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Preface

As long as there have been competing producers of PLCs on the market, there have been 
 different programming languages from one PLC brand to another. Even though the same lan-
guages, beginning with Instruction Lists (IL) and Ladder diagram (LD), have been used by 
most of the producers, all of them added their own “dialects” to the languages. When physical 
programming terminals replaced software‐based programming tools, the differences between 
languages of the various producers escalated. Several programming languages also saw the 
light of day. This development was the natural result of the attempt by the producers to make 
themselves stand out among increasing competition by developing the most user‐friendly 
 languages and tools.

When the IEC1 61131‐3 standard came out in 1993, the situation started to improve. This 
standard was the result of the work that had been ongoing for several years in which the best 
from the various languages and dialects from different producers was assembled into a single 
document. This is not a rigid standard in the sense that the producers must follow all require-
ments and specifications, but more a set of guidelines that the producers could choose to 
follow to a certain extent. Today, most of the equipment producers have come to realize the 
advantages of organizing themselves in accordance with the standard. All of the major pro-
ducers of PLCs, such as Telemecanique, Wago, Mitsubishi, Klockner Moeller, Allen‐Bradley, 
Omron, Siemens, and so on, have therefore, to a greater or lesser extent, adapted their program-
ming tools to IEC 61131‐3.

This book covers close to 100% of the specifications and guidelines that are given in 
Standard (International Electrotechnical Commission, 2013).2 The book will therefore be 
interested to everyone who works with, or wants to learn about programming PLCs, no matter 
which PLC brand they use.

1 IEC—International Electrotechnical Commission. This edition of the book was updated in conformity with the 3rd 
edition of IEC 61131‐3, issued February 2013.
2 The Standard IEC 61131-3 is introduced in Chapter 5.



Preface xv

The book does not assume any previous knowledge of programming.
Comments and suggestions for contents will be gratefully received.
The book is divided into five main parts:

 • Part 1: Hardware Chapters 1–3
 • Part 2: Methodic Chapter 4
 • Part 3: IEC 61131‐3 Chapters 5–8
 • Part 4: Programming Chapters 9–13
 • Part 5: Implementation Chapters 14–15

Chapter 1 contains a brief history and a short description of the design and operation of PLCs 
in general. Chapters 2 and 3 give a basic introduction to digital and analog signals and equip-
ment for detection, measurement, and manipulation of discrete and continuous quantities.

Chapter 4 focuses on methods for planning and design of structurally efficient programs. It 
also provides an introduction into Boolean algebra. Chapters 5 and 6 introduce the IEC stan-
dard elements such as literals, keywords, data types, variables, and addressing. Chapters 7 and 
8 cover standardized functions and functional blocks.

Chapters 9 to 13 deal with programming: Chapter  9 covers programming with LD. 
Chapter 10 covers functional block diagrams (FBD). Chapter 11 covers the structured text 
(ST) language. The last language covered in the book is actually not a programming language 
as such, but rather a tool for structuring program code. This is called a Sequential Function 
Chart (SFC) and is described in Chapter 12.

Chapter 13 contains some larger practical programming examples.
The last two chapters in the book cover programming tools. Here, I have chosen to focus on 

CODESYS. There are several reasons for this; first, CODESYS follows the standard almost 
100%. Furthermore, CODESYS is a hardware‐independent programming tool that is cur-
rently used by well over 250 hardware suppliers. Finally yet importantly, the program can be 
downloaded free and it contains a simulator. Most of the program code in the book was written 
and tested with this tool.

I would like to thank the following persons and companies:

 • Associate Professor Tormod Drengstig, University of Stavanger, for much good feedback, 
suggestions for improvements, and the contribution of several examples

 • Assistant Professor Inge Vivås, Bergen University College, for giving his permission to 
reuse some problems (Section 4.6.4 and Problems 4.10 and 10.5)

 • Assistant Professor Veslemøy Tyssø, Oslo and Akershus University College of Applied 
Science, for having read an earlier edition of the book and having provided expert 
contributions

 • Colleagues and management at the University of Tromsø, Department of Engineering and 
Safety, for the support and patience

 • Schneider Electric for granting me permission to use material from their “Automation 
Solution Guide” when writing about sensors in Chapter 2

Dag H. Hanssen
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About PLCs

The programmable logic controller (PLC) has its origin in relay‐based control systems, also 
called hard‐wired logic.1

Before PLCs became common in industry, all automatic control was handled by circuits 
composed of relays,2 switches, clocks and counters, etc (Figure 1.1). Such controls required a 
lot of wiring and usually filled large cabinets full of electromagnetic relays. Electricians had 
to assemble controls or use a prepared relay wiring diagram. The relay wiring diagrams 
showed how all the switches, sensors, motors, valves, relays, etc. were connected. Such relay 
wiring diagrams are the forerunners for the ladder diagram (LD) programming language, 
which is still a common programming language used in programming PLCs.

There were many disadvantages with these mechanical controls. In addition to taking up 
a lot of room, they demand time and labor to implement them and to make any changes in 
such equipment. A relay control usually consists of hundreds of relays connected together 
with wires running in every direction. If the logical function needs to be changed or 
expanded, the entire physical unit must be rewired, something that is obviously expensive 
in terms of working time. Since the relays are electromechanical devices, they also had a 
limited service life, something that led to frequent operational interruptions with subsequent 
disruption.

There also was no way of testing before the control was wired up. Testing therefore had to 
take place by running the unit. If there was a small failure in the schematic diagram or if an 
electrician had connected a wire wrong, this could result in dramatic events.

1

1 Originally, the designation PC—Programmable Controller—was used. This naturally caused some confusion when 
Personal Computer became a well‐known concept.
2 A relay is an electromechanical component that functions like an electrical switch. A weak current (so‐called control 
current) activates the switch so that a stronger current can be switched on or off.
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1.1 History

The first PLC came into commercial production when General Motors was looking for a 
replacement for relay controls. Increased competition and expanded demands on the part of 
customers meant a demand for higher efficiency, and the natural step was to design a soft-
ware‐based system that could replace the relays. The requirement was that the new system 
should be able to:

 • Compete on price with traditional relay controls
 • Be flexible
 • Withstand a harsh environment
 • Be modular with respect to the number of inputs and outputs3

 • Be easy to program and reprogram

Several corporations started work on providing a solution to the problem. Bedford Associates, 
Inc. from Bedford, Massachusetts, suggested something they called a “modular digital 
controller” (MODICON). MODICON 0844 was the first PLC that went into commercial pro-
duction. The key to its success was probably the programming language, LD, which was 
based on the relay diagrams that electricians were familiar with. Today there is no question 
about the use of programmable controls; the question is rather what type to use.

The first PLCs were relatively simple in the sense that their function was to replace relay 
logic and nothing else. Gradually, the capabilities improved more and more and functions 
such as counters and time delays were added. The next step in development was analog input/
output and arithmetic functions such as comparators and adders.

With the development of semiconductor technology and integrated circuits, programmable 
controls became widely used in industry. Particularly when microprocessors came on the 
market in the beginning of the 1970s, development proceeded at a rapid pace.

Figure 1.1 Example of a relay and a timer (mounted on a connector board)

3 This means that it must be possible to increase the number of inputs and outputs by inserting extra modules/boards/
blocks. In order to offer cheaper hardware, there are also many PLCs that are not modular.
4 084 indicates that it was the 84th project for the company. After that, the corporation established a new company, 
(MODICON), which focused on producing PLCs.
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The PLCs of today come with development tools in the form of software with every imag-
inable ready‐to‐use function. Examples are program codes for managing communications as 
well as processing functions such as proportional integrator/derivative regulators, servo con-
trols, axial control, etc. In other words, there is the same pace of development as with the PC 
(Figures 1.2, 1.3, and 1.4).

The communications side also experienced rapid development. Demand grew quickly for 
PLCs that could talk to one another and that could be placed away from the actual produc-
tion lines. Around 1973 Modicon developed a communications protocol that they called 
Modbus. This made it possible to set up communications between PLCs, and the PLCs 
could therefore be located away from production. Modicon’s Modbus also provided for 
management of analog signals. As there became more and more manufacturers of PLCs and 

Figure 1.2 Omron Sysmac C20—Nonmodular PLC with digital I/O and programming terminal

Figure 1.3 PLCs from Telemecanique come in different sizes
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associated equipment, there also developed more proprietary5 and nonproprietary commu-
nications protocols. The lack of standardization, together with continual technological 
development, meant that PLC communication became a nightmare of incompatible proto-
cols and various physical networks. Even today, there are problems, although manufacturers 
now offer solutions for communications over a selection of known and standardized 
protocols.

Several programming languages also came into use. Earlier LD, as we mentioned, was 
 synonymous with PLC programming. Instruction List (IL) was also an early language that had 
many similarities with the assembly language that used for programming microprocessors. 
Later the graphical language Sequential Function Chart (SFC) was added. This was specially 
developed for implementation of sequential controls.

1.1.1 More Recent Developments

All of the aforementioned languages were incorporated into the international standard 
IEC 61131‐3 (International Electrotechnical Commission, 2013). The standard also 
defines the function block diagram (FBD) graphic language and the structured text (ST) 
language. FBD has a symbol palette that is based on recognized symbols and functions 
from digital technology. ST is a high‐level language that provides associations with Pascal 
and C.

Before the IEC 61131‐3 standard appeared, and for many years thereafter, there were 
relatively large differences between PLCs from various manufacturers. This was particularly 
true of capabilities for selection of programming language and how the language that was 
implemented in the PLCs was designed. Recently, to the delight of users, manufacturers began 

Figure 1.4 Newer generation PLC from Wago with Profibus coupler and I/O

5 A proprietary protocol is owned by the manufacturer who developed it. The source code is not freely accessible. 
A non‐proprietary protocol is either a standard protocol or an open protocol that is distributed by many manufacturers 
who make equipment for communication over such a protocol.
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to follow IEC 61131‐3 to a greater and greater extent. This made it easier to go from one brand 
of PLC to another as well as making it easier, to a certain extent, for customers to know what 
they were getting.

There are also a number of “software‐based PLCs” on the market. As the name indicates, 
this software is designed to control processes directly from a PC. The challenge has been to 
build systems that are sufficiently reliable and robust. Industry is generally critical of such 
solutions, mostly based on experience with many a computer crash.

Another amphibious solution is the possibility of buying a circuit board for a computer onto 
which the program code can be loaded. The board is made so that it is capable of carrying on 
with the job independently even if the computer should crash.

In recent years, manufacturers have devoted considerable resources to developing solutions 
for connecting instruments and actuators into a network. Such a communication bus is called 
a fieldbus, referring to the fact that there is communication between field instruments, in other 
words, instruments below the process level. Other standards and de facto6 standards are also 
on the market.

Work on an IEC standard for the fieldbus started as early as 1984/1985. The requirement 
was naturally that the standard should be an open fieldbus solution for industrial automation. 
It should include units such as motor controls, decentralized I/O, and PLCs, in addition to the 
distributed control systems (DCS) and field instruments used in the processing industry. The 
goal was also that the standard should cover all pertinent areas such as building automation, 
process automation, and general industrial automation.

It was not until the end of 1999 that those involved came to an agreement. The result was 
that a total of eight (partially dissimilar) systems were incorporated into a standard called IEC 
61158. In other words, this was not an open solution. Even though manufacturers and sup-
pliers argued that it was good for users to have plenty of choices, this unity did not make 
things much easier for engineers and others working on automation.

Several of the major manufacturers currently offer integrated solutions with I/O modules 
for all of the major fieldbus standards where a controller (PLC) or a gateway manages com-
munication among the various standards simultaneously.

Another trend is that manufacturers of hardware and communication solutions offer more 
equipment for wireless communication (Ethernet). What is new here is that these also include 
individual sensors and individual instruments. In this way, it is possible to implement wireless 
systems right out to the sensor level.

1.2 Structure

As we said, there are a great many types of PLCs on the market. Hundreds of suppliers 
include PLCs of various sizes in their stock. The smallest PLCs have relatively small memory 
capacity and calculating capability and usually limited or no capability for expansion of 
the number of I/Os. The largest have processor power equivalent to powerful computers, 

6 De facto is a Latin expression that means “actually” or “in reality.” De facto is the opposite of de jure, which means 
“according to law.” If something is de facto, it means something that is generally recognized. A de facto standard 
is  thus a standard that is so widely used that that everyone follows it as though it were an authorized standard. 
(Source: Wikipedia.)
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have a large number of I/Os, and handle multitasking.7 Such PLCs usually have a supervisory 
function (master) in an industrial data network where smaller PLC types can be incorporated 
as slaves.

If we make a simplification, we can say that a PLC functions in the same way that a com-
puter does. Schematically, we can break a PLC down into six major units as shown in 
Figure 1.5.

The main parts thus consist of a central processing unit (CPU), memory, power supply, circuit 
modules to receive and transmit data (I/O units), and communications modules. We can per-
haps also add displays/indicator lights since most of the PLCs incorporate LEDs that indicate 
the state of the PLC and/or the digital I/Os. Some also have displays that can furnish other 
information. In order for us to understand how a PLC operates and functions, it is necessary 
to look a little closer at the main components.

The main units are connected together with wires or copper strips called buses. All commu-
nications between the main parts of the PLC take place via these buses. A bus is a collection 
of a number of wires, for instance, eight, where information is transferred in binary form (one 
bit per wire in parallel). Typically, a PLC will have four buses: address bus, data bus, control 
bus, and system bus:

1. The data bus is used for transfer of data between the CPU, memory, and I/O.
2. The address bus is used to transfer the memory addresses from which data will be fetched 

or to which data will be sent. An address can indicate, for instance, a location down to a 
word in a particular register. A 16‐line address bus can thus transfer 216 = 65 536 different 
addresses.

3. The control bus is used for synchronizing and controlling traffic circuits.
4. The system bus is used for I/O communication.

Central Processing Unit
This is the brain of the PLC. Here are performed all of the instructions and calculations, and 
it controls the flow of information and how the program operates. Normally the CPU is a part 
of the physical block and contains the memory, communications ports, status indicator lights, 
and sometimes the power supply.

Central processor
(CPU)

Outputs 

Motors
Valves
Pumps
Lights
Alarms  

Switches,
sensors,
etc 

Inputs 

Power supply 

Communications

Memory 

Figure 1.5 Block schematic representation of a PLC

7 Can run several parallel program sessions simultaneously.
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Memory
The size of the memory varies from one brand of PLC to another, but the memory can often 
be expanded by installing an extra memory card, for instance an SD card. A PLC will com-
monly have the following memory units:

 • Read‐only memory (ROM) for permanent storage of operating system and system data. Since 
the information stored in a ROM cannot be deleted, an erasable programmable ROM (EPROM) 
is used for this purpose. In this way, it is possible to update a PLC operating system.

 • Random access memory (RAM) for storage of programs. This is because a RAM is very 
fast. Since the information in a RAM cannot be maintained without current, PLCs have a 
battery so that the program code will not be lost in the event of a power failure. Some PLCs 
also have the capability of program storage in an EPROM. RAMs are also used when the 
program code is running. This is used, for instance, for I/O values and the states of timers 
and counters.

 • Some PLCs offer the capability of inserting extra memory.

Figure 1.6 shows a typical memory board for a PLC that has an EPROM for a backup copy of 
the program.

Communications Unit
This unit incorporates one or more protocols for handling communications. All PLCs have a 
connection for a programming cable and often for an operator panel, printer, or network. 
Various physical standards are used, for both the programming port and for the ports for con-
nections to other equipment. Current PLCs are usually programmed from an ordinary PC with 
a programming tool developed for that particular type of PLC.

It is not always necessary to have a direct connection between the PLC and the PC in order 
to transfer the program code to the PLC. However, it is currently the most common approach—
at least for smaller systems. Sometimes, the programming can be performed via a network 
consisting of several PLCs and other equipment or via Ethernet. Some PLCs also have a built‐
in web server.

The development of instrumentation buses has enabled PLC manufacturers to supply built‐
in, or modular, solutions for communications via a large number of various protocols. 
Examples of such are the AS‐i bus, PROFIBUS, Modbus, and CANbus.

Built-in
RAM

FLASH
EPROM

ROM Operating system 

Data 

Program 

Constants 

User program
backup   

Figure 1.6 Typical memory board
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Current developments are toward expanded use of Ethernet as a protocol for high‐speed 
communications. Most manufacturers are offering solutions for this.

Power Supply
All PLCs must be connected to a power supply. Usually the power supply is an inter-
changeable module, but some smaller PLCs have the power supply as an integrated part of 
the processor and communications module. Even though the electronics in the PLC 
operate at 5 V, it is impractical to use this as an operating voltage. Most manufacturers 
therefore provide power supplies in several versions: 220 V AC, 120 V AC, and 24 V DC. 
If there is no access to power‐line voltage, a variant with 24 V DC can be the solution. 
Usually there is access to 24 V out in the facility since this voltage level is standard for 
most sensors and transmitters. The advantage of being able to use a power supply that 
connects to the power line is that there is often a 24V output on the unit that can be used 
for powering sensors.

It is practical to have the power supply as a replaceable module. Then the PLC can be used 
in other physical locations in processing where there is not access to the same voltage level.

1.2.1 Inputs and Outputs

This is the contact between a PLC and the outside world. In a modular PLC, all inputs and 
outputs take place in blocks or modules that are designed to receive various types of signals 
and to transmit signals in various formats. There are input blocks for digital signals, analog 
signals, thermal elements and thermocouples, encoders, etc. There are also output blocks for 
digital and analog signals as well as blocks for special purposes.

Every input and output has a unique address that can be utilized in the program code. The 
I/O modules take care of electric isolation to protect the PLC and often have built‐in functions 
for signal processing. This means that input and output signals can be connected directly 
without needing to use any extra electronic circuitry.

Chapter 2 deals with digital signals, sensors, and actuators, in Chapter 3 the theme is analog 
signals, and standard signal formats. On the next few pages, there follows only a general intro-
duction to the inputs and outputs of a PLC.

Figure 1.7 on the next page shows a sketch of a process section that is controlled by a PLC. 
Various signal cables are drawn in the figure for the sake of illustration.

The process is equipped with three pressure transmitters and one flow transmitter. These 
constitute the input signals to the PLC in the figure.

Based on these measurements, among others, the PLC is programmed to control two pumps. 
The signals to the pumps thus constitute the output signals from the PLC.

The figure also shows an example of how a PLC rack can be assembled. From left to right, 
we see the following:

 • The controller itself (CPU, memory, status lights, etc.) with built‐in Ethernet (the unit in this 
case also has a built‐in web server).

 • A power supply (can supply sensors and other small equipment).
 • I/O‐modules (digital outputs, tele‐modules, analog inputs and outputs).
 • End modules that terminate the internal communications bus.
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1.2.1.1 Inputs

Digital input signals generally have a potential of 24 V DC, while the internal voltage in the 
PLC is 5 V. In order to protect the electronics in the PLC, the input modules generally use 
optical couplers (optical isolators). An optical coupler consists primarily of a light‐emitting 
diode (LED) and a phototransistor.8 Figure 1.8 illustrates the principle.

The diode and the transistor are electronically separated, but light can pass between them. 
When the signal at the input clamping circuit is logically high, the LED will emit an (infrared) 

Inputs Outputs 

Service cable connection
and slot for extra memory

Power supply module 

Various I/O-modules 

End module Controller with
Ethernet coupler

Figure 1.7 Illustration of a process section that is controlled by a PLC

8 A phototransistor is a type of bipolar transistor with transparent encapsulation. When the base–collector junction is 
sufficiently illuminated, the junction is biased and the transistor becomes conductive.
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light. This light then triggers the transistor and results in a logically high signal in the electronic 
circuits in the module, where the potential is 5 V.

The gap between the LED and the phototransistor separates the external circuit from the internal 
electronics in the module. The internal electronics are thereby protected so that even though the 
PLC operates at 5 V internally, it is possible to use voltage levels at the input from 5 up to 230 V.

How much current an individual input can handle depends upon the engineering specifica-
tions of the input module in question. However, it is seldom that this is significant because 
most sensors have a low operating current.

Analog signals are fed into a PLC via analog‐to‐digital (A/D) converters. Converters are 
built into the analog input modules/cards. An analog signal is thus continually sampled and 
converted into binary values. Although in principle this requires only 1 bit for a low state input, 
often 16 bits are used to store values to an analog input.

1.2.1.2 Outputs

Standard digital output modules are often found in three different main types:

1. Relay outputs
2. Transistor outputs
3. Triac outputs

Relay Outputs
This type of output has the advantage that it can handle heavy loads and can be connected to both 
DC and AC loads at different voltages. When the CPU sets an output logically high, the associ-
ated output relay in the module in question closes and the external circuit to which the load is 
connected is completed (see Figure 1.9). The relay makes it possible for weak currents in the 
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Figure 1.9 Principle of a relay output
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Figure 1.8 Principle of an optical coupler
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PLC to activate loads in which currents up to several Amperes can pass. In addition, the relay 
provides isolation between the PLC and external circuits.

Transistor Outputs
Compared to transistor outputs, relay outputs are relatively slow. Another advantage that makes 
transistor outputs popular is that they are cheaper than relay output modules. As the name indi-
cates, such modules use transistors to complete the external circuits. It is this electronic switching 
that makes such modules significantly faster than relay modules, which switch with mechanical 
relays.9 The disadvantage of transistor outputs is that, unless one uses an additional external relay, 
they can only be used for switching DC. They also cannot handle wrong polarity and are particu-
larly sensitive to overload. Fuses with built‐in electronics are therefore used in order to protect 
these outputs. Optical couplers are also used for electrical isolation (see Figure 1.10).

The operation of the circuit in the figure is as follows: When the output address is set logi-
cally high by the program, the phototransistor conducts. This triggers the next transistor and 
this completes the external circuit. Series connection of transistors (often called Darlington 
circuits) is used to increase the current capacity of the output stage.

You can read more about relay and transistor outputs in Section 2.7.3.

Triac Outputs
Triac outputs are not very common. They are used in situations that require fast switching of 
AC. Such outputs are also extremely sensitive to overcurrent and are protected with fuses.

1.3 PLC Operation

As discussed earlier, a PLC operates, in principle, in the same way as a PC. This means that a 
PLC must be programmed in order for it to perform its tasks. For a PLC, this usually means 
controlling and monitoring a process. This somewhat diffuse concept is used as a generalized 
word to describe a limited physical environment:

 • A process can for instance be a room in a building with heating ovens, light, and ventilation. 
Then it can be the task of the PLC to control physical quantities such as temperature, CO

2
 

content, and humidity in the space.

Output 

+ 
_ 

%Q 

Load

Common 

Figure 1.10 Principle of a transistor output

9 So‐called solid‐state relays are now available which switch electronically. I do not know to what extent these will be 
adopted by manufacturers in production of output modules with relay outputs.
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 • A process can also consist of a conveyor belt with goods, sensors, pneumatic pistons, and a 
labeling machine. The task of a PLC would then typically be to control labeling of goods, 
count goods, sort them, and group them.

The word state is often used to describe the various operating modes of a process. What states 
a process has depends on the nature of the process (process type). A process can have, for 
 instance, the following states: Fill tank—agitate—heat—Drain.

The word state can also be used more specifically, for instance, for a temperature that has 
reached a certain value.

It is also the nature of the process that dictates what sensors and actuators are needed. 
Physical quantities that must be sensed can be distance, proximity, level, pressure, tempera-
ture, flow, velocity, rpm, etc. When the sensors that sense the physical quantities are connected 
to a PLC input module, the PLC has all of the information that is required in order to control 
and monitor the process. What is missing then are actuators and a user program.

 • The function of actuators is to operate upon and change the states of the process. The type 
of process therefore determines what activators are required. These can be pumps, valves, 
switches, or motors.

 • The user program employs available information from sensors, internally stored data, 
and the state of outputs to make decisions and calculate new output signals to the 
actuators.

Software
In almost all cases, there exist dedicated data tools for development of programs. Users can sit 
in the office and work on program code until they are sure that it is going to function in the 
PLC. Many of these programming tools have built‐in functions for error detection and simu-
lation, something that makes the job significantly simpler. When the user has finished program-
ming, the PLC can be connected to the PC via a dedicated programming cable, and the 
program can be transferred from the PC to the PLC. When this has been done, the PC can be 
disconnected and the PLC is ready to perform its control tasks.

1.3.1 Process Knowledge

Before a PLC can be programmed, it is necessary to have good knowledge about the process 
(the part of the facility) that the PLC is going to control. Good understanding of the process is 
important in order to obtain good results, and sometimes it is necessary in order to get the 
control to function at all. This can be a time‐consuming part of the job and often implies 
access to the understanding that operating personnel are familiar with. Remember that no one 
knows a process better than the people do whose daily job it is to make it work. Having said 
this, remember that operating personnel often have strong opinions about the process and how 
it should function and be controlled and that this is not necessarily the optimum way of doing 
things. It can be difficult to think in a new direction and to see other possibilities when things 
have been done in the same way for a long time.

Try to obtain available documentation such as engineering data, wiring diagrams, reporting 
forms, troubleshooting guides, maintenance SOPs, and the like.
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I/O‐Lists
An I/O‐list is a basic part of choosing the correct PLC and the right accessories. The I/O 
list must therefore contain an overview of all of the required input and output signals. It is 
natural to group these by type, such as digital and analog. The analog can be further 
grouped according to standard signal formats, such as 4–20 mA, 0–10 V, type of tempera-
ture sensor, etc. Sometimes, the special signal formats impose extra requirements on 
hardware.

The digital signals can also be grouped. For instance, there are counter inputs and inte-
gral counter modules that measure pulses with higher frequencies than a normal digital 
input can tackle. An example of such a rapidly changing signal is a signal from an 
encoder,10 which is a type of equipment that can be used for counting rpm and positional 
control.

Should the input blocks be of the sink or source11 type? The type of actuator affects the 
selection of the proper type of output blocks: Should you use relay outputs or transistor out-
puts? How should the various actuators be supplied?

In addition to the flow of the process, desired performance and requirement for sensors, 
actuators, and I/O modules, it is also necessary to evaluate other aspects in and around the 
operation:

 • Safety of personnel
 • Any danger of fire or explosion
 • Provision of alarms

Safety
This is a comprehensive theme that I am only going to touch on here. There are naturally laws 
and regulations concerning safety and I merely refer to those. At a minimum, you can try to 
describe what should happen in the event of a power failure, communications breakdown, 
activation of stops and emergency stops, etc.

Safety for humans and animals is something that must be taken extremely seriously. 
For instance, if a person is caught in a drive mechanism, then the actuator in question 
must be deactivated and an alarm sounded, at a minimum. In a power failure, you must 
decide whether the control should start again from where it stopped when the power 
failure happened, or whether it should be started anew. The same is true of a communica-
tions breakdown. There should be built‐in monitoring of communications between the 
PLC and the HMI/SCADA12/operator panel so that the control is not cut off from manual 
override.

Almost all process facilities will also have one or more emergency stops, motor moni-
tors, and the like. How to handle such events must also be described for later 
programming.

This also applies to switching over between automatic and manual control in a regulator, 
even though this is not so critical. This is often a natural portion of the process control.

10 See Section 2.4.5.
11 See Section 2.5.1 on page 48.
12 Human–Machine Interface/Supervisory Control And Data Acquisition.
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Provision of Alarms
Even though it is important to provide alarms in order to indicate when something has 
 happened, it often turns out that an operator is drowning in alarms. Make a careful evaluation 
of which signals need to be specially monitored, what breakdowns must be handled by the 
PLC, and what the human–machine interface should handle, for instance.

The provision of alarms and safety will be significant considerations in how the program is 
organized (split up and grouped into critical and less‐critical sections of programming).

Programming Situations
In order to simplify the programming, even at this stage it can be useful to formulate something 
about the flow in the process. It is easy to identify the flow when processes proceed from one 
state to the next in a particular order (e.g., filling—heating—agitating—draining).

Sometimes, several things happen simultaneously, or in parallel, and sometimes manual 
activities or process‐controlled events decide what should be the next step in the sequence. 
It is often good to describe these sequences in words and/or by the use of a flow chart, state 
diagram, or the like. Which signals and events affect the transition from one step to the next in 
sequence? How should the various steps be performed? Which actuators should be activated 
and when should they be activated?

Sometimes, the process to be controlled is of such a nature that the transition from one state 
to another does not follow a predetermined pattern, but rather proceeds in a more random 
pattern. Such systems are referred to as combinatoric (despite the fact that the output states 
may well be a function of time as well). For such systems, it may be advantageous to use a 
slightly different procedure to develop the algorithms for control. There are methods that can 
be used to determine these algorithms in a systematic way and one of these will be described 
in Chapter 4.

1.3.2 Standard Operations

A process is in continual change. Even though the process has approached a stationary state, 
for instance, the fluid level in the tank has reached 80%, there will be disturbances in the 
form of pressure‐drop in tubing, changed withdrawal of fluid and the like, that require that 
the PLC  continually monitor the state of the input signals and correct the output signals. All 
PLCs in normal operation13 therefore perform the same four operations14 in a repeating cycle 
(Figure 1.11):

1. Internal processing
2. Read inputs
3. Program execution
4. Update outputs

13 By this we mean a PLC that is in RUN mode. Other typical modes are programming, stop, error, and diagnostic 
(troubleshooting).
14 This is a somewhat broad‐brush treatment since the CPU is performing minor operations in addition to those men-
tioned. For instance, the CPU checks to what extent any of the inputs or outputs are forced to particular states by the 
user (the programmer). In addition, communications tasks are performed as mentioned under Internal processing.
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Internal Processing
A PLC always checks its own state before it performs user‐related operations. If a response 
from hardware such as I/O or communications modules is lacking, the PLC gives notice of this 
by setting one or more flags. A flag is an internal Boolean address that can be checked by the 
user and/or an associated display or indicator light that gives a notification to the operator of 
an error state. For serious errors, normal operation is interrupted and the system goes over into 
an error state. Errors on individual inputs and individual outputs are also reported by setting 
flags. An example is when a system measures 0 current at an input configured for standard 
4–20 mA signal or when an output is overloaded.

Software‐related events that are performed in the internal operation are updating clocks, chang-
ing modes between run, stop, and program and setting watchdog15 times to zero, among others.

Read Inputs
In this operation, input status is copied over to memory. How long this takes depends on the 
number of input modules and the number of inputs at each module that is in use. Analog inputs 
take significantly longer to read since this involves digitization of the analog values. In order 
not to reduce the update frequency of outputs, the PLC does not wait for new values to be 
available, but rather continues with the next operation in the cycle. This means that even 
though the physical values change continually, the same measured value can be used many 
times before an updated value is accessible in the memory.

Why copy the values to memory instead of reading the values where they are used in the 
program code? There are two reasons for this. First, it is quicker to read in all the values in the 

Internal
processing 

Read
inputs

Program
execution

Update
outputs 

Figure 1.11 Operations that are performed in RUN mode

15 These are timers that the system uses to prevent the performance of an operation lasting longer than a determined 
maximum time. If the system is not ready to execute the user program within a half second, for instance, it may be 
that the program does not come out of a while‐loop or the like. This results in an error state.
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same operation. More importantly, this avoids possible problems when the same input address is 
used at several places in the program code. If the state of the input changes during the course of 
program execution, this can have serious consequences for the result of the program. A minor 
disadvantage of having the input values read simultaneously is that the system overlooks input 
pulses of a duration shorter than the total scan time (cycle time). See Section 1.3.2.

Program Execution
Execution of the program code takes place primarily in the order in which the code is written 
by the user. Smaller programs can be written in a coherent block of code, but larger pro-
grams require a different structuring of the code. The IEC 61131‐3 standard defines guide-
lines for assignment of priority. Interruption routines and supervisory routines are assigned 
a higher priority than the main program. Activation of emergency stops is a common event 
that should cause interruption in the execution of the main program. Other reasons for 
changing the sequence of execution are conditional jumps or calls of subroutines, functions, 
and function blocks.

During the course of program execution, internal variables and output addresses are updated in the 
memory. The physical change in output values, however, is not changed until the final operation.

Update Outputs
In this last operation in the cycle, the output memory is read so that the state and values of the 
digital and analog outputs are updated. Later on in the book, we will see that the fact that the 
outputs are not updated until after the program code has been executed can be significant for 
how the program code is designed.

Note that a PLC in stop mode continues to perform in internal processing and read the 
inputs. The outputs are either set to a user‐defined state/value (fallback) or maintained in their 
final state.

1.3.3 Cyclic, Freewheeling, or Event‐Controlled Execution

The four operations described earlier are repeated continually, as discussed. Each cycle of 
operations is called a scan, and the time it takes the system to perform a scan is called the scan 
time or the cycle time. This is proportional to the size of the program, memory capacity, and 
type of processor. Usually this amounts to milliseconds and the cycle is repeated several times 
per second.

The effective scan time can vary from one scan to the next. In a scan, a new event may have 
suddenly appeared, one that activates a different part of the program code. In most types of 
PLCs, however, it is possible to configure where and how often a new scan is performed. 
Control of the manner in which the program is executed is achieved by associating the program 
to a task.16 The three common modes in which a task is executed are as follows:

1. Cyclic
2. Freewheeling
3. Event‐controlled

16 The concept of task will be further described in Section 5.3.
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Cyclic execution is based on having a fixed interval between the start of each scan. This 
interval must naturally be set long enough so that the execution of a single scan does not 
exceed the interval time. Such a control of execution speed can conveniently be used in the 
program code for counting and timing, for instance. A program block that includes a regulator 
is an example of code that should (must) be executed at fixed intervals.

With freewheeling execution, a new scan begins as soon as the previous one has completed. 
Because the code can contain many event‐controlled events, the scan time can vary somewhat 
from one scan to the next. This is the fastest way of running a program.

Event‐controlled execution is based on having the task (with associated program) be exe-
cuted only if a (Boolean) condition is fulfilled. This can be useful in a program that normally 
is not to be performed and that is to be triggered by a particular event. An example of such a 
program could be emergency stop routines, startup routines and other extraordinary events.

One can also control how often the CPU scans a particular program unit by assigning a pri-
ority to the task(s). Tasks with higher priority will be monitored and scanned more often. Such 
tasks will typically contain important program units that manage critical events such as 
emergency stops or alarms.

Such control of executing and prioritizing program code makes it possible to build up 
 multiapplications and/or a hierarchic structure of program units.

1.4 Test Problems

Problem 1.1
(a) What type of control was replaced by the PLC?
(b) What advantages are achieved by the use of a PLC?
(c) Name some differences between a newer PLC and the PLC from the 1970s.
(d) Most PLCs have a battery. Why do you think they have one?
(e) What is a CPU?
(f)  Select a random PLC from a randomly selected manufacturer and do an Internet search for 

the various modules for the PLC. Make a list of at least 15 different modules that can be 
installed in the rack for the selected PLC.

Problem 1.2 
(a) Name some advantages and disadvantages of transistor outputs and relay outputs.
(b)  What is the purpose of an optical coupler and what two basic components does it 

contain?
(c) List the operations that a PLC performs during the course of a scan.
(d)  What is the reason that a PLC checks the status of all inputs before each scan before the 

program code is executed and not during execution?
(e) What are cyclic execution and freewheeling execution?
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Digital Signals and Digital Inputs 
and Outputs

2.1 Introduction

This chapter begins with an orientation on logical input and output equipment such as various 
sensors and transmitters and actuators. There is a huge number of available input and output 
devices on the market. Only a number of classic devices will be presented here. We therefore 
advise the reader to investigate what possibilities are on the market in order to choose equip-
ment that is best suited to the task at hand.

The chapter also discusses connecting (discrete) input and output equipment to a program-
mable logic controller (PLC).

A digital (or logical) sensor usually comes equipped with a transmitter with standard 24 V 
output and is therefore well adapted to PLCs. What is most important about connections is 
polarity and common reference potential.

2

Chapter Contents

 • Switches:
Buttons, limit switches, safety devices, magnetic switches

 • Detectors—Logical sensors:
Inductive sensors, capacitive sensors, photocells, ultrasound sensors, rotation sensors 
(encoders) RFID

 • Connecting logical sensors:
Two‐ and three‐wire sensors, various sensor outputs, positive and negative logic (sink 
and source, NPN, and PNP), standard input types

 • Digital outputs and actuators:
Relays, contactors, solenoids, magnetic valves, connectors
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In order for a PLC to be able to read the values at the inputs and transmit values at the outputs, 
the PLC must be configured. This is done with the aid of a software tool that is associated with the 
PLC type in question. Configuration of PLC blocks and modules is not the theme of this chapter, 
but we will review some properties that are typical for digital input and output modules.

There are also many input and output devices that are designed for connection to various 
fieldbuses, Ethernet, and other more specialized communications protocols. Physical princi-
ples and areas of application are nevertheless the same.

2.2 Terminology

Here we will attempt to define a number of concepts that are essential in our discussion of 
signals and sensors. In an academic context, it is important to utilize a terminology that is 
unambiguous and which preferably originates from concise definitions. However, this is not 
always the most reasonable approach in a practical context. Here one must keep in mind the 
goal of the usage of the terminology. In most situations, it is more important to be able to 
understand and make oneself understood than to use concepts that are perhaps more correct. 
The terminology that is presented here is therefore a mixture of definitions and “de facto con-
cepts” (concepts that are widely used among manufacturers, suppliers and users, but which are 
not standardized).

Here we shall study the concepts of discrete, digital, logical, binary, Boolean, sensor, 
 transducers, and transmitter.

2.2.1 Discrete, Digital, Logical, and Binary

There are signals all around us in one form or another. We can divide signals into two general 
classes: namely continuous (analog) and discrete.

A discrete signal is a signal that is defined only at particular moments in time.

Typically, such a signal originates from sampling of an analog signal. A discrete signal will 
then consist of a sequence of quantities called samples that are uniformly separated in time 
(see Figure 2.1). We call the separation in time between each sample the sampling period, and 
the inverse of this is the sampling frequency.
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Figure 2.1 Illustration of a discrete signal
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A digital signal is a discrete signal that can assume only a limited set of values. 

A digital signal typically originates from quantifying a discrete signal (see Figure  2.2). 
What happens in quantification is that each discrete value is rounded off to the nearest permis-
sible digital value. In practice, it is a number of possible powers of 2, for instance, 28 (256) or 
216 (64 536). This is connected with how many bits are used to represent the values in a PC or 
a PLC, for instance. You can read more about sampling and quantifying in Section 3.2. A 
binary signal is a special variant of the digital signal that has only two permissible values. We 
like to call these values (logically) “low” and “high” values. Electrically, these values can be 
represented by 0 and 5 V or 0 and 24 V, for instance. It is also common to use the word state. 
A variable (quantity) that can assume only two possible values is called a logical or Boolean 
quantity.

In the binary number system, the figures 1 and 0 are used to show the state of the logical 
quantity and in mathematics the concept of TRUE/FALSE is used.

In the context of programming, it is perhaps most common to use this latter form even 
though many compilers accept the use of 1 and 0 as well.

2.2.2 Sensors, Transducers, and Transmitters

As mentioned in the introductory section, there are many words and concepts in circulation 
that refer to the same things. Normally this is not a problem because everyone in the industry 
knows that this is the case. Nevertheless, sometimes misunderstandings can occur, and there-
fore it is reasonable to try to clarify some concepts.

The following definitions originate from the IEEE1 1451.2 (Institute of Electrical and 
Electronics Engineers, 1997):

 • Transducer: A transducer is a device that converts energy from one form to another.
 • Sensor: A sensor is a transducer that converts a physical, biological, or chemical quantity to 
an electrical signal.

 • Smart sensor: A smart sensor is a transducer that offers functions beyond those offered by a 
regular sensor.

 • Actuator: An actuator is a transducer that converts an electrical signal to a physical motion.
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Figure 2.2 Digital signal

1 IEEE—Institute of Electrical and Electronics Engineers.



Digital Signals and Digital Inputs and Outputs 23

As we see, the word “transducer” is a very general concept that can be used for a number of 
different devices. Some examples of transducers are as follows:

 • Electric motor: Electrical energy to mechanical energy
 • Switch: Mechanical to electrical energy
 • Microphone: Acoustical to electric energy
 • Loudspeaker: Electrical to acoustic energy
 • LED: Electrical energy to light

Some people will perhaps react to the use of the word “sensor” and say that the signal from a 
sensor does not necessarily have to be electrical. A somewhat more generous definition of a 
sensor could be:

A sensor is a unit that reacts to a change in a physical quantity and generates a signal that can be 
measured or interpreted.

The problem is that all of these concepts can be used interchangeably, both in literature and in 
catalogs, manuals and specifications from manufacturers and distributors. Some use the first def-
inition, that a sensor is a complete unit that reacts to a change in the physical quantity and converts 
this change to an electrical signal. Nowadays, this is not completely correct because the electrical 
signal from a commercial sensor is usually linearized, filtered, and standardized (e.g., to 4–20 mA).

Others use the word transmitter (e.g., level transmitter) for a complete unit, while others use 
the concepts sensor + transmitter as illustrated in Figure 2.3. This terminology is extremely 
common. In particular, this is true of temperature sensors such as thermocouples and resis-
tance temperature detectors (e.g., PT100). For such sensors, there are transmitters that can be 
ordered separately. An example of the structure of a sensor i shown in Figure 2.4.

Even though it is perhaps not entirely correct, in this book we will (generally) use the word 
sensor for a complete unit that outputs a standardized electrical signal (Figure 2.5).
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Figure 2.3 Common terminology
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Figure 2.4 Illustration of sensor with built‐in converter (Pepperl+Fuchs.)
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There will also be a distinction between sensors that provide a binary signal, that is, they 
have two output states and sensors that produce an analog (continuous) signal.

This latter will be referred to only as a sensor, while the former will be referred to as a 
logical, discrete, or digital sensor/detector/transducer:

A discrete sensor/detector/transducer is a unit that reacts when a change in a physical quantity 
exceeds a certain threshold or limit and which closes or opens an electrical contact via an 
electronic output stage.

2.3 Switches

By switch, we mean here a mechanical unit where a contact closes when the switch is operated 
or activated. Switches are used in this context mostly for various starting and stopping 
functions or to detect when something has come into a predetermined position.

Switches come in many varieties depending upon the application. There can be flip‐flop 
switches, start/stop switches, toggling2 switches (a push‐button that switches between off and 
on when operated), spring‐loaded pushbuttons, emergency stop switches, limit switches, 
safety devices, etc. Even though design, application, and size vary, what switches have in 
common is that they have two states (on or off, closed or open, activated or not activated, etc.).

Figure 2.6 shows some variants of what we can call manual switches.

2.3.1 Limit Switches

Another group of switches includes limit switches. Such switches are placed so that they are 
activated when a moving part comes into a predetermined position, and often this position is 
the end of a motion. This gives them the name of limit switches or end‐stop switches.

In contrast to the switches shown in Figure 2.6, limit switches are activated automatically by a 
mechanical motion. Examples might be a piston that comes into a certain position or an item on a 
conveyor belt that passes a certain point. Figure 2.7 shows some versions of limit switches. Most 
are spring‐loaded to protect the switches. Some have wheels placed on the part that comes into 
contact with the moving equipment, while others only have a pin, rod, or the like as a contact point.

2.3.2 Safety Devices

Figure 2.8 shows examples of some safety devices that function as switches. Such devices are used 
to reduce the risk of injury to operating personnel and for stopping machinery quickly and simply.

Standardized
electrical signal

Sensor
Physical
quantity

Figure 2.5 The terminology that will be used in this book

2 Not to be confused with a toggle switch, a switch, usually small, single‐pole and single‐throw that is operated by a 
short, round lever that moves through a small arc.
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Figure 2.6 Various switches (Reproduced with permission from Schneider Electric)

Figure 2.8a shows a light barrier. These are most often used to break the power to moving 
machinery if something or someone interrupts a beam of light. (This is actually not a switch 
as it is been defined here, but rather a type of discrete (photoelectric) sensor. Read more about 
photocells on page 36.)

Figure 2.8b shows a cord‐pull switch. Inside the unit, there is a cord stored on a spring‐
loaded wheel. This cord can be extended and fastened, for instance, along the length of a 
machine and then the wheel locked. When the cord‐pull is locked any tension on the cord will 
immediately interrupt the current and the machine will stop.

Figure 2.8c shows a two‐hand switch panel, where two buttons must be pushed simulta-
neously in order to start a machine, for instance, a press or a plate cutter. This keeps the 
 operator from having a free hand that could get into the press.

2.3.3 Magnetic Switches

A magnetic switch is a general designation for electromagnetic switches where electrical 
energy is transformed into mechanical motion. These are often called solenoid switches. 
Sometimes, the concept of magnetic switch is used for a type of switch called a reed switch, 
and we are going to do that here. This type of magnetic switch typically consists of two 
 overlapping springy strips of material containing iron, encapsulated in glass or plastic. The 
contacts can be of the normally open (NO) or normally closed (NC) type.

In the normally open type of magnetic switch, the two strips do not contact each other in the 
initial condition (see Figure 2.9). If the switch is in the presence of a magnetic field from a 
permanent magnet or a solenoid coil that comes close enough (typically 1 mm), the strips will 
become magnetized and press against each other. This closes the contacts. A normally closed 
variant works in the opposite way.

The switches can be purchased as independent components, or incorporated into unit 
together with a relay ready for use for various voltage levels and current loads. Since the 

Figure  2.7 Limit switches in many variants (Telemecanique) (Reproduced with permission from 
Schneider Electric)
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contact surfaces are encapsulated in a hermetically sealed container, the contacts are not sub-
ject to corrosion. Encapsulation of the contact points also means that the switches are well 
suited for use in areas where there is danger of explosion.

Magnetic switches are used for many purposes. One example is burglar alarms where they 
are placed on the frames of windows and doors. When a window is opened, the contacts in the 
switch open and the alarm goes off.

2.4 Logical Sensors

The other main group of units is the logical sensor. Another common name is detector. Logical 
sensors function in principle as follows:

When a physical quantity changes beyond a defined limit, the sensor’s output goes logically 
high or low. In contrast to switches, which are activated mechanically, sensors are activated 
electronically because of a change in a physical quantity. The physical quantity can be dis-
tance, fluid level, temperature, etc. Logical sensors are used for detection of process states but 
provide only information on whether a state is true or false. An example of such a sensor is a 
thermostat that is used to connect or disconnect the power supply to a heating oven. As exam-
ples of industrial logical sensors, we can name inductive and capacitive proximity detectors, 
ultrasonic detectors, and photocells.

Applications cover a wide spectrum, but the following requirements frequently appear:

 • Monitoring the presence or absence of an object.
 • Determining the angular or linear position of an object
 • Monitoring the motion of objects or obstacles to objects
 • Determining the presence (or level) of a gas or liquid
 • Counting

Figure 2.9 Principle of operation and an example of a reed switch

(a) (c) (b) 

Figure 2.8 Some safety devices (Reproduced with permission from Schneider Electric)
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In order to meet these requirements, many different physical principles and combinations 
are used:

 • Mechanical, such as pressure or force (electromechanical limit switches)
 • Electromagnetic field (inductive proximity detectors)
 • Illumination or light reflection (for photocells)
 • Capacitance (capacitive proximity detectors)
 • Acoustic (ultrasonic sensors)
 • Fluid pressure (pressure switches)

Sensors can also have various types of output stages. Some sensors have an output that is an 
electromagnetic switch, but most of them have an output unit that is a transistor circuit (e.g., 
transistor–transistor logic or TTL). Most sensors used in PLC applications are standardized at 
24 V for all applications.

However, there is nothing obligatory in having 24 V represent logical 1 (high state of sensor 
output) and 0 V represent logical 0 (low state of sensor output). In Europe, this is most common 
and is called positive logic. Sensors with PNP output function in this way.

If the voltage that represents logical 1 is lower than the voltage that represents logical 0, it 
is called negative logic. Sensors with NPN outputs function in this way. It is important to 
keep this in mind when ordering sensors since the two output types cannot always be used 
simultaneously on the same input module. This subject will be thoroughly reviewed in 
Section 2.5.1.

Note that several of the sensor types that are presented here are based on physical phe-
nomena that can also be measured continuously. For instance, there are ultrasound‐level 
meters and ultrasound‐level detectors. The former type provides an analog signal that is pro-
portional to the fluid level in a tank, for instance, while the latter type (the level detector) is 
discrete and the output shifts between off and on when the fluid surface is below or above a 
certain level. Many of these sensors could just as well be presented in Chapter 3.

2.4.1 Inductive Sensors

Inductive sensors or inductive proximity detectors utilize a physical principle that means that 
they can function for detection of objects containing iron. Together with capacitive proximity 
detectors (see Section 2.4.2) and photocells, they are one of the fundamental components used 
in industrial automation.

They are also contact‐free, that is, they do not make contact with the objects that they 
detect. In this way, there is no mechanical wear taking place. This means that such sensors 
have a long service life and require little or no service.

The sensors consist, in principle, of a coil that has wire wound around an iron core. The coil 
is connected to a capacitor and together these two form an oscillator. This oscillator sets up a 
high‐frequency (typically 100 kHz to 1 MHz) alternating electromagnetic field in the core and 
in the vicinity of the sensor surface. When one end of the core comes close to a metallic object, 
the total AC resistance (the reluctance) decreases because this is much lower for iron than for 
air. This change in turn leads to an increase in current in the sensor’s circuits, which then 
 activates an electronic switch (see Figure 2.10).
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Figure 2.11 shows some inductive sensors of various designs. Practical detection distances 
between sensor and object varies from a few millimeters to a few centimeters. There are also 
analog designs: sensors that give an analog signal that are proportional to the distance from the 
object. These can be used to measure both linear and rotational movements and distances but 
have the same limitations with respect to the distance to the object.

Figure 2.12 shows a couple of applications of inductive proximity detectors. In the example 
of the left, one detector is used to detect the presence of a food can, while another checks that 
there is a cover on the can. In the example on the right, an inductive detector is used to sense 
the RPM or the position depending upon whether the PLC measures the time between the 
pulses or counts the number of pulses.
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Figure 2.10 Inductive detector—principle (Reproduced with permission from Schneider Electric)

Figure 2.11 Inductive sensors (Reproduced with permission from Schneider Electric)
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2.4.2 Capacitive Sensors

Capacitive proximity detectors can, in contrast to inductive ones, be used to detect all types of 
objects and not metallic objects alone. Examples can be water, glass, plastic, wood, metal, etc. 
The physical principle utilized is the same as that of a plate capacitor: the shorter the distance 
between the plates, the greater the area of the plates or the higher the permittivity in the 
dielectric yields higher capacitance. This is expressed by the formula

 
C

A

d
0 r

 

A is the area of the plates, d is the separation between the plates, ε
0
 is the permittivity of air, 

and ε
r
 is the relative permittivity (relative to air). 

An oscillating electric field is used to detect this change in capacitance by generating a 
current. When the field changes beyond a certain limit, the sensors output (relay or transistor 
output) is activated.

Capacitive sensors come in two main versions. The most common type can detect any 
object regardless of material. In this type, both plates are built into the sensor (see Figure 2.13). 
Since the plates have a given area and the distance between them is fixed, the capacitance can 
be changed only by a change in the permittivity. Without any object by the sensor, the dielectric 
consists only of air and the relative permittivity is equal to 1. With an object in its place next 
to the sensor, the relative permittivity increases and the capacitance increases.

The other main type can detect conductive objects such as metal or water and also functions 
at a greater distance. This can take place even when the object is behind an insulating material. 
An example of such an application is detection of a fluid level in a plastic tank. This main type 
has one plate built into the sensor while a fastening bracket, a machine cover or the like, to 
which the sensor is attached, constitutes the ground electrode.

An illustration of the principle for this type is shown in Figure 2.14. The illustration at the 
left in the figure shows the electric field without an object nearby, while the illustration on the 
right shows the field when a metallic object is in the vicinity.

Figure 2.12 Examples of use of inductive sensors (Reproduced with permission from FESTO)
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The property that is utilized here is a change in the effective separation between the plates. 
This can be formulated as follows:
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where e is the thickness of the metallic object.
Figure 2.15 shows some capacitive sensors of various sizes; the sensing distance varies 

from 2 to 15 mm.

2.4.3 Photocells

Photocells, or photoelectric detectors as they are also called, contain an emitter that sends 
out light and a photodetector that detects incoming light. Light that is emitted from the light‐ 
emitting diode is usually infrared. This wavelength is chosen to reduce the problem of 
 photodetectors becoming confused by other illumination.

Figure 2.13 Principle of capacitive sensors with built‐in ground electrode (Reproduced with permis-
sion from Schneider Electric)
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Figure 2.14 Principle of a capacitive sensor for conductive materials (Reproduced with permission 
from Schneider Electric)



Digital Signals and Digital Inputs and Outputs 31

There are also photocells that operate on other wavelengths in order to be able to distinguish 
objects of different colors. Such photocells are called color sensors. 

Photocells are found in three major versions: Transmitting, reflecting, and retroreflecting. 
The difference between versions is the placement of the photodetector and the ability of the 
object to be detected to reflect light.

 • The transmitting type is based on transmitter and receiver in separate units that are placed 
on either side of the object that is to be detected. When an object comes between the units, 
the light beam is prevented from reaching the photodetector. This is illustrated in 
Figure 2.16a. The advantage of this type is that the detection distance can be great (several 
tens of meters, depending upon the lens of the transmitter), even though it may be very dif-
ficult to install a transmitter and receiver in line when the separation gets up to 10 m or more. 
The difficulty is that there are two units, both of which require a power supply.

 • In the reflecting type, the photodetector is built into the same unit as the emitter. If the 
object is of such a nature that it can reflect the light, the photodetector will record when 
the object passes (Figure 2.16b). Both the shape and the color of the object are significant 
in how well this functions, along with color of whatever lies behind the object. For a 
given separation, a white object can be simpler to detect than a gray or black object. If 
the  background has a lighter color than the object, this can make detection nearly 
impossible.

 • If the object is not suitable for reflected light, a reflective surface can be installed on the side 
opposite. In this case the photodetector will receive light until an object interrupts the beam 
(Figure 2.16c). This variant is called retro‐reflecting. The detection difference can be very 
large here as well; possibly up to 20 m. The use of this type can be difficult if the object has 
a smooth or reflective surface such as a window or a polished metallic object. Then the sen-
sor can mistake the object for the reflective surface.

There are also special variants of the retroreflecting type that utilize polarized light. The 
transmitted light is polarized (vertically) by means of a linear polarizing filter. The reflective 
surface changes the polarization in portions of the light such that it is returned as horizontally 
polarized light. The object, however, does not change the polarization. In this way the detector 
can distinguish between light reflected from the object and light reflected from the reflective 
surface.

Figure 2.15 Examples of capacitive proximity detectors (Reproduced with permission from Schneider 
Electric)
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It is also possible to combine photocells with optical fibers. In such equipment, a fiber cable 
is placed between the transmitter and the detection region between the detection region and 
the receiver (see Figure 2.17). This arrangement can be used if:

 • The object to be detected is very small (millimeter size),
 • The photocell must be located away from the detection region,
 • The detection region is in an explosives area or the temperature is high.

The advantage of photocells is that they are very versatile and can be used for detection of 
objects at distances ranging from a few millimeters to several tens of meters.

If the detection distance is small, one should evaluate the use of a capacitive or inductive 
sensor because these are significantly cheaper. A disadvantage of photocells is that they stop 
working if they become contaminated since the detection principle is based upon light.

Figure 2.18 shows photocells in various versions.
Another type of optical sensor is the laser sensor. These differ from photocells in that the 

light that is transmitted is a laser light (from a laser diode). Such sensors are used in cases 
where there is a requirement for a high degree of precision because the resolution can be as 
good as a few microns.

The analog versions can also be used to undertake extremely accurate measurements. 
The digital versions are used more in quality inspection.
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Figure 2.16 (a) Transmitting type, (b) reflecting type, (c) retroreflecting type
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Figure  2.17 Optical fiber combined with photocells (Reproduced with permission from Schneider 
Electric)
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2.4.4 Ultrasonic Sensors

An ultrasonic sensor functions in a way similar to that of the photocell of the reflecting type. 
The difference is that the unit transmits sound pulses instead of light. The frequency of the 
sound is above the range of hearing for people (>20 kHz), up in the so‐called ultrasonic region. 
The sound waves are generated by means of an electroacoustic transducer (piezoelectric 
element). The applied electric energy (AC) is transformed into mechanical vibrations in the 
form of sound waves (see Figure 2.19). 

The sensor is based upon the echo principle. When an object passes the sensor, emitted 
pulses are reflected and these are picked up by the sensor’s built‐in receiver unit. It is also 
 possible to use the principle for an analog variant of the sensor. Here the time between the 
transmission of the pulse and its reception is calculated by a built‐in electronic circuit. This 
time is proportional to the distance to the object (e.g., to the fluid level in a tank).

The velocity of sound in air at 20° C is approximately 340 m/s, so at a distance of 1 m, for 
instance, to the object it takes about 3 ms for a sound pulse to be transmitted, reflected, and 
recorded at the receiver.

Ultrasound sensors are typically used for distances less than or equal to 1 m, but there are 
versions that can sense over longer distances (<10 m). An advantage of ultrasound is that the 
sensor can detect all objects, no matter what the color or shape.

Just like photocells, ultrasonic sensors are also used in three configurations: reflecting, 
retroreflecting, and transmitting.

Figure 2.18 Photocells (Pepperl + Fuchs)
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Figure 2.19 Principle of an ultrasonic sensor (Reproduced with permission from Schneider Electric)
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2.4.5 Rotating Sensors (Encoders)

Encoders are used for positioning, rpm control, and speed control.
A widely used principle for encoders is to utilize light. An optical encoder consists in prin-

ciple of one or more sets of light emitting diodes and photodetectors (phototransistors) and a 
disk. The disc, which is attached to the shaft of an encoder and physically fixed to a machine 
or motor that is to be monitored, has small holes evenly distributed around the disc. When 
light from the emitting diode passes through the holes in the rotating disk, light pulses are 
detected by the photodetector. Either these pulses of light can be counted in order to measure 
an angular displacement or the pulse frequency can be used as a measure of the rotational 
speed (see Figure 2.21).

The resolution of an encoder is determined by the number of holes that the rotating disk has. 
The disc that is illustrated in Figure 2.21 has 12 holes. This gives a resolution of 360°/12 = 30°. 
With 60 holes in the disc, the resolution becomes 6°. By using more light sensors and placing 
holes in several rows, one can obtain a resolution of fractions of a degree.

The resolution can also be improved (double for the same rows of holes) by detecting both 
the rising and falling flanks of the received light pulses. In other words, by detecting when a 
hole on the disc arrives at the photocell and when the hole leaves the photocell.

It is important to distinguish between the resolution in the number of degrees and the 
physical accuracy of the machine motion that the encoder is to monitor. If the encoder is 

Figure 2.20 Ultrasonic sensors (Reproduced with permission from Schneider Electric)
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Figure 2.21 Principle of encoder with one row of holes
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mounted on a converter mechanism to measure a linear motion, for instance, with the purpose 
of cutting a workpiece into suitable lengths, the physical accuracy can be calculated as follows:

 

Linear movement per revolution
Accuracy in degrees

360  

Encoders come in two main versions: incremental and absolute.
With an incremental encoder, the PLC must count the pulses transmitted by the encoder 

(relative to a starting time or a starting position) in order to obtain the angle or the position. 
The number of pulse trains they transmit varies. The simplest can have just one row of holes 
and therefore one pulse train.

Figure 2.22 shows a common variant with three pulses that are sent out on separate outputs 
(channels). The signals are designated A, B, and 0. The pulse trains on channels A and B are 
phase‐shifted 90° relative to each other. This makes it possible to determine in which direction 
it is rotating. If we receive a rising flank for A before B, the rotation is clockwise, and the 
reverse if B comes first. On channel 0, there is only one single pulse that is used to record the 
number of revolutions that the encoder makes.

An absolute encoder reports that the actual angle or position in the form of a binary signal. 
The number of bits is equal to the number of rows of hole tracks. Figure 2.23 shows the prin-
ciple of an absolute encoder that has three hole tracks. The number of positions that can be 
distinguished from one another is in this case 23 = 8, which gives a resolution of 360°/8 = 45°. 

It is common to design the discs so that the holes form a sequence with Gray coding. Only 
one bit changes from one sector to the next in this code. The disc below is coded in such a way.

Figure 2.24 shows the bit pattern from a Gray‐coded disc with five hole tracks. This gives 
25 = 32 sectors and equally many combinations of bits. (Only the first 16 combinations are 
shown in the figure.)

Absolute encoders have two additional advantages over incremental encoders:

1. Position reading from an absolute encoder is not affected by a power failure. When the 
power comes back, an absolute encoder will continue to indicate the correct position.

2. The use of an absolute encoder is more secure with respect to interference. Noise can cer-
tainly affect/change the signals from the encoder, but as soon as the noise stops/decreases, 
the signal from the encoder returns to normal.

A

B

0

Figure 2.22 Pulse train on channels A, B, and 0 for an incremental encoder



36 Programmable Logic Controllers

Example 2.1 

An encoder with a resolution of (at least) 3° is to be designed. How many holes must the 
rotating disk have if it is an incremental type with one row of holes?

Answer: In order to obtain a resolution of 3° with only one row of holes, the number of 
holes must be equal to 360/3 = 120.

Example 2.2 

 We want the same resolution here, that is, at least 3°, but with an absolute encoder:
Answer: Many more holes will be needed here. The reason is that an absolute encoder 
reports actual angular positions. The number of sectors with holes must be equal to 120 in 
order to obtain the proper resolution (3 × 120 = 360), but each sector must be differentiated 
from the others by means of a unique combination of bits. In order to differentiate among 
120 different positions, we must use at least 7 bits (27 = 128). This implies that the rotating 
disk must contain seven rows of holes (by using 7 pairs of LEDs and phototransistors). 
Each angular position can then be identified by reading these 7 bits so that a particular 
position can be represented by, for instance, the binary number 1010101.

The minimum number of holes is therefore 7 × 120 = 840.

2.4.5.1 Other Encoders

A different and simpler principle that can be utilized to measure position or angular motion is 
a sensor based upon a potentiometer (Figure 2.25). When the shaft rotates, the resistance in the 
potentiometer and voltage drop across it (current through it) changes proportionately. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Bit 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 LSB 
Bit 2 0 0 1 1 1 1 0 0 0 0 1 
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1 1 1 0 0 

Bit 3 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
Bit 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
Bit 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MSB 

Value

Figure 2.24 Bit pattern reading a Gray‐coded disk with five hole tracks
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Figure 2.23 Principle of an absolute encoder
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Potentiometers are popular because they are very inexpensive and require only a simple 
electrical circuit to convert motion to a (standard) electrical signal. 

A tachometer is a variant of an encoder. They are specially designed to measure the speed 
of rotating axes. A common approach is to mount a magnet on the rotating shaft. When the 
shaft rotates, the magnet passes a stationary coil in which a current is induced when the magnet 
passes by. In this way, the sensor can record a pulse for each revolution. The time between 
each pulse then gives a measure of the speed (Figure 2.26). This type of equipment is relatively 
cheap. There are also versions in which the output is an analog signal where voltage or current 
is proportional to speed.

There are also tachometers that utilize other principles; some use inductive proximity detec-
tors where the rotating disk is covered with metallic areas.

2.4.6 Other Detection Principles and Sensors

The sensors and measurement principles that are described earlier are all related to detection 
of the presence of something or the measurement of motion, position or speed. What they all 
have in common is that they come in discrete versions, that is, versions that transmit a discrete 
signal. The list of sensors could certainly be much longer but, as we mentioned before, we 
must limit our priorities of subjects. Particularly, pressure switches (and vacuum switches) 
such as pressostats should perhaps be presented in this group.

Among the modern types of equipment, we could also mention radio frequency identification 
(RFID) and cameras (television cameras). This is equipment and technology that actually falls 
entirely outside the group of logical sensors, but which is being applied in more and more 
areas, and it is therefore proper to mention it.
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Figure 2.25 Angular measurement based on a potentiometer
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Figure 2.26 Tachometer based on induction
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RFID

RFID was developed for applications where there is a need to obtain more information about 
and keep track of objects or individuals. Applications could, for instance be tracking, admission 
control, inventory (logistics), or sorting. Identification is achieved by providing each object or 
individual with an electronic tag that contains an antenna, an identification code, memory, and 
a little logic (see Figure 2.27).

The information stored in the memory of a tag can be read out by (or written to) a reader 
without there being any physical contact with the tag. This takes place by means of 
electromagnetic waves in the radio frequency region generated by the RFID reader. When the 
tag comes close to the reader, several things happen (see Figure 2.28):

 • The tag receives energy from the reader by means of an electromagnetic field inducing a 
voltage across the antenna in the tag.

 • The reader modulates the amplitude of the radiated field in order to generate read or write 
commands to the tag’s integrated circuit.

 • The tag responds to the reader by modulating its own power absorption. Electronics in the 
reader sense the information and transform it to a digital signal.
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circuit

Figure 2.27 Contents of an electronic tag (Reproduced with permission from Schneider Electric)
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Figure 2.28 RFID system with tag and reader connected to a PLC (Reproduced with permission from 
Schneider Electric)
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The built‐in logic in the tag acts as a connection between the antenna and the memory. Tags 
can be obtained with various degrees of complexity and are ordered for the application in 
which they will be used. The simplest utilize only modulation for sending the ID code, but the 
more advanced models can consist of a microcontroller with encryption algorithms, for 
 instance, for increased security (payment cards).

If there is a requirement to update and store information in the tag, they are obtainable with 
various amounts of memory, ranging from a few bites to several kilobytes. The cheapest tags 
cannot be written to (ROM based), but the most expensive are based on EEPROMs or a type 
of ferroelectric RAM; in contrast to ordinary RAM, this is not dependent upon a built‐in bat-
tery source.

The physical embodiment (and encapsulation) of the tags is also different. The cheapest and 
simplest are protected only by a thin layer of plastic and the tags can be glued to objects as 
though they were adhesive labels. For rougher industrial environments there is, normally a 
requirement for better encapsulation and the possibility of fastening the tags in a more secure 
way. Figure 2.29 shows tags of various designs.

2.5 Connection of Logical Sensors

Before we see how logical sensors can be connected to PLC input modules, blocks or cards, 
we should first look briefly at the various types of sensors output stages that are available.

Many sensors have traditionally been produced in both two‐wire and three‐wire variants 
even though three wires are decidedly the most common. A three‐wire sensor has, as the name 
indicates, three connections: one for connecting to 0 V, one for connecting to +24  V and one 
connector that is the connection to the output of the sensor. (See for instance the sensor in 
Figure 2.34.) The advantage of three‐wire sensors is that they can be made in various versions 
depending upon whether one wants a sensor output that turns a voltage off and on or a current 
off and on. The following types of outputs are available:

 • Simple switching output (24 V on/off)
 • Relay output (for AC)
 • TTL (5 V)
 • NPN/PNP (turns current on/off)

The first and the second types are simple to connect because the sensor output permits the 
passage of current through the sensor output in both directions. One therefore does not need 
to worry about whether the PLC input block is properly configured as would be required for 
sensors with NPN or PNP output.

Sensors with TTL output use 0 and 5 V to indicate low and high state (normally open). They 
can therefore not be connected to standard 24 V discrete input blocks. Special blocks must be 
used.

NPN/PNP output is most common in standard industrial sensors. Many sensors of this type 
will carry current levels up to a few amperes and can therefore be used for direct switching of 
smaller loads.

Figure 2.30 illustrates how logical sensors and switches can be connected to a discrete input 
module. As we see, the three‐wire sensor is provided with its own connectors. When the sensor 
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is activated the state of the sensor changes and the PLC input in question changes state. This 
switch is simpler because it does not need its own power supply. When the switch is activated, 
the circuit is closed and the input changes state.

This happens because there is a connection between the other input contacts and the con-
nector marked COM. The designation COM is short for common. Most often, there is one 
common point for all of the discrete inputs, but the inputs can also be divided into groups of 4 
and 4, for instance, with each group having its COM point. The idea here is to make the input 
blocks more flexible with respect to the use of sensors with different types of output. See 
Section 2.5.1 for more about this.

Two‐Wire Sensors

A two‐wire sensor does not have its own contacts for connection to the power supply but receives 
its power because the sensor is connected to a closed circuit all the time. This assumes that the 
input blocks that are used will permit a small current in the circuit whether or not the sensors are 
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Figure 2.30 Switch connected to input one‐ and three‐wire sensor connected to input 5
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Figure  2.29 Tags of various types (Telemecanique) (Reproduced with permission from Schneider 
Electric)
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active. When the sensors are not active, this current is small. When the sensor is activated, the 
current increases. This increase in current is registered by the input block and the address to the 
input in question changes state. The advantage of such sensors is the saving in cabling.

Two‐wire sensors are connected in the same way that one would connect a switch.
Figure 2.31 shows an illustration of connecting sensors/switches to a 24 V DC discrete block 

(type TSX DMZ 28DR from Telemecanique). Both two‐wire and three‐wire sensors can be used. 
The sensors that are used should obviously be 24 V standard to avoid relays or other electronics 
between the sensors and the block. Sensors with lower operating voltage can be used since the limit 
for setting and input high is often lower than 24 V.3

2.5.1 Sink/Source

When sensors with output types NPN and PNP are being connected, it is important to get the 
polarity right. The polarity depends upon how the input module and sensor are designed. 
There are two possibilities:

1. Positive logic (sink or drain)
2. Negative logic (source)
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Figure 2.31 Connecting sensors to a discrete module

3 For example, the limit for guaranteeing setting a discrete input high is 11 V for the TMX DMZ 28DR block from 
Telemecanique. The limit for being sure that an input is set logically low on this module is a maximum of 5 V. Voltages 
above this value can set or maintain the input high (Schneider Electric, 2002 and 2004).



42 Programmable Logic Controllers

A general description of these two forms of logic is as follows:

1. Positive logic: The voltage that represents logical 1 (true) has a more positive value than 
the voltage that represents logical 0 (false).

2. Negative logic: The voltage that represents logical 0 is more positive than the voltage that 
represents logical 1.

The difference between these is the direction that the current flows: Out of the sensor output 
and into the PLC input (sink‐connected PLC input), or out of the PLC input and into the sen-
sor output (source‐connected PLC input). This latter may sound a little foolish, but it is just a 
question of where one connects to +24 V and where one connects to 0 V.

This is especially confusing because the concepts of sink and source are used with reference 
to both the sensors and the PLC inputs as well as to transistor output modules (see Section 2.7.3). 
The reason that the designations sink and source refer to the direction of the current: the sink 
should remind us of a drain, a place where a current flows toward. The source is the place 
where the current originates. Since the current either must flow from the sensor to the input 
module or from the input module to the sensor we can say the following:

 • Sink‐connected PLC inputs (Figure 2.32): The sensors are connected to the source and the 
direction of the current is out of the sensor and into the PLC input. All switches and two‐
wire sensors must be connected to +24 V and the common point (COM) on the input block 
is connected to 0 V. This configuration is the most common. When a sensor or switch is 
activated, a contact is closed from +24 V to the input. This sets the value in the associated 
input address to logically high.

 • Source‐connected PLC inputs (Figure  2.33): The sensor is now sink‐connected and the 
direction of current is from the PLC inputs. This connection requires that all switches and 
sensors are connected to 0 V and the common points on the input block (COM) are connected 
to +24 V. When a sensor is activated, we get a closed circuit and the input address in question 
changes state.

Inputs%I
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+

Figure 2.32 Sink‐connected input module
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Figure 2.33 Source‐connected input module
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2.5.2 Selecting a Sensor with the Proper Type of Output

It is not always possible to mix positive and negative logic in the same input module, so it is 
important to know the difference. This applies especially when sensors are being ordered. 
Many input modules can be configured to either sink or source and on some modules groups 
of inputs and outputs can be configured differently. Whether we select one or the other depends 
upon the sensors and signal sources that are being used:

 • NPN output: The direction of current is into the sensor’s output. This therefore requires 
a source‐connected PLC input.

 • PNP output: The direction of current is out of the sensor’s output. This therefore requires 
a sink‐connected PLC input.

Generally, sensors with NPN output are most common in equipment produced in the United 
States, while PNP output is the most common for sensors produced in Europe. Many sensors, 
however, can be configured to the desired format by switching a small switch, for instance. 
This is the case for the sensors in Example 2.3.

Example 2.3 

Figures  2.34 and 2.35 show the schematic wiring for a photocell from the manufacturer 
OMRON, configured with NPN output and PNP output, respectively. There is a switch in the 
middle of each illustration that is used to change between the two choices. The boxes marked 
“Load” will in this context be one of the PLC’s discrete inputs even though sensors with a 
NPN/PNP outputs can switch minor loads directly, as we mentioned previously.

NPN output: Here we see that the direction of the current is inward at the sensor output (pin 4) 
and COM at the PLC input block must then be connected to +24 V: the output from the sensor 
is naturally connected to the PLC input (%I). We then have a source‐connected PLC input.

PNP output: The output from the sensor is (naturally enough) still connected to the PLC input 
(%I). The direction of the current is outward from the sensor output and inward at the PLC 
input. The COM terminal on the PLC input module here must be connected to 0 V and the 
PLC input is sink‐connected.
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Summary

As we have seen, it can be very confusing with all of the concepts of sink, source, NPN, PNP, 
positive logic and negative logic. Here is a summary:

 • A sensor with NPN output should be connected in the following way: The output signal 
from the sensor is connected to the input in question on the PLC block, while +24 V is 
connected to COM on the input block. We say that the sensor is sink‐connected and that 
the PLC input is source‐connected. With reference to the PLC, this is called negative 
logic.

 • A sensor with PNP output should be connected in a similar way with the difference that 0 V 
is connected to COM on the input block. Here the sensor is source‐connected and the PLC 
input is sink‐connected. This is called positive logic and is the most common.

2.6 Properties of Discrete Inputs

One would think that a discrete input could not have so many different properties because 
switches and discrete sensors have only two states. But some care must be taken in the selec-
tion and configuration of input modules, and therefore it can be helpful to group the input 
types. The configurations that can be made vary and depend upon what capabilities the 
 manufacturer has implemented.

Normal Input

This is the standard preset configuration for a discrete input and can be used in most instances. 
Typically, a discrete sensor or switch can be active for a certain time before the input is able 
to detect that. How long this standard time is varies among the various types of PLCs and input 
modules. Usually it is a few milliseconds.

Such a short delay is often desirable because it keeps the inputs from changing state because 
of voltage ripple. Both physical switches and electromagnetic switches in sensors can quickly 
change before a proper contact closes.
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Figure 2.35 PNP output requires sink‐connected PLC input
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Filter Input

These are configurable inputs in which a delay time can be specified before the input changes 
state. The reason for this being called a filter input is that the input ignores changes of state with 
a duration shorter than the specified time. Shorter signal changes are thus filtered out of the 
module. A normal input is thus a filtered input. The reason for configurable filter times is to 
make it possible to record rapid signal changes and to prevent input addresses from changing 
state when the discrete signal has a longer ripple. Sometimes for practical reasons, it is also 
desirable to have a certain delay between the activation of a sensor and the setting of an input.

Latching Inputs

All PLCs have a so‐called holding function (Set/Rest) available in the programming lan-
guage they use. These are used to hold values high or low after the criterion for high/low 
is no longer present. Holding (locking) in a connection with discrete input blocks is 
something entirely different. Such inputs are called latching inputs, high‐speed inputs, or 
pulse‐catcher inputs.

Discrete inputs of this type are used in situations where the change of state that one wishes 
to register has a shorter duration than the scan time of the PLC. In such cases, the change in 
input would not be registered by the program.

Interrupt

Interrupt is used in order to break off the normal program sequence and immediately execute 
an interrupt routine. Such interrupt routines are also called events.

In some discrete input modules, it is possible to configure one or more inputs so that when 
the input is activated the main program is immediately interrupted so that an interrupt routine 
can be performed. Such interrupt routines can be used in connection with safety, for instance, 
one example could be the activation of an emergency stop so that the program shuts down the 
facility. With a less serious interrupt, the unit can easily be programmed so that the main 
program continues as it was before the interrupt took place.

Counter Input

Some modules have inputs that can be configured as counter inputs. Such inputs are used for 
connecting sensors that send out a train of pulses, for instance, an incremental encoder. The 
TSX DMZ 28DR module has two such inputs and can count pulses with a speed up to 500 Hz.

2.7 Discrete Actuators

Actuators are the designation for all of the output hardware that is used to control and 
manipulate process states. Such equipment can be valves, motors, pumps, pistons, etc. As is 
the  case with discrete sensors, there are also a large number of types of discrete (logical) 
 actuators. The general designation of discrete in this context means that they have two states 
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and that it is natural for them to be controlled directly from discrete PLC outputs. The group 
of discrete actuators will therefore include (among others):

 • Relays and contactors
 • Solenoids
 • Magnetic valves
 • Resistive loads, lights, and alarms
 • (Stepping motors)

Now it is obvious that there are many more actuators and control outputs that are discrete. 
Examples of these are used to turn off and on motors, wipers, pistons, heating elements, etc. 
Generally these types of actuators require much higher currents (or voltages) than normal to 
drive them directly from a discrete output module. In such cases, relays or contactors are used 
to switch the actuators. Along with these are a large group of pneumatic and hydraulic cylin-
ders and valves. These are controlled by opening and closing valves for air and hydraulic fluid. 
It is therefore sufficient in this context to study magnetic valves that can be used for this 
purpose. Pneumatic and hydraulic equipment are therefore not treated in this textbook.

2.7.1 Relays and Contactors

These are far the most common types of discrete actuators since they can be used for switch-
ing on and off all other types of discrete actuators. The purpose of relays and contactors are to 
permit a small current to switch a larger current. A relay consists of two magnetic iron com-
ponents: an iron core in the coil, a movable armature and a spring (see Figure 2.36). The spring 
is used to hold the armature away from the core when there is no current in the coil. The arma-
ture is connected to a movable contact. When current flows in the coil, the resulting magnetic 
field pulls the armature against the coil and the electric contacts are closed or opened.

An electromagnetic relay is susceptible to mechanical wear, both because of movable parts 
and because of contact corrosion as a result of arcing. This can be avoided by using solid‐state 
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Figure 2.36 Principle of a relay and example of a small relay (Reproduced with permission from Leif 
L. Hansen)
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relays (SSRs) (Figure 2.37). These are electronic relays (switches) that consist of a transistor/
thyristor circuit. Optical couplers are used to protect the input side of the relay.

There are currently commercial versions of SSR that can handle over 1000 A.

Relay Outputs and Contactors

Activation of the current in the relay coil can be a result of a discrete PLC output going logi-
cally high, but it is also common to use discrete output blocks where relays are incorporated 
into the block itself. Such relays can handle a few amperes of current load and in many cases 
this is sufficient to drive loads directly. If not, the outputs may be used to switch a contactor 
that, in turn, turns loads off and on.

A contactor is, in principle, merely a relay that tolerates higher power. One example of the 
use of contactors is a so‐called motor starter. A motor starter also has built‐in overload protection, 
a so‐called motor guard. The motor guard is a type of heat‐controlled relay where a coil heats 
up a bimetal that in turn releases a spring that controls some extra contacts.

2.7.2 Solenoids and Magnetic Valves

A solenoid 4 is simply a coil with a movable core called an armature. The coil is obviously 
there to produce a magnetic field. Figure 2.38 illustrates the construction and function of a 
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Figure 2.37 Solid‐state relay with electronic schematic

4 Solenoid is a concept that is used in many different contexts in electromagnetism. What we have described here is 
properly a solenoid switch. Originally the word describes what we now call a coil: wire wound around a metallic 
object.

Figure 2.38 A solenoid in deactivated and activated position
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solenoid. Normally the armature is held outside the coil by a spring (see Figure 2.39). When 
current flows through the coil, for instance, when a PLC output goes logically high, the arma-
ture is drawn in to the center of the coil. In other words, a solenoid is a device that converts an 
electric signal to a (short) mechanical motion.

It can obviously be made with a reverse function so that the armature normally lies within 
the coil and is pushed out when the coil carries current.

There are many different types of solenoids. Some have a holding function where permanent 
magnets hold the armature in one or both end positions even when the coil is no longer carrying 
current. This is a solution that can be applied where a holding function must tolerate a power 
outage or, for instance, in battery‐powered applications in order to save current. A solenoid 
can also be provided with an extra coil to give more power in both directions or to provide 
double power in one direction. A common application of a solenoid is for door locks (a button 
is placed on the inside that must be pressed in order to open the door). Another variant is the 
so‐called pull‐in for a starter motor in an automobile. When the ignition key is turned, the 
starter motor and the pull‐in receive current. The pull‐in engages the pinion gear on the shaft 
of the starting motor into contact with the flywheel.

Magnetic Valves

A magnetic valve (solenoid valve) is a solenoid where the mechanical motion opens and closes 
a valve. These are often used in pneumatic and hydraulic systems and are often used to turn on 
and turn off the flow of a liquid. A valve can have several inputs and outputs. A three‐way valve 
can, for example, be used to switch an incoming flow of air between two different outlets. 

Figure 2.39 A solenoid for industrial applications

Figure 2.40 Example of magnetic valve (GSR Ventiltechnik GmbH & Co.)
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A very common application of pneumatic magnetic valves is the control of cylinders and 
linear actuators. Magnetic valves provide quick and secure switching, are reliable in operation 
and require very little service.

In an ordinary family home, they are found on dishwashers, washing machines, and in the 
form of safety valves even though the dimensions of these are small compared with those used 
in industry.

2.7.3 Transistor Outputs versus Relay Outputs

All of the types of discrete actuators discussed above can be connected directly to discrete 
output modules. As described at the end of Chapter 1, the two most common types of discrete 
output are transistor outputs and relay outputs. It is important to understand the principal 
 differences between these two types.

Transistor Outputs

Transistor outputs for PLCs are made for switching DC, typically 24 V. They are primarily 
used for resistive or inductive loads or lights. They can of course also switch other types of 
loads by using an external relay, for instance. Another important difference compared to relay 
outputs is that transistor outputs can provide only a very limited amount of current.

Similar to discrete input modules, transistor output modules come in two varieties: sink‐
connected or, more common, source‐connected. Some modules are made so that they receive 
24 V power supply through an internal bus that connects together the various modules in the 
PLC rack.

A source‐connected variant of such a module functions in such a way that when the output 
address is set high, the voltage is switched from 0 to +24 V at the output to which the load is 
connected. The other side of the load is always connected to 0 V. In order to obtain a closed 
circuit, it is important that the 0 V point is the same for the load and the module.

See Figures 2.41 and 2.42, which show the principle for connecting a load (actuator) to 
either a source‐coupled or a sink‐coupled variant of a transistor output.

Note: If you have not included an external relay, the attached load will be supplied directly 
from the module. You must therefore read the documentation to find out how much the output 
can be loaded (i.e., how much current it can provide).

%Q 
One side of the load is
always connected to 0 V.
When  the output goes
logically high, the other
side of the load is
connected to +24 V
and current passes through
the load

+24 V

0 V

Load

Figure 2.41 Source‐connected transistor output
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Relay Outputs

Relay outputs are more flexible because they can also be used to activate or deactivate (switch) 
connected loads having different voltages as well as AC. This means that it is also not impor-
tant which way the current flows in the associated external circuit or which polarity is used.

Figures 2.43 and 2.44 show the connection of a load (actuator) where the operating voltage 
of the load is connected with opposite polarity in the two figures. This is possible because a 
relay output is simply a switch that can be connected to the module when the associated output 
address is set high, so which way the current is flowing is not critical. Note that the COM point 
is connected to opposite polarities in the two figures.

Also note that you will be able to hear a clicking sound in the module when a relay output 
switches state.

2.8 Test Problems

Problem 2.1
(a) Discuss the differences between analog, discrete, digital, and binary signals.
(b) What is a transducer?
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Figure 2.42 Sink‐connected transistor output
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Figure 2.44 Connection of load to relay output—opposite polarity
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Figure 2.43 Connection of load to relay output
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(c) What is the difference between a detector and a sensor (in the PLC context)? Name some 
typical applications of sensors.

(d) What is the practical difference between inductive and capacitive sensors?
(e) What is the difference between photocells of the transmitting and the reflecting types?
(f) Discuss how an incremental encoder can be designed if the encoder is to have a  resolution 

of better than 1°.
(g) Discuss how an absolute encoder can be designed if the encoder is to have a resolution of 

better than 1°. How many holes must the rotating disk have in that case?
(h) What is a tachometer?
(i) What is a solenoid? Name three types of equipment where solenoids are used.

Problem 2.2
(a) What is required in order to connect a two‐wire sensor to an input module?
(b) What is a source‐connected PLC input? What type of output must the sensors have in 

order to connect them to a source‐connected input?
(c) Draw a sketch that shows how a three‐wire sensor (PNP type) can be connected to a dis-

crete input.
(d) Draw a sketch that shows how a 220 V light bulb can be connected to a relay output.
(e) What properties can discrete inputs have?
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Analog Signals and Analog I/O

3.1 Introduction

In the previous chapters, we discussed discrete, digital, and binary signals. Here, we will 
concentrate on analog signals. We begin with a definition:

An analog signal is a signal with an amplitude that varies continuously with time (time‐continuous) 
and within a given amplitude range.

In other words: An analog signal is defined for every instant of time within a given interval. 
A signal can be continuous in time but not in amplitude and is therefore, strictly speaking, not 
an analog signal, but we usually call it an analog signal anyway.

3

Chapter Contents

 • Analog versus discrete signals:
Sampling, quantification, coding

 • Analog “sensors”:
Sensors, standard transmitters, measurement transformation, RTD elements, thermocouples

 • Connection of analog equipment:
Management of measured data, filtering, calibration, loss, compensation, grounding, 
cabling

 • Properties of analog input modules:
Resolution, updating speed, linearity, and so on

 • Analog output modules and their properties:
D/A‐conversion, standard signal formats
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Both discrete and analog signals can be represented as a unique function of frequencies that 
are called the signal’s frequency spectrum. This is then a description of the frequency content 
of the signal. Filtering is a process where the frequency spectrum is modified, converted, or 
manipulated to satisfy a given or desired specification. This can involve amplification or sup-
pression of a particular frequency range (selected frequency components) or removal or isolation 
of a particular frequency component. The uses of filters are many, but usually, the goal is to 
reduce signal contamination by removing noise that has been added during transmission of 
signals or disturbances that are the result of inaccuracies in measurements.

In this chapter, we will give a brief introduction to the processing of analog signals. We will 
look at various standard formats for signals in process engineering, how analog signals are 
converted to discrete (digital) signals, and vice versa in the PLC. We will also look briefly at 
the processing of discrete and analog signals, considerations involved in cabling, and a bit 
about connecting analog equipment.

3.2 Digitalization of Analog Signals

Most signals that are processed are analog to begin with (by nature). But the power and flexi-
bility of computers, microprocessors, PLCs, and other digital equipment have made it necessary 
and vital to digitalize analog signals and process the digital signals in various ways.

A typical signal‐processing system can be illustrated as shown in Figure 3.1.
The first operation (input filtering) reduces measurement noise and limits the frequency 

content of the signal for digitization. In operation number two, the actual conversion of the 
analog signal to a discrete signal takes place. This happens in a so‐called analog‐to‐digital 
converter (A/D converter). Operation number three refers to what happens within the digital 
equipment (PLC, PC, etc.), while the last two stages cover conversion of the digital result to 
an analog output signal.

Analog signals can be read into the PLC via analog input modules (input blocks). Such 
modules come in many variants, but all have built‐in filters. The first two steps in Figure 3.1 
are built into such modules.

3.2.1 Filtering

All measurement signals will contain electrical noise. This is noise that typically appears in 
the form of high‐frequency oscillations around the measurement signal itself. See Figure 3.2.

Such measurement noise is often the result of disturbances from other electronic equip-
ment, for example, from the power supply or from operational equipment such as motors and 
pumps. Of course, measurement noise can also be a result of changes in the physical process 
variable that is being measured. An example of this is measuring the level of a fluid surface 
when the surface is disturbed (has ripples).

D/A
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Output
filter

Calculation,
manipulation

Input
filter

A/D
converter

Figure 3.1 Typical operations in a signal‐processing system: digitizing, processing, and reconstruction
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Regardless of the cause, it is necessary to filter the signal in order to remove or reduce the 
noise. If the measurement noise has a frequency content that corresponds to the natural 
changes in the measurement signal, we have a major problem, and then it is not possible to 
filter it out. The simplest is then to try to remove the cause of the noise (see Section 3.5.1 on 
cabling).

As mentioned, the energy of the noise generally is in a higher range on the frequency scale 
than the energy in the signal. In this way, the noise can be removed or reduced by the use of a 
low‐pass filter. To put it simply, a low‐pass filter works by allowing all energy that lies below 
a certain frequency (the cutoff frequency of the filter) to pass through the filter unhindered, 
while energy above the cutoff frequency is reduced in strength.

Figure  3.3 shows the frequency response to a first‐order and a second‐order low‐pass 
filter. A first‐order filter is usually sufficient in most situations (higher orders give steeper 
filters). The cutoff frequency (ω

k
) is most often defined as the frequency for which the 

damping is −3 dB.

Measurement signal with noise 

Figure 3.2 Example of measurement signal that contains noise
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Figure 3.3 The frequency response to a first‐ and a second‐order low‐pass filter
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The most common situation in the PLC context is that such a filter function is built into 
the analog input module in the form of hardware or software. The programmer can often 
configure the input to have a filter function and specify at which frequency the filter effect 
is to begin. How these values are stated varies between PLCs from individual manufac-
turers. Some utilize the filter’s response time, T fr k k1 1 2/ / , while others operate 
with the concept of a filter coefficient, α. This coefficient indicates the filter effect of a 
first‐ordered digital filter. Higher filter coefficients provide more filter effect (lower cutoff 
frequency).

3.2.2 A/D Conversion

Analog‐to‐digital converters are, as indicated, the unit that is used in order to digitize 
analog signals. In order to avoid using an A/D converter for each individual analog input 
signal, normally there is a multiplexer that routes one signal at a time into the A/D con-
verter. Typically, there will also be an interface that contains a so‐called “sample and 
hold” circuit.

A/D conversion can also include several other steps such as are shown in Figure 3.4. These 
steps are:

1. Sampling at fixed time intervals (sampling period T).
2. Use of a “sample and hold” circuit for quantifying and coding.
3. Quantifying. Here, each sample value is rounded off to the “nearest level possible.”
4. Coding. Here, each quantified value is converted to a binary code. When the samples are 

quantified and coded, the signal is usually referred to as a digital signal.

Sampling

When an analog signal is sampled, this takes place at a certain speed called the sampling 
frequency. The concept of sampling period is often used or just plain sampling time. This 
is the time interval between each sample, T. Other notations that are common are Δt or T

s
. 

The relationship between sampling frequency and sampling period is given by f = 1/T. If, 
for instance, we have a sampling period of T = 0.1 seconds, the sampling frequency 
1/T = 10 Hz, in other words, 10 sampling points every second. Sampling thus occurs at 
fixed intervals of time between samples as shown in Figure 3.5.

The discrete signal can be written as a sequence (arithmetic series) of all values (the num-
bers). Let us call this series y(k), where the argument k indicates the sample number or, 
expressed another way, where in the sequence the value occurs. See Figure 3.6.

Sample
and hold

Quantifier Coder 

T

A/D-converter 

Figure 3.4 Principle for A/D conversion
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Sample and Hold

This said functional circuit is used to maintain the amplitude constant until the next sample arrives. 
This is done to permit the A/D converter to process the complete sample, that is, to both quantify 
and code. An illustration of the operation of a “sample and hold” function is shown in Figure 3.7.

y4

y3

y2
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y0

0 1 2 3 4 5 6 7

T

Amplitude, y
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Figure 3.5 Illustration of sampling
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Quantification

All digital systems (PCs, microcontrollers, PLCs, etc.) use a certain number of bits to repre-
sent and store a value. This means that the discrete sampled values are rounded off to the 
nearest possible level. How big this roundoff is depends on the number of bits used in the 
quantification. More bits give better resolution.

Example 3.1 

In order to illustrate the effect of quantification, we take a (rather unrealistic) example with 
a three‐bit quantifier. This means that the digital system has three bits available for a binary 
representation of each value. This makes the following quantified levels possible:

 000 001 010 011 100 101 110 111, , , , , , , and . 

Let us assume that a signal that varies in the range 0–10 V is to be digitized. The binary code 
000 will then represent 0 V and 111 will represent 10 V (Figure 3.8).

After sampling, we will have (approximately) the following series of values:

 y k 1 8 3 9 5 3 6 6 7 3 9 1 5 8. , . , . , . , . , . , . ,  

These values must now be coded so that each value receives the binary code that is closest 
to the original value. Refer again to the figure and find that the series will have the following 
digital codes:

 y k 001 011 100 100 101 110 100, , , , , , ,  

We see that even though the discrete samples can be quite different in value, they may have 
the same digital code. In this example, the value 5.3 and of the value 6.6 will both be represented 
by the binary number 100. This is what we call quantification error. It is easy to calculate what 
the maximum distortion introduced by this error will be. This number will then describe how 
good a resolution we have in our sampling process.

k

8

6

4

2

0

0 1 2 3 4 5 6

111

110

101

100

011

010

001

000

10

Figure 3.8  Example of quantification
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With three bits, we have 23 = 8 possible levels. This gives 8 − 1 = 7 different intervals within 
which the individual sample can lie. Since the analog signal range is 0–10 V, the difference 
(in volts) between each quantification level will be equal to 10 7 1 43/ . V. We get the maximum 
error when the sample lies between two levels, so the maximum error here is equal to 0.71 V.

A general formula for quantification error can be written as

 

Error
y y

n

max min

2 2 1  

where y
max

 and y
min

 represent the limits for the analog (electrical) signal range and n is the 
number of bits used in the quantification.

Example 3.2 

An analog signal has an electrical value range from 4 to 20 mA. The signal is sampled and 
quantified with an 8‐bit A/D converter. As a result of around half, the greatest error we can get 
will then be

 

y y
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max min .
2 2 1
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3.3 Analog Instrumentation

Instrumentation is actually a term that is too inclusive to be reasonably treated in full in a text-
book on PLC programming. In the previous chapters, we discussed some logical sensors and 
the physical principles upon which their functions are based. This was done out of necessity 
so that the reader could recognize the most important sensor types.

Sensors/transmitters for measurement of quantities such as pressure, flow, temperature, and 
so on are dealt with in the specialty of instrumentation engineering which is a type of 
background knowledge that most of the people who work with PLCs have. Nevertheless, 
I have chosen to describe temperature sensors in this chapter because some type of temperature 
sensor (for instance, the PT100) can often be connected directly into some analog input 
modules.

Instead of a comprehensive introduction into the various principles of measurement, I have 
chosen to write about the different signal formats that are standard in traditional instrumenta-
tion, both for signals from the sensors and signals to actuators. Except for sensors and actua-
tors that are designed for direct connection to field buses and the like, there are hardly any 
pieces of equipment that are not adapted to one or more of the ordinary signal formats.

3.3.1 About Sensors

As defined in the previous chapters, we will use the concept of sensor to refer to a unit that 
measures a physical quantity and converts this to a standard electrical signal.
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There exist multitudes of analog sensors to measure all conceivable physical quantities. In 
the typical process industry, the most common quantities are temperature, pressure, flow, and 
level, but sensors for measuring things like humidity, oxygen, pH, distance/position, RPM, 
CO

2
, etc. are also off‐the‐shelf merchandise.

Here, we will not go into detail about the various sensors that are obtainable; rather, we will 
be content to discuss two things: sensors/transmitters that output a standard electrical 
measurement signal and temperature sensors (thermocouples, resistance temperature detector 
(RTD), and thermistors). Temperature sensors can be purchased without extra electronics in 
the form of transmitters. They will then be sensors that do not output a standard electrical 
measurement signal. Thermocouples output a small voltage (thermovoltage) and RTDs and 
thermistors function so that the resistance in the sensor changes as a function of temperature. 
In accordance with the definition in Section 2.2, these are not temperature‐sensitive sensors, 
but rather transducers. Many analog input modules for PLCs have built‐in functions that 
permit temperature sensors to be connected directly to the modules nevertheless. If you want 
measurement signals in standard format, for example, because you have an input module that 
requires that, transmitters for temperature sensors can be purchased separately.

3.3.2 Standard Signal Formats

There are naturally many examples of current equipment that can be connected to various bus 
systems such as PROFIBUS, AS‐i bus, CANbus, or Modbus, and the use of such bus systems 
increases continually. Nevertheless, it is perhaps still most common for sensors to be adapted 
to one or more of the electrical standards:

 • 4–20 mA
 • 1–5 V
 • 0–10 V
 • 0–5 V
 • 0–20 mA

The reason for this standardization is obvious because it should be as simple as possible to 
connect a measurement signal to a PLC, for instance. When instrumentation buses (field 
buses) are used, standard transmitters are often used because these can be connected to the bus 
via other equipment.

The standard formats listed can also be collected in fewer categories because 0–20 mA cor-
responds to 0–5 V and 4–20 mA corresponds to 1–5 V, respectively. This conversion is obtained 
by sending current signals through a resistance of 250 Ω.

3.3.3 On the 4–20 mA Standard

Of the electrical standards listed, 4–20 mA is decidedly the most common. There are several 
reasons for this:

1. A voltage signal is more susceptible to electromagnetic noise than a current signal.
2. When a measurement signal is in the form of the current signal, the measurement signal 

can be sent over a longer distance without loss (assuming that the sender can maintain 
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current strength). When we transmit voltage signals, conduction losses will always give a 
drop in voltage that can be significant for accuracy.

3. A lower limit of 4 mA is better than 0 mA because it is possible to monitor for a loss in the 
measurement signal.

Item 1

A voltage signal is more subject to noise than a current signal because electromagnetic noise 
can result in an added potential in the measurement signal via induction. Such errors can also 
be the result of potential differences in grounding. See Section 3.5.1.

Item 2

This is the most important reason for preferring current signals. Conductor loss is unavoidable 
but can be reduced to acceptable limits by using the proper cable. This is because voltage loss 
is a natural result of conduct or resistance. The recommended minimum cross section of 
twisted‐pair cable for transmission of analog measurement signals is 0.28 mm2. Such a cable 
has a typical conducting resistance of approximately 6.4 Ω per 100 m (per wire). The signifi-
cance of conduct or resistance depends upon the input resistance at the unit (for instance, an 
analog input module) to which the signal is connected.

When we transmit a current signal, conduction losses is not a problem. This is a natural 
result of the fact that the current that moves from one terminal at the source must necessarily 
come back to the other terminal. Note: This naturally assumes that the current source can pro-
vide the current when the resistance increases.

Item 3

Assume that you have a level measurement device that is calibrated to output 0 mA at zero 
level and 20 mA at the level of 5 m. If the PLC registers 0 mA, this will be interpreted as a level 
of 0 m (which it could be), but 0 mA could also be the result of a break in the signal cable or a 
damaged level transmitter. This is the reason that a lower limit of 4 mA is to be preferred.

Example 3.3 

A temperature transmitter has a measurement range from −30 to 70°C. The measurement 
signal is a current signal between 4 and 20 mA. There is a linear relationship between the tem-
perature and the output measurement signal. At what temperature t is the measurement signal 
equal to 14.8 mA?

For the sake of neatness, we will make a sketch of the problem statement:

4 mA 14.8 mA 20 mA 

–30°C t 70°C
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So how to find t? From the figure, we see that
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3.3.4 Some Other Properties of Sensors

Among the kinds of errors from the sensor, we can distinguish between dynamic errors and 
static errors.

For dynamic errors, we can simply say that they result from the fact that it takes a certain amount 
of time for the sensor to output a stable electric signal after the physical variable being measured 
has changed. We usually talk about the response time of a sensor. A thermocouple is an example of 
a slow transducer where the response time can be significant if fast updates are required.

A static error is a stationary error which is a departure from the expected value after a sen-
sor has stabilized. There can be many causes for a static failure: The natural tolerance stated 
by the manufacturer, calibration error, poor resolution, hysteresis and dead zone (often a result 
of where), improper application, etc.

It can often be difficult to determine whether a signal is outputting an erroneous signal. 
Sometimes it is necessary to compare the measurement with another reliable measurement.

Many sensors are equipped with adjustment screws to calibrate the sensor (transmitter). This 
adjusts the relationship between the physical signal and the electrical measured value, and this 
can reduce or remove static error. Because it is extremely important that the measured signal be 
as correct as possible, calibration should be done at fixed intervals, for instance, once per year.

3.4 Temperature Sensors

There are many different physical relationships that can be utilized for measuring tempera-
ture. Here, we will briefly review the three most important types of sensors used in industry:

 • Thermocouples
 • RTD (PT100 et al.)
 • Thermistors

Among other types, we can mention radiation pyrometers. These can be used in situations where 
it is physically impossible or difficult to come into direct contact with the media in question.

3.4.1 Thermocouple

A thermocouple is based on the phenomenon that when two wires of different metal are connected, 
a voltage arises at the point of contact.1 The size of this thermal voltage varies with temperature, 
and by measuring this, the temperature at the point of contact can be determined. In Figure 3.9, 
point A is the measurement point, and point B is called the reference point or the cold point.

1 Thomas Seebek, 1821.
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The most important property of a thermocouple, aside from the temperature range for which 
it is designed, is the sensitivity, α, of the unit given in μV/°C.

There are (at least) 10 types of standardized thermocouples. Each of the types has its own 
characteristics. Three of the most common are the types J, K, and T, and the properties of these 
are shown in Table 3.1.

Other less common types are designated B, E, L, N, R, S, and U.
Thermocouples are simple, cheap, and relatively robust. Since they generate the voltage 

themselves, they do not require any operating voltage. They can be used without encapsula-
tion (or with only modest encapsulation), and they therefore react relatively rapidly to temper-
ature changes.

The greatest disadvantage is that the thermal voltage is extremely low, so that in practice, it 
must be amplified in order to avoid interference with measurements by weak noise signals. 
The sensitivity is typically about 1°C.

Thermocouples come with two wires of different types but with guaranteed properties. 
These wires are relatively expensive. When a thermocouple is to be used over a distance 
greater than specified for the attached cable, one can by so‐called compensation cables. 
These are made of different types of metals and are therefore more reasonable. If the rec-
ommended type of compensation cable is used, there will not be any loss in the measured 
thermal voltage.

3.4.2 PT100/NI1000

All metals have the property that their electrical resistance rises with temperature. The type 
of temperature sensor based on this principle is generally designated as an RTD. Most often 
platinum (Pt) is used for low‐temperature sensors that utilize this characteristic. Nickel is 
used to a certain extent because nickel is cheaper than platinum, but sensors of nickel are less 
accurate.

The most common unit is called a PT100 where PT stands for platinum and 100 stands for 
the resistance of 100 Ω at 0°C. At −200°C, the resistance is 18.53 Ω; at 100°C, the resistance 
is 138.5 Ω; and at +850°C, the resistance is approximately 390.38 Ω.

Temp. V 

Point  A, TA Point  B, TB

Figure 3.9 Principle of the thermocouple

Table 3.1 Characteristics of the three types of thermocouple

Type α (μV/°C) Temperature range (°C) Metal (alloy)

J 50 0–750 Iron/Constantan
K 39 −200 to 1250 Chromel/Alumel
T 38 −200 to 350 Copper/Constantan
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Even though the change in resistance with temperature is not exactly linear, we can use the 
following approximate relationship between temperature T(°C) and resistance R(Ω) with 
acceptable accuracy in the temperature range 0–100°C:

 R T100 3 85.  

A widely used RTD made of nickel is NI1000. There is also a variant called PT1000 that is 
used to some extent.

RTD units come in many designs and are usually calibrated by the manufacturer for various 
temperature ranges. This is very important if you are going to measure a narrow temperature 
range. A typical PT100 can be used in the temperature range −200 to 850°C, and this is a clear 
indication that there will be not much variation in the output signal if the unit is going to be 
used between 0 and 30°C.

The PT100 unit is relatively cheap and standardized. In industrial applications, however, it 
demands solid encapsulation, and the unit therefore reacts to temperature change somewhat 
more slowly than a thermocouple. However, the accuracy is somewhat better.

Figure 3.10 shows what a PT100 unit with encapsulation (industrial model) looks like. The 
picture at the right shows an example of the connection point inside the metal cover. The PT100 
is often delivered with a transmitter with signal conversion placed within the watertight metal 
cover. The signal will then typically be the standard 4–20 mA.

Figure 3.11 shows an example of a simple PT100 sensor. In the background, there is a ruler 
to show that the sensor itself can be very small (here about 2 × 2 mm).

Figure 3.10 An industrial model of the PT100

Figure 3.11 Simple sensor—PT100 (thin‐film RTD)
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3.4.3 Thermistors

A thermistor, like an RTD, is also based on the change in resistance with a change in temper-
ature, but the thermistor is made of a semiconductor material. Most thermistors have a resis-
tance that decreases with increasing temperature. This is designated as negative temperature 
coefficient (NTC), but there are also PTC versions. Compared to a PT100 unit, thermistors are 
more accurate (about 10 times as sensitive), but they are also very nonlinear.

They therefore require comprehensive calibration with the associated conversion. 
Thermistors can be made very small and then react quickly to changes in temperature. The 
price increases along with the requirement for accuracy.

3.5 Connection

As mentioned previously, there are many types of analog input modules that can be ordered 
from various PLC manufacturers. The cheapest modules can be connected only to measurement 
signals that conform to the usual standard 4–20 mA/1–5 V and 0–10 V. There are also modules 
for direct connection of thermocouples and RTDs such as the PT100. Here, we will look at 
some of the aspects about connecting sensors that has an analog output.

3.5.1 About Noise, Loss, and Cabling

In nearly all industrial instrumentation, there is a common problem with noise having a nega-
tive effect on measured signals. Two main types of noise are radio‐frequency noise and 
electromagnetic interference (EMI). The sources of such noise can be AC and DC motors, 
mobile and stationary radios, and other equipment that communicates via radio, TV, walkie‐
talkie, static discharges, large contactors and relays, other heavy‐duty equipment, trans-
formers, fluorescent tubes, etc.; the result of such noise can sometimes be negligible, but 
occasionally, there are severe consequences for operation of the facility.

Measurement signals that operate at low signal strength are particularly susceptible to 
noise; these include signals generated by temperature sensors such as RTD (ohms) or thermo-
couples (mV).

The greater the separation between sensors and modules, the more noise is typically cap-
tured since the cables themselves can act as antennas for radio‐frequency noise or induced 
currents from EMI sources.

An effective way of reducing the noise problem is to use transmitters such that the 
measurement signal comes in the form of high‐level signals (for instance, 4–20 mA). The sig-
nals can then be transmitted over considerable distances. If you’re going to select transmitters 
that are going to be used in areas that are strongly subject to noise, it can therefore be benefi-
cial to check the specifications applying to protection against such noise.

A concept that is closely associated with EMI is electromagnetic compatibility (EMC). The 
following definition of EMC is taken from Kurt‐Even Kristensen/Petter Brækken:

The ability of a facility, piece of equipment or system to function satisfactorily in its electromagnetic 
environment without encountering unacceptable electromagnetic disturbance from something in 
this environment.
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In other words, EMC for equipment or a system is that the equipment or system:

 • Does not interfere with other equipment or systems that may be located in the same 
environment

 • Are not susceptible to interference from other equipment or systems
 • Do not interfere with themselves

Of greatest importance in connection with analog measurements is to attempt to reduce potential 
noise in the signals. It is also important to be careful to balance any potential differences. 
It is therefore recommended that one pay attention to the following:

 • Types of cables and conductors
 • Cable shielding and grounding
 • Placement

Type of Cable

In order to reduce the effects of noise, shielded twisted‐pair cable should be (must be) used. 
The conductor resistance may also be significant for transmission of a measurement signal 
over greater distances. This particularly applies to transmission of voltage signals and in 
connecting thermistors, and RTD is in two‐wire and three‐wire connections.2 Fortunately, 
input modules for analog signals have high input impedance.3 This prevents even long 
measuring cables from having a significant voltage drop across the cable. See Example 3.4.

As is well known, the resistance of the conductor can be calculated from the following 
relationship:

 
R

L

A
L Aresistivity length cross section, ,

 

For copper, ρ = 17.9 Ω · mm2/km = 0.0179 Ω · mm2/m.
In other words, a copper wire with a cross section of 1 mm2 will have a conductive resistance 

equal to 1.79 Ω/100 m. A wire with a cross section of 1 mm2 is a relatively heavy wire to measure 
such signals. The recommended minimum thickness is a cross section of 0.28 mm2. A conductor 
with this cross section has a conductive resistance of approximately 6.4 Ω/100 m.

Example 3.4 

A 200‐m paired cable with a cross section of 0.28 mm2 is used to transmit a 0–10 V measurement 
signal to an analog input that has an impedance of 1 MΩ. How big will the maximum voltage 
drop across the cable be?

Since there are two wires in the cable, the total resistance will be

 
2

0 0179 200

0 28
25 6

.

.
.

 

2 See Section 3.5.3, Connection of the PT100.
3 Schneider Electric specifies the input impedance for its TSX AEZ414 module to be about 10 MΩ when the module 
is provided with operating voltage.
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The current through the cable will then have a maximum value of

 

10

1 10 25 6
10

6

V
A

.
 

Voltage drop across the cable is then

 10 10 25 6 0 266 . . mV 

As the example shows, the loss over a cable with this cross section is small, even at a 
relatively long distance. Since the measurement signal was originally 10 V, we will then mea-
sure about 9.9997 V. This is so insignificant a loss that the equipment will scarcely be able to 
measure it in practice.

Cable Shielding and Grounding

Cables that will be used to carry analog measured values must be shielded in order to reduce 
the effects of noise. The shielding of the cable must be connected to ground at one end in order 
to keep it from functioning as a ground loop, where the current through the shielding itself can 
lead to noise in the signal. (For high‐frequency signals, the shielding should be grounded in 
both ends.)

For modules with unisolated channels, the use of sensors and preactuators that are not 
referenced to ground are recommended. Otherwise, all sensors should be referenced to the 
same point at which the modules are connected to ground. See Figure 3.12.

Sensor Cap 

Input channel 0 +ve

Input channel 1 +ve

Input channel 0 –ve

Input channel 1 –ve

Input channel 2 +ve

T
erm

inal block

Input channel 2 –ve

Shielding connection

Shielding connection

Twisted-
pair cable

Figure 3.12 Connecting sensors
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Cable Placement

Conductors that transfers signal of the same type with the same reference potential to 
ground can be grouped together. Discrete I/O cables (especially from relay outputs) should 
be placed as far away from the analog cables as possible. The same is true for power supply 
cabling.

3.5.2 Connecting Sensors

As Figure 3.12 shows, all electric measurement signals that are in standard format (for in-
stance, 1–5 V, 0–10 V, or 4–20 mA) can be connected directly to the connectors at the analog 
input modules. When suitable cables are used, there can also be a considerable distance 
 between the transmitter and the module. See also Example 3.4 on page 65.

Some modules are adapted to one or more standard electrical measurement ranges, but 
still others can be configured for the individual inputs. The module in Figure  3.13 is 
a  configurable module that can handle several different types of signal. If one wants 
to connect to a measurement signal that arrives as a standard current signal (0–20 mA/ 
4–20 mA), one must attach a resistance (shunt resistance) of 250 Ω in parallel across the 
input terminals in question.4 (This figure shows such a shunt resistor connected across 
terminals 7 and 8.)

This works because the module has high input impedance. In this way, the current signal 
that the sensor sets up will pass through the resistor and become a voltage drop across it 
(4 mA * 250 Ω = 1 V and 20 mA * 250 Ω = 5 V). The figure also shows that the module can have 
the thermocouple connected directly, without the use of the transmitter.

High-level
voltage

Channel 0 input +ve
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T
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8
(1)

9

(1) 250 Ω External shunt

11
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12

Channel 1 input +ve

Channel 2 input –ve

Channel 2 input +ve

Ch.1 input –ve

Channel 0 input –ve

Shielding connection

Shielding connection

Shielding connection

High-level
current

Thermocouple

Figure 3.13 Example of various connections to the TSX AEZ 414 module

4 Some manufacturers offer such multirange modules with their own connectors for current signals so that the user 
does not need to provide these. There is then a built‐in shunt resistor in the module.
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One Sensor: Several Inputs

Occasionally, one would like to connect to the signal from one and the same sensor to several 
analog input modules. This is possible but one should make sure that the sensor can maintain 
all of its properties at a higher loading.

If the transmitter at the sensor provides a voltage signal, the inputs may be connected in 
parallel. The total resistance will therefore decrease (to one‐half for two equivalent modules), 
and normally, the transmitter will not have any problem maintaining the proper output voltage.

If the transmitter provides a current signal, the input module must be wired in series and 
then the total resistance in the circuit will increase. Then you must check that the transmitter 
will be able to maintain the current. The maximum possible distance between sensor or trans-
mitter and input modules will naturally be reduced as well.

3.5.3 Connection of a PT100 (RTD)

Many analog input modules are designed to connect directly to temperature sensors such as 
thermocouples and RTDs, without needing to use transmitters to convert the measurement 
signal to an electrical signal. Such modules are apt to be expensive, but one saves money in 
not having to buy the transmitters.

RTD elements are actually only temperature‐dependent resistances. In order to be able to mea-
sure the signals from RTDs, the module must therefore convert a change in resistance to drop in 
voltage. This is easily accomplished in having such modules have a built‐in current supply that 
sets up a constant current through the sensor. When the resistance in the sensor changes with tem-
perature, the voltage drop across the sensor will also change as the temperature changes.

If the input module has only one current connector5 and several RTD elements are to be 
connected to the module, all of these must be connected in series. The current source is designed 
for this, but one must also be aware that if there is a failure in one of the sensors or in the supply 
cable, the signal from all the sensors that are connected in the loop will be lost.

Note: Under no circumstances may the sensors be connected in parallel! This will naturally 
mean that each sensor receives only a fraction of the current from the current source and the 
measurement results from all the sensors will be misleading. 

The built‐in current source generates a relatively small current to keep the sensors from 
being heated up by the current.6 In some modules, the current is sent out as pulses to further 
reduce the heating effect.

Suppliers of modules guarantee correct operation up to a given maximum resistance (cable + 
sensor).7 This total resistance therefore determines the maximum length of the connecting cables. 
It is also necessary to know the characteristics of both the connecting cables, and the maximum 
total resistance is given by the manufacturer of the analog module.

Now, we will study three ways of connecting an RTD: two‐wire, three‐wire, and four‐wire 
connections.

5 This is the case for the TSXAEZ414 module from Telemecanique.
6 For the AEZ 414 module, the manufacturer gives this current at 1.437 mA.
7 For the 750–464 module from Wago, this current is stated as less than 350 μA.
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3.5.3.1 RTD in Two‐Wire Connection

In connecting an RTD in a two‐wire connection, the current is connected from the source in 
the module directly into the input terminals where the cables from the sensor are also 
connected. See Figure 3.14. Here, the module’s internal current source is illustrated by the 
symbols +Is and −Is. Z represents the input impedance. Because of the high input impedance, 
in practice, the entire current passes through the sensor. The module will then measure the 
resulting voltage drop.

The major disadvantage of such a connection is that the measured values will not be correct 
(the error is directly proportional to the distance between the sensor and the module, something 
that is naturally due to the resistance in the conductors (marked R

L
 in the figure). The voltage 

drop V
2
 measured by the module is greater than the voltage drop V

1
 across the sensor because 

of the voltage drops in the conductors. The advantage of the two‐wire connection is that it 
requires only half as much wire as a four‐wire connection.

Example 3.5 Calculation of Cable Loss for a P100 in a Two‐Wire Connection

Assume that a two‐wire PT100 sensor is located 50 m from the PLC and connected via a 
copper cable with a conductor cross section of 1 mm2. Assume that we know that the temper-
ature at the sensor is 75°C. What temperature can be read at the input module?

Answer: The cable resistance can be easily calculated as R = 0.0179⋅50⋅2/1 = 1.8 Ω.

This resistance will therefore be in addition to the resistance of the PT100 unit. If we use the 
approximation that one degree of temperature increase corresponds to a 0.39 Ω increase in 
resistance, the cable loss will be interpreted as an addition to the temperature of 1.8/0.39 = 4.6°C. 
The temperature that will be read by the PLC will therefore be approximately 79.6°C instead 
of 75°C for an error of a full 6% (4.6/75 * 100%).

However, the voltage drop across the measurement cable can be compensated for. It is pos-
sible to configure the modules by subtracting a constant quantity (bias) from the measurement. 
The magnitude of this compensating voltage can be simply determined by multiplying the 
current from the module by the total conductor resistance.

V1

RL

RL

Z Vm

IS

IS

PT100 IS

Vm = V1 + 2∙VRL = V1 + 2∙RL∙Is

+ CH1

– CH1

Figure 3.14 PT100 connected in two‐wire connection
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3.5.3.2 RTD in Four‐Wire Connection

In connecting an RTD in a four‐wire connection, the current is sent from the module source 
through its own conductors right out to the sensor. See Figure 3.15.

Since the inputs have (relatively) high impedance, no significant current will flow through 
the connector cables. In the figure, this is illustrated by having the symbols for conductor resis-
tance crossed out (the resistance, naturally, has not gone away). At any rate, the voltage drop 
across the input terminals will thereby be equal to the voltage drop across the sensor (V Vm 1).

It is for this reason that this is the connection that provides the highest accuracy without 
compensation. However, the four‐wire connection needs twice as much cable as the two‐wire 
connection.

Figure 3.16 shows a connection diagram for how several RTDs can be connected to the same 
module. We see that the source current I

S
 from the module goes through all of the sensors and back 

into the module. The three signal inputs to the module are marked ±CH1, ±CH2, and ±CH3. Since 
the conductor resistance in the signal conductors is not significant, I have chosen to illustrate this 
in the figures; the sketch also shows that one can save a little cabling because −CH1 and +CH2 are 
the same point, electrically speaking. The same is true of −CH2 and +CH3.

3.5.3.3 RTD in Three‐Wire Connection

This is a variation on the two previous connections. Here, we are using a separate conductor 
to carry a constant current out to the unit while the return passes through one of the measurement 
conductors. This cuts the error in half relative to the two‐wire connection. See Figure 3.17.

Another advantage of the configuration in Figure 3.17 is that the module can compensate 
automatically for measurement errors due to conductor resistance.8 This is possible because 
the module can register the voltage drop V

Loss
 shown in the figure.

Given that this requires three conductors of the same type and length out to the unit, the 
magnitude of the voltage drop V

Loss
 is identical to the voltage drop across the measurement 

V1

RL

RL

Z 

+IS

–IS

ISVm = V1PT100 

RL

RL

I = 0 IS + CH1

– CH1

Figure 3.15 PT100 connected in a four‐wire connection

8 This is done in the 750–464 module from Wago.
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conductors that constitute the measurement error. Firmware9 in the module can then easily 
compensate for the error by subtracting the value of V

Loss
 from the measured value, and the 

measurement ends up being correct.
This is not possible in a two‐wire connection simply because there is not another 

measurement point other than the two where the voltage drop across the (sensor + cable) is 
measured.

V1

RL

RL

RL

Z 

+ CH1 

PT100 

Vm = V1 + VRL= V1 + RL∙IS

I = 0IS

IS

IS

IS

– CH1

(VLoss)   

VTAP = VRL

Vm

Figure 3.17 PT100 connected in a three‐wire connection. (Note: Modern modules designed for three‐
wire measurement can compensate automatically for the conductor loss.)

V1

+IS

–IS

+CH1 

–CH1 

IS

IS

PT100-1 

RL

IS
RL

V3
V3

+CH2 

–CH2 

PT100-3 

–CH3 

+CH3 

V2

V1

V2
PT100-2 

Figure 3.16 Three PT100 sensors connected to the same module

9 Firmware is the designation for programming that is permanently stored in electronic equipment, generally in ROM 
or flash memory.
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3.5.4 Connecting Thermocouples

Thermocouples such as types B, J, K, and so forth provide output signals in the form of a voltage. 
This voltage is very low and also depends on the temperature in the connecting terminals.

The simplest and cheapest way of connecting a thermocouple is just to connect the wires to 
the desired input terminals (naturally, assuming that the module is designed to be connected 
to a thermocouple). Cold‐point compensation is then performed within the module since the 
temperature inside the module is reasonably constant and is used as a reference temperature 
for the unit. This measurement setup can be affected by changes in the PLC temperature. 
However, the recommended implementation is for cold‐point compensation to be done by the 
module with the help of a reference‐temperature measurement. This is normally done with a 
built‐in PT100 or a thermistor.

Note that it is not recommended to obtain measurement data from one and the same thermo-
couple by the help of several modules. In theory, since the measurement signal is in the form of 
voltage, one would think that the signal from a thermocouple could be connected to several mod-
ules. In practice, this cannot be done because it does not furnish effective cold‐point compensation.

3.6 Properties of Analog Input Modules

Every PLC distributor can usually offer several different analog input modules, completely depend-
ing upon your requirements. If you are going to select the proper modules, there are often many 
aspects that should be taken into consideration before the selection, perhaps the most important are:

 • Electrical (and physical) measurement ranges
 • Requirement for accuracy (resolution)
 • Number of input signals
 • Requirement for speed (updating speed of the module)
 • How the signals are physically connected to the module
 • Requirements for use in explosive environments

Other criteria that can come into question are:

 • Tolerance (physical): How much physical abuse such as dust, temperature, etc. will the 
module tolerate? How much will the individual inputs tolerate?

 • Linearity: Is the module linear across the entire range of measurement?
 • Calibration/Adjustment: For instance, can you add a bias the measurement to compensate 
for a poorly installed sensor or transmitter or to compensate for a voltage drop over long 
cabling hauls? This last comes into question when one uses a PT100 two‐wire connection.

 • Filtering possibilities.

3.6.1 Measurement Ranges and Digitizing: Resolution

Like a PC, a PLC can work only with digital quantities. It is therefore necessary to convert 
analog measurement signals to digital quantities. This transformation takes place in the input 
block’s own built‐in A/D converter.
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Which format (binary, BCD, HEX, etc.) will represent the signal values varies for the dif-
ferent brands of PLC. Even though the individual modules and blocks themselves sample the 
analog signals with 16‐bit resolution, for instance, the effective resolution normally is not 
correspondingly high. This is because the manufacturers generally have chosen to use whole‐
number values to represent the analog signals. This makes it simpler from both the engi-
neering and the programming point of view to manage the analog quantities. Usually, 16 bits 
are used to represent the corresponding binary value.

For instance, an analog signal connected to PLC of the Omron C200H will be represented 
as a binary number corresponding to values between 0 and 4000. In the TSX series from 
Telemecanique, an analog signal will be converted to a decimal value between 0 and 10 000 
by default.

Wago uses a standard 16‐bit representation. Since one bit is used for a sign, a bipolar 
electrical quantity is represented by numbers between −216 = −32768 and 216 − 1 = 32767 (one 
combination represents the value 0).

There is of course a linear relationship as shown in the graphical presentation in Figure 3.18.

Example 3.6 

A temperature transmitter is calibrated to provide an electrical signal between 4 and 20 mA for 
temperatures between −20 and 50°C. In the PLC, the measured value is stored as an integer 
between 0 and 10 000. A temperature of +20°C will therefore appear in the PLC as the number

 

10000

50 20
20 20

10000

70
40 5714

 

The exact number according to this calculation is 5714.2857, but rounding off to the nearest 
integer gives a small error. How great the error can be is easy to calculate:

 
Maximum error C: .

50 20

2 10000 0
0 0035

 

If we had not divided by 2 here, the answer from calculation would be equal to the interval 
(in °C) between two integers. We have the maximum error when the measurement falls between 
two integers, for instance, 2546.5, which would then be rounded off to the number 2647.

4 mA 
Analog value 

0 V 10 V 

10000

Digital
value

Analog value 
20 mA 

32767 

Digital
value

0 0

Figure 3.18 Conversion from analog signal to whole‐number value
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3.6.2 Important Properties and Parameters

In this section, we will consider some of the properties of analog input modules that are inter-
esting in a practical context. These can be:

 • Update time
 • Linearization
 • Overshoot
 • Alignment
 • Calibration
 • Filters

Update Time

For an analog input, it is interesting to know the time it takes for the value of the measured 
signal to become available for the user program. This depends upon the following:

 • The response time of the sensor (for instance, temperature sensors are relatively slow).
 • The update time of the analog module. Here, there is usually a certain delay as the result of 
filtering.

 • The cycle time of the user program (scan time).

It is important to be clear about the performance of an analog module with respect to speed. 
In most cases, the module in question will be sufficiently fast, but if the PLC is also being used 
as a PID-controller, for instance, this can be too slow for some processes, the alternative is to 
procure a faster module or to use an external PID-controller and possibly adjust the setting 
point of the controller from the PLC.

With respect to the speed of analog modules, we distinguish between the scan time for a 
single channel (input) and the scan time for the module as a whole (cycle time). However, 
the scan time for the cycle is always the same, even if some of the channels are not being 
used.

Example 3.7 

The AEZ 414 module from Telemecanique has these published scan times:

Per channel: 104 ms
Cycle time: 520 ms

Linearization

All modules that can be directly connected to thermistors, for instance, must be able to per-
form a linearization of the measured signal. This is because there is a nonlinear connection 
between temperature change and resistance change and the measured voltage is not a linear 
function of temperature either.
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Overshoot

No matter what measurement ranges selected for channel input, the module will register any 
overshoot. The module checks whether the measurement lies within the measurement range, 
that is, between the lower and upper range limits. Overshoot is generally monitored by setting 
a flag (a Boolean address associated with the channel in question.

Alignment

It is often possible to adjust a desired measured value by adding a constant positive or negative 
bias to the measurement. It may be desirable in those instances to know that a measured signal 
is erroneous because it is either too low or too high. The reason for this error can be an incor-
rectly calibrated sensor or a conductor loss that one wishes to compensate for. This latter is the 
case when using a PT100, for instance, in a two‐wire connection.

Calibration

In some modules, it is possible to perform the calibration of the module itself. This can come 
into question when the module does not measure correctly on one of the channels, for example. 
Such a calibration is normally not to be recommended.

Filters

All analog input modules are equipped with low‐pass filters for filtering measurement signals. 
The reason for using a low‐pass filter is that the physical quantities often change relatively 
smoothly in comparison to noise (which also is typically higher in frequency). The cutoff fre-
quency of the filter can normally be adjusted.

3.7 Analog Output Modules and Standard Signal Formats

Many of the same properties that apply to input modules also apply to output modules as 
well. Typical equipment that can be controlled by analog signals are valve position, frequency‐
controlled pumps and motors, and controller (set point).

The most common standards are 0–10 V, ±10 V, 4–20 mA, and 0–20 mA, but there are also 
modules that use other formats.

For voltage outputs, there are limitations on how much current a module can provide. 
Actuators connected to outputs must therefore have an input resistance that is greater than the 
minimum limit published for the module in question. Otherwise, the module will not be able 
to maintain the output voltage.

If a module is short‐circuited, the output voltage will naturally enough be equal to 0 V, but 
the outputs are normally protected by optical couplers to handle this.

In order to be able to control actuators with standard current signals, modules have a built‐in 
current source. The actuators must therefore have a resistance that exceeds a defined minimum 
limit. This limit is also specified in the data sheets for the modules in question.



76 Programmable Logic Controllers

For all PLCs, it is also possible to specify what is to be sent out from an output if the PLC 
stops or is set in to stop mode. This applies to digital outputs as well. Either the output value 
is set to its lower limit, for instance, 0 V or 4 mA (FALSE for digital outputs), or the output will 
maintain the last value transmitted.

We will close the chapter with an example of an analog output module and its specifications.

Example 3.8 

The AEZ414 module from Telemecanique has four outputs for 0–10 V/±10 V. The response 
time of the module is 400 µs, which is very fast compared to an analog input module. The 
module uses 11 bits (+sign) in its D/A converter, which gives a resolution of 10/(211 − 1) = 5 mV. 
(Typical error according to the datasheet, however, is 0.45% corresponding to 45 mV.)

Maximum load of the outputs is 5 mA, which corresponds to actuators having an input 
resistance not less than 2 kΩ. The module has permanent short‐circuit protection.

3.8 Test Problems

Problem 3.1
(a)  What are the major differences between a thermistor and an RTD?
(b)  An analog input module uses 12‐bit A/D conversion. What is the largest possible round-

off error that can occur as a result of quantifying if the signal to be digitized lies in the 
range −10 V to +10 V?

(c)  Assume that a PT100 sensor is located 40 m from the PLC. The sensor is connected to an 
input module on the PLC via a copper cable with a conductor cross section of 0.25 mm2. The 
temperature at the sensor is 50°C. What temperature can be read at the input module if the 
sensor is connected to a two‐wire connection? (The resistivity of copper is 0.0179 Ω · mm2/m.)

Problem 3.2
A temperature sensor provides an analog signal between 4 and 20 mA for temperatures bet-
ween 10 and 80°C. The temperature sensor is connected to an analog input that has the address 
%IW3. Assume that the PLC converts the current signal to a whole‐number value between 
0 and 32 000. At what temperature is the content of the address %IW3 equal to 12 000?

Problem 3.3
The table below shows data for three analog quantities that are connected to a PLC.

Symbol name Inputs Physical range Electrical range Internal representation

Temp %IW3.0 −50 to 200 (°C) 4–20 mA 0–32 767
Pressure %IW3.1 0–5 (bar) 1–5 V 0–32 767
Level %IW3.2 0–150 (cm) 0–20 mA 0–32 767

(a)  As the table shows, three active transmitters are used, all of which have different electrical 
measurement ranges. Briefly state which of the three standard measurement ranges is 
preferable, where there is a choice, and say why.
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(b)  During a run, the value in address %IW3.0 is about 9600. What electrical measurement 
value corresponds to this and what is the temperature (in degrees)?

(c)  It is suspected that there is an error in the level sensor and/or the level transmitter such that 
the measured error is perhaps outside the defined acceptable limit of 5%. A manual 
reading is therefore made and it appears that the level is approximately 90 cm. By using a 
multimeter, the current at the level transmitter is read at 13 mA. Is this within the accept-
able error limits, or should something be done?

Problem 3.4
A small PT100 element (symbolized by a variable resistance) is installed at the end of a 
relatively long cable. Two of the wires, green and green/white, are connected to one end of the 
unit, while the two others, red and red/white, are connected to the other end of the sensor. 
Schematic:

PT100 Ω

Red

Red/white

Green/white

Green

In the problems below, you can use the approximation that 0.385 Ω corresponds to 1°C.
(a)  Assume that you use a multimeter and measure the resistance between the red and green 

wires as illustrated in the figure above. You measure 113 Ω. Then you measure the resis-
tance of the PT100 unit itself (at the other end of the cable) and read 110.8 Ω.
1. How much is the resistance in one of the wires in the cable?
2. What is the temperature where the PT100 unit is located?

(b)  Assume that you connect the cable as a two‐wire connection (where you use only the red 
and green wires) to an RTD module on the PLC. How great a measurement error do you 
get as a result of the conduct resistance in the cable?

(c) Assume that you again connect the cable as a two‐wire connection but that you connect 
green and green/white in parallel to one connector and red and red/white in parallel to the 
other connector. What temperature will you read now?

(d)  What, if anything, can be done to remove the measurement error attributable to loss in the 
cable?
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Structured Design

There are 10 kinds of people in the world:
Those who understand binary numbers and those who do not.
(Unknown)

4.1 Introduction

Many of the fundamental operations and signal‐processing routines performed by a PLC 
require that the programmer have a fundamental knowledge of and understanding of binary 
numbers, logical (Boolean) quantities, and Boolean algebra. We can use logical functional 
expressions to describe instructions and actions and use Boolean algebra to simplify these for 
implementation. For more advanced programmers, there are also techniques and systematic 
presentations that can be used in order to structure both the tasks that the PLC is to solve and 
the operational mode of the program itself. This chapter is intended to cover the necessary 
knowledge concerning these subjects.

4

Chapter Contents

 • Number systems and digital logic:
The decimal, the binary, and the hexadecimal number systems. BCD coding
Digital logic

 • Boolean design:
Logical functional expressions. Boolean algebra

 • Sequential design:
Flow charts. Motion diagrams. Sequence diagrams

 • State‐based design:
Finite‐state machines, state diagrams and state tables
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The chapter therefore begins with a short introduction to digital techniques. We will look at 
number systems such as the binary number system and the hexadecimal number system as 
well as conversions between these.

4.2 Number Systems

A basic knowledge of different number systems and conversions among these systems is 
necessary in connection with programming PLCs. Which format the values and numbers are 
stored in and processed in varies between different PLCs, but most of them use one or more 
standard formats. These formats can be binary numbers (BCD coded), hexadecimal, and octal, 
in addition to decimal members. Here, we will discuss the formats that are used most 
frequently.

4.2.1 The Decimal Number Systems

A brief presentation of the decimal number system is useful to facilitate understanding of the 
structure of the other number systems. The decimal number system or the 10‐base system, as 
it is also called, operates with the number 10 as the base number. Fundamentally, this means 
that this number system uses 10 different numerals to write all numbers. Furthermore, the base 
number is the factor between positions of the numerals.

Example 4.1 

As is well known, a decimal number can be split up as shown below:

 3647 3 10 6 10 4 10 7 10 3000 600 40 73 2 1 0  

As we see, each different numeral has a defined weight depending upon its placement in the 
number:

Number of thousands

Number of hundreds Number of 10’s

Number of units

3647 

4.2.2 The Binary Number System

All digital equipment such as computers is based on binary numbers. These are numbers 
that are built up out of only two different numerals, namely, 0 and 1. In digital equipment, 
the numeral 0 is represented by a voltage of 0 V, while the numeral 1 is represented by 
a voltage of 5 V.

The word binary comes from the fact that each numeral has two states. All binary numbers 
can be expressed by means of only the two numerals 0 and 1. The binary number system is 
also called the 2‐base system. The base number in that number system is therefore 2.
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Example 4.2 

Any random binary number can be split up as shown below:

 

11010101 1 2 1 2 0 2 1 2 0 2 1 2 0 2 1 2
1 128 1 6

7 6 5 4 3 2 1 0

44 0 32 1 16 0 8 1 4 0 2 1 1
128 64 0 16 0 4 0 1 213 decimall  

Here, each numeral has a particular weight depending upon its placement in the number:

128

64 

8 

4 

11010101 

32 

16

2 

1 

There is a factor of 2 (the base number) between each position in the number.

(Perhaps now you understand the quotation on the first page of this chapter?)
In the digital world, we call each of the 1s and 0s a bit. The bit that has the highest weight 

(value) is designated the most significant bit (MSB). The bit that has the lowest weight is 
designated the least significant bit (LSB). A group of eight bits, such as in the example above, 
is called a byte while a group of 16 bits is called a word.

4.2.3 The Hexadecimal Number System

Numbers that originally are in binary form are often displayed and transmitted in another 
form, namely, as hexadecimal numbers. The hexadecimal number system is also used in PLCs 
and has the base number of 16. This means that there are 16 different symbols that are used in 
this number system. These are

 0 1 2 3 4 5 6 7 8 9 A B C D E F, , , , , , , , , , , , , , ,  

As we see, the letters A through F are used instead of the numbers 10–15.

Example 4.3 

 E C decimal3 8 14 16 3 16 12 16 8 16 583123 2 1 0

 

Again, the numeral has a weight depending upon its position in the number:

16 

1 

E3C8 

4096

256

There is a factor of 16 (the base number) between each position in the number.
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The hexadecimal number system is often used to represent binary numbers because the 
numbers can be expressed much more compactly. For example, a four‐place hexadecimal 
number corresponds to a binary number of 16 bits (a word).

Table 4.1 contains the numbers from 0 to 15 in decimal, binary, and hexadecimal form.
The binary number 1111, which is 15 in decimal and F in hexadecimal, is the largest number 

that can be expressed with four bits. The standard register size1 in most PLCs is therefore 16 
bits. The largest number that we can store in a register address is 1111 1111 1111 1111 which 
corresponds to FFFF in hexadecimal.

The corresponding decimal number is

 FFFF 15 16 15 16 15 16 15 16 655353 2 1 0
 

If bipolar values, that is, values that could be either positive or negative, are to be stored, the 
MSB is used as a sign bit. In that case, values between −215 and 215 − 1, that is, between 
−32 768 and 32 767,2 can be stored by using 16 bits.

As mentioned previously, sometimes hexadecimal numbers are used as an alternative to the 
binary form when values are to be shown on the display/screen or when values are to be trans-
mitted. That is to say that a 16‐bit number is divided into groups of four numerals. Each of the 
groups is represented by a symbol between 0 and F. Example:

1 1 0 1 0 1 1 0 1 1 1 0 1 0 1 1 

D 6 E B 

Table 4.1 Examples of decimal, binary, and hexadecimal numbers

Decimal Binary Hexadecimal

 0 0000 0
 1 0001 1
 2 0010 2
 3 0011 3
 4 0100 4
 5 0101 5
 6 0110 6
 7 0111 7
 8 1000 8
 9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

1 A register is a storage location where numbers can be stored in binary form.
2 The reason that the largest possible value is “merely” 215 − 1 = 32 767 is that one of the bit combinations, namely, 
where all 16 bits are equal to 0 is used to represent only the number 0.
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4.2.4 Binary‐Coded Decimal Numbers

Numbers in binary‐coded decimal (BCD) form are not so different from numbers in binary 
form. The difference is that for each numeral (0 through 9) in the decimal number is repre-
sented by four bits. This means that the numbers 0–9 are precisely like the numbers 0–9 in 
binary form. If we study a four‐bit number, however, we have six bit combinations that are not 
valid in BCD form. These are the combinations for the hexadecimal numbers A–F (decimal 
10–15). Table 4.2 shows the BCD code.

Example 4.4 

The decimal number 6923 will be stored in BCD form as 0110 1001 0010 0011. Note that this 
is entirely different from the binary notation. In binary form, the same number would be rep-
resented as 0001 1011 0000 1011 (try the conversion yourself) while the hexadecimal number 
would be 1B0B.

What are the consequences of this? First, it limits how large a number we can operate within 
16‐bit registers. The largest number in BCD form would then be 9999. However, the advantage 
is that in calculation operations with larger integers, the content of two adjacent addresses, 
each address holding a four‐digit number, can be considered as a single number, that is, an 
eight‐place number. For example, we can then perform the multiplication 99999999 * 
99999999. The result of this operation is 9.99 * 1015, and the result will occupy four addresses 
or 64 bits. In most cases, such large numbers will be more than sufficient.

Summary

All digital equipment such as a PLC performs calculations and stores values in binary form. 
However, it is not particularly user‐friendly to work with and read binary numbers. Therefore, 
most digital equipment operates with several different number systems where one of them is, 
of course, the decimal number system. All PLCs of recent vintage use the decimal number 
system in the user interface.

Some older PLC models, for example, the OMRON 200H, use BCD numbers.

Table 4.2 Binary‐coded decimal numbers

Decimal number BCD code

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
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A number in a PLC can be in binary form and perhaps will be displayed in hexadec-
imal form. Knowledge about number systems can be useful when we perform calcula-
tions in a PLC or when we process analog signals. The next chapter will touch on some 
of these problems.

4.2.5 Conversion between Number Systems

Binary to Decimal

Example 4.2 showed how one can convert a binary number to a decimal number. It is necessary 
only to add up all of the weights of all of the 1s in the number.

Example 4.5 

 0101101 0 2 1 2 0 2 1 2 1 2 0 2 1 2 32 8 4 1 456 5 4 3 2 1 0  

It is naturally also possible to write numbers with a decimal point in binary form as 
shown in the next example. Notice how the numbers after the decimal point are weighted. 
The base number is, naturally enough, still 2, but the exponent that indicates the position 
is negative.

Example 4.6 

 11010 101 2 2 2 2 2 16 8 2 0 5 0 125 26 6254 3 1 1 3. . . .  

Decimal to Binary

In order to convert from decimal numbers to binary numbers, you must divide (either do it in 
your head or with a calculator).

The procedure is to divide the decimal number by 2 repeatedly. If the division yields an integer, 
the remainder is 0. If the division does not yield an integer, the remainder is 1. This remainder 
(0 or 1) becomes the LSB in the binary number and is written down. Then one continues to deal 
with the result from the previous division until the number is reduced to nothing (zero).

The last remainder from the last division becomes the MSB in the resulting binary number. 
Therefore, we have to switch around and read the number from bottom to top.

Example 4.7 

54/2         => Answer: 110110 
27 + 0 
13 + 1 
6   + 1 
3   + 0 
1   + 1 
0   + 1 

94/2       => Answer: 1011110 
47 + 0 
23 + 1 
11 + 1 
5   + 1 
2   + 1 
1   + 0 
0   + 1 
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Hexadecimal to Binary and Vice Versa

Hexadecimal numbers can be converted to binary numbers simply by converting each 
individual numeral to a four‐bit binary number.

Example 4.8 

6  D A  7 

6DA7 = 0110 1101 1010 0111

The largest hexadecimal number is, as mentioned previously, FFFF, which corresponds to 16 1s.

From Binary and Hexadecimal to BCD

To convert numbers from binary and hexadecimal form to BCD, it is simplest to proceed via 
the decimal form.

Example 4.9 

 

6 7 6 16 13 16 10 16 7 16
28071 0010 1000 0000 0111 000

3 2 1 0

10

DA
11BCD 

4.3 Digital Logic

In order to be able to program PLCs more efficiently and to reduce the risk of ambiguous 
program algorithms, it is an advantage to master digital logic. Most often, outputs and internal 
variables are controlled by a combination of states of other variables and input signals. A little 
example could be to start a pump when a start switch is activated but only if the level in the 
tank is lower than a certain value.

In this section, we will therefore present the basic logical functions and how calculations 
can be performed in a computer or PLC based on Boolean algebra.

There are three basic logical functions: AND, OR, and NOT. In addition, there is a function 
frequently used called Exclusive Or (XOR) along with combinations of AND, OR, and NOT.

These basic functions are shown below along with their symbols,3 functional expressions, 
and functional tables (truth tables). The symbols are used in drawing and designing digital 
circuits and in the graphical programming language in the FBD4 standard.

The functional expressions are used when the algorithms for combinatorial controls are to 
be described with text. The functional tables, or truth tables as they are also called, describe 
the structure of the logical functions. For AND and OR, the operation is also illustrated with 
simple circuit diagrams consisting of a switch, a lamp, and a battery. In the following, functions 
are presented with two inputs but there can often be three or more.

3 There exists an alternative set of symbols that are also in common use. Both sets of symbols appear in the IEEE 
91—1984 standard.
4 FBD—Function Block Diagram.
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All of these basic logical functions are found as electronic components in the form of 
integrated circuits (ICs). These can be used to construct simple controls when there is no need 
to be able to modify them in the future.5 Each IC can contain several ports of the same type. 
How many depends upon how many inputs each port has (Figures 4.1 and 4.2).

AND

As the name indicates, AND functions in such a way that the output from the function is log-
ically high (a 1) when both (all) inputs are logically high. Otherwise, the output is logically 
low (0). The functional expression reads thus: F equals A and B. The expression could also be 
read as F = A AND B, but it is common to use the times sign instead of AND.

Equivalent electrical circuit: Functional table:

B A F

0 0 0
0 1 0
1 0 0
1 1 1

A B
F = A·B 

A

B
& 

Symbol and function:

1

2

3

4

5

6

7

1A

1Y

2A

2Y

3A

3Y

GND

14

13

12

11

10

9

8

VCC

6A

6Y

5A

5Y

4A

4Y

Figure 4.2 Pin configuration for SN7408N

Figure 4.1 Integrated circuit (IC)

5 Note: It is currently more common to use microcontrollers, and this type of integrated circuit has more or less 
become obsolete.
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The circuit illustrates the mode of operation: The lamp (F) lights if both switch A and 
switch B are closed.

OR

The output of an OR is logically high when one or more of the inputs are logically high. The 
functional expression reads thus: F equals A or B. Note the use of the plus sign in the functional 
expression.

Equivalent electrical circuit: Functional table: Symbol and expression:

B A F 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

A

B

A

B
F = A + B ≥1

NOT

This is an inverter. The output variable state is the inversion (opposite) of the state of the input 
variable. We read: F equals not A. Note the use of the inversion sign  ⨪

Symbol and functional expression: Functional table: 

A F 
0 1 
1 0 

F = A 1 A 

NAND

NAND is a combination of NOT and AND. The output from such a function is the inverse of 
the output from an AND. This means that the output is logically low when all inputs are logi-
cally high. Otherwise, the output is logically high.

Symbol and functional expression: Functional table:

B A F 
0 0 1 
0 1 1 
1 0 1 
1 1 0 

A

B
F = A · B& 
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NOR

A combination of NOT and OR. As the functional expression shows, the output variable is 
equal to the inverse of the output from an OR.

Symbol and functional expression: Functional table:

B A F 
0 0 1 
0 1 0 
1 0 0 
1 1 0 

BAF>=1
A

B

XOR

This is a special variant of OR that is called XOR. In contrast to an ordinary OR, the output 
here is logically high when only one of the inputs is logically high.

Functional table:

B A F 
0 0 0 
0 1 1 
1 1 0 
1 1 0 

Symbol and functional expression:

BAF =
A

B
=1 

With these basic building blocks, one can construct many useful (and useless) circuits such 
as those shown in the following examples. Note that there are many types of ready‐made 
digital circuits on the market: from the simple types that are presented here to advanced cir-
cuits such as arithmetic units, memory circuits, converters, and microprocessors. It is entirely 
practical to build anything at all based on so‐called off‐the‐shelf components. For larger 
hardware‐based controls, such as those for a washing machine, for example, it is more usual 
to employ programmable circuits (EPROM, PAL, etc.) or microprocessors.

Example 4.10 

The circuit in Figure 4.3 is an adder that adds two single‐bit numbers. The result of the addition 
appears as the two bits F1 and F2, where F1 is the LSB. In order to understand the operation 
of the circuit, it is easiest to set up a function table for the circuit (the last column shows the 
sum in decimal form):

B A F2 F1 Decimal

0 0 0 0 0 + 0 = 0
0 1 0 1 0 + 1 = 1
1 0 0 1 1 + 0 = 1
1 1 1 0 1 + 1 = 2

In this example, the circuit was given beforehand, something that unfortunately seldom 
happens in practice. Most often, one takes the desired function or operation as a starting point 
and then designs the circuit or codes from that.
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Example 4.11 

In a chemical processing facility, liquid chemicals are used in production. The chemicals are 
stored in three different buffer tanks. A level sensor located in each tank gives a logical high signal 
when the level in the tank in question falls below a lower limit. We will design a digital circuit that 
provides a logical high alarm signal when the level in at least two of the tanks gets too low.

If we call the three level sensors A, B, and C and the alarm signal from the circuit is F, we 
can set up a functional table for the circuit:

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

It is actually not necessary to set up such a table for this simple problem, but it can be nice 
for the sake of an overview. One possible implementation of a circuit for this control is shown 
in Figure 4.4. In the following section, we will see how this is developed.

4.4 Boolean Design

4.4.1 Logical Functional Expressions

Logical functions are expressions that describe the behavior or the desired mode of operation 
of the combinatorial circuit. Such logical expressions can also be useful to describe control 
algorithms for instructions and actions in a PLC program.

Functional expressions arise either directly from a descriptive problem statement or as a 
result of processing and simplification by means of Boolean algebra (Section 4.4.2). Functional 
expressions describe for what combinations of input variables the output in question should be 
logically high.

0

0

0
A

B
F1

&

0

0

0 F2

=1 

Figure 4.3 One‐bit adder
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Example 4.12 

For the circuit in Example 4.11, it is a good idea to minimize the expression by thinking 
through a little logic. Based on the description of the operation of the control, we can analyze 
the problem as follows:

If two of the tanks have too low a level, that is, if for example signals A and B are logically 
high, the alarm should go off (F should be logically high).

Furthermore, we can say that because the alarm should go off no matter which two tanks 
have a low level, it is unimportant whether the third tank has a low level or not. This means 
that the last condition that should result in an alarm, the fact that all three level sensors are 
giving signals (A and B and C) can be neglected. The other conditions also cover this.

Accordingly, we can set up the following functional expression for the alarm output F:

 F A B A C B C (4.1) 

(We read this: F equals A and B or A and C or B and C.)

Note that the expression for an active alarm in the example above is actually a minimized 
(simplified) functional expression. If we had taken the output point in the functional table 
alone, that is, without thinking practically about the process, we would have set up the follow-
ing functional expression:

 F A B C A B C A B C A B C (4.2)

This method of expressing functions is called Sum of Products (SOP). If you compare the 
expression with the table in Example 4.11, you will see that for each combination of input 
signals where F is logically high, we can write an AND expression for the combination. After 
that, we just add up (OR operation) all the expressions.

We see from the functional expression for this that there is a proper description of F where F 
equals 1 when (A is 0) AND (B is 1) AND (C is 1) OR (A is 1) AND (B is 0) AND (C is 1), etc.

&
A

B

&
C

&

≥ 1 F

Figure 4.4 Implementation of circuit (possible FBD code) for level monitoring
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The functional expression in (4.2) and the simplified functional expression in (4.1) are actu-
ally completely identical in the sense that they describe the same logical function. The difference 
shows up only when we are going to implement the function in the form of a digital circuit or 
a program code. This tells you right away that it is the minimized expression that we will prefer.

Now, it is not always easy to undertake such a minimization based on only an understanding 
of the process or on practical evaluations. Often, there is a requirement for a more methodical 
and mathematical approach. Such a minimization can in many cases be made simply based on 
knowledge of simple logical algebra, or Boolean algebra, as it is also called. This is discussed 
in the next section, but before we go on to that, we will study one more example:

Example 4.13 

When you have a completed simplified functional expression,6 it is easy to design the actual 
circuits or to program code in FBD. Assume that we have

 F A B A C 

The circuit or FBD code for this function is then as shown in Figure 4.5.

4.4.2 Boolean Algebra

A logical variable, signal, or quantity can assume two values or states. Various designations 
are used in different contexts:

 • 1 or 0
 • Logical high or logical low (or just high or low)
 • 5 V/0 V (or possibly 24 V/0 V)
 • TRUE/FALSE

6 Now the actual expression in this example can be reduced more. Try it for yourself after having gone through the 
next section.

&
A

B

&
C

>=1 F

Figure 4.5 Implementation of functional expression
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In the PLC context, the words discrete quantity or digital quantity are often used, but the des-
ignation Boolean variable or signal is also common. The branch of mathematics that deals 
with Boolean quantities is called Boolean algebra.

In the following, we will briefly study the basic rules of Boolean algebra and show how 
these can be used to minimize logical expressions.

Boolean Rules

The following rules are based on one or two variables, but the rules naturally apply generally, 
that is, for an undetermined number of variables and for cases where the members are not 
single variables but rather the products or sums of variables.

We begin with Boolean addition: Consider A is a Boolean variable that can have the values 
0 or 1. Based upon our newly acquired knowledge of an OR operation, we can set up the 
 following rules (compare these with functional tables for an OR port):

 

A 0 A

A 1 1

A A 1

A A A 

An explanation of the rules above:

 • If one of the signals is 1, the result is 1 in any case.
 • If other signals are 0, the result depends upon the value of signal A.
 • If A is 0, then Ā must be 1.
 • A + A = A (because 1 + 1= 1 and 0 + 0 = 0).

Correspondingly, we can start from the operation of an AND port and set up

 

A 0 0
A 1 A

A A 0
A A A 

In addition to these fundamental equations, there are the usual rules of calculation that you 
have learned in mathematics, such as calculating with parentheses and that the order of factors 
is irrelevant.

Example 4.14 

In Example 4.12, we arrived at a logical function for when an alarm should become active by 
means of thinking practically. The expression was actually a simplified version of the follow-
ing functional expression:

 F ABC ABC ABC ABC  
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Now, we will find the simplified expression by using Boolean algebra:

 

F ABC ABC ABC ABC

ABC ABC ABC ABC ABC ABC

BC A A AC B B AAB C C

BC AC AB

BC AC AB AB AC BC

1 1 1

 

Here is a minimization obtained by reverse use of the rule A + A = A. In this way, the term 
ABC can be written three times. The purpose of this is to utilize the fact that the term ABC has 
two signals in common with each of the three other terms. Normally, we would not write down 
all of the terms several times since this takes time and space, but just use this fact in this sim-
plification, namely, that terms can be used several times.

De Morgan’s Theorem

Another rule that is very useful is the so‐called De Morgan’s theorem. This rule is used to 
 convert expressions that contain negations.

The most practical way to describe this theorem is mathematically:

 A B A B and A B A B 

These relationships can be easily demonstrated by setting up a functional table. (Try it your-
self!) The theorem is useful and can also be used for larger expressions where the terms 
 consist of groups of variables, such as those shown in the next example.

Example 4.15 

Here, we would use Boolean algebra to reduce the functional expression:

 Y AB C AC B  

As we see, the expression contains three variables or signals: A, B, and C. In order to be able 
to reduce this expression, it is necessary to split it up. Use De Morgan’s theorem to split the 
negations in the first half of the expression:

 

Y AB C AC B

AB C AC B

A B C AC B

A B C AC B
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De Morgan’s theorem is used once again in the next step in conversion, and in the last oper-
ation, we use the fact that B B.

The remaining operations in the simplification of this expression are

 

Y A B C AC B

A B ACC BC

A B BC A B BC

AB B

0

BB C

AB B C

A BC

BC

1

 

As we see, this expression can be reduced significantly. Note also that the signal A disap-
peared during the simplification. This means that the value of A did not have any significance 
for the resulting output Y. The next example gives a comparable result.

Example 4.16 

 

F A B B

AB BB
AB B
A B

B B

1

1
 

It is not obvious that the expression A B B above can be reduced to B. However, this is 
the type of expression that appears relatively often, though in different variations. A practical 
evaluation of the expression makes it possible to see this clearly. Here, there is an AND oper-
ation where B is one of the factors. If B is 0, the answer is 0. If B is 1, the expression in 
parentheses equals 1 and the answer is 1. In any case, F = B.

In the examples above, we have utilized some simplifications and shown how some rela-
tionships can be useful in adding to the list of rules that deal with reduction:

 

A A

A B A A

A AB A

A AB A B 

(Also applies with Ā instead of the A’s or B instead of B)
(Variant of the foregoing)
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You can certainly check this for yourself (for instance, by using De Morgan’s)!
Finally, we will take another small example:

Example 4.17 

 

F A B A CD

AA ACD BA BCD
A CD B BCD

A BCD

1

 

4.5 Sequential Design

This section deals with planning, structuring, and presenting processes or production procedures that 
have a sequential structure. We will review various graphical representations and if we construct and 
use them methodically, they can be of considerable help when we later write program code.

When a process is to be controlled and the events (actions) will take place in a particular order, 
we have a sequential process. In order to express this in a somewhat more sophisticated way:

A system that has the property that the output signals from the control depend only upon the 
instantaneous value of the input signals is called a combinatorial system. If the output signals also 
depend upon what phase or state (in time) the process takes place, we have a sequential system.

This and the next section deal with techniques and schematic representations that can be help-
ful in working out the algorithms for a sequential process.

The goal of the chapter is not to come up with ready‐made solutions simply to be implemented, 
since this can be done in various ways.7 Even though it is the programming of the PLC that is the 
focus of this book, the PLC is only one of several possible types of hardware that we could select 
to implement these solutions. Other possibilities are microprocessors or a PC with an I/O card.

The solution that one selects for a given control problem will depend upon many factors: 
Access to equipment, costs, complexity of the facility that is to be controlled, the environment 
in which the control is to be located, physical size, time factors, and whether or not it is impor-
tant to be able to modify the control at a later time. However, there is one thing that is common 
to all of these implementations. The preliminary work must be done in order that the control 
itself can be wired up or programmed. Among other things, we will learn to set up flowcharts. 
Such charts can constitute a central part of the documentation of controls.

4.5.1 Flowchart

It is not only a good habit to draw up a flowchart (or the like) for the process flow or the func-
tioning of the program; it is often entirely necessary in the planning phase or as documentation for 
the process flow. (As a basis for program code, I prefer to use the state diagram; see Section 4.6.2).

7 Implementation of some of the examples here in the form of PLC code will come in subsequent chapters.
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Many different software packages can be useful in drawing charts and diagrams. One of 
them is Microsoft Visio, but you will certainly find suitable open‐source software that can also 
be used.

A flowchart can be drawn in various ways, depending upon what is to be illustrated and 
what set of symbols is used. The symbols in Table 4.3 is a selection taken from among many 
flowchart symbols in use.

Table 4.3 Overview of recommended symbols for use in flowcharts

Symbols for use in flowcharts

Termination Start or end of a sequence/program part 
(this is also a state in the process)

Sequence step This represents states in the process where 
a task or a set of instructions is performed

Selection/test Usually a logical test is performed here, 
which has two possible outcomes: yes or 
no. If the result is yes, the process flow 
continues to the next state. If the outcome 
is no, it is understood that the current 
condition is maintained

Flow The flow direction from a step to the next

x 

y 

Jump Is used when the chart continues to 
another place on the page or to another 
page

x—Identification number (jump number)

y—Page number, if applicable

Note that x is numbered successively. 
For example, the numbering does not start 
again on the new page

x

y

Target of jump Used for the target of a jump

x—Identification number (target number)

y—Page number, if applicable

Target number = associated jump number

Comment Can be used next to a step for information

Name
X  

Subroutine Used in the master flowchart to refer to a 
macro sequence, program part, or 
subroutine. Name can be the title of a 
macro, for instance, “Washing process.” 
X can be a page number

Manual operation Can be used to note that there must be 
performed a manual user‐controlled 
operation such as filling a magazine

Display Communication with operator panel/HMI
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Example 4.18 A Simple Flowchart

Let us look at a little everyday example that illustrates how a flowchart can be used in many 
contexts. Assume that you are thinking about how to spend the day: Go fishing or play video 
games? This can be illustrated as in Figure 4.6.

4.5.2 Example: Flowchart for Mixing Process

Figure 4.7 shows a process that is part of an industry known and loved by many.8

In this process, water is mixed with sugar and fermented barley in a predetermined ratio. 
The mixing process should proceed as follows:

 • Assume that the tank is empty at the start. When the start button (Start) is pressed, magnetic 
valve MV1 opens so that water runs into the tank.

 • When the level reaches sensor LT2, the water supply is closed and the motor for the con-
veyor belt starts at the same time that the agitator (Stir) starts.

 • When the level reaches transmitter LT3, the motor stops and the magnetic valve MV2 at the 
outlet opens (the agitator will continue to run).

 • When the level falls below LT2, the agitator is also stopped.
 • When the level then falls below LT1, valve MV2 is closed. The sequence can be initiated 
again by pushing the start button.

8 Perhaps relatively more so in certain parts of the country…

Start

Check weather forecast

Go fishing

Stop

Stay home and play
video games 

Is rain forecast?

 A forecast can be found at
 Accuweather.com  

Stop

Do this

Do this

Is this true?

Do this

If Yes, follow
this branch Yes

No

Comment

If No, follow
this branch 

Figure 4.6 Example of flowchart
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Before you start to draw the flowchart, you should do some preliminary work as discussed in 
Section 1.3.1. What is important here is to think through the entire sequence, especially how 
many steps the sequence should be divided in.

Generally, this is an approximate evaluation even though it could be the result of finding out 
how many times there will be a change in the output signals.

If there are several alternative paths through the sequence (several branches), and only one 
branch should be selected, you have what we can call an OR‐branch. Then the transition to 
either branch will have its own conditions. It is important that these conditions be unique so 
that the sequence cannot proceed along more than one branch.

If the sequence should continue along several parallel branches simultaneously, then you 
have what we can call an AND‐branch (simultaneous branch).

From the description of how this process is to be controlled, we will see that there are no 
branches in the sequence. One possible flowchart for the control of this process is shown in 
Figure 4.8.

A couple of things in the flowchart above are worthwhile mentioning. The first is the for-
mulation of actions (events, instructions). An action that should be active in only one sequence 
step should be formulated as “Valve MV1 open.” This indicates that the action ends when the 
sequence continues to the next step.

An action that should remain active through several steps, on the other hand, is formulated 
like such as “Start agitator,” for example. Then there must be a corresponding “Stop agitator” 
somewhere else in the chart. In principle, there is nothing to prohibit formulating the first 
action as “Open valve MV1,” but then we would have to write “Close valve MV1” in the very 
next step. Such formulations are significant if the program code is going to be developed 
directly from the flowchart.

Start 

 
Control 

Start 

LT3

LT2

LT1

LT1 
LT2 
LT3 

Motor 

M

M

Stir 
MV1 
MV2 

Motor 

Stir 

MV2

MV1

Figure 4.7 Mixing process
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Also, note the usage and numbering of references. Here, the sequence is deliberately split 
up to illustrate that. The numbering functions in this way:

The jump down to the left in the flowchart is marked jump number 1. Target number 2 up 
to the right belongs together with jump number 2. When the flowchart is limited to one page 
or just a few pages, it is not necessary to indicate page numbers.

4.5.3 Example: Flowchart for an Automated Packaging Line

Figure  4.9 shows an illustration of a packaging line. The facility consists of two single‐
working cylinders (1 and 2) that go into plus position when the valves Y1 and Y2 receive a 
high signal (24 V). When Y1 and Y2 are set low (0 V), the cylinders will go back into minus 
position.

Each cylinder has two built‐in sensors, A0/A1 and B0/B1, respectively, that detect when the 
pistons are in the plus position (that is, when it is extended) and when the pistons are in minus 
position.

Furthermore, there is a gripping mechanism at the end of each piston. These close and hold 
the products when they receive a high signal (Y3 and Y4) from the control unit. When the 
grips are closed, the sensors D1 and D2 send a high signal.

Two sensors, C1 and C2, detect when the cartons are in position at the magazines.

Motor running
Start agitator

Valve MV1 open

Level 2
reached? 

Ready
Close MV2

Start?

Open valve MV2

Below level
2? 

Stop agitator

Below level
1? 

Level 3
reached? 

1 23

3

21

Figure 4.8 Flowchart for the mixing process
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The facility shall function as follows:

 • When the start button is pressed, the conveyor belt starts.
 • When a carton has come into position at magazine 1, the following takes place (in chro-
nological order): The belt stops, piston 1 extends, the grip closes around the product, the 
piston returns, the grip opens, and the belt starts. An identical operation takes place at 
magazine 2.

 • When 10 cartons have been filled with product 1 and product 2, both the conveyor belt and 
the pistons stop so that the magazines can be refilled. The system is then started again with 
the start button.

 • If the stop switch is activated, the conveyor belt stops as soon as the active piston has 
 finished handling the product in question.

If we were to draw up a flowchart for the sequence in normal operation,9 it would probably 
look like the one shown in Figure 4.10 on the next two pages.

It is unnecessary to write “Yes” and “No” after questions since it is understood that the 
sequence continues downward if the result of the test is TRUE. In the same way, it is under-
stood that the sequence remains in its current state (the state prior to testing) if the result of the 
next test is FALSE.

Start

Stop

Magazine for
product 2

MotorM

K1

Magazine for
product 1

Y3 – Grip closes

Y2 Y1

D1 – Grip closed

Y4 – Grip closes
D2 – Grip closed

A1 – Sensor for A+

B1 – Sensor for B+

C2 C1

2

B0 – Sensor for B–

A0 – Sensor for A–
1

Figure 4.9 Automated packaging line

9 Normal operation means operating without interruption as a result of emergency stops or power failure.
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Note that in the flowchart, “internal” actions and instructions are not described in the steps 
or in a step of their own. Such instructions can be, for instance, incrementing a counter or acti-
vating a time delay. You can consider such things in the flowchart, but it is not necessary since 
the flowchart is meant only as an aid in the planning phase or to illustrate the flow of the 
 process in documentation.

Figure 4.10 Flowchart for automatic packaging line

Run conveyor

Piston 1 out

Close gripper 1

Ready
reset counter

Start?

Position 1? Postion 2?

Piston 1
is out? 

Gripper 1
closed? 

Piston 2 out.
Increment counter

Close gripper 2

Piston 2
is out?

Gripper 2
closed? 

3
2

4
2

5
2

1
2

2
2

Explanation of reference:
This is target no. 4
The 2 indicates that the
associated jump is on page 2

Explanation reference:
The upper number shows that
this is jump no. 2. The lower
number shows that the target is
on page 2 of the diagram
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It is better that the individual steps in the chart are related to physical events in the sequences 
of the process and not to programming behavior. It is also not always necessary to consider 
such events during the planning phase.

You can also make a choice as to what extent you will use easily understood words and 
sentences in steps and questions (so‐called pseudocode) or use something that more closely 
resembles variables and programming code. The first choice is entirely okay in the planning 
stage, but the latter is better for “transforming” the flowchart in to code or for documentation 
of the program code. In the next section, which deals with state diagrams, I have usually 
chosen to use code and variables.

As mentioned, when the flowchart is being translated to code, it is an advantage to 
use proper formulations. There is an important difference between “run belt” and “start belt” 
when the flowchart is converted to program code. “Run belt” indicates that the belt should run 
only during that particular step, while “start belt” implies that the belt starts at that step and 
eventually must be stopped in a later step in the sequence.

Piston 1 in

Open gripper 1

Piston 1 is in?

Gripper 1
open?

Piston 2 in

Open gripper 2

Piston 2 is in?

Gripper 2 open,
counter < 10 and

not stop? 

Gripper 2 open,
counter=10 or

stop?

1
1

2
1

3
1

4
1

5
1

Explanation of reference:
Target of jump no. 2 from
page 1

Figure 4.10 (Continued)
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One thing that becomes obvious in the flowchart in Figure  4.10 is that the flow of the 
sequence is divided into two branches with identical operations, only for two different cylin-
ders. It is therefore tempting to utilize this similarity in developing a program based on the 
flowchart. This would result in using less code than implementing it directly.

When we later are learning about programming languages, we will, among other things, 
tackle a couple of these examples and implement the code for controlling the processes. Then 
this preliminary work in drawing a flowchart will really prove its value. Particularly, if we use 
SFC (see Chapter 12), the transition from flowchart to code will be easy.

Example 4.19 Wash Operation

A bottling plant has a juice tank that is used in soft drink production. This tank is washed after 
each batch. The wash operation functions as follows:

 • When a starting switch is activated, the tank is filled with water by holding a valve open 
until the tank is full (level sensor gives logical high signal).

 • Then the water is heated with the help of a heating element.
 • When the water has reached a temperature of 95°C, the heating is stopped and an agitator starts.
 • The agitator runs for 5 minutes.
 • Then the tank is drained by holding a bottom valve open until the tank is empty (another 
level sensor switches to logical low signal).

 • The entire operation is repeated three times. After that, the program awaits a new signal to start.

From the description of what should happen physically during the sequence, we can identify 
the following five states:

 • Ready
 • Filling
 • Heating
 • Stirring
 • Draining

The figure at the right shows a possible flowchart for the sequence. The chart is partially 
 prepared for later implementation with regard to state names and conditions.

(A counter may be incremented in one of the examples every time filling starts)

4.5.3.1 Top–Down Design

Using the flowchart as we have studied it here is called top–down design. The flowchart is 
used to describe the primary changes in state that occur over time. The way to proceed is 
always first to identify the main states in the process. This is itself a good task since there is 
often a natural flow in the sequential process. It is also usual that individual main states can be 
divided up into smaller portions. Such a main state can be called a macro‐step.

Some development tools utilize macro‐steps as an extra functionality in SFC. Others imple-
ment them by having a normal step call up another program (that also can be developed in 
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SFC). Every macro‐step, at any rate, can consist of several ordinary steps so that they consti-
tute their own small sequences within the main sequence. Figure 4.12 shows a sketch of the 
principle of using macro‐steps.

Macro‐steps are provisionally not defined in SFC in the IEC 61131‐3 standard. It is never-
theless easy to structure program code so that it makes use of such macro‐steps.

Heating

Filling

Tank full?

Ready

Start?

Stirring

5min?

Temp >=
95˚

Draining

Tank empty
and counter < 3

Tank empty
and counter = 3

Figure 4.11 Flowchart for wash operation
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In fact, this is one of the many advantages of the standard in that code can easily be broken 
up into smaller units, each of which can be programmed in any one of the five defined 
 languages in the standard.

4.5.4 Sequence Diagrams

The design of a flowchart, and possibly a state diagram, is an extremely useful preliminary 
task before you throw yourself into the programming itself. Personally, I think that it should 
be an obligatory part of the work of a programmer. What we are now going to study is not 
equally applicable, but I still think that we should illuminate the subject.

Sequence diagrams are, in the PLC context, considered more of a curiosity. This is because 
such diagrams do not lend themselves to more than just a few variables and signals or to cases 
in which the sequence contains branches. I would still like to focus on this in the book because 
I believe that it can contribute to increased understanding of things such as:

 • Boolean conditions and combinations that can, and cannot, occur
 • How to avoid ambiguities in the code
 • The importance of detecting signal changes and not merely signal states
 • When Boolean actions should be stored10 (by using Set/Reset)

10 One often activates an action (for instance, starts a pump) in one phase of a process and then deactivates it at a later 
time. This is different from an action that is to remain active as long as a given condition is present.

0

M0

M1

M2

In

0

1

Out

In

0

1 3

2

Out

Figure 4.12 Illustration of the use of macro‐steps
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If you are going to implement a less complex control with the help of hardware (ICs and other 
components), sequence diagrams can also be useful.

4.5.4.1 Construction of Sequence Diagrams

The purpose of a sequence diagram is to show the state of all Boolean signals in the control 
unit for a defined sequential operation. This means that we have to draw the sequence of all 
input and output signals (I/O signals) for the control unit, plus any internal signals within the 
control, for instance, signals to and from counters and time delays.

We could draw such diagrams by drawing up the digital signal formats for each signal, but 
since a sequence diagram only shows the state of Boolean quantities and signals, it is sufficient 
to distinguish between when a signal has a high value and a low value. In order to make the 
sequence diagram more legible, it is therefore best to mark only when signals have a logical 
high value, since the absence of a marking indicates that the signal has a logically low value.

We indicate a logical high value by using a horizontal mark.
We must also indicate when a signal goes high and when the signal goes low by using a 

short vertical mark. Figure 4.13 shows the principle, compared to drawing both logical high 
and logical low values for signals A, B, and C.

We see from the diagram that we obtain a better overview and a more compact portrayal of 
the signal sequences by only taking into account logical high values.

The lines marked 1, 2, 3, etc. in Figure 4.13 can be called action lines or event lines.11 In 
general, each action line will mark activation and deactivation of one or more events or a 
change in the value of the signal that is involved in the conditions at a control unit. It is 
extremely important that we be consistent with this so that we never allow a change in 
condition to appear between two action lines. More on this later.

From the time perspective, the separation between action lines has no significance. We use the 
same separation between all action lines no matter whether an operation takes 45 minutes (for 
instance heating a liquid in a tank) or takes one second (for instance, the movement of a piston).

A

B 

C 

A

B 

C 

1 2 3 4 5 6 7 8 9 10 11 12 1

Figure 4.13 Examples of sequence diagrams

11 See Lien (1995).
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If we want to include the time perspective in order to improve oversight, we can do that by 
writing a comment in the sequence diagram, for instance in the upper corner of the time 
interval in question (between two lines).

The diagram in Figure 4.13 also shows that a change occurs at each action line, where one 
or more signals changes state. After 12 changes, the same pattern repeats, and this is indicated 
by placing the numeral 1 at the action line that is like the first one. It is a fact that sequential 
systems have repeating sequences. This comes out clearly in the diagram with numbering the 
events.

Signals that have a logical high value when the system starts up are marked by drawing 
horizontal lines on the left side of the diagram without any vertical mark at the beginning.

The following is important when working up a sequence diagram: Only one discrete input 
signal or Boolean condition should change state at each action line. Even if two signals 
change nearly simultaneously, this should be marked on two adjacent lines. If you are unsure 
about the sequence of such events, the choice that you make should be one that is based upon 
knowledge of the process that is to be controlled.

However, many output signals and actions can change at the same action line. The reason 
for this is that actions are logical functions of the system’s input signals and internal variables 
and several actions can be triggered simultaneously by changes in state, for instance, an input 
signal.

Example 4.20 Sequence Diagram for a Double‐Acting Cylinder

Assume that we use two limit switches (see Section 2.3) to get feedback on when a piston has 
come into position. See Figure 4.14. Then we have a total of four signals: Two for the cylin-
ders that control the air supply in the positive direction (A+) and the minus direction (A−) and 
a signal from each of the limit switches (SA+ and SA−).

In order that we always have power on the piston, we must be sure that there is compressed 
air in one of the directions all the time. Therefore, either A+ or A− will have a high value at any 
time.

Assume that the piston, after a start switch has been activated, will make one out–in motion. 
The sequence diagram is then as shown in Figure 4.14.

SA+

SA–

A+

A–

1: Start activates/SA– high
2: Limit switch SA– released
3: Piston out 
4: Limit switch SA+ released

1 2 3 4 1

A–

  A+

Start

 SA–

SA+

(a) (b)

Figure 4.14 (a) System, (b) Sequence diagram
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Example 4.21 

Assume that we have two double‐acting pneumatic pistons. We want the sequence where the 
first piston A goes out. Then piston B makes an in–out motion before piston A finally returns. 
Assume further that each of the pistons receives two logical signals from the control unit, one 
to control the piston in the plus direction and one to control the piston in the minus direction. 
We call these signals A+, A−, B+, and B−.

As in the previous example, there are two limit switches installed on each cylinder so that 
we know when it has come completely out (plus position) and completely back (minus posi-
tion). These signals, which we can call SA+, SA−, SB+, and SB−, constitute the input signals 
to the control unit or PLC.

Figure 4.15 shows the sequence diagram. In order to best display what is happening, a so‐
called motion diagram has also been drawn at the top of the diagram. This clearly shows the 
desired motions of the two pistons A and B.

Assume that the initial state is when both the piston A and piston B are in the minus posi-
tion. This is to say that the limit switches SA− and SB− both emit a high signal.

Some comments on the sequence diagram:
The limit switches will not be released immediately when the pistons begin their return 

motion. Even though this occurs a fraction of a second later, this should be noted on new 
action lines in the diagram.

These are double‐action cylinders that should always be supplied with compressed air in one 
or the other direction. So, for instance, the A+ and A− signals should never be high simulta-
neously. We can then concentrate in the program on the conditions that are to be added to drive 
the piston in one direction. The inverse condition will drive the piston in the other direction.

4.5.5 Example: Sequence Diagram for the Mixing Process

Figure 4.7 dealt with a mixing process for which we designed a flowchart. In order to structure 
the problem and visualize the signals involved, we will draw a sequence diagram. As mentioned 

1: SA–  activated

2: SA–  released

3: SA+  activated

4: SB–  released

5: SB+  activated 

6: SB+  released

7: SB–  activated

8: SA+  released

1 2 3 5 64 7 8

A 

B 

A+

A–

B+

B–

SA+

SA–

SB+

SB–

1

Figure 4.15 Sequence diagram for Example 4.21
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previously, it is not necessary to write a program to control the process, but we want to have a 
good mental image of the signal changes during the sequence. The sequence diagram is as 
shown in Figure 4.16.

Here, the signal from the start button is drawn as a short‐duration signal, even though it is 
not sure that the operator would release the button right away.12 Also note that the input signals 
and output signals are collected into separate groups because this generally provides a better 
overview.

The rule that only one input signal or internal variable should change state at any individual 
action line is naturally respected. This is extremely important because the diagram furnishes 
the basis for the program code.

4.5.5.1 Concerning Analog Signals and Internal Signals

Most often, there will also be analog signals in a control system. Examples of analog signals 
can be obtained from a valve, input signals from a temperature or pressure transducer, control 
signals from a frequency‐controlled pump, etc. We cannot illustrate analog signals in a 
sequence diagram, but we can perform comparisons of analog signals such as testing whether 
a measurement exceeds a given value. The result from such a comparison can be represented 
by a Boolean signal. For example, we can compare a measured temperature with a desired 
value. We can then mark in the diagram when the temperature is equal to or greater than the 
desired value.

All the Boolean variables that appear in the diagram do not necessarily need to be related to 
external signals. Internal signals in the PLC such as the output Q from a timer (time delay) or 
a counter can also be represented in the diagram. We then use the name of the counter or time 
delay, followed by .Q, for instance Count.Q or Ten_sec.Q.

We close this subject with an example that contains both the time delay and the result from 
a comparison.

1 2 3 4 5 6 7 8 

Motor 

Stir 

MV1 

MV2 

Start 

LT1 

LT2 

LT3 

Figure 4.16 Sequence diagram for the mixing process

12 In Chapter 9, we will write a code for this process in the Ladder programming language, and there, we eliminate the 
significance of how long the button is held in.
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4.5.6 Example: Batch Process

Figure 4.17 shows a process section in which two chemicals, A and B, are mixed together. S1, 
S2, and S3 are level switches of the NC (normally closed) type that change state when the 
fluid reaches the level in question. Ts is a temperature sensor. The facility also has a starting 
button, Start and a stopping button, Stop1.

The facility is to function as follows:

 • At the signal to start, valve A opens.
 • At level S2, valve A closes, the heating element is turned on, the agitator starts, and valve B 
opens.

 • At level S3, valve B closes.
 • When 85°C is reached, a timer is activated. 30 seconds after, the heating is turned off and 
valve C is opened.

 • Below level S2, the agitator stops.
 • Below level S1, valve C closes and valve A opens again.
 • The sequence is repeated until Stop1 is pressed.

The sequence diagram in Figure 4.18 is drawn based upon the following assumptions, evalu-
ations, and choices:

 • Assume that the tank is empty at the start. Note that the level switch is NC type so that it 
gives a logical high signal when it is not activated.

Stirrer 

Heater 

Valve A Valve B 

S3

S2 

S1 

Valve C 

Figure 4.17 Batch process
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 • An ON time delay is activated when the desired temperature is reached (Temp_Ok). After 
30 seconds, the time delay output Timer.Q goes high. Note the time comment between 
action lines 6 and 7.

 • The facility completes an ongoing sequence before any eventual stop. In the program code, 
we must then store the event “Stop pressed” and check this at the end of the current sequence. 
However, it is impractical to draw alternative outcomes in the sequence diagram so the Stop 
cannot be illustrated.

 • After the heating element (Heater) has turned off, we do not know when the temperature 
will fall below the desired temperature again. Here, it is assumed that this happens after the 
fluid level has dropped to below level 2.

4.6 State‐Based Design

We have seen that flowcharts and sequence diagrams can be used in the planning and 
development stage for illustrating a problem schematically. Later, and based on such dia-
grams, we will develop structural program codes for sequential systems.

Even though making useful flow diagrams, sequence diagrams, and state diagrams, 
which we soon shall study, is associated with a certain amount of work, this effort is 
quickly compensated for by faster development of the program code. In other words, the 
total development time is shorter if one expends a little time in planning the program struc-
ture. Most probably, the number of errors in the code that have to be detected and corrected 
will also be smaller.

Heater 

Stirrer 

Valve A 

Valve B 

Valve C 

Start 

S1 (NC) 

S2 (NC) 

S3 (NC) 

Temp_Ok 

Timer.Q 

1 2 3 4 5 6 7 8 9 10 11 12 13/4

30s 

Figure 4.18 Sequence diagram for the batch process
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The use of flowcharts is not limited to systems that have a markedly sequential nature, but 
they are not as well suited when there are multiple paths from any one state. In some cases, the 
system that is to be controlled can be described with a set of unique and distinct states without 
there being any dominant sequential process in the system. In such cases, it may be more 
 practical to use state diagrams.

State diagrams are typically used to describe states in the development of finite‐state 
machines. By definition, this is a “machine13” that is always in one of a specified number of 
unique states and where transitions to other states are based upon instantaneous states along 
with combinatorial functions of input signals and internal variables. Which state comes next, 
in other words, is a result of user‐controlled events (for instance, pressing a button) and/or the 
result of internal calculations.

There are two variants of finite‐state machines: the Moore model and the Mealy model. The 
Moore model—which is more widespread and which is the one we will use—is based on the 
idea that actions that are to be performed are associated with states. In other words, changes 
of output signal are dependent only upon the state that is active at any given time. In a Mealy 
machine, the output signals are directly dependent upon the input signals as well.

4.6.1 Why Use State Diagrams?

A widespread use of the state diagram technique is in the development of user interfaces. A user 
interface is normally based upon various user choices resulting in the activation of various 
program segments, where each segment is a state in a state diagram. The execution of the program 
segment can lead to another program segment or to anticipation of a new user‐controlled event.

However, here, we will focus on the use of state diagrams as a design technique for later 
development of program code for controlling processes. In the chapter on sequential design, 
we saw that process flow could be split up into a set of defined states and that the transition 
from one state to another depends upon the values of one or more signals or variables. Both of 
these conditions will appear clearly in a state diagram.

In addition to state diagrams being useful to develop concrete algorithms for control, the 
technique can also be used to plan code structure and applications. As complexity increases, 
so does the need for structured techniques for planning and design. Everyone who works in 
software development knows the concept of the state diagram, which is an important part of 
Unified Modeling Language (UML). UML is a modeling and requirement specification 
 language for software development.

4.6.2 State Diagrams

The state diagram is therefore used to illustrate states, to show how states follow one another, 
and to show which conditions must be satisfied in order for a system to go from one state to 
another. These conditions are called transitions. It is also common to have state names reflect 
something about the actions that will be performed in the individual states. In other words, the 

13 The concept of machine is somewhat misleading these days, but it had its origin in digital techniques in which free-
standing machines—based on hardware assembled from digital components—were developed with this technique. 
Nowadays the technique is used for development of program codes and algorithms.
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state diagram gives the same information as a flow diagram, except that a state diagram is 
faster to draw up, more compact, and also more usable for nonsequential systems.

The initial state, which is marked here with double outlines, is the state in which the system 
starts when power is turned on (placed in RUN). Often, this will be an idle state where no 
actions are performed (perhaps with the exception of initiating or resetting variables). The 
control (the finite‐state machine, PLC program, etc.) remains in this state and waits for a start 
signal from an operator, for instance.

What the other states describe and contain depends upon the process that the diagram is 
made for. These can be actions that are being performed, such as starting a pump or opening 
the valve. It can also be nothing, with the understanding that the system is merely waiting for 
a certain time or for a signal from a sensor, for example.

The transitions will be logical expressions where input signals can be involved, probably in 
combination with internal variables. In the completed program code, only the transition con-
ditions that come directly after the active step are tested. Related to the diagram in Figure 4.19, 
this means, for instance, that it is not significant when the transition Trans_DA is satisfied as 
long as the system does not find itself in state D.

Example 4.22 Conveyor Belt

Figure 4.20 shows a state diagram for control of the conveyor belt in a packaging facility. The 
facility is to operate as follows:

 • Goods that come down on the conveyor belt are detected by a photocell. Then a pneumatic 
piston will push the goods over to a packaging station. The piston has a spring return and it 
is controlled by a sensor so that we know when it is extended. (Assume that it returns 
without coming into conflict with a new item on the belt.)

 • When 100 items have been pushed off the belt, the belt should stop. The operator packs the 
100 items and then starts the belt again.

 • There is also a built‐in stop function as well as an alarm function that is activated if more 
than 10 seconds elapse before the next item arrives at the photocell.

Trans_BC

Trans_CB

Trans_AB

Trans_DBTrans_DA

Trans_DE

Trans_EA

State
A

State
B 

State
C

State
D

State
E

Figure 4.19 Example of a generic state diagram
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In the diagram above, we are using pseudocode, that is, ordinary words and sentences, to 
indicate transitions and states. In order to further reduce work in the programming that will 
come later, it can be sensible to use valid state names and individual codes in Structured Text. 
This is done in the next example.

Also note that the transition conditions are clearly marked thus in the diagram.

Example 4.23 Mixing Process

In Figure 4.8, we drew a flowchart for the mixing process, and in Figure 4.16, we drew a sequence 
diagram for the same process. Figure 4.21 shows a state diagram for the process. We see that the 
flow in the sequences is clearly marked by arrows showing the transitions between the states.

We have used other formulations here in the flow diagram, both in names of states and in 
conditions for transition (tests and choices). This has been done deliberately in order to come 
a step closer to a program for controlling this process. Furthermore, flow diagrams are more 
often used in an earlier phase, where it is natural to use more pseudocode.

The transitions (marked thus) and the state names that are used in the diagram below can 
likely be implemented directly in most systems because they are valid names under the IEC 
61131‐3 standard.14

4.6.2.1 State Tables

Instead of using a state diagram, one can structure the system in tabular form by setting up a 
state table. The same information that appears in the diagram can then be presented in the 
table. A common structure for such tables is to write down a now state in the column farthest 
to the left and a possible next state as the top row in the table. The transitions then indicated at 
the dividing lines between the current now state and the possible next state. A table based on 
the state diagram in Figure 4.20 is shown in Table 4.4 below.

Ready Run
conveyor 

Count up
Shove off 

Alarm

Time > 10 s
Start

Photocell

Confirm

Pusher out and
counter=100 

Stop

Pusher out and
counter<100 

Figure 4.20 State diagram for a packaging facility

14  Names (for variables and objects) will in the following begin with a character and not contain any spaces. 
Underlining is permissible as it is used here in Mix_Drain, for instance.
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4.6.2.2 Macro‐diagram

As mentioned previously, state diagrams can advantageously be used as aids in structuring 
large program applications. In this case, the individual states can describe (consist of) major 
operations that in turn are controlled by their own program units in the PLC.

Then the individual states in the diagram are a sort of macro‐step. See Figure 4.22. When 
the transition is satisfied, another program is called up. One can also make up a state diagram 
that illustrates what will happen within each individual.

4.6.3 Example: Batch Process

In Figure 4.18, we drew a sequence diagram for a batch process. Now, we will draw a state 
 diagram for the system where there has been added a new extra stop button, Stop2, and the 
following additional condition is specified:

 • When the facility has started 10 times, or if Stop1 is pressed, the sequence will complete 
before the facility stops.

 • If Stop2 is pressed, the facility will shut down immediately.

Ready

FILL

Mix_
drain

Mix_
stir

LT2
Start

LT3

NOT
LT1 Drain

NOT LT2

Figure 4.21 State diagram for the mixing process on page

Table 4.4 Example of state table

Next state/ Ready Run belt Alarm Push off
Now state

Ready Start
Run belt Stop Time > 10 s Photocell
Alarm Acknowledge
Push off Piston out and  

counter = 100
Piston out and  
counter <100
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The first extra specification also implies that the diagram must contain alternative branches so 
that there are two possible paths to continue after the tank is empty. If Stop1 has been activated, 
or if 10 sequences have been completed, the program goes to its “Ready” state. If not, the 
“Fill_A” state is activated again. See Figure 4.23.

Notice also the handling of the immediate stop when Stop2 is activated. This is solved here 
by inserting Stop2 into all transitions through to the close of the sequence.

The PLC will then activate and deactivate states in order and, with correct implementation 
of the diagram in the form of code, this will take place without any of the outputs being 
changed at all until the Ready state is activated again.

4.6.4 Example: Level Process

A PLC will be used for controlling the fluid level in the tank. The tank is provided with a 
varying quantity of liquid (control of the fluid stream into the tank is not part of the task). Two 
sump pumps, P1 and P2, will prevent the tank from getting full. The pumps are controlled with 
the aid of signals from three level monitors, B1, B2, and B3, which give a logical high signal 
when they are covered by fluid. See Figure 4.24.15

The system will function as follows:

 • When the level rises above B2, one of the pumps will start and then stop again when the 
level drops below B1.

 • The pumps will start alternately so that P1 and P2 start one at a time. The changeover in 
which pump will start will not take place until the level has fallen below B1 and then has 
come up to B2 again.

 • If the level rises above B3, both pumps will run until the level is below B1 again.
 • If B3 is on for more than three minutes, a warning lamp will light.

Ready
Batch_

program

Tapping_
program

Start

Rinsing
completed

Wash_
and_rinse

Tapping
completed 

Mixing
completed

Figure 4.22 State diagram at a macro level

15 The example is created by Assistant Professor Inge Vivås, Bergen University College.
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The facility also has a start button, a stop button, and a reset button that deactivates the alarm.
Figure 4.25 shows a state diagram made to correspond to the system description above. In 

order to make the transition to program code as simple as possible, the state names used here 
are permissible state names under the standard. For the same reason, descriptive code has also 
been used for the transitions between states.

Start

(NOT S2)
OR Stop2 (NOT S3)

OR Stop2

Stop2 OR
S1 AND

(Counter = 10 OR Stop1)

Time > 30s
OR Stop2

S2 OR Stop2

(*Increase counter*)

(*Stop heater*)

Ready

Fill_B

Fill_A

Drain1

Wait

S1 AND (Counter < 10)
AND NOT

(Stop1 OR Stop2)

(*Start stirrer*)
(*Start heater*)

Heating

Drain2

Temp > 85
OR Stop2

(*Reset counter*)

(*Stop stirrer*)

(*Timer active*)

Figure 4.23 State diagram for the batch process. Actions that are to be performed in the steps are 
 written as (*comments*). The transitions are written in ST code

Water in 

Water out 

B1–B3 are level monitors
that give a “1” when the
level is above the sensor

P2

P1

B3

B2

B1

Figure 4.24 Fluid tank with pumps (Reproduced with permission from Inge Vivås)
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As in the previous example, the actions and instructions which are to be performed in the 
individual states are given in the form of comments.

P1_Last is a Boolean variable which is inserted into the code to keep track of which pump 
was activated last. When the facility starts up, this variable is FALSE. When the level then 
exceeds B2, pump P1 will start (because the transition RE B2 AND NOT P1_Last from the 
Idle state becomes TRUE). The variable P1_Last then takes the value TRUE so that the next 
time the level rises above B2, pump P2 will start.

About the Transitions

RE stands for “rising edge” and indicates that the conditions where RE B2 is present can only 
be satisfied if the signal B2 changes state from 0 to 1. FE stands for “falling edge” and is used 
here to detect when the signal B1 changes state from 1 to 0.

An alternative to writing RE and FE to indicate such flank detection is to use arrows such 
as ↑B2 and ↓B1.

The transition from the Idle state to the Run12 state perhaps seems a little strange. Here, 
“NOT Stop” is included as part of the condition. This is included to ensure that the two tran-
sitions from the same state want be TRUE simultaneously. Here is the scenario:

 • Assume that the level rises above B3. Then the Run12 state is activated.
 • If Stop is pressed, the Run12 state is deactivated and the Idle state is activated again.
 • If B3 continues to give a signal, however, Around12 will be activated again simultaneously as 

the Ready state is activated. We avoid this by using “B3 AND NOT Stop” as a transition to Run12.

One always gets such problems when the diagram has alternative branches, that is, when there 
are several possible ways out of one of the same state. Every possible way has its own transition, 
and it is an absolute requirement that only one of these transitions can be satisfied (becomes 

Ready

Start

Stop

(FE B1)
OR Stop

(RE B2) AND
NOT P1_Last

(FE B1) or B3
OR Stop

(RE B2) AND P1_Last

(FE B1) or B3
OR Stop

B3 AND
NOT Stop

Run2

Run1

(* Run pump P1 *)
(* Set P1_Last *)

(* Run pump P2 *)
(* Reset P1_Last *)

Run12

(* Run both pumps *)
(* Turn on lamp if contition activ > 3min *)
(* Turn off lamp with Reset *)

Idle

Figure 4.25 State diagram for the level process
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a  logical TRUE) at any time. Said in a more elegant way, the transitions must be mutually 
exclusive. If such transitions are not mutually exclusive, it can happen that two or more alternative 
paths become activated simultaneously and then the program will not function satisfactorily.

The Idle state has many connections, and the requirement for mutual exclusivity naturally 
applies to all transitions out of Idle. If we study this transition, we will see that the requirement 
is fulfilled: The use of RE in B2 in the two other transitions leads automatically to there not 
being any conflict with the Stop transition. (This holds true as long as the level does not 
reaches B2 precisely in the same scan when Stop is activated. In order to be sure, we can 
include NOT Stop in these transitions.)

The same two transitions also exclude one another when “P1_Last” is included in one of 
them and “NOT P1_Last” in the other.

An alternative structure that gets rid of the problem is to include specific connectors to the 
transition condition Stop out of all three states Run1, Run2, and Run12 and direct to the Ready 
state. However, this will make an unnecessarily messy structure.

On the Choice of States

The choice of states is primarily made here based upon the physical phases of the processes. 
It seems natural to include three states for running the pumps and a state where none of the 
pumps operate (the Idle state). No actual program engineering evaluation has been made here.

If we were to do that, it is tempting to include a state for activation of the warning lamp. This 
would have to originate from the Run12 state. By doing that, we would get somewhat simpler 
coding of the actions associated with Run12 and we can, by implementation in SFC, use a 
built‐in timer. Figure 4.26 shows a section of the diagram where this change has been made.

(Note: The correct syntax for referring to a built‐in timer object is used here.)

4.6.5 Example: Packing Facility for Apples

Figure 4.27 sketch of a facility for packing apples in crates.

 • When Start is pressed, the conveyor belt 1, which carries the crates, begins to move.
The belt runs until a capacitive sensor gives a signal that indicates that an empty crate has 
come up to the packing station. Then conveyor belt 2 starts.

Alarm

B3 AND
Run12.T > t#3m 

Run12

(* Run both pumps *)
(* Lamp turned on *)
(* Run both pumps *)

NOT B3 OR
Reset 

Figure 4.26 Alternative extra state
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 • Belt 2 transports the apples that are to be packed in the crates. A photocell detects each 
individual apple on the belt. When 10 apples have passed the photocell and thus fallen into 
the crate, belt 2 stops and belt 1 starts again.

 • This will be repeated until the stop button is activated. Then the facility will finish the 
ongoing packing operation and then shut down.

 • If more than five seconds elapse between each apple when belt 2 is active, or more than 10 
seconds elapse before the crate arrives at the packing station when belt 1 is running, the 
operator will be warned and an alarm light will light. The belts will not stop. The alarm 
resets automatically if a crate or an apple passes the appropriate sensor. It can also be reset 
with a button.

 • If the alarm is active, the facility will shut down immediately if Stop is pressed.

The stop button can obviously be activated at any time, so when we code, we must store the 
event of Stop being pressed. Since an ongoing packing operation must be completed before 
the facility shuts down, we check whether Stop has been activated because a crate has been 
fully packed.

Start

Alarm

Reset

Cap
Sensor for
detection of
boxes

Conv2 Conveyor
for apples

Photo
Photocell that
detects apples

Conv1
Conveyor
for boxes

Control panel

Stop

Figure 4.27 Production line—packing of apples (Reproduced with permission from MikroElektronika)
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Selection of States

Many people believe that it is difficult to determine which states, and how many states, it is 
natural to include in a state diagram (or flow diagram). Unfortunately, there is no shortcut or 
unambiguous way of deciding that.

Since the setup of the diagram has consequences only when the code is to be implemented, 
it becomes easier when you have had more experience with programming. Then the choices 
that you make will also be a result of what you yourself prefer as a program developer.

In this concrete example, there are physically only two states: Belt1 is running and Belt2 is 
running. In addition, one always has an initial state, which in this case is the “ready‐to‐start” 
state. In the following, we will first draw up a state diagram based on these three states and 
then design a diagram with several more states.

The practical differences between the two alternative diagrams, as we said, will not be 
obvious until we start to make a program based on the state diagram.

In general, it is true that fewer states yield a simpler, but perhaps less comprehensible struc-
ture, and more code for programming of actions and events. It is precisely in this decision 
process that experience and personal preferences16 come into the picture.

As in the previous examples, the circles are states, transitions are given in italics thus, and 
actions that are to be performed in the states are given in parentheses (* thus *).

Figure 4.28 shows a diagram designed from what we can classify as the physical phases in 
the process. The diagram is small and simple but still easy to understand. A disadvantage is 
that relatively many instructions must be performed in the Run_B1 and Run_B2 states.

If we use special conditions for activation of the alarm as shown in Figure 4.29, the coding 
of the actions will become simpler, and we can use built‐in time objects when we come to 
implement the diagram in SFC. In this diagram, the activation of the alarm is entered as two 

Ready

Start

Alarm AND
Stop

CapCounter = 10 AND
NOT Stop

(Alarm OR Counter = 10)
AND Stop

(* Run conveyorbelt 1 *) 
(* Reset counter *)
(* Time1 > 10s ⇒ activate alarm *) 
(* Reset ⇒ deactivate alarm *) 

(* Run conveyorbelt 2 *)
(* Photocell ⇒ increment counter *) 
(* Time2 > 5 sec ⇒ activate alarm *)
(* Reset ⇒ deactivate alarm *) 

Run_B2

Run_B1

Figure 4.28 State diagram, apple packing, alternative 1

16 Personally, I prefer many states and therefore less and simpler coding of actions and instructions. If we use SFC to 
build code, the sequential function chart will be larger, but usually more comprehensible and easier to read. Since the 
action code is also simpler and shorter, there will be room for most of it right in the functional chart, which also 
improves the overview.
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special states, Alarm_1 and Alarm_2. The same alarm is active in both states, but I have used 
two different alarm states to be able to return to the proper state after the alarm has been reset.

In the diagram below, we see that the complexity is greater, but there are fewer and simpler 
actions that are to be performed in each state.

Incrementing the counter is still integrated in the Run_B2 state. It can also be performed in 
a separate state, but then I think we would have unnecessary complexity in the diagram.

4.7 Summary

A state diagram is a useful aid on the path to a completed program, no matter which language 
you were planning to program in and, practically speaking, no matter what type of process the 
PLC will control. A state diagram is also easy to convert into program code, not just in SFC, 
but also in code written in LD, FBD, or ST (this last by using CASE sentences and, possibly, 
enumerated data types). In the chapters that cover programming languages, you will find some 
of these examples again from this chapter, and you can study the equivalents between charts 
and diagrams and completed code.

So when is it advisable to use the various types of diagrams?
Well, it is partly a matter of taste and it also depends a great deal upon the degree of com-

plexity of the process and the program and, as previously mentioned, whether or not it is a 
sequential system. Both the flowchart and the state diagram can advantageously be used dur-
ing planning and as a methodical approach to completed program code.

Flowcharts are best suited to sequential systems. The structure and symbols mimic largely 
the SFC graphical programming language, and the transition to that language is therefore easy. 
At any rate, it is probably most common to use flowcharts at an early planning phase and then 
use general words and expressions to describe events and conditions.

(* Zero counter *)

(* Increment
counter *) 

Run_B2

(* Alarm active *)
(* Conveyor 2 running *)

(* Alarm active *)
(* Conveyor 1 running*)

Run_B1

Ready

Stop

Start

Counter = 10 
AND NOT Stop

Counter = 10
AND Stop

Stop

Cap
Cap

Reset OR Photo

Reset

Run_B1 > 10s

Run_B2 > 5s

Alarm_2

Alarm_1

Figure 4.29 State diagram, apple packing, alternative 2
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State diagrams can be used for both sequential systems and complex systems that do not 
have a sequential structure, so that the next state can be one of many. The level process in 
Section 4.6.4 is a typical example of a system where the flow is more combinatorial than 
sequential. In order to obtain the best possible yield from the state diagram, it is recommended 
to put in a little extra work to use “legal” variable and state names along with the most correct 
code possible in the transitions.

In larger systems, the state diagram can be used at the macro level in order to illustrate how 
program units fit together and are called up.

Sequence diagrams count more as a curiosity. For small simple systems, they can be useful 
since, when used correctly, they will give us the conditions for activating actions directly 
without focusing on process states. The disadvantage is that it quickly becomes complicated 
and time‐consuming to draw up such diagrams when larger processes and controls are involved 
and/or when the sequential structures have alternative branching.

4.8 Test Problems

Problem 4.1
Given a logical circuit as shown in Figure 4.30.
(a) Set up the logical function F.
(b) Draw a connection using only contacts. (For the original F)
(c) Set up a functional table for the function.

Problem 4.2
Given a logical circuit as shown in Figure 4.31.
(a) Set up the logical function Y.
(b) Set up a functional table for the function.

A

B

&

1

F = ?≥1(B–)

(B–)

(A·B–)

Figure 4.30 

1

1A

B

Y&

≥

Figure 4.31 
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Problem 4.3
(a) Convert the following binary numbers to both decimal and hexadecimal numbers:

1. 110011 2. 10111001.101 3. 01011011.0101

(b)  Convert the following decimal numbers to both binary numbers and hexadecimal 
numbers:

1. 47 2. 135 3. 423

Problem 4.4
(a) Simplify the following functional expression (all signals are Boolean):

 
Valve LT Start Empty Alarm LT LT Empty

 

(b) Simplify the logical function F A B A CD . Use De Morgan’s rule to find F .

(c) Simplify the logical function F AB C D B AC BD CD

Problem 4.5
(a)  The control unit for a traffic light is to activate the alarm (F = 1) if there is a green light in 

both directions simultaneously (G1 = G2 = 1) or if there is a red light in both directions 
simultaneously (R1 = R2 = 1). Write the logical expression for F and draw up a block 
 diagram (logical circuit).

(b)  The logical circuit in a passenger car activates a warning light F if the ignition is on (I = 
1) and the driver’s (D = 1) or a passenger’s (P = 1) seat belt is not fastened and a pressure 
sensor indicates that a seat is occupied (S = 1). Find a logical expression for F and draw 
the logical circuit.

Problem 4.6
A pump is used to fill a tank. Whether or not the pump (P) runs depends upon the state of four 
discrete signals:

A sensor (L) that gives a signal when the level in the tank gets above a lower limit, a sensor 
(H) that gives a signal when the level gets above an upper limit, a drain valve (V) from the tank 
that is closed or open, and an alarm state (A).

The following functional table shows when the pump should operate (P = 1):

L H V A P

0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
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L H V A P

1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

Problem: Determine the minimized logical functional expression (the algorithm) for the pump.

Problem 4.7
A fluid tank is equipped with three level sensors L1, L2, and L3 that indicate low level, high level, 
and full tank. The level sensors give a logical high signal when the liquid comes across the sensors.

There are two drains from the tank, each of which is controlled by its own pump, P1 and P2. 
If the level in the tank comes across the low level, pump 1 should run (P1 = 1). If the level in 
the tank comes across the high level, pump 2 should run. If the level comes across full, both 
pumps should run. Filling the tank is not a part of this problem.

(a)  Set up a functional table (truth table) that shows the possible combination of states for all 
signals.

(b) Draw a logical circuit that implements the pump control.

Problem 4.8
A ship’s engine must be capable of being stopped and started from both the bridge (S1 and S3) 
and from the engine room (S2 and S4). The relay control (contactor control) for this operation 
is shown in the figure below, where contactor K1 connects the main power supply to the 
engine. Explain how the control functions. Draw the logical diagram (standard digital ports).

K1

S4

S3

S1 S2 K1

Problem 4.9 Product Sorting
Products of three different lengths on a conveyor belt are to belt measured and sorted. There 
is just one product at a time on the band. See Figure 4.32. Just as a product has passed FC1, a 
measuring is performed using two other photocells, FC2 and FC3:

 • FC2 is logically low:    short product
 • FC2 and not FC3 is logically high: medium long product
 • Both FC2 and FC3 logically high: long product
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The conveyor has two velocities, normal and low, in addition to reverse, controlled by 
three different signals. When measuring the product length, the belt moves at normal 
velocity.

Short product: The product is transported forward to photocell FC4. Then the conveyor 
speed drops to low, and when the product reaches FC5, the conveyor is stopped. The product 
is then pushed off the conveyor belt by a pneumatic piston.

The end positions of the piston are detected by two sensors, G1 and G2. When the piston 
has returned to its rear position, the cycle ends.

Medium long product: The product continues forward to photocell FC5, at that marks the 
end of the cycle. (It is assumed that the product falls off the belt before a new product passes 
FC1.)

Long product: The conveyor stops for 2 seconds and is then reversed. When the product 
again passes FC1 (on the return), the conveyor shall continue in the backward direction in a 
further 5 seconds. It is then assumed that the product has dropped off the conveyor belt and the 
cycle ends.

Task: Draw a flowchart for the control of the facility.

Problem 4.10 Filling Station 
Figure 4.33 shows a system for filling cartons based on weight. Empty boxes come from the 
left along the conveyor belt and will:

 • Stop under the silo
 • Be filled to the correct weight
 • Be carried away (toward the right)

The scales sense the load on the conveyor belt under the silo and produce two signals:

 • B0 is logically high when the scales are in the ready state (empty box on the belt above the 
scales)

 • B1 emits pulses when the weight increases—10 pulses per kilogram.

Long

Medium

Short
Forward

G1

G2

FC1 FC2 FC3 FC4 FC5

Figure 4.32 Sorting products (Reproduced with permission from Schneider Electric)
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A photocell B2 emits a logically high signal when a box is in position beneath the silo. Filling 
takes place rapidly at first (M1 high) and then slowly (M2 high) so that the weight will be as 
accurate as possible.

A cycle should proceed as follows:

 • The facility is started with a button S1. Then the belt motor M3 starts.
 • When a box arrives at the filling station (B2 high), the belt should stop.
 • When the scales are ready, that is, when B0 gives the high signal, the filling should start.
 • When 36 kg has been filled into the box, M1 should stop and M2 should start. M2 should 
run until the weight is precisely 40 kg.

 • After a three‐second pause, the sequence should be repeated. (Completely until the stop 
button S2 is activated. When that happens, the control should make itself ready for the next 
sequence before the facility shuts down.)

(a)  Draw a flowchart (Section 4.5.1) that illustrates the sequential flow. You can use oral 
 formulations such as “Wait three seconds” or “Weight stable?”

(b)  Make a sequence diagram (Section 4.5.4) that shows the states for all input and output 
 signals in addition to other necessary events such as “ready output” from a counter or a 
timer (time delay). (See for instance Figure 4.18.)

Problem 4.11 Motor Operation
Two motors M1 and M2, which are controlled by a common set of start/stop buttons, should 
start every other time the start button is pressed. If Stop is not pressed within 40 seconds, the 
other motor should start as well. The principle is as follows:

Electronic
scales  

B0 

B1 

M1 
M2 

SILO

B2

S1

S2

B0

B1

B2

M1 

M2 

M3 

M3 

PLC 

Figure 4.33 Filling station (Reproduced with permission from Inge Vivås)
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 • When the start button is pressed, motor M1 should start. During the course of the next 40 
seconds, one of two things can happen:
1. If Stop is not pressed, M2 automatically starts after 40 seconds. The stop button must be 

pressed to stop both motors.
2. If the stop button is pressed before these 40 seconds have elapsed, M1 stops (and M2 

naturally does not start).

 • The next time the start button is pressed, M2 should start. During the course of the next 40 
seconds, one of two things can happen:
1. If the stop button is not pressed, M1 starts automatically after 40 seconds. The stop 

button must be pressed in order to stop both.
2. If the stop button is pressed before these 40 seconds have elapsed, M2 stops (and M1 

naturally does not start).

The next time Start is pressed, M1 starts again and the sequence is repeated as described 
above.

Make a state diagram for the description above. Use reasonable and legal state names and 
complete transitions in pseudocode.
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Introduction to Programming 
and IEC 61131‐3

As the title indicates, this chapter is an introduction to the IEC 61131‐3 standard. This is a 
general presentation of the standard that is aimed at standardization, shortcomings of tradi-
tional proprietary systems, and the advantages of standardization. (The details of the elements 
of standardization will be discussed in Chapter 6.)

5.1 Introduction

Many PLC programming standards have been suggested over the years. Suggestions have 
come from various national and international committees that had the goal of developing 
a common interface for programmable controllers. In 1979, an international working group 
was formed that consisted of PLC experts who were tasked to come up with a first draft for a 
 comprehensive PLC standard.

5

Chapter Contents

 • Introduction to the standard:
Weaknesses of traditional PLSs, advantages of standardization, implementation of the 
standard

 • Brief presentation of the following programming languages:
Structured text (ST), function block diagram (FBD), LD, instruction lists (IL), sequential 
function chart (SFC)

 • High‐level components:
Configuration, resources, tasks, program organization unit (POU)

 • Program processing:
Programming skills, source code, compiling, machine code, syntactic and semantic errors
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After the first draft appeared in 1982, it was decided that the standard was too comprehen-
sive to be collected into a single document. The original working group was therefore split up 
into five different working groups, each of which dealt with its portion of the standard.

The five parts consisted of:

1. General information
2. Hardware and requirements for testing
3. Programming languages
4. User interface
5. Communications

The first standard on programming languages (Part 3) was published in March 1993 and was 
designated IEC1 61131‐3.2 Other additions were published in 2002 and the third, and provi-
sionally last, appeared in 2013.

The standard, which is currently followed to a greater or lesser degree by most of the major 
PLC manufacturers, includes various programming languages:

1. Structured Text—ST
2. Function Block Diagram—FBD
3. Ladder Diagram—LD
4. Instruction List—IL
5. Sequential Function Chart—SFC

LD, SFC, and FBD are graphical programming languages, while IL and ST are text‐based 
languages. Note that the order in which they are listed above is the same order they are 
described in the standard. This has no relationship to when the languages first came into use 
or how much they are used.

The IL programming language will not be described extensively in this book. This decision 
is based upon an industry evaluation of which language is most efficient in use and which is 
the most widespread.

I have chosen to begin with the graphical languages LD and FBD, followed by the textual 
language ST. In addition, SFC will be thoroughly discussed since this language is especially 
designed for programming sequential controls and for organizing program code in general. 
This chapter contains a brief presentation of all the languages in the standard, and the four 
languages mentioned above will be thoroughly treated in their own chapters.

5.1.1 Weaknesses in Traditional PLCs

All PLC manufacturers have used LD as one of the programming languages, but each manu-
facturer has previously had its own dialect. This means that, for standardization purposes, 
there have been relatively major differences from one type of PLC to another:

1 IEC stands for International Electrotechnical Commission. This is the world’s leading organization for preparation 
and publication of international standards for all electrical and electronic (and related) technologies.
2 Previously, the standard was called IEC 1131‐3 (without the six‐digit identifier). After January 1, 1997, all IEC 
 publications are issued in the 60 000 series. For example, IEC 34‐1 is now referred to as IEC 60034‐1.
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 • The use of symbols and programming capabilities varied from one type of PLC to another. 
This meant that one had to learn a new dialect when one changed brands of PLC.

 • It was difficult to structure the programs and to build hierarchical structures. Most PLCs 
supported a limited number of subroutines, but did not support the use of program blocks in 
LD. If one cannot group the code into blocks with input and output parameters, it is nearly 
impossible to make good structures that connect various program code blocks.

 • The use of only global variables and addresses meant that the programmer had to be careful 
and screen a part of a program from being influenced by another part. The capability for 
encapsulation of the individual program parts is important in making a good, legible, and 
durable code that is also easy to modify later.

 • Arithmetic operations were also difficult to implement. Most manufacturers had previously 
implemented this possibility only by using their own arithmetic blocks.

 • Figure 5.1 shows a program code to add two numbers with the Omron C200H PLC. Numbers 
larger than 9999 (BCD) had to be stored in several addresses in this PLC. In the example, 
the number stored in addresses IR020 and IR021 are added to the number located in DM0020 
and DM0021. The result remains in the addresses DM0030, DM0031, and DM0032. (IR is 
the input register and DM is the data memory register.)

CLC(41)

ADDL(54)

020

DM0020
Num2

DM0030
Result

ADD(30)

#0000

#0000

DM0032

253.13

Norm_on

Figure 5.1 Arithmetic operations in LD (Omron C200H)
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 • Reuse of program code was also difficult when the code could not be stored in separate 
blocks with input and output parameters. Often, one had a need to utilize the same code 
again several times. In many traditional LD‐based PLSs, reuse is difficult in the best case.

 • There were limited possibilities for exercising control of how the execution of the program 
took place. In most PLCs, the execution of the program was by continual scanning of the 
program (see Section 1.3.3). How much time the processor took for each such cycle was 
primarily determined by the size of the program application. However, one frequently found 
a need to be able to control the updating speed. This made it simpler to structure the code by 
splitting up the code into several programs that were run at different times and with different 
cycle times.

5.1.2 Improvements with IEC 61131‐3

One of the aims of standardization is for everyone working with PLCs to understand one 
another better. An example of this would be that someone who is working on a project would 
be able to communicate better with the programmers of the PLC. It would also be easier to 
make alterations in the program that someone else has written no matter what PLC it applied 
to. The threshold for users would be lower and the training time reduced.

The group working with development of the standard studied programming languages from 
many major manufacturers. Then they set up suggestions for languages that included the most 
essential features from the individual dialects. In addition to a clear definition of the  languages, 
the standard covers several other aspects such as:

 • Addressing
 • Execution
 • Data formats/data structures
 • Use of symbols
 • Sequential control
 • Connections between languages

Some improvements from the standard:

 • It is becoming simpler to build structured programs and collect programs hierarchically. 
Smaller program parts can be encapsulated into separate program elements that can be cou-
pled in a hierarchical structure. The main program can be split up into separate parts, each 
of which can have its own execution conditions. Smaller program parts that require faster 
execution can be placed into their own folders in the program structures. The same is true of 
program code that is to be executed only if an abnormal condition occurs.

 • The possibility of cyclic execution (fixed interval between scans) in which the cycle time 
can be configured means that the programmer achieves better control. Different program 
 sections can be executed and updated at different times, which also contributes to better 
structure and simpler control.

 • Reuse of program code becomes possible to a greater degree. The standard is not an abso-
lute set of rules. Among other things, it means that code written for a type of PLC cannot be 
directly imported into a PLC from a different manufacturer, but the code can still be rewritten 
easily with minor modifications.
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 • Buying and selling products and services have become simpler since the competence of users 
has become more generalized. It is been simpler for users who know PLCs from one manu-
facturer to learn to get around in a programming language from a different manufacturer.

5.1.3 On Implementation of the Standard

It is important to be clear that the IEC 61131‐3 standard is not an absolute standard. 
Manufacturers who want to adopt the standard do not need to follow the standard slavishly. 
This would have made the standard to comprehensive and detailed and would have limited the 
possibility for manufacturers to develop software (and hardware) with competitive advantages 
over other manufacturers.

Instead, the standard defines a comprehensive set of guidelines. These are summarized in 
76 tables in the document (International Electrotechnical Commission, 2013). Manufacturers 
determine for themselves to what extent they will follow the guidelines. This also means that 
there can still be relatively large differences with respect to programming, user interface, 
graphics, etc. between the various manufacturers’ systems even though they have all been 
 certified by the standardizing organization.3

As we see, there is a relatively large degree of freedom associated with the right to assert 
that a system meets the standard. However, there is an unavoidable requirement that the doc-
umentation makes clear what is and what is not in line with the standard. This may be done by 
reference to the individual items in the individual tables.

The documentation for the system must therefore contain a statement of conformity such as 
“This system conforms to the guidelines in IEC 61131‐3 in the following properties.” The 
information in the table must be taken directly from the relevant subparagraphs in (International 
Electrotechnical Commission, 2013).

Example 5.1 

The following table has been taken from the documentation for the programming tool PL7 Pro 
from Telemecanique (Schneider Electric, 2002 and 2004).

Table number Characteristic number Description of characteristics

59 1 Left power rail
59 2 Right power rail
60 1 Horizontal link
60 2 Vertical link
61 1 Open contact
61 3 Closed contact
61 5 Positive transition contact detector
61 7 Negative transition contact detector
62 1 Coil
62 2 Negated coil
62 3 SET (latch) coil
62 4 RESET (unlatch) coil

3 Certification is issued by the international independent organization PLCopen. Many hardware and software producers 
are members of that organization. The purpose of the organization is increased knowledge and application of IEC 61131‐3.
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The table refers to subparagraphs concerning graphical elements in the LD programming 
language. If we compare the paragraphs in the standard, we see that PL7 Pro has implemented 
all of the properties except for Transition‐sensing coils described in Table no. 62 on page 142. 
(Note: This documentation is written with reference to the second version of the standard.)

5.2 Brief Presentation of the Languages

5.2.1 ST

As the name indicates, ST is a text‐based language. It is, in contrast to ILs (the other  text‐
based language in the standard), a high‐level language where many operations and instruc-
tions can be performed with a single command line. If we were to compare it to other high‐level 
languages, ST most resembles Pascal or C.

ST has been specially developed to program complex arithmetic functions, manipulate 
 tables, and work with word objects and text. The example below contains ordering of values, 
conditional instructions, a FOR‐loop, and the declaration of a variable. (The example is  written 
with the programming tool CODESYS.)

Example 5.2 

PROGRAM PLC_PRG
VAR

Index  : INT := 1;
Parameter : ARRAY [0..10] OF REAL;
Data AT %MW5 : ARRAY [0..10] OF REAL;

END_VAR

IF %MX0.1 THEN
%MW0 := 0;
%MX0.2 := %MX20.0;

ELSIF NOT %MX3.0 THEN
%MW0 := 10;

END_IF;

FOR Index := 1 TO 10 BY 1 DO
Parameter[Index] := Data[Index];
Index := Index ‐ 1;

END_FOR;

ST will be treated in Chapter 11.

5.2.2 FBD

FBD4 is a graphical language which, described in a very simplified way, is based on connecting 
functions and Function-blocks (Figure 5.2). The language includes, among other things, use of 

4 Notice that FBD as described in IEC 61131‐3 is in accordance with IEC 60617‐12.
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standard logical function such as AND, OR, NOT, etc. and function blocks (FBs) such as timers 
and counters, but self‐ constructed functions and FBs can also be defined. Many who have little 
knowledge of digital electronics therefore think that this is a great language to use or at any rate to 
get started with. It can be practical to use the language to program logical algorithms (Boolean 
functions) and control functions such as regulator structures and the like. However, the language 
does not offer anything that cannot be  executed in ST, but it gives a better overview (at any rate, for 
smaller programs).

FBD is covered more thoroughly in Chapter 10.

5.2.3 LD

Ladder Diagram, or just plain LD, is still used to a large degree by many PLC programmers. 
This is despite the fact that both ST and SFC are more efficient languages in most contexts. 
The reason that LD is still used so much is that it is simple to understand and that is it is based 
upon traditional electrical wiring diagrams (relay diagrams). The well‐established language 
has, for a long time, continued to maintain its presence because new engineers and technicians 
still have to learn to read it, understand it, and apply it. Some people also apply the concept of 
relay  diagram to program code written in LD.

LD basically consists of a set of instructions that execute the most basic types of con-
trol functions: logic, time control, and counting, as well as simple mathematical opera-
tions. An example of program code is shown in Figure 5.3. The example of code contains 
standard elements such as contactors (NO and NC), coils, flank‐detecting contacts, and a 
timer.

Most PLC manufacturers nowadays make it possible to perform advanced additional 
functions in LD, often integrated with other languages such as FBD and ST. For smaller con-
trols, LD can therefore be a fine choice of programming language. The basic functions that are 
needed in order to implement smaller applications can be learned relatively quickly and the 
graphical presentation can be understood intuitively. 

5.2.4 IL

IL is an assembler‐like low‐level language. Even though there are disadvantages associated 
with the use of a low‐level language such as IL, the advantage of the language is that it does 
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Figure 5.2 Example of code in FBD
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not require much computer power. The reason that the language continues to be used is 
that  the language, together with LD, has existed longer than the other languages in the 
standard.

Many older PLCs can be programmed only with IL/LD. There can therefore be cases where 
one can use IL, for example, when program code written in IL is taken from an old PLC for 
modification or analysis. The IL language, however, has limited capabilities and applications 
because it is hard to learn and not very comprehensible when programming tasks are numerous 
or complex.5

On older PLCs code in IL (or LD) be programmed and transferred to the CPU via a special 
panel. It was not necessary (or possible), as it is today, to connect a PC for programming and 
diagnostics. An example of such an older PLC that has a programming panel is the Omron 
model C20, which is shown in the picture below.

Example of code in IL:

LD  run
ST  timer1.IN
LD  counter
GE  5 (* IF counter >= 5, *)
JMPC  next (* jump to next *)
CAL  timer1(
  PT:=t#10m)
LD  timer1.Q

5 Personally, I think that the language is so user‐unfriendly and hard to read that it is scarcely worth time to learn it. 
Perhaps this statement will irritate some people, particularly among the old hands who still prefer IL.

Figure 5.3 Example of program code in LD
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ST  motor
next:
 :   (* etc… *)

5.2.5 SFC

SFC is a graphical tool that is ideal for programming sequential controls and implementing 
state‐based control algorithms (Figure 5.4). SFC is actually not a programming language in 
the traditional sense, but more a graphic approach for structuring program code. It is also 
 brilliantly adapted for this. All of the other languages in the standard can be used together with 
SFCs, and it is necessary for at least one of them to be able to implement all of the necessary 
transitions and actions. You will find more about SFC in Chapter 12.

5.3 Program Structure in IEC 61131‐3

In this section, we will briefly introduce the basic elements in 61131‐3. The basic structures 
and concepts in the standard will be discussed without going into details about language and 
language elements.

The standard has been developed in order to be consistent with more advanced logical con-
trollers, as well, where several CPUs are involved, for instance. We will therefore define some 
concepts that can describe such systems.

The standard specifies a hierarchical approach to programming structure. The sketch in 
Figure  5.5 illustrates the high‐level structural elements defined in the standard and their 
intrinsic unity. The elements that are defined are found in all PLC systems, even though the 
manufacturers often use other names and concepts for some of the elements.
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In the succeeding text follows a short definition and description of the individual 
elements.

Configuration

The top level in the software structure is called a configuration, and this is the designation for 
a programmable control system (defined in Part 1 of the IEC 61131 standard). Such a control 
system can, for instance, be a PLC—a controller in a rack with one or more processors. Larger 
control systems can consist of the network of several configurations. A configuration is there-
fore also defined as a communications interface with other configurations. A configuration 
consists of one or more resources (see in the following text). Global variables and directly 
addressed variables, for instance, I/O, can also be declared at the configuration level. In this 
case, it will be visible to all resources within the configuration.

Resource

Under each configuration, we find one or more Resources. The standard describes a resource 
as “consisting of a signal processor unit with its user interface and functions for sensor and 
actuator interfaces.” For a PLC, a resource can be a processor (the CPU) but could also be 
applications in a PLC.
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Figure 5.4 Example of SFC
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Each resource can, in turn, contain one or more programs. The presentation in Figure 5.5 
shows one configuration consisting of one resource. Global variables that are declared within 
the resource are used to process data that is limited to that one CPU, but that should be acces-
sible for all other program units within the resource.

Task

A task can be used to control how the program within the resource is executed. Each resource 
can contain one or more declared tasks. The tasks can, for instance, be configured to perform 
each individual program organization unit (POU) cyclically, freewheeling, or event controlled. 
(These concepts was also discussed in Section 1.3.3.)

By associating the program units to various tasks, the POUs can also be performed in 
their order of importance. This is achieved by assigning a priority to the various tasks under 
the configuration. This parameter defines how the programs that can run simultaneously are 
prioritized relative to one another. The significance of such a priority, however, is dependent 
upon implementation and thus depends upon which CPU is handling interrupts. There are 
two ways that a conflict between two simultaneous programs can be managed:

 • The program that has lower priority is interrupted immediately so that execution of the 
higher‐priority program can start.

Resource

Task

Program

FB

Configuration

Task

Program

F F

FB FB

Program

F F

Var Var Var

VarVarVar

Global variables and direct
addressed variables 

FB    Function block
F       Function
Var   Variables

Access paths

(Communications functions)

Figure 5.5 Configuration elements and general program structure in IEC 61131‐3
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 • The program that has lower priority is not interrupted, but rather continues normally until 
termination, before the higher‐priority tasks are carried out.

Even though not all equipment producers follow the standard, all of them have implemented 
a method of controlling execution of programs. One practice that has been used, and con-
tinues to be used in a number of PLC systems, is to use special types of blocks where run 
properties for program code are given implicitly (in STEP7 from Siemens, organization 
blocks (OB) are used). These can be properties such as cyclic or freewheeling execution or 
for managing interrupts. With the IEC 61131‐3 definition of a task, it is possible to indicate 
all such program properties explicitly and independently of the supplier.

Variable

Variables are used to identify data objects whose content can be altered. This can be data 
that is associated with inputs and outputs or data in the memory of a PLC. Variables must 
be declared and one must simultaneously indicate what type of information the variable 
will  contain by indicating one of several defined data types, for instance, BOOL, INT, or 
WORD.

Variables can be declared within individual POUs or in configuration of the resource. In the 
last case, the variables are global (VAR_GLOBAL), and they can be accessed by all the POUs 
within the same resource or from POUs in another resource.

Programs, Functions, and FBs

One of the concepts that are fundamental for understanding and that will be used a great deal 
in the rest of the text is the concept of POU. The concept will soon be described more com-
pletely, so here we will satisfy ourselves by saying that a POU is an independent program unit. 
There are four types of POUs defined in the standard:

 • Programs
 • FBs
 • Functions (F)
 • Classes

Every POU can call up another POU, and the call can be with or without parameters. Normally 
a program will contain calls of functions and FBs, but it will also be possible (and simple) to 
call up a program from another program.

NOTE! This book covers only the first three types of POU.
These will be more fully described in Chapters 7 and 8. Here, we shall be satisfied with 

saying that a resource can contain one or more programs which, in turn, can contain several 
FBs and functions. These last can be user‐defined or predefined and provided together with the 
PLC as a part of the operating system or included in a library that is available in the program-
ming tool.
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Most often, the user will build up the program, but these programs can also, as mentioned 
previously, contain (call) many predefined FBs such as CTU (counter), TON (time delay), or 
SR (flip‐flop) or predefined functions such as COS, SQRT, ADD, MOVE, plus many others.

5.3.1 Example of a Configuration

Here, Figure 5.6 shows an example of a simple configuration that includes one resource and 
three defined tasks with associated programs and FBs. Note that the programs called by the 
elements often consist of several separate program units even though these are not shown in 
this figure (for the sake of comprehensibility).

In the example, it is assumed that the main program is executed freewheeling. Then the 
scan time can vary from one scan to the next (for instance, be 15 ms in one scan and 25 ms in 
the next).

Often, it is advantageous to have a cyclic execution of a program, for instance, in data 
 collection or logging or regulating a process like the one shown. A Proportional–Integral–
Derivative (PID) control functions best when the cycle time is fixed. This program unit is 
therefore associated with a task that is configured for cyclic execution. The cycle time does not 
show in the figure, but can be configured in the task.

If there are many program units, one can also structure according to how critical they are to 
the operation by associating them with tasks with various priorities. Events often happen that 
must be processed immediately in order to limit loss and damage of equipment or to secure 
life and health. Examples of such critical operations could be alarm management and routines 
for emergency stops. Program code that manages such events can then be associated with a 
task of the event type where a certain event is specially monitored.
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Figure 5.6 Example of configuration
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5.4 Program Processing

Most PLC systems have been developed with the goal that persons with little or no previous 
knowledge of programming should be able to learn how to develop programs. This perhaps 
is one of the reasons that IEC 61131‐3 includes fully five different programming 
languages.

Particularly, the two graphical languages in the standard, LD and FBD, are considered by 
many users to be intuitive and easy to understand. This is not just an accident.

LD, which is the first language that was developed for PLCs, is designed on the basis of the 
relay diagram. Such diagrams are well known to electricians and others with an electrical 
background and will therefore be a natural first choice for a novice programmer with such a 
technical background.

FBD has many similarities to the logical circuit diagram. Users with basic knowledge of 
digital electronics, or knowledge of Boolean algebra and combinatorics, will discover many 
recognizable elements in this language.

To gain a greater understanding of what a program is, we will hear have a somewhat more 
general lesson on how program code is implemented and how it is processed in digital 
hardware (which is indeed what a PLC is, in fact).

5.4.1 Development of Programming Languages

No matter which programming language a user chooses, the PLC will process the program 
code in the same general way. Before the CPU can understand and perform the instructions in 
the code, it must be converted into binary form:

 • Code in its original form (as the user sees it) is called source code.
 • The binary form, which is the “native language” of computers and other digital hardware, is 
called machine code.

The very first computers were actually programmed in machine code, where codes in the form 
of bit patterns were punched into so‐called punch cards.

It was naturally enough a terrible job to program in machine code so eventually a language 
called Assembler was developed. Common operations were collected and defined into a set of 
instructions. Parallel to this, there were developed programs that could interpret assembler 
instructions and convert them into machine code. This was called compiling a code and a 
program that performed this job was called a compiler.

Assembler are what we call low‐level language and operate at the register level in the com-
puter. Assembler is not a particularly user‐friendly language, but it can give greater under-
standing of how digital hardware operates and functions. In order to make it simpler to develop 
a more advanced program, several high‐level languages have been developed. Examples of 
high‐level languages are Pascal, C++, and Java. For PLCs, the language ST is such a high‐
level language.

Even though assembler is laborious to program with, and even though many high‐level 
 languages have been developed, assembler is still used relatively often. The reason for this is 
that it is a resource‐efficient language. In compiling source code written in a high‐level  language, 
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there is always generated a certain amount of “unnecessary” code as a result of the high‐level 
language using elements and instructions that function for a wide variety of  purposes. Compiling 
source code written in assembler does not generate any unnecessary code (as long as it is well 
written). This is an advantage in for systems where speed is critical or memory is limited.

The fourth language in the IEC 61131‐3 standard, IL, is very reminiscent of assembler. This 
is because a universal language like IL is often implemented and utilized in program 
development tools like a sort of bridge between the high‐level languages and machine code. 
This means that it is often possible to convert source code written in another  language into IL.

5.4.2 From Source Code to Machine Code

Common to all programming languages is that the source code must be compiled in order to 
generate a runnable machine code. In the following, we will briefly take up the phases that a 
program goes through from source code to machine code. Figure 5.7 illustrates the process 
from the user program (source code) to a runnable program (machine code). This job is  usually 
performed by the development tool.

5.4.2.1 Writing and Editing

All programming tools have one or more editors. These are user interfaces where the program 
writer constructs the program code. This can be a simple editor without graphical symbols and 
tools, or it can be an editor that is equipped for programming in a graphical language. 
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Figure 5.7 The cycle of program development
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The former is the case when the programming is done in text‐based language like C, JavaScript, 
or HTML, or the languages IL and ST in the IEC 61131‐3 standard.

If the compiler can handle files of the type .txt, for instance, one can easily use the Microsoft 
Windows program Notepad to develop the program code. This is not common with PLCs 
because they are practically always accompanied by a development tool.

Use of Color
Most editors use color in order to help the user more easily distinguish between comments, 
variables, and keywords (reserved words). Which colors are used can vary from one 
development tool to another. CODESYS uses the following by default:

 • Reserved words (AND, OR, IF, etc.) are written in uppercase BLUE.
 • Comments are written in blue‐green.
 • Variables, constants, assignment operators, etc. are written in black.
 • CODESYS also uses a special color (dark magenta) for direct addresses and olive for 
values such as TRUE, FALSE, T#30s, etc., and red if these are entered in error. (All the 
colors can be defined by the user.)

High‐level languages such as Visual Basic, Visual C++, or the languages SFC, LD, and FBD 
in the standard, which have preassigned graphical elements, require editors where the graphical 
elements are accessible in menus and/or on tool palettes.

Figure 5.9 shows an example of an editor for the Grafcet graphical language, which is a 
forerunner to SFC. As we see, the editor contains a toolbar with the graphic elements that are 
accessible for use in programming.

Figure 5.8 Example of editor (From development tool CODESYS v3.5)
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5.4.2.2 Compiling, Syntax Errors, and Linking

As noted previously, a compiler is the program that converts source code to machine code, 
which is the code that digital equipment such as a PLC understands and can process.

As mentioned, this compilation is performed by the development tool for PLCs. If the 
source code contains errors as a result of violation of the rules, it generates error messages in 
the compiler. Such errors as are discovered by the compiler are called syntax errors.6  Examples 
of syntax errors are lack of declaration of variables, use of keywords as identifiers, or calling 
a function or subroutine that does not exist. Common to all syntax errors is that they make it 
impossible for the CPU to execute the compiled code and is therefore necessary to edit the 
code in order to remove such errors.

Some development tools, such as CODESYS, are based on the idea that the user performs 
compiling when he/she wishes to do so by activating and starting the compiler. The compiler 
goes through all of the code and then generates a sort of report. If the code contains syntax 
errors, the report generated will contain references to where in the code the error is located (or 
where it first becomes consequential). This usually happens when the error  message contains 
a reference to the POU that contains the error and what line in the code contains the error.

In some development tools, the compiler runs continuously and automatically whenever the 
user confirms the statements and instructions that he/she has written. In this way, the user is 
informed continually of any syntax errors because a marker sits there and blinks at the first error.

Depending upon the design of the development tool, an operation that is called linking can 
also take place in connection with compiling. The compiled source file is then linked to other 

Tool
palette

Figure 5.9 Example of editor (From development tool PL7 Pro from Telemecanique)

6 Syntax: The rules for the formation of grammatical sentences in a language.



150 Programmable Logic Controllers

necessary files. This can be library files that contain predefined functions and FBs that have 
been used in the source code or files that have been prepared by the writer.

5.4.2.3 Loading and Running

When the code is free of syntax errors so that it can be compiled, the machine code can be 
loaded into the PLC for running. Note that many programming contain simulators so that one 
can test the code without loading it into the PLC.

This is the point at which a new type of error, the semantic7 error (also called logical error) 
will often turn up. There are two main types of semantic error:

 • Those that result in a program crash
 • Those that do not result in a program crash but which give the wrong result

An example of the former type is exceeding the watchdog time (for instance, as the result of a loop).
The other type of logical error can obviously be critical even though the program can run 

without crashing because such errors mean that you are getting an undesired result from the 
program with reference to the job that the PLC ought to do.

It is quite clear that this latter type is the most common and the one that all programmers 
take a lot of time to fix. It naturally does not help the situation when the compiler does not 
have any capability to discover such errors.

Example 5.3 Code that Contains Errors

PROGRAM Error_PRG
VAR

Digital_in AT %IX2.0: BOOL Syntax error: Missing semicolon
END_VAR

IF Digital_in = TRUE THEN
%MW0 = 0;  Syntax error: missing colon before =
%MX0.15 := %MW20;  Syntax error: Word object assigned to 

Boolean object
ELSIF NOT Digital_in THEN

%MW0 := 10;
ELSE Logical error:

%MW0 := 20;  This instruction can never be 
performed.

END_IF

5.4.2.4 Debugging

Most of the development tools for PLCs contain a tool for troubleshooting the code. Programmers 
usually use the word debugging instead of troubleshooting and such error‐finding tools are 
called debuggers. Debugging a program involves hunting for and correcting errors.

7 Semantics: Pertaining to the meanings of words and other symbols.
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In using a debugger, one can run the program step‐by‐step, for instance, instruction by 
instruction, while watching the state of Boolean objects and the contents and other types of 
variables and objects. Alternatively, one can also insert one or more breakpoints. When the 
program runs, the CPU will stop execution of code when the program indicator comes to such 
a breakpoint. The purpose of this can be to run quickly through the code when you are sure 
that it is okay and then to run in a more controlled manner through certain parts of the code. 
Alternatively breakpoints can be used to study what happens from one program scan to the 
next. This is practical for studying the content of objects used for counting, among other 
things. Such a controlled execution of program code, combined with forcing variables to 
desired values and states make it much easier to find logical errors in the program.

5.5 Test Problems

Problem 5.1
(a) IEC 61131 is divided up into five parts. Which?
(b) What are the five programming languages defined in the IEC 61131‐3 standard?
(c) What is the reason for standardizing programming languages for PLCs?
(d) What other aspects besides programming languages are included by IEC 61131‐3?
(e) How could we check to what extent a programming tool adheres to the standard?

Problem 5.2
(a) When would it be practical to select SFC, and when should one decide to use ST?
(b) LD is one of the first programming languages for PLCs but is still used a great deal. Why?
(c) What do the concepts of configuration and resource mean as defined in the standard?
(d) Describe the types of tasks that are commonly defined in modern PLCs.
(e) Why would there be a need to assign different priorities to different tasks?
(f) What is a POU and what is the relationship between a POU and a task?

Problem 5.3
Explain the following concepts:
(a) Source code
(b) Machine code
(c) Assembler
(d) Compiling
(e) Syntax error
(f) Semantic error
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IEC 61131‐3: Common Language 
Elements

6.1 Introduction

It is one of the goals of the standard that all five languages should be able to integrate, so that, 
for instance, a POU written in ST can contain a call of a POU written in LD or that a program 
code with associated variable declarations and comments can be converted from one program-
ming language to another.

In order for it to be possible to implement this, there are many concepts and elements in the 
standard that follow defined rules that are common to all the languages. This applies to:

 • Identifiers
 • Keywords
 • Comments

6

Chapter Contents

 • Use of characters:
Identifiers, keywords, comments

 • Datatypes:
Numerical and binary datatypes, datatypes for time and duration, generic and user‐defined 
datatypes, arrays and data structures

 • Data representation:
Numerical literals, text strings, time literals

 • Variables:
Single objects, structured objects, local and global variables, initiation, declaration, 
 symbolizing, direct addressing and I/O‐addressing
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 • Literals
 • Addressing
 • Data types
 • Variables

This chapter deals with these common elements.

6.2 Identifiers, Keywords, and Comments

This group of common elements deals with permitted use of characters, either as identifiers, 
variables, program names, or for comments. For example, some particular combinations of 
characters are not permitted to be used as identifiers. Such combinations are called keywords 
and are processed as such.

6.2.1 Identifiers

An identifier is a fancy word for name. Many elements must be given a name before or during 
the programming. This applies to programs, variables, user‐defined functions and functional 
blocks, and steps and actions (SFC) etc.

The standard requires that, as a minimum, the first six characters in a name should be tested 
for uniqueness by the hardware. This means that the system must be able to distinguish bet-
ween the variable names Motor1 and Motor2 (six characters), but not necessarily between 
the variables Switch1 and Switch2 (seven characters).

However, it is freely up to the manufacturer to implement a higher number and most  systems 
can distinguish names with a length that is much higher than six.1

Other guidelines in the standard applicable to identifiers are:

 • Interpretation of identifiers must be independent of character case. For example, the system 
should interpret Sensor, sensor, and sEnSoR as the same identifier.

 • Identifiers may not contain a space.
 • They must begin with a letter or an _ (underscore).
 • They may not end with an underscore or have two sequential underscores.
 • Numerals are permitted, but not first in the identifier.

Example 6.1 Examples of Permitted Identifiers

 • AbCDe
 • _ABCdE
 • AB_CDE
 • A_2_3

1 In the programming tool CODESYS (from Software Solutions GmbH) for instance, the length of a permitted name 
of identifiers is unlimited. This applies as well to the meaningful portion of the identifier, that is, the part of the name 
that is tested for uniqueness.
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Example 6.2 Examples of Identifiers That Are Not Permitted

 • A_B__C (two adjacent _)
 • 1_A_B (numeral first)
 • A_B CD (space)
 • AbCDe_ (ends with _)

(Note that keywords cannot be used as identifiers.)

Since it varies from one system to another in how many characters are permitted to use in 
identifiers, it makes sense to be rather modest in the selection of identifiers. Even though most 
systems will probably support it, it is probably a good idea to avoid identifiers such as This_
is_a_long_identifier. It quickly becomes difficult to keep track of such long identifiers and it 
naturally takes longer to enter them.

6.2.2 Keywords

Keywords are unique combinations of characters that are reserved from being used as identi-
fiers, since they are only to be used as syntactic elements in programs. The standard remains 
open for national standardization organizations to translate keywords and publish a national 
list in place of the list that is published in International Electrotechnical Commission (2013). 
It seems doubtful that this is actually taking place. Here are some examples of keywords 
described in the standard:

 • TRUE, FALSE
 • IF…THEN…ELSIF…ELSE…END_IF
 • AND, OR, NOT, MOD, XOR
 • FUNCTION…END_FUNCTION
 • VAR…END_VAR

As we see, only uppercase letters are used in the keywords. Normally, the system is not sensitive 
to the use of upper‐ or lowercase letters when writing keywords. Generally, the system will 
automatically correct and display only uppercase letters in the editor and then in a particular 
color to clearly differentiate the keywords from other words and identifiers. (See Section 5.4.2.1.)

In practice, the complete list of reserved words (that is words that are not permitted to be used 
as identifiers) is much longer than the list found in International Electrotechnical Commission 
(2013). The reason for this is that manufacturers offer many predefined functions and functional 
blocks that are assigned unique identifiers that are reserved against use by programmers.2

6.2.3 Comments

Comments can be used everywhere, in all POUs and in any programming language. The 
purpose of comments is partly to make it easier for the programmer to keep track of his/her 

2 For instance, there are a total of 567 different reserved words in PL7 Pro v4.3 (from Telemecanique).
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own program code and partly to make it easier for others to read and understand the code. 
Frequent use of comments is a good habit to get into.

The standard formulates several requirements for how comments are to be implemented. 
The comments here have been written in italics for clarification:

 • Comments should be enclosed by (* and *), that is, parentheses and asterisks, both before 
and after the comment itself:
(* This is a lengthy comment, long enough that it may well extend over more than one line 
of written code *).

 • Comments may be placed anywhere at all in the code, but not in the middle of a variable 
name or the like.

 • Use of nested comments is permitted as long as (* and *) come in pairs, as in this example: 
(* This (* is *) legal *) but (* this (* is illegal *).

 • A comment may contain all characters.
 • The standard also defines the alternative3 character combinations /* and */.
 • A one‐line comment can be indicated following the character combination // as here4:
 • //This is a comment on a single line.

It is also permitted to use (* and *) for a one‐line comment.

Note that the number of characters in a single comment is dependent upon an implementation‐
dependent parameter.5 The code example below contains various applications of comments. Since 
all characters are permitted within comments, there can be several asterisks between (* and *).

Example 6.3 Use of Comments

(********* RS FLIP‐FLOP *********)
(* Example of function block that
implements a reset‐dominant flip‐flop *)
(****************************)
FUNCTION_BLOCK RS

// Declares input variable:
VAR_INPUT
Set : BOOL;
Reset : BOOL;

END_VAR
//Declares output variable:
VAR_OUTPUT
Out : BOOL;

END_VAR
Out := NOT Reset AND (Set OR Q1);  (*The FB’s program code *)

END_FUNCTION_BLOCK

3 This is not implemented in CODESYS.
4 //is not implemented in CODESYS v2.3.x.
5 For instance, this is permitted with 256 characters in PL7Pro (v4.3).
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6.3 About Variables and Data Types

In traditional PLC systems, only global6 addresses are used, and these often have fixed loca-
tions in memory. The disadvantage of this is that the users themselves must be careful that no 
conflicts occur when they are written to the same addresses from different parts of the program 
or from different programs. In other words, the user monitors which addresses he/she has used 
and to what extent they do not overlap with other addresses.

The only advantage with fixed addresses is that the user does not have to declare the 
 variable. With IEC 61131‐3, all addresses that will be used must be declared7 in the form of 
variables. If you do not specify something else, all variables will be declared as local variables 
within the individual POUs. Then they will be accessible only within the POU where they 
were declared. Then there will be no conflict with variables declared in a different POU, even 
though the same variable name has been used. (Section  6.6 deals with variables and 
declaration.)

Nor is the type of data that an address can contain fixed in traditional PLCs. Since the data 
type is not declared, the same address or address area can be used for floating‐point numbers 
in one part of program code, for instance, and the four integers in another part of the code. 
This is possible since the same area in memory is often used for different types of data so that 
the user must be careful that there is no overlap between addresses that contain different 
types of data.

Example 6.4 Overlap between Addresses and Types

%MD14 32‐bit addresses that contain integers
%MF14 32‐bit addresses floating‐point numbers

These two objects have different data types but refer to the same address location (same memory 
area). When using both objects in the program, logical errors in the form of assignment of 
content will occur because assignment of content to one object will change the other object.

With IEC 61131‐3, data types are declared explicitly when the variables are declared. If any 
conflict arises among various data types, for instance, when a variable that contains data of the 
floating‐point type (REAL) is assigned to a variable that contains data of the whole‐number 
type (INT), this will be considered as a syntax error. The compiler will therefore deliver a 
message about it (see Section 5.4.2.2).

6.4 Pragmas and Literals

A pragma instruction can be used to affect the properties of one or more variables with respect 
to compilation or precompilation processes. This means that a pragma influences the genera-
tion of the code. It can also be used as another type of comment if it does not have a valid 
prefix that the compiler recognizes.

6 A global address is an address that can be read and written to from all POUs in the application.
7 To declare means to make a statement, and this is the word that describes events when a variable is defined by stating 
variable type, variable name, data type, and possibly an initial value (starting value).
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Both syntax and semantics are implementation dependent so that the use of pragmas is 
entirely up to the manufacturer of the system to define. The only requirement is that it be 
enclosed in curly brackets of the type {}, both of which are on the same line. A common appli-
cation in programming is to use them to provide information in the code that is to be displayed 
on a screen during the run.

Example 6.5 

{hello world}
{version 2.5}
{by Dan Lufkin}

CODESYS (v3.5) defines several sets of instructions for pragmas, among others:

 • Access instructions for providing reading and writing access to variables in connection with 
communication with other hardware or software. Possible values are “read,” “readwrite,” 
and “none.”

 • Messaging instructions for sending information to the messaging window during compila-
tion. Possible message types are text, info, warning, and error.

(You will find detailed information on use of these and other types in the CODESYS manual 
or in online help in the program.)

6.4.1 Literal

In an original grammatical context, the word literal means “verbatim” or “literally,” but in the 
digital context, a literal is a “nameless constant.8” This somewhat mystical concept refers to 
two conditions: the word constant indicates that it deals with constant values (in contrast to 
variables where the content can change). Nameless refers to the fact that this is a value that is 
provided directly in the program code instead of being declared beforehand.

In the IEC 61131‐3 standard, the concept of literal has a significance that is in line with its 
digital significance since it deals with how values are assigned. The value format can be num-
bers, text strings, or time, and there are, naturally enough, rules for how various types of 
values are entered and how the software will interpret the values. The standard defines three 
main types of literals:

 • Numerical literals: Numerical values of the integer and floating‐point types
 • Text strings: Sequences of characters
 • Time literals: Values such as duration, time of day, or date

When values are assigned to a variable, the format and range of value depends upon the data 
type of the variable. It is therefore natural to group literals according to data type. That is the 
way they will be discussed in the following text.

8 The same nomenclature is used in C++ programming and most C++ manuals cover the subject in more depth than 
we will here.
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6.5 Data Types

Depending upon what task the PLC is to perform, there will be a requirement for many differ-
ent types of data. For example, there may be Boolean (BOOL) variables, perhaps associated 
with digital I/O, various types of integers (INT, UINT, DINT, etc.), floating‐point objects 
(REAL), or types for management of time (TIME).

While a variable name identifies the storage location of a variable and the variable type indi-
cates, for instance, whether the variable is global or local, the data type indicates what type of 
values (or literals) the variable can have. This is also significant for what operations can be 
undertaken with the variable in question and how the contents of the variable are stored.

When a variable is declared, the data type must be declared at the same time. The standard 
naturally defines guidelines for how variables and data types are to be declared and ranges of 
values for the individual data types. The declaration of a variable, together with its properties 
(as a data type), is done in a separate declaration field within the individual POU. The decla-
ration is made in the same way, no matter which programming language is being used other-
wise in the POU.

The standard defines a set of elementary data types. These will be predefined in PLCs that 
adhere to the standard. In addition, the standard contains guidelines on how the system can 
implement user‐defined data types.

6.5.1 Numerical and Binary Data Types

Table  6.1 contains all of the basic integer and floating‐point types that are defined in 
International Electrotechnical Commission (2013), while Table 6.2 contains data types in bit‐
string format. It is not certain that the manufacturer has chosen to implement all of these, 
particularly since some are identical in practice. The tables show, for each data type, 
information on associated keywords, the number of bits each element accepts, and the result-
ing possible range of values.

Table 6.1 Integers and floating‐point numbers

Format Data type Number of bits Value range Initial value

Integer (w/sign)a SINT 8 −128 to + 127 0
INT 16 −32 768 to + 32 767 0
DINT 32 −231 to + 231‐1 0
LINT 64 −263 to + 263‐1 0

Positive integer 
(unsigned)b

USINT 8 0 to 255 0
UINT 16 0 to 65 535 0
UDINT 32 0 to 232‐1 0
ULINT 64 0 to 264‐1 0

Floating‐point  
numbersc

REAL 32 ± 10±38 0.0
LREAL 64 ± 10±308 0.0

D, double; INT, integer; L, long; S, short; U, unsigned.
a One of the bits is used as a sign so that the possible range of values is from −(2N‐1) to (2N‐1‐1).
b Value range: 0 to 2N‐1.
c Defined in IEC 60559. See also comments on floating‐point numbers in Section 6.5.1.2.
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As we see, a distinction is made between integer types with and without a sign. In many 
contexts, such as counter values, there is no requirement for negative numbers, and it is 
therefore an advantage to be able to use separate types for these. Then the system will give 
an error message or warning for a negative result, and at the same time, the positive value 
range will be larger for the same number of bits in memory. The purpose of similar types 
with different lengths (number of bits) is also a question of resources. There is no reason for 
using more bits than are necessary to store the values in question. If a variable is going to be 
used for counting the number of bottles in a crate, for instance, it is sufficient to use the data 
type USINT.

The standard also defines a group of data types that are called bit strings. See Table 6.2. 
In  this group, we find a very fundamental data type, namely, BOOL. This type is used 
for  variables associated with digital inputs and outputs as well as status and memory flags.

The other bit‐string formats BYTE, WORD, DWORD, and LWORD correspond in many 
ways to data types for positive integers, SINT, INT, DINT, and LINT. The reason for defining 
these bit‐string data types is because they can be used to store binary information. This can be 
advantageous during communications with external units and instruments for storing and 
setting various status bits (flags).

Another application is management of multiple Boolean objects in an efficient way, where 
each individual bit can represent a digital output or a signal to a stepping motor. In the next 
chapter, we will see that there are many functions that are defined in the standard in order to 
be able to manipulate the content of bit‐string variables.

The data type WORD is also used for declaration of variables associated with digital inputs 
and outputs. Many conventional PLCs also use the types BYTE, WORD, and so forth, and an 
address with the length of 16 bits is also traditionally often designated as a word. The example 
below shows an illustration of the content in a word.

Most significant bit Least significant bit 

15

0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

For integers with signs (data type SINT), the most significant bit (MSB) is used for the sign 
(0 = positive and 1 = negative).

Table 6.2 Bit‐string data types

Format Data type Number of bits (N) Value range

Boolean BOOL 1 0/FALSE
Bit strings BYTE 8 16#00 a

WORD 16 16#0000
DWORD 32 16#0000_0000
LWORD 64 16#0000_0000_0000_0000

a The prefix 16# indicates that this is a literal in hexadecimal form. See next section.
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6.5.1.1 Numerical Literals

Numerical literals can also be classified into the main types integers and floating‐point num-
bers. The integers group thus also includes the bit‐string types BYTE, WORD, DWORD, and 
LWORD. The standard defines several formats for assigning and representing integer values, 
but it is not certain that all manufacturers have implemented all types. An integer value can be 
entered directly in the form of a decimal number, for instance, 235. If desirable, the user can 
also enter (and display) integer numbers in binary, octal, or hexadecimal form.

In order to distinguish these formats from one another, the base number is given, followed 
by the character # before the value in question. If the value is not preceded by a base number 
and #, the value is automatically interpreted as a decimal number.

Example 6.6 Integer Literal

Decimal Binary Octal Hexadecimal

0 2#00000000 8#000 16#00
37 2#0010_0101 8#45 16#25
−14 −2#00001110 (or 2#11110010) −8#16 (or 8#362) −16#0E (or 16#F2)
12_534 2#00110000_11110110 8#030366 16#30f6

How large a number can be entered and stored depends upon the number of bits that are avail-
able (8, 16, 32, or 64). For instance, for the numbers 0.37 and −14 (decimal), it is sufficient 
with eight‐bit data types (such as SINT), while the number 12 534 (decimal) requires a 
minimum of a 16‐bit data type.

As the example shows, there is a guideline for the use of the underline character9 for 
dividing up long numbers in order to improve legibility. This is particularly useful for entering 
and representation of binary numbers. And, as with the definition of identifiers, no distinction 
is made here between uppercase and lowercase letters.

For negative numbers, the table also shows the complementary numbers (in parentheses). 
Even though it is possible to enter the numbers preceded by a sign, they are stored in the two’s 
complement format in the PLC. This is the way that negative numbers are handled. Two’s 
complement implies that all bits in the binary representation of the value are inverted and then 
the number is added to 1 (binary).

Example 6.7 

Integer −14 is equal to −00001110 in binary.
The two’s complement of this number then becomes 11110001 + 1 = 11110010.

Negative numbers in octal and hexadecimal form can also be expressed using the two’s 
complement form.10

9 This is not possible in CODESYS.
10 If one selects binary or hexadecimal display in the development tool CODESYS, the complementary values will be 
displayed on the screen.
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6.5.1.2 Floating‐Point Numbers

The word floating point originates from the way these numbers are represented in the PLC (or 
in a computer). The number is stored in two parts, the mantissa and the exponent, according 
to the following formula:

Floating‐point number = Mantissa · 10Exponent

Example 6.8 

512.0 can also be written as 5.12·102.
12 532 can be written as 1.2532·104.
0.125 can be written as 1.25·10−1.

What is “floating” here is the decimal point in the mantissa because this is moved after the 
number has been entered. Often the letter E is used instead of the base number 10 for repre-
senting the number. For example, 12 532 can look like 1.2532E+4, and 0.00001234 is written 
as 1.234E‐5. How large or small the floating‐point numbers have to be before this display 
format is used depends upon the implementation.

Example 6.9 

Possible ways of writing to represent a floating‐point number:

1.234
3.14
314e‐2
−0.6e7

The accuracy and range of floating points depends upon how many bits are used to represent the 
mantissa and how many are used to represent the exponent. According to Lewis (1995), the 
range of values for a 32‐bit floating‐point number (REAL) is from 10−38 to 1038 for positive num-
bers and correspondingly for negative numbers (−1038 to −10−38). This means that 6 bits are used 
for storage of the exponent, one bit for the sign and the remainder for the mantissa. Accuracy for 
a 32‐bit floating‐point number is given in Lewis (1995) as 2−23 or approximately 0.0000001.

Nevertheless, the use of floating‐point numbers is more accurate than simply operating with 
integers. Floating point is also used for intermediate storage and for the results of arithmetic 
calculations.

6.5.2 Data Types for Time and Duration

The standard defines some distinct data types that are not ordinary data types in the basic 
programming languages. These data types are especially designed for control of time and 
duration (Table 6.3).

In industrial control systems, there is often a requirement for monitoring the duration of 
events and actions, for instance, at what time of day or on which day of the week actions 
should be performed. With these specially designed data types such as TIME, these events can 
be programmed in a more structured way.
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The similar data types DATE, TOD, and DT are used for many different purposes. It may 
be to activate and terminate actions according to time of day or to particular dates. This is 
 useful for programming building automation such as air‐conditioning and lighting.

Another example of use of these data types is for reporting purposes. There may be require-
ments for storing the date and time when an alarm was activated or when an operational stop-
page took place. If power fails, there may be various actions that should be performed when 
power is restored, depending upon how long it was out.

6.5.2.1 Time Literals

The standard permits many ways of entering and displaying time and duration. All time lit-
erals must have a prefix that indicates the type, followed by the character #. The actual time 
follows this. The following are used for specification of time and duration:

 • d for days
 • h for hours
 • m for minutes
 • s for seconds
 • ms for milliseconds

Time literals must be entered in the proper order: days, hours, minutes, seconds, milliseconds. 
The guidelines permit both uppercase and lowercase letters, negative values, use of under-
score and decimal point, and both short and long forms of prefixes. Below are some examples 
of correct literals for variables of the type TIME.

Example 6.10 

 • T#25s
 • T#‐25s (negative time)
 • T#12.4ms
 • t#12h
 • T#12h23m42s
 • t#12h_23m_42s_67ms

Table 6.3 Time and duration

Data type Description Initial value

TIME Duration T#0s
LTIMEa Duration LTIME#0s
DATE Calendar date –b

LDATEc Calendar date LDATE#1970‐01‐01
TIME_OF_DAY or TOD Time of day TOD#00:00:00
DATE_AND_TIME or DT Date and time of day –

a The data type LTIME is a 64‐bit integer with sign. The resolution is in nanoseconds.
b This is implementation dependent since it depends upon a defined start date. This also applies to DT.
c Not implemented in CODESYS.
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 • TIME#45m
 • time#4m_20s

Note that it is possible, if the manufacturer so permits, that the most significant part of the time 
literal can include overflow. For instance, a time can be entered as T#29h25m. This would be 
the equivalent of T#1d_5h_25m.

6.5.2.2 Real‐Time Literals

Entering and display of literals for data types DATE, TOD, and DT must also follow a 
particular order. For the data type DATE, the literal should follow the form:

DATE or D # Year ‐ Month no. ‐ Day no.

Literal for the data type TIME_OF_DAY (TOD):

TIME_OF_DAY or TOD # Hours : Minutes : Seconds

(Note that hours, minutes, and seconds are separated by a colon, while year, month, and day 
are separated by a hyphen.)

Literal for the data type DATE_AND_TIME (DT):

DATE_AND_TIME or DT # DATE‐literal ‐ TOD‐literal

Example 6.11 Some Real‐Time Literals

 • DATE#2007‐05‐31
 • D#1968‐11‐25
 • time_of_day#08:45:00
 • TOD#17:30:45
 • DATE_AND_TIME#1814‐05‐17‐13:45:00
 • dt#2007‐08‐01‐12:30:00

For example, the last literal indicates 12:30, August 1, 2007.

6.5.3 Text Strings

The last of the elementary data types is text strings represented by the keywords CHAR, 
WCHAR, STRING, and WSTRING.11 All these data types are used to manage letters and 
other characters. The difference between CHAR and WCHAR and between STRING 
and WSTRING depends only upon the way the content is interpreted and stored. CHAR and 
STRING are text in ASCII format, while WCHAR and WSTRING are text in Unicode format.

This last is an expansion from the first version of the standard and was introduced in order 
to be able to handle a greater variety of characters. This is useful if one needs to enter special 

11 WSTRING is supported in CODESYS version 3.5 but not in version 2.3. CHAR and WCHAR are not implemented 
in any version of CODESYS.
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characters that are not found in ASCII and for handling many languages other than English. The 
reason that the Unicode character set contains more characters is that each character occupies 
two bytes of data or 16 bits, while each character in ASCII occupies only one byte (Table 6.4).

To help the compiler help you catch possible errors in the code, there is a difference in 
entering the literals in the two formats, so that ‘ ’ is used around CHAR and STRING types 
and “ ” around WCHAR and WSTRING. Example:

aString := ‘This enters a STRING’
aWString := “This enters a WSTRING”

The first 127 characters in ASCII and Unicode are otherwise the same, so that if you do not have 
any special requirement, it is recommended that you use the data type STRING for text variables.

When declaring a variable of the STRING type, the programmer, if desired, can also enter 
the length of the variable, that is, the maximum number of characters that the variable can 
contain. If no length is stated, a default length will be used. The maximum permitted length of 
text strings depends upon the implementation.12

Typical applications of this data type are found in dialogues with the operator’s panel and 
HMI or for sending data to printers. In the standard, there are several defined functions for 
management of text strings such as finding the length of the string, inserting characters in a 
string, and deleting characters from a string.

In addition to ordinary letters and characters, the standard defines some special combina-
tions that can be used to format text for display or printout. These special combinations, which 
are not themselves displayed on the screen or printout, consist of a dollar sign ($) followed by 
the letters L, N, P, R, or T. See Table 6.5.

6.5.4 Generic Data Types

This is actually not a specific data type, but rather a general indicator for classes of data types. 
Generic data types are used by manufacturers for specification of input and output variables in 
functions and functional blocks. The standard does not specify any guidelines for use of 
generic data types in user‐defined POUs, so it is completely up to the manufacturer whether 
or not this is ever implemented.

Nevertheless, the reason for using general data type classes is, for example, to create a function 
that is more general with respect to what data types are accepted when using the function.

Table 6.4 Data types for text

Description Data type Number of bytes per  
character

Initial value

A single character CHAR 8 ‘$00’
WCHAR 16 “$0000”

Text strings of variable length STRING 8 ’’
WSTRING 16 “”

12 In CODESYS, the default length is 80 characters. The maximum length is currently unlimited.
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Example 6.12 

The standard function DIV (/) can be used to divide two members of any data type (as long as 
both numbers have the same data type). That is to say that the numbers can be one of any of the 
following data types: REAL, LREAL, INT, UINT, SINT, USINT, DINT, UDINT, LINT, and 
ULINT. As one would think, it is very tiresome to have to specify all the data types that can be 
used in every one of the functions or functional blocks. Instead, we could enter a generic data 
type that describes the classes of permitted data types. The class that the data types in question 
belong to is called ANY_NUM. The graphical representation of function DIV in the standard  
(International Electrotechnical Commission, 2013) is therefore as follows:

DIV 
ANY_NUM

ANY_NUM
ANY_NUM 

Here is a hierarchical overview of all of the generic data types:
(Note: DERIVED deals with user‐defined data types. See next section.)

ANY 
ANY_DERIVED  
ANY_ELEMENTARY 
 ANY_MAGNITUDE 
  ANY_NUM
   ANY_REAL 

(REAL, LREAL) 
   ANY_INT 
    ANY_UNSIGNED 

(USINT,UINT, UDINT, ULINT)
    ANY_SIGNED 

(SINT, INT, DINT, LINT)  
ANY_DURATION 

   (TIME, LTIME) 
 ANY_BIT 

(BOOL, BYTE, WORD, DWORD, LWORD) 
 ANY_CHARS 
  ANY_STRING 

(STRING, WSTRING) 
ANY_CHAR 

   (CHAR, WCHAR) 
 ANY_DATE 

(DATE, DATE_AND_TIME, LDT, TIME_OF_DAY, LTOD) 

Table 6.5 Formatting coder for printout and display

Formatting code Significance for printout

$L Line feed + carriage return (new paragraph)
$N New line
$P New page
$R Return key
$T Tab key

Notes:
•	 Lowercase letters are also permitted, for instance, $p.
•	 If one actually wants to use a $ in the text, this must be entered with two $’s. 

Example: “Unit price is $$32.”
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6.5.5 User‐Defined Data Types

In addition to the elementary data types and any special data types defined by the manufac-
turer, it is possible to define one’s own data types. These are called derived data types since 
they are derived from (that is, based upon) the elementary data types.

The purpose of user‐defined data types is to be able to obtain a more structured code, par-
ticularly in those cases where it is natural to group several I/Os of various data types by 
defining a new class of I/O composed of elementary data types as members. See Section 6.5.5.4.

Derived data types are defined by means of the keywords TYPE and END_TYPE. It is pos-
sible that a development tool will permit only definitions of one type within each set of the 
keywords TYPE and END_TYPE.

The defined types will be accessible to the entire project (globally). In this way, global and 
local variables can be declared based upon the new data type.

Sometimes, there is a requirement to be able to process sets of several variables or values 
in a structured way (ARRAY and STRUCT) or simply to define some additional different 
properties for the selected data type, for instance, to limit the value range.

After we have obtained a little experience in programming, the use of the elementary data 
types will be, well, elementary. Structured data types (STRUCT) are a little more complicated 
and are seen traditionally as not useful in the PLC programming. Nevertheless, they offer an 
important contribution that improves the capability of producing well‐structured program code.

Example 6.13 

Assume that the PLC is to be used for monitoring and controlling a cold‐storage site. The 
storage consists of several different freezer rooms, but each freezer room is equipped com-
pletely identically, with a freezer unit that is to be controlled and temperature and pressure that 
are to be monitored.

Instead of declaring one variable for each individual I/O in each freezer room, one can first 
make a self‐defined structured data type called, for instance, Freezer, where all I/Os associated 
with a room are members of the new data type. Then one can declare a variable of the type 
Freezer in each of the freezer rooms in the storage site.

6.5.5.1 Value Limitation

As mentioned earlier, it is possible to define new data types based upon an elementary type but 
with a limited range of values.13 This can be done as follows:

TYPE
HoleNumber : INT (−800..200);

END_TYPE

Here, a new data type called HoleNumber is defined on the basis of the elementary data type 
INT, but with a limited value range from −800 through 200. (You can also limit the value 
range directly when a variable is declared. See Section 6.6.2.1.)

13 The standard suggests that entry of a value range should apply only to integer and binary data types.
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6.5.5.2 Enumeration

Enumeration is a user‐defined data type that is based upon user‐defined text constants. The 
constants are referred to as enumeration values. In enumeration, the program developer enters 
a list of permitted text strings that a variable can assume. Defining an enumerated data type 
follows the same syntax as statement of a value range:

TYPE
Color : (Green, Yellow, Red);

END_TYPE

Here, the data type Color is defined, which can take on one of three possible values: “Green,” 
“Yellow,” or “Red.” A variable can then be declared based upon the new data type Color. 
Unless otherwise specified, the variable will then initially have the first value in the list, in this 
case the value “Green.”

Note also that the specified permitted values are compatible with the use of integers. This 
implies that instead of operating with the values directly, one can use numbers to identify 
them. In the example above, the value “Green” is automatically assigned the value 0, since 
nothing else is specified, and “Yellow” takes the integer 1 and “Red” takes the integer 2. This 
means that it is possible to use variables with an enumerated data type in control structures 
that loop. If desired, other numerical values can be assigned to the enumerated values:

TYPE
Card:  (Jack := 11, Queen := 12, King := 13, Ace := 14);

END_TYPE

6.5.5.3 Arrays

A common derived data type is Arrays. This is not actually a user‐defined data type since arrays can 
also be defined directly in the declaration field in a POU or in the list of global variables. However, 
similar to limitation of a value range, one can define a data type and use it in declaring a variable.

The individual elements in the array can be often elementary data type or a user‐defined 
data type. It is possible to define one‐, two‐, and three‐dimensional arrays. The standard 
 suggests the following syntax14:

TYPE
Tab_1dim : ARRAY [lower..upper] OF DATATYPE;
Tab_2dim : ARRAY [lower1..upper1, lower2..upper2] OF  
      DATATYPE;

END_TYPE

The only requirement placed upon the lower and upper boundaries is that they are integers that 
lie within the value range of DINT. A lower boundary can well be 437, for instance, as long as 

14 CODESYS does not permit definition of several data types in a block. Each individual type that is defined must be 
enclosed by TYPE .. END_TYPE.
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the upper boundary is higher. In other words, the numbers that are used for the elements are 
not important but the array’s dimension is.

Note that it is also possible to insert initial values in arrays during type declaration, but since 
initial values are not discussed until Section 6.6.2.1, I have omitted that here.

Example 6.14 Defining Array Data Types

TYPE  One_dim:  ARRAY [0..9] OF USINT; END_TYPE
TYPE  Two_dim:  ARRAY [1..2, 1..5] OF INT; END_TYPE
TYPE  Three_dim:  ARRAY [0..3, 0..3, 0..3] OF REAL; END_TYPE

Here, three data types are declared based upon array structure: a one‐dimensional array 
with 10 elements, a two‐dimensional array with 2 * 5 = 10 elements, and a three‐dimensional 
array with 4 * 4 * 4 = 64 elements.

As mentioned previously, it is not necessary to define individual data types in order to use 
arrays. We will see this in Section 6.9, where variables are declared based directly upon an 
array structure.

6.5.5.4 Data Structures

Up until now, we have seen a series of elementary data types and how such data types can be 
organized in array form. Sometimes, there is a requirement for more complex data structures, 
where several different data types appear as subelements within a comprehensive data type. 
These subelements can be any one of the aforementioned data types, including enumerated 
types and arrays.

Structured data types are declared within the keywords TYPE, STRUCT and END_
STRUCT, END_TYPE with the following syntax:

TYPE Name_of_datatype:
STRUCT

<Declaration of datatype 1>;
<Declaration of datatype 2>;
…
<Declaration of datatype n>

END_STRUCT
END_TYPE

Example 6.15 Declaration of a Data Structure

TYPE  ANALOG_SIGNAL:
STRUCT

Raw_value  : WORD;
Scaled_value : REAL;
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Min_raw : INT (‐32767..0);
Max_raw : UINT (0..32768)

END_STRUCT
END_TYPE

In the example below is a declaration of a data type called Productdata that has three 
 subelements of different types. One of the three types is a user‐defined enumerated data 
type called Camera.

Example 6.16 

TYPE 
Camera : (OK, LabelError, Leakage); (* Enumerated datatype *)

END_TYPE
TYPE Productdata : (* Structured datatype *)

STRUCT
PictureResult : Camera; (*Sub‐element*)
Weight : REAL; (* ‐‐‐‐‐‐“‐‐‐‐‐‐ *)
ID : UINT (0..10000); (* ‐‐‐‐‐‐“‐‐‐‐‐‐ *)

END_STRUCT
END_TYPE

Variables can now be declared based upon the structured data type Productdata. You can read 
how to do this in Section 6.9.2.

This will close the section on literals, elementary data types, and declaration of pro-
grammer‐defined data types. In other places in the book, this knowledge will be used in all 
programming examples. Data types are very fundamental in all programming for management 
of data storage and data representation, and now, we will see how we can specify data types 
by declaration of variables.

6.6 Variables

Referring to data objects that are accessible in hardware memory is fundamental in all forms 
of programming. There can be memory areas associated with inputs and outputs or for storage 
of internal values and states. By entering variables, the programmer is offered an efficient and 
elegant way of referring to data objects whose content can change.

In the foregoing, we have acquired knowledge about various data types. In this section, 
we will see how variables are declared, that is, how they are given names (identifiers) and 
associated with data types. For many who have worked with programming older kinds of 
PLCs, the introduction of variables will represent something new. We shall therefore start 
by having a brief look at conventional addressing and conversion to variables by means of 
symbols.
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6.6.1 Conventional Addressing

There is a fundamental difference between addressing in elder PLCs and declaring and using 
variables in PLCs that follow the standard. In conventional systems, only addresses that are 
global and have fixed locations in memory are used.

Global means that the addresses are accessible from all parts of the program and from all 
programs in the PLC. Fixed location means that the user specifies what portion of the 
memory the addressed object uses. The memory can be located in the CPU, can be in the 
form of a separate memory card (e.g., a flash memory), or could be built into an input or 
output module.

Those who have experience with PLCs from different manufacturers know that the 
absence of a standard has meant differences in addressing syntax between different types 
of PLCs. As an example of conventional addressing syntax, we will look at an older Omron 
model.

6.6.1.1 Addressing in the Omron C200H

The C200H has a memory region that is divided up into nine registers. A register is defined 
here as a 16‐bit storage space, and each register has its address. Like many other producers, 
Omron uses the concept of word for a 16‐bit storage space:

1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1

Bit

Word

Within the word, each individual bit can be used in addressing Boolean objects. That is, an 
individual word object can contain the state (on/off) of 16 discrete actuators such as motors, 
pumps, valves, etc. Alternatively, we can consider the entire word as a binary number.

Each of the nine registers into which the Omron C200H memory is divided has its range of 
uses or functions. One of the register areas is called the IR area (IR is an acronym for internal 
relay), and is an area in the memory that is connected to the input and output modules that may 
be located in the rack. That area consists of 236 words, no matter how many modules are 
 actually installed and configured.

The first two registers in the IR area can be illustrated thus:

1 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1

0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 1

IR 000

IR 001

Bit: IR 000.15
Bit: IR 000.00

The prefix to the address, for example, IR, is used to differentiate the register areas from one 
another. The particular storage location is indicated by an integer. The illustration above shows 
how individual bits within the register can be addressed.

Table 6.6 shows how the registers in C200H are organized.
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6.6.1.2 Symbolization and Conversion to Variables

To facilitate the work of the program developer and to improve the legibility of the code, 
PLC manufacturers began using symbolization as an equivalent to direct addressing. Editors 
included in the development tools were arranged so that the user could assign unique 
symbolic names to all addresses that were in use. With a structured and well‐reasoned use 
of symbols, for example, the use of descriptive names such as Startswitch and Pump_no2 
meant that symbolization was a significant improvement compared to direct addressing.

Standard IEC 61131‐3 introduced variables as a replacement for symbols and hardware 
addresses as a natural next step in development. The use of variables is also consistent with gen-
eral high‐level computer programming. The transition is actually not very great. For example, 
association of variables to input and outputs continually takes place by entering an address that is 
assigned during configuration to the input or output in question. The biggest difference is in the 
use of data types and in that variables are initially local within the POU in which they are declared, 
so that no conflicts can arise with variables with the same name being used in another POU.

For many, however, there will be a transition in the beginning to declare variables instead of 
working with fixed addresses and symbolic names. No matter, this is a temporary transition 
because the development tools have a dedicated editor for this and the editor will correct 
 declarations of variables on the fly as the programmer works.

6.6.2 Declaration of Variables with IEC 61131‐3

Before (or during) programming, it is necessary to enter elements for storage of data by spec-
ifying what type of data it applies to (integer, floating point, text, etc.) and giving names to 
these elements with logical, reasonable identifiers. This is called declaration of variables and 

Table 6.6 Addressing and organization of memory in Omron C200H

Register area Acronym Ranges of words and bits Function

Internal relay IR Word: 000 to 235 Addresses for physical inputs and 
outputsBits: 000.00 to 235.15

Special relay SR Word: 236 to 255 Contains system clocks, flags, and 
system informationBits: 236.00 to 255.07

Auxiliary relay AR Word. AR 00 to AR 27 Contains flags and bits for special 
functionsBits: AR 00.00 to AR 27.15

Data memory DM R/W: DM 0000 to DM 0999 Used for internal storage of data 
and for numerical processing and 
other manipulation of data

Read: DM 1000 to DM 1999

Holding relay HR Word: HR 00 to HR 99 Used for data storage and any 
monitoring of functions in the PLCBits: HR 00.00 to HR 99.15

Timer/counter TC Bits: TC 000 to TC 511 For managing time delays and 
counters

Link relay LR Word: LR 00 to LR 63 Accessible as working bits and for 
intermediate storageBits: LR 00.00 to LR 63.15

Temporary relay TR Bits: TR 00 to TR 07 Used for intermediate storage of 
branch points in LD

Program memory UM UM depends upon which 
memory units the PLC uses

Contains the program being 
executed by the CPU
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is done at the beginning of all POUs (see definition of POU in Section 5.3). What the declara-
tion editor looks like depends upon the implementation. It can be in tabular form, or, as here, 
in a text‐based form:

VAR
Temp_ref          : INT
Deviation          : REAL;

END_VAR

Variable type

Variable name

Datatypes

Initial value

:= 70;

We see that the declaration of variables begins with indicating the type of variable by 
using the correct keyword. For instance, there are local variables, global variables, and 
input and output variables. Normally, a local variable is declared by using the keyword 
VAR. When the type is entered, the variable can be given a name by writing in a valid iden-
tifier (Section 6.2.1) followed by a data type. If desired, the variable can be given an initial 
value. Declaration is terminated by closing the group name to the variable type, as is the 
case here with END_VAR.

Here, we see that we finally can specify how variables are connected together with all the 
other data types that are defined in Section 6.5.1. In the following example, several local var-
iables of different data types are declared. Note the variable Light that is defined on the basis 
of the self‐defined data type Color (see Section 6.5.5.2, Enumeration).

Example 6.17 Variables of Different Standard Data Types

VAR
Start   : BOOL := TRUE;
Alarm   : BOOL;
MV : REAL := 48.5;
Temp_ref : INT := 70;
Denomination : STRING := ‘Degrees’;
Light : Color := Yellow;
Time1 : TOD;
Time2 : TIME  := time#70m_30s;
Date1 : DATE  := DATE#2007‐06‐18;

END_VAR

It is also possible to declare several variables of the same data type in succession, as is 
shown in the next example, where we declare three variables that are all of type INT.

Example 6.18 Declaration of Several Variables of the Same Data Type

VAR
Value_1, Value_2, Value_3 : INT;

END_VAR
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The compiler helps reduce the use of erroneous data types by checking data types when the 
variables are used. If, for instance, an attempt is made to assign a value of the REAL type to a 
variable of the BOOL type, the compiler will give an error message.

6.6.2.1 Initial Values and Value Ranges

Example 6.17 also shows how variables of different data types can be assigned initial values 
(or starting values). These values overwrite the default values that the individual data types are 
originally assigned. These default values are, for instance, 0 for integer data type, FALSE or 
0 for data type BOOL, and ‘’, an empty string for data type STRING.

The entry of initial values naturally takes place under the definition of literal as described 
in Section 6.5.

Range of Values
In Section 6.5.5.1, we saw that it was possible to define data types on the basis of elementary 
(integer) types but with a limited range of values. It is actually not necessary to first define a 
new data type in order to be able to use the new type in declaration of a variable. Such a value 
limitation can be imposed directly during the declaration of variables:

VAR
Hole_Num : INT (‐800..200);
Pos_num : UINT (0..10000);

END_VAR

The difference compared to the definition of a new data type is that this value limitation will 
be valid only locally in the POU in question where the variable is declared. Note that if the 
variable takes on a value that lies outside the specified range of values, it will result in an error 
message (e.g., setting a flag).

6.6.2.2 Constants and Retention

Sometimes, there is a requirement to enter and store values that should not be changed by the program 
code. This is achieved by using the qualifier CONSTANT after entering the VAR keyword:

Example 6.19 

VAR CONSTANT
Setpoint : INT := 75;

END_VAR

It seems a little odd to mix the two keywords VAR and CONSTANT together, but this is the 
way it is defined in the standard.

Constants are used to retain parameters and setting such as duration, number, time of day, etc. It 
is easier and more structured if such values can be declared as a group instead of entering them 
directly into the program code. Both local and global variables can be declared as constants, that is, 
the keyword CONSTANT can also be used as an attribute of the variable type VAR_GLOBAL.
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RETAIN
Another important qualifier is RETAIN. This is used on variables that should retain their value 
during an out‐of‐control situation such as power failure or, for that matter, during a controlled 
shutdown such as a reboot of the PLC. When the PLC is in RUN again, the values that the 
variables had before the stop will be used as processing progresses.

Example 6.20 

VAR RETAIN
Stored_value : WORD;

END_VAR

RETAIN can also be used for the types VAR_GLOBAL and VAR_OUTPUT.

Note: Many manufacturers implement this as the default value that the variables should take 
in the event of a power failure.

6.6.3 Local Versus Global Variables

One of the most notable properties of variables in IEC 61131‐3 is that variables can be declared 
locally within the POU in question. This means that the same identifier can be used again as a 
name for a variable in another POU as long as the variable is declared as local within its own 
POU. In addition to it being useful in practice to be able to use the same identifier in several 
places, this also reduces the risk of undesired overwriting of data.

The variables that are declared in the foregoing examples are all local. This is characterized 
by the group types that are used in the declarations: VAR – END_VAR. Sometimes, it is desir-
able and necessary to use global variables, variables that are accessible from several POUs 
within the resource or for several resources (PLCs).

Global variables are not declared within a POU as local variables are, but rather are declared 
at a higher configuration level. The format for declaration is like that for local variables, it is 
only that another group type is used:

VAR_GLOBAL
ItemCount : UINT;
AlarmLight : BOOL;

END_VAR

Two global variables are declared in this example: one variable of the data type UINT called 
ItemCount and a variable of the Boolean data type called AlarmLight. These two global 
variables are now declared, but they cannot be used without further programming. In order to 
have access to a global variable from a POU, the standard says that the POU where the vari-
able will be used must contain a form of declaration for the same global variable. This is done 
by using the group type VAR_EXTERNAL:

VAR_EXTERNAL
ItemCount : UINT;
AlarmLight : BOOL;

END_VAR
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It can seem unnecessary to have to declare the same variable several times, but the reason 
for this is to keep the programmer from accidentally using a local identifier when he/she has 
forgotten that the name had already been used as the name for a global variable.15

It is not certain that this was a deliberate reference to the existing global variable and that 
the user had intended to assign a completely different data type and value to the variable. If the 
compiler had accepted the use of this identifier without it having been declared again, it could 
happen that the programmer had overlooked this inconsistency.

6.6.4 Input and Output Variables

This has nothing to do with a PLC’s physical inputs and outputs, but rather with the variables 
that are used for reading or transmission of parameters to and from a POU. Three types are 
defined: VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT.

You can use these variables when you program a POU that will be called from another 
POU. If a variable in the POU that is called is declared as VAR_INPUT, the call from the other 
POU can contain data that will be used in execution of the POU that was called. By declaring 
a variable as VAR_OUTPUT, the POU that is called can return values back to the POU that 
made the call.

Example 6.21 shows the variable declarations to the functional block CTU (Count Up) in 
CODESYS. This FB performs counting of positive flanks, that is, 0–1 transitions in a signal/
variable. (The program code for the counter is not included here, but a symbol for the functional 
block is shown for the sake of illustration.)

Example 6.21 Variable Declaration for Functional Block CTU

FUNCTIONBLOCK CTU
(* CV increases by 1 each time CU has a rising flank. *)  
(* Q becomes TRUE when CV reaches the value of PV. *)

VAR_INPUT (* Declares input variable: *)
CU : BOOL; (* Count Up *)
RESET : BOOL; (* Sets counter value CV to 0 *)
PV : WORD; (* Desired quantity *)

END_VAR
VAR_OUTPUT (* Declares output variable: *)

Q  : BOOL; (* Output ready *)
CV : WORD; (* Current value *)

END_VAR
VAR   (* Declares a local variable: *)

M : BOOL;
END_VAR

:
:  (* Program code for the function block *)
:

END_FUNCTION_BLOCK

15 It is permitted to give a local variable the same name that one has used already for a global variable. In such a case, 
the local variable will be used in the POU in which it was declared.
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In-variable
Out-variable

As we see, the declaration contains variables of both types VAR_INPUT and VAR_
OUTPUT. A call of this FB must therefore contain three variables (arguments); these will be 
coupled to the variables CU, RESET, and PV. The state Q and current value CV will be 
returned to the POU that the call came from.

In addition to these two variable types, there is a type of variable that functions as both an 
input variable and an output variable simultaneously. This type of variable is declared within 
the POU by the keyword VAR_IN_OUT. In using this type, the called POU will not only 
receive values from external variables, as with the use of VAR_IN, but will also receive the 
actual memory location. In other words, the called POU can change the value of the variables 
that were used in the call.

6.6.5 Other Variable Types

In addition to the more usual keywords for variable declaration that we have already described, 
the standard defines three more. Two of these are described briefly here, while the third 
(VAR_CONFIG) will be discussed in connection with variables and I/O addressing.

VAR_TEMP  Variables that are declared under this keyword will be (re‐)initialized with each 
call to the POU in which it is declared. This means that the variables are deleted from 
memory every time the POU finishes executing and are set up anew, with type‐specific 
initial values, the next time the POU is called up. This means that such variables cannot be 
used to determine a value between each call.16

VAR_ACCESS This keyword is used only specifically, depending upon hardware. The 
purpose is to enable direct access to variables from other hardware.

6.7 Direct Addressing

Even though the standard introduces variables, the standard still permits use of direct address-
ing, that is, reference to specific memory regions. This can take place in one of two ways: 
either by using addresses directly in the program or by assigning symbolic names to the 
addresses in the declaration field. In other words, conventional addressing is still possible.

6.7.1 Addressing Structure

The structure for how a data element is addressed is shown in Table 6.7. As we see in the table, 
all addresses start with a percent sign (%), followed by a location prefix (a letter). The location 

16 This is the desired behavior for functions that should yield the same response to every call and there VAR_TEMP 
is equivalent to VAR. VAR_TEMP is valid for programs and functional blocks.
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prefix indicates whether the memory region is associated with inputs (I), outputs (Q), or an 
internal memory (M).

Next follows a size prefix that indicates the length of the storage location that the address 
refers to. This is indicated by X, B, W, D, or L for 1, 8, 16, 32, or 64 bits, respectively. This 
has nothing to do with data types directly, in the sense that the prefix only indicates the size of 
the storage area and not which type of data it is possible to store there.

Example 6.22 Memory Addresses

Address Meaning

%MX0.0 Bit 0 (LSB) in memory location 0
%M0.0 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐”‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
%MB8 Memory byte 8
%MW12 Memory word 12
%MD45 Double word at memory location 45
%ML14 Quadruple word at memory location 14

Using direct memory addresses can be a little risky. Aside from the legibility of the code 
becoming significantly worse than with the use of variables or symbolic addresses, there is the 
risk of referring to memory locations that overlap one another.

For example, there is the Boolean address %M4.15 for the MSB in the address %MW4, and 
the address %MW50 contains the two‐byte addresses %MB100 and %MB101.

Figure 6.1 illustrates this concept. Here, there are represented two memory locations, word 
no. 10 (%MW10) and word no. 11 (%MW11). Each location is 16 bits in range, where each 
individual bit can be addressed.

This overlapping of references to memory regions means that there will be addresses that 
cannot be used in programming. If you use direct addressing, it is therefore smart to have a 

Table 6.7 Addressing structure for direct representation of data elements

% 1st prefix 2nd prefix Specific location Meaning

I Input
Q Output
M Memory

None or X Boolean : 1 bit
B Byte : 8 bit
W Single word : 16 bit
D Double word : 32 bit
L Long word : 64 bit

u, v, w, x, y Hierarchically arranged location
Possible meanings: u ‐ rack, v – 
module, w – channel, x – word,  
y – bit
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consistent system for the use of memory: For example, you can decide that memory locations 
0 through 4 are used for Boolean objects (this gives 5 * 16 = 80 accessible objects) and that 
locations 5–19 will be used for bytes, 20–29 for memory words, and so forth.

If several double and long (quadruple) word addresses are to be used, it is important to 
skip over some memory locations so that overlap does not occur. For example, you can 
avoid using double‐word addresses sequentially. That is, you would not simultaneously 
use the addresses %MD0, %MD1, and %MD2, but rather skip every other location and, for 
instance, use %MD0, %MD2, and %MD4. The reason for this is that the double‐word 
%MD4 includes the word addresses %MW4 and %MW5, and the double‐word %MD5 
includes the words %MW5 and %MW6. Word address %MW5 is therefore contained in 
both of the sequential double‐word addresses and will therefore be overwritten by both of 
the subsequent double addresses. (Similarly, neither can the address %MW5 be used.) 
Figure 6.2 illustrates this.

6.7.2 I/O‐Addressing

If the address refers to data elements in input or output memory, it is also necessary to 
specify which input or output it applies to. This is done by adding some numbers after the 
prefixes. The numbers can, for example, indicate module number and channel number. The 
actual structure of this location reference is implementation dependent, but it is a require-
ment that it have a hierarchical structure. This means that the number farthest to the left 
indicates the highest level in the address structure with successively lower levels continuing 
toward the right.

Example 6.23 Direct Addressing of I/O

%IX1.5 Digital input. The numbers can represent channel 5 in module 1
%Q2.4.12 Digital output, for example, in rack 2, module 4, channel 12
%IW12 Input word no. 12, for example, an analog input
%IW3.2 Analog input, for example, channel 2 in module 3
%QW5.2.4.7 Output word. Network address 5, rack 2, module 4, channel 7

Note: These are only possible interpretations or meanings of the numbers.

%MW10 0 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1

0 0 1 1

0 1 1 0 0 1 0 1

1 1 1 1 0 1 1 1

0 0 1 0%MW11

Bit no.

%MB22%MB23

%MB20%MB21

%MD10

%MX10.3%MX11.6

Figure 6.1 Illustration of overlapping between bit, byte, word, and double word
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6.8 Variable versus I/O‐Addresses

Direct addressing can naturally be used together with variables by having an identifier 
connected to a particular data element. This can also be done for internal memory locations, 
but it is most practical and absolutely necessary to associate variables with the inputs and out-
puts of the PLC. Such a connection between fixed addresses and identifiers can be obtained 
by using the keyword AT in the declaration.

Example 6.24 Coupling of Variable Names to Addresses

Here, we see that the Boolean input address %IX2.4 is assigned to the variable name Dig_in, 
while the Boolean output address %QX3.5 is assigned to the variable Dig_out. A_in and A_
out are variables associated with an analog input and an analog output, respectively.

VAR
Dig_in AT %IX2.4 : BOOL := TRUE;
Dig_out AT %QX3.5 : BOOL;
A_in AT %IW3.2 : WORD;
A_out AT %QW4.1 : WORD;

END_VAR

Notice that it is permitted to assign an object with a “shorter” data type to an object of a 
“longer” data type. The basis for this is that memory locations are only storage locations and as 
long as the memory location has room (enough bits) to store the object, everything will go well.

On the contrary, the assignment of an object that has a data type that requires more space 
than the assigned memory location can provide is naturally not permitted. This will therefore 
trigger a syntax error in the compiler.

6.8.1 Unspecified I/O‐Addresses

Sometimes, one would like to declare variables that are to be assigned to I/O without specifying 
their exact addresses. When you are programming a FB or a program that is to be reused in 
another context or if you are programming in accordance with the requirements of the client, 

%MW0

%MW1

%MW2

%MW3

%MW4

%MW5

%MW6

%MD0

%MD2

%MD4

%MD1

%MD3

%MD5

Figure 6.2 Illustration—address overlapping
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you will not know the exact address that the variables should be assigned to. This information 
is not available until all I/O modules have been installed and configured.

In such cases, you can undertake a partial assignment by specifying how the variables are 
to be mapped to an I/O, without stating the actual address. When you or others at a later time 
are going to use the program, the address can be specified at the configuration level by use of 
the keyword VAR_CONFIG.

Example 6.25 

The following declaration shows how one assigns incomplete I/O addresses in CODESYS by 
use of AT and %I* or %Q*. (Note: Even though the example shows declaration in a program, 
it is more useful for function blocks for reasons that we will come back to the next chapter.)

PROGRAM Whichio
VAR 

Input  AT %I* : BOOL;
Output  AT %Q* : WORD;

END_VAR

When you have installed all the I/O modules and configured them, then you can finish the application 
in CODESYS by adding a new Global Variable List (GVL), where you specify the exact addresses 
(note the reference to the current POU (Whichio) where the variables will be declared and used):

VAR_CONFIG
Whichio.Input AT  %IX2.3 : BOOL;
Whichio.Output AT  %QW3.1 : WORD;

END_VAR

6.9 Declaration of Multielement Variables

Declaration of multielement variables is done in a similar way to declaration of simple vari-
ables. As mentioned previously, arrays can be declared directly with declaration of variables. 
It is not necessary to define a data type for arrays, even though this is possible. Example 6.26 
shows both forms: direct declaration and declaration based upon predefined data types. The 
variables younameit and sowhat are declared on the basis of predeclared array data types, 
while the variables Oddnum and Values are declared directly as arrays.

Example 6.26 Declaration of Multielement Variables17

TYPE
Two_dim : ARRAY [1..2, 1..5] OF INT := [10, 20, 30, 40,
  6(50)];
END_TYPE

17 Note that in CODESYS version 2.3.x, the initial values are not enclosed in parentheses.
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TYPE
Three_dim : ARRAY [0..3, 2..5, 1..4] OF REAL;

END_TYPE
VAR

Oddnum :  ARRAY [0..9] OF SINT := [1, 3, 5, 7, 11, 13, 
17, 19, 23, 29];

Values : ARRAY [1..3, 1..4] OF INT;
younameit : Two_dim;
sowhat : Three_dim := [10(3.14)];
whoops  :  ARRAY [1..2, 1..2, 1..2] OF BOOL := [0, 0, 1, 

0, 1, 1, 0, 1];
END_VAR

6.9.1 Arrays

The example above shows how arrays can be initialized (be given an initial content). This can be 
done either by defining data types or, more commonly, by declaration of a variable. The advantage 
of the latter method is that several variables can use the same data type but have  different initial 
values. Because initial values must be entered, all of the elements in the array will be given default 
values for the data type in question. This is the case with the variable Values in the example.

It is also possible to partially assign initial values. The variable sowhat (data type Three_
dim) is declared with initial values for only the first 10 elements. The remaining 54 elements 
are automatically set to 0. The syntax that is used for giving specific values to the first 10 
 elements in the variable sowhat is in line with what the standard recommends that manufac-
turers implement in order to give several successive elements the same value:

NumberOfElements(value)

Refer again to Example 6.26, where six elements in the data type Two_dim are set equal to 50. 
Such a repetition factor can also be used to initiate more complex numerical sequences. For 
example, 3(2,5,7) is the same as 2, 5, 7, 2, 5, 7, 2, 5, 7.

6.9.1.1 Indexing and Addressing

Arrays are well suited to read, transfer, store, and use large quantities of data in a structured 
simple way. In the program code, one can read from and write to individual elements in arrays 
by indicating the index of the element in question.

For a variable called My_table, declared as a one‐dimensional array, this syntax is:

My_table[i] where i gives the element number.

Example 6.27 

Table 6.8 shows the syntax for assigning new values to all the elements in the arrays Oddnum, 
younameit, and whoops that were declared in Example 6.26.

(Note: The array elements can naturally be assigned variables instead of values.)

Note that for multidimensional arrays, that is, arrays that have more than one set of array 
boundaries, the indices are specified in a significant order, where the array boundaries farthest 
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to the left have the highest significance. In other words, the first index varies slowest and the 
last index varies fastest when we move through the array.

Indirect Addressing
Many traditional PLC systems operate with indirect addressing for efficient management of 
large quantities of data.18 In indirect addressing, the actual address location depends upon the 
value of the variable (index). Using arrays covers this in a similar way by indexing the array 
elements indirectly, such as here:

Example 6.28 

num1 := 3;
num2 := 8;
num3 := 122;
younameit[num1, num2] := num3;

Here, the element younameit[3,8] is set equal to 122.

Example 6.29 

Values[2,3] := 5*younameit[1,4] − Oddnum[6] + 300;
This shows an arithmetic expression in the ST programming language where the array 

element Values[2,3] gets the value 5*40 – 13 + 300 = 487.

6.9.2 Data Structures

Data structures are powerful data types because the program code can be built up in a highly 
structured way by declaration of carefully structured data types. The syntax for declaring 
 variables based on structured data types is the same as for variables based on the elementary 

Table 6.8 Syntax for assigning new values to arrays

Variable Initial values

Oddnum Oddnum[0] := 3; Oddnum[1] := 1; Oddnum[2] := 7;
Oddnum[3] := 7; Oddnum[4] := 19; Oddnum[5] := 5;
Oddnum[6] := 13; Oddnum[7] := 29; Oddnum[8] := 11;
Oddnum[9] := 17;

younameit younameit[1,1] := 10; younameit[1,2] := 20;
younameit[1,3] := 30; younameit[1,4] := 40;
younameit[1,5] := 50; younameit[2,1] := 60;
younameit[2,2] := 70; younameit[2,3] := 80;
younameit[2,4] := 90; younameit[2,5] := 100;

whoops whoops[1,1,1] := 1; whoops[1,1,2] := 1; whoops[1,2,1] := 0;
whoops[1,2,2] := 1; whoops[2,1,1] := 0; whoops[2,1,2] := 1;
whoops[2,2,1] := 0; whoops[2,2,2] := 0;

18 PL7Pro from Telemecanique utilizes indirect addressing with the following syntax: Address %MW50[%MW10] 
indicates an address location with address %MW50 + the value of the index address %MW10.
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data types. In Example 6.16, we declared the structured data type Productdata. For simplicity’s 
sake, I will go over the declaration of the data type again:

TYPE 
Camera : (OK, LabelError, Leakage);

END_TYPE
TYPE Productdata :  (* Name of the structured datatype *)

STRUCT
PictureResult : Camera; (* Sub‐element *)
Weight : REAL; (* ‐‐‐‐‐‐“‐‐‐‐‐‐‐ *)
ID : UINT (0..10000); (* ‐‐‐‐‐‐“‐‐‐‐‐‐‐ *)

END_STRUCT
END_TYPE

Such a variable can be declared in a POU based upon the new data type:

Example 6.30 Declaration of Variables of User‐Defined Type

VAR
M, N : UINT;
Product : ARRAY[1..100] OF Productdata;

END_VAR

Here, a variable is being declared as a one‐dimensional array of type Productdata. Each 
element in the array will therefore consist of three subelements: PictureResult, Weight, and 
ID. The content of the five first array elements can be, for example19:

19 The example was tested in CODESYS v2.3.x, and the figure shows a screenshot during execution of the code.
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6.9.2.1 Accessing

It is fully possible to access subelements in a data structure. In this way, one can read values 
and write in new values. The syntax is as follows:

Structurename.subelement

If, for example, one wishes to assign an ID number to element no. 5 in Product, this can be 
done by writing Product[5].ID := 23512;

Below, you can study an example of addressing of subelements. The explanation of the 
program code will be reviewed later in the book.

Example 6.30 (contd.) Accessing of Structure Components

FOR m:=1 TO 100 DO
IF Product[m].PictureResult = OK THEN

IF (Product[m].Weight > 240.0) AND (Product[m].Weight < 
260.0) THEN

OK_Product[m] := Product[m].ID;
END_IF

END_IF
END_FOR

This way of managing arrays and structures is very much like the way used in the C++ 
programming language. In fact, one can consider STRUCT as a forerunner to the concept of 
class and object‐oriented programming in C++.

6.10 Test Problems

Problem 6.1
(a) Explain the significance of the following addresses:

1. %IX1.15
2. %IW5.2
3. %QX5.9
4. %MX5
5. %MD5
6. %MX12.4
7. %MB4

(b)  Which of the following symbolic names are not permitted under the standard IEC 
61131‐3? (Explain why not.)
1. Scan_no.1
2. 1_run
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3. Next
4. Temperature_heatpump_condenser_outlet
5. M_1
6. Level no5

Problem 6.2
Write a few words on what each of the variable declarations below signifies:

(a) VAR
Lol  : BOOL;
Wow AT %IX2.3 : BOOL;
Omg   AT %QX3.5 : BOOL := TRUE;
Wtf  AT %MW12 : INT;
Hmm  : REAL := 2e2;
One, Two  : UINT (‐30..150);
Yo_una_me_it : ARRAY [1..5] OF INT := 1,2,3,4,5;

END_VAR

(b) VAR_GLOBAL
T_ref : USINT := 70;
Save : STRING := ’Degrees’;
Tan : TOD;
What : TIME  := t#70m_30s;

END_VAR

(c) VAR_RETAIN
Rememberme : DWORD;
Andme  AT %IW4 : WORD;

END_VAR

Problem 6.3
(a) What do we call words like the ones in upper case in the problem above?
(b) What is the difference between variable type and data type?
(c) What is a generic data type?
(d) What is direct addressing and what is meant by a location prefix?
(e)  A data type (My_Type) is defined as follows:

 TYPE My_Type : (A, B, C, D, E, F);
END_TYPE

What do we call such a data type and what could be the reason for using such a data 
type?
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Problem 6.4
Show how you would declare the following variables (remember to use permissible variable 
names):
(a) A variable associated with digital input 22.5.
(b) A variable associated with the digital output 16.2 and which initially is set TRUE.
(c) A variable associated with analog input 4.3.
(d) A floating‐point variable with an initial value equal to 250 000 000.
(e) A variable used for storing positive values up to 200.
(f) A constant that will contain the text “Operating error no. 5: Pump failure.”
(g) A constant containing the duration 2 days, 8 hours, and 30 minutes.
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Functions

7.1 Introduction

As described in Chapter  5, the standard defines four types of program organization units 
(POU). These are:

 • Function
 • Function block (FB)
 • Program
 • Class1

7

1 Class is not implemented in CODESYS, and this type is therefore not reviewed in this book. A short description of 
the concept, though, is presented at the end of the chapter.

Chapter Contents

 • On functions: Functions versus operators. Calling functions
 • Standard functions:

 ⚪ Assignment (MOVE) and Boolean operations (AND, OR, etc.)
 ⚪ Arithmetic functions (ADD, SUM, MUL, etc.)
 ⚪ Comparison (GE, GT, EQ, etc.)
 ⚪ Numerical functions (SQRT, SIN, COS, etc.)
 ⚪ Selection (MAX, MIN, etc.)
 ⚪ Bit‐string operations (SHR, SHL, etc.)
 ⚪ Conversion between data types
 ⚪ Text string functions (LEN, INSERT, FIND, etc.)

 • Defining new functions
 • Implementation and use of EN/ENO
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As the name implies, a POU is a structural (and well‐defined) part of the program application. 
As a program developer, you will have an application that minimally consists of one POU of 
the type Program. This program will in turn most likely contain (call) one or more functions (for 
calculation, conversion, comparison, etc.) and one or more FBs (as counters, time delays, etc.).

All development tools for PLCs contain many predefined functions and FBs that the 
 programmer can use in applications. IEC 61131‐3 defines a large number of functions and FBs, 
but the producers usually offer many more in addition. It is also possible to make your own.

In this chapter, we will study the generalities of building, structuring, declaring, and calling 
a POU. In addition, we will review the functions that are defined in the standard.

7.2 On Functions

A function is defined as a POU that yields the same result every time it is called (executed). 
This implies that a function does not have any memory. The result from a function call is most 
often one single value, but it can also be a matrix or a structure of many values if the input 
argument is of such a data type. Examples of standard functions are SIN (sine), COS (cosine), 
SQRT (square root), ADD (add), and SHL (shift left).

Many of the functions that are defined in the standard belong to the group of operators in 
the Structured Text (ST) programming language and using the function is therefore called 
performing operations on an operand. Example:

A := SQRT(B).

Here, SQRT is an operator and B is an operand. The answer is stored in A. Many of the 
standard functions also have their own operator symbols that are used in ST instead of the 
function names. This includes + (ADD), * (MUL), and ≥ (GE).

Operators and other standard functions will normally be implicitly recognized by the 
development tool. If the tool does not recognize a particular function, this may mean that it 
belongs to a library that must be associated with the project.

The structure of a function is the same as that of programs and FBs: At the top, there is a 
declaration field, and below, there follows a program code field (implementation field). The 
declaration field, naturally enough, will contain declarations of all variables that are used in 
the code.2 This takes place in the same way no matter which programming language is used in 
the program code field.

Example 7.1 shows the use of functions in both the text‐based language ST and the graphical 
language FBD. The functions that are used in the example are the arithmetic function MUL 
(multiply); the comparison function GE (Greater than or Equal to ≥); the bit‐string functions 
AND, OR, and NOT; and the type‐conversion function WORD_TO_BOOL.

The example also shows declaration and call of an instance of the FB RS. (You can see 
the declaration of the FB RS in Example 6.3.) FBs will be more fully discussed in 
Chapter 8.

2 For a POU of the type Program or FB, it can also contain a declaration of the presence of other POUs that will be 
called up in the code.
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The example shows that the use of functions does not have to be declared. This is an indirect 
result of their not having any memory. This does not apply to FBs, so here an instance of the 
FB RS is declared (more about this later in the chapter).

Layout and design of the graphical representations of the functions can vary from one tool to 
another, but some requirements are imposed by the standard. Some of these require that the 
blocks should be square or rectangular, signal flow should be from left to right, the function 
name or symbol should appear within the block, and the ° should be used as an inversion symbol.

7.3 Standard Functions

Table 7.1 shows standard functions that are common to all programming languages. These functions 
can also be implemented as operators in ST. For functions where the standard does not specify 
such operator symbols, the symbols are given in parentheses following the function names.

The practical difference between using operators and function names is that the use of 
function names requires that operands3 must be given as arguments in parentheses following 
the name. Some functions perform operations between operands, but others perform operations 
on one or more operands, for instance, LOG(A) and MAX(A,B,C).

Example 7.1 Use of Functions in ST and FBD

PROGRAM SomeFunctions
VAR //  Declaring variables and an instance of the FB RS.
On, Off, Light : BOOL;
A, B : WORD;
OneFB : RS;

END_VAR

(***** Program code in ST: *****)

(* Instruction that uses several standard functions: *)
On := WORD_TO_BOOL(A OR NOT B) AND ((A*B) ≥ 5);

(* Call of function block oneFB: *)
OneFB(Set := On , Reset1 := Off, Q1 => Light);

(**************************************************)

(***** Program code in FBD: *****)

3 An operand can be a constant, a variable, an address, or even a function call such as SIN(A).
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In the following, we will discuss many of these standard functions. Even though we have 
not yet studied programming languages, we will show the use of functions by means of examples 
written in one or more of the programming languages. In the following chapters about 
programming languages, it is assumed that this material is known beforehand, even though 
some of it will be explained again.

7.3.1 Assignment

One of the simplest instructions we can perform is to set the content of one variable equal to 
the content of another variable.

Suppose that you wish to activate a pump connected to the digital output %Q2.3 when a 
sensor connected to the digital input %I1.8 gives a logical high value.

In ST, it is done thus:

%Q2.3 := %I1.8;

With symbols and variables:

Pump := Sensor

The corresponding instruction in LD would look about like this:

Table 7.1 Standard functions—an overview

Function type Function name Comments

Arithmetic ADD (+), MUL (*), SUB (−), DIV (/), 
MOD, EXPT (**), MOVE (:=)

MOVE is used for assignment  
in LD and FBD

Numerical ABS, SQRT General
LN, LOG, EXP Logarithmic
SIN, COS, TAN, ASIN, ACOS, ATAN Trigonometric

Bit‐string operations SHL, SHR, ROR, ROL Bit shift operations
AND (&), OR, XOR, NOT Boolean operations

Selection SEL, MUX, MAX, MIN, LIMIT

Comparison GT (>), GE (≥), EQ (=), LE (<), LT (≤), NE (≠)

Type conversion Syntax: Type1_TO_Type2 Which conversions are  
supported depends upon 
implementation

Examples: INT_TO_REAL, INT_TO_WORD, 
BOOL_TO_STRING REAL_TO_INT, 
STRING_TO_TIME, DT_TO_STRING + 
many others

Text‐string operations LEN, LEFT, RIGHT, MID, CONCAT, 
INSERT, DELETE, REPLACE, FIND
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This is called assignment, and such instructions are used to transfer the content on one operand 
to another. The operands do not need to be of the BOOL data type; they may be any data type, 
including structured and array. The general syntax is as follows:

OP1 : = OP2 The order is from OP2 to OP1.

The operator := belongs to the group of arithmetic functions, and the function name is MOVE. 
In the graphic languages FBD and LD, the function is represented by a single graphic block 
with one input and one output4:

MOVEOP2 OP1

7.4 Boolean Operations

This group covers use of the operators AND, OR, XOR, and NOT.
Above, we assigned a Boolean address to another Boolean address. If the output address is 

to have the value TRUE when the input address has the value FALSE, we would have had to 
program the following (in LD and ST, respectively):

(LD) 

(ST) 

By using the functions AND, OR, XOR, and NOT, we can implement all common Boolean 
 operations. Note that the operators can also be used for bit strings such as BYTE and 
WORD.

The functions are expandable with respect to the numbers of operands and inputs:

%Q2.0 := Var1 OR Var2 OR (%I1.0 AND %I1.1 AND NOT %MX5.2);

A graphic representation in FBD/LD will generally look like the following (the function NOT 
can have only one input value):

ANY_BIT
:

ANY_BIT

ANY_BIT
Where *** is NOT, AND, OR or XOR

***
:

4 In structured text, it is possible to assign several to the same value in one operation: OP1: = OP2: = OP3 := OP4: = ….
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7.5 Arithmetic Functions

This group of operators and functions is used to perform arithmetic operations between two 
operands. Table 7.3 shows an overview.

The graphic representation that is used with these functions in FBD or LD is generally the same 
for all these functions. They differ only in the function name or the operator symbol in the box.

***IN1
IN2 OUT *** Name or symbol

IN1 and IN2 can be numbers or variables of the types ANY_NUM or ANY_BIT (see 
Section 6.5.4). The functions ADD and SUB also apply with the data type TIME. The symbol 
above shows only two inputs, but the functions ADD and MUL can be used for an arbitrary 
number of inputs, while the function MOVE has only one input.

Example 7.2 

Answer := 43 + Var1*((14 MOD 4) ‐ Var2) + Var3/4.7; (* ST‐code: *)

Table 7.3 Standard arithmetic functions

Function name Operator Function and ST expression

ADD + Addition: Out := IN1 + IN2 + …+ INn
SUB ‐ Subtraction: Out := IN1 – IN2
MUL * Multiplication: Out := IN1*IN2*…*INn
DIV / Division: Out := IN1 / IN2
MOD Modulo: Out := IN1 MOD IN2
EXPT ** Potentiation: Out := IN1**IN2 (= IN1IN2)
MOVE := Assignment: Out := IN

Table 7.2 Boolean operations

Function LD ST

AND (&) %Q2.0 := %I1.0 AND %I1.1;

OR %Q2.3 := %I1.1 OR %M1 ;

XOR %Q2.3 := %I1.1 XOR %M1 ;
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(* Same expression in FBD code: *)

Answer

(* … and in LD code: *)

Answer

As we see, the LD code and the FBD code are nearly identical here. The only difference is 
that the code in LD must be triggered (activated) via an Enable input, since LD is based on 
the use of a “conductor rail” on the left side (see Section 7.13 EN/ENO). (MOD stands for 
modulo, which is an operation that yields the remainder from division. Here, the operation to 
be  performed is 14 MOD 4. 14 divided by 4 equals 3 with 2 remainder. The result is thus 2.)

Division with integers is an important subject in all programming. It will therefore be 
treated separately later in the book. See Section 10.5.

7.5.1 Overflow

Be aware of the risk of overflow when you are working with arithmetic and numerical instruc
tions. If the result is stored in operand of data type INT, for example, the result must lie within 
the limits of −32768 and +32768. If the result lies outside these limits, you have overflow. The 
values that are stored in the result can have any value at all, and this is naturally undesirable. 
The programmer must take care that the resulting values are asserted to a maximum (or pos
sibly minimum) if overflow has occurred. If the danger of overflow is present, you should nat
urally evaluate the use of other data types or alternative code in a different way.

Some PLCs have system addresses that monitor for overflow, among other things.

Example 7.3 

Overflow in the TS X3721 PLC from Telemecanique can be detected and managed by 
checking the state of the Boolean system address (flag) %S185:

Answer := Num1 + Num2;
IF %S18 AND Answer < 0 THEN
Answer := −32768;

ELSIF %S18 AND Answer > 0 THEN
Answer := 32767;

END_IF;

5 System address %S18 is also used with division by 0 and square root of a negative number.
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7.6 Comparison

The comparison operators are used to compare the values of two or more operands. The syntax 
in ST is as follows (operator is one of those listed in Table 7.4):

Out := OP1 operator OP2 operator OP3 operator … operator OPn;

The graphic representation that is used with these functions in FBD or LD is, generally, the same 
for all these functions. They differ only in the function name or the operator symbol in the box.

***IN1
IN2

:
INx

OUT
*** Name/symbol

:

The inputs (operands) IN1 and IN2 can be numbers or variables of a data type that belongs to 
the class ANY_ELEMENTARY. When using functions on bit strings of differing lengths, the 
length of the shortest string is increased by filling with zeros from the right.

From the descriptions in the tables, we can understand that the order of the operands is 
important, just as it is in connection with the inputs to the graphic blocks. For example, if you 
want the output signal to be TRUE when Num1 is greater than Num2, you must place Num1 
at the top of the block GT.

Example 7.4 

The codes in ST below show two different possible codes for the same instruction, which is to 
set a Boolean output to TRUE if the result of a comparison is true. The same instruction is also 
shown in FBD code.

(* ST-Variant 1 *)

IF %MW13 > 534 THEN

%QX2.5 :=TRUE; 

%MW13

534

END_IF;

(* ST-Variant 2 *)

%QX2.5 := %MW13 > 534;

GT %QX2.5

(* FBD *)

Table 7.4 Functions and operators for comparison

Name Operator Description

EQ = Out := IN1=IN2=IN3=IN4= …= INn
GT > Out := (IN1>IN2) & (IN2>IN3) & … & (INn‐1>INn)
GE ≥ Out := (IN1≥IN2) & (IN2≥IN3) & … & (INn‐1≥INn)
LT < Out := (IN1<IN2) & (IN2<IN3) & … & (INn‐1<INn)
LE ≤ Out := (IN1≤IN2) & (IN2≤IN3) & … & (INn‐1≤INn)
NE ≠ Out := IN1≠IN2
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We see that variant 2 of the ST code is directly comparable with the use of the function in a 
graphic language. This is a compact way of testing the output of a comparison that is worth
while noting because it saves a little coding in ST.

Below, there is an example of comparison with more than two operands.

Example 7.5 Comparison of Several Operands Simultaneously

Structured text Graphic language

Out := (Var1≥Var2) AND (Var2≤Var3);

7.7 Numerical Operations

We have previously examined a group of functions and operators that are used for arithmetic 
calculations. The functions that are presented here are also used for calculations, but what is 
special about these is that they perform operations on a single operand, rather than between 
operands. The syntax in ST is as follows:

OP1: = Function (OP2)

Here is a possible graphical representation in FBD/LD. Name is the name of the function.

NameIN OUT

Table 7.5 Numerical functions

Function name Data type Description

ABS ANY_NUM Absolute value
SQRT ANY_REAL Square root
LN ‐‐‐‐“‐‐‐‐ Natural logarithm
LOG ‐‐‐‐“‐‐‐‐ Base‐10 logarithm
EXP ‐‐‐‐“‐‐‐‐ Natural exponential (ex)
SIN ‐‐‐‐“‐‐‐‐ Sine (radians)
ASIN ‐‐‐‐“‐‐‐‐ Arc sine (inverse sine)
COS ‐‐‐‐“‐‐‐‐ Cosine (radians)
ACOS ‐‐‐‐“‐‐‐‐ Arc cosine (inverse cosine)
TAN ‐‐‐‐“‐‐‐‐ Tangent (radians)
ATAN ‐‐‐‐“‐‐‐‐ Arc tangent (inverse tangent)
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Numerical expressions are most often used in combination with numerical operations, 
Boolean instructions, and arithmetic operations, in addition to comparison operations. There 
is no limit to the number of operators and operands that can be used.

Furthermore, an arithmetic sign can be placed in front of an operand or an operation on a 
single operand without needing to use parentheses.

Example 7.6 

(* ST‐code: *)
Answer := num1*4 ‐ SQRT(num2) + ABS(num1)*3.14*(23.5 ‐ num3)
       + 12*COS(‐num2);
(* FBD code: *)

7.7.1 Priority of Execution

When the compiler executes numerical expressions, this must take place in accordance with a 
particular order of priorities. This is as follows (highest priority first):

1. Parentheses
2. Operations performed on an operand, for instance, SIN(x) or ABS(Y)
3. Negation (−) and complement (NOT)
4. *, / , MOD
5. +, −
6. <, >, ≤, ≥
7. =, ≠
8. AND
9. XOR

10. OR
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In order to control the order in which the operations are to be performed, one must therefore 
use parentheses. If you are in doubt, it is much better to use many parentheses than to risk an 
erroneous result from a calculation. At any rate, there is no limitation on the number of 
parentheses.

Example 7.7 

This expression will be calculated in the order shown by the numbers.

SQRT(var1) + var2*7 AND var3 OR var2 XOR var4 

1 2

6

5

3

4

7.8 Selection

This is a special group of functions with the common feature that one of the inputs is assigned 
to the output. The difference among the selection functions is what criterion is used to select 
among the inputs. See table 7.6.

7.9 Type Conversion

By far, the largest group of functions is those that perform conversion between different data 
types. To begin with, one can convert between all of the elementary data types (ANY_
ELEMENTARY), even though in practice there is seldom or never a requirement for some of 
these conversions.

Conversions are most often used in numerical calculations where different data types occur 
in the expressions. The reason for this is that analog input values often are stored in addresses 
of the WORD type and if these are going to be used in numerical expressions with a high 
requirement for accuracy, there is a need for conversion to floating‐point numbers.

Note that you generally should not convert from a larger to a smaller data type, for  instance, 
from WORD to BYTE or from DINT to INT. In the worst case, this results in an error, and in 
the best case, you run the risk of losing information.

Syntax for the conversion functions in structured text is as follows:

Out := datatype1_TO_datatype2(In);

In the graphic languages FBD and LD, the symbol will be a single block with one input and 
one output:

In Out datatype1_TO_datatype2
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We are not going to provide examples of all possible conversions because this would be a 
too lengthy task. Instead, we will show a selection of examples (in ST).

Example 7.8 From Boolean to Other Data Types

B := BOOL_TO_INT(TRUE); (* Result: 1 *)
O  := BOOL_TO_STRING(TRUE); (* Result: ’TRUE’ *)
RI := BOOL_TO_TIME(TRUE); (* Result: T#1ms *)
N  := BOOL_TO_TOD(TRUE); (* Result: TOD#00:00:00.001 *)
G  := BOOL_TO_DATE(FALSE); (* Result: D#1970‐01‐01 *)

Table 7.6 Functions for selection

Name Graphic symbol Explanation and example

SEL
SEL

G

IN0
IN1

BOOL

ANY
ANY

ANY

Use it to select which inputs that shall be assigned 
to the output:

G = False (0) gives Out := IN1
G = True (1) gives Out := IN2

Example: 
Out := SEL(1, A, B)

(*Gives Out = B *)

MUX

ANY_INT

ANY

:

ANY

ANY

MUX

K

IN0

: 

INn

Multiplexing resembles SEL, except that MUX is 
used to select one out of many inputs. Which input 
is selected is determined by the integer value of 
K (0, 1, 2, 3,…)
Example:

Out := MUX(0, A, B, C, D)
(*Gives Out = A *)

MAX
***

IN1

IN2

: 

INn

*** ‐ MAX or MIN
These functions are used to select which of the 
inputs has the largest or smallest value

MIN Example:
Out := MAX(5, 14, 8)
(*Gives Out = 14 *)

LIMIT
LIMIT

Min
IN

Max

LIMIT is a limiter of values. The user provides 
a lower limit (Min) and an upper limit (Max). If 
the value of (IN) exceeds the upper limit, the 
value Max is returned. If the value of (IN) is 
below the lower limit, the value Min is returned. 
Example:

Permitted data types are  
ANY_ELEMENTARY

MV_out := LIMIT(0, MV, 32767)
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Example 7.9 From Floating‐Point to Other Data Types

These functions round off value up or down to the nearest integer before they are converted to 
the desired format. This does not apply to conversion to STRING, BOOL, or another floating‐point 
format. (Note that in conversion to text strings, there can be a limit to how many characters the 
system can handle.)

J := REAL_TO_INT(7.5); (* Result: J = 8 *)
A  := REAL_TO_INT(7.4); (* Result: A = 7 *)
C  := REAL_TO_INT(−7.5); (* Result: C = −8 *)
K  := REAL_TO_STRING(35.27) (* Result: K = ‘35.27’ *)

There are also two other functions that can be used for conversion from floating point to 
integer. These are the functions TRUNC6 and TRUNC_INT:

 • TRUNC converts from REAL to DINT.
 • TRUNC_INT converts from REAL to INT.

These functions differ from the other ones in that the result is always rounded down to the 
nearest integer. Example:

B := TRUNC_INT(−23.6) (* Result: B = −23 *)
B := REAL_TO_INT(−23.6) (* Result: B = −24 *)

7.10 Bit‐String Functions

These are a group of classic functions that are used for everything from control of stepping 
motors to monitoring of states. Most people will connect these functions with shift registers. 
The standard defines 4 functions that all are based on shifting bit strings a desired 
number of bits toward the left or toward the right. These are the functions SHL, SHR, 
ROL, and ROR.

The structure of the input arguments is equivalent for all four.

ANY_BIT

ANY_BIT

ANY_BIT
*** = Function name

*** 
IN

N

(Even though these functions can be used for all data types belonging to the generic 
ANY_BIT, there is, of course, little meaning to using them on Boolean objects.)

6 Note: Only the TRUNC function is implemented in CODESYS 2.3. This corresponds to TRUNC_INT in version 3.x.
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Example 7.10 

PROGRAM Shift
VAR
bait : BYTE := 2#10110100;   (* = B4 Hex *)
ord : WORD := 2#0000000010110100;  (* = B4 Hex *)
bait_shl, bait_shr, bait_rol, bait_ror : BYTE;
ord_shl, ord_shr, ord_rol, ord_ror : WORD;
n : INT := 2;

END_VAR

bait_shl := SHL(bait, n);
ord_shl := SHL(ord, n);
bait_shr := SHR(bait, n);
ord_shr := SHR(ord, n);
bait_rol := ROL(bait, n);
ord_rol := ROL(ord, n);
bait_ror := ROR(bait, n);
ord_ror := ROR(ord, n);
END_PROGRAM

7.11 Text‐String Functions

Several of the functional groups that we have presented so far can also be used on text strings, 
that is, the data types CHAR/WCHAR and STRING/WSTRING. This applies to selection func
tions, functions for type conversion, and functions for comparison. The groups of functions that 
are reviewed here are specially designed for use on text strings. These are the functions LEN, 
LEFT, RIGHT, MID, CONCAT, INSERT, DELETE, REPLACE, and FIND.

Table 7.8 contains possible graphic symbols and explanation and examples of the use of the 
functions. Because of lack of space in the table, some abbreviations are used: STR, STR1, and 
STR2 have data type ANY_STRING, and N and M are ANY_INT.

Table 7.7 Bit‐string functions

Function name Description

SHL Shift left
Execution of the function implies that the content in a bit string is shifted N places 
to the left, with the vacancies being filled by zeros

SHR Shift right
Execution of the function implies that the content in a bit string is shifted N places to the 
left, with the vacancies being filled by zeros from the left. If N is greater than the number 
of bits in IN, the result is an empty bit string. (The same is true for the function SHL)

ROL Rotate left
The content of a bit string is shifted N places to the left when the function is 
executed. Bits that fall out on the left side are filled in again on the right side

ROR Rotate right
The content of a bit string is shifted N places to the right when the function is 
executed. Bits that fall out on the left side are filled in again on the left side



Table 7.8 Standard text‐string functions

Name Graphic symbol and example Explanation and example in ST

LEN

Out

LEN 

STR N‘GoLFC!’

Returns the length of a text string (number of 
characters in the string)
Example:

Out := LEN(’GoLFC!’)
(*Gives Out = 6 *)

LEFT ***

STR   STR
N2

‘GoLFC!’ Out

***
  LEFT or RIGHT

Returns a desired number of char (N), starting 
from the left or right

RIGHT Examples:
Out := LEFT(’GoLFC!’, 2)
(*Gives Out = ’Go’ *)
Out := RIGHT(’GoLFC!’, 4)
(* Gives Out = ’LFC!’ *)

MID MID 

STR STR
N
M

Out‘GoLFC!’
2
3

Returns a desired number of characters, N, 
starting with character number M from the left
Example:

Out := MID(’GoLFC!’, 2, 3)
(*Gives Out = ’oL’ *)

CONCAT
CONCAT

STR1 STR
STR2
:

Out
‘LFC!’

‘Go’

:

The function performs a concatenation of 
several text strings
Example:

Out := CONCAT(’Go’, ’LFC!’)
(*Gives Out = ’GoLFC!’ *)

INSERT
INSERT

STR1 STR
STR2
N

Out‘Go!’
‘LFC’

3

The function is used to insert a text string 
(STR2) into another text string (STR1) in the 
position following character number N
Example:
Out := INSERT(’Go!’, ’LFC’, 3)
(*Gives Out = ’GoLFC!’ *)

DELETE
DELETE

STR STR
N
M

Out‘GoLFC!’
2
3

The functions used to delete And characters 
from a string, beginning with character number 
M from the left
Example:
Out := DELETE(’GoLFC!’, 2, 3)
(*Gives Out = ’GFC!’ *)

REPLACE

Out‘GoManU’
‘LFC!’

4

3

REPLACE

STR1 STR
STR2

N

M 

The function replaces N characters from the 
string STR1 with the string STR2, beginning 
with character number M from the left
Example:
Out := REPLACE(’GoManU’, ’LFC!’,  
 4, 3)
(*Gives Out = ’GoLFC!’ *)

FIND
FIND

STR1

STR2

‘GoLFC!’

‘LFC’

OutN

Returns the starting position for a partial string 
STR2 in the string STR1. If STR2 is not found 
in STR1, the value 0 is returned
Example:
Out := FIND(’GoLFC!’, ’LFC’);
(*Gives Out = 3 *)
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7.12 Defining New Functions

When making programs for automated processing, you normally get by with the  predefined 
functions and operators provided by the manufacturer, but occasionally, there is a need to 
define your own functions.

Defining a new function begins with a declaration where the function is assigned an identifier 
(given a name) and a data type. Following that, the input variables are declared. These are used 
for conversion of arguments when the function is called.

Example 7.11 Defining a Function that Calculates the Absolute Value

(*** Defining the function: ***)
FUNCTION My_func: INT (*Declaration part*)
VAR_INPUT
Num : INT;

END_VAR

IF Numb < 0 THEN (*Implementation part*)
My_func := −Num;

ELSE
My_func := Num;

END_IF
END_FUNCTION

We see that the declaration begins with keyword FUNCTION, followed by the function 
name and data type. The data type must be consistent with the format of the result of the 
function call, since the function name also acts as a variable where the result of the instruc
tions is stored.

VAR_INPUT is used to declare variables that will receive values transferred in the function 
call (often called arguments). Here, we have only one such variable or operand, namely, the 
variable Num.

In the code portion of the function, we have here a control structure of the type IF‐THEN‐
ELSE‐END_IF. There we check whether the value in the argument is negative. In that case, 
the value is inverted and returned as the result (My_func := −Num). The definition of the 
function closes with END_FUNCTION.7

In this example, we use only the variable type VAR_INPUT in the function, but it is 
also  permitted to use the variable types VAR_OUT and VAR_IN_OUT. Internal variables, 
or variables that are used only within the function itself, can also be declared by using the 
keyword VAR.

7 In some development tools, the start and termination of a POU is implicit. That is, keywords such as FUNCTION, 
END_FUNCTION, PROGRAM, and FUNCTION_BLOCK do not need to be written in. Start and termination of a 
POU is also unambiguous since each POU is declared as a separate object. In CODESYS, the keyword to start a POU 
is generated automatically, while the keyword for termination of a POU is implicit and should not be written, although 
it is not displayed in the editor.
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The code below shows how we can use (call) our new function in the program. Here, we 
show how the code for the call looks in both ST and FBD.

In a graphic language such as FBD, the function will automatically appear as a rectangular 
box with a line for each of the input variables on the left side and (usually) a line on the right 
side. Since our function has only one argument and gives only one value as a result, there is 
only one line on each side. Similarly, in ST, there will be only one operand (the  variable 
Value).

PROGRAM PLC_PRG
VAR

Value : INT;
Abs_value : INT;

END_VAR

(*Function call in ST: *) (*Function call in FBD: *)
Abs_value:= My_func(Value);

END_PROGRAM

7.13 EN/ENO

The syntax for activating the code in the LD programming language is based on the idea that 
all instructions must be activated by being connected to a “power rail” that graphically is a 
vertical line at the left of the instructions. This power rail is constantly “TRUE”. This implies 
that the graphics symbols we wish to use in LD must have an Enable input that can be 
connected to this power rail. We saw this previously in example 7.2.

Functions that are made for use in LD have such an Enable input called EN. In addition, 
they have an Enable output called ENO that usually has the same state as EN.

The way this works depends, in part, on implementation but can be as follows:

 • Only when EN has the state TRUE (1) the function is called and executed.
 • Nothing happens when EN is FALSE (0).
 • How ENO works depends partly upon how the manufacturer has chosen to implement the 
function. If an error occurs during execution of the function, ENO should be reset to FALSE. 
If not, then one of the following can be implemented:
1. ENO is like EN at any time. Then the purpose of ENO is just to continue EN to the EN 

input of the next functions.
2. ENO is set TRUE or FALSE depending upon the result of the execution.

In order to illustrate the principle, we will expand the function we defined in Example 7.11 by 
adding EN/ENO so that it can be used in the LD language. (Since the code in this example is 
so simple, ENO is used here only for continuing EN.)
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Example 7.12 Function with EN/ENO

FUNCTION My_func :INT
VAR_INPUT

EN :BOOL := TRUE;
Num :INT;

END_VAR
VAR_OUTPUT

ENO :BOOL;
END_VAR

IF EN THEN
IF Num < 0 THEN

My_func := −Num;
ELSE

My_func := Num;
END_IF

END_IF

ENO := EN;

7.14 Test Problems

Problem 7.1
(a) What three types of POU are defined by the standard?
(b) Explain the difference between a function and a function block.
(c) Write the declaration for a Boolean function named Ohoy that has 2 in‐variables, A and B, 

both of the data type REAL.
(d) Which text‐string functions are defined in the standard?
(e) Show examples of use of the standard functions CONCAT and REPLACE.
(f) What will be the result from the following function calls if they are executed in the same 

order as they are listed (all variables are of data type String:
1. MyString := INSERT(‘Tomorrow is today’, ‘yesterday’, 11)
2. A := LEN(MyString);
3. B := FIND(MyString, ‘r’);
4. C := LEFT(MyString, 4);
5. D := RIGHT(MyString, 5);

Problem 7.2
(a) Which function can be used to limit a numerical variable til values between, for instance, 

−200 and 200?
(b) Suppose that you want to assign a variable called Input, of data type word, to one of the 

analog inputs %IW4, %IW5, or %IW6, depending on whether the value of a variable 
x is 0, 1, or 2.
1. Which function can be used to accomplish this?
2. Write the function call in a textual form.
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Problem 7.3
Suppose that %MW0 = 0101 1101 0111 0110 and that %MW1 = 0011 1011 1111 1001. What 
will be the result of performing the following instructions (give the answers in both binary and 
decimal form)?
1. %MW10 := %MW0 AND %MW1;
2. %MW11 := %MW0 OR %MW1;
3. %MW12 := %MW0 XOR %MW1;
4. %MW13 := %MW0 + %MW1;
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Function Blocks

8.1 Introduction

In contrast to functions, function blocks(FBs) can have internal memory. This means that the 
result of a call to a FB can depend not only upon the arguments (input values) but also on the 
values of the FB’s own internal variables. In other words, repeated calls of a FB with identical 
arguments do not necessarily give the same output values.

When a function is called from a POU, the function returns a response in the form of 
a return value (or an array of values). This is not what happens with a call of a FB. Instead, 
the result of running a FB is stored in its own output variable. FBs can thus have more than 
one output.

8

Chapter Contents

 • On function blocks:
Declaring and calling. Defining your own function blocks

 • Standard function blocks:
 ∘ Flank detection (R_TRIG and F_TRIG)
 ∘ Bistable (RS and SR)
 ∘ Timers (time delays) and various modes (TON, TOF, and TP)
 ∘ Counters (CTU, CTD, and CTUD).

 • Nonstandard implementation‐dependent function blocks
 • Program organization:
Programs and program calls. Execution control with EN/ENO
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8.1.1 The Standard’s FBs

IEC 61131‐3 defines a set of FBs that, together with the standard’s functions, cover the basic 
operations one associates with PLCs. These FBs are:

 • Flank detection: R_TRIG and F_TRIG
 • Bistable (flip‐flop): SR and RS
 • Timer (time delay): TON, TOF, TP
 • Counter: CTU, CTD, CTUD

Here, we will study all of these FBs and explain how they work. You will find examples of the 
FBs in the chapters on programming languages.

8.2 Declaring and Calling FBs

In order to be able to use a FB in a POU, an instance of the FB must be declared in the POU. 
Instances are named multiple uses of a FB type. This sounds somewhat cryptic, but the point 
is that since a FB has memory and properties that are associated to it by use, one must declare 
a new instance of every FB that one uses even if their are of the same type.

Suppose that in your program you have to use two RS flip‐flops to start (Set) and to stop 
(Reset) two pumps; P1 and P2. In addition, we will use two timers to provide a delay in 
starting the pumps of two and five minutes, respectively. In order to be able to start and stop 
each pump independently, you must declare an instance of each SR flip‐flop and on instance 
of each timer. Declaration is made with the same syntax with which you declare variables, 
except that you indicate the type of FB instead of data type:

PROGRAM Call_of_FBs
VAR

Start, Stop  : BOOL;
Run_P1, Run_P2 :  RS;// Declares two instances of a RS
Two_min, Five_min :  TON;// and two instances of a Timer
P1, P2  : BOOL;

END_VAR
(* Program code: *)

END_PROGRAM

(In CODESYS, the types of any FBs are not marked in blue as are other keywords.)
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When you declare such instances, you can name them anyway you want, so long as it is a 
permitted name. Personally, I like to name timers according to the length of time delay (such as 
five_min) and counters according to the value that they will count up to (e.g., Fifty). Regarding 
the other two categories of FBs, you will normally use many more of them in a program. For 
these, I therefore recommend simple, but at the same time fairly descriptive, names:

 • RS1, RS2, etc. for bistable of the type RS
 • SR1, SR2, etc. for bistable of the type SR
 • RE1, RE2, etc. for positive flank triggers (R_TRIG)
 • FE1, FE2, etc. for negative flank triggers (F_TRIG)

(RE and FE are acronyms for rising edge and falling edge, respectively.)
Once an instance has been declared, the FBs are made accessible for use in the code field in 

the POU. (It is also possible to declare an instance of a FB globally.) At any rate, the instance 
can now be used in a POU via a call.

The code above, programmed in CODESYS, shows use of our FB instances in FBD. Notice 
that the name of the instance will be at the upper edge of the symbol.

In Structured Text, we call instances of FBs by writing the name of the instance together 
with arguments. A call of Run_P1 can appear as follows:

Run_P1 (Set := Start, Reset1 := Stop, Q1 => P1);

Note that it is possible to use FBs without all inputs associated with variables. In the code 
on the previous page, the ET outputs are not associated to anything. In CODESYS, they then 
disappear from the symbols in the code. Any inputs that are not associated will use their initial 
values in the execution of the block.

In the following, we will study the way all of the FBs work in the standard. We will study 
the use of the FBs later when we review programming languages.

8.3 FBs for Flank Detection

In many applications, we would like to perform an instruction only once, for example, 
 precisely when a condition is met. For a PLC, this is not natural. It wants to check conditions 
repeatedly (every scan) and perform an instruction every time as soon as the condition is 
 satisfied. The time between every time the condition is checked is what is called the scan time, 
as we saw in Section 1.3.3. This can be 20 ms, for example. Therefore, if a condition is met, 
the associated instructions will be performed at every scan, that is to say, every 20 ms.

Finding out exactly when a Boolean condition is satisfied is the same as detecting when the 
Boolean condition changes state from FALSE to TRUE (0 to 1) or vice versa, from TRUE to 
FALSE. This is called flank detection.

The standard defines to FBs for flank detection, R_TRIG and F_TRIG. These FBs operate 
in the same way as the flank triggers P and N in LD (see Section 9.3.3). Both blocks have 
one  input and one output, both Boolean. The graphic symbols for the blocks are shown in 
Figure 8.1.

R_TRIG is used to detect a rising edge on the Boolean input variable or the Boolean expres-
sion associated with the input. When that happens, the output Q becomes TRUE and then 
remains TRUE for a time equal to the scan time, that is, until the next time the block is 
evaluated.



Function Blocks 209

R_TRIG 

CLK Q Var_out Var_in 

F_TRIG 

CLK Q Var_out Var_in 

Figure 8.1 Function blocks for flank detection

F_TRIG is used to detect a falling edge on a Boolean variable or a Boolean expression. In 
the PLC scan where the input signal becomes FALSE, the output Q becomes TRUE. It then 
remains TRUE until the next scan (next execution of the block) (see Figure 8.2).

8.4 Bistable Elements

The Bistable1 elements SR and RS or memories, as they may also be called, are equivalent 
with the retention elements S and R in LD (see Section 9.3.2).

Figure 8.3 shows a possible graphic representation of the blocks as they can appear in the 
graphical languages LD and FBD.2 All variables must be of the type BOOL. The working 
principles are as follows:

A logical high signal on the Set input (Var1 = TRUE) causes output Q1 to be set TRUE. It then 
remains TRUE even though the signal on the Set input becomes FALSE. The output can only be 
FALSE again when it receives a TRUE value on the Reset input.

The reason that these are also called memories is precisely that the output retains its value 
even though the state at the Set input becomes FALSE.

The difference between SR and RS first becomes noticeable when both Set and Reset are 
TRUE:

 • SR is Set dominant. This means that Set has a higher priority than Reset and the output goes 
TRUE even if Reset is also TRUE.

 • RS is Reset dominant, which means that the output goes FALSE when Reset goes TRUE, 
whether or not Set is also TRUE.

CLK

1 scan

R_TRIG.Q

F_TRIG.Q

1 scan

Figure 8.2 Diagram for the input and output signals of the block

1 The word bistable refers to that the output from the blocks has two stable states, TRUE and FALSE.
2 This standard does not place any requirements on graphical layout. The manufacturers can therefore determine what 
designs they prefer to use for graphic representations of FBs.
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(Note that a 1 is attached to the dominant input variable as a reminder to the user for 
which of the two blocks is being used.) The Boolean quantities associated with the Set and 
Reset inputs do not need to be simple Boolean variables, but may also be Boolean 
expressions.

8.5 Timers

A common element in traditional electrical installations is the time clock in its various vari-
ants. These are found in both mechanical and electronic implementations. There is also a time 
clock in the PLC, but there it is present as software. These are called a timer. The purpose of 
using a timer, briefly stated, is to be able to change the state of the Boolean address at a 
desired time after some criterion has been met. The symbol for a timer is shown in Figure 8.4.

Inputs and Outputs

 • Input variable IN: When the signal at IN changes state (rising edge for TON and TP, falling 
edge for TOF), the timer will start.

 • Timer output Q: The state of output Q does not depend upon the input only but also upon 
the mode selected (TON, TOF, or TP) (see the following text).

 • Input variable PT: Here, a variable of data type TIME is associated. This may be a time 
given directly in a standard time format (for instance, t#2m30s). PT is a predetermined time 
that indicates the desired delay.

 • Output variable ET: A variable of type TIME that contains the current value in the timer, 
that is, the time that has elapsed since the timer was activated. When the content of ET 
equals the content of PT, the timer’s output Q changes state.

The standard defines three different modes for control of the state of output Q:

 • TON: The output Q gets TRUE a user‐specified time (content of PT) after the condition at 
the input is satisfied (TRUE signal on IN). In order for the output to change state, the input 
must be TRUE for at least as long as the predefined time.

 • TOF: The output gets TRUE immediately when the condition at the input is satisfied and 
thus when IN becomes TRUE. After the input becomes FALSE again, the output will 
becomes FALSE after a user‐specified time, provided that the input has not gone TRUE 
again in the meantime (ET resets when IN gets TRUE).

Var3 

Set dominant 

RS
Set Q1 
Reset1

RS
Set Q1 
Reset1

Var1 
Var2 

Var3 

Reset dominant 

Figure 8.3 Bistable elements
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IN Q

PT ET

BOOL

MODE

TIME 

BOOL

TIME 

Timer 

Figure 8.4 Standard Timer

 • TP: The output Q goes logically high when input IN goes high and stays TRUE for the 
user‐specified time PT, whether or not IN becomes FALSE in the meantime. (ET resets only 
when both the input and the output are logically low.)

Figure 8.5 shows a sequence diagram that illustrates the three modes. The solid lines show 
the state of output Q for a timer in each of the three modes. The dotted lines at the top of the 
figure show the state of the input IN.

The figure also shows the values in ET (marked ‐‐‐‐), which contains the current value in 
the timer. The output status changes when ET is equal to PT.

8.6 Counters

Counters are FBs that have some similarities in principle with timers. They have an input var-
iable containing the desired number of pulses that are to be counted, an output variable that 
contains the counters’ present value, and a Boolean output the changes state from FALSE to 
TRUE when the desired count is reached.

The standard defines three types of counters for counting up, counting down, and up/down 
counting: CTU, CTD, and CTUD. It is unclear why three different FBs are defined for counting 
when the CTUD block covers all requirements for counting. It probably has some connection 
with tradition. At any rate, in the following, we will study the symbols and characteristic 
parameters for all three types.

TON

IN

TOF

TP

Figure 8.5 Illustration of the difference between the various modes of timer
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8.6.1 Up‐Counter

The up‐counter’s parameters and variables are shown in Table 8.1.

8.6.2 Down‐Counter

The symbol and operation of a down‐counter (Figure  8.7) is very much like that of an 
 up‐counter except for two things: on rising edges at the counter input, which is now designated 
CD, the counter counts downward from a preset value (PV). When CV equals 0, the counter 
is finished, and Q goes logically high. The reset input for CTU has been replaced here by a 
load input (LD). When LD is TRUE, CV is set to equal PV.

The down‐counter’s parameters and variables are shown in Table 8.2.

8.6.3 Up/Down‐Counter

The third and last FB for counting is called CTUD and implements a combination of CTU and 
CTD. The block’s input and output variables are the same as those in CTU or CTD (Figure 8.8).

Operation

 • Counting: The inputs CU and CD are scanned in turn. With a rising edge at CU, the current 
value (CV) increases by 1. With a rising edge at CD, the value CV decreases by 1.

 • Reset: When input R is set to TRUE, the CV is set to 0.
 • Load: When input LD is set to TRUE, CV is set to PV.
 • QU returns TRUE when CV >= PV.
 • QD returns TRUE when CV = 0.

See Section 9.6 for examples of use of counters in graphic languages.

CTU 

CU Q

R 

PV CV

BOOL

BOOL

INT

BOOL

 Count_up 

INT

Figure 8.6 Graphic symbol for an up‐counter

Table 8.1 Characteristic parameters for an up‐counter

CU Count Up These are pulses (rising edges) of the input to be counted
PV Preset Value Integer that contains a desired preset value
CV Current Value Integer type of value whose content increases with one unit for each 

rising edge at CU
R Reset (input) Counter reset so that CV = 0 when R becomes TRUE
Q Done (output) Is set to TRUE when counting is done (CV = PV)
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8.7 Defining New FBs

Example 8.1 shows a definition for the standard’s FB RS. The declaration and code for a FB 
is enclosed by the keywords FUNCTION_BLOCK and END_FUNCTION_BLOCK.

This particular block has two input variables and one output variable, all type BOOL. This 
FB does not have any local variables.

Example 8.1 Defining FB RS

FUNCTION_BLOCK RS
(* Example of a function block that implements a Reset‐
dominant flip‐flop. *)

VAR_INPUT //Input variables

CTD 

CD Q

LD

PV CV

BOOL

BOOL

INT

BOOL

Count_down 

INT 

Figure 8.7 Graphic symbol for a down‐counter

Table 8.2 Characteristic parameters for a down‐counter

CD Count down It is the number of pulses at this input that is to be counted
PV Preset value Integer that contains a desired preset value
CV Current value Integer type of value whose content decreases by 1 for each rising edge at CD
LD Load Counter reset so that CV = PV when LD becomes TRUE
Q Output Is set to TRUE when counter is done (CV = 0)

CTUD 

CU QU

CD QD

R 

LD

PV CV

BOOL

BOOL

BOOL

BOOL

INT 

BOOL

BOOL

INT 

Up_down 

Figure 8.8 Graphic symbol for an up/down‐counter
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Set  : BOOL;
Reset1 : BOOL;

END_VAR
VAR_OUTPUT //Output variable
Q1  : BOOL;

END_VAR
(* Function block program code (in FBD): *)

END_FUNCTION_BLOCK

When a FB is used in the graphic languages, a graphic symbol is generated automatically, 
based upon the name of the block, the number of inputs (VAR_INPUT), and the number of 
outputs (VAR_OUTPUT).

8.7.1 Encapsulation of Code

An important point about FBs is that they are very useful for encapsulating code. If you write 
code for others, for instance, for a client, and have developed a special code that you perhaps 
would use again in several programs and which you do not want to distribute to others, you 
can store this code in the form of a FB.

You can then use the FB in a program, where it will do precisely the same job as though the code 
in the block had been part of the program code. The major difference is that no one can see the 
code that is stored in the FB, and you have thereby protected this section of the code.

In the beginning of the chapter, we studied a little program where we controlled two pumps 
with the help of a pair of RS flip‐flops and two timers. Let us now fix that code so that it is a 
FB rather than a program:

Example 8.2 

FUNCTION_BLOCK Pump_Control
VAR_INPUT
  In1, In2  : BOOL;
END_VAR
VAR_OUTPUT
  Out1, Out2  : BOOL;
END_VAR
VAR
  Run_P1, Run_P2 : RS;
  Two_min, Five_min : TON;
END_VAR
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END_FUNCTION_BLOCK

If you compare this code with the code in Section 8.2, you will see that they are identical. 
The difference is in the declaration field, the fact that this is a POU of the FB type instead of 
a POU of the program type.

In the program, we can use as many FBs as we care to, of any type, and when we use them, 
we will not see the code that lies within the FB; we only have to know what it does and how 
we put it to work in the program. Since you can use a FB several times, and perhaps for var-
ious purposes, you should use more general variable names in the declaration. Here, I have 
used In1 and In2 on the input variables and Out1 and Out2 on the output variables.

Now, if we make a program, we can declare an instance of our new FB (Pump_control) and use 
it in a code. As mentioned, it will automatically generate a symbol in graphic language, like this:

Example 8.3 Calling Our FB

Here, we see the use of our new FB in a program. Like all other FB, we must declare an in-
stance of our FB in the declaration field where we give the instance a name. The instance can 
then be used in the code field, where we can associate other variables (or expressions) to the 
inputs and outputs of the instance.

The goal of concealing the part of the code that lies in the FB has been achieved, in addition 
to the advantage that it is simple to reuse the code in several programs or several times in the 
same program.

PROGRAM Calling_Pump_control
VAR
  Start AT %IX2.3 : BOOL;
  Stop AT %IX2.4 : BOOL;
  P1  AT %QX5.0 : BOOL;
  P2  AT %QX5.1 : BOOL;
  PumpCtr1   : Pump_control;
END_VAR
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END_PROGRAM

8.7.2 Other Nonstandardized FBs

As mentioned earlier, the development tool that you use will offer many more functions and 
FBs then are defined in the standard. In addition, users and third‐party suppliers develop new 
FBs that they often make available on the Internet. Before you get started programming your 
own FB for a particular purpose, it can therefore be a good idea to look around a little in the 
programming tool library or search on the Net.

In CODESYS, you have access to the standard’s FBs by downloading the library standard.
lib to your application, but you can download many more libraries. Some involve installation 
of software, but others can simply be downloaded. I would particularly like to recommend 
library OSCAT, which is a heavy package with over 800 library modules. OSCAT is an 
acronym for Open Source Community for Automation Technology and has support for many 
other development tools besides CODESYS, including PCWorx and Step7. Not only will you 
find thousands of useful functions and FBs, the code is also open source.

Among the libraries that are included with the installation of CODESYS, I would like to 
mention Util.lib, where you will find a PID to use in process regulation. The code for the block 
is not accessible for review, but you will see variable declarations and comments so that you 
can understand how the block can be used (Figure 8.9):

FUNCTION_BLOCK PID
VAR_INPUT
ACTUAL  :REAL; (* Actual value (PV ‐ process variable) *)
SET_POINT  :REAL; (* Desired value, set point *)
KP :REAL; (* Proportionality const. (P) *)
TN :REAL; (* Integral time (I) in sec *)
TV :REAL; (* Derivative time (D) in sec*)
Y_MANUAL :REAL;  (* Y is set to this value as long as  

  MANUAL=TRUE *)
Y_OFFSET :REAL; (* Offset for manipulated variable *)
Y_MIN  :REAL; (* Minimum value for manipulated variable *)
Y_MAX  :REAL; (* Maximum value for manipulated variable *)
MANUAL :BOOL;  (* TRUE: manual: Y is not influenced by  

  controller,
FALSE: controller determines Y *)

RESET  :BOOL;  (*Set Y output to Y_OFFSET and reset  
 integral part *)

END_VAR
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VAR_OUTPUT
Y  :REAL; (* Manipulating variable *)
LIMITS_ACTIVE :BOOL; (* TRUE if value exceed Y_MIN, Y_MAX *)
OVERFLOW :BOOL; (* Overflow in integral part *)

END_VAR
VAR
CLOCK :TON;
I  :INTEGRAL;  (* Integral and Derivative are  

  FBs in Util.lib *)
D  :DERIVATIVE;
TMDIFF :DWORD;
ERROR :REAL;
INIT :BOOL:=TRUE;
Y_ADDOFFSET :REAL;

END_VAR

8.8 Programs

The third type of POU in the standard—a program—is defined as:

… a logical assembly of all the programming language elements and constructs necessary for the 
intended signal processing required for the control of a machine or process by a PLC system.

Said a little differently (but perhaps not better): A program consists of addresses, variables, 
constants, functions, FBs, and control structures combined in a logical way so that it consti-
tutes a runnable code that solves a control problem.

As we see, it is difficult, and perhaps meaningless, to define what a program is. The fol-
lowing chapters on programming languages will, we hope, provide a good understanding 

PID

ACTUAL  :  REAL
SET_POINT  :  REAL
KP  :  REAL
TN  : REAL
TV  : REAL
Y_MANUAL  : REAL

Y  : REAL
LIMITS_ACTIVE  : BOOL

OVERFLOW  : BOOL

Y_OFFSET  : REAL
Y_MIN  : REAL
Y_MAX  : REAL
MANUAL  : BOOL
RESET  : BOOL

Figure 8.9 Graphic symbol for the PID function block
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of what a program is and how program code is constructed with various programming lan-
guages. To begin with, we will be satisfied with the guidelines that the standard specifies. 
Declaration and use of the program is identical with that specified for FBs, except for the 
following:

 • A program is bounded by the keywords PROGRAM and END_PROGRAM.
 • A program is at a higher structural level than FBs, as shown in Figures 5.5 and 5.6. This 
means that a program can contain instances of FBs, but an FB cannot contain 
programs.

 • A program can, in addition to containing functions and instances of FBs, also call other 
programs.

8.8.1 Program Calls

A program can call other programs. You can structure your application better by splitting up 
the code into several POUs of the program and FB types, where each POU handles its share 
of the control. This is important in larger applications and makes it simpler to maintain and 
structure the code. Another advantage is that you can reuse snippets of code by importing 
 programs and FBs that you have previously developed for other projects.

When a program is called, any changes in values and variables will be retained for the next 
time the program is called. This is different from calling up a FB, where only the variables in 
the current instance of the FB are changed. As we have seen, you can declare several instances 
of the same FB in a program. The values that are changed affect only the current instance and 
are therefore only significant in the next call of the same instance.

Example 8.4 shows how the code in a program can call other programs in the application. 
What conditions are used in calling the individual programs will naturally depend upon the 
project in question. If it is a sequential structure, for example, the next program can be called 
when the previous program has carried out its part. In this example, it has been done simply 
by having the programs called as a result of the value in the integer variable value.

Example 8.4 Calling Programs

In this example, the code in the application is divided into four different programs. A main 
program, called main, calls the other three programs. We see that the individual  programs can 
be written in different languages (Program1, LD; Program2, SFC; and Program3, FBD).
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The program that calls the other programs is coded in ST.
A corresponding code written in FBD or LD can be implemented in CODESYS thus (see 

next page on EN/ENO):

8.8.2 Execution Control

There is often a requirement to use the result from an instruction, a network in LD, or a POU 
to control other POUs. This can easily be solved by sending the result from the instruction or 
network to a global variable that is then used to control the execution of other POUs. It is also 
possible to do this directly by the use of Enable (EN) and Enable Out (ENO) as we studied in 
Section 7.13.

If these variables are used in a function, FB, or program, the execution of the POU takes 
place in accordance with the following rules:

1. If the value to input EN is FALSE (0), none of the instructions that are defined in the POU 
are executed, and the output ENO is set to 0.

2. If the value to EN is TRUE (1), the defined instructions are executed, and the output ENO 
is set to 1 as soon as the execution of the instructions is completed successfully (with no 
errors).

3. For FBs, all outputs (VAR_OUTPUT) will retain their values from the previous call if EN 
is set to 0.

The third item says that an FB will be “frozen” if EN is FALSE. All the outputs from the 
block will then maintain their values, no matter what the state of the other inputs is. As soon 
as the FALSE state terminates, that is, when EN is set to TRUE, normal operation will be 
resumed.

This EN/ENO functionality is utilized in the example on the previous page. In CODESYS 
when you want to insert a call of a program or an FB in the graphic languages LD and FBD, 
you select “Insert Empty Box with EN/ENO.” Then click on the question mark inside the box 
that appears and write the name of the program or the FB that you wish to call up. (You can 
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also click on the question mark and press F2 to call Input Assistant, where you can select the 
proper program or FB from a menu.)

8.9 Test Problems

Problem 8.1
Given the following program:

PROGRAM NoWhat
VAR

Button AT %IX23.5 :BOOL;
A, B, C :BOOL;
RE1, RE2, RE3 :R_TRIG;

END_VAR

At input %IX23.5, a pushbutton is connected. When the button is pressed, a logically high 
signal appears on the input.

Tasks:

1.  Make a truth table that shows the state of the variables A, B, and C for the first 8 pushes 
on the button. Assume that the button is released between each push and that the initial 
value for A, B, and C are 0.

2.  Is there any meaningful “information” which you can interpret from the pattern of 1’s 
and 0’s in your table?
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Ladder Diagram (LD)*

9.1 Introduction

Programming with LD has traditionally been the most widely used programming  language for 
PLCs. Another concept that is used for code written in LD is relay diagram. Even though 
other, and in many instances more efficient, programming languages have gradually appeared, 
LD continues to be widely used. There are many reasons for this:

9

* Regarding examples and implementation of code in this chapter: Most of the examples are carried out in software 
with CODESYS from Smart Software Solutions. If this differs from the standard, there will be a comment. There can 
be differences that appear as extra functionality, beyond the standard, that is implemented in the development tool in 
question, or subparagraphs in the standard that are not implemented in the tool. The larger examples are complete 
with declaration of variables in addition to the code itself.

Chapter Contents

 • Introduction:
Graphic elements, program structure, labels, comments, jumps, rules for execution

 • Boolean operations:
Contacts and coils, Boolean conditions, flank‐detecting contacts and functions, retention 
elements Set and Reset, memory functions, the double‐coil syndrome

 • Use of function blocks in LD:
Flank contacts, memories, timers, and counters

 • Use of functions in LD
 • Programming of your own function blocks in LD
 • Order of execution:
Significance of how the code is executed. Change of order with program jumps.

 • Sequential program with LD
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 • It has been around for a long time.
 • The language is graphic.
 • It is relatively easy to grasp.

Previous editions of LD had a basic set of instructions sufficient to be able to perform most of 
the fundamental types of control functions such as logic, time control, and counting, along 
with simple mathematical operations. Most of the PLC manufacturers currently provide PLCs 
and programming tools that make it possible to perform advanced additional functions in LD, 
often integrated with other languages such as FBD and ST.

The basic functions that are needed in order to implement smaller control systems can be 
learned relatively quickly, and the graphic presentation can be understood intuitively. For 
beginners in programming, and when smaller applications are to be developed, LD is there-
fore a fine choice of programming language.

9.2 Program Structure

Figure 9.1 shows a sketch in principle of how code in LD is structured. Both sides of the code 
are bounded by vertical lines that we can call power rails. The rail on the left always has the 
state TRUE. You can consider that to be a voltage (+24 V) connected to the rail.

The rail at the right has no defined logical state under the standard. It can therefore be con-
sidered as implicit, and not all producers implement a vertical right line in the development 
tool.

Generally, a code in an LD is based upon the following principles:

 • If a condition or a combination of conditions is satisfied, then one or more actions (events, 
instructions) will be performed.

We can call a set of conditions with associated actions a rung.1 A program will thus consist of 
one or more such concatenated rungs that are being executed sequentially by the PLC. Here is 
an example of an LD code:

Conditions

Conditions

Actions

Actions

Rung 1

Rung 2

Etc.

Figure 9.1 The structure in a LD

1 In some implementations, the rungs are called networks.



Ladder Diagram (LD) 225

9.2.1 Contacts and Conditions

What constitutes the conditions in Figure 9.2 will most often be a contact or a combination of 
contacts like those in rung 2 in the figure previously. A contact is a graphic element (┤├) that 
is associated with a Boolean variable or a Boolean address.

Even though there is naturally no current going through these logical rungs, we can under-
stand them better if we consider a contact to be like an ordinary light switch:

If it is closed, current goes through the contact. If it is open, the flow is interrupted.
There are several types of contact symbols. The two basic variants are normally open (NO) 

and normally closed (NC).
The symbols for the two types associated with the variable Var_A are shown in 

Figure 9.3.

Detailed Explanation of Operation

Suppose that a normally open contact is associated with address %IX2.5. Because the contact 
is of the normally open type, this means that the contact is open when the state of address 
%IX2.5 is FALSE and closed when %IX2.5 has the state TRUE.

Conditions Actions

Rung 1

Rung 2

Figure 9.2 Example of code in LD

Var_A Var_A 

Normally open contact  (NO) Normally closed contact  (NC) 

Figure 9.3 Standard contact symbols
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%IX1.8 %QX2.3 

Figure 9.5 A simple program

In other words: A sensor that is connected to the digital input that has this address will “go 
hot” through the contact when the sensor gives a logically high signal.

A normally closed contact functions just opposite of this; the contact is closed (conducts current) 
when the state of the sensor is FALSE, and the contact is open when sensor state is logically TRUE.

9.2.2 Coils and Actions

An action or instruction in LD can be various things. For example, they can perform an 
arithmetic calculation, jump to another place in the program code, or change the state of 
Boolean addresses.

This last event comes in under the group of Boolean instructions, and the graphic symbol 
that is used for this is called a coil (see Figure 9.4).

Coils are placed at the right of conditions, which are placed at the left in the code. As men-
tioned earlier, we can analyze the rungs by thinking how they conduct current and which con-
tacts are on or off. The job of a coil is to transfer the result (the Boolean state) from a condition 
on the left side of the coil to the Boolean variable or address that is associated with the coil.

In the same way that contacts can be associated with Boolean input addresses, a coil can be 
associated with an address to a physical output where it is connected to actuators such as 
magnetic valves, lights, alarms, relays, and so on.

Symbols for Coils

The inverse coil functions exactly opposite to an ordinary coil: If the condition on the left side 
has the state TRUE, the variable associated with the inverse coil has the state FALSE.

Example 9.1 The First Program

Assume the following: A sensor gives a high signal when the fluid level in the tank reaches a 
certain level. The sensor is connected to an input with address %IX1.8. When the fluid level 
reaches the sensor, a pump should start so that the fluid is emptied out of the tank. The pump 
is connected to a relay output with the address %QX2.3. The program for this in LD can look 
like the one shown in Figure 9.5.

Variable Variable

Coil Inverse coil

Figure 9.4 Standard coil symbols
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The open contact here constitutes the condition and the coil constitutes the action or 
instruction that is to be carried out when the condition is satisfied. We can read the program in 
this way:

 • When the state of address %IX1.8 is TRUE, the state of %QX2.3 should also be TRUE. 
Therefore, when the sensor gives a logically high signal, the pump should operate (assuming 
that the pump in the electrical layout is connected so that it runs when the relay is closed).

 • When the state of address %IX1.8 is FALSE, the state of %Q2.3 should also be FALSE. 
Therefore, when the sensor gives a logically low signal, the pump should not operate.

9.2.3 Graphical Elements: An Overview

Since the PLC program obvious is not a physical hookup of switches, but rather logical 
functions, there is no physical situation that limits the functions that are possible to be 
programmed. This means that different and more complex functions than those used in relay 
controls can be programmed in a PLC.

In the two previous chapters, we presented a series of standard functions and function 
blocks. All of the function blocks can be implemented in LD as well as several of the standard 
functions.

Some of the function blocks are so central in programming that the standard defines specific 
graphic symbols in LD for them. This applies to the bistable function blocks SR and RS and 
the edge‐detection function blocks R_TRIG and F_TRIG:

 • SR and RS are implemented in LD as a Set coil −(S)− and a Reset coil −(R)−.
 • R_TRIG and F_TRIG are implemented in LD as −|P|− and −|N|− contacts that detect rising 
and falling edges, respectively.

All of the graphic LD elements defined in the standard are collected in Table 9.1.

9.3 Boolean Operations

The previous chapter presented an overview of all of the functions in the standard. In struc-
tured text, these are represented with their individual operators and special graphic symbols 
are used in FBD. One group of standard functions are the Boolean operations AND, OR, 
XOR, and NOT. In LD, such operations can be implemented by combining test elements 
(contacts).

9.3.1 AND/OR‐Conditions

In many situations, there are more complex conditions that must be satisfied before an 
instruction is performed. AND‐conditions and OR‐conditions and combinations of these are 
very common. If one is clear about what logical conditions must be met for these events to 
take place, it is easy to implement them in a PLC program.
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Example 9.2 AND‐Condition

Table 9.1 Symbols that are used in LD

Designation Symbol Function

Test element Normally open 
contact

The contact closes when the associated Boolean 
object becomes TRUE

Normally closed 
contact

The contact closes when the associated Boolean 
object becomes FALSE

Flank‐detecting 
contacts P

Rising edge: The contact is closed only in the scan 
(see Section 1.3.3) during which the associated 
Boolean object changes state from 0 to 1

N
Falling edge: The contact is closed in the scan 
where the associated Boolean object changes 
state from 1 to 0

Connections Horizontal To connect elements in series

Vertical To connect elements in parallel

Action element Direct coil The associated Boolean object is set to the same 
state as the state of the left side of the coil

Inverse coil The associated Boolean object gets the inverse 
of the state of the left side of the coil

On‐coil
S

The associated Boolean object is set to TRUE 
when the state of the left side of the coil is 
TRUE

Off‐coil
R

The associated Boolean object is set to FALSE 
when the state of the left side of the coil is 
TRUE

Conditional  
jump to another 
rung

→ Label Enables jump to another named rung in the 
program (the POU)
When a jump is activated:
1. The active rung is interrupted
2. The named rung is activated

Return to call < RETURN > If a function or function block is programmed in 
LD, this is used to return to the POU that called 
up the function or blocka

a RETURN is implicit at the end of the function or function block.

Figure 9.6 Implementation of AND‐condition
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We can read the program code earlier (Figure 9.6) thus:

The pump will run if Sensor_A = TRUE and Sensor_B = FALSE and
Switch = TRUE.

We can express it thus in logical form:

 
Pump Sensor A Sensor B Switch_ _

 

Example 9.3 OR‐Condition

We can read the program (Figure 9.7) thus:

The pump will run if Sensor_A gives a high signal OR Sensor_B gives a low signal OR 
Switch is switched on.

The program therefore implements the following functional expression:

 
Pump Sensor A Sensor B Switch_ _

 

Example 9.4 Exclusive OR

Now, it is obvious that any logical function can be implemented in a PLC where all possible 
combinations of AND‐conditions and OR‐conditions can be utilized. For example, here, 
Figure 9.8 shows how a 2‐input Exclusive OR can be implemented.

Function table Functional expression

A B G G A B AB AB
0 0 0
0 1 1
1 0 1
1 1 0

Figure 9.7 Implementation of an OR‐condition
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Of course, the logical expressions can become complicated. In general, one must be sure 
to include enough of the conditions that are necessary in order for the process to be controlled 
to behave as one wish. Many inexperienced programmers, however, have a tendency to use 
unnecessarily complex conditions. It can therefore be sensible to begin by using the tech-
niques and methods for reducing the Boolean expressions, such as those introduced in 
Chapter 4.

9.3.2 Set/Reset Coils

A function that frequently comes up in an electrical facility is to start an electric motor with 
the help of a pulse switch (push button). Such a switch completes a control circuit, but only 
while the button is being held in, and then the current is interrupted when the button is 
released. This means that the signal from the pulse switch that is used as a condition for 
starting the motor is present only while the button is being held down. However, the motor 
should continue to run even though the signal from the push button disappears. How can we 
do that?

Electrically, this can be designed with the help of a contactor that will stay connected, after 
the control current turns it on, for as long as the operating current does not disappear. As soon 
as the operating current cuts off, the contactor will disconnect and can only be turned on again 
when the pulse switch is pressed in again. Here, we will look at ways to solve this problem in 
a PLC.

The value of the variables and addresses associated with the coil objects that we have used 
up till now will always be the direct result of the conditions that set them high or low. This 
means that if the result of the condition changes state, the variable associated with the coil 
object also changes state. Such programs are said to be purely combinatorial since they do not 
take into account any aspect of time such as when an event occurs, for instance.

Example 9.5 

Let us assume that we have a pulse switch that is used to start a motor and another pulse switch 
that is used to stop the same motor. We want to make a kind of retention function that keeps 
the motor from stopping when we release the start button. Assume that both the start button 
and the stop button are both physically of the NO type. One possible solution is shown in 
Figure 9.9.

Figure 9.8 Implementation of an Exclusive OR
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We have thus connected the start switch to address %I1.14 and associated this with a nor-
mally open contact. The stop switch is connected to the digital input %I1.15. Here, we use the 
symbol for a normally closed contact so that %I1.15 will be TRUE when the stop switch is not 
pressed. The condition for the motor to start is therefore that the start button is activated but 
the stop button is deactivated. When this condition is satisfied, this state of address %Q2.1 is 
set TRUE, which is something that again means that a relay in the PLC’s output block is 
closed so that the motor receives operating voltage.

When the start button is released, the motor will continue to run because the output address 
%Q2.1 is associated to a contact in parallel with the start button. Thus, the condition continues 
to be satisfied and will be until the stop button is operated.

(Perhaps that was a rather detailed program explanation….)

This is only one example where retention functions are needed. We often have the require-
ment that the program stores an action when a certain combination of values or states is pre-
sent. The standard therefore defines two special coil symbols that can be used for this purpose 
(i.e., to implement memory2). With these coils, a Boolean value can be set high (S) and held 
high until it is reset (R).

S  Set coil—Sets the associated Boolean address (high state).

R  Reset coil—Resets the associated Boolean address (low state).

These coils are otherwise used in the same way as other coils. A contact, or several contacts in 
combination, are used to structure conditions that must be satisfied for a Boolean quantity 
(a digital output, for instance) to be set high. After that, the output in question will remain high 
even though the condition that set it high is no longer present. Now, we can control the motor 
in Example 9.5 with the following short code (Figure 9.10).

Note that the sequence of the LD rungs can be significant for how the code functions. 
We will study this further in Section 9.4.2.

Start Stop Motor 

Motor 

Figure 9.9 Possible implementation of a retention function

2 Such coils are often called Latched Coils.
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Example 9.6 

A pump is to start when a switch is turned from the Off‐position to the Run‐position. The 
pump is stopped by pressing a special stop button. In order for the pump to be able to start 
again after the stop button is released, the start switch must first be turned to the Off‐position 
before the pump can be started again by twisting the switch to Run. The following program 
implements this:

PROGRAM Rising
VAR
 Pump  AT %QX2.5  :BOOL;
 Run  AT %IX1.7 :BOOL;
 Stop  AT %IX1.8  :BOOL;
 RE1   :R_TRIG;

(*Here we declare an instance of the FB R_TRIG *)
END_VAR

Note the declaration: Use of function blocks, no matter what type, requires that instances of 
the block be declared together with the POU’s variable. This was discussed extensively in 
Chapter 8. In this example, an instance of the standard function block R_TRIG is declared. 
The instance is here given the arbitrary name RE1. Legal names follow the general rules for 
identifiers (see Section 6.2.1).

Use of function blocks require the declaration of an instance for each and every one that is used. 
This applies even if the blocks are of the same type. A new instance must be declared for each use.

Motor

Motor

Start

Stop

Figure 9.10 Implementation of a retention function with the use of Set and Reset

Figure 9.11 Use of the function block R_TRIG and the Set/Reset coils

END PROGRAM



Ladder Diagram (LD) 233

Suppose that we want to manage the Stop button in the example earlier in the same way as 
the Start button so that it is still possible to start the motor again by turning the Start switch, 
even if someone continues to hold down the Stop button. Then, we must still declare another 
instance of the R_TRIG block:

PROGRAM Rising2
VAR
 Pump  AT %QX2.5  :BOOL;
 Run  AT %IX1.7 :BOOL;
 Stop  AT %IX1.8  :BOOL;
 RE1   :R_TRIG;
 RE2  :R_TRIG;
END_VAR

Even though the standard defines S‐ and R‐coils in LD, you can use the function blocks 
SR and RS instead of these coils or in addition to them. As we will see later in the chapter, 
there can be an advantage in using these function blocks since the LD code becomes easier 
to read.

For example, the code in Figure 9.10 can also be implemented as shown in Figure 9.12. 
Note that the block RS is Reset dominant, something that implies that it if both Start and Stop 
buttons are held in, the motor will stop.

9.3.3 Edge Detecting Contacts

We have seen that the special coils Set and Reset in LD are used as an alternative to the 
function blocks SR and RS to implement memory. Similarly, there is also defined an alternative 
to the function blocks R_TRIG and F_TRIG for edge detection. These are implemented like 
special contacts. (Note: not in CODESYS v2.3.x)

P Nand

Figure 9.12 Use of a type SR/RS function block in LD
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The contacts “close” and are held closed only during the program scan when the associated 
Boolean variable changes state. The type P contact detects a change in state from 0 to 1 (rising 
edge), while the N contact detects a transition from 1 to 0 (falling edge). In other words, the 
symbols can be used to set Boolean values TRUE/FALSE precisely when the condition is sat-
isfied. An illustration of the operation of the flank contacts compared to an ordinary contact of 
the type NO is shown in Figure 9.13.

9.3.4 Example: Control of a Mixing Process

This process was presented in Section 4.5.2, but we repeat the description here.
We will, believe it or not, use a PLC to control the process (Figure 9.14).
The mixing process is to function as follows: Assume that the tank is empty at the starting 

time. When the start button (Start) is operated, magnetic valve MV1 opens so that water flows 
into the tank.

Signal from sensor

Normal contact

Rising edge contact

Falling edge contact

1 scan1 scan

Figure 9.13 Operation of the flank‐detecting contacts
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Figure 9.14 Mixing process
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When the level in the tank reaches level transmitter LT2, the water supply is shut off and 
the motor for the conveyor belt starts at the same time that the agitator (stir) starts.

When the level comes up to transmitter LT3, the motor will stop and the magnetic valve 
MV2 on the outlet is opened (the agitator will continue to run). When the level comes below 
LT2, the agitator is also stopped.

The sequence can now be started anew by activating the start button.
In Section 4.5.4, we drew up a sequence diagram for the mixing process. This is reproduced 

in Figure 9.15.
With such a diagram in hand, it is simple to set up function expressions for each of the 

 outputs and write the program code in LD or another language.
The trick to getting a program code that is unambiguous, that is, where the function expres-

sions do not conflict with one another, is to use memory (Set/Reset) and flank contacts. For 
example, we see that output MV1 will go logically high when the start button is pressed (Start 
becomes logical 1). In other words, we want to set output MV1 logically high when the Start 
signal changes state from 0 to 1. In LD code, this becomes:

P

The function expression for this code can be described thus:

Set MV1 = ↑Start

The up arrow there symbolizes a positive flank. With this code, valve MV1 will stay open until 
we reset the signal. From the diagram, we see that this will happen when LT2 goes logically high:

Reset MV1 = ↑LT2

1 2 3 4 5 6 7 8 

Motor 

Stir 

MV1 

MV2 

Start 

LT1 

LT2 

LT3 

Figure 9.15 Sequence diagram for the mixing process
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The function expressions for setting and resetting the other outputs similarly become:

Set motor = ↑LT2 Reset motor = ↑LT3
Set stir = ↑LT2 Reset stir = ↓LT2
Set MV2 = ↑LT3 Reset MV2 = ↓LT1

A complete code in LD for the process, including declaration of variables is shown below

PROGRAM Mixing process
VAR
 Start  AT %IX1.0:

BOOL;
 LT1  AT %IX1.1:  

BOOL;
 LT2  AT %IX1.2:  

BOOL;
 LT3 AT %IX1.3:  

BOOL;
 Motor AT %QX2.0: 

BOOL;
 Stir AT %QX2.1: 

BOOL;
 MV1  AT %QX2.2: 

BOOL;
 MV2 AT %QX2.3: 

BOOL;
END_VAR

Use of edge detecting contacts in the program code is also significant for the duration of the 
state of the signal. Since the sequence in this example will start when the start button is 
activated, it is of no significance how long the operator holds the start button in. In order for 
the sequence for this process to start anew, the start button must be activated again so that the 
PLC registers a new positive flank.
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9.4 Rules for Execution

A program written in LD will be executed rung by rung from top to bottom.
Each individual rung in the code is also evaluated from top to bottom, row by row, and in 

each row from left to right (see Figure 9.16). In accordance with these rules, the PLC will:

 • Evaluate the logical state of each contact in accordance with the instantaneous values of 
variables or states to the inputs for the I/O modules.

 • Update the Boolean objects associated with the coils.
 • Go to another rung in the same program (jump or return).

9.4.1 One Output: Several Conditions

A typical mistake that many beginners in LD programming make, especially when they are 
trying to make a program without planning it through first, is to insert code rungs that are in 
conflict with each other. The problem often occurs as a result of coils associated with the same 
address or variables used at several places in the code. Here, we will study a simple example 
that illustrates such a conflict.

Suppose that we have two switches that change between being on and off each time a button 
is pressed. If at least one of them is turned on, a motor should start:

So, if one of the input %IX1.1 or %IX1.2 gets the state TRUE, the output %QX2.0 becomes 
TRUE and the motor will start. This looks so simple that it’s impossible that it won’t work, 
right? Actually, this rung will not function satisfactorily the way we have designed it here. 

Execution order: 

First execution
Second execution
Third execution

Figure 9.16 Evaluation order of a rung
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Why? Well, because we have a conflict between the rungs since we have used the same address 
(%QX2.0) on two coils in the program.

Splitting the conditions for control of the state of an output or variable in this way is a 
programming technique that should never be used, even if the program behaves as 
desired! What problems that can arise are not always easy to determine because it depends 
upon the logical expressions and the states of the variables that appear in the 
expression.

This is a result of the way the PLC scans (executes) the program: from left to right and from 
top to bottom. Furthermore, the physical outputs will not be updated until the entire program 
code has been executed (see Section 1.3.2).

Assume that switches 1 and 2 above the output point in the rung are off. Then the PLC will 
also set the output logically low. Let’s look at two possible scenarios:

1. We turn on switch 1 so that address %IX1.1 gets the state TRUE.
When the program is executed, the network is analyzed as follows:
 • %IX1.1 is TRUE therefore %QX2.0 becomes TRUE.
 • %IX1.2 is FALSE therefore %QX2.0 will be set FALSE.

In other words: When the PLC updates the outputs, the output will remain low, even though 
the desired function was that the output should be set high when one or both of the inputs 
is high.

2. Now we turn on switch 2 so that address %I1.2 becomes TRUE. Then the following occurs:
 • %I1.1 is FALSE therefore %Q2.0 becomes FALSE.
 • %I1.2 is TRUE therefore %Q2.0 will be set TRUE.

We see that no matter whether switch 1 is off or on, the motor will react only to the state of 
switch 2. How can we fix a simple program that does the job satisfactorily?

Okay, we collect the conditions for control of the output.

9.4.2 The Importance of the Order of Execution

In Section 1.3.2, we learned how a PLC operates with respect to its basic working rules: Read 
input data, perform program code, and update outputs. Here, we will study an example to see 
what significance this has for the way our program codes work.

We can hope that then we will see the difference between the values and states of the PLC’s 
physical inputs and outputs and the contents of the addresses or variables that are associated 
with those same inputs and outputs. This is an extremely important point that many (including 
instructors and teachers) can struggle to understand.
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Two light switches (NO) are connected, each to a discrete input whose address is assigned 
the variables SW1 and SW2. The following code is implemented3 in a PLC that is in Run mode:

1  What do you think will happen to the lights when switch 1 is turned on and switch 2 is off?
 • Switch 2 is turned off. Variable SW2 will then have the state FALSE. So, there is no 
condition satisfied for the state of variable L1 to become TRUE.

 • Switch 1 is turned on. Therefore, the state of variable SW2 is changed to TRUE (because 
of rung number two).

 • Since the state of SW2 now is TRUE, the state of L2 will also become TRUE.
Therefore, Light no. 2 will light but not Light no. 1.

2 What do you think will happen to the lights when switch 2 is turned on and switch 1 is off?
 • Switch 2 is turned on, and the variable SW2 will have the state TRUE. Therefore, the 
condition for setting variable L1 to TRUE is satisfied.

 • Switch 1 is turned off so that the state of the variable SW2 is changed to FALSE and the 
state of L2 will be set to FALSE.

Therefore, Light no. 1will light but not Light no. 2.

9.4.3 Labels and Jumps

If desired, labels can be used to identify rungs in the code. These are used when you need to 
jump from one rung to another in the program. Labels are located up on the left corner of the 
rung, right next to the power rail.

With jumps, the symbol →Label is used, where Label is an arbitrary name (so long as it 
follows the rule for valid identifiers).

A jump can be unconditional or conditional. In unconditional jumps, the jump is directly 
connected to the rail on the left side, possibly to a contact where you write TRUE instead of the 
variable name.

In conditional hops, you program a condition as an argument. This condition can be a 
Boolean variable or a combination of Boolean variables and comparisons.

Each label can be used only once within the same POU. If you want to return after the rung 
you jumped to have been performed, you can insert ←RETURN→ at the right of the rung.

3 Note: It is not certain that the compiler will permit assignment of a variable that is associated with an input address, 
as is done in the second line of code. CODESYS does not permit it.
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It is also possible to associate comments to every individual rung.4

An example of use of labels and comments is shown in Figure  9.17. Here, rung 3 has 
received the label “calculate” and rung 4 the label “end.” A jump has been placed in both the 
first and the second rungs, in addition to comments.

If the condition in the first rung is satisfied, rung 3 is called. Rung 2 is jumped over and is 
never executed.

If the condition in rung 1 is not satisfied, rung 2 is performed as usual. If either variable 
xVarC or xVarD is TRUE, xVarE is set TRUE, and in addition, the program jumps to rung 4. 
In this case, rung 3 is not executed.

9.5 Use of Standard Functions in LD

In the program example earlier, the function ADD is used (here to increment the content in the 
integer variable Num by 5 each time the rung is executed).

Figure 9.17 Example of commenting, labels, and jumps

4 If you cannot enter comments in CODESYS, you can activate this feature on the menu under “Tools→Options→FBD, 
LD, and IL editor.”
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So even though LD is a language that originally was designed for programming logical 
(Boolean) conditions for control of discrete outputs, it is fully capable of writing program 
algorithms that involve other data types.

For example, there is often a need to compare values of an analog signal with a particular 
value in order to perform actions based upon the result of the comparison. An example of this 
is to turn off a heating element when a temperature reaches a desired value. In order to perform 
this and other tests in LD, one can use functions that are defined in the standard.

The concepts EN and ENO were introduced in Section 7.13. EN is an acronym for Enable 
and is an extra input argument in the standard’s defined functions and function blocks. When 
the state of this input is TRUE, the function is performed. It is this EN input that makes it 
 possible to integrate functions in LD (Figure 9.18).

Even though functions can be integrated into the LD code, there are other (and probably 
better) ways to solve problems that require use of arithmetic functions, functions for 
comparison, text‐strings, etc. It is a matter of utilizing the strength that lies in the seamless 
interaction among POUs. If there is a requirement to perform a number of calculations, these 
can be written in a separate POU that is programmed in Structured Text.

There are several ways to integrate functions in LD. Some manufacturers have chosen to 
use graphic blocks with the same symbols as function block diagram (FBD). Execution of 
these blocks is then controlled by means of a conditional activation of the EN input. Another 
possible implementation is by means of a combination of graphic blocks and text‐based blocks 
where it is possible to write the code in Structured Text. Both variants are illustrated in 
Figures 9.19 and 9.20.

Figure 9.18 A function with EN input

Figure 9.19 Use of EN blocks with FBD symbol

Figure 9.20 Integration of functions by use of a text‐based block
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9.6 Development and Use of FBs in LD

Using FBs in LD is simple and is done in the same way no matter what type of function block 
is involved. An instance of the block must be declared in the declaration field in the POU. This 
is usually quickly accomplished in most development tools or takes place automatically when 
the block is added to the code. It is not always necessary to assign fixed connections to all 
inputs and outputs of the function block since FB inputs and outputs can be addressed 
indirectly.

Example 9.7 Motor Control

Let us use a timer in the example of motor control that was shown in Figure 9.10. Assume that 
the control is to satisfy the following problem: We start and stop the motor with pulse switches, 
and we want to have 5 seconds delay before the motor is switched on. One possible implemen-
tation of the program is shown in Figure 9.21.

PROGRAM MotorControl
VAR
Start  AT %IX0.0  :BOOL;
Stop  AT %IX0.1  :BOOL;
Motor  AT %QX0.0  :BOOL;
Run  :BOOL;
Five_sec  :TON;

END_VAR

The timer can be used for many purposes. In Figure 9.22 in the following text, you will 
see how you can make your own function block that generates a pulse train, where the user 
determines the duration of the high and low periods.5

Figure 9.21 Program example with use of timer

5 In CODESYS, you will find an FB already prepared for this in the accompanying library Util.Lib.
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Example 9.8 Function Block that Generates a Pulse Train

Since this is a function block, we must declare the different classes of variable. Input 
and output variables will constitute “connections” when the block is used in another POU. 
Any internal variables are used to implement the block’s function and operation and 
will not be visible to anyone using the function block later. Also, notice the following 
two things:

 • The two input variables of the type TIME below are both given an initial value of 1 second. 
When the block is used, it will function (with the output 1 second on and 1 second off) even 
though the user has not stated any time for these inputs.

 • The object reference of the timer outputs (TimerName.Q), which is a Boolean variable, is 
associated with contact symbols.

FUNCTION_BLOCK  Pulse
VAR_INPUT

StartPulseTrain :BOOL;
TimeOn :TIME := t#1s; 
TimeOff :TIME := t#1s;

END_VAR
VAR_OUTPUT

PulseTrain  :BOOL;
END_VAR
VAR

Timer1 :TON;
Timer2 :TON;

END_VAR

Finally, let us see how we can put our new function block to work.

Figure 9.22 Self‐developed FB
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Example 9.9 Using Our Own Function Block

Assume that we want to set an alarm when 30 items have passed a photocell on a conveyor 
belt. The alarm is a light that is to blink 2 seconds on and 1 second off. When a Reset button is 
activated, the alarm and the counter are set to zero. One possible program code that imple-
ments this could be as follows:

PROGRAM ItemCounting
VAR
 Photocell AT %IX1.0  :BOOL;
 Reset   AT %IX1.1  :BOOL;
 Band   AT %QX2.0  :BOOL;
 Alarm  AT %QX2.1 :BOOL;
 Counter   :CTU;
 Blinker  :Pulse;

END_VAR

END_PROGRAM

Note the declaration of “Blinker.” As soon as you have programmed an FB, it will be available 
for use in another POU. You can, as with the function blocks of the standard, declare as many 
instances as you want of one and the same FB, as long as each instance has a unique name. 
Here, I have only one instance of our new FB “Pulse,” and I have chosen to call it “Blinker.”

The graphic design of the block is generated automatically, and the number of inputs and 
outputs is a direct result of the variables that we have declared under VAR_INPUT and VAR_
OUTPUT in the declaration of the FB.

9.7 Structured Programming in LD

In Chapter 4, we discussed sequential processes and various methods for structuring prob-
lems. If a process is sequential or mainly combinatoric, this can have significance for the 
selection of programming languages. Even though sequential control is perhaps easiest to 
program in sequential function chart (SFC), there is no obstacle to the use of LD, FBD, or 
even ST. Since LD is the language that has traditionally been used most often, it is very 
common to use this language for specifically sequential systems as well.

In Section 9.3.4, we studied an example of a mixing process. This process had a sequential 
nature, but we solved it in LD in a simple way by diligent use of flank contacts and Set and Reset 
coils. The sequence diagram that we already have prepared will naturally be helpful in the example.
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It can be a challenge in sequential controls, particularly when the complexity and scope 
become larger, in that conflicts can arise that are associated with conditions that are ambig-
uous. This means that there can occur cases of the same condition that at times in the sequence 
cause a different event than that which was caused at a different time in the sequence. In other 
words, it can be necessary to take into account what phase of the sequence we find ourselves 
in. As we shall see, this is not significant if the program code is implemented with SFC. The 
same philosophy that lies behind SFC can be used in constructing program codes in one of the 
standard’s other languages.

The technique is to use a Boolean variable (a flag) or a memory (bistable flip‐flop) of the 
type RS for each of the states in the sequential process. When the conditions for the program 
to go from one state to the next are satisfied, the previous state is reset simultaneously.

After the code for activating and deactivating states has been written, the state variables (or 
outputs from RS flip‐flops if they have been used for states) are used as conditions to control 
actions and instructions that are to be performed.

In order to demonstrate the method, we will again use the mixing process that we previ-
ously studied in Section 9.3.4. We drew a flowchart for this process in Section 4.5.2. There, 
we used ordinary language to describe the states. If we now are to write a code based on the 
flowchart, we must use identifiers that are permitted and that will be accepted by the software. 
Examples of such identifiers can be Fill, Stir, Warm_up, and so on. The same is true of transi-
tional conditions that also can be specified more concretely. It is recommended that these be 
written in pseudocode or as logical expressions.

In order to make the transition to code simpler, it is therefore advisable to design the 
flowchart in an implementation‐friendly language, while at the same time trying to use 
state names that describe what is to happen in the states in question. Figure 9.23 shows a more 
implementation‐friendly flowchart.

Fill

LT2?

Ready Fill_and_stir

Start?

Drain_and_stir

NOT
LT2?

Drain

NOT
LT1?

LT3?

1 2

1 2

3

3

Figure 9.23 Program‐friendly flowchart for the mixing process
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Looking at the flowchart, we can easily identify states6 in the process as the rectangular 
blocks in the flowchart, in addition to the initial state “Ready.”

We start by declaring all states and the other variables. If this had been a physical process, 
we would naturally have associated addresses to the I/O variables.

VAR
 Ready, Fill, Fill_and_Stir, Drain_and_Stir, Drain : BOOL;
 Start, LT1, LT2, LT3, MV1, MV2, Motor, Stirrer  : BOOL;
 RE1, RE2, RE3 : R_TRIG;
 FE1, FE2    : F_TRIG;
END_VAR

The program code for activation and deactivation of the states of the process is shown in 
Figure 9.24. (The code is written in CODESYS v2.3.x, which does not have flank contacts in 
the library. That is the reason for using the function blocks R_Trig and F_Trig.)

Figure 9.24 Controlling states

6 The word “states” is actually somewhat misleading. In process engineering, a state is a phase in the sequence such 
as “Fill,” “Stir,” “Warm,” and so on. In developing controls, it is often insufficient to define states only on the basis of 
the main phases in the sequence. It is often more practical to introduce more states in order to simplify the work of 
the program code.
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In the code, we see that the flags for states are set and reset successively downward. In order 
for the code to be unambiguous, the same flags are also used for a portion of the conditions 
for activating and deactivating the states. For example, the state “Fill” is activated only when 
the previous state (Ready) is active.

When starting the program, it is necessary to get the program to activate the state Ready. 
This can be solved by giving Ready the initial value TRUE. Alternatively, we can do as we 
have done here, namely, use a special system flag that is available in all (?) PLCs. Individual 
manufacturers have defined a function for this, but others have made the flag accessible via a 
fixed system address. A common designation for this flag is First Scan because the flag has 
the state TRUE only during the course of the first scan.

If you do not have access to such a flag, you can straight away declare a Boolean object that you 
initially set to TRUE. Right at the end of the program code, you set the object to FALSE in this way:

When the code for activation and deactivation of the states is written, the code for control 
of outputs is built up by the use of state flags as conditions (Figure 9.25):

The sequence in this example was simple and had few states. Use of this methodology in this 
example also resulted in more code than we ended up with in Section 9.3.4. Nevertheless, this 
method of proceeding is absolutely preferable, particularly for sequential processes. Not only 
does a methodical approach make it simpler to develop the code, there is a major benefit in code 
that is guaranteed to be unambiguous and, one hopes, free of errors if you master this technique.

Figure 9.25 Program code based on the state flags
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A better alternative to using coils of the Set and Reset type is to use flip-flops. This does not 
result in less coding, but the clarity of the code improves considerably.7

As always, it is wise to be consistent during programming. In the following examples, 
I have used only Reset‐dominant memories. The conditions for changing state are imple-
mented on Set inputs. The output of the RS block for the next state is always used on 
Reset inputs. In this way, the current state is deactivated at the same instant that the next 
state is activated.

9.7.1 Flowchart versus RS‐Based LD Code

In order to clarify the transition from the flowchart to an LD code that is structured around RS 
flip‐flops, we can study a section of the flowchart in Figure 9.23. Here, we see the RS flip‐flop 
that represents the state Fill along with the conditions for Set and Reset of the state. The rules 
for coding of a state are:

 • Previous states, together with the transition conditions, constitute the conditions for Set 
inputs to the RS flip‐flop. If there are several previous states, we get conditions in parallel 
at the Set input.

 • The next state, and only that, constitutes the conditions for Reset of the state. If there are 
several next states, we get conditions in parallel at the Reset input (Figure 9.26).

Previous
state  

Transition 

Next state as Reset
condition

Figure 9.26 From flowchart to LD code

7 Thanks to Assistant Professor Tormod Drengstig at the University of Stavanger ☺.
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Example 9.10 Mixing Process, Continued

Figure 9.27 below shows an alternative code to the code in Figure 9.24. We see that the clarity 
of the state structure is improved. Also, notice the declaration and the use of the Boolean 
 variable First_scan. (The variable is set FALSE at the end of the code.)

This code was developed with CODESYS v3.4, which does have flank contacts 
(‐|P|‐ and ‐|N|‐).

Program MixingProcess
Var
First_scan :BOOL :=TRUE;
Ready, Full, Fill_and_stir, Drain_and_Stir, Drain :RS;
Start, LT1, LT2, LT3, Motor, Stirrer, MV1, MV2  :BOOL;

END_VAR

Figure 9.27 Use of memories in state‐based LD code
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Example 9.11 Washing Operation

In Example 4.19, we drew a flowchart for a washing operation on a juice tank at a 
 bottling plant. The flowchart was partially laid out with the idea of implementation by hav-
ing the states be given permissible names and the conditions being written in syntax that 
was almost code.

The code for this washing operation will need to contain function blocks for counting and 
timing, in addition to a comparator for testing values of the temperature.

If this had been an actual process, it would have been necessary to be able to shut off the 
washing operation whenever desired.

Value declaration and code, written in CODESYS, are shown in Figure 9.28. (I have chosen 
to include addresses for the input and output signals in the I/O‐list as one would have to do if 
the program were to be implemented in a physical PLC.)

PROGRAM Washing_Operation
VAR

(*Declares the states: *)
Ready, Filling, Heating, Stirring, Draining  : RS;

(*Inputs and outputs: *)
Start  AT %IX2.0  : BOOL;
Tank_full  AT %IX2.1  : BOOL;
Tank_empty  AT %IX2.2  : BOOL;
Temperature AT %IW0  : WORD;
Fill_valve AT %QX0.0  : BOOL;

Figure 9.27 (Continued)
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Drain_valve AT %QX0.1  : BOOL;
Heater AT %QX0.2  : BOOL;
Stirrer AT %QX0.3  : BOOL;

(*Other objects: *)
First_scan : BOOL := TRUE;
Five_min : TON; // Timer in TON-mode
Three_times : CTU; //Counter

END_VAR

Figure 9.28 Complete program code in LD for control of the washing process
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Note the use of rising edge contacts for all Reset conditions. The reason for this will be 
discussed in connection with the next example.

Figure 9.28 (Continued)

END PROGRAMME
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9.7.2 State Diagrams versus RS‐Based LD Code

In order to clarify the transition from a state diagram to an LD code, we will study a section 
of the flowchart from the Batch example in Section 4.6.3. See Figure 9.29. Here, we see the 
RS flip‐flop that represents the state Wait with the conditions for Set and Reset of the state. 
The methodology is the same as the one we learned in the previous section.

The only difference relative to the flowchart is that here the states are represented by circles, 
and the transitions are written in pseudocode next to the arrows.

Example 9.12 Batch Process from Section 4.6.3

A complete code for this process is shown later. Note how the timer and counter are activated 
by the states and how the output from the timer and counter are used as contacts as a part of 
the conditions (Figure 9.30).

VAR
First_scan :BOOL :=TRUE;
Start, S1, S2, S3, Stop1, Stop2   :BOOL;
Stirrer, Heater, ValveA, ValveB, ValveC :BOOL;
Ready, Fill_A, Fill_B, Heating, Wait, Drain1, Drain2,  :RS;
Temp :REAL;
Counter :CTU
Wait_30s :TON;

END_VAR

Next state as Reset
condition

Previous state  

Transition

Temp>85
OR Stop2

Temp>30s
OR Stop2

Figure 9.29 From state diagram to LD code



Figure 9.30 LD code for the Batch process
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Figure 9.30 (Continued)
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Example 9.13 Level Process

In Section 4.6.4, we studied an example where we wanted to control the water level in a tank 
with the help of two pumps. The state diagram for the process is reproduced here:

Ready

Run 2

Run 1

(* Run pump P1 *)
(* Set P1_Last *)

(* Run pump P2 *)
(* Reset P1_Last *)

Run 12

(* Run both pumps *)
(* Turn on Lamp if condition active >3min *)
(* Turn of Lamp at Reset *)

Idle

(RE B2)AND
NOT P1_Last

Start

(FE B1) or B3
OR Stop

(FE B1) or B3
OR Stop

Stop

(RE B2) AND P1_Last B3 AND
NOT Stop

(FE B1)
OR Stop

In the diagram, we see that there is one state that is central, namely, the Idle state.
The program will return to this state from all other states. This means that the RS block for 

the Idle state will have many conditions on the Set input.
This happens also at another moment in this example. If we do not use positive flank con-

tacts (‐|P|‐) in the Reset conditions, we will get a problem related to setting and resetting the 
states. This happens particularly in this example because we have many states that returns 
back to the same previous state.

Without using positive flank contacts we will not be able to set the state Run1 since the Idle 
state is reset by Run1 at the same time that Run1 is reset by Idle….

Even though it may not always be necessary, it is recommended that you get in the 
habit of using flanks to reset conditions so that you are certain to avoid problems 
(Figure 9.31).

PROGRAM LevelProcess
VAR

Ready, Idle, RunP1, RunP2, RunP12    :RS;
B1, B2, B3, P1, P2, Start_stop, Reset, Light    :BOOL;
First_scan, P1_Last :BOOL;
Gone_3m :TON;

END_VAR
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Figure 9.31 LD code for the level process
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Figure 9.31 (Continued)
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9.8 Summary

In this chapter, we have discussed all the standard symbols in LD and also have seen how the 
most frequently used function blocks are applied in this language. Even though all the exam-
ples we have reviewed have been implemented in CODESYS, I would like to believe that the 
equivalence with other software is generally great enough so that you will be able to imple-
ment the codes in other tools without any major problems.

Particularly the methodology for structured programming used here is applicable anywhere. 
The technique of splitting the desired behavior of a process up into parts and illustrating this 
with the help of a flowchart or state diagram is very much worthwhile learning. Not only does 
it save time, it is also easier than starting to program without a graphical representation, even 
for an experienced programmer. By spending a little time on illustrating the program flow, the 
coding itself becomes much easier, and the time spent on debugging is reduced  considerably. 
The method is also universal and applicable almost everywhere.

We have not seen how we solve big programming challenges. Sometimes, it can be reason-
able to split up the problem into several parts in order to avoid a large program. If it is a big 
process (with respect to complexity) that is to be controlled, it may be wise to use macro‐steps. 
For example, there we will have an overall sequence and several subsequences, one for each 
macro‐step. What you can do is to start by programming the macro‐sequence. This can be 
done in a similar way as the examples earlier, except that the output from the state must then 
activate other POUs that contain code for the subsequences.

All modern tools have the capability of implementing such a structural breakdown.
Finally, I would like to present a small cookbook for construction of structured programs in 

LD. Perhaps it is not applicable to all possible problems, but I do believe that it can be  followed 
in most cases. (Note that Steps 3–6 cannot be done successively, but must rather be carried out 
separately as you insert the RS flip‐flops.)

1. Think the process through step‐by‐step and identify possible states. This job is usually simpler 
and faster if the process has a marked sequential structure. Most often, the states will be based 
on physical events that take place, but sometimes it can be wise to introduce states in order for 
the coding technique to be simpler. Are there branches in the sequence? An alternative branch 
exists if there are several possible routes to proceed from the state. Each transition should have 
its own unique condition, and these must be mutually exclusive.

2. Use simple descriptions of the states and preferably use reasonable logical names that you 
know will be accepted by the programming tool. The more detailed you make this job, the 
easier it will be to write the code later. The same applies to conditions to activate the states. 
You can use words, pseudocode, or actual ST code. Then draw a state diagram (or a flow-
chart) (see Sections 4.5 and 4.6). Remember to define a Ready state that is activated when 
the system starts.

3. Translate the diagram or chart to LD code. Use reset‐dominant memory (RS flip‐flops) for 
each of the states. The Ready state is activated by using a First‐scan flag.

4. Then program the conditions to activate (set) the various states. These conditions should 
always contain the output address from the previous state in series with other conditions. 
This is an absolute rule because it takes care of removing possible conflicts where several 
states could otherwise be set by similar conditions.

5. Program the conditions to deactivate the states. These conditions will always consist of the 
address of the next state(s). Use positive flank contacts.
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6. Program any timers and counters. These can profitably be placed after the code for program-
ming the states. As an input to these timers and counters, you use the RS output addresses 
for the states that are time dependent or where counting is to take place. Use the output 
addresses from timers and counters together with other conditions for activating states.

7. Finally, you program the actions. Often these are objects associated with physical output 
addresses in the PLC. Again, you use the outputs from the states flip-flops as conditions. 
Make a rung for each action or output.

9.9 Test Problems

Problem 9.1
Write down the Boolean expressions for the LD program codes shown below.

 (a)

 (b)

Problem 9.2
The figure below shows a sketch of a fluid tank that contains lubricating oil. As the oil is used, 
the level will naturally fall. When it falls below the low‐level sensor, a pump will start. The 
pump should run until the high level sensor is reached. Then the pump stops. This should be 
repeated to “infinity.” Make a program in LD.

High level
Low level

Fill motor

Drain

PLC
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Problem 9.3 Push Button
You are to use a spring‐loaded push button to start a fan when the button is pushed for the first 
time. You are to push the button once again to stop the fan. Write the program code in LD that 
solves the problem. Use:

%IX1.0 Start_stop (push button)
%QX2.0 Fan

Problem 9.4 Filling Station
Write a program in LD for the filling station that was described in Problem 4.9. You can make 
the program directly from the description or you can start with the sequence  diagram if you 
drew one for that problem.

Problem 9.5 Filling Station: State‐Based LD Code
Make a new code for the same process, but this time start with a flowchart for the process. The 
code should be state based, that is, built up with sequential code where you use RS flip‐flops.

Problem 9.6 Product Sorting
Write a program in LD for the product‐sorting facility from Problem 4.9. The code should be 
based on the flowchart you made in that problem.

Problem 9.7 Apple Packing
Write a program in LD for the apple‐packing facility from the example in Section  4.6.4. 
The code should be based on the state diagram in Figure 4.29.

Problem 9.8 Motor Operation
Write a LD code for controlling the motors in Problem 4.10. The code should be based on the 
state diagram you made in that problem. The program should include all declarations.

Problem 9.9
We are going to design a control for a garage door in LD. The garage door should function as follows:

 • There is a single button (Button) inside the garage and a single button on a remote control. 
Both buttons are connected to the same control unit.

 • When one of the buttons is pressed, the door should move up (D_up) or down (D_down), 
depending upon whether it is open or closed or which operation it is in the course of performing.

 • If one of the buttons is pressed while the door is in motion, the door should stop. Another 
press on the button should make the door begin to move in the opposite direction.

 • Limit switches (L_up and L_down) should be used to stop the door when fully up fully down.
 • A photocell (Photo) is installed so that it looks across the bottom of the door opening. If the 

beam is broken while the door is in motion and closing, the door should stop and then move up.
 • A garage light (Light) should turn on when the door operates and stay on for 5 minutes after 
the door has opened or closed
(a) Draw a state diagram or flowchart from the description earlier. Try to use the fewest 

possible states….
(b) Write a program in LD based on the state diagram. The states should be programmed 

using RS blocks.
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Function Block Diagram (FBD)

10.1 Introduction

The second of the graphic languages that are defined in IEC 61131‐3 is Function Block 
Diagram (FBD) (Figure 10.1). The definitions and the graphic symbols are in conformity with 
the IEC 60617‐121 standard.

As we said, the FBD language is graphic and follows the same guidelines that are specified 
for LD with respect to graphics and structure. We reviewed all of the functions and function 
blocks (FBs) that are defined in the standard in Chapters 7 and 8. They were shown there with 
their graphic symbols. For some of the blocks and functions, we also showed examples of 
their use in the graphic languages LD and FBD.

All of the defined blocks, as well as the manufacturers’ blocks and user‐defined blocks, can 
be used in FBD. That is precisely the concept of this language: It is based on connections 
among functions and FBs. Since this includes use of standard logical functions such as AND, 
OR, NOT, and so on in a graphic form, many people who have some knowledge of digital 
electronics finds that FBD is an easy language to use.

10

Chapter Contents

 • Program structure and concepts
 • Order of execution:

 Rules for execution, feedback. Labels and jumps. Loops
 • Declaration and use of functions and function blocks
 • Integer division
 • Sequential programming with FBD

1 Graphical symbols for diagrams—Part 12: Binary Logic Elements.
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10.2 Program Structure

The structure of FBDs is consistent with the structure of LDs with respect to graphic symbols, 
signal flow, order of execution, and structuring of the code. It is therefore recommended that 
the reader review the description of LD in Chapter 9 before this chapter on FBD.

LD code is bounded by a power rail on both sides, where the rail on the left has the state TRUE 
(logical high). This is related to the graphic element contacts, which open and close depending upon 
the state of the Boolean algebra and in this way provide connections to the power rail on the left side. 
Such contacts are not used in FBD, and neither are rails. Instead, variables are used directly as input 
arguments to the functions and FBs. You can also use literals on input connections. An example is 
shown in Figure 10.2.

Like the rungs in LD, FBD code is also divided into networks, placed vertically above one 
another. Each individual network contains code such as:

 • A logical or arithmetic expression
 • Calls of other POUs (programs or functions or FBs)
 • Jumps or return conditions

Together, the networks create a program that is executed sequentially by the Programmable 
Logic Controller (PLC).

Since it is not necessary to connect all elements or subnetworks to the left or the right side 
in the editor, a program in FBD can consist of many networks with separate subnetworks.

Figure 10.1 Example of code in FBD

Figure 10.2 Implementation of an XOR with AND and OR
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10.2.1 Concepts

Here, we are actually not presenting anything new. The concepts used here have all been 
discussed and explained previously, but a little repetition probably does no harm (see 
Figure 10.3).

EN is an abbreviation for Enable and is an input that activates or deactivates the processing 
of a function or FB. ENO is set logically high when the instructions in the block are carried 
out by the program. ENO will thus be 0 when EN is 0. (Note that even when EN and ENO are 
implemented, there is no compulsion to use them. You can read more about this subject, 
among others, in Section 7.13 or in Section 8.8.2.)

Inversion can be used on all Boolean inputs and outputs. 
The connection called link in the figure below is nothing other than a connecting line, 

which, graphically and programmatically, connects all the functions and all the FBs. Note that 
the standard does not allow pairing of outputs from FBs. If such connections are needed, they 
must take place via graphic functions such as AND or OR.

10.3 Execution Order and Loops

The standard does not deal with how the processor handles the use of recursive refer-
ences, that is, where the output from one block is used as an input to a block placed earlier 
in the program. This depends upon the implementation. It can therefore be wise to check 
the manual for what execution priority is provided in the tool that you are using. 
Nevertheless, it is reasonable to assume that the networks are executed from left to right 
and top to bottom.

The standard defines two different ways to implement such feedback connections:

 • Either explicitly by means of a physical connection from the output to an input:

EN-input
ENO-output

Variables

Literal
Direct
addressing 

Constant

Inversion

Link Function block
instance 

Counter

Error

VarB
100

Done

Activate
VarA

TRUE
1

EN
EN EN

CU
R
PV CV

Q
ENOENO

OUT
IN1

IN1
IN2

IN2
IN3

ENO
AND

GT CTU–

%IW0.3.1
%IW0.3.2

OUT

1
2 3

Figure 10.3 Summary of concepts
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 • Or implicitly by means of using the output objects or variables as inputs to other elements. 
(FB outputs can be used directly, e.g., TON.Q.)

In order for the execution order to be unambiguous, not all manufacturers permit the explicit 
method of creating loops.

10.3.1 Labels and Jumps

As is the case in LD, any of the networks can be associated with a label for use in jumps. (See 
Section 9.4.3.)

An example of a jump with return is shown in Figure  10.4. The example also shows a 
 network number on the left side of the networks—this is a numbering that is generated 
automatically in CODESYS. (This numbering cannot be influenced or referred to by the user.) 
The program functions so that if the condition in network 1 is satisfied so that the jump to Fill 
is activated, network 2 will never be executed.

Example 10.1 Jump and Return in FBD

Figure 10.4 Example of jump to a label (Fill) with return
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10.4 User‐Defined Functions and FBs
As we have seen previously, you can program your own functions and FBs. Since this is a 
graphic language, we must base the code on using the existing functions and FBs.2

We have also seen that when user‐defined functions and FBs are used in a graphic language 
such as LD and FBD, they will be represented by a rectangle, where the name of the function 
or FB appears within the rectangle. For FBs, in addition, the name of the declared instance of 
the FB appears above the rectangle.

Which (and how many) connection points are available on the input side and output side is 
a direct result of which (and how many) input and output variables were defined in the structure 
of the code for the function or FB.

Example 10.2 shows the code for a user‐defined function and a program code where the 
function is called up; both parts developed in FBD. As we studied in Chapter 7, a data type is 
always given when a function is declared. This is because the name of the function acts as a 
variable and the response or result from a function call is returned to this name.

In this example, the arithmetic sign of an integer is being tested. If the number is negative, 
the inverted value of the number is transferred to the function name. If the number is positive, 
the number is returned. In other words, the function returns the absolute value of the number.3

Example 10.2 User‐Defined Function

FUNCTION Absolute :INT
VAR_INPUT
Num   :INT;

END_VAR

END_FUNCTION

PROGRAM Call_Func
VAR
Value, Abs_value : INT;

END_VAR
(* In CODESYS the function appears like this: *)

2 We can therefore use the designations “derived functions” and “derived function blocks.”
3 Naturally, there is already an existing function for this in the standard. It is called ABS and handles all numeric types 
(ANY_NUM).
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END_PROGRAM

In order to clarify what determines the appearance of a function or FB in the graphic language, 
we will look at an example where only the declaration of an FB is included. (Note: See also 
Section 8.7.)

Example 10.3 User‐Defined Function Block

FUNCTION_BLOCK  Roots (*Defining of function block *)
VAR_INPUT
A, B, C : REAL;

END_VAR
VAR_OUTPUT
Nroots : USINT;
X1, X2 : REAL;

END_VAR
VAR
D : REAL;

END_VAR

We see that we have given this FB the name Roots and that three input variables, all of the type 
REAL, have been declared. Also, there have been declared three output variables, one of 
type USINT and two of the type REAL.

When we go to use this FB in another POU, whether developed in LD or in FBD, the 
graphic symbol will automatically have three inputs and three outputs, and the name of 
the variable that was used in the declaration of the FB will appear within the rectangle. 
When we insert this FB in an FBD program in CODESYS, it will look like this in the 
program editor:

In other words, CODESYS is asking for a name for this instance of the FB, in addition to what 
variables, or values, are to be used in the various inputs and outputs. The input and output 
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 variables in the FB must all be the same data type. (You can naturally add conversion functions 
if one or more of the variables is of a different data type.)

Finally, we will look at a program code in FBD where we use an instance of this block. The 
instance is given the name Calc_Roots, and variables are declared that again are associated 
with inputs and outputs. Note that the output Nroots is not associated with any variable. We 
have previously seen that it is not obligatory to use all inputs and outputs on FBs, such as the 
elapsed time (ET) output on a timer.

Note that if an input is not associated with a value or a variable, the initial value for the data 
type in question will be used, which is perhaps a different initial value than was assigned 
 during the declaration of the input variables in the FB.

Example 10.4 Application of the Function Block Roots

PROGRAM SquareRoot
VAR
VarA, VarB, VarC : REAL;
Root1, Root2 : REAL;
Calc_Roots : Roots; (* Declares an instance of Roots *)

END_VAR

END_PROGRAM

10.5 Integer Division

When you are going to perform arithmetic calculations, it is important to know about the prob-
lems with division of integers. This is a subject that is essential in all programming4: What is 
the result when one integer is divided by another?

Well, if the division “goes through,” that is, if there is no remainder, then there is no problem. 
If the division does not go through, the answer is truncated, that is to say, the remainder after 
the division is deleted. This is the result of how computers handle integer data types as integers 
(INT). When two integer types are divided, the result is stored temporarily as an integer type, 
and the answer is truncated even though in the program you stored the answer in a variable of 
the REAL type (i.e., floating point).

4 It is perhaps most natural to use ST for arithmetic calculations, but I would still like to discuss the topic here.
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Example 10.5 Integer Divisions

13/10 (=1.3) =1
99/10 (=9.9) =9
17/5 (=3.4) =3
534/200 (=2.67) =2
534/10 (=53.4) =53
1/2 (=0.5) =0

Note that truncation is not the same as ordinary rounding off. In rounding off, the answer to 
the fourth division above would be rounded up to 3.

You can also note that when we divide a long integral by 10, in practice this is the same as 
deleting the last digit in the number. (This fact is utilized in Example 10.7.)

If one of the numbers in the division, either the dividend or the divisor, is (or is interpreted 
as) a floating‐point quantity, the PLC will perform the calculation as a floating‐point division, 
and the answer will not be truncated. Example 10.6 below illustrates this. (The figure shows a 
snapshot of the program during execution.)

Example 10.6 A Little Program in FBD

PROGRAM
VAR
ResultA, ResultB : REAL;

END_VAR

END_PROGRAM

So, with division where integer variables are involved, at least one of the numbers must be 
 converted to a floating‐point number before the division takes place if you want to avoid trunca-
tion. As we saw in Section 7.9, there are functions for this, such as INT_TO_REAL.

The next example shows how we deliberately can utilize the fact that the remainder from 
the division is deleted and how we can use the function MOD in order to calculate the part that 
gets truncated away. The example also illustrates the use of a jump for making a loop.
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Example 10.7 Integer Calculation

We will now write the code for a function that, when it is called up with a long integer (LINT) 
as an argument, finds and returns the quantity of a particular digit in the number.

(For example, the number 2323622457 contains two threes and four twos.)
The function must therefore have at least two inputs: the number to be searched and which 

digit is to be searched for.
The problem here is solved by programming a loop where the last digit in the number, at each 

transit of the loop, is investigated by checking the remainder from a modulus division (Number mod 
10). At the end of the loop, this last digit is truncated away by dividing the number by 10 (Number 
DIV 10). The loop is repeated until all the digits have been truncated away and we are left with 0.

END_FUNCTION



Function Block Diagram (FBD) 271

Now, the function can be called from a program (or from another type of POU):

PROGRAM Find_Digits
VAR
MyNum : LINT;
MyDigit : USINT;
NrOfDigits : UINT;

END_VAR

END_PROGRAM

Finally, we can look at an example from running the program in CODESYS:

10.6 Sequential Programming with FBD

Even though the similarity of making a sequential program in FBD compared to LD is 
obvious,5 we will nonetheless look at an example. In order to directly compare with the LD 
code, we will take the same problem as in Example 9.11.

(The variable declarations will be identical, so that will not be repeated here.)

Example 10.8 FBD Code for the Washing Operation

5 The code below is actually generated in CODESYS from the existing LD program. In version 3.x, you will find a 
option for this on the menu line below FBD/IL/LD→View.
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We easily see the connection between contacts in series and in parallel and the use of AND 
and OR. Personally, I prefer LD over FBD code for such sequential programs because I find 
them easier to read. (However, perhaps this is only familiarity.)

At any rate, SFC is much to be preferred for sequential programs.
Note the (implementation‐dependent) capability that CODEYS offers for indicating detec-

tion of rising and falling edges directly to the inputs to the blocks in FBD. We can naturally 
insert blocks of the type R_TRIG and F_TRIG in the code instead, but this naturally takes up 
more space and makes the program messier.

In the FBD editor in CODESYS, you can instead right‐click on an input (just before the 
block) and select “Edge Detection.” Then you insert a edge detection of the type R‐TRIG, 
symbolized med . Repeat the operation to get a falling edge detection F_TRIG, symbolized 
by . If the operation is repeated one more time, the flank detector is deleted.

Note also that it’s not necessary to use the function MOVE in CODESYS to assign one 
 variable to another; you can use a simple link (connection); thus

10.7 Test Problems

Problem 10.1
The signals from the three switches X, Y, and Z are inputs to a control that is to turn on a light 
in the following cases:

•	 None of the switches are on.
•	 Switch X is on and the other two are off.
•	 Y and Z are on but X is off.
•	 All three are on.

(a) Set up a logical expression that describes when the light is to be on.
(b) Make a Program (PRG) in FBD that implements the logic above. Test the program and 

verify that it meets the requirements.
(c) Implement the same logic, but now as a Function (FUN). (You can copy the code from a) 

over to a new function.) Then make a program (PRG) called Calling from which you call 
the function. The program should contain two calls of the function so that you can control 
two different lights.

Note: Avoid using specific variable names in functions and FBs so that these can be used 
again. Instead, use descriptive names or generic names such as IN1, IN2 etc. Such names 
should not be related to the process where the FB is used temporarily this time.

Problem 10.2
Here, we are going to make a function that converts between two quantities that are linearly 
proportional to each other. We often meet such problems in connection with analog signals, 
and we studied this type of conversion in Chapter 3.

We have learned that when an analog sensor is connected to an analog module, the PLC will 
represent the signal from the sensor, which can be in volts or milliamps, with an integer 
(Word) between 0 and 32767 (WAGO PLCs).
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This value represents a physical value such as temperature (°C), flow (l/min), or pressure 
(bar).

Calculating what an integer, for instance, 8734, corresponds to in °C can be a little trouble-
some. It can therefore be a good idea to have a function that performs this conversion. Such a 
function can also be used to convert from 0–32767 to a percent (0–100) which is certainly a 
more useful quantity.

The problem is therefore to construct a function, called Scale, which converts an integer 
value to a physical measurement quantity. We will make the function as general as pos-
sible so that it can be used again no matter what physical quantity it applies to or which 
PLC values are to be converted from or to. This means using input variables to provide 
upper and lower boundaries for both the integer representation and the physical 
corresponding values.

The problem is illustrated in Figure 10.5. In and Out do not necessarily represent physical 
inputs and outputs, but rather what is entered as arguments in the function and what is the 
results from the function.

(a)  Find a mathematical expression for the value Out as a function of all of the other variables 
(MinIn, MaxIn, MinOut, MaxOut, and In).

(b)  Program a function (FUN) in FBD that you call Scale, based upon your expressions 
from problem a). Think through what is to be declared as VAR_INPUT and what data 
types are suitable for use with the different variables. The function name itself should 
be used as an output variable so the function must be declared with a suitable data 
type as well.

Hint: Think “opposites” and start with the last mathematical operation that is to be 
 performed. Then work toward the left until all of the mathematical expressions have been 
implemented.

In

MaxOut

MinOut

MinIn MaxIn

Out

Figure 10.5 Illustration of the function’s operation
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Problem 10.3
We will now test the function from our previous problem. In order to have some numbers to 
use, you can pretend that you have a pressure transmitter that gives an analog signal between 
1 and 5 V that represents a pressure between 0 and 2.5 bar. (If you are using a PLC, you can 
use a voltage source to simulate this signal.)

(a) Determine the proper Max and Min values for the signal/variable input to the function 
and the Max and Min values for the output signal. If you do this in practice, you must 
take into account the signal range to your analog input module. This can be, for in-
stance, 0–10 V. You must also know how your PLC represents the electrical 
measurement range. (For example, a PLC from WAGO represents 0–10 V with integer 
values between 0 and 32765. What will an input signal of 1 V be represented by? How 
about an input signal of 5 V?)

(b) Make a program or use the same program (Calling) you used to call up the function from 
Problem 10.1) and add a call to your new Scale function. The program should set an 
assumed Alarm high when the pressure exceeds 2 bar.

(c) Add another call of the Scale function that converts the value you obtained from the 
previous call to a percentage between 0 and 100%.

The figure below shows how the function could be represented when it is used (called) in a 
graphic programming language:

Problem 10.4

(a) Make a function block (FB) named Toggle that changes the state of a Boolean output 
each time the state of a Boolean input changes from 0 to 1.
Illustration:
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The problem can be solved in several ways, but you can find a use for any of the following 
functions and function blocks:

(b) Enter three different calls of the Toggle FB in your calling program.

Problem 10.5
Now, we are going to make code for controlling a cooling fan. Assume that the measurement 
range for the temperature is 30 to 100°C and that the PLC represents the signal with integer 
values from 0 to 32767.

The fan can run at three different speeds that are controlled by two digital signals. The 
motor is therefore connected to two digital outputs on the PLC, Dig_out1 and 
Dig_out2.

The fan speed is to be controlled as a function of temperature in accordance with 
Table 10.1.

A function block (FB) is to be programmed to control the fan speed.
The function block should have the following variable inputs and variable outputs:

Inputs
1. Temp (Converted) signal from the temperature sensor
2. Alarm_Ack Acknowledgment that the alarm is activated

Outputs output
1. Dig_out1 Digital output. Controls the fan speed
2. Dig_out2 ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐”‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
3. Alarm_out Digital output that is set TRUE when the temperature exceeds 90°C. The output 

remains TRUE until Alarm_Ack is activated. It is then set to FALSE, provided that 
the temperature has dropped below 90°C

Table 10.1 Fan speed as a function of temperature

Temperature Speed Dig_out2 Dig_out1

T < 70 °C 0–Stop 0 0
70 ≤ T < 80 °C 1 0 1
80 ≤ T < 90 °C 2 1 0
T ≥ 90 °C 3 (max) 1 1
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(a) Write the program code for the function block in accordance with the description 
above. (Remember that you already have the function Scale available from Problem 
10.3 that you can use when you call the function block to get a temperature repre-
sented in degrees. You can then operate with degrees in the code for the function 
block.)

(b) Put a call to the function block in your Calling program (you can also use the Scale 
function there).

(c) In problem (a), could we have made a function instead of a function block? Justify your answer.

Problem 10.6
A conveyor belt is used for transporting two different products (item A and item B) of different 
physical sizes (item B is longer than item A). In order to distinguish the items from each other, 
we can record how long the signal from the photocell stays high.

Make the code for a program (or a FB if you wish) that implements this and counts the 
number of each type.

(You can determine for yourself how long the signal from the photocell must be high in 
order for the product to be interpreted as type B.)
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Structured Text (ST)

This chapter introduces one of the two text‐based programming languages in the standard. 
The language has been given the name Structured Text (ST) and has many resemblances to 
languages such as C and Pascal.

11.1 Introduction

Structured Text (ST) is a high‐level language that reminds many of the Pascal language. But 
everyone who has worked in programming, for instance, in C or C++, will recognize much of 
the syntax and will thereby also easily be able to adapt to ST. The language contains many 
elements, commands, and instructions that ST uses in common with other high‐level program-
ming languages.

ST can, like the other languages in the standard, be used to program entire applications or 
portions of an application. The standard emphasizes the importance of a seamless integration 
of the different languages. This is because it is often an advantage to use different languages 
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and different program organization units (POUs), so that the strengths of the individual 
 languages are utilized.

The great strength of ST is first and foremost with arithmetic calculations, processing num-
bers and in handling structured data types. For those who have experience in programming, 
ST will probably seem like freedom in comparison to the LD. Programming can be done 
faster, and the program code is much more compressed in comparison to LD.

Finally, some operations are impossible to implement with a graphic programming 
language.

Nevertheless, it is useful to see how the languages compare. Therefore, during the course of 
this chapter, we review some of the examples that we studied in the two previous chapters to 
see how these can be solved with ST.

Figure 11.1 shows an example of code in ST that contains conditional statements (IF sen-
tences) and repetitive loops (WHILE and REPEAT).

Example 11.1 

11.2 ST in General

As we remarked, some who have experience with other high‐level languages will recognize 
many keywords and instructions as conditional statements and loops. Those which are perhaps 
initially the most unfamiliar concern the use of standard function blocks (FBs) such as timers 
and counters.

When working with combinatory controls or sequential controls that are based on 
logic, its often sufficient to program with logical conditions such as AND, OR, and so 
on. Managing analog signals requires a little numerical processing and comparison, but 
as we have seen, this can also be solved in graphic languages by using various functions.

It is also a fact  that most of the functions and FBs defined in the standard are programmed in 
ST by the manufacturers of the development tool. So why not just go ahead and use ST all the 

Figure 11.1 Example of ST code
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way? The answer to this is that you can. Having said that, there are other methods in ST for 
counting and monitoring time aside from the use of the standard FBs. These FBs have been 
developed with a view toward graphic languages, and that is where they have their strength.

To go further and look more closely at specific instructions, we will take a look at how 
 programs are built up in ST and what semantics that are defined in the standard.

11.2.1 Program Structure

A program in ST often consists of conditional statements, also called selection statements such 
as IF and CASE statements and one or more instructions. In addition, there are loops (FOR, 
WHILE, REPEAT) that are much simpler to implement in ST than in a graphic language.

All instructions terminate with a semicolon (;). It is possible to write an empty statement. 
In that case, it consists only of a semicolon (and any comments):

IF %IX1.3 THEN (* … A conditional statement *)
(* and some instructions: *)
bVar := 1;
iVarA := iVarA + iVarB;
Result := SQRT (%MD14);

END_IF;

Comments

Use of comments in ST naturally follows the rules that are defined in the standard (see 
Section 6.2.3). No matter which language is being used, the use of comments is a good habit 
to cultivate. It can sometimes be more difficult to read and understand the code in ST, so use 
comments relatively often.

Labels

Labels were defined in the previous two chapters. Labels are used in LD and FBD to jump 
between rungs and networks. Loops can be constructed easily in ST, so there is no need 
for labels.

Instructions

Instructions are the heart of the program. Instructions can be value assignments, performing 
calculations, setting and resetting of outputs, and so on. A statement in ST can contain many 
instructions. All instructions must end with a semicolon (;).

Keyboarding

If you try to write the program code in Figure 11.1, you will discover that you do not get 
automatic line feeds but instead must produce them yourself by pressing Enter. Furthermore, 
it can happen that the text on one line does not start in the desired horizontal position. 
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In Figure 11.1, indentation has been used to improve legibility. Such indentation is done with 
the TAB key. If you use only spaces, you risk that all of the extra space will disappear when 
you confirm the statement.

Example 11.2 

The code in Figure 11.1 can also be written as shown in Figure 11.2. We see that the legibility 
is significantly poorer. Note that there is no syntax error in the code, so the program will 
function as before.

Execution

When a program written in ST is executed, this takes place instruction by instruction as the 
control structure, such as loops, for instance, is followed. Boolean and arithmetic expressions 
which contain several operators are executed in accordance with particular rules governing 
priority. You can read more about this in Section 7.7.1.

11.3 Standard Functions and Operators

Many of the functions that are defined in the standard belong to the group of operators in the 
ST program language. For many of these standard functions, there are also specific operator 
symbols that are used in ST instead of the function names. Examples of operators are +, −, ≥, 
≤, and /. These correspond to the functions ADD, SUB, GE, LE, and DIV.

Using functions is called performing operations on an operand. An example of this is A := 
SQRT(B). Here, SQRT is the operator and B is the operand. The answer is placed in A. An 
operand can be a constant, a variable, an address, or even another function call such as SIN(A), 
for instance. Some of the functions are used as operators between operands such as the function 
MAX(A, B, C).

Figure 11.2 Example of untidy code
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The difference between operators and other functions is that operators are implicitly recog-
nized by the development tool.

Table 7.1 contains an overview of all of the operators and shows which of them has its own 
operator symbol in ST. It is possible to use all of the function names in ST, but if there is a 
defined operator, it is natural to use this.

Operations that are possible to perform with the help of the standard functions can be 
broken up into the following main groups:

 • Boolean operations and operations on bit strings
 • Arithmetic and logical operations on integers and/or floating‐point numbers
 • Numerical and alphanumeric comparisons
 • Type conversions
 • Operations on text strings

All the Programmable Logic Controller (PLC) manufacturers offer many more functions in 
addition to the basic ones that are defined in the standard. It will therefore be possible to 
 perform other operations that require the use of implementation‐dependent functions. Such 
operations can be:

 • Program operations
 • Control operations
 • Data exchange operations
 • Application‐specific and equipment‐dependent instructions (communications, process 
 control, etc.)

11.3.1 Assignment

We covered assignment in Section 7.3.1. To repeat: the syntax for assignment in ST is as 
follows:

 OP1: OP2; 

The direction is from OP2 to OP1. We also saw that several variables can be set to the same 
value with the help of the syntax: OP1: = OP2: = OP3 := …

In order to set a Boolean address (or variable) logically high, we can write

 % . : ;..Q TRUE2 3  

Correspondingly, the following instruction will set the variable Var_bool to a logical low 
state:

 Var bool FALSE;_ :  

Most tools also support use of 1 and 0 instead of TRUE and FALSE, so that you can write, 
for instance, %Q2.3 := 1;
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Example 11.3 Various Assignments

PROGRAM Assignment
VAR

Var1, Var2  : REAL;
Var3  : BOOL;
Values   : ARRAY [1..32] OF DWORD;
AWord   : WORD;
Answer  : UINT;

END_VAR
Var1 := Var2 := 0.0;
AWord.15 := TRUE;     (*Bit nr. 15 in AWord is set TRUE *)
%MW122 := %MW8;
Var3 := %IX2.2;
%MD5 := Verdier[9]
Answer := 44;

END_PROGRAM

11.4 Calling FBs

In the previous chapters, we have learned how instances of FBs can be declared and used in 
the graphical languages. Declaration is identical for all programming languages, so it will not 
be repeated here.

All FBs have one or more input and output variables. As soon as an instance is declared in 
a POU, the instance of the input and output variables of the block is also automatically 
declared. The block is now accessible for use in the code field in the POU.1

Use of the instance takes place via calls. In ST, a call is made by giving the name of the 
 instance together with arguments (input values).

Example 11.4 

My instance IN IX IN T s ;_ : % . , : #1 1 4 2 30  

No values are returned from calls of FB instances as they are with calls of functions. Instead, 
the results of the execution of the instance are stored in its output variable. These variables can 
be referred to in an object‐oriented way, no matter what programming language is being used.

Suppose that the FB called in Example 11.4 has an output variable called Q1. Then Q1 can 
be referred to with the following syntax: My_instance.Q1

We can then assign this output to another Boolean variable: bVar := My_instance.Q1;
It is also possible to fetch a result at the same time that an FB is called. This is done with 

the operator “=>“. By using this operator, you can assign output variables against other vari-
ables within the parentheses in the call.

1 It is also possible to declare an instance globally so that the instance is available to all POUs.
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Example 11.5 shows a combination of the instructions in the two previous examples. It is 
specified here that output Q1 from the FB is assigned to the address %QX2.2.

Example 11.5 

My instance IN IX IN T s Q QX ;_ : % . , : # , % .1 1 4 2 30 1 2 2  

11.4.1 Flank Detection and Memories

Unfortunately, the standard does not define any operators that perform flank detection. If the 
manufacturer of the development tool has not chosen to implement his own, the FBs R_TRIG 
and F_TRIG must be used in ST as well. This is somewhat awkward, but you will soon 
become used to it.

Neither do bistable function blocks, which in LD are represented with Set and Reset coils, 
have their own defined operators. Luckily, if you assign a value to a variable, the variable will 
retain this value until a new value is assigned to the variable. In this way, we can implement 
memory by using IF statements. More on this in Section 11.5.

Another alternative, of course, is to use the FBs RS (or SR) as shown in the next two examples.

Example 11.6 

Here, an instance of a RS is declared with the name Memory:

VAR
Memory : RS;

END_VAR

An RS block has, as we know, a Set input and a Reset input (called Reset1) in addition to 
the output Q1. All of the inputs and output are of the Boolean type.

If our RS instance is to be used to start and stop a motor, perhaps the call could look like the 
following (the variables Start, Stop, and Motor must naturally also be declared):

Memory Set Start Reset Stop Q Motor ;: , : ,1 1  

As mentioned, no value is returned from such a call, as would be the case with calling 
functions. Instead, the result of the run is stored in the output variable of the instance. This 
block has only one output variable, Q1. If you have not transferred the state to the output in 
the call, you can refer to this in another place in the code with the syntax Name_of_instance.
Q1, like Motor := Memory.Q1;

Example 11.7 

A pump is to start when a switch is turned to the run position. To stop the pump, a separate 
stop button must be pushed. So that the pump does not start again once the stop button is 
released, the start switch must first be turned to the off position before it can again be turned 
to run. (We studied this same example in the LD chapter, Example 9.6.)
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2 RE is an acronym for “rising edge” and FE is an acronym for “falling edge.”

In the following, you will see a declaration of variable and program code in ST.
As we see, an instance of an R_TRIG called RE1 and an instance of the FB RS called 

Run_Pump are declared.
This selection of names can be tricky. For instances of FBs that I do not need to refer to later 

in the code or that I have not used many of, I personally prefer to use anonymous names such 
as RS1, RS2, …, RE1, RE2,…, FE1, FE2,…2:

PROGRAM Rising
VAR

Pump  AT %QX2.5  : BOOL;
Start  AT %IX1.7  : BOOL;
Stop  AT %IX1.8  : BOOL;
Run    : BOOL;
RE1  : R_TRIG; (* Declares an instance of R_TRIG *)
Run_Pump : RS;  (* …and one of the function block RS *)

END_VAR

(* CODE IN ST: *)

RE1(CLK:=Start, Q=>Run);
Run_Pump(Set:=Run, Reset1:=Stop, Q1=>Pump);

END_PROGRAM

Here, the assignment operator “=>“ is used in both of the FB calls, but if desired, the result of 
execution of the blocks could be fetched separately. Also, note that it is not necessary to intro-
duce a variable (Run) for temporary storage of the state of the output of the R_TRIG block. 
We can refer directly to the output as follows:

RE1(CLK := Start);
Run_Pump(Set:= RE1.Q, Reset1:= Stop);
Pump := Run_Pump.Q1;

(Also, note that here the variable of the physical output Pump is assigned the output of the RS 
block’s output variable in a separate instruction.)

Example 11.8 ST Code for the Mixing Process

In Section 9.3.4, we studied an example for controlling of a mixing process using LD. The 
control for this process has four input signals (Start, LT1, LT2, and LT3) and four output 
 signals (MV1, MV2, Motor, and Stir). By sequential analysis, we then derived the following 
algorithms for the control signals:
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Set Motor LT Reset Motor LT

SetStir LT ResetStir LT

Set

 

2 3

2 2

MMV Start Reset MV LT

Set MV LT      Reset MV LT

1 2 2

2 3 2 1  

We see that the control algorithms, as they are presented, will require many instances of 
FBs for flank detection and flip-flops. This is a result of the slavish method that we used in 
developing the algorithms in Section 9.3.4. Further analysis of the diagram in Figure 9.15 
reveals that all use of flanks for resetting output signals is unnecessary. Furthermore, we see 
that the Stir signal actually is identical with the LT2 signal. The algorithms can therefore 
advantageously be modified as follows:

 

Set Motor LT Reset Motor LT

Stir LT

Set MV Start Reset MV L

2 3

2

1 1 TT

Set MV LT Reset MV LT

2

2 3 2 1  

PROGRAM Mixing_process
VAR

(*Declares input and output variables: *)
Start   AT %I3.0  : BOOL;
LT1   AT %I3.1  : BOOL;
LT2   AT %I3.2  : BOOL;
LT3   AT %I3.3  : BOOL;
Motor   AT %Q5.0  : BOOL;
Stir   AT %Q5.1  : BOOL;
MV1   AT %Q5.2  : BOOL;
MV2   AT %Q5.3  : BOOL;

(*Declares instance of the blocks R_TRIG and RS: *)
RE_Start, RE_LT2, RE_LT3  : R_TRIG;
RS1, RS2, RS3    : RS;

END_VAR

RE_Start(CLK:=Start); (* Start gone high? *)
RE_LT2(CLK:=LT2);  (* LT2 gone high? *)
RE_LT3(CLK:=LT3);  (* LT3 gone high? *)
RS1(SET:=RE_LT2.Q, RESET1:=LT3, Q1=>Motor); (* Motor *)
Stir :=LT2;           (* Stir *)
RS2(SET:=RE_Start.Q, RESET1:=LT2, Q1=>MV1); (* Valve MV1 *)
RS3(SET:=RE_LT3.Q, RESET1:=LT1, Q1=>MV2); (* Valve MV2 *)

END_PROGRAM

We see from the code above that it is relatively compact, but it is perhaps more difficult to 
read compared to the corresponding code in LD or FBD.
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11.4.2 Timers

Even though use of a timer in ST is completely equivalent to declaring and calling other 
types of FBs, timers and counters are used so much that they will get a little extra attention 
here.

The example below shows LD code and the corresponding ST code for a timer in TON 
mode, used to provide a delayed connection of an output.

Example 11.9 

(* Code in LD: *)

(* Code in ST: *)
Three_sec(IN := %IX1.2, PT := T#3s);
%Q2.3 := Three_sec.Q;

The next example shows use of TON timers to make an off‐delay (TOF).

Example 11.10 

PROGRAM Off_delay
VAR

Run, Motor  : BOOL;
Delay   : TON;

END_VAR
(* Code in ST: *)

Delay(IN := NOT RUN, PT := T#5s);
Motor := RUN OR NOT Delay.Q;

END_PROGRAM

Corresponding code in LD:
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11.4.3 Counters

The example below contains the CTU instance “Count_Items” where the current value incre-
ments by 1 each time the condition (%IX2.0 AND Run) is satisfied. When the counter has 
counted up to 4400, the output becomes TRUE (Count_Items.Q := TRUE), and this sets the 
output %QX4.0 to TRUE.

The counter is reset to 0 by setting the input %IX2.1 logically high.

Example 11.11 

PROGRAM The4400
VAR

Count_Items : CTU;
END_VAR

Count_Items(CU := %IX2.0 AND Run,
RESET := %IX2.1, PV := 4400, Q => %QX4.0);

END_PROGRAM;

Note that instructions that is too long to fit into one line in the editor will still function 
without error. A corresponding code in LD is shown in the following.

11.5 IF Statements

There is often a need to perform various instructions based upon whether a test gives one 
result or another. We call such tests in a program a selection. There are two types of selection 
statements: the IF and the CASE. Both of these types are used to select which instructions 
will be performed, based upon the outcome of a comparison.

An IF statement in its simplest form means that an instruction, or several instructions, is 
performed if the outcome of a logical test is TRUE. If the condition is FALSE, either 
no  instruction is performed or the next instruction that follows the keyword ELSE is 
performed.
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A simple IF statement is coded with the following syntax:

IF condition THEN (* If the condition is true, the instructions *)
instruction; (* between THEN and END_IF are executed *)
instruction;
:

END_IF; (* An IF statement always closes with END_IF; *)

If other instructions are to be performed if the condition is not satisfied, that is, is FALSE, the 
keyword ELSE is used:

IF condition THEN (* If the condition is satisfied, *)
instruction1; (* instruction1 is executed *)

ELSE (* If the condition is not satisfied, *)
instruction2; (* instruction2 is executed. *)

END_IF;

IF statements can also be nested by using the keyword ELSIF. An IF statement in a more 
general form has the following syntax:

IF conditionA THEN (* If condition A is satisfied, *)
instruction1; (* instruction1 is executed *)

ELSIF conditionB THEN (* If not and condition B is satisfied, *)
instruction2; (* instruction2 is executed *)

ELSE (* If that one is not satisfied, either *)
instruction3; (* instruction2 is executed *)

END_IF;

Example 11.12 

IF PV < 100 THEN
Kp := 12.5;

ELSIF PV < 200 THEN
Kp := 17.0;

ELSE
Kp := 24.7;

END_IF;

In the previous example, the basic IF statement principle is utilized in order to get fewer com-
parisons. Kp will be set to 17.0 if 100 < PV < 200. If the first condition is not true, this means 
that the PV is less than 100. In that case, a check is made on whether PV is less than 200. 
If not, PV is higher than 200, and Kp is set equal to 24.7.
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Example 11.13 Calculation of Square Roots

The code calculates the roots of a second‐order polynomial equation of the form 
Ax2 + Bx + C = 0. Here, IF-statements are used to check whether the expression under the 
square root sign in the formula for calculating the roots is negative, zero, or positive. 
Depending upon the result of the test, you get 0 roots, 1 root (coincident roots), or 2 roots, 
respectively.

As mentioned in Section 11.4.1, a variable will (naturally enough) maintain its value until 
it receives a new one. We can then use IF statements to implement a flip-flop. Instead of the 
RS‐based code in Example 11.7, we could have written:

RE1(CLK:=Start, Q=>Run);
IF RE1.Q THEN
    Pump := TRUE;
END_IF
IF Stop THEN
    Pump := FALSE;
END_IF

11.6 CASE Statements

If there are many comparisons to be made giving differing results, you should consider using 
CASE statements instead of nested IF statements. CASE is based on testing the value of an 
integer (INT, SINT, UINT, USINT) or the content of an enumerated data type (see 
Section 6.5.5.2). Various instructions or statements are performed depending upon the value 
of the integer or the enumerated variable.
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The advantage of using CASE compared to nested IF statements is that more instructions 
can be associated with one and the same conditional test. The syntax is as follows:

CASE Condition OF
value1: Instruction_A;
value2: Instruction_B;
value3, value4, value6:  Instruction_C;
value7.. value12:  Instruction_D;

:
valueN:  Instruction_X;

ELSE
Other_instructions;

END_CASE;

 • If Condition has the value <value1>, Instruction_A will be executed. If Condition has the 
value <value2>, Instruction_B will be executed etc. Note that Condition also may be an 
integer expression, that is, it may not be a single variable but rather an arithmetic expression 
that yields an integer as an answer (see Example 11.15).

 • Several instructions can be executed for each outcome of the test variable/expression.
 • If Condition does not yield any of the listed values, then nothing is performed or, if using 
ELSE as before, the instruction that follows ELSE is executed.

 • If the same instruction(s) is to be executed for several values of the test variable, these 
values may be listed, separated by commas.

 • If the same instruction(s) is to be executed for several sequential values of the test condition, 
these values can be listed as Startvalue.Endvalue, that is, with two periods  between the 
values.

If Condition is a variable of the integer type, value1, value2, and so on will also be integer 
values such as 10, 20, 30, …, for instance. If Condition is a user‐defined enumerated data 
type, value1, value2, etc. can be text Constance such as Ready, Wait, Run, Fill, and so on. 
See Example 11.16.

Example 11.14 

Here, the content of address %MW1 is tested, and one of three discrete output addresses is set 
logically high, depending upon the value of %MW1:

CASE %MW1 OF
1: %QX2.0 := TRUE;
2: %QX2.1 := TRUE:
3..5: %QX2.2 := TRUE;

END_CASE;

The next example shows that the test condition can be an integer expression.
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Example 11.15 

CASE A ‐ B OF
4:Out := TRUE;
7:IF B>0 THEN Result := %MW5;

ELSE Result := %MW4;
END_IF;

END_CASE;

The test variable can be of an enumerated data type.

Example 11.16 

Assume that a product is to be sorted according to color (by the use of a color sensor). A con-
veyor belt brings the products down to a sorter, where arrival is registered by a photocell. When 
a product arrives at the sorter, the color of the product is checked, and the proper piston is 
activated to shove the item off the belt. The test variable Color in the code is a user‐defined 
data type that can have the values Green, Red, or Blue. (RE is an instance of a R_TRIG.)

RE(clk := PhotoSwitch, Q => New_item); (* A product is in place *)
IF New_item THEN

CASE Color OF    (* Checks color *)
Green: Piston1 := TRUE;
  Green_count := Green_count + 1;
Red : Piston2 := TRUE;
  Red_count := Red_count + 1;
Blue : Piston3 := TRUE;
  Blue_count := Blue_count + 1;
ELSE
  Error_count := Error_count + 1;
END_CASE;

END_IF;

11.7 ST Code Based upon State Diagrams

In Section 4.6, we studied the use of state diagrams in planning and designing programs. Here, we 
will see examples of how CASE statements, among others, can be used to efficiently translate 
state diagrams (or flowcharts) into program code in ST. Relating to state diagrams, we know that:

 • Each of the states in the diagram constitutes a result of the CASE test.
 • Actions that are to be performed in association with the individual states are programmed as 
instructions within the results in question.

 • The possible results are determined by test conditions. As we have learned, these can be of 
the integer type, where each result has its number, or of the enumerated data type, where 
each result gets its own name.
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 • After the instructions have been carried out in each result, IF statements are used to deter-
mine the next result to be executed, that is, the next state that is to be activated.

Figure 11.3 shows a state diagram with general designations of states and transitions. When 
using an integer type as the test variable in the CASE structure, state names cannot be used 
directly. Then you call “State_A” 1, “State_B” 2, and so on. A CASE structure for this dia-
gram is seen on the next page.

Since the purpose of this diagram is to show the connection between states and transitions 
and the CASE structure, no actions are specified to be carried out in the individual states. In 
the STATE structure on the next page, actions are indicated only as instructions. (Note that the 
integer variable State naturally must be declared.)

CASE State OF
1: Instructions;

IF Trans_AB THEN
State:= 2;

END_IF;
2: Instructions;

IF Trans_BC THEN
State:= 3;

ELSIF Trans_DB THEN
State:= 4;

END_IF;
3: Instructions;

IF Trans_CB THEN
State:= 2;

END_IF;

State_A State_B

State_D

State_C

State_E

Trans_BC

Trans_CB

Trans_AB

Trans_DBTrans_DA

Trans_DE

Trans_EA

1
2

3

4
5

Figure 11.3 A state diagram with general designations
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4: Instructions;
IF Trans_DA THEN

State:= 1;
ELSIF Trans_DE THEN

State:= 5;
END_IF;

5: Instructions;
IF Trans_EA THEN

State:= 1;
END_IF;

END_CASE;

The reason that CASE statements are so appropriate in this format is that there is only one 
result that is executed for each value of the test variable. This isolates the instructions that are 
related to the individual states. Only when that particular result is activated are the instructions 
performed.

Prioritizing Alternative Paths

It is important to remember the order of priority when there are several possible paths out from 
the state. Here, the transitions are tested in nested IF statements, where the highest priority 
transition is tested first, then the next highest, and so on. This is done in both outcomes 2 and 
4 of the test in the code earlier.

Actions

As long as the condition requires that a result be active, all of the instructions within that 
result will be executed at every cycle. If there is an action or an instruction that should be 
performed only once when the system is in a particular state, this action can be placed within 
the same IF statement each time the transition conditions are tested. A typical example of 
such an action is to increment the value of a counter variable each time a particular state is 
activated or deactivated. (In the sequential function chart (SFC) context, such actions are 
called pulse actions.)

Test Variables of the Enumerated Data Type

The capability for declaring variables of an enumerated data type is very useful in conjunction 
with CASE statements and states. It is therefore an advantage if the states in state diagrams 
and flowcharts are given individual names that follow the standard with respect to legal iden-
tifiers. In particular, the test variables can be declared as user‐defined enumerated data types 
with possible values corresponding to the same identifiers. Example 11.21 shows the use of 
test variables of the enumerated data type.
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Timing

There is often a requirement for timed control of states. Examples of this can be a lamp that 
should light for half a minute, a pump that should run for 5 minutes, a fan that should start in 
2 hours, and so on. Implementation of time delays can be done by using the FB timer. It is 
recommended to insert timers outside the CASE structure and preferably use the states as IN 
conditions. In this way, the timer is activated when the state in question is activated, and then 
the IN signal goes low when the state is a deactivated.

See the following example of an extract from a code for controlling a traffic light. (The call 
to the Timer Wait10s is boldface for the sake of clarity.)

Example 11.17 Time Control of States

TYPE (* User‐defined enumerated datatype (DUT) *)
Color  : (Green, Yellow, Yell_Red, Red);

END_TYPE
VAR

State : Color; (* Variable based on our DUT *)
Wait10s : TON; (* Timer instance *)
G_light, Y_light, R_light : BOOL;

END_VAR

Wait10s(IN := (State = Green), PT := t#10s); (* Notice the IN 
condition! *)

CASE State OF
:
Green:

G_light := TRUE;
IF Wait_10s.Q THEN (* If the transition is true *)

G_light := FALSE;  (* an instruction is executed *)
State := Yellow; (* and the next state is activated*)

END_IF
:
END_CASE

11.7.1 Example: Code for the Level Process

In Section 4.6.4, we drew a state diagram for a level process, where the fluid level in a tank is 
to be controlled with the help of two pumps. The state diagram is reproduced in the following, 
followed by a program code in ST based on the diagram:
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Ready

Start

Stop

(FE B1)
OR Stop

(FE B1) or B3
OR Stop

(RE B2) AND
NOT P1_Last

(FE B1) or B3
OR Stop

(RE B2) AND P1_LastB3 and
NOT Stop

RunP2

RunP1

(* Run pump P1 *)
(* Set P1_Last *)

(* Run pump P2 *)
(* Reset P1_Last *)

RunP12

(* Run both pumps *)
(* Turn on lamp if contition activ > 3min *)
(* Turn off lamp with Reset *)

Idle
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11.8 Loops

Sometimes, there is a requirement to perform an action a certain number of times. For this, 
you can use loops. The standard specifies three types of loops to choose from. There are 
WHILE loops, FOR loops, and REPEAT loops. All types of selections and loops are pro-
cessed here in the order stated.

11.8.1 WHILE … DO… END_WHILE

This instruction performs a repeated action as long as the condition is satisfied. No instruc-
tions are performed if the condition is initially FALSE. The syntax is as follows:

WHILE condition DO
Instructions;

END_WHILE;

Only the code that lies between WHILE and END_WHILE will be executed. It is therefore 
strongly recommended that the condition also be updated within the WHILE loop so that the 
loop does not become endless. In the following example, we use the value Area as a condition. 
Closing the loop is therefore dependent upon the array radius[k] being correctly set up. If the 
array does not hold large enough values for the area to be greater than 1000, the loop will 
never be terminated.

Example 11.18 

k := 1;
WHILE Area[k] < 1000 DO

Area[k] := 3.14*radius[k]*radius[k] + 2*3.14*radius[k]*height;
k := k + 1;

END_WHILE;

In the next example, an extra condition is imposed that makes this loop run for a maximum of 
200 iterations.

Example 11.19 

k := 1;
WHILE (Area[k] < 1000) AND (k < 200) DO

Area[k] := 3.14*radius[k]*radius[k] + 2*3.14*radius[k]*height;
k := k + 1;

END_WHILE;

This is naturally only one possible solution if the array does not have more than 200 iterations. 
At any rate, the point is to be alert when using loops. Another good solution is to terminate 
loops by using the instruction EXIT. See Section 11.8.4.
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11.8.2 FOR … END_FOR

This loop is useful when the number of iterations can be determined beforehand. The loop 
performs the instruction a certain number of times, controlled by an index variable which, if 
not otherwise specified, increments automatically by 1 in value for each loop. The syntax is as 
follows:

FOR index := initialvalue TO endvalue DO
Instructions;

END_FOR;

When the index variable has a value greater than the end value, no instructions are performed. 
This is natural since the test of the termination condition takes place at the beginning of the 
loop.

To give an incremental value different from 1, you can add the keyword BY, followed by the 
desired step size.

Example 11.20 

FOR k := 1 TO 20 BY 2 DO
Num := Num*2;

END_FOR;

Example 11.21 

FOR x := 1 TO 10 DO
V2[x] := V1 * 14.8e‐4 * x;

END_FOR;

These were two examples of simple FOR loops. There is also no barrier to combining several 
loops or loops with IF statements. In the next example, we combine a FOR loop with IF state-
ments since the instructions within the loop are conditional.

Example 11.22 

m := 1;
FOR m:=1 TO 100 DO
IF Product[m].PictureResult = OK THEN

IF (Product[m].Weight > 240.0) AND (Product[m].Weight < 260.0)
THEN

OK_Product[m] := Product[m].ID;
END_IF;

END_IF;
END_FOR;

Section 11.9 shows a larger example in which FOR loops are central.
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11.8.3 REPEAT … END_REPEAT

This loop behaves like the WHILE statement in the sense that you do not need to know how 
many times the loop must be performed. A WHILE loop is performed as long as the condition 
is satisfied, but the instructions in a REPEAT loop are executed until a condition is satisfied. 
This also means that the instructions that are located between REPEAT and UNTIL are exe-
cuted at least once. The syntax is as follows:

REPEAT
instructions;

UNTIL condition
END_REPEAT;

Example 11.23 

REPEAT
Values[x] := New_value;
x := x + 1;

UNTIL New_value > 1000;
END_REPEAT;

11.8.4 The EXIT Instruction

This instruction can be used to stop execution of a WHILE, FOR, or REPEAT loop. The risk 
of creating an endless loop, or a loop that is active too long3, is greatest when the conditions 
that control termination of the loop depend upon external parameters. It is best to use a 
condition that depends upon a variable that is updated within the loop. If the instruction EXIT 
is performed within a loop, the execution will stop immediately, and the program will con-
tinue by performing the instruction that directly follows the loop. Note that if EXIT is placed 
in an inner loop, this does not stop the execution of any external loops.

The WHILE loop in Example 11.18 is a typical example of a loop that is not guaranteed to ter-
minate. In the code below, EXIT has been added as insurance against the loop being endless:

k := 1;
REPEAT

Area[k] := 3.14*radius[k]*radius[k] + 2*3.14*radius[k]*height;
k := k + 1;
IF k >= 200 THEN EXIT;
END_IF;

UNTIL Area[k] > 1000
END_REPEAT;

3 This is very critical because if a loop is active longer than a defined watchdog time, then it results in an error where 
the PLC goes into an error mode and no programs can run.
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11.9 Example: Defining and Calling Functions

Lastly, in this chapter, we will take up an example of array processing. The code below defines 
a sorting function where the input argument is a structured object in the form of a 256‐element 
array of floating‐point values. When the function Sort is called, the function will sort all of the 
elements in the array in decreasing order so that the highest value is stored in element number 
0 and the lowest value in element number 255:

(*Declaration:*)
FUNCTION Sort : ARRAY[0..255] OF REAL;
VAR_INPUT

Tab : ARRAY[0..255] OF REAL;
END_VAR
VAR

N  : UINT:= 256;
j  : UINT;
k  : UINT;
Temp : REAL;

END_VAR

(*Function code: *)
FOR j := 0 TO N ‐ 2 DO

FOR k := j+1 TO N‐1 DO
IF Tab[j] < Tab[k] THEN (* The FOR loop runs through all *)

Temp := Tab[j];   (* the elements. If the next 
element *)

Tab[j] := Tab[k];   (* is larger than the previous 
one, *)

Tab[k] := Temp; (* the elements swap place *)
END_IF;

END_FOR;
END_FOR;
Sort := Tab;   (* The sorted array is returned. *)
END_FUNCTION

(* Program with function call *)
PROGRAM Sorting
VAR

Unsort_tab : ARRAY[0..255] OF REAL; (* Original array *)
Sort_tab  : ARRAY[0..255] OF REAL; (* Sorted array *)

END_VAR
Sort_tab := Sorter(Unsort_tab); (* Function call *)
END_PROGRAM

This closes the chapter on the ST programming language. You will find more examples in 
Chapter 13.
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11.10 Test Problems

Problem 11.1
(a) What is the difference between semantic errors and syntax errors?
(b) Find at least three syntax errors in the code below:

PROGRAM Program_1
VAR

Time1 :TON;
Count :INT;
Start :BOOL = FALSE;
Time2 :TON;

Time1(IN := Start, PT := T#1s);
Time2(IN := NOT Start, PT := t#1s);
IF Time2.Q

start := TRUE;
END_IF
IF Time1.Q THEN

Count:= Count + 1;
Start := FALSE

END_IF
END_PROGRAM

(c)  If the program above had been free of errors, what do you think the result of running the 
program would have been? Justify the answer.

Problem 11.2
Write code in Structured Text (ST) for a function called “Power” that calculates XZ and puts 
the answer in Y. The variables X and Z are of the integer type and Y is a long integer type. Also 
write the code for a program section that contains a call of the function.

Problem 11.3
A PLC is to be used for monitoring the number of automobiles in a parking garage. The 
parking garage has three entrances and two exits. Sensors that give a high pulse each time an 
automobile passes are installed at each of the entrances and exits. There is room for 200 auto-
mobiles in the parking garage.

Two lighted signs are installed at each of the entrances. One lights up with a green text 
“VACANCY,” and the other lights up red with the text “FULL” when the parking facility is 
full. Each of the signs is controlled by a separate digital signal.

(a)  Make an I/O list based upon the information given. Choose input and output addresses and 
suitable symbolic names.

(b) Write a program in Structured Text (ST) for the monitoring program.

Problem 11.4
Make a program in Structured Text that functions like a clock that counts up seconds, minutes, 
and hours. (Hint: For example, you can set the cycle time of the task equal to 1 second….)
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Figure 11.4 Distribution of goods in a packaging facility

Problem 11.5
In a packaging facility, goods that arrive on a conveyor belt are further separated onto one of 
two tracks. See Figure 11.4. The separation is done by a gate (Selector) that is connected to a 
single‐working pneumatic cylinder with spring return (the cylinder is not shown in the illus-
tration). The gate is normally turned as shown in the illustration, but when it is given a high 
signal at the output to which the cylinder is connected, the gate swings over so that the goods 
are sent down track B.

The facility is to distribute goods in groups of 20. That is to say that when 20 items have 
been sent along track A, the gate swings and 20 items are sent along track B. The counting 
is done with the aid of a photocell. The process should be repeated continually. A reset 
button resets the counters to 0. If desired, a two‐way (double‐throw) switch can be used for 
Start/Stop.

Write a program in Structured Text that controls the gate in accordance with the above 
description. The number of groups of 20 that are sent to packing should also be recorded 
(counted).

Problem 11.6
The power consumption of an (imaginary) motor is to be measured. Both hourly con-
sumption and total consumption are to be calculated. To ensure quality, this is to be done 
in two ways:

1. Use of a pulse meter: This is a device that measures instantaneous power and sends out 
pulses. The higher the power, the tighter the pulses. The pulse meter is calibrated so 
that a rate of 100 pulses per hour corresponds to a constant power consumption of 
1 kW.

2. Use of a power meter that measures instantaneous power: The transmitter produces a 
4–20 mA signal that corresponds to 0–4600 W. It is assumed that this will be repre-
sented by numbers between 0 and 10,000 in the PLC. A problem with this meter is that 
the value from the transmitter is unstable and jumps around. The program must there-
fore read the measurement signal at an analog input once per second and average the 
readings over a 10 second interval so that the mean value can be further used in the 
energy calculation.
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Problem text: Write the program in Structured Text (ST) to calculate energy consumption in 
kilowatt hours once per hour, in addition to the total energy used. A push button resets all 
accumulated values when it is activated.

You can choose for yourself whether you want to write a program for each of the two 
imaginary meters or if the same program contains code for both methods of measurement.

Hint: Be aware of roundoff errors when using integer data types….

Problem 11.7
In this problem, you will ensure that the temperature of the water in the tank stays between 
two predetermined limits. In the tank, there is a temperature sensor with a transmitter that puts 
out a 4–20 mA signal, where 4 mA corresponds to 0 °C, while 20 mA corresponds to 90 °C. In 
the PLC, this is represented by a numerical value in the range 0–32,000. There is a linear rela-
tionship between current and temperature.

The system also has a heating element that is turned on when it receives a high signal and 
turned off when it receives a low signal. You see a sketch of the system below.

Heating
element

Temperature
sensor

You are now going to control the heating element so that:

 • It will be turned on when the temperature drops below a given lower limit. It should be kept 
on until the temperature reaches the upper limit.

 • It will be turned off when the temperature rises above a given upper limit. It should be kept 
off until the temperature reaches the lower limit.

(a)  Program the code for a function block that has three inputs and one output as shown 
below. The function block should implement the control of the heating element to match 
the description above. You will use FBD.

Heater
Control

MaxTemp

MinTemp

Temp

The two inputs MaxTemp and MinTemp are used to give the upper and lower tempera-
ture limits, respectively, while Temp is the measured temperature. The Boolean output 
Control will turn the heating element on and off.
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(b)  Write a program in Structured Text that uses the function block you made in Problem (a). 
The program should also do the following: In order to check how our temperature control 
is functioning, the program should store the measured temperature every half‐hour. 
The  program should record for 24 hours before the record is overwritten by new 
measurements.

(c)  Assume that the system has been in operation for some time and that 24 hours worth of 
measurement data is stored in an array. Make code that, working from the stored data, 
finds the number of measurements that correspond to temperatures below MinTemp and 
the number of measurements that correspond to temperatures above MaxTemp. The 
program should also find the lowest recorded measurement and calculate the mean value 
of all the measurements.
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Sequential Function Chart (SFC)

12.1 Introduction

SFC (Sequential Function Chart) is the last of the languages defined in IEC 61131‐3. In 1988, 
the IEC published the standard IEC 848: “Preparation of function charts for control systems.” 
The standard defined a graphic language for the presentation of sequences in a way that was 
closely related to a French national standard called Grafcet. This language is offered by many 
European PLC manufacturers. Most of IEC 848 is adopted in SFC in IEC 61131‐3. SFC 
 therefore has many similarities with Grafcet (and IEC 848).

12

The chapter discusses the last programming language in the standard: SFC, sequential 
function chart.

Chapter Contents

 • SFC in general:
Organization, structure and graphics; program structure, graphic symbols, steps, design 
techniques

 • Sequences:
Diverging and converging with parallel and alternative sequences, mutual exclusion, 
secure and insecure design

 • Transitions:
Permitted presentation forms, transitions written in different programming languages

 • Actions:
Declaring in LD/SFC/FBD/ST, association with steps, action types (qualifiers)
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12.1.1 SFC in General

Even though SFC is called a programming language, it is actually not one. It is designed as an 
aid to making structured programs, particularly in the control of operations that have a sequen-
tial nature (Figure 12.1). The language is flexible and can be used at several levels: From the 
top level, where SFC can be used to describe the main states in a process, to a lower detailed 
level for code events within the main states.

In other words, SFC can be used to partition (divide up) control-tasks in the same way as top‐
down design of programs. This was mentioned in Chapter 4 where we discussed flowcharts, 
among other things. It is a big advantage to be able to use a flowchart or state diagram that has 
been worked out beforehand as a jumping‐off point. For all major programming tasks—at any 
rate, those of the sequential type—this is a natural way of proceeding. In that way, we get a good 
overview of the sequence, the states, and the conditions for transitions between the states.

12.2 Structure and Graphics

A sequence in SFC consists of three main elements: Steps, transitions, and actions:

 • Steps are most often related to the individual states or phases that are to be controlled.
 • Transitions contain conditions that must be satisfied in order for the control to proceed from 
one state to the next.

 • Actions are associated with the individual steps and define events and instructions that are 
to be performed in the individual process phases.

Figure 12.2 shows an example of a function chart in SFC.
In general, function charts can be described as follows:

 • The start of the program consists of a special type of step with double side edges1 that are 
called the initiation step. This step is activated automatically when the PLC is set to Run 
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Figure 12.1 Figurative description of a sequence process in SFC

1 The standard allows other graphics forms as well, such as double outer contours around the entire block.
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mode. It is also to this step the program usually returns to, either by means of programmed 
returns or after the program sequence has been completed.

 • The other blocks (with single side edges) are steps. In Figure 12.2, these blocks are given 
identifiers such as Stir and Drain. These often represent a particular state or phase in the 
process that is to be controlled.

 • One or more instructions/actions are performed in association with each step. These can be 
actions associated with outputs or changes in internal variables.

 • Small horizontal lines are entered between steps. These mark the transitions. These determine 
when and where the PLC will continue carrying out the code. When the transition is complete, 
the step before the transition is deactivated and the step after the transition is activated.

 • Branching can be used to create alternative or parallel sequences.
 • It is also possible to jump between steps that are not directly associated with each other.

Explanation of the sequence (code)
When the PLC is set in Run mode, the initiation step Ready is activated. When the operator 
presses the start button (Start = TRUE), the PLC begins the sequence by deactivating the 
Ready step and activating the Fill step. This step remains active until the tank is full (level 
sensor Tank_full sends a logically high signal). Then Fill is deactivated and Stir is activated. 
This step is to remain active for a certain time. This is indicated by the next transition, Stir.T 
> t#30s. This comparison is satisfied (TRUE) when a built‐in timer has reached a value of 
30 seconds. Then the Stir step is deactivated and the Drain step is activated. When the tank is 
empty (sensor signal Tank_empty becomes TRUE), Drain is deactivated and the initiation 
step Ready is activated again. The program is now ready for a new run.

Example 12.1 

Ready

Fill

Stir

Drain

Start

Tank_ f ull

Stir .T > t#30s

Tank_empty

Pump

Stirrer

N

N

N

Valve

Figure 12.2 Example of SFC
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It is this neat and elegant way of programming sequences that should make SFC a clear first 
choice in many PLC applications:

 • Steps that show the phases and states in sequential processes.
 • Transitions that define only the conditions that must be satisfied in order for the sequence to 
continue from one step to a succeeding step in the sequence. Transitions are (often simple) 
Boolean conditions.

 • Actions that couple control of outputs to the individual phases in the process.2

12.2.1 Overview: Graphic Symbols

As with the symbols in the other graphical languages, the standard does not impose any 
requirements for the symbols in SFC to have any particular graphic format, but rather specifies 
a semigraphic format that utilizes only text characters, as, for instance:

The individual manufacturers naturally enough choose a fully graphic format, but the forms 
of the symbols in the standard must be followed even though the types of lines and colors 
may vary. Table 12.1 shows an overview of the symbols in SFC as they can look in a fully 
graphic format.

12.2.2 Alternative Branches

In the example in Figure 12.2, there is only one possible route in the sequence, but a SFC 
can contain many alternative branches. Let us therefore expand the example by adding 
the following: If the pump has been running for more than 1 minute without the Tank_
full giving a high signal, the sequence should jump to Drain. See Figure 12.3.

This addition constitutes an alternative sequence, where the sequences first split up (a so‐called 
OR divergence), to rejoin again farther down (OR convergence). After the divergence (after 
the Fill step), there follows one transition for each alternative branch.

It is extremely important that these transitions be mutually exclusive. This means that the 
conditions in these transitions must be such that only one of the transitions can be satisfied at 
any time, thus the word OR. If such transitions are not mutually exclusive, two or more 

2 It is not a requirement of the standard that actions be presented in detail in the functional chart, but it is a great 
advantage for legibility and understanding if this is done if possible.
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alternative branches can be activated simultaneously and that is regarded as an error. In 
Figure  12.3, the condition AND NOT Fill.T>t#1m prevents the two branches from being 
activated simultaneously.

The alternative branching in this example does not contain any step. This is because the 
purpose of this particular alternative branch is just to jump over a step. Similarly, alternative 
branching can be used to create a loop that performs one or several steps a desired number of 
times. (See, for instance, Figure 12.11.)

Note this alternative way of jumping to another step by using the jump symbol  where 
you enter the name of the step to which you want to jump, in this case, Ready.

Table 12.1 Possible graphical symbols in SFC

Steps Initiation step (one of these)

Ordinary step

Transitions Between two steps

Parallel 
sequences

Parallel branching (AND divergence)

Parallel convergence (AND convergence)

Alternative 
sequences

OR divergence

OR convergence

Connecting 
lines

Up and down
And

Left and right And

Jumps Jump to StepX
StepX
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Example 12.2 

12.2.3 Parallel Branches

It is also possible to activate parallel branches in SFC, that is, branches that will be executed 
in parallel with each other. This branching does not need to contain an equal number of steps, 
but the branches are activated simultaneously and are terminated simultaneously.

For this reason, there is a common transition condition before the place where the sequences 
diverge and one common transition condition immediately after the place where the sequences 
converge.

Example 12.3 

Let us alter the SFC diagram in Figure 12.3 by making the following modification: We would 
now like to have the product mixture (the batch) warmed up after the tank is filled. Furthermore, 
we want the stirring to take place in parallel with filling, heating, and emptying. The result can 

Figure 12.3 SFC with alternative sequences (CODESYS v3.x)
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be as shown in Figure 12.4. Note that the parallel sequences are activated by one and the same 
transition (Start) and that they converge before a common transition (Tank_empty).

Also note that parallel branches are executed independently of each other before they reach 
the convergence point. In order for parallel sequences to be deactivated, the following condi-
tions must be satisfied:

 • All the sequences must have reached their last step. (Both Drain and Stir must be active in 
Figure 12.4.)

 • The transition after the convergence must be satisfied. (Tank_empty must be TRUE in 
Figure 12.4.)

This means that the transition after the convergence is not evaluated by the PLC before all 
parallel branches are in their last step.

12.3 Steps

We have seen that each individual step, including the initiation step, is assigned an identifier 
(a symbolic name). This name must be unique within the POU in question. This means also 
that the name is local within the POU so that a step in another POU can have the same name.

A step is either active or inactive, but several steps can be active simultaneously.
It is not possible to place two steps consecutively without a transition in between.
One or more actions can be associated with each individual step. These actions can be 

programmed in any of the languages in the standard.

Figure 12.4 Parallel sequence (CODESYS v3.x)
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12.3.1 Step Addresses

Each individual step that is used in the sequence is assigned two variable addresses: Step_
name.X and Step_name.T. These addresses can be used in programming transitions and 
actions:

 • Step_Name.X is a Boolean variable that is TRUE when the step is active. When the step is 
inactive, the state is FALSE. This variable can be used to perform actions when the associ-
ated step is activated or deactivated or continually as long as the step is active. The variable 
can also be used in transitions. Note: I is not possible to manipulate the state of this variable. 
In that case, it would result in an error message from the compiler.

 • Step_name.T is a variable of the data type TIME.3 All steps in SFC, including the initiation 
step, have built‐in timers. As soon as a step is activated, the built‐in timer starts and runs 
until the step is deactivated. In other words, the variable contains the elapsed time for the 
step in question. When step is deactivated, the timer is reset to t#0s. Neither of these vari-
ables can be modified by the user program.

Which identifiers and how many characters are permitted depend upon the implementation, 
so that it is wise to be conservative. If possible, use descriptive names related to the process or 
to the system that the program will control.

As mentioned previously, the variables Step_name.X and Step_name.T can be accessed and 
used in programming actions and transitions, but they cannot be manipulated.

The two following examples show permitted and illegal use of the step variables, respectively.

Example 12.4 Examples of Permitted Use of Step Variables

IF Stir.X OR (Drain.X AND %IX1.0) THEN
   %QX2.5 := TRUE;
ELSE
   %QX2.5 := FALSE;
END_IF;
WHILE Warm_up.T < t#20s DO
   Calculate;
END_WHILE;

Example 12.5 Examples of Illegal Use of Step Variables

IF Stir.X OR (Drain.X AND %IX1.0) THEN
   Warm_up.X := 1;  ←Illegal
END_IF;
IF %IX1.12 THEN
   Fill.T := t#45s;  ←Illegal
END_IF;

3 You can read about these data types in Section 6.5.2.
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12.3.2 SFC in Text Form (for Those Specially Interested…)

The standard also defines the possibility for steps, transitions, and actions to be defined in 
text‐based language. This may sound rather strange since the main point of SFC is to structure 
the program code in a simple graphical way.

Nevertheless, if this capability is implemented, a code in Structured Text (ST) for the 
sequence in Figure 12.2 can look like this:

INITIAL_STEP Ready :
END_STEP;
TRANSITION FROM Ready TO Fill

:= Start;
END_TRANSITION;
STEP Fill :

Pump(N);
END_STEP;
TRANSITION FROM Fill TO Stir

:= Tank_full;
END_TRANSITION;
STEP Stir :

Stirrer(N);
END_STEP;
TRANSITION FROM Stir TO Drain

:= Stir.T > t#30s;
END_TRANSITION;
STEP Drain :

Valve(N);
END_STEP;
TRANSITION FROM Drain TO Ready

:= Tank_empty;
END_TRANSITION;

12.4 Transitions

The conditions of the transition determine when the previous step is deactivated and the fol-
lowing step activated. In order for a transition to be tested at all by the PLC, all of the steps 
directly above the transition must be active.

When the transition is satisfied, the previous step is deactivated first, before the following 
step is immediately activated.

Two transitions cannot be placed adjacently without a step in between.
Figure  12.5 shows the sequence for the automatic packaging facility that we made a 

 flowchart for in Section 4.5.3. All of the transitions are programmed here in ST, and they must 
all be either simple Boolean variables or Boolean expressions. The result of testing a transition 
is therefore either TRUE or FALSE.

A transition condition that should always be satisfied is represented by TRUE.
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Even though we have, up till now, chosen to use Structured Text (ST) to describe the tran-
sitions, it is permitted to use all of the other languages in IEC 61131‐3. Most manufacturers 
have only implemented ST transitions directly in the diagram. Transitions written in other 
languages must then be given a name that is called from the diagram (see next section.)

However, the standard defines the possibility that transitions may be programmed in the 
graphical languages LD and FBD directly between two steps. Figure 12.6 shows an example 
where FBD code is used to program a transition.

12.4.1 Alternative Definition of Transitions

In the examples we have studied up till now, the transitions have been coded directly within 
the sequences. To what extent this is possible and to what extent the code in the transitions is 
directly visible vary, as we mentioned, from one development tool to another. Some manufacturers 

Run_Conveyor

Piston2_OutPiston1_out

Close _Gripper1

Piston1_In

Open_Gripper1

Close_Gripper2

Piston2_In

Open_Gripper2

NOT Gripper1_closed
AND NOT Stop

Piston1_is_in Piston2_is_in

Gripper1_closed Gripper2_closed

Piston1_is_out Piston2_is_out

Cap_sensor_1 Cap_sensor_2

NOT Gripper2_closed
AND Counter<10
AND NOT Stop  

NOT Gripper1_closed
AND Counter = 10
OR Stop 

S_start

Run_Conveyor Init Run_Conveyor

Init

Figure 12.5 Sequence for the packaging facility, with added transition conditions
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have implemented only short transition codes written in the sequences, but larger transition 
codes can be programmed as named separate entities that are called from SFC.

Nevertheless, the code (conditions) for a transition can in some cases be comprehensive. There 
is not always room or it is not practical to put the code within the sequence diagram itself. The 
solution is then to name the transition and program it in a separate window/editor. Example:
The transition from Step4 to Step5 is given the identifier Trans_45. The named transition can 
be programmed in any of the languages (except for SFC) within the keywords TRANSITION 
and END_TRANSITION in the following way:

TRANSITION Trans_45 FROM Step4 TO Step5:
:
Program code;
:

END_TRANSITION

Example 12.6 Defining a Transition in LD

We would now like to identify the transition that was presented in FBD code in Figure 12.6 
with a name. We would also like to program the associated conditions in LD. The sequence 
could now look like this:

Open_Gripper2

Init Run_conveyor

Piston2_In

NOT Gripper2_closed AND
Counter<10 AND NOT Stop Trans_init  

Init Kjør band

&
>=1

Open_Gripper2

Piston2_In

Gripper1_closed

Counter = 10

Stop

Run_conveyor

Not Gripper2_closed AND
Counter<1 AND NOT Stopp

Figure 12.6 Transition programmed in FBD
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Defining the transition can be done in LD code, for instance, as follows:

TRANSITION Trans_init FROM Open_gripper2 TO Init:

END_TRANSITION

We might think that the requirements in the standard for definition of transitions amount to a 
little overkill. In most, if not all, development tools, the user is not required to use the defined 
keywords in programming transitions. The manufacturer has probably chosen to add these 
keywords implicitly. Furthermore, there will most likely be separate code windows where you 
can program transitions that cannot be coded in the chart directly. (To see how transitions can 
be programmed outside the sequence in CODESYS, you can study the example in Section 13.4 
on page 404.)

12.5 Actions

One or more actions (instructions) can be associated with each separate step. If no actions are 
associated with a step, the step is either a delay step or a step that functions to converge 
alternative branches.

There are naturally rules for how actions and instructions are presented in the function 
chart. In the IEC standard, an individual action is presented as a rectangular box that is asso-
ciated to the step in question. See Figure 12.7. This direct link to the step makes it easy to see 
where and how the actions are activated or initiated.

The first field in the rectangle always contains a qualifier.

Close

Run

Door_closed

Action type
(qualifier)

Action/instruction Indicator variable

Door Door_closedN

Figure 12.7 Example of action
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This is a character, or possibly two characters, that identifies the type of action that is 
to be performed. If the qualifier is a time type, a time is also shown in the TIME format 
in this field.

The next field contains the action or name of the action that is to be performed. Most often, 
this is a single action or instruction that typically changes the state of a Boolean variable. In 
such cases, the action is the name of a Boolean variable.

If there are other types of instructions or more instructions that are to be performed, a user‐
selected (but permitted) name is given in the action field. This name points to a named program 
code that contains a set of instructions. In both cases, the qualifier specifies which action is to 
be executed.

The third and last field can contain an indicator variable, if needed.
Such indicator variables are not a requirement in the standard, and it is therefore up to 

the manufacturer to implement the capability if he wishes to provide it. Usually the 
indicator variable will be a variable that is changed as the result of the action that is being 
performed. Often, the indicator variable will be used as a condition in the next transition 
as in the figure below.

12.5.1 Action Types

To make it easier to control how and when actions are executed, the standard specifies a set of 
action types. Table 12.2 shows an overview of the defined types.

Table 12.2 SFC action types

Qualifier Type Description

N Non‐stored Action that is performed as long as the associated step is active
S Set (Stored) Stored action. Performed until it is reset
R Reset Deactivates a stored action
P Pulse A pulse action that is performed once each time the step is 

active. (See Section 12.5.2)
L Time Limited Time‐limited action. Stops after a given time or when the step 

is deactivated
D Time Delayed Time‐delayed action. Starts after a given time if the step is still 

active
SD Stored and time Delayed Stored and time‐delayed action. The action is set active after 

a given time, even though the step deactivates before that. 
The action continues until it is reset

DS Time Delayed and Stored Time‐delayed and stored action. If this step is still active after 
the specified time, the action will start. It will run until it is reset

SL Stored and time Limited Stored and time limited. The action starts when the step 
becomes active and will continue during the given period or 
until it is reset

P1 Pulse—rising edge A pulse action that is executed only once when the step is activated
P0 Pulse—falling edge A pulse action that is executed only once when the step is 

deactivated

S—stored; D—delayed.
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The first three types in the table, N, S, and R, are the ones most used, along with actions 
of type P (or P1, and P0 if these are implemented). An N was given in the example earlier. 
The letter N refers to an action of the Non‐stored type and indicates an action that is to be 
performed continually as long as the associated step is active. This choice is also the 
default.

The other action types, all of which deal with time, are needed only in exceptional cases. 
One of the reasons for this is that the built‐in timers in the steps are sufficient for most cases 
of time management of the sequence. Furthermore, it is usually a good design technique to 
create the function chart so that you avoid actions that need to be activated and deactivated, 
“independent” of the process in the sequence. This increases the programmer’s control and 
thereby reduces the risk of unforeseen events.

12.5.2 Action Control

It is important to be clear that the standard defines that all actions are executed one extra time 
after the action is deactivated. This means that the actions are performed at least twice. This 
does not apply to actions of type P1 and P0.4 These are executed only once. Such an extra 
 execution is illustrated in Figure 12.8 for a type N action.

This rather strange requirement for an extra execution is luckily not an absolute require-
ment, because it sometime creates trouble. (See Example 12.10.)

When it comes to the time‐related action types L, D, SD, DS, and SL, use of this will 
require that the associated delay or duration (of the TIME type) be stated. To what extent 
this can be done in the qualifier field or elsewhere depends upon the implementation. 
Figure 12.9 shows how this can look for the action type SD. Here, the time is stated in the 

Step.X

Action

Trans

Step

Trans

ActionN

Extra
execution 

Figure 12.8 All action types, except for P1 and P0, are executed one extra time

Step

Trans

Action
SD

t#20s

Step.X

Action 

Trans

t
20 s

Figure 12.9 Specification of associated time for a time‐dependent action

4 Action types P1 and P2 are implemented in CODESYS as “step actions,” that is to say that they are not implemented 
as IEC actions that are associated with steps but are “built‐in” to the steps.
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qualifier field together with the action type. The figure also shows the functional principle 
for an action of the SD type.

Note that all action types that are stored must be reset at another place in the sequence by 
using the qualifier R and giving the same action name. This also applies to action types S, SD, 
DS, and SL.

The possibilities of activating actions in different ways are also significant for how we build 
up the sequence, something that the next example shows.

Example 12.7 

Take the starting point in the SFC in Figure 12.4. Now, we want the stirring to continue for 
2 minutes at the same time that filling and heating is going on. If the step Drain is reached 
before the time has elapsed, the action is reset. In the previous example, we also put in some 
insurance by using an alternative sequence. We can now solve this by using action type L for 
the pump and specifying that the pump operate for a maximum of 1 minute. An operator‐ 
controlled stop and a lamp that stays lit as long as the facility runs have also been added 
(Figure 12.10).

Figure 12.10 Use of different action types (in CODESYS v3.x)
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12.5.3 Alternative Declaration and Use of Actions

An action sometimes involves more than setting or resetting Boolean quantities. We often 
wish to change the value of numerical variables or perform a set of instructions. Such actions 
can be programmed outside the action charts themselves and identified by means of action 
names, so that they can be called up from the function chart.

Actions can be programmed in IL, LD, ST, FBD, or even in SFC and will be subobjects for 
the POU that contains the function chart.

The next two examples show possible ways the manufacturer can choose to implement 
actions that are more comprehensive.

Example 12.8 The Principle for Actions from SFC

The example below shows calling an action with the name Calculate and the code for the 
named action (with syntax under the provisions of IEC 61131‐3).

Step_B

Transition

CalculateNStep_A

ACTION Calculate;
IF Count > 10 THEN

Light := TRUE;
END_IF;
IF Enable_Inc THEN

Value := Value + 50;
END_IF
END_ACTION

As we see, IEC 61131‐3 specifies that the instruction set will be included between the 
 keywords ACTION and END_ACTION. In many programming tools, though, these keywords 
will be implicit or built into the program objects where the actions are programmed.

Example 12.9 

The standard also defines the possibility that actions can be programmed in an extra field 
in the graphical action blocks that are linked to the steps in SFC. An example of this is 
shown below:

N Calculate

IF %MW50 > 10 THEN
Light:= TRUE;

END_IF;
IF %I1.0 THEN

%MW10 := %MW5 + 50;
ELSE %MW10 := %MW5;
END_IF;

When the manufacturer chooses to implement the ability to state actions in this way, the extent 
to which new program code can be shown in this extra field will probably be limited. A large 
code field in the functional chart would quickly become incomprehensible.
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The standard also defines the possibility of using action objects associated with an SFC in 
other POUs. This does not apply the other way around, so that all actions that can be called up 
from an SFC must be programmed locally in the POU.

Example 12.10 

Let us expand the tank example in Figure 12.2 with more requirements. This time, the lamp 
should blink before start and after three runs have been completed. Otherwise, it should shine 
steadily. With these modifications, the function chart becomes as shown in Figure 12.11. (I 
have shown the actions on the side in the figure.)

Note: We have a type P action where we increment a counter value. In practice, this will 
increment the value by two every time the step is activated. The solution is either to use a 
REAL variable which increments the value by 0.5 or to use a P1 or a P0 action.

12.6 Control of Diagram Execution

Manufacturers who implement SFC as one of the languages also implement some special 
objects (flags) that can be used as a kind of external control of SFC execution. Such objects 
are not implemented in the standard, and it is therefore not possible to define them in general. 
However, it is possible to say something general about them.

Figure 12.11 SFC sequence with actions that are called up
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No matter which of the development tools you use, where SFC is one of the languages, it is 
probable that the following objects (flags) are defined (although possibly with different 
names): SFCInit, SFCReset, and SFCPause.

CODESYS defines these flags plus a few others for control of time, error management, and 
information. Some of these are shown in Table 12.3, but there could be many others, so check 
the documentation.

You can see examples of use of a couple of these objects in the next chapter.
Note: All flags are implicit and must be activated and declared before use.

12.7 Good Design Technique

Good structure and design of the SFC chart is naturally important. One thing is that the 
program should be comprehensible and logical. Another thing that is even more important is 
that the program has to be capable of being run and that possible conflicts are eliminated. In 
particular, improper use of alternative and parallel sequences is something that can quickly 
create problems. We will try to explain this by means of two examples.

Example 12.11 

Figure 12.12 shows a sequence where a classic error has been committed. An alternative 
sequence diverges within a parallel sequence. Since the transitions that activate the branch-
ing in an alternative sequence must always be mutually exclusive, Step_C and Step_D can 
never be active simultaneously. Therefore, the parallel sequence can never be closed and 
Step_F and the subsequent step will never be reached. A simple way to fix the problem in 
this example is to introduce a “step” that converges the alternative branches before the AND 
convergence.

In the example above, the design error was catastrophic in the sense that the processing 
comes to a halt. Faulty design can also, under certain circumstances, function for a while and 
then suddenly generate a serious error. See the next example.

Table 12.3 Implicit SFC variables defined in CODESYS

Variable Type Functional action

SFCInit BOOL When the flag is set TRUE, all steps are deactivated and the initiation 
step is activated. All steps, actions, and other flags are reset. Nothing 
is processed again until the flag is set back to FALSE

SFCReset BOOL Corresponds to SFCInit except that the initiation step is processed 
(the flag can therefore be reset in the initiation step)

Pause_SFC BOOL As long as this variable is TRUE, all execution of the diagram will 
stop. Execution of actions also pauses so that the state of outputs, for 
instance, freezes

SFCTrans BOOL The flag becomes TRUE as soon as a transition has been performed
SFCCurrentStep STRING This variable stores the name of the step as active at any time. If 

several steps are active (parallel sequences), the name of the step 
farthest to the right is registered
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Example 12.12 

In the diagram in Figure 12.13, there is a branching out of the parallel sequence, and this can 
create unforeseen problems. The following can happen here (assume that Step_A is active):

 • Trans_1 is satisfied, which will activate Step_B and Step_C.
 • Then assume that Trans_2 is satisfied in addition to Trans_4. This means that Step_D and 
Step_F are activated.

 • Now, when Trans_5 and Trans_1 are satisfied, Step_C becomes activated again. Thereby 
two steps (C and F) in the same branch are active simultaneously, something that is not 
 permitted under the standard.

What consequences this will cause depends upon how the manufacturer has implemented 
SFC. In the worst case, the PLC will go into an Error mode.

A cookbook
Here, I present a possible procedure for working on designing a sequence in SFC. It is in no 
way applicable to all possible problems, but perhaps it can be of some help.

1. Think through the sequence(s) and particularly into how many steps the sequence ought to 
be divided. If you have done proper preliminary work, you will have one or more flow-
charts or state diagrams as a starting point. It can often be a good idea to split up the 

Step_B

Step_A

Step_C

Trans_3

Trans_1

Trans_4

Step_D Step_E

Step_F

Trans_2

This step can never
be reached! 

Figure 12.12 Example of wrong design
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problem into several sequences. When it is a large process that is to be controlled (large 
with respect to complexity), it is probably a good idea to use macro‐steps. Then, for 
example, you will have an overall sequence with several subsequences, one for each macro‐step. 
It is also possible to call up another sequence via an action.

2. Also evaluate whether alternative or parallel sequences are needed:
 • You need an alternative branch if there are several possible paths through the sequence, 
and only one of them should be chosen. Then each transition to each branch has its own 
condition.

 • You need a parallel branch if there are two or more branches to be traversed simulta-
neously. Then there will be a common transition to all the branches.

3. Construct the sequence(s).
4. Program the transitions. These usually consist of simple Boolean tests or time conditions. 

Remember to use mutually exclusive conditions for alternative sequences.
5. Program the actions. Individual Boolean actions are stated directly in the SFC dia-

gram, but other actions are programmed as objects under the POU and are called up 
from SFC.

Step_F

Step_B

Step_A

Step_E

Trans_3

Trans_1

Trans_6

Step_D

Step_G

Step_C

Trans_5

Trans_2

Can  become active
simultaneously 

Figure 12.13 Example of risky design
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6. There will also probably be a requirement to manage other external events that may take 
place such as power failure or activation of an emergency stop. Here, implicit SFC  variables 
such as SFCPause and SFCInit can be useful.

In the next chapter, you will find some larger SFC examples.

12.8 Test Problems

Problem 12.1
In a test laboratory for measurement of hull resistance for various types of ship hulls, the hulls 
are attached to a cable that pulls the ship hull through the water. In order to calculate the 
average speed, a PLC and two photocells are used. In addition, a start button is used to activate 
the program. See Figure 12.14. Towing of the boat is done manually and is therefore not a part 
of the program in the PLC.

Write a program in SFC that measures the time that the boat takes to pass the distance 
bounded by the two photocells and calculates the average speed.

Problem 12.2 Product Weighing
See Figure 12.15. Products A and B will be filled and weighed in turn on scales no. 1. At the 
same time, product C will be filled and weighed on scales no. 2. Filling is controlled by opening 
and closing of the solenoid valves S1, S2, and S3.

Assume that there are discrete sensors that give a high signal when a sufficient quantity of 
each product has come onto the scale. You can call these signals A_ready, B_ready, and 
C_ready.

When all the products are weighed, the outlet solenoid valves (SV1 and SV2) on either 
scale are opened for 15 seconds so that the material empties into the mixer. The mixer should 
start at the same time.

After the scales are empty, the mixer will continue to go for 10 seconds. Then the sole-
noid valve on the mixer (SB) is opened so that the mixer empties. During emptying, the 
mixer should run for 20 seconds. Then the mixer is considered empty, and the working 
cycle is completed.

Make a program in standard SFC for controlling the facility.

8 m

Start

Photo2 Photo1

Figure  12.14 Test rig for hull resistance measurement (Reproduced with permission of Schneider 
Electric)
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Problem 12.3 Product Weighing: Modifications
The process in the previous problem now may not start unless an emptying sequence has been 
performed. Furthermore, should there be a power outage during a run; reconnection of line 
voltage should be handled as follows:

 • A lamp blinks as an indication that emptying must be done.
 • Emptying is started with a push button.
 • The lamp starts shining steadily, solenoid valves SV1, SV2, and SB open, and the mixer 
starts and runs for 15 seconds.

 • After that, the lamp turns off and the normal process can be started again.

Add the necessary modifications in the program from Problem 12.2 to take care of this. You 
can either add steps to the sequence from the previous problem or make your own small 
sequence that runs if a power outage has taken place.

Problem 12.4
The figure below shows a sequence in SFC that has errors and weaknesses. (The actions are 
not included for the sake of simplicity.) What is wrong with this sequence?

A B C

Scale1 Scale2

S1 S2 S3

SV1 SV2

Mixer

SB

Figure  12.15 Mixing process—Problems 12.2 and 12.3 (Reproduced with permission from 
TheLearningPit.com)
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Problem 12.5 Mixing Process
Figure 12.16 shows a sketch of the mixing process at the University of Tromsø, Department 
of Engineering and Safety. The facility consists of the following: tank with pipe, three fluid 
pumps, one mixer, one heater, three level indicators calibrated for various fluid levels, and a 
control panel with signal lights and spring‐loaded push buttons. During operation, two prod-
ucts will be filled into one tank. The mixture will then be warmed up during mixing. When a 
desired temperature is reached, the tank is emptied.

Description of the sequence:

 • In the initiation step, the Ready light will be lit. The sequence will start when the 
Start button is pressed. Then Pump1 starts, the Ready light turns off, and the Run 
light lights.

 • When Level1 gives a high signal, Pump1 stops and Pump2 starts. At the same time, the 
Mixer starts.

 • When Level2 becomes TRUE, Pump2 stops and the Heater is turned on.
 • When the desired temperature is reached, Temp >= 50 °C, the heater is turned off.
 • Five seconds after that, the Mixer stops and Pump3 starts.
 • When the tank is Empty (becomes logically low), the whole sequence is repeated automat-
ically 50 times. Then the Run lamp turns off, and the Ready lamp lights again.

In order to ensure safe operation, some interruption routines must be added. What happens 
during an interruption depends upon what caused the interruption. There are two 
possibilities:

1. Operator activates Stop: No matter where in the sequence the process is working, the 
inlet pumps must stop, the heater turns off, the mixer starts, and the emptying pump 
starts. When the tank is empty, the mixer stops, but the emptying pump continues to 
run for 5 seconds. After that, the facility can be started again by pressing the start 
button.

2. Timer interruption shall occur if:
 • More than 30 seconds elapse from the time Pump1 starts until Level1 gives a signal 
OR

 • More than 20 seconds elapse from when Pump2 starts until Level2 is reached OR
 • More than 1 minute lapses from the time Pump3 starts until the tank is empty OR
 • It takes more than 10 minutes from the time the heater is turned on until the desired 
 temperature is reached.

In all cases, the following should happen:
The active pumps and the heating element must be turned off immediately, and the 

Error signal light must blink. The operator must check the facility and correct any error. 
When this has been done, the operator confirms it by holding in both Start and Stop for at 
least 5 seconds. Then the tank should empty automatically so that the facility is ready for 
starting again.
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Problem 12.6 Batch Process
Make an SFC program for the batch example in Section 4.5.6.

Problem 12.7 Product Sorting
Make an SFC program for the product sorting given in Problem 4.9.

Problem 12.8 Filling Station
Make an SFC program for the filling station given in Problem 4.10.

Problem 12.9 Motor Operation
Make an SFC program for the Motors given in Problem 4.11.

Problem 12.10 Apple Packing
Make an SFC program for running the apple packing facility from Section 4.6.5 and the 
associated state diagram from Figure 4.27.

Pump1

Pump2

Mixer Level2

Level1

Empty

TempT

Pump3

Heater

Run
Ready
Error

Start
Stop

Figure 12.16 Mixing facilities in Problem 12.5 (Reproduced with permission of The LearningPit.com)
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Examples

13.1 Example 1: PID Controller Function Block: Structured Text

The output MV(t) from a PID controller can be expressed mathematically as

 
MV MR P

P

I
P Dt K e t

K

T
e t d K T

de t

dt

t

0  

where

MV(t), manipulating value—MV
MR, manual reset (or bias)
e(t), deviation (between the set point r(t) and the process value y(t))
K

P
, controller gain

T
I
, integration time in seconds

T
D
, derivative time in seconds

13

As the title indicates, this chapter contains only examples. They are practically oriented (but 
partly imaginary) program code examples. The examples are programmed entirely in confor-
mity with the standard as described in this book. 

Chapter Contents

 • Example 1—Function block, ST
 • Example 2—SFC
 • Example 3—SFC
 • Example 4—ST/FBD/SFC
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This function is in a continuous form and cannot be directly implemented in a computer or a 
programmable logic controller (PLC), but with the use of some mathematical approximations 
for the derivative and the integral, the function can be expressed in a discrete form:
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A new quantity has been introduced here, namely, the sampling time T. In practice, this will 
be the update time, that is, how often the expression is executed. In a PLC, one will normally 
insert such a PID block in a task that is updated cyclically, and T will then be the scan time 
for the task. (Note: MV(k−1) is equal to MR on the first execution.) The letter k indicates the 
cycle number. MV(k−1) and e(k−1) are therefore the respective values of the differences 
 between the values of the manipulating value and the deviation from the previous cycle to the 
current cycle.

Below, you will find a function block written in Structured Text (ST) that implements the 
PID controller function. In order to calculate the cycle time T, I have used a func tion from the 
SysTimeRtc library. The function returns the clock of the PLC in milliseconds.

FUNCTION_BLOCK PID
VAR_INPUT

Man_auto  : BOOL; // 0 ‐ Manual, 1‐Automatic
PV  : WORD; // Process value
SP  : REAL; // Set point
MR  : REAL; // Bias – Manual Reset
Kp  : REAL;  // Proportional gain
Td  : REAL; // Derivative time
Ti  : REAL; // Integral time

END_VAR
VAR_OUTPUT

MV  : WORD;  // Manipulating Value
END_VAR
VAR

T  : REAL; // Cycle time
Dev  : REAL;  // Deviation ‐ Difference SP ‐ PV
MV1  : REAL;  // MV value in previous cycle
Dev1  : REAL;  // Difference value in previous cycle
Dev2  : REAL;  // Difference value two cycles ago
T1,T2:ULINT;
A, B  : REAL; // Factors

END_VAR

T1 := T2;
SysTimeRtcHighResGet(pTimeStamp := T2);
T = ULINT_TO_REAL(T2‐T1)/1000; // Determines the cycle time.
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IF T1=0 THEN
MV := MR; // Start value for MV

END_IF

Dev := SP – WORD_TO_REAL(PV); // Deviation

IF Man_auto = TRUE THEN
(* Calculates MV: *)
A := 1 + T/(2*Ti) + Td/T;
B := 1 ‐ T/(2*Ti) + 2*Td/T;
MV:= MV1 + Kp*(A*Dev ‐ B *Dev1 + (Td/T)*Dev2);
(* Updates variables: *)
MV1  := MV;
Dev2 := Dev1;
Dev1 := Dev;

ELSE
(* MV when controller is in manual mode: *)
MV := MR;
MV1 := MV;

END_IF
END_FUNCTION_BLOCK

(Note: You will find a PID FB in CODESYS UTIL library.)

13.2 Example 2: Sampling: SFC

Samples are to be taken from a conveyor belt that transports goods. See Figure 13.1. Every 
10th item will be selected. A sample is taken by stopping the belt while a Piston pushes the 
item off the belt to a testing station. When the system has taken 50 samples, the conveyor belt 
will stop. The belt motor is started again by giving a high signal (Motor) to the contactor K1. 
The motor is protected by a motor monitor (MotorProtect):

 • A capacitive sensor (CapSensor) detects when an item has come into position to be pushed 
off the belt.

 • If the (Stop) button is activated, the belt should stop after the first sample.
 • If the emergency stop (EStop) (NC) button is pushed or the motor protection turns off, the 
facility and the program are stopped immediately. They should start up again in the same 
program state when the start button is activated.

The pneumatic cylinder is single acting, that is, it goes to its plus position when the valve Y1 
receives a high signal (24V DC) and returns to its minus position when the signal goes 
 logically low again. The cylinder has built‐in sensors that give signals when the piston has 
traveled completely out (B+) and completely in (B−).
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13.2.1 List of Variables

Inputs Outputs Internal Comments on  
internal signals

Start Motor NumSamples Total samples taken
Stop Cylinder Count10 Counter to 10
EStop Count50 Counter to 50
MotorProt SFCPause Freezes the sequence
CapSensor
PistonOut
PistonIn

13.2.2 Possible Solution

The solution that follows here is implemented in CODESYS. This means that some implementa-
tion‐specific considerations must be added:

 • Because CODESYS has not implemented the action types P1 and P0 as IEC actions, I have 
used the built‐in Entry and Exit actions.

 • A configurable object called SFCPause can be used in all SFC POUs (see Section 12.6). 
This object may also be explicitly declared as a Boolean object. Since it must be declared 
within the SFC POU, it must be declared as an input variable so that the value transfer from 
other POUs can take place.

 • When SFCPause is set logically high, the execution of the SFC will stop. When the 
object is reset, the execution continues from where it stopped. SFCPause is used here to 
freeze the sequence when the emergency stop is activated or when the motor monitor 
turns off.

M

K1

Motor

F4

B0 – CapSensor

B1 – PistonOut

B2 – PistonIn

Cylinder
Y1

Start

Stop

ES top

Testing station

Motor protect

Figure 13.1 Facility for taking samples
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VAR_GLOBAL
(* Defines variables that are used in several POUs: *)

Start  AT %I2.0 : BOOL;
EStop  AT %I2.1 : BOOL;
MotorProt  AT %I2.2 : BOOL;
Motor AT %Q3.0 : BOOL;
Cylinder AT %Q3.1 : BOOL;

END_VAR

PROGRAM Freeze
(*  Here, SFCPause is set TRUE if the Motor protection or the 

emergency stop is activated. *)
VAR

SetPause : SR;
END_VAR

END_PROGRAM

PROGRAM Safety
(* When the SFC stops, the actions are not performed. Even 
though Emergency stop is physically connected in the 
drive circuits to the actuators, the signals to the 
actuators are also deactivated in the program when the 
sequence freezes. *)

IF Sampling.SFCPause THEN
Motor := Cylinder:= FALSE;

END_IF

END_PROGRAM

On the next page is a POU that contains the sequence for sampling. Comments:

 • When CapSensor detects a new item on the belt (see the NewItem transition code), it acti-
vates the Count step where NumItems is incremented.

 • As long as fewer than 10 items have passed, the sequence goes in a loop back to 
RunBelt.

 • When 10 items have passed, the sequence goes to the TakeSamples step, where the belt is 
stopped, the cylinder piston goes out, and the counter NumSamples is incremented.

 • When the piston is completely out, the next step is activated and the piston returns. The path 
forward depends upon the Stop button and whether or not 50 samples have been taken.
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PROGRAM Sampling
VAR_INPUT
SFCPause : BOOL;  (* Object that must be declared 

explicitly *)
END_VAR
VAR

Stop AT %I2.3 : BOOL;
CapSensor AT %I2.3 : BOOL;
PistonOut AT %I2.3 : BOOL;
PistonIn AT %I2.3 : BOOL;
NumItems  : USINT;
NumSamples  : USINT;
RE1   : R_TRIG; (*  Used in the NewItem 

transition *)
END_VAR

ACTION ResetNum50
NumSamples := 0;

ACTION ResetNumItems
NumItems := 0;

ACTION Count_StepEntry
NumItems := NumItems + 1;

ACTION TakeSample_StepEntry
NumSamples:= NumSamples + 1;

TRANSITION NewItem
RE1(CLK := CapSensor);
NewItem := RE1.Q;
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In the boxes above, you will find the content (in ST code) for the actions and the NewItem 
transition that are called from the SFC sequence. Even though keywords such as ACTION 
and TRANSITION are implicitly given in CODESYS, they are included here in order to be 
a little more consistent with respect to IEC 61131‐3. The figure at the right shows how the 
application is structured in folders in CODESYS. An editor is opened for programming by 
double‐clicking on one of the folders (all of the languages in the  standard can be used).

13.3 Example 3: Product Control: SFC

A producer of freeze‐dried food is monitoring the final product of food bags for any errors in 
marking, wrong weight, or leakage (lack of vacuum). This is done by having the bags trans-
ported down a conveyor belt to a station where they are weighed and a picture is taken with a 
Vision camera (industrial camera). At the end of the belt, there are gates for sorting the bags 
into various categories. See Figure 13.2. Here is a brief description of the facility:

 • Photocells are used to detect items on the belt (BagOnBelt) and to detect whether the bag 
is standing in an upright position (BagUpright) (the bags must be upright for the camera to 
be able to read them).

 • A load cell is used to check the weight. The cell puts out an analog Weight signal. The 
weight must be between 240 and 260 g.

 • The Vision camera is programmed to be able to check whether the label is correctly posi-
tioned and that there are no holes in the bags (they must be crumpled because of vacuum). 
The camera also has its own inputs and outputs. A discrete signal (TakePicture) is used 
to tell the camera that it should take a picture. The program that is in the camera analyzes 
the picture and sets one or more outputs high, depending upon whether there is an error 
with the bag or not. The signals from the camera are given logical names BagOk, 
LabelErr, and Leakage. Note: The signals change only each time a new  picture is taken.

Three gates are placed, one after the other, at the end of the conveyor belt to send the bags 
along in the right lane. Selector1 sends the bags on to lanes (A and B) or (C and D), Selector2 
sends bags down lane A or lane B, and Selector3 sends bags down lane C or lane D. Wrong 
weight has a higher priority than leakage, which has a higher priority than a labeling error. 
Figure 13.1 shows a sketch of the facility.

The gates are turned by single‐action pneumatic cylinders with spring return. The gates are 
normally turned as shown in the illustration, but when the cylinders are given a high signal, 
the gates swing over.
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13.3.1 Functional Description

 • On a Start signal, the belt starts and a bag is fed out (the signal Feeder is set high for 1 second). 
(Note: The feeder is not illustrated in the figure.) After that, if everything is okay, a new bag 
is fed out onto the belt every 5 seconds. Then there is time enough to sort the previous bag 
before a new one arrives at the photocells.

 • When the bag arrives at the weigh station (signal from the photocells goes high), the belt 
stops for 1 second so that the bag can be weighed and the camera can take a picture 
(TakePicture is set high). If only the BagOnBelt signal is high and the BagUpright signal 
is not, an alarm BagDown is set high and the belt remains still until someone lifts up the 
bag. The operator confirms this by activating Start.

 • The gates are set to their proper positions by the return signal from the load cell and the 
Vision camera. The number of bags in each category is to be counted.

 • If Stop is activated, the facility should stop before, or when, the next bag arrives at the 
photocells. Assume that Stop remains high until a new Start signal starts the facility again 
and deactivates the Stop button.

13.3.2 List of Variables

Summary of all signals represented by symbolic names:

Inputs Outputs

Start Feeder
Stop Beltmotor
Weight (analog signal) TakePicture
BagOnBelt Selector1
BagUpright Selector2
BagOk Selector3
LabelErr
Leakage

Gate_1

Photocells

Reflector

A – OK 

B – Wrong weight

D – Label error 
Gate _3

Vision-
camera

BagUpright

BagOnBelt

TakePicture
BagOK
LabelErr
Leakage

Load cell

WeightFeeder
beltmotor 

C – Leakage

Gate_2

Figure 13.2 Product monitoring and sorting
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13.3.3 Possible Solution

As always, there are many possible solutions. Here, we present one of them:
A separate sequence takes care of feeding out bags at a suitable tempo. This takes place 

continually every 5 seconds until Stop is activated or the BagDown alarm goes high. Objects 
that are used in both sequences (POUs) are declared globally. The main sequence (next page) 
handles weighing, picture taking, and sorting as follows:

 • If a bag has fallen over after the photocells, the belt is stopped and the BagDown alarm goes 
high. The sequence does not continue until someone has lifted up the bag and pressed Start. 
Then the alarm is Reset the sequence continues with TakePicture.

 • After 1 second, it is assumed that the load cell has stabilized. The program reads in the 
weight value and sets WeightOk either TRUE or FALSE. (For the sake of simplicity, grams 
were used for comparison.)

 • The gates are positioned and the proper counter is incremented in accordance with the 
information about weight, leakage, and labeling. Note that WeightErr has the highest  priority 
in sorting. Next to that comes leakage.

 • As long as Stop has not been activated, the sequence continues in the Run step.
 • There are two steps in the sequence where no actions are performed (Merge1 and Merge2). 
These steps converge OR branches.

 • Most of the actions are direct actions on Boolean objects, but some actions are programmed 
“outside” the sequence. These are actions for incrementing the number of products and 
managing picture results.

VAR_GLOBAL
Start  AT %IX2.0 : BOOL;
Stop AT %IX2.1 : BOOL;
Feeder AT %QX3.0 : BOOL;
BagDown  : BOOL;

END_VAR

TYPE Camera :  // User‐defined enumerated datatype
(OkBag, LabelError, LeakBag);

END_TYPE

TYPE ProductData :  //  Structured datatype based on Camera
STRUCT //  This is used to store information

PicResult : Camera; // on each product.
Weight : REAL;
ID : UINT (0..10000);

END_STRUCT
END_TYPE

PROGRAM Feed_Bags
END_PROGRAM
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(TRANS_Wait_Feed := Wait.T>t#4s AND NOT BagDown AND NOT Stop;)

PROGRAM CheckBags
VAR
(* Inputs and outputs: *)

BagOnBelt  AT %IX2.2 : BOOL;
BagUpright AT %I2.3 : BOOL;
BagOk AT %I2.4 : BOOL;
LabelError AT %I2.5 : BOOL;
Leakage AT %I2.6 : BOOL;
Beltmotor  AT %Q3.1 : BOOL;
TakePicture AT %Q3.2 : BOOL;
Selector1 AT %Q3.3 : BOOL;
Selector2 AT %Q3.4 : BOOL;
Selector3 AT %Q3.5 : BOOL;
Weight AT %IW4.0 : WORD;

(* Internal objects: *)
WeightOk : BOOL;
BagDown : BOOL;
m  : UINT;
NumOk : UINT;
NumWeightErr : UINT;
NumLabelErr : UINT;
NumLeakage : UINT;
Product : ARRAY[1..1000] OF Productdata;

END_VAR

Finally, we present all the major actions that are called in the steps of the main sequence. 
Note how information about the individual items (ID, weight, and picture result) are stored for 
possible later use and history.
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Actions ACTION ChkWeight
m := m +1;
IF (Weight > 240.0) AND (Weight 
< 260.0)

THEN
WeightOk := TRUE;

ELSE
WeightOk := FALSE;

END_IF;
Product[m].Weight := Weight;
Product[m].Id := m;

END_ACTION

ACTION CntOk
NumOk := NumOk + 1;
Product[m].PicResult: 
= OkBag;

END_ACTION

ACTION CntWeightErr
NumWeightErr := NumWeightErr + 1;
Product[m].PicResult := OkBag;

END_ACTION

ACTION CntLeakage
NumLeakage := NumLeakage  
+ 1;

Product[m].PicResult := 
LeakBag;

END_ACTION

ACTION CntLabelErr
NumLabelErr := NumLabelErr + 1;
Product[m].PicResult := 
LabelError;

END_ACTION

13.4 Example 4: Automatic Feeder: ST/SFC/FBD

Cod spawn are fed in a research facility for marine fisheries. The spawn are separated according 
to genetic origin and size into 300 tanks (tubs). A PLC‐controlled feeding robot is used to feed 
the spawn according to a fixed time schedule.

The robot is motor driven and moves on a rail that is suspended from the roof above the 
tanks. The feeding robot feeds out two types of food, food A and food B, through tubes that 
can be opened and closed by magnetic valves. See Figure 13.3. The type and quantity of food 
that are fed from the robot depend upon the number of the tank.

In order to know when the robot has arrived at the tank, an inductive sensor is placed on the 
feeder to detect metal clips that are fastened on the rail above each tank. The tanks are placed 
so that the robot can follow the rail around the room and in this way come back to its original 
position (position 0). In other words, the rail is installed so that it forms a sort of ring. The only 
information that the program receives about where the robot is, derived by counting the 
number of metal clips that it passes.

The feeding is to take place in accordance with the pattern shown in Table 13.1. The quantity 
is determined by how long the magnetic valves are held open.
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Other requirements and specifications:

 • All of the external equipment, plus switches and sensors, are controlled by/give out discrete 
signals. Handling emergency stops takes place exclusively by means of hardware.

 • At the start, assume that the robot is at the beginning of the rail at position 0 (which is 
marked with a metal clip as the tank positions).

 • At the signal to start, the robot is activated and makes its feeding rounds in accordance with 
Table 13.1. After completing a round, the robot stops and waits in position 0 until it is time 
for the next round.

 • When the switch is set to Stop, the robot should finish feeding the current tank and then go 
to the starting position.

 • The robot moves at a speed that allows it to complete a feeding round at a maximum of 
about half an hour.

Tank 6 Tank 7 Tank 8

Valve A Valve B

Motor

Feeding
robot 

Inductive
sensor Metal

clips 

Food
A

Food
B

Stop – Start

Figure 13.3 Sketch of facility with feeding robot, transport rail, and some of the tanks

Table 13.1 Shows when various tanks are fed, plus quantity, and type of food given

Tank nr. Frequency Food type A Food type B Quantity

1–100 Every hour X 3 seconds
101–200 Every 2 hours X X Both 3 seconds
201–250 Every 2 hours X 6 seconds
251–300 Every 3 hours X X Both 5 seconds
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13.4.1 Planning and Structuring

The most important, and often the most difficult part of the job in developing a control for 
a facility, is to structure the problem. How should one tackle the many requirements and 
how should you manifest the requirements in the program design? There is no fixed 
answer, and the capability for making a structured program code is often proportional to 
experience.

Luckily, this ability is dependent upon wisdom to about the same extent, and we have 
learned some techniques that we can use to help us on our way. One of these techniques is to 
structure the problem by constructing a state diagram.

The challenge in this example is to find a good way of managing the feeding. Different 
tanks must have different quantities of food at different times. In order to accomplish this, we 
must test both tank number and how much time has elapsed. Figure 13.4 shows a state  diagram 
that illustrates the problem.

The states in the diagram are mainly based upon the operations that the robot is to perform: 
run, stop, and feed. A separate state (To_Init) has been included where the robot runs straight 
back to the starting position without undertaking any feeding. This state is activated when the 
operator presses Stop.

When the robot is on a feeding round, it runs until the sensor detects that it is come to a new 
tank. When that occurs, the program jumps to a state (Count) where the robot stops and the 
counter is incremented. In this state, the decision is also made about food type and quantity. 
The results of these tests, which are based on tank number and time of day, activate 1 out of 3 
possible feeding states: Feed_A, Feed_B, or Feed_AB.

On the following pages, we present two equivalent programs for control of the robot. 
Alternative 1 is written in SFC. Alternative 2 is written in ST and FBD.

Init

Count

To_Init

Start AND New_Hour

Feed_AB

StopTankNr > 300 

Feed_A

Feed_B

RE Sensor

Run

Trans_Run

TankNr < 101

HourNr = 2 AND
TankNr>200 AND
TankNr<251

Trans_AB

3 sec

6 sec

(5 sec OR 3 sec)
AND TankNr<250 

Trans_Run:
(HourNr = 1 AND TankNr>100) OR
(HourNr = 2 AND TankNr>250) OR
(HourNr = 3 AND TankNr>100 AND TankNr<251) 
Trans_AB:
(HourNr = 2 AND TankNr>100 AND TankNr<201)
OR (HourNr = 3 AND TankNr>250) 

Figure 13.4 State diagram for robot control
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13.4.2 Alternative 1: SFC

The feeding robot starts a new feeding round every hour, and feeding is done in accordance 
with the specifications in Table 13.1 (and the state diagram). This means that the program 
must also keep track of the time.

The time control is handled here with the help of a separate SFC sequence. The variables 
Start, Stop, HourNr, and New_Hour are therefore declared as global variables.

The two SFCs below are not coded in any program but rather with a separate drawing tool 
(MS Visio). This is done in order to obtain a more compressed diagram but also to show the 
code for all the actions together in the diagram in their own fields under their action types and 
action names. (To what extent this is possible in practice depends upon the implementation.)

VAR_GLOBAL
Start AT %IX3.0 : BOOL; // Start switch (double‐throw switch)
Stop AT %IX3.1 : BOOL;  // Stop switch (double‐throw switch)
Sensor AT %IX3.2 : BOOL; // Detects metal clips on the rail.
Motor AT %QX4.0 : BOOL;
ValveA AT %QX4.1 : BOOL;
ValveB AT %QX4.2 : BOOL;
New_Hour  : BOOL;
HourNr  : USINT;

END_VAR

PROGRAM TimingControl  // Sets the variable New_Hour and 
// increments the variable HourNr

Wait

Start AND NOT Stop

P1

HourNr: = HourNr + 1;
IF HourNr = 4 THEN
    HourNr: = 1;
END_IF; 

Wait.T >= t#1h

One_Hour.T > t#1s

Init

R New_Hour

One_Hour

Init

One_Hour
ActionIncHour

S New_Hour

END_PROGRAM
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PROGRAM MainProgram
VAR

TankNr : UINT;
END_VAR

Run

Start AND NOT Stop AND New_Hour

New_Tank AND TankNr<300

N Motor

To_Init

Stop
N Motor

N ActionNewTank

P1 ActionIncTankNr TankNr > 300 

Init

Trans_Run TankNr < 101 
HourNr = 2 AND
TankNr > 200 AND
TankNr < 251  

Trans_AB

N ValveA N Valve_B

For_A.T > t#3s For_B.T > t#6s

(Feed_AB.T > t#3s
AND TankNr<250)
OR
Feed_AB.T > t#5s 

To_Init
Main sequence

P1 Reset

TankNr=300
AND New_Tank 

Init

N Valve_B

N Valve_A

Run Run Run Run

Run

Count Feed_A Feed_B Feed_AB

Init
TankNr:= 0 

TankNr: = TankNr+1; 

IF New_Tank THEN
TankNr := TankNr+1;
END_IF; 

Count

Feed_A Feed_B Feed_AB

END_PROGRAM

The variable New_Tank that is used in some of the transitions is an output from an R_TRIG 
that tests when the signal from the tank sensor goes high. (In the state diagram in Figure 13.4, 
this is given as “RE Sensor.”)
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The sequence also contains two transistors that are coded outside the sequence in order to 
save space. These are the transistors named Trans_Run and Trans_AB:

TRANSITION Trans_Run
(HourNr=1 AND TankNr>100) OR (HourNr=2 AND TankNr>250) OR
(HourNr=3 AND TankNr>100 AND TankNr<251

END TRANSITION

TRANSITION Trans_AB
(HourNr=2 AND Tanknr>100 AND TankNr<201) OR  
(HourNr=3 AND TankNr>250)

END TRANSITION

13.4.3 Alternative 2: ST/FBD

This program is written with its starting point in the code in alternative 1. The time control is 
also managed here in a separate POU, but this time it is implemented in FBD. The main 
program is written in ST, based upon a CASE structure. (The global variables are the same so 
the declaration is not repeated here.)

PROGRAM TimingControl
(* When an hour has passed, the New_Hour variable becomes 
TRUE. At the same time, HourNr is incremented. When HourNr is 
equal to 4, HourNr is set to 1. In other words, HourNr takes 
on the values 1, 2, and 3. *)
VAR

One_Hour : TON;
Run : RS;

END_VAR
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This time, the main program is implemented in ST. Since the process and facility have a 
behavior that can be described with a set of distinct states, it is natural to use CASE state-
ments.1 The test variable is of the enumerated data type where the separately defined possible 
values of the variable are states from the state diagram.

TYPE States:  (Init, Run, To_Init, Count, Feed_A, Feed_B, 
Feed_AB);

END_TYPE

PROGRAM MainProgram
VAR

State : States := Init;  // Declaration of the test  
// variable State, based on the

New_Tank : BOOL;   // user‐defined datatype States. 
// Initial value is Init.

RE1, RE2 : R_TRIG;
Wait_3s, Wait_5s, Wait_6s : TON;

END_VAR

CASE State OF
Init: // Initial state. Awaiting New_Hour = True

TankNr := 0;
Motor := FALSE;
IF Start AND NOT Stop AND New_Hour THEN

State := Run;
END_IF

Run:  // Runs on to the next tank if Stop is not activated
Motor := TRUE;
RE1(CLK:= Sensor, Q=> New_Tank);
IF Stop THEN

State := To_Init;
ELSIF (New_Tank AND TankNr<300) THEN

State := Count;
ELSIF (New_Tank AND TankNr=300) THEN

State := Init;
END_IF

To_Init:  // Runs the robot back to start position
Motor := TRUE;
RE2(CLK:= Sensor, Q=> New_Tank);
IF New_Tank THEN

TankNr := TankNr + 1;

1 See Section 11.6 on page 339.
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END_IF
IF TankNr = 300 THEN

State := Init;
END_IF

Count:  // The robot has arrived at a new tank. Tests whether  
// feeding should take place
Motor := FALSE;
TankNr := TankNr + 1;
IF Trans_Run() THEN

State := Run;
ELSIF TankNr<101 THEN

State := Feed_A;
ELSIF (HourNr=2 AND TankNr>200 AND TankNr<251) THEN

State := Feed_B;
ELSIF Trans_AB() THEN

State := Feed_AB;
END_IF

Feed_A: // Feeds with food type A
Wait_3s(IN:=ValveA , PT:=T#3S);
ValveA := TRUE;
IF Wait_3s.Q THEN

ValveA := FALSE;
State := Run;

END_IF

Feed_B: // Feeds with food type B
Wait_6s(IN:=ValveB , PT:=T#6S);
ValveB := TRUE;
IF Wait_6s.Q THEN

ValveB := FALSE;
State := Run;

END_IF
Feed_AB: // Feeds with food types A and B

Wait_3s(IN:=ValveA , PT:=T#3S);
Wait_5s(IN:=ValveA , PT:=T#5S);
ValveA := ValveB := TRUE;
IF (Wait_3s.Q AND TankNr<250) OR Wait_5s.Q THEN

ValveA := ValveB := FALSE;
State := Run;

END_IF

END_CASE
END_PROGRAM
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A closer analysis of the state Count will reveal that two of the test conditions that enter into 
the IF statements are not specified. This is because these conditions are implemented as sepa-
rate functions that are called from the main program. There are several reasons that this is done 
in this way:

 • First, the conditions are rather large.
 • Second, the function names will themselves function as a Boolean variable. Since these are 
only logical tests, there are no input arguments to the functions. When the conditions being 
tested in the functions are satisfied, the function name is assigned to the result, that is, a log-
ically high value.

 • The third reason for doing it in this way is to show that it is possible.

Here are the function codes:

FUNCTION Trans_Run : BOOL
IF

(HourNr =1 AND TankNr>100) OR
(HourNr =2 AND TankNr>250) OR
(HourNr =3 AND TankNr>100 AND TankNr<251)

THEN
Trans_Run := TRUE;

END_IF;
END_FUNCTION

FUNCTION Trans_AB : BOOL
IF

(HourNr =2 AND TankNr>100 AND TankNr<201) OR
(HourNr =3 AND TankNr>250)

THEN
Trans_AB := TRUE;

END_IF;
END_FUNCTION
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CODESYS 2.3

14.1 Introduction

This chapter introduces the CODESYS programming tool, version 2.3 (specifically version 
2.3.9.42), developed by Smart Software Solutions GmbH.

There are four reasons why I have chosen to present this particular development tool:

1. CODESYS follows the IEC 61131‐3 standard to a very great extent and is therefore well 
suited for learning programming in accordance with the standard:
 • It supports all five defined languages (+ an extra variant of FBD).
 • All data types are implemented.
 • All of the standard operators, functions, and function blocks (FBs) (plus many more) are 
implemented.

 • Addressing conforms to the standard.
 • Comments, identifiers, and syntax are also in conformity with the standard.

2. CODESYS is a hardware‐independent programming system for PLCs, microcontrollers, 
and other hardware. By this, we mean that the tool has not been developed by a PLC 
manufacturer, but rather that there are many (>250) hardware manufacturers who have 
chosen to use CODESYS as the development tool for their equipment. One example is 
WAGO,1 which, in the course of a very short time, has gained a large market share with 
its controllers and I/O connectors for Ethernet and fieldbuses such as CAN, DeviceNet, 
and so on.

3. The program contains a simulator so that the program code can be fully tested without the 
requirement for hardware. It also comes with a graphic visualization tool.

14

1 WAGO Kontakttechnik GmbH & Co. KG. Check www.wago.com.

http://www.wago.com
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4. Finally, yet importantly, CODESYS can be downloaded free of charge from codesys.com 
(you must register first). The program is in its full version and is not time limited, although 
some additional components are time limited.

CODESYS stands for “controller development system” and offers a simple (?) approach to the 
powerful IE C‐specified programming languages and standardized functions and FBs. In addition, 
it offers a series of other libraries with ready‐made functions for a large number of applications.

Here, we will look at editors, menu selections, usage, and capabilities of CODESYS by 
studying and implementing a concrete project example. En route we will take up the following 
subjects (not necessarily in the order given):

 • Starting CODESYS and defining a new project
 • Configuring a target PLC
 • Setting up communications
 • Adding libraries
 • Defining new program organization units (POUs)
 • Various program editors
 • Compiling the program and correcting syntax errors
 • Defining special data types
 • Running the program with the built‐in simulator or soft PLC

14.2 Starting the Program

After installation, you will probably find the program on the desktop. Look for the 
icon . If the software is distributed by WAGO, it will be installed under C:\Program Files 
(x86)\WAGO Software\CODESYS V2.3, and you will find it on the Start menu, probably 
under Programs\WAGO Software\CODESYS.

Start the program by double‐clicking on the icon or the filename CODESYS.exe.
Have a little patience and a program window will open as shown in Figure 14.1. If the 

program has been run previously on your machine, the last project will open. If you want to 
define a new project, you must in that case select New on the File menu (or click on the New 
button in the row at the left of the CODESYS window).

Figure 14.1 Starting a new project



CODESYS 2.3 355

Specify a controller, if any
CODESYS will now ask you if you want to specify which “target” (software PLC, ordinary 
PLC, or other hardware) you are working with. Search through the list (configuration) until 
you find the proper hardware. Possibly, you could choose “3S CODESYS SP PLCWinNT” if 
that is installed. This is a soft PLC you can choose to install together with CODESYS. If you 
have not made this choice or do not have any hardware, you can select None. You will still 
have the capability of testing your code by using a built‐in simulator.

In the window in Figure 14.2 below, I have selected the PLC 750‐881 from WAGO, which 
is a controller with Ethernet connection.

Make a new POU and store the project
You will now get questions about whether you want to define a POU (see Figure 14.3). If you 
do not want to do that now, you can click on Cancel. You can define as many POUs as you 
want or need later. If you select OK without changing any of the selections, the software will 
define a default program POU with the name PLC_PRG.

You can naturally use another name or select a different language.
A little review about POUs:

 • A POU can be a function, an FB, or a program.
 • A POU can be associated with actions and can call up other POUs.
 • Every POU consists of a declaration part and a code part.
 • The code is written in one of the IEC standard’s programming languages that include IL, ST, 
SFC, FBD, or LD, in addition to the proprietary CFC.

 • Standard FBs such as timers and counters are found in the standard.lib library. These are 
automatically included in the new project.

Figure 14.2 Specifying the Target with settings
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Before you go any further, it could be a good idea to save the new project. Click on the Save 
button or select Save (or Save As) under the File menu, select the location, and give your 
project a name. (In Figure  14.4, you will see that I have called my project Hello World.) 
CODESYS automatically adds .pro after the filename.

14.2.1 The Contents of a Project

A project contains all the objects in a PLC program, including the following elements: the 
POUs, data types, visualizations, and resources. This last includes libraries, targets (PLCs), 
and the configurations of these.

Figure 14.3 Defining a new POU

 

 

Declaration  
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Figure 14.4 Main elements, menus, and windows



CODESYS 2.3 357

In the following, we will discuss many of the menu choices (the ones that are not  self‐
explanatory) and explain the essentials of using the software.

14.3 Configuring the (WAGO) PLC

Double‐click on “PLC configuration” that you find under Resources (Figure  14.5). See 
Figure 14.6.

Right‐click on K‐Bus (this is the bus that handles communications with the modules and 
that is integrated into the PLCs from WAGO). Select Edit and the configuration window as 
shown in Figure 14.7 will open.

Now you can add the modules that are connected to your target node (PLC). Click on the + 
sign on the menu line or right‐click and select Add. Look around in the library until you find 
the module you want. Figure 14.8 shows an example of a completed configuration.

It is important that the modules follow in the same order in which they are mounted from 
left to right in the PLC rack and that you select the correct module variant if there are several 

Figure 14.5 Alternative choices for the module 750‐565 (an RTD module)

Figure 14.6 Configuration of WAGO PLCs
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Figure 14.7 The configuration window

Figure 14.8 Example of a configuration
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choices. This last item is important because one variant, for instance, may assume that four 
bytes are generated in the I/O card, while another variant of the same module perhaps assumes 
two bytes.

If you choose wrong, you will find that all your addressing is wrong and that you will not be 
able to get into contact with your I/Os. This is true for the WAGO module 750‐464, for instance, 
which is an RTD module that can be configured as four two‐wire inputs or two three‐wire inputs.

WAGO offers a special tool for configuring the modules, the WAGO IO‐CHECK. The 
program can also be used to accomplish an entire configuration. This is done most simply by 
utilizing the scanning functionality in the tool for scanning a connected PLC to find the mod-
ules that are connected. IO‐CHECK does not find all the modules unambiguously, so a little 
correction is necessary. When you are satisfied, you can export the configuration to an XML 
file that can be opened within the CODESYS configuration window.

A screen capture from WAGO IO‐CHECK is shown in Figure 14.9.

Figure 14.9 Screen capture from WAGO IO‐Check
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It is also possible to open IO‐CHECK directly from the configuration window in 
CODESYS. You will find a button for this on the tool line. Therefore, you can scan the 
PLC for modules and correct the list if necessary, either in IO‐CHECK or in CODESYS. 
It can happen that after you have pressed Save and closed IO‐CHECK, you find that 
CODESYS is uncertain about one or more modules. In that case, a small window will 
appear where you must specify exactly which variant of the module you have mounted 
in your rack.

Note: In order to be able to scan the PLC, you must first get into contact with it. We will 
look at this in the next section.

14.4 Communications with the PLC

In order to be able to send program code to the PLC or to scan the PLC for modules, we must 
first establish communications. Here, you have several choices; you can communicate with a 
PLC that is:

 • Locally connected to your PC via a service cable
 • Connected to a network where the communications go via Ethernet and a local gateway (see 
next section)

 • Connected to a network where the communications go via Ethernet through a gateway that 
is on another PC in the network

Click on Online on the menu line in CODESYS and select Communication Parameters. 
Then you will get the window shown in Figure 14.10.

Figure 14.10 Configuring communications parameters
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14.4.1 The Gateway Server

On the right side of the window in Figure 14.13, you will find a button marked Gateway. This 
is a communications server that starts automatically when you start the PC. You will find a 
symbol for the server down at the lower right in the Windows Taskbar. When you go online 
with the PLC, you will see that this symbol lights up.

If you are only going to communicate with a PLC that is connected to the same PC as you 
were working on, you do not need to do anything more with the gateway. If you need to com-
municate with a PLC that is connected to another PC, then you must specify a password in the 
gateway to the PC that the PLC is connected to.

If you right‐click on the symbol, you will see some choices such as Inspection → Settings. 
Here, you can specify a password, among other things (see Figure 14.11).

Figure 14.11 Configuration of the gateway server
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14.4.2 Local Connection via Service Cable

If this is the first time that CODESYS is being used after installation and you do not have a 
communications setup that you can reuse, select New. In the window that opens then, you can 
specify a new channel by giving it a name and selecting a driver.

If you are going to communicate with the PLC via a service cable, select Serial (RS232) as 
shown in the figure below (I gave my channel the name Local_Com). Then click OK and you 
will go back to the previous window.

Now you have to specify the correct Com port. You are probably using a USB cable, so in 
practice this is a virtual Com port. The easiest way to find out which Com number was assigned 
to the port when you plugged in the cable is to go to the Start menu in Windows and select 
Devices and Printers. (Mine was assigned COM8.)

Then keep clicking in the Value field on the port until the proper number is shown (Figure 14.12).

Figure 14.12 Specification of Com port



CODESYS 2.3 363

14.4.3 Via Ethernet

Specification of communication is much like that for the serial port; only now we choose the 
driver 3S TCP/IP (or possibly the specific WAGO Ethernet TCP/IP):

Give the channel a suitable name and press OK. Then specify the PLC’s IP address 
(Figure 14.13).

The IP address can be set statically by the PLC in question, or it can be assigned by the 
Dynamic Host Configuration Protocol (DHCP). You need to know this anyway. If you are 
using a PLC from WAGO, you can use the WAGO Ethernet Settings tool which you can get 
free of charge from WAGO Support.

Figure 14.13 Specification of IP address
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14.4.3.1 WAGO Ethernet Settings

Open the program and select Settings. In the window that opens, then select “Search device.” 
Then the window shown in Figure 14.14 will open. If you know which subnetwork mask your 
PC has, you can search all connected units on that subnet (possible addresses from 1 to 255).

In the figure below, the program has found my unit and the address it has been assigned in 
the network. (If there are several PLCs connected, check the MAC address of the unit you 
wish to connect to.)

14.4.4 Communication with a PLC Connected to a Remote PC

In the communications window, you will see a button marked “Gateway.” When clicked, you 
will be able to specify whether you want to communicate using the local gateway (address 
localhost) or via the gateway on another PC. In this latter case, you must specify the remote IP 
address and a password given on the gateway in that PC:

Figure 14.14 Search for the PLC’s IP address in WAGO Ethernet Settings
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14.4.5 Testing Communications

When you have provided the necessary values in CODESYS, you can test whether you have 
contact with the PLC by going to the menu Online → Login. If you get contact, you will prob-
ably pull up the following window:

Select Yes and your project (with your configuration plus the default specifications) will be 
uploaded into the PLC. To test whether you have configured correctly, you can again open 
the configuration window. Here, you can read the status of the digital inputs and manipulate 
the status of digital outputs (by clicking in the boxes associated with the individual outputs) 
(see Figure 14.15).

A red arrow pointing right marks an output and a yellow arrow pointing left marks an 
input.

14.5 Libraries

When you define a new project, the library standard.lib is automatically loaded. You can 
check this for yourself by double‐clicking Library Manager, which you will find under 
Resources. Then the window shown in Figure 14.16 will open. The standardl.lib library 
includes, among others, all the POUs of the FB type that are defined in the standard. 
These are:

Bistable RS and SR
Counters CTU, CTD, and CTUD
Timers TON, TOF, and TP
Triggers R_TRIG and F_TRIG
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Figure 14.15 Analysis of addresses and tests of (digital) I/O

Figure 14.16 Default library in a new project
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The library also contains the standard string functions along with a few other FBs that are 
offered by CODESYS. (Since these are not defined in the standard, they will not be discussed 
here.) You can call up information about the selected FB by clicking on a particular FB in the 
contents list.

There is also a series of other libraries that accompany the installation of CODESYS which 
you can add. To do that, click with the right mouse button in the window where the standard.
lib library is displayed and select Additional Library. You now will be able to look around in 
the catalogs for other libraries.

A library that has been mentioned in the book is Util.lib. You will find this under the catalog 
…\CODESYS V2.3\Library. In this library, you will find, among other things, controllers 
such as a PID plus a series of FBs for mathematics and signal processing. An external source 
for a library that contains hundreds of functions and FBs is OSCAT, which you can download 
free of charge on the Internet.

If you have programmed some POUs that you think you could use again, it is also 
possible to save a project as a library by selecting Save as… and specifying type .lib. (If 
you wish, you can export the project by selecting Export… under Project in the menu 
and saving the project to a file that you can import into another project by selecting 
Import….)

14.6 Defining a POU

Click on the POU banner down to the left in the CODESYS window. Then right‐click in the 
window above (where the overview of your POUs is shown). Then select Add Object… and a 
new window opens (see Figure 14.17).

Figure 14.17 Defining a new POU
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Specify the desired name and type and select the programming language. In the figure, 
there is defined a POU of the type FB named MyFirstPOU and the language selected is LD. 
Click OK and the code and declaration window to our new POU will open.

In the upper part of the window, you can declare variables and instances of FBs that you 
need, and in the lower part of the window, you can enter the code itself. CODESYS has a built‐
in functionality for “Autodeclaring” which is activated by default. This means that a window 
for declaration pops up when you write a new variable name in the code window. (You can 
deactivate this under the menu Project → Options → Editor.)

14.7 Programming in FBD/LD

To take a concrete example that shows the use of the graphic language editors, we will implement 
a code that accomplishes the following functionality:

Suppose that we have a facility with several pumps, all of which should start at a certain time after 
a Start button is activated and stopped at a certain time after a Stop button is activated. The delay 
should be capable of being set differently for each pump. Each pump also has its own Start and 
Stop buttons.
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Here, it is a good idea to make a special FB that handles the input and output connec-
tions of a pump and then to make a little program that we use in each instance of the FB 
for each pump that is to be controlled. We will make this FB in the following in both FBD 
and LD.

14.7.1 Declaring Variables

We began by coding our FB. We can solve the functionality for this by using an RS flip‐flop 
for starting (Set) and stopping (Reset) and two timers to provide the delayed connection and 
delayed disconnection. Make a new POU of type FB called PumpControl and select FBD for 
the language.

When we now go to upload the code, there are several ways to proceed. We can first declare 
the necessary instances of FBs that we need—two timers and one RS block—or we can utilize 
the autodeclaration function in CODESYS. For the sake of illustration, we will choose a 
combination here.

Click in the programming field with the right mouse key and select Box (or key 
Ctrl+B on the keyboard). CODESYS will now set up an empty box which by default is 
a two‐input AND operation. In order to change this, you can double‐click on the word 
AND (if the word is not already highlighted) and press F2 on the keyboard. Then the 
Input Assistant will open where you can look around for the desired function or FB 
(Figure 14.18).

Figure 14.18 Input Assistant (F2)
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If you know the name of the FB or the function you want, you can also write it (in this case 
you can write RS). After you have made your choice, press Enter. Now you will have created 
the following code:

Click on the question marks on the top side of the block and write in the name you want, 
for example, OnOff, and press Enter. You will then get the following window:

Here, you can just press OK, but note that you are specifying an internal instance of an RS 
(a standard FB) with the name OnOff. Under “Class,” you can instead specify that it is to be 
declared globally, that is, be accessible to all POUs. The selections VAR_INPUT and VAR_
OUTPUT are seldom used in conjunction with declaration of an FB instance, but we will soon 
use these as well for declaration of other variables.

After you have pressed OK, you will see that you have got a new line in the declaration field 
between the keywords VAR and END_VAR.

Now we will declare some general variables we need. Click in the declaration field, move 
the cursor to after VAR_INPUT, and press Enter. Write in the following:

xOn : BOOL;
xOff : BOOL;
tOnDelay : TIME;
tOffDelay : TIME;

Similarly, after the keyword VAR_OUTPUT, you write

xOut : BOOL;

Note the syntax with a colon before the data type and a semicolon after the data type. Note 
that if you forget a semicolon, for example, this can generate many error messages later on. 
Use the Tab key to tidy up a little. Choose the variable names yourself. Here, a lowercase x has 
been used to denote a Boolean variable and a lowercase t to show that the data type is TIME. 
Since there are several input variables, we have also used names there to make it simpler to 
identify them.
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Also declare two timer instances of type TIME as internal objects (under VAR), to which 
you give the names OnTime and OffTime, in addition to another RS block with the name Run. 
Your declaration window will now look something like this:

14.7.2 Programming with FBD

We will now add more code based on the use of the objects and variables already declared. 
Note that instead of writing in the variable names in the code, you can press F2 and select 
them from the list of variables that have already been declared:

 • Click on the question marks on the left side of the existing block OnOff and enter the vari-
able xOn for the SET input and xOff for the RESET1 input.

 • In the same way, click on the right of the output from the block (to the right of Q1). You will 
see a little square that indicates that you can insert something there. Right‐click and select 
Box again. Overwrite AND with TON to enter a timer. Give this the already declared name 
OnTime. Replace the question marks on the PT input with the variable tOnDelay.

 • Insert a new box in the square to the right of the timer. There you specify an RS to which 
you assign the declared name Run. You will now have the code:

 • Now right‐click on the little line that marks the RESET1 input in the Run block and insert 
a new box. That will be the second declared timer, OffTime. Connect the PT input to the 
variable tOffDelay.
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 • Then insert a box by right‐clicking the little line before IN on OffTime. Now replace AND 
with NOT in order to indicate an inverter. As the input to this, we will use the output from 
the RS block OnOff. CODESYS does not offer the functionality in FBD to insert vertical 
“wiring,” so instead, we must use “object referencing.” Therefore, write OnOff followed by 
a full stop (a dot). A list of the object’s inputs and outputs will then pop up. Select Q1.

 • Finally, it remains only to indicate what will come out as the result of our code. Click with 
the right mouse key in the square after the Run block and this time select Assign to make an 
output connection. Replace the question marks with xOut. The finished code for your FB 
should look like this:

Since this is an FB, we unfortunately cannot test it until we have made a program that calls 
it up. We will do this in the next section.

Some other things about the use of the FBD editor:

 • A good alternative to the NOT function is to use the built‐in inversion functionality. All 
input and output signals on the block can easily be inverted by right‐clicking on the line in 
question and selecting “Negate.” That will bring up a little circle on the line to indicate that 
the signal is being inverted.

 • Similarly, there is a built‐in Set–Reset functionality that you can also activate by right‐clicking. 
You can then choose that a variable associated with a signal from a block is set high (Set) when 
the conditions permit it so that it is kept high until it is set low (Reset) some other place in the code.

 • You can specify a label at the top of each network. This is used to identify the network if you 
have the need to jump to a named network in the code.

 • You can also comment in the various networks. To insert a comment in the network, you can, 
for instance, right‐click on the gray field at the left of the network (where the network number 
is) and select “Comment.” That will give you an opportunity to write in a comment.

14.7.3 Programming with LD

To demonstrate some of the functionality in the LD editor, we will now implement an FB in 
LD that functions in a similar way to the program we wrote in the previous section. We could, 
with a few changes, implement the FBD code directly in LD, but then we would not have 
thrown much light on the typical LD elements.

Make a POU of the FB type, this time choosing LD as the language. For instance, you can call 
it PumpControl_LD. In order to avoid writing a declaration for the variables again, you can high-
light the declarations from the previous POU (select everything beginning with VAR_INPUT 
through the last END_VAR) and copy (Ctrl+C). Make the corresponding selection in the new POU 
(so that you replace the keywords that were there previously), and paste in (Ctrl+V) your copy.
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Here, we are going to use Set and Reset coils instead of the RS blocks (just for the fun of 
it…). So delete therefore the Run‐block declaration. Then change the data type of the object 
OnOff from RS to BOOL. We will now insert the code shown in Figure 14.19.

One possible procedure for inserting the code is as follows:

 • Click on the symbol for a Contact in the menu (‐| |‐). You can either right‐click and select 
“Contact” or use keys Ctrl+K. You will now have produced a contact in your code with 
question marks above it. Write in the variable name xOn.

 • Click on the line at the right of contact and select the symbol for a Set coil on the menu (S). 
On the upper side of this, you can enter the variable OnOff.

 • Insert a new rung (right‐click “Rung After”) and insert a similar code as above, but this time 
with the variable xOff on the contact and a Reset coil connected to OnOff.

 • Insert still another rung with a new contact that is here connected to the variable OnOff. Click 
to the right of the contact and insert the timer OnTime. You will find a button for timers in the 
menu, or you can right‐click and select from the list. Specify tOnDelay on the PT input.

 • Then insert a Set coil after the Q‐output to the timer. Connect it to xOut
 • Copy the previous rung by first clicking on the gray field to the left of the network and press 
Crtl+C directly followed by Ctrl+V. You will now have made two identical rung. In the latest 
rung, change the names to OffTime and tOffDelay. Then right‐click on the contact and 
select “Negate” to get an inverted contact. Right‐click on the coil symbol and select Set/
Reset to change the coil to a Reset coil.

Figure 14.19 Our FB implemented in LD
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Now it is finally time to test our FBs. So make a new POU in LD of the type Program, or 
use MyFirstPOU if you made it previously.

We will now insert an instance of our FBs in the code window. Select “Box with EN” from 
the menu or right‐click the menu. (This implies that the box we are inserting gets an Enable 
input that will automatically be connected to the power rail in LD so that the code in the block 
will be executed in any event.)

Now click on AND in the box that comes up and press F2 to open Input Assistant. Click 
“User‐defined Function Blocks” and select one of your FBs:

As you would expect, we need to give our instance a name and connect variables to the inputs 
and outputs. You can therefore declare the necessary objects beforehand in the declaration field. 
(Note: Times can be specified directly in the code so we do not need to detour through any 
variables for the inputs.)

In the declarations shown in the following, I have included the necessary objects and variables 
to control two pumps (testing both of my FBs). If you do not have a PLC connected and want to 
run the code in simulator mode, you drop the addresses.
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14.8 Configuring Tasks

All the programs that we want to download in a PLC must be connected to a task. If this is not 
done, the programs will not be compiled by CODESYS or transferred to the PLC. As described 
in Chapter 5, one can define several tasks of different types and with differing priority. One or 
more POUs of the program type can therefore be associated with each task. This also means 
that your project can contain programs that are not necessarily related to each other; you will 
determine yourself which ones you want to test or run.

Go again to the Resources banner and double‐click on “Task configuration.” A window will 
open in which you can define new tasks and associate programs:

Right‐click on “Task configuration” at the top of the window and select “Append task.” 
Then specify the name and indicate the desired type of task (and any priority). In 
Figure 14.21, I have defined a cyclic task named MyTask with a cycle time of 100 ms, 

Figure 14.20 Code for calling our FBs
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which means that the program that is associated with this task will be executed 10 times 
per second.)

To associate a program, right‐click on the name of the task and select “Append program 
call.” You will now have the opportunity to look around for the program that you want to con-
nect to. You can also write in the name of the program. (Here I have entered our little program, 
MyFirstPOU.

14.9 Downloading and Testing Programs

If you are not connected to a PLC, you can still test your program because CODESYS contains an 
integrated simulator. Go to the Online menu and activate this by clicking on “Simulation mode.”

Even though you can now directly try to compile and run the program by selecting Online 
→ Login, it is recommended that you first try compiling only the code in order to discover 
any errors. You do this by selecting Project → Build from the menu line or by pressing F11. 
You will then pull up a message window that informs you about errors or tells you that all 
went well. If you get an error message that reports a syntax error, you can double‐click on 
the message in question. The program pointer will then, hopefully, point to the position of 
the actual error in the code. (Note that it is not certain that the compiler will be able to iden-
tify uniquely where the error is located or what is wrong. Sometimes, it only indicates the 
symptoms from the error.)

Figure 14.21 Defining a new task
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Correct any errors and then go to Login. You will then get the following message:

Click on Yes and your desired code will be downloaded to the PLC (or the simulator). Set 
the PLC (simulator) on Run by pressing F5 or clicking on Online → Run.

Note that you also have access to such frequently used functionalities via a special row of 
buttons under the menu line:

Run Stop LogoutLogin

Now we can hope that your program will run and that you can test it by manipulating 
values. To do that, you can double‐click on the desired variable. If this is a Boolean variable, 
the text < := True will appear on the right side of the variable. (Double‐clicking on it again 
will change it to False.) See Figure 14.22.

The variable, however, has not yet changed state. In order for this to take place, you must 
write the desired value to the PLC by selecting Online → Write Values (Ctrl+F7).

Note that if you are working with a physical PLC, you cannot manipulate variables connected 
to an input in this way because the PLC will scan your inputs and overwrite your attempt to 
change the variable. Instead, you can select Online → Force Values (F7). Similarly, you must 
use “Force Values” if you want to manipulate values for variables (outputs) that are updated 
from the code.

In this way, you can test your code for various combinations of signal states. If you double‐
click on an analog variable, you get the capability of writing in a new value. It is also possible 
to manipulate values in FB instances, as Figure 14.23 shows.

Note that you can open several windows while you are online, so that you can check 
anything that is taking place in user‐programmed FBs that are called up by your program.

14.9.1 Debugging

Debugging is a powerful and extremely useful functionality for testing the code and looking 
for logical errors. By adding one (or more) so‐called breakpoints, the program execution will 
stop when it reaches a breakpoint. For example, you can run the program one instruction at a 
time and in this way closely follow what happens when the program is running in order to 
discover errors and weaknesses in your code.

When you are online, click on the gray field on the left of an instruction or a network. See 
the figure below where I have done this for network 2 in my program.
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Figure 14.22 Test of program

Figure 14.23 Online manipulation of PT values to a timer
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The execution of the program will then halt there and wait for an action from the user. Press 
F8 (Online → Step In) to run the next instruction or network. If the network contains a call to 
another POU, this will be opened in the editor so that you can continue to run one instruction 
at a time in the called POU. When all code lines have been executed there, the program pointer 
will return to the next network in the main program. Finish debugging and run the program as 
normal by selecting Run (F5) again.

Step over (F10)
If you do not need to debug the code in a called POU, you can select “Step over” instead. Then 
the code in the called POU will be executed in its entirety.

Single Cycle (Ctrl+F5)
This selection means that the PLC will perform one single cycle. It can be useful if you want 
to check whether a counter functions, for instance.

14.10 Global Variables and Special Data Types

To close this chapter, we will take a quick look at how you can declare global variables and 
define your own special data types.

Under the Resources banner, you will find Global_Variables. Just double‐click and a 
window will open. All the variables you declare there will be global, which is to say they can 
be used in all POUs. Global variables can also be used for addresses or given as initial values, 
for instance. Note that if you have a local variable in a POU with the same name as a global 
variable, the local one will be used by the program.

Definition of special data types is useful in some situations. This applies particularly to enu-
merated data types and structured data types. This latter can be used to declare variables that 
have submembers (see, e.g., Section  13.3, where we define a structured data type called 
“ProductData”).
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You will find a special banner for data types in CODESYS. Right‐click the folder 
“Datatypes” and select “Add object.” Write in the desired name and click on OK. The figure 
below shows the definition of an enumerated data type called States:

Special data types are used in the same way as the standard types. The declaration below shows 
an example of a declaration based on the States data type, together with the use of a couple of 
standard data types. Note that you can also provide an initial value for enumerated types:
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CODESYS Version 3.5

This chapter introduces very briefly the CODESYS programming tool, version 3.5 (service 
pack 3), developed by Smart Software Solutions GmbH.

You will find many similarities between the two CODESYS versions but also some 
differences, especially regarding the integrated development environment (IDE).1

15.1 Starting a New Project

After starting the program, you will get a screen image that looks approximately like the one 
shown in Figure 15.1. You can select whether you want to:

 • Start a new project (File → New Project)
 • Open an existing project (File → Open Project)
 • Upload code from a PLC connected through the Gateway (File → Source upload)

15

Chapter Contents

 • Start CODESYS and define a new project
 • Add libraries
 • Define new POUs
 • Declare user‐defined datatypes
 • Declare variables and instances of standard functions and function blocks
 • Compile programs and correct syntax errors
 • Configure and use the Gateway Server
 • Run, monitor and debug the program with the built‐in software PLC

1 Integrated development environment.
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When you select New Project, a window like the one shown in Figure  15.2 will open. 
Assume here that you are going to write a program code for one device. The simplest thing to 
do then is to select “Standard Project” because this will save you a little configuring. Remember 
to give the project a reasonable name and to specify where you want it to be saved. Press OK.

The selection of “Standard Project” also means that CODESYS will define the following 
automatically:

 • A POU with the name PLC_PRG the associated application
 • A cyclic Task where the POU “PLC_PRG” is called up every 200 ms
 • References to the newest available libraries (containing standard and supplier‐defined 
functions and function blocks)

All this can be altered easily with a little configuration. This means that you can define your 
own POU with your own name, change the cycle time for the task or change the task type to 
freewheeling or event based.

After you have pressed OK, the program interface will appear roughly as shown in 
Figure 15.1, but the POU window and the Device window at the left will now contain more 
information. The selected project name will appear on the CODESYS title line and as the root 
folder in the POU and Device windows.

15.1.1 Device

Figure 15.3 shows how the folder structure in the Device window can look for our specific 
project. The Device window in CODESYS is a separate window that, if it is not already being 
displayed, you can show by selecting View → Devices. In this window, you will specify, 
among other things, which unit (PLC) is to be used. The Standard Project automatically con-
tains the built‐in soft PLC. In the project, this can have the name Device (CODESYS Control 
Win V3), depending upon which version of CODESYS you are using. If desirable, you can 
rename the Device name to, for instance, My_PLC.

Figure 15.1 Start‐up window
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Note that the automatically generated POU, PLC_PRG, is deleted from the folder structure. 
The reason for this is that all code is stored in separately defined program units in the POU 
window. We will get back to this in Section 15.2.

You can, of course, also specify a different (physical) PLC instead. This can be done by 
right‐clicking on the root folder and selecting Add Device. This will open a window that 
shows all available and compatible PLCs. By available, I mean PLCs that you have installed 
Target files for.

Figure 15.2 Defining a new project

Figure 15.3 Units
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Figure 15.4 Library management

Note: If you first mark the existing Device (here PLCWinNT) and then right‐click on Add 
Device, you will pull up a different list. It shows an overview of couplers that you can select 
if you have units in the PLC rack for communication over a fieldbus, for example.

15.1.2 Application

An application is a collective concept for a concrete set of program codes, task configurations, 
and library references. It is quite possible to work with several applications simultaneously, 
because you can select which application is to run on the PLC (or in the simulator). For each 
application, we can configure how the programs will be executed. For example, some programs 
can run cyclically, others freewheeling or event based. It is also possible to build up hierarchical 
structures of several applications and run multiple applications on the same device.

Library Manager

If you chose “Standard Project” when you set up the project, your project will automatically 
contain an application with references to the latest version of the standard library. You can 
check this for yourself by double‐clicking on the folder. This will pull up a window like the 
one shown in Figure 15.4.
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This standard folder has been selected here, and the contents of the folder are shown in the 
figure, below on the left of the window. Among other things, we recognize the standard 
function blocks such as RS, CTU, and TON. The standard library also contains functions that 
are not implemented by separate operators. This applies to string functions such as LEN and 
CONCAT, among others.

In addition to the standard library, you can choose to use functions and function blocks from 
many other special libraries. Simply select “Add library” and gorge yourself in a plethora of 
libraries.

Task Configuration

Here, you can configure the existing tasks or add any new tasks. The purpose of tasks is partly 
to organize the program, mostly to control how the program is executed in the device. See also 
Sections 1.3.3 and 5.3 for more information about tasks.

Often your project will consist of only one task. Then you do not need to do anything but 
check that the cycle time is satisfactory and that the program‐type POUs you want to run are 
assigned to a task. See Figure 15.5. The figure shows that the individual POUs can be added 

Figure 15.5 Task configuration
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to the desired task and that the sequence in which the codes are executed can be 
predetermined.

15.2 Programming and Programming Units (POUs)

The other window at the left in the user interface has the name POUs. This window will 
 contain all of the POUs that you program, some programs, functions, and function blocks, as 
well as some objects such as:

 • Self‐defined data types and structures (DUT—data unit type)
 • Global variables
 • Visualization objects

You can find out what folder structure the POU window can contain by right‐clicking on the 
root name (your project name) in the window and selecting Add Object. See Figure 15.6.

(Selecting Device here has the same effect as in the Device window, namely, adding a new 
device in the project that will appear in the Device window.)

If you select a new program object (POU), the window will look like the one shown in 
Figure 15.7. (Here, you can choose the type of POU and the language you wish to program 
in.) As you progress on the project, the POU window will contain more objects.

Figure 15.8 shows the POU window for our project. As we see, the project in question 
 contains the following objects, among others:

 • Two programs (marked PRG)
 • Four functions (marked FUN): Trans_0 to Trans_3
 • An enumerated data type (marked ENUM)
 • Global variables

The icon in front of the program folders also shows which language was used to program 
the POU in question. The rest of the objects in the window contain project information such as 
project name, version number, developer, and so on, and configurations for security, compiler 
version, permitted users, and others.

Figure 15.6 Objects that can be added
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As you open the programs, variables, or DUT objects, the code will be shown in a program 
editor on the right side of the screen. You can have as many objects as you wish simulta-
neously open. They will be arranged under individual banners in the program editor 
(Figure 15.9).

Figure 15.7 Adding a new POU

Figure 15.8 The POU window
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No matter which language you use to program the POUs, all of the objects will have a dec-
laration field at the top where you declare the POU by name and type and declare variables. 
The window below the declaration field contains code in the language selected. If you use a 
graphical language, you will also have access to a special menu with objects that you can 
insert into the program code.

15.2.1 Declaration of Variables

Even though it is possible, and recommended, you do not need to declare variables in advance. 
If CODESYS does not recognize an identifier that you write, a window will come up automat-
ically for declaration of variables (Figure 15.10).2

Figure 15.9 Larger extract from CODESYS that also shows a program editor

2 This function is called Auto declare and can be configured away if desired.
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The window will already contain the name of the POU and the identifier, but you must 
specify what type of variable you are declaring. If desired, you can give an initial value, and if 
it is an I/O type, you can specify an address.

As you declare variables, they will come up in the declaration field in the program editor. 
You can naturally edit the variable list subsequently if desired. When using “Auto declare,” the 
variables have a tendency to come up every which way in the field, and then it can be a good 
idea to group them, according to data type, for instance. There can also be a need to write 
comments in the declaration field.

15.3 Compiling and Running the Project

When you are done programming, or even better, while you are still writing the program code, 
you must compile the project. (Note: Remember to configure tasks and be sure that all of your 
programs are assigned to a task.) In order to compile, you select Build on the menu (Figure 15.11):

If it is not already open, a message window will open. See Figure 15.12. Here, there will be 
information about the result of compilation. All syntax errors in the program will be shown 
with information about what is wrong and where in the code this takes place. Usually you will 
need to interpret this information in order to correct the errors:

Figure 15.10 Auto‐declaration window

Figure 15.11 Compiling and building menu
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When everything is right, it may possibly look like this (Figure 15.13):

Now, all that is needed is a little configuration of communications, and then you are ready 
to download the program to the (software) PLC.

15.3.1 Start Gateway Server and PLS and Set Up Communications

When the computer starts, a couple of CODESYS‐related services will also start up automat-
ically. These are the CODESYS Gateway and the CODESYS SP (SP = soft PLC). You will 
then have the following symbols on the line for task management in Windows (at the bottom 

right of the screen):  and .

If they do not look quite the same as shown here, it is because they are not running (or per-
haps because you are using an older version of CODESYS). If they have not started, you can 
click with the right mouse key on the symbols and start the services.

The next thing you must do is to set up a communications link between CODESYS and the 
PLC. This must be done even if the PLC is the built‐in soft PLC. Perform the following three 
steps to set up the communications:

Figure 15.12 The message window with errors and warnings

Figure 15.13 A successful build
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1. Open the dialogue window for communications.
2. Scan the network for available PLCs and select the desired Device (PLC).
3. Set the active path.

Open the Dialogue Window for Communications

This opens automatically if you try to connect to the PLC without first having configured the 
communications. We normally open this by going into the Device window and double‐clicking 
on the PLC unit, for instance, My_PLC (PLCWinNT). Either way, you will pull up the follow-
ing window (Figure 15.14):

This window shows a Gateway already configured. If you do not have a Gateway already 
configured, select “Add Gateway.” Then specify the name and define the driver type TCP/IP 
and “IP address” localhost.

Scan the Network for Available PLCs

Press the Scan network button. Hopefully, the PC will then find the connected PLC or soft 
PLC. Note: Make sure that the one you want to use is up and running, either in the form that 
the service has started (software PLC) or that the physical PLC is connected to the PC and is 
powered.

It can happen that you will be shown several choices, either because you have several ver-
sions of software PLC installed or that your PC is connected to a network where several PCs 
are running with associated software PLCs. If there is only one soft PLC running, the window 
can look like this (Figure 15.15):

Figure 15.14 The communication settings window
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Here, the available unit has been given the name of the computer, with a port address in 
parentheses). When you click on the unit, you will get information about the unit on the right‐
hand side in the form of name, supplier, and version.

Set the Active Path

You do this by clicking on the unit that has come up under the Gateway and select Set active 
path. The desired connection will now be in bold.

Now, you can (if desired) close the configuration window for the Device, go to the main 
menu in CODESYS, and log in:

Figure 15.15 Scanning the network and choosing target
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You will probably get the following window:

Press Yes and the project will be downloaded to the PLC. Finally, all that is left is to set the 
PLC on RUN to run the program. This is also done with the Online menu.

Though it is not covered here, CODESYS version 3.5 has, as version 2.3, good functional-
ities for debugging and forcing of variables.

15.4 Test Problems

Problem 15.1
(a)  Open CODESYS and start a new project. Select “None” as Target. (We will use a simu-

lator that is built into CODESYS.) Make a new program POU named Roots, and select as 
T (Structured Text) as the programming language. Store the project somewhere and give 
it a reasonable name.

(b)  Go to the Resources banner → Task Configuration and define a new cyclic Task called Main 
with cycle time set to 1 second. Connect your POU to the Task and close this window.

Soon we will write the following program code into our POU:

Root : B*B −4*A*C;
IF Root < 0.0 THEN

Nroots := 0;
X1 := X2 := STRING_TO_REAL (‘NaN’);
Info := ‘No real roots’;

ELSEIF Root = 0.0 THEN
Nroots := 1;
Info := ‘Concurrent roots’;
IF a <> 0 THEN

X1 := X2 := (−B+SQRT (Root)) /  (2*A);
ELSE

X1 := X2 := 0;
END_IF

ELSE
Nroots := 2;
X1 := (−B−SQRT (Root)) / (2*A);
X2 := (−B+SQRT (Root)) / (2*A);
INFO := ‘Two real roots’;

END_IF;
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(c) Declare all the variables you need to for the code above.
(d) Write in the code and compile the project (F11 or Project → Build). Fix any syntax errors.
(e)   Go to Online → Simulation mode. Transfer the code to the Simulator (Online → Login). 

Set the simulator to RUN (Online → Run). Now, your program is running.
Now, we will test the program for various values of the input parameters A, B, and C. 

The values of the variables can be changed by double‐clicking them and writing in a new 
value. When you are ready to change the values, go to the menu Online → Write Values 
or press Ctrl+F7 on the keyboard. Then the new values will be transferred to the PLC 
simulator.

(f) Change the values online to A = −2, B = 3, and C = 2. What is the result?
(g) Now, change the value of A to A = 2. Now, what is the result?
(h) Now, change the value of B to B = 4. What do you get now?
(i) What does this program do?
(j)  Try to improve the program so that you get an answer when the values of variables are 

like those in item g.

Problem 15.2
We will now convert the program in Problem 15.1 to a function block.
(a)  Make a new POU, this time type Function block. Give the POU the name Find_roots. Use 

ST as the programming language again.
(b) Copy the program code and variable declaration from the POU in Problem 15.1.
(c)  Convert the variable declaration so that A, B, and C now become input variables; X1, X2, 

and Info become output variables and the rest (Roots and Nroots) as ordinary internal 
variables.

(d)  Make still another new POU, type Program, and call it Calling_Fun. Select FBD as the 
language. Then go to Task Configuration and add this POU to your Task. (You can now 
remove the program call that is there from previously, but this is not necessary.)

(e)  Declare the following variables in Calling_Fun: X, Y, Z, Root1, Root2, and Text. The last 
one is type STRING, the others are type REAL.

(f)  We will now call up our function block (Find_roots) from the Calling_Fun POU. Go to 
the code window and click with the right mouse key. This opens an input assistance 
window where you can browse for POUs and other things. Go to “User‐defined Function 
Blocks.” Here, you will find your FB. Select it and press OK.

(g)  Give the block a name and write something above the block, Roots, for instance. Again, 
you will get an input assistance window where you again must find your FB.

(h)  Now, connect variables to your block’s inputs and outputs. In order to access block’s 
outputs, you need to click on the— on the first output with the right‐hand mouse key and 
select “Assign.”

(i)  Test the new program with the same values as in Problem 15.1 and check that it works 
properly.
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actions, 115, 226–227, 294, 317–322
actions in SFC, 307, 308, 313, 317–322
actuators, 14, 22, 45–51
A/D converter see analog‐to‐digital (A/D) converter
addressing, 170–171, 181, 184

direct, 176–179
indirect, 182
of I/O, 179–180

alternative branch, 120, 310
analog input modules, 12, 17, 72–75

configure, 55, 69
connecting analog sensors, 67–71
properties of, 72–75

analog output modules, 75–76
analog sensors see sensors, analog
analog signals, 52–77, 241
analog‐to‐digital (A/D) converter, 12, 53, 55,  

56, 58, 72
AND, 88–89, 227–230
arrays, 167–168, 181–185, 301

declaration using ARRAY, 181–182
multi‐element variables, 180–184
using in ST, 301

ASCII, 163–164
assembler, 146
AT, 179, 180

binary, 21–22, 86, 87, 158–161
binary‐coded decimal (BCD), 85
binary numbers, 82–83

bitstring, 158
BOOL, 144, 158, 159, 191, 199
Boolean, 94, 108, 109, 191–192, 227–237
Boolean algebra, 87, 93–97
BYTE, 83, 178

cables, 65–67, 70
conduction loss, 59–60
cross‐section, 65–66, 69, 76
shielding, 66

calibration, 64, 72, 75
calling

function blocks, 207–208, 215, 218–219
functions, 215, 275, 301
programs, 218–219

capacitive proximity detectors, 29, 31
CASE‐statements, 290–292, 294
central processing unit (CPU), 8, 143, 149
CHAR, 163, 200
class, 164, 243, 370
CODESYS v2.3, 246, 353–380

configure tasks, 375–376
debugging, 377–379
declaring variables, 369–371
download program, 376–379
POU, defining, 367–368
programming in FBD, 371–372
programming in LD, 372–375

CODESYS v3.5, 157, 381–394
adding device, 383

Programmable Logic Controllers: A Practical Approach to IEC 61131-3 using CODESYS, First Edition. Dag H. Hanssen. 
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd. 



Index 397

declaring variables, 388–389
download program, 390
POU, defining, 386
tasks, configure, 385–386

coil symbols (in LD), 226, 231
combinatorial, 97
comments, 239–240
common (COM), 40, 42–44
communication, 8

with a PLC, 357, 360–365
comparison, 194–195
compiler, 146, 149
conduction loss, 60
configuration of PLC, 21, 142, 365
constants, 173
contactor, 47–48
contact symbols (in LD), 225, 243
conversion, 73, 82

between data types, 199
between number systems, 86–87

counters, 211–213
counting down (CTD), 207, 211, 212
counting up (CTU), 207, 211, 212
counting up/down (CTUD), 207, 211, 212
count up (CU) see counters
CPU see central processing unit (CPU)
CTD see counting down (CTD)
CTU see counting up (CTU)
CTUD see counting up/down (CTUD)
current value (CV) see counters
cycle time, 18
cyclic execution, 19, 136, 145

data structures, 168, 182–184
data types, 156, 158–169

bitstrings, 158
converting between, 197–199
enumerated, 167, 169
generic, 164–165
numerical, 158–161
structured, 166, 168–169
user‐defined, 166–169
value limitation, 166

DATE, 162, 163
DATE_AND_TIME (DT), 162, 163
debugging, 150–151, 377, 379
declaration of

function blocks, 207–208, 218
functions, 188, 218
variables, 171–174, 388–389

De Morgan’s theorem, 95
detector see sensors, logical
digital input modules, 11, 18, 20–51, 159

connecting sensors, 39–44
properties of, 44–45

sink/source, 41–42
2‐wire sensors, 40–41

digital logic, 87–91
digital output modules, 12, 18, 49–51

actuators, 45–51
relay outputs, 12, 47–48, 50–51
transistor outputs, 13, 49–50

digital sensors see sensors, logical
digital signals, 22, 108, 276
DINT, 165, 167, 197
DT see DATE_AND_TIME (DT)
DWORD, 159, 160
dynamic errors, 61

editors, programming, 147–148
elapsed time (ET) see timers
enable and enable out (EN/ENO), 203–204, 219
encoders, 15, 34–37

absolute, 35, 36
incremental, 35
potentiometer, 36–37
tachometer, 37

enumeration, 167, 172, 292, 294
erasable programmable ROM (EPROM),  

9, 39
exclusive Or (XOR), 87, 90, 191, 227

FALSE, 93, 120, 173, 191, 208
FB see function blocks (FBs)
FBD see function block diagram (FBD)
filter, 45, 53–55, 75
finite‐state machines, 114
first‐scan (first‐cycle) flag, 247, 249, 259
flags, 17
floating‐point, 158, 160, 161
flowcharts, 97–107, 124

vs. LD‐programming, 248–252
FOR‐loops, 298, 299
freewheeling, 18–19
F_TRIG, 233, 273, 284
FUNCTION, 202
functional table, 91, 92
FUNCTION_BLOCK, 213
function block diagram (FBD), 6, 134, 241,  

262–277, 371–372
in CODESYS, 265, 267, 273
edge detection, 273
functions and FBs, 266
rules of execution, 264–265

function blocks (FBs), 134, 139, 206–220
calling in ST, 283–288
counters, 211–213
declaration and calling, 207–208
F_TRIG and R_TRIG, 207, 208
other FBs, 216–217
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function blocks (FBs) (cont’d)
RS and SR, 209–210
standard FBs, 280, 355
timers, 210–211
user‐defined, 266–268

functions, 134, 139, 187–205
arithmetic, 138, 192–193, 241
bitstring, 199–200
boolean, 191–192
comparison, 194–195
in LD/FBD, 240–241
selection, 197
standard functions, 188–191
text‐string, 200–201
type conversion, 197–199
user‐defined, 262, 266–268

gateway server, 361, 390
Grafcet, 148, 306

hexadecimal, 83–84, 87, 160
high‐level languages, 146–148

%I and %Q, 108
identifiers, 153–154, 169, 174, 179
IEC 61131-3, 6, 133–151

comments, 154–155
datatypes, 158–169
identifiers, 153–154
improvements with, 136–137
keywords, 154
literals, 156–157
pragmas, 156–157
program structure, 141–145
variables, 169–176

IF‐statements, 288–290
IL see instruction list (IL)
inductive proximity detectors, 27–29
initial state, 110, 115, 123, 246
initial values, 173, 380
initiation step, SFC, 307–308
inputs and outputs, 10–13, 17, 210
instruction list (IL), 134, 139–141, 147
INT, 156, 158, 193, 197
integer, 158, 160
integer division, 268–271
I/O‐addressing, 178
I/O‐list, 15, 250

keywords, 154, 163, 166, 172

labels (in LD), 239–240
Ladder see Ladder diagram (LD)
Ladder diagram (LD), 139, 146, 223–261

boolean operations, 227–237
edge detection, 233–234

vs. flowcharts, 248–252
functions, 240–241
labels, comments and jumps, 239–240
programing using CODESYS, 372–375
rules of execution, 237–240
vs. sequence diagrams, 235
Set/Reset coils, 230–233
vs. state diagrams, 253–258, 292

least significant bit (LSB), 83
libraries, 365–367
light barriers, 25
limit switches, 24
literals, 157
location prefix, 176
logical function, 87, 91–93, 109
LWORD, 159, 160

4–20 mA, 59–61, 64, 67
machine code, 147–151
macro‐step, 105–107, 117
magnetic valve, 48–49
MOD, 193, 269
Modicon, 5
most significant bit (MSB), 83, 86, 159, 177
motion diagram, 110

negative logic see NPN output
NI1000, 62–63
noise, 64–67
normally closed (NC), 26, 112, 225
normally open (NO), 26
NOT, 89, 191
NPN output, 27, 40, 43 see also sink/source
number systems, 82–87

BCD, 85–86
binary, 82–83
conversions between, 86–87
decimal, 82
hexadecimal, 83–84

Omron, 43, 73, 85, 135, 140, 170–171
Open Source Community for Automation Technology 

(OSCAT), 216
operators, 189, 281–283
optical coupler, 11
OR, 89, 227, 229
overflow, 193

PCWorx, 216
percent sign (%), 176–177
photocells, 30–32
PID see proportional–integral–derivative (PID)
PLC see programmable logic controller (PLC)
PNP output, 27, 40, 43, 44 see also sink/source
positive logic, 27, 42
POU see program organization unit (POU)
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power supply, 8, 10
pragmas, 156–157
preset value (PV) see counters
pressostats, 37
process, 7, 10
programmable logic controller (PLC), 3–19, 156, 

158, 193, 207
configure in CODESYS, 392
main components, 8–10
operating cycle, 18–19
the origin, 3–7
traditional PLCs, 134–136, 156, 182

program organization unit (POU), 143, 187, 279
calling of, 188
defining in CODESYS, 355, 356, 367–368

programs, 170, 217–220, 259
calling, 218–219

proportional–integral–derivative (PID), 145, 332
protection of code, 214
proximity sensor see sensors, digital
pseudo code, 116, 130
PT see timers
PT100, 68–71, 75–77

four‐wire connection, 70
three‐wire connection, 70–71
two‐wire connection, 69–70

qualifier, 317
quantification, 57–58

error, 57

radio frequency identification (RFID), 38–39
RAM see random access memory (RAM)
random access memory (RAM), 9, 39
REAL, 165, 173, 199, 267
reed switch, 25–26
relay, 46–48
relay diagram see Ladder diagram (LD)
relay output, 12–13, 47–51
REPEAT‐loops, 298
reserved words see keywords
resistance temperature detector (RTD), 62–65, 68–71, 

357, 359 see also PT100
resource, 142–143
response time, 55, 61, 76
retain values, 174
RFID see radio frequency identification (RFID)
RS flip‐flops, 207, 214, 245, 248, 253, 369
RTD see resistance temperature detector (RTD)
R_TRIG, 208, 232, 233, 246
rung, 231, 237–240

safety, 15, 24–25
sampling, 57
scan time see cycle time
Schneider electric, 28

semantic errors, 150, 151
sensors, 22–24
sensors, analog, 69, 72

connection of, 67–71
properties, 72
PT100, 68–71, 75, 76
standard signal format, 59
thermistor, 76
thermocouple, 59, 61–62, 68, 72

sensors, logical, 24, 26, 39–44
capacitive, 29–30
encoder, 34–37
inductive, 27–29
with NPN/PNP output, 27, 43, 44
photocell, 30–33
potentiometer, 36
sink/source, 41–42
tachometer, 37
ultrasonic, 33
2‐wire sensor, 40–41
3‐wire sensor, 40

sequence diagrams, 107–113, 125
sequential design, 97–113
sequential function chart (SFC), 121, 141,  

306–330
actions, 307, 313, 317–322
branches, 308, 311, 323
design technique, 323–326
special objects (reset, pause), 323
steps, 307, 310, 312–314
timers, built‐in, 308
transitions, 307, 310, 314–317

set/reset coils, 232
SFCPause, 323, 326
shift register, 199
signed integer, 159
simultaneous branch, 100
sink/source, 41–42
SINT, 159
size prefix, 177
solenoid, 48–49

switches, 37, 49
valves, 48–49

source code, 147–151
SR flip‐flops, 207
Standard.lib, 216, 355, 365, 367
standard, the see IEC 61131-3
state‐based design, 113–124
state diagrams, 114–117

vs. LD‐programs, 260, 271
vs. ST‐programs, 280–281, 301

states, 114, 121, 129
selection of, 123–124

state table, 116–117
static errors, 61
STEP7, 216
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steps, 106, 310, 312–314
string, 173, 200–201
STRUCT…END_STRUCT, 168
structured programming, 244–258

LD vs. flowcharts, 248–253
LD vs. state diagrams, 253–258

structured text (ST), 146, 148, 278–305
calling FBs, 283–288
CASE‐statements, 280, 290–292
FOR‐loops, 299
functions and operators, 281–283
IF‐statements, 288–290
program structure, 280–281
REPEAT‐loops, 300
vs. state diagrams, 292–297, 344
using Arrays, 182
WHILE‐loops, 298

switches, 24–26
limit, 24, 25
magnetic, 25–26
toggling, 24

symbolic names, 171, 176
syntax errors, 149–150

breakpoints, 151

T#, 163
tachometer, 37
tasks, 18, 143–144

defining in CODESYS, 390
telemecanique, 5, 25, 39, 193
thermistor, 64
thermocouples, 61–62, 72
TIME, 158, 313
time literals, 162–163
Time_Of_Day (TOD), 162, 163
timers, 210–211
TOF, 210
toggling switches, 24
TON, 210
top‐down design, 105–107
TP, 207, 210
transducer, 22–24, 59
transistor output, 49–51
transitions, 120–121, 123

mutually exclusive, 121, 325
in SFC, 307, 327, 344

transmitter, 21, 64, 72
TRUE, 93, 191, 194
truth table, 87
two’s compliment, 160
TYPE…END_TYPE, 166, 168

UINT, 165, 174
ultrasonic sensor, 33
Unified Modeling Language (UML), 114
unsigned integer, 158
User‐defined FB, 266–268
user‐defined functions, 266–268
USINT, 159, 165

VAR…END_VAR, 174
variable names see identifiers
variables, 169–176, 179–186

declaration of, 171–174, 176, 180–186
global, 170, 172, 174–175, 379–380
initial value, 172, 173
vs. I/O, 176, 178–180
local, 172, 173
multi‐element, 180–186
retain values, 174
structured, 171, 379

variable types, 176
CONFIG, 180
CONSTANT, 173
EXTERNAL, 174
GLOBAL, 173, 386
RETAIN, 174
VAR_INPUT, 175, 214, 370, 372
VAR_OUTPUT, 174, 214, 219, 244

WAGO PLC
configuring in CODESYS, 357–360
Ethernet settings;360, 363–365
I/O‐CHECK, 359

watchdog, 17, 150, 300
WHILE‐loops, 298
2‐wire sensors, 40–41
3‐wire sensors, 39, 40
WORD, 159, 188, 191, 197
WSTRING, 163, 164, 200

XOR see exclusive Or (XOR)
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