

For more Free E-books

Visit
http://ali-almukhtar.blogspot.com

Programmable Logic Controllers

Programmable Logic Controllers

Fourth Edition

W. Bolton

 AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD
 PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
Linacre House, Jordan Hill, Oxford OX2 8DP
30 Corporate Drive, Suite 400, Burlington, MA 01803

First edition 1996
Second edition 2000
Third edition 2003
Fourth edition 2006

Copyright 2006, W. Bolton. Published by Elsevier Newnes. All rights reserved

The right of W. Bolton to be identified as the author of this work has been
asserted in accordance with the Copyright, Designs and Patents Act 1988

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means electronic, mechanical, photocopying,
recordinh or otherwise without the prior permission of the publisher

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK; phone: (+44) 1865 843830; fax: (+44) (0) 1865 853333;
e-mail: permissions@elsevier.co.uk. Alternatively you can submit your request on-line by
visiting the Elsevier web site at http:www.elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material

Notice
No responsibility is assumed by the publisher for any injury and/or damage to persons
or property as a matter of products liability, negligence or otherwise, or from any use
or operation of any methods, products, instructions or ideas contained in the material
herin. Because of rapid advances in the medical sciences, in particular, independent
verification of diganoses and drug dosages should be made

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging -in-Publication Data
A catalog record for this book is available from the Library of Congress

ISBN-13: 978-0-7506-8112-4
ISBN-10: 0-7506-8112-8

Printed and bound in the UK
06 07 08 09 10 10 9 8 7 6 5 4 3 2 1

International
Sabre FoundationBOOK AIDELSEVIER

www.elsevier.com | www.bookaid.org | www.sabre.org

Working together to grow
libraries in developing countries

For information on all Newnes publications visit
our website at www.newnespress.com

Contents

Preface vii

1
4
5

10
15

Controllers
Hardware
Internal architecture
PLC systems
Problems

1.1
1.2
1.3
1.4

Programmable logic
controllers

1

17
30
39
41

Input devices
Output devices
Examples of applications
Problems

2.1
2.2
2.3

Input-output devices2

44
45
47
51
52

The binary system
Octal and hexadecimal
Binary arithmetic
PLC data
Problems

3.1
3.2
3.3
3.4

Number systems3

53
59
62
69
75
76
77

Input/output units
Signal conditioning
Remote connections
Networks
Processing inputs
I/O addresses
Problems

4.1
4.2
4.3
4.4
4.5
4.6

I/O processing4

80
84
90
91
93
94

100
103

Ladder diagrams
Logic functions
Latching
Multiple outputs
Entering programs
Function blocks
Program examples
Problems

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Ladder and functional
block programming

5

108
115
120
124

Intruction lists
Sequential function charts
Structured text
Problems

6.1
6.2
6.3

IL, SFC and ST
programming methods

6

132
133
136

Internal relays
Ladder programs
Battery-backed relays

7.1
7.2
7.3

Internal relays7

137
138
142
146

One-shot operation
Set and reset
Master control relay
Problems

7.4
7.5
7.6

154
156
157

Jump
Subroutines
Problems

8.1
8.2

Jump and call8

159
160
163
165
166
167

Types of timers
Programming timers
Off-delay timers
Pulse timers
Programming examples
Problems

9.1
9.2
9.3
9.4
9.5

Timers9

173
174
178
179
180
182

Forms of counter
Programming
Up and down counting
Timers with counters
Sequencer
Problems

10.1
10.2
10.3
10.4
10.5

Counters10

189
190
194

Shift registers
Ladder programs
Problems

11.1
11.2

Shift registers11

197
198
202
203
206

Registers and bits
Data handling
Arithmetic functions
Closed loop control
Problems

12.1
12.2
12.3
12.4

Data handling12

210
214
218
220
227
248

Program development
Safe systems
Commissioning
Fault finding
System documentation
Problems

13.1
13.2
13.3
13.4
13.5

Designing systems13

250
254
265
269
271

Temperature control
Valve sequencing
Conveyor belt control
Control of a process
Problems

14.1
14.2
14.3
14.4

Programs14

276Appendix: Symbols
281
288

Answers
Index

vi Contents

Preface

Technological advances in recent years have resulted in the development
of the programmable logic controller and a consequential revolution of
control engineering. This book is an introduction to programmable logic
controllers and aims to ease the tasks of practising engineers coming first
into contact with programmable logic controllers, and also provides a
basic course for students on courses such as Nationals and Higher
Nationals in Engineering, company training programmes and as an
introduction for first year undergraduate courses in engineering.

The book has been designed to provide full syllabus coverage of the
BTEC National and Higher National in Engineering units Programmable
Controllers and Programmable Logic Controllers from Edexcel. It
addresses the problem of different programmable control manufacturers
using different nomenclature and program forms by describing the
principles involved and illustrating them with examples from a range of
manufacturers. The text includes:

w The basic architecture of PLCs and the characteristics of commonly
used input and outputs to such systems.

w A discussion of the number systems: denary, binary, octal,
hexadecimal and BCD.

w A painstaking methodical introduction, with lots of illustrations, of
how to program PLCs, whatever the manufacturer, and make use of
internal relays, timers, counters, shift registers, sequencers and data
handling facilities.

w Consideration of the standards given by IEC 1131-3 and the
programming methods of ladder, functional block diagram,
instruction list, structured text and sequential function chart.

w To assist the reader to develop the skills necessary to write programs
for programmable logic controllers, many worked examples,
multi-choice questions and problems are included in the book with
answers to all multi-choice questions and problems given at the end
of the book.

Changes from third edition

The fourth edition is a complete restructuring and updating of the third
edition and includes a more detailed consideration of IEC 1131-3,
including all the programming methods given in the standard, and the
problems of safety. This includes a discussion of emergency stop relays
and safety PLCs.

Aims

This book aims to enable the reader to:

w Identify and explain the main design characteristics, internal
architecture and operating principles of programmable logic
controllers.

w Describe and identify the characteristics of commonly used input and
output devices.

w Explain the processing of inputs and outputs by PLCs.
w Describe communication links involved with PLC systems, the

protocols and networking methods.
w Develop ladder programs for the logic functions AND, OR, NOR,

NAND, NOT and XOR.
w Develop ladder programs involving internal relays, timers, counters,

shift registers, sequencers and data handling.
w Develop functional block diagram, instruction list, structured text and

sequential function chart programs.
w Identify safety issues with PLC systems.
w Identify methods used for fault diagnosis, testing and debugging.

Structure of the book

The figure on the following page outlines the structure of the book.

W. Bolton

viii Preface

Design and operational
characteristics

PLC information and
communication techniques

Programming
techniques

Chapter 1
Programmable logic

controllers

Chapter 2
Input-output

devices

Chapter 4
I/O processing

Chapter 5

block programming

Chapter 7
Internal relays

Chapter 9
Timers

Chapter 10
Counters

Chapter 11
Shift registers

Chapter 12
Data handling

Chapter 13
Designing programs

Chapter 14
Programs

Number systems
Chapter 3

Programming
methods

Ladder and functional

Chapter 6
IL, SFC and ST

programming methods

Chapter 8
Jump and call

Preface ix

1 Programmable
 logic controllers

This chapter is an introduction to the programmable logic controller, its
general function, hardware forms and internal architecture. This overview
is followed up by more detailed discussion in the following chapters.

1.1 Controllers What type of task might a control system have? It might be required to
control a sequence of events or maintain some variable constant or follow
some prescribed change. For example, the control system for an automatic
drilling machine (Figure 1.1(a)) might be required to start lowering the
drill when the workpiece is in position, start drilling when the drill reaches
the workpiece, stop drilling when the drill has produced the required
depth of hole, retract the drill and then switch off and wait for the next
workpiece to be put in position before repeating the operation. Another
control system (Figure 1.1(b)) might be used to control the number of
items moving along a conveyor belt and direct them into a packing case.
The inputs to such control systems might be from switches being closed or
opened, e.g. the presence of the workpiece might be indicated by it
moving against a switch and closing it, or other sensors such as those used
for temperature or flow rates. The controller might be required to run a
motor to move an object to some position, or to turn a valve, or perhaps a
heater, on or off.

Drill

Workpiece Switch contacts close when
workpiece in position

Switch contacts opened when drill
reaches the surface of the workpiece

Switch contacts opened when drill
reaches required depth in workpiece

Photoelectric
sensor gives
signal to operate
deflector

Deflector

Deflected items

Items moving
along
conveyor

(a) (b)

Figure 1.1 An example of a control task and some input sensors: (a) an automatic drilling machine, (b) a
packing system

What form might a controller have? For the automatic drilling
machine, we could wire up electrical circuits in which the closing or
opening of switches would result in motors being switched on or valves
being actuated. Thus we might have the closing of a switch activating a
relay which, in turn, switches on the current to a motor and causes the drill
to rotate (Figure 1.2). Another switch might be used to activate a relay and
switch on the current to a pneumatic or hydraulic valve which results in
pressure being switched to drive a piston in a cylinder and so results in the
workpiece being pushed into the required position. Such electrical circuits
would have to be specific to the automatic drilling machine. For
controlling the number of items packed into a packing case we could
likewise wire up electrical circuits involving sensors and motors.
However, the controller circuits we devised for these two situations would
be different. In the ‘traditional’ form of control system, the rules
governing the control system and when actions are initiated are
determined by the wiring. When the rules used for the control actions are
changed, the wiring has to be changed.

Motor

Relay to
switch on
large current
to motor

Low
voltage

Switch

Figure 1.2 A control circuit

1.1.1 Microprocessor controlled system

Instead of hardwiring each control circuit for each control situation we
can use the same basic system for all situations if we use a
microprocessor-based system and write a program to instruct the
microprocessor how to react to each input signal from, say, switches and
give the required outputs to, say, motors and valves. Thus we might have
a program of the form:

If switch A closes
Output to motor circuit
If switch B closes
Output to valve circuit

By changing the instructions in the program we can use the same
microprocessor system to control a wide variety of situations.

As an illustration, the modern domestic washing machine uses a
microprocessor system. Inputs to it arise from the dials used to select the
required wash cycle, a switch to determine that the machine door is
closed, a temperature sensor to determine the temperature of the water and

2 Programmable Logic Controllers

a switch to detect the level of the water. On the basis of these inputs the
microprocessor is programmed to give outputs which switch on the drum
motor and control its speed, open or close cold and hot water valves,
switch on the drain pump, control the water heater and control the door
lock so that the machine cannot be opened until the washing cycle is
completed.

1.1.2 The programmable logic controller

A programmable logic controller (PLC) is a special form of micro-
processor-based controller that uses a programmable memory to store
instructions and to implement functions such as logic, sequencing, timing,
counting and arithmetic in order to control machines and processes
(Figure 1.3) and are designed to be operated by engineers with perhaps a
limited knowledge of computers and computing languages. They are not
designed so that only computer programmers can set up or change the
programs. Thus, the designers of the PLC have pre-programmed it so that
the control program can be entered using a simple, rather intuitive, form
of language, see Chapter 4. The term logic is used because programming
is primarily concerned with implementing logic and switching operations,
e.g. if A or B occurs switch on C, if A and B occurs switch on D. Input
devices, e.g. sensors such as switches, and output devices in the system
being controlled, e.g. motors, valves, etc., are connected to the PLC. The
operator then enters a sequence of instructions, i.e. a program, into the
memory of the PLC. The controller then monitors the inputs and outputs
according to this program and carries out the control rules for which it has
been programmed.

Program

PLC

Inputs Outputs

Figure 1.3 A programmable logic controller

 PLCs have the great advantage that the same basic controller can be
used with a wide range of control systems. To modify a control system
and the rules that are to be used, all that is necessary is for an operator to
key in a different set of instructions. There is no need to rewire. The result
is a flexible, cost effective, system which can be used with control systems
which vary quite widely in their nature and complexity.

PLCs are similar to computers but whereas computers are optimised for
calculation and display tasks, PLCs are optimised for control tasks and the
industrial environment. Thus PLCs are:

1 Rugged and designed to withstand vibrations, temperature, humidity
and noise.

2 Have interfacing for inputs and outputs already inside the controller.

Programmable logic controllers 3

3 Are easily programmed and have an easily understood programming
language which is primarily concerned with logic and switching
operations.

The first PLC was developed in 1969. They are now widely used and
extend from small self-contained units for use with perhaps 20 digital
inputs/outputs to modular systems which can be used for large numbers of
inputs/outputs, handle digital or analogue inputs/outputs, and also carry
out proportional-integral-derivative control modes.

1.2 Hardware Typically a PLC system has the basic functional components of processor
unit, memory, power supply unit, input/output interface section,
communications interface and the programming device. Figure 1.4 shows
the basic arrangement.

Processor

Programming
device

Power supply

Input
inter-
face

Output
inter-
face

memory
Communications

interface
Program & data

Figure 1.4 The PLC system

1 The processor unit or central processing unit (CPU) is the unit
containing the microprocessor and this interprets the input signals and
carries out the control actions, according to the program stored in its
memory, communicating the decisions as action signals to the
outputs.

2 The power supply unit is needed to convert the mains a.c. voltage to
the low d.c. voltage (5 V) necessary for the processor and the circuits
in the input and output interface modules.

3 The programming device is used to enter the required program into
the memory of the processor. The program is developed in the device
and then transferred to the memory unit of the PLC.

4 The memory unit is where the program is stored that is to be used for
the control actions to be exercised by the microprocessor and data
stored from the input for processing and for the output for outputting.

5 The input and output sections are where the processor receives
information from external devices and communicates information to
external devices. The inputs might thus be from switches, as
illustrated in Figure 1.1(a) with the automatic drill, or other sensors
such as photo-electric cells, as in the counter mechanism in Figure
1.1(b), temperature sensors, or flow sensors, etc. The outputs might
be to motor starter coils, solenoid valves, etc. Input and output

4 Programmable Logic Controllers

interfaces are discussed in Chapter 2. Input and output devices can be
classified as giving signals which are discrete, digital or analogue
(Figure 1.5). Devices giving discrete or digital signals are ones where
the signals are either off or on. Thus a switch is a device giving a
discrete signal, either no voltage or a voltage. Digital devices can be
considered to be essentially discrete devices which give a sequence of
on−off signals. Analogue devices give signals whose size is
proportional to the size of the variable being monitored. For example,
a temperature sensor may give a voltage proportional to the
temperature.

Time
V

ol
ta

ge

(a) Time

V
ol

ta
ge

(b)

Time

V
ol

ta
ge

(c)

Figure 1.5 Signals: (a) discrete, (b) digital, (c) analogue

6 The communications interface is used to receive and transmit data on
communication networks from or to other remote PLCs (Figure 1.6).
It is concerned with such actions as device verification, data
acquisition, synchronisation between user applications and
connection management.

Supervisory
system

PLC 1 PLC 2

Communications
network

Machine/
plant

Machine/
plant

Figure 1.6 Basic communications model

1.3 Internal architecture Figure 1.7 shows the basic internal architecture of a PLC. It consists of a
central processing unit (CPU) containing the system microprocessor,
memory, and input/output circuitry. The CPU controls and processes all
the operations within the PLC. It is supplied with a clock with a frequency
of typically between 1 and 8 MHz. This frequency determines the
operating speed of the PLC and provides the timing and synchronisation
for all elements in the system. The information within the PLC is carried
by means of digital signals. The internal paths along which digital signals
flow are called buses. In the physical sense, a bus is just a number of

Programmable logic controllers 5

conductors along which electrical signals can flow. It might be tracks on a
printed circuit board or wires in a ribbon cable. The CPU uses the data
bus for sending data between the constituent elements, the address bus to
send the addresses of locations for accessing stored data and the control
bus for signals relating to internal control actions. The system bus is used
for communications between the input/output ports and the input/output
unit.

User
program
RAM

CPU
System
ROM

Data
RAM

B
at

te
ry

Input/
output
unitC

lo
ck

Address bus

Control bus

Data bus

Program panel

Latch

Output channels

Opto-
coupler

Buffer

Input channels

I/O system bus

Driver
interface

Drivers e.g. relays

Figure 1.7 Architecture of a PLC

1.3.1 The CPU

The internal structure of the CPU depends on the microprocessor
concerned. In general they have:

1 An arithmetic and logic unit (ALU) which is responsible for data
manipulation and carrying out arithmetic operations of addition and
subtraction and logic operations of AND, OR, NOT and
EXCLUSIVE-OR.

2 Memory, termed registers, located within the microprocessor and
used to store information involved in program execution.

3 A control unit which is used to control the timing of operations.

1.3.2 The buses

The buses are the paths used for communication within the PLC. The
information is transmitted in binary form, i.e. as a group of bits with a bit

6 Programmable Logic Controllers

being a binary digit of 1 or 0, i.e. on/off states. The term word is used for
the group of bits constituting some information. Thus an 8-bit word might
be the binary number 00100110. Each of the bits is communicated
simultaneously along its own parallel wire. The system has four buses:

1 The data bus carries the data used in the processing carried out by the
CPU. A microprocessor termed as being 8-bit has an internal data bus
which can handle 8-bit numbers. It can thus perform operations
between 8-bit numbers and deliver results as 8-bit values.

2 The address bus is used to carry the addresses of memory locations.
So that each word can be located in the memory, every memory
location is given a unique address. Just like houses in a town are each
given a distinct address so that they can be located, so each word
location is given an address so that data stored at a particular location
can be accessed by the CPU either to read data located there or put,
i.e. write, data there. It is the address bus which carries the
information indicating which address is to be accessed. If the address
bus consists of 8 lines, the number of 8-bit words, and hence number
of distinct addresses, is 28 = 256. With 16 address lines, 65 536
addresses are possible.

3 The control bus carries the signals used by the CPU for control, e.g.
to inform memory devices whether they are to receive data from an
input or output data and to carry timing signals used to synchronise
actions.

4 The system bus is used for communications between the input/output
ports and the input/output unit.

1.3.3 Memory

There are several memory elements in a PLC system:

1 System read-only-memory (ROM) to give permanent storage for the
operating system and fixed data used by the CPU.

2 Random-access memory (RAM) for the user’s program.
3 Random-access memory (RAM) for data. This is where information is

stored on the status of input and output devices and the values of
timers and counters and other internal devices. The data RAM is
sometimes referred to as a data table or register table. Part of this
memory, i.e. a block of addresses, will be set aside for input and
output addresses and the states of those inputs and outputs. Part will
be set aside for preset data and part for storing counter values, timer
values, etc.

4 Possibly, as a bolt-on extra module, erasable and programmable
read-only-memory (EPROM) for ROMs that can be programmed and
then the program made permanent.

The programs and data in RAM can be changed by the user. All PLCs
will have some amount of RAM to store programs that have been
developed by the user and program data. However, to prevent the loss of
programs when the power supply is switched off, a battery is used in the
PLC to maintain the RAM contents for a period of time. After a program

Programmable logic controllers 7

has been developed in RAM it may be loaded into an EPROM memory
chip, often a bolt-on module to the PLC, and so made permanent. In
addition there are temporary buffer stores for the input/output channels.

The storage capacity of a memory unit is determined by the number of
binary words that it can store. Thus, if a memory size is 256 words then it
can store 256 × 8 = 2048 bits if 8-bit words are used and 256 × 16 = 4096
bits if 16-bit words are used. Memory sizes are often specified in terms of
the number of storage locations available with 1K representing the
number 210, i.e. 1024. Manufacturers supply memory chips with the
storage locations grouped in groups of 1, 4 and 8 bits. A 4K % 1 memory
has 4 % 1 % 1024 bit locations. A 4K % 8 memory has 4 % 8 % 1024 bit
locations. The term byte is used for a word of length 8 bits. Thus the 4K %
8 memory can store 4096 bytes. With a 16-bit address bus we can have 216

different addresses and so, with 8-bit words stored at each address, we can
have 216 % 8 storage locations and so use a memory of size 216 % 8/210 =
64K % 8 which we might be as four 16K % 8 bit memory chips.

1.3.4 Input/output unit

The input/output unit provides the interface between the system and the
outside world, allowing for connections to be made through input/output
channels to input devices such as sensors and output devices such as
motors and solenoids. It is also through the input/output unit that
programs are entered from a program panel. Every input/output point has
a unique address which can be used by the CPU. It is like a row of houses
along a road, number 10 might be the ‘house’ to be used for an input from
a particular sensor while number ‘45’ might be the ‘house’ to be used for
the output to a particular motor.

The input/output channels provide isolation and signal conditioning
functions so that sensors and actuators can often be directly connected to
them without the need for other circuitry. Electrical isolation from the
external world is usually by means of optoisolators (the term optocoupler
is also often used). Figure 1.8 shows the principle of an optoisolator.
When a digital pulse passes through the light-emitting diode, a pulse of
infrared radiation is produced. This pulse is detected by the
phototransistor and gives rise to a voltage in that circuit. The gap between
the light-emitting diode and the phototransistor gives electrical isolation
but the arrangement still allows for a digital pulse in one circuit to give
rise to a digital pulse in another circuit.

Photo-
transistor

Light-
emitting
diode

Infrared radiation

Figure 1.8 Optoisolator

The digital signal that is generally compatible with the microprocessor
in the PLC is 5 V d.c. However, signal conditioning in the input channel,

8 Programmable Logic Controllers

with isolation, enables a wide range of input signals to be supplied to it
(see Chapter 3 for more details). A range of inputs might be available with
a larger PLC, e.g. 5 V, 24 V, 110 V and 240 V digital/discrete, i.e.
on−off, signals (Figure 1.9). A small PLC is likely to have just one form
of input, e.g. 24 V.

Input
channel

5 V

24 V

110 V

240 V

5 VInputs:
digital signal levels

To input/
output unit

Digital
signal level

Figure 1.9 Input levels

The output from the input/output unit will be digital with a level of 5 V.
However, after signal conditioning with relays, transistors or triacs, the
output from the output channel might be a 24 V, 100 mA switching signal,
a d.c. voltage of 110 V, 1 A or perhaps 240 V, 1 A a.c., or 240 V, 2 A
a.c., from a triac output channel (Figure 1.10). With a small PLC, all the
outputs might be of one type, e.g. 240 V a.c., 1 A. With modular PLCs,
however, a range of outputs can be accommodated by selection of the
modules to be used.

channel

24 V, 100 mA

110 V, 1 A, d.c.

240 V, 1 A, a.c.

240 V, 2 A, a.c.
Switching

OutputsOutput
From
input/
output
unit

5 V
digital

Figure 1.10 Output levels

Outputs are specified as being of relay type, transistor type or triac type
(see Chapter 3 for more details):

1 With the relay type, the signal from the PLC output is used to operate
a relay and is able to switch currents of the order of a few amperes in
an external circuit. The relay not only allows small currents to switch
much larger currents but also isolates the PLC from the external
circuit. Relays are, however, relatively slow to operate. Relay outputs
are suitable for a.c. and d.c. switching. They can withstand high surge
currents and voltage transients.

2 The transistor type of output uses a transistor to switch current
through the external circuit. This gives a considerably faster
switching action. It is, however, strictly for d.c. switching and is
destroyed by overcurrent and high reverse voltage. As a protection,
either a fuse or built-in electronic protection are used. Optoisolators
are used to provide isolation.

Programmable logic controllers 9

3 Triac outputs, with optoisolators for isolation, can be used to control
external loads which are connected to the a.c. power supply. It is
strictly for a.c. operation and is very easily destroyed by overcurrent.
Fuses are virtually always included to protect such outputs.

1.3.5 Sourcing and sinking

The terms sourcing and sinking are used to describe the way in which d.c.
devices are connected to a PLC. With sourcing, using the conventional
current flow direction as from positive to negative, an input device
receives current from the input module, i.e. the input module is the source
of the current (Figure 1.11(a)). If the current flows from the output
module to an output load then the output module is referred to as sourcing
(Figure 1.11(b)). With sinking, using the conventional current flow
direction as from positive to negative, an input device supplies current to
the input module, i.e. the input module is the sink for the current (Figure
1.12(a)). If the current flows to the output module from an output load
then the output module is referred to as sinking (Figure 1.12(b)).

+

–
Input
device

Input
module

(a)

–

Input
module

(b) Output load

Figure 1.11 Sourcing

+

–

Input
device

Input
module

(a)

Input
module

(b) Output load

+

Figure 1.12 Sinking

1.4 PLC systems There are two common types of mechanical design for PLC systems; a
single box, and the modular/rack types. The single box type (or, as
sometimes termed, brick) is commonly used for small programmable
controllers and is supplied as an integral compact package complete with
power supply, processor, memory, and input/output units. Typically such
a PLC might have 6, 8, 12 or 24 inputs and 4, 8 or 16 outputs and a
memory which can store some 300 to 1000 instructions. Figure 1.13
shows the Mitsubishi MELSEC FX3U compact, i.e. brick, PLC and Table
1.1 gives details of models in that Mitsubishi range.

10 Programmable Logic Controllers

Figure 1.13 Mitsubishi Compact PLC – MELSEC FX3U (By permission
of Mitsubishi Electric Europe)

Table 1.1 Mitsubishi Compact PLC – MELSEC FX3U Product range (By permission of Mitsubishi Electric
Europe)

285 % 90 % 86220 % 90 % 86182 % 90 % 86150 % 140 % 86130 % 90 % 86Dimensions in mm
(W % H % D)

64k steps (standard), FLROM cassettes (optional) User memory

0.065 µsProgram cycle period
per logical instruction

RelayDigital outputs
403224168Outputs

403224168Inputs

100-240 V ACPower supply

FX3U-80 MRFX3U-64 MRFX3U-48 MRFX3U-32 MRFX3U-16 MRType

Some brick systems have the capacity to be extended to cope with more
inputs and outputs by linking input/output boxes to them. Figure 1.14
shows such an arrangement with the OMRON CPM1A PLC. The base
input/output brick, depending on the model concerned, has 10, 20, 30 or
40 inputs/outputs (I/O). The 10 I/O brick has 6 d.c. input points and four
outputs, the 20 I/O brick has 12 d.c. input points and 8 outputs, the 30 I/O
brick has 18 d.c. input points and 12 outputs and the 40 I/O brick has 24
d.c. input points and 16 outputs. However, the 30 and 40 I/O models can
be extended to a maximum of 100 inputs/outputs by linking expansion
units to the original brick. For example a 20 I/O expansion module might
be added, it having 12 inputs and 8 outputs, the outputs being relays,
sinking transistors or sourcing transistors. Up to three expansion modules
can be added. The outputs can be relay or transistor outputs.

Programmable logic controllers 11

Figure 1.14 Basic configuration of the OMRON CPM1A PLC (By permission of Omron Electronics LLC)

Systems with larger numbers of inputs and outputs are likely to be
modular and designed to fit in racks. The modular type consists of
separate modules for power supply, processor, etc., which are often
mounted on rails within a metal cabinet. The rack type can be used for all
sizes of programmable controllers and has the various functional units
packaged in individual modules which can be plugged into sockets in a
base rack. The mix of modules required for a particular purpose is
decided by the user and the appropriate ones then plugged into the rack.
Thus it is comparatively easy to expand the number of input/output (I/O)
connections by just adding more input/output modules or to expand the
memory by adding more memory units.

An example of such a modular system is provided by the Allen-Bradley
PLC-5 PLC of Rockwell automation (Figure 1.15). PLC-5 processors are
available in a range of I/O capacity and memory size, and can be
configured for a variety of communication networks. They are single-slot
modules that are placed in the left-most slot of a 1771 I/O chassis. Some
1771 I/O chassis are built for back-panel mounting and some are built for
rack mounting and are available in sizes of 4, 8, 12, or 16 I/O module
slots. The 1771 I/O modules are available in densities of 8, 16, or 32 I/O
per module. A PLC-5 processor can communicate with I/O across a
DeviceNet or Universal Remote I/O link.

A large selection of 1771 input/output modules, both digital and
analogue, are available for use in the local chassis, and an even larger
selection available for use at locations remote from the processor. Digital
I/O modules have digital I/O circuits that interface to on/off sensors such
as pushbutton and limit switches; and on/off actuators such as motor
starters, pilot lights, and annunciators. Analogue I/O modules perform the
required A/D and D/A conversions using up to 16-bit resolution.
Analogue I/O can be user-configured for the desired fault-response state
in the event that I/O communication is disrupted. This feature provides a
safe reaction/response in case of a fault, limits the extent of faults, and
provides a predictable fault response. 1771 I/O modules include optical
coupling and filter circuitry for signal noise reduction.

12 Programmable Logic Controllers

AC and DC power supply models: Expansion I/O Unit Expansion I/O unit Expansion I/O Unit
30-point CPU and 40-point CPU
only may be expanded up to a
maximum of 3 Units.

Peripheral port Connecting cable

CPM1-CIF01/CIF11 Serial
Communications Adapter

The basic form of a rack into which
components of a PLC system can be slotted

Possible elements to slot into the rack system

Power supply

Communication module for I/O modules to provide the meansProcessor
module

I/O adapter module for connecting
the backplane to a processor at
another location

communication to computers
I/O adapters and other PLC

processors

to convert input signals to backplane
levels and backplane signals to
output circuit levels

for the system

A possible assembled system

Power

supply

Figure 1.15 A possible arrangement of a rack system, e.g. the Rockwell Automation , Allen-Bradley PLC-5

Digital I/O modules cover electrical ranges from 5…276V a.c. or d.c.
and relay contact output modules are available for ranges from 0…276 V
ac or 0…175 V dc. A range of analogue signal levels can be
accomodated, including standard analogue inputs and outputs and direct
thermocouple and RTD temperature inputs.

Programmable logic controllers 13

1.4.1 Programming PLCs

Programming devices can be a hand-held device, a desktop console or a
computer. Only when the program has been designed on the programming
device and is ready is it transferred to the memory unit of the PLC.

1 Hand-held programming devices will normally contain enough
memory to allow the unit to retain programs while being carried from
one place to another.

2 Desktop consoles are likely to have a visual display unit with a full
keyboard and screen display.

3 Personal computers are widely configured as program development
work-stations. Some PLCs only require the computer to have
appropriate software; others require special communication cards to
interface with the PLC. A major advantage of using a computer is that
the program can be stored on the hard disk or a CD and copies easily
made.

PLC manufacturers have programming software for their PLCs. For
example, Mitsubishi have MELSOFT. Their GX Developer supports all
MELSEC controllers from the compact PLCs of the MELSEC FX series
to the modular PLCs including MELSEC System Q and uses a Windows
based environment. It supports the programming methods (see Chapter 4)
of instruction list (IL), ladder diagram (LD) and sequential function chart
(SFC) languages. You can switch back and forth between IL and LD at
will while you are working. You can program your own function blocks
and a wide range of utilities are available for configuring special function
modules for the MELSEC System Q – there is no need to program special
function modules, you just configure them. The package includes
powerful editors and diagnostics functions for configuring MELSEC
networks and hardware, and extensive testing and monitoring functions to
help get applications up and running quickly and efficiently. It offers
off-line simulation for all PLC types and thus enables simulation of all
devices and application responses for realistic testing.

As another illustration, Siemens have SIMATIC STEP 7. This fully
complies with the international standard IEC 61131-3 for PLC
programming languages. With STEP 7, programmers can select between
different programming languages. Besides ladder diagram (LAD) and
function block diagram (FBD), STEP 7 Basis also includes the Instruction
List (STL) programming language. Other additional options are available
for IEC 61131-3 programming languages such as Structured Text (ST)
called SIMATIC S7-SCL or a Sequential Function Chart (SFC) called
SIMATIC S7-Graph which provides an efficient way to describe
sequential control systems graphically. Features of the whole engineering
system include system diagnostic capabilities, process diagnostic tools,
PLC simulation, remote maintenance, and plant documentation.
S7-PLCSIM is an optional package for STEP 7 that allows simulation of a
SIMATIC S7 control platform and testing of a user program on a PC,
enabling testing and refining prior to physical hardware installation. By
testing early in a project’s development, overall project quality can be
improved. Installation and commissioning can thus be quicker and less

14 Programmable Logic Controllers

expensive as program faults can be detected and corrected early on during
development.

Likewise, Rockell Automation have RSLogix for the Allen-Bradley
PLC-5 family of PLCs, OMRON has CX-One and Telemecanique have
ProWorx 32 for its Modicon range of PLCs.

Problems Questions 1 to 6 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

1 The term PLC stands for:

A Personal logic computer.
B Programmable local computer.
C Personal logic controller.
D Programmable logic controller.

2 Decide whether each of these statements is True (T) or False (F).

A transistor output channel from a PLC:
(i) Is used for only d.c. switching.
(ii) Is isolated from the output load by an optocoupler.
Which option BEST describes the two statements?

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

3 Decide whether each of these statements is True (T) or False (F).

A relay output channel from a PLC:
(i) Is used for only d.c. switching.
(ii) Can withstand transient overloads.
Which option BEST describes the two statements?

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

4 Decide whether each of these statements is True (T) or False (F).

A triac output channel from a PLC:
(i) Is used for only a.c. output loads.
(ii) Is isolated from the output load by an optocoupler.
Which option BEST describes the two statements?

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Programmable logic controllers 15

5 Which of the following is most likely to be the voltage level used
internally in a PLC, excluding the voltage levels that might occur
during conditioning in output/input channels:

A 5 V
B 24 V
C 110 V
D 240 V

6 Decide whether each of these statements is True (T) or False (F).

The reason for including optocouplers on input/output units is to:
(i) Provide a fuse mechanism which breaks the circuit if high

voltages or currents occur.
(ii) Isolate the CPU from high voltages or currents.
Which option BEST describes the two statements?

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

7 Draw a block diagram showing in very general terms the main units

in a PLC.
8 Draw a block diagram of a PLC showing the main functional items

and how buses link them, explaining the functions of each block.

9 State the characteristics of the relay, transistor and triac types of PLC
output channels.

10 How many bits can a 2K memory store?

16 Programmable Logic Controllers

2 Input−−−−output devices

This chapter is a brief consideration of typical input and output devices
used with PLCs. The input devices considered include digital and
analogue devices such as mechanical switches for position detection,
proximity switches, photoelectric switches, encoders, temperature and
pressure switches, potentiometers, linear variable differential
transformers, strain gauges, thermistors, thermotransistors and
thermocouples. Output devices considered include relays, contactors,
solenoid valves and motors.

2.1 Input devices The term sensor is used for an input device that provides a usable output
in response to a specified physical input. For example, a thermocouple is a
sensor which converts a temperature difference into an electrical output.
The term transducer is generally used for a device that converts a signal
from one form to a different physical form. Thus sensors are often
transducers, but also other devices can be transducers, e.g. a motor which
converts an electrical input into rotation.

Sensors which give digital/discrete, i.e. on−off, outputs can be easily
connected to the input ports of PLCs. Sensors which give analogue signals
have to be converted to digital signals before inputting them to PLC ports.
The following are some of the more common terms used to define the
performance of sensors.

1 Accuracy is the extent to which the value indicated by a measurement

system or element might be wrong. For example, a temperature
sensor might have an accuracy of ±0.1oC. The error of a
measurement is the difference between the result of the measurement
and the true value of the quantity being measured errors can arise in a
number of ways, e.g. the term non-linearity error is used for the error
that occurs as a result of assuming a linear relationship between the
input and output over the working range, i.e. a graph of output plotted
against input is assumed to give a straight line. Few systems or
elements, however, have a truly linear relationship and thus errors
occur as a result of the assumption of linearity (Figure 2.1(a)). The
term hysteresis error (Figure 2.1(b)) is used for the difference in
outputs given from the same value of quantity being measured
according to whether that value has been reached by a continuously
increasing change or a continuously decreasing change. Thus, you
might obtain a different value from a thermometer used to measure
the same temperature of a liquid if it is reached by the liquid warming
up to the measured temperature or it is reached by the liquid cooling
down to the measured temperature.

Assumed
relationship

Actual
relationship

Non-linearity
error

True value

M
ea

su
re

d
va

lu
e

(a) (b)

Increasing

Decreasing

Value being measured

Hysteresis error

S
en

so
r o

ut
pu

t

Figure 2.1 Some sources of error: (a) non-linearity, (b) hysteresis

2 The range of variable of system is the limits between which the input
can vary. For example, a resistance temperature sensor might be
quoted as having a range of −200 to +800oC.

3 When the input value to a sensor changes, it will take some time to
reach and settle down to the steady-state value (Figure 2.2). The
response time is the time which elapses after the input to a system or
element is abruptly increased from zero to a constant value up to the
point at which the system or element gives an output corresponding to
some specified percentage, e.g. 95%, of the value of the input. The
rise time is the time taken for the output to rise to some specified
percentage of the steady-state output. Often the rise time refers to the
time taken for the output to rise from 10% of the steady-state value to
90 or 95% of the steady-state value. The settling time is the time
taken for the output to settle to within some percentage, e.g. 2%, of
the steady-state value.

Steady-state
reading

0 Time

R
es

po
ns

e

Figure 2.2 Response of a sensor or measurement system to a sudden
input. You can easily see such a response when the current in an
electrical circuit is suddenly switched on and an ammeter reading
observed.

4 The sensitivity indicates how much the output of an instrument
system or system element changes when the quantity being measured
changes by a given amount, i.e. the ratio ouput/input. For example, a
thermocouple might have a sensitivity of 20 µV/oC and so give an
output of 20 µV for each 1ºC change in temperature.

18 Programmable Logic Controllers

5 The stability of a system is its ability to give the same output when
used to measure a constant input over a period of time. The term drift
is often used to describe the change in output that occurs over time.
The drift may be expressed as a percentage of the full range output.
The term zero drift is used for the changes that occur in output when
there is zero input.

6 The term repeatability is used for the ability of a measurement system
to give the same value for repeated measurements of the same value
of a variable. Common cause of lack of repeatability are random
fluctuations in the environment, e.g. changes in temperature and
humidity. The error arising from repeatability is usually expressed as
a percentage of the full range output. For example, a pressure sensor
might be quoted as having a repeatability of ±0.1% of full range.
Thus with a range of 20 kPa this would be an error of ±20 Pa.

7 The reliability of a measurement system, or element in such a system,
is defined as being the probability that it will operate to an agreed
level of performance, for a specified period, subject to specified
environmental conditions. The agreed level of performance might be
that the measurement system gives a particular accuracy.

The following are examples of some of the commonly used PLC input
devices and their sensors.

2.1.1 Mechanical switches

A mechanical switch generates an on−off signal or signals as a result of
some mechanical input causing the switch to open or close. Such a switch
might be used to indicate the presence of a workpiece on a machining
table, the workpiece pressing against the switch and so closing it. The
absence of the workpiece is indicated by the switch being open and its
presence by it being closed. Thus, with the arrangement shown in Figure
2.3(a), the input signals to a single input channel of the PLC are thus the
logic levels:

Workpiece not present 0
Workpiece present 1

The 1 level might correspond to a 24 V d.c. input, the 0 to a 0 V input.

PLC

Input
channel

Supply
voltage

(a)

PLC

Input
channel

Supply voltage

(b)

Figure 2.3 Switch sensors

With the arrangement shown in Figure 2.3(b), when the switch is open
the supply voltage is applied to the PLC input, when the switch is closed
the input voltage drops to a low value. The logic levels are thus:

Input–output devices 19

Workpiece not present 1
Workpiece present 0

Switches are available with normally open (NO) or normally closed
(NC) contacts or can be configured as either by choice of the relevant
contacts. An NO switch has its contacts open in the absence of a
mechanical input and the mechanical input is used to close the switch. An
NC switch has its contacts closed in the absence of a mechanical input and
the mechanical input is used to open the switch.

The term limit switch is used for a switch which is used to detect the
presence or passage of a moving part. It can be actuated by a cam, roller
or lever. Figure 2.4 shows some examples. The cam (Figure 2.4(c)) can be
rotated at a constant rate and so switch the switch on and off for particular
time intervals.

Button to
operate
switch(a)

Lever pushed down by
 contact

Button to
operate
switch

(b)

Roller pushed down
by contact Button to

operate
switch

(c)

Rotating cam

Figure 2.4 Limit switches actuated by: (a) lever, (b) roller, (c) cam

2.1.2 Proximity switches

Proximity switches are used to detect the presence of an item without
making contact with it. There are a number of forms of such switches,
some being only suitable for metallic objects.

The eddy current type of proximity switch has a coil which is energised
by a constant alternating current and produces a constant alternating
magnetic field. When a metallic object is close to it, eddy currents are
induced in it (Figure 2.5(a)). The magnetic field due to these eddy
currents induces an e.m.f. back in the coil with the result that the voltage
amplitude needed to maintain the constant coil current changes. The
voltage amplitude is thus a measure of the proximity of metallic objects.
The voltage can be used to activate an electronic switch circuit, basically
a transistor which has its output switched from low to high by the voltage
change, and so give an on−off device. The range over which such objects
can be detected is typically about 0.5 to 20 mm.

Constant
alternating
current Metal object

Eddy current
Alternating
magnetic field(a)

Magnet

Envelope Contacts

Springy
strips

(b)

Sensor head

Object

The two plates
of the capacitor(c)

Figure 2.5 Proximity switches: (a) eddy current, (b) reed switch, (c) capacitive

20 Programmable Logic Controllers

Another type is the reed switch. This consists of two overlapping, but
not touching, strips of a springy ferromagnetic material sealed in a glass
or plastic envelope (Figure 2.5(b)). When a magnet or current-carrying
coil is brought close to the switch, the strips become magnetised and
attract each other. The contacts then close. The magnet closes the contacts
when it is typically about 1 mm from the switch. Such a switch is widely
used with burglar alarms to detect when a door is opened; the magnet
being in the door and the reed switch in the frame of the door. When the
door opens the switch opens.

A proximity switch that can be used with metallic and non-metallic
objects is the capacitive proximity switch. The capacitance of a pair of
plates separated by some distance depends on the separation, the smaller
the separation the higher the capacitance. The sensor of the capacitive
proximity switch is just one of the plates of the capacitor, the other plate
being the metal object whose proximity is to be detected (Figure 2.5(c)).
Thus the proximity of the object is detected by a change in capacitance.
The sensor can also be used to detect non-metallic objects since the
capacitance of a capacitor depends on the dielectric between its plates. In
this case the plates are the sensor and the earth and the non-metallic object
is the dielectric. The change in capacitance can be used to activate an
electronic switch circuit and so give an on−off device. Capacitive
proximity switches can be used to detect objects when they are typically
between 4 and 60 mm from the sensor head.

Another type, the inductive proximity switch, consists of a coil wound
round a ferrous metallic core. When one end of this core is placed near to
a ferrous metal object there is effectively a change in the amount of
metallic core associated with the coil and so a change in its inductance.
This change in inductance can be monitored using a resonant circuit, the
presence of the ferrous metal object thus changing the current in that
circuit. The current can be used to activate an electronic switch circuit and
so give an on−off device. The range over which such objects can be
detected is typically about 2 to 15 mm.

2.1.3 Photoelectric sensors and switches

Photoelectric switch devices can either operate as transmissive types
where the object being detected breaks a beam of light, usually infrared
radiation, and stops it reaching the detector (Figure 2.6(a)) or reflective
types where the object being detected reflects a beam of light onto the
detector (Figure 2.6(b)). In both types the radiation emitter is generally a
light-emitting diode (LED). The radiation detector might be a photo-
transistor, often a pair of transistors, known as a Darlington pair. The
Darlington pair increases the sensitivity. Depending on the circuit used,
the output can be made to switch to either high or low when light strikes
the transistor. Such sensors are supplied as packages for sensing the
presence of objects at close range, typically at less than about 5 mm.
Figure 2.6(c) shows a U-shaped form where the object breaks the light
beam.

Another possibility is a photodiode. Depending on the circuit used, the
output can be made to switch to either high or low when light strikes the
diode. Yet another possibility is a photoconductive cell. The resistance of

Input–output devices 21

the photoconductive cell, often cadmium sulphide, depends on the
intensity of the light falling on it.

Photodetector
(a)

Light-emitting diode

Object

Photodetector

Light-emitting diode

(b)

Object

Light source

Photodetector

Pins
for
electrical
connection

(c)

Figure 2.6 Photoelectric sensors

With the above sensors, light is converted to a current, voltage or
resistance change. If the output is to be used as a measure of the intensity
of the light, rather than just the presence or absence of some object in the
light path, the signal will need amplification and then conversion from
analogue to digital by an analogue-to-digital converter. An alternative to
this is to use a light-to-frequency converter, the light then being converted
to a sequence of pulses with the frequency of the pulses being a measure
of the light intensity. Integrated circuit sensors are available, e.g. the
Texas Instrument TSL220, incorporating the light sensor and the voltage-
to-frequency converter (Figure 2.7).

2.1.4 Encoders

The term encoder is used for a device that provides a digital output as a
result of angular or linear displacement. An increment encoder detects
changes in angular or linear displacement from some datum position,
while an absolute encoder gives the actual angular or linear position.

Figure 2.8 shows the basic form of an incremental encoder for the
measurement of angular displacement. A beam of light, from perhaps a
light-emitting diode (LED), passes through slots in a disc and is detected
by a light sensor, e.g. a photodiode or phototransistor. When the disc
rotates, the light beam is alternately transmitted and stopped and so a
pulsed output is produced from the light sensor. The number of pulses is
proportional to the angle through which the disc has rotated, the resolution
being proportional to the number of slots on a disc. With 60 slots then,
since one revolution is a rotation of 360o, a movement from one slot to the
next is a rotation of 6o. By using offset slots it is possible to have over a
thousand slots for one revolution and so much higher resolution.

22 Programmable Logic Controllers

+5 V

Output
of pulses

100 pF

4 3

2

6 5

Light

Figure 2.7 TSL220

Light

Detector

Rotating discFixed
disc

Apertures

Single
aperture

Figure 2.8 Basic form of an incremental encoder

The absolute encoder differs from the incremental encoder in having a
pattern of slots which uniquely defines each angular position. With the
form shown in Figure 2.9, the rotating disc has four concentric circles of
slots and four sensors to detect the light pulses. The slots are arranged in
such a way that the sequential output from the sensors is a number in the
binary code, each such number corresponding to a particular angular
position. With 4 tracks there will be 4 bits and so the number of positions
that can be detected is 24 = 16, i.e. a resolution of 360/16 = 22.5o. Typical
encoders tend to have up to 10 or 12 tracks. The number of bits in the
binary number will be equal to the number of tracks. Thus with 10 tracks
there will be 10 bits and so the number of positions that can be detected is
210, i.e. 1024, a resolution of 360/1024 = 0.35 o.

0001

0010

0011

0100

0101

0110

01111000

1001

1010

1011

1100

1101

1110
1111 0000 Light

Bank of
four detectors

Apertures through
which light
can pass

Each arc
has a unique
set of apertures

The output
from the 4
detectors
depends on
the position
of the disc

Figure 2.9 The rotating wheel of the absolute encoder. Note that though
the normal form of binary code is shown in the figure, in practice a
modified form of binary code called the Gray code is generally used. This
code, unlike normal binary, has only one bit changing in moving from
one number to the next. Thus we have the sequence 0000, 0001, 0011,
0010, 0011, 0111, 0101, 0100, 1100, 1101, 1111.

Input–output devices 23

2.1.5 Temperature sensors

A simple form of temperature sensor which can be used to provide an
on–off signal when a particular temperature is reached is the bimetal
element. This consists of two strips of different metals, e.g. brass and iron,
bonded together (Figure 2.10). The two metals have different coefficients
of expansion. Thus when the temperature of the bimetal strip increases the
strip curves, in order that one of the metals can expand more than the
other. The higher expansion metal is on the outside of the curve. As the
strip cools, the bending effect is reversed. This movement of the strip can
be used to make or break electrical contacts and hence, at some particular
temperature, give an on−off current in an electrical circuit. The device is
not very accurate but is commonly used in domestic central heating
thermostats.

Brass

Iron

Electrical circuit

Contacts

Figure 2.10 Bimetallic strip

Another form of temperature sensor is the resistive temperature
detector (RTD). The electrical resistance of metals or semiconductors
changes with temperature. In the case of a metal, the ones most commonly
used are platinum, nickel or nickel alloys, the resistance of which varies in
a linear manner with temperature over a wide range of temperatures,
though the actual change in resistance per degree is fairly small.
Semiconductors, such as thermistors, show very large changes in
resistance with temperature. The change, however, is non-linear. Such
detectors can be used as one arm of a Wheatstone bridge and the output of
the bridge taken as a measure of the temperature (Figure 2.11(a)). Another
possibility is to use a potential divider circuit with the change in resistance
of the thermistor changing the voltage drop across a resistor (Figure
2.11(b)). The output from either type of circuit is an analogue signal
which is a measure of the temperature.

12 V

RTD

Output

(a)

RTD

Output

(b)

Fixed

resistor

+V

 Figure 2.11 (a) Wheatstone bridge, (b) potential divider circuits

Thermodiodes and thermotransistors are used as temperature sensors
since the rate at which electrons and holes diffuse across semiconductor

24 Programmable Logic Controllers

junctions is affected by the temperature. Integrated circuits are available
which combine such a temperature-sensitive element with the relevant
circuitry to give an output voltage related to temperature. A widely used
integrated package is the LM35 which gives an output of 10 mV/oC when
the supply voltage is +5 V (Figure 2.12(a)).

A digital temperature switch can be produced with an analogue sensor
by feeding the analogue output into a comparator amplifier which
compares it with some set value, producing an output giving a logic 1
signal when the temperature voltage input is equal to or greater than the
set point and otherwise an output which gives a logic 0 signal. Integrated
circuits, e.g. LM3911N, are available, combining a thermotransistor
temperature-sensitive element with an operational amplifier. When the
connections to the chip are so made that the amplifier is connected as a
comparator (Figure 2.12(b)), then the output will switch as the
temperature traverses the set point and so directly give an on−off
temperature controller.

LM35

Supply voltage

Ground

Voltage out

(a)
3

4

2

1
To set
temperature

Output

+15 V

Pins 5 to 8
not used

10 k
50 k 100 nF

7.5 k

✡

✡

✡

(b)

Figure 2.12 (a) LM35, (b) LM3911N circuit for on–off control

Another commonly used temperature sensor is the thermocouple. The
thermocouple consists essentially of two dissimilar wires A and B forming
a junction (Figure 2.13). When the junction is heated so that it is at a
higher temperature than the other junctions in the circuit, which remain at
a constant cold temperature, an e.m.f. is produced which is related to the
hot junction temperature. The voltage produced by a thermocouple is
small and needs amplification before it can be fed to the analogue channel
input of a PLC. There is also circuitry required to compensate for the
temperature of the cold junction since its temperature affects the value of
the e.m.f. given by the hot junction. The amplification and compensation,
together with filters to reduce the effect of interference from the 50 Hz
mains supply, are often combined in a signal processing unit.

Metal
A

Metal
B

Copper

Copper

Signal
processing

Hot
junction

Cold
junction

Figure 2.13 Thermocouple

Input–output devices 25

2.1.6 Position/displacement sensors

The term position sensor is used for a sensor that gives a measure of the
distance between a reference point and the current location of the target, a
displacement sensor being one that gives a measure of the distance
between the present position of the target and the previously recorded
position.

Resistive linear and angular position sensors are widely used and
relatively inexpensive. These are also called linear and rotary
potentiometers. A d.c. voltage is provided across the full length of the
track and the voltage signal between a contact which slides over the
resistance track and one end of the track is related to the position of the
sliding contact between the ends of the potentiometer resistance track
(Figure 2.14). The potentiometer thus provides an analogue linear or
angular position sensor.

Another form of displacement sensor is the linear variable differential
transformer (LVDT), this giving a voltage output related to the position of
a ferrous rod. The LVDT consists of three symmetrically placed coils
through which the ferrous rod moves (Figure 2.15).

Constant
a.c. voltage

Output
voltage

Primary

Secondary 1

Secondary 2

Ferrous rod

Displacement

Constant
a.c.
voltage

v

v

1

2

v – v1 2

Figure 2.15 LVDT

When an alternating current is applied to the primary coil, alternating
voltages, v1 and v2, are induced in the two secondary coils. When the
ferrous rod core is centred between the two secondary coils, the voltages
induced in them are equal. The outputs from the two secondary coils are
connected so that their combined output is the difference between the two
voltages, i.e. v1 – v2. With the rod central, the two alternating voltages are
equal and so there is no output voltage. When the rod is displaced from its
central position there is more of the rod in one secondary coil than the
other. As a result the size of the alternating voltage induced in one coil is
greater than that in the other. The difference between the two secondary
coil voltages, i.e. the output, thus depends on the position of the ferrous
rod. The output from the LVDT is an alternating voltage. This is usually
converted to an analogue d.c. voltage and amplified before inputting to
the analogue channel of a PLC.

Capacitive displacement sensors are essentially just parallel plate
capacitors. The capacitance will change if the plate separation changes,
the area of overlap of the plates changes, or a slab of dielectric is moved
into or out of the plates (Figure 2.16). All these methods can be used to
give linear displacement sensors. The change in capacitance has to be
converted into a suitable electrical signal by signal conditioning.

26 Programmable Logic Controllers

+V

0

Output
voltage

Figure 2.14 Potentiometer

Figure 2.16 Capacitor sensors:

(a) (b) (c)

(a) changing the plate separation,
(b) changing the area of overlap,
(c) moving the dielectric

2.1.7 Strain gauges

When a wire or strip of semiconductor is stretched, its resistance changes.
The fractional change in resistance is proportional to the fractional change
in length, i.e. strain.

✁R
R = G % strain

where ∆R is the change in resistance for a wire of resistance R and G is a
constant called the gauge factor. For metals the gauge factor is about 2
and for semiconductors about 100. Metal resistance strain gauges are in
the form of a flat coil in order to get a reasonable length of metal in a
small area. Often they are etched from metal foil (Figure 2.17(a)) and
attached to a backing of thin plastic film so that they can be stuck on
surfaces, like postage stamps on an envelope. The change in resistance of
the strain gauge, when subject to strain, is usually converted into a voltage
signal by the use of a Wheatstone bridge (Figure 2.17(b)). A problem that
occurs is that the resistance of the strain gauge also changes with
temperature and thus some means of temperature compensation has to be
used so that the output of the bridge is only a function of the strain. This
can be achieved by placing a dummy strain gauge in an opposite arm of
the bridge, that gauge not being subject to any strain but only the
temperature (Figure 2.18).

(a) (b)

d.c.
voltage

Output
voltage

Strain
gauge

Dummy
gauge

Figure 2.17 (a) Metal foil strain gauge, (b) Wheatstone bridge circuit
with compensation for temperature changes

An alternative which is widely used is to use four active gauges as the
arms of the bridge and arrange it so that one pair of opposite gauges are in
tension and the other pair in compression. This not only gives temperature
compensation but also gives a much larger output change when strain is
applied. The following paragraph illustrates systems employing such a
form of compensation.

By attaching strain gauges to other devices, changes which result in
strain of those devices can be transformed, by the strain gauges, to give
voltage changes. They might, for example, be attached to a cantilever to
which forces are applied at its free end (Figure 2.18(a)). The voltage
change, resulting from the strain gauges and the Wheatstone bridge, then
becomes a measure of the force. Another possibility is to attach strain

Input–output devices 27

gauges to a diaphragm which deforms as a result of pressure (Figure
2.18(b)). The output from the gauges, and associated Wheatstone bridge,
then becomes a measure of the pressure.

d.c.
voltage

Output
voltage

1 2

4 3

Force

Cantilever
4 strain gauges,
upper surface extended
and increase in resistance,
lower surface compressed
and decrease in resistance

1 3

2 4

(a)

d.c.
voltage

Output
voltage

1 2

4 3

Applied pressure

4 strain gauges, 2 for radial
strain, 2 for circumferential strain

1 2/3 4

(b)

Figure 2.18 Strain gauges used for (a) force sensor, (b) pressure sensor

2.1.8 Pressure sensors

Commonly used pressure sensors which give responses related to the
pressure are diaphragm and bellows types. The diaphragm type consists of
a thin disc of metal or plastic, secured round its edges. When there is a
pressure difference between the two sides of the diaphragm, the centre of
it deflects. The amount of deflection is related to the pressure difference.
This deflection may be detected by strain gauges attached to the
diaphragm (see Figure 2.18(b)), by a change in capacitance between it and
a parallel fixed plate or by using the deflection to squeeze a piezoelectric
crystal (Figure 2.19(a)). When a piezoelectric crystal is squeezed, there is
a relative displacement of positive and negative charges within the crystal
and the outer surfaces of the crystal become charged. Hence a potential
difference appears across it. An example of such a sensor is the Motorola
MPX100AP sensor (Figure 2.19(b)). This has a built-in vacuum on one
side of the diaphragm and so the deflection of the diaphragm gives a
measure of the absolute pressure applied to the other side of the
diaphragm. The output is a voltage which is proportional to the applied
pressure with a sensitivity of 0.6 mV/kPa. Other versions are available
which have one side of the diaphragm open to the atmosphere and so can
be used to measure gauge pressure; others allow pressures to be applied to
both sides of the diaphragm and so can be used to measure differential
pressures.

28 Programmable Logic Controllers

Pressure

Crystal

Diaphragm

Ground – Supply
+ Supply+ Output

Applied
pressure

(a) (b)

Figure 2.19 (a) Piezoelectric pressure sensor, (b) MPX100AP

Pressure switches are designed to switch on or off at a particular
pressure. A typical form involves a diaphragm or bellows which moves
under the action of the pressure and operates a mechanical switch. Figure
2.20 shows two possible forms. Diaphragms are less sensitive than
bellows but can withstand greater pressures.

Diaphragm

Switch
button

Input pressure
(a)

Switch
button

Input pressure

Bellows

(b)

Figure 2.20 Examples of pressure switches

2.1.9 Liquid level detector

Pressure sensors may be used to monitor the depth of a liquid in a tank.
The pressure due to a height of liquid h above some level is hρg, where ρ
is the density of the liquid and g the acceleration due to gravity. Thus a
commonly used method of determining the level of liquid in a tank is to
measure the pressure due to the liquid above some datum level (Figure
2.21).

Often a sensor is just required to give a signal when the level in some
container reaches a particular level. A float switch that is used for this
purpose consists of a float containing a magnet which moves in a housing
with a reed switch. As the float rises or falls it turns the reed switch on or
off, the reed switch being connected in a circuit which then switches on or
off a voltage.

2.1.10 Fluid flow measurement

A common form of fluid flow meter is that based on measuring the
difference in pressure resulting when a fluid flows through a constriction.
Figure 2.22 shows a commonly used form, the orifice flow meter. As a
result of the fluid flowing through the orifice, the pressure at A is higher

Input–output devices 29

Diaphragm
pressure gauge

Liquid

Figure 2.21 Liquid level
sensor

than that at B, the difference in pressure being a measure of the rate of
flow. This pressure difference can be monitored by means of a diaphragm
pressure gauge and thus becomes a measure of the rate of flow.

A B

Orifice

Fluid

Pressure difference

Figure 2.22 Orifice flow meter

2.1.11 Smart sensors

The term smart sensor is used for a sensor which is integrated with the
required buffering and conditioning circuitry in a single element. The
circuitry with the element usually consists of data converters, a processor
and firmware, and some form of non-volatile EEPROM memory
(electrically erasable programmable read only memory, it is similar to
EPROM − see Chapter 1). The term non-volatile is used because the
memory has to retain certain parameters when the power supply is
removed.

Because the elements are processor-based devices, such sensors can be
programmed for specific requirements. For example, it can be
programmed to process the raw input data, correcting for such things as
non-linearities, and then send the processed data to a base station. It can
be programmed to send a warning signal when the measured parameter
reaches some critical value.

The IEEE 1451.4 standard interface for smart sensors and actuators is
based on an electronic data sheet (TEDS) format which is aimed at
allowing installed analogue transducers to be easily connected to digital
measurement systems. The standard requires the non-volatile EEPROM
embedded memory to hold and communicate data which will allow a
plug-and-play capability. It thus would hold data for the identification and
properties for the sensor and might also contain the calibration template,
so facilitating digital interrogation.

2.2 Output devices The output ports of a PLC are of the relay type or optoisolator with
transistor or triac types depending on the devices connected to them which
are to be switched on or off. Generally, the digital signal from an output
channel of a PLC is used to control an actuator which in turn controls
some process. The term actuator is used for the device which transforms
the electrical signal into some more powerful action which then results in
the control of the process. The following are some examples.

2.2.1 Relay

Solenoids form the basis of a number of output control actuators. When a
current passes through a solenoid a magnetic field is produced and this
can then attract ferrous metal components in its vicinity. One example of
such an actuator is the relay, the term contactor being used when large
currents are involved. When the output from the PLC is switched on, the

30 Programmable Logic Controllers

solenoid magnetic field is produced and pulls on the contacts and so
closes a switch or switches (Figure 2.23). The result is that much larger
currents can be switched on. Thus the relay might be used to switch on the
current to a motor.

From PLC Switched
output

Relay

0–5 V input

Figure 2.23 Relay used as an output device

2.2.2 Directional control valves

Another example of the use of a solenoid as an actuator is a solenoid
operated valve. The valve may be used to control the directions of flow of
pressurised air or oil and so used to operate other devices such as a piston
moving in a cylinder. Figure 2.24 shows one such form, a spool valve,
used to control the movement of a piston in a cylinder. Pressurised air or
hydraulic fluid is inputted from port P, this being connected to the
pressure supply from a pump or compressor and port T is connected to
allow hydraulic fluid to return to the supply tank or, in the case of a
pneumatic system, to vent the air to the atmosphere. With no current
through the solenoid (Figure 2.24(a)) the hydraulic fluid of pressurised air
is fed to the right of the piston and exhausted from the left, the result then
being the movement of the piston to the left. When a current is passed
through the solenoid, the spool valve switches the hydraulic fluid or
pressurised air to the left of the piston and exhausted from the right. The
piston then moves to the right. The movement of the piston might be used
to push a deflector to deflect items off a conveyor belt (see Figure 1.1(b))
or implement some other form of displacement which requires power.

T

A B

Piston in cylinder

P
Fluid in

Fluid out

Valve

A current through the
solenoid pulls to the
right, with no current
the spring pulls back
to the left

Current to solenoid

T

A B

Piston in cylinder

P
Fluid in

Fluid out

Valve

Solenoid

(a) Position with no current (b) Position with current

Spring

Figure 2.24 An example of a solenoid operated valve

Input–output devices 31

With the above valve there are the two control positions shown in
Figure 2.24(a) and (b). Directional control valves are described by the
number of ports they have and the number of control positions. The valve
shown in Figure 2.24 has four ports, i.e. A, B, P and T, and two control
positions. It is thus referred to as a 4/2 valve. The basic symbol used on
drawings for valves is a square, with one square being used to describe
each of the control positions. Thus the symbol for the valve in Figure 2.24
consists of two squares (Figure 2.25(a)). Within each square the switching
positions are then described by arrows to indicate a flow direction or a
terminated line to indicate no flow path. Figure 2.25(b) shows this for the
valve shown in Figure 2.24. Figure 2.26 shows some more examples of
direction valves and their switching positions.

(a)

A B A B

P T P T

Position
2.24(b)

Position
2.24(a)

(b)

Figure 2.25 (a) The basic symbol for a two position valve, (b) the 4/2
valve

P

A

2/2 valve: flow from P to A
switched to no flow

P T

A

3/2 valve: no flow from P to
A and flow from A to T
switched to T being closed
and flow from P to A

Figure 2.26 Direction valves

In diagrams, the actuation methods used with valves are added to the
symbol; Figure 2.27 shows examples of such symbols. The valve shown in
Figure 2.24 has a spring to give one position and a solenoid to give the
other and so the symbol is as shown in Figure 2.27(d).

(a) (b) (c)

A B A B

P T P T Position
2.24(b)Position

2.24(a)(d)

Figure 2.27 Actuation symbols: (a) solenoid, (b) push button, (c) spring
operated, (d) a 4/2 valve

Direction valves can be used to control the direction of motion of
pistons in cylinders, the displacement of the pistons being used to
implement the required actions. The term single acting cylinder (Figure
2.28(a)) is used for one which is powered by the pressurised fluid being
applied to one side of the piston to give motion in one direction, it being

32 Programmable Logic Controllers

returned in the other direction by possibly an internal spring. The term
double acting cylinder (Figure 2.28(b)) is used when the cylinder is
powered by fluid for its motion in both piston movement directions.
Figure 2.29 shows how a valve can be used to control the direction of
motion of a piston in a single-acting cylinder; Figure 2.30 shows how two
valves can be used to control the action of a piston in a double acting
cylinder.

Input Exhaust

(a) (b)

Input/exhaust Input/exhaust

Figure 2.28 Cylinders: (a) single acting, (b) double acting

Cylinder in retracted position Current to solenoid
cylinder extends

Solenoid current switched off
cylinder retracts

Vent symbol

Pressure
source symbol

Figure 2.29 Control of a single-acting cylinder

Input–output devices 33

Cylinder in retracted position

A B

Solenoid A energised, cylinder extends

A B

Solenoid B energised, cylinder retracts

A B

Figure 2.30 Control of a double acting cylinder

2.2.3 Motors

A d.c. motor has coils of wire mounted in slots on a cylinder of
ferromagnetic material, this being termed the armature. The armature is
mounted on bearings and is free to rotate. It is mounted in the magnetic
field produced by permanent magnets or current passing through coils of
wire, these being termed the field coils. When a current passes through the
armature coil, forces act on the coil and result in rotation. Brushes and a
commutator are used to reverse the current through the coil every half
rotation and so keep the coil rotating. The speed of rotation can be
changed by changing the size of the current to the armature coil. However,
because fixed voltage supplies are generally used as the input to the coils,
the required variable current is often obtained by an electronic circuit.
This can control the average value of the voltage, and hence current, by
varying the time for which the constant d.c. voltage is switched on (Figure
2.31). The term pulse width modulation (PWM) is used since the width of

34 Programmable Logic Controllers

the voltage pulses is used to control the average d.c. voltage applied to the
armature. A PLC might thus control the speed of rotation of a motor by
controlling the electronic circuit used to control the width of the voltage
pulses.

V
ol

ta
ge

Time

Average voltage

V
ol

ta
ge

Time

Average voltage

Figure 2.31 Pulse width modulation

Many industrial processes only require the PLC to switch a d.c. motor
on or off. This might be done using a relay. Figure 2.32(a) shows the basic
principle. The diode is included to dissipate the induced current resulting
from the back e.m.f. Sometimes a PLC is required to reverse the direction
of rotation of the motor. This can be done using relays to reverse the
direction of the current applied to the armature coil. Figure 2.32(b) shows
the basic principle. For rotation in one direction, switch 1 is closed and
switch 2 opened. For rotation in the other direction, switch 1 is opened
and switch 2 closed.

Switch
controlled
by PLC

+V

0 V

Motor

1

2

+V

0 V

(a)
(b)

Figure 2.32 D.c. motor: (a) on–off control, (b) directional control

Another form of d.c. motor is the brushless d.c. motor. This uses a
permanent magnet for the magnetic field but, instead of the armature coil
rotating as a result of the magnetic field of the magnet, the permanent
magnet rotates within the stationary coil. With the conventional d.c.
motor, a commutator has to be used to reverse the current through the coil
every half rotation in order to keep the coil rotating in the same direction.
With the brushless permanent magnet motor, electronic circuitry is used to
reverse the current. The motor can be started and stopped by controlling
the current to the stationary coil. To reverse the motor, reversing the
current is not so easy because of the electronic circuitry used for the
commutator function. One method that is used is to incorporate sensors
with the motor to detect the position of the north and south poles. These

Input–output devices 35

sensors can then cause the current to the coils to be switched at just the
right moment to reverse the forces applied to the magnet. The speed of
rotation can be controlled using pulse width modulation, i.e. controlling
the average value of pulses of a constant d.c. voltage.

Though a.c. motors are cheaper, more rugged and more reliable than
d.c. motors, the maintaining of constant speed and controlling that speed
is generally more complex than with d.c. motors. As a consequence, d.c.
motors, particularly brushless permanent magnet motors, tend to be more
widely used for control purposes.

2.2.4 Stepper motors

The stepper or stepping motor is a motor that produces rotation through
equal angles, the so-termed steps, for each digital pulse supplied to its
input (Figure 2.33). Thus, if one input pulse produces a rotation of 1.8o

then 20 such pulses would give a rotation of 36.0o. To obtain one
complete revolution through 360o, 200 digital pulses would be required.
The motor can thus be used for accurate angular positioning.

If it is used to drive a continuous belt (Figure 2.34), it can be used to
give accurate linear positioning. Such a motor is used with computer
printers, robots, machine tools and a wide range of instruments where
accurate positioning is required.

There are two basic forms of stepper motor, the permanent magnet
type with a permanent magnet rotor and the variable reluctance type with
a soft steel rotor. Figure 2.35 shows the basic elements of the permanent
magnet type with two pairs of stator poles.

S

S

N

N

Pole 1 Pole 3

Pole 4
Pole 2

S

N

S

S

N

N

S N

S S

N NS

S

S N

N

SN

SS

N N
S

N

N

1 2

3 4

1, 2, 3 and 4 show the positions of
the magnet rotor as the coils are
energised in different directions

Figure 2.35 The basic principles of the permanent magnet stepper motor (2-phase) with 90 o steps

36 Programmable Logic Controllers

Motor
Input Output

Digital
pulses

Rotation in
equal angle
steps, one
step per pulse

Figure 2.33 The stepping
motor

Motor Pulley
wheel

Object
positioned

Figure 2.34 Linear positioning

Each pole is activated by a current being passed through the
appropriate field winding, the coils being such that opposite poles are
produced on opposite coils. The current is supplied from a d.c. source to
the windings through switches. With the currents switched through the
coils such that the poles are as shown in Figure 2.35, the rotor will move
to line up with the next pair of poles and stop there. This would be, for
Figure 6.35, an angle of 45o. If the current is then switched so that the
polarities are reversed, the rotor will move a step to line up with the next
pair of poles, at angle 135o and stop there. The polarities associated with
each step are:

Repeat of steps 1 to 45

SouthNorthSouth North 4
SouthNorth North South 3
NorthSouthNorthSouth2
NorthSouthSouthNorth1

Pole 4Pole 3Pole 2Pole 1Step

There are thus, in this case, four possible rotor positions: 45o, 135o, 225o

and 315o.
Figure 2.36 shows the basic principle of the variable reluctance type.

The rotor is made of soft steel and has a number of teeth, the number
being less than the number of poles on the stator. The stator has pairs of
poles, each pair of poles being activated and made into an electromagnet
by a current being passed through the coils wrapped round them. When
one pair of poles is activated, a magnetic field is produced which attracts
the nearest pair of rotor teeth so that the teeth and poles line up. This is
termed the position of minimum reluctance. By then switching the current
to the next pair of poles, the rotor can be made to rotate to line up with
those poles. Thus by sequentially switching the current from one pair of
poles to the next, the rotor can be made to rotate in steps.

N

S

This pair of poles
energised by current
being switched to them

StatorRotor

Figure 2.36 The principle of the variable reluctance stepper motor

There is another version of the stepper motor and that is a hybrid
stepper. This combines features of both the permanent magnet and
variable reluctance motors. They have a permanent magnet rotor encased

Input–output devices 37

in iron caps which are cut to have teeth. The rotor sets itself in the
minimum reluctance position in response to a pair of stator coils being
energised.

To drive a stepper motor, so that it proceeds step-by-step to provide
rotation, requires each pair of stator coils to be switched on and off in the
required sequence when the input is a sequence of pulses (Figure 2.37).
Driver circuits are available to give the correct sequencing and Figure
2.38 shows an example, the SAA 1027 for a four-phase unipolar stepper.
Motors are termed unipolar if they are wired so that the current can only
flow in one direction through any particular motor terminal, bipolar if the
current can flow in either direction through any particular motor terminal.
The stepper motor will rotate through one step each time the trigger input
goes from low to high. The motor runs clockwise when the rotation input
is low and anticlockwise when high. When the set pin is made low the
output resets. In a control system, these input pulses might be supplied by
a microprocessor.

Time

Input
pulses

Pulse for
1st coil

Pulse for
2nd coil

Pulse for
3rd coil

Pulse for
4th coil

Time

Inputs to coils

Figure 2.37 Input and outputs of the drive system

5 12

6

8

9

11

15

 3

2

14 4 13

SAA1027

Stepper motor with
its four stator coils

Supply voltage +12 V

Set

Rotation

Trigger

Brown

Black

Green

Yellow

Red

Red

Figure 2.38 Driver circuit connections with the integrated circuit
SAA1027

38 Programmable Logic Controllers

2.3 Examples of applications The following are some examples of control systems designed to illustrate
the use of a range of input and output devices.

2.3.1 A conveyor belt

Consider a conveyor belt that is to be used to transport goods from a
loading machine to a packaging area (Figure 2.39). When an item is
loaded onto the conveyor belt, a contact switch might be used to indicate
that the item is on the belt and start the conveyor motor. The motor then
has to keep running until the item reaches the far end of the conveyor and
falls off into the packaging area. When it does this, a switch might be
activated which has the effect of switching off the conveyor motor. The
motor is then to remain off until the next item is loaded onto the belt.
Thus the inputs to a PLC controlling the conveyor are from two switches
and the output is to a motor.

Loading

Packaging

Switch Switch

Figure 2.39 Conveyor

2.3.2 A lift

Consider a simple goods lift to move items from one level to another. It
might be bricks from the ground level to the height where the bricklayers
are working. The lift is to move upwards when a push button is pressed at
the ground level to send the lift upwards or a push button is pressed at the
upper level to request the lift to move upwards, but in both cases there is a
condition that has to be met that a limit switch indicates that the access
gate to the lift platform is closed. The lift is to move downwards when a
push button is pressed at the upper level to send the lift downwards or a
push button is pressed at the lower level to request the lift to move
downwards, but in both cases there is a condition that has to be met that a
limit switch indicates that the access gate to the lift platform is closed.
Thus the inputs to the control system are electrical on−off signals from
push button switches and limit switches. The output from the control
system is the signal to control the motor.

2.3.3 A robot control system

Figure 6.40 shows how directional control valves can be used for a
control system of a robot. When there is an input to solenoid A of valve 1,
the piston moves to the right and causes the gripper to close. If solenoid B
is energised, with A de-energised, the piston moves to the left and the
gripper opens. When both solenoids are de-energised, no air passes to
either side of the piston in the cylinder and the piston keeps its position
without change. Likewise, inputs to the solenoids of valve 2 are used to
extend or retract the arm. Inputs to the solenoids of valve 3 are used to

Input–output devices 39

move the arm up or down. Inputs to the solenoids of valve 4 are used to
rotate the base in either a clockwise or anticlockwise direction.

Open/close gripperValve 1

Extend/retract arm
Valve 2

Up/down arm
Valve 3

Clockwise/anticlockwise base rotation
Valve 4

Extend/retract

Open/close

Up/down

Rotate
clockwise/anticlockwise

Figure 2.40 Robot controls

2.3.4 Liquid level monitoring

Figure 6.41 shows a method that could be used to give an on−off signal
when the liquid in a container reaches a critical level. A magnetic float, a
ring circling the sensor probe, falls as the liquid level falls and opens a

40 Programmable Logic Controllers

reed switch when the critical level is reached. The reed switch is in series
with a 39 ✡ resistor so that this is switched in parallel with a 1 k✡ resistor
by the action of the reed switch. Opening the reed switch thus increases
the resistance from about 37 ✡ to 1 k✡. Such a resistance change can be
transformed by signal conditioning to give suitable on–off signals.

Magnetic float
Float stop 39

1 k

✡

✡

Reed switch

Liquid

Sensor probe

Figure 2.41 Liquid level monitoring

Problems Questions 1 to 10 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

1 Decide whether each of these statements is True (T) or False (F).

A limit switch:
(i) Can be used to detect the presence of a moving part.
(ii) Is activated by contacts making or breaking an electrical circuit.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

2 Decide whether each of these statements is True (T) or False (F).

A thermistor is a temperature sensor which gives resistance changes
which are:
(i) A non-linear function of temperature.
(ii) Large for comparatively small temperature changes.

Input–output devices 41

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

3 A diaphragm pressure sensor is required to give a measure of the
gauge pressure present in a system. Such a sensor will need to have a
diaphragm with:

A A vacuum on one side.
B One side open to the atmosphere.
C The pressure applied to both sides.
D A controlled adjustable pressure applied to one side.

4 The change in resistance of an electrical resistance strain gauge with a
gauge factor of 2.0 and resistance 100 Ω when subject to a strain of
0.001 is:

A 0.0002 Ω
B 0.002 Ω
C 0.02 Ω
D 0.2 Ω

5 An incremental shaft encoder gives an output which is a direct
measure of:

A The diameter of the shaft.
B The change in diameter of the shaft.
C The change in angular position of the shaft.
D The absolute angular position of the shaft.

6 Decide whether each of these statements is True (T) or False (F).

Input devices which give an analogue input for displacement are:
(i) Linear potentiometer.
(ii) Linear variable differential transformer.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 7 and 8 refer to Figure 2.42 which shows the symbol for a
directional valve.

A B A B

P T P T

Figure 2.42 Problems 7 and 8

42 Programmable Logic Controllers

7 Decide whether each of these statements is True (T) or False (F).

The valve has:
(i) 4 ports
(ii) 2 positions

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

8 Decide whether each of these statements is True (T) or False (F).

In the control positions:
(i) A is connected to T and P to B.
(ii) P is connected to A and B to T.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

9 Decide whether each of these statements is True (T) or False (F).

A stepper motor has a step angle of 1.8o. This means that:
(i) Each pulse input to the motor rotates the motor shaft by 1.8o.
(ii) The motor shaft takes 1 s to rotate through 1.8o.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

10 Decide whether each of these statements is True (T) or False (F).

A proximity switch is required for detecting the presence of a non-
metallic object. Types of switches that might be suitable are:
(i) Eddy current type.
(ii) Capacitive type.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

11 Explain the operation of the following input devices, stating the form
of the signal being sensed and the output: (a) reed switch, (b)
incremental shaft encoder, (c) photoelectric transmissive switch, (d)
diaphragm pressure switch.

12 Explain how the on−off operation and direction of a d.c. motor can be
controlled by switches.

13 Explain the principle of the stepper motor.

Input–output devices 43

3 Number systems

The number system used for everyday calculations is the denary or
decimal system. This is based on the use of the 10 digits: 0, 1, 2, 3, 4, 5, 6,
7, 8, 9. With a number represented by this system, the digit position in the
number indicates the weight attached to each digit, the weight increasing
by a factor of 10 as we proceed from right to left. Hence we have:

1101001000Denary
unitstenshundredsthousands
100 101 102 103 ...

Counting can, however, be done to any base. The denary system is just
convenient because we have ten fingers. If we had only two then our
system for everyday counting would probably have been different.
Computers, and hence PLC systems, are based on counting in twos
because it is convenient for their system, their two digits being effectively
just the off and on signals. When working with PLCs, other base number
systems are also used, e.g. input and output addresses are often specified
using the octal system, i.e. base 8.

3.1 The binary system The binary system is based on just two digits: 0 and 1. These are termed
binary digits or bits. When a number is represented by this system, the
digit position in the number indicates the weight attached to each digit, the
weight increasing by a factor of 2 as we proceed from right to left.

1101001000Binary
bit 0bit 1bit 2bit 3
20 21 22 23 ...

The bit 0 is termed the least significant bit (LSB) and the highest bit the
most significant bit (MSB). For example, with the binary number 1010,
the least significant bit is the bit at the right-hand end of the number and
so is 0. The most significant bit is the bit at the left-hand end of the
number and so is 1.

0 1 0 1 Binary
LSBMSB
bit 0bit 1bit 2bit 3
20 21 22 23

When converted to a denary number we have, for the 1010:

0 21 = 20 23 = 8Denary
0 1 0 1 Binary
20 21 22 23

Thus the denary equivalent is 10. The conversion of a binary number to a
denary number thus involves the addition of the powers of 2 indicated by
the number.

The conversion of a denary number to a binary number involves
looking for the appropriate powers of 2. We can do this by successive
divisions by 2, noting the remainders at each division. Thus with the
denary number 31:

31 ÷ 2 = 15 remainder 1 This gives the LSB
15 ÷ 2 = 7 remainder 1
 7 ÷ 2 = 3 remainder 1
 3 ÷ 2 = 1 remainder 1 This gives the MSB

The binary number is 11111. The first division gives the least significant
bit because we have just divided the 31 by 2, i.e. 21 and found 1 left over
for the 20 digit. The last division gives the most significant bit because the
31 has then been divided by 2 four times, i.e. 24 and the remainder is 1.

3.2 Octal and hexadecimal Binary numbers are used in computers because the two states represented
by 0 and 1 are easy to deal with switching circuits where they can
represent off and on. A problem with binary numbers is that a
comparatively small number requires a large number of digits. For
example, the denary number 9 which involves just a single digit requires
four when written as the binary number 1001. The denary number 181,
involving three digits, in binary form is 10110101 and requires eight
digits. Because of this, octal or hexadecimal numbers are sometimes used
to make numbers easier to handle and act as a ‘half-way house’ between
denary numbers and the binary numbers which computers work with.

3.2.1 Octal system

The octal system is based on eight digits: 0, 1, 2, 3, 4, 5, 6, 7. When a
number is represented by this system, the digit position in the number
indicates the weight attached to each digit, the weighting increasing by a
factor of 8 as we proceed from right to left. Thus we have:

1101001000 Octal
80 81 82 83 ...

To convert denary numbers to octal we successively divide by 8 and note
the remainders. Thus the denary number 15 divided by 8 gives 1 with
remainder 7 and thus the denary number 15 is 17 in the octal system. To
convert from octal to denary we multiply the digits by the power of 8
appropriate to its position in the number. For example, the octal number
365 is 3 % 82 + 6 % 81 + 5 % 80 = 245. To convert from binary into octal,
the binary number is written in groups of three bits starting with the least

Number systems 45

significant bit. For example, the binary number 11010110 would be
written as:

11 010 110

Each group is then replaced by the corresponding digit 0 to 7. The 110
binary number is 6, the 010 is 2 and the 11 is 3. Thus the octal number is
326. As another example, the binary number 100111010 is:

100 111 010 Binary
 4 7 2 Octal

Octal to binary conversion involves converting each octal digit into its
3-bit equivalent. Thus, for the octal number 21 we have 1 as 001 and 2 as
010:

 2 1 Octal number
010 001 Binary number

and so the binary number is 010001.

3.2.2 Hexadecimal system

The hexadecimal system (hex) is based on 16 digits/symbols: 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F. When a number is represented by this
system, the digit position in the number indicates that the weight attached
to each digit increases by a factor of 16 as we proceed from right to left.
Thus we have:

1101001000 Hex
160 161 162 163 ...

For example, the decimal number 15 is F in the hexadecimal system. To
convert from denary numbers into hex we successively divide by 16 and
note the remainders. Thus the denary number 156 when divided by 16
gives 9 with remainder 12 and so in hex is 9C. To convert from hex to
denary we multiply the digits by the power of 16 appropriate to its
position in the number. Thus hex 12 is 1 % 161 + 2 % 160 = 18. To convert
binary numbers into hexadecimal numbers, we group the binary numbers
into fours starting from the least significant number. Thus, for the binary
number 1110100110 we have:

11 1010 0110 Binary number
3 A 6 Hex number

For conversion from hex to binary, each hex number is converted to its
4-bit equivalent. Thus, for the hex number 1D we have 0001 for the 1 and
1101 for the D:

 1 D Hex number
0001 1101 Binary number

46 Programmable Logic Controllers

Thus the binary number is 0001 1101.
Because the external world tends to deal mainly with numbers in the

denary system and computers with numbers in the binary system, there is
always the problem of conversion. There is, however, no simple link
between the position of digits in a denary number and the position of
digits in a binary number. An alternative method that is often used is the
binary coded decimal system (BCD). With this system, each denary digit
is coded separately in binary. For example, the denary number 15 has the
5 converted into the binary number 0101 and the 1 into 0001:

 1 5 Denary number
0001 0101 Binary number

to give in BCD the number 0001 0101.

3.2.3 Numbers in the binary, octal, hex and BCD systems

Table 3.1 gives examples of numbers in the denary, binary, octal, hex and
BCD systems.

Table 3.1 Examples of numbers in different systems

0001 0111 11211000117
0001 011010201000016
0001 0101 F170111115
0001 0100 E160111014
0001 0011 D150110113
0001 0010 C140110012
0001 0001 B130101111
0001 0000 A120101010
0000 1001 91101001 9
0000 1000 81001000 8
0000 0111 7 700111 7
0000 0110 6 600110 6
0000 0101 5 500101 5
0000 0100 4 400100 4
0000 0011 3 300011 3
0000 0010 2 200010 2
0000 0001 1 100001 1
0000 0000 0 000000 0

BCDHexOctalBinaryDenary

3.3 Binary arithmetic Addition of binary numbers uses the following rules:

0 + 0 = 0

0 + 1 = 1 + 0 = 1

Number systems 47

1 + 1 = 10

1 + 1 + 1 = 11

Consider the addition of the binary numbers 01110 and 10011.

100001Sum
 10011
 01110

For bit 0 in the sum, 0 + 1 = 1. For bit 1 in the sum, 1 + 1 = 10 and so we
have 0 with 1 carried to the next column. For bit 2 in the sum, 1 + 0 + the
carried 1 = 10. For bit 3 in the sum, 1 + 0 + the carried 1 = 10. We
continue this through the various bits and end up with the 100001.

Subtraction of binary numbers follows the following rules:

0 − 0 = 0

1 − 0 = 1

1 − 1 = 0

When evaluating 0 − 1, a 1 is borrowed from the next column on the left
containing a 1. The following example illustrates this with the subtraction
of 01110 from 11011:

01101Difference
01110
11011

For bit 0 we have 1 − 0 = 1. For bit 1 we have 1 − 1 = 0. For bit 2 we have
0 − 1. We thus borrow 1 from the next column and so have 10 − 1 = 1.
For bit 3 we have 0 − 1, remember we borrowed the 1. Again borrowing 1
from the next column, we then have 10 − 1 = 1. For bit 4 we have 0 − 0 =
0, remember we borrowed the 1.

3.3.1 Signed numbers

The binary numbers considered so far contain no indication whether they
are negative or positive and are said to be unsigned. Since there is
generally a need to handle both positive and negative numbers there needs
to be some way of distinguishing between them. This can be done by
adding a sign bit. When a number is said to be signed then the most
significant bit is used to indicate the sign of the number, a 0 being used if
the number is positive and a 1 if it is negative. Thus for an 8-bit number
we have:

48 Programmable Logic Controllers

XXXX XXXX

Sign bit

When we have a positive number then we write it in the normal way with
a 0 preceding it. Thus a positive binary number of 10110 would be written
as 010110. A negative number of 10110 would be written as 110110.
However, this is not the most useful way of writing negative numbers for
ease of manipulation by computers.

3.3.2 One’s and two’s complements

A more useful way of writing signed negative numbers is to use the two’s
complement method. A binary number has two complements, known as
the one’s complement and the two’s complement. The one’s complement
of a binary number is obtained by changing all the 1s in the unsigned
number into 0s and the 0s into 1s. Thus if we have the binary number
101101 then the one’s complement of it is 010010. The two’s complement
is obtained from the one’s complement by adding 1 to the least significant
bit of the one’s complement. Thus the one’s complement of 010010
becomes 010011.

When we have a negative number then, to obtain the signed two’s
complement, we obtain the two’s complement and then sign it with a 1.
Consider the representation of the decimal number −6 as a signed two’s
complement number when the total number of bits is to be eight. We first
write the binary number for +6, i.e. 0000110, then obtain the one’s
complement of 1111001, add 1 to give 1111010, and finally sign it with a
1 to indicate it is negative. The result is thus 11111010.

1111 1010Signed two’s complement

 111 1010Unsigned two’s complement
 1Add 1

 111 1001One’s complement

 000 0110Unsigned binary number when sign
ignored

Table 3.2 lists some signed two’s complements, given to 4 bits, for
denary numbers.

When we have a positive number then we sign the normal binary
number with a 0, i.e. we only write negative numbers in the two’s
complement form. A consequence of adopting this method of writing
negative and positive numbers is that when we add the signed binary
equivalent of +4 and –4, i.e. 0000 0100 and 111 1100 we obtain
(1)0000 0000 and so zero within the constraints of the number of bits
used, the (1) being neglected.

Number systems 49

Table 3.2 Signed two’s complements

1111−1
1110−2
1101−3
1100−4
1011−5

Signed 2’s complementDenary number

Subtraction of a positive number from a positive number can be
considered to be the addition of a negative number to a positive number.
Thus we obtain the signed two’s complement of the negative number and
then add it to the signed positive number. Hence, for the subtraction of the
denary number 6 from the denary number 4 we can consider the problem
as being (+4) + (−6). Hence we add the signed positive number to the
signed two’s complement for the negative number.

1111 1110Sum

1111 1010(−6) as signed two’s complement

0000 0100Binary form of +4

The most significant bit, i.e. the sign, of the outcome is 1 and so the result
is negative. This is the 8-bit signed two’s complement for −2.

If we wanted to add two negative numbers then we would obtain the
signed two’s complement for each number and then add them. Whenever
a number is negative we use the signed two’s complement, when positive
just the signed number.

3.3.3 Floating point numbers

Before discussing floating point numbers, consider fixed point numbers.
Fixed point numbers are ones where there is a fixed location of the point
separating integers from fractional numbers. Thus, 15.3 is an example of a
denary fixed point number, 1010.1100 an example of a fixed point binary
number and DE.2A an example of a fixed point hexadecimal number. We
have, with the eight-bit binary number, four digits before the binary point
and four digits after it. When two such binary numbers are added by a
computing system the procedure is to recognise that the fixed point is
fixed the same in both numbers so we can ignore it for the addition, carry
out the addition of the numbers and then insert in the result the binary
point in its fixed position. For example, suppose we want to add
0011.1010 and 0110.1000, we drop the binary point to give:

0011 1010 + 0110 1000 = 1010 0010

Inserting the binary point then gives 1010.0010.
Using fixed points does present problems. If we are concerned with

very large or very small numbers we could end up with a large number of
zeros between the integers and the point, e.g. 0.000 000 000 000 023. For

50 Programmable Logic Controllers

this reason scientific notation is used for such numbers. Thus, the above
number might be written as 0.23 % 10–13 or 2.3 % 10–14 or 23 % 10–15.
Likewise, the binary number 0.0000 0111 0010 might be represented as
110010 % 2–12 (the 12 would also be in binary format) or 11001.0 % 2–11

(the 11 being in binary format). Such notation has a floating point.
A floating point number is in the form a % re, where a is termed the

mantissa, r the radix or base and e the exponent or power. With binary
numbers the base is understood to be 2, i.e. we have a % 2e, and when we
know we are dealing with binary numbers we need not store the base with
the number. Thus a computing system needs, in addition to storing the
sign, i.e. whether positive or negative, to store the mantissa and the
exponent.

Because with floating point numbers it is possible to store a number in
several different ways, e.g. 0.1 % 102 and 0.01 % 103, with computing
systems such numbers are normalised. This means that they are all put in
the form 0.1 % re. Thus, with binary numbers we have 0.1 % 2e, e.g. if we
had 0.00001001 it would become 0.1001 % 2–4. In order to take account of
the sign of a binary number we then add a sign bit of 0 for a positive
number and 1 for a negative number. Thus the number 0.1001 % 2–4

becomes 1.1001 % 2–4 if negative and 0.1001 % 2–4 if positive.
Unlike fixed point numbers, floating point numbers cannot be directly

added unless the exponents are the same. Thus to carry out addition we
need to make the exponents the same.

3.4 PLC data Most PLCs operate with a 16-bit word, the term word being used for the
group of bits constituting some information. This allows a positive
number in the range 0 to +65 535, i.e. 1111 1111 1111 1111, to be
represented or a signed number in the range –32 768 to +32 767 in two’s
complement, the most significant bit then representing the sign. Such
signed numbers are referred to as integers with the symbol INT being
used with inputs and outputs in programs of such 16-bit words. The term
SINT is used for short integer numbers where only 8-bits are used, such
numbers giving the range –128 to +127. The term DINT is used for
double integer numbers where 32 bits are used, such numbers giving the
range –231 to +231 – 1. LINT is used for long integer numbers where 64
bits are used, such numbers giving the range –263 to +263 – 1. Where
numbers are not signed the symbols UINT, USINT, UDINT and ULINT
are used with integers, short integers, double integers and long integers.

Decimal fractions are referred to as real or floating point numbers,
being represented by the symbol REAL for inputs and outputs in
programs. These consist of two 16-bit words and so we might have
1.234567E+03 for the number 1.234 567 × 10+3, the E indicating that the
number that follows is the exponent. The term LREAL is used for long
real numbers where 64 bits are used.

The term BOOL is used for Boolean type data, such data being on/off
values, i.e. 0 or 1, and thus represented by single bits.

Time duration, e.g. for the duration of a process, is represented by the
IEC (International Electrotechnical Commission) standard using the
symbols d for days, h for hours, m for minutes, s for seconds and ms for
milliseconds as, for example, T#12d2h5s3ms or TIME#12d2h5s for 12

Number systems 51

days 2 hours 5 seconds and 3 milliseconds. Note that # is the symbol used
to indicate that which follows is a numerical quantity.

Problems 1 Convert the following binary numbers to denary numbers: (a)
000011, (b) 111111, (c) 001101.

2 Convert the following denary numbers to binary numbers: (a) 100,
(b) 146, (c) 255.

3 Convert the following hexadecimal numbers to denary numbers: (a)
9F, (b) D53, (c) 67C.

4 Convert the following denary numbers to hexadecimal numbers: (a)
14, (b) 81, (c) 2562.

5 Convert the following hexadecimal numbers to binary numbers: (a)
E, (b) 1D, (c) A65.

6 Convert the following octal numbers to denary numbers: (a) 372, (b)
14, (c) 2540.

7 Convert the following denary numbers to octal numbers: (a) 20, (b)
265, (c) 400.

8 Convert the following octal numbers to binary numbers: (a) 270, (b)
102, (c) 673.

9 Convert the following decimal numbers to BCD equivalents: (a) 20,
(b) 35, (c) 92.

10 Convert the following denary numbers to signed two’s complement
binary 8-bit format: (a) –1, (b) –35, (c) –125.

11 Convert the following signed two’s complement binary 8-bit numbers
to their denary equivalents: (a) 1111 0000, (b) 1100 1001, (c)
1101 1000.

12 Convert the following binary numbers to normalised floating point
numbers: (a) 0011 0010, (b) 0000 1100, (c) 1000.0100.

52 Programmable Logic Controllers

4 I/O processing

This chapter continues the discussion of inputs and outputs from Chapter
2 and is a brief consideration of the processing of the signals from input
and output devices. The input/output (I/O) unit provides the interface
between the PLC controller and the outside world and must therefore
provide the necessary signal conditioning to get the signal to the required
level and also to isolate it from possible electrical hazards such as high
voltages. This chapter includes the forms of typical input/output modules
and, in an installation where sensors are some distance from the PLC
processing, their communication links to the PLC.

4.1 Input/output units Input signals from sensors and the outputs required for actuating devices
can be:

1 Analogue, i.e. a signal whose size is related to the size of the quantity
being sensed.

2 Discrete, i.e. essentially just an on−off signal.
3 Digital, i.e. a sequence of pulses.

The CPU, however, must have an input of digital signals of a particular
size, normally 0 to 5 V. The output from the CPU is digital, normally 0 to
5 V. Thus there is generally a need to manipulate input and output signals
so that they are in the required form.

The input/output (I/O) units of PLCs are designed so that a range of
input signals can be changed into 5 V digital signals and so that a range of
outputs are available to drive external devices. It is this in-built facility to
enable a range of inputs and outputs to be handled which makes PLCs so
easy to use. The following is a brief indication of the basic circuits used
for input and output units. In the case of rack instruments they are
mounted on cards which can be plugged into the racks and so the
input/output characteristics of the PLC can thus be changed by changing
the cards. A single box form of PLC has input/output units incorporated
by the manufacturer.

4.1.1 Input units

The terms sourcing and sinking refer to the manner in which d.c. devices
are interfaced with the PLC (see Section 1.3.5). For a PLC input unit, with
sourcing it is the source of the current supply for the input device
connected to it (Figure 4.1(a)). With sinking, the input device provides the
current to the input unit (Figure 4.1(b)).

+

–

Input
unit

Input device
(a)

+

–

Input
unit

Input device

(b)

Figure 4.1 Input unit: (a) sourcing, (b) sinking

Figures 4.2 and 4.3 show the basic input unit circuits for discrete and
digital d.c. and discrete a.c. inputs. Optoisolators (see Section 1.3.4) are
used to provide protection. With the a.c. input unit, a rectifier bridge
network is used to rectify the a.c. so that the resulting d.c. signal can
provide the signal for use by the optoisolator to give the input signals to
the CPU of the PLC. Individual status lights are provided for each input to
indicate when the input device is providing a signal.

Optoisolator

Signal to
PLC CPU

PLC

Protection
diode

Voltage
divider circuit

Input
to PLC

LED indicator
of input signal

+V
Internal PLC voltage

Figure 4.2 D.C. input unit

Optoisolator

Signal to
PLC CPU

PLC

Input
to PLC

+V InternalLive

Neutral

Signal
indicator

voltage
PLC

Figure 4.3 A.C. input unit

54 Programmable Logic Controllers

Analogue signals can be inputted to a PLC if the input channel is able
to convert the signal to a digital signal using an analogue-to-digital
converter. With a rack mounted system this may be achieved by
mounting a suitable analogue input card in the rack. So that one analogue
card is not required for each analogue input, multiplexing is generally
used (Figure 4.4). This involves more than one analogue input being
connected to the card and then electronic switches used to select each
input in turn. Cards are typically available giving 4, 8 or 16 analogue
inputs.

Figure 4.5(a) illustrates the function of an analogue-to-digital converter
(ADC). A single analogue input signal gives rise to on−off output signals
along perhaps eight separate wires. The eight signals then constitute the
so-termed digital word corresponding to the analogue input signal level.
With such an 8-bit converter there are 28 = 256 different digital values
possible; these are 0000 0000 to 1111 1111, i.e. 0 to 255. The digital
output goes up in steps (Figure 4.5(b)) and the analogue voltages required
to produce each digital output are termed quantisation levels.

Analogue-
to-digital
converter

Analogue

input

Digital output
Bit

7
6
5
4
3
2
1
0

(a)

0000 0000

0000 0001

0000 0010

Digital
output

0 1 2
Analogue input(b)

Figure 4.5 (a) Function of an analogue-to-digital converter, (b) an
illustration of the relationship between the analogue input and the digital
output

The analogue voltage has to change by the difference in analogue
voltage between successive levels if the binary output is to change. The
term resolution is used for the smallest change in analogue voltage which
will give rise to a change in one bit in the digital output. With an 8-bit
ADC, if, say, the full-scale analogue input signal varies between 0 and
10 V then a step of one digital bit involves an analogue input change of
10/255 V or about 0.04 V. This means that a change of 0.03 V in the input
will produce no change in the digital output. The number of bits in the
output from an analogue-to-digital converter thus determines the
resolution, and hence accuracy, possible. If a 10-bit ADC is used then
210 = 1024 different digital values are possible and, for the full-scale
analogue input of 0 to 10 V, a step of one digital bit involves an analogue
input change of 10/1023 V or about 0.01 V. If a 12-bit ADC is used then
212 = 4096 different digital values are possible and, for the full-scale
analogue input of 0 to 10 V, a step of one digital bit involves an analogue
input change of 10/4095 V or about 2.4 mV. In general, the resolution of
an n-bit ADC is 1/(2n – 1).

I/O processing 55

Inputs

Multi-
plexer

Selected

output

Channel
selection signal

Figure 4.4 Multiplexer

The following illustrates the analogue-to-digital conversion for an 8-bit
converter when the analogue input is in the range 0 to 10 V:

etc.
0000 1000 0.32
0000 0111 0.28
0000 0110 0.24
0000 0101 0.20
0000 0100 0.16
0000 0011 0.12
0000 0010 0.08
0000 0001 0.04
0000 0000 0.00

Digital output (V)Analogue input (V)

To illustrate the above, consider a thermocouple used as a sensor with a
PLC and giving an output of 0.5 mV per oC. What will be the accuracy
with which the PLC will activate the output device if the thermocouple is
connected to an analogue input with a range of 0 to 10 V d.c and using a
10-bit analogue-to-digital converter? With a 10-bit converter there is
210 = 1024 bits covering the 0 to 10 V range. Thus a change of 1 bit
corresponds to 10/1023 V or about 0.01 V, i.e. 10 mV. Hence the
accuracy with which the PLC recognises the input from the thermocouple
is ±5 mV or ±10oC.

4.1.2 Output units

With a PLC output unit, when it provides the current for the output device
(Figure 4.6(a)) it is said to be sourcing and when the output device
provides the current to the output unit it is said to be sinking (Figure
4.6(b)). Quite often, sinking input units are used for interfacing with
electronic equipment and sourcing output units for interfacing with
solenoids.

Output
unit

Output
unitLoad Load

– +

(a) (b)

Figure 4.6 Output unit: (a) sourcing, (b) sinking

Output units can be relay, transistor or triac. Figure 4.7 shows the basic
form of a relay output unit, Figure 4.8 that of a transistor output unit and
Figure 4.9 that of a triac output unit.

56 Programmable Logic Controllers

Optoisolator

From
PLC
CPU

Relay

PLCOutput signal LED
Fuse

+V

–V

Figure 4.7 Relay output unit

Fuse
Optocoupler

Output

PLC

Fuse

Optocoupler

Output

PLC

(a)

(b)

–

+

Load

Load

+Current
flow

Current
flow –

Figure 4.8 Basic forms of transistor output: (a) current sinking, (b)
current sourcing

Optoisolator

From
PLC
CPU

PLC

LED
output signal

Output
load

+V

–V

Triac

Fuse

Figure 4.9 Triac output unit

Analogue outputs are frequently required and can be provided by
digital-to-analogue converters (DACs) at the output channel. The input to
the converter is a sequence of bits with each bit along a parallel line.
Figure 4.10 shows the basic function of the converter.

I/O processing 57

Digital-to-
analogue
converter

7
6
5
4
3
2
1
0

Digital
input

Analogue

output

00
00

 0
00

0

00
00

 0
00

1

00
00

 0
01

0

Digital input

0

Analogue

(b)

(a)

output

1

2

Figure 4.10 (a) DAC function, (b) digital-to-analogue conversion

A bit in the 0 line gives rise to a certain size output pulse. A bit in the 1
line gives rise to an output pulse of twice the size of the 0 line pulse. A bit
in the 2 line gives rise to an output pulse of twice the size of the 1 line
pulse. A bit in the 3 line gives rise to an output pulse of twice the size of
the 2 line pulse, and so on. All the outputs add together to give the
analogue version of the digital input. When the digital input changes, the
analogue output changes in a stepped manner, the voltage changing by the
voltage changes associated with each bit. For example, if we have an 8-bit
converter then the output is made up of voltage values of 28 = 256
analogue steps. Suppose the output range is set to 10 V d.c. One bit then
gives a change of 10/255 V or about 0.04 V. Thus we have:

etc.
0.32 00001000
0.016 + 0.08 + 0.04 = 0.28 00000111
0.016 + 0.08 = 0.24 00000110
0.016 + 0.00 + 0.04 = 0.20 00000101
0.16 00000100
0.08 + 0.04 = 0.12 00000011
0.08 + 0.00 = 0.08 00000010
0.04 00000001
0.00 00000000

Analogue output (V)Digital input (V)

Analogue output modules are usually provided in a number of outputs,
e.g. 4 to 20 mA, 0 to +5 V d.c., 0 to +10 V d.c., and the appropriate
output is selected by switches on the module. Modules generally have
outputs in two forms, one for which all the outputs from that module have
a common voltage supply and one which drives outputs having their own
individual voltage supplies. Figure 4.11 shows the basic principles of
these two forms of output.

58 Programmable Logic Controllers

Common
live

Output
loads

1

2

3

4

5

6

7

PLC

Fuses

(a)

1

2

3

4

L1

N1

L2

N2

L3

N3

L4

N4

Outputs

PLC

Fuses

Individual
supplies

(b)

Figure 4.11 Forms of output: (a) common supply, (b) individual supplies

4.2 Signal conditioning When connecting sensors which generate digital or discrete signals to an
input unit, care has to be taken to ensure that voltage levels match.
However, many sensors generate analogue signals. In order to avoid
having a multiplicity of analogue input channels to cope with the wide
diversity of analogue signals that can be generated by sensors, external
signal conditioning is often used to bring analogue signals to a common
range and so allow a standard form of analogue input channel to be used.

A common standard that is used (Figure 4.12) is to convert analogue
signals to a current in the range 4 to 20 mA and thus to a voltage by
passing it through a 250 ✡ resistance to give a 1 to 5 V input signal. Thus,
for example, a sensor used to monitor liquid level in the height range 0 to
1 m would have the 0 level represented by 4 mA and the 1 m represented
by 20 mA. The use of 4 mA to represent the low end of the analogue
range serves the purpose of distinguishing between when the sensor is
indicating zero and when the sensor is not working and giving zero
response for that reason. When this happens the current would be 0 mA.
The 4 mA also is often a suitable current to operate a sensor and so
eliminate the need for a separate power supply.

1 to 5 V

4 to 20 mA

250 ✡

Figure 4.12 Standard analogue signal

I/O processing 59

A potential divider (Figure 4.13) can be used to reduce a voltage from
a sensor to the required level; the output voltage level Vout is:

Vout = R2
R1 + R2

V in

R

R

V

V

in

out

1

2

Figure 4.13 Potential divider

Amplifiers can be used to increase the voltage level; Figure 4.14 shows
the basic form of the circuits that might be used with a 741 operational
amplifier with (a) being an inverting amplifier and (b) a non-inverting
amplifier. With the inverting amplifier the output Vout is:

Vout = − R2
R1

Vin

and with the non-inverting amplifier:

Vout = R1 + R2
R1

V in

+V

–V

R

R

1

2

out
in

V
V

(a)

–
+

+V

–V

R
R 1

2

out
in

V
V

(b)

–
+

Figure 4.14 Operational amplifier circuits

60 Programmable Logic Controllers

Often a differential amplifier is needed to amplify the difference
between two input voltages. Such is the case when a sensor, e.g. a strain
gauge, is connected in a Wheatstone bridge and the output is the
difference between two voltages or a thermocouple where the voltage
difference between the hot and cold junctions is required. Figure 4.14
shows the basic form of an operational amplifier circuit for this purpose.
The output voltage Vout is:

Vout = R2
R1

(V2 − V1)

V
V

V

R

R

R

R

1

2

1

1

2

2

out

Figure 4.15 Differential amplifier

As an illustration of the use of signal conditioning, Figure 4.16 shows
the arrangement that might be used for a strain gauge sensor. The sensor is
connected in a Wheatstone bridge and the out-of-balance potential
difference amplified by a differential amplifier before being fed via an
analogue-to-digital converter unit which is part of the analogue input port
of the PLC.

R

R

R

R

1

1

2

2

+V

Strain
gauge

ADC PLC

Differential amplifier

Wheatstone bridge

Figure 4.16 Signal conditioning with a strain gauge sensor

I/O processing 61

4.3 Remote connections When there are many inputs or outputs located considerable distances
away from the PLC, while it would be possible to run cables from each
such device to the PLC a more economic solution is to use input/output
modules in the vicinity of the inputs and outputs and use just a single core
cable to connect each, over the long distances, to the PLC instead of the
multicore cable that would be needed without such distant I/O modules
(Figure 4.17).

Twisted-pair, or screened cable, or

Input/output module

Power

PLC

fibre optic cable, communication
link

Remote input/
output module

Input and
output
connections

Figure 4.17 Use of remote input/output module

In some situations a number of PLCs may be linked together with a
master PLC unit sending and receiving input/output data from the other
units (Figure 4.18). The distant PLCs do not contain the control program
since all the control processing is carried out by the master PLC.

Communication
module

Communication
port

Units located some distance from the PLC

Other input/output
modules

PLC

PLC

Master
PLC

Figure 4.18 Use of remote input/output PLC systems

The cables used for communicating data between remote input/output
modules and a central PLC, remote PLCs and the master PLC are

62 Programmable Logic Controllers

typically twisted-pair cabling, often routed through grounded steel
conduit in order to reduce electrical ‘noise’. Coaxial cable enables higher
data rates to be transmitted and does not require the shielding of steel
conduit. Fibre-optic cabling has the advantage of resistance to noise,
small size and flexibility and is now becoming more widely used.

4.3.1 Serial and parallel communications

Serial communication is when data is transmitted one bit at a time (Figure
4.19(a)). Thus if an 8-bit word is to be transmitted, the eight bits are
transmitted one at a time in sequence along a cable. This means that a data
word has to be separated into its constituent bits for transmission and then
reassembled into the word when received. Parallel communication is
when all the constituent bits of a word are simultaneously transmitted
along parallel cables (Figure 4.19(b)). This allows data to be transmitted
over short distances at high speeds.

7 6 5 4 3 2 1 0
Bits

Bits
7
6
5
4
3
2
1
0

(a)

(b)

Figure 4.19 (a) Serial communication, (b) parallel communication

Serial communication is used for transmitting data over long distances.
It is much cheaper to run, for serial communication, a single core cable
over a long distance than the multicore cables that would be needed for
parallel communication. With a PLC system, serial communication might
be used for the connection between a computer, when used as a
programming terminal, and a PLC. Parallel communication might be used
when connecting laboratory instruments to the system. However,
internally, PLCs work, for speed, with parallel communications. Thus,
circuits called UARTS (universal asynchronous receivers–transmitters)
have to be used at input/output ports to converts serial communications
signals to parallel.

4.3.2 Serial standards

For successful serial communications to occur, it is necessary to specify:

1 The voltage levels to be used for signals, i.e. what signal represents a
0 and what represents a 1.

2 What the bit patterns being transmitted mean and how the message is
built up. Bear in mind that a sequence of words are being sent along
the same cable and it is necessary to be able to be able to determine
when one word starts and finishes and the next word starts.

3 The speed at which the bit pattern is to be sent, i.e. the number of bits
per second.

I/O processing 63

4 Synchronisation of the clocks at each end. This is necessary if, for
example, a particular duration transmitted pulse it to be recognised by
the receiver as just a single bit rather than two bits.

5 Protocols, or flow controls, to enable such information as ‘able to
receive data’ or ‘not ready to receive data’ to be received. This is
commonly done by using two extra signal wires (termed handshake
wires), one to tell the receiver that the transmitter is ready to send the
data and the other to tell the transmitter that the receiver is ready to
receive data.

6 Error-checking to enable a bit pattern to be checked to determine if
corruption of the data has occurred during transmission.

The most common standard serial communications interface used is the
RS232. Connections are made via 25-pin D-type connectors (Figure 4.20)
with usually, though not always, a male plug on cables and a female
socket on the equipment. Not all the pins are used in every application.

Pins 1 to 13

Pins 14 to 24

Figure 4.20 D connector

The minimum requirements are:

Pin 1: Ground connection to the frame of chassis
Pin 2: Serial transmitted data (output data pin)
Pin 3: Serial received data (input data pin)
Pin 7: Signal ground which acts as a common signal return path

A configuration that is widely used with interfaces involving computers is:

Pin 1: Ground connection to the frame of chassis
Pin 2: Serial transmitted data (output data pin)
Pin 3: Serial received data (input data pin)
Pin 4: Request to send
Pin 5: Clear to send
Pin 6: Data set ready
Pin 7: Signal ground which acts as a common signal return path
Pin 20: Data terminal ready

The signals sent through pins 4, 5, 6 and 20 are used to check that the
receiving end is ready to receive a signal, the transmitting end is ready to
send and the data is ready to be sent. With RS232, a 1 bit is represented
by a voltage between −5 and −25 V, normally −12 V, and a 0 by a voltage
between +5 and +25 V, normally +12 V.

64 Programmable Logic Controllers

The term baud rate is used to describe the transmission rate, it being
approximately the number of bits transmitted or received per second.
However, not all the bits transmitted can be used for data, some have to be
used to indicate the start and stop of a serial piece of data, these often
being termed flags, and as a check as to whether the data has been
corrupted during transmission. Figure 4.21 shows the type of signal that
might be sent with RS232. The parity bit is added to check whether
corruption has occurred, with even parity a 1 being added to make the
number of 1s an even number. To send seven bits of data, eleven bits may
be required.

Start bit Data

1 1 0 1 0 0 00 1

Parity bit

Time

0 level

1 level

V
ol

ta
ge

 V

1 Stop bit
+12

0

–12

Figure 4.21 RS232 signal levels

Other standards such as the RS422 and RS423 are similar to RS232.
RS232 is limited over the distances it can be used, noise limiting the
transmission of high numbers of bits per second when the length of cable
is more than about 15 m. RS422 can be used for longer distances. This
uses a balanced method of transmission. Such circuits require two lines
for the transmission, the transmitted signal being the voltage difference
between the two lines. Noise affecting both lines equally will have no
effect on the transmitted signal. Figure 4.22 shows how, for RS232 and
RS422, the data rates that can be transmitted without noise becoming too
significant depend on the distance. RS422 lines can be used for much
greater distances than RS232.

D
is

ta
nc

e
(m

)

Data rate (bits/s)

10

10

10

10 10 10 10 10

3

1

2

3 4 5 6 7

Figure 4.22 Transmission with RS232 and RS422

An alternative to RS422 is the 20 mA loop which was an earlier
standard and is still widely used for long distance serial communication,
particularly in industrial systems where the communication path is likely
to suffer from electrical noise (Figure 4.23). This system consists of a

I/O processing 65

circuit, a loop of wire, containing a current source. The serial data is
transmitted by the current being switched on and off, a 0 being transmitted
as zero current and a 1 as 20 mA.

Current
source

Transmitter

Receiver20 mA

Figure 4.23 20 mA loop

4.3.3 Parallel standards

The standard interface most commonly used for parallel communications
is IEEE-488. This was originally developed by Hewlett Packard to link
their computers and instruments and was known as the Hewlett Packard
Instrumentation Bus. It is now often termed the General Purpose
Instrument Bus. This bus provides a means of making interconnections so
that parallel data communications can take place between listeners, talkers
and controllers. Listeners are devices that accept data from the bus, talkers
place data, on request, on the bus and controllers manage the flow of data
on the bus and provide processing facilities. There is a total of 24 lines, of
which eight bi-directional lines are used to carry data and commands
between the various devices connected to the bus, five lines are used for
control and status signals, three are used for handshaking between devices
and eight are ground return lines (Figure 4.24).

8 data lines

Controller Talker Listener

Hand-

lines

Manage-
ment

D101 to
D108

DAV
NDAC
NRFD
ATN
EQI
IFC
REH
SRQ

shake

lines

Figure 4.24 The IEEE-488 bus structure

Commands from the controller are signalled by taking the Attention
Line (ATN) low, otherwise it is high, and thus indicating that the data
lines contain data. The commands can be directed to individual devices by
placing addresses on the data lines. Each device on the bus has its own

66 Programmable Logic Controllers

address. Device addresses are sent via the data lines as a parallel 7-bit
word, the lowest 5-bits providing the device address and the other two bits
control information. If both these bits are 0 then the commands are sent to
all addresses, if bit 6 is 1 and bit 7 a 0 the addressed device is switched to
be a listener, if bit 6 is 0 and bit 7 is 1 then the device is switched to be a
talker.

As illustrated above by the function of the ATN line, the management
lines each have an individual task in the control of information. The
handshake lines are used for controlling the transfer of data. The three
lines ensure that the talker will only talk when it is being listened to by
listeners. Table 4.1 lists the functions of all the lines and their pin numbers
in a 25-way D-type connector.

Table 4.1 IEEE-488 bus system

Ground/common.GND24
Ground/common.GND23
Ground/common.GND22
Ground/common.GND21
Ground/common.GND20
Ground/common.GND19
Ground/common.GND18

Remote Enable. This enables a device on the bus to indicate that it is to
be selected for remote control rather than by its own control panel.

RENManagement17
Data line 8.D108Data16
Data line 7.D107Data15
Data line 6.D106Data14
Data line 5.D105Data13
Shield.SHIELD12

Attention. This is used by the controller to signal that it is placing a
command on the data lines.

ATNManagement11

Service Request. This is used by devices to signal to the controller that
they need attention.

SRQ Management10

Interface Clear. This is used by the controller to reset all the devices of
the system to the start state.

IFCManagement 9

Not Data Accepted. This line is used by listeners taking it high to
indicate that data is being accepted.

NDACHandshake 8

Not Ready For Data. This line is used by listener devices taking it high
to indicate that they are ready to accept data.

NRFDHandshake 7

Data valid. When the level is low on this line then the information on the
data bus is valid and acceptable.

DAVHandshake 6

End Or Identify. This is used to either signify the end of a message
sequence from a talker device or is used by the controller to ask a device
to identify itself.

EOIManagement 5
Data line 4.D104Data 4
Data line 3.D103Data 3
Data line 2.D102Data 2
Data line 1.D101Data 1

Signal/functionAbbreviationSignal groupPin

I/O processing 67

Figure 4.25 shows the handshaking sequence that occurs when data is
put on the data lines. Initially DAV is high, indicating that there is no
valid data on the data bus, NRFD and NDAC also being low. When a data
word is put on the data lines, NRFD is made high to indicate that all
listeners are ready to accept data and DAV is made low to indicate that
new data is on the data lines. When a device accepts a data word it sets
NDAC high to indicate that is has accepted the data and NRFD low to
indicate that it is now not ready to accept data. When all the listeners have
set NDAC high, then the talker cancels the data valid signal, DAV going
high. This then results in NDAC being set low. The entire process can
then be repeated for another word being put on the data bus.

Data words
1st word 2nd word

DAV

NRFD

NDAC

Each listener in turn All listeners high

on data bus

Figure 4.25 Handshaking sequence

4.3.4 Protocols

It is necessary to exercise control of the flow of data between two devices
so what constitutes the message, and how the communication is to be
initiated and terminated, is defined. This is termed the protocol.

Thus one device needs to indicate to the other to start or stop sending
data. This can be done by using handshaking wires connecting
transmitting and receiving devices so that a signal along one such wire can
tell the receiver that the transmitter is ready to send (RTS) and along
another wire that the transmitter is ready to receive, a clear to send signal
(CTS). RTS and CTS lines are provided for in RS232 serial
communication links.

An alternative is to use additional characters on the transmitting wires.
With the ENQ/ACK protocol, data packets are sent to a receiver with a
query character ENQ. When this character is received the end of the data
packet has been reached. Once the receiver has processed that data, it can
indicate it is ready for another block of data by sending back an
acknowledge (ACK) signal. Another form, the XON/XOFF, has the
receiving device sending a XOFF signal to the sending device when it
wishes the data flow to cease. The transmitter then waits for an XON
signal before resuming transmission.

One form of checking for errors in the message that might occur as a
result of transmission is the parity check. This is an extra bit added to a
message to ensure that the number of bits in a piece of data is always odd

68 Programmable Logic Controllers

or always even. For example, 0100100 is even since there is an even
number of 1s and 0110100 is odd since there is an odd number of 1s. To
make both these odd parity then the extra bit added at the end in the first
case is 1 and in the second case 0, i.e. we have 01001001 and 01101000.
Thus when a message is sent out with odd bit parity, if the receiver finds
that the bits give an even sum, then the message has been corrupted during
transmission and the receiver can request that the message be repeated.

The parity bit method can detect if there is an error resulting from a
single 0 changing to a 1 or a 1 changing to a 0 but cannot detect two such
errors occurring since there is then no change in parity. To check on such
occurrences more elaborate checking methods have to be used. One
method involves storing data words in an array of rows and columns.
Parity can then be checked for each row and each column. The following
illustrates this for seven words using even parity.

0 00111100 ↓
1 10010101
1 11010101 of data
0 01100011 Block
0 10100000
0 10010101 ↑
100101010 Column parity bits
Row parity bits

Another method, termed cyclic redundancy check codes, involves
splitting the message into blocks. Each block is then treated as a binary
number and is divided by a predetermined number. The remainder from
this division is then sent as the error checking number on the conclusion
of the message and enables a check on the accuracy of the message to be
undertaken.

4.3.5 ASCII codes

The most widely used code for the transmission of characters is the ASCII
code (American Standard Code for Information Interchange). This is a
seven-bit code giving 128 different combinations of bits covering lower
case and upper case alphanumeric characters, punctuation and 32 control
codes. As an illustration, Table 4.2 shows the codes used for capital
letters. Examples of control codes are SOH, for start of heading, i.e. the
first character of a heading of an information message, as 000 0001; STX,
for start of text, as 000 0010; ETX, for end of text, as 000 0011; EOT, for
end of transmission, as 000 0011.

4.4 Networks The increasing use of automation in industry has led to the need for
communications and control on a plant-wide basis with programmable
controllers, computers, robots, and CNC machines interconnected. The
term local area network (LAN) is used to describe a communications
network designed to link computers and their peripherals within the same
building or site.

I/O processing 69

Table 4.2 Examples of ASCII codes

101 1010Z100 1101M
101 1001Y100 1100L
101 1000X100 1011K

011 10019101 0111W100 1010J
011 10008101 0110V100 1001I
011 01117101 0101U100 1000H
011 01106101 0100T100 0111G
011 01015101 0011S100 0110F
011 01004101 0010R100 0101E
011 00113101 0001Q100 0100D
011 00102101 0000P100 0011C
011 00011100 1111O100 0010B
011 00000100 1110N100 0001A

ASCIIASCIIASCII

Networks can take three basic forms. With the star form (Figure
4.26(a)) the terminals are each directly linked to a central computer,
termed the host, or master with the terminals being termed slaves. The
host contains the memory, processing and switching equipment to enable
the terminals to communicate. Access to the terminals is by the host
asking each terminal in turn whether it wants to talk or listen. With the bus
or single highway type of network (Figure 4.26(b)), each of the terminals
is linked into a single cable and so each transmitter/receiver has a direct
path to each other transmitter/receiver in the network. Methods, i.e.
protocols, have to be adopted to ensure that no more than one terminal
talks at once, otherwise confusion can occur. A terminal has to be able to
detect whether another terminal is talking before it starts to talk. With the
ring network (Figure 4.26(c)), a continuous cable, in the form of a ring,
links all the terminals. Again methods have to be employed to enable
communications from different terminals without messages becoming
mixed up. The single highway and the ring methods are often termed peer
to peer in that each terminal has equal status. Such a system allows many
stations to use the same network.

Host

Terminals(a)

Bus/single highway

Terminals

(b)

(c)

Terminals

Figure 4.26 Networks: (a) star, (b) bus/single highway, (c) ring

70 Programmable Logic Controllers

With ring-based networks, two commonly used methods that are
employed to avoid two stations talking at once and so giving rise to
confusion are token passing and slot passing. With token passing, a
special bit pattern called a token is circulated round the network. When a
station wishes to transmit into the network it waits until it receives the
token, then transmits the data with the token attached. Another station
wishing to transmit cannot do so until the token has been freed by removal
from the data by a receiver. With slot passing, empty slots are circulated
into which stations can deposit data for transmission.

Bus systems generally employ the method in which a system wishing to
transmit listens to see if any messages are being transmitted. If no
message is being transmitted, a station can take control of the network and
transmit its message. This method is known as carrier sense multiple
access (CSMA). However, we could end up with two stations
simultaneously perceiving the network to be clear for transmission and
both simultaneously taking control and sending messages. The result
would be a ‘collision’ of their transmitted data and corruption. If such a
situation is detected, both stations cease transmitting and wait a random
time before attempting to again transmit. This is known as carrier sense
multiple access with collision detection (CSMA/CD).

Different PLC manufacturers adopt different forms of network systems
and methods of communication for use with their PLCs. For example,
Mitsubishi uses a network termed MelsecNET, Allen Bradley uses Data
Highway Plus, General Electric uses GENET, Texas Instruments uses
TIWAY and Siemens has four forms under the general name SINEC.
Most employ peer to peer forms, e.g. Allen-Bradley. Siemens has two low
level forms, SINECL1 which is a star, i.e. master-slave form, and
SINECL2 which is peer to peer.

4.4.1 Distributed systems

Often PLCs figure in an entire hierarchy of communications (Figure 4.27).
Thus at the lowest level we have input and output devices such as sensor
and motors interfaced through I/O interfaces with the next level. The next
level involves controllers such as small PLCs or small computers, linked
through a network with the next level of larger PLCs and computers
exercising local area control. These in turn may be part of a network
involved with a large mainframe company computer controlling all.

Plant
computer Mainframe

SupervisorySupervisory
Large PLC
Computer

PLCPLCPLC PLCPLC ComputerRobot

Levels

PLCs, CNC
machines, etc.

I/OI/OI/OI/O I/OI/OI/OI/O Plant devices

Proprietary
network

Standard
LAN network

Figure 4.27 Control hierarchy

I/O processing 71

There is increasing use made of systems that can both control and
monitor industrial processes. This involves control and the gathering of
data. The term SCADA, which stands for supervisory control and data
acquisition system, is widely used for such a system.

4.4.2 Network standards

Interconnecting several devices can present problems because of
compatibility problems, e.g. they may operate at different baud rates or
use different protocols. In order to facilitate communications between
different devices the International Standards Organisation (ISO) in 1979
devised a model to be used for standardisation for open systems
interconnection (OSI); the model is termed the ISO/OSI model. A
communication link between items of digital equipment is defined in
terms of physical, electrical, protocol and user standards, the ISO/OSI
model breaking this down into seven layers (Figure 4.28).

Layer 7
Application

Layer 6
Presentation

Layer 5
Session

Layer 4
Transport

Layer 3
Network

Layer 2
Data link

Layer 1
Physical medium

System 1

Layer 7
Application

Layer 6
Presentation

Layer 5
Session

Layer 4
Transport

Layer 3
Network

Layer 2
Data link

Layer 1
Physical medium

System 2

Transmission path

Application
program

Application
program

Figure 4.28 ISO/OSI model

The function of each layer in the model is:

Layer 1: Physical medium
This layer is concerned with the coding and physical transmission of
information. Its functions include synchronising data transfer and
transferring bits of data between systems.

Layer 2: Data link
This layer defines the protocols for sending and receiving information
between systems that are directly connected to each other. Its
functions include assembling bits from the physical layer into blocks

72 Programmable Logic Controllers

and transferring them, controlling the sequence of data blocks and
detecting and correcting errors.

Layer 3: Network
This layer defines the switching that routes data between systems in
the network.

Layer 4: Transport
This layer defines the protocols responsible for sending messages
from one end of the network to the other. It controls message flow.

Layer 5: Session
This layer provides the function to set up communications between
users at separate locations.

Layer 6: Presentation
This layer assures that information is delivered in an understandable
form.

Layer 7: Application
This layer has the function of linking the user program into the
communication process and is concerned with the meaning of the
transmitted information.

Each layer is self-contained and only deals with the interfaces of the
layer immediately above and below it; it performs its tasks and transfers
its results to the layer above or the layer below. It thus enables
manufacturers of products to design products operable in a particular
layer that will interface with the hardware of other manufacturers.

In 1980, the IEEE (Institute of Electronic and Electrical Engineers)
began Project 802. This is a model which adheres to the OSI Physical
layer but subdivided the Data link layer into two separate layers: the
Media Access Control (MAC) layer and the Logical Link Control (LLC)
layer. The MAC layer defines the access method to the transmission
medium and consists of a number of standards to control access to the
network and ensure that only one user is able to transmit at any one time.
One standard is IEEE 802.3 Carrier Sense Multiple Access and Collision
Detection (CSMA/CD); stations have to listen for other transmissions
before being able to gain control of the network and transmit. Another
standard is IEEE 802.4 Token Passing Bus; with this method a special bit
pattern, the token, is circulated and when a station wishes to transmit it
waits until it receives the token and then attaches it to the end of the data.
The LLC layer is responsible for the reliable transmission of data packets
across the Physical layer.

4.4.3 Examples of commercial systems

General Motors in the United States had a problem in automating their
manufacturing activities by 1990 of requiring all their systems to be able
to talk to each other. They thus developed a standard communications
system for factory automation applications, this being termed the
manufacturing automation protocol (MAP). The system was for all
systems on the shop floor, e.g. robot systems, PLCs, welding systems.
Table 4.2 shows the MAP model and its relationship to the ISO model. In
order for non-OSI equipment to operate on the MAP system, gateways
may be used. These are self-contained units or interface boards that fit in

I/O processing 73

the device so that messages from a non-OSI network/device may be
transmitted through the MAP broad band token bus to other systems.

Table 4.3 MAP

10 mbps coaxial cable with RF modulatorsTransmission
IEEE 802.4 broad bandPhysical1
IEEE 802.2 class 1; IEEE 802.4 token busData link2
ISO InternetNetwork3
ISO transport class 4Transport4
ISO session kernelSession5

Presentation6
ISO file transfer, MMFS, FTAM, CASEApplication7

MAP protocolISO layer

Note: MMFS = manufacturing message format standard, FTAM = file
transfer, CASE = common applications service; each of these provides a
set of commands that will be understood by devices and the software
used.

For the data link, methods are needed to ensure that only the user of the
network is able to transmit at any one time and for MAP the method used
is token passing. The term broad band is used for a network in which
information is modulated onto a radio frequency carrier which is then
transmitted through the coaxial cable.

MAP is not widely used, a more commonly used system being the
Ethernet. This is a single bus system with CSMA/CD used to control
access. It uses coaxial cable with a maximum length of 500 m and up to
1024 stations can be accommodated, repeaters which restore signal
amplitude, waveform and timing can be used to extend this capability
(Figure 4.29). Each station is connected to the bus via a transceiver, the
transceiver clamping on to the bus cable. The term ‘vampire tap’ is used
for the clamp on to the cable since stations can be connected or removed
without disrupting system operation.

Station Station

Station Station

Terminator

Repeater

Transceiver

Transceiver

Cable

Cable
Terminator

Maximum length 500 m

Tranceiver

Tranceiver

Tranceiver

Tranceiver

Figure 4.29 Baseband Ethernet with repeaters. The term base band is
used when the signal is transmitted as just a series of voltage levels
directly representing the bits being transmitted.

74 Programmable Logic Controllers

Ethernet does not have a master station, each connected station being
of equal status and so we have peer-to-peer communication. A station
wishing to send a message on the bus will determine whether the bus is
clear and, when it is, put its message frame on the bus. There is the slight
probability that more than one station will sense an idle bus and attempt to
transmit. Thus each sender monitors the bus during transmission and
detects when the signal on the bus does not match its own output. When
such a ’collision’ is detected, the transmission continues for a short while
in order to give time to other stations to detect the collision and then
attempts to retransmit at a later time. Each message includes a bit
sequence to indicate the destination address, source address, the data to be
transmitted and a message check sequence. The message check sequence
contains the cycle redundancy check (see Section 4.3.4). At each
receiving station the frame’s destination address is checked to determine
whether the frame is destined for it. If so, it accepts the message. Ethernet
is widely used where systems involve PLCs having to communicate with
computers. The modular Allen-Bradley PLC-5 can be configured for use
with a range of communication networks by the addition of suitable
modules (see Figure 1.15), a module enabling use with Ethernet.

PLC manufacturers often have their own networks, in addition to
generally offering the possibility of Ethernet. The Allen-Bradley data
highway is a peer-to-peer system developed for Allen-Bradley PLCs and
uses token passing to control message transmission. The station addresses
of each PLC are set by switches on each PLC. Communication is
established by a single message on the data highway, this specifying the
sending and receiving addresses and the length of block to be transferred.

4.5 Processing inputs A PLC is continuously running through its program and updating it as a
result of the input signals. Each such loop is termed a cycle. PLCs could
be operated by each input being examined as it occurred in the program
and its effect on the program determined and the output correspondingly
changed. This mode of operation is termed continuous updating.

Because, with continuous updating, there is time spent interrogating
each input in turn, the time taken to examine several hundred input/output
points can become comparatively long. To allow a more rapid execution
of a program, a specific area of RAM is used as a buffer store between the
control logic and the input/output unit. Each input/output has an address
in this memory. At the start of each program cycle the CPU scans all the
inputs and copies their status into the input/output addresses in RAM. As
the program is executed the stored input data is read, as required, from
RAM and the logic operations carried out. The resulting output signals are
stored in the reserved input/output section of RAM. At the end of each
program cycle all the outputs are transferred from RAM to the appropriate
output channels. The outputs then retain their status until the next
updating. This method of operation is termed mass I/O copying. The
sequence can be summarised as (Figure 4.30):

1 Scan all the inputs and copy into RAM
2 Fetch and decode and execute all program instructions in sequence,

copying output instructions to RAM

I/O processing 75

Scan all
inputs

Update
outputs

Carry out
program

Repeat
sequence

Figure 4.30 PLC operation

3 Update all outputs
4 Repeat the sequence

The time taken to complete a cycle of scanning inputs and updating
outputs according to the program instructions, i.e. the cycle time, though
relatively quick, is not instantaneous and means that the inputs are not
watched all the time but samples of their states taken periodically. A
typical cycle time is of the order of 10 to 50 ms. This means that the
inputs and outputs are updated every 10 to 50 ms and thus there can be a
delay of this order in the system reacting. It also means that if a very brief
input cycle appears at the wrong moment in the cycle, it could be missed.
In general, any input must be present for longer than the cycle time.
Special modules are available for use in such circumstances.

Consider a PLC with a cycle time of 40 ms. What is the maximum
frequency of digital impulses that can be detected? The maximum
frequency will be if one pulse occurs every 40 ms, i.e. a frequency of
1/0.04 = 25 Hz.

The cycle or scanning time for a PLC, i.e. its response speed, is
determined by:

1 The CPU used.
2 The size of the program to be scanned.
3 The number of input/outputs to be read.
4 The system functions that are in use, the greater the number the

slower the scanning time.

As an illustration, the Mitsubishi compact PLC, MELSEC FX3U (see
Section 1.4), has a quoted program cycle time of 0.065 µs per logical
instruction. Thus the more complex the program the longer the cycle time
will be.

4.6 I/O addresses The PLC has to be able to identify each particular input and output. It
does this by allocating addresses to each input and output. With a small

76 Programmable Logic Controllers

PLC this is likely to be just a number, prefixed by a letter to indicate
whether it is an input or an output. Thus for the Mitsubishi PLC we might
have inputs with addresses X400, X401, X402, etc., and outputs with
addresses Y430, Y431, Y432, etc., the X indicating an input and the Y an
output. Toshiba use a similar system.

With larger PLCs having several racks of input and output channels,
the racks are numbered. With the Allen-Bradley PLC-5, the rack
containing the processor is given the number 0 and the addresses of the
other racks are numbered 1, 2, 3, etc. according to how set-up switches
are set. Each rack can have a number of modules and each one deals with
a number of inputs and/or outputs. Thus addresses can be of the form
shown in Figure 4.31. For example, we might have an input with address
I:012/03. This would indicate an input, rack 01, module 2 and terminal
03.

X: X X X / X X

I = input
O = output

Rack number

Module number

Terminal number

Figure 4.31 Allen-Bradley PLC-5 addressing

With the Siemens SIMATIC S5, the inputs and outputs are arranged in
groups of 8. Each 8 group is termed a byte and each input or output within
an 8 is termed a bit. The inputs and outputs thus have their addresses in
terms of the byte and bit numbers, effectively giving a module number
followed by a terminal number, a full stop (.) separating the two numbers.
Figure 4.32 shows the system. Thus I0.1 is an input at bit 1 in byte 0,
Q2.0 is an output at bit 0 in byte 2.

X X X . X

I = input
Q = output

Byte number
Bit number

Figure 4.32 Siemens SIMATIC S5 addressing

The GEM-80 PLC assigns inputs and output addresses in terms of the
module number and terminal number within that module. The letter A is
used to designate inputs and B outputs. Thus A3.02 is an input at terminal
02 in module 3, B5.12 is an output at terminal 12 in module 5.

In addition to using addresses to identify inputs and outputs, PLCs also
use their addressing systems to identify internal, software-created devices,
such as relays, timers and counters.

Problems Questions 1 to 9 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

I/O processing 77

1 Decide whether each of these statements is True (T) or False (F).

A serial communication interface:
(i) Involves data being transmitted and received one bit at a time.
(ii) Is a faster form of transmission than parallel communication.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

2 Decide whether each of these statements is True (T) or False (F).

The RS232 communications interface:
(i) Is a serial interface.
(ii) Is typically used for distances up to about 15 m.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 3 and 4 refer to the following which shows the bits on an
RS232 data line being used to transmit the data 1100001:

0110000111
X YZ

3 Decide whether each of these statements is True (T) or False (F).

The extra bits X and Z at the beginning and the end are:
(i) To check whether the message is corrupted during transmission.
(ii) To indicate where the data starts and stops.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

4 Decide whether each of these statements is True (T) or False (F).

Bit Y is:
(i) The parity bit showing odd parity.
(ii) The parity bit showing even parity.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

5 Decide whether each of these statements is True (T) or False (F).

The parallel data communication interface:
(i) Enables data to be transmitted over short distances at high

speeds.
(ii) A common standard is IEEE-488.

78 Programmable Logic Controllers

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 6 Decide whether each of these statements is True (T) or False (F).

For communications over distances of the order of 100 to 300 m with
a high transmission rate:
(i) The RS232 interface can be used.
(ii) The 20 mA current loop can be used.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

7 Decide whether each of these statements is True (T) or False (F).

With input/output processing, mass input/output copying:
(i) Scans all the inputs and copies their states into RAM.
(ii) Is a faster process than continuous updating.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

8 The cycle time of a PLC is the time it takes to:

A Read an input signal.
B Read all the input signals.
C Check all the input signals against the program.
D Read all the inputs, run the program and update all outputs.

9 Decide whether each of these statements is True (T) or False (F).

A PLC with a long cycle time is suitable for:
(i) Short duration inputs.
(ii) High frequency inputs.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

10 Specify (a) the odd parity bit, (b) the even parity bit, to be used when
the data 1010100 is transmitted.

11 Explain the purpose of using a parity bit.

12 Explain the continuous updating and the mass input/output copying
methods of processing inputs/outputs.

I/O processing 79

5 Ladder and functional
 block programming

Programs for microprocessor-based systems have to be loaded into them
in machine code, this being a sequence of binary code numbers to
represent the program instructions. However, assembly language based on
the use of mnemonics can be used, e.g. LD is used to indicate the
operation required to load the data that follows the LD, and a computer
program called an assembler is used to translate the mnemonics into
machine code. Programming can be made even easier by the use of the
so-called high level languages, e.g. C, BASIC, PASCAL, FORTRAN,
COBOL. These use pre-packaged functions, represented by simple words
or symbols descriptive of the function concerned. For example, with C
language the symbol & is used for the logic AND operation. However, the
use of these methods to write programs requires some skill in
programming and PLCs are intended to be used by engineers without any
great knowledge of programming. As a consequence, ladder
programming was developed. This is a means of writing programs which
can then be converted into machine code by some software for use by the
PLC microprocessor.

This method of writing programs became adopted by most PLC
manufacturers, however each tended to have developed their own versions
and so an international standard has been adopted for ladder programming
and indeed all the methods used for programming PLCs. The standard,
published in 1993, is IEC 1131-3 (International Electrotechnical
Commission). The IEC 1131-3 programming languages are ladder
diagrams (LAD), instruction list (IL), sequential function charts (SFC),
structured text (ST), and function block diagrams (FBD).

This chapter is an introduction to the programming of a PLC using
ladder diagrams and functional block diagrams, with discussion of the
other techniques in the next chapter. Here we are concerned with the basic
techniques involved in developing ladder and function block programs to
represent basic switching operations, involving the logic functions of
AND, OR, Exclusive OR, NAND and NOR, and latching. Later chapters
continue with further ladder programming involving other elements.

5.1 Ladder diagrams As an introduction to ladder diagrams, consider the simple wiring diagram
for an electrical circuit in Figure 5.1(a). The diagram shows the circuit for
switching on or off an electric motor. We can redraw this diagram in a
different way, using two vertical lines to represent the input power rails
and stringing the rest of the circuit between them. Figure 5.1(b) shows the
result. Both circuits have the switch in series with the motor and supplied

with electrical power when the switch is closed. The circuit shown in
Figure 5.1(b) is termed a ladder diagram.

Md.c. input

Switch

Motor

(a)

L1

L2
Power rails

L1 L2

Switch Motor

M

(b)

Figure 5.1 Ways of drawing the same electrical circuit

With such a diagram the power supply for the circuits is always shown
as two vertical lines with the rest of the circuit as horizontal lines. The
power lines, or rails as they are often termed, are like the vertical sides of
a ladder with the horizontal circuit lines like the rungs of the ladder. The
horizontal rungs show only the control portion of the circuit, in the case of
Figure 5.1 it is just the switch in series with the motor. Circuit diagrams
often show the relative physical location of the circuit components and
how they are actually wired. With ladder diagrams no attempt is made to
show the actual physical locations and the emphasis is on clearly showing
how the control is exercised.

Figure 5.2 shows an example of a ladder diagram for a circuit that is
used to start and stop a motor using push buttons. In the normal state,
push button 1 is open and push button 2 closed. When button 1 is pressed,
the motor circuit is completed and the motor starts. Also, the holding
contacts wired in parallel with the motor close and remain closed as long
as the motor is running. Thus when the push button 1 is released, the
holding contacts maintain the circuit and hence the power to the motor.
To stop the motor, button 2 is pressed. This disconnects the power to the
motor and the holding contacts open. Thus when push button 2 is
released, there is still no power to the motor. Thus we have a motor which
is started by pressing button 1 and stopped by pressing button 2.

L1 L2

M

1
2

Holding switch

Figure 5.2 Stop-start switch

5.1.1 PLC ladder programming

A very commonly used method of programming PLCs is based on the use
of ladder diagrams. Writing a program is then equivalent to drawing a
switching circuit. The ladder diagram consists of two vertical lines
representing the power rails. Circuits are connected as horizontal lines,
i.e. the rungs of the ladder, between these two verticals.

Programming 81

In drawing a ladder diagram, certain conventions are adopted:

1 The vertical lines of the diagram represent the power rails between
which circuits are connected. The power flow is taken to be from the
left-hand vertical across a rung.

2 Each rung on the ladder defines one operation in the control process.
3 A ladder diagram is read from left to right and from top to bottom,

Figure 5.3 showing the scanning motion employed by the PLC. The
top rung is read from left to right. Then the second rung down is read
from left to right and so on. When the PLC is in its run mode, it goes
through the entire ladder program to the end, the end rung of the
program being clearly denoted, and then promptly resumes at the start
(see Section 4.4). This procedure of going through all the rungs of the
program is termed a cycle. The end rung might be indicated by a
block with the word END or RET for return, since the program
promptly returns to its beginning.

Rung 1

Rung 2

Rung 3

Rung 4

END End rung

Left power rail Right power rail
Power flow

Figure 5.3 Scanning the ladder program

4 Each rung must start with an input or inputs and must end with at
least one output. The term input is used for a control action, such as
closing the contacts of a switch, used as an input to the PLC. The
term output is used for a device connected to the output of a PLC,
e.g. a motor.

5 Electrical devices are shown in their normal condition. Thus a switch
which is normally open until some object closes it, is shown as open
on the ladder diagram. A switch that is normally closed is shown
closed.

6 A particular device can appear in more than one rung of a ladder. For
example, we might have a relay which switches on one or more
devices. The same letters and/or numbers are used to label the device
in each situation.

7 The inputs and outputs are all identified by their addresses, the
notation used depending on the PLC manufacturer. This is the
address of the input or output in the memory of the PLC (see Section
4.6).

82 Programmable Logic Controllers

Figure 5.4 shows standard IEC 1131-3 symbols that are used for input
and output devices. Some slight variations occur between the symbols
when used in semi-graphic form and when in full graphic. Note that inputs
are represented by different symbols representing normally open or
normally closed contacts. The action of the input is equivalent to opening
or closing a switch. Output coils are represented by just one form of
symbol. Further symbols will be introduced in later chapters.

Semi-graphic form Full graphic form

A horizontal link along which
power can flow

Interconnection of horizontal
and vertical power flows

Left-hand power connection
of a ladder rung

Right-hand power connection
of a ladder rung

Normally open contact

Normally closed contact

Output coil: if the power flow
to it is on then the coil state is on

Figure 5.4 Basic symbols

To illustrate the drawing of the rung of a ladder diagram, consider a
situation where the energising of an output device, e.g. a motor, depends
on a normally open start switch being activated by being closed. The input
is thus the switch and the output the motor. Figure 5.5(a) shows the ladder
diagram.

OutputInput

(a)

Input

Output

OutputInput

(b)

Input

Output

Figure 5.5 A ladder rung

Programming 83

Starting with the input, we have the normally open symbol | | for the
input contacts. There are no other input devices and the line terminates
with the output, denoted by the symbol (). When the switch is closed, i.e.
there is an input, the output of the motor is activated. Only while there is
an input to the contacts is there an output. If there had been a normally
closed switch |/| with the output (Figure 5.5(b)), then there would have
been an output until that switch was opened. Only while there is no input
to the contacts is there an output.

In drawing ladder diagrams the names of the associated variable or
addresses of each element are appended to its symbol. Thus Figure 5.6
shows how the ladder diagram of Figure 5.5(a) would appear using (a)
Mitsubishi, (b) Siemens, (c) Allen-Bradley, (d) Telemecanique notations
for the addresses. Thus Figure 5.6(a) indicates that this rung of the ladder
program has an input from address X400 and an output to address Y430.
When wiring up the inputs and outputs to the PLC, the relevant ones must
be connected to the input and output terminals with these addresses.

X400 Y430 I0.0 Q2.0
Input Output Input Output

I:001/01 O:010/01
Input Output

I0,0 O0,0
Input Output

(a) (b)

(c) (d)

Figure 5.6 Notation: (a) Mitsubishi, (b) Siemens, (c) Allen-Bradley, (d)
Telemecanique

5.2 Logic functions There are many control situations requiring actions to be initiated when a
certain combination of conditions is realised. Thus, for an automatic
drilling machine (as illustrated in Figure 1.1(a)), there might be the
condition that the drill motor is to be activated when the limit switches are
activated that indicate the presence of the workpiece and the drill position
as being at the surface of the workpiece. Such a situation involves the
AND logic function, condition A and condition B having both to be
realised for an output to occur. This section is a consideration of such
logic functions.

5.2.1 AND

Figure 5.7(a) shows a situation where an output is not energised unless
two, normally open, switches are both closed. Switch A and switch B have
both to be closed, which thus gives an AND logic situation. We can think
of this as representing a control system with two inputs A and B (Figure
5.7(b)). Only when A and B are both on is there an output. Thus if we use
1 to indicate an on signal and 0 to represent an off signal, then for there to
be a 1 output we must have A and B both 1. Such an operation is said to
be controlled by a logic gate and the relationship between the inputs to a

84 Programmable Logic Controllers

logic gate and the outputs is tabulated in a form known as a truth table.
Thus for the AND gate we have:

11 1
0 0 1
0 1 0
0 0 0

BA
OutputInputs

A B

Applied voltage

Logic gate
control AND

A

B

Output
Inputs

(a) (b)

Figure 5.7 (a) AND circuit, (b) AND logic gate

An example of an AND gate is an interlock control system for a
machine tool so that it can only be operated when the safety guard is in
position and the power switched on.

Figure 5.8(a) shows an AND gate system on a ladder diagram. The
ladder diagram starts with | |, a normally open set of contacts labelled
input A, to represent switch A and in series with it | |, another normally
open set of contacts labelled input B, to represent switch B. The line then
terminates with O to represent the output. For there to be an output, both
input A and input B have to occur, i.e. input A and input B contacts have
to be closed (Figure 5.8(b)). In general:

On a ladder diagram contacts in a horizontal rung, i.e. contacts in
series, represent the logical AND operations.

Input A Input B Output

(a)

(b)

Input A

Input B

Output

Figure 5.8 AND gate with a ladder diagram rung

5.2.2 OR

Figure 5.9(a) shows an electrical circuit where an output is energised
when switch A or B, both normally open, are closed. This describes an
OR logic gate (Figure 5.9(b)) in that input A or input B must be on for
there to be an output. The truth table is:

Programming 85

11 1
1 0 1
1 1 0
0 0 0

BA
Output Inputs

A

B

Applied voltage

Logic gate
control OR

A

B

Output
Inputs

(b)(a)

Figure 5.9 (a) OR electrical circuit, (b) OR logic gate

Figure 5.10(a) shows an OR logic gate system on a ladder diagram,
Figure 5.10(b) showing an equivalent alternative way of drawing the same
diagram. The ladder diagram starts with | |, normally open contacts
labelled input A, to represent switch A and in parallel with it | |, normally
open contacts labelled input B, to represent switch B. Either input A or
input B have to be closed for the output to be energised (Figure 5.10(c)).
The line then terminates with O to represent the output. In general:

Alternative paths provided by vertical paths from the main rung of a
ladder diagram, i.e. paths in parallel, represent logical OR
operations.

Input A

Input B

Output Input A Output

Input B

(a) (b)

Input A

Input B

Output
(c)

Figure 5.10 OR gate

An example of an OR gate control system is a conveyor belt
transporting bottled products to packaging where a deflector plate is
activated to deflect bottles into a reject bin if either the weight is not
within certain tolerances or there is no cap on the bottle.

86 Programmable Logic Controllers

5.2.3 NOT

Figure 5.11(a) shows an electrical circuit controlled by a switch that is
normally closed. When there is an input to the switch, it opens and there is
then no current in the circuit. This illustrates a NOT gate in that there is
an output when there is no input and no output when there is an input
(Figure 5.11(c)). The gate is sometimes referred to as an inverter. The
truth table is:

0 1
1 0

OutputInput
A

A

Applied voltage(a)

Input A Output

(b)

Input A

Output
(c)

Figure 5.11 (a) NOT circuit, (b) NOT logic with a ladder rung, (c) high
output when no input to A

Figure 5.11(b) shows a NOT gate system on a ladder diagram. The
input A contacts are shown as being normally closed. This is in series with
the output (). With no input to input A, the contacts are closed and so
there is an output. When there is an input to input A, it opens and there is
then no output.

An example of a NOT gate control system is a light that comes on
when it becomes dark, i.e. when there is no light input to the light sensor
there is an output.

5.2.4 NAND

Suppose we follow an AND gate with a NOT gate (Figure 5.12(a)). The
consequence of having the NOT gate is to invert all the outputs from the
AND gate. An alternative, which gives exactly the same results, is to put a
NOT gate on each input and then follow that with OR (Figure 5.12(b)).
The same truth table occurs, namely:

0 1 1
1 0 1
1 1 0
1 0 0

BA
Output Inputs

Programming 87

AND NOT

NOT

NOT

OR

A

B

A

B

(a) (b)

Figure 5.12 NAND gate

Both the inputs A and B have to be 0 for there to be a 1 output. There is
an output when input A and input B are not 1. The combination of these
gates is termed a NAND gate.

Input A

Input B

Output
Input A

Input B

Output

Figure 5.13 A NAND gate

Figure 4.18 shows a ladder diagram which gives a NAND gate. When
the inputs to input A and input B are both 0 then the output is 1. When the
inputs to input A and input B are both 1, or one is 0 and the other 1, then
the output is 0.

An example of a NAND gate control system is a warning light that
comes on if, with a machine tool, the safety guard switch has not been
activated and the limit switch signalling the presence of the workpiece has
not been activated.

5.2.5 NOR

Suppose we follow an OR gate by a NOT gate (Figure 5.14(a)). The
consequence of having the NOT gate is to invert the outputs of the OR
gate. An alternative, which gives exactly the same results, is to put a NOT
gate on each input and then an AND gate for the resulting inverted inputs
(Figure 5.14(b)). The following is the resulting truth table:

01 1
0 0 1
0 1 0
1 0 0

BA
Output Inputs

The combination of OR and NOT gates is termed a NOR gate. There is an
output when neither input A or input B is 1.

88 Programmable Logic Controllers

OR NOT
NOT

NOT

AND

A

B

A

B(a)

(b)

Figure 5.14 NOR gate

Figure 5.15 shows a ladder diagram of a NOR system. When input A
and input B are both not activated, there is a 1 output. When either X400
or X401 are 1 there is a 0 output.

Input A Input B Output Input A

Input B

Output

Figure 5.15 NOR gate

5.2.6 Exclusive OR (XOR)

The OR gate gives an output when either or both of the inputs are 1.
Sometimes there is, however, a need for a gate that gives an output when
either of the inputs is 1 but not when both are 1, i.e. has the truth table:

01 1
1 0 1
1 1 0
0 0 0

B A
Output Inputs

Such a gate is called an Exclusive OR or XOR gate. One way of obtaining
such a gate is by using NOT, AND and OR gates as shown in Figure 5.16.

A

B

NOT

NOT

AND

AND

OR

Figure 5.16 XOR gate

Programming 89

Figure 5.17 shows a ladder diagram for an XOR gate system. When
input A and input B are not activated then there is 0 output. When just
input A is activated, then the upper branch results in the output being 1.
When just input B is activated, then the lower branch results in the output
being 1. When both input A and input B are activated, there is no output.
In this example of a logic gate, input A and input B have two sets of
contacts in the circuits, one set being normally open and the other
normally closed. With PLC programming, each input may have as many
sets of contacts as necessary.

OutputInput A Input B

Input A Input B

Input A

Input B

Output

Figure 5.17 XOR gate

5.3 Latching There are often situations where it is necessary to hold an output
energised, even when the input ceases. A simple example of such a
situation is a motor which is started by pressing a push button switch.
Though the switch contacts do not remain closed, the motor is required to
continue running until a stop push button switch is pressed. The term latch
circuit is used for the circuit used to carry out such an operation. It is a
self-maintaining circuit in that, after being energised, it maintains that
state until another input is received.

An example of a latch circuit is shown in Figure 5.18. When the input
A contacts close, there is an output. However, when there is an output,
another set of contacts associated with the output closes. These contacts
form an OR logic gate system with the input contacts. Thus, even if the
input A opens, the circuit will still maintain the output energised. The only
way to release the output is by operating the normally closed contact B.

Input A Input B Output

Output

Figure 5.18 Latched circuit

As an illustration of the application of a latching circuit, consider a
motor controlled by stop and start push button switches and for which one
signal light must be illuminated when the power is applied to the motor
and another when it is not applied. Figure 5.19 shows the ladder diagram
with Mitsubishi notation for the addresses.

90 Programmable Logic Controllers

X400 X401 Y430

Y430

Y430 Y431

Y430 Y432

Motor output

Lamp for power

Lamp for power

not applied

applied

Start Stop

Output contacts

Output contacts

Output
contacts

 Figure 5.19 Motor on-off, with signal lamps, ladder diagram. Note that
the stop contacts X401 are shown as being programmed as open. If the
stop switch used is normally closed then X401 receives a start-up signal
to close. This gives a safer operation than programming X401 as
normally closed.

X401 is closed when the program is started. When X400 is
momentarily closed, Y430 is energised and its contacts close. This results
in latching and also the switching off of Y431 and the switching on of
Y432. To switch the motor off, X401 is pressed and opens. Y430 contacts
open in the top rung and third rung, but close in the second rung. Thus
Y431 comes on and Y432 off.

Latching is widely used with start-ups so that the initial switch on of an
application becomes latched on.

5.4 Multiple outputs With ladder diagrams, there can be more than one output connected to a
contact. Figure 5.20 shows a ladder program with two output coils. When
the input contacts close both the coils give outputs.

Input Output A

Output B

Input

Output A

Output B

Figure 5.20 Ladder rung with two outputs

Programming 91

For the ladder rung shown in Figure 5.21, output A occurs when input
A occurs. Output B only occurs when both input A and input B occur.

Input A Output A

Output B

Input A

Output A

Output BInput B

Input B

Figure 5.21 Ladder rung with two inputs and two outputs

Such an arrangement enables a sequence of outputs to be produced, the
sequence being in the sequence with which contacts are closed. Figure
5.22 illustrates this with the same ladder program in Mitsubishi and
Siemens notations. Outputs A, B and C are switched on as the contacts in
the sequence given by the contacts A, B and C are being closed. Until
input A is closed, none of the other outputs can be switched on. When
input A is closed, output A is switched on. Then, when input B is closed,
output B is switched on. Finally, when input C is closed, output C is
switched on.

(a)

I0.0

I0.1

I0.2

Q2.0

Q2.1

Q2.2

(b)

X400

X401

X402

Y430

Y431

Y432

Input A

Input B

Input C

Output A

Output B

Output C

Input A

Input B

Input C

Output A

Output B

Output C

Input A

Input B

Input C

Output A

Output B

Output C

Figure 5.22 Sequenced outputs

92 Programmable Logic Controllers

5.5 Entering programs Each horizontal rung on the ladder represents an instruction in the
program to be used by the PLC. The entire ladder gives the complete
program. There are several methods that can be used for keying in the
program into a programming terminal. Whatever method is used to enter
the program into a programming terminal or computer, the output to the
memory of the PLC has to be in a form that can be handled by the
microprocessor. This is termed machine language and is just binary code,
e.g. 0010100001110001.

5.5.1 Ladder symbols

One method of entering the program into the programming terminal
involves using a keypad having keys with symbols depicting the various
elements of the ladder diagram and keying them in so that the ladder
diagram appears on the screen of the programming terminal. For example,
to enter a pair of contacts the key marked

might be used, followed by its address being keyed in. To enter an output
the key marked

()
might be used, followed by its address. To indicate the start of a junction
 .

might be pressed; to indicate the end of a junction path

To indicate horizontal circuit links, the following key might be used:

The terminal then translates the program drawn on the screen into
machine language.

Computers can be used to draw up a ladder program. These involve
loading the computer with the relevant software, e.g. RSLogix from
Rockwell Automation Inc. for Allen-Bradley PLCs, MELSOFT − GX
Developer for Mitsubishi PLCs, STEP 7 - Micro/WIN V4 for Siemens
PLCs. The software operates on the Windows operating system and
involves selecting items, in the usual Windows manner, from pull-down
menus on the screen.

Programming 93

5.6 Function blocks The term function block diagram (FBD) is used for PLC programs
described in terms of graphical blocks. It is described as being a graphical
language for depicting signal and data flows through blocks, these being
reusable software elements. A function block is a program instruction unit
which, when executed, yields one or more output values. Thus a block is
represented in the manner shown in Figure 5.23 with the function name
written in the box.

Inputs
Output

Function

Figure 5.23 Function block

The IEC 113-3 standard for drawing such blocks is shown in Figure
5.24. A function block is depicted as a rectangular block with inputs
entering from the left and outputs emerging from the right. The function
block type name is shown in the block, e.g. AND, with the name of the
function block in the system shown above it, Timer1. Names of function
block inputs are shown within the block at the appropriate input and
output points. Cross diagram connectors are used to indicate where
graphical lines would be difficult to draw without cluttering up or
complicating a diagram and show where an output at one point is used as
an input at another.

Semi-graphic form Full graphic form

Interconnection of horizontal
and vertical signal flows

Crossing horizontal and
vertical signal flows

Horizontal and vertical lines

Blocks with connections

Connectors AV_WEIGHT

AV_WEIGHT

AV_WEIGHT

AV_WEIGHT

Figure 5.24 Function block diagrams representation

94 Programmable Logic Controllers

Function blocks can have standard functions, such as those of the logic
gates or counters or times, or have functions defined by the user, e.g. a
block to obtain an average value of inputs.

5.6.1 Logic gates

Programs are often concerned with logic gates. Two forms of standard
circuit symbols are used for logic gates, one having originated in the
United States and the other being an international standard form
(IEEE/ANSI) which uses a rectangle with the logic function written inside
it. The 1 in a box indicates that there is an output when the input is 1. The
OR function is given by ≥1, this is because there is an output if an input is
greater than or equal to 1. A negated input is represented by a small circle
on the input, a negative output by a small circle on the output (Figure
5.25). Figure 5.26 shows the symbols. In FBD diagrams the notation used
in the IEEE/ANSI form is often encountered.

Figure 5.27 shows the effect of such functional blocks in PLC
programs.

(a) (b)

Figure 5.25 (a) Negated input, (b) negated output

A

B

Output
Inputs

Output
A

B

Inputs &

AND gate OR gate

A

B

Output
Inputs

A

B

Output
Inputs 1m

Not gate

Input

OutputA

Input

OutputA
1

A

B

Output
Inputs

A

B

Output
Inputs &

NAND gate

A

B

Output
Inputs

A

B

Output
Inputs >1

NOR Gate XOR Gate

Output
A

B

Inputs

Output
=1

A

B

Inputs

Figure 5.26 Logic gate symbols

Programming 95

Input A
Input B
Input C

Output
&

Input A

Input B

Input C

Output
AND function

Input A

Input B

Output
> 1

OR function

Input A

Input B

Output

Input A

Input B

Output

Input A

Input B
& Output

Input A

Input B

Output
Input A

Input B

Output

> 1

Input A
Input B
Input C

Output
&

Input A

Input B

Input C

Output

NAND function

Input A

Input B

Output
> 1

NOR function

Input A

Input B

Output

Input A

Input B

Output

XOR function

Input A

Input B

Output

XOR
Input A

Input B

Output

XOR function

Input A

Input B

Output

XOR

Figure 5.27 Functional blocks

To illustrate the form of such a diagram and its relationship to the
ladder diagram, Figure 5.28 shows an OR gate. When A or B inputs are 1
then there is an output.

Input A Output Q

Input A

Input B
Q

>1
Input B

Output

Figure 5.28 Ladder diagram and equivalent functional block diagram

Figure 5.29 shows a ladder diagram and its function block equivalent in
Siemens notation. The = block is used to indicate an output from the
system.

96 Programmable Logic Controllers

I0.0 I0.1 Q2.0
Input I0.0

& =

Q2.0Input Input Output

Input I0.1

Output

Figure 5.29 Ladder diagram and equivalent function block diagram

Figure 5.30 shows a ladder diagram involving the output having
contacts acting as an input. The function block diagram equivalent can be
shown as a feedback loop.

A B

Q

Q

A

B

>1
&

Q

Input Input Output

Output

Figure 5.30 Ladder diagram and equivalent function block diagram

Consider the development of a function block diagram and ladder
diagram for an application in which a pump is required to be activated and
pump liquid into a tank when the start switch is closed, the level of liquid
in the tank is below the required level and there is liquid in the reservoir
from which it is to be pumped. What is required is an AND logic situation
between the start switch input and a sensor input which is on when the
liquid in the tank is below the required level. We might have a switch
which is on until the liquid is at the required level. These two elements are
then in an AND logic situation with a switch indicating that there is liquid
in the reservoir. Suppose this switch gives an input when there is liquid.
The function block diagram, and the equivalent ladder diagram, is then of
the form shown in Figure 5.31.

Reservoir

Liquid level

Start
Pump

Start

Liquid
level Reservoir Pump

&

Figure 5.31 Pump application

5.6.2 Boolean algebra

Ladder programs can be derived from Boolean expressions since we are
concerned with a mathematical system of logic. In Boolean algebra there
are just two digits, 0 and 1. When we have an AND operation for inputs A
and B then we can write:

A$B = Q

Programming 97

where Q is the output. Thus Q is equal to 1 only when A = 1 and B = 1.
The OR operation for inputs A and B is written as:

A + B = Q

Thus Q is equal to 1 only when A = 1 or B = 1. The NOT operation for an
input A is written as:

A = Q

Thus when A is not 1 there is an output.
As an illustration of how we can relate Boolean expressions with ladder

diagrams, consider the expression:

A + B$C = Q

This tells us that we have A or the term B and C giving the output Q.
Figure 5.32 shows the ladder and functional block diagrams. Written in
terms of Mitsubishi notation, the above expression might be:

X400 + X401$X402 = Y430

In Siemens notation it might be:

I0.0 + I0.1$I0.2 = Q2.0

Input A

Input B Input C

Output Q
Input A

Input B

Input C

Output
Q

&
> 1

Figure 5.32 Ladder diagram

As a further illustration, consider the Boolean expression:

A + B = Q

Figure 5.33 shows the ladder and functional block diagrams.

Input A

Input B

Output Q

Input A

Input B
Output Q

Figure 5.33 Ladder diagram

98 Programmable Logic Controllers

Written in terms of Mitsubishi notation, the expression might be:

X400 + X401 = Y430

and in Siemens notation:

I0.0 + I0.1 = Q2.0

Consider the exclusive-OR gate and its assembly from NOT, AND and
OR gates, as shown in Figure 5.34.

Input A

Input B

 1

 1

> 1 Output Q

&

&

Figure 5.34 XOR gate

The input to the bottom AND gate is:

A and B

and so its output is:

A$B

The input to the top AND gate is:

 A and B

and so its output is:

 A $B

Thus the Boolean expression for the output from the OR gate is:

A$B + A $B = Q

Consider a logic diagram with many inputs, as shown in Figure 5.35,
and its representation by a Boolean expression and a ladder rung.

Programming 99

Input A

Input B

Input C

Input D

Input E

Input F

 &

 &
Q

Output
1

1

> 1

Figure 5.35 Logic diagram

For inputs A and B we obtain an output from the upper AND gate of
A$B. From the OR gate we obtain an output of A$B + C. From the lower
AND gate we obtain an output Q of:

(A$B + C)$D EF = Q

The ladder diagram to represent this is shown in Figure 5.36.

A B

C

D E F Q

Figure 5.36 Ladder diagram for Figure 5.35

5.7 Program examples The following tasks are intended to illustrate the application of the
programming techniques given in this chapter.

A signal lamp is required to be switched on if a pump is running and
the pressure is satisfactory, or if the lamp test switch is closed. For the
inputs from the pump and the pressure sensors we have an AND logic
situation since both are required if there is to be an output from the lamp.
We, however, have an OR logic situation with the test switch in that it is
required to give an output of lamp on regardless of whether there is a
signal from the AND system. The function block diagram and the ladder
diagram are thus of the form shown in Figure 5.37. Note that with the
ladder diagram we tell the PLC when it has reached the end of the
program by the use of the END or RET instruction.

As another example, consider a valve which is to be operated to lift a
load when a pump is running and either the lift switch is operated or a
switch operated indicating that the load has not already been lifted and is
at the bottom of its lift channel. We have an OR situation for the two
switches and an AND situation involving the two switches and the pump.
Figure 5.38 shows a possible program.

100 Programmable Logic Controllers

Pump

Pressure

Test

&
>1

Pump Pressure
X400 X401

Lamp
Y430

X402
Test

END

Figure 5.37 Signal lamp task

END

Lift

Not lifted

ValvePump
X400 X401 Y430

X402

&

Lift switch

Not lifted

Pump on

Valveswitch

> 1

Figure 5.38 Valve operation program

As another example, consider a system where there has to be no output
when any one of four sensors gives an output, otherwise there is to be an
output. One way we could write a program for this is for each sensor to
have contacts that are normally closed so there is an output. When there is
an input to the sensor the contacts open and the output stops. We have an
AND logic situation. Figure 5.39 shows the functional block diagram and
the ladder diagram of a system that might be used.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Output
& 1 2 3 4

Sensors

X400 X401 X402 X403 Y430

END

Input Input Input Input Output

Figure 5.39 Output switched off by any one of four sensors being
activated

Programming 101

5.7.1 Location of stop switches

The location of stop switches with many applications has to be very
carefully considered in order to ensure a safe system. A stop switch is not
safe if it is normally closed and has to be opened to give the stop action. If
the switch malfunctions and remains closed then the system cannot be
stopped. Figure 5.40(a) illustrates this. A better arrangement is to program
the stop switch in the ladder program as open in Figure 5.33(b) and use a
stop switch that is normally closed and operating opens it. Thus there is an
input signal to the system which closes the contacts in the program when
it starts up.

Start Stop

Motor

Motor

(a) An unsafe stop switch

Start Stop

Motor

Motor

(b) A safe stop switch

PLC

Relay coil

MotorSwitch
operated
by coil

Start

Stop

PLC

Relay coil

MotorSwitch
operated
by coil

Start

Stop

 Figure 5.40 Motor stop switch location

Figure 5.41 shows where we can safely locate an emergency stop
switch. If it is in the input to the PLC (Figure 5.41(a)) then if the PLC
malfunctions it may not be possible to stop the motor. However, if the
emergency stop switch is in the output, operating it will stop the motor
and also cause the start switch to become unlatched if the arrangement
shown in Figure 5.41(b) is being used. The motor will thus not restart
when the emergency stop button is released.

PLC

Relay coil

MotorSwitch
operated
by coil

Start

Stop

Emergency

(b) Safe arrangement

stop

PLC

Relay coil

MotorSwitch
operated
by coil

Start

Stop

Emergency

(a) Unsafe arrangement

stop

Figure 5.41 Location of emergency stop switch

102 Programmable Logic Controllers

Problems Questions 1 to 19 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

 1 Decide whether each of these statements is True (T) or False (F).

Figure 5.42 shows a ladder diagram rung for which:
(i) The input contacts are normally open.
(ii) There is an output when there is an input to the contacts.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

Figure 5.43 shows a ladder diagram rung for which:
(i) The input contacts are normally open.
(ii) There is an output when there is an input to the contacts.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

Figure 5.44 shows a ladder diagram rung for which:
(i) When only input 1 contacts are activated, there is an output.
(ii) When only input 2 contacts are activated, there is an output.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 4 Decide whether each of these statements is True (T) or False (F).

Figure 5.45 shows a ladder diagram rung for which there is an output
when:
(i) Inputs 1 and 2 are both activated.
(ii) Either one of inputs 1 and 2 is not activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 5 Decide whether each of these statements is True (T) or False (F).

Figure 5.46 shows a ladder diagram rung with an output when:
(i) Inputs 1 and 2 are both activated.
(ii) Input 1 or 2 is activated.

Programming 103

Figure 5.42 Problem 1

Input Output

Figure 5.43 Problem 2

Input Output

1 2
Inputs

Figure 5.44 Problem 3

Output

Input 1

Input 2

Figure 5.45 Problem 4

Output

Figure 5.46 Problem 5

Input 1 Input 2 Output

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 6 Decide whether each of these statements is True (T) or False (F).

Figure 5.47 shows a ladder diagram rung for which there is an output
when:
(i) Input 1 is momentarily activated before reverting to its normally
open state.
(ii) Input 2 is activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Questions 7 to 10 refer to the following logic gate systems:

A AND
B OR
C NOR
D NAND

 7 Which form of logic gate system is given by a ladder diagram with a
rung having two normally open sets of contacts in parallel?

 8 Which form of logic gate system is given by a ladder diagram with a
rung having two normally closed gates in parallel?

 9 Which form of logic gate system is given by a ladder diagram with a
rung having two normally closed gates in series?

10 Which form of logic gate system is given by a ladder diagram with a
rung having two normally open gates in series?

Problems 11 to 14 concern Boolean expressions for inputs A and B.

A Input A is in series with input B, both inputs being normally off.
B Input A is in parallel with input B, both inputs being normally

off.
C Input A, normally off, is in series with input B which is normally

on.
D Input A is in parallel with input B, both inputs being normally

on.

11 Which arrangement of inputs is described by the Boolean relationship
A$B?

12 Which arrangement of inputs is described by the Boolean relationship
A + B?

104 Programmable Logic Controllers

Input 1 Input 2 Output

Output

Figure 5.47 Problem 6

13 Which arrangement of inputs is described by the Boolean relationship
A + B?

14 Which arrangement of inputs is described by the Boolean relationship
A$B?

15 The arrangement of inputs in Figure 5.48 is described by the Boolean
expression:

A ABC
B (A + C)$B
C (A + B)$C
D A$C + B

16 Decide whether each of these statements is True (T) or False (F).

For the function block diagram in Figure 5.49, there is an output:
(i) When A is 1.
(ii) When B is 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

17 Decide whether each of these statements is True (T) or False (F).

For the function block diagram in Figure 5.50, there is an output:
(i) When A is 1.
(ii) When B is 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

18 Decide whether each of these statements is True (T) or False (F).

A

B

C
>1

& Output

Figure 5.51 Problem 18

For the functional block diagram in Figure 5.51, there is an output:
(i) When A is 1, B is 0 and C is 0.
(ii) When A is 0, B is 1 and C is 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Programming 105

A B

C

Figure 5.48 Problem 15

>1
A

B

Figure 5.49 Problem 16

>1
A

B

Figure 5.50 Problem 17

19 Decide whether each of these statements is True (T) or False (F).

A

B
>1

&

Figure 5.52 Problem 19

For the function block diagram in Figure 5.52, with A being a steady
input condition and B a momentary input, there is an output:
(i) When A is 1 and B is 0.
(ii) When A is 0 and B is 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

20 Figure 5.53(a) shows a ladder diagram. Which of the function block
diagrams in Figure 5.53(b) is its equivalent?

(b)

Input A Input B

Input C

(a)

Output

A

B

C &

A

A

B

C
&

&

B

Output Output

A

B

C
&

>1
C D

A

B

C &
>1 OutputOutput

Figure 5.53 Problem 20

21 Figure 5.54(a) shows a function block diagram. Which of the ladder
diagrams in Figure 5.54(b) is the equivalent?

106 Programmable Logic Controllers

A

B

C

D

E

>1

>1 &

(a)

A

B

C

D

E

A
A

B

C

D

E

B

A

B

C

D

E

C
A

C D

E

D

B

(b)

Output Output

Output Output

Figure 5.54 Problem 21

22 Draw the ladder rungs to represent:
(a) Two switches are normally open and both have to be closed for a
motor to operate.
(b) Either of two, normally open, switches have to be closed for a coil
to be energised and operate an actuator.
(c) A motor is switched on by pressing a spring-return push button
start switch, and the motor remains on until another spring-return
push button stop switch is pressed.
(d) A lamp is to be switched on if there is an input from sensor A or
sensor B.
(e) A light is to come on if there is no input to a sensor.
(f) A solenoid valve is to be activated if sensor A gives an input.

Programming 107

6 IL, SFC and ST
 programming methods

This chapter continues from the previous chapter and discusses the other
IEC 1131-3 (International Electrotechnical Commission) programming
languages, i.e. instruction lists (IL), sequential function charts (SFC), and
structured text (ST).

6.1 Instruction lists A programming method, which can be considered to be the entering of a
ladder program using text, is instruction lists (IL). Instruction list gives
programs which consist of a series of instructions, each instruction being
on a new line. An instruction consists of an operator followed by one of
more operands, i.e. the subjects of the operator. In terms of ladder
diagrams an operator may be regarded as a ladder element. Each
instruction may either use or change the value stored in a memory
register. For this, mnemonic codes are used, each code corresponding to
an operator/ladder element. The codes used differ to some extent from
manufacturer to manufacturer, though a standard IEC 1131-3 has been
proposed and is being widely adopted. Table 6.1 shows some of the codes
used by manufacturers, and the proposed standard, for instructions used in
this chapter (see later chapters for codes for other functions).

Table 6.1 Instruction code mnemonics

An outputStore result register
into operand

=OUTOUTST

A parallel element with
closed contacts

Boolean OR with
negative operand

ONOR NOTORIORN

A parallel element with open
contacts

Boolean OROOROROR

A series element with closed
contacts

Boolean AND with
negative operand

ANAND NOTANIANDN

A series element with open
contacts

Boolean ANDAANDANDAND

Start a rung with closed
contacts

Load negative operand
into result register

ANLD NOTLDILDN

Start a rung with open
contacts

Load operand into
result register

ALDLDLD

Ladder diagramOperationSiemens/
Telemecanique

OMRONMitsubishiIEC 1131-3
Operators

As an illustration of the use of IEC 113-1 operators, consider the
following:

(* Store result in Q, i.e. output to Q*)QST
(*AND B*)BAND
(*Load A*)ALD

In the first line of the program, LD is the operator, A the operand, and the
words at the ends of program lines and in brackets and preceded and
followed by * are comments added to explain what the operation is and
are not part of the program operation instructions to the PLC. LD A is
thus the instruction to load the A into the memory register. It can then
later be called on for further operations. The next line of the program has
the Boolean operation AND performed with A and B. The last line has the
result stored in Q, i.e. outputted to Q.

Labels can be used to identify various entry points to a program, useful
as we will find later for jumps in programs, and these precede the
instruction and are separated from it by a colon. Thus we might have:

(* Load C*)CLDPUMP_OK:

with there being the instruction earlier in the program to jump to
PUMP_OK if a particular condition is realised.

With the IEC 113-1 operators, an N after it is used to negate its value.
For example, if we have:

(*AND NOT B*)BANDN
(*Load A*)ALD

Thus the ANDN operator inverts the value of ladder contacts and ANDs
the result.

6.1.1 Ladder programs and instruction lists

When looked at in terms of ladder diagrams, whenever a rung is started, it
must use a ‘start a rung code’. This might be LD, or perhaps A or L, to
indicate the rung is starting with open contacts, or LDI, or perhaps LDN
or LD NOT or AN or LN, to indicate it is starting with closed contacts.
All rungs must end with an output or store result code. This might be
OUT or = or ST. The following shows how individual rungs on a ladder
are entered using the Mitsubishi mnemonics for the AND gate, shown in
Figure 6.1(a).

X400 X401 Y430
Input A Input B Output

(a) (b)

I0.1 I0.2 Q2.0
Input A Input B Output

Figure 6.1 AND gate: (a) Mitsubishi, (b) Siemens

IL, SFC and ST programming methods 109

The rung start with LD because it is starting with open contacts. Since
the address of the input is X400, the instruction is LD X400. This is
followed by another open contacts input and so the next program line
involves the instruction AND with the address of the element, thus the
instruction is AND X401. The rung terminates with an output and so the
instruction OUT is used with the address of the output, i.e. OUT Y430.
The single rung of a ladder would thus be entered as:

Y430 OUT
X401 AND
X400 LD

For the same rung with Siemens notation (Figure 6.1(b)) we have:

Q2.0 =
I0.2 A
I0.1 A

Consider another example, an OR gate. Figure 6.2(a) shows the gate
with Mitsubishi notation.

X400

X401

Y430
Input A Output

Input B

(a)

I0.1

I0.2

Q2.0
Input A Output

Input B

(b)

Figure 6.2 OR gate: (a) Mitsubishi, (b) Siemens

The instructions for the rung start with an open contact is LD X400.
The next item is the parallel OR set of contacts X401. Thus the next
instruction is OR X401. The last step is the output, hence OUT Y430. The
instruction list would thus be:

Y430 OUT
X401 OR
X400 LD

Figure 6.2(b) shows the Siemens version of the OR gate. The following is
the Siemens instruction list:

Q2.0=
I0.2 O
I0.1 A

Figure 6.3(a) shows the ladder system for a NOR gate in Mitsubishi
notation.

110 Programmable Logic Controllers

X400 X401 Y430
Input A Input B Output

(a)

I0.1 I0.2 Q2.0
Input A Input B Output

(b)

Figure 6.3 NOR gate: (a) Mitsubishi, (b) Siemens

The rung starts with normally closed contacts and so the instruction is
LDI. I when added to Mitsubishi instruction is used to indicate the inverse
of the instruction. The next step is a series normally closed contact and so
ANI, again the I being used to make an AND instruction the inverse. I is
also the instruction for a NOT gate. The instructions for the NOR gate
rung of the ladder would thus be entered as:

Y430 OUT
X401 ANI
X400 LDI

Figure 6.3(b) shows the NOR gate with Siemens notation. Note that N
added to an instruction is used to make the inverse. The instruction list
then becomes:

Q2.0 =
I0.2 AN
I0.1 LN

Consider the rung shown in Figure 6.4(a) in Mitsubishi notation, a
NAND gate.

X400 Y430

X401

Input A Output

Input B

(a)

I0.1 Q2.0

I0.2

Input A Output

Input B

(b)

Figure 6.4 NAND gate: (a) Mitsubishi, (b) Siemens

It starts with the normally closed contacts X400 and so starts with the
instruction LDI X400. The next instruction is for a parallel set of normally
closed contacts, thus the instruction is ORI X401. The last step is the
output, hence OUT Y430. The instruction list is thus:

Y430 OUT
X401 ORI
X400 LDI

IL, SFC and ST programming methods 111

Figure 6.4(b) shows the NAND gate in Siemens notation. The instruction
list is then:

Q2.0 =
I0.2 ON
I0.1 AN

6.1.2 Branch codes

The Exclusive OR (XOR) gate shown in Figure 6.5(a) in Mitsubishi
notation has two parallel arms with an AND situation in each arm.

X400 X401

X400 X401

Y430
Input A Input B Output

Input A Input B

(a)

I0.0 I0.1

I0.0 I0.1

Q2.0
Input A Input B Output

Input A Input B

(b)

Figure 6.5 XOR gate: (a) Mitsubishi, (b) Siemens

In such a situation Mitsubishi uses an ORB instruction to indicate ‘OR
together parallel branches’. The first instruction is for a normally open
pair of contacts X400. The next instruction is for a series set of normally
closed contacts X401, hence ANI X401. After reading the first two
instructions, the third instruction starts a new line. It is recognised as a
new line because it starts with LDI, all new lines starting with LD or LDI.
But the first line has not been ended by an output. The PLC thus
recognises that a parallel line is involved for the second line and reads
together the listed elements until the ORB instruction is reached. The
mnemonic ORB (OR branches/blocks together) indicates to the PLC that
it should OR the results of the first and second instructions with that of the
new branch with the third and fourth instructions. The list concludes with
the output OUT Y430. The instruction list would thus be entered as:

Y430 OUT
ORB

X401AND
X400LDI
X401 ANI
X400 LD

Figure 6.5(b) shows the Siemens version of XOR gate. Brackets are
used to indicate that certain instructions are to be carried out as a block.
They are used in the same way as brackets in any mathematical equation.
For example, (2 + 3)/4 means that the 2 and 3 must be added before
dividing by 4. Thus with the Siemens instruction list we have in step 0 the
instruction A(. The brackets close in step 3. This means that the A in step
0 is applied only after the instructions in steps 1 and 2 have been applied.

112 Programmable Logic Controllers

Q2.0=8
)7

I0.1 A6
I0.0AN5

O(4
)3

I0.1 AN 2
I0.0A1
 A(0

InstructionStep

.
The IEC 1131-3 standard for such programming is to use brackets in

the way used in the above Siemens example.
Figure 6.6(a) shows a circuit, in Mitsubishi notation, which can be

considered as two branched AND blocks. The instruction used here is
ANB. The instruction list is thus:

X400 X401

X402 X403

Y430

 Block Block

I0.0 I0.1

I0.2 I0.3

Q2.0

(a) (b)

Input A Input B Output Input A Input B Output

Input C Input D Input C Input D

Figure 6.6 Two branched AND gates: (a) Mitsubishi, (b) Siemens

Y430 OUT 5
ANB4

X403OR3
X401LD2
X402 OR1
X400 LD0

InstructionStep

Figure 6.6(b) shows the same circuit in Siemens notation. Such a program
is written as an instruction list using brackets. The A instruction in step 0
applies to the result of steps 1 and 2. The A instruction in step 4 applies to
the result of steps 5 and 6. The program instruction list is thus:

A(4
)3

I0.2O2
I0.0 A1
 A(0

InstructionStep

IL, SFC and ST programming methods 113

Q2.0=8
)7

I0.3O6
I0.1A5

6.1.3 More than one rung

Figure 6.7(a) shows a ladder, in Mitsubishi notation, with two rungs. In
writing the instruction list we just write the instructions for each line in
turn. The instruction LD or LDI indicates to the PLC that a new rung is
starting. The instruction list is thus:

X400 Y430

X400 Y431

(a)

Input A Output A

Input A Output B

I0.0 Q2.0

I0.0 Q2.1

(b)

Input A Output A

Input A Output B

Figure 6.7 Toggle circuit: (a) Mitsubishi, (b) Siemens

Y431OUT
X400LDI
Y430OUT
X400 LD

The system is one where when X400 is not activated, there is an output
from Y431 but not Y430. When X400 is activated, there is then an output
from Y430 but not Y431.

Figure 6.7(b) shows the same program in Siemens notation. The =
instruction indicates the end of a line. The A or AN instruction does not
necessarily indicate the beginning of a rung since the same instruction is
used for AND and AND NOT. The instruction list is then:

Q2.1=
I0.0AN
Q2.0=
I0.0 A

6.1.4 Programming examples

The following tasks are intended to illustrate the application of the
programming techniques given in this section and are the examples for
which ladder diagrams and function block diagrams were derived in
Section 5.7. See that section for an explanation of the ladder diagrams;
here we just show the instruction lists relating to the programs.

A signal lamp is required to be switched on if a pump is running and
the pressure is satisfactory, or if the lamp test switch is closed. Figure 6.8
shows the ladder program and the related instruction list.

114 Programmable Logic Controllers

Pump Pressure
X400 X401

Lamp

Y430

X402

Test
END

LD
AND
LD
ORB
OUT

X400
X401
X402

Y430
END

Figure 6.8 Signal lamp task

For a valve which is to be operated to lift a load when a pump is
running and either the lift switch is operated or a switch operated
indicating that the load has not already been lifted and is at the bottom of
its lift channel, Figure 6.9 shows the ladder program and the related
instruction list.

END

Lift

Not lifted

ValvePump
X400 X401 Y430

X402

LD
OR
AND
OUT
END

X400
X402
X401
Y430

Figure 6.9 Valve operation program

For a system where there has to be no output when any one of four
sensors gives an output, otherwise there is to be an output, Figure 6.10
shows the ladder program and the instruction list.

1 2 3 4
Sensors

Output
X400 X401 X402 X403 Y430 LDI

ANI
ANI
ANI
OUT

X400
X401
X402
X403
Y430

ENDEND

Figure 6.10 Output switched off by any one of four sensors being
activated

6.2 Sequential function If we wanted to describe a traffic lamp sequence, one way we could do
this would be to represent it as a sequence of functions or states such as
red light state and green light state and the inputs and outputs to each

IL, SFC and ST programming methods 115

charts

state. Figure 6.11 illustrates this. State 0 has an input which is triggered
after the green light has been on for 1 minute and an output of red light
on. State 1 has an input which is triggered after the red light has been on
for 1 minute and an output of green light on.

0

1

Red light
only on

Green light
only on

States Outputs

red light on for 1 minute

green light on for 1 minute
Transfer condition to next state is

Transfer condition for next state is

Figure 6.11 Sequence for traffic lights

The term sequential function chart (SFC) is used for a pictorial
representation of a system’s operation to show the sequence of the events
involved in its operation. SFC charts have the following elements:

1 The operation is described by a number of separate sequentially
connected states or steps which are represented by rectangular boxes,
each representing a particular state of the system being controlled.
The initial step in a program is represented differently to the other
steps, Figure 6.12 shows its representation.

State/step

Transition condition

Start Initial step in which the system

Stop Final step

etc.

Transition condition

Output

is held ready to start

Figure 6.12 A state and its transition

2 Each connecting line between states has a horizontal bar representing
the transition condition that has to be realised before the system can
move from one state to the next. Two steps can never be directly

116 Programmable Logic Controllers

connected, they must always be separated by a transition. Two
transitions can never directly follow from one to another, they must
always be separated by a step.

3 When the transfer conditions to the next state are realised then the
next state or step in the program occurs.

4 The process thus continues from one state to the next until the
complete machine cycle is completed.

5 Outputs/actions at any state are represented by horizontally linked
boxes and occur when that state has been realised.

As an illustration, Figure 6.13 shows part of an SFC and its equivalent
ladder diagram.

OUT 1Step 0

IN 1

IN 2

IN 1 OUT 1 Step 0

Step 1 OUT 2

IN 3

Step 1

When IN 1 occurs, then
step 0 is realised and
OUT 1 occurs

When step 1 has been
realised, i.e. OUT 1, and
the transfer condition
IN 2, then step 1 is
realised and OUT 2
occurs

OUT 1 IN 2 OUT 3

Start

End
END

Figure 6.13 SFC and equivalent ladder diagram

As an illustration of the principles of SFC, consider the situation with,
say, part of the washing cycle of a domestic washing machine where the
drum is to be filled with water and then when full a heater has to be
switched on and remain on until the temperature reaches the required
level. Then the drum is to be rotated for a specified time. We have a
sequence of states which can be represented in the manner shown in
Figure 6.14.

6.2.1 Branching and convergence

Selective branching is illustrated in Figure 6.15 and allows for different
states to be realised depending on the transfer condition that occurs.

Parallel branching (Figure 6.16), represented by a pair of horizontal
lines, allows for two or more different states to be realised and proceed
simultaneously.

Figures 6.17 and 6.18 show how convergence is represented by an
SFC. In Figure 6.17 the sequence can go from state 2 to state 4 if IN 4
occurs or from state 3 to state 4 if IN 5 occurs. In Figure 6.18 the
sequence can go simultaneously from both state 2 and state 3 to state 4 if
IN 4 occurs.

IL, SFC and ST programming methods 117

Step 1

Step 2

Fill with
water

Level full switch

Heat
water

Right temperature switch

Step 3 Rotate

Time switch

Start

Start switch pressed

And so on for rest of cycle

Drum

Water

Hot water

Figure 6.14 Washing machine

State 0

State 1 State 2 State 3

IN 1 IN 2 IN 3

State 1 occurs if the transfer
condition IN 1 occurs, but if
IN 2 then state 2 or if IN 3
then state 3

OUT 0
OUT 0

OUT 0

OUT 1

IN 1

IN 2

IN 3

State 1
output

State 2
output

State 3
output

Figure 6.15 Selective branching: the state that follows State 0 will
depend on whether transition IN1, IN2 or IN3 occur.

State 0

State 1 State 2 State 3

IN 1

When IN 0 occurs then
state 1, state 2 and state 3
are all simultaneously
realised.

OUT 0
OUT 0 IN 1

State 1
output

State 2
output

State 3
output

Figure 6.16 Parallel branching states 1, 2 and 3 occur simultaneously
when transition IN 1 occurs.

State 2

State 4

State 3

IN 4 IN 5

IN 4
State 4
output

State 2
output

State 3
output IN 5

Input

Input

Figure 6.17 Convergence: state 4 follows when either IN 4 or IN5 occur.

118 Programmable Logic Controllers

State 2

State 4

State 3

IN 4

IN 4
State 4
output

State 2
output

State 3
output

Input

Figure 6.18 Simultaneous convergence: when IN 4 occurs State 4
follows from either State 2 or 3.

As an illustration of the use of the above, Figure 6.19 shows part of a
program represented by both its SFC and its ladder programs.

State 0 OUT 0

State 1 OUT 1 State 2 OUT 2

State 3 OUT 3 State 4 OUT 4

State 5 OUT 5

IN 1

IN 3 IN 4

IN 5

IN 0

IN 0 OUT 0

OUT 0 IN 1 OUT 1

OUT 2

OUT 1 IN 3 OUT 3

OUT 2 IN 4 OUT 4

OUT 3

OUT 4

IN5 OUT 5

Input Output

Input

Input

Input Output

OutputInput

Output

Output

Output

END

Start

End

OUT 5

Figure 6.19 Part of an SFC and its equivalent ladder program

6.2.2 Actions

With states, there is an action or actions which have to be performed.
Such actions, like the outputs in the above example, are depicted as
rectangular boxes attached to the state. The behaviour of the action can be

IL, SFC and ST programming methods 119

given using a ladder diagram, function block diagram, instruction list or
structured text. Thus, where a ladder diagram is used, the behaviour of the
action is shown by the ladder diagram being enclosed within the action
box. The action is then activated when there is a power flow into the
action box. Figure 6.20 illustrates this.

In 0 Out 0

In 0

In 1

Figure 6.20 Action represented by a ladder diagram

Action boxes are generally preceded by qualifiers to specify the
conditions to exist for the action. In the absence of a qualifier or the
qualifier N, the action is not stored and executed continually while the
associate state is active. The qualifier P is used for a pulse action that
executes only once when a step is activated. The qualifier D is used for a
time delayed action that only starts after a specified period. The qualifier
L is used for a time limited action which terminates after a specified
period (Figure 6.21).

Action 1L
T#5s

State 1

T1

Figure 6.21 Illustration of a qualifier used with an action, this being a
time limited action

6.3 Structured text Structured text is a programming language that strongly resembles the
programming language PASCAL. Programs are written as a series of
statements separated by semicolons. The statements use predefined
statements and subroutines to change variables, these being defined
values, internally stored values or inputs and outputs.

Assignment statements are used to indicate how the value of a variable
it to be changed, e.g.

Light := SwitchA;

is used to indicate that a light is to have its ‘value’ changed, i.e. switched
on or off, when switch A changes its ‘value’, i.e. is on or off. The general
format of an assignment statement is:

X := Y;

where Y represents an expression which produces a new value for the
variable X. Another example is:

120 Programmable Logic Controllers

Light :- SwitchA OR SwitchB;

to indicate that the light is switched on by either switch A or switch B.
Table 6.2 shows some of the operators, like the OR in the above

statement, that are used in structured text programs, and their relative
precedence when an expression is being evaluated. For example:

InputA = 6
InputB = 4
InputC = 2
OutputQ := InputA/3 + InputB/(3 − InputC)

has (3 – InputC) evaluated before its value is used as a divisor so the
second part of the OutputQ statement is 4/(3 – 2) = 4. Division has
precedence over addition and so the first part of the statement is evaluated
before the addition, i.e. 6/3. So we have for OutputQ the value 2 + 1 = 3.

Table 6.2 Structured text operators

LowestBoolean OROR
Boolean XORXOR
Boolean ANDAND, &
Equality, inequality=, <>

Less than, greater than, less than or
equal to, greater than or equal to

<, >, <=, >=
Addition, subtraction+, -

Multiplication, division, modulus
operation

*, /, MOD
Negation, Boolean NOT-, NOT
Raising to a power**
List of parameters of a functionFunction(...)

HighestParenthised (bracketed) expression(...)

PrecedenceDescriptionOperator

Structured text is not case sensitive, thus lower case or capital letters
can be used as is felt necessary to aid clarity. Likewise spaces are not
necessary but can be used to aid clarity, likewise indenting lines. All the
identities of directly represented variables start with the % character and
is followed by one or two letter code to identify whether the memory
location is associated with inputs, outputs or internal memory and whether
it is bits, bytes or words, e.g.

%IX100 (*Input memory bit 100*)
%ID200 (*Input memory word 200*)
%QX100 (*Output memory bit 100*)

The first letter is I for input memory location, Q for output memory
location, M for internal memory. The second letter is X for bit, B for byte
(8 bit), W for word (16 bits), D for double word (32 bits), L for long word
(64 bits).

IL, SFC and ST programming methods 121

AT is used to fix the memory location for a variable. Thus we might
have:

Input1 AT %IX100; (*Input1 is located at input memory bit 100*)

6.3.1 Conditional statements

IF ... THEN ... ELSE is used when selected statements are to be executed
when certain conditions occur. For example:

IF (Limit_switch1 AND Workpiece_Present) THEN
Gate1 :- Open;
Gate2 :- Close;
ELSE
Gate1 :- Close;
Gate2 :- Open;
End_IF;

Note that the end of the IF statement has to be indicated. Another
example, using PLC addresses, is:

IF (I:000/00 = 1) THEN
O:001/00 :- 1;
ELSE
O:000/01 = 0;
End_IF;

So if there is an input to I:000/00 to make it 1 then output O:001/00 is 1,
otherwise it 0.

CASE is used to give the condition that selected statements are to be
executed if a particular integer value occurs else some other selected
statements. For example, for temperature control we might have:

CASE (Temperature) OF 0 ... 40 ;
Furnace_switch :- On;
40 ... 100
Furnace_switch :- Off;
ELSE
Furnace_switch :- Off;
End_CASE;

Note, as with all conditional statements, the end of the CASE statement
has to be indicated.

6.3.2 Iteration statements

These are used where it is necessary to repeat one or more statements a
number of times, depending on the state of some variable. The FOR ...
DO iteration statement allows a set of statements to be repeated
depending on the value of the iteration integer variable. For example:

FOR Input :- 10 to 0 BY -1

122 Programmable Logic Controllers

DO
Output :- Input;
End_FOR;

has the output decreasing by 1 each time the input, dropping from 10 to 0,
decreases by 1.

WHILE ... DO allows one or more statements to be executed while a
particular Boolean expression remains true, e.g.:

OutputQ :- 0;
WHILE InputA AND InputB
DO
OutputQ =: OutputQ + 1;
End_WHILE;

REPEAT ... UNTIL allows one or more statements to be executed and
repeated whilst a particular Boolean expression remains true.

OutputQ :- 0
REPEAT
OutputQ = OutputQ + 1;
UNTIL (Input1 = Off) OR (OutputQ > 5)
End_REPEAT;

6.3.3 Structured text programs

Programs have first to define the data types required to represent data e.g.

TYPE Motor: (Stopped, Running);
End_TYPE;

TYPE Valve: (Open, shut);
End_TYPE;

TYPE Pressure: REAL; (*The pressure is an analogue value*)
End_TYPE;

the variables, i.e. signals from sensors and output signals to be used in a
program, e.g.

VAR_IN (*Inputs*)
PumpFault : BOOL; (*Pump operating fault is a Boolean variable*)
End_VAR;

VAR_OUT (*Outputs*)
Motor_speed : REAL;
End_VAR;

VAR_IN
Value: INT; (*The value is an integer*)
End_VAR;

IL, SFC and ST programming methods 123

VAR
Input1 AT %IX100; (*Input1 is located at input memory bit 100*)
End_VAR;

and any initial values to be given to variables, e.g.

VAR
Temp : REAL :-100; (*Initial value is a an analogue number 100*)
End_VAR;

before getting down to the instruction statements.

Problems Questions 1 to 21 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

 1 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Y430OUT
X402AND
X401LD

describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Y430OUT
X402OR
X401LD

describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X402 is activated but X401 is not.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

The instruction list:

X402ANI
X401LD

124 Programmable Logic Controllers

Y430OUT

describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 4 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Y430OUT
X402ANI
X401LDI

describes a ladder diagram rung for which there is an output when:
(i) Input X401 is activated but X402 is not.
(ii) Input X401 and input X402 are both activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 5 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Y430OUT
X402ANI
Y430OR
X401LD

describes a ladder diagram rung for which there is:
(i) An output when input X401 is momentarily activated.
(ii) No output when X402 is activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 6 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Q2.0=
I0.2A
I0.1A

describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.

IL, SFC and ST programming methods 125

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 7 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Q2.0=
I0.2O
I0.1A

describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.2 is activated but I0.1 is not.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 8 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Q2.0=
I0.2AN
I0.1A

describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 9 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Q2.0=
I0.2AN
I0.1AN

describes a ladder diagram rung for which there is an output when:
(i) Input I0.1 is activated but I0.2 is not.
(ii) Input I0.1 and input I0.2 are both activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

126 Programmable Logic Controllers

10 Decide whether each of these statements is True (T) or False (F).

The instruction list:

Q2.0=
I0.2AN
Q2.0O
I0.1A

describes a ladder diagram rung for which there is:
(i) An output when input I0.1 is momentarily activated.
(ii) No output when I0.2 is activated.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

11 Decide whether each of these statements is True (T) or False (F).

For the sequential function chart shown in Figure 6.22:
(i) State 1 is realised when the condition X1 is realised.
(ii) Output 1 occurs when the condition X2 is realised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

12 Decide whether each of these statements is True (T) or False (F).

State 1

State 2 State 3

X2 X3

Figure 6.23 Problem 12

For the sequential function chart shown in Figure 6.23, if State 1 is
active:
(i) State 2 is realised when the condition X2 is realised.
(ii) State 3 occurs when the condition X3 is realised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

13 For the ladder program described in Figure 6.24(a), which of the
sequential function charts in Figure 6.24(b) will represent it?

IL, SFC and ST programming methods 127

X1

X2

Output 1State 1

Figure 6.22 Problem 11

X1

X2

X3

Y1

Y2

State 1

State 2

A

X1

X2

X3

Y1

Y2

State 1

State 2

B
X1

X2
X3

Y1 Y2State 1 State 2

C

X1
X2
X3

Y1 Y2State 1 State 2

D

(b)

X1

X2 X3

Y1

Y2

(a)

Input Output

Input Input Output

Figure 6.24 Problem 13
Problems 14, 15 and 16 concern the sequential function chart shown
in Figure 6.25.

X1

X2 X3

X4 X5

X6

X7

State 1

State 2 State 3

State 4

State 5

Y1

Y2 Y3

Y4

Y5

Figure 6.25 Problems 14, 15 and 16

128 Programmable Logic Controllers

14 Decide whether each of these statements is True (T) or False (F).

For the sequential function chart shown in Figure 6.25, output Y2
will occur if output Y1 has been realised and:
(i) Both X2 and X3 have been realised.
(ii) Just X2 has been realised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

15 Decide whether each of these statements is True (T) or False (F).

For the sequential function chart shown in Figure 6.25, output Y4
will occur if output Y2 has occurred and:
(i) Output Y3 has occurred.
(ii) X4 has been realised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

16 Decide whether each of these statements is True (T) or False (F).

For the sequential function chart shown in Figure 6.25, output Y5
will occur if:
(i) Output Y4 has occurred and condition X6 is realised.
(ii) Output Y3 has occurred and condition X5 is realised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

17 For the sequential function chart in Figure 6.26, which of the ladder
programs in Figure 6.27 describes the same program?

State 0

State 1 State 2

X0

X1

X2 X3

Y0

Y1 Y2

Figure 6.26 Problem 17

IL, SFC and ST programming methods 129

X0 Y0

X1 Y1

X2 Y2X3

A

X0 Y0

X1 Y1

B

Y0

X2 Y2X3

X0 Y0

X1 Y1

C

Y0

Y2

X2Y1

X3Y2

etc.

etc.

X0 Y0

X1 Y1

D

Y0

X1 Y2Y0

X2Y1

X2

X3Y2

etc.

etc.

Y1 X1

Figure 6.27 Problem 17

18 Decide whether each of these statements is True (T) or False (F).

For the following structured text program element:

VAR
i: INT;

End_VAR;

i :- 0;
REPEAT

i :- i + 1;
UNTIL i = 5;
End_REPEAT;

(i) The variable i can only have the 0 or 1 values.
(ii) Each time the program repeats, i has its value increased by 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

130 Programmable Logic Controllers

19 Decide whether each of these statements is True (T) or False (F).

For the following structured text program element:

IF Input1 THEN
Motor:- 1;
End_IF;

IF Input2 THEN
Motor:- 0;
End_IF;

(i) When input 1 occurs then the motor is switched on.
(ii) When input 2 occurs then the motor is switched off.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

20 Decide whether each of these statements is True (T) or False (F).

For the following structured text program element:

IF (Limit_switch_1 AND Workpiece_Present) Then
Gate_1 :- Open;
Gate_2 :- Closed;
ELSE
Gate_1 :- Closed;
Gate_2 :- Open;
End_IF;

(i) If only the workpiece is present, gate 1 is open and gate 2 closed.
(ii) If only the limit switch is activated, gate 1 is closed and gate 2 is

open.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

21 Decide whether each of these statements is True (T) or False (F).

For the following structured text program element:

VAR
Start_Up AT %IX120;
End_VAR
Start_Up:
(i) Can be found at input memory location bit 120.
(ii) Has the value 120 bits.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

IL, SFC and ST programming methods 131

7 Internal relays

This chapter continues on from the previous chapters on programming and
introduces internal relays. A variety of other terms are often used to
describe these elements, e.g. auxiliary relays, markers, flags, coils, bit
storage. These are one of the elements giving special built-in functions
with PLCs and are very widely used in programming. A small PLC might
have a hundred or more internal relays, some of them being battery backed
so that they can be used in situations where it is necessary to ensure safe
shutdown of plant in the event of power failure. Later chapters consider
other common built-in elements.

7.1 Internal relays In PLCs there are elements that are used to hold data, i.e. bits, and behave
like relays, being able to be switched on or off and switch other devices on
or off. Hence the term internal relay. Such internal relays do not exist as
real-world switching devices but are merely bits in the storage memory that
behave in the same way as relays. For programming, they can be treated in
the same way as an external relay output and input. Thus inputs to external
switches can be used to give an output from an internal relay. This then
results in the internal relay contacts being used, in conjunction with other
external input switches to give an output, e.g. activate a motor. Thus we
might have (Figure 7.1):

On one rung of the program:
Inputs to external inputs activate the internal relay output.

On a later rung of the program:
As a consequence of the internal relay output:
internal relay contacts are activated and so control some output.

Internal relay coil

Internal relay
contacts

Energising the
coil activates
the contacts

Figure 7.1 Internal relay

In using an internal relay, it has to be activated on one rung of a
program and then its output used to operate switching contacts on another
rung, or rungs, of the program. Internal relays can be programmed with as
many sets of associated contacts as desired.

To distinguish internal relay outputs from external relay outputs, they
are given different types of addresses. Different manufacturers tend to use
different terms for internal relays and different ways of expressing their
addresses. For example, Mitsubishi uses the term auxiliary relay or
marker and the notation M100, M101, etc. Siemens uses the term flag and
notation F0.0, F0.1, etc. Telemecanique uses the term bit and notation B0,
B1, etc. Toshiba uses the term internal relay and notation R000, R001,
etc. Allen-Bradley uses the term bit storage and notation in the PLC-5 of
the form B3/001, B3/002, etc.

7.2 Ladder programs With ladder programs, an internal relay output is represented using the
symbol for an output device, namely (), with an address which indicates
that it is an internal relay rather than an external relay. Thus, with a
Mitsubishi PLC, we might have the address M100, the M indicating that it
is an internal relay or marker rather than an external device. The internal
relay switching contacts are designated with the symbol for an input
device, namely | |, and given the same address as the internal relay output,
e.g. M100.

7.2.1 Programs with multiple input conditions

As an illustration of the use that can be made of internal relays, consider
the following situation. A system is to be activated when two different sets
of input conditions are realised. We might just program this as an AND
logic gate system; however, if a number of inputs have to be checked in
order that each of the input conditions can be realised, it may be simpler
to use an internal relay. The first input conditions then are used to give an
output to an internal relay. This has associated contacts which then
become part of the input conditions with the second input.

Figure 7.2 shows a ladder program for such a task. For the first rung:
when input 1 or input 3 is closed and input 2 closed, then internal relay IR
1 is activated. This results in the contacts IR 1 closing. If input 4 is then
activated, there is an output from output 1. Such a task might be involved
in the automatic lifting of a barrier when someone approaches from either
side. Input 1 and input 3 are inputs from photoelectric sensors that detect
the presence of a person, approaching or leaving from either side of the
barrier, input 1 being activated from one side of it and input 3 from the
other. Input 2 is an enabling switch to enable the system to be closed
down. Thus when input 1 or input 3, and input 2, are activated, there is an
output from the internal relay 1. This will close the internal relay contacts.
If input 4, perhaps a limit switch, detects that the barrier is closed then it
is activated and closes. The result is then an output from Out 1, a motor
which lifts the barrier. If the limit switch detects that the barrier is already
open, the person having passed through it, then it opens and so output 1 is
no longer energised and a counterweight might then close the barrier. The
internal relay has enabled two parts of the program to be linked, one part

Internal relays 133

being the detection of the presence of a person and the second part the
detection of whether the barrier is already up or down.

In 2 IR 1

IR 1 Out 1In 4

 In 3

In 1
Input Input Internal relay

Internal relay

Input

Input Output

Figure 7.2 Internal relay

Figure 7.3(a) shows how Figure 7.2 would appear in Mitsubishi notation
and Figure 7.3(b) in Siemens notation.

M100

M100 Y430X403

X400 X401

X402

LD
OR
AND
OUT
LD
AND
OUT

X400
X402
X401
M100
M100
X403
Y430

Input 1 Input 2 Internal relay

Input 3

Internal relay Input 5 Output

(a)

I0.1 F0.1

F0.1 Q2.0I0.3

 I0.2

I0.0

A
O
A
=
A
A
=

I0.0
I0.2
I0.1
F0.1
F0.1
I0.3
Q2.0

Input 1 Input 2 Internal relay

Input 3

Internal relayInput 3 Output

(b)

Figure 7.3 Figure 7.2 in: (a) Mitsubishi notation, (b) Siemens notation

Figure 7.4 is another example of this type of ladder program. The output
1 is controlled by two input arrangements. The first rung shows the internal
relay IR 1 which is energised if the input In 1 or In 2 is activated and
closed. The second rung shows the internal relay IR 2 which is energised if
the inputs In 3 and In 4 are both energised. The third rung shows that the
output Out 1 is energised if the internal relay IR 1 or IR 2 is activated.
Thus there is an output from the system if either of two sets of input
conditions is realised.

7.2.2 Latching programs

Another use of internal relays is for resetting a latch circuit. Figure 7.5
shows an example of such a ladder program.

134 Programmable Logic Controllers

 In 1 IR 1

 In 2

 In 3 In 4 IR 2

Out 1IR 1

IR 2

Rung with first internal relay IR 1

Rung with second internal relay IR 2

Output Out 1 controlled by the two
internal relays

Input 1 Internal relay 1

Input 2

Input 3 Input 4
Internal
relay 2

OutputInternal relay 1

Internal
relay 2

Figure 7.4 Use of two internal relays

Out 1

IR 1

In 1

In 2

Out 1

IR 1
Input 1 Internal relay 1Output 1

Internal relay 1Input 2

Output 1

Figure 7.5 Resetting latch

When the input 1 contacts are momentarily closed, there is an output at
Out 1. This closes the contacts for Out 1 and so maintains the output, even
when input 1 opens. When input 2 is closed, the internal relay IR 1 is
energised and so opens the IR 1 contacts, which are normally closed. Thus
the output Out 1 is switched off and so the output is unlatched.

Consider a situation requiring latch circuits where there is an automatic
machine that can be started or stopped using push-button switches. A
latch circuit is used to start and stop the power being applied to the
machine. The machine has several outputs which can be turned on if the
power has been turned on and are off if the power is off. It would be
possible to devise a ladder diagram which has individually latched

Internal relays 135

controls for each such output. However, a simpler method is to use an
internal relay. Figure 7.6 shows such a ladder diagram. The first rung has
the latch for keeping the internal relay IR 1 on when the start switch gives
a momentary input. The second rung will then switch the power on. The
third rung will also switch on and give output Out 2 if input 2 contacts are
closed. The third rung will also switch on and give output Out 3 if input 3
contacts are closed. Thus all the outputs can be switched on when the start
push button is activated. All the outputs will be switched off if the stop
switch is opened. Thus all the outputs are latched by IR 1.

Out 3

Start Stop

Input for output 2

Input for output 3

Output 2

Output 3

and so on for further inputs

Out 1IR 1
Power on–off

IR 1

IR 1

IR 1

IR 1

Out 2

Internal relay

Output 1

Internal relay

Internal relay

Internal relay

Internal relay

Output 2

Output 3

Figure 7.6 Starting of multiple outputs

7.3 Battery-backed relays If the power supply is cut off from a PLC while it is being used, all the
output relays and internal relays will be turned off. Thus when the power is
restored, all the contacts associated with those relays will be set differently
from when the power was on. Thus, if the PLC was in the middle of some
sequence of control actions, it would resume at a different point in the
sequence. To overcome this problem, some internal relays have battery
back-up so that they can be used in circuits to ensure a safe shutdown of
plant in the event of a power failure and so enable it to restart in an
appropriate manner. Such battery-backed relays retain their state of
activation, even when the power supply is off. The relay is said to have
been made retentive.

The term retentive memory coil is frequently used for such elements.
Figure 7.7 shows the IEC 1131-3 standard symbol for such elements. With
Mitsubishi PLCs, battery-backed internal relay circuits use M300 to M377
as addresses for such relays. Other manufacturers use different addresses
and methods of achieving retentive memory. The Allen-Bradley PLC-5
uses latch and unlatch rungs. If the relay is latched, it remains latched if

136 Programmable Logic Controllers

M

Figure 7.7 Retentive
memory coil

power is lost and is unlatched when the unlatch relay is activated. See
Section 7.5 for a discussion of such relays in the context of set and reset
coils.

As an example of the use of such a relay, Figure 7.8 shows a ladder
diagram for a system designed to cope with a power failure. IR 1 is a
battery-backed internal relay. When input 1 contacts close, output IR 1 is
energised. This closes the IR 1 contacts, latching so that IR 1 remains on
even if input 1 opens. The result is an output from Out 1. If there is a
power failure, IR 1 still remains energised and so the IR 1 contacts remain
closed and there is an output from Out 1.

IR 1

IR 1

IR 1

In 1

Out 1

Input Internal relay

Internal relay

Internal relay

Figure 7.8 Battery-backed relay program

7.4 One-shot operation One of the functions provided by some PLC manufacturers is the ability to
program an internal relay so that its contacts are activated for just one
cycle, i.e. one scan through the ladder program. Hence it provides a fixed
duration pulse at its contacts when operated. This function is often termed
one-shot. While some PLCs have such a function as an entity as part of
their programs, such a function can easily be developed with just two
rungs of a ladder program. Figure 7.9 shows such a pair of rungs. When
the trigger input occurs, it gives a trigger output in rung 1. In rung 2 it
gives a cycle control output on an internal relay. Because rung 2 occurs
after rung 1, the effect of the cycle control is not felt until the next cycle
of the PLC program when it opens the cycle control contacts in rung 1 and
stops the trigger output. The trigger output then remains off, despite there
being a trigger input. The trigger output can only occur again when the
trigger output is switched off and then switched on again.

Trigger
input Trigger

input

output

One cycle
of PLC program

(a)

Trigger
output

Trigger
input

Trigger

Cycle control

Cycle
control

1

2

ONS

Trigger
input

Trigger
output

(b)
Trigger

input

(c)

PLS

Trigger output
M101

Figure 7.9 One-shot (a) program, (b) facility in an Allen-Bradley PLC, (c) facility in a Mitsubishi PLC

Internal relays 137

With the Mitsubishi PLC, the output internal relay, say M100, is
activated when the trigger input, say X400, contacts close. Under normal
circumstances, M100 would remain on for as long as the X400 contacts
were closed. However, if M100 has been programmed for pulse operation,
M100 only remains on for a fixed period of time, one program cycle. It
then goes off, regardless of X400 being on. The programming instructions
that would be used are LD X400, PLS M100. The above represents pulse
operation when the input goes from off to on, i.e. is positive-going. If, in
Figure 7.9(c), X400 is made normally closed, rather than normally open,
then the pulse occurs when the input goes from on to off, i.e. is
negative-going.

The IEC 1131-3 gives standards for positive transition-sensing and
negative transition-sensing coils (Figure 7.10). With the positive
transition-sensing coil, if the power flow to it changes from off to on, the
output is set on for one ladder rung evaluation. With the negative
transition-sensing coil, if the power to it changes from off to on, the output
is set on for one ladder rung evaluation. Thus, for the ladder rung of Figure
7.11, with the input off there is no output. When the input switches on,
there is an output from the coil. However, the next and successive cycles of
the program do not give outputs from the coil even though the switch
remains on. The coil only gives an output the first time the switch is on.

P

Input Evaluation Input P output
1
2
3
4

Off
On
On
On

Off
On
Off
Off

Figure 7.11 Ladder rung with a positive-transition sensing coil

7.5 Set and reset Another function which is often available is the ability to set and reset an
internal relay. The set instruction causes the relay to self-hold, i.e. latch. It
then remains in that condition until the reset instruction is received. The
term flip-flop is often used. Figure 7.12 shows the IEC 1131-3 standards
for such coils. The SET coil is switched on when power is supplied to it
and remains set until it is RESET. The RESET coil is reset to the off state
when power is supplied to it and remains off until it is SET.

S

R

Input

Input
(a)

(b)

Input

Coil

Input

Coil

Coil

Coil

Figure 7.12 (a) SET and (b) RESET coils

Figure 7.13 shows an example of a ladder diagram involving such a
function. Activation of the first input, X400, causes the output Y430 to be

138 Programmable Logic Controllers

P

N

(a)

(b)

Figure 7.10 (a) Positive
transition-sensing coil,
(b) negative transition-
sensing coil

turned on and set, i.e. latched. Thus if the first input is turned off, the
output remains on. Activation of the second input, X401, causes the
output Y430 to be reset, i.e. turned off and latched off. Thus the output
Y430 is on for the time between X400 being momentarily switched on
and X401 being momentarily switched on. Between the two rungs
indicated for the set and reset operations, there could be other rungs for
other activities to be carried out, the set rung switching on an output at the
beginning of the sequence and off at the end.

Y430

R Y430

X400

X401

S Off

On

On
Off

On
Off

X400

X401

Y430

Input
SET coil Y430

Input
RESETt coil Y430

Figure 7.13 SET and RESET

The programming instructions for the ladder rungs in the program for
Figure 7.13 are:

Y430R
X401LD

Other program rungs are

Y430S
X400LD

With a Telemecanique PLC the ladder diagram would be as shown in
Figure 7.14 and the programming instructions would be:

O0,0R
I0,1L
O0,0S
I0,0L

I0,0

I0,1

O0,0

O0,0

S

R

Input SET

Input RESET

Figure 7.14 SET and RESET

With an Allen Bradley PLC, the term latch and unlatch is used. Figure
7.15 shows the ladder diagram.

Internal relays 139

111/05

111/06

Figure 7.15 Latch and
unlatch

L

U

020/00

020/00

Input Latch

Input Unlatch

The SET and RESET coil symbols are often combined into a single box
symbol. Figure 7.16 shows the equivalent ladder diagram for the set-reset
function in the above Figures with a Siemens PLC. The term memory box
is used by them for the SET/RESET box, the box shown is termed a SR or
reset priority memory function in that reset has priority. The programming
instructions (F being used to indicate an internal relay) are:

Q2.0=
F0.0A
F0.0R
I0.1A
F0.0S
I0.0A

S

R

Q2.0

I0.0

I0.1

F0.0
Input 1 SR Memory

Input 2
Output

Reset priority

Set input 1, reset input 0
there is output
Set input 0, reset input 1
there is no output
Set input 1, reset input 1
there is no output
Set input 0, reset input 0
there is no output

Input 1

Input 2

Output

Figure 7.16 SET and RESET, with reset priority

With set priority (RS memory box), the arrangement is as shown in Figure
7.17.

R

S

Q2.0I0.0

I0.1

F0.0
Input 1 RS Memory

Input 2

Output Set priority

Set input 1, reset input 0
there is output
Set input 0, reset input 1
there is no output
Set input 1, reset input 1
there is output
Set input 0, reset input 0
there is no output

Input 1

Input 2

Output

Figure 7.17 SET and RESET, with reset priority

140 Programmable Logic Controllers

Toshiba uses the term flip-flop and Figure 7.18 shows the ladder
diagram.

X000

X001

S

R

FF

R110

Q

Y020
Input Flip-flop

Output

Input

Figure 7.18 Flip-flop

Figure 7.19 shows how the set-reset function can be used to build the
pulse (one-shot) function described in the previous section. Figure 7.19(a)
shows it for a Siemens PLC (F indicates internal relay) and Figure 7.19(b)
for a Telemecanique PLC (B indicates internal relay. In (a) and (b), an
input (I0.0, I0,0) causes the internal relay (B0, F0.0) in the first rung to be
activated. This results, second rung, in the set-reset internal relay being
set. This setting action results in the internal relay (F0.1, B1) in the first
rung opening and so, despite there being an input in the first rung, the
internal relay (BO, F0.0) opens. However, because the rungs are scanned
in sequence from top to bottom, a full cycle must elapse before the
internal relay in the first rung opens. A pulse of duration one cycle has
thus been produced. The system is reset when the input (I0.0, I0,0) ceases.

I0.0 F0.1 F0.0

F0.1F0.0

I0.0

S

R

Q2.0

I0,0 B1 B0

B0 B1

I0,0 B1

S

R

(a) (b)

Input
Internal
relay

Internal
relay

SETInernal relay

RESETInput

Input

Output

Internal
relay

Internal
relay

Internal
relay SET/RESET

Input

Figure 7.19 Pulse function: (a) Siemens PLC, (b) Telemecanique PLC

7.5.1 Program examples

An example of the basic elements of a simple program for use with a fire
alarm system is shown in Figure 7.20. Fire sensors provide inputs to a
SET-RESET function block so that if one of the sensors is activated the
alarm is set and remains set until it is cleared by being reset. When set it
sets of the alarm.

Internal relays 141

Alarm

S

R

Sensor 1

Sensor 2

Sensor 3

Clear alarm switch

SET/RESET

Figure 7.20 Alarm system

Another program showing the basic elements of a program is shown in
Figure 7.21. This could be used with a system designed to detect when a
workpiece has been loaded into the correct position for some further
operation. When the start contacts are closed then the output causes the
workpiece to move. This continues until a light beam is interrupted and
resets, causing the output to cease. A stop button is available to stop the
movement at any time.

Motion

S

R

Start loading

Light sensor

Stop

SET/RESET
Workpiece movement

Figure 7.21 Loading system

7.6 Master control relay When large numbers of outputs have to be controlled, it is sometimes
necessary for whole sections of ladder diagrams to be turned on or off
when certain criteria are realised. This could be achieved by including the
contacts of the same internal relay in each of the rungs so that its operation
affects all of them. An alternative is to use a master control relay.

Figure 7.22 illustrates the use of such a relay to control a section of a
ladder program. With no input to input 1, the output internal relay MC 1 is
not energised and so its contacts are open. This means that all the rungs
between where it is designated to operate and the rung on which its reset
MCR or another master control relay is located are switched off. Assuming
it is designated to operate from its own rung, then we can imagine it to be
located in the power line in the position shown and so rungs 2 and 3 are
off. When input 1 contacts close, the master relay MC 1 is energised.

142 Programmable Logic Controllers

When this happens, all the rungs between it and the rung with its reset
MCR 1 are switched on. Thus outputs 1 and 2 cannot be switched on by
inputs 2 and 3 until the master control relay has been switched on. The
master control relay 1 acts only over the region between the rung it is
designated to operate from and the rung on which MCR 1 is located.

In 1

In 2

In 3

MC 1

MCR 1

Out 1

Out 2

MC 1

Input 1

Input 2

Input 3

Output 1

Output 2

Master control relay

Master control
relay

Master control relay

Figure 7.22 Principle of use of a master control relay

With a Mitsubishi PLC, an internal relay can be designated as a master
control relay by programming it accordingly. Thus to program an internal
relay M100 to act as master control relay contacts the program instruction
is:

MC M100

To program the resetting of that relay, the program instruction is:

MCR M100

Thus for the ladder diagram shown in Figure 7.23, being Figure 7.22 with
Mitsubishi addresses, the program instructions are:

M100MC
Y431OUT
X402LD
Y430OUT
X401LD
M100MC
M100OUT
X400LD

Figure 7.24 shows the format used by Allen-Bradley. To end the
control of one master control relay (MCR), a second master control relay
(MCR) is used with no contacts or logic preceding it. It is said to be
programmed unconditionally.

Internal relays 143

X400

X401

X402

M100

MCR 1

Y430

Y431

M100

Input 1

Input 2

Input 3

Output 1

Output 2

Master control relay

Master control
relay

Master control relay

MCR M100

Master
control
relay
for these
rungs

Master
control
relay for
these
rungs

I:010/01

I:010/02

I:010/03

MCR

MCR

O:010/00

O:010/01

Input 1

Input 2

Input 3

Output 1

Output 2

Master control relay

Master control relay

Figure 7.23 MCR with Mitsubishi PLC Figure 7.24 MCR with Allen-Bradley PLC

The representation used in Siemens ladder programs for master control
relays is shown in Figure 7.25. An area in which a master control relay is
to operate is defined by the activate master control area and deactivate
master control relay functions. Within that area, the master control relay is
enabled when MCR> coil is activated and disabled when the MCR< coil is
enabled.

MCRA Activate the master control relay area

MCRD Deactivate the master control relay area

MCR<

MCR>

Open the MCR zone

Clear the MCR zone

Figure 7.25 Siemens representation of master control relays

A program might use a number of master control relays, enabling
various sections of a ladder program to be switched in or out. Figure 7.26
shows a ladder program in Mitsubishi format involving two master control
relays. With M100 switched on, but M101 off, the sequence is: rungs 1, 3,
4, 6, etc. The end of the M100 controlled section is indicated by the
occurrence of the other master control relay, M101. With M101 switched
on, but M100 off, the sequence is: rungs 2, 4, 5, 6, etc. The end of this
section is indicated by the presence of the reset. This reset has to be used
since the rung is not followed immediately by another master control relay.
Such an arrangement could be used to switch on one set of ladder rungs if
one type of input occurs, and another set of ladder rungs if a different input
occurs.

144 Programmable Logic Controllers

MCR M101

X400 X401 M100

X402 X403 M101

M100
X404 Y430

M101
X405 Y431

and so on

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

Rung 6, etc.

Input 1 Input 2 Master control relay 1

Input 3 Input 4
Master control

relay 2

Input 5 Output 1

Output 2Input 6

Master control relay 2

Master control
relay 1

Master control
relay 2

LD
AND
OUT
LD
AND
OUT
MC
LD
OUT
MC
LD
OUT
MCR
and so on

X400
X401
M100
X402
X403
M101
M100
X404
Y430
M101
X405
Y431
M101

Figure 7.26 Example showing more than one master control relay

7.6.1 Examples of programs

The following looks at a program which illustrates the uses of master
control relays. The program is being developed for use with a pneumatic
valve system involving the movement of pistons in cylinders in order to
give a particular sequence of piston actions. First, however, we show how
latching might be used with such systems in order to maintain actions.

Consider a pneumatic system with single-solenoid controlled valves
and involving two cylinders A and B, with limit switches a–, a+, b–, b+
detecting the limits of the piston rod movements (Figure 7.27), with the
requirement being to give the sequence A+, B+, A–, B– . Figure 7.28
shows the ladder diagram that can be used.

The solenoid A+ is energised when the start switch is closed and limit
switch b– closed. This provides latching to keep A+ energised as long as
the normally closed contacts for limit switch b+ are not activated. When
limit switch a+ is activated, solenoid B+ is energised. This provides
latching which keeps B+ energised as long as the normally closed contacts
for limit switch a– are not activated. When cylinder B extends, the limit
switch b+ opens its normally closed contacts and unlatches the solenoid
A+. Solenoid A thus retracts. When it has retracted and opened the
normally closed contacts a–, solenoid B+ becomes unlatched and cylinder
B retracts.

Internal relays 145

A B

a– a+ b– b+

A+ B+

Figure 7.27 Valve system

END

Start b– A+

A+ b+

a+

B+ a–

B+

Cylinder A extends,
latched until b+
activated

Cylinder B extends,
latched until a–
activated

Limit switch Solenoid

Solenoid Limit switch

Limit switch

Solenoid

solenoid

Limit
switch

Figure 7.28 Ladder program

Now consider the ladder program which could be used with the pair of
single-solenoid-controlled cylinders in Figure 7.27 to give, when and only
when the start switch is momentarily triggered, the sequence A+, B+, A–,
10 s time delay, B– and stop at that point until the start switch is triggered
again. Figure 7.29 shows how such a program can be devised using a
master control relay. The master control relay is activated by the start
switch and remains on until switched off by the rung containing just MCR.

Problems Questions 1 to 21 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

Problems 1 to 3 refer to Figure 7.30 which shows a ladder diagram
with an internal relay, designated IR 1, two inputs In 1 and In 2, and
an output Output 1.

146 Programmable Logic Controllers

TimerStart MCR

MCR

MCR a– b– IR A+

A+

a+ b– B+

B+

a+ b+ IR

IR

IR a– b+ Timer

MCR

END

Master control relay
switches on the
following rungs

With both cylinders
retracted, cylinder
A extends, latching
the limit switches

With A extended and
B retracted, cylinder
B extends, latching the
limit switches

With A and B both
extended, the internal
relay is energised. This
switches off solenoid
A+ and so solenoid A
retracts

When A has retracted,
cylinder B still extended,
activating the internal
relay switches the
timer on. After the set
time the system is
switched off and B
retracts

Start switch energises
master control relay
and latches start. No
matter what the state
of the limit switches, the
system will not start until
MCR is energised

Master control relay

Master
control
relay

Master control relay

Internal relay

Internal relay

Internal relay Limit switches

Limit switches

Solenoid

Solenoid
Internal
relayLimit switches

Solenoid

Limit switches

Solenoid

Master control
relay

Figure 7.29 Ladder program

 1 Decide whether each of these statements is True (T) or False (F).

 For the ladder diagram shown in Figure 7.30, there is an output from
output 1 when:

Internal relays 147

(i) There is just an input to In 1.
(ii) There is just an input to In 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.30, there is an output from
output 1 when:
(i) There is an input to In 2 and a momentary input to In 1.
(ii) There is an input to In 1 or an input to In 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.30, the internal relay:
(i) Switches on when there is just an input to In 1.
(ii) Switches on when there is an input to In 1 and to In 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 4 to 6 refer to Figure 7.31 which shows a ladder diagram
involving internal relays IR 1 and IR 2, inputs In 1, In 2 and In 3, and
output Output 1.

4 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.31, the internal relay IR 1 is
energised when:
(i) There is an input to In 1.
(ii) There is an input to In 3.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

5 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.31, the internal relay IR 2 is
energised when:
(i) Internal relay IR 1 is energised.
(ii) Input 4 is energised.

148 Programmable Logic Controllers

In 1 In 2 IR 1

IR 1

IR 1 Output 1

Figure 7.30 Problems 1, 2
and 3

In 1 In 2 IR 1

In 3

In 4 IR 2

IR 1 IR 2 Output 1

Figure 7.31 Problems 4 to 6

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

6 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.31, there is an output from
Output 1 when:
(i) There are inputs to just In 1, In 2 and In 4.
(ii) There are inputs to just In 3 and In 4.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 7 and 8 refer to Figure 7.32 which shows a ladder diagram
involving a battery-backed relay IR 1, two inputs In 1 and In 2 and an
output Output 1.

 7 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.32, there is an output from
Output 1 when:
(i) There is a short duration input to In 1.
(ii) There is no input to In 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 8 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 7.32:
(i) The input In 1 is latched by the internal relay so that the internal
relay IR 1 remains energised, even when the input In 1 ceases.
(ii) Because the internal relay IR 1 is battery-backed, once there is an
output from Output 1, it will continue, even when the power is
switched off, until there is an input to In 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 9 When the program instructions LD X100, PLS M400 are used for a
ladder rung, the internal relay M400 will:

A Remain on even when the input to X100 ceases.
B Remain closed unless there is a pulse input to X100.
C Remain on for one program cycle when there is an input to X100.
D Remain closed for one program cycle after an input to X100.

Internal relays 149

In 1 In 2 IR 1

IR 1

IR 1 Output 1

Figure 7.32 Problems 7
and 8

10 When the program instructions LDI X100, PLS M400 are used for a
ladder rung, the internal relay M400 will:

A Remain on when the input to X100 ceases.
B Remain on when there is a pulse input to X100.
C Remain on for one program cycle when there is an input to X100.
D Remain on for one program cycle after the input to X100 ceases.

11 A Mitsubishi ladder program has the program instructions LD X100, S
M200, LD X101, R M200, followed by other instructions for further
rungs. There is the sequence: an input to the input X100, the input to
X100 ceases, some time elapses, an input to the input X101, the input
to X101 ceases, followed by inputs to later rungs. The internal relay
M200 will remain on:

A For one program cycle from the start of the input to X100.
B From the start of the input to X100 to the start of the input to

X101.
C From the start of the input to X100 to the end of the input to

X101.
D From the end of the input to X100 to the end of the input to X101.

12 A Siemens ladder program has the program instructions A I0.0, S
F0.0, A I0.1, R F0.0, A F0.0, = Q2.0, followed by other instructions
for further rungs. There is the sequence: an input to the input I0.0, the
input to I0.0 ceases, some time elapses, an input to the input I0.1, the
input to I0.1 ceases, followed by inputs to later rungs. The internal
relay F0.0 will remain on:

A For one program cycle from the start of the input to I0.0.
B From the start of the input to I0.0 to the start of the input to I0.1.
C From the start of the input to I0.0 to the end of the input to I0.1.
D From the end of the input to I0.0 to the end of the input to I0.1.

13 A Telemecanique ladder program has the program instructions L I0,0,
S O0,0, L I0,1, R O0,0, followed by other instructions for further
rungs. There is the sequence: an input to the input I0,0, the input to
I0,0 ceases, some time elapses, an input to the input I0,1, the input to
I0,1 ceases, followed by inputs to later rungs. The internal relay O0,0
will remain on:

A For one program cycle from the start of the input to I0,0.
B From the start of the input to I0,0 to the start of the input to I0,1.
C From the start of the input to I0,0 to the end of the input to I0,1.
D From the end of the input to I0,0 to the end of the input to I0,1.

14 An output is required from output Y430 which lasts for one cycle after
an input to X100 starts. This can be given by a ladder program with
the instructions:

A LD X100, Y430
B LD X100, M100, LD M100, Y 430

150 Programmable Logic Controllers

C LD X100, PLS M100, LD M100, Y 430
D LD X400, PLS M100, LDI M100, Y430

Questions 15 and 16 refer to Figure 7.33, which are two versions of
the same ladder diagram according to two different PLC
manufacturers. In (a) which uses Siemens notation, I is used for
inputs, F for internal relays and Q for the output. In (b) which uses
Telemecanique notation, I is used for inputs and B for internal relays.

I0.0 F0.1 F0.0

F0.1F0.0

I0.0

S

R

Q2.0

I0,0 B1 B0

B0 B1

I0,0 B1

S

R

(a) (b)

Figure 7.33 Problems 15 and 16

15 For the ladder diagram shown in Figure 7.33(a), when there is an
input to I0.0, the output Q2.0:

A Comes on and remains on for one cycle.
B Comes on and remains on.
C Goes off and remains off for one cycle.
D Goes off and remains off.

16 For the ladder diagram shown in Figure 7.33(b), when there is an
input to I0,0, the internal relay B1:

A Comes on and remains on for one cycle.
B Comes on and remains on.
C Goes off and remains off for one cycle.
D Goes off and remains off.

Problems 17 and 18 refer to Figure 7.34 which shows a Toshiba
ladder program with inputs X000, X001 and X002, an output Y020
and a flip- flop R110.

X000 X001

X002

S

R

FF
R110

Y020

Figure 7.34 Problems 17 and 18

Internal relays 151

17 Decide whether each of these statements is True (T) or False (F).

For there to be an output from Y020 there must be inputs to:
(i) X000.
(ii) X001.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

18 Decide whether each of these statements is True (T) or False (F).

With an input to X000, then:
(i) An input to X001 causes the output to come on.
(ii) An input to X002 causes the output to come on.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

19 Decide whether each of these statements is True (T) or False (F).

A master control relay can be used to:
(i) Turn on a section of a program when certain criteria are met.
(ii) Turn off a section of a program when certain criteria are not met.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 20 and 21 refer to Figure 7.35, which shows a ladder
program in Allen-Bradley format.

I:010/01

I:010/02

I:010/03

MCR

MCR

O:010/00

O:010/01

I:010/04 O:010/02

Figure 7.35 Problems 20 and 21

152 Programmable Logic Controllers

20 Decide whether each of these statements is True (T) or False (F).

When there is an input to I:010/01:
(i) An input to I:010/02 gives an output from O:010/00.
(ii) An input to I:010/03 gives an output from O:010/01.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

21 Decide whether each of these statements is True (T) or False (F).

When there is no input to I:010/01:
(i) An input to I:010/02 gives no output from O:010/00.
(ii) An input to I:010/04 gives no output from O:010/02.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

22 Devise ladder programs which can be used to:
(a) Maintain an output on, even when the input ceases and when there
is a power failure.
(b) Switch on an output for a time of one cycle following a brief
input.
(c) Switch on the power to a set of rungs.

Internal relays 153

8 Jump and call

This chapter considers the jump instruction which enables part of a
program to be jumped over and the way in which subroutines in ladder
programmes can be called up. Subroutines enable commonly occurring
operations in a program to be repeatedly called up and used over again.

8.1 Jump A function often provided with PLCs is the conditional jump. We can
describe this as:

IF (some condition occurs) THEN
perform some instructions

ELSE
perform some other instructions.

Such a facility enables programs to be designed such that if certain
conditions are met then certain events occur, if they are not met then other
events occur. Thus, for example, we might need to design a system so that
if the temperature is above 60oC a fan is switched on, and if below that
temperature no action occurs.

Thus, if the appropriate conditions are met, this function enables part of
a ladder program to be jumped over. Figure 8.1 illustrates this in a general
manner. When there is an input to In 1, its contacts close and there is an
output to the jump relay. This then results in the program jumping to the
rung in which the jump end occurs, so missing out intermediate program
rungs. Thus, in this case, when there is an input to Input 1, the program
jumps to rung 4 and then proceeds with rungs 5, 6, etc. When there is no
input to Input 1, the jump relay is not energised and the program then
proceeds to rungs 2, 3, etc.

Figure 8.2(a) shows the above ladder program in the form used by
Mitsubishi. The jump instruction is denoted by CJP (conditional jump) and
the place to which the jump occurs is denoted by EJP (end of jump). The
condition that the jump will occur is then that there is an input to X400.
When that happens the rungs involving inputs X401 and X403 are ignored
and the program jumps to continue with the rungs following the end jump
instruction with the same number as the start jump instruction, i.e. in this
case EJP 700.

With the Allen-Bradley PLC-5 format the jump takes place from the
jump instruction (JMP) to the label instruction (LBL). The JMP instruction
is given a three-digit number from 000 to 255 and the LBL instruction the
same number. Figure 8.2(b) shows a ladder program in this format.

Input 1 Jump

Jump end

Rung 1

Rung 2

Rung 3

Rung 4

etc.
Figure 8.1 Jump

X400

X401

X402

Y430

Y431

CJP 700

EJP 700

Input 1

Input 2

Input 3

Output 1

Output 2

Jump between
these rungs
of the program
if input 1 occurs

JMP

LBL

I:012/10

I:012/11

I:012/12

010

010

O:012/10

O:012/11

O:012/12

Jump if input

Input Jump

Label Output

I:012/10 occurs

(a) (b)

Figure 8.2 Jump: (a) Mitsubishi program, (b) Allen-Bradley program

With Siemens’ programs, conditional jumps are represented as shown
in Figure 8.3, there being a jump instruction JMP which is executed if the
input is a 1 and another jump instruction JMPN which is executed if the
input is 0. The end of both instructions is the label DEST.

JMP Jump if
input 1

JMPN Jump if
input 0

DEST End of jump

Figure 8.3 Siemens’ jump instructions

8.1.1 Jumps within jumps

Jumps within jumps are possible. For example, we might have the
situation shown in Figure 8.4. If the condition for the jump instruction 1 is
realised then the program jumps to rung 8. If the condition is not met then
the program continues to rung 3. If the condition for the jump instruction
2 is realised then the program jumps to rung 6. If the condition is not met
then the program continues through the rungs.

Thus if we have an input to In 1, the rung sequence is rung 1, 8, etc. If
we have no input to In 1 but an input to In 3, then the rung sequence is 1,
2, 6, 7, 8, etc. If we have no input to In 1 and no input to In 3, the rung
sequence is 1, 2, 3, 4, 5, 6, 7, 8, etc. The jump instruction enables
different groups of program rungs to be selected, depending on the
conditions occurring.

Jump and call 155

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

Rung 6

Rung 7

Rung 8

Jump 1

Jump 2

In 1

In 3

Jump 2 end

Jump 1 end

If In 1

If In 3

Figure 8.4 Jumps within jumps

8.2 Subroutines Subroutines are small programs to perform specific tasks which can be
called for use in larger programs. Thus with a Mitsubishi program we
might have the situation shown in Figure 8.5(a). When input 1 occurs, the
subroutine P is called. This is then executed, the instruction SRET
indicating its end and the point at which the program returns to the main
program. To clearly indicate where the main program ends the FEND
instruction is used.

With Allen-Bradley, subroutines are called by using a jump-to-
subroutine JSR instruction, the start of the subroutine being indicated by
SBR and its end and point of return to the main program by RET (Figure
8.5(b)).

With Siemens a similar format can be adopted, using CALL to call up a
subroutine block and RET to indicate the return instruction to the main
program. However, a function box approach (Figure 8.6) can be used and
is particularly useful where there is a library of subroutine functions to be
called. If the EN (enable) block input is connected directly to the left
power rail then the call is without conditions and always executed. If there
is a logic operation preceding EN then the block call is only executed if the
logic condition is fulfilled, in Figure 8.6 this is closure of contacts of Input
1. Several blocks can be connected in series by connecting the ENO,
enable output, of one to the EN input of the next.

156 Programmable Logic Controllers

Input 1

CALL P

Main program and

Call to subroutine

etc.

FEND End of main program

; Subroutine

etc.

SRET

Subroutine

END End of entire program

End of subroutine and
return to main program

JSR

etc

Jump to subroutine

Main program

SBR

RET

Subroutine

Return to main
program

(a)

return point after
subroutin

(b)

conditional on Input 1

Input 1

conditional on
Input 1

Figure 8.5 (a) Subroutine call with Mitsubishi PLC, (b) jump to subroutine call with Allen-Bradley PLC

Subroutine block FCx

Return to main program

FCx
EN

IN1

IN2

OUT

ENO enabled when input to EN

Main program prior to call

Processing of the block parameters
Output when IN1 AND IN2

Input 1

Figure 8.6 Call to subroutine block with Siemens PLC

Problems Questions 1 to 4 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

Problems 1 and 2 refer to Figure 8.7 which shows a ladder diagram
with inputs In 1, In 2, In 3 and In 4, outputs Out 1, Out 2, Out 3 and
Out 4 and a Jump instruction.

1 For the ladder diagram shown in Figure 8.8, for output Out 1 to
occur:

Jump and call 157

A Only input In 1 must occur
B Both inputs In 1 and In 2 must occur
C Input In 1 must not occur and input 2 must occur
D Both inputs In 1 and In 2 must not occur

2 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 8.8, following input In 1:
(i) Output 1 occurs.
(ii) Output 3 occurs.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 3 and 4 refer to Figure 8.8 which shows a ladder diagram
with inputs In 1, In 2, and In 3, outputs Out 1, Out 2, Out 3 and a
jump-to-subroutine instruction.

3 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 8.8:
(i) After input In 1 occurs output Out 2 occurs.
(ii) After output 3 occurs the program waits for input In 2 before

proceeding

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

4 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 8.8:
(i) When input In 2 occurs, outputs 1 and 2 occur.
(ii) When input In 3 occurs, output 3 occurs.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

158 Programmable Logic Controllers

JMP

LBL

In 1 Jump 1

Label 1 Out 3

In 2

In 3

Out 1

Out 2

In 4 Out 4

Figure 8.7 Problems 1 and 2

JSR

SBR

RET

In 1

In 2

In 3

Out 1

Out 2

Out 3

Figure 8.8 Problems 3 and 4

9 Timers

In many control tasks there is a need to control time. For example, a
motor or a pump might need to be controlled to operate for a particular
interval of time, or perhaps be switched on after some time interval. PLCs
thus have timers as built-in devices. Timers count fractions of seconds or
seconds using the internal CPU clock. This chapter shows how such
timers can be programmed to carry out control tasks.

9.1 Types of timers PLC manufacturers differ on how timers should be programmed and
hence how they can be considered. A common approach is to consider
timers to behave like relays with coils which when energised result in the
closure or opening of contacts after some preset time. The timer is thus
treated as an output for a rung with control being exercised over pairs of
contacts elsewhere (Figure 9.1(a)). This is the predominant approach used
in this book. Some treat a timer as a delay block which when inserted in a
rung delays signals in that rung reaching the output (Figure 9.1(b)).

There are a number of different forms of timers that can be found with
PLCs. With small PLCs there is likely to be just one form, the on-delay
timers. These are timers which come on after a particular time delay
(Figure 9.2(a)). Off-delay timers are on for a fixed period of time before
turning off (Figure 9.2(b)). Another type of timer that occurs is the pulse
timer. This timer switches on or off for a fixed period of time (Figure
9.2(c)). Figure 9.3 shows the IEC 1131-3 standard symbols for timers.
TON is used to denote on-delay, TOF off-delay. TP pulse timers.
On-delay is also represented by T−0 and off-delay by 0−T.

Input

Timer

(a) On-delay timer

Input

Timer

(a) Off-delay timer

Input

Timer

(c) Pulse timer

output output output

Figure 9.2 Timers: (a) on-delay, (b) off-delay, (c) pulse

TON
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

On-delay timer

TOF
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

Off-delay timer

TP
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

Pulse timer

Figure 9.3 IEC 1131-1 standards. BOOL indicates a Boolean input/output, i.e. on/off. IN is the input. Q is the
output. ET is the elapsed time output. PT is the input used to specify the time.

(a)

Timer coil

Timer contacts

Time delay
before activated

Timer

Time delay before input
signal reaches output(b)

Figure 9.1 Treatment of timers

The time duration for which a timer has been set is termed the preset
and is set in multiples of the time base used. Some time bases are typically
10 ms, 100 ms, 1 s, 10 s and 100 s. Thus a preset value of 5 with a time
base of 100 ms is a time of 500 ms. For convenience, where timers are
involved in this text, a time base of 1 s has been used.

9.2 Programming timers All PLCs generally have delay-on timers, small PLCs possibly having
only this type of timer. Figure 9.4(a) shows a ladder rung diagram
involving a delay-on timer. Figure 9.4(a) is typical of Mitsubishi. The
timer is like a relay with a coil which is energised when the input In 1
occurs (rung 1). It then closes, after some preset time delay, its contacts
on rung 2. Thus the output occurs some preset time after the input In 1
occurs. Figure 9.4(b) shows the timer to be a delay item in a rung, rather
than as a relay, the example being for Siemens. When the signal at the
timer’s start input changes from 0 to 1, the timer starts and runs for the
programmed duration, giving its output then to the output coil. The time
value (TV) output can be used to ascertain the amount of time remaining
at any instant. A signal input of 1 at the reset input resets the timer
whether it is running or not. Techniques for the entry of preset time values
vary. Often it requires the entry of a constant K command followed by the
time interval in multiples of the time base used. Figure 9.4(c), (d) and (e)
shows ladder diagrams Telemecanique, Toshiba and Allen-Bradley.

X400 T450 K5

T450 Y430

LD
OUT T450

X400

K 5
LD T450
OUT Y430

(a) (b)

T0
I0.0 Q2.0

KT5.2

A
LKT
SR
A
=

I0.0
5.2
T0
T0
Q2.0

TON
S Q

TV

R

BI

BCD

Input In 1 Timer

Timer Output

Input In 1
S is Boolean start input.
TV is duration of time
specification.
R is Boolean reset.
BI is current time value
in binary word.
BCD is current time
value in BCD word
Q is Boolean output,
indicating state of timer.

I0,0 T0

1 s = TB

P = 10

O0,0

00010 TON T001

X001 Y020

(c) (d)

TONI:012/01

TIMER ON
TIMER T4:0
TIME BASE 1:0
PRESET 5

(e)

DN

EN

Input

EN

DN

Time

Time

Time

T4.0
Timer

Input

O:012/10
Output

The enbable bit EN is set to 1
when there is a logic path to
the time. The done bit DN
indicates the status of the
timer and is set to 1 when the
accumulated value equals
the preset value.

Figure 9.4 Timers: (a) Mitsubishi, (b) Siemens, (c) Telemecanique, (d) Toshiba, (e) Allen-Bradley

160 Programmable Logic Controllers

9.2.1 Sequencing

As an illustration of the use of a timer, consider the ladder diagram shown
in Figure 9.5(a). When the input In 1 is on, the output Out 1 is switched
on. The contacts associated with this output then start the timer. The
contacts of the timer will close after the preset time delay, in this case 5.5
s. When this happens, output Out 2 is switched on. Thus, following the
input In 1, Out 1 is switched on and followed 5.5 s later by Out 2. This
illustrates how timed sequence of outputs can be achieved. Figure 9.5(b)
shows the same operation where the format used by the PLC manufacturer
is for the timer to institute a signal delay.

In 1 Out 1

Out 1 Timer

Timer Out 2

Preset
to 5.5

In 1 Out 1

Out 1 TON
Out 2

Timer

Preset to 5.5 s

IN Q

(a) (b)

Figure 9.5 Sequenced outputs

Figure 9.6 shows two versions of how timers can be used to start three
outputs, e.g. three motors, in sequence following a single start button
being pressed. In (a) the timers are programmed as coils, whereas in (b)
they are programmed as delays. When the start push button is pressed
there is an output from internal relay IR1. This latches the start input. It
also starts both the timers, T1 and T2, and motor 1. When the preset time
for timer 1 has elapsed then its contacts close and motor 2 starts. When
the preset time for timer 2 has elapsed then its contacts close and motor 3
starts. The three motors are all stopped by pressing the stop push button.
Since this is seen as a complete program, the end instruction has been
used.

9.2.2 Cascaded timers

Timers can be linked together, the term cascaded is used, to give longer
delay times than are possible with just one timer. Figure 9.7(a) shows the
ladder diagram for such an arrangement. Thus we might have timer 1 with
a delay time of 999 s. This timer is started when there is an input to In 1.
When the 999 s time is up, the contacts for timer 1 close. This then starts
timer 2. This has a delay of 100 s. When this time is up, the timer 2
contacts close and there is an output from Out 1. Thus the output occurs
1099 s after the input to In 1. Figure 9.7(b) shows the Mitsubishi version
of this ladder diagram and the program instructions for that ladder.

Timers 161

END

TON

TON

Motor 1

Motor 2

Motor 3

T1

T2

IR2

IR3

Start Stop IR1

IR1

IR1

IR1

IR1

IR2

IR3

END

Motor 1

Motor 2

Motor 3

Start Stop IR1

IR1

IR1

IR1

 IR1

T1

T2

T1

T2

(a) (b)

Start

T1

T2

Motor 1

Motor 2

Motor 3

Stop

Timing diagram

IN Q

IN Q

Figure 9.6 Motor sequence

In 1 Timer 1

Timer 2

Timer 2 Out 1

Preset
999

Preset
100

T450 K999

Timer 1

X400

T450 T451 K100

T451 Y430

LD
OUT
K
LD
OUT
K
LD
OUT

X400
T450
999
T450
T451
100
T451
Y430

(a) (b)

Figure 9.7 Cascaded timers

9.2.3 On-off cycle timer

Figure 9.8 shows how on-delay timers can be used to produce an on-off
cycle timer. The timer is designed to switch on an output for 5 s, then off
for 5 s, then on for 5 s, then off for 5 s, and so on. When there is an input
to In 1 and its contacts close, timer 1 starts. Timer 1 is set for a delay of 5
s. After 5 s, it switches on timer 2 and the output Out 1. Timer 2 has a
delay of 5 s. After 5 s, the contacts for timer 2, which are normally closed,

162 Programmable Logic Controllers

open. This results in timer 1, in the first rung, being switched off. This
then causes its contacts in the second rung to open and switch off timer 2.
This results in the timer 2 contacts resuming their normally closed state
and so the input to In 1 causes the cycle to start all over again.

In 1 T2 T1 K5

T1

T1

T2 K5

Out 1

In1

T1

T2

Out 1

5 s

5 s

5 s

Time

Time

Time

Time

Figure 9.8 On-off cycle timer

Figure 9.9 shows how the above ladder program would appear in the
format used with a timer considered as a delay, rather than as a coil. This
might, for example, be with Siemens or Toshiba. When input In 1 closes,
the timer T1 starts. After its preset time, there is an output to Out 1 and
timer T2 starts. After its preset time there is an output to the internal relay
IR1. This opens its contacts and stops the output from Out 1. This then
switches off timer T2. The entire cycle can then repeat itself.

In 1

T1

IR1
T1

Out 1

T2
IR1

TON

TON

IN Q

IN Q

Figure 9.9 On–off cycle timer

9.3 Off-delay timers Figure 9.10 shows how a on-delay timer can be used to produce an
off-delay timer. With such an arrangement, when there is a momentary
input to In 1, both the output Out 1 and the timer are switched on.
Because the input is latched by the Out 1 contacts, the output remains on.
After the preset timer time delay, the timer contacts, which are normally
closed, open and switch off the output. Thus the output starts as on and
remains on until the time delay has elapsed.

Timers 163

In 1 Timer Out 1

TimerOut 1

In 1

Out 1

Timer

Time

Time

Time

Figure 9.10 Off-delay timer

Some PLCs have, as well as on-delay timers, built-in off-delay timers
and thus there is no need to use an on-delay timer to produce an off-delay
timer. Figure 9.11 illustrates this for a Siemens PLC, giving the ladder
diagram and the instruction list. Note that with this manufacturer, the
timer is considered to be a delay item in a rung, rather than as a relay. In
the rectangle symbol used for the timer, the 0 precedes the T and indicates
that it is an on-delay timer.

I0.0
T0

Q2.0

KT5.2

A
LKT
SF
A
=

I0.0
5.2
T0
T0
Q2.0

TOF

S Q

TV

Figure 9.11 Off-delay timer

As an illustration of the use of an off-delay timer, consider the Allen-
Bradley program shown in Figure 9.12. TOF is used to indicate that it is
an off-delay, rather than on-delay (TON) timer. The time base is set to 1:0
which is 1 s. The preset is 10 so the timer is preset to 10 s.

TOF

TIMER OFF DELAY
TIMER T4:1
TIME BASE 1:0
PRESET 10

EN

DN

T4:1 EN

T4:1 TT

T4:1 DN

T4:1 DN

I:012/01

O:013/01

O:013/02

O:013/03

O:013/04

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

I:012/01

O:013/01

O:013/02

O:013/03

O:013/04

Time

Time

Time

Time

10 s

Time
EN

DN

Time

Time

Figure 9.12 Application of an off-delay timer

164 Programmable Logic Controllers

In the first rung, the output of the timer is taken from the EN (for
enable) contacts. This means that there is no time delay between an input
to I:012/01 and the EN output. As a result the EN contacts in rung 2 close
immediately there is an I:012/01 input. Thus there is an output from
O:013/01 immediately the input I:012/01 occurs. The TT (for timer
timing) contacts in rung 3 are energised just while the timer is running.
Because the timer is an off-delay timer, the timer is turned on for 10 s
before turning off. Thus the TT contacts will close when the set time of
10 s is running. Hence output O:012/02 is switched on for this time of
10 s. The DN (for done) contacts which are normally closed, open after
the 10 s and so output O:013/03 comes on after 10 s. The DN contacts
which are normally open, close after 10 s and so output O:013/04 goes off
after 10 s.

9.4 Pulse timers Pulse timers are used to produce a fixed duration output from some
initiating input. Figure 9.13(a) shows a ladder diagram for a system that
will give an output from Out 1 for a predetermined fixed length of time
when there is an input to In 1, the timer being one involving a coil. There
are two outputs for the input In 1. When there is an input to In 1, there is
an output from Out 1 and the timer starts. When the predetermined time
has elapsed, the timer contacts open. This switches off the output. Thus
the output remains on for just the time specified by the timer.

In 1 Timer

Timer Out 1

In 1

Timer
contacts

Closed
Open

Out 1

Time

Time

Time(a)

(b)

In 1

TON

Timer
Internal
relay

Internal
relay Out 1

Figure 9.13 Pulse-on timer

Figure 9.13(b) shows an equivalent ladder diagram to Figure 9.13(a)
but employing a timer which produces a delay in the time taken for a
signal to reach the output.

In Figure 9.13, the pulse timer has an output switched on by an input
for a predetermined time, then switching off. Figure 9.14 shows another
pulse timer that switches an output on for a predetermined time after the
input ceases. This uses a timer and two internal relays. When there is an

Timers 165

input to In 1, the internal relay IR 1 is energised. The timer does not start
at this point because the normally closed In 1 contacts are open. The
closing of the IR 1 contacts means that the internal relay IR 2 is energised.
There is, however, no output from Out 1 at this stage because, for the
bottom rung, we have In 1 contacts open. When the input to In 1 ceases,
both the internal relays remain energised and the timer is started. After the
set time, the timer contacts, which are normally closed, open and switch
off IR 2. This in turn switches off IR 1. It also, in the bottom rung,
switches off the output Out 1. Thus the output is off for the duration of the
input, then being switched on for a predetermined length of time.

In 1 In 1 Timer

IR 2 IR 1

IR 1 Timer IR 2

In 1 IR 2 Out 1

In 1

IR 1

IR 2

Out 1

Timer

Time

Time

Time

Time

Time

Figure 9.14 Pulse timer on, when output ceases

9.5 Programming examples Consider a program (Figure 9.15) that could be used to flash a light on
and off as long as there is some output occurring. Thus we might have
both timer 0 and timer 1 set to 1 s. When the output occurs, then timer 0
starts and switches on after 1 s. This closes the timer 0 contacts and starts
timer 1. This switches on after 1 s and, in doing so, switches off timer 0.
In so doing, it switches off itself. The lamp is only on when timer 0 is on
and so we have a program to flash the lamp on and off as long as there is
an output.

Timer 1
TON

Timer 1

Timer 0

Timer 0
TON

LampTimer 0

Output

END

Figure 9.15 Flashing light

166 Programmable Logic Controllers

As an illustration of programming involving timers consider the
sequencing of traffic lights to give the sequence red only, red plus amber,
green, amber, then repeat itself. A simple system might just have the
sequence triggered by time, with each of the possible states occurring in
sequence for a fixed amount of time. Figure 9.16 shows the sequential
function chart and a possible ladder program to give the sequence.

State 0 Red only

State 1 Red + amber

State 2 Green only

State 3 Amber only

Time 2 min

Time 20 s

Time 2 min

Time 20 s

Start

Start Red

Red

Red
TON

Timer 1

2 min

Red

Amber

Amber
TON

Timer 2

20 s

Green

Green
TON

Timer 3

2 min

AmberState 3

State 2

State 1

State 0

END

RedAmber
TON

Timer 3

20 s

Start

End

IN Q

IN Q

IN Q

IN Q

Figure 9.16 Traffic light sequence

Problems Questions 1 to 19 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

Problems 1 to 3 refer to Figure 9.17 which shows a ladder diagram
with an on-delay timer, an input In 1 and an output Out 1.

 1 Decide whether each of these statements is True (T) or False (F).

When there is an input to In 1 in Figure 9.17:
(i) The timer starts.
(ii) There is an output from Out 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Timers 167

 2 Decide whether each of these statements is True (T) or False (F).

The timer in Figure 9.17 starts when:
(i) There is an output.
(ii) The input ceases.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

When there is an input to In 1, the output is switched:
(i) On for the time for which the timer was preset.
(ii) Off for the time for which the timer was preset.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 4 to 6 refer to Figure 9.18 which shows two alternative
versions of a ladder diagram with two inputs In 1 and In 2, two
outputs Out 1 and Out 2 and an on-delay timer.

In 1 In 2 Out 1

Out 1 Timer

Timer Out 2

In 1 In 2 Out 1

Timer

TON

Out 2

Figure 9.18 Problems 4 to 6

4 Decide whether each of these statements is True (T) or False (F).

When there is just an input to In 1:
(i) The timer starts.
(ii) There is an output from Out 2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

5 Decide whether each of these statements is True (T) or False (F).

When there is just an input to In 2:
(i) The timer starts.
(ii) There is an output from Out 2.

168 Programmable Logic Controllers

In 1 Timer

In 1 Timer Out 1

Out 1

Figure 9.17 Problems 1 to 3

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 6 Decide whether each of these statements is True (T) or False (F).

When there is an input to In 1 and no input to In 2, there is an output
from Out 2 which:
(i) Starts immediately.
(ii) Ceases after the timer preset time.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 7 The program instruction list for a Mitsubishi PLC is: LD X400, OUT
T450, K 6, LD T450, OUT Y430. An input to X400 gives:

A An output which is on for 6 s then off for 6 s.
B An output which lasts for 6 s.
C An output which starts after 6 s.
D An output which is off for 6 s, then on for 6 s.

 8 The program instruction list for a Telemecanique PLC is: L I0,0, =
T0, L T0, = O0,0. When there is an input to I0,0 there is:

A An output which is on for 6 s then off for 6 s.
B An output which lasts for 6 s.
C An output which starts after 6 s.
D An output which is off for 6 s, then on for 6 s.

Problems 9 and 10 refer to the program instruction list for a
Mitsubishi PLC: LD X400, OR Y430, ANI T450, OUT Y430, LD
X401, OR M100, AND Y430, OUT T450, K 10, OUT M100.

 9 Decide whether each of these statements is True (T) or False (F).

When there is a momentary input to X400:
(i) The output from Y430 starts.
(ii) The output from Y430 ceases after 10 s.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

10 Decide whether each of these statements is True (T) or False (F).

The output from Y430:
(i) Starts when there is a momentary input to X401.
(ii) Ceases 10 s after the input to X401.

Timers 169

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 11 and 12 refer to Figure 9.19 which shows a system with
an input In 1, an on-delay timer and an output Out 1. The timer is set
for a time of 6 s. The graph shows how the signal to the input varies
with time.

In 1 Timer

Timer Out 1

In 1

Time

Figure 9.19 Problems 11 and 12

11 Decide whether each of these statements is True (T) or False (F).

The output from Out 1:
(i) Starts when the input starts.
(ii) Ceases 6 s after the start of the input.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

12 Decide whether each of these statements is True (T) or False (F).

The timer contacts:
(i) Remain closed for 6 s after the start of the input.
(ii) Open 6 s after the input starts.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 13 to 15 refer to Figure 9.20 which shows a ladder program
for a Toshiba PLC involving internal relays, denoted by the letter R,
and a TON timer with a preset of 20 s.

13 Decide whether each of these statements is True (T) or False (F).

The internal relay R000 in Figure 9.20:
(i) Is used to latch the input X001.
(ii) Is used to start the timer T001.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

170 Programmable Logic Controllers

TON T001

X001 X002 R000

R000

R000 Y020

R001

R001 Y021

Figure 9.20 Problems 13 to 15

14 Decide whether each of these statements is True (T) or False (F).

With no input to X002 in Figure 9.20, the output Y020 is:
(i) Energised when there is an input to X001.
(ii) Ceases when there is no input to X001.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

15 Decide whether each of these statements is True (T) or False (F).

With no input to X002 in Figure 9.20:
(i) The output Y021 is switched on 20 s after the input X001.
(ii) The output Y020 is switched off 20 s after the input X001.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 16 to 19 refer to Figure 9.21 which shows an Allen-Bradley
program and Figure 9.22 which shows a number of time charts for a
particular signal input to I:012/01.

16 For the input shown in Figure 9.22, which is the output from
O:013/01?

17 For the input shown in Figure 9.22, which is the output from
O:013/02?

18 For the input shown in Figure 9.22, which is the output from
O:013/03?

Timers 171

TON

TIMER ON DELAY
TIMER T4:1
TIME BASE 1:0
PRESET 50

EN

DN

I:012/01

T4:1 EN

T4:1 TT

T4:1 DN

T4:1 DN

O:013/01

O:013/02

O:013/03

O:013/04

Input

A

B

C

D

Time

Time

Time

Time

Time

50 s

Figure 9.21 Problems 16 to 19 Figure 9.22 Problems 16 to 19

19 For the input shown in Figure 9.22, which is the output from
O:013/04?

20 Devise ladder programs for systems that will carry out the following
tasks:
(a) Switch on an output 5 s after receiving an input and keep it on for
the duration of that input.
(b) Switch on an output for the duration of the input and then keep it
on for a further 5 s.
(c) Switch on an output for 5 s after the start of an input signal.

172 Programmable Logic Controllers

10 Counters

Counters are provided as built-in elements in PLCs and allow the number
of occurrences of input signals to be counted. This might be where items
have to be counted as they pass along a conveyor belt, or the the number
of revolutions of a shaft, or perhaps the number of people passing through
a door. This chapter describes how such counters can be programmed.

10.1 Forms of counter A counter is set to some preset number value and, when this value of input
pulses has been received, it will operate its contacts. Thus normally open
contacts would be closed, normally closed contacts opened.

There are two types of counter, though PLCs may not include both
types. These are down-counters and up-counters. Down-counters count
down from the preset value to zero, i.e. events are subtracted from the set
value. When the counter reaches the zero value, its contacts change state.
Most PLCs offer down counting. Up-counters count from zero up to the
preset value, i.e. events are added until the number reaches the preset
value. When the counter reaches the set value, its contacts change state.

Different PLC manufacturers deal with counters in slightly different
ways. Some count down (CTD), or up (CTU), and reset and treat the
counter as though it is a relay coil and so a rung output. In this way,
counters can be considered to consist of two basic elements: one relay coil
to count input pulses and one to reset the counter, the associated contacts
of the counter being used in other rungs. Figure 10.1(a) illustrates this.
Mitsubishi is an example of this type of manufacturer. Others treat the
counter as an intermediate block in a rung from which signals emanate
when the count is attained. Figure 10.1(b) illustrates this. Siemens is an
example of this type of manufacturer.

Counter

Counter

RST

CTD

Counter

Activated when
zero reached after counting

R

CU

PV

Output when set count
reached after counting

Counter

Q

CV

CTU

PV

CD

LD

Output when zero reached
after counting down

Counter

Q

CV

CTD

Counter

Counter

RST

CTU

Counter

Activated when
set count reached after

down from set value counting up from zero from set value up from zero(a) (b)

Figure 10.1 Forms of representation of counters. In (a) RST is reset. In (b), the IEC 1131-3 representation, CD
is count down input, LD is for loading the input, PV is for the preset value, CV the current count value, CU is
count up input, and R is for the reset input.

10.2 Programming Figure 10.2 shows a basic counting circuit. When there is a pulse input to
In 1, the counter is reset. When there is an input to In 2, the counter starts
counting. If the counter is set for, say, 10 pulses, then when 10 pulse
inputs have been received at In 2, the counter’s contacts will close and
there will be an output from Out 1. If at any time during the counting there
is an input to In 1, the counter will be reset and start all over again and
count for 10 pulses.

In 1 Counter

RST

CounterIn 2

Counter Out 1

In 1

In 2

Out 1

Time

Time

Time

Counter

CU
CTU

Q

R

PV

CV
In 1

In 2 Out 1

CU

Figure 10.2 Basic counter program

Figure 10.3(a) shows how the above program, and its program
instruction list, would appear with a Mitsubishi PLC. The reset and
counting elements are combined in a single box spanning the two rungs.
You can consider the rectangle to be enclosing the two counter () outputs
in Figure 10.2. The count value is set by a K program instruction. Figure
10.3(b) shows the same program with a Siemens PLC. With this ladder
program, the counter is considered to be a delay element in the output line
(as in Figure 10.1(b)). The counter is reset by an input to I0.1 and counts
the pulses into input I0.0. The CU indicates that it is a count-up counter, a
CD would indicate a count-down counter. The counter set value is
indicated by the LKC number. Figure 10.3(c) is the program for Toshiba
and Figure 10.3(d) for Allen-Bradley.

10.2.1 Counter application

As an illustration of the use that can be made of a counter, consider the
problem of items passing along a conveyor belt, the passage of an item
past a particular point being registered by a light beam to a photoelectric
cell being interrupted, and after a set number there is to be a signal sent
informing that the set count has been reached and the conveyor stopped.
Figure 10.4(a) shows the basic elements of a Siemens program that could
be used. A reset signal causes the counter to reset and start counting again.
The set signal is used to make the counter active. Figure 10.4(b) shows the
basic elements of the comparable Allen-Bradley program. When the count
reaches the preset value, the done bit is set to 1 and so O:013/01 occurs
and the corresponding contacts are opened and the conveyor stopped.

174 Programmable Logic Controllers

X400

X401

C460

RESET

OUT

C460
K10

Y430

LD
RST
LD
OUT
K
LD
OUT

X400
C460
X401
C460
10
C460
Y430

(a)

(b)

C0

CU

PV

I0.0

I0.1

Q2.0

R

Q
S_CU

10

S
CV

CV_BCD

C

E

Q C = count input
E = enable or

Q = output

X000

X001

Y020

(c)

CTU = count up

C5:1 is counter address
Preset is the preset count number

Note: CTD = count down
CU = output for use with count up counters
and is termed the count up enable. It gives
an output until the count has reached the
preset value.

DN = output which gives an output
when the count has reached the

CTU
C5:1
Preset 10

O:013/01

I:012/01

C5:1 DN

I:012/02 C5:1

RES

DN

CU
I:012/01

DN
output

CU
output

I:012/02

Switched on after
count of 10

Switched off by
I:012/02 input

(d)
set value

CV_BCD is count
value in BCD.
CV is count value
in Boolean.
S is SET and is used
to activate the
counter and is set
to its starting value;
with count up, this
is zero.

reset input

Figure 10.3 (a) Mitsubishi program, (b) Siemens program, (c) Toshiba program, (b) Allen-Bradley programs
Counter

S_CD

CD Q

S

PV

R

CV

CV_BCD

Set counter

Quantity

Input pulses
Output when

finished

Output Conveyor

Reset

CTU
C5:1
Preset

O:013/01C5:1 DN

I:012/02 C5:1

RES

DN

CU

(a) (b)

Input pulse Counter

O:013/01 Conveyor

Figure 10.4 (a) Siemens, (b) Allen-Bradley counting program

Counters 175

As a further illustration of the use of a counter, consider the problem of
the control of a machine which is required to direct 6 tins along one path
for packaging in a box and then 12 tins along another path for packaging
in another box (Figure 10.5). A deflector plate might be controlled by a
photocell sensor which gives an output every time a tin passes it. Thus the
number of pulses from the sensor has to be counted and used to control
the deflector. Figure 10.6 shows the ladder program that could be used.
Mitsubishi notation has been used.

C460
K6

RESET

X400

C461

X401

OUT

RESET

C461
K12

OUT

C460 Y430

X400

C461

X401 C460

LD
OR
RST
K
LD
OUT
LD
OUT
LD
OR
RST
K
LD
AND
OUT

X400
C461
C460
6
X401
C460
C460
Y430
X400
C461
C461
12
X401
C460
C461

Figure 10.6 Ladder program for Figure 10.5 task

When there is a pulse input to X400, both the counters are reset. The
input to X400 could be the push button switch used to start the conveyor
moving. The input which is counted is X401. This might be an input from
a photocell sensor which detects the presence of tins passing along the
conveyor. C460 starts counting after X400 is momentarily closed. When
C460 has counted six items, it closes its contacts and so gives an output at
Y430. This might be a solenoid which is used to activate a deflector to
deflect items into one box or another. Thus the deflector might be in such
a position that the first six tins passing along the conveyor are deflected
into the 6-pack box, then the deflector plate is moved to allow tins to pass
to the 12-pack box. When C460 stops counting it closes its contacts and
so allows C461 to start counting. C461 counts for 12 pulses to X401 and
then closes its contacts. This results in both counters being reset and the
entire process can repeat itself.

Counters can be used to ensure that a particular part of a sequence is
repeated a known number of times. This is illustrated by the following

176 Programmable Logic Controllers

Deflector
12 tin
box

6 tin
box

Figure 10.5 Counting task

program which is designed to enable a three-cylinder, double solenoid-
controlled arrangement (Figure 10.7(a)) to give the sequence A+, A–, A+,
A–, A+, A–, B+, C+, B–, C–. The A+, A– sequence is repeated three
times before B+, C+, B–, C– occur. We can use a counter to enable this
repetition. Figure 10.7(b) shows a possible program. The counter only
allows B+ to occur after it has received three inputs corresponding to
three a– signals.

B

b– b+

B+ B–

A

a– a+

A+ A–

PLC

a–

a+

b–

b+

c+

Inputs from

A+

A–

B+

B–

C+

C–

Outputs to
solenoidslimit switches

PowerE L N

Start
Stop

–V

C

c+

C+ C–

c–

RST
Counter
K3

OUT

END

Start

Start

a– A+

a+ A–

a–

Counter B+

C+b+

c+ B–

C–b– c+

(a) (b)

Figure 10.7 (a) Three-cylinder system, (b) program

Counters 177

10.3 Up and down counting It is possible to program up- and down-counters together. Consider the
task of counting products as they enter a conveyor line and as they leave
it, or perhaps cars as they enter a multi-storage parking lot and as they
leave it. An output is to be triggered if the number of items/cars entering
is some number greater than the number leaving, i.e. the number in the
parking lot has reached a ‘saturation’ value. The output might be to
illuminate a ‘No empty spaces’ sign. Suppose we use the up-counter for
items entering and the count down for items leaving. Figure 10.8(a) shows
the basic form a ladder program for such an application can take. When an
item enters it gives a pulse on input In 1. This increases the count by one.
Thus each item entering increases the accumulated count by 1. When an
item leaves it gives an input to In 2. This reduces the number by 1. Thus
each item leaving reduces the accumulated count by 1. When the
accumulated value reaches the preset value, the output Out 1 is switched
on. Figure 10.8(b) shows the implementation of this program with an
Allen-Bradley program.

Up-counterIn 1

Down-counterIn 2

In 3 Reset

Out 1Counter

(a)

(b)

CTU

CTD

DN

CU

CD

DN

C5:0

C5:0

C5:0 DN

RES

I:012/10

I:012/11

I:013/10

O:013/10

Figure 10.8 (a) Using up- and down-counters, (b) Allen-Bradley program

Up-down counters are available as single entities. Figure 10.9 shows
the IEC 1131-3 standard symbol. The counter has two inputs CU and CD
and counts up the number of pulses detected at the input CU and counts
down the number of pulses detected at input CD. If the counter input
reaches zero, the QD output is set on and the counting down stops. If the
count reaches the maximum value PV, the QU output is set on and the
counting up stops. CV is the count value. LD can be used to preset the
counter output CV with the value PV. The reset R clears the counter input
to zero.

Figure 10.10 shows how the above system might appear for a Siemens
PLC and the associated program instruction list. CU is the count up input
and CD the count down. R is the reset. The set accumulator value is
loaded via F0.0, this being an internal relay.

178 Programmable Logic Controllers

CTUD

QU

QD

CU

CD

R

LD

PV CV

Figure 10.9 IEC 1131-3
standard symbol for up-
down counter

I0.0

I0.1

F0.0

I0.2

C0

CU

CD

S

PV

R

QU

Q2.0

The count is set to
the preset value PV
when the set (load) input
is 1. As long as it is 1

Each input pulse to CU
increments the count by 1
Each input pulse to CD
decrements the count by 1

The count is reset to zero
when the reset R is 1.

inputs to CU and CD have
no effect.

Figure 10.10 Up and down counting with a Siemens PLC

10.4 Timers with counters A typical timer can count up to 16 binary bits of data, this corresponding
to 32 767 base time units. Thus, if we have a time base of 1 s then the
maximum time that can be dealt with by a timer is just over 546 minutes
or 9.1 hours. If the time base is to be 0.1 s then the maximum time is 54.6
minutes or just short of an hour. By combining a timer with a counter,
longer times can be counted. Figure 10.11 illustrates this with an
Allen-Bradley program. If the timer has a time base of 1 s and a preset
value of 3600, then it can count for up to 1 hour. When input I:012/01 is
activated, the timer starts to time in one second increments. When the time
reaches the preset value of 1 hour, the DN bit is set to 1 and the counter
increments by 1. The DN bit setting to 1 also reset the timer and the timer
starts to time again. When it next reaches its preset time of 1 hour, the DN
bit is again set to 1 and the counter increments by 1. With the counter set
to a preset value of 24, the counter DN bit is set to 1 when the count
reaches 24 and the output O:013/01 is turned on. We thus have a timer
which is able to count the seconds for the duration of a day and would be
able to switch on some device after 24 hours.

EN

DN

T4:0 DNI:012/01

CU

DN

T4:0
DN

C5.0
DN O:013/01

Timer T4.0

Counter C5.0

TON

Time base 1.0
Preset 3600

Accum 0

CTU

Preset 24
Accum 0

Figure 10.11 Using a counter to extend the range of a timer

Counters 179

10.5 Sequencer The drum sequencer is a form of counter that is used for sequential
control. It replaces the mechanical drum sequencer that was used to
control machines that have a stepped sequence of repeatable operations.
One form of the mechanical drum sequencer consisted of a drum from
which a number of pegs protruded (Figure 10.12). When the cylinder
rotated, contacts aligned with the pegs were closed when the peg impacted
on them and opened when the peg had passed. Thus for the arrangement
shown in Figure 10.12, as the drum rotates, in the first step the peg for
output 1 is activated, in step 2 the peg for the third output, in step 3 the
peg for the second output, and so on. Different outputs could be
controlled by pegs located at different distances along the drum. Another
form consisted of a series of cams on the same shaft, the profile of the
cam being used to switch contacts on and off.

Rotation

Different segment for the contacts
for each of the outputs

Pegs to activate contacts

12
3
4
5
6

7
8

Steps

Figure 10.12 Drum sequencer

The PLC sequencer consists of a master counter that has a range of
preset counts corresponding to the different steps and so, as it progresses
through the count, when each preset count is reached it can be used to
control outputs. Each step in the count sequence relates to a certain output
or group of outputs. The outputs are internal relays, these in turn being
used to control the external output devices.

Suppose we want output 1 to be switched on 5 s after the start and
remain on until the time reaches 10 s, output 2 to be switched on at 10 s
and remain on until 20 s, output 3 to be switched on at 15 s and remain on
until 25 s, etc. We can represent the above requirements by a time
sequence diagram, Figure 10.13, showing the required time sequence.

0 5 10 15 20 25 30

Outputs
1

2

3

4

Time in seconds

Figure 10.13 Timing diagram

We can transform the timing diagram into a drum sequence
requirement. Taking each drum sequence step to take 5 s gives the

180 Programmable Logic Controllers

requirement diagram shown in Table 10.1. Thus at step 1 we require
output 1 to be switched on and to remain on until step 2. At step 2 we
require output 2 to be switched on and remain on until step 4. At step 3
we require output 3 to be switched on and remain on until step 5. At step
5 we require output 4 to be switched on and remain on until step 6.

Table 10.1 Sequence requirements

0000306
1100255
0100204
0110153
0010102
0001 51
0000 00

Output 4Output 3Output 2Output 1Time (s)Step

With a PLC, such as a Toshiba, the sequencer is set up by switching on
the Step Sequence Initialize (STIZ) function block R500 (Figure 10.14).
This sets up the program for step 1 and R501. This relay then switches on
output Y020. The next step is the switching on of R502. This switches on
the output Y021 and also a delay-on timer so that R503 is not switched on
until the timer has timed out. Then R503 switches on Y022 and also the
next step in the sequence.

X000 to switch on sequencer

STIZ R500

R500 R501

R501 R502

R501 Y020

R502

TON T000

R503

R503 Y022

R503 R504

and so on

R502 Y021

Figure 10.14 Sequencer with a Toshiba PLC

Counters 181

With the Allen-Bradley form of PLC the sequencer is programmed by
using a sequence of binary words in the form of the outputs required, e.g.
those listed in Table 10.1. Thus we would have the following binary word
sequence put into the program using the programming device.

0000
0001
0010
0110
0100
0100
0000

Input 4
 Input 3
 Input 2
 Input 1

Problems Questions 1 to 19 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

Problems 1 to 3 refer to Figure 10.15 which shows a ladder diagram
with a counter, two inputs In 1 and In 2 and an output Out 1.

 1 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 10.15, when the counter is set
to 5, there is an output from Out 1 every time:
(i) In 1 has closed 5 times.
(ii) In 2 has closed 5 times.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

For the ladder diagram shown in Figure 10.15:
(i) The first rung gives the condition required to reset the counter.
(ii) The second rung gives the condition required to generate pulses
to be counted.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

In Figure 10.15, when there is an input to In 1:
(i) The counter contacts in the third rung close.
(ii) The counter is ready to start counting the pulses from In 2.

182 Programmable Logic Controllers

In 1 Counter

RST

CounterIn 2

Counter Out 1

First rung

Second rung

Third rung

Figure 10.15 Problems 1 to 3

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 4 and 5 refer to the following program instruction list
involving a down-counter:

Y430OUT
460LD
5K
C460OUT
X401LD
C460RST
X400LD

 4 Decide whether each of these statements is True (T) or False (F).

Every time there is an input to X401:
(i) The count accumulated by the counter decreases by 1.
(ii) The output is switched on.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 5 Decide whether each of these statements is True (T) or False (F).

When there is an input to X400, the counter:
(i) Resets to a value of 5.
(ii) Starts counting from 0.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 6 and 7 refer to the following program instruction list
involving a counter C0:

2.00Q
C0R
I0.1A
5LKC
C0CD
I0.0A

 6 Decide whether each of these statements is True (T) or False (F).

Every time there is an input to I0.0:
(i) The count accumulated by the counter decreases by 1.
(ii) The output is switched on.

Counters 183

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 7 Decide whether each of these statements is True (T) or False (F).

When there is an input to I0.1, the counter:
(i) Resets to a value of 5.
(ii) Starts counting from 0.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 8 and 9 refer to Figure 10.16 which shows a down-counter
C460 controlled by two inputs X400 and X401, there being an output
from Y430.

X400

X401

C460

RESET

OUT

C460
K10

Y430

Figure 10.16 Problems 8 and 9

 8 Decide whether each of these statements is True (T) or False (F).

When there is an input to X400, the counter:
(i) Resets to a value of 0.
(ii) Starts counting.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 9 Decide whether each of these statements is True (T) or False (F).

Every time there is an input to X401, the counter:
(i) Gives an output from Y430.
(ii) Reduces the accumulated count by 1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

184 Programmable Logic Controllers

Problems 10 to 12 refer to Figure 10.17 which shows a ladder
diagram involving a counter C460, inputs X400 and X401, internal
relays M100 and M101, and an output Y430.

RESET

C460
K10

OUT

X400 M101 M100

X400 M101

C460

X401

M100

Y430 M100

C460

Y430

Figure 10.17 Problems 10 to 12

10 Decide whether each of these statements is True (T) or False (F).

For the output Y430:
(i) It switches on the tenth pulse to X400.
(ii) It switches off at the start of the eleventh pulse to X400.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

11 Decide whether each of these statements is True (T) or False (F).

When there is an input to X400:
(i) The internal relay M100 is energised.
(ii) The internal relay M101 is energised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

12 Decide whether each of these statements is True (T) or False (F).

Counters 185

There is an output from Y430 as long as:
(i) The C460 contacts are closed.
(ii) Y430 gives an output and M100 is energised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

13 Decide whether each of these statements is True (T) or False (F).

Figure 10.18 shows a counter program in Siemens format. After 10
inputs to I0.0:
(i) The lamp comes on.
(ii) The motor starts.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 14 and 15 refer to Figure 10.19 which shows a Siemens
program involving an up- and down-counter.

I0.0

I0.1

F0.0

I0.2
 50

C0

CU

CD

S

PV

R

Q

Q2.0

Q2.0 Q2.1

Figure 10.19 Problems 14 and 15

14 Decide whether each of these statements is True (T) or False (F).

When the count is less than 50:
(i) There is an output from Q2.0.
(ii) There is an output from Q2.1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

186 Programmable Logic Controllers

I0.0

CU

PV10

Q2.0
Lamp

Q2.0 Motor

R

Q

Figure 10.18 Problem 13

S_CU

15 Decide whether each of these statements is True (T) or False (F).

When the count reaches 50:
(i) There is an output from Q2.0.
(ii) There is an output from Q2.1.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 16 and 17 refer to Figure 10.20 which shows a Allen-
Bradley program involving an count-up counter.

CTU
C5:0
Preset 5

I:012/01

CU

DN

C5:0 DN O:013/01

I:012/02 C5:0

RES

Figure 10.20 Problems 16 and 17

16 For the program shown in Figure 10.20, the counter is reset when:

A The count reaches 5.
B The count passes 5.
C There is an input to I:012/01.
D There is an input to I:012/02.

17 Decide whether each of these statements is True (T) or False (F).

For the program shown in Figure 10.20, there is an output at
O:013/01 when:
(i) There is an input to I:012/01.
(ii) There is an output from the count up done bit DN.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 18 and 19 refer to Figure 10.21 which shows a Allen-
Bradley program involving a count-up counter.

18 Decide whether each of these statements is True (T) or False (F).

When there is a single pulse input to I:012/01:

Counters 187

CTU
C5:1
Preset 5

I:012/01

CU

DN

C5:1 DN O:013/01

I:012/02 C5:1

RES

Figure 10.21 Problems 18

C5:1 CU O:013/02

and 19

(i) Output O:013/01 is switched on.
(ii) Output O:013/02 is switched on.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

19 Decide whether each of these statements is True (T) or False (F).

When the fifth pulse input occurs to I:012/01:
(i) Output O:013/01 is switched on.
(ii) Output O:013/02 is switched on.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

20 Devise ladder programs for systems that will carry out the following
tasks:
(a) Give an output after a photocell sensor has given 10 pulse input
signals as a result of detecting 10 objects passing in front of it.
(b) Give an output when the number of people in a store reaches 100,
there continually being people entering and leaving the store.

188 Programmable Logic Controllers

11 Shift registers

The term register is used for an electronic device in which data can be
stored. An internal relay, see Chapter 7, is such a device. The shift
register is a number of internal relays grouped together which allow
stored bits to be shifted from one relay to another. This chapter is about
shift registers and how they can be used where a sequence of operations is
required or to keep track of particular items in a production system.

11.1 Shift registers A register is a number of internal relays grouped together, normally 8, 16
or 32. Each internal relay is either effectively open or closed, these states
being designated as 0 and 1. The term bit is used for each such binary
digit. Therefore, if we have eight internal relays in the register we can
store eight 0/1 states. Thus we might have:

Internal relays
87654321

and each relay might store an on-off signal such that the state of the
register at some instant is:

01001101

i.e. relay 1 is on, relay 2 is off, relay 3 is on, relay 4 is on, relay 5 is off,
etc. Such an arrangement is termed an 8-bit register. Registers can be used
for storing data that originate from input sources other than just simple,
single on-off devices such as switches.

With the shift register it is possible to shift stored bits. Shift registers
require three inputs, one to load data into the first location of the register,
one as the command to shift data along by one location and one to reset or
clear the register of data. To illustrate this, consider the following
situation where we start with an 8-bit register in the following state:

01001101

Suppose we now receive the input signal 0. This is an input signal to the
first internal relay.

Input 0
01001101→

If we also receive the shift signal, then the input signal enters the first
location in the register and all the bits shift along one location. The last bit
overflows and is lost.

→10011010
 Overflow 0

Thus a set of internal relays that were initially on, off, on, on, off, off, on,
off are now off, on, off, on, on, off, off, on.

The grouping together of internal relays to form a shift register is done
automatically by a PLC when the shift register function is selected. With
the Mitsubishi PLC, this is done by using the programming code SFT
(shift) against the internal relay number that is to be the first in the register
array. This then causes a block of relays, starting from that initial number,
to be reserved for the shift register.

11.2 Ladder programs Consider a 4-bit shift register and how it can be represented in a ladder
program (Figure 11.1(a)). The input In 3 is used to reset the shift register,
i.e. put all the values at 0. The input In 1 is used to input to the first
internal relay in the register. The input In 2 is used to shift the states of the
internal relays along by one. Each of the internal relays in the register, i.e.
IR 1, IR 2, IR 3 and IR 4, is connected to an output, these being Out 1,
Out 2, Out 3 and Out 4.

In 1

In 2

In 3

IR 1

IR 2

IR3

Out 1

Out 2

Out 3

IR 4 Out 4

RST

OUT

SFT
Shift Register
Internal registers
IR 1, IR 2, IR 3, IR 4

Output controlled
by first internal relay
in register

Output controlled
by second internal relay
in register

Output controlled
by third internal relay
in register

Output controlled
by fourth internal relay
in register

END

In 1

In 2

Out 1

Out 2

Out 3

Out 4

Time

Time

Time

Time

Time

(a) (b)

Figure 11.1 The shift register

190 Programmable Logic Controllers

Suppose we start by supplying a momentary input to In 3. All the
internal relays are then set to 0 and so the states of the four internal relays
IR 1, IR 2, IR 3 and IR 4 are 0, 0, 0, 0. When In 1 is momentarily closed
there is a 1 input into the first relay. Thus the states of the internal relays
IR 1, IR 2, IR 3 and IR 4 are now 1, 0, 0, 0. The IR 1 contacts close and
we thus end up with an output from Out 1. If we now supply a momentary
input to In 2, the 1 is shifted from the first relay to the second. The states
of the internal relays are now 0, 1, 0, 0. We now have no input from Out 1
but an output from Out 2. If we supply another momentary input to In 2,
we shift the states of the relays along by one location to give 0, 0, 1, 0.
Outputs 1 and 2 are now off but Out 3 is on. If we supply another
momentary input to In 2 we again shift the states of the relays along by
one and have 0, 0, 0, 1. Thus now, outputs 1, 2 and 3 are off and output 4
has been switched on. When another momentary input is applied to In 2,
we shift the states of the relays along by one and have 0, 0, 0, 0 with the 1
overflowing and being lost. All the outputs are then off. Thus the effect of
the sequence of inputs to In 2 has been to give a sequence of outputs Out
1, followed by Out 2, followed by Out 3, followed by Out 4. Figure
11.1(b) shows the sequence of signals.

Figure 11.2 shows the Mitsubishi version of the above ladder program
and the associated instruction list. Instead of the three separate outputs for
reset, output and shift, the Mitsubishi shift register might appear in a
program as a single function box, as shown in the Figure. With the
Mitsubishi shift register, the M140 is the address of the first relay in the
register.

RST

OUT

SFT

X400 M140

X401

X402

M140 Y430

M141 Y431

M142 Y432

M143 Y433

END

LD

LD
SFT
LD
RST
LD
OUT
LD
OUT
LD
OUT
LD
OUT

X400
M140
X401
M140
X402
M140
M140
Y430
M141
Y431
M142
Y432
M143
Y433

OUT

END

RST

OUT

SFT

M140

Representation of the
three shift register elements
in a single box

Figure 11.2 Mitsubishi program

Shift registers 191

Figure 11.3 shows a shift register ladder program for a Toshiba PLC.
With the Toshiba R016 is the address of the first relay in the register. The
(08) indicates that there are eight such relays. D is used for the data input,
S for shift input, E for enable or reset input and Q for output.

X007

X000

X001

D

S

E

Q

(08)

R016

R016 Y020

R017 Y021

R018 Y022

R019 Y023

R01A Y024

R01B Y025

R01C Y026

R01D Y027

END

Figure 11.3 Shift register

Figure 11.4 shows the IEC 1131-3 standard symbol for a shift register.
The value to be shifted is at input IN and the number of places it is to be
shifted is at input N.

Figure 11.5 shows the Siemens symbol for a shift register. If the enable
input EN 1 the shift function is executed and ENO is then 1. If EN is 0 the
shift function is not executed and ENO is 0. The shift function SHL_W
shifts the contents of the word variable at input IN bit by bit to the left the
number of positions specified by the input at N. The shifted word output
is at OUT.

192 Programmable Logic Controllers

IN

N

ANY
SHL

BIT

INT

Shift to left

IN

N

ANY
SHR

BIT

INT

Shift to right

Figure 11.4 IEC 1131-3 shift
register symbols

EN

IN

N

ENO

OUT

SHL_W

Shift left a word

EN

IN

N

ENO

OUT

SHR_W

Shift right a word

Figure 11.5 Siemens shift register symbol

11.2.1 A sequencing application

Consider the requirement for a program for two double solenoid
cylinders, the arrangement being as shown in Figure 11.6(a), to give the
sequence A+, B+, A–, B–. Figure 11.6(b) shows a program to achieve this
sequence by the use of a shift register.

Start

Restart

IR 1

IR 2

IR 3

A+

B+

A–

IR 4 B–

RST

OUT

SFT

IR

IR

a+ IR

b+

a–

b–

END

Shift for
IR 1, IR 2,
IR 3, IR 4

Activation of any
limit switch
produces a pulse

This gives an input
of 1 to the register

which shifts the
OUT pulse along
by 1 bit. Thus

Register

Register

Register

to give the state of
the registers as 1000

a+ gives 0100,
b+ gives 0010,
a– gives 0001
and b– gives 0000

B

b– b+

B+ B–

A

a– a+

A+ A–

(a)

(b)

Figure 11.6 Sequencing cylinders

Shift registers 193

11.2.2 Keeping track of items

The above indicates how a shift register can be used for sequencing.
Another application is to keep track of items. For example, a sensor might
be used to detect faulty items moving along a conveyor and keep track of
it so that when it reaches the appropriate point a reject mechanism is
activated to remove it from the conveyor. Figure 11.7 illustrates this
arrangement and the type of ladder program that might be used.

OUT

SFT

RST

X400 M140

M140

M140

M140

X401

X402

M144X403

M100

M144 M100 Y430 Output to

rejection

Resetting after

M100

(b)
END

Items for
packaging

Faulty items
deflected from
conveyor

Faulty items
detected

(a)

rejection

mechanism

activate

Figure 11.7 Keeping track of faulty items

Each time a faulty item is detected, a pulse signal occurs at input X400.
This enters a 1 into the shift register at internal relay M140. When items
move, whether faulty or not, there is a pulse input at X401. This shifts the
1 along the register. When the 1 reaches internal relay M144, it activates
the output Y430 and the rejection mechanism removes the faulty item
from the conveyor. When an item is removed it is sensed and an input to
X403 occurs. This is used to reset the mechanism so that no further items
are rejected until the rejection signal reaches M144. It does this by giving
an output to internal relay M100 which latches the X403 input and
switches the rejection output Y430 off. This represents just the basic
elements of a system. A practical system would include further internal
relays in order to make certain that the rejection mechanism is off when
good items move along the conveyor belt and also to disable the input
from X400 when the shifting is occurring.

Problems Questions 1 to 9 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

194 Programmable Logic Controllers

Problems 1 to 5 concern a 4-bit shift register, involving internal
relays IR 1, IR 2, IR 3 and IR 4, which has been reset to 0, 0, 0, 0.

 1 When there is a pulse 1 input to the OUT of the shift register, the
internal relays in the shift register show:

A 0001
B 0010
C 0100
D 1000

 2 Following a pulse input of 1 to the OUT of the shift register, there is
a pulse input to SHIFT. The internal relays then show:

A 0001
B 0010
C 0100
D 1000

 3 With a continuous input of 1 to the OUT of the shift register, there is
a pulse input to SHIFT. The internal relays then show:

A 0011
B 0110
C 1100
D 0010

 4 With a continuous input of 1 to the OUT of the shift register, there
are two pulse inputs to SHIFT. The internal relays then show:

A 0001
B 0010
C 1100
D 1110

 5 With a pulse input of 1 to the OUT of the shift register, there is a
pulse input to SHIFT, followed by a pulse input to RESET. The
internal relays then show:

A 0000
B 0010
C 0100
D 1000

Problems 6 to 9 concern Figure 11.8 which shows a 4-bit shift
register with internal relays IR 1, IR 2, IR 3 and IR 4, with three
inputs In 1, In 2 and In 3, and four outputs Out 1, Out 2, Out 3 and
Out 4.

 6 Decide whether each of these statements is True (T) or False (F).

When there is a pulse input to In 1:
(i) The output Out 1 is energised.
(ii) The contacts of the internal relay IR 1 close.

Shift registers 195

In 1

In 2

In 3

IR 1

IR 2

IR3

Out 1

Out 2

Out 3

IR 4 Out 4

RST

OUT

SFT

Figure 11.8 Problems 6 to 9

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 7 Decide whether each of these statements is True (T) or False (F).

When there is a pulse input to In 1 followed by a pulse input to SFT:
(i) The output Out 1 is energised.
(ii) The output Out 2 is energised.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 8 Decide whether each of these statements is True (T) or False (F).

To obtain the outputs Out 1, Out 2, Out 3 and Out 4 switching on in
sequence and remaining on, we can have for inputs:
(i) A pulse input to In 1 followed by three pulse inputs to SFT.
(ii) A continuous input to In 1 followed by three pulse inputs to SFT.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 9 Initially: Out 1 off, Out 2 off, Out 3 off, Out 4 off
Next: Out 1 on, Out 2 off, Out 3 off, Out 4 off
Next: Out 1 off, Out 2 on, Out 3 off, Out 4 off
Next: Out 1 on, Out 2 off, Out 3 on, Out 4 off

The inputs required to obtain the above sequence are:

A Pulse input to In 1 followed by pulse input to In 2.
B Pulse input to In 1 followed by two pulses to In 2.
C Pulse input to In 1 followed by pulse input to In 2, followed by

pulse input to In 1.
D Pulse input to In 1 followed by pulse input to In 2, followed by

pulse inputs to In 1 and In 2.

10 Devise ladder programs for systems to carry out the following tasks:
(a) A sequence of four outputs such that output 1 is switched on when
the first event is detected and remains on, output 2 is switched on
when the second event is detected and remains on, output 3 is
switched on when the third event is detected and remains on, output 4
is switched on when the fourth event is detected and remains on, and
all outputs are switched off when one particular input signal occurs.
(b) Control of a paint sprayer in a booth through which items pass on
an overhead conveyor so that the paint is switched on when a part is
in front of the paint gun and off when there is no part. The items are
suspended from the overhead conveyor by hooks, not every hook
having an item suspended from it.

196 Programmable Logic Controllers

12 Data handling

Timers, counters and individual internal relays are all concerned with the
handling of individual bits, i.e. single on-off signals. Shift registers
involve a number of bits with a group of internal relays being linked (see
Chapter 11). The block of data in the register is manipulated. This chapter
is about PLC operations involving blocks of data representing a value,
such blocks being termed words. A block of data is needed if we are to
represent numbers rather than just a single on-off input. Data handling
consists of operations involving moving or transferring numeric
information stored in one memory word location to another word in a
different location, comparing data values and carrying out simple
arithmetic operations. For example, there might be the need to compare a
numeric value with a set value and initiate action if the actual value is less
than the set value. This chapter is an introductory discussion of such
operations.

12.1 Registers and bits A register is where data can be stored (see Section 8.1 for an initial
discussion of registers). In a PLC there are a number of such registers.
Each data register can store a binary word of usually 8 or 16 bits. The
number of bits determines the size of the number that can be stored. The
binary system uses only two symbols, 0 and 1 (see Chapter 3). Thus we
might have the 4-bit number 1111. This is the denary number, i.e. the
familiar number system based on 10s, of 20 + 21 + 22 + 23 = 1 + 2 + 4 + 8
= 15. Thus a 4-bit register can store a positive number between 0 and 20 +
21 + 22 + 23 or 24 − 1 = 15. An 8-bit register can store a positive number
between 0 and 20 + 21 + 22 + 23 + 24 + 25 + 26 + 27 or 28 − 1, i.e. 255. A
16-bit register can store a positive number between 0 and 216 − 1, i.e.
65 535.

Thus a 16-bit word can be used for positive numbers in the range 0 to
+65 535. If negative numbers are required, the most significant bit is used
to represent the sign, a 1 representing a negative number and a 0 a
positive number and the format used for the negative numbers is two’s
complement. Two’s complement is a way of writing negative numbers so
that when we add, say, the signed equivalent of +5 and –5 we obtain 0.
Thus in this format, 1011 represents the negative number −5 and 0101 the
positive number +5; 1011 + 0101 = (1)0000 with the (1) for the 4-bit
number being lost. See Chapter 3 for further discussion.

The binary coded decimal (BCD) format is often used with PLCs when
they are connected to devices such as digital displays. With the natural
binary number there is no simple link between the separate symbols of a
denary number and the equivalent binary number. You have to work out
the arithmetic to establish one number from the other. With the binary

coded decimal system, each denary digit is represented, in turn, by a 4-bit
binary number (four is the smallest number of binary bits that gives a
denary number greater than 10, i.e. 2n > 10). To illustrate this, consider
the denary number 123. The 3 is represented by the 4-bit binary number
0011, the 2 by the 4-bit number 0010 and the 1 by 0001. Thus the binary
coded decimal number of 123 is 0001 0010 0011. Binary coded decimal
is a convenient system for use with external devices which are arranged in
denary format, e.g. decade switches (thumbwheel switches) and digital
displays. Then four binary bits can be used for each denary digit. PLCs
therefore often have inputs or outputs which can be programmed to
convert binary coded decimal from external input devices to the binary
format needed for inside the PLC and from the binary format used
internally in the PLC to binary coded decimal for external output devices
(see Section 12.3).

The thumbwheel switch is widely used as a means of inputting BCD
data manually into a PLC. It has four contacts which can be opened or
closed to give the four binary bits to represent a denary number (Figure
12.1). The contacts are opened or closed by rotating a wheel using one’s
thumb. By using a number of such switches, data can be inputted in BCD
format.

3

+V

O
ut

pu
ts

Switch outputsPosition
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1

0 = switch open 1 = switch closed

Figure 12.1 Thumbwheel switch

12.2 Data handling The following are examples of data-handling instructions to be found with
PLCs.

12.2.1 Data movement

The structured text program entry for a MOVE operation is :- with the
destination address given first and then after :- the value to be moved to
the destination, i.e.

Result :- value

With ladder programs, Figure 12.2 illustrates a common practice of
using one rung of a ladder program for each move operation, showing the
form used by three manufacturers, Mitsubishi, Allen-Bradley, and
Siemens. For the rung shown, when there is an input to | | in the rung, the

198 Programmable Logic Controllers

move occurs from the designated source address to the designated
destination address. For data handling with these PLCs, the typical ladder
program data-handling instruction contains the data-handling instruction,
the source (S) address from where the data is to be obtained and the
destination (D) address to where it is to be moved. The approach that is
used by some manufacturers, e.g. Siemens, is to regard data movement as
two separate instructions, loading data from the source into an
accumulator and then transferring the data from the accumulator to the
destination. Figure 12.2(c) shows the Siemens symbol for the MOVE
function. The data is moved from the IN input to the OUT output when
EN is enabled.

MOV S D

 D1 D2

Source address
Destination address(a)

MOV
N7:0
N7:2

Source

Destination
(b)

MOVE

EN ENO

IN OUT

(c)

Figure 12.2 Data movement: (a) Mitsubishi, (b) Allen-Bradley, (c)
Siemens

Data transfers might be to move a preset value to a timer or counter, or
a time or counter value to some register for storage, or data from an input
to a register or a register to output. Figure 12.3 shows the rung, in the
Allen-Bradley format, that might be used to transfer a number held at
address N7:0 to the preset of timer T4:6 when the input conditions for that
rung are met. A data transfer from the accumulated value in a counter to a
register would have a source address of the form C5:18.ACC and a
destination address of the form N7:0. A data transfer from an input to a
register might have a source address of the form I:012 and a destination
address of the form N7:0. A data transfer from a register to an output
might have a source address of the form N7:0 and a destination address of
the form O:030.

MOV
N7:0

Source

Destination

T4:6.PRE

Figure 12.3 Moving number to timer preset

Data handling 199

12.2.2 Data comparison

The data comparison instruction gets the PLC to compare two data values.
Thus it might be to compare a digital value read from some input device
with a second value contained in a register. For example, we might want
some action to be initiated when the input from a temperature sensor gives
a digital value which is less than a set value stored in a data register in the
PLC. PLCs generally can make comparisons for less than (< or LT or
LES), equal to (= or = = or EQ or EQU), less than or equal to (≤ or <= or
LE or LEQ), greater than (> or GT or GRT), greater than or equal to (≥
or >= or GE or GEQ) and not equal to (≠ or <> or NE or NEQ). The
brackets alongside each of the terms indicates common abbreviations used
in programming. As an illustration, in structured text we might have:

(*Check that boiler pressure P2 is less than pressure P1*)
Output :- P2 < P1;

With ladder programs, for data comparison the typical instruction will
contain the data-transfer instruction to compare data, the source (S)
address from where the data is to be obtained for the comparison and the
destination (D) address of the data against which it is to be compared. The
instructions commonly used for the comparison are the terms indicated in
the above brackets. Figure 12.4 shows the type of formats used by two
manufacturers using the greater than form of comparison. Similar forms
apply to the other forms of comparison. In Figure 12.4(a) the format is
that used by Mitsubishi, S indicating the source of the data value for the
comparison and D the destination or value against which the comparison
is to be made. Thus if the source value is greater than the destination
value, the output is 1. In Figure 12.4(b) the Allen-Bradley format has been
used. Here the source of the data being compared is given as the
accumulated value in timer 4.0 and the data against which it is being
compared is the number 400. Figure 12.4(c) shows the Siemens format.
The values to be compared are at inputs IN1 and IN2 and the result of the
comparison is at the output, being 1 if the comparison is successfull
otherewise 0. The R is used to indicate real numbers, i.e. floating point
numbers, I being used for integers, i.e. fixed-point numbers involving 16
bits, and D for fixed-point numbers involving 32 bits. Both the inputs
need to be of the same data type, e.g. REAL.

>

(a)

GRT
T4.0.ACC
400

(b)

S D

CMP>R

IN1
IN2(c)

Figure 12.4 Greater than comparison: (a) Mitsubishi, (b) Allen-Bradley,
(c) Siemens

200 Programmable Logic Controllers

As an illustration of the use of such a comparison, consider the task of
sounding an alarm if a sensor indicates that a temperature has risen above
some value, say 100oC. The alarm is to remain sounding until the
temperature falls below 90oC. Figure 12.5 shows the ladder diagram that
might be used. When the temperature rises to become equal to or greater
than 100oC, then the greater than comparison element gives a 1 output and
so sets an internal relay. There is then an output. This output latches the
greater than comparison element and so the output remains on, even when
the temperature falls below 100oC. The output is not switched off until the
less than 90oC gives an output and resets the internal relay.

>

<

S

R

Y430

Y430

Y430

D

DS

S

K100

K90

Figure 12.5 Alarm program

Another example of the use of comparison is when, say, four outputs
need to be started in sequence, i.e. output 1 starts when the initial switch is
closed, followed some time later by output 2, some time later by output 3
and some time later by output 4. While this could be done using three
timers, another possibility is to use one timer with greater than or equal
elements. Figure 12.6 shows a possible ladder diagram.

Y430X401

X401 T450 K25

≥

≥

T450 5

T450 15

Y431

Y432

Y433T450

Figure 12.6 Sequential switching on

Data handling 201

When the X401 contacts close the output Y430 starts. Also the timer is
started. When the timer accumulated value reaches 5 s then the greater
than or equal to element switches on Y431. When the timer accumulated
value reaches 15 s then the greater than or equal to element switches on
Y432. When the timer reaches 25 s then its contacts switch on Y433.

12.3 Arithmetic functions Most PLCs provide BCD-to-binary and binary-to-BCD conversions for
use when the input might be for a thumbwheel switch or the output to a
decimal display. Figure 12.7(a) shows the typical form of instructions for
use in such situations and Figure 12.7(b) the form used by Siemens.

BIN S D

(a)

Source

Destination

BCD S D

Source

Destination

EN

IN

OUT

ENO

BCD_I

EN

IN

OUT

ENO

I_BCD

(b)

Figure 12.7 Conversion: (a) BCD-to-binary and binary-to-BCD, (b)
BCD-to-integer and integer-to-BCD

12.3.1 Arithmetic operations

Some PLCs are equipped to carry out just the arithmetic operations of
addition and subtraction, others the four basic arithmetic operations of
addition, subtraction, multiplication and division, while others can carry
out these and various other functions such as the exponential. Addition
and subtraction operations are used to alter the value of data held in data
registers. For example, this might be to adjust a sensor input reading or
perhaps obtain a value by subtracting two sensor values or alter the preset
values used by timers and counters. Multiplication might be used to
multiply some input before perhaps adding to or subtracting it from
another.

The way in which PLCs have to be programmed to carry out such
operations varies. Allen-Bradley in some of their PLCs use a compute
(CPT) instruction. This is an output instruction that performs the
operations defined and then writes the results to a specified destination
address. Figure 12.8 shows the instruction format. When the compute
instruction is on the programming screen, the destination has to be first
entered, then the expression. Thus we might have a destination of
T4:1.ACC and an expression (N7:1 + N10:1)*3.5. Note that the symbol *
is used for multiplication. The expression states that the value in N7:1 is
to be added to the value in N10:1. This sum is then to be multiplied by
3.5. The result is then to be sent to the destination which is the
accumulated value in timer 4.1.

202 Programmable Logic Controllers

COMPUTE
Destination
Expression

CPT

Figure 12.8 Allen-Bradley
format

Figure 12.9 shows the basic form of the Siemens instuctions for
arithmetic functions. With integers the functions avaialble are ADD_1 for
addition, SUB_1 for subtraction, MUL_1 for multiplication and DIV_1
for division with the quotient as the result. The arithmetic functions are
executed of there is a 1 at the enable EN input.

ADD_1

EN

IN1

IN2

OUT

ENO

Figure 12.9 Siemens format

12.4 Closed loop control You can control the temperature of a room by switching on an electric
fire. The fire will heat the room up to the maximum temperature that is
possible bearing in mind the rate at which the fire heats the room and the
rate at which is loses heat. This is termed open loop control in that there is
no feedback to the fire to modify the rate at which it is heating the room.
To do this you need a thermostat which can be set to switch the fire on
when the room temperature is below the required value and switch it off
when it goes above it. There is feedback of temperature information in
this system and as such it it termed closed loop control.

Closed loop control of some variable, e.g. the control of the
temperature in a room, is achieved by comparing the actual value for the
variable with the desired set value and then giving an output, such as
switching on a heater, to reduce the difference. Figure 12.10 illustrates
this by means of a block diagram. The actual value of the variable is
compared with the set value and a signal obtained representing the
difference or error. A controller then takes this difference signal and gives
an output to an actuator to give a response to correct the discrepancy.
Such a system is called closed-loop control.

The variable
being controlled

Measurement

Comparison
of actual value
with set value

+
–

Signal representing
the difference between
the actual and set values

Controller
Set value

Actual value Measurement of the
actual value of the variable

Actuator Process

in some process

Signal to an actuator
to correct the discrepancy

Actuator
response to

correct the variable

Figure 12.10 Closed loop control

Data handling 203

Figure 12.11 shows the arrangement that might be used with a PLC
used to exercise the closed-loop control. It has been assumed that the
actuator and the measured values are analogue and thus require
conversion to digital; analogue-to-digital and digital-to-analogue units
have thus been shown.

The variable
being controlled

Measurement
Actual value

Actuator Process
in some process

PLC

Set value

ADC DAC

Figure 12.11 PLC for closed-loop control

12.4.1 Modes of control

With proportional control the controller gives an output to the actuator
which is proportional to the difference between the actual value and the
set value of the variable, i.e. the error (Figure 12.12(a)). Such a form of
control can be given by a PLC with basic arithmetic facilities. The set
value and the actual values are likely to be analogue and so are converted
to digital and then the actual value is subtracted from the set value and the
difference multiplied by some constant, the proportional constant KP, to
give the output, which after conversion to analogue is the correction signal
applied to the actuator:

controller output = KP % error

C
on

tro
lle

r o
ut

pu
t

0 Error
(a)

E
rro

r
C

on
tro

lle
r o

ut
pu

t

Time

Time

0

0
(b)

E
rro

r

0 Time

0 Time

C
on

tro
lle

r
ou

tp
ut

(c)

Figure 12.12 Control: (a) proportional, (b) integral, (c) derivative

204 Programmable Logic Controllers

Proportional control has a disadvantage in that, because of time lags
inherent in the system, the correcting signal applied to the actuator tends
to cause the variable to oscillate about the set value. What is needed is a
correcting signal which is reduced as the variable gets close to the set
value. This is obtained by PID control, the controller giving a correction
signal which is computed from a proportional element, the P term, an
element which is related to previous values of the variable, the integral I
term, and an element related to the rate at which the variable is changing,
the derivative D term. With integral control the controller output is
proportional to the integral of the error with time, i.e. the area under the
error-time graph (Figure 12.12(b)).

controller output = KI % integral of error with time

With derivative control the controller output is proportional to the rate at
which the error is changing, i.e. the slope of the error-time graph (Figure
12.12(c)):

controller output = KD % rate of change of error

The term tuning is used for determining the optimum values of KP, KI

and KD to be used for a particular control system. The value of KD/KP is
called the derivative action time TD, the value of KP/KI the integral action
time TI and it is these terms KP, TD and TI which are generally specified.

12.4.2 PID control with a PLC

Many PLCs provide the PID calculation to determine the controller output
as a standard routine. All that is then necessary is to pass the desired
parameters, i.e. the values of KP, KI and KD, and input/output locations to
the routine via the PLC program. Figure 12.13 shows the IEC 1131-3
standard symbol for the PID control function. When AUTO is set the
function blocks calculate the output value XOUT needed to bring the
variable closer to the required set value.

PID
AUTO

PV

SP

X0

KP

TR

TD

CYCLE

XOUT REALBOOL

REAL

REAL

REAL

REAL

REAL

REAL

TIME

SP is for setting
the set point value.
PV is the process
variable being
controlled.
KP is input for the
proportional control
constant, TR for
the integral time
constant, TD for
the derivative time
constant.

REAL are real numbers, i.e. analogue values.
BOOL are Boolean and so just on-off signals.

Figure 12.13 IEC 1131-3 standard symbol

Data handling 205

Problems Questions 1 to 9 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

Problems 1 and 2 refer to Figure 12.14 which shows two formats
used for the move operation.

MOV S D MOV
N7:1
N7:2

(a)

(b)

Figure 12.14 Problems 1 and 2

 1 Decide whether each of these statements is True (T) or False (F).

In Figure 12.14(a), the program instruction is to:
(i) Move the value in S to D, leaving S empty.
(ii) Copy the value in S and put it in D.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

In Figure 12.14(b), the program instruction is to:
(i) Move the value in N7:1 to N7:2, leaving N7:1 empty.
(ii) Copy the value in N7:1 and put it in N7:2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

Problems 3 and 4 refer to Figure 12.15 which shows two versions of a
ladder rung involving a comparison.

>

(a)

GRT
T4:0.ACC
400

(b)

T450 400

Figure 12.15 Problems 3 and 4

 3 Decide whether each of these statements is True (T) or False (F).

In Figure 12.15(a), the program instruction is to give an output:
(i) When the accumulated time in timer T450 exceeds a value of 400.
(ii) Until the accumulated time in timer T450 reaches a value of 400.

206 Programmable Logic Controllers

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

4 Decide whether each of these statements is True (T) or False (F).

In Figure 12.15(b), the program instruction is to give an output:
(i) When the accumulated time in timer T4:0 exceeds a value of 400.
(ii) Until the accumulated time in timer T4:0 reaches a value of 400.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

5 Decide whether each of these statements is True (T) or False (F).

EQV
N7:10
N7:20

LES
N7:10
N7:20

Input
conditions Output

Figure 12.16 Problem 5

In Figure 12.16 the program instruction is, when the input conditions
are met, to give an output when the data:
(i) In N7:10 equals that in N7:20.
(ii) In N7:10 is less than that in N7:20.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

6 Decide whether each of these statements is True (T) or False (F).

N7:10
N7:20

LES
N7:10
N7:20

Input
conditions Output

GRT

Figure 12.17 Problem 6

Data handling 207

In Figure 12.17, the program instruction is to give, when the input
conditions are met, an output when:
(i) The data in N7:10 is not equal to that in N7:20.
(ii) The data in N7:10 is greater or less than that in N7:20.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

7 In Figure 12.18, when the input conditions are met, the program
instruction is to give in N7:20:

CPT
N7:20
N7:11*N7:12

Figure 12.18 Problem 7

A The sum of the data in N7:11 and N7:12.
B The product of the data in N7:11 and N7:12.
C The difference between the data in N7:11 and N7:12.
D The value given by dividing the data in N7:11 by that in N7:12.

 8 Decide whether each of these statements is True (T) or False (F).

CMP > = R

IN1

IN2

Output

Figure 12.19 Problem 8

For the Siemens function box shown in Figure 12.19, the output will
be set when:
(i) Inputs IN1 and IN2 are both the same REAL number.
(ii) Input IN1 is a REAL number greater than input IN2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 9 Decide whether each of these statements is True (T) or False (F).

208 Programmable Logic Controllers

CMP > R

IN1

IN2

Output

Figure 12.20 Problem 9

For the Siemens function box shown in Figure 12.20, the output will
be be set when:
(i) Inputs IN1 and IN2 are both the same REAL number.
(ii) Input IN1 is a REAL number greater than input IN2.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

10 Devise ladder programs for systems that will carry out the following
tasks:
(a) Switch on a pump when the water level in a tank rises above 1.2 m
and switch it off when it falls below 1.0 m.
(b) Switch on a pump, then 100 s later switch on a heater, then a
further 30 s later switch on the circulating motor.

Data handling 209

13 Designing systems

This chapter considers how programs are designed and how they and a
PLC system can be tested and faults found. This involves consideration of
both the hardware and the software.

13.1 Program development Whatever the language in which a program is to be written, a systematic
approach to the problem can improve the chance of high quality programs
being generated in as short a time as possible. A systematic design
technique is likely to involve the following steps:

1 A definition of what is required with the inputs and outputs specified.
2 A definition of the algorithm to be used. An algorithm is a

step-by-step sequence which defines a method of solving the
problem. This can often be shown by a flow chart or written in
pseudocode, this involving the use of the words BEGIN, DO, END,
IF-THEN-ELSE, WHILE-DO.

3 The algorithm is then translated into instructions that can be inputted
to the PLC. Because programs are often very long and can end up
difficult to write as a long single block and even more difficult to
later follow for fault finding and maintenance, it is advisable to break
the program down into areas which are then further subdivided until
manageable size blocks of program occur. This is termed top-down
design.

4 The program is then tested and debugged.
5 The program is documented so that any person using or having to

modify the program at a later date understands how the program
works.

13.1.1 Flow charts and pseudocode

Figure 13.1(a) shows the symbols used in flow charts. Each step of an
algorithm is represented by one or more of these symbols and linked by
lines to represent the program flow, Figure 13.1(b) illustrating this.
Pseudocode is a way of describing the steps in an algorithm in an informal
way.

Consider how the following program operations can be represented by
flow charts and pseudocode and then programmed using ladder and
sequential function chart programming:

1 Sequential
Consider a sequence when event A has to be followed by event B.
Figure 13.2(a) shows how this can be represented by a flow chart.

Start/end Process or
action

Input/output

Decision

Program flow
direction

Connector

or

Subroutine

(a) (b)

START

Operation
A

Operation
B

Operation
C

YES

NO

Is
output
high?

Figure 13.1 (a) Flow chart symbols, (b) example of a simple flow chart

A

B

Output A

Output A

Output B

(a)

(b)

STARTSTART

(c)

Start

START

Step A A

Step B B

Output A

Figure 13.2 Sequence

In pseudocode this is written as:

BEGIN A
DO A

END A
BEGIN B

DO B
END B

A sequence can be translated into a ladder program in the way shown
in Figure 13.2(b). When the start input occurs then output A happens.
When action A happens it operates output A relay and results in
output B occurring. Figure 13.2(c) shows the sequential function
chart representation of a sequence.

Designing systems 211

2 Conditional
Figure 13.3(a) shows the flow chart for when A or B is to happen if a
particular condition X being YES or NO occurs. The pseudocode to
describe this involves the words IF-THEN-ELSE-ENDIF.

IF X
THEN

BEGIN A
DO A
END A

ELSE
BEGIN B
DO B
END B

ENDIF X

Such a condition can be represented by the ladder diagram shown in
Figure 13.3(b). When the start input occurs, the output will be A if
there is an input to X, otherwise the output is B. Figure 13.3(c) shows
the sequential function chart for such selective branching.

X
YES NO

A B

(a)

START

START

X

X

Output A

Output B

(b)

START

Output A

Output B

Start

Start

X = 1 X = 0

Step A Step BA B

A B

(c)

Start
step

Note that two
steps can never
be directly linked,
always having to
be separated
by a transition

Figure 13.3 Conditional

212 Programmable Logic Controllers

3 Looping
A loop is a repetition of some element of a program, the element
being repeated as long as some condition prevails. Figure 13.4(a)
shows how this can be represented by a flow chart. As long as
condition X is realised then the sequence A followed by B occurs and
is repeated. When X is no longer realised then the program continues
and the looping through A and B ceases.

X
YES

NO A

B

X Ouput A

Output B

X

X

Rest of program

Input AX

While X yes output A,
which when completed
gives input A as yes and so
output B.

Rest of program occurs
while not X

latches the START.

(b)

(a)

START START

START

Output B

Output B

When B happens it

and so the decision X
is faced again.

Start

Output AStep A

X = 1

Output Step C

X = 0

START = 1

And so on

Output BStep B

(c)

Start
step

Figure 13.4 Looping

In pseudocode this can be represented by using the words
WHILE-DO -ENDWHILE:

WHILE X

Designing systems 213

BEGIN A
DO A
END A
BEGIN B
DO B
END B

ENDWHILE X

Figure 13.4(b) shows how this can be represented by a ladder
diagram and using an internal relay. Figure 13.4(c) shows the
sequential flow chart.

 Where a loop has to be repeated for a particular number of times,
a counter can be used, receiving an input pulse each time a loop
occurs and switching out of the loop sequence when the required
number of loops has been completed (Figure 13.5).

Output A

Output B

IR 1

Counter

RST

OUT

IR2

IR2Output A

IR3

IR1

IR3 Output C

Counter

Counter

IR1

IR3

Output B

Output B

Loop to top line when

Output A occurs and
also sets internal
relay IR2

This results in output B

input B occurs, as long
as counter not counted
out
When counter out

Counts the number of
times IR1 set
Reset when IR3 occurs
and then gives output C
and continues with
rest of program

Figure 13.5 Looping

13.2 Safe systems Modern safety legislation charges employers with duties which include
making the workplace safe and without risks to health and ensuring that
plant and machinery are safe and that safe systems of work are set and
followed. There is thus a need to assess the risks in the workplace. This
means looking for hazards, i.e. anything that can cause harm, deciding
who might be harmed and how, evaluating the risks that somebody will be
harmed by a hazard and whether existing precautions are adequate or

214 Programmable Logic Controllers

whether more needs to be done to reduce the chance of harm occurring,
recording the findings and reviewing and revising the assessment if
necessary.

Thus, for example, issues such as emergency stops and access doors on
equipment need to be considered, the risks assessed and safe systems then
designed. With regard to access doors on equipment, switch contacts can
be used on such doors so that the system is stopped if the doors are not
correctly guarding equipment.

An important standard is IEC (International Electrotechnical
Commission) 61508: Functional safety of electrical/electronic/
programmable electronic safety-related systems. The standard is in seven
parts, namely Part 1: General requirements; Part 2: Requirements for
E/E/PE safety-related systems; Part 3: Software requirements; Part 4:
Definitions and abbreviations; Part 5: Examples of methods for the
determination of safety integrity levels; Part 6: Guidelines on the
application of IEC 61508-2 and IEC 61508-3; Part 7: Overview of
techniques and measures. In order to provide functional safety of a
machine or plant, the safety-related protective or control system must
function correctly and when a failure occurs it must operate so that the
plant or machine is brought into a safe shut-down state.

13.2.1 PLC systems and safety

Safety must be a priority in the design of a PLC system. Thus, emergency
stop buttons and safety guard switches must be hard wired and not depend
on the PLC software for implementation so that, in the situation where
there is a failure of the stop switch or PLC, the system is automatically
safe. The system must be fail-safe.

With a PLC system, a stop signal can be provided by a switch as shown
in Figure 13.6. This arrangement is unsafe as an emergency stop because
if there is a fault and the switch cannot be operated, then no stop signal
can be provided. Thus to start we momentarily close the press-button start
switch and the motor control internal relay then latches this closure and
the output remains on. To stop we have to momentarily open the stop
switch; this unlatches the start switch. However, if the stop switch cannot
be operated then we cannot stop the system. What we require is a system
that will still stop if a failure occurs in the stop switch.

StopStart
Start

Stop

PLC

Motor control

Motor

Motor
control relay

Motor

relay

Figure 13.6 An unsafe stop system

We can achieve this by the arrangement shown in Figure 13.7. The
program has the stop switch as open contacts. However, because the

Designing systems 215

hardwired stop switch has normally closed contacts then the program has
the signal to close the program contacts. Pressing the stop switch opens
the program contacts and stops the system.

Motor

StopStart
Start

Stop

PLC

Motor control

Motor
control relay

Motor

relay

Figure 13.7 A safer stop system

For a safe emergency stop system we need one which will provide a
stop signal if there is a fault and the switch cannot be operated. Because
there might be problems with a PLC, we also need the emergency stop to
operate independently of the PLC. Putting the emergency stop in the input
to the PLC gives an unsafe system (Figure 13.8).

StopStart Start

Stop

PLC

IR
Internal relay

IR E-stop Motor

IR

E-stop

Motor
control relay

Motor

Figure 13.8 An unsafe emergency stop system

Figure 13.9 shows a safer system where the emergency stop switch is
hard-wired in the output. Pressing the emergency stop button switch stops,
say, a motor running. On releasing the stop button, the motor will not
restart again because the internal relay contacts have become unlatched.

StopStart Start

Stop

PLC

IR

Internal
relay

IR Motor

IR
E-stop

Motor
control relay

Motor

Figure 13.9 A safer emergency stop system

216 Programmable Logic Controllers

13.2.2 Emergency stop relays

Emergency stop relays are widely used for emergency stop arrangements,
e.g. the PNOZ p1p from Pilz GmbH & Co. This has LEDs for indicating
the status of input and output circuits, the reset circuit and power supply
and faults. However, the base unit can be connected via an interface
module so that its status can be read by a PLC. This interface isolates the
output from the emergency stop relay from the signal conditioning and
input to the PLC by means of optoisolators (see Figure 1.8). Thus, while
the emergency stop operates independently of the PLC it can provide
signals which a PLC can use to, say, initiate safe closing-down
procedures. Figure 13.10 illustrates this.

Start

Stop

PLC

E-stop

Motor

Emergency
stop relay

Status
input

Figure 13.10 Emergency stop relay providing feedback of status

A simple emergency stop relay in which operation of the
emergency-stop button breaks the control circuit to the relay, causing it to
de-energise and switch off the power (Figure 13.11(a)), has the problem
that if the relay contacts weld together the emergency stop will not
operate. This can be overcome by using a dual channel mode of operation
in which there are two normally closed contacts in series and both are
broken by the action of the relay de-energising (Figure 13.12(b)). Safety
can be increased yet further if three contacts in series are used, one using
normally closed contacts and the others normally open contacts. Then one
set of contacts has to be de-energised and the other two energised.

Emergency
stop

switch

Contactor
activated
by relay

Load

(a)

Emergency
stop

switch

Contactors
activated
by relay

Load
(b)

Figure 13.11 Emergency stop relay: (a) single channel mode, (b) dual
channel mode.

Designing systems 217

Such types of stop-relays systems are used with so-called ‘light
curtains’. A danger zone, such as a packaging machine, is protected from
people getting too close by infrared beams. If a light beam is broken it
immediately triggers a safe shutdown command. Safety mats are another
way of detecting when someone is too close to a machine. They are placed
round a machine and when someone steps on the mat a contact is closed
which causes the machine to stop.

Thus a safe-operating system for a work cell might use gated entry
systems, e.g. guards on machines which activate stop relays if they are not
in place, light curtains and emergency stop relays.

13.2.3 Safety PLCs

Safety PLCs are specially designed PLCs to enable safety functions to be
realised. In a safety PLC there can be two or three microprocessors that
perform exactly the same logic, check against each other and only give
outputs if there is agreement. An example of such a PLC is the SIMATIC
S5-95F. This is a two-channel system with two identical sub-systems
which communicate with each other via a fibre-optic cable link. The
inputs from the sensors are fed simultaneously to both sub-systems.
During operation, data is passed via the fibre-optic cable between the two
sub-systems. They operate in synchronism with the same program and
compare input and output signals, the results of logic operations, counters,
etc. and automatically goes into a safe stop condition if there are different
outputs or internal faults or failures. For safety-related digital outputs,
actuators are switched on or off from both sub-systems. This means that
one sub-system can alone shut down equipment.

13.3 Commissioning Commissioning of a PLC system involves:

1 Checking that all the cable connections between the PLC and the
plant being controlled are complete, safe and to the required
specification and meeting local standards.

2 Checking that the incoming power supply matches the voltage setting
for which the PLC is set.

3 Checking that all protective devices are set to their appropriate trip
settings.

4 Checking that emergency stop buttons work.
5 Checking that all input/output devices are connected to the correct

input/output points and giving the correct signals.
6 Loading and testing the software.

13.3.1 Testing inputs and outputs

Input devices, e.g. switches, can be manipulated to give the open and
closed contact conditions and the corresponding LED on the input module
observed. It should be illuminated when the input is closed and not
illuminated when it is open. Failure of an LED to illuminate could be
because the input device is not correctly operating, there are incorrect
wiring connections to the input module, the input device is not correctly
powered or the LED or input module is defective. For output devices that

218 Programmable Logic Controllers

can be safely started, push buttons might have been installed so that each
output can be tested.

Another method that can be used to test inputs and outputs is termed
forcing. This involves software, rather than mechanical switching on or
off, being used with instructions from the programming panel to turn off
or on inputs/outputs. In order to do this, a PLC has to be switched into the
forcing or monitor mode by perhaps pressing a key marked FORCE or
selecting that mode on a screen display. For example, Figure 13.12 shows
the keystrokes that might be used and the resulting screen display, to force
the output Y005 into the on state. Figure 13.13 shows the keys for the
forcing of an input X001 into a closed state. Thus if an input is forced and
the input LED comes on then we can check that the consequential action
of that input being on occurs.

FORCE Y 0 0 5 ENTER

Y005 OFF
FORCE ON (Y), OFF (N)?

Resulting screen display

YES

Resulting screen display

Y005 fON

Figure 13.12 Forcing an output

FORCE X 0 0 1 ENTER

X001 ON
FORCE ON (Y), OFF (N)?

Resulting screen display

NO

Resulting screen display

X001 fOFF

Figure 13.13 Forcing an input

13.3.2 Testing software

Most PLCs contain some software checking program. This checks through
the installed program for incorrect device addresses, and provides a list on

Designing systems 219

a screen or as a printout of all the input/output points used, counter and
timer settings, etc. with any errors detected. For example, there might be a
message for a particular output address that it is used as an output more
than once in the program, a timer or counter is being used without a preset
value, a counter is being used without a reset, etc.

13.3.3 Simulation

Many PLCs are fitted with a simulation unit which reads and writes
information directly into the input/output memory and so simulates the
actions of the inputs and outputs. The installed program can thus be run
and inputs and outputs simulated so that they, and all preset values, can be
checked. To carry out this type of operation the terminal has to be placed
in the correct mode. For Mitsubishi this is termed the monitor mode, for
Siemens the test mode, for Telemecanique the debug mode.

With Mitsubishi in the monitor mode, Figure 13.14 shows how inputs
appear when open and closed, and output when not energised and
energised. The display shows a selected part of the ladder program and
what happens as the program proceeds. Thus at some stage in a program
the screen might appear in the form shown in Figure 13.15(a). For rung
12, with inputs to X400, X401 and X402, but not M100, there is no
output from Y430. For rung 13, the timer T450 contacts are closed, the
display at the bottom of the screen indicating that there is no time left to
run on T450. Because Y430 is not energised the Y430 contacts are open
and so there is no output from Y431. If we now force an input to M100
then the screen display changes to that shown in Figure 13.5(b). Now
Y430, and consequently Y431, come on.

Open Closed Not energised Energised

Figure 13.14 Monitor mode symbols

13.4 Fault finding With any PLC controlled plant, by far the greater percentage of the faults
are likely to be with sensors, actuators and wiring rather than within the
PLC itself. Of the faults within the PLC, most are likely to be in the
input/output channels or power supply rather than in the CPU.

As an illustration of a fault, consider a single output device failing to
turn on though the output LED is on. If testing of the PLC output voltage
indicates that it is normal then the fault might be a wiring fault or a device
fault. If checking of the voltage at the device indicates the voltage there is
normal then the fault is the device. As another illustration, consider all the
inputs failing. This might be as a result of a short circuit or earth fault with
an input and a possible procedure to isolate the fault is to disconnect the
inputs one by one until the faulty input is isolated. An example of another
fault is if the entire system stops. This might be a result of a power failure,
or someone switching off the power supply, or a circuit breaker tripping.

220 Programmable Logic Controllers

12

13

X400 X401 M100 X402 Y430

T450 Y430 Y431

T450: 0

12

13

X400 X401 M100 X402 Y430

T450 Y430 Y431

T450: 0

(a)

(b)

Figure 13.15 Ladder program monitoring

Many PLCs provide built-in fault analysis procedures which carry out
self-testing and display fault codes, with possibly a brief message, which
can be translated by looking up the code in a list to give the source of the
fault and possible methods of recovery. For example, the fault code may
indicate that the source of the fault is in a particular module with the
method of recovery given as replace that module or perhaps switch the
power off and then on.

13.4.1 Fault detection techniques

The following are some of the common fault detection techniques used:

1 Timing checks
The term watchdog is used for a timing check that is carried out by
the PLC to check that some function has been carried out within the
normal time. If the function is not carried out within the normal time
then a fault is assumed to have occurred and the watchdog timer trips,
setting off an alarm and perhaps closing down the PLC. As part of the
internal diagnostics of PLCs, watchdog timers are used to detect for
faults. The watchdog timer is preset to a time slightly longer than the
scan time would normally be. They are then set at the beginning of
each program scan and if the cycle time is as normal they do not time
out and are reset at the end of a cycle ready for the next cycle.

Designing systems 221

However, if the cycle time is longer than it would normally be, the
watchdog timer times out and indicates that the system has a fault.

 Within a program additional ladder rungs are often included so
that when a function starts a timer is started. If the function is
completed before the time runs out then the program continues but if
not the program uses the jump command to move to a special set of
rungs which triggers off an alarm and perhaps stops the system.
Figure 13.16 shows an example of a watchdog timer which might be
used with the movement of a piston in a cylinder. When the start
switch is closed the solenoid of a valve is energised and causes the
piston in the cylinder to start moving. It also starts the timer. When
the piston is fully extended it opens a limit switch and stops the timer.
If the time taken for the piston to move and switch off the timer is
greater than the preset value used for the timer, the timer sets off the
alarm.

Limit
switchSolenoid valve

switching pressure
to cylinder

END

Start Solenoid

Solenoid Limit Timer

Timer Alarm

Figure 13.16 Watchdog timer

2 Last output set
This technique involves the use of status lamps to indicate the last
output that has been set during a process which has come to a halt.
Such lamps are built into the program so that as each output occurs a
lamp comes on. The lamps on thus indicate which outputs are
occurring. The program has to be designed to turn off previous status
lamps and turn on a new status lamp as each new output is turned on.
Figure 13.17 illustrates this.

 Such a system can be cumbersome with a large system where
there are many outputs. In such a case, the outputs might be grouped
into sets and a status lamp used for each set. A selector switch can
then be used within a group to select each output in turn to determine
whether it is on. Figure 13.18 illustrates this.

222 Programmable Logic Controllers

Output 0

Output 1

Input 0

Output 0 Input 1

Part of the main progam

When input 0 occurs, then
output 0 happens.

When output 0 occurs, then
output 1 will follow when
input 1 occurs. Input 1 will
then switch off output 0.

Input 1

Last output set diagnostic program elements

Output 0 Timer 0

Timer 0 Relay 0

Output 1 Timer 1

Timer 1 Relay 1

When output 0 occurs, then
timer 0 is set running, e.g. for
0.5 s. As a result relay 0 is
set for that time.

When output 1 occurs, then
timer 1 is set running, e.g. for
0.5 s. As a result relay 1 is
set for that time.

Relay 0

Output 0

Relay 1

Relays
from other outputs

Status
lamp 0

Status
lamp 1Relay 1

Output 1

Relay 0

Relays
from other outputs

When relay 0 on and
latched by output 0,
then status lamp 0
comes on, going off
when output 0 ceases.

When relay 1 on and
latched by output 1,
then status lamp 1
comes on, going off
when output 1 ceases.

Figure 13.17 Last output set diagnostic program

Designing systems 223

Status lamp 1

Status lamp 2

Output 1

Output 2

Output 3

Output 4

Output 50

Output 51

Output 52

Output 53

Switch 1

Switch 2
etc.

etc.

a

b

c

d

a

b

c

d

Switch 1 in position a
indicates output 1, in
position b output 2, in
position c output 3, etc.

Switch 2 in position a
indicates output 50, in
position b output 51, in
position c output 52, etc.

Figure 13.18 Single status lamp for a group of outputs

 As an illustration of the use of the program to indicate which
action occurred last, Figure 13.19 shows the program that might be
used with a pneumatic system operating cylinders in a sequence. The
program indicates at which point in the sequence a fault occurred, e.g.
a piston sticking, and would be added to the main program used to
sequence the cylinders. Each of the cylinder movements has a
light-emitting diode associated with it, the last cylinder movement
being indicated by its LED being illuminated.

3 Replication
Where there is concern regarding safety in the case of a fault
developing, checks may be constantly used to detect faults. One
technique is replication checks which involves duplicating, i.e.
replicating, the PLC system. This could mean that the system repeats
every operation twice and if it gets the same result it is assumed there
is no fault. This procedure can detect transient faults. A more
expensive alternative is to have duplicate PLC systems and compare
the results given by the two systems. In the absence of a fault the two
results should be the same, a fault showing up as a difference.

224 Programmable Logic Controllers

A+ Timer 1

Timer 1 IR 1

B+ Timer 2

Timer 2 IR 2

C+ Timer 3

Timer 3 IR 3

A– Timer 4

Timer 4 IR 4

B– Timer 5

Timer 5 IR 5

C– Timer 6

Timer 6 IR 6

IR 1 LED A+

LED A+

IR 2 IR 3 IR 4 IR 5 IR 6 Reset

IR 2 IR 1 IR 3 IR 4 IR 5 IR 6 Reset LED B+

LED B+

The output A+ produces a
short duration pulse at
IR 1 as a result of the
timer setting

The output B+ produces a
short duration pulse at
IR 2 as a result of the
timer setting

The output C+ produces a
short duration pulse at
IR 3 as a result of the
timer setting

The output A– produces a
short duration pulse at
IR 4 as a result of the
timer setting

The output B– produces a
short duration pulse at
IR 5 as a result of the
timer setting

The output C– produces a
short duration pulse at
IR 6 as a result of the
timer setting

If A+ output occurs, IR 1 closes
and is latched on. LED A+ is
then on. LED A+ is not on
unless IR 1 closed

If B+ output occurs, IR 2 closes
and is latched on. LED B+ is
then on. LED B+ is not on
unless IR 2 closed

Figure 13.19 (Continued on next page)

Designing systems 225

IR 4 IR 1 IR 2 IR 3 IR 5 IR 6 Reset LED A–

LED A–

IR 5 LED B–

LED B–

IR 1 IR 2 IR 3 IR 4 IR 6 Reset

IR 6 IR 1 IR 2 IR 3 IR 4 IR 5 Reset LED C–

LED C–

END

If A– output occurs, IR 4 closes
and is latched on. LED A– is
then on. LED A– is not on
unless IR 4 is closed

If B– output occurs, IR 5 closes
and is latched on. LED B– is
then on. LED B– is not on
unless IR 5 is closed

If C– output occurs, IR 6 closes
and is latched on. LED C– is
then on. LED C– is not on
unless IR 6 is closed

IR 3 LED C+

LED C+

IR 1 IR 2 IR 4 IR 5 IR 6 Reset If C+ output occurs, IR 3 closes
and is latched on. LED C+ is
then on. LED C+ is not on
unless IR 3 is closed

Figure 13.19 Diagnostic program for last cylinder action

4 Expected value checks
Software errors can be detected by checking whether an expected
value is obtained when a specific input occurs. If the expected value
is not obtained then a fault is assumed to be occurring.

13.4.2 Program storage

Applications programs may be loaded into battery-backed-up RAM in a
PLC. A failure of the battery supply means a complete loss of the stored
programs. An alternative to storing applications programs in
battery-backed RAM is to use EPROM. This form of memory is secure
against the loss of power. Against the possibility of memory failure
occurring in the PLC and loss of the stored application program, a
back-up copy of each application program should be kept. If the program
has been developed using a computer, the back-up may be on a CD or a
hard disk. Otherwise the back-up may be on an EPROM cartridge. The
program can then again be downloaded into the PLC without it having to
be rewritten.

226 Programmable Logic Controllers

13.5 System documentation The documentation is the main guide used by the everyday users and for
troubleshooting and fault finding with PLCs. It thus needs to be complete
and in a form that is easy to follow. The documentation for a PLC
installation should include:

1 A description of the plant.
2 Specification of the control requirements.
3 Details of the programmable logic controller.
4 Electrical installation diagrams.
5 Lists of all input and output connections.
6 Application program with full commentary on what it is achieving.
7 Software back-ups.
8 Operating manual, including details of all start up and shut down

procedures and alarms.

13.5.1 Example of an industrial program

The following is an example of a how a program might appear for a real
plant controlled by an Allen-Bradley PLC5 and I am grateful to Andrew
Parr for supplying it. It illustrates the way a program file is documented to
aid in clarification and the safety and fault indication procedures that are
used. Note that the right-hand power rail has been omitted, this being
allowable in IEC 1131-3.

The program is one of about forty program files in the complete
programme, each file controlling one area of operation and separated by a
page break from the next file. The file that follows controls a bundle
cutting band saw and involves motor controls, desk lamps and a small
state transition sequence.

Note the rung cross references, e.g. [38] below B3/497 in rung 2. This is
used to show the B3/497 originates in rung 38 in the current program file.
Also note that all instructions are tagged with descriptions and the file is
broken down into page section. The software allows you to go straight to
a function via the page titles.

All the motor starter rungs work in the same way. The PLC energises the
contactor and then one second later looks for the auxiliary relay (labelled
as Aux in the program file) coming back to say the contactor has
energised. If there is a fault which causes the contactor to de-energise, e.g.
a loss of supply, a trip or open circuit coil, then it causes the PLC to signal
a fault and de-energise the contactor output so that the machine does not
spring into life when the fault is cleared.

The saw normally sits raised clear of the bundle. To cut the bundle, the
blade motor has to be started and the lower push-button pressed (at rung
8). The saw falls under gravity at a fast or slow speed which is set by
hydraulic valves. To raise the saw a hydraulic pump is started to pump oil
into the saw support cylinders. At any time the saw can be raised, e.g. to
clear swarf, to what is termed the pause state. Otherwise, cutting continues
until the bottom limit is reached. The saw then is raised to the top limit for
the next bundle. A cut can be aborted by pressing the raise button for two
seconds. While a bundle is being cut, it is held by clamp solenoids.

The final three rungs of the program set the length to be cut. There are
two photocells about 20 mm apart on a moveable carriage. These are

Designing systems 227

positioned at the required length. The operator runs the bundle in until
the first is blocked and the second is clear. These control the Long/
Correct/Short desk lamps.

Bundle Cutting Saw
*** Saw Cutting ... Saw Motor

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00001 21:08 12/05/02
- -

| Saw_Motor
 | Tripped Saw_Motor Saw_ESR Saw_Motor
 | 1=Tripped Start_Fault Healthy Available

| I:032 B3 I:031 B3
 0 +- - - -] / [- - - - - - - - -] / [- - - - - - - -] [- () - - - - - - - - - -

| 10 517 17 516
| [2]
| Saw_Blade
| Saw_Motor Saw_Motor Saw_Motor Tension_LS Saw_Motor
| Start_PB Stop_PB Available 1 = Healthy Contactor
| I:030 I:030 B3 I:032 O:034 >

 1 + - -+- - -] [- - - - - - -+ - -] [- - - - - - - -] [- - - - - - - -] [- - - - - - - - - + - - - () - - - - - - - - - - - - - >
| | 00 | 01 516 03 | 10 >
		[0]
	Saw_Motor	
	Contactor	
	O:034	
+- - -] [- - - - - - -+ +- - - - - - - - - - - - - - - - - - - - - -		
[1]		
<- - - - - - - - - - - - - - - - - - - - - - + - - - - - - - - -		
Saw_Motor		
Start_Motor		
+- - TON - - - - - - - -+		
+Timer On Delay + - (EN) - -+		
	Timer T4:109	
	Base (SEC): 0.01 +- (DN)	
	Preset: 100	
	Accum: 0	
+- - - - - - - - - - - - - -+		
Saw_Motor Saw_Motor Saw_Alarms Saw_Motor		
Start_Fault Running_Aux Accept Start_Fault		
T4:109 I:032 B3 B3		

 2 + - +- - -] [- - - - - - - - -] / [- - - -+- - - - -] / [- () - - - - - -
| | DN 11 | 497 517
| | [1] | [38]
| | Saw_Motor |
| | B3 |
| +- - -] [- - - - - - - - - - - - - - - -+
| 517
| [2]
|

228 Programmable Logic Controllers

 Bundle Cutting Saw
... Coolant Pump
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00002 21:08 12/05/02
-

| Coolant_Pump Coolant_Pump Saw_ESR Coolant_Pump
| 1=Tripped Start_Fault Healthy Available
| I:032 B3 I:031 B3

 3 +- - - - -] / [- - - - - - - - -] / [- - - - - - - - - - -] [-- - - - - - - () - - -
| 12 519 17 518
| [6] Test_Run
| Coolant_Pump Coolant_Pump
| Select_SW OneShot TOF_Timer
| I:030 B3 +- - TOF - - - - - - - - - - +

 4 +- - - - -] [- - - - - - - - -]ONS[- + Timer Off Delay +- - (EN) - - - - -
| 02 520 | Timer: T4:110 |
| | Base (SEC) : 1.0 +- - (DN)
| | Preset: 4 |
| | Accum: 4 |
| +- - - - - - - - - - - - - - - - +
|
| Coolant_Pump Saw_Motor Coolant_Pump
| Select_SW Running_Aux Contactor
| I:030 I:032 O:034

 5 +- -+- - - -] [- - - - - - - - -] [- - - - - - -+ - - - - - - - - - - - - + - - - - - () - - - - - - - - - - - - - - + - - - - - - --
| | 02 11 | | 11 |

 | | Test_Run | | Coolant_Pump |
| | Coolant_Pump | | Start_Fault |
| | TOF_Timer | | TON Timer |
| | T4: 110 | | +- - TON - - - - - - - - + |
| +- - - -] [- - - - - - - - - - - - - - - - - - + ++ Timer On Delay + - (EN) -+
| DN | Timer: T4:111 |
| [4] | Base (SEC): 0.01+ - - (DN)
| | Preset: 100 |
| | Accum: 0 |
| Coolant Pump +- - - - - - - - - - - - - - +

 | Start_Fault Coolant_Pump Saw_Alarms Coolant_Pump
| TON_Timer Running_Aux Accept Start_Fault
| T4:111 I:032 B3 B3

 6 + - -+ - - - -] [- - - - - - - - -] [- - - - - -+ - - - -] / [- - - - - - -- - - - () - - -
| | DN 13 | 497 519
| | [5] | [38]
	Coolant_Pump
	Start_Fault
	B3
+- - - -] [- - - - - - - - - - - - - -- - - - -+	
[6] 519	
Saw_Motor Coolant_Pump Saw_Motor_&	
Running_Aux Running_Aux Coolant_OK	
I:032 I:032 B3	

 7 +- - - - -] [- - - - + - - - - - -] [- - - - - -+ - () - - -
| 11 | 13 | 496
| | Coolant_Pump |
| | Select_SW |
| +- - - - -] / [- - - - - - - +
| 02

Designing systems 229

 Bundle Cutting Saw
... Coolant Pump
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00003 21:08 12/05/02
-
Blank page for future modification

230 Programmable Logic Controllers

 Bundle Cutting Saw
. . . Saw Cut Sequence . . . Transitions

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00004 21:08 12/05/02
- -

|
| State_0 Saw_Hyd Saw_Blade
| Ready_for Saw_Motor_& Saw_Hyd_Pump Permit_Sw Tension_LS Saw_Lower Trans_A
| Start Coolant_OK Healthy 1=Permit 1=Healthy PushButt on Seq_Start
| B3 B3 B3 I:031 I:032 I:030 B3

 8 +- - - -] [- - - - - - - - -] [- - - - - - - - -] [- - - - - - - - - -] [- - - - - - - -] [- - - - - - - - -] [- - - - - - () - - -
| 500 496 499 14 03 04 506
| [15] [7] [24]
|
| Trans_B
| State_1 Saw Cut_Done
| Cutting End_Cut_LS or_Fault
| B3 I:032 B3

 9 + - - -] [- - - - - -+ - - - -] [- - - -+ - - - - - - - - - - - - () - - -
| 501 | 00 | 507
[16]	
	Saw_Motor_&
	Coolant_OK
	B3
+ - - - -] / [- - - -+	
496	
[7]	
State_2	
Raise_to Saw_Top_LS Trans_C	
Top_Limit Struck_TON At_Top_LS	
B3 T4:112 B3	

 10 +- - - -] [- - - - - - - - -] [- - - - - - - - - - - () - - -
| 502 DN 508
| [17] [20]
|
| State_1 Saw_Raise Trans_D
| Cutting Pushbutton Pause_Req
| B3 I:030 B3

 11 +- - - -] [- - - - - - - - -] [- - - - - - - - - - - () - - -
| 501 03 509
| [16]
|
| State_3 Saw_Lower Trans_E
| Paused Pushbutton Pause_End
| B3 I:030 B3

 12 +- - - -] [- - - - - - - - -] [- - - - - - - - - - -() - - -
| 503 04 510
| [18]
|
|

Designing systems 231

 Bundle Cutting Saw
. . . Saw Cut Sequence . . . Transitions

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00005 21:08 12/05/02
- -

|
| Raise_PB Trans_F
| State_3 Raise_to_Top Pause_End
| Paused TON_Timer Go_To_Top
| B3 T4:108 B3

 13 +- - - -] [- - - - -+ - - - - - -] [- - - - - -+ - - - - - - - - () - - - -
| 503 | DN | 511
| [18] | [19] |

	Saw_Motor_&
	Coolant_OK
	B3
+ - - - - - -] / [- - - - - - +	
496	
[7] Trans_G	
State_3 Saw_Top_LS Hit_Top_LS	
Paused Struck_TON While_Paused	
B3 T4:112 B3	

 14 +- - - -] [- - - - - - - - - -] [- - - - - - - - - - () - - - -
| 503 DN 495
| [18] [20]
|
|

232 Programmable Logic Controllers

 Bundle Cutting Saw
. States

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00006 21:08 12/05/02
- -

|
| State_2 State_0
| State_1 Raise_to State_3 Ready_for
| Cutting Top_Limit Paused Start
| B3 B3 B3 B3

 15 +- - - -] / [- - - - - - - -] / [- - - - - - - -] / [- - - - - - - - - () - - - -
| 501 502 503 500
| [16] [17] [18]
|
| Trans_B
| Trans_A Cut_Done Trans_D Saw_ESR State_1
| Seq_Start or_Fault Pause_Req Healthy Cutting
| B3 B3 B3 I:031 B3

 16 +- -+ - - - - -] [- - - - -+ - - - -] / [- - - - - - - -] / [- - - - - - - -] [- - - - - - - - - - - - - - - - - - -- - - -() - - - -
| | 506 | 507 509 17 501
| | [8] | [9] [11]
	Trans_E
	Pause_End
	B3
+ - - - - -] [- - - - - +	
	510
	[12]
	State_1
	Cutting
	B3
+ - - - -] [- - - - - - +	
501	
[16]	
Trans_B State_2	
Cut_Done Trans_C Saw_ESR Raise_to	
or_Fault At_Top_LS Healthy Top_Limit	
B3 B3 I:031 B3	

 17 +- -+ - - - -] [- - - - - + - - - -] / [- - - - - - - -] [- () - - - -
| | 507 | 508 17 502

 | | [9] | [10]
	Trans_F
	Pause_End
	Go_To_Top
	B3
+ - - - - -] [- - - - - +	
	511
	[13]
	State_2
	Raise_to
	Top_Limit
	B3
+ - - - - -] [- - - - - +	
502	
[17]	

Designing systems 233

 Bundle Cutting Saw
. States

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00007 21:08 12/05/02
- -

|
| Trans_F Trans_G
| Trans_D Trans_E Pause_End Hit_Top_LS Saw_ESR State_3
| Pause_Req Pause_End Go_To_Top while_Paused Healthy Paused
| B3 B3 B3 B3 I:031 B3

 18 +- + - -] [- - - - + - - - -] / [- - - - - - - - -] / [- - - - - - - - - -] / [- - - - - - - -] [- - - - - - - - - - -- - - () - - -
| | 509 | 510 511 495 17 503
	[11]
	State_3
	Paused
	B3
+ - -] [- - - -+	
503	
[18]	

234 Programmable Logic Controllers

 Bundle Cutting Saw
. Timers

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00008 21:08 12/05/02
- -

|
| If Raise PB is pressed for more than 2 secs go right to top limit switch
|
| Raise_PB
| State_3 Saw_Raise Raise_to_Top
| Paused PushButton TON_Timer
| B3 I:030 +- - TON - - - - - - - - - +

 19 +- - - - -] [- - - - - - - - -] [- + Timer On Delay +- - (E N) - - - - -
| 503 03 | Timer: T4:108 |
| | Base (SEC) : 0. 01+- - (DN)
| | Preset: 200 |
| | Accum: 0 |
| +- - - - - - - - - - - - - - --+
|
| T4:112 ensures saw carriage goes past top limit to help avoid creeping off the top position
|
| Saw_Top_LS Saw_Top_LS
| 1=Struck Struck_TON
| I:032 + - - TON - - - - - - - - - - - - - - +

 20 +- - - -] [- + + Time on Delay + -(E N) - - + - - -
01		Timer: T4:112	
		Base (SEC) : 0.01 + -(DN)	
		Preset: 100	
		Accum: 101	
	+- - - - - - - - - - - - - - - - - - - +		
	Saw_Top_LS		
	Struck_TOF		
	1=At_Top		
	+- - TOF - - - - - - - - - - - - - - -+		
++ Timer Off Delay + - (EN) - - +			
	Timer: T4:113		
	Base (SEC): 0.01 + - (DN)		
	Preset: 300		
	Accum: 0		
+- - - - - - - - - - - - - - - - - - - -+			
Permissive for bundle delivery/despatch			

 | Saw_Top_LS Saw_Not
| 1=Struck Operating
| I:032 B3

 21+- + - - - -] [- - - - - - + - - - - - - - - - - - - - - - - - - - - - - - - - () - - -
| | 01 | 524
	Saw_Hyd
	Permit_SW
	1=Permit
	I:031
+- - - -] / [- - - - - - -+	
14	

 |
 |

Designing systems 235

 Bundle Cutting Saw
. Solenoids and Hydraulic Pump

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00009 21:08 12/05/02
- -

| The saw lowers at slow or fast speed under gravity.
| It is raised by starting the pump which drives the saw up to the top limit or for a time for a pause.
| State_0
| Saw_Lower Ready_for Saw_Lower
| PushButton Start Fast_SOV
| I:030 B3 O:033

 22 +- - - -] [- - - - - -+ - - - -] [- - - - + - () - - - - -
| 04 | 500 | 11
	[15]
	State_1
	Cutting
	B3
+ - - - -] [- - - - +	
501	
State_1 [16] Saw_Lower	
Cutting Healthy	
B3 O:033	

 23 +- - - -] [- - - - - - - () - - - - -
| 501 10
|
| Saw_Hyd_Pump Saw_Hyd_Pump Saw_Hyd_Pump
| 1=Tripped Start_Fault Healthy
| I:032 B3 B3

 24 +- - - -] / [- - - - - - - - - - -] / [- - - - - - - () - - - -
| 14 498 499
| [26]
| Saw_Raise Saw_Lower Saw_Lower
| PushButton Slow_SOV Fast_SOV
| I:030 O:033 O:033 >

 25 +- + - - - -] [- + - - - - - -] / [- - - - - - - - -] / [- - - - - - - - - ->
| | 03 | 10 11 >
| | State_2 | [23] [22]
	Raise_to
	Top_Limit
	B3
+ - - - -] [- +	
	502
	[17]
	State_0 Saw_Hyd
	Ready_for Saw_Top_LS Permit_SW
	Start Struck_TON 1=Permit
	B3 T4:112 I:031
+ - - - -] [- - - - - - -] / [- - - - - - -] [- - - - - - - +	
500 DN 14	
[15] [20]	
Saw_Hyd_Pump Saw_ESR Saw_Hyd-Pump	
Healthy Healthy Contactor	
< B3 I:031 O:034	
< - - - -] [- - - - - - - -] [- - - - + - - - - - () - - - - - - - - - - - - - + - - - -	
< > >	

 |

236 Programmable Logic Controllers

Bundle Cutting Saw
. Solenoids and Hydraulic Pump

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00010 21:08 12/05/02
- -

| < > >
< 499 17	12
	Saw_Hyd_Pump
	Start_Fault
	TON_Timer
	+ - - TON - - - - - - - - - - +
++ Timer On Delay + - (EN)- +	
	Timer: T4:114
	Base (SEC) : 0.01 +- (DN)
	Preset: 100
	Accum: 0
+ - - - - - - - - - - - - - - -+	
Saw_Hyd_Pump	

 | Start_Fault Saw_Hyd_Pump Saw_Alarms Saw_Hyd_Pump
| TON_Timer Running_Aux Accept Start_Fault
| T4:114 I:032 B3 B3

 26 +- + - - - -] [- - - - - - - - -] / [- - - - - - -+ - - - -] / [- - - - - - - - - - () - - -
| | DN 15 | 497 498
| | [25] | [38]
	Saw_Hyd_Pump
	Start_Fault
	B3
+- - - -] [- - - - - - - - - - - - - -- - - - - +	
498	
[26]	

Designing systems 237

 Bundle Cutting Saw
... Blade Tensioning

Stacking Machine
File #14 Saw Proj: Flats3 Page:00011 21:08 12/05/02
- ---

|
| Saw tension is changed via two hydraulic solenoids.
| The TOF timer on the pump reduces start commands on the pump.
| Saw_Tension
| Motor_Tripped TensionPump Saw_ESR TensionPump
| 1=Tripped Start_Fault Healthy Available
| I:032 B3 I:031 B3

 27 +- - - - -] / [- - - - - - - - -] / [- - - - - - - - - - -] [- - - - - - - - -() - - - -
| 05 513 17 512
| [30]
|
| Saw_Tension TensionPump TensionPump
| Increase_PB Available Run_Cmd_TOF
| I:030 B3 +- - TOF - - - - - - - - - -+

 28 + -+ - -] [- - - - - - - - -+ - - - -] [- -+ Timer Off Delay +- -(EN) - - - -
| | 02 | 512 | Timer: T4:115 |
| | | [27] | Base (SEC) : 1.0 +- -(DN)
| | Saw_Tension | | Preset: 5 |
| | Decrease_PB | | Accum: 5 |
| | I:030 | +- - - - - - - - - - - - - - - -+
| + - - -] [- - - - - - -+
| 06
|
| Tension_Pump Tension_Pump
| Run_Cmd_TOF Contactor
| T4:115 O:034

 29 + - - - - -] [- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -+ - - - - - () -+ - - -- -
DN	13
	Tension_Pump
	Start_Fault
	TON Timer
	+- - TON - - - - - - - - - - - - -+
++ Timer On Delay + - - -(EN) -+	
	Timer: T4:116
	Base (SEC): 0.01 +- - -(DN)
	Preset: 100
	Accum: 0
+- - - - - - - - - - - - - - - - - - +	
Tension_Pump	

 | Start_Fault Saw_Tension Saw_Alarms Tension_Pump
| TON_Timer Pump_Aux Accept Start_Fault
| T4:116 I:032 B3 B3

 30 + -+ - - -] [- - - - - - - - -] / [- - - - - - - + - - - -] / [- - - - - -() - - - -
| | DN 06 | 497 513
| | [29] | [38]
	Tension_Pump
	Start_Fault
	B3
+- - - -] [- - - - - - - - - - - - - -- - - -- +	
513	
[6]	

238 Programmable Logic Controllers

 Bundle Cutting Saw
. . . Blade Tensioning
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00012 21:08 12/05/02
- -

|
| Saw_Tension Saw_Tension Saw_Tension
| Increase_PB Decrease_SOV Increase_SOV
| I:030 O:033 O:033

 31 +- - - -] [- - - - - - - -] / [- - - - - - - - () - - - -
| 05 13 12
| [32]
|
| Saw_Tension Saw_Tension Saw_Tension
| Decrease_PB Increase_SOV Decrease_SOV
| I:030 O:033 O:033

 32 +- - - -] [- - - - - - - -] / [- - - - - - - - () - - - -
| 06 12 13
| [31]
|

Designing systems 239

 Bundle Cutting Saw
... Saw Clamps

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00013 21:08 12/05/02
- -- - -

|
| T4:118 & 119 operate the clamp/unclamp solenoids for a fixed time.
|
| Saw_Clamp Saw_Unclamp Saw_Unclamp Saw_Clamp Saw_Clamp
| PushButton Solenoid PushButton TON_Timer Solenoid
| I:034 O:006 I:034 T4:118 O:006

 33 +- -+ - - - - -] [- - - - - + - - -] / [- - - - - - - - - -] / [- - - - - - - - - + - - - - -] / [- - - - - - - () - - - - - -+ - - - - - -
	00	14 01	DN 13
		[34]	[33]
	Saw_Clamp		
	Solenoid		Saw_Clamp
	O.006		TON_Timer
+ - - - - -] [- - - - -+	+ - - TON - - - - - - - - +		
13 ++ Timer On Delay + - -(EN)- -+			
[33]	Timer: T4:118		
	Base (SEC) : 1 .0 + - -(DN)		
	Preset: 2		
	Accum: 0		
+- - - - - - - - - - - - - - +			
Saw_UnClamp Saw_Clamp Saw_Clamp Saw_UnClamp Saw_UnClamp			
PushButton Solenoid PushButton TON_Timer Solenoid			
I:034 O:006 I:034 T4:119 O:006			

 34 +- + - - - - - -] [- - - - -+ - - -] / [- - - - - - - - - -] / [- - - - - - - - + - - - - -] / [- - - - - - - () - - - - - -+ - - -
	01	13 00	DN 14
		[33]	[34]
	Saw_UnClamp		
	Solenoid		Saw_UnClamp
	O.006		TON_Timer
+ - - - -] [- - - - - +	+ - - TON - - - - - - - - +		
14 + + Timer On Delay + - -(EN) - +			
[34]	Timer: T4:119		
	Base (SEC) : 1. 0 + - -(DN)		
	Preset: 2		
	Accum: 0		
+- - - - - - - - - - - - - - -+			
Saw_Clamp Saw_Clamps			
Solenoid Last_Clamped			
O:006 B3			

 35 +- - - - -] [- - (L) - - - - - - - -
| 13 488
| [33]
|
| Saw_UnClamp Saw_Clamps
| Solenoid Last_Clamped
| O:006 B3

 36 +- - - - -] [- - - - - - (U) - - - - - - -
| 14 488
| [34]
|

240 Programmable Logic Controllers

Bundle Cutting Saw
. . . Saw Clamps

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00014 21:08 12/05/02
- -- - -

|
| Saw_Clamp
| Saw_Clamps Loading_Valve
| Solenoid Required
| 0.006 B3

 37 +- -+ - - - -] [- - - - - - + - - - - () - - -
| | 13 | 48 1
	[33]
	Saw_UnClamp
	Solenoid
	O:006
+ - - - -] [- - - - - -+	
14	
[34]	
Disch_Desk	
Lamp_Test Saw_Alarms	
PushButton Accept	
I:031 B3	

 38 +- - - -] [- - - - - - - - - - - - - - - - - () - - - - -
| 12 497
|
|

Designing systems 241

Bundle Cutting Saw
. . . Saw Desk Lamps
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00015 21:08 12/05/02
- -

| Saw_ESR Saw_Intlock
| Healthy Healthy_Lamp
| I:031 O:030

 39 +- - + - - -] [- - - - - - + - () - - -
| | 17 | 00
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Saw_ESR Saw_Intlock	
Healthy Fault_Lamp	
I:031 O:030	

 40 +- -+ - - - - -] / [- - - - - + - () - - -
| | 17 | 01
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Saw_Hyd_Pump Saw_Hyd_Pump	
Healthy Healthy_Lamp	
B3 O:030	

 41 +- -+ - - - -] [- - - - - - + - - - - - - - - - () - - -
| | 499 | 02
	[24]
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Saw_Hyd_Pump Saw_Hyd_Pump	
Healthy Running_Lamp	
I:032 O:030	

 42 +- -+ - - - -] [- - - - - - + - - - - - - - - - () - - -
| | 15 | 03
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	

242 Programmable Logic Controllers

 Bundle Cutting Saw
. . . Saw Desk Lamps
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00016 21:08 12/05/02
- -

| Saw_Motor
| Saw_Motor Healthy
| Available Desk_Lamp
| B3 O:030

 43 +- -+ - - - -] [- - - - - - + - - - - - - () - - - - -
| | 516 | 04
	[0]
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - -] [- - - - - -+	
12	
Saw_Motor	
Saw_Motor Saw_Intlock	
Running_Aux Desk_Lamp	
I:032 O:030	

 44 +- -+ - - - -] [- - - - - - + - - - - - () - - - - -
| | 11 | 05
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Coolant_Pump Coolant_Pump	
Available Healthy_Lamp	
B3 O:030	

 45 +- -+ - - - -] [- - - - - - + - - - - - - - () - - - -
| | 518 | 06
	[3]
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Coolant_Pump Saw_Hyd_Pump	
Running_Aux Running_Lamp	
I:032 O:030	

 46 +- -+ - - - -] [- - - - - - + - - - - - - - () - - - -
| | 13 | 07
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	

Designing systems 243

Bundle Cutting Saw
. . . Saw Desk Lamps
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00017 21:08 12/05/02
- -

| Saw_Top_LS Saw_at_Top
| 1=Struck Desk_Lamp
| I:032 O:030

 47 +- -+ - - - -] [- - - - - - + - -- - - - - () - - - -
| | 01 | 10
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Saw_Hyd_Pump State_3 Saw_Raising	
Running_Aux Passed Desk_Lamp	
I:032 B3 O:030	

 48 +- -+ - - - - -] [- - - - - - - - -] / [- - - - - + - () - - - -
| | 15 503 | 11
	State_3 [18]
	Paused Fast_Flash
	B3 B3
+- - - - - -] [- - - - - - - - -] [- -- - - +	
	503 14
	[18] [2:34]
	Disch_Desk
	Lamp_Test
	Push_Button
	I:031
+ - - - -] [- - - - - - - - - - - - - - - - - -+	
12	
Saw_Lower State_3 Saw_Lowering	
Slow_SOV Passed Desk_Lamp	
O:033 B3 O:030	

 49 +- -+ - - - -] [- - - - - - - - -] / [- - - - - - + - - - () - - -
| | 10 503 | 12
	[23] [18]
	Saw_Lower State_3
	Fast_SOV Paused
	O:033 B3
+- - - -] [- - - - - - - - -] / [- - - - - - +	
	11 503
	[22] State_3 [18]
	Paused Fast_Flash
	B3 B3
+- - - -] [- - - - - - - - -] [- - - - - - -+	
	503 14
	[18] [2:34]

	Disch_Desk
	Lamp_Test
	Push_Button
	I:031
+- - - -] [- - - - - - - - - - - - - - - - - - +	
12	

244 Programmable Logic Controllers

 Bundle Cutting Saw
. . . Saw Desk Lamps
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00018 21:08 12/05/02
- -

| State_2
| Raise_to End_Cut
| Top_Limit Desk_Lamp
| B3 O:030

 50 +- -+ - - - -] [- - - - - - + - - - - () - - - -
| | 502 | 13
	[17]
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - -- -] [- - - - - +	
12	
Saw_Blade Saw_Blade	
Tension_LS Tension_OK	
1=Healthy Desk_Lamp	
I:032 O:030	

 51 +- -+ - - - -] [- - - - - - + - () - - - - -
| | 03 | 14
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - -] [- - - - - -+	
12	
Tension_Pump	
Saw_Tension Run ning	
Pump_Aux Desk_Lamp	
I:032 O:030	

 52 +- -+ - - - -] [- - - - - - + - - - - - - () - - - --
| | 06 | 15
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	
Bundle	
Saw_Clamps Clamped	
Last_Clamped Desk_Lamp	
B3 O:031	

 53 +- -+ - - - -] [- - - - - -+ - - - - - - () - - - - -
| | 488 | 10
	[36]
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+ - - - - -] [- - - - - +	
12	

Designing systems 245

Bundle Cutting Saw
. . . Saw Desk Lamps
Stacking Machine

File #14 Saw Proj: FLATS3 Page:00019 21:08 12/05/02
-

|
| Bundle
| Saw_Clamps UnClamped
| Raised_LS Desk_Lamp
| O:034 O:031

 54 +- - + - - - - -] [- - - - - - - - - - - - - - - - -+ - () - - - -
| | 10 | 11
	Saw_Clamps
	Last_Clamped
	B3
+- - - - -] / [- - - - - - - - - - - - - - - - - +	
	488
	[36]
	Saw_Unclamp
	Solenoid Fast_Flash
	O:006 B3
+- - - - - -] [- - - - - - - - -] [- - - - - +	
	14 14
	[34] [2:34]

	Disch_Desk
	Lamp_Test
	Push_Button
	I:031
+- - - - - -] [- - - - - - - - - - - - - - - - -+	
12	

246 Programmable Logic Controllers

 Bundle Cutting Saw
. . . Saw Cutting Length Lamps (from PECs)

Stacking Machine
File #14 Saw Proj: FLATS3 Page:00020 21:08 12/05/02
- -

|
| PECs (photocells) operate at +/– 10 mm from set length
|

 | West_Saw_Cut East_Saw_Cut
| Photocell Photocell Length_Short
| 1=Mat_Present 1-Mat_Present Desk_Lamp
| I:054 I:054 O:031

 55 +- - + - - - -] / [- - - - - - - - -] / [- - - - - + - - - - - - - () - - - - -
| | 01 02 | 13
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+- - - -] [- - - - - - - - - - - - - -- - - - -	
12	

 | West_Saw_Cut East_Saw_Cut
| Photocell Photocell Length_Correct
| 1=Mat_Present 1-Mat_Present Desk_Lamp
| I:054 I:054 O:031

 56 +- -+ - - - -] [- - - - - - - - -] / [- - - - - - + - - () - - - - -
| | 01 02 | 14
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+- - - -] [- - - - - - - - - - - - - -- - - - -+	
12	

 | West_Saw_Cut East_Saw_Cut
| Photocell Photocell Length_Long
| 1=Mat_Present 1-Mat_Present Desk_Lamp
| I:054 I:054 O:031

 57 +- -+ - - - -] [- - - - - - - - -] [- - - - - - + -() - - - -
| | 01 02 | 15
	Disch_Desk
	Lamp_Test
	PushButton
	I:031
+- - - -] [- - - - - - - - - - - - - -- - - - -+	
12	

 58 + - [END] - - - - -
|
|

Designing systems 247

Problems Questions 1 to 6 have four answer options: A, B, C or D. Choose the
correct answer from the answer options.

 1 Decide whether each of these statements is True (T) or False (F).

The term forcing when applied to a PLC input/output means using a
program to:
(i) Turn on or off inputs/outputs.
(ii) Check that all inputs/outputs give correct responses when

selected.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 2 Decide whether each of these statements is True (T) or False (F).

The term watchdog when applied to a PLC means a checking
mechanism that:
(i) Excessive currents are not occurring.
(ii) Functions are carried out within prescribed time limits.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 3 Decide whether each of these statements is True (T) or False (F).

When a PLC is in monitor/test/debug mode it:
(i) Enables the operation of a program to be simulated.
(ii) Carries out a fault check.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 4 When a PLC is in monitor/test/debug mode and the symbol shown in
Figure 13.20 occurs, it means that an input is:

Figure 13.20 Problem 4

A Defective.
B Correctly operating.
C On.
D Off.

248 Programmable Logic Controllers

 5 Decide whether each of these statements is True (T) or False (F).

Failure of an input sensor or its wiring, rather than failure of an LED
or in the PLC input channel, will show as:
(i) The input LED not coming on.
(ii) Forcing of that input making the input LED come on.

A (i) T (ii) T
B (i) T (ii) F
C (i) F (ii) T
D (i) F (ii) F

 6 A single output device fails to turn on when the output LED is on.
The voltage at the output is tested and found normal but the voltage at
the device is found to be absent. The fault is:

A Faulty wiring.
B A faulty output device.
C A fault in the PLC.
D A fault in the program.

 7 Explain how, using forcing, the failure of an input sensor or its wiring
can be detected.

 8 Suggest possible causes of a complete stoppage of the control
operation and the PLC with the power on lamp off.

 9 Suggest possible causes of an output LED being on but the output
device failing to turn on.

10 Devise a timing watchdog program to be used to switch off a machine
if faults occur in any of the systems controlling its actions.

11 Design the program for a pneumatic system for control by a PLC to
give the cylinder sequence A+, B+, B–, A– and which will give a
LED display indicating, in the presence of a fault such as a sticking
cylinder, at which point in the cycle the fault occurred. Explain the
action of all elements in the system.

Designing systems 249

14 Programs

This chapter extends the examples given in previous chapters to show
programs developed to complete specific tasks. These include tasks which
involve temperature control and a number involving pneumatic valves.

14.1 Temperature control Consider the task of using a PLC as an on-off controller for a heater in
the control of temperature in some enclosure. The heater is to be switched
on when the temperature falls below the required temperature and
switched off when the temperature is at or above the required temperature.
The basic algorithm might be considered to be:

IF temperature below set value
THEN

DO switch on heater
ELSE

DO switch off heater
ENDIF

The sensor used for the temperature might be a thermocouple, a
thermistor or an integrated chip (see Section 2.1.5). When connected in an
appropriate circuit, the sensor will give a suitable voltage signal related to
the temperature. This voltage can be compared, using an operational
amplifier, with the voltage set for the required temperature so that a high
output signal is given when the temperature is above the required
temperature and a low output signal when it is below. Thus when the
temperature falls from above the required temperature to below it, the
signal switches from a high to a low value. This transition can be used as
the input to a PLC. The PLC can then be programmed to give an output
when there is a low input and this output used to switch on the heater.

Figure 14.1 shows the arrangement that might be used and a Mitsubishi
ladder program. The input from the operational amplifier has been
connected to the input port with the address X400. This input has contacts
which are normally closed. When the input goes high, the contacts open.
The output is taken from the output port with the address Y430. Thus
there is an output when the input is low and no output when the input is
high.

Figure 14.2 shows the key sequence that would be used with a graphic
programmer to enter the part of the program given in Figure 14.1.

STOP

RUN

+24 V

Input
X400

PLC

Operational
amplifier

Set
value

Sensor
circuit

L N E

Power

Output
Y430

Contactor
for heater
circuit

Switches to
stop and run X400 Y430

LDI
OUT

X400
Y430

END

END

Figure 14.1 Temperature control

X 4 0 0 GO

Y 4 3 0 GO

Figure 14.2 Entering program graphically

In Siemens format the program given in Figure 14.1 could be as shown
in Figure 14.3 and in Allen-Bradley form as shown in Figure 14.4. To
illustrate how such a program might be entered using a computer, Figure
14.5 also shows the function keys that would be used to enter that part of
the program with the Allen-Bradley software loaded. At each instant in
the program a screen displays prompts and lists the function keys and their
significance.

Q2.0

END

I0.0

AN
=
END

I0.0
Q2.0

+24 V

Input
I0.0

PLC

Operational
amplifier

Set
value

Sensor
circuit

L N E

Power

Output
Q2.0

Contactor
for heater
circuit

Switches to
stop and run

Stop

Run

Sensor Heater

Figure 14.3 Temperature control

Programs 251

Offline programming selected F1
Mode selected: Create file F6
File name entered: TEMP, enter key pressed
Select the processor: F2 pressed until
relevant one on screen.
Create file F1
Monitor file F8. This shows the file as just
consisting of the END rung.
Edit F10. This is to enable the file to be modified.
Append rung and append instruction F3 pressed
twice.
-||- F1 key pressed.
I;001/01 entered, enter key pressed.
-()- F3 key pressed.
O;000/01 entered, enter key pressed.
To accept the program Esc is pressed.

+24 V

Input
I:001/01

PLC

Operational
amplifier

Set
value

Sensor
circuit

L N E

Power

Output
O:000/01

Contactor
for heater
circuit

Switches to
stop and run

Stop

Run

I:001/01 O:000/01

END

Sensor Heater

Figure 14.4 Allen-Bradley program

Consider a more complex temperature control task involving a
domestic central heating system (Figure 14.5). The central heating boiler
is to be thermostatically controlled and supply hot water to the radiator
system in the house and also to the hot water tank to provide hot water
from the taps in the house. Pump motors have to be switched on to direct
the hot water from the boiler to either, or both the radiator and hot water
systems according to whether the temperature sensors for the room
temperature and the hot water tank indicate that the radiators or tank need
heating. The entire system is to be controlled by a clock so that it only
operates for certain hours of the day. Figure 14.6(a) shows how a
Mitsubishi PLC, and Figure 14.6(b) a Siemens PLC, might be used.

M1

M2

Motorised pump

Motorised pump

Hot water
tankBoiler

Boiler temperature sensor
Hot water tank temperature sensor

Radiators
Room temperature
sensor

Figure 14.5 Central heating system

252 Programmable Logic Controllers

The boiler, output Y430/Q2.0, is switched on if X400/I0.0 and X401/
I0.1 and either X402/I0.2 or X403/I0.3 are switched on. This means if the
clock is switched on, the boiler temperature sensor gives an on input, and
either the room temperature sensor or the water temperature sensor give
on inputs. The motorised valve M1, output Y431/Q2.1, is switched on if
the boiler, Y430/Q2.0, is on and if the room temperature sensor X402/I0.2
gives an on input. The motorised valve M2, output Y432/Q2.2, is
switched on if the boiler, Y430/Q2.0, is on and if the water temperature
sensor gives an on input.

LD
OR
AND

OUT
LD
AND
OUT
LD
AND
OUT

X402
X403
X400

Y430
X402
Y431
Y430
X403
Y432

AND X401
Y430

END

STOP
RUN

+24 V

X400
Inputs

X401

X402

X403

Stop and run
switches

Clock

Boiler

Water

Room

L N E

Power

Outputs
Y430

Y431

Y432

Boiler

M1

M2

X402 X400 X401 Y430

X403

Y430 X402 Y431

Y430 X403 Y432

Boiler

Radiator

Hot water

END

system

system

(a)

STOP
RUN

+24 V
Inputs

Stop and run
switches

Clock

Boiler

Water

Room

L N E

Power

Outputs Boiler

M1

M2

I0.0

I0.1

I0.2

I0.3

Q2.0

Q2.1

Q2.2

(b)

I0.1 Q2.0

I0.3

Q2.0 I0.2 Q2.1

Q2.0 I0.3 Q2.2

Boiler

Radiator

Hot water

I0.2 I0.0

END

system

system

A
O

A
=
A
A
=
A
A
=

I0.2
I0.3

I0.1
Q2.0
Q2.0
I0.2
Q2.1
Q2.0
I0.3
Q2.2

A I0.0

END

Room
sensor Clock

Boiler
sensor

Water
sensor

Boiler
Room
sensor Valve M1

Boiler

Boiler Water sensor Valve M2

Room
sensor Clock

Boiler
sensor Boiler

Water
sensor

Boiler
Room
sensor Valve M1

Boiler Water sensor Valve M2

Figure 14.6 Central heating system: (a) Mitsubishi, (b) Siemens

Programs 253

In the above discussion a simple on/off form of temperature control has
been used, a comparator op-amp giving a 1 output when the temperature
is above the set temperature and 0 when it is below. The output to the
heating system is then just on or off. A more elaborate system is to use
proportional control with the output to the heating system being a signal
proportional to the difference in temperature between that occurring and
the set value. The program might then carry out the following tasks:

1 Read the input actual temperature after conversion from analogue to
digital by an ADC.

2 Input the set point temperature.
3 Subtract the actual temperature from the set point temperature.
4 Multiply the result by the proportional constant.
5 Use the result to control the value of the output to the heater.

14.2 Valve sequencing Consider tasks involving directional control valves (see Section 2.2.2 for
an introductory discussion). Directional control valves (see Section 2.2.2)
are specified in terms of the number of ports and number of control
positions they have. Figure 14.7(a) shows a 4/2 valve; when the push
button is pressed, port A is connected to T, the symbol of a vent to the
atmosphere or return of hydraulic fluid to the sump, and port P is
connected to B, the symbol for the pressure supply. Hence, pushing the
button causes air or hydraulic fluid to flow from P to B and vented to the
atmosphere or returned to the sump via the connection of A to T. When
the push button is released, the spring pushes the connections to the state
indicated in the box attached to the spring. Thus port B is now connected
to T and port P to A. The air or hydraulic fluid now flows from P to A and
is vented to the atmosphere or returned to the sump via B. Alternatively
we might have the valve controlled by two solenoids (Figure 14.8).

A B A B

P T P T Spring
symbolPushbutton

symbol

A B A B

P T P T Solenoid
symbol

(a)

(b)

Solenoid
symbol

Symbol for vent to
the atmosphere for
a pneumatic valve
Symbol for pressure
input

Often the symbols for
vent and pressure are
only put on one of the
boxes, the other being
taken to be the same.

Figure 14.7 4/2 valve

14.2.1 Cyclic movement

Consider the task of obtaining cyclic movement of a piston in a cylinder.
This might be to periodically push workpieces into position in a machine

254 Programmable Logic Controllers

tool with another similar, but out of phase, arrangement being used to
remove completed workpieces. Figure 14.8 shows the valve and piston
arrangement that might be used, a possible ladder program and chart
indicating the timing of each output.

Solenoid
Y431

Solenoid
Y430

X400

Time

Time

Time

Time

Time

T450

T451

Y430

Y431

10 s

10 s

X400 T450T451

T450 T451

Y430

Y431T450X400

END

Start Timer 2 Timer 1

Timer 21 Timer 2

Solenoid A

Start Timer 1 Solenoid B

A B

Figure 14.8 Cyclic movement of a piston

Consider both timers set for 10 s. When the start contacts X400 are
closed, timer T450 starts. Also there is an output from Y431. The output
Y431 is one of the solenoids used to actuate the valve. When it is
energised it causes the pressure supply P to be applied to the right-hand
end of the cylinder and the left-hand side to be connected to the vent to
the atmosphere. The piston thus moves to the left. After 10 s, the normally
open T450 contacts close and the normally closed T450 contacts open.
This stops the output Y431, starts the timer T451 and energises the output
Y430. As a result, the pressure supply P is applied to the left-hand side of
the piston and the right-hand side connected to the vent to the atmosphere.
The piston now moves to the right. After 10 s, the T451 normally closed
contacts are opened. This causes the normally closed contacts of T450 to
close and so Y431 is energised. Thus the sequence repeats itself.

Programs 255

14.2.2 Sequencing

Consider another task involving three pistons A, B and C that have to be
actuated in the sequence: A to the right, A to the left, B to the right, B to
the left, C to the right, C to the left (such a sequence is often written A+,
A−, B+, B−, C+, C−). Figure 14.9 illustrates the valves that might be used
and Figures 14.10 and Figure 14.11 ladder programs that might be used
involving timers. An alternative would involve the use of a shift register.

A

Y430

Y431

Q2.0

Q2.1

B

Y432

Y433

Q2.2

Q2.3

C

Y434

Y435

Q2.4

Q2.5

Figure 14.9 The valves

X400/I0.0 is the start switch. When it is closed there is an output from
Y430/Q2.0 and the timer T450/T0 starts. The start switch is latched by the
output. Piston A moves to the right. After the set time, K = 4, the normally
closed timer T450/internal relay F0.0 contacts open and the normally
open timer T450/internal relay F0.0 contacts close. This switches off
Y430/Q2.0 and energises Y431/Q2.1 and starts timer T451/T1. Piston A
moves to the left. In rung 2, the T450/internal relay F0.0 contacts are
latched and so the output remains on until the set time has been reached.
When this occurs the normally closed timer T451/internal relay F0.1
contacts open and the normally open T451/ internal relay F0.1 contacts
close. This switches off Y431/Q2.1 and energises Y432/Q2.2 and starts
timer T452/T2. Piston B moves to the right. Each succeeding rung
activates the next solenoid. Thus in sequence, each of the outputs is
energised.

256 Programmable Logic Controllers

X400 T450 Y431 Y432 Y433 Y434 Y435 Y430

T450

K4

Y430

T450

T451

T451

T452

T452

T453

T453

T454

T454

K4

K4

K4

K4

T455

K4

T455

T454

T453

T452

T451 Y431

Y432

Y433

Y434

Y435

Y435

Y434

Y433

Y432

Y431

Piston A moves to right

Piston A moves to left

Piston B moves to right

Piston B moves to left

Piston C moves to right

Piston C moves to left

END

Start Timer 0
Solenoids

A– B+ B– C+ C– Solenoid A+
+ represents piston extension
– represents piston retraction

A+ Timer 0

Timer 0 Timer 1 Solenoid A–

Timer 1A–

Timer 1 Timer 2 Solenoid B+

B+ Timer 2

Solenoid B–Timer 3Timer 2

B– Timer 3

Timer 3 Timer 4 Solenoid C+

C+ Timer 4

Timer 4 Timer 5 Solenoid C–

C– Timer 5

Figure 14.10 Mitsubishi format program

Programs 257

I0.0 F0.0 Q2.1 Q2.2 Q2.3 Q2.4 Q2.5

Timer 0
Q2.0

Timer 1

F0.1

Q2.1

Piston A moves to right

Piston A moves to left

Piston B moves to right

Piston B moves to left

Piston C moves to right

Piston C moves to left

4

END

4

Q2.0

Q

F0.0

F0.0 Q2.1

F0.1

Timer 2

F0.2

Q2.2

4

F0.1 Q2.2

F0.2

Timer 3

F0.3

Q2.3

4

F0.2 Q2.3

F0.3

Timer 4

F0.4

Q2.4

4

F0.3 Q2.4

F0.4

Timer 5

F0.5

Q2.5

4

F0.4 Q2.5

F0.5

Q

Q

Q

Q

Q

TV

TV

TV

TV

TV

TV

S TON

S
TON

S
TON

S
TON

S
TON

S
TON

Start Timer 0 A– B+ B– C+ C– Solenoid A+ + represents piston extension
– represents piston retraction

Solenoids

A+

Timer 0 Timer 1 A–

A–

Timer 1 Timer 2 B+

B+

Timer 2 Timer 3 B–

B–

C+Timer 3 Timer 4

C+

Timer 4 Timer 5 C–

C–

Figure 14.11 Siemens format program

258 Programmable Logic Controllers

The program instruction list, in the Mitsubishi format, for the above
program is:

END
(*Timer T455 starts*)T455OUT
(*Piston C moves to left*)Y435OUT

T455ANI
Y435OR
T454LD

(*Timer T454 starts*)T454OUT
(*Piston C moves to right*)Y434OUT

T454ANI
Y434OR
T453LD

(*Timer T453 starts*)T453OUT
(*Piston B moves to left*)Y433OUT

T453ANI
Y433OR
T452LD

(*Timer T452 starts*)T452OUT
(*Piston B moves to right*)Y432OUT

T452ANI
Y432OR
T451LD

(*Timer T451 starts*)T451OUT
(*Piston A moves to left*)Y431OUT

T451ANI
Y431OR
T450LD

(*Timer T450 starts*)T450OUT
(*Piston A moves to right*)Y430OUT

Y435ANI
Y434ANI
Y433ANI
Y432ANI
Y431ANI
T450ANI
Y430OR

(*Start switch*)X400LD

14.2.2 Sequencing using a sequential function chart

As an illustration of the use of a sequential function chart to describe a
program involving sequential control of pneumatic valves and cylinders,
consider the situation where we have two cylinders with the required
piston sequence being A+. A–, A+, B+ and then simultaneously A– and
B–, i.e. piston A moves out to full stroke, then it retracts, then it is
switched on again to full stroke, then B is switched on to full stroke and
the simultaneously both A and B retract (Figure 14.12(a)). The sequential
function chart for the program is shown in Figure 14.12(b)).

Programs 259

B B– B+

B–B+

A A– A+

A–A+

Start

Start switch

A+

A–

A+

B+

A–

Step 1

Step 2

Step 3

Step 4

Step 5

A+ limit switch

A– limit switch

A+ limit switch

B+ limit switch

A– AND B– limit switch

B–Step 6

End
(a) (b)

Figure 14.12 Piston sequence B+. B–, B+, A+ and then simultaneously A– and B–.

14.2.3 Car park barrier operation using valves

Consider the use of pneumatic valves to operate car park barriers. The
in-barrier is to be opened when the correct money is inserted in the
collection box, the out-barrier is to open when a car is detected at that
barrier. Figure 14.13 shows the type of system that might be used. The
valves used to operate the barriers have a solenoid to obtain one position
and a return spring to give the second position. Thus when the solenoid is
not energised, the position given is that obtained by the spring. The valves
are used to cause the pistons to move. When the pistons move upwards
the movement causes the barrier to rotate about its pivot and so lift. When
a piston retracts, under the action of the return spring, the barrier is
lowered. When a barrier is down it trips a switch and when up it trips a
switch, these switches being used to give inputs indicating when the
barrier is down and up. Sensors are used to indicate when the correct
money has been inserted in the collection box for a vehicle to enter and to
sense when a vehicle has approached the exit barrier.

260 Programmable Logic Controllers

2

1

Pivoted
barrier

Valve A

Valve B

3

4

Pivoted
barrier

Valve C

Valve D

Figure 14.13 Valve-piston system

Figure 14.14 shows the form a ladder program could take, (a) being the
Mitsubishi program and (b) the Siemens program. The output Y430/Q2.0
to solenoid 1 to raise the entrance barrier is given when the output from
the coin box sensor gives the X400/I0.0 input. The Y430/Q2.0 is latched
and remains on until the internal relay M100/F0.1 opens. The output will
also not occur if the barrier is in the process of being lowered and there is
the output Y431/Q2.1 to solenoid 2. The timer T450/T1 is used to hold
the barrier up for 10 s, being started by input X402/I0.2 from a sensor
indicating the barrier is up. At the end of that time, the output Y431/Q2.1
is switched on, activates solenoid 2 and lowers the barrier. The exit
barrier is raised by the output Y432/Q2.2 to solenoid 3 when a sensor
detects a car and gives the input X401/I0.1. When the barrier is up a timer
T451/T2 is used to hold the barrier up for 10 s, being started by input
X404/I0.4 from a sensor indicating the barrier is up. At the end of the
time, the output Y433/Q2.3 is switched on, activating solenoid 4 and
lowering the barrier.

Programs 261

X400 M100 Y431 Y430

Y430

M100 X402 Y430 Y431

Y431

X403 M101 Y433 Y432

Y432

M101 X405 Y432 Y433

Y433

X400 is coin operated switch
Y430 is output to solenoid 1

Y431 is output to solenoid 2
X402 is input indicating barrier down

To lift entrance barrier

Timer T459 gives the up time, 10 s
for the entry barrier

M100 is internal relay

To lift exit barrier
Y432 is output to solenoid 3

Y433 is the output to solenoid 4

To lower entrance barrier

To close exit barrier

X401 is input indicating barrier up

Up time for exit barrier, 10 s
M101 is internal relay
X404 indicates exit barrier is up

X401

M100

X404

M101

X403 is the input when car at
the exit barrier

X405 indicates exit barrier is down

T450

K10

T450

T451

T451

END

LD
OR
ANI

OUT
LD
OUT
K
LD
OUT
LD
OR
ANI
ANI
OUT
LD
OR
ANI
ANI
OUT
LD
OUT
K
LD
OUT
LD
OR
ANI
ANI
OUT
END

X400
Y430
M100
Y431
Y430
X401
T450
10
T450
M100
M100
Y431
X402
Y430
Y431
X403

ANI

Y432
M101
Y433
Y432
X404
T451
10
T451
M101
M101
Y433
X405
Y432
Y433

Coin switch Valve A, 1Valve B, 2

A, 1

In barrier up Timer 0

Timer 0

In barrier
down A, 1 Valve B, 2

B, 2

Car at exit D, 4 Valve C, 3

C, 3

Exit barrier up Timer 1

Timer 1

Exit barrier
down C, 3 D, 4

D, 4

Figure 14.14 (a) Car barrier program, Mitsubishi format

262 Programmable Logic Controllers

I0.0 F0.1 Q2.1 Q2.0

Q2.0

F0.1 I0.2 Q2.0 Q2.1

Q2.1

I0.3 F0.2 Q2.3 Q2.2

Q2.2

F0.2 I0.5 Q2.2 Q2.3

Q2.3

I0.0 is coin operated switch
Q2.0 is output to solenoid 1

Q2.1 is output to solenoid 2
I0.2 is input indicating barrier down

To lift entrance barrier

Timer T1 gives the up time, 10 s
for the entry barrier
F0.1 is internal relay

To lift exit barrier
Q2.2 is output to solenoid 3

Q2.3 is the output to solenoid 4

To lower entrance barrier

To close exit barrier

I0.1 is input indicating barrier up

Up time for exit barrier, 10 s
F0.2 is internal relay
I0.4 indicates exit barrier is up

I0.1 Timer 1

KT10.2

Q

F0.1

I0.4 Timer 2

KT10.2

Q

F0.2

I0.3 is the input when car at
the exit barrier

I0.5 indicates exit barrier is down

END

A
O
AN
AN
=
A
LKT
SR
A
=
A
O
AN
AN
=
A
O
AN
AN
=
A
LKT
SR
A
=
A
O
AN
AN
=
END

I0.0
Q2.0
F0.1
Q2.1
Q2.0
I0.1
I0.2
T0
T0
Q2.0
F0.1
Q2.1
I0.2
Q2.0
Q2.1
I0.3
Q2.2
F0.2
Q2.3
Q2.2
I0.4
I0.2
T1
T1
F0.2
F0.2
Q2.3
I0.5
Q2.2
Q2.3

S
TON

TV

S

TV

TON

Coin switch Timer 1 B, 2 Valve A, 1

A, 1

In barrier up

Timer 1 Valve B, 2A, 1
In barrier
down

B, 2

Car at exit Timer 2 D, 4 Valve B, 2

B, 2

Exit barrier up

Timer 2 Valve D, 4
Exit barrier
down

D, 4

Figure 14.14 (b) Car barrier program, Siemens format

Programs 263

The inputs and outputs for the Mitsubishi program are;

Input when exit barrier downX405
Input when exit barrier upX404

Valve D, solenoid 4Y433Input when car at exit barrierX403

Valve C, solenoid 3Y432Input when entrance barrier
down

X402
Valve B, solenoid 2Y431Input when entrance barrier upX401
Valve A, solenoid 1Y430Switch operated by coinX400

OutputInput

and for the Siemens program:

Input when exit barrier downI0.5
Input when exit barrier upI0.4

Valve D, solenoid 4Q2.3Input when car at exit barrierI0.3

Valve C, solenoid 3Q2.2Input when entrance barrier
down

I0.2
Valve B, solenoid 2Q2.1Input when entrance barrier upI0.1
Valve A, solenoid 1Q2.0Switch operated by coinI0.0

OutputInput

We could add to this program a system to keep check of the number of
vehicles in the car park, illuminating a sign to indicate ‘Spaces’ when the
car park is not full and a sign ‘Full’ when there are no more spaces. This
could be achieved by using an up and down counter. Figure 14.15 shows a
possible Siemens ladder program.

CU

CD

S

PV

R
100

Spaces sign

Full sign

I0.4

I0.2

Q2.4

Q2.5Q2.4

F0.6

Count down when car leaves.

Count up when car enters.

F0.6 is internal relay to set count.

Car park deemed full with 100 cars.

END

QU

Exit barrier up
Counter

In barrier
down

QU output Spaces sign

Full sign

Figure 14.15 Car park with spaces or full

264 Programmable Logic Controllers

14.3 Conveyor belt control Consider a program that is used to count the number of items put onto a
conveyor belt from work cells and give an alert when the number reaches
100. This program might be part of a bigger program used to control a
production unit. A proximity sensor can be used to sense when an item is
put on the conveyor so that each time a 1 signal is produced. The program
might thus be as shown in Figure 14.16, the Allen-Bradley format being
used.

CU

DN

Items counter

Count up
Count C5.0
Preset 100
Accum 0

Proximity sensor
I:012/10

C5.0 DN
100 units completed

signal lamp

Reset button
I:012/11

Counter reset
C5.0

RES

Figure 14.16 Conveyor belt counting of products

A further possibility in the above conveyor belt problem is that too
many items must not be put on the belt at any one time. A program that
might achieve this is to institute a time delay after an item is put on the
belt before the next item can be loaded onto the belt. Figure 14.17 shows
the program elements for that. When an item passes the proximity sensor,
the timer-on-delay is started and only when that is completed will a further
item be able to be loaded.

14.3.1 Bottle packing

Consider a production line problem involving a conveyor being used to
transport bottles to a packaging unit, the items being loaded onto the
conveyor, checked to ensure they are full, capped and then the correct
number (4) of bottles being packed in a container. The required control
actions are thus: if a bottle is not full the conveyor is stopped; activation
of the capping machine when a bottle is at the required position, the
conveyor being stopped during this time; count four bottles and activate
the packing machine, the conveyor being stopped if another bottle comes
to the packing point at that time; sound an alarm when the conveyor is
stopped.

Programs 265

DN

Proximity sensor
I:012/11

Reset button
I:012/11

RES

Conveyor Time delay

ENTimer on Delay
Timer T4.1
Time Base 1:0
Preset 180
Accum 0

TON

Conveyor time delay
T4:1 DN

T4:1

O:013:02
Output to switch off loading

O:013/02
Switch off loading

O:012/01
Loading mechanism

I:012/10

Sensor for item
ready for loading

O:012/01

Figure 14.17 Conveyor belt time delays

The detection of whether a bottle is full could be done with a
photoelectric sensor which could then be used to activate a switch
(X402/I0.2 input). The presence of a bottle for the capping machine could
also be by means of a photoelectric sensor (X403/I0.3 input). The input to
the counter to detect the four bottles could be also from a photoelectric
sensor (X404/I0.4 input). The other inputs could be start (X400/I0.0
input) and stop (X401/I0.1 input) switches for the conveyor and a signal
(X405/I0.5 input) from the packaging machine as to when it is operating,
having got four bottles and so is not ready for any further caps. Figure
14.18 shows a possible ladder program in Mitsubishi format, and Figure
14.19 in Siemens format, that could be used.

The Mitsubishi program in instruction list is:

Y431OUT
(*Second rung*)Y430LDI

Y430OUT
ANB

X405ORI
X404LDI
M100ANI
Y432ANI
X401AN
Y430OR

(*First rung*)X400LD

266 Programmable Logic Controllers

X400

Y430

X401

X405

Y430 Y430 is the output to the
conveyor. X400 is the start button,

Y431 Y431 is the output to the
alarm. It is triggered when

Y430

X402

M100

Y432

T450 is a timer which
stops the conveyor for
time taken to cap the
bottle. Y432 energises

X403

Y432

T450T450

Y432
the capping machine and

M100

M100 X404

X405

RST

C460

C460 K4X404 X405

Reset for the counter
when packaging
machine has 4 bottles.

Y433C460

END

M100 is an internal relay
activated by X402 closing

X401 the stop button - externally set
closed. The conveyor is
stopped by Y232, M100,
X404 or X405 being activated.

the conveyor stops.

when a bottle is not full. It
then stops the conveyor.

stops the conveyor.

X404 input when bottle
detected. X405 opens when
packing occurring. 4 bottles
counted.

Y433 energises packing
machine when C460 has
counted 4 bottles.

Start Stop Conveyor

Bottle not full

Bottle not full

Conveyor
stop

Conveyor

Conveyor Alarm

Bottle present Timer Timer

Capping Capping

4 bottles Counter

Counter

Counter

Bottle present Packing occurring

Packing machine

Capping

Figure 14.18 Bottle packing program

Programs 267

I0.0

Q2.0

I0.1

I0.5

Q2.0

Q2.0 is the output to the
conveyor. I0.0 is the start button,

Q2.1

Q2.1 is the output to the
alarm. It is triggered when

Q2.0

I0.2

F0.0

Q2.2

T1 is a timer which
stops the conveyor for
time taken to cap the
bottle.

I0.3

Q2.2

Q2.2 the capping machine and

F0.0

F0.0 I0.4

I0.4 I0.5 Q2.3

END

F0.0 is an internal relay
activated by I0.2 closing

I0.1 the stop button - externally
set. The conveyor is
stopped by Q2.2, F0.0,
I0.4 or I0.5 being activated.

the conveyor stops.

when a bottle is not full. It
then stops the conveyor.

stops the conveyor.

I0.4 input when bottle
detected. I0.5 opens when
packing occurring. 4 bottles
counted.

Q2.3 energises packing
machine when counter has
counted 4 bottles.

F0.1

F0.1

Timer T0

2.2

CU

I0.5
R

PV4

Q2.2 energises

Q

Couter C0

TON
QS

TV

S_CU

Start Stop Capping Bottle not full Conveyor

Conveyor
stopConveyor

Conveyor Alarm

Bottle not full

Bottle present

Capping

Capping

Packing machineBottle present
Packing
occurring

4 bottles

Figure 14.19 Bottle packing program

C460RST
(*Fifth rung*)X405LD

Y432OUT
(*2 s allowed for capping.*)2K

T450OUT
T450ANI
Y432OR

(*Fourth rung*)X403LD
M100OUT
M100OR

(*Third rung*)X402LD

268 Programmable Logic Controllers

(*End rung*)END
Y433OUT

(*Seventh rung*)C460LD
(*Four bottles counted.*)4K

C460OUT
X405ANI

(*Sixth rung*)X404LD

The Siemens program in instruction list is:

(*End rung*)END
Q2.3=
C0R
I0.5A

(*Four bottles counted.*)4LKC
C0CU
I0.5AN

(*Sixth rung*)I0.4A
Q2.2=

(*Fifth rung*)F0.1AN
F0.1=
T0A
T0SR

(*2 s allowed for capping.*)2.2LKT
Q2.2O

(*Fourth rung*)I0.3A
F0.0=
F0.0O

(*Third rung*)I0.2A
Q2.1=

(*Second rung*)Q2.0AN
Q2.0=

)
I0.5ON
I0.4(AN
F0.0AN
Q2.2AN
I0.1A
Q2.0O

(*First rung*)I0.0A

14.4 Control of a process The following is an illustration of the use of a sequential flow chart for
programming. The process (Figure 14.20) involves two fluids filling two
containers: when full their contents are then emptied into a mixing
chamber, from where the mixture is then discharged. The whole process is
then repeated.

Programs 269

Fluid 1 Fluid 2

Valve 1 Valve 2

Mixer

Valve 3

1

2

3

4

Limit switchesPump 1 Pump 2

Limit switch 5

Figure 14.20 The mixing operation

Figure 14.21 shows the type of valve that might be used in such a
process. It is solenoid operated to give flow through the valve and then,
when the solenoid is not activated, a spring returns the valve to the closed
position.

Figure 14.21 Valve

Figure 14.22 shows the sequential function chart program. When the
start switch is activated, Fill 1 and Fill 2 occur simultaneously as a result
of the actions of pumps 1 and 2 being switched on. When limit switch 1 is
activated then Fill 1 ceases, likewise when limit switch 3 is activated Fill
2 ceases. We then have the containers for fluid 1 and fluid 2 full. The
action that occurs when both limit switch 1 and 3 are activated is that the
containers start to empty, the action being the opening of valves 1 and 2.
When limit switches 2 and 4 are activated then the containers are empty.
The next stage, the mixing of the liquids is then determined when limit
switch 2 and limit switch 4 are both activated. After a time of 100 s the
moxing ceases and the mixed liquids empty through valve 3. When limit
switch 5 is activated the program reaches the end of its cycle and the
entire sequence is then repeated.

270 Programmable Logic Controllers

Start

Start switch activated

Fill 1 Fill 2Pump 1 Pump 2

Limit switch 1 Limit switch 3

Full 1 Full 2

Limit switch 1 AND 3

Empty 1 Valve 1 Empty 2 Valve 1

Limit switch 2 Limit switch 4

Emptied 1 Emptied 2

Limit switch 2 AND 4

Mixer
Mix

liquids

Time elapsed 100 s

Valve 3
Mixed
liquids

Limit switch 5

End

Figure 14.22 The mixing operation program

Problems 1 This problem is essentially part of the domestic washing machine
program. Devise a ladder program to switch on a pump for 100 s. It is
then to be switched off and a heater switched on for 50 s. Then the
heater is switched off and another pump is used to empty the water.

 2 Devise a ladder program that can be used with a solenoid valve
controlled double-acting cylinder, i.e. a cylinder with a piston which
can be moved either way by means of solenoids for each of its two
positions, and which moves the piston to the right, holds it there for
2 s and then returns it to the left.

Programs 271

 3 Devise a ladder program that could be used to operate the simplified
task shown in Figure 14.23 for the automatic drilling of workpieces.
The drill motor and the pump for the air pressure for the pneumatic
valves have to be started. The workpiece has to be clamped. The drill
has then to be lowered and drilling started to the required depth. Then
the drill has to be retracted and the workpiece unclamped.

Solenoid 1

Solenoid 2

Motor

Moves drill up or down

Clamp
Workpiece

Solenoid 3

Limit switch 1,
open when drill

Limit switch 2,
normally closed,Limit switch

3 normally
closed, open

Limit switch 4
normally
open, closed

opened when
drill at required
depth

up, closed when
down

when piece
clampedwhen piece

clamped

Figure 14.23 Problem 3

 4 What are the principles to be observed in installing a safe emergency
stop system with a PLC?

 5 The inputs from the limit switches and the start switch and the outputs
to the solenoids of the valves shown in Figure 14.24 are connected to
a PLC which has the ladder program shown in Figure 14.25. What is
the sequence of the cylinders?

272 Programmable Logic Controllers

B

b– b+

B+ B–

A

a– a+

A+ A–

–V

C

c+

C+ C–

c–

Figure 14.24 Problem 5
Start

Start

A+

B+

a+ b+ C+

c+ A–

c+ B–

a– b– C–

END

Figure 14.25 Problem 5

Programs 273

 6 The inputs from the limit switches and the start switch and the outputs
to the solenoids of the valves shown in Figure 14.26(a) are connected
to a PLC which has the ladder program shown in Figure 14.26(b).
What is the sequence of the cylinders?

END

IR 1 IR 2 Start A+

IR 1 IR 2

IR 1 IR 2 a+ B+

IR 1 IR 2

IR 1 IR 2

A–

IR 1 IR 2 a– B–

IR 1 IR 2 b+ IR 1 IR 1

IR 1 IR 2

a+

IR 1 IR 2 b– IR 1 IR 2

IR 2 IR 2

a–

A

a– a+

A+ A–

B

b– b+

B+ B–

(a)

(b)

Figure 14.26 Problem 6

274 Programmable Logic Controllers

 7 Figure 14.27 shows a ladder program involving a counter C460,
inputs X400 and X401, internal relays M100 and M101, and an
output Y430. X400 is the start switch. Explain how the output Y430
is switched on.

RESET

C460
K10

OUT

X400 M101 M100

X400 M101

C460

X401

M100

Y430 M100

C460

Y430

END

Figure 14.27 Problem 7

Programs 275

Appendix: Symbols

The following are the main symbols encountered.

Ladder programs

Semi-graphic form Full graphic form

A horizontal link along which
power can flow

Interconnection of horizontal
and vertical power flows

Left-hand power connection
of a ladder rung

Right-hand power connection
of a ladder rung

Normally open contact

Normally closed contact

Output coil: if the power flow
to it is on then the coil state is on

Set coil S S

Reset coil R R

M MRetentive memory coil, the
state of the associated variable
is retained on PLC power fail

P P

N N

Positive transition-sensing
contact, power flow occurs
when associated variable
changes from 0 to 1.
Negative tranistion-sensing
contact, power flow occurs
when assoaciated variable
changes from 1 to 0

Function blocks
Semi-graphic form Full graphic form

Interconnection of horizontal
and vertical signal flows

Crossing horizontal and
vertical signal flows

Horizontal and vertical lines

Blocks with connections

Connectors AV_WEIGHT

AV_WEIGHT

AV_WEIGHT

AV_WEIGHT

Commonly encountered blocks:

CTU
CU Q

R

PV CV

BOOL

INT

BOOL

BOOL

INT

Up-counter counts the number

BOOL is Boolean signal, INT is integer, REAL is a floating point number,

CTD
CD Q

LD

PV CV

BOOL

INT

BOOL

BOOL

INT

of rising edges at input CU.
PV defines the maximum
value of the counter. Each
new rising edge at CU
increments CV by 1. Output
Q occurs after set count. R

Down-counter counts down the
number of rising edges at input
CU. PV defines the starting
value of the counter. Each
new rising edge at CU
decrements CV by 1. Output
Q occurs when count reaches.

is the reset.

zero.

ANY is any form of signal

CTUD

CD
QU

LD
PV CV

BOOL

INT

BOOL

BOOL
INT

Up-down counter. It can be BOOL CU

RBOOL
BOOLQDused to count up on one

input and down on the other.

Appendix: Symbols 277

On-delay timer. When input IN
goes true, the elapsed time at
about ET starts to increase and
when it reaches the set time,
specified by input PT, the output
Q goes true.

TON
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

TOF
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

Off-delay timer. When input IN
goes true, the output Q follows
and remains true for the set
time after the input Q goes
false.

TP
BOOL

TIME

BOOL

TIME

IN

PT

Q

ET

Pulse timer. When input IN goes
true, output Q follows and remains
true for the pulse duration
specified by input PT.

Logic gates

A

B

Output
Inputs

Output
A

B

Inputs &AND gate

OR gate

A

B

Output
Inputs

A

B

Output
Inputs 1m

Not gate
Input

OutputA

Input

OutputA
1

A

B

Output
Inputs

A

B

Output
Inputs &NAND gate

A

B

Output
Inputs

A

B

Output
Inputs >1NOR Gate

XOR Gate
Output

A

B

Inputs
Output

=1
A

B

Inputs

278 Programmable Logic Controllers

Sequential function charts

StartStart step. This defines the step

Transition condition. Every transition

StepStep in a program

which will be activated when the
PLC is Cold-started.

must have a condition. One that always
occurs should be shown with the
condition TRUE.

Every step can have an associated
action. An action describes the

ActionNbahviour that occurs when the step
is activated. Each action can have a
qualifier: N indicates the action is
executed while the step is active. If

Step

Qualifier

no qualifier is indicated it is taken
to be N.

D: time delayed action which
starts after a given time.

Selective branching

Parallel branching when the

Convergence when both
transitions occur

transition occurs

Simultaneous convergence

Instruction List (IEC 1131-3 symbols)

LD Start a rung with an open contact.
LDN Start a rung with a closed contact
ST An output
S Set true
R Reset false
AND Boolean AND
ANDN Booleand NAND
OR Boolean OR
ORN Boolean NOR

Appendix: Symbols 279

XOR Boolean XOR
NOT Boolean NOT
ADD Addition
SUB Subtraction
MUL Multiplication
DIV Division

Structured text

X := Y Y represents an expression that produces a new value
 for the variable X.

Operators

Boolean OROR
Boolean XORXOR
Boolean ANDAND, &
Equality, inequality=, <>

Less than, greater than, less than or equal to, greater
than or equal to

<, >, <=, >=
Addition, subtraction+, -
Multiplication, division, modulus operation*, /, MOD
Negation, Boolean NOT-, NOT
Raising to a power**
List of parameters of a functionFunction(...)
Parenthised (bracketed) expression(...)

Conditional and iteration statements
IF ... THEN ... ELSE is used when selected statements are to be executed
when certain conditions occur.
The FOR ... DO iteration statement allows a set of statements to be
repeated depending on the value of the iteration integer variable.
The WHILE ... DO iteration statement allows one or more statements to
be executed while a particular Boolean expression remains true.
The REPEAT ... UNTIL iteration statement allows one or more
statements to be executed and repeated whilst a particular Boolean
expression remains true.

280 Programmable Logic Controllers

Answers

 6 C 5 A 4 A 3 C 2 A 1 DChapter 1
 7 See Figure 1.4.
 8 See Figure 1.7 and associated text.
 9 See Section 1.3.4.
10 2 × 1024.

10 C 9 B 8 A 7 A

 6 A 5 C 4 D 3 B 2 A 1 AChapter 2

11 See (a) Figure 2.5, (b) Section 2.1.4, (c) Section 2.1.3, (d) Section
2.1.8.

12 See Section 2.2.3.
13 See Section 2.2.4.

Chapter 3 1 (a) 3, (b) 63, (c) 13
 2 (a) 110 0100, (b) 1001 0010, (c) 1111 1111
 3 (a) 159, (b) 3411, (c) 1660
 4 (a) E, (b) 51, (c) A02
 5 (a) 1110, (b) 11101, (c) 1010 0110 0101
 6 (a) 250, (b) 12, (c) 1376
 7 (a) 24, (b) 411, (c) 620
 8 (a) 010 111 000, (b) 001 000 010, (c) 110 111 011
 9 (a) 0010 0000, (b) 0011 0101, (c) 1001 0010
10 (a) 1111 1111, (b) 1101 1101, (c) 1000 0011
11 (a) –16, (b) –55, (c) –40
12 (a) 0.110010 % 2–3, (b) 0.1100 % 2–4, (c) 0.1000 0100 % 24

 9 D 8 D 7 A

 6 C 5 A 4 C 3 C 2 A 1 BChapter 4

10 (a) 0, (b) 1.
11 To detect message corruption.
12 See Section 4.5.

18 C17 C16 A15 B14 C13 D
12 B11 A10 A 9 C 8 D 7 B

 6 B 5 B 4 B 3 B 2 D 1 AChapter 5

21 A20 C19 D
22 See (a) Figure 5.8, (b) Figure 5.10, (c) Figure 5.19, (d) Figure 5.10,

(e) Figure 5.11, (f) Figure 5.5(a).

21 B20 C19 A
18 C17 D16 A15 C14 A13 B
12 A11 B10 A 9 D 8 B 7 A

 6 C 5 A 4 D 3 B 2 A 1 CChapter 6

21 B20 A19 A
18 B17 A16 A15 A14 C13 B
12 B11 B10 D 9 C 8 A 7 A

 6 C 5 C 4 A 3 C 2 B 1 DChapter 7

22 See (a) Figure 7.8, (b) Figures 7.10 or 7.11, (c) Figure 7.26.

 4 B 3 A 2 B 1 CChapter 8

19 C
18 D17 A16 B15 D14 B13 A
12 A11 A10 C 9 B 8 C 7 C

 6 D 5 D 4 D 3 D 2 A 1 CChapter 9

20 See (a) Figure 9.4, (b) Figure 9.10, (c) Figure 9.12.

19 A
18 C17 C16 D15 B14 C13 B
12 B11 A10 A 9 C 8 D 7 B

 6 B 5 B 4 B 3 C 2 A 1 CChapter 10

20 See (a) Figures 10.3, (b) Figures 10.7.

 9 D 8 C 7 C

 6 A 5 A 4 D 3 C 2 C 1 DChapter 11

10 (a) As Figure 11.1/11.2 with a constant input to In 1/X400, so
entering a 1 at each shift, (b) As in Figure 11.3 but instead of faulty
item, hook with an item, and instead of good item, hooks with no
items.

9 C 8 B 7 B

 6 A 5 A 4 B 3 B 2 C 1 CChapter 12

282 Programmable Logic Controllers

10 Similar to (a) Figure 12.5, (b) Figure 12.6.

 6 A 5 A 4 C 3 B 2 C 1 BChapter 13
 7 See Section 13.3.1.
 8 Power failure, supply off, power tripped.
 9 Wiring fault, device fault.
10 See Figure A.1.
11 See Figure A.2.

Start for Out 1 Out 1 Start switch closes and starts
Out 1, which in the
absence of a fault takes a
certain time to complete

Out 1 Timer 1

Timer 1

Timer 2

Timer 3

Plus timers
for other outputs

Plus similar rungs for the
other outputs

Timer 1 is set for slightly

END

Stop for Out 1

longer than completion
time for Out 1

If any output takes longer
than expected, the
internal relay is energised.

IR

IR

When this happens it
switches off all the output
rungs in which it is
located

Figure A.1 Chapter 13, problem 10

A

a– a+

A+ A–

B

b– b+

B+ B–

(a) The pneumatics

Figure A.2 (Continued on next page)

Answers 283

Start IR 0 A+

a+ IR 0 B+

b+ IR 0 IR 0

IR 0 a+

IR 0

IR 0 B–

b– IR 0 A–

When start switch closed,
A+ energised

When a+ activated, B+
energised

When b+ is activated, IR 0
is energised and its contacts
close in this rung and later
rungs but open in earlier
rungs. A+ and B+ switched off

B– switched on

When b– activated, A–
energised

gives the sequence A+, B+, B–, A–

A+ Timer 1

Timer 1 IR 1

B+ Timer 2

Timer 2 IR 2

The output A+ produces a
short duration pulse at
IR 1 as a result of the
timer setting

The output B+ produces a
short duration pulse at
IR 2 as a result of the
timer setting

The above part of the program

and the following part the diagnostics

A– Timer 3

Timer 3 IR 3

B– Timer 4

Timer 4 IR 4

The output A– produces a
short duration pulse at
IR 4 as a result of the
timer setting

The output B– produces a
short duration pulse at
IR 5 as a result of the
timer setting

Figure A.2 (Continued on next page)

284 Programmable Logic Controllers

IR 1 LED A+

LED A+

IR 2 IR 3 IR 4 Reset If A+ output occurs, IR 1 closes
and is latched on. LED A+ is
then on. LED A+ is not on
unless IR 1 closed

IR 2 IR 1 IR 3 IR 4 Reset LED B+

LED B+

If B+ output occurs, IR 2 closes
and is latched on. LED B+ is
then on. LED B+ is not on
unless IR 2 closed

END

IR 3 IR 1 IR 2 IR 4 Reset LED A–

LED A–

IR 4 IR 1 IR 2 IR 3 Reset LED B–

LED B–

If A– output occurs, IR 3 closes
and is latched on. LED A– is
then on. LED A– is not on
unless IR 2 closed

If B– output occurs, IR 4 closes
and is latched on. LED B– is
then on. LED B– is not on
unless IR 4 closed

Figure A.2 Chapter 13, problem 11

Chapter 14 1 See Figure A.3.
 2 See Figure A.4.
 3 See Figure A.5 for a basic answer.
 4 Hard-wired emergency stop button, not dependent on software.
 5 A+ and B+, C+, A– and B–, C–.
 6 A+, B+, A–, B–, A+, A–.
 7 M100 and M101 activated. Ten pulses on X401 counted. Then

output.

Answers 285

Start Y431 Y432 Y430

Y430 T450
K100

T450 T451 Y431 Y432

Y432

Y432 T451
K50

T451 T452 Y430 Y431

Y431

Y431 T452 K100

Y430 is the supply

Y432 is the heater

Y431 is the

T450 is supply pump

T451 is the heater

T452 is the

pump

timer

timer

discharge pump

discharge
pump timer

Y430

Figure A.3 Chapter 14, problem 1

Start Stop Y430

Y430 is air pressure supply

Y431Sensor 1
Sensor 1 is a limit switch for
piston at left. Y431 is solenoid
to move piston to right

Sensor 2 T450 Sensor 2 is a limit switch for
piston at right. T450 has K2

Y432T450
Y432 is solenoid to move
piston to left

Y430

Figure A.4 Chapter 14, problem 2

286 Programmable Logic Controllers

Y430

Y430 is the motor. X400 is start switch.

Y431
Y431 is the pump. X402 is start switch.

Y432

Y432 is solenoid 3. X405 is limit switch 4.

Y433 is solenoid 1. X405 is limit switch 4.

Y434 is solenoid 2. X407 is limit switch 1.

Y434

Y433

X401X400

Y430

X402 X403

Y431

X405 X404

Y431

X405 X406

Y433 X407

X401 is stop switch.

X403 is stop switch.

X404 is limit switch 3.

X406 is limit switch 2.

Figure A.5 Chapter 14, problem 3

Answers 287

Absolute encoder, 22
Accuracy, 17
Actuator, 30
ADC, 55
Addresses, 76, 82
Alarm system, 141, 201
Algorithm, 210
Allen-Bradley

addresses, 77
arithmetic operations, 202
bit storage, 133
counter, 174, 178
data comparison, 200
data highway, 75
jump, 154
latch/unlatch, 136, 139
master control relay, 143
move, 198
PLC-5, 12
program, 84, 140, 227, 240,

265
RsLogix, 15, 93
sequencer, 182
subroutine, 156
timer, 160, 164
timer extension, 179

Amplifier, operational, 60
Analogue

signals, 5, 53
standard, 59
-to-digital converter, 55

AND, 84
Arithmetic and logic unit, 6
ASCII code, 69
Assembly code, 81

Baud rate, 65
BCD, see Binary coded decimal

system
Bimetal strip, 24
Binary

arithmetic, 47

coded decimal system, 47,
197

number system, 44
one’s complement, 49
signed, 48
two’s complement, 49, 197

Bits, 6, 44, 189
Bit storage, 132
BOOL, 51
Boolean algebra, 97
Box form of PLC, 10
Brick, 10
Bus, 5, 7
Byte, 8

Car park barrier, 260
Carrier sense multiple access, 71
Central processing unit, 5
Coaxial cabling, 63
Commissioning, 218
Contactor, 30
Continuous updating, 75
Control system

closed loop, 203
tasks, 1
unit, 6

Conveyor belt, 39, 265
Counters

down-counter, 173
forms of, 173
IEC 1131-3, 173, 178
programming, 174
up and down, 178
up-counter, 173

CPU, see Central processing unit
CSMA, 71
Cutting band saw program, 227
Cycle, 75, 82
Cyclic redundancy check, 69
Cylinder

control, 33
double acting, 33

Index

Cylinder, continued
single acting, 32

DAC, 57
Darlington pair, 21
Data Highway Plus, 71
Denary number system, 44
Derivative control, 205
Digital

signals, 5, 53
-to-analogue converter, 57

DINT, 51
Discrete signals, 5, 53
Displacement sensor, 26
Documentation, system, 227
Domestic washing machine, 117

EEPROM, 30
Emergency stop

relays, 217
switches, 102, 216

Encoder, 22
EPROM, 7
Error, 17
Ethernet, 74
Expected value checks, 226

Fail-safe, 215
Fault finding, 220
Feedback loop, 97
Fibre-optic cabling, 63
Fixed point numbers, 50
Flags, 65, 132
Flashing light, 166
Flip-flop, 138, 141
Floating point numbers, 50
Flow charts, 210
Flow meter, 29
Function block

AND, 96
equivalent ladder, 96
feedback loop, 97
NAND, 96
negated input/output, 95
NOR, 96
OR, 96
XOR, 96
programming, 94
symbols, 277

GEM-80 addresses, 77

GENET, 71
Gray code, 23

Hexadecimal number system, 46
Hysteresis error, 17

IEC 1131-3, 51, 80, 83, 94, 108,
113, 136, 137, 138, 159, 173,
192, 205

IEC 61508, 215
IEEE 1451.4, 30
IEEE 488, 66
IEEE/ANSI logic symbols, 95
Increment encoder, 22
Input

devices, 17
/output addresses, 76
/output processing, 53
/output unit, 8
processing, 75
unit, 53

Instruction list
AND, 109
and ladder programs, 109
IEC 1131-3, 108, 113
labels, 109
mnemonics, 108, 279
NAND, 111
NOR, 110
OR, 110
XOR, 112

INT, 51
Integral control, 205
ISO/OSI model, 72

Jump, 154

Ladder programming
AND, 85, 133
and flow charts, 210
and instruction lists, 109
counters, 173
data comparison, 200
entering, 93
equivalent functional block,

97
equivalent sequential function

chart, 117, 119
internal relays, 132
latching, 90, 134
monitoring, 221

Index 289

Ladder programming, continued
multiple outputs, 91
NAND, 88
NOR, 89
NOT, 87
OR, 86
principle, 80
sequenced outputs, 92
shift register, 190
symbols, 83, 276
timers, 160
XOR, 90

LAN, 69
Last output set, 222
LED, 21
Lift, 39
Light-emitting diode, 21
Limit switch, 20
Linear variable differential

transformer, 26
LINT, 51
Liquid level detector, 29, 40
LM35, 25
LM3911N, 25
Logic functions, 84, 95, 278
Loop, 20 mA, 65
LREAL, 51
LVDT, see Linear variable

differential transformer

Machine code, 80, 93
Manufacturing automation

protocol, 73
MAP, 73
Markers, 132
Mass I/O copying, 75
MelsecNET, 71
MELSOFT, 14, 93
Memory, 7
Mitsubishi

addresses, 77
auxiliary relay, 133
cascaded timers, 161
counter, 173, 174, 176
data comparison, 200
jump, 154
marker, 133
master control relay, 143, 144
MELSEC FX3U, 10, 76
monitoring, 220
move, 198, 199

program, 84, 91, 92, 109,
110, 111, 112, 113, 114,

115, 134, 138, 194, 250,
252, 255, 256, 260, 266

pulse operation, 138
shift register, 190, 191
subroutine, 156
timers, 160

Modular form of PLC, 10
Motor d.c.

basic form, 34
brushless, 35
control, 35

Motor, stepper, 36
Motorola MPX100AP, 28

NAND, 87
Negative transition-sensing coil,

138
Network, local area, 69
Non-linearity error, 17
NOR, 88
NOT, 87

Octal number system, 45
OMRON

CPM1A, 11
CX-One, 15

One-shot, 137
Open systems interconnection

model, 72
Operational amplifier, 60
Optoisolators, 8
OR, 85
Orifice flow meter, 29
Output

devices, 30
relay, 9, 57
transistor, 9, 57
triac, 10, 57

Parallel communication
principles, 63
standards, 66

Parity check, 68
Photoconductive cell, 21
Photodiode, 21
Photoelectric sensors, 21
PID control, 205
PLC, see Programmable logic

controller

290 Programmable Logic Controllers

Position sensor, 26
Positive transition sensing coil,

138
Potential divider, 60
Potentiometer, 26
Pressure sensors, 28
Process control, 269
Programmable logic controller

advantages, 3
architecture, 5
continuous updating, 75
cycle, 75
function, 3
I/O processing, 53, 75
input units, 53
internal relays, 132
linking, 62
mass I/O copying, 75
output units, 56
programming, 14, 80
safety, 218
timers, 159
types, 10

Proportional control, 204
Protocols, 64, 68
Proximity switches, 20
Pseudocode, 210
Pulse width modulation, 34

Rack form of PLC, 10
RAM, 7
Range, 18
REAL, 51
Reed switch, 21
Registers, 6, 189, 197
Relay

battery-backed, 136
internal, 132
master control, 142
output device, 30
retentive, 136

Reliability, 19
Remote connections, 62
Replication, 224
Resistive temperature detector, 24
Response time, 18
Retentive memory coil, 136
Rise time, 18
Robot, 39
ROM, 7
RS232, 64

RS422, 65
RS423, 65
RSLogix, 93
RTD, 24

SAA 1027, 38
Safe systems, 214
SCADA, 72
Scientific notation, 51
Sensitivity, 18
Sensor, 17
Sequencer, 180
Sequential function chart

actions, 119
and flow charts, 210
convergence, 117
equivalent ladder, 117, 119
parallel branching, 117
principles, 116
process control, 269
sequencing, 250
selective branching, 117
states, 116
steps, 116
symbols, 279
transitions, 116

Serial communication
principles, 63
RS232, 64
standards, 63

Set/reset, 138
Settling time, 18
Shift register

IEC 1131-3 symbol, 192
principles, 189

Siemens
addresses, 77
arithmetic operations, 203
BCD/binary, 202
counter, 173, 174, 178
data comparison, 200
flags, 133
jump, 155
move, 199
program, 84, 92, 96, 109,

110, 111, 112, 113, 114,
134, 141, 240, 252, 256,
260, 266

set/reset, 140, 141
shift register, 192
STEP 7, 14, 93

Index 291

Siemens, continued
subroutine, 156
timers, 160, 163, 164

Signal
conditioning, 59
lamp program, 100, 114

Simulation, 220
SINECL, 71
Sinking, 10, 53, 56
Smart sensors, 30
Sourcing, 10, 53, 56
Stability, 19
STEP 7, 93
Stepper motor

action, 36
bipolar, 38
hybrid, 37
permanent magnet, 36
unipolar, 38
variable reluctance, 37

Stop switches, 102, 215
Strain gauges, 27, 61
Structured text

assignment, 120
conditional statements, 122
data comparison, 200
iteration statements, 122
language, 120
move, 198
operators, 121
symbols, 280
traffic lights, 167

Subroutine, 156
Switch sensors, 19

TEDs, 30
Telemecanique, 15, 108, 133, 139,

141, 160
Temperature

control, 250
sensors, 24

Testing, 218
Texas Instrument TSL220, 22
Thermocouple, 25

Thermodiode, 24
Thermotransistor, 24
Time representation, 51
Timers

cascaded, 161
IEC 1131-3, 159
off-delay, 159, 163
on-delay, 159
on-off cycle, 162
pulse, 159, 165
programming, 160
sequencing with, 161
types, 159

TIWAY, 71
Toshiba, 133, 141, 160, 162, 174,

181, 191
Traffic lamp sequence, 115, 167
Transducer, 17
Truth table, 85
Twister-pair cabling, 63

UDINT, 51
UINT, 51
ULINT, 51
USINT, 51

Valve
actuation, 32
control positions, 32
directional control, 31
operation program, 100, 115
ports, 32
sequencing, 145, 176, 193,

254, 256
solenoid operated, 31
spool, 31
symbol, 32

Watchdog timer, 221
Wheatstone bridge, 24, 27, 61
Word, 7, 51, 197

XOR, 89

292 Programmable Logic Controllers

