Arrange circuits, control and protection for general electrical installations Week 2: Fault Loop Impedance

A QUALITY VOCATIONAL ELECTRICAL TRAINING COURSE PROVIDED BY: GLOBAL ENERGY TRAINING SOLUTIONS

Global Energy Training Solutions. Copyright 2018

All writing in BLUE is examinable

All writing in RED is NOT examinable.

Global Energy Training Solutions. Copyright 2018

Slide 2 of 33

The cable selection process

Global Energy Training Solutions. Copyright 2018

Slide 3 of 33

1) Calculate MD (AS/NZS 3000) Consumer mains (Table C1, C2, C3) Sub mains (Table C1, C2, C3) Final sub circuits (Table C4, C8)

2) Select Circuit Breaker (Standard sizes Table 8.1 AS/NZS 3000) $I_{B} \leq I_{N} \leq I_{Z}$ MD \leq CB \leq CCC

3) Select cable based on Current Carrying Capacity (Table C5 and C6 AS/NZS 3000, Section 3 AS/NZS 3008)

4) Check Voltage Drop (3.6, Table C7 AS/NZS 3000, Section 5 AS/NZS 3008)

5) Check Fault-Loop Impedance (5.7, Appendix B AS/NZS 3000)

Global Energy Training Solutions. Copyright 2018

Slide 4 of 33

2.5.3.1 AS/NZS 3000

6) Calculate Prospective Fault Current (2.5.4 AS/NZS 3000) However no guidance is offered in AS/NZS 3000

7) Check Short Circuit Temperature Rise (2.5.4 and Section 5 AS/NZS 3008)

This course covers FLI, SCTR and PFC, however these are only topics inside the much greater cable selection process.

Fault-Loop Impedance

What you need to know about Fault-Loop Impedance

1) What is it? → Describe the loop → Why it is an issue

2) How to select cables so that maximum lengths are not exceeded: _____ Lmax _____ Table B1

3) How to test it: _____ Table 8.1 (live) (Zmax) → Table 8.2 (dead)

Global Energy Training Solutions. Copyright 2018

Slide 6 of 33

Global Energy Training Solutions. Copyright 2018

Slide 7 of 33

Global Energy Training Solutions. Copyright 2018

Slide 8 of 33

Not all circuit breakers trip the same

Type B – 4 x overload 20A x 4 = 80A to trip instantly Type C – 7.5 x overload 20A x 7.5 = 150A to trip instantly Type D – 12.5 x overload 20A x 12.5 = 250A to trip instantly (B4.5 AS/NZS 3000)

Type B – Where a fast trip time is required or to protect a sensitive load Type C – All common CB's Type D – Used for high start up current applications such as Direct On Line (DOL) motors

The letter is idicated on CB's C20 = Type C 20A CB

Global Energy Training Solutions. Copyright 2018

Slide 9 of 33

Type B: 4 x

Global Energy Training Solutions. Copyright 2018

Slide 10 of 33

Type C: 7.5 x

Global Energy Training Solutions. Copyright 2018

Slide 11 of 33

Type D: 12.5 x

Global Energy Training Solutions. Copyright 2018

Slide 12 of 33

- **Glossary**:
- **FLI = Fault-Loop Impedance**
- **TX = Transformer**
- **CM = Consumer Main**
- **MSB = Main Switch Board**
- SM = Sub-Main
- **DB = Distribution Board**
- **FSC = Final Sub-Circuit**
- Load = Load
- **P/E = Protective Earth**
- M/E = Main Earth
- **MEN = Main Earth Neutral**
- **PEN = Protective Earth Neutral**

Global Energy Training Solutions. Copyright 2018

Slide 14 of 33

All the impedances added together makes the Fault-Loop Impedance

5.7.4 AS/NZS 3000 $Z_s \times I_a \leq U_o = Z_s = \frac{U_o}{I_a} \operatorname{or} (Zmax = \frac{V}{I_a})$ gives the formula: $I_a - Is$ the current required to trip the circuit breaker. (I_a is Amps rated on the circuit breaker times the class)

Global Energy Training Solutions. Copyright 2018

Slide 15 of 33

C20A CB

Barely any current runs through the ground as the impedance is much higher than the PEN conductor

Global Energy Training Solutions. Copyright 2018

Slide 16 of <u>33</u>

$$Zmax = \frac{v}{I_a} = \frac{250}{(7.5 \times 20)} = 1.533 \Omega$$

Now check this against Table 8.1

Global Energy Training Solutions. Copyright 2018

Slide 17 of 33

Global Energy Training Solutions. Copyright 2018

Slide 18 of 33

Not fast enough (60 seconds) we need 7.5 x overload to turn the power off in 0.4 seconds max. 5.7.2 AS/NZS 3000

Global Energy Training Solutions. Copyright 2018

Slide 19 of 33

 $I_{a} = \frac{V}{Z} = \frac{230 V}{50 \Omega} = 4.6 A$ $4.6 A = 0 \times \text{Overload}$

How long will it take to trip the CB

Global Energy Training Solutions. Copyright 2018

Slide 20 of <u>33</u>

A circuit breaker may never trip with a 50Ω Fault-Loop

Don't leave the MEN out or you will render your circuit breakers useless!

Global Energy Training Solutions. Copyright 2018

Slide 21 of 33

Global Energy Training Solutions. Copyright 2018

Slide 22 of 33

Global Energy Training Solutions. Copyright 2018

Slide 23 of 33

Global Energy Training Solutions. Copyright 2018

Slide 24 of 33

$$\mathbf{RCD} = \frac{\mathbf{230 V}}{\mathbf{30 m A}} = \mathbf{7667 } \Omega$$

You can have almost $8k\Omega$ in the fault loop and it will still trip (if the RCD is faulty, we are back to needing 150A)

Global Energy Training Solutions. Copyright 2018

Slide 25 of 33

Press the test button.

The value must be less than those in table 8.1 (Zmax for live test)

Global Energy Training Solutions. Copyright 2018

Slide 26 of 33

Dead testing

Ohm meter

The value must be less than those in table 8.2 (Zmax for dead test) A method accepted by AS/NZS 3000 that does not require an expensive meter

Global Energy Training Solutions. Copyright 2018

Slide 27 of 33

However this method does not test 20% of the circuit And the copper is cold when tested and could have a higher resistance when operating at 75°

Global Energy Training Solutions. Copyright 2018

Slide 28 of 33

Global Energy Training Solutions. Copyright 2018

Slide 29 of 33

$$Zmax = \frac{V}{I_a} \times 0.64 = \frac{230}{(20 \times 7.5)} = 0.98 \Omega$$

Now check this against Table 8.2 (R_{phe}) (Resistance Phase to Earth)

Global Energy Training Solutions. Copyright 2018

Slide 30 of 33

Max Circuit length

(So as not to have FLI issues) Lmax – Maximum length B5.2.2 AS/NZS 3000 Lmax = $\frac{0.8 \times U_o \times S_{ph} \times S_{pe}}{I_a \times \rho \times (S_{ph} + S_{pe})}$

Use Table B1 for most cases

- U_o Nominal phase volts (230V)
- **S**_{ph} **Cross section area of the active conductor in mm**²
- **S**_{pe} **Cross section area of the protective Earthing in mm²**
- I_a Trip setting x Rating of Circuit Breaker (e.g. 20 x 7.5)
- ρ Resistivity at normal working temperature in Ω-mm²/m Cu 0.0225Ω
 - $AI ~-~ 0.036 \Omega$

Global Energy Training Solutions. Copyright 2018

What is the max length of cable protected by a C20A CB with a 2.5mm Active and a 2.5mm Earth

$$\mathbf{Lmax} = \frac{\mathbf{0.8} \times \mathbf{U_o} \times \mathbf{S_{ph}} \times \mathbf{S_{pe}}}{\mathbf{I_a} \times \rho \times (\mathbf{S_{ph}} + \mathbf{S_{pe}})}$$

 $Lmax = \frac{0.8 \times 230 \times 2.5 \times 2.5}{7.5 \times 20 \times 0.0225 \times 5}$ $= \frac{1150}{16.875}$ = 68.15 metres

Now check against table B1

Global Energy Training Solutions. Copyright 2018

Slide 32 of 33

Why are slabs bonded under wet areas?

No Earth? Ω ?

Global Energy Training Solutions. Copyright 2018

Slide 33 of 33