Arrange circuits, control

 and protection for
general electrical installations

Week 2: Fault Loop Impedance

A QUALITY VOCATIONAL ELECTRICAL TRAINING COURSE PROVIDED BY: GLOBAL ENERGY TRAINING SOLUTIONS
Global Energy Training Solutions. Copyright 2018

All writing in BLUE is examinable

All writing in RED is NOT examinable.

The cable selection process

Glossary:
MD = Maximum Demand
CB = Circuit Breaker
CCC = Current Carrying
Capacity
VD = Voltage Drop
FLI = Fault Loop Impedance
PFC = Prospective Fault Current
SCTR = Short Circuit
Temperature Rise

1) Calculate MD \longrightarrow Consumer mains (Table C1, C2, C3)
(AS/NZS 3000)

Sub mains (Table C1, C2, C3) Final sub circuits (Table C4, C8)
2) Select Circuit Breaker
(Standard sizes Table 8.1 AS/NZS 3000)

$$
\mathrm{I}_{\mathrm{B}} \leq \mathrm{I}_{\mathrm{N}} \leq \mathrm{I}_{\mathrm{z}}
$$

$$
M D \leq C B \leq C C C
$$

2.5.3.1 AS/NZS 3000
3) Select cable based on Current Carrying Capacity (Table C5 and C6 AS/NZS 3000, Section 3 AS/NZS 3008)
4) Check Voltage Drop
(3.6, Table C7 AS/NZS 3000, Section 5 AS/NZS 3008)
5) Check Fault-Loop Impedance
(5.7, Appendix B AS/NZS 3000)

Global Energy Training Solutions. Copyright 2018

Subject \# 222: Protection Methods UEENEEG063A

6) Calculate Prospective Fault Current
(2.5.4 AS/NZS 3000) However no guidance is offered in AS/NZS 3000
7) Check Short Circuit Temperature Rise (2.5.4 and Section 5 AS/NZS 3008)

This course covers FLI, SCTR and PFC, however these are only topics inside the much greater cable selection process.

Subject \# 222: Protection Methods UEENEEG063A

Fault-Loop Impedance

What you need to know about Fault-Loop Impedance

1) What is it? \longrightarrow Describe the loop
\longrightarrow Why it is an issue
2) How to select cables so that maximum lengths are not exceeded:

3) How to test it:
\longrightarrow Table 8.1 (live)
(Zmax)
\longrightarrow Table 8.2 (dead)

Global Energy Training Solutions. Copyright 2018

Subject \# 222: Protection Methods UEENEEG063A

Circuit breakers

If not enough current flows this Solenoid wont trip during a short.

We calculate this using another application of Ohms law.

Global Energy Training Solutions. Copyright 2018
Slide 7 of

Magnetic trip
(Solenoid)

(Instantaneous Trip)

(Fault-Loop Impedance)

Not all circuit breakers trip the same
Type B-4x overload 20A x $4=80 \mathrm{~A}$ to trip instantly Type C $-7.5 \times$ overload 20A $\times 7.5=150 \mathrm{~A}$ to trip instantly Type D $-12.5 \times$ overload $20 \mathrm{~A} \times 12.5=250$ A to trip instantly (B4.5 AS/NZS 3000)

Type B - Where a fast trip time is required or to protect a sensitive load Type C - All common CB's
Type D - Used for high start up current applications such as Direct On Line (DOL) motors

The letter is idicated on CB's C20
= Type C 20A CB
Global Energy Training Solutions. Copyright 2018
Slide 9 of
33

Subject \# 222: Protection Methods UEENEEG063A

Type B: 4 x
Global Energy Training Solutions. Copyright 2018

Subject \# 222: Protection Methods UEENEEG063A

Type C: 7.5 x

Subject \# 222: Protection Methods UEENEEG063A

Type D: 12.5 x

Glossary:FLI = Fault-Loop ImpedanceTX = TransformerCM = Consumer Main
MSB = Main Switch BoardSM = Sub-MainDB = Distribution BoardFSC = Final Sub-Circuit
Load = LoadP/E = Protective EarthM/E = Main EarthMEN = Main Earth NeutralPEN = Protective Earth Neutral

Subject \# 222: Protection Methods UEENEEG063A

Global Energy Training Solutions. Copyright 2018
Slide 14 of 33

Subject \# 222: Protection Methods UEENEEG063A

Barely any current runs through the ground as the impedance is much higher than the PEN conductor

Subject \# 222: Protection Methods UEENEEG063A

Now check this against Table 8.1

Global Energy Training Solutions. Copyright 2018 Slide 17 of 33

How long will it take to trip the CB
Global Energy Training Solutions. Copyright 2018 Slide 18 of 33

Not fast enough (60 seconds) we need 7.5 x overload to turn the power off in 0.4 seconds max. 5.7.2 AS/NZS 3000

Subject \# 222: Protection Methods UEENEEG063A

How long will it take to trip the CB
Global Energy Training Solutions. Copyright 2018 Slide 20 of 33

A circuit breaker may never trip with a 50Ω Fault-Loop

Don't leave the MEN out or you will render your circuit breakers useless!

$0 \times$ Overload
Global Energy Training Solutions. Copyright 2018

Subject \# 222: Protection Methods UEENEEG063A

How long will it take to trip the CB
Global Energy Training Solutions. Copyright 2018 Slide 22 of 33

Easily faster than the minimum disconnection time or 0.4 seconds

$7.5 \times$ overload is the minimum current required to cause automatic
disconnection of supply, (in 0.4 s) therefore 1.53Ω is the maximum fault-loop impedance for a C20A CB

$$
\mathrm{Zmax}=\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{a}}}=\frac{230}{(7.5 \times 20)}=1.533 \Omega
$$

Global Energy Training Solutions. Copyright 2018
Slide 24 of

Subject \# 222: Protection Methods UEENEEG063A

You can have almost $8 \mathrm{k} \Omega$ in the fault loop and it will still trip (if the RCD is faulty, we are back to needing 150 A)

Global Energy Training Solutions. Copyright 2018 Slide 25 of 33

Live testing

Press the test button.
The value must be less
than those in table 8.1
(Zmax for live test)
Global Energy Training Solutions. Copyright 2018
Slide 26 of 33

Dead testing

Disconnect MEN or Main Neutral at DB

Bridge Activels to Earth
Connect a sensitive Ohm meter

The value must be less than those in table 8.2 (Zmax for dead test)

LOAD
Dead test.
Ohm meter.

And the copper is cold when tested and could have a higher resistance when operating at 75°

$$
\mathrm{Zmax}=\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{a}}} \times 0.64=\frac{230}{(20 \times 7.5)}=0.98 \Omega
$$

Now check this against Table $8.2\left(\mathrm{R}_{\mathrm{phe}}\right)$ (Resistance Phase to Earth)

Max Circuit length

(So as not to have FLI issues)
Lmax - Maximum length
B5.2.2 AS/NZS 3000

$$
\mathbf{L m a x}=\frac{\mathbf{0 . 8} \times \mathbf{U}_{\mathbf{0}} \times \mathbf{S}_{\mathrm{ph}} \times \mathbf{S}_{\mathrm{pe}}}{\mathbf{I}_{\mathrm{a}} \times \rho \times\left(\mathbf{S}_{\mathrm{ph}}+\mathbf{S}_{\mathrm{pe}}\right)}
$$

Use Table B1 for most cases
U_{o} - Nominal phase volts (230V)
S_{ph} - Cross section area of the active conductor in mm^{2}
S_{pe} - Cross section area of the protective Earthing in mm^{2}
I_{a} - Trip setting x Rating of Circuit Breaker (e.g. 20×7.5)
$\rho-$ Resistivity at normal working temperature in $\Omega-\mathrm{mm}^{2} / \mathrm{m}$ $\mathrm{Cu}-0.0225 \Omega$ AI -0.036Ω

Global Energy Training Solutions. Copyright 2018

What is the max length of cable protected by a C20A CB with a 2.5 mm Active and a 2.5 mm Earth

$$
\begin{aligned}
& \operatorname{Lmax}=\frac{0.8 \times \mathrm{U}_{\mathbf{0}} \times \mathrm{S}_{\mathrm{ph}} \times \mathrm{S}_{\mathrm{pe}}}{\mathrm{I}_{\mathrm{a}} \times \rho \times\left(\mathrm{S}_{\mathrm{ph}}+\mathrm{S}_{\mathrm{pe}}\right)} \\
& \begin{aligned}
\operatorname{Lmax} & =\frac{0.8 \times 230 \times 2.5 \times 2.5}{7.5 \times 20 \times 0.0225 \times 5} \\
& =\frac{1150}{16.875} \\
& =68.15 \text { metres }
\end{aligned}
\end{aligned}
$$

Now check against table B1

Why are slabs bonded under wet areas?

No Earth? Ω ?

FLI < much lower

