the case of direct solar irradiance). In the case treated in Chap. 4, Sect. 4.4.1,
both parallel and feedforward configurations have been used following the basic
control schemes shown in Fig. 4.15.

The most important disturbance acting on the furnace is the solar irradiance.
The continuous system transfer function can be written as: G(s) = KI/(1 + τs),
where the solar irradiance proportionally affects the linearized system gain. Thus,
if a block with a transfer function Gff = Iref /I is placed in the forward path (series
feedforward controller in Fig. 4.15(b)), the resulting global transfer function is the-
oretically independent of the solar irradiance values, having a gain constant (if the
supposition of the operation around an operating point is fulfilled) corresponding
to a solar irradiance level (input energy) equal to Iref . In this way, the series feed-
forward controller is simply a variable gain only dependent on the solar irradiance.
The value of Iref has been taken close to the mean value of the solar irradiance dur-
ing different tests and is equal to 900 W/m2. This is a valid approximation both for
steady state and transient conditions, as the transfer function which relates changes
in the sample temperature to changes in solar irradiance has, theoretically, the same
characteristic polynomial as the system transfer function (when considering linear
operation and without non-linearities introduced by the actuator). This is due to the
fact that a decrease in the solar irradiance level has the same effect on the output
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temperature as a diminishment in the shutter aperture. Notice that all these consid-
erations are based on several simplifications made when obtaining an approximated
transfer function of the system and that Gff could also contain a low-pass filter.

7.2.4.2 Fixed PI Controllers with Anti-windup Action

As is usual in the development of automatic control systems [21, 24], the first step
in the design is to try to implement classical PID control schemes. As the plant
can be approximated as a first-order system and taking into account the system
specifications, the decision was taken to tune a PI controller given by CPI(s) =
KP [1+1/(TI s)] implemented using the anti-windup mechanism shown in Fig. 4.19
[22].

In many control problems, the existence of an actuator constraint of the slew-
rate type is not accounted for during the design step and the obtained controller is
detuned when implemented to obtain a generally robust and well-damped perfor-
mance. As the system is modeled as a first-order one, a common solution in the
control of these kinds of system to obtain fast responses from simple root locus
analysis is to use low integral times and high gain controllers. This is not always an
adequate solution when implementation issues are considered, as the output of the
controller must be realistic and take the constraints into account. In [43] a simula-
tion is performed showing how the behavior of a controlled system deteriorates with
the existence of slew-rate constraints.

From the root locus analysis viewpoint and taking the characteristic time constant
of the controlled system to be at a determined location, two cases can be considered,
depending on the position of the PI controller zero (depending on the value of TI ).

In CASE A (TI ≤ τ ), for low gains, the expected type of response is an over-
damped one (two real poles), but the closed-loop system dynamics is quite slow.
For intermediate gains, two complex poles are obtained and so oscillations are pro-
duced in the closed-loop response which, in general, are not desirable. For high
gains, two real poles are again obtained but the zero of the controller is closer to
the origin so that the output of the closed-loop response could surpass the reference
after a step set point change. As can be seen, it seems to be impossible to completely
fulfill all the specifications. As a trade-off design, the controller can be designed for
this last situation (the controller zero is closer to the origin than real closed-loop
poles). From a simple analysis of the closed-loop transfer function, the condition to
obtain real closed-loop poles is that

TI ≥ 4τKKP

(KKP + 1)2
with TI ≤ τ (7.8)

An approach is adopted to express the limitations in the design of the controller
imposed by the actuator non-linearities. As this device moves at a rate of 5 units per
second, the idea is to limit the dynamics of the input signal to the actuator at the
design stage of the algorithm in such a way that the rate of variation of this signal
does not exceed that of the shutter. In this sense, the PI controller can be designed so
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as to incorporate low-pass action according to the actuator limitations in such a way
that all frequencies higher than a determined cut-off frequency ω0 are attenuated at
least in 20 dB (that is, the bandwidth of the PI controller is limited at the design
stage). The worst-case input signal for the actuator is one sinusoidal signal with
amplitude equal to 100 and with a maximum slope equal to 5. Thus, if a sinusoidal
signal 100 sin(ω0t) is introduced in the actuator input, the derivative of this signal
in t = 0 gives the maximum rate variation which has to be limited to 5, leading to
a value ω0 = 1/20 rad/s. This approximation introduces another criterion for the PI
design. The analytical expression of the module of the frequency response of a PI

controller is given by |CPI(jω)| = KP /(TIω)

√

T 2
I ω2 + 1. For ω = ω0, the gain of

the PI controller must be less or equal to −20 dB. By performing a few operations,
another relationship between TI and KP can be obtained:

TI ≥ 20KP
√

0.01 − K2
P

(7.9)

In this way, two inequalities (7.8) and (7.9) relating TI and KP are obtained. The set
of possible PI parameters which fulfill both inequalities is represented in Fig. 7.8.
The upper curve represents Eq. (7.8), that is, the curve delimits the region over
which the closed-loop poles are real poles. For a proportional gain less than 1/K ,
the poles are on the right side of the zero. For upper gains, the poles are placed on
the left side of the controller zero. One point belonging to this curve corresponds
to a PI controller which produces a critically damped closed-loop system (with re-
spect to the situation of the closed-loop poles). The lower curve is given by Eq. (7.9)
and represents the limitation in the controller bandwidth to adjust the controller dy-
namics to the shutter constraints. The region within which the controller parameters
must be situated (shadowed in Fig. 7.8) is below the line TI = τ and above the lines
representing Eqs. (7.8) and (7.9).

One possible approach for obtaining two relationships between the system model
parameters and the controller parameters is to select point C given by the inter-
section of these last curves (notice that this is the less conservative approach, not
accounting for unmodeled dynamics/modeling errors), leading to the minimum in-
tegral time within the possible range. The parameters corresponding to this point
can be found by solving the following equality:

4τKKP

(KKP + 1)2 = 20KP
√

0.01 − K2
P

(7.10)

Both iterative methods and approximations can be used. If an analytical solution is
convenient (for instance to be used in adaptive control schemes) an approximated
upper bound on the curve representing Eq. (7.9) can be found in such a way that the
solution is given by a quadratic function. It can be demonstrated [43] that an upper
bound of the function on the right side of Eq. (7.10) is given by 2KP /(0.01 − K2

P ),
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Point KP TI

A 1/K τ

B
√

0.01τ2

400+τ 2 τ

C
√

Kτ(0.02K2+0.04Kτ−τ)−K

K(K+2τ)
4τKKP

(KKP +1)2

Fig. 7.8 Relationships between TI and KP [43]

that is, TI ≥ 2KP /(0.01 − K2
P ) fulfills Eq. (7.9). In this way, the controller param-

eters can be found by solving the equality

4τKKP

(KKP + 1)2 = 2KP

0.01 − K2
P

which leads to the solution

KP =
√

Kτ(0.02K2 + 0.04Kτ − 2) − K

K(K + 2τ)
and TI = 4τKKP

(KKP + 1)2

Simulations with this design method for the solar furnace can be found in [43].
Another possibility in this case is to select an interior point of the shadowed re-

gion represented in Fig. 7.8. For conservative design purposes (to implicitly account
for modeling errors-process/model mismatch), an interior point of the shadowed re-
gion in Fig. 7.8 can be chosen as follows: KP located half way between the values
of the proportional gain constant of points A and B in Fig. 7.8; TI given by the value
of the integral time constant of point A minus one third of the difference between
the values of the integral time constant of point A and that of point C in Fig. 7.8. So,
the following formulas can be used:

KP = 1

2

[

1

K
+

√

0.01τ 2

400 + τ 2

]

and TI = 1

3

[

2τ + 4τKKP

(KKP + 1)2

]

(7.11)
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The second design possibility given by root locus analysis (CASE B) introduces
the controller zero between the origin and the system pole (TI ≥ τ ). This seems to
be a poor solution as the closed-loop system pole is slower than the open loop one,
although the existence of a closed-loop zero near the origin makes the closed-loop
dynamics fast enough to fulfill the settling time requirements. From the actuator
constraint viewpoint, the same considerations made in previous paragraphs can be
made here and controller parameters can easily be found. Nevertheless, this second
approach is more sensitive to modeling errors, as changes in system gain lead to
pronounced changes in settling time [43].

7.2.4.3 Plant Results with Fixed PI Controllers

The control algorithm previously developed (PI control including series feedforward
control, anti-windup mechanism and designed to cope with slew-rate constraints)
was implemented at the PSA solar furnace and different results are shown in this
section. The tests were performed under very different solar irradiance conditions
and with samples of different materials. Only tests corresponding to the less conser-
vative approach of CASE A are presented in this subsection.

As a first example, Fig. 7.9 shows the results obtained in a test with a sample
made of silicon carbide. The representative test was performed on July 30th, 1996
and consisted of a set of steps with an amplitude of 50°C. As can be seen, the
behavior obtained in this case is highly dependent on the operating point, having
different responses as the set point temperature increases (diminishing the overshoot
and increasing the rise time), leading to unacceptable performance (this being one
of the reasons why an adaptive control approach was implemented, as shown in
the next section). As the temperature increases, the gain and time constant of the
system diminishes producing a slower controlled system. Notice that the properties
of the samples (specific heat, emissivity, etc.) are also influenced by operation at
high temperatures.

Other representative tests were performed using a white zirconia sample, which
has different dynamic characteristics to metal or silicon carbide samples. The re-
sults of the test performed on November 7th, 1996 are shown in Fig. 7.10 in which
the white zirconia sample was used. The set point temperature profile consisted of
two ramps with different slopes. As can be seen, the tracking characteristics of the
closed-loop system were adequate below 1200°C. However, at higher temperatures
the tracking error increased, mainly due to the plant non-linearities because a higher
shutter aperture is needed as the set point temperature increases.

In conclusion, the use of a well-tuned PI controller (including feedforward ac-
tion, anti-windup and slew-rate constraint handling mechanisms) provides adequate
results from the plant staff viewpoint for a wide range of tests. Nevertheless, two
main drawbacks can be indicated:

• The controller must be tuned for each type of sample whose dynamic parameters
(characteristic gain and time constant) have to be a priori estimated.
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Fig. 7.9 Test with the PI controller (30/07/96) [43]

• When using a fixed parameter controller, the controlled system set point tracking
capabilities are only acceptable within a small operating range of the whole test.

These drawbacks justify the inclusion of other kinds of control approach such as
adaptive control, dealt with in the next subsection.

7.2.5 Adaptive Control (AC)

An adaptive control scheme seems to be a possible solution to solve the problem
of plants with different types of dynamics. Adaptive control has previously been
used at other kinds of solar plant [83, 85], as shown in Chap. 5. This control tech-
nique provides a framework in which the controller parameters are adapted to the
diverse operating conditions and different plant dynamics. The control scheme im-
plemented consists of a self-tuning controller [25] in which the parameters of a
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Fig. 7.10 Test with the PI controller (07/11/96) [43]

Fig. 7.11 Adaptive control scheme [43]

simplified model of the plant are identified on-line. From these parameters, the con-
troller parameters are changed according to an adaptation mechanism that relates
controller parameter changes to system parameter changes. The adaptive controller
also incorporates feedforward action, anti-windup mechanism, slew-rate actuator
constraint handling and identifier data prefiltering. The control scheme is shown in
Fig. 7.11.

Different problems arise when using adaptive control at solar plants [85], the
main ones being:

• The system excitation is usually poor as identification is performed in a closed-
loop configuration and the input signals to the plant have few frequency compo-
nents.

• The existence of two time scales (one for closed-loop system dynamics and the
other for identified parameter dynamics) is not always ensured, mainly when cop-
ing with slow processes.

To deal with these problems, different variations to classical adaptive control
schemes have been introduced. As previously mentioned, the main advantages of
using a series feedforward action [82, 85] are both the compensation for solar irra-
diance variations and the preservation of the validity of simple SISO system models
of the plant used for estimation purposes (considering the feedforward controller as
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a part of the estimated plant). This is valid if the actuator dynamics are linear (or
with static non-linearities of saturation type). Nevertheless, in this case due to the
slew-rate constraints, if the feedforward controller is included as part of the esti-
mated plant, problems can arise in the estimation algorithm as the input signal to
the identifier may not correspond to the real input to the system. To cope with this
problem, the input signal to the identifier loop is the real plant input u(t) and dif-
ferent filters can be introduced in the identification loop (scale filters F1 and F2 in
Fig. 7.11). Notice that one possibility is to make F1 = 1 and to multiply the output
signal of the plant by the same filter used for feedforward control before entering the
identifier (F2 = Iref /I ). In this sense, if solar irradiance augments, the output of the
plant which is introduced into the identifier is scaled (diminished) by a factor which,
theoretically, makes the values entering the identifier independent of the solar irra-
diance variations. Another possibility is to make F2 = 1 and to multiply u(t) by the
inverse of the feedforward filter (F1 = I/Iref ). Notice that the feedforward action
can also include the inverse of the non-linearity introduced by the conversion from
aperture angle to aperture percentage represented in Fig. 7.2. Scale filters F1 and F2

can additionally include a first-order low-pass filter to introduce smoother signals
within the identifier not affected by the noisy natural changes in solar irradiance.

The models used for estimation purposes are of first-order type and the con-
troller is the PI developed in the previous subsection. At each sampling time, the
adaptive control strategy consists of estimating the linear model parameters using
input–output data from the process, adjusting the PI controller parameters, cal-
culating the control signal and supervising the correct behavior of the controlled
system. The parametric identification algorithm used is the LS one with a fixed
forgetting factor, which has to identify only two parameters as the dead-time of
this plant is negligible (the model of the plant is a first-order one in discrete time:
G(z−1) = (bz−1)/(1 − az−1), a = e(−Ts/τ) and b = K(1 − a). The control laws ob-
tained in the previous section have been used as an adaptation mechanism, as they
relate plant parameters to PI controller parameters.

Finally, three basic supervisory mechanisms have been implemented to overcome
the mentioned drawbacks of adaptive control schemes. The first one is based on lim-
iting the maximum and minimum values of the estimated parameters, thus avoiding
a wrong identification leading to dangerous behavior of the controlled system. The
values of the possible range of variation of the identified parameters have been ob-
tained from a dynamic study of the plant and from experience in operating with
different types of material (see Table 7.1). The second mechanism consists of filter-
ing the estimated system parameters obtained using a first-order low-pass filter with
a cut-off frequency such that the variation of the estimated parameters is guaranteed
to be slower than the plant dynamics (to ensure the existence of two time scales).
In this sense, the pole of the filter can be placed in the upper limit of the allowed
range introduced by the first supervisory mechanism. Finally, the third supervisory
mechanism consists of stopping the identifier in cases in which the dynamic in-
formation entering the identifier is poor for identification purposes, as sometimes
happens when using slow ramps as inputs to the system.
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Fig. 7.12 Tests with the adaptive PI controller [43]

7.2.5.1 Experimental Results

Several tests have been performed using the adaptive control algorithm for three
kinds of material: A316-L steel (high gains and small time constants), white zirconia
(low gains and high time constants) and a small steel sample (low gains and low time
constants). In all cases, the characteristics of the materials change with temperature
and solar irradiance levels.

The first two tests shown in this subsection were performed using the CASE A,
less conservative design approach (minimum integral time), which does not account
for modeling errors. Figure 7.12(a) represents a test with the white zirconia sample
in which both the evolution of the main variables of the test (temperature, direct
solar irradiance and shutter aperture) and the evolution of the estimated parameters
of a first-order model of the plant are shown.

Filtering the estimated parameters avoids the induction of sudden changes in the
controller parameters after a step change in the reference temperature. The filtered
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Fig. 7.13 Test with the adaptive PI controller (25/02/97), [43]

estimated values converge to adequate values after a transient which depends on the
filter used, as can be seen in Fig. 7.12(a) in which the initial values of the parameters
differ considerably from the real ones. In the same figure, it can be seen that the
trend of the estimated parameter approaches that expected of the dynamical study
of the plant as both the gain and fundamental time constant of the system decrease as
the temperature of the sample augments and augment as the temperature decreases.
Undesirable initial transients due to a wrong initial estimation of parameters can be
avoided using a conservative fixed PI controller during the transient in which the
estimated parameters approximate the appropriate ranges by initially introducing a
sequence of set point changes to excite the system in order to provide the identifier
with dynamic information for identification purposes, or by using some kind of
open loop auto-tuning capability. As the estimated parameters achieve the adequate
values, the overshoot obtained after a step response decreases (34% at 500°C and
between 13% and 24% in the rest of the test). The rise times are between 31 and
40 s, which constitutes quite good behavior.

Other similar tests have been performed with an A316-L steel sample, obtaining
adequate results which lead to the same considerations made above. For example,
Fig. 7.12(b) shows the results obtained on February 24th, 1997, again using the
less conservative design approach. After an initial transient during which identifier
excursions occur due to the wrong selection of the initial values of the selected
model, the controlled system performance improves as new dynamical information
enters the identifier.

A test performed on February 25th, 1997 is shown in Fig. 7.13 with the same
type of sample. The relevance of this test comes from the fact that the solar radia-
tion conditions during the test were such that manual operation under said circum-
stances was impossible, even for a skilled operator. The good characteristics of set
point tracking and disturbance rejection are in part due to the series feedforward ac-
tion, which compensates for changes in solar irradiance within a band of 200 W/m2

allowing the output temperature to be maintained within a band of 10°C around the
reference.

As can be seen from the previous tests, several of the experimental results ex-
hibit a high degree of overshoot and/or oscillation (notice that one of the control ob-
jectives was minimal overshoot). There are several causes which contribute to this
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Fig. 7.14 Test with the adaptive PI controller (22/07/98), [43]

undesirable kind of behavior. First of all, the design approach chosen in this case
(CASE A, less conservative approach) leads to a closed-loop system that is quite
sensitive to modeling errors, which can produce undesirable behavior especially
when using a small value of the integral time constant in the PI controller (as in this
case). Moreover, the effect of the controller zero can also lead to an undesired over-
shoot, or other aspects such as the use of type B thermocouples which does not pro-
vide for any measurement below 100°C (this fact can produce errors in the integral
part of the controller at the starting phase of the operation). From the identification
viewpoint, it has been pointed out that the wrong selection of the initial values of the
estimated parameters can produce undesirable divergences in the estimated param-
eters, leading to a deterioration in performance of the controlled system. In the first
tests shown with the adaptive controller, results show spikes in parameter estimates
due to a wrong selection of the filters in the identifier (Fig. 7.12(a)). These problems
can be avoided by a careful selection of the filters and the supervisory mechanisms
(as in the second test in Fig. 7.12(b)).

In order to improve the results with the adaptive controller, some tests were per-
formed using the more conservative design approach (also explained in the section
devoted to the CASE A design approach), in which the adaptation law is given by
Eqs. (7.11) and by a careful selection of the supervisory mechanisms. Figure 7.14
shows the results obtained with this approach with a small steel sample. Several set
point changes were produced at the beginning of the operation to provide the iden-
tifier with dynamic information so that it was able to detect the kind of sample and
the parameters of the supervisory mechanisms could be adequately fixed. Notice that
another way of characterizing the samples at the beginning of the tests is to perform
a classical open loop auto-tuning process. As can be seen in Fig. 7.14, the behavior
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of the controlled system was quite acceptable, showing similar response character-
istics under different operating conditions, with rise times of about 40 seconds and
small overshoot (of less than 5°C, except in one of the steps). The evolution of the
estimated parameters is also shown in the figure. It can be seen that the evolution
is as expected from studies performed in previous sections and spikes have been
avoided in the identified parameters.

7.2.6 Fuzzy Logic Control (FLC)

As has been commented in the previous section, adaptive control is prone to over-
shoots when applied to on different sample materials and it is difficult to reproduce
smooth responses such as those achieved by skilled operators. For this reason, FLC
seems to be a good approach for the task by reproducing the expert knowledge
needed, following the same approaches described in Chap. 4. Copper sintering is
the main process studied in this section, although the control algorithm is valid for
other kinds of sample.

From the control viewpoint, the worst-case scenario appears when the temper-
ature is approaching the current set point too quickly. This fact is proven and cor-
roborated by experts who themselves find it extremely difficult and cumbersome to
manually correct this inconvenient situation. In order to accomplish a good design,
three different approaches were initially taken, tested and cross-validated with one
another and with previous manual tests. The final controller was implemented from
out of these initial approaches, making use of their best qualities. A Fuzzy Associa-
tive Memory (FAM) was found to be most suitable.

7.2.6.1 Input and Output Variables

The FLC architecture of this work takes as inputs the error and the error derivative
of the controlled variable, the sample temperature. Hence, they can be defined as

e(k) = Tref (k) − T (k)
[

°C
]

de(k)

dt
≈ [e(k) − e(k − 1)]

Ts

[

°C/s
]

(7.12)

In temperature control, the error derivative parameter is as important as the tem-
perature itself and even more important when working with small samples (fast
dynamics). Temperature variation forces changes in the system response because
there is a high correlation between the capacity of the sample to absorb heat and its
temperature. These changes imply modifications in the system time constant, pole
allocation and hence, strong variations in system speed. Keeping apace with error
significance, its derivative gives a relative measure of what the error would be at the
next sample time. Thus, it offers crucial information to the fuzzy controller about
trend and how intense the controller’s reaction must be in order to adjust the system
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to reach the next equilibrium state. The output variable is the shutter aperture. The
fuzzy logic control scheme used is the same as that in Fig. 5.54(a), where the incre-
ment of the shutter aperture is computed at each sampling time based on the error
and the error derivative values. The non-linearities present in the system have been
added in rule base design [221].

7.2.6.2 Simulation-Based Test Procedure

Since expert operators usually work full time on a particular kind of sample for a
number of subsequent test campaigns, they are able to develop and adjust their abil-
ity to operate a plant more or less smoothly under the new conditions a new sam-
ple entails after several probing tests. However, their knowledge is often tacit and
not easily translated to control engineering requirements. Consequently, interviews
turned out to be more of a task of polling and enquiring. These polls consisted of a
battery of graphically aided questions about supposed cases that presented distinct
plant states. This polling technique was only moderately helpful and, as a result,
a more powerful approach was devised involving a great deal of use of the hand-
controlled tests already performed on the sample, plus experience on the author’s
side in applying classical control strategies [44, 85] to solar plants. As commented
on in previous sections, observation of step responses applied to the plant indicates
that, under nominal steady state conditions, unclear dissimilar zones of temperature
could be found and approximated by first-order transfer functions, enabling use of
linear system control theory, as previously made in [44].

7.2.6.3 Universe of Discourse of Error Variable

Both input variables are bounded by the temperature range variation in a test, which
is a little over 1050°C (as the melting point of copper is 1084.62°C). However, by
empirical evidence, it was agreed that a 100°C to 200°C range above and below a
given temperature should suffice for control objectives as, outside this range, the
human operator will select a certain constant control signal. Figure 7.15 displays
the universe of discourse of the error variable according to three different partitions.
The first row presents candidate approaches, while the second one records the final
approach. Candidates have been grouped to save space and for ease of comparison.
X-axis values correspond to the midpoint of triangular membership functions (de-
grees Celsius). In this case, membership function edges and midpoints vary among
controllers, though their meanings are equal, so plain names have been assigned,
namely Zero (0°C), VSmall (5°C), Small (10°C), Medium (20°C), Large (30°C) and
VLarge (100°C), standing for increasing relative magnitude of error (values per-
taining to final approach midpoints). For the negative part of the universe, they are
preceded by the minus sign. The triangular functions not only vary in their mid-
point placement and base width but they also vary in number from one controller to
another.
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Fig. 7.15 Universe of discourse of the error variable (courtesy of D. Lacasa et al., [221])

7.2.6.4 Universe of Discourse of Error Derivative Variable

Although the experts’ capability to operate the plant was more than proven, their
knowledge was not very useful because plant operators tend to work by experience,
hence, they simply do not know about such explicit numerical data. As a result,
a script process that allowed for user defined error derivative interval declaration
was applied to a number of test logs yielding basic statistics of this variable e.g.,
maximum and minimum magnitude and relative frequency of predefined intervals.
Figure 7.16 shows two graphs; the first includes three different candidate partitions
of the universe, tuned by simulation and tested on the plant; the second has the
generic controller’s membership functions corresponding to fuzzy sets that make up
the universe of discourse of the error derivative variable. Furthermore, this variable
is most prone to rapid changes, thus the sampling rate is a concern. If compared to
most submodels’ response times, it is sufficient for acceptable results, however, it
is clearly not the best choice. A reason to believe this assumption is that a human
operator makes continuous small changes in the control signal (shutter aperture)
when fast approaching set point. It is this very capability that avoids unacceptable
overshoots in manual control mode.

7.2.6.5 Universe of Discourse of Output Variable

The output variable has been selected as an increment of the shutter aperture. The
discretization of the output universe into fuzzy sets plays a vital role in the final
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Fig. 7.16 Universe of discourse of the error derivative variable (courtesy of D. Lacasa et al., [221])

behavior of the controlled system. Moreover, the plant presents a non-linearity of
slew-rate type in the actuator, which basically means that its speed is constrained
and varies with direction (opening or closing) and beginning and end positions.
Therefore, much attention and time was devoted to its study, i.e. the actuator un-
derwent rigorous tests of opening/closing rates at a series of positions, throughout
the whole range available. These test records were normalized to a second, which
produced a time look-up table where the worst case recorded was a 7% aperture
per second. With regards to the least significant change to have a direct effect on
the sample temperature, 0.1% was common among experts, though only valid when
the temperature is reaching set point. Accordingly, the output universe was divided
into fuzzy sets in a triangular partition fashion, i.e. Z (0%), VS (0.25%), S (0.5%),
M (1%), L (3%), VL (5%), XL (7%) and their negative counterparts with the same
value and opposite sign.

7.2.6.6 Rule Base and Method of Inference

Two features left to give life to this FLC are knowledge and reasoning capabilities.
The former will come in the form of a rule base while the latter will fire rules and
work with them to return, in the end, an incremental crisp value to add to the current
state of the output variable. In this case (two input–single output system), the rules
take the form: IF error is positive very large (+VLarge) AND change in error is
negative medium (-Medium) THEN control signal increment must be medium (+M).
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Fig. 7.17 Fuzzy control surface (courtesy of D. Lacasa et al., [221])

Because of the partial matching attribute of fuzzy control rules and the fact that
the antecedents of rules overlap, two in each input dimension, up to four rules can
fire at the same time. Since a triangular partition rule base has been used, both in-
put and output universes have been subdivided into overlapping fuzzy triangular
membership functions [367]. Assuming that the algebraic product with AND con-
nective is employed, each triggered rule i proposes a control action increment (Δui )
with a degree of membership μΔui

= μei
μΔei

. As a mechanism of fuzzy inference,
the compositional rule sup-min is used. The combination of these rules in order
to produce a non-fuzzy control action follows Tsukamoto’s defuzzification method
for computing the aggregated output of inference rules due to its computation sim-
plicity. A two-input fuzzy knowledge base, so-called 2-dimensional FAM, may be
graphically represented in a surface contour plot as in Fig. 7.17. It is not symmet-
rical because the dynamics of the system is much faster when the temperature is
rising than when falling.

7.2.6.7 Plant Results

The fuzzy controller was tested at the plant in the aforementioned versions, i.e. soft,
intermediate and hard approaches, each of them varying most of the parameters of
the fuzzy paradigm, such as partition of the input universes and knowledge rule base.
Quality, not quantity, should be stressed, thus two experiments were devoted to tun-
ing the initial simulation-based candidate controllers which yielded the final generic
controller. Another fact to be noted is the ease of implementation and deployment of
these kinds of system. Additionally, more than decent results were obtained from the
very early tests performed at the plant. Figure 7.18 corresponds to a step-response
test where a wide range of sample temperature is covered (from ambient to 600°C).
As can be seen, good set point tracking is obtained in any of the approaches. For
instance, because of the integral effect it copes effectively with large banks of pass-
ing clouds, as displayed in the third row (hard approach). Moreover, every approach
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Fig. 7.18 Soft, Intermediate and Hard approaches tested on December 21st, 2004 (courtesy of
D. Lacasa et al., [221])

meets the 10°C maximum overshoot requirement established by the experts. Offsets
are kept to within 1°C and can hardly be improved due to sensor noise (thermo-
couples) and the large sampling rate (1 sample per second). It would be fair to say
about the usefulness of fuzzy control that it is a fallacy that under persistent banks
of passing clouds, manual operation becomes unmanageable and stressful because
many consecutive changes in aperture are needed to maintain reference, whereas
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Fig. 7.19 Final controller vs. Expert Operator. Test performed on May 5th, 2005 (courtesy of
D. Lacasa et al., [221])

fuzzy logic strategy can handle it more extensively and with better performance
than a human operator. Another proof of the viability and convenience of applying
this technique would be a direct comparison of the final controller with a human
expert. With this aim, a test was devised to put the controller and a human operator
face to face under very similar conditions and with identical set point planning.

Figure 7.19 graphically portrays the result. The outcome of the test can be sum-
marized as great performance from both automatic (FLC) and human operation at
the plant. Overshoot was kept under 6% of step amplitude, although the expert pro-
vided a smaller overshoot (around 2%). Conversely, FLC outperformed the expert
in rise time. Table 7.3 reflects and elaborates on these records. In summary, faster
responses with smaller rise times were obtained at the cost of a slightly larger over-
shoot that did not break the rules and needs set by experts in the process. More
importantly, very good results were attained in spite of heavy and continuous solar
perturbations, as the controller proved useful not only against scattered clouds but
also with large banks of passing clouds. From the operator’s point of view, the more
stringent testing requirements are, the more stressful and demanding a task manual
controlled operation becomes. Therefore, the automatic control architecture here de-
signed based on fuzzy logic makes a worthy and helpful companion to all operators,
releasing them from the monotonous part of set point tracking so that they can focus
on monitoring activities, thus providing more safety and accuracy to tests.

7.2.7 Summary

An application of automatic control strategies to a solar plant for material treatment
has been shown. This kind of plant is manually operated by skilled operators and
so the development of an automatic control strategy aimed at achieving adequate
results throughout the wide range of operating conditions under which these plants
operate, supposes an important improvement toward facilitating operation and ob-
taining the desired performance. The first control scheme presented is based on a
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Table 7.3 Fuzzy vs. human statistics (courtesy of D. Lacasa et al., [221])

Step Rise time [s] Rise rate [°C/s] Overshoot [%]

Fuzzy control 650–700 42 1.1906 5.99

700–800 47 2.1276 4.59

800–1000 136 1.4706 2.45

1000–800 149 −1.3423 −1.92

800–700 107 −0.9345 −3.95

700–650 53 −0.9434 −5.50

Operator 650–700 113 0.4545 5.94

700–800 175 0.5714 3.33

800–1000 234 0.8547 0.80

1000–800 220 −0.9000 −1.14

800–700 190 −0.5025 −1.12

700–650 102 −0.4901 −4.04

PI controller which incorporates feedforward compensation, an anti-windup mech-
anism and actuator slew-rate constraint handling, both in fixed and self-tuning con-
figurations. It has been developed and applied to the control of a solar furnace for
samples of different materials under extreme temperature profiles. Different plant
results have been shown and both advantages and drawbacks of the scheme have
been commented on.

A fuzzy controller has been applied to the process of copper sintering in a so-
lar furnace. The process can be briefly described as prone to high perturbation
and strong changes in dynamics caused, respectively, by meteorological phenom-
ena and shifting pattern requirements in the interest of research. Additional dis-
turbing elements are the variable reflectivity index at the main collector heliostat,
a hard non-linearity presented by the actuator, namely of slew-rate type and a shift
in the physical properties of the sample while sintering. Notwithstanding, the fuzzy
controller yielded good results throughout the whole range of operating conditions.
Programming and deployment time were negligible in comparison with simulation
and testing. Contrasting with expert human manual operation, the fuzzy approach
outperformed it in terms of rise time, while a human operator could achieve smaller
overshoots.

7.3 Solar Refrigeration

7.3.1 Introduction

Air conditioning consumes a lot of electric energy. An important factor of condition-
ing systems is the relationship between solar irradiance and the ambient tempera-
ture and the refrigeration demand (related to temperature). Most people use their air
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Fig. 7.20 Solar plant

conditioning units when it is hot and this high ambient temperature usually occurs
together with high solar radiation during daytime. In a passive solar energy system
such as solar collectors, solar radiation is the main energy source and it is therefore,
appropriate as the energy source for a cooling system [284].

There are many advantages coming from the use of solar energy for air condition-
ing systems. The use of renewable energies instead of oil or coal, which cause much
more pollution, is always desirable and innovative. Furthermore, solar radiation for
cooling is particularly attractive, since the more sunshine the better the conditions
for the plant to work properly for cooling purposes.

Among the multiple methods existing for refrigeration using solar radiation
[338], one of the most successful is based on an absorption machine which produces
cold water at the output from hot water previously heated by the Sun at the input.
These types of system are difficult to control because the solar radiation cannot be
manipulated and there are great disturbances due to changes in environmental con-
ditions and the presence of dead-times due to fluid transportation, variable cooling
demand, etc. [85].

A picture from the plant located at the System Engineering and Automatic Con-
trol Department of the University of Seville can be seen in Fig. 7.20. It is similar
to that of the CIESOL building at the University of Almería shown in Chap. 1 in
Fig. 1.16. Both plants have been used to perform experiments that will be shown in
the following sections.

The solar air conditioning system of the University of Seville consists of a col-
lector field that produces hot water which feeds an absorption machine as described
previously. The main components of the system which are depicted in Fig. 7.21 can
be described as follows:

• The main source of energy is solar irradiance (I ) which is used by the solar col-
lectors to heat the circulating water. The field is composed of 151 m2 of flat
collectors and supplies a nominal power of 50 kW.

• The accumulation system is made up of two tanks (2500 l) working in parallel
and it stores warm water. This water, which should be at a lower temperature
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Fig. 7.21 Schematic diagram of the air conditioned plant

(Tst = Tac), mixes with that returning from the collector field. The mixture is
controlled by the three-way valve, VM1, according to the following rule:
– VM1 at 0%: The water from the collector field is totally recirculated to the

collector field.
– VM1 at 100%: The water is totally transported to the storage water tanks.

• The cooling system is an absorption machine that works with water as a cooling
fluid and it requires its inlet temperature (Tsc) to be within the range of 75–100°C
to work adequately. Different processes (absorption, evaporation, etc.) take place
to produce cold water.

• An auxiliary energy system consisting of a gas-fired heater can be used to com-
plement the energy supplied by the collector field when there is not enough solar
radiation.

• A load simulator (a heat pump) that allows tests for different load profiles to be
performed.

The plant operates with two different energy sources (solar and gas), which can
be combined or used independently. Furthermore, thermal energy coming from a
storage tank can be added to the system. The plant can be re-configured on-line,
manipulating open/close valves and pumps (on/off) to allow the selection of the
components for energy supply.

The plant evolves among several operating modes throughout daily operation.
There are many operating possibilities but only 13 operating modes make sense:
(1) recirculation, (2) loading the tanks with hot water, (3) using the solar collectors
only, (4) using the solar collectors and a gas heater, (5) using a gas heater only,
(6) using the tanks and a gas heater, (7) using the tanks only, (8) loading the tanks
and using a gas heater, (9) recirculation and using a gas heater, (10) using the solar
collectors and loading the tanks, (11) using the solar collectors and a gas heater
and loading the tanks, (12) using the tanks and a gas heater to feed the absorption
machine and recirculation in the solar collectors, and (13) using the tanks to feed
the absorption machine and recirculation in the solar collectors.
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The control objective is to supply chilled water to the air distribution system
at the demanded temperature, minimizing auxiliary energy (gas) consumption and
fulfilling operational constraints in the absorption machine. Furthermore, the stored
energy in the tanks at the end of the day, is taken into account since it can be used on
the following day when the solar irradiance is low. The primary energy source (solar
radiation) cannot be manipulated and has to be treated as a measurable disturbance.
This means that the control system must keep the cooling machine working at the
desired operating point and this is achieved by keeping the machine inlet water
temperature at the given set point. The inlet water is the mix of water coming from
the solar system, the storage tanks and the gas-fired heater, when additional energy
is needed. Additionally, the temperature of the water in the solar system can be
controlled by adjusting the water flow inside the solar field.

7.3.2 Controllers for the Solar Air Conditioning Plant

The main problem encountered when controlling a solar energy process is that
the primary source of energy cannot be manipulated and, from a control point of
view, the solar irradiance acts as a perturbation. The control research community
has contributed considerably in this field by designing advanced controllers for so-
lar processes [85]. Some controllers applied to the solar air conditioning plant are
described in the following. They are classified according to the operating modes
considered by the controller, i.e. single and multiple operating modes.

7.3.2.1 Single Operating Mode

Many controllers have been tested at the actual plant. In [119] a robust controller
based on the H∞ mixed sensitivity problem was applied to regulate the genera-
tor inlet temperature. The controller includes a feedforward action to deal with the
measurable disturbances. In [275] the Smith predictor generalized predictive control
(SP-GPC) is used to control the generator inlet temperature. The controller includes
the robustness filters and a feedforward action and also considers system constraints.
A robust sliding mode predictive control is developed in [148]. It is based on the idea
of a combination of model predictive control and sliding mode control. The main
idea is to introduce the prediction of the sliding surface into the control objective
function of a model predictive control. The resulting control law has few param-
eters, all with clear meaning for tuning. The proposed controller was applied to
control the output temperature of the collector subsystem at a solar air conditioning
plant. It has variable time delay with non-linear behavior that produces minimum
and non-minimum phase response depending on the operating point. Validation at a
real plant showed an enhanced ability to handle set point changes and disturbance
rejection. In [285] a switching control procedure was developed to control the so-
lar field of the air cooling plant taking into account changes in plant dynamics.
Several control systems composed of IMC-based PID controllers and feedforward
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compensators were designed for each operation region and a continuous switching
mechanism for the overall control system able to achieve a constant temperature at
the absorption machine inlet in spite of changes in solar irradiance was defined.

7.3.2.2 H∞ S/T Mixed Sensitivity Problem-Based Controller Design

The H∞ control theory has received a lot of attention in the last decade within the
research community due to the robustness characteristics supplied by its controllers.
These features make it of a priori interest to be used in controlling such solar refrig-
eration systems. The basic idea is to minimize the ratio between the energy of the
error vector and the energy of the exogenous signals [353]. The sub-optimum so-
lution of the problem based on the S/T or S/KS/T mixed sensitivity problem for
building up the generalized plant, allows the controller to be obtained by just de-
signing a nominal model and some suitable weighting matrices.

In this application [119], the H∞ control is used to regulate the absorption ma-
chine inlet temperature which establishes the evaporator and absorber pressures. It
is also worth mentioning that the controller contains a feedforward action to treat
system disturbances. The results of the application are tested both in simulation and
in real plant experiments.

The feedback controller design problem for this system can be formulated as
an H∞ optimization problem with suitable features of disturbance rejection and
robustness. The optimal H∞ problem has not been solved yet but there is a solution
for the suboptimal problem where the value of the energy ratio is decreased as much
as possible by means of an iteration process. This synthesis process is used in this
work and implemented in various well-known software packages [26].

A configuration for building up the generalized plant is the S/T mixed sensitiv-
ity problem [353], which is described in Fig. 7.22, where P(s) is the generalized
plant and K(s) is the controller. The terms WS(s) and WT (s) constitute weighting
functions which allow to specify the range of frequencies of most importance for
the corresponding closed-loop transfer function.

Once the nominal model GN(z) has been chosen, the magnitude of the multi-
plicative output uncertainty can be estimated as follows:
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where Gi(z) stands for the different non-nominal systems at each operation point
where the controller is required to work effectively.

As shown in [281], the weighting function WT (s) must be designed with the fol-
lowing conditions: stable, minimum phase and with module greater than the maxi-
mum singular value of the uncertainty previously calculated for each non-nominal
model and frequency, that is,
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)) ∀ω, ∀i (7.14)

In the case of WS(s), the following form is proposed:

WS(s) = αWs + ωS

s + βwωS

(7.15)
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Fig. 7.22 S/T mixed sensitivity problem

where each of the parameters is designed in the following way:

• αW is the function gain at high frequency. A suitable value is approximately
about 0.5.

• βW is the function gain at low frequency. A suitable low value for these parameter
is 10−4.

• ωS is the crossover frequency of the function; as an initial value, a decade below
the crossover frequency of the function WT (s) previously designed. It is proposed
to change ωS according to the expression ωS = 10(κW −1)ωT in order to shape the
desired speed of the output response [335]. The parameter κW is employed to
vary the value of ωS once the value of ωT (s) has been obtained. The initial value
of ωS is obtained for κW equal to zero, while a value of this parameter equal to
one shows that ωS is equal to ωT . Therefore, the final selection of this frequency
is determined by an adimensional parameter where the value must be higher as
the desired response speed increases [281].

7.3.2.3 Application in the Solar Plant

Although the real process has non-linear behavior, as is the case of many industrial
processes, if working variables are kept close to a particular operating point, a linear
model computed considering small changes around this point will be sufficient. It
will be necessary to model VM1–Tsc and I–Tsc transfer functions. Both VM1–Tsc

and I–Tsc dynamics are similar to a classic first-order system with a certain de-
lay, so an ARX 1 2 0 structure (with a sampling time of 40 s) is selected to model
them. Enough data were obtained from several experiments to identify VM1–Tsc

and I–Tsc characteristics. These data are subject to a parametric model identifi-
cation process implemented in a well-known software packet [229]. The obtained
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Fig. 7.23 Multiplicative
output uncertainties and
weighting function WT (s)

[335]

VM1–Tsc transfer function is shown in Eq. (7.16), which corresponds to a nominal
50% valve opening:

GN(z) = 0.001119z − 0.08281

z − 0.9264
z−3 (7.16)

In the I–Tsc model identification experiment, a climatologic phenomenon such as
clouds must be expected to produce enough variability in irradiance to give valid
information. The estimated transfer function is

Gd(z) = 0.002049z − 0.000785

z − 0.9836
z−2 (7.17)

These dynamic models, despite their simplicity, are considered good enough for
control purposes.

In order to design the controller the nominal working point has been taken as
opening the VM1 valve to 50%. The corresponding uncertainty diagram and the
associated WT (s) function (Eq. (7.18)) are shown in Fig. 7.23:

WT (s) = 10−0.1(2000s + 1)

0.8s + 1
(7.18)

Taking into account that the crossover frequency of function WT (s) is about
6.3 · 10−3 rad/s, the function WS(s) is taken as shown in Eq. 7.19:

WS(s) = 0.5s + 10−0.25 · 6.3 · 10−3

s + 10−4 · 10−0.25 · 6.3 · 10−3
(7.19)

Finally, a bilinear transformation of the nominal model has been applied to build
up the generalized plant as a previous step to synthesize the controller. Thus, with
these weighting functions, the controller is designed by means of suitable functions
for the solution of the H∞ suboptimal problem.

Several simulation experiments were carried out on a suitable model of the sys-
tem. Simulations were performed in Simulink environment including some features
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Fig. 7.24 Irradiance pattern
used in simulations [335]

of the real process such as the solar irradiance effect and saturation in the VM1
valve action. Figure 7.24 shows the irradiance profile used and Fig. 7.25 shows the
obtained response, in terms of output temperature (Tsc) and corresponding refer-
ence.

Some experiments to show the performance of the controller have been per-
formed on the real system. A client–server data base access system (OPC) is used
between the environment where the plant management system (CUBE) is imple-
mented and the program which implements the control system (Matlab/Simulink).
In this way, some numerical problems, such as controller fragility, are avoided.

Fig. 7.25 Simulated tracking response in irradiance conditions in Fig. 7.24 [335]
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Fig. 7.26 Experimental results in VM1–Tsc control with: (a) (left) κW = 0.2 (trt 
 3000s and
OS 
 0%); (b) (right) κW = 0.8 (trt 
 1200s and OS 
 20%) [335]

Figures 7.26(a) and 7.26(b) show the behavior of the output temperature (Tsc)
together with its reference, the control action (VM1) and the disturbance variables,
both solar irradiance (I ) and temperature of water from accumulators (Tst = Tac).
Parameter κ has been modified in the different experiments and the approximated
values of rising time (trt) and overshoot (OS) are also shown.
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Fig. 7.27 Implemented feedforward control loop scheme, [335]

The effect of the κW value on the response speed and overshoot is clear in the
figures. As κW increases, a faster response is obtained, although the overshoot of
the response increases too.

Given the simple structure of the controller and despite the effect of the
disturbances, the overall performance, especially regarding disturbance rejection
(Fig. 7.26(a)), is fairly good, although this issue was not considered in the origi-
nal control design.

An improvement in this control scheme will be made by a compensation loop
of the disturbance introduced in the system by solar irradiance (I ). The compensa-
tion mechanism will consist of a feedforward loop of the disturbances which will
be included in the H∞ calculus by means of a suitable algorithm. On introducing
the feedforward loop in the structure that was previously shown for the VM1–Tsc

control, the resulting scheme is like the one shown in Fig. 7.27.
The weighting functions WS(s) and WT (s) design methodology is exactly the

same as that presented in previous sections. The main difference observed in this
structure is that now, besides error signal and output, the control signals (u1 and u2)
are also weighted (because of numerical problems in the synthesis algorithm) by
means of WKS1(s) and WKS2(s), respectively, which have been taken equal to unity.

In Fig. 7.28, the response of the simulated system at each operating point can be
observed. The simulations have been made for controllers calculated for different
values of parameter κW in WS(s) weighting function.

In Fig. 7.29, the results obtained in an experiment at the real plant is shown. In
these figures, an important improvement in overall control performance is observed
thanks to including the feedforward loop. This fact is especially evident in Fig. 7.29,
between time instants 7000 and 10500 approximately, where a proper response of
the controller is observed when an important disturbance (caused by clouds) in the
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Fig. 7.28 Simulated tracking response in irradiance conditions in Fig. 7.24 [335]

irradiance pattern occurs. Other characteristics like rising time or overshoot are con-
served and even improved from the previous controller.

7.3.3 Multiple Operating Modes

The plant was used as a benchmark within the network of excellence HYCON
funded by the European Commission under FP6. The benchmark exercise [412]
consisted of comparing the results obtained by each controller under simulation and
the results of the controller working for one day at the real plant. The simulation
results had to be obtained for two days with the given environmental conditions
corresponding to a clear day followed by a day with scattered clouds. The follow-
ing quantities were to be measured: mean square error of evaporator temperature
tracking, energy consumed by the gas heater, value of the tank temperature at the
end of each day. In the literature, there have been many contributions devoted to the
development of techniques for modeling, analyzing and controlling hybrid systems
but very few papers describing applications of hybrid control techniques. Most of
the application papers use simulation models or very simple laboratory processes.
The plant dealt with here, however, is a real solar refrigeration plant of certain com-
plexity.

Different MPC approaches to the global operating control of this plant were pre-
sented for the benchmark exercise and four were selected to be published in special
issue of the European Journal of control devoted to the benchmark exercise. The first
approach can be seen in its extended version in [411], where a hierarchical scheme
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Fig. 7.29 Experimental
results in VM1–I–Tsc control
with κW = 0.5 (trt 
 1100s

and OS 
 17%), [335]
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is presented. The higher level selects the operating mode based on an integer op-
timization problem with variable weights and the lower level regulates the contin-
uous variables using a set of MPC. The extended version of the second approach
was presented in [355]. The supervisory control scheme was designed from process
insight gained from a thorough analysis of the energetic and dynamic aspects of
the system. The discrete process inputs are adjusted by switching between a set of
operating modes and the settings of the continuous inputs are chosen by a look-up
table in each operating mode. The third approach was presented in [322] and it is
based on a model predictive control strategy developed to deal efficiently with the
mixed discrete-continuous nature of the process. A novel approach incorporating an
internal model with embedded logic control is used to transform the hybrid problem
into a continuous non-linear one where NMPC can be applied. The fourth approach
[251] proposes a multi-layer hybrid controller consisting of a high-level supervi-
sor that decides the optimal operating mode on-line using a hybrid model predictive
control strategy, a static lower-level controller defining proper set points for the cho-
sen mode and existing standard low-level controllers that ensure robust tracking of
such set points. Recently, in [414], a transition graph-based predictive algorithm
was applied to the solar air conditioning plant. This algorithm switches between the
operating modes of the plant on the basis of minimizing the cost functions, the per-
formance cost function associated to each operating mode and the switching cost
function associated to the transition between operating modes, to find the optimal
solution to the configuration problem and the optimal control signal of the plant
throughout the day. The transition graph was used to reduce the computational cost
of the optimization problem.

7.3.3.1 Hybrid Model of the Solar System

The same approach as that has been commented on in Chap. 6, Sect. 6.8.4 in the
case of the CRS has been applied to control the overall installation using a hybrid
MPC control scheme. As shown in [284], a hybrid model of the system composed
of a solar collector field, a gas heater and two tanks connected in series to store hot
water can be developed (see Fig. 7.21). These systems are used as energy sources
for an absorption machine whose objective is to obtain chilled water for the fan-coil
system. All these components are included or excluded from the cooling system by
means of switching valves and activating or deactivating signals. Switching among
different configuration modes in real time increases the challenge of the system to
be modeled or controlled, due to the mix of both discrete signals and continuous dy-
namics. The idea is to develop models for each energy source and to integrate them
into a state-space model used to characterize the hybrid model, as in Sect. 6.8.4.

Solar Field Collector Model

The solar collector model used is the same as that explained in Chap. 4, Sect. 4.3.4.2,
calibrated for the specific solar field layout at this plant [284].
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Tank Model

The accumulation system, consisting of two separate tanks connected in series, was
simplified by a lumped-parameter model. The tanks can be considered as a buffer
and thus, they can be modeled as a transport delay between the inlet and the out-
let temperature which depends on the flow. Equation (7.20) models the relationship
between the tank outlet temperature and the tank input temperature, ambient tem-
perature and fluid flow:

ρf cf Vst
dTstout(t)

dt
= Astρf v(t)cf

(

Tstin(t) − Tstout(t)
)

+ HstSst
(

Ta(t) − Tstout(t)
)

(7.20)

where ρf is the water density, cf is the water specific heat, Vst is the tank volume
[m3], Tstout is the accumulation tank water outlet temperature [°C], Ast is the ac-
cumulation tank area [m2], v is the fluid velocity in the system [m/s], Tstin is the
accumulation tank water inlet temperature [°C], Ta the ambient temperature [°C],
Hst is the tank’s loss coefficient per surface unit [W/(m2 °C)] and Sst is the tank’s
surface [m2].

Simple Gas Heater Model

The gas heater behavior presents a double stage response when it is turned on. The
first stage increases the temperature to 40% of the gas heater performance and after
exactly 5 min, the gas flow opens totally, increasing the temperature at a second
stage with a higher gas heater performance. This behavior was dealt with using
a combination of first-order systems by means of four transfer functions divided
into two sets, identifying the relationship between the gas heater inlet and outlet
temperature and between the water flow and the outlet temperature when the gas
heater is turned on and after 300 s.

The global transfer function (7.21) relates the output variable, Tgh,out [°C], to the
input temperature Tgh,in [°C], fluid flow rate q [m3/h], gas heater on signal steps
GHon [–] and gas heater off signal steps GHoff [–].

Tgh,out(s) = KTgh,in

τTgh,ins + 1
e
−stdTgh,in Tgh,in(s) + KF

τF s + 1
q(s)

+ KGHon

τGHons + 1

(

1 + e
−stdGHon

)

e
−stdGHon2 GHon(s)

+ KGHoff

τGHoff s + 1
e
−stdGHoff GHoff (s) (7.21)

where Ki , τi , tdi
are the static gains, time constants and time delays, respectively, for

the different first-order transfer functions and Tgh,in, q , GHon and GHoff subscripts
refer to the values for input temperature, mass flow, gas heater on signal steps and
gas heater off signal steps, respectively.
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Table 7.4 Operating point conditions (courtesy of M. Pasamontes et al., [284])

Input Description Nominal value Units

Tin,0 Collectors inlet temperature 65 °C

Tout,0 Collectors outlet temperature 75 °C

I0 Irradiance 600 W/m2

Ta,0 Ambient temperature 20 °C

v0 Fluid velocity 0.8333 m/s

Tstin,0 Tank’s inlet temperature 75 °C

Tstout,0 Tank’s outlet temperature 75 °C

q0 Flow rate 6 m3/h

Tgh,in,0 Gas heater inlet temperature 75 °C

Tgh,out,0 Gas heater outlet temperature 79 °C

Space-State Linear Models

Once the models for the different subsystems are developed, they are linearized
around a specific operating point (Table 7.4), converted into state-space form and
discretized.

The resulting multiple inputs, single output (MISO) system and the input vector
u(k) are shown in (7.22) and (7.23), respectively.

x(k + 1) =
[

Ac 0 0
0 Ast 0
0 0 Agh

]

x(k) +
[

Bc 0 0
0 Bst 0
0 0 Bgh

]

u(k)

y(k) = [Cc Cst Cgh ] x(k)

(7.22)

u(k) = [

I (k) Tin(k) Ta(k) v(k) Tstin(k) Ta(k) v(k) Tgh,in(k) q(k)

GHon(k) GHoff (k)
]T (7.23)

where y(k) is the system output temperature and the subscripts c, st and gh refer
to solar collectors, storage tanks and the gas heater, respectively. Every matrix and
vector has been adjusted for suitable dimensions and x(k) is initialized to zero.

Plant Hybrid Configuration Modes

The space-state model obtained in the previous section only allows the system re-
sponse to be simulated when all the cooling system components work together but
this model is not valid for all the other plant configuration modes. The on–off valve
position and system dynamics change at each different plant configuration mode
(Fig. 7.30). The presence of both continuous and discrete dynamics defines the cool-
ing process as a hybrid system. Changes in the valve position will cause changes in
the system configuration modes and, therefore, in the system dynamics. These tran-
sitions among system configuration modes must be ensured to be continuous. More
information about the nature of hybrid systems can be found in [33].
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Fig. 7.30 Solar cooling plant scheme (courtesy of M. Pasamontes et al., [284])

The valves and signals, all discrete, which influence the system configuration
mode during operation, are:

1. Gas heater activation/deactivation signal (referenced as GH ). Values = {1,0},
respectively.

2. Valve V3 state signal. This defines the tank’s operating mode between no tank
use (V3 = 1) and load/download (V3 = 0) depending on the plant operation
mode.

3. Valve V1 state signal. This defines the collector’s operating mode between not
using the collectors (V1 = 0) and using them (V1 = 1). Note that V1 is con-
tinuous (0–100%), but it will be used as discrete, allowing only 0% and 100%
values.

The combination between these logical variables (V1, V3, and GH ) and the state-
space model defined in (7.22) results in the next state-space hybrid model:

x(k + 1) =
[

Ac ∗ V1 0 0
0 Ast ∗ ¬V3 0
0 0 Agh ∗ GH

]

x(k)

+
[

Bc ∗ V1 0 0
0 Bst ∗ ¬V3 0
0 0 Bgh ∗ GH

]

u(k)

y(k) = [Cc ∗ V1 Cst ∗ ¬V3 Cgh ∗ GH ] x(k)

(7.24)

Simplifying the operation models described at the beginning of the section, it is
possible to distinguish the following seven different operating modes in this hybrid
system (see Fig. 7.31):

1. Operation mode s1: Solar collector output to absorption machine. The solar col-
lector output water is sent to the absorption machine.
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Fig. 7.31 Cooling System
FSM (courtesy of
M. Pasamontes et al., [284])

2. Operation mode s2: Tank output to absorption machine. Hot water from the tanks
is sent to the absorption machine.

3. Operation mode s3: Gas heater output to absorption machine. The gas heater
output water is sent to the absorption machine.

4. Operation mode s4: Solar collector and tank output to absorption machine. Hot
water from the solar collector output pulls the tank water which finally arrives at
the absorption machine. This fact allows the tanks to be used as a buffer.

5. Operation mode s5: Solar collector and gas heater output to absorption machine.
The solar collector output water is sent to the gas heater (turned on) and from
there it arrives at the absorption machine.

6. Operation mode s6: Tank and gas heater output to absorption machine. The hot
water from the tanks is sent to the gas heater (turned on) and from there, it is sent
to the absorption machine. It helps to reduce the gas heater output temperature
oscillation.

7. Operation mode s7: Solar collectors, tanks and gas heater output to absorption
machine. The hot water from the solar collector goes into the tanks and from
there, it enters the gas heater (turned on), finally arriving at the absorption ma-
chine.

7.3.4 System Hybrid Model

The different system configuration modes can be defined according to the signal
values for every state, as shown in (7.25) and the transitions among states is defined
in an FSM (Finite State Machine) such as shown in Fig. 7.31.

s1 = V1 ∧ V3 ∧ ¬GH

s2 = ¬V1 ∧ ¬V3 ∧ ¬GH

s3 = ¬V1 ∧ V3 ∧ GH

s4 = V1 ∧ ¬V3 ∧ ¬GH

s5 = V1 ∧ V3 ∧ GH

s6 = ¬V1 ∧ ¬V3 ∧ GH

s7 = V1 ∧ ¬V3 ∧ GH

(7.25)
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Table 7.5 Transitions among states (courtesy of M. Pasamontes et al., [284])

From To Events From To Events

s1 s2 ¬V1 ∧ ¬V3 s2 s1 V1 ∧ V3

s1 s3 ¬V1 ∧ GH s3 s1 V1 ∧ ¬GH

s1 s4 ¬V3 s4 s1 V3

s1 s5 GH s5 s1 ¬GH

s1 s6 ¬V1 ∧ ¬V3 ∧ GH s6 s1 V1 ∧ V3 ∧ ¬GH

s1 s7 ¬V3 ∧ GH s7 s1 V3 ∧ ¬GH

s2 s3 V3 ∧ GH s3 s2 ¬V3 ∧ ¬GH

s2 s4 V1 s4 s2 ¬V1

s2 s5 V1 ∧ V3 ∧ GH s5 s2 ¬V1 ∧ ¬V3 ∧ ¬GH

s2 s6 GH s6 s2 ¬GH

s2 s7 V1 ∧ GH s7 s2 ¬V1 ∧ ¬GH

s3 s4 V1 ∧ ¬V3 ∧ ¬GH s4 s3 ¬V1 ∧ V3 ∧ GH

s3 s5 V1 s5 s3 ¬V1

s3 s6 ¬V3 s6 s3 V3

s3 s7 V1 ∧ ¬V3 s7 s3 ¬V1 ∧ V3

s4 s5 V3 ∧ GH s5 s4 ¬V3 ∧ ¬GH

s4 s6 ¬V1 ∧ GH s6 s4 V1 ∧ ¬GH

s4 s7 GH s7 s4 ¬GH

s5 s6 ¬V1 ∧ ¬V3 s6 s5 V1 ∧ V3

s5 s7 ¬V3 s7 s5 V3

s6 s7 V1 s7 s6 ¬V1

The FSM defines the possible transitions among system states and the logic vari-
able values triggering the different transitions. The outputs define the state variables
(s1 to s7) values at every sampling time. Transitions are listed in Table 7.5.

System MLD Model

A Discrete Hybrid Automata (DHA) is a connection of a finite state machine (FSM)
and a switched affine system (SAS) through a mode selector (MS) and an event
generator (EG) [373].

A set of linear dynamic systems defining the cooling system has been integrated
into a state-space model. Their interconnection has been defined as a set of states,
defined as an automaton (see Fig. 7.31) and the transition among these states has
been defined according to a set of logical rules according to Table 7.5. This allows
a DHA for the system to be defined. From this representation, an abstract repre-
sentation in a set of constrained linear difference equations involving mixed-integer
and continuous variables may be found that yield the equivalent Mixed Logical Dy-
namical (MLD) model. Using the composed state-space model as defined in (7.22),
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the system was defined in HYSDEL, a tool for modeling used with the Matlab hy-
brid toolbox for obtaining the MLD model for simulation and control. More infor-
mation about HYSDEL can be consulted in [373].

The MLD modeling framework has been chosen from among others hybrid sys-
tem techniques due to its extensive use in modeling hybrid systems and because the
resulting model can easily be used in the future to develop controllers. From this
framework, it is possible to model the evolution of continuous variables through
linear dynamic discrete-time equations, the discrete variables through propositional
logic statements and automata and the interaction of both. The main idea of this
approach is to embed the logical part in the state equations by transforming boolean
variables into 0–1 integers and by expressing the relationships as mixed-integer lin-
ear inequalities. The MLD model, which is introduced in [373], related to the pre-
vious state-space model, is

x(k + 1) = Ax(k) + B1u(k) + B3z(k)

y(k) = Cx(k)

E2ς(k) + E3z(k) ≤ E1u(k) + E5

(7.26)

where x(k) ∈ R
nc × {0,1}nl is a vector of continuous and binaries states, ς(k) ∈

{0,1}rl , z(k) ∈ R
rc represent auxiliary binary and continuous variables, respectively,

y(k) ∈ R
pc × {0,1}pl is the output (in this case, the absorption machine inlet tem-

perature) and u(k) ∈ R
mc × {0,1}ml are the inputs, including both discrete (V1, V3

and V4 valves and gas heater state signals) and continuous ones (irradiance, ambient
temperature, flow and the system inlet temperature). Finally, A, B1, B3, C, E1, E2,
E3, E5 are matrices of suitable dimensions.

Model Validation

Every model developed in this work has been individually tested and validated with
data from the real system, but only the full hybrid model will be presented here
to save space. Two experiments of 400 and 150 min are presented. The latter ex-
periment is so short because it has been prepared to force changes in the operation
modes of the plant.

The first validation test uses real data collected on 28/08/08. Figures 7.32(a) and
7.32(b) show the environment conditions for the validation test and the system vol-
umetric flows, respectively. Figures 7.32(c) and 7.32(d) show the real system and
simulated output temperature and the operation mode, respectively.

The experiment started when the system output temperature was close to the
operating point. For the first 190 min, the irradiance increases from 480 W/m2

to 600 W/m2 and the ambient temperature stays high (solid and dashed lines
in Fig. 7.32(a), respectively). Valve V1 stays open at 50%, setting a stable vol-
umetric flow. During this first half, the system configuration mode is set to s1
(see Fig. 7.32(d)), where the solar collectors are fixed in the system configura-
tion.
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Fig. 7.32 Hybrid model results. Date 28/08/08 (courtesy of M. Pasamontes et al., [284])

After the first 190 min approximately, the radiation starts to decrease and the
tanks with water stored with a temperature of around 52°C are connected into the
system configuration. This water is pulled out to the pipes, cooling down the water
temperature in the primary circuit, as can be observed in Fig. 7.32(c), where the
solid line is the real temperature output and the dashed line the simulated one. In
this second half, the system configuration mode changes between modes s2 and s4
(see Fig. 7.32(d)), where tanks are fixed and the solar collectors are included and
excluded from the system configuration.

As can be seen in Fig. 7.32(c), the real and simulated temperatures are similar and
the most discording point is found in the mode change, where the model response is
faster than the real system one, causing a faster temperature decrease in the model
temperature output.

The second test uses real data collected on 07/09/08 during the afternoon. Fig-
ure 7.33 shows how the system is forced to change among modes more frequently
than usual. Figures 7.33(a) and 7.33(b) show the environment conditions for the
validation test and the system volumetric flows, respectively. Figures 7.33(c) and
7.33(d) show the real system and simulated output temperature and the operation
mode, respectively.
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Fig. 7.33 Hybrid model results. Date 07/09/08 (courtesy of M. Pasamontes et al., [284])

Modes s1, s4, s5 and s7 define the system behavior. The gas heater was frequently
turned on during the experiment, causing increases in the system output tempera-
ture. The changes in the operation mode are shown in Fig. 7.33(d).

At the start of the experiment, the system output temperature is around 50°C and
only the solar collectors are connected (mode s1). From minute 15 to minute 42,
the system configuration mode swaps from s1 to s5 and back again, producing a
low, but continuous, increase in the system output temperature. After 42 min, the
system configuration includes solar collectors, tanks and gas heater for 6 min. The
temperature of the tank is 88°C, so a fast increase in the system output temperature
is produced when it is included in the system.

Next, the system operation mode is changed to s4, turning off the gas heater for
7 min and then the operation mode changes from s4 to s1, excluding the tanks from
the system and causing a temperature decrease for the next 23 min.

Finally, the system configuration mode swaps between s1 and s5, where solar
collectors are fixed and the gas heater is included and excluded from the system
configuration. The effect on the gas heater on the output temperature can be ob-
served in Fig. 7.33(c).
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Fig. 7.34 Operating mode
and solar irradiance (courtesy
of D. Zambrano et al., [411])

Fig. 7.35 Inlet and output
temperatures of the generator
(courtesy of D. Zambrano et
al., [411])

7.3.5 Hybrid Control Results

Using the hybrid model descriptions of the plant, different MPC control approaches
can be applied, as those commented on in Chap. 6, Sect. 6.8.4. As an example, some
of the results obtained using a hierarchical scheme [411] can be seen in Figs. 7.34
and 7.35. Figure 7.34 shows the operating modes throughout the day and the solar
irradiance. It can be seen that the Hybrid MPC system decides the appropriate op-
erating mode. Figure 7.35 shows the inlet and outlet temperatures at the generator.
Notice that the oscillations observed are due to the on–off gas heater, the behavior
is smooth when the solar field produces enough energy.

7.3.6 Summary

Different control strategies have been applied to the air conditioning plant and as an
example, a robust controller based on the H∞ mixed sensitivity problem for the con-
trol of a solar refrigeration plant has been designed. The resulting method is simple
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and it is limited to shaping only one parameter for each of the outputs considered.
A basic feedback structure and a more complex one including a disturbance feed-
forward compensation loop have been designed. These controllers have been tested
using the real plant, concluding that the performance achieved justifies the use of
such a kind of regulator.



Chapter 8
Integrated Control of Solar Systems

8.1 Introduction

This chapter deals with the upper control level of solar power plants. Models for pre-
dicting solar irradiance and electrical loads, as well as models of the energy storage
systems and power conversion systems, are needed to generate optimal operating
modes and the corresponding set points, which are then sent to the lower level con-
trollers.

8.2 Operational Planning of Solar Plants with Parabolic Trough
Collectors

The price of electrical energy is needed to determine the best operating modes and
hourly electrical production. This changes with demand. Prediction models for elec-
trical demand are useful for decision making and for the design of hierarchical con-
trol schemes capable of optimizing electrical production, being necessary to model
all plant subsystems; that is, the solar collector field, the thermal storage system and
the power conversion system (PCS). Electrical demand may change substantially
depending on the date and environmental conditions.

Since optimal scheduling of solar power plants depends greatly on predictions
about solar radiation and other weather conditions, optimal scheduling windows for
this type of plant are limited by the realistic predicting windows of weather con-
ditions. There are three well differentiated levels: weekly planning, daily planning
and tracking [144].

• Weekly planning. The planned production for the week is made at this stage. The
weekly plan is made taking into account the weather forecast for the following
seven days, the predicted network loads and prices, as well as the scheduled main-
tenance operations.

• Daily planning. The objective of this stage is to determine the planned plant pro-
duction schedule for the day. The decision mechanism has to take into account

E.F. Camacho et al., Control of Solar Energy Systems, Advances in Industrial Control,
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the state of the storage system, the weather prediction for the day as well as the
price of electricity for the day.

• Tracking. The objective at this level is to control the planned production by gen-
erating the appropriate set points to the different subsystems. At a lower level,
different controllers such as those described in Chaps. 4 and 5 control the fun-
damental process variables such as the outlet HTF temperature of the solar field
subsystem. In this case, the mission of the set point optimizer is to determine
the optimal outlet oil temperature for the given solar radiation level, inlet oil tem-
perature and ambient temperature which optimizes the energy collected and mini-
mizes ancillary energy consumption. The outlet HTF temperature set point is sent
to the lower level controller, which regulates the HTF temperature as indicated in
Chaps. 4 and 5.

8.2.1 Subsystems Modeling

Planning and control of solar plants calls for dynamical models of their main parts.
This requires modeling the following elements: the solar field (Chap. 4), the thermal
storage system and the power conversion system (PCS). A prediction model of the
solar radiation (Chap. 2), electrical tariffs and electrical demands are also needed for
optimal operation planning. Important variables to be considered are the temperature
of the inlet HTF (TinTur ) and of the outlet HTF (ToutTur ) of the power block, as well
as the HTF flow (qT ) going from the storage system to the PCS. Other variables
with an economic profile in the objective function appear, such as operational cost
Cop, or electrical selling price tariff e1, or net benefits, B .

Solar radiation, ambient temperature and electricity selling prices are considered
as perturbations. Predictions of these variables are needed for control. The field
flow, (q) and the flow toward PCS, qT are the manipulated variables. The outlet
HTF temperature and generated power are the main variables to be controlled. The
temperature of the hot HTF feeding the PCS can be predicted using a model of
the storage tank. The overall hierarchical control scheme computes the temperature
and power references Tref and Pref to maximize benefits while fulfilling the plant
operating constraints [19]. The main prediction models are treated in what follows.

8.2.1.1 Solar Irradiance

Direct solar irradiance is the most important variable in thermal solar power plants,
as the electrical energy generated depends basically on it. Different models for solar
irradiance prediction and forecasting have been explained and developed in Chap. 2,
for both short and long term forecasting.
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8.2.1.2 Ambient Temperature

Ambient temperature affects the thermal losses of the solar field, heat storage tanks
and turbines. It also affects the electrical demand and it may affect the prices of elec-
trical energy. Low ambient temperature increases the need for heating and, therefore,
demand. Similarly, high ambient temperature increases the need for air cooling and,
therefore, electrical energy demand and energy prices. Ambient temperature pre-
dictions can be obtained from weather forecasting institutions and corrected for by
using current measured variables for short term predictions, as done in the case of
solar irradiance in Chap. 2.

8.2.1.3 Market

The prices of electrical energy on the intraday market depend on supply and de-
mand. The offer curve used to be well known because it depended on only a few
generating agents who, in the past, know their production capacities well in ad-
vance (except for unforeseen failures). The renewable energy market, especially the
solar energy market, is affected by policy mechanisms designed by governments to
encourage the use of renewable energy sources, such as the feed in tariffs (FIT). In
some countries, Spain for example, the owners or promoters of these installations
can use two different energy selling modes: (i) To sell all the energy to an electrical
utility at fixed prices. (ii) To sell the electricity on the intraday market.

The renewable energy installations can choose, for periods of no less than one
year, their preferred option. The energy selling mode needs to be modeled to com-
pute the income in the objective function.

8.2.1.4 Prediction Model for Electricity Prices

Electricity prices are set by bilateral contracts between electrical utilities and by the
pool where producers and consumers submit bids consisting of a set of quantities of
energy and prices which they want to sell or buy and the corresponding minimum or
maximum prices. The contracted quantities and corresponding prices are determined
by a central operator who takes into account the offering and selling bids. Usually
the demand and offer curve crossover points determine the price of electricity. On
some occasions, prices are fixed by the regulating agent using matching of buyers
and sellers by a mechanism; the highest buying price (eb) is matched to the lowest
selling price (es) at the mid point ((eb + es)/2). After the matched packet has been
assigned, the same procedure is repeated with the remaining selling and buying
offers. Clearing prices are announced by the central operator. For example, the pool
prices in California are announced at www.calpx.com. In Spain the prices of the
intraday market are announced at www.omel.es.

In some cases, electrical utilities want to diminish their price uncertainties and
establish longer term contracts. To establish contracts, producers need to know how
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much energy is demanded and how much it is going to cost, similarly, consumers
need to know how much energy they are going to consume in the future. Accurate
electrical energy price forecasts are fundamental for producers and consumers to
negotiate good contracts and to establish appropriate bidding strategies on the short
term market.

Autoregressive models tuned by historical data have frequently been used in the
past to predict commodity prices and have also been used to predict electrical energy
weekly prices [144]. Other methods have also been used, but it should be said that
the price of electricity on a deregulated market is so volatile that it is very difficult
to predict an accurate market price from models derived from historical data.

8.2.1.5 Costs

Similarly to price models, energy cost predictions are fundamental for producers
and consumers in order to establish their bidding and contract strategies as well as
operating their installations. The cost model basically consists of transforming the
model of electrical consumption to a cost model. Parasitic loads and personnel costs
have to be added. For instance, operating cost for the SEGS trough plants have been
estimated to be around 0.03 euros/kWh [416].

8.2.1.6 Solar Field

The solar field is the solar energy collector mechanism and, therefore, one of the
most important parts of a solar energy plant. Different models of solar collector
fields have been developed in Chap. 4 that are useful for optimization purposes
(mainly those based on first principles).

8.2.1.7 Storage System

The main types of storage system have been analyzed in Chap. 1. In electrical grid
energy sources, stored energy has to be used to balance the mismatch between the
energy production from intermittent energy sources and the demand. Simplified
models of oil and molten salt accumulators will be briefly studied in this chapter.

8.2.1.8 Power Conversion System

There are different methods for modeling the PCS, many of them based on manu-
facturer specifications or historical data. A PCS is typically composed of a steam
generator, preheater, steam turbine and refrigeration tower. The steam generator is
fed by the hot HTF.
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8.2.2 Non-committed Production

If prices are constant, the best option would be to produce as much electrical energy
as possible. Storage can be used in those situations where more solar energy can be
collected than converted and delivered. This occurs because turbines and generators
are designed for nominal conditions which are usually below maximum solar con-
ditions. In some cases, due to faults or maintenance operations some parts of the
energy conversion system of the plant are not fully operative and it is not possible
to convert all the energy collected from the solar system and it has to be either lost
or stored.

If prices vary with the time of day or if production is carried out with penalization
errors, energy storage can be used to maximize profits. The energy power balance
is given by the following equation in discrete time:

Pr(k) = γte
(

Psolar(k) − Ps+(k) + Ps−(k)
) − Pload(k) (8.1)

where Pr(k) is the energy delivered to the grid during sampling period k. Simi-
larly, Psolar(k) is the solar energy generated, Pload(k) is the energy consumed by
local electric loads, Ps+(k) ≥ 0 is the energy stored at time interval [k − 1, k] and
Ps−(k) ≥ 0 is the energy extracted from the energy storage and delivered to the grid
and γte is the thermal to electrical power conversion factor.

The total energy stored (Pstored(k)) can be modeled by

Pstored(k + 1) = Pstored(k) + Ps+(k) − βstPs−(k) − αstPstored(k) (8.2)

where βst is the energy storage-conversion coefficient (i.e. the efficiency of the stor-
age system) and αst is the proportion of the stored energy lost in each time period
due to thermal losses. The total energy stored Pstored(n) can be written as

Pstored(n) = Pstored(0) +
n

∑

i=1

(

Ps+(i) − βstPs−(i)
)

αn−i
st (8.3)

Psolar(k) basically depends on solar radiation during the sampling period and on the
operating conditions of the plant. For example, if the plant is starting-up, some of
the solar energy is needed to warm the plant systems up to operative stage, while if
the plant is already generating electricity, no energy will be needed for warming up.

This model considers the plant to be connected to an infinite grid where power
can be injected or extracted as necessary. Usually, the power sold to network Pr(k)

is bounded as Pr,min ≤ Pr(k) ≤ Pr,max. The purchase of energy from a grid is only
allowed for dealing with an inability to feed the local load with power available in
the system.

The benefit scheduled for period k is given by Bspot(k) = e1(k)Pcontract(k), where
e1(k) is the electricity price at that period and Pcontract(k) is the power scheduled
(which was offered on the daily market).

The benefit for the time interval k can be computed as

B(k) = Pr(k)e1(k) + Pstored(k)est(k) (8.4)

where e1(k) is the price of energy for period k, est(k) is the price of energy stored.
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The benefits obtained in the course of one day will be

B(24) =
24
∑

i=1

Pr(i)e1(i) + Pstored(24)est(24) (8.5)

The problem to be solved at time period k is to determine the sequence Pr =
[Pr(k),Pr(k + 1), . . . ,Pr (k + N − 1)] which maximizes

J (N) =
N

∑

j=1

Pr(k + j)e1(k + j) + Pstored(k)

+
N

∑

i=1

(

Ps+(k + i) − βstPs−(k + i)
)

αN−i
st (8.6)

subject to

0 ≤ Pstored(k + j) ≤ Pmax

0 ≤ Ps+(k + j) ≤ Psmax

0 ≤ Ps−(k + j) ≤ Psmax

Prmin ≤ Pr(k + j) ≤ Prmax

Pr(k) = γte
(

Psolar(k + j) − Ps+(k) + Ps−(k)
) − Pload(k)

for j = 1, . . . ,N . Psolar(k + j) is not yet known and has to be estimated using
models such as those developed in Chap. 2. The decision variables are Pr(k + j),
Ps+(k + j) and Ps−(k + j) for j = 0, . . . ,N − 1. The resulting problem can be
solved with a linear programming (LP) algorithm. Once the solution is found only
the first element of the sequence is used at time period k.

8.2.3 Committed Production

In this case the plant managers have to take two types of decision. First, they have
to decide the production for the day and then, they have to decide the energy to be
delivered and stored at each time period.

The benefit for the time interval k can be computed as

B(k) = Pr(k)e1(k) + (

Ps+(k) − βstPs−(k)
)

est(k)

− ∣

∣Pr(k) − Pcontract(k)
∣

∣e2(k) (8.7)

where e1(k) is the price agreed for period k, est(k) is the price of the energy stored
and e2(k) is the penalty paid for contract deviation.
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The benefits obtained in the course of one day will be

B(24) =
24
∑

i=1

Pr(i)e1(i) + Pstored(24)est(24) − ∣

∣Pr(i) − Pcontract(i)
∣

∣e2(i) (8.8)

There are two types of decision that have to be taken. First, at the beginning of the
day, to decide the offer of Pcontract(k) for the next 24 hours and, once Pcontract(k)

has been agreed, the next problem is to determine Pr(k). Determination of Pstored(k)

can be done by maximizing Eq. (8.8) subject to

0 ≤ Pstored(k + j) ≤ Pmax

0 ≤ Ps+(k + j) ≤ Psmax

0 ≤ Ps−(k + j) ≤ Psmax

Prmin ≤ Pr(k + j) ≤ Prmax

Pr(k) = γte
(

Psolar(k + j) − Ps+(k) + Ps−(k)
) − Pload(k)

The optimization problem can be formulated as

max
Pr ,Ps+,Ps−,Pcontract

k+23
∑

j=k

Pr (j)e1(j) +
[

Pstored(k)α24
st

+
k+23
∑

i=k

(

Ps+(i) − βstPs−(i)
)

αN+k−i
st

]

est(k + N)

+
N+k−1
∑

j=k

∣

∣Pr(j) − Pcontract(j)
∣

∣e2(j) (8.9)

subject to

0 ≤ Pstored(k) ≤ Pmax

Psmin+ ≤ Ps+(k) ≤ Psmax+

Psmin− ≤ Ps−(k) ≤ Psmax−

Prmin ≤ Pr(k) ≤ Prmax

∣

∣Pr(k) − Pcontract(k)
∣

∣ ≤ Pd

Pr(k) = γte
(

Psolar(k + j) − Ps+(k) + Ps−(k)
) − Pload(k)

The main decision variable at this stage is the energy to be committed for the day.
However, predicted delivered energy and predicted stored energy can be considered
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as decision variables. The solar energy available at any given time is not known at
this stage, however, since it cannot be manipulated it has to be estimated, together
with the price of energy throughout the day. The resulting optimization algorithm
can be solved by an LP algorithm.

This optimization is based on finding the best sequences of the control variables
Pcontract(k), Ps+(k), Ps−(k) and Pr(k). This problem is usually solved for a 24 hour
period. Once the problem has been solved and the Pcontract(k) has been determined
for the next 24 hours, the following problem can be solved:

max
Pr ,Ps+,Ps−

k+N−1
∑

j=k

Pr(j)e1(j) +
[

Pstored(k)αN
st

+
k+N−1
∑

i=k

(

Ps+(i) − βstPs−(i)
)

αN+k−i
st

]

est(k + N)

+
k+N−1
∑

j=k

∣

∣Pr(j) − Pcontract(j)
∣

∣e2(j) (8.10)

subject to

0 ≤ Pstored(k) ≤ Pmax

Psmin+ ≤ Ps+(k) ≤ Psmax+

Psmin− ≤ Ps−(k) ≤ Psmax−

Prmin ≤ Pr(k) ≤ Prmax

∣

∣Pr(k) − Pcontract(k)
∣

∣ ≤ Pd

Pr(k) = γte
(

Psolar(k + j) − Ps+(k) + Ps−(k)
) − Pload(k)

Notice that the optimization problem described only considers the random nature
of solar power and energy prices by using their expected values. Furthermore, the
solar power produced depends on the solar radiation and on the plant operating con-
ditions. The solar power produced cannot be generated instantaneously, the systems
need some time to start up and to change from one operating point to another. Dy-
namic models of the different subsystems are needed, the following section presents
some of these models.

8.2.4 Prediction Models

This section analyzes some prediction models needed for scheduling production and
optimal control of solar power plants.
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The most important variable in a solar plant is solar radiation. Different models
for solar radiation prediction and forecasting have been explained and developed in
Chap. 2, both for short and long term forecasting. Different models of solar collector
fields have been developed in Chap. 4 that are useful for optimization purposes
(mainly those based on first principles).

Ambient temperature affects the thermal losses of the solar field, heat storage
tanks and turbines. Ambient temperature also affects electrical demand. Low am-
bient temperature increases the need for heating and, therefore, electrical demand.
Similarly, high ambient temperature increases the need for air cooling and electri-
cal energy demand. Hourly temperature prediction can be obtained from weather
forecasting services. The weather predictions can be corrected for by using current
measured variables.

8.2.4.1 Storage System

Molten Salt Accumulators

Different thermal energy storage systems are used in solar plants. In some cases
molten salt tanks are used. The basic idea is to use the heat from salt fusion; that
is, the amount of heat required to melt a solid salt at its melting point into a liquid
without increasing its temperature. The heat capacity of a body is defined as the
heat needed to increase the temperature of the body by one degree and since the
temperature is not increased during melting, the heat capacity is very high at this
stage. The liquid salt releases the same amount of heat when it solidifies.

The energy stored at a molten salt energy storage system can be modeled by the
following equations:

cs

(

Est(t)
)dTst

dt
= Ps+ − Ps− − Lst(Tst − Ta)

0 ≤ Ps+ ≤ P̄s+

0 ≤ Ps− ≤ P̄s−

P̄s+ = Hst+(qst, Tstin − Tst)

P̄s− = Hst−(qst, Tst − Tstin)

where cs(Est(t)) is the thermal capacity of the molten salt accumulator, Tst is the
temperature of the salts, Tstin is the temperature of the fluid entering the accumula-
tor. Ps+ and Ps− are the power stored and extracted from the accumulator, respec-
tively. Lst(Tst − Ta) are the rate of energy losses in the accumulator which can be
expressed as a function of Tst − Ta . The function Hst+(qst, Tstin − Tst) corresponds
to the maximum power that can be stored, which depends on the temperature dif-
ferences between the inlet oil flow and the temperature of the accumulator. The
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maximum power that can be extracted from the accumulator can be computed as a
function, Hst−(qst, Tst − Tstin), of the oil accumulator flow (qst) and the difference
of temperature between the molten salt and the inlet oil flow.

The thermal capacity of the molten salt accumulator, cs(Est(t)), can be expressed
as a function of the stored energy Est(t). When the stored energy is below a certain
level, the thermal capacity corresponds to that of the salt in a solid state. When the
salt is melting, because enough energy has already been stored, the incoming energy
is used to melt the salt without increasing its temperature. This can be modeled as
a very high accumulator thermal capacity. Once all the salt is melted, the thermal
capacity of the accumulator corresponds to that of the salt in a liquid state.

The outlet HTF temperature, Tstout , can be computed from the following power
balance equation:

ρf cf qst(Tstin − Tstout)) = Ps+ − Ps− − Lst(Tst − Ta) (8.11)

Hot Oil Accumulators

In other cases, hot oil is directly stored in a tank (thermocline). Thermal stratification
of the oil in the tank allows energy to be stored at different temperatures. As an
example, in the ACUREX field, the storage tank is connected to the solar field and
to the PCS by means of two pipe circuits placed at the top and bottom of the tank
(see Fig. 8.1). The heated oil stored in the tank is used to generate the steam needed
to drive the steam turbine of the PCS.

The storage system can be used in different modes; the first mode of operation
is only used when there is not enough solar radiation, then hot oil is taken from
the tank to the steam generator. The second mode of operation is useful when there
are large variations in solar radiation due to clouds and the storage tank is used to
smooth down the oil temperature disturbances. The power conversion system is run
using the thermal energy stored inside the tank together with the solar field, but the
oil from the field is sent to the bottom of the tank. This is done in order to avoid
temperature fluctuations at the top of the tank. The third mode of operation is used
when the level of solar radiation is high enough; then the oil from the field is sent to
the top of the tank to be used by the PCS. The lower part of Fig. 8.1 shows a detailed
description of the geometric characteristics of the tank. Note how the oil entrance
and exit contain several diffusers used to avoid disturbances in the oil stratification.
Furthermore, the position of the thermocouples in the oil and in the wall of the tank
is shown in the figure. These thermocouples provide temperature measurements that
can be used in the identification part of the modeling procedure.

A grey-box model for the storage tank of the ACUREX field was developed in
[19]. The grey-box approach for building models [230] stems from the fact that it
is best to take advantage of the a priori knowledge of a system. This knowledge
is usually expressed in terms of a set of ordinary or partial differential equations
obtained from first principles. For some systems such equations are not completely
known and data have to be used to fill in the gap via an identification procedure.
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Fig. 8.1 Top: schematic
layout of the SPSS plant at
the PSA. Bottom: diagram of
the tank showing the location
of the thermocouples and
pipes. The inset shows a
generic discrete control
volume used for modeling
(courtesy of M.R. Arahal
et al., [19])

A simultaneous perturbation stochastic approximation (SPSA) optimization proce-
dure was used in [19] to adjust the parameters of the model to the observed data.
The SPSA algorithm [356] provides an estimation of the gradient of an objective
function to be optimized, making it appropriate for high-dimensional optimization
problems. An interesting feature is that SPSA can be used in situations where the
objective function is contaminated by noise. Furthermore, the gradient approxima-
tion is deliberately different from the alleged true gradient and this provides a means
of escape from local minima while retaining the desired local convergence property.
In the present case, the objective function is a measure of the simulation error given
by the model.

Model Structure The model structure for the thermal storage tank corresponds
to a discrete-time set of first order equations [19]. This structure has been chosen to
achieve the main goals set for the model:

• Long term prediction capabilities that allow it to be used in the upper layer of a
hierarchical control strategy.
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• Adequate representation of the distributed energy content of the tank. The PCS
does not operate in the same conditions for the whole range of temperatures re-
sulting from stratification. For this reason, the model must reflect the temperature
gradient and its changes during charge or usage periods.

• Low computational load during its use in simulation. In this way optimization in
the upper layer of the hierarchical controller can be run frequently and in enough
depth to provide a quasi-optimum solution in different scenarios.

• Low dependence on the sample time in order to be able to use historical data
coming from different experiments.

• Good convergence capabilities in order to diminish the influence of a partially
known or noise corrupted initial state.

The basic principles acting on a storage tank are heat and mass transfer laws;
Thus, a first principle model seems a good choice. However, it is a well known fact
that some parameters such as heat transfer coefficients among interfaces are diffi-
cult to measure. This is specially true for systems whose distributed nature cannot be
overlooked which is the case of the storage tank, since stratification of temperatures
along the vertical direction affects the spatial distribution of the oil parameters. Even
in this case, a set of partial differential equations adequately adjusted to the partic-
ularities of the tank will yield an excellent model. Unfortunately, the computational
load of running such a model in the many simulations needed for the hierarchical
control scheme completely rules out this choice. Traditional grey-box approaches
assume that the structure of the model is given directly as a parameterized mathe-
matical function partly based on physical principles. In the present case a computer
program or algorithm serves as well for the same purpose and has the advantage of
being directly the same object later used by the hierarchical controller.

In the remainder of the section the a priori knowledge is presented together with
a spatial discretization to produce a simulation algorithm that is in fact the model of
the tank.

Spatial discretization: For purposes of modeling the oil and wall of the tank will be
divided into sections to form control volumes and control annular sections, respec-
tively. This spatial discretization will follow the particular arrangement of thermo-
couples along a vertical rod placed inside the tank, yielding ten oil volumes. The
thermocouples of the wall are located at different heights and their number is differ-
ent (20 instead of 10). To match the temperature measurements on the wall with the
temperatures of the discrete annular sections a simple interpolation procedure was
used [19]. The inset in Fig. 8.1 shows a diagram of the oil volumes and wall annu-
lar sections considered. The geometric parameters are the interior diameter Dst, the
wall thickness tst and the height hst which is the same for all volumes except the
lower and upper ones. Other geometrical features such as surfaces can be obtained
from the above parameters.

Heat transfer models: For each volume a number of models are considered to de-
scribe the heat transfer. A simplifying assumption is that conditions (i.e. temper-
ature θf , density ρf and specific heat cf of oil on a given volume are homoge-
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neous). This introduces a source of error in the model since the temperature pro-
file can be very steep, causing conditions within one volume to vary appreciably
from bottom to top. This is unavoidable since there are no other measurements than
those provided by the thermocouples. In the following the different models are in-
troduced [19]:

• Transport. During operation oil moves along control volumes causing changes in
their energy content. The different modes of operation: charge of the tank with
hot oil from the field, simultaneous charge and discharge and discharge with or
without recirculation of oil cause different values of the net flow through the tank.
A flow q is considered to be positive when it goes from top to bottom which is
the normal situation during charge of the tank.

• Conduction. The energy flow between adjacent oil volumes and between adjacent
wall segments due to conduction is modeled in the usual way as a linear function
of the temperature increment. The distances among volumes centers are known
and depend on the particular disposition of thermocouples. The thermal conduc-
tivity kf of oil is computed from tables using the average temperature of the
volume θo

f . For the wall section the thermal conductivity is considered constant.
• Convection. The convection mechanism is the trickiest in this model. It is difficult

to model since it involves effects such as turbulence. The detailed modeling of
such phenomenon is absolutely out of the question due to the limitations imposed
on the computing load for the final model. The effects produced by convection
are, however, easy to describe: when hot oil enters the bottom of the tank there is a
quick mix with the cooler layers above that homogenizes the temperature profile
very efficiently. From this observation the energy variation in the volumes due
to convection is modeled using: (i) a coefficient that determines the amount of
energy that the recirculating flow of hot oil from the collectors yields to the tank
and (ii) a set of equations that ensure that this energy is efficiently distributed over
the layers above. In this way the simplicity of the model is kept while producing
a mechanism that performs well.

Simulation algorithm: The simulation algorithm is based in computing the changes
in temperature over time for each oil volume (θi

f ) and wall segment (θ i
m). The tran-

sition from a generic discrete time k to the next (k +1) is governed by the above de-
scribed heat transfer mechanisms. For each volume i = 1, . . . ,10 the energy change
due to transport (�Et ), conduction among oil volumes (�Eco), conduction among
wall segments (�Ecm), convection (�Ev), losses from oil to wall (�Ew) and from
wall to the ambient (�Ea) is computed yielding a pair of discrete-time equations:

ρi
f ci

f θ i
f |k+1 = ρi

f ci
f θ i

f |k + Ts

V i
f

(

�Et + �Eco + �Ev + �Ew
)|k (8.12)

ρi
mci

mθi
m|k+1 = ρi

mci
mθi

m|k + Ts

V i
m

(

�Ew + �Ecm + �Ea
)|k (8.13)

The sampling time Ts = 120 s has been selected to provide a good balance between
representation of the observed behavior of the temperatures of the volumes and the
computational load that it will imply for the simulation. The volume of the discrete
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elements of oil (V i
f ) and metal (V i

m) are computed from geometrical parameters. In
[19] the complete model adjustment is explained using the SPSA algorithm, show-
ing experimental results.

8.2.4.2 Power Conversion System

There are different methods for modeling the power conversion systems. The model
presented in this section has been obtained from data taken from the power conver-
sion system of the DCS project [190]. The PCS is composed of the steam generator,
preheater, steam turbine, and refrigeration tower. The steam generator is fed by ther-
mal hot oil coming from the hot oil storage tank. The steam powers the turbine and
electrical generator (Stal-Laval) with a nominal power of 577 kW.

Power Loss Model

Losses are important when designing a plant-wide control scheme. Overall losses
can be computed as the difference between the input and the output power. The
input power to the PCS is the thermal power of the hot oil (PHTF), which depends
on the inlet oil temperature (TinTur ), outlet oil temperature (ToutTur ), and flow (qT ) as
indicated by Eq. (8.14):

PHTF = qT

[

1.882 · 10−3(T 2
inTur

− T 2
outTur

) − 0.795(TinTur − ToutTur)
]

(8.14)

The gross output power of the PCS (Pgross) can be obtained as the difference
between the thermal power delivered to the steam generator (PHTF), the thermal
power delivered to the refrigeration systems (Prs) and the thermal losses inside the
PCS (LPCS).

The steady state energy balance equation is given by Eq. (8.15):

Pgross = PHTF − Lrs − LPCS (8.15)

The following equation was obtained for PSA from experimental data:

LPCS = 1.56 · 10−8P 3
HTF − 9.31 · 10−5P 2

HTF + 0.27PHTF − 136 (8.16)

The thermal power delivered to the refrigeration systems were modeled using
linear approximations for two operating points at the PCS 290°C (in Eq. (8.17),
with a correlation coefficient of 0.99) and 280°C (in Eq. (8.18), with a correlation
coefficient of 0.98):

Lrs = 0.678PHTF + 136 (8.17)

Lrs = 0.769PHTF − 43 (8.18)
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Table 8.1 Average solar
plant efficiency for three
operating years

Element Performance (min, %) Performance (max, %)

η̄solar 22.0 51.5

η̄st 60.6 98.2

η̄PCS 11.3 22.9

Table 8.2 Power distribution
at the PCS Net electrical power 500 kW

Parasites 77 kW

Gross electrical power 577 kW

Gross efficiency ηgross = 19.13%

Oil thermal power PHTF = 3016 kW

Thermal losses LPCS = 259 kW

Refrigeration losses Lrs = 2180 kW

Performance-Based PCS Model

Table 8.1 shows efficiency data of the elements: solar collector field, storage tanks
and power conversion part. The yearly efficiency coefficients have been obtained
from the monthly efficiency data.

This type of information is useful to evaluate the best and worst cases for making
decisions taking risks into account. The steam turbine can be operated at 290°C
or at 280°C. The return temperature of the generator is about 70°C lower than the
inlet temperature PCS operating temperatures between 287°C and 292°C, which
are considered to be in the high range while operating temperatures between 277°C
and 282°C are considered low range. The gross process efficiency (in Eq. (8.19)),
denoted by ηgross, was computed (Eq. (8.14)) by a least squares fitting. The same
happens with the net efficiency ηnet = Pr/PHTF , where Pr is the generated power:

ηgross = −2.44 · 10−5P 2
gross + 3.07 · 10−2Pgross + 9.54 (8.19)

ηnet = −3.52 · 10−5P 2
net + 4.07 · 10−2Pr + 5.43 (8.20)

Table 8.2 shows power distribution at the PCS.

PCS Start-up

The energy needed to start up the plant depends on the time elapsed since it was
in operation and the required energy is between 200 and 1200 kWht . The start-up
phase includes the following steps:

1. Increase the pressure to 25 bar.
2. Preheat the pipes and turbine.
3. Start the turbine and reach the nominal rotating speed (100% rpm).
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Fig. 8.2 Scheme of elements
and their interconnection to
perform diary planning of
electricity production
(courtesy of C.M. Cirre,
[103])

The energy needed to start up the plant is given by

Pstart = 1200 − 1000e(0.304t−0.307·10−4t2) [kWt] (8.21)

8.3 Simulation Experiments

All the models mentioned in the previous sections can be used for daily plan-
ning of electricity production. As a simple example, a simulation experiment is
shown in this section on applying the hierarchical daily production planning struc-
ture shown in Fig. 8.2. This application can use real data from the installation or
a model of direct solar irradiance shown in Chap. 2, the hot oil storage system
model briefly explained in Sect. 8.2.4.1, the distributed parameter model of the solar
field explained in Chap. 4, Sect. 4.3.2, the optimizing reference governor explained
in Chap. 5, Sect. 5.12.1.2, and the feedback linearization controller developed in
Chap. 5, Sect. 5.8.1, to regulate the outlet temperature. In this way, different oper-
ation alternatives can be evaluated as a function of the state of the storage tank and
the weather and thus it is possible to estimate the net electric power supplied to the
network.

Figure 8.3 shows a simulation using real data of the field. Subindex ‘sim’ cor-
responds with the simulated trends. Depending on qT , the evolution of the thermo-
clines of storage tank can be observed, as well as the net power Pr .

8.4 Summary

Basic concepts involved in the operational planning of solar plant with PTC have
been treated in this chapter. Different levels of the hierarchical control problem in-
volved have been defined within time scales of weekly planning, daily planning
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Fig. 8.3 Simulation test of a hierarchical control scheme (courtesy of C.M. Cirre, [103])

and tracking. Many static and dynamic models are required to fulfill the operational
planning objectives: solar irradiance, ambient temperature, market, electrical prices,
costs, solar field, storage systems and power conversion systems. Both Committed
and Non-committed production cases have been studied from an optimization view-
point and several illustrative simulation results have been provided.
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MLD Model Matrix Values

The values of matrices Φ , H, G3, E1, E2, E3 and E5 from Eq. (6.28) are the follow-
ing:
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H = [478811 215613 38398 − 112802 110413 − 36008 1924
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