
Programmable
Automation

Technologies
An Introduction to

CNC, Robotics and PLCs

Daniel E. Kandray, P.E.

Industrial Press Inc.

New York

Library of Congress Cataloging-in-Publication Data

Kandray, Daniel.
 Programmable automation / Daniel Kandray.

 p. cm.
 Includes bibliographical references.
 ISBN 978-0-8311-3346-7

 1. Manufacturing processes--Automation. 2. Machine-tools--Numerical
control--Programming. 3. Robots, industrial--Programming. 4. Programmable
controllers. I. Title.
 TS183.K365 2010
 670.42'7--dc22

 2009047466

Industrial Press, Inc.
989 Avenue of the Americas
New York, NY 10018

Sponsoring Editor: John Carleo
Interior Text Management: Chris McCauley
Interior Text and Cover Design: Janet Romano
Developmental Editor: Kathy McKenzie

�������	
���
������������
������������������������ ������
������
	����

!��
���"
�
����#�$%�������$������	
�������&����'	������ ������������
��
	����#��

����������� %�����
�����������������
������������
���&������
�%�����
����%�

���

������������ �������#��%���
	��
�
	�����%��������#�
	��������	���

Figure Credits Courtesy of :
AIM, Incorporated, Addison, IL, Figure 3-7
Fanuc Robotics, Copyright ��Figures 6-24, 6-25, 6-26, 6-27.

��������(����)����*����+����,����-����.����
�����

xiii

Preface
For many years I taught an engineering technology course on robotics and flexible

automation. I found that books that covered the fairly familiar concept of robotics were
available, as were books that did an excellent job with computer numerical control (CNC)
and programmable logic controllers (PLCs). However, books that truly addressed flexible
automation were not so easy to find. In fact, it was very difficult to find a single text that
incisively and usefully addressed all these engineering technology topics. So, throughout
the years I collected and organized necessary and important information concerning
flexible automation, from various sources, and disseminated it to my students. Armed with
these notes, students would not need to purchase several books that would cover the
course topics. Eventually, I decided to write the present book; with it I hope to fill a
significant void in the literature.

Flexible automation is the use of a conglomeration of manufacturing equipment
organized or connected into a single entity called a manufacturing cell. Manufacturing
cells contain an assortment of material handling equipment, including robots and CNC
processing equipment. Most often the cell’s activities are orchestrated and directed by a
PLC. The robot, CNC equipment, and PLC make the cell “flexible,” as they can be
programmed and reprogrammed to perform a wide variety of tasks and produce different
products. This single text addresses all three technologies of robotics, CNC, and PLCs.

Yet, “flexible automation” is, in fact, a misnomer. While it is true that the term is
appropriate for a specific manufacturing cell in which the technologies are employed,
when grouping robotics, CNC, and PLCs under a collective banner, one should highlight
what these technologies have in common—namely, “programmability.” Therefore, these
technologies are collectively named “programmable automation technologies,” and this
book is so titled: Programmable Automation Technologies: An Introduction to CNC,
Robotics and PLCs.

While I was writing this text, the nation’s—indeed the world’s—economy plunged
into a severe recession. To rise from the current economic turmoil the manufacturing
industry must become more productive, a goal that is readily achievable through
automation. Programmable automation technologies are the building blocks from which
all automation is developed. Hence, the urgent need to improve productivity and become
more competitive in the global economy should motivate a significantly greater interest in
programmable automation.

The present text is organized into a four sections, which follow a logical sequence of
inquiry. The first section is introductory: Chapter 1 provides some background on
manufacturing and defines programmable automation. Chapter 2 explains calculation
methods used to justify automation expenditures, as motivated by productivity concepts.
The second section treats computer numerical control: Chapter 3 introduces CNC

xiv Preface

technology, Chapter 4 discusses CNC programming, and Chapter 5 addresses CNC
simulation. Robotics is covered in the third section in much the same way that CNC was
covered in the second section: Chapter 6 introduces robotics technology and Chapter 7
goes over both robotic programming and simulation. (Note that robotic simulation does
not have a dedicated chapter.) The last section of the text addresses PLCs: Chapter 8
introduces PLCs and Chapter 9 covers programming and simulation of PLCs. Finally,
Chapter 10 concludes the text with a discussion of how all three technologies are brought
together to create a programmable automation cell.

Engineering technology students at two- and four-year colleges comprise the book’s
primary audience. However, anyone with a technical background and a general
understanding of manufacturing and manufacturing processes will find this text useful, as
well as to those who wish, simply, to study and understand the use of these technologies.

Engineering technology is an applied science, so its students need to learn much more
than theory: They need also practical knowledge, skills, and abilities that will allow them
to readily apply automation technology. For this reason, the text offers plentiful examples
and identifies and discusses readily available simulation software with which the reader
can experiment.

I welcome and look forward to feedback from students, instructors and the general
reader. Please write to me at info@industrialpress.com and the publisher will forward
your messages to me.

Dan Kandray
April, 2010

TABLE OF CONTENTS vii

Preface xiii

Chapter 1 1
Introduction to Programmable Automation 1

1.2 The Manufacturing Process 2
1.3 Automation 11
1.4 Manufacturing Performance Measures 20
1.5 Benefits of Automation 22
1.6 Automation Strategies 24
1.7 Summary 26
1.8 Key Words 28
1.9 Review Questions 28
1.10 Bibliography 29

Chapter 2 31
Automation Justification and Productivity Concepts 31

2.1 Automation Justification and Productivity 32
2.2 Productivity Calculations 32
2.3 Process Outputs and Mathematical Concepts for
 Quantifying Production 35
2.4 Process Inputs and Manufacturing Costs 48
2.5 Comparing Alternatives with Productivity Calculations 53
2.6 The Impact of Production Volume on Alternatives 62
2.7 Productivity and the USA Principle 67
2.8 Summary 68
2.9 Key Words 70
2.10 Review Questions 70
2.11 Bibliography 73

Chapter 3 75
Introduction to Computer Numerical Control (CNC) 75

3.1 Introduction to CNC Technology 76
3.2 CNC System Components 82
3.3 Coordinate Systems and Reference Points 96
3.4 The Ten Steps of CNC Programming 105
3.5 Advantages and Disadvantages of CNC Technology 107
3.6 When to Use CNC Technology 109
3.7 Summary 110
3.8 Key Words 112
3.9 Review Questions 112
3.10 Bibliography 114

viii TABLE OF CONTENTS

Chapter 4 115
CNC Programming 115

4.1 Overview of CNC Programming 116
4.2 Program Code 120
4.3 Cutting Parameters 162
4.4 Program Organization 166
4.5 Programming Process 169
4.6 Turning Programs 176
4.7 Summary 182
4.8 Key Words 183
4.9 Review Questions 184
4.10 Bibliography 188

Chapter 5 191
CNC Simulation Software 191

5.1 Overview of CNC Simulation Software 192
5.2 Installation and Setup of CncSimulator® 195
5.3 User Interface 201
5.4 Simulation Examples 219
5.5 Summary 249
5.6 Key Words 250
5.7 Review Questions 251
5.8 Bibliography 255

Chapter 6 257
Introduction to Robotics Technology 257

6.1 Industrial Robotics 258
6.2 Robot Hardware 261
6.3 Robot Applications 280
6.4 Robot Safety 283
6.6 Robot Selection Considerations 287
6.7 Summary 288
6.8 Key Words 290
6.9 Review Questions 291
6.10 Bibliography 292

TABLE OF CONTENTS ix

Chapter 7 293
Robot Programming 293

7.1 Robot Programming Concepts 294
7.2 Programming Methods 295
7.3 Robot Programming Languages 301
7.4 Robot Program Development, Organization, and Structure 304
7.5 Writing Robot Program of Instructions 335
7.6 Robot Simulation 343
7.7 Robot Program Simulation Example 366
7.8 Summary 371
7.9 Key Words 372
7.10 Review Questions 372
7.11 Bibliography 373

Chapter 8 375
Introduction to Programmable Logic Controllers (PLCs) 375

8.1 Programmable Logic Control Overview 376
8.2 Industrial Process Control 378
8.3 PLC Terminology 385
8.4 PLC Hardware Components 387
8.5 PLC Applications 389
8.6 Sensors and Actuators 390
8.7 Implementing Automation with PLCs 408
8.8 Summary 413
8.9 Key Words 416
8.10 Review Questions 416
8.11 Bibliography 417

Chapter 9 419
Programming PLCs 419

9.1 Programming Concepts 420
9.2 Ladder Logic Terminology 428
9.3 Typical PLC Instruction Set 431
9.4 PLC Programming Process 441
9.5 PLC Program Simulation 452
9.6 PLC Programming Example 470
9.7 Summary 483
9.8 Key Words 485
9.9 Review Questions 486
9.10 Bibliography 487

x TABLE OF CONTENTS

Chapter 10 489
Automated Workstations and Work Cells 489

10.1 Automated Workstations and Work Cells 490
10.2 Workstation and Work Cell Components 493
10.3 Automated Workstation and Work Cell Examples 501
10.4 Summary 506
10.5 Key Words 506
10.6 Review Questions 506
10.7 Bibliography 507

Index 507

1

Chapter 1
Introduction to Programmable Automation

Contents

1.1 Introduction to Programmable Automation

1.2 The Manufacturing Process

1.3 Automation

1.4 Manufacturing PerformanceMeasures

1.5 Benefits of Automation

1.6 Automation Strategies

1.7 Summary

1.8 Key Words

1.9 Review Questions

1.10 Bibliography

Objective
The objective of this chapter is to introduce the reader to programmable
automation, define automation in general, and to introduce the ideas of when and
where automation is applied.

2 Chapter 1

1.1 Introduction to Programmable Automation
Programmable automation technology is a remarkably useful tool for manufacturing

engineers/technologists who seek to improve manufacturing systems of their respective
industries. It combines mechanical, electrical, and computer technologies that have been
developed for very specific automation capabilities. The term “programmable automation
technology” actually refers to three individually distinct technologies that have a common
thread: programmability. These technologies are computer numerical control (CNC)
technology, robotics technology, and programmable logic control (PLC). Each, in some
form, either directly or indirectly, is used in almost all modern automation systems—one
is unlikely to walk into a modern manufacturing facility without observing one of these
technologies in action. This, however, has not always been the case.

Initial migration to programmable automation was gradual, hampered by the
complexity, expense, and, in some cases, poor reliability of early systems. Additionally,
utilization of the technology required that companies retain technical experts specifically
devoted to the implementation, programming, and maintenance of the systems. However,
over the last 25 years programmable automation technology has greatly matured: Modern
systems are standardized, substantially less complicated and expensive, and extremely
reliable. Whereas use of this technology was initially the domain of specialists—
particularly engineers—now virtually every member of an engineering or maintenance
staff is expected to use the technology at some level. In fact, it is now imperative that
mechanical engineers and technologists—who used to avoid “electrical stuff”—have a
solid foundation in it. Hence, the goal of this text: to instruct any member of an
engineering team so he or she may comfortably delve into the automation arena.

Before we properly define “programmable automation” and develop a full
description of its capabilities, we first must present an understandable picture of
manufacturing in general. In the following section we explore manufacturing and define
some of its key terms. Subsequent sections define automation in general and
programmable automation in particular. The concept of productivity will be introduced,
and the last few sections will address reasons for automation, corresponding benefits of it,

and ways automation can be implemented.

1.2 The Manufacturing Process
1.2.1 Manufacturing overview

Manufacturing, regardless of the industry under consideration, is a conversion
process. Some form of raw material is brought into a manufacturing facility and converted
into a more useful finished product. The conversion is accomplished by applying a series
of manufacturing steps, or manufacturing processes, to the raw material. Manufacturing
processes alter the raw material’s shape, appearance, physical and mechanical properties,
and/or assemble it with other components into a desired finished product. This is achieved

Introduction to Programmable Automation 3

through the use of equipment, tools, and supplies combined with the application of labor,
time, and energy.

The way that manufacturing operations are organized within the facility defines plant
layout. The term “manufacturing system” of the facility refers to the plant layout and
worker execution of the operations. The manufacturing system used is determined by the
product(s) characteristics. Figure 1-0 shows the plant layout of an imaginary facility, the
XYZ Company. XYZ Company manufactures widgets. As the layout indicates, bar stock
is processed into a widget through a series of manufacturing processes, which include
sawing, turning, milling, and painting. Each manufacturing process executes a systematic
sequence of operations called a program of instructions. When a program of instructions
is complete for one manufacturing process, the product is routed to the next process.

Figure 1-0 XYZ Company plant layout

Note that the factory must perform operations in addition to manufacturing processes
to create the product. The product must be moved between the manufacturing processes. It
must also be inspected at some point to ensure that it satisfies the customer’s requirement.
Additionally, someone must optimize the processes, schedule the operations, monitor
labor usage, schedule maintenance, coordinate material handling, control inventory, and
make sure the product is shipped on time. These activities do not contribute to the
conversion process of the product per se. However, they are critically important to the
manufacture of the product. The manufacturing processes and other activities combined
are called manufacturing operations. Typical manufacturing operations found in factories
include:

• Manufacturing processes
• Material handling
• Quality control
• Manufacturing support.

Mills

Painting

Lathes

SawRaw Material

Stock

Shipping

Widget

4 Chapter 1

Each manufacturing process is designed to accomplish a very specific raw material
conversion step. Thus, the number of manufacturing processes and the way they are
organized within the facility are determined by the product(s) made. Manufacturing
processes might include shaping processes such as molding or machining, property-
enhancing processes such as the heat treating of steel, surface processes such as cleaning,
coating, or painting, and various types of assembly processes. Assembly processes can be
permanent, as in the case of welding, soldering, brazing, or adhesive bonding. However,
some assembly processes are considered semi-permanent. Semi-permanent assembly
processes typically include various types of mechanical joining, such as what is
accomplished with the use of threaded fasteners, rivets, and expansion fits. All
manufacturing processes are said to add value to the product; but, the other three
operations—material handling, quality control, and manufacturing support—do not add
value and are often the first targets for automation.

The way manufacturing operations are organized within a facility defines its plant
layout. The term “manufacturing system” refers to both plant layout and worker execution
of operations.

1.2.2 Defining the product
A given manufacturing facility may turn out only one product, a variety of models of

one product, or many different products. Products may be as simple as a paper clip or as
complex as a photocopier. Additionally, the facility might make only one product per
year, or it might turn out millions of products. A product is either continuous, such as a
liquid like gasoline, or it is discrete, like an automobile. (This text focuses on
programmable automation of manufacturing processes and systems for discrete products
only; continuous product manufacturing processes and systems will not be addressed.)
Taken together, these distinctions make up the product definition and are naturally related
to the manufacturing system(s) used within the facility.

The choice of manufacturing system employed for a discrete product is a function of
the manufacturing product definition, which encompasses three main factors:

• Product complexity
• Product variety
• Product quantity.

These factors provide the most complete picture of the type of manufacturing
system(s) needed to make a product economically.

The level of a product’s complexity is tied to the level of difficulty in the manufacture
of that product. In general, product complexity is an indication of whether the product is a
small, simple, single component, as is the case with the widget made by the XYZ
Company, or a large and complex product, like a nuclear submarine, which has numerous
complex individual components. Obviously, the manufacturing systems that would

Introduction to Programmable Automation 5

produce these two products would be vastly different. This product complexity is further
illustrated in Figure 1-1.

Figure 1-1 Product complexity example

Product variety refers to the number of different product designs, versions, or models
to be produced within a facility. If a facility made just a single product, such as a
toothbrush, it would use a manufacturing system conducive to efficient production of that
one product. Conversely, if the facility were to manufacture, say, hairbrushes in addition
to toothbrushes, it might have multiple manufacturing systems or a single system designed
to accommodate this product variety.

In addition to this factor, there are different levels of product variety. Soft product
variety indicates that product difference within the operation is small. Hard product
variety means the products are vastly different. The best way to differentiate soft from
hard product variety for assembled products is to consider the number of common parts
each product uses. A high percentage of common parts indicates soft product variety,
whereas a low percentage points to hard product variety. The case of the toothbrushes and
hairbrushes represents hard product variety. Soft product variety might exist in the
production of different models or styles of toothbrushes (color, bristle density, and so on).
An illustration of this case of hard versus soft product variety is shown in Figure 1-2.

Figure 1-2 Hard versus soft product variety

Paperclip

Low Product Complexity High Product Complexity

Laptop
Computer

Soft Product Variety Hard Product Variety

6 Chapter 1

Product quantity, naturally, specifies the number of products that are to be turned out
over a given time period. This is more often referred to as product volume. As will be seen
in subsequent sections, high volume product requirements dictate the use of automated
high speed manufacturing systems. Low volume manufacturing systems are typically less
automated with more worker involvement.

Observe that product definition and manufacturing system are interdependent. High
volume manufacturing systems are typically less capable of accommodating product
variety. Conversely, manufacturing systems capable of handling a great deal of product
variety cannot produce as high a volume. Complex products dictate a complex
manufacturing system; simple products will typically be turned out by a relatively simple
manufacturing system. Thus, once a manufacturing system is established within the
facility it will dictate the type of future products that can be produced, unless, of course,
capital is allocated to add other manufacturing systems to the facility.

1.2.3 Manufacturing system
As mentioned already, the manufacturing system is the combination of

manufacturing processes and the organization of workers, designed so as to efficiently and
effectively create the desired product. There are essentially four standard systems, with
numerous variations, that have evolved over time. Each system is geared to produce a
fairly specific product definition. The four standard manufacturing systems are:

1. Fixed-position
2. Process
3. Quantity manufacturing system
4. Flow-line.

(Refer to Figure 1-3.) Because of the narrowness of product definition relating to
each system, an individual facility may employ one or more of these systems.

Fixed-position manufacturing systems (Figure 1-3(a)) are used for making large,
complex products. Because such products are not easily moved, the manufacturing
processes are taken to the product; the product remains in a fixed position throughout
manufacture. This system produces items that are highly complex, relatively large and
immobile, with low volume production requirements, and of soft product variety.
Submarines, ships, and large aircraft are examples of products that use this system.

The process manufacturing system is used when product complexity is relatively low
and there is hard product variety. Accordingly, production quantities range from low to
moderate. This system is also called a job shop system because it can accommodate a wide
variety of products or jobs. The manufacturing processes are grouped together according
to function or process. Products are routed though the facility to the required
manufacturing processes in groups called lots or batches. The size of the lot, or lot size, is
the number of products in the group. The use of lots is necessary because of the variety of
products the system must accommodate. In a process manufacturing system each

Introduction to Programmable Automation 7

Figure 1-3 Standard manufacturing systems

Mills

Painting

Lathes

b) Process

a) Fixed Position - Submarine

Saw

Stock

Shipping

Raw
Material

Injection
Molding Press

Finished
Product

d) Flow - line

c) Quantity

Product

Mold

8 Chapter 1

manufacturing process to which a product is routed will have to be set up, or prepared, to
process that particular product. Consequently, it is economically desirable to run a specific
number of products through the process each time it is set up. Some factors that influence
lot size include variety of the products made in the facility, setup times, order sizes, and
manufacturing lead-time. This system is shown in Figures 1-0 and 1-3(b).

The quantity and the flow-line manufacturing systems are often combined into one
category, called the product manufacturing system. These systems produce mass
quantities of products and are thus mass production systems. However, both product
complexity and product variety of mass-produced items dictate the division of the product
manufacturing system into the quantity and flow-line manufacturing systems.

The quantity manufacturing system is used with low product complexity and hard
product variety. These products are produced on a single standard machine, like a plastic
injection molding machine with exchangeable tooling. (Refer to Figure 1-3(c).) Other
examples of products manufactured with this system include metal stampings and blow
molded plastic products, like water bottles.

Flow-line manufacturing is for products with high product complexity and soft
product variety. For assembled products, flow-line is more commonly called assembly line
manufacturing system. Raw material flows down a line of manufacturing processes, in the
end to be converted into a finished product. Henry Ford is often credited with perfecting
this system. He produced the Model T using the flow-line manufacturing system to reduce
cost so that the average American could afford his automobile. Because of the nature of
the flow-line manufacturing system, product variety was essentially nonexistent. All
Model T cars had the same body shape and were made in one color. The early flow-line
system evolved to a modern form that accommodates soft product variety. Figure 1-3(d)
illustrates the flow-line manufacturing system.

The manufacturing systems discussed above are summarized in the table of Figure 1-
4 as shown on page 9 according to product complexity, variety, and volume. Also, it
cannot be emphasized enough that many manufacturing facilities will have more than one
of these systems and/or a variation of some system as dictated by the product definition.
Consider Figure 1-6. This figure demonstrates how some manufacturing systems feed into
other manufacturing systems to produce the finished product. In this example a flow-line
manufacturing system in the form of an assembly line produces the finished product. The
components of the finished products are produced on various other manufacturing systems
as shown. This is typical of most, if not all, assembled products.

Introduction to Programmable Automation 9

Figure 1-4 Manufacturing systems versus product complexity, variety, and volume

Figure 1-5 Manufacturing support systems

Manufacturing System

Fixed Position

Process

Quantity

Flow-line

Product
Complexity

High

Low

Low

High

Product
Volume

Low

Moderate

High

HIgh

Product
Variety

Soft

Hard

Hard

Soft

Mills

Painting

Lathes

Manufacturing System

Saw

Stock

Shipping

Raw Material

Widget

Accounting

Customer
Service

Quality
Control

Human
Resources

Product
Design

Production
Planning

Shop Floor
Control

Manufacturing
Engineering

Materials
Engineering

Marketing

10 Chapter 1

Figure 1-6 Multiple manufacturing processes used to make a product

Mills

Painting

Lathes

Process

Saw

Stock

Shipping

Raw
Material

Injection
Molding
Press

Finished
Product

Flow - line

Quantity

Product

Mold

Raw
Material

Introduction to Programmable Automation 11

1.2.4 Manufacturing Support Systems
Another key ingredient to the conversion process is the manufacturing support

system. Manufacturing support systems provide the management of the business
operations of the facility and the manufacturing system. Thus, the success of a facility, in
terms of productivity and thus profitability, is dictated by how well its manufacturing
support systems manage its manufacturing system.

A manufacturing support system utilizes people and procedures to manage the
manufacturing system and the overall facility. Whereas the manufacturing system
processes the raw material, the manufacturing support system processes information
necessary to accomplish the conversion of the raw material into the finished product.
Accounting, customer service, marketing, human resources, product design,
manufacturing engineering, materials engineering, quality control, production planning,
and shop floor control are all good examples of manufacturing support systems. Figure 1-
5 as shown on page 9 demonstrates how manufacturing support systems interact with the
manufacturing system.

Through understanding the different manufacturing systems and manufacturing
support systems, as well as how the systems interact, the seeds for automation are sown.
The next section will define automation in more precise terms and identify specific types
of automation.

1.3 Automation
Webster’s Online Dictionary (http://www.websters-online-dictionary.org/

definition/ automation) defines automation as “a highly technical implementation;

usually involving electronic hardware; automation replaces human workers by machines.”
In his first book Automation, Production Systems and Computer-Integrated

Manufacturing, 2nd ed. (2001), M.P. Groover defined automation, when directed strictly
toward the manufacturing environment, as “…technology concerned with the application
of mechanical, electronic and computer-based systems to operate and control production”
(p. 9).

Each of these definitions provides some key terms and phrases. However, Webster’s
definition implies that automation replaces or eliminates workers and that automation is
accomplished only with machines—statements that are misleading. Automation does not
always replace the worker; it more often displaces the worker to other tasks. Additionally,
automation can be implemented in many forms. Often it is with a machine, but it can also
be a device or software added to an existing process.

For example, consider the automation of the manual drafting process. The
implementation of computer-aided drafting (CAD) is a great example of the automation of
a manufacturing support system. CAD automates the creation of engineering drawings, a
key component in the manufacturing material conversion process. Prior to the
implementation of CAD, engineering drawings were created by hand with paper and

12 Chapter 1

pencil at drafting tables. The combination of computer hardware (the machine) and CAD
software automated this process. Early CAD systems were two-dimensional and
essentially duplicated the manual drawing process, but were much more accurate and
faster than manual drafting. Human intervention was still required to operate the software,
but to a lesser degree. Hence, manual drafters (the workers) were not replaced. The author
observed in the plants with which he was associated that most of the drafters were trained
to operate the CAD system. Since the CAD system is more productive than manual
drafting, most excess drafters (workers) were displaced to other activities or other
companies, and eventually an entire new generation of drafters trained primarily in CAD.

When companies first switched to CAD from manual drafting, a machine, the
computer, was required. Computers have since become standard pieces of equipment in
the engineering department. Hence, subsequent automation of the CAD process was
accomplished only with software, an example of how automation does not always entail
insertion of a machine into the process. Consider another example, solid modeling
software. Solid modeling software automates the product development process, including
the two-dimensional CAD drafting process. It models products as three-dimensional solid
objects in the virtual world of a computer. The model enables better visualization of the
product. Additionally, rapid prototypes, computer numerical control programs, and
engineering drawings can all be created directly from this model.

The definitions above imply that automation only occurs in a production
environment. However, automation can occur anywhere people are performing tasks.
Consider a grocery store. Modern grocery stores have electronic barcode scanners to
determine the price of goods purchased during checkout. The barcode scanners automated
the task of a cashier manually entering the price of each item into the cash register. Now,
many stores have added automated checkout, which allows the consumer to swipe the
purchased goods and pay a machine directly, further reducing the level of cashier
involvement. Often this allows more checkout lines than the store would normally be able
to payroll. However, a worker is still needed to supervise the automated checkouts and
assist shoppers as needed.

Machines and or systems that perform tasks automatically inevitably consist of some
combination of mechanical technology (gears, cams, bearings…), electrical technology,
and/or computer technology. Early automated machines were mostly mechanical. More
modern automated equipment utilizes electrical and computer technology to a greater
extent. Additionally, many automated machines or systems are combinations of many
smaller automated machines. Thus, automated machines can be further automated with the
application of even more technology.

The preceding discussion highlights the fact that a more encompassing definition of
automation is needed than is typically found in the literature. So, the author defines
automation here as follows:

Introduction to Programmable Automation 13

Automation is the application of mechanical, electrical, and/or computer technology
to reduce the level of human participation in task performance.

 Note that in this definition “task” is an intentionally vague term. Tasks are not
limited to work-related activities. They can be related to any activity requiring human
participation. Consider the television remote control, for example. It automated the task of
manually changing the television channel, a purely entertainment-related activity. The
definition also makes clear that humans are not necessarily replaced. Their level of
participation may be greatly reduced, typically displacing them to other activities. This
point is important because often great fear exists in the workforce when system
automation is considered. Workers inevitably assume that such automation will eliminate
jobs, which, as discussed, does not always occur, particularly in a company that values its
workforce. Thus, the distinction between “displacing” workers and “replacing” them
needs to be emphasized. The other notable aspect of the definition is that it emphasizes
that automation can be implemented with various forms and combinations of technology.

Now that a clear definition of automation has been established, the different
automation types that have evolved in manufacturing are discussed.

1.3.1 Types of Automation
Automation in a manufacturing facility can occur in the manufacturing support

systems and/or in manufacturing systems. Automation in manufacturing support systems
is primarily accomplished through the use of computer technology to automate the
business operations of the facility. Computer-aided design (CAD) software and computer-
aided manufacturing (CAM) software have dramatically impacted the way products are
designed and engineered. Shop floor control systems combined with material resource
planning systems provide management with a very fast and accurate picture of a facility’s
current status. Computer-integrated manufacturing (CIM) takes the automation of the
manufacturing support systems a step further. CIM is intended to integrate and thereby
automate the entire manufacturing enterprise. In other words, CIM links the automation in
the manufacturing support systems directly with automation in the manufacturing
systems, resulting in a completely integrated manufacturing facility. However, the focus
of this text is not on the automation of manufacturing support systems. Rather, it is on a
specific type of automation of manufacturing systems.

Automation in manufacturing systems is centered on reducing the level of human
participation in manufacturing processes. Three standard types of automation can be
defined. Each type has very specific capabilities relating to the sequence of the processing
steps and the definition of the product being processed. The three types are:

• Fixed automation
• Programmable automation
• Flexible automation.

14 Chapter 1

Fixed automation equipment typically consists of processing stations linked together
with some form of material handling, which progressively moves the workpiece through
the processing steps. Fixed automation can be considered special purpose automation
because it is designed to automate a specific process or series of processes. Therefore, the
processing sequence is fixed by the organization of the processing stations. In general, it is
relatively inflexible in accommodating any type of product variety. However, if it is
capable of handling soft product variety, conversion of the machine allowing it to run the
variation may be time-consuming. The time to make this change is often termed
“changeover time” or “setup time.” Fixed automation can handle a wide variety of product
complexity from simple to very complex products; but, the cost of creating such a
specialized machine is often quite high. Consequently, fixed automation is typically only
used with extremely high volume products. To accommodate the volume, these systems
operate at very high rates. Hence, fixed automation equipment is most often associated
with flow-line manufacturing systems, often as assembly lines. Early fixed automation
was created using mostly mechanical technology combined with electrical technology to
drive its mechanical components. Current systems make extensive use of computer
technology and often integrate programmable automation into the machine, as well.

Whereas fixed automation is “fixed” to a specific operation progression,
programmable automation has the capability to alter both the type of operation to be
performed and the order in which it is to be executed. Thus, it can adjust the process to
accommodate the product, which makes it capable of handling hard product variety.
Programmable automation equipment is multipurpose equipment that can be programmed,
and repeatedly reprogrammed, to perform a wide variety of processing operations.
However, each programmable automation machine is limited to a specific type of
manufacturing process such as machining material removal, metal forming, or material
handling. Reprogramming and changing tooling is necessary to accommodate the
different products, creating long setup times between products. This combination of
versatility, hard product variety, and long setup times would appear to limit programmable
automation to use in the process manufacturing system. It is interesting to note that this is
in fact the manufacturing system for which programmable automation was developed and
where it is still primarily used. However, programmable automation equipment has proven
to be so very capable and reliable that it is also used in the quantity and flow line
manufacturing systems, either outside of or integrated into fixed and flexible automated
equipment.

Flexible automation possesses some of the features of both fixed and programmable
automation, with an added characteristic of no time lost for changeover between products.
It utilizes, essentially, a fixed automation machine that can process soft product variety
with no setup. The elimination of the setup is achieved with the versatility of
programmable automation integrated directly into the machine. The machine recognizes
or identifies different product configurations and automatically adjusts the operation
sequence. The exorbitant cost of such a system limits its use to high volume applications

Introduction to Programmable Automation 15

typical of the flow-line manufacturing system. However, this added versatility means
reduced production rates when compared with what is possible by a fixed automation
machine.

Figure 1-7 summarizes the capabilities of each of the automation types.

Figure 1-7 Automation types

It should be noted that the lines of distinction between these three types of
automation and the manufacturing systems in which they appear are often blurred. What
should become clear is that programmable automation is at the core of both fixed and
flexible automation. In fact, it has become a primary building block of almost all
automated machines. Additionally, it is unlikely that a person would walk into any modern
manufacturing facility and not encounter programmable automation, as it is found in
practically every manufacturing system.

1.3.2 Programmable Automation
Improved productivity is the primary focus of global competition in the world

economy. As will be shown in subsequent sections and chapters, automation is a key
ingredient to improving productivity. Programmable automation, in some form, is found
in almost all automation systems. It is used individually in process manufacturing systems,
or it can be fully integrated into fixed automation machines in flow-line manufacturing
systems. Flexible automation machines were not even possible prior to the development
and maturation of programmable automation. Hence, it is imperative that manufacturing
engineers and technologists understand the capabilities of this technology and how it may
be used effectively.

Programmable automation, as is shown in Figure 1-8, has evolved into three distinct
technologies:

• Computer numerical control (CNC) technology
• Robotic technology
• Programmable logic control (PLC) technology.

Computer numerical control (CNC) technology utilizes a combination of mechanical,
electrical, and computer technology to move a tool relative to a workpiece to perform some

Automation

Type

Fixed

Programmable

Flexible

Product
Complexity

Low to High

High

Low

Product
Volume

High

Moderate

High

Manufacturing

System

Flow-line

All

Flow-line

Production
Rate

High

Moderate

High

Product
Variety

None

Hard

Hard

16 Chapter 1

type of processing. It is most often related to the machining processes, such as milling,
turning, and grinding. However, it can be used in any process that requires precise control of
a tool relative to a workpiece. Non-material removal examples include wire-bending
machines and pen plotters. Some CNC technology examples are shown in Figure 1-9.

Robotic technology is very similar to CNC technology in that it utilizes mechanical,
electrical, and computer technology to move a manipulator in three-dimensional space.
Also, in many applications it uses a tool to perform processing on a workpiece, an
example of which is a welding robot: the robot moves the welding tool through a specific
path over the workpiece. However, in many other applications the robot does not use a
tool. It merely provides material handling capabilities such as moving a workpiece from
one machine to another and/or stacking the workpiece in a specific pattern on a pallet. In
either case, the robot is performing a task that could also be performed by a human. In

fact, the origin of the term “robot” is credited to a play, which premiered in 1921, about a
factory that made artificial people devoid of feelings. These artificial people were called
robots. The word was derived from the Czech word robota, meaning serf labor, thereby

Figure 1-8 Programmable

automation

Figure 1-9 CNC technology

Programmable
Automation

Programmable Logic
Control (PLC)
Technology

Robotic
Technology

Computer Numerical
Control (CNC)

Technology

Introduction to Programmable Automation 17

implying servitude and hard work. Thus, robots are often distinguishable from other types
of automation in that they possess humanlike characteristics (e.g., a robot arm) and
perform tasks often completed by humans. Robotic technology examples are shown in
Figures 1-10 and 1-13.

Figure 1-10 Robotic technology

SCARA Robot Cartesian Coordinate Robot

Articulated Arm Robot

18 Chapter 1

Whereas CNC and robotic technologies provide motion control, programmable logic
control (PLC) technology imparts automatic control over tasks or events through the use
of electrical and computer technology. This is accomplished by monitoring the status of a
given system through sensors that input information to the PLC. Based on the status of
these inputs, the PLC will make decisions and take appropriate action on the system by
outputting information to actuators. The output to the system is based solely on the status
of the inputs. This is called a discrete process control system. A discrete system has inputs
and outputs that are binary with two possible values: on or off. The status of these inputs
and outputs change at discrete moments in time. Thus, PLC technology provides control
over event-driven changes to the system. As events occur that change the status of the
inputs, the outputs automatically change. Figure 1-11 shows an example of a PLC.

Figure 1-11 PLC technology

These three technologies are the foundation upon which modern automation is built.
The automation system shown in Figure 1-12 makes good use of all three technologies.
The figure depicts a typical manufacturing cell. A manufacturing cell is defined as an
interconnected group of manufacturing processes tended by a material handling system. In
this particular case, the manufacturing processes consist of a CNC lathe and a CNC mill.
These two machines are tended by a robot, which loads raw material into one machine,
transfers it to the next, and then unloads and stacks the processed material. A
programmable logic controller (PLC) controls and coordinates activities between the CNC

Introduction to Programmable Automation 19

machines and robot. (Note that PLC is the acronym for both programmable logic control
and programmable logic controller.)

Figure 1-12 Manufacturing cell

The CNC equipment, robot, and PLC must possess intelligence in order for the cell to
function properly. The intelligence is expressed in terms of decision-making ability. Each
machine in the cell must be able to accept input, make a decision based on that input, and
implement the decision. For example, consider the CNC lathe. When it is time to process
material, it must first recognize that it is ready to process more material and then prepare
itself to receive material by opening safety gates, moving tooling out of the way, and
opening the lathe chuck. Next, it must inform the PLC that it is ready to accept material for
processing. Once the material is loaded, the CNC lathe must recognize that it is loaded and
then process the material. When the processing is complete, it must prepare itself to be
unloaded. Finally, it will inform the PLC that it is ready to be unloaded. The robot
functions similarly. It receives input from the PLC that the lathe is ready to be loaded. It
then executes a sequence of movements to pick up the raw material and load it into the
lathe. It will then inform the PLC that it has loaded the material and is ready for the next
instruction. Thus, the PLC is, essentially, the brain of the cell. It controls the timing and
sequence of all events that occur within the cell. It monitors the status of the cell and
informs each piece of equipment when and where actions are to be performed.

Figure 1-13 depicts another manufacturing cell. This cell consists of a hydraulically
actuated press, a shuttle system, and a robot. In this cell, products (round disks) are
molded inside the press then moved outside the press (with the shuttle system), where the
robot unloads and finishes the product. A PLC controls the cell. Note that even though a
CNC machine was not part of this particular cell, CNC technology had an impact on the

20 Chapter 1

cell. A CNC machine was used to produce the mold in the press and the gripper on the end
of the robot arm.

Figure 1-13 Press manufacturing cell

Thus, as shown in these two examples, it is easy to envision how programmable
automation is present, either directly or indirectly, in almost all modern automation
systems.

1.4 Manufacturing Performance Measures
In order to understand when and where to apply automation in general and

programmable automation in particular, it is essential to comprehend how manufacturing
production performance is measured. From these performance measures one can evaluate
and justify the use of automation. As will be seen in the next chapter, the performance
measures used most often to quantify production include:

Production rate—measure of products per hour (pc/hr).
Setup time—measure of the amount of time to prepare a machine or process to make

a product (hrs).
Production capacity—measure of the maximum amount of product that can be

produced by a manufacturing facility, system, cell, or process in a specified period of time
(output units/time period).

Introduction to Programmable Automation 21

Utilization—ratio of the actual amount of output from a manufacturing facility,
system, cell, or process in a specified period of time to the production capacity over the
same time period (%).

Manufacturing lead time—total time to process a product through a manufacturing
facility, system, cell, or process.

Each of these measures provides a picture of how certain individual aspects of the
manufacturing process and system are performing. These are vital and critical measures to
be evaluated when one considers automation. However, each only provides a small
segment of the overall picture. Thus, the measures need to be evaluated collectively to
effectively evaluate and justify the use of automation. There are other factors as well that
should be considered, including burden rates of equipment and labor costs. Thus, it may
be difficult to get a clear comprehensive picture of the performance of a process or system.
However, there is one measure that effectively combines and summarizes many of the
individual measures into one all-encompassing metric: That measure is productivity.

1.4.1 Productivity
The term “productivity” is often cited in the news media as an important economic

indicator of the health of the nation’s economy. The U.S. Department of Labor, Bureau of
Labor Statistics, collects and publishes productivity data for many elements of the U.S.
economy. Per the Bureau of Labor Statistics website (www.bls.gov/bls/productivity.htm):

Productivity and related cost measures are designed for use in economic analysis
and public and private policy planning. The data are used to forecast and analyze changes
in prices, wages, and technology. (p. 1)

Thus, the measure plays an important role in the development of private sector and
government economic policies. The interaction of productivity measurements on price
changes, wages, and technology may be complicated, but the definition of productivity is
not. While the term may have a slightly different connotation to an economist compared to
an industrial engineer/technologist, the basic definition is clear. This simple definition is
why this measurement, used as a means of quantifying manufacturing production, can be
used in all levels of manufacturing. It is the author’s contention that the productivity
measure is perhaps the best indicator of when and where to utilize automation.

As David J. Sumanth observed in Productivity Engineering and Management:
Productivity is concerned with the efficient utilization of resources (inputs) in

producing goods and/or services (output.) (p. 4)
Note that “inputs” refer to all the resources (labor, material, capital, etc.) that go into

producing the goods or service, and “output” is whatever is produced by the system under
consideration. Thus, the productivity of a manufacturing system can be determined simply
by the ratio:

productivity = output/input

22 Chapter 1

For the purposes of this text, output will be expressed in units of parts/hr and input in
terms of $/hr.

In order for the productivity ratio to rise, either the output must increase (more parts/
hour) or input must decline (amount of product remains the same with less resources).
Productivity increases are positively viewed because they indicate that more is produced
with less dollar input to the system. Therefore, if the selling price of the product does not
change, the producer realizes an increase in profit. Conversely, a decrease in productivity
occurs when not as much product is being produced and/or the input cost increases.
Typically, all inputs (labor, raw materials, and energy costs) will increase over time. To
prevent these increases in inputs from being passed along to the consumer as a price
increase, more products must be produced. Note that this is the link of productivity to
inflation. Therefore, it is obvious that improving productivity is of vital importance to
manufacturing. Equally as obvious is how automation can improve productivity by
allowing more products (output) to be made or by reducing the cost (input) of production.

The way a company can use productivity and the other manufacturing measures to
justify automation will be addressed in detail in Chapter 2.

1.5 Benefits of Automation
Specific reasons to automate one process may be very different from the reasons to

automate another. However, the goal of any automation is to produce a tangible benefit.
Common to all automation is the benefit of productivity improvement. Listed below are
seven common reasons to automate:

Increase labor output
Increasing labor output has a direct effect on increasing productivity. If, through

automation, the amount of product is increased, the productivity also increases.
Essentially, automation focused on improving the effectiveness of the labor, thereby
increasing the amount of product made over a specific time period, will lead to increases
in labor output and, thus, productivity improvements. Examples include addition of a
robot to handle material or use of a PLC to control a manual process. Each is intended to
“free up” the worker from a task, thereby enabling him or her to produce more.

Reduce labor cost
Reducing labor cost also has a direct effect on increasing productivity. Because labor

cost is an input in the productivity formula, reducing it increases productivity. In fact,
from a productivity viewpoint it is difficult to distinguish reducing labor cost from
increasing labor output because the net effect is the same. However, it is listed as separate
to emphasize that some automation strategies focus on improving the amount of output
produced from the current number of workers whereas others specifically target reducing
labor costs. Examples of labor cost reduction include any type of automation that reduces
the number of workers or the time each worker spends in production.

Introduction to Programmable Automation 23

Reduce or eliminate effects of labor shortages
Depending on the state of the local economy, a plant may have an abundance of

available workers or a severe shortage. If the manufacturing process is particularly labor
intensive, lack of workers can result in machine down time, less product, and overtime for
the current workforce, each of which can have a detrimental effect on productivity.
Making the process less labor intensive through automation allows it to better withstand
periods of labor shortages. Thus, automation strategies geared to increase labor
productivity and/or reduce labor costs should be considered.

Reduce or eliminate routine manual and clerical tasks
Reduction or elimination of routine tasks is often the first avenue to improving a

process’s productivity. Automating these types of tasks, once again, frees up the worker to
perform more value-added tasks. This inevitably leads to productivity improvements
through reduced labor costs and/or improved worker productivity. A good example is the
automation of the engineering drawing process with computer-aided drafting (CAD).

Improve worker safety
Any opportunity to provide a safer worker environment is a worthwhile investment in

any process, not only from the obvious benefit of worker protection—management's
ethical responsibility—but also from a productivity standpoint. Down time due to
accidents also decreases productivity by limiting output from the process. Yet, physical
safeguards intended to protect the worker might also hamper output. A better approach
would be to utilize automation and completely remove the worker from the dangerous
work environment. This should be attempted even if a productivity gain is realized or not.
An example of such precautionary automation might be utilization of a robot to remove
parts from an injection press. For a worker to remove parts from the mold, the press door
must be opened, which activates mechanical interlocks that prevent the mold from closing
as the worker removes the parts. But, if a robot removes the parts, the worker is no longer
required to reach in the press, thus removing him from the dangerous environment.
Additionally, the press cycle time improves because opening and closing the door is
removed from the process since the robot typically accesses the mold from the top of the
machine.

Improve product quality
Improving a product’s quality yields many benefits to the manufacturer, including

reduced waste—a plus for both the business and the environment, which makes for better
brand image and higher sales. The impact on productivity is equally impressive. Reduced
waste reduces material costs, which decreases inputs to the process, thus increasing
productivity.

Reduce manufacturing lead time
Manufacturing lead time is a measure of how long it takes to create a product from

the time the order is received by a manufacturer until the product is shipped. If through
automation the manufacturing lead time is reduced for a process or a series of processes,

24 Chapter 1

output will increase over a given time period. If all other inputs remain unchanged,
productivity will increase.

Some other reasons for automation often referenced in the literature, which are tied
indirectly to productivity, include: (1) the high cost of not automating and (2) the
existence of processes that simply cannot be done manually. The first is a somewhat
obvious statement, regarding which the above list makes a strong case. In today’s
economy productivity improvements are perhaps the only way to remain competitive. If a
company is not competitive, it will not survive. Therefore, the cost of not automating will
be in terms of lost customers and profits.

Consider the second of these, performing processes that cannot be done manually.
Some processes may require too high of a degree of precision or be too small for the
human hand to effect or have too complex a geometry. Ponder the manufacture of
computer chips. Arun Radhakrishnan, writing in http://blogs.techrepublic.com.com/tech-
news/?p=2050), pointed out that in 2008 Intel announced a new computer chip containing
2 billion transistors. Obviously, this can only be produced with the aid of automated
machines; without the automation to manufacture it, the product could not be made and
thus productivity would be zero.

Thus, there may be many reasons to automate, but the primary benefit to automating
is improved productivity. When a company continuously improves productivity it is better
able to absorb raw material cost increases, labor cost increases, increased energy prices,
and other inflationary types of cost pressures—without passing those increases along to
the customer. Thus, by improving productivity the company may realize other benefits
including higher sales, better customer relations, and a larger market share. Although
automation is not the only method to improve productivity, it is often a very effective
method and should therefore be strongly investigated.

1.6 Automation Strategies
The why and where of automation are listed in the preceding section. We now turn to

the how of automation. Typically, how a plant would automate is one of the more
challenging aspects of the automation implementation process. One example was given
already, that of employing a robot to perform material handling or adding a PLC to control
the process. It is the intent of this section to provide some strategies that can be used to
determine how a particular process might be automated.

In the aforementioned Automation, Production Systems, and Computer-Aided

Manufacturing, 2nd ed. Groover introduced 10 strategies concerning how automation can
be applied to manufacturing processes. Based on this list, five condensed “how to”
strategies, geared specifically for programmable automation, are given here:

Minimize manufacturing process steps
As explained, a series of manufacturing process steps convert raw materials into

some other higher value form. This strategy seeks to minimize the number of process

Introduction to Programmable Automation 25

steps. It does so by combining process steps, as might be done by the performance of more
than one process on a single machine. Once operations are combined, it may then be
possible to perform processes simultaneously. If processes cannot be combined, it may be
possible to integrate several processes into a single machine or work cell. The integration
could be in the form of several machines linked together with automated material handling
devices. Thus, the cell will have the appearance of a single machine. Whichever method is
used the result is the same: manufacturing process steps are minimized. Minimizing
process steps can lead to large productivity gains by reducing input to the process and
perhaps improving output rates from the minimized process.

Increase process flexibility
Improving process flexibility enables a machine or operation to process more product

variety. The flexibility is achieved by minimizing or eliminating setup time typically
required in changing a machine over to another product line. This is the essence of flexible
automation systems. When a particular machine is able to process more product variety,
the machine’s utilization increases, manufacturing lead time decreases and work in
process is reduced. This can result in a substantial increase in productivity because inputs
(time, labor, …) are reduced, assuming of course that system output remains the same or
increases. This strategy will also likely involve use of the all three programmable
automation technologies.

Optimize material handling
Material handling is a non-value-added component of the material conversion

process and thus should be optimized. Machines can often move material more
consistently, accurately, and reliably than manual labor. Additionally, labor, freed up from
performing material handling tasks can be displaced to perform value-added tasks. Thus,
the increase in productivity may come from reduced labor costs, increased production
rates, and reduction in scrap and rework. Optimizing material handling may involve a
combination of mechanical technology systems, including conveyor systems, indexing
units, and pick-n-place units, with robotic and PLC technologies.

Automate inspection
Product inspection determines if a product is within specifications. Often performed

offline or outside of the process, inspection gives feedback about how a process is
performing, and information gathered from inspection is typically used to adjust a process
as needed. The feedback loop—make a part, inspect it, adjust process—can be rather long.
Hence, products outside of specification (“off spec”) could be completed before the
process that made them is adjusted. Automatic inspection is an attempt to minimize the
feedback loop and thereby reduce scrap and rework. And, of course, a more consistent,
higher quality product is produced. To sum up, raw material usage is reduced and output is
increased, resulting in substantial productivity improvements. Automatic inspection
systems may utilize material handling technology, including robotics, electronic vision
systems, electronic sensors, actuators, and PLC technology.

26 Chapter 1

Implement process control
To produce a high quality product it is necessary to have a consistent, repeatable, and

reliable process. To achieve this, a process must be rigorously controlled. Programmable
logic controllers are capable of providing this level of control, providing it over event-
driven changes to the process. Based on the status of these events, the PLC will make
decisions and take appropriate action on the system. This enables fast, reliable control of
the process and greatly improves its efficiency. In addition to greater efficiency, process
output and product quality are also improved.

Note that a particular automation project may focus on only one strategy or include
all five. Keep in mind that not all processes can or should be automated. Some processes
may be too technologically difficult to economically automate. For others, the product life
cycle is so short that automation cannot be justified. In some cases it may appear that the
cost of the automation is completely justified based on the anticipated productivity
improvements, but later it may be discovered that is simply not the case. Thus, it is
imperative one have a sound method of justifying where and when to use automation. The
next chapter deals with this subject in detail.

1.7 Summary
Programmable automation technology is the combination of mechanical, electrical,

and computer technology developed to have very specific automation capabilities.
Programmable automation consists of three individual technologies that are linked
together by their capacity to be programmed. These technologies include computer
numerical control (CNC) technology, robotics technology, and programmable logic
control (PLC) technology. These technologies are in use in almost all modern
manufacturing facilities and together make up the technological foundation of automation.

Manufacturing converts a raw material into a more useful product that can be sold for
a profit. The manufacturing operations that are necessary to produce a particular product
include manufacturing processes, material handling, quality control, and manufacturing
support. Manufacturing processes are the manufacturing steps that perform the actual
physical conversion. They can be classified as shaping processes, property-enhancing
processes, and assembly processes. A particular manufacturing process will follow a
systematic sequence of operations called a program of instructions. The way in which the
manufacturing operations and workers are organized defines the manufacturing system
used by the facility.

The manufacturing system in use in a facility is dictated by the finished product’s
product definition, which is determined by its complexity, variety, and quantity. Product
complexity relates to the difficulty of its production process. Product variety refers to how
many different product designs, versions, or models are to be produced within the facility.
Product variety can be either hard or soft. Soft product variety indicates there are only

Introduction to Programmable Automation 27

subtle differences between product models. Hard product variety indicates vastly different
products are to be produced.

The four standard manufacturing systems include fixed-position, process, quantity,
and flow-line. Fixed-position manufacturing systems are used to produce large complex
products. The process manufacturing system is used when product complexity is relatively
low and there is hard product variety. The quantity manufacturing system and the flow-
line manufacturing system produce mass quantities of products and are thus called “mass
production systems.” The quantity manufacturing system is used with low product
complexity and hard product variety. Flow-line manufacturing is for products with high
product complexity and soft product variety.

Manufacturing support systems provide the management of the business operations
of the facility and of the manufacturing system; they process information necessary to
accomplish the conversion of the raw material into the finished product.

Automation is defined as the application of mechanical, electrical and/or computer
technology to reduce the level of human participation in performing tasks. Fixed
automation, programmable automation, and flexible automation are the three automation
types. Fixed automation equipment typically consists of processing stations linked
together with some form of material handling, which progressively moves the workpiece
through the processing steps. Whereas fixed automation is “fixed” to a specific operation
progression, programmable automation has the capability to alter both the type of
operation to be performed and the order in which it is to be executed. Flexible automation
possesses some of the features of both fixed and programmable automation with an added
characteristic of no lost time for changeover between products. It is essentially a fixed
automation machine that can process soft product variety with no setup.

CNC technology is one of the three distinct types of programmable automation that
utilize a combination of mechanical, electrical, and computer technology to move a tool
relative to a workpiece to perform some type of processing. Robotic technology is very
similar to CNC technology in that it utilizes mechanical, electrical, and computer
technology to move a manipulator in three-dimensional space. Whereas CNC and robotic
technology provide motion control, PLC technology imparts automatic control over tasks
and events through the use of electrical and computer technology. These three
technologies are the foundation upon which modern automation is built.

The benefits of implementing automation come in many forms, each of which can
almost certainly be expressed in terms of productivity improvement. The productivity of a
manufacturing system is expressed as a ratio (%) of system output to system inputs.
Productivity measure is perhaps the best indicator of when and where to use automation.
Methods of improving productivity include increasing labor output, reducing labor input,
reducing or eliminating labor shortages, reducing or eliminating routine manual and
clerical tasks, improving worker safety, improving product quality, and reducing
manufacturing lead time.

28 Chapter 1

Some strategies to consider for implementing automation include minimizing
manufacturing process steps, increasing process flexibility, optimizing material handling,
automating inspection, and implementing process control.

1.8 Key Words

1.9 Review Questions
 1. Define programmable automation.
 2. What hampered programmable automation’s initial use?
 3. What member of the engineering staff is best suited to implement programmable

automation?
 4. Discuss how a manufacturing facility takes raw material and transforms it into a

finished product.
 5. Define the term “program of instructions.”
 6. List and discuss the four typical manufacturing operations.

assembly line manufacturing system
automation
batches
computer numerical control (CNC)
technology
continuous products
conversion process
discrete process control system
discrete products
fixed automation
fixed position manufacturing system
flexible automation
flow-line manufacturing system
hard product variety
job shop manufacturing system
lead time
lot size
manufacturing
manufacturing cell
manufacturing lead time
manufacturing operations
manufacturing processes

manufacturing setup
manufacturing support systems
manufacturing systems
process manufacturing system
product complexity
product definition
product quantity
product variety
product volume
production capacity
production rate
productivity
program of instructions
programmable automation
programmable logic control (PLC)
 technology
quantity manufacturing system
robotic technology
soft product variety
utilization

Introduction to Programmable Automation 29

 7. List and explain the factors that determine a finished product’s product definition.
 8. Define and discuss the four standard manufacturing systems. Focus your

explanation on the type of products produced by each system.
 9. What is the difference between a manufacturing system and a manufacturing

support system?
10. Define automation and the three major types.
11. What technologies fall under the programmable automation category? Include a

definition of each.
12. Discuss the five performance measures of manufacturing.
13. What manufacturing performance measure combines and summarizes many of the

individual measures into one all-encompassing metric?
14. Define productivity and provide three examples of how to improve it.
15. Discuss the five automation strategies defined in the chapter.

1.10 Bibliography
1. http://www.websters-online-dictionary.org/definition/automation
 Groover, M.P. (2001) Automation, Production Systems and Computer-Integrated

2. Manufacturing, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey
3. Sumanth, David J. (1994). Productivity Engineering and Management, McGraw-

Hill
4. Kandray, Daniel E. (2004). Comparison of fixed automation and flexible

automation from a productivity standpoint, Society of Manufacturing Engineers
Technical Paper TP04PUB206

5. Machinery’s Handbook, 25th ed. (1996). Industrial Press, Inc., New York, New
York

6. http://www.websters-online-dictionary.org/definition/productivity
7. Radhakrishnan, Arun (2008). Intel Announces Two Billion Transistor Computer

Chip, IT News Digest, February
8, http://blogs.techrepublic.com.com/tech-news/?p=2050

31

Chapter 2
Automation Justification and Productivity Concepts

Contents

 2.1 Automation Justification and Productivity

 2.2 Productivity Calculations

 2.3 Process Outputs and Mathematical Concepts for Quantifying Production

 2.4 Process Inputs and Manufacturing Costs

 2.5 Comparing Alternatives with Productivity Calculations

 2.6 The Impact of Production Volume on Alternatives

 2.7 Productivity and the USA Principle

 2.8 Summary

 2.9 Key Words

2.10 Review Questions

2.11 Bibliography

Objective
The objective of this chapter is to demonstrate how to use productivity calculations to
identify, evaluate, and justify automation.

32 Chapter 2

2.1 Automation Justification and Productivity

Implementing programmable automation typically requires substantial investment,
or capital expenditure, which upper management must deem justified. Most
collegiate engineering and technology programs offer engineering economic
analysis courses that present numerous methods of justifying capital expenditures,
such as developing cash flows over the life of the project and considering the time
value of money. However, the decision of whether or not to invest in an
automation project is still very difficult for a firm to make because of the large
number of variables to be considered. Many larger firms have arcane justification
methodologies. A productivity analysis, on the other hand, is a simple, single
metric that can clearly show when an automation project should be funded. It
compares the performance of the system before and after the automation is
applied. In fact, it provides such great scrutiny of a system that it should be used
prior to any automation plans. In so doing, the automation strategies, defined in
Chapter 1, can be accurately applied. This chapter focuses on how productivity
calculations are used to identify, evaluate and justify automation.

2.2 Productivity Calculations
Recall that the productivity of a manufacturing system is determined by the simple

ratio,

productivity = output/input,

where, as we will see, the input and output units are number of parts per monetary unit.
For manufacturers of discrete products a system’s output is the number of parts

produced over a certain time frame. The system inputs are those resources needed to
acquire and convert raw material into a finished product over that same time frame.
Typical resource input comprises labor, capital, material, and energy. Even though each of
these inputs is vastly different, they can be expressed in monetary terms. Thus,
productivity will be expressed in terms of the number of parts produced per dollar of input
(# of parts/$ input). This is a simple and effective means of accessing a manufacturing
operation, machine, process, system or facility’s performance.

Obviously, the time frame over which a form of input is measured should be the same
as the output that results. For products manufactured in high quantities, the time unit is
usually hours; however, time units of days, weeks, or years can be used as well.

A partial productivity (PP) calculation considers only one input (such as labor). It is

defined as:

Automation Justification and Productivity Concepts 33

PP = PO/PI,

where

PO = number of parts output from a process in a specified time frame

(# of parts/hr); this is often termed the production rate of the process
PI = amount of money input into the process over the same time frame

($/hr).

A combined productivity (PC) calculation considers two or more inputs. Accordingly,

combined productivity is given by the following equation:

PC = PO /SPI

where

SPI = monetary sum of partial productivity measures input over a given

time frame ($/hr).

Thus,

SPI = PI labor + PI cap+ PI mat+ PI energy

The following examples demonstrate calculation of partial and combined
productivity.

Example 2.1
A manufacturing process can produce 120 parts per hour. The process requires two

laborers, each earning $18/hour. What is labor partial productivity of the process?

Solution
The governing equation is:

PP labor = PO /PI labor

The output in parts per hour is

PO = 120 parts/hr

Since there are 2 laborers, the labor input is

34 Chapter 2

PI labor = 2 laborers x ($18/hr)/laborer = $36/hr.

Thus,

PP labor = PO/PI labor = (120 parts/hr)/($36/hr) = 3.33 parts/$.

So here the process can produce 3.33 parts for every dollar of labor input.

Example 2.2
The manufacturing process described in Example 2.1 uses a machine with capital

cost of $45/hr. The machine requires 75 kW of power to operate. Cost of electricity is
$0.057/kW-hour (kWh). The machine processes 150 lb of material per hour. The material
costs $0.45/lb. Using the labor input costs found in Example 2.1, calculate the combined
productivity of the process.

Solution
The governing equations are

PC = PO /SPI

SPI = PI labor + PI cap+ PI mat+ PI energy.

The output in terms of parts per hour was given as

PO = 120 parts/hr.

The labor partial productivity input was determined in Example 2.1 to be

PI labor = $36/hr.

The cost of capital to run the machine is given as

PI cap = $45/hr.

The cost of energy input per hour is found by converting power into energy. For 1
hour of operation the energy used will be:

energy = (power)(time) = (75 kW)(1 hr) = 75 kWh.

Automation Justification and Productivity Concepts 35

Thus, the machine will use 75 kWh for every hour of use. Therefore, the cost of the
energy input into the process will be

PI energy = (energy use/hr)(electricity cost) = (75 kWh/hr)($0.057/kWh)= $4.28/hr.

The material cost input into the process is determined by multiplying the amount of
material used per hour by the cost of the material:

PI mat = (material use per hr)(material cost) = (150 lb/hr)($0.45/lb) = $67.50/hr.

Therefore,

SPI = PI labor + PI cap + PI mat + PI energy

= $36/hr + $45/hr+ $67.50/hr + $4.28/hr = $152.78/hr.

Correspondingly,

PC = PO/SPI = (120 parts/hr)/($152.75/hr) = 0.79 part/$.

When all the inputs to the system are considered, the process produces less than one
part (0.79) for every dollar of input.

In the examples listed above, the process output in parts/hr was provided. Typically
this information is determined through calculations. The following section provides
mathematical concepts to quantify production and thereby provide a method of calculating
output in parts/hr. Subsequent sections demonstrate how to develop input capital costs of
automated machines.

2.3 Process Outputs and Mathematical Concepts for Quantifying Production
In order to determine if an automation strategy selected will provide the desired

productivity improvements we must first quantify the current and proposed manufacturing
process. Or, in other words, we must measure and document each process’s performance.
This serves as the output for the productivity calculations. The performance of the
automation can then be quantified, and productivity calculations as well as direct
comparison of the automation to the existing process can be made.

There is one measure, as observed in the last section, which is of prime importance.
That measure is called the production rate (PO) of the process. It is a measure of how

many parts are produced over a specific time period, typically expressed in parts per hour.

36 Chapter 2

This measures the output of the process. By combining this measure with other factors,
several other mathematical quantifying concepts, in addition to productivity, can be
examined.

2.3.1 Production Rate
Prior to determining production rate, one must determine the operational cycle time

of a process. The operational cycle time includes all time element activities involved in
producing one part.

Figure 2-0 Milling process example

Consider the machining process operation in Figure 2-0. This particular operation
involves drilling two holes and milling a slot into the part shown. The operational cycle
time is the time from the start of processing a part to the point at which the next part is
started. The time elements for this operation include loading and unloading the part into
the machine, machining the part, and changing tools as needed. Thus, the operational
cycle time for this process can be given as

tc = to + twh + tth

Automation Justification and Productivity Concepts 37

where,
tc = operational cycle time, expressed in min/part

to = time of actual processing, expressed in min/part

twh = workpiece handling time, expressed in min/part

tth = tool handling time, expressed in min/part.

The actual processing time (to) and workpiece handling time (twh) occur for each part

processed. The tool handling time (tth), however, may not occur for each part. Perhaps a

tool can process 100 parts before it needs to be changed. Thus, the time it takes to change
the tool must be divided or averaged over those 100 parts.

The above equation is valid not only for machining type processes but also for
assembly, molding, or almost any type of discrete manufacturing process. Consider the
following examples.

 Example 2.3
The following table lists the steps for a machining process. The times listed are those

needed to load, unload, and process one part. Calculate the operational cycle time (tc).

Solution
The governing equation is

tc = to + twh + tth.

From the table above, combine steps 2 and 4 to determine the total processing time
per part (to). Thus,

to = 2 min/part + 3 min/part = 5 min/part.

Process
Step Description Time

1 Part loaded into machining fixture 0.75 min

2 First machining operation 2 min

3 part repositioned in fixture 0.5 min

4 second machining operation 3 min

5 part unloaded 0.25 min

Note: After 20 parts, the cutting tool is changed; 5 min
time is required to change tools.

38 Chapter 2

The work handling time (twh) is a summation of results in steps 1, 3, and 5:

twh = 0.75 min/part + 0.5 min/part + 0.25 min/part = 1.5 min/part.

To determine the tool handling time (tth), find the average time it takes to change tools

over the 20 parts:

tth = 5 min/20 parts = 0.25 min/part.

Thus the operational cycle time becomes

tc = 5 min/part + 1.5 min/part + 0.25 min/part = 6.75 min/part.

Example 2.4
An injection molding machine processes an 8-cavity mold in 2.6 min per cycle. The

parts are automatically ejected from the mold and travel by conveyor to the next process.
Every 200 cycles the mold is cleaned and sprayed with mold release. This takes 15 min to
complete. Calculate the operational cycle time (tc).

Solution
The governing equation is

tc = to + twh + tth.

First, calculate the actual processing time per part (to). Recognize that the process

produces 8 parts each cycle and that each cycle takes 2.6 min. Thus,

to = (2.6 min/cycle)(cycle/8 parts) = 0.325 min/part.

Since the parts are automatically ejected from the mold, the workpiece handling time
is zero:

twh = 0.

Mold cleaning and reapplication of mold release is equivalent to changing a tool in a
machining process. Thus, the time it takes to accomplish these tasks needs to be averaged
over each part produced in those 200 cycles:

tth = 15 min/[(200 cycles)(8 parts/cycle)] = 0.0094 min/part.

Automation Justification and Productivity Concepts 39

Therefore, the operational cycle time becomes

tc = 0.325 min/part + 0 + 0.0094 min/part = 0.334 min/part.

Consider a process manufacturing system. In this system parts are produced in
batches or lots. Each time a part is to be produced the machines that produce the part must
be set up to process that particular part. This setup time needs to be captured in the
production rate calculations. Therefore, for process manufacturing systems the time to
process a batch of parts is calculated and then converted into average production time. The
equation to calculate the batch processing time is

tb = tsu + Qtc,

where
tb = batch processing time (min)

tsu = time to set up machine to produce batch (min)

tc = operational cycle time per part (min/part)

Q = number of parts in batch (parts).

The average production time then becomes

tp = tb /Q,

where

tp = average production time (min/part)

Q = number of parts in batch (parts).

Once the cycle time of the process is known, the production rate can be calculated.
Note that the production rate depends on the manufacturing system employed. Hence, the
variable R is used to represent the average production rate for the various processes
discussed. The average production rate for a process can be determined by taking the
reciprocal of the average production time:

Rp = 1/tp,

where
Rp = average production rate (parts/min)

tp = average production time (min/part).

40 Chapter 2

Note that it is often more desirable to express the average production rate (Rp) in

units of parts/hr.

Example 2.5
Calculate the production rate (Rp) of the process listed in Example 2.3 in units of

parts/hr, assuming the part is produced in batches of 3000 parts and it takes 4 hr to set up
the machine to produce the batch.

Solution
First, determine the batch production time (tb) and then the average production time

(tp). From the average production time, calculate production rate (Rp) in parts/hr. The

governing equations are

tb = tsu + Qtc

tp = tb/Q

Rp = 1/tp,

where the values are
tc = 6.75 min/part (calculated in Example 2.3)

tsu = 4 hr

Q = 3000 parts.
It is important to keep consistent units: convert operational cycle time to units of hr/

part. Thus,

tc = (6.75 min/part)(1 hr/60 min) = 0.1125 hr/part.

The batch production time is then

tb = 4 hr + (3000 parts)(0.1125 hr/part) = 4 hr + 337.5 hr = 341.5 hr.

The average production time is

tp = 341.5 hr/3000 parts = 0.1138 hr/part.

Therefore the production rate is

Rp = 1/tp = 1/0.1138 hr/part = 8.78 parts/hr.

Automation Justification and Productivity Concepts 41

The last example highlights how to determine production rate of any type of
manufacturing process in which parts are run in batches and setup time is a significant
portion of batch production time. As setup time decreases and quantities processed
increases, operational cycle time approaches the same value as average production time.
This is the case in quantity type manufacturing systems. Thus, the production rate can be
determined directly from the operational cycle time:

tp = tb/Q = (tsu + Qtc)/Q.

Since setup time becomes small relative to the product of quantity and
operational cycle time tc, then clearly

tp ~ tc.

Then

Rpq = 1/tc,

where

Rpq = average production rate for a quantity manufacturing systems (parts/min)

tc = operational cycle time (min/part).

Example 2.6
Calculate the average production rate (Rpq) of the injection molding process in

Example 2.4, in units of parts/hr.

Solution
The injection molding process is a quantity type manufacturing process. Therefore,

the governing equation is

Rpq = 1/tc.

Taking the operational cycle time from Example 2.3 and converting the units to hr/
part yields

tc = (0.334 min/part)(1 hr/60 min) = 0.00567 hr/part.

Therefore

Rpq = 1/(0.00567 hr/part) = 179.64 parts/hr.

42 Chapter 2

Consider the flow-line type manufacturing system shown in Figure 2.1. In it the

product is traveling to each workstation via a conveyor belt. At each workstation the
product is processed accordingly. Upon completion of the processing, the product is
moved to the next station. The transporting of the part is coordinated with the time it takes
to complete the processing at each workstation. Some workstations finish processing
sooner than others. However, the conveyor cannot move the parts until the slowest process
(i.e., the process that takes the most time) is completed. This workstation is called the
bottleneck station.

Figure 2-1 Flow-line manufacturing system

When all the stations have processed the product, it exits the conveyor belt. Thus, at
specific time intervals a finished product is produced. The time interval may be expressed
in minutes, hours, days, weeks, months, or even years. The production rate has been
defined as the number of parts produced per hour, which corresponds to number of parts
that drop off the conveyor line in an hour in this example. Therefore, to calculate the
production rate it is necessary one determine how often a part falls from the conveyor.
This operational cycle time of the flow line (tc) is the sum of the time to move the product

between the workstations and the actual processing time at the bottleneck station. In
equation form:

tcf = tr + max to

WS1

Raw
Material

Finished
Product

WS2 WS3

WS5

Flow - line

WS4

Automation Justification and Productivity Concepts 43

where
tcf = operational cycle time of flow line system (min/part)

tr = time to transfer parts between stations (min/part)

max to = actual processing time of bottleneck workstation (parts/min).

The production rate or cycle rate of the flow line then becomes

Rc = 1/tcf,

where Rc = cycle rate of a flow-line manufacturing system (parts/min).

Example 2.7
Calculate the cycle rate (Rc) of the flow-line manufacturing system shown in Figure

2-1; assume the transfer rate is 3 sec per part and the processing time for each work station
is as shown in the table.

Solution
The governing equations are

tcf = tr + max to

Rc = 1/tcf.

The transfer rate was given as

tr = 3 sec/part or 0.05 min/part.

W o r k s t a t io n
P r o c e s s in g

t im e
(m in /p c)

1 1 . 5

2 0 . 7 5

3 1 . 2 5

4 1 . 5

5 0 . 5

44 Chapter 2

The actual process time for each workstation is given in the table. Workstation 4 has
the maximum process time of 1.5 min/part. Thus,

max to = 1.5 min/part.

The operational cycle time of the flow-line is then

tcf = 0.05 min/part + 1.5 min/part = 1.55 min/part.

The cycle rate is then:

Rc = 1/1.55 min/part = 0.645 part/min or 38.7 parts/hr.

2.3.2 Other Mathematical Quantifying Concepts
Although productivity is of primary importance in justifying automation, other

quantifying concepts come into play as well. These include production capacity,
utilization, availability, and manufacturing lead-time.

Production capacity is the maximum rate of output of a particular product for a
manufacturing system over a specified time period. The time can be expressed in days,
weeks, months, or years. The system under consideration could be the whole plant, a
production line, or a manufacturing cell. The calculation takes the production rate of the
system under consideration and multiplies it by the number of hours worked during the
specified time interval and the number of subsystems producing at that production rate.
The general form of the equation is:

Pc = Rnmhrsw,

where
R = production rate of system (Rp, Rpq, or Rc) in parts/hr

nm = number of machines or work centers producing at that rate

hrsw = hours worked during the specified time interval.

Example 2.8
Calculate the monthly production capacity (Pc) of a product produced by the

injection molding process described in Example 2.4. Assume the plant uses 3 injection
molding machines and molds to produce the part. Also, assume the plant operates in three

Automation Justification and Productivity Concepts 45

8-hour shifts per day, 5 days per week. Suggest a plan by which the plant may increase
production capacity in the short term. How could it do so in the long term?

Solution

The governing equation is

Pc = Rnmhrsw,

where
 Rpq = 179.64 parts/hr (calculated in Example 2.6)

 nm = 3

 hrsw = (3 shifts)(8 hr/shift)(5 days/week)(4 weeks/month) = 480 hr/month.

Thus,

Pc = (179.64 parts/hr)(3)(480 hr/month) = 258,681 parts/month.

To increase production in the short term the plant could run the injection presses on
weekends. Doing so would increase hours worked (hrsw). Long term solutions might

include building more molds to run on more injection molding machines (increase nm)

and/or increase the production rate (R). This could be accomplished by building molds
with more cavities or decreasing the process’s operational cycle time (tc).

Production capacity is a theoretical value. In practice, actual production may be
significantly less due to lack of orders, lack of supplies, processing problems, or labor
issues. Thus, management will often evaluate the utilization of a manufacturing system.
Utilization U is defined as the ratio of the actual number of products divided by production
capacity. Thus,

U = 100Q /Pc,

where
Q = actual production over specified time frame
Pc = production capacity over specified time frame.

Note that U is expressed as a percentage.

Example 2.9

46 Chapter 2

Calculate the utilization of the injection molding process described in Example 2.8 if
actual production in the previous month was 175,000 parts.

Solution

The governing equation is

U =100Q/Pc,

where
Q = 175,000 parts
Pc = 258,681 parts/month.

Thus,

U = (100)(175,000 parts)/258,681 parts = 67.7%.

Additionally, a manufacturing system under repair may not be fully used. Thus, the
availability of a system, expressed as a percentage, can be calculated. It is determined by
the equation

A = 100(tmtbf − tmtbr)/tmtbf

where

 A = availability
tmtbf = mean time between failures (hr)

 tmtbr = mean time to repair (hr).

These two measures provide solid insight into a manufacturing system and can also
help in identifying automation opportunities. Additionally, if utilization and availability
information is known within a facility, realistic actual production values can be calculated.
Consider the following example.

Example 2.10
A manufacturing system has a theoretical production capacity of 100,000 parts/

month. Typical utilization of the system is 80% and availability is 93%. What is the
anticipated actual monthly production of the system?

Solution

Automation Justification and Productivity Concepts 47

Rearranging the equation for utilization and factoring in the availability of the system
yields the following equation:

Q = UPcA.

Thus,

Q = (80%)(100,000 parts/month)(93%) = 74,400 parts/month.

Another important quantifying measure of production is manufacturing lead-time.
Manufacturing lead-time is the total time it takes to convert raw material into a finished
product. Thus, it is the summation of the time of each individual manufacturing process
that the product passes through. Note, however, that a product is not processed
continually. There is also non-operation time associated with each operation. Examples of
non-operation times include those for moving and queuing of parts between operations,
waiting for materials, waiting for tools, and so on. These must be accounted for in the
calculation of manufacturing lead-time. Additionally, the time to set up the process, where
appropriate, must also be considered. Accordingly, the equation for the manufacturing
lead-time of a process manufacturing system consisting of operations (indexed by i) is

tmlt = sumi(tsu + Qtc + tnop)i,

where

tmlt = manufacturing lead-time for batch

tsu = setup time for a process

Q = number of parts in batch

tc = operational cycle time of a process

tnop = non-operation time of a process

Note that this equation can be used for other types of manufacturing systems as well.
However, some of the terms may be insignificant. Consider a quantity manufacturing
system. The setup time and non-operation time may become very small compared to the
batch size. Additionally, in the flow-line system the setup and non-operation time are
essentially nonexistent.

Example 2.11

48 Chapter 2

A part is routed through 4 machines in lot sizes of 500 parts/batch. Average non-
operation time is 6 hr. Setup and operational cycle times are shown in the table below.
Calculate the manufacturing lead-time for the part.

Solution
The governing equation is

tmlt = sumi(tsu + Qtc + tnop)i.

Calculate the manufacturing lead-time for each operation:

tmlt1 = 1 hr/batch + (500 parts/batch)(3 min/part)(1 hr/60 min) + 6 hr/batch = 32 hr/batch

tmlt2 = 6 hr/batch + (500 parts/batch)(8 min/part)(1 hr/60 min + 6 hr/batch =78.67 hr/batch

tmlt3= 1.5 hr/batch + (500 parts)(4 min/part)(1 hr/60 min + 6 hr/batch = 40.83 hr/batch

tmlt4 = (4 hr/batch + 500 parts)(3 min/part)(1 hr/60 min) + 6 hr/batch = 35 hr/batch

Summing operation lead-times gives

tmlt= tmlt1 + tmlt2 + tmlt3+ tmlt4 = 32 + 78.67 + 40.83 + 35 = 186.5 hr/batch.

It is relatively easy to visualize how improvements in productivity result in
corresponding improvements in these measures. Therefore, such measures can also be
used in making the case for automation.

2.4 Process Inputs and Manufacturing Costs
The previous section demonstrated how one would quantify the output of a process

with a measure (production rate) that can be used in productivity calculations. In this
section, methods of quantifying the input to the process are developed. As shown in
Section 2.2, input into the productivity calculation (PI) is amount of money required for

the process step under consideration, which is input into the process over the same time
frame as that of the output measurement. Both measurements are in units of $/hr.

M achine
Setup time

(hrs)
Operation
time (min)

1 1 3

2 6 8

3 1.5 4

4 4 3

Automation Justification and Productivity Concepts 49

Inputs to a process are typically broken down into categories consisting of capital, energy,
labor, and material. These categories are termed partial productivity measures. Consideration
of a breakdown of the costs to manufacture a product is shown in Figure 2-2.

Figure 2-2 Manufacturing process expenses

Figure 2-2 is a pie chart showing the relative percentage of expenses that make up the
final selling price of a representative product. Note that the manufacturing cost is only
40%. Figure 2-3 is a pie chart of the relative percentage of expenses that make up total
manufacturing cost for this product. Notice how the categories in Figure 2-3 relate to the
partial productivity measures. Direct labor coincides with labor, capital equipment costs
with capital; indirect labor is often absorbed into the capital equipment or direct labor
costs; materials and supplies category would represent both material and energy. When an
automation project is undertaken, its goal is to decrease one or more of the expenses
shown in the figure. Thus, these expenses need to be accurately reflected in the
productivity calculations. One accomplishes this by expressing the partial productivity
measures in $/hr.

5%

R & D

15%

Engineering

25%

Administration Sales,
Marketing, etc.

Profit
15%

Manufacturing
40%

50 Chapter 2

Figure 2-3 Manufacturing cost percentages

When one evaluates an existing process, labor rate, energy cost, and raw material
costs are typically readily available from the manufacturing firm’s accounting office.
Additionally, the capital costs of the existing equipment would be available as well. These
rates will include allocated overhead costs. However, capital costs of an alternative—new
automated equipment—process must be estimated.

Estimation of capital costs of a proposed automation can be done through simple
calculations that take into account the time value of money in conjunction with allocated
factory overhead. When a manufacturing firm invests in a capital expenditure, it expects
the investment will yield a return. Most firms have a standard rate of return. This figure,
expressed as a percentage, should be readily available from a firm’s upper management.
With the rate in hand, the automation engineer can begin to make estimated capital cost
calculations.

The goal of the capital cost calculations is to represent the cost of the proposed
automation in terms that can be used in the productivity calculations. Thus, cost needs to
be expressed in terms of $/hr. The calculation breaks the initial cost of the equipment into
an annual cost, then spreads that annual cost over the hours the machine is estimated to run
in a year; finally, it adds in factory overhead expenses. The estimated hourly capital cost
of the automation can be calculated with the following equation:

Cc = Ca(1+ rfoh),

where
Cc = estimated hourly capital cost of the automation ($/hr)

Ca = estimated hourly cost of automation ($/hr)

rfoh = factory overhead rate.

12%

12%

26%
Capital

Equipment
Costs

50%
Materials &

Supplies

Indirect Labor

Direct
Labor

Automation Justification and Productivity Concepts 51

 The hourly estimated cost of the automation can be determined from the equation

Ca = (CIfcr)/ha,

where
CI = initial cost of the automation ($)

fcr = capital recovery factor

ha = time that machine is in operation annually (hr).

The initial cost of the automation (CI) will be known and hours of machine operation

annually (ha) can be readily determined. The capital recovery factor (fcr) is determined by

the equation

fcr = r(1 + r)n / [(1 + r)n – 1],

where
r = desired rate of return (%)

n = number of years of the service life of the machine.

Figure 2-4 Typical factory overhead costs

Factory overhead rate (rfoh) is the ratio of factory overhead costs to those of the

machine under consideration. This is found by distributing the overhead over some
variable such as direct labor costs. Typical factory overhead costs are given in Figure 2-4.
For any given factory this can be accomplished by taking all of the overhead costs of the

Taxes

Shipping &
Receiving

Factory
Overhead

Plant
Supervision

Material
Handling

Tooling
Personnel

Security
Personnel

Maintenance
Staff

Shift
Foreman

Fringe
Benefits

Machinery
Power

Heat and Air
Conditioning

Lights

Insurance

Depreciation

Custodial
Crow

52 Chapter 2

firm for one year and dividing it by the total cost spent on direct labor. The formula for
this calculation is:

rfoh = Cfoh /Cdl,

where
Cfoh = annual cost of factory overhead ($/yr)

Cdl = annual direct labor costs ($/yr).

The following example demonstrates the use of these formulas.

Example 2.12
An automated work cell is being considered to replace an existing process. The cell

will cost $150,000 to purchase and is anticipated to have a 4-year service life. The
machine will operate for 2080 hours per year. The company spent $2,300,000 on factory
overhead and $6,500,000 on direct labor costs last year. Estimate the hourly capital cost to
operate the new automated work cell if the manufacturing firm desires a 15% return on its
investment.

Solution
The governing equations are

Cc = Ca(1+ rfoh)

Ca = (CIfcr)/ha

fcr = r(1 + r)n /[(1 + r)n – 1]

rfoh = Cfoh/Cdl.

The values are given as
rfoh = 35%

CI = $150,000

ha = 2080 hr

r = 15%
n = 4 yr
Cfoh = $2,300,000/yr

Cdl = $6,500,000/yr.

First, calculate capital recovery factor:

fcr = r(1 + r)n/[(1 + r)n – 1]

Automation Justification and Productivity Concepts 53

= 0.15(1 + 0.15)4/[(1 + 0.15)4 – 1)

= (0.15)(1.749)/(1.749 – 1) = 0.26235/0.749 = 0.3503.

Next, calculate the estimated hourly rate of the work cell (Ca):

Ca = CIfcr/ha = ($150,000)(0.3503)/2080 hr = $25.26/hr.

Calculate factory overhead rate:

rfoh = ($2,300,000/yr)/($6,500,000/yr) = 35.4%.

Finally, calculate the hourly capital cost:

Cc = Ca(1 + rfoh) = ($25.26/hr)(1+ 0.354) = $34.20/hr.

Thus, the estimated capital cost for operating the new automated work cell is $34.20/hr.

2.5 Comparing Alternatives with Productivity Calculations
Section 2.2 demonstrated the basic procedure for calculating the productivity of a

process. Sections 2.3 and 2.4 demonstrated how to quantify the output and inputs of a
process for use in the productivity calculations. This section is devoted to developing a
methodology of performing the actual comparison of the alternatives. This essentially
involves organizing the data in a logical, comprehensive manner in which the alternatives
can be directly compared. The author has found that this is easily accomplished by
organizing the data in a spreadsheet as shown in Figure 2-5.

54 Chapter 2

Figure 2-5 Combined productivity comparison spreadsheet

The spreadsheet, aptly titled “Combined Productivity Comparison,” organizes the
productivity data in rows and columns. The column headings are shown at the top in
boldface print. The first column lists the description of the measure, the second is the
variable used for the measure, and the third column displays the units. The next two
columns, “Current Method” and “Proposed Method,” hold the data and calculation results
for each method. The close proximity of these two columns enables swift comparison of
the two options. The sixth column is reserved for formulas or comments (where certain
cells hold formulas for performing the calculations). In the first row is entered the
production rate for each method. This rate is determined through calculations dependent
on the type of manufacturing system, as was discussed in Section 2.3.1. The next 12 rows
are separated into groups corresponding to the partial productivity measures discussed in
Section 2.2. The organization of the rows culminates with several combined productivity
measures, the group at the bottom of the spreadsheet.

Description Variable Units
Current
Method

Proposed
Method

Formula or Comments

Production rate P O pcs/hr R p or R pq or R c

Labor cost/hr P I labor $/hr Given

Labor productivity P P labor pcs/$ P O / P I labor

Labor productivity
index

I labor - 1.0 (P p labor) proposed /(P p labor) current

Capital cost/hr P I capital $/hr Given or calculated as C c

Capital productivity P P capital pcs/$ P O / P I capital

Capital productivity
index

I capital - 1.0 (P p capital) proposed /(P p capital) current

Raw material cost/hr P I material $/hr Given or calculated

Raw material
productivity

P P material parts/$ P O / P I material

Raw material
productivity index

I material - 1.0 (P p material) proposed /(P p material) current

Energy cost/hr P I energy $/hr Given or calculated

Energy productivity P P energy pcs/$ P O / P I energy

 Energy productivity
index

I energy - 1.0 (P p energy) proposed /(P p energy) current

Sum of partial
productivity inputs

SP I $/hr P I labor + P I capital + P I material + P I energy

Combined
productivity

P c pcs/$ P O / SP I

Combined
productivity index

I c - 1.0 (P c) proposed /(P c) current

Energy Partial Productivity

Combined Productivity

Combined Productivity Comparison

Labor Partial Productivity

Capital Partial Productivity

Raw Material Partial Productivity

Automation Justification and Productivity Concepts 55

Note that each of the five productivity measure groups contains a new measure, not
previously discussed: productivity index. The productivity index is a clear and concise
method for comparing partial and combined productivity measures of the two options.
Observe that for the so-called current method, each productivity index row contains a
value of 1.0. This is because current method is used as a baseline against which the
proposed method will be compared. The productivity index for the new method is
determined by dividing the proposed method’s productivity (partial or combined) by the
current method’s productivity. For example, the formula for the combined productivity
index (Ic) is given by the equation

Ic = (PC) proposed/(PC) current

where
Ic = combined productivity index

PC) proposed = combined productivity of the proposed method (parts/$)

(PC) current = combined productivity of the current method (parts/$).

Thus, if the proposed method has a productivity index greater than 1, it can be said
that it is more productive than the current method. Conversely, a productivity measure of
less than 1 indicates the proposed method is less productive than the current measure.
Recall that for showing productivity improvement a combined productivity index greater
than 1.0 is the key to justifying an investment in automation.

One should always look at combined productivity when comparing two methods.
Consideration of only a partial productivity measure can often result in misleading results.
However, if partial productivity measures are the same for the two methods being
compared, they can be omitted from the calculations. But, odds are that there will always
be more than one partial productivity measure to consider.

The following examples demonstrate the use of the spreadsheet.

Example 2.13
A manufacturing firm uses a manual machine for production. Production rate is 100

parts/hr. This current method utilizes two operators at a labor wage rate of $18/hr. The
manual machine’s capital cost (including cost of electricity) of operation is $25/hr. This
firm is considering replacing the manual machine with a programmable automation work
cell. The new cell requires only one operator, but has a capital cost (including cost of
electricity) of $65/hr. The production rate of the machine is 125 parts/hour. Perform a
combined productivity analysis to determine if the firm should purchase the automated
work cell.

56 Chapter 2

Solution
The governing equations are listed in the spreadsheet shown in Figure 2-5. Entering

production rate and calculating the labor partial productivity yields:

Eliminating the operator and increasing the production rate results in the proposed
method that is 250% as productive as the current method from a labor perspective.
Considering this measure alone, the proposed method looks very attractive. However, as
mentioned, we must evaluate all of the partial productivities and then calculate the
combined productivity prior to passing final judgment. No information on raw material
was given, thus it will be omitted from the calculations. Additionally, the cost of energy
was given in the capital cost per hour. Thus, the only remaining partial productivity to
evaluate is capital.

The increased capital hourly cost of the proposed method in conjunction with only a
marginal increase in production rate makes the proposed method is only 48% as
productive as the current method, from a capital perspective. Calculating the combined
productivity yields:

Automation Justification and Productivity Concepts 57

Thus, the proposed method is 92% as productive as the current method. Thus, the
proposed method is not justified and the firm should not purchase the automated work
cell. The completed spreadsheet is shown in Figure 2-6.

58 Chapter 2

Figure 2.6 Example 2.13, combined productivity calculation

D
es

cr
ip

ti
on

V
ar

ia
bl

e
U

ni
ts

C
ur

re
nt

M

et
ho

d
P

ro
po

se
d

M
et

ho
d

F
or

m
ul

a
or

 C
om

m
en

ts

Pr
od

uc
tio

n
ra

te
P

O
pc

s/
hr

10
0

12
5

G
iv

en

L
ab

or
 c

os
t/h

r
P

I l
ab

or
$/

hr
$3

6.
00

$1
8.

00
G

iv
en

L
ab

or
 p

ro
du

ct
iv

ity
P

P
la

bo
r

pc
s/

$
2.

78
6.

94
P

O
/P

I l
ab

or

L
ab

or
 p

ro
du

ct
iv

ity
in

de
x

I l
ab

or
-

1.
0

2.
50

C
on

si
de

ri
ng

 o
nl

y
la

bo
r,

th
e

pr
op

os
ed

 m
et

ho
d

is
 2

50
%

 a
s

pr
od

uc
tiv

e

C
ap

ita
l c

os
t/h

r
P

I c
ap

ita
l

$/
hr

$2
5.

00
$6

5.
00

G
iv

en

C
ap

ita
l p

ro
du

ct
iv

ity
P

P
ca

pi
ta

l
pc

s/
$

4.
00

1.
92

P
O

/P
I c

ap
ita

l

C
ap

ita
l p

ro
du

ct
iv

ity
in

de
x

I c
ap

ita
l

-
1.

0
0.

48
C

on
si

de
ri

ng
 o

nl
y

ca
pi

ta
l c

os
ts

 o
f t

he
 e

qu
ip

m
en

t,
th

e
pr

op
os

ed
 m

et
ho

d
is

 4
8%

 a
s

pr
od

uc
tiv

e

Su
m

 o
f p

ar
tia

l
pr

od
uc

tiv
ity

 in
pu

ts
SP

I
$/

hr
$6

1.
00

$8
3.

00
P

I l
ab

or
 +

 P
I c

ap
ita

l

C
om

bi
ne

d
pr

od
uc

tiv
ity

P
c

pc
s/

$
1.

64
1.

51
P

O
/S

P
I

C
om

bi
ne

d
pr

od
uc

tiv
ity

 in
de

x
I c

-
1.

0
0.

92
C

om
bi

ne
d

pr
od

uc
tiv

ity
 in

di
ca

te
s

th
e

pr
op

os
ed

 m
et

ho
d

is

92
%

 a
s

pr
od

uc
tiv

e!

C
om

bi
ne

d
P

ro
du

ct
iv

it
y

C
om

bi
ne

d
P

ro
du

ct
iv

it
y

C
om

pa
ri

so
n

L
ab

or
 P

ar
ti

al
 P

ro
du

ct
iv

it
y

C
ap

it
al

 P
ar

ti
al

 P
ro

du
ct

iv
it

y

Automation Justification and Productivity Concepts 59

This is the solution.
The last example demonstrates how to use the combined productivity comparison

spreadsheet and highlights the importance of calculating the combined productivity before
passing judgment on the proposed method. Another interesting benefit of the combined
productivity comparison spreadsheet is that it can be a starting point or roadmap for
identifying the type and quantity of improvements necessary to justify automation.

For example, one might ask, “If the proposed method is not justified (viz. Figure 2-
6), what improvements would make it justifiable?” Obviously, if the work cell’s
production rate would be increased substantially and/or capital cost decreased, the
purchase of the work cell might be justified. Thus, by tweaking the values in the
spreadsheet, target values for production rate and capital costs can be identified. These
targets can then be presented to the suppliers of the work cell as required performance
specifications. Consider the following example.

Example 2.14
Based on the results of Example 2.13, determine the following:
a) Minimum production rate of the proposed method to yield a 20% productivity

improvement. Assume all other values are as before.
b) Maximum capital cost per hour of the proposed method to yield a 20%

productivity improvement. Assume all other values are as before.

Solution

Both of these can be determined by two methods. The first is to solve directly by
using algebra and rearranging the governing equations accordingly. The other method is a
trial and error method that uses the spreadsheet to manually increment the variable in
question until the desired result is achieved. For part (a) the result will be solved directly.
Trial and error will be used to solve part (b).

Part (a)

The governing equations are

Ic = PC proposed/PC current

PC = PO/SPI

SPI = PI labor + PI cap+ PI mat+ PI energy.

60 Chapter 2

Note that none of the values in the spreadsheet for the current method changes. Also,
all the partial productivity inputs for the proposed method stay the same. Therefore, the
following values are given:

Ic = 1.20

PC current = 1.64 parts/$

SPI = $83/hr.

Setting up the equations:

1.20 = PC proposed/1.64 parts/$.

Rearranging yields

PC proposed = (1.20)(1.64 parts/$) = 1.968 parts/$.

But PC proposed is determined from the equation

PC proposed = (PO/SPI) proposed.

Dropping “proposed” and entering the correct values gives

1.968 parts/$ = PO / $83/hr.

Thus, the minimum production rate is

PO = (1.968 parts/$)($83/hr) =163.34 parts/hr.

The result is confirmed in the spreadsheet shown in Figure 2-7.

Automation Justification and Productivity Concepts 61

Figure 2-7 Example 2.14, part (a) solution

Part (b)
For this solution, trial and error will be used with the spreadsheet. Start by

decrementing capital cost/hr in $10/hr increments. As productivity approaches desired
value, decrease the increment until the final number is arrived at, which is approximately
$45.50/hr. The result is shown in Figure 2-8.

Figure 2-8 Example 2-14, part (b) solution

Description Variable Units
Current
Method

Proposed
Method

Formula or Comments

Production rate P O pcs/hr 100 163 Given

Labor cost/hr P I labor $/hr $36.00 $18.00 Given

Labor productivity P P labor pcs/$ 2.78 9.07 P O / P I labor

Labor productivity
index

I labor - 1.0 3.27

Capital cost/hr P I capital $/hr $25.00 $65.00 Given

Capital productivity P P capital pcs/$ 4.00 2.51 P O / P I capital

Capital productivity
index

I capital - 1.0 0.63

Sum of partial
productivity inputs

SP I $/hr $61.00 $83.00 P I labor + P I capital

Combined
productivity

P c pcs/$ 1.64 1.97 P O / SP I

Combined
productivity index

I c - 1.0 1.20

Combined Productivity

Combined Productivity Comparison

Labor Partial Productivity

Capital Partial Productivity

Description Variable Units
Current
Method

Proposed
Method

Formula or Comments

Production rate P O pcs/hr 100 125 Given

Labor cost/hr P I labor $/hr $36.00 $18.00 Given

Labor productivity P P labor pcs/$ 2.78 6.94 P O / P I labor

Labor productivity
index

I labor - 1.0 2.50

Capital cost/hr P I capital $/hr $25.00 $45.50 Determined through trial and error

Capital productivity P P capital pcs/$ 4.00 2.75 P O / P I capital

Capital productivity
index

I capital - 1.0 0.69

Sum of partial
productivity inputs

SP I $/hr $61.00 $63.50 P I labor + P I capital

Combined
productivity

P c pcs/$ 1.64 1.97 P O / SP I

Combined
productivity index

I c - 1.0 1.20

Combined Productivity

Combined Productivity Comparison

Labor Partial Productivity

Capital Partial Productivity

62 Chapter 2

This is the solution.
The previous example demonstrates how the spreadsheet variables can be tweaked to

identify how the proposed method could be enhanced to make it a more attractive option
from a productivity standpoint. Other variables could also be adjusted including reducing
or eliminating the operator altogether and looking for material savings with the proposed
method. Thus, the spreadsheet can be used as a roadmap to identifying other
improvements the proposed method may have to offer.

When a combined productivity analysis indicates that the proposed method is
justified, there is still one measure we should consider. That measure is production
volume. Its impact on choosing alternatives is discussed in the next section.

2.6 The Impact of Production Volume on Alternatives
Thus far we have assumed that product volume—both current and future—of the

process under consideration for automation is sufficient to support an automation
investment. In general, when product volumes are low, manual methods are more cost
effective. A manufacturing firm does not want to invest significant funds in the
manufacture of a product that will no longer be produced in 6 months to year, or for which
the annual volume is not great enough. Although predicting future volume, called
forecasting, is a risky venture, it is an essential part of doing business. Product forecasts
are typically available from marketing or upper management. The risky nature of
production volume forecasting is one reason a manufacturing firm needs to see a quick
payback of the automation investment. Thus, one must ascertain whether there is
sufficient production volume to justify the investment in the automation. This can be
accomplished by considering current and proposed methods’ fixed and variable
manufacturing costs and performing a production volume breakeven point analysis.

A product’s manufacturing cost can be broken into two categories, fixed costs and
variable costs. Fixed costs are costs that are independent of the quantity of product; i.e.,
they are incurred whether one part or one million parts are produced. These typically
include building rent or mortgage costs, property taxes, equipment costs, and equipment
maintenance, to name a few. Fixed costs are most conveniently expressed on an annual
basis.

Variable costs, on the other hand, are dependent on the quantity of product. The
higher the production, the more the cost incurred. Variable costs include direct labor, raw
material costs, and energy costs to operate the equipment. Utilizing these concepts the
total annual cost of a product can be represented by the following equation:

CT = CF + QCV,

where
CT = total cost incurred on an annual basis ($/yr)

Automation Justification and Productivity Concepts 63

CF = fixed cost of product on an annual basis ($/yr)

Q = quantity of parts produced per year (parts/yr)
CV = variable cost per part ($/part).

This formula’s use is demonstrated in the following example.

Example 2.15
Referring to the manual manufacturing method and information in Example 2.13, and

given that the annual cost of maintenance for the machine is $8000 and the raw material
cost is $1.25 per part, calculate total annual cost of producing 100,000 parts per year

Solution
The given information from the problem statement and taken from Example 2.13 is

as follows:

PO = 100 parts/hr (production rate)

PI labor = $36/hr (2 operators at $18/hr)

PI capital = $25/hr

Q = 100,000 parts/yr

CF maint = $8000

raw material cost = $1.25/part.

The first step is to identify the variable costs, which include the labor wage rate, the
machine’s capital cost, and the raw material cost. The labor and machine capital costs
must be converted to units of $/part. This is accomplished by dividing the hourly cost by
the production rate as follows:

CV labor = PI labor/PO = ($36/hr)/(100 parts/hr) = $0.36/part

CV capital = PI capital/PO = ($25/hr)/(100 parts/hr) = $0.25/part.

Next determine the total variable costs by summing each of the individual variable
costs:

CV = CV labor + CV capital + CV material
= $0.36/part + $0.25/part + $1.25/part = $1.86/part.

64 Chapter 2

The fixed cost is simply the annual maintenance costs:

CF = $8000/yr.

Solving for the total annual cost to make the product yields

CT = CF + QCV = $8000/yr + (100,000)($1.86/part) = $194,000/yr.

Performing a quantity breakeven analysis of two alternatives involves determining
the number of parts that have to be produced that would realize the benefits of the
alternative. This is significant because manual methods typically have a lower fixed cost
and higher variable costs. Thus, when product volumes are low, manual methods are more
cost effective. As production volumes increase the advantage goes to automated methods,
which typically have a lower variable cost and higher fixed cost. This is illustrated in
Figure 2-9.

Figure 2-9 Quantity breakeven point

Figure 2-9 is a plot showing the total annual cost of an automated method versus a
manual method for the same theoretical task. The manual method has a lower fixed cost
but higher variable costs. The lower fixed cost is evident in the graph by the lower starting
point (zero parts produced). The steeper incline indicates higher variable costs. At around

Total Annual Cost Comparison

$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

$45,000

$50,000

0 5000 10000 15000 20000 25000 30000

Quantity Produced

T
ot

al
 A

nn
ua

l C
os

t
($

/y
r)

Automated Method

Manual Method

Quantity Breakeven Point

Annual Cost
Savings after
25,000 pieces
produced!

Automation Justification and Productivity Concepts 65

15,000 parts the two lines cross, indicating the two methods have the same total annual
cost. This is termed the quantity breakeven point. As the quantity produced is increased
from this point, the automated method has a lower total annual cost. If the annual
production is 25,000 parts, the cost savings that the automated method provides is the y-
axis value difference between the two lines.

Thus, to determine the quantity breakeven point of two methods, the total annual cost
equations are set equal to one another (i.e., equate the costs) and solved for the quantity
(Q). This is the quantity at which the proposed and the current methods have the same
production cost. Anything above this quantity favors the automated method over the
manual method for cost efficiency. This is demonstrated in the following example.

Example 2.16
A new automated method is being developed to replace the manual method described

in Example 2.15. The new method has a production rate of 165 parts/hr, requires only one
operator, and has a capital cost of $45.50/hr. Additionally, the new method decreases
material waste, thus reducing raw material costs to $1.00/part. Because of machine
sophistication, yearly maintenance costs will increase to $16,000 per year. Perform a
productivity analysis to compare the two alternatives for annual production of 100,000
parts/yr. Is the proposed method more productive? Calculate the quantity breakeven point.
What is the total annual cost savings if the proposed method were to be used?

Solution
First, perform the productivity analysis (i.e., compare the current method’s hours and

maintenance costs with the proposed). Most of the information can be substituted directly
into a productivity calculation spreadsheet, with the exception of the capital input. The
capital or machine rates for both alternatives are given. However, neither includes
maintenance cost. Thus, the maintenance cost, spread over the 100,000 parts, will be
added to the hourly machine rate. To proceed, calculate the number of hours it would take
to produce 100,000 parts for each method, then divide the maintenance cost by this
number.

For the current method,

hrscurr = (100,000 parts/yr)/(100 parts/hr) = 1000 hr

(PI maint)curr= $8000/1000 hr = $8/hr.

For the proposed method,

hrsprop= (100,000 parts/yr)/(165 parts/hr) = 606.1 hr

(PI maint)prop = $16,000/606.1 hr = $26.40/hr.

66 Chapter 2

Add these values to the capital hourly rates for both current and proposed methods:

(PI capital)curr = $25/hr + $8/hr = $33.00/hr

(PI capital)prop = $45.50/hr + $26.40/hr = $71.90/hr.

Substituting these values into a productivity analysis spreadsheet yields the
following:

Thus, the proposed method is 126% as productive as the current method. The
quantity breakeven point indicates the production quantity after which the proposed
method becomes more productive. These calculations are shown in the following
spreadsheet:

The quantity breakeven point occurs at 16,837 parts. The annual cost savings of the
new method will be $39,515 (from $194,000 – $154,485).

Description Variable Units
Current
Method

Proposed
Method

Formula or Comments

Production rate P O pcs/hr 100 165 Given

Labor cost/hr P I labor $/hr $36.00 $18.00 Given

Labor productivity P P labor pcs/$ 2.78 9.17 P O / P I labor

Labor productivity
index

I labor - 1.0 3.30

Capital cost/hr P I capital $/hr $33.00 $71.90
hourly rate + maintenance cost per hour to produce 100,000
pcs

Capital productivity P P capital pcs/$ 3.03 2.29 P O / P I capital

Capital productivity
index

I capital - 1.0 0.76

Raw material cost/hr P I material $/hr $125.00 $165.00 mat'l cost ($/pc) x production rate

Raw material
productivity

P P material pcs/$ 0.80 1.00 P O / P I material

Raw material
productivity index

I material - 1.0 1.25

Sum of partial
productivity inputs

SP I $/hr $194.00 $254.90 P I labor + P I capital + P I material

Combined
productivity

P c pcs/$ 0.52 0.65 P O / SP I

Combined
productivity index

I c - 1.0 1.26

Combined Productivity

Combined Productivity Comparison

Labor Partial Productivity

Capital Partial Productivity

Material Partial Productivity

Automation Justification and Productivity Concepts 67

2.7 Productivity and the USA Principle
The benefits of productivity analysis in justifying automation of manufacturing

processes have been extensively highlighted throughout this chapter. Additionally, we hint
at how productivity analysis can be used to identify other enhancements or improvements
to the proposed automation. In this section, we discuss using the USA automation strategy
in conjunction with a productivity analysis as the starting point for productivity
improvements through automation. Thus, instead of performing the productivity analysis
after an automated method has been proposed, the analysis will be used during the
development of the automated method.

Groover outlined the basic tenets of the USA principle in Automation, Production
Systems and Computer-Integrated Manufacturing. It is a simple, common sense approach
to developing an automation strategy. “USA” is an acronym for the method’s steps:

Understand the process. This is the crucial first step. There is no better way to
understand an existing process than to calculate its productivity. It compels the
determination of cycle times, production rates, material costs, and so on. These data can be
assembled through time studies, video analysis, and through other data collection
techniques. Once all the data are assembled, a preliminary productivity analysis is
performed, one that uses the spreadsheet presented in Section 2.6. Data collection and
productivity analysis give one a thorough grasp and deep understanding of the existing
process.

Description
Present
Method

Proposed
Method

Formula or Comments

Production rate P O pcs/hr 100.0 165.0 = 1/Tc * 60 min/hr

Number of operators - 2 1
Machine will only be attended by an
operator 1/3 of the time

Labor wage rate P I labor $/hr $18.00 $18.00

Machine wage rate P I capital $/hr $25.00 $45.50

Yearly maintenance cost C F maint $/yr $8,000.00 $16,000.00

Annual production
quantity

Q pcs/yr 100,000.00 100,000.00

Fixed cost C F $/yr $8,000 $16,000 maintenance cost + UAC

Material cost per part C V material $/pc $1.25 $1.00
material usage per part (lbs/pc) * material
cost ($/lbs)

Labor cost per part C V labor $/pc $0.36 $0.11 (number of operators * P I labor) / P O

Machine cost per part C V capital $/pc $0.25 $0.28 P I capital / P O

Variable cost C V $/pc $1.86 $1.38 C V material + C V labor + C V capital

Quantity breakeven
point

Q BE pcs 16,837
[(C F)proposed - (C F)current] / [(C V)
current - (C V) proposed]

Total annual cost C T $/yr $194,000 $154,485 C F + Q C V

Quantity Breakeven Point Caclulations -- C T = C F + Q x C V

68 Chapter 2

Simplify the process. It is likely that a process under consideration has never been as
extensively evaluated as it will be with these methods. Thus, simple improvements or
modifications identified in step 1 may greatly enhance the performance of the existing
process. Wasted movements, actions, or procedures can be eliminated and the process
reevaluated, the idea being that the new process should be as streamlined as possible and
have every opportunity to succeed. Once the new process has stabilized, another
productivity analysis using the new data is performed.

Automate the process. Armed with extensive, in-depth knowledge of the simplified
existing process, one begins identifying ways to improve productivity through automation,
using the automation strategies identified in Section 1.6 as a starting point. Once a general
strategy has been selected, a productivity analysis is done, one that compares the existing
process and the proposed automated one. The productivity analysis spreadsheet is used
and the automated method’s performance adjusted until the desired productivity
improvement is achieved.

After the USA principle is applied, data from the productivity analysis in step 3 are
the specifications for the new, automated process; these data are used for cost quoting
purposes. Once quotations are received, the productivity analysis can be reevaluated.
Thus, when it comes time to submit a proposal to upper management for the automation
project, justification will have already been completed. Using the USA principle in
conjunction with productivity analysis greatly enhances the probability of a successful
automation project.

2.8 Summary
Productivity calculations provide a very effective means for identifying, evaluating,

and justifying the use of automation in a manufacturing facility. Productivity of a
manufacturing system is determined by the ratio of the process outputs divided to the
process inputs. If only one input (such as labor) is considered in the calculation, then the
calculation is called a partial productivity (PP) calculation. When two or more inputs are

included, the calculation is called a combined productivity (PC) calculation.

Process measures are used to quantify manufacturing processes. These measures then
fill the role of outputs in productivity calculations. The most important process measure in
terms of productivity calculations is production rate—the measure of how many parts are
produced over a specific time frame, typically expressed in parts per hour. Production rate
is calculated from the operational cycle time that includes all time element activities
involved in producing one part.

Other important mathematical quantifying concepts include production capacity (the
maximum rate of output of a particular product for a manufacturing system over a
specified time period), utilization (the ratio of the actual number of products divided by
production capacity, expressed in percent), and availability (how often a machine is

Automation Justification and Productivity Concepts 69

actually available to perform processing). Manufacturing lead-time is the total time it
takes to convert the raw material into the finished product.

Input of the productivity calculation (PI) is the amount of money into the process

over the same time frame used in the output measurement. Inputs to the process are
typically broken down into categories consisting of capital, energy, labor, and material.
All of these inputs need to be expressed in terms of dollars per hour. For energy, labor, and
material the calculations are straightforward. Capital costs of automation are determined
by breaking initial cost of equipment into annual cost spread over annual hours the
machine is estimated to run, the result added to factory overhead expenses.

Productivity calculations are a very effective method of comparing automation
alternatives. Productivity index is then calculated, giving a clear and concise method for
comparing partial and combined productivity measures of the two options being
evaluated. One of the options, typically the current method, is assigned a baseline
productivity index of 1. If a proposed option has a combined productivity index greater
than 1, it can be said that it is more productive than the current method. A combined
productivity comparison can serve as a starting point or roadmap for identifying the type
and quantity of improvements necessary to justify automation.

To ascertain whether there is sufficient production volume to justify an automation
investment, it is important to consider the current and proposed methods’ fixed and
variable manufacturing costs. Fixed costs are independent of production quantity; variable
costs, on the other hand, are dependent on the quantity. A production volume breakeven
point analysis calculates the volume that justifies automation. The quantity breakeven
point of two methods is found by setting the total annual cost equations equal and solving
for quantity (Q), at which the manual and automated methods cost the same. In general,
when product volumes are low, manual methods are more cost effective. As production
volumes increase the advantage goes to automated methods.

The USA automation strategy directs us to understand an existing process, to
simplify it, and if it is called for, to automate it. Using USA in conjunction with
productivity analysis greatly enhances the probability of a successful automation project.

70 Chapter 2

2.9 Key Words
actual processing time
availability
average production time
batch processing time
bottleneck station
capital expenditure
combined productivity
fixed costs
manufacturing lead-time
operational cycle time
partial productivity
production capacity
production rate
productivity
productivity index
quantify
quantity breakeven point
tool handling time
USA principle
utilization
variable costs
workpiece handling time

2.10 Review Questions
1. How can productivity calculations aid in identifying, evaluating, and justifying

automation?
2. Explain the difference between partial and combined productivity.
3. A manufacturing process can produce 640 parts/hr. The process requires three

laborers each earning $26/hr. What is the labor partial productivity of the process?
4. The manufacturing process described in review question 3 uses a machine that has

a capital cost of $95/hr. The machine operates on 150 kW of power. Cost of
electricity energy is $0.057/kWh. The machine processes 215 lb material/hr. The
material costs $0.85/lb. Using the labor input costs determined in Example 2.1,
calculate the combined productivity of the process.

5. The following table lists the steps for a machining process. The listed times are
required to load, unload, and process one part. Calculate the operational cycle
time (tc) and production rate (Rp).

Automation Justification and Productivity Concepts 71

6) An injection molding machine processes a 24-cavity mold in 1.3 min/cycle. The
parts are automatically ejected from the mold and travel by conveyor to the next process.
After every 500 cycles the mold is cleaned and sprayed with mold release. This takes 8
min to complete. Calculate the operational cycle time (tc) and production rate (Rpq).

7) Calculate the cycle rate (Rc) of the flow-line manufacturing system shown in

Figure 2-11, assuming the transfer rate is 5 sec/part and the processing time for each work
station is as shown in table below.

Figure 2-11 Flow-line manufacturing system

8) Calculate the monthly production capacity (Pc) of a product made by the injection

molding process described in review question 6. Assume the plant uses 8 injection
molding machines and molds to produce the part. Also, assume the plant operates in three
8-hour shifts per day, 5 days per week. How could the plant increase production capacity
in the short term? In the long term?

Process
Steps Description Time

1 Part loaded into machining fixture 4 min

2 First machining operation 4.5 min

3 Part repositioned in fixture 0.5 min

4 Second machining operation 8.5 min

5 Part unloaded 3 min

Note: After 50 parts the cutting tool is changed, a step
that takes 5 min.

Workstation
Processing

time
(min/pc)

1 0.5

2 1.25

3 1.25

4 1.85

5 0.95

72 Chapter 2

9) A manufacturing system has a theoretical production capacity of 500,000 parts/
month. Typical use of the system is 97% and availability is 99%. What is the anticipated
actual monthly production of the system?

10) A part is routed through 6 machines in lot sizes of 300 parts/batch.
Average non-operation time is 5 hr. Setup and operational cycle times are shown
in the table below. Calculate the manufacturing lead-time for the part.

11) An automated work cell is being considered to replace an existing process. The
cell will cost $350,000 to purchase and is anticipated to have a 7-year service life. The
machine will operate for 2080 hr/yr. Also, consider that the company spent $4,600,000 on
factory overhead and $8,250,000 on direct labor costs the preceding year. If the
manufacturing firm desires a 10% return on its investment, estimate the hourly capital cost
to operate the new automated work cell.

12) A manufacturing firm utilizes a manual machine to make a product. The
production rate is 125 parts/hr. This current method uses three operators at a labor wage
rate of $18/hr. The manual machine’s capital operation cost (including cost of electricity)
is $34/hr. The firm is considering replacing the manual machine with a programmable
automation work cell. The new cell only requires one operator, but it has a capital cost
(including cost of electricity) of $95/hr. The production rate of the machine is 225 parts/hr.
Perform a combined productivity analysis to determine if the firm should purchase the
automated work cell.

13) Referring to the manual manufacturing method information given in review
question 12, calculate the total annual cost to produce 100,000 parts per year. Note that the
annual cost of maintenance for the machine is $16,000. Additionally, the raw material cost
is $2.50 per part.

14) A new automated method is being developed to replace the manual method
described in review questions 12 and 13. The new method has a production rate of 245
parts/hr, requires only one operator, and has a capital cost of $65.50/hour. Additionally,
the new method decreases material waste, thereby reducing raw material costs to $1.00/
part. Because of machine sophistication, yearly maintenance costs will increase to

Machine
Setup time

(hr)
Operation
time (min)

1 1 3

2 6 8

3 1.5 4

4 4 3

5 2 3

6 3 2

Automation Justification and Productivity Concepts 73

$26,000 per year. Perform a productivity analysis to compare the two alternatives if
annual production is 100,000 parts/yr. Is the proposed method more productive?
Calculate the quantity breakeven point. What is total annual cost savings if the proposed
method is used?

2.11 Bibliography
1. Groover, M.P. (2001). Automation, Production Systems and Computer-Integrated

Manufacturing, 2nd ed. Prentice Hall, Upper Saddle River, New Jersey.
2. Sumanth, David J. (1994). Productivity Engineering and Management. McGraw-

Hill.
3. Kandray, Daniel E. (2004). Comparison of fixed automation and flexible

automation from a productivity standpoint. Society of Manufacturing Engineers
Technical Paper TP04PUB206.

4. Machinery’s Handbook, 25th ed. (1996). Industrial Press, Inc., New York, New
York.

75

Chapter 3
Introduction to Computer Numerical Control (CNC)

Contents

 3.1 Introduction to CNC Technology

 3.2 CNC System Components

 3.3 Coordinate Systems and Reference Points

 3.4 The Ten Steps of CNC Programming

 3.5 Advantages and Disadvantages of CNC

 3.6 When to Use CNC Technology

 3.7 Summary

 3.8 Key Words

 3.9 Review Questions

 3.10 Bibliography

Objective
The objective of this chapter is to provide a thorough understanding of the

terminology and basic operating concepts of computer numerical control (CNC) tech-
nology.

76 Chapter 3

3.1 Introduction to CNC Technology
Computer numerical control (CNC) technology is, in the simplest of terms, the

automation of traditional manual machining processes by electrical and computer technology.
In traditional “manual” machining, a machinist (or operator) decides upon and directs the
motion of a tool relative to the workpiece, thus creating the desired shape of a finished
workpiece. In CNC technology, a computer controller plays the role of the machinist, so to
speak, directing the motion of the tool by following a stored sequence of coded machine
commands or directions called a program of instructions, or more traditionally, a part
program. A sample CNC program of instructions is shown in Figure 3-0. The program directs
the motion of the tool relative to the part and contains commands that control all essential
machine functions, such as tool choice, spindle rotation speed, tool feed rate, and other
functions. The program of instruction, written in a language that is understood by the CNC
controller, is often called a G-code program because its commands are alphanumeric codes
beginning with the letter “G.” This is evident in Figure 3-0.

Figure 3-0 Sample G-code program

Introduction to Computer Numerical Control (CNC) 77

3.1.1 Manual Machining and Numerical Control Technology
Manual machining is still used in industry for low volume applications, maintenance,

and repair. In manual machining, mechanical technology in the form of slides, gears,
belts, and feed screws implements a tool’s movement relative to a workpiece. A typical
manual vertical milling machine is shown in Figure 3-1.

Figure 3-1 Manual vertical milling machine

78 Chapter 3

A part is milled or machined by fastening the workpiece to the machine and moving
the workpiece into the rotating cutter, held by the spindle, at a specific feed rate and depth
of cut. Spindle rotational speed and direction is often controlled with gears or belts and
pulleys. The workpiece is fastened to the machine with some type of fixturing. In Figure 3-
1 the fixturing is a simple vise. The vise, in turn, is fastened to the mill table. The mill
table, and hence the workpiece, can then be moved in three directions relative and
perpendicular to the spindle.

The Cartesian coordinate system supplies the layout of the directions in which the
mill table can be moved. Again, as shown in Figure 3-1, the mill table can move
longitudinally across the front of the machine. This is shown as the x direction in the
figure. The table can also be moved at a right angle to the x direction, into the machine,
designated as the y direction. The third direction is along the spindle axis, and is shown as
the z direction. Linear bearings, called slides, or ways, both short for “slipways,” guide the
movement of the table along each axis.

Figure 3-2 shows a manual vertical milling machine with exploded views of the x-
and y-axis slides and lead screws. The table is moved along a specific axis by turning the
appropriate hand crank. This in turn drives the lead screw (or feed screw), which pushes or
pulls the table along the slides. Figure 3-3 shows a closer view of the slides. Note that
dovetail slides are used to constrain motion perpendicular to the sliding direction. The
feed screws for each axis can also be powered by the machine and moved at specific
speeds or rates.

Figure 3-3 shows such a machine, with the x-axis equipped with a power feed.
Typically, in manual milling, powered table movement occurs in only one direction at a
time. Standard operations for manual vertical mills are slot cutting, planing, and hole
drilling. Movement that occurs between any pair of axes during the cutting operation is
not very accurate and is difficult to accomplish. Cutting complex surfaces may require
movement in the direction of all three axes. However, such an operation is not possible on
a traditional manual mill; numerical control technology was developed to specifically
address this limitation.

During the 1940s a contractor to the U.S. Air Force by the name of John Parsons
began experimenting with methods to produce more accurate inspection templates for
helicopter blades. The inspection templates were a complex airfoil shape. Machining these
shapes accurately was a challenge. Parsons’ method involved calculating points along the
airfoil’s shape and then, using two operators (one for each axis), manually moving the
machine tool to each of these points. Because the calculations were so complex, Parsons
used a punch card tabulating machine to perform the calculations. The punch cards would
be fed into a card reader at the machine, which would read the data, then pass the
information on to a machine controller, which in turn directed the motion of each of the
machine axes.

Introduction to Computer Numerical Control (CNC) 79

Figure 3-2 Exploded view of manual vertical milling machine

Figure 3-3 View of dovetail slides of manual vertical milling machine

80 Chapter 3

Figure 3-4 Manual machine with power-driven x-axis

This method, although much more accurate than manual machining, was still very
time-consuming. However, the Air Force was much impressed and awarded Parsons a
contract to develop a machine to provide automated control of the axes.

Parsons’ machine concept is, fundamentally, the system that all-modern CNC
equipment uses today. However, today’s systems are substantially upgraded due to the
rapid development of computer technology. Punch cards were replaced by magnetic tapes,
which in turn were replaced by electronic files. These electronic files, or “part programs,”
are now either created directly at the machine or developed offline at a separate computer.
Figure 3-5 shows an older numerical control—or “NC”—machine, which used programs
stored on magnetic tape. Note the size of the tape reader/machine controller. Drive motors
for the axes are also visible. Prior to the advent of computer technology most machines
were referred to as “NC machines.” They were hardwired using vacuum tubes, transistors,
and relay technology. In the 1970s and 1980s, microcomputers replaced the aging
hardwired technology. These machines were called computer numerical control, or CNC,
machines. However, NC is still often used interchangeably with CNC. Figure 3-6 shows a
modern CNC machine center.

Introduction to Computer Numerical Control (CNC) 81

Figure 3-5 Vintage numerical control (NC) machine

Figure 3-6 Modern computer numerical control (CNC) milling machine

82 Chapter 3

3.2 CNC System Components
CNC technology has been applied to numerous machine tools, including lathes, mills,

electric discharge machines (EDM), and flame, laser, and plasma cutting machines. Non-
machine tool examples include coordinate measuring machines (CMM), component
insertion machines (assembly machines), wire-bending machines, and polymer composite
filament winding machines. Figure 3-7 shows a numerical controlled wire-bending
machine. Essentially, any type of processing equipment that needs to move a tool relative
to a workpiece is a prime candidate for CNC technology. Thus, a CNC system can be
broken into four major components:

1. Processing equipment/machine tool
2. Drive mechanism/positioning system
3. CNC controller
4. Program of instructions.

Figure 3-7 CNC wire-bending machine

3.2.1 Processing Equipment/Machine Tool
For processing equipment in general, the workpiece−tool relative motion is executed

in two or three directions; however, as many as five different directions can be controlled
in modern equipment. Each direction corresponds to an axis of the machine. A standard
CNC mill has three axes: two horizontal axes corresponding to the x,y-plane and a vertical
axis for movement of the spindle corresponding to the z-axis. The axis with the longest
travel is generally labeled “x-axis.” Another standard in the machine tool industry is the
correspondence of the axis of the machine’s spindle with the z-axis. Hence, for a lathe, the
tool motion is specified in the direction of the x- and z-axes. The tool moves in the x
direction, in and out of the workpiece orthogonal (at right angles) to its rotational axis.
This is shown in Figure 3-8.

Introduction to Computer Numerical Control (CNC) 83

Figure 3-8 CNC lathe with axes labeled

Additional axes are often added to mills in the form of multiaxis rotational tables, or
fixturing, resulting in four or five axis machines. This is discussed in greater detail in later
chapters. As mentioned previously, any type of processing equipment where controlling
the location of the workpiece relative to the location of a tool is important is a prime
candidate for CNC control.

3.2.2 Drive Mechanism/Positioning System
Movement along the various axes of the machine is accomplished with mechanically

guided high precision linear bearings, called slides or ways, and a lead screw. A carriage
or table is moved along the slide (or axis) by the lead screw. The lead screw transforms
rotational motion from an electric motor into linear movement along an axis. Early
machines used hydraulic motors controlled with servo valves, an approach still used for
very large machines.

The majority of modern CNC tools have electric servomotors to drive the lead screw.
Figure 3-9 shows a cutaway view of a typical servomotor closed loop system, for
controlling one axis. In order to perform complex contouring in the x,y-plane, two axes are
required, one for each direction. This is accomplished by mounting one axis control

84 Chapter 3

system on top of another. This is evident in Figure 3-9. One axis control system moves the
table across the machine, the other moves the saddle, and hence the table, in and out of the
machine. By adding vertical axis control to the spindle, complicated three-dimensional
shapes can be machined. Orchestrating and synchronizing the motion in all three
directions is the task of the CNC controller.

Figure 3-9 CNC mill servodrive components

3.2.3 CNC Controller
The CNC controller directs all machine functions while executing the program of

instructions. It interfaces with the machine operator during machine and tool setup. It
selects the desired tooling and positions the workpiece in the correct location relative to
the tool. It turns on spindle and coolant flow and moves the workpiece and/or tool along
the correct tool path at the specified feed rate, often directing the motion along three axes
simultaneously. It can also make decisions and instruct other machines to perform a
specified task. For example, it can communicate with a machine-tending robot to load or
unload a workpiece. When it does this, it must cease machining operations, open any
guards or gates to allow easy access to the workpiece, release the automated fixture, and
instruct the robot to proceed. Not only does the controller have to execute all of these
impressive tasks accurately and in the correct order, but also the tasks must be carried out
very quickly. This is particularly true for the motion control of the axes, which is perhaps

Introduction to Computer Numerical Control (CNC) 85

the most important and complicated function the controller provides. Thus, the motion
control is in a category among controller functions are listed. The other functions
discussed above are categorized as either auxiliary control or part of the operator
interface. This is shown in Figure 3-10.

Figure 3-10 CNC controller functions

Although the performance capabilities of a CNC machine are impressive, the
machine cannot perform a single task without first being properly set up. In the machining
industry the term “setup” refers to preparation of the machine or machines to process a
specific workpiece in a specified manner. Setup typically involves acquisition and
installation of the correct cutting tools and fixturing. In CNC machining, setup also entails
the correct part program be loaded into memory and specifies the program reference zero
(PRZ). The PRZ is the location of the x, y, and z zero positions of the coordinate system
that the program references when providing relative positioning of the tool and workpiece.
Setup-related tasks are performed through the operator interface of the machine. The PRZ
is discussed in more detail in subsequent sections.

The operator interface typically (and minimally) consists of a CRT or LCD screen
and keypad. Small nonindustrial machines used by hobbyists or by operators in the

86 Chapter 3

educational environment use a PC that runs operator interface software. Regardless of the
type of operator interface, the functions it provides are the same, and they typically
include manual motion control of the axes (for establishing the PRZ), manual control of
spindle rotation speed and direction, tooling specifications and setup, starting and stopping
the machine, program file management, and input and editing of programs—as well as
other functions. An operator interface for a CNC lathe is shown in Figure 3-11.

Figure 3-11 CNC operator interface

Auxiliary control is essentially discrete control over machine functions that support
the machining or processing operation—functions that are not directly related to motion
(continuous) control of the axes. This is an important distinction because it affects the
coding used in the program of instructions (see Chapter 4). Auxiliary control is considered
a form of discrete control in the sense that the status of the function (spindle motor)
changes at discrete or distinct moments in time. Additionally, the status is binary (1 or 0).
As an example, consider the status of the spindle motor during a machining operation. Its
status is either on or off. This can be represented in binary terms by either a 1 (on) or 0
(off). This is in stark contrast to the motion control of the axes. The status or position of an
axis is continuously changing. Hence, motion control is a form of continuous control.

Figure 3-12 shows the motion control system for a single axis of a vertical mill.
Based on a program of instructions, the CNC controller sends the desired position and sets

Introduction to Computer Numerical Control (CNC) 87

the speed at which it travels to the motor drive unit. The motor drive unit then analyzes
this signal and turns on and rotates the servomotor to obtain the desired position at the
desired speed. The encoder informs, or feeds back, the position of the axis continuously to
the motor drive unit, while the tachometer reports the rotational speed of the lead screw.
The motor drive unit continuously compares the desired position and speed to the actual
position and speed and adjusts the servomotor accordingly. This type of continuous
control is termed a closed loop feedback control system. Most CNC machines used in
industry employ this type of control. However, for smaller CNC machines used by
hobbyists and in academia, an open loop control system is often used.

Figure 3-12 Single-axis closed loop motion control system

An open loop control system utilizes a stepper motor instead of a servomotor to
control axis movement. Also, the system does not use a feedback device such as an

88 Chapter 3

encoder or tachometer. Hence, it cannot provide feedback to the motor controller
regarding the actual axis position and speed. Thus, the signal sent to the stepper motor is
the only means by which the speed and position of the axis is controlled. The signal is
sent, and the controller assumes the axis has achieved the desired position at the desired
speed, but this assumption cannot be verified. Even though open loop control systems are
much simpler and less expensive than closed loop feedback control systems, they are
generally only used where resistance to axis motion is low. High resistive forces could
prevent the axis from achieving the desired position. A single-axis open loop control
system is depicted in Figure 3-13.

Figure 3-13 Single-axis open loop motion control system

In a typical machining operation, simultaneous control of more than one axis is
required. For a CNC lathe or a CNC plasma cutter, two axes will be controlled
simultaneously. For a mill, at least three and up to five axes have to be controlled.
Therefore, the motion control system has to perform complicated geometric computations

Introduction to Computer Numerical Control (CNC) 89

to coordinate the motion of each axis to achieve the desired relative position of the tool to
the workpiece. Additionally, the path taken to achieve that position may be of particular
importance.

Consider Figure 3-14. Figure 3-14(a) shows the desired end product. Two holes are
to be drilled at positions A and B. First, the tool is moved to position A and the hole
drilled. Subsequently, the tool moves to position B to drill the second hole, as shown in
Figure 3-14(b). The path taken to get to position B is of little importance. What is
important is that tool position B be located accurately. This type of control, where the tool
is moved from point A to point B without consideration of the path taken is called point-
to-point control. To achieve this motion two single-axis motion control systems can be
placed together, one to represent the x-axis and one to represent the y-axis. A signal is sent
to the x-axis motor drive unit to move to position xB and another is sent to the y-axis motor

drive unit to move to position yb. Each axis will move to the desired position without

regard to the motion of the other axis. This is the essence of point-to-point control: to
obtain the desired position without regard to the path taken. Figure 3-14(c) shows a graph
of how the path may look on the (x,y)-coordinate system, depending on the values of xB

and yB. This type of control is suitable for drilling operations, except when the path taken

between the two positions is important, as is true in milling and turning (lathe) operations.
Figure 3-15(a) shows a block with a diagonal slot milled in it from point A to B. In

order to perform this operation, the tool will be positioned above point A, then moved
down into the workpiece to the desired depth. From this position it is moved to point B
following a straight (linear) path, as shown in Figure 3-15(b). In this case, the path taken
from point A to point B is important. Additionally, the speed at which the tool moves
along this path is also very important because of speed’s effect on the surface finish of the
final product. The resulting tool path is shown graphically in Figure 3-15(c).
Consequently, the CNC controller must perform complicated calculations, and do so very
quickly, to ensure that the desired path is followed at the desired speed. This is called
continuous path control, which the controller must “interpolate” to achieve. This idea is
now explained.

As is true of point-to-point control, two single-axis motion control systems are placed
together, one to represent the x-axis and the other to represent the y-axis. However, for
continuous path control, the CNC controller will generate a series of intermediate
positions along the path between positions A and B. This represents an approximation of
the continuous path. An approximation is necessary because the CNC controller is digital.
Therefore, to define a continuous path in digital terms, the programmed path must be
broken up into smaller finite line segments that approximate the desired path. This process
is called interpolation. The type of interpolation performed depends on the type of
continuous path that needs to be approximated. For example, the straight line segment
shown in Figure 3-15(c) requires linear interpolation. A circular path, such as a path along

90 Chapter 3

an arc, requires circle interpolation. These are by far the two most common interpolation
methods used in milling and turning operations.

Figure 3-14 Point-to-point control example (a) End product (b) Point-to-point tool move

(c) Plot of axes movements

Introduction to Computer Numerical Control (CNC) 91

Figure 3-15 Continuous path control example (a) End product (b) Continuous path tool move

(c) Plot of axes movements

Other, not as common, interpolation methods include:
Helical interpolation—Combines linear interpolation in one axis and circle

interpolation in two other axes.
Parabolic interpolation and cubic interpolation—These methods are used to

represent higher order free form curves. The calculation methods are complex and time

92 Chapter 3

consuming and are generally not suited for real-time calculation by the motion controller.
Consequently, algorithms are used to simplify the curves into linear and circular segments
before the program is downloaded to the motion control system.

Figure 3-16(a) shows a continuous path defined by an arc segment. The starting point
A, ending point B, and the radius R suffice to define the path mathematically. Figure 3-
16(b) shows how the curve is approximated with circle interpolation. The resolution or
amount of error in the approximation is also evident in Figure 3-16(b). The higher the
number of intermediate points, the smaller the error in the approximation. Typical
industrial CNC equipment’s interpolation error is very small, not discernable to the naked
eye or touch.

Figure 3-16 Circle interpolation example

The programmer gets an added benefit from the interpolation methods: the ability to
define complicated shapes with relatively few input parameters. Again consider Figure 3-
16. Without circle interpolation the programmer would have to manually calculate the
intermediate points that approximate the curve and enter these intermediate positions in
the program of instructions. This would be very time consuming, cumbersome, and make
the program of instructions very large. With circle interpolation the programmer defines
the path with only three parameters: the ending point (xB, yB), the radius, and the direction

(clockwise or counterclockwise). The CNC controller, through circle interpolation, does
the rest! This is discussed in greater detail in Chapter 4.

The use of continuous path control in CNC milling and turning has made necessary
additional terminology regarding the type of cut performed. When continuous path control
is used to move the tool along only one axis (x, y, or z), it is called a straight cut. The term
contouring cut is used to define the machining operation in which continuous path control
is used to move the tool along two or more axes at the same time.

Introduction to Computer Numerical Control (CNC) 93

CNC milling and turning operations utilize both point-to-point control and
continuous path control. Whenever the tool is not engaged in the workpiece—i.e., not
performing an actual machining operation—then point-to-point control is used. Examples
include positioning the tool prior to performing an actual machining operation or moving
the tool to a set position to perform a tool change. It is not important how one gets to the
position, only that one gets to the position quickly. Thus, the path taken in point-to-point
control is of little importance. Conversely, with respect to an actual contouring or straight
cut, the path, and speed along the path are very important; hence continuous path control is
utilized.

3.2.4 Program of Instructions
The program of instructions, known variously as the CNC program, G-code program,

or simply “the program,” is a sequential list of alphanumerically coded machine
instructions. The CNC program instructs the CNC controller as to the tasks that are to be
completed, when they are to be executed, and how they should be accomplished to
perform the desired machining operation(s). The program is coded, that is, written in a
language the CNC controller can understand. It is developed by an individual referred to
as the CNC programmer. The programmer must possess extensive experience with the
type of processing the machine performs and the code or language in which the
instructions are written.

The program is accessed by the CNC controller through the machine interface, either
by direct input or from a stored electronic file. The program contains all the auxiliary
control and motion control instructions. The CNC controller executes these instructions
sequentially, line (or block) by line, by interpreting the instructions as either auxiliary
control or motion control functions.

The auxiliary control instructions are termed “miscellaneous” or “auxiliary” because
they are necessary for the processing (or machining) but are not part of the tool moves.
Miscellaneous functions are written with the letter “M” prefix followed by two numeric
digits and are appropriately called M-codes. The motion control instructions are called
“preparatory” because they prepare the CNC controller for an actual tool move. As
previously noted, these are called G-codes. The number of G-codes in a CNC program
typically far exceeds the number of M-codes. Consequently, “G-code program” is often
synonymous for “CNC program” or “program of instructions.”

The simple G-code program shown in Figure 3-18 was written to produce the part
shown in Figure 3-17. Notice that the program is broken down into three major sections,
titled program setup, material removal, and system shutdown.

The program setup section, shown in Figure 3-18, contains instructions to prepare the
machine for the material removal processing that is performed in the next section of the
program. There are both M-codes and G-codes in this section. The M-codes perform
functions such as selecting the correct tool (for machines that have automatic tool
changers), turning on the coolant flow (if available), and turning on the spindle in the

94 Chapter 3

correct direction at a specified speed. The G-codes in this section involve positioning the
tool in preparation for cutting using predominantly point-to-point control. Additionally,
the units (inches or millimeters) and the type of coordinates used, either absolute or
incremental, will be specified by G-codes.

Material removal contains mainly G-codes associated with actual tool moves
executed by the CNC controller through continuous path control and interpolation. During
the actual material removal process, the path and the speed along the path (feed rate) are
very important to the quality of the finished product; hence, the many uses of continuous
path control. However, when a tool is moved from one material removal operation to the
next, it may have to be relocated. Consequently, some G-codes in the material removal
portion of the program use point-to-point control.

The last section, system shutdown, contains the commands necessary to end the
program. G-codes here use point-to-point control to move tooling away from a workpiece
to facilitate workpiece removal. Also contained in this section are M-codes, intended to
turn off miscellaneous functions activated during program setup. Additionally, an M-code
to inform the CNC controller that the program is complete is listed.

The actual G- and M-codes and other letters listed in Figure 3-18 are discussed in
great detail in Chapter 4.

Figure 3-17 Part produced by Figure 3-18 program

Introduction to Computer Numerical Control (CNC) 95

Figure 3-18 G-code program

96 Chapter 3

3.3 Coordinate Systems and Reference Points
It has been discussed that the key aspect of CNC control is ability to control the

position of the tool relative to, or in reference to, the position of the workpiece.
Consequently, a CNC machine requires a method of specifying tool position in three-
dimensional space. Additionally, this position must somehow reference the workpiece.
Generally, this is accomplished with use of a machine coordinate system that defines the
tool’s position and a parallel workpiece coordinate system whose origin is PRZ point,
specified in the machine coordinate system, which relates the tool position to the
workpiece.

3.3.1 Machine Coordinate System
Refer to Figure 3-19 and recall from Section 3.1 how the Cartesian coordinate system

is used to define the various directions in which a mill table can move. Each movement
direction corresponds to an axis of the machine. In the case of the mill in Figure 3-19, the
mill table and correspondingly the workpiece can move in three directions, orthogonal to
one another and relative to the spindle and/or tool’s position. Hence, this machine uses the
Cartesian coordinate system, each of its axes corresponding to the x-, y-, or z-axis. For this
particular example, the x direction corresponds to the longest axis movement (across the
machine), the y direction aligns with motion in and out of the machine, and the z direction
matches up with the spindle axis for vertical motion. This setup defines the equipment’s
machine coordinate system. Different equipment may have different axis configuration
and thus different machine coordinate systems. Another factor that causes machine
coordinate systems to vary among different machines is the industry standards used to
label the axes. Typical industry standards specify that the spindle axis be labeled the z-axis
and the longest travel axis be labeled the x-axis.

Figure 3-20 shows the machine coordinate system for a lathe. Only two axes are
used, so following industry standards the coordinate system uses only the x and z axes.

Additional axes can be added, beyond x, y, and z, by inclining or rotating the tool
relative to the workpiece. This is typically accomplished by adding a two-axis rotary
attachment to a three-axis machine, as is shown in Figure 3-21(a). Rotational axes are
typically labeled A and B. Figure 3-21(b) shows an additional configuration. These
machines are called five-axis machines. Note the adherence to industry standard labeling.

The location of the origin of the machine coordinate system varies amongst machine
configuration and manufacturer. It is the position where x, y, and z are all zero, and it is
called the machine reference zero (MRZ). A possible location of the MRZ for a three-axis
machine is determined at the point where each axis is fully retracted. This position is often
transparent to the programmer but is used by the CNC controller to correlate defined
positions of the workpiece coordinate system to the machine coordinate system.

Introduction to Computer Numerical Control (CNC) 97

Consider Figure 3-22, which is an engineering or product drawing of a workpiece to
be milled. This workpiece has three features: two holes and a slot. Figure 3-23 shows the
workpiece fixtured to the table of a three-axis mill. Note the location of the workpiece
coordinate system and its origin, the program reference zero.

Figure 3-19 Coordinate system and origin location, called machine reference zero

(MRZ) for three-axis mill

98 Chapter 3

Figure 3-20 Coordinate system for a lathe

Figure 3-21 Five-axis machines

Introduction to Computer Numerical Control (CNC) 99

Figure 3-22 Milled workpiece product drawing

Figure 3-23 Workpiece coordinate system and PRZ

3.3.2 Program Reference Zero (PRZ)
The PRZ point is the origin of an additional coordinate system (attached to the

workpiece) that is parallel to the machine coordinate system. The establishment of the
PRZ permits the programmer to easily relate the location of workpiece features to the
machine coordinate system, thus allowing the correct positioning of the tool relative to the
workpiece for feature production of the piece.

100 Chapter 3

The standard location of the PRZ on a milled workpiece is the lower left corner and
the top of the workpiece, as shown in Figure 3-23. This location choice is desirable so all
features and corresponding tool locations are in quadrant I of the coordinate system, where
both x and y are positive. Placing the PRZ on top of the workpiece is also convenient so
that when the tool is actually removing material from the workpiece, the z value will be
negative. Accordingly, when the z value is positive, the programmer knows the tool is
clear of the workpiece. Figure 3-24 shows the PRZ of a turned part. Convention dictates
that its location be along the spindle axis and at the far right face. The reason for this
convention for turned parts is similar to that of milled workpieces; namely, positions with
negative z values indicate material removal, as do moves directed in the negative x
direction.

Figure 3-24 PRZ for a turned part

3.3.3 Absolute and Incremental Coordinates
The establishment of the workpiece coordinate system and its origin, the PRZ,

provides a means to identify the location of workpiece features and correspondingly the
path the tool will follow during the machining of the workpiece. The path the tool follows
to produce the desired features of the workpiece—the tool path—is identified by a
connected series of positions or points. The order in which the tool moves to each position,
as decided by the programmer, defines the path. The ideal tool path is one in which the
workpiece features are produced in the shortest amount of time.

Figure 3-25 shows the tool path to produce the workpiece previously identified in
Figure 3-22. The tool path can be broken down into 11 individual tool moves to 9
positions as listed in Figure 3-26. The tool path starts and ends at position A. Each position
along the path is identified with an x-, y-, and z-coordinate in the workpiece coordinate

Introduction to Computer Numerical Control (CNC) 101

system. These coordinates can be specified using either absolute or incremental
coordinates.

Figure 3-25 Milled workpiece tool path

Figure 3-26 Tool path moves

102 Chapter 3

Absolute coordinates define a position or point using absolute x, y, and z values
relative to the origin (or PRZ) of the workpiece coordinate system. Incremental
coordinates, however, define the x, y, and z values of a point along the path in a successive
way, that is, relative to the last point on the path.

Consider Figure 3-27, which shows the tool path of Figure 3-25 viewed in only the
(x,y)-coordinate system, with the origin at the PRZ. Positions C, E, G, and H are not
shown because they possess the same x and y values as positions B, D, F, and I,
respectively, differing in the z direction only. To express a position in absolute coordinates
its location must be identified along each axis relative to the origin. Hence, position A has
an x-coordinate of 0 and a y-coordinate of 0. To obtain position B, it is necessary the tool
move from the origin 1.5 units in the positive x direction and 1.25 units in the positive y
direction. Thus, position B has an x-coordinate of 1.5 and a y-coordinate of 1.25. The
format for specifying position coordinates is to list the position letter (or number, if
numbers are used to identify positions, though these can be confused with the coordinates
themselves), followed by the x- and y- coordinates, encased in parentheses and separated
by a comma. For example, the absolute coordinates for position A and B are (0, 0) and
(1.5, 1.25), respectively. The absolute coordinates for each of the positions of Figure 3-27
are listed in Figure 3-28.

Figure 3-27 Tool path positions shown in x,y-plane of workpiece coordinate system

Incremental coordinates are specified using a different origin for each position.
Unlike absolute coordinates, which reference the origin of the workpiece coordinate
system, incremental coordinates are defined in reference to the last position along the tool

Introduction to Computer Numerical Control (CNC) 103

path. However, if the origin is the first position along the path, it is then the reference of
the workpiece coordinate system.

Again consider Figure 3-27. In incremental coordinates, position A is (0, 0). Position
B is determined in reference to position A; hence, its location is (1.5, 1.25). Each of these
specifications is identical to the absolute coordinate location. This will always be true of
the first position along the tool path, and often for the second position if the first position
is at the origin of the workpiece coordinate system. As defined by the tool path, position
D’s location is determined in reference to position B. Therefore, to move to position D
incrementally from position B, it is necessary to move the tool 1 unit in the positive x
direction and 1.5 units in the positive y direction. Therefore, position D is defined in
incremental coordinates as (1, 1.5). The coordinates of position F, as dictated by the tool
path, are determined in reference to position D. Its position is (0.75, 0.25). Again, position
I, as dictated by the tool path, is determined in reference to position F and is specified as
(0, −2.25). The y value is negative because it is necessary to move in the negative y
direction 1.5 units to move to position I from position F. Therefore, even though the
positions are defined in quadrant I, negative x and negative y values are possible with
incremental coordinates. The incremental coordinates of each position are listed in Figure
3-29.

Figure 3-28 Absolute coordinates of Figure 3-27 positions

A common mistake students make with incremental coordinates occurs when
positions along the tool path fall in quadrants other than—and in addition to—quadrant I.
Figure 3-30 shows such a tool path, with the absolute coordinates listed next to each
position. To determine the incremental coordinates of a position relative to one located in
another coordinate, one must consider the total distance traveled along the axis. For
example, in incremental coordinates, position B is defined relative to position A as
(−2, −0.375). Figure 3-31 shows the incremental coordinates of each position.

104 Chapter 3

Figure 3-29 Incremental coordinates of Figure 3-27 positions

Figure 3-30 Tool path in four quadrants

Figure 3-31 Incremental coordinates of Figure 3-30 positions

Introduction to Computer Numerical Control (CNC) 105

3.4 The Ten Steps of CNC Programming
In addition to introducing the reader to CNC technology and defining some important

terminology, the last few sections also provide some insight into how CNC equipment is
programmed. The overall process is rather involved, but as we shall see in the next
section, advantages of producing parts via CNC equipment are well worth the effort. CNC
programming can be broken into the following ten steps:

Evaluate the product drawing. The product drawing details the features to be
produced by the program. Thus, evaluation of the product drawing is a critical first step.
During this step each feature’s location and associated data are identified and evaluated.
Dimensioning schemes and drawing layout strongly influence the choice of fixturing
methods as well as the orientation and location of the workpiece coordinate system.
Additionally, a workpiece may require several different programs on various machines
before it reaches the form defined by the product drawing. Thus, it is necessary to know
the stage of manufacture the product is in when it arrives at the CNC machine for which
the program is being written. The workpiece may already contain features that will also
influence the fixturing method and the location of the PRZ.

Select the machine, required tooling and fixturing to produce the desired features.
During this step, the machine for which the program is being written is selected. Based on
its machine coordinate system and the information gathered from step 1, a fixturing
method and required tooling are also identified.

Determine and calculate the appropriate cutting parameters. The quality and speed
of the material removal process, dictated by the cutting parameters, are dependent on the
tooling selected and the workpiece material. The cutting parameters are:

• cutting speed
• feed rate
• depth of cut

These parameters define how the tool moves into the material for each tooling pass.
There are industry standard tables that list these parameters for specific tools, operations,
and workpiece material. Additionally, calculations are necessary to convert parameters
into a more usable form for the CNC controller.

Develop the program tool path. This involves developing the machining sequence
and identifying the path the tool should follow to produce the desired features. This step is
also called “developing the process flow.” The locations of the features are identified, and
the path to each of these locations, along with the path to produce the feature, is then
mapped.

Determine program coordinates. The coordinates of each position along the tool path
are identified and/or calculated based on tool path and workpiece coordinate system
orientation. The use of either absolute or incremental coordinates is based on the
requirements of the specific machine and/or the discretion of the programmer.

106 Chapter 3

Write the program of instructions. This step entails converting the cutting
parameters, tool path, and program coordinates into the language of the CNC controller.

Verify the program using CNC simulation software. Numerous simulation software
programs have been developed to graphically verify the program of instructions prior to
running the part on the machine with an actual workpiece. Because of the complexity of
generating the program of instruction, simulation software was developed to identify
programming errors prior to actual part production. Additionally, it is much easier to edit
the program of instruction at this stage of development. Figure 3-32 is a screen shot of a
sample simulation software program.

Figure 3-32 Simulation software example

Prepare setup sheets and tool lists. A setup sheet provides instruction to the person
who sets up the machine for the program. The instructions explain how the workpiece is to
be fixtured for the given program. It also identifies the location of the PRZ on the fixtured
workpiece. Tool lists identify the tooling used by the program.

Verify the program on the actual machine. This step involves trying out the program
on the machine for which the program was written. It entails setting up a sample
workpiece per the setup sheets, loading the tooling per the tool lists, loading the program,
and finally executing the program. This is the final check before the program is released
from development. Often, the sample workpiece is made of a cheaper, easier to machine
material, such as machinable wax. Thus, if there are mistakes in the program or problems
with the fixturing, a less expensive material is scrapped.

Introduction to Computer Numerical Control (CNC) 107

Run the program. When this step is reached the program will be error-free and ready
to run an actual workpiece. After the actual piece is run it is inspected and all dimensions
verified against the product drawing. If all dimensions are acceptable, the program is
released from development.

Steps 1 through 6 above are discussed at length in Chapter 4.

3.5 Advantages and Disadvantages of CNC Technology
CNC technology applied to the machining process offers numerous benefits over

traditional manual machining. However, there is a price to pay for all the returns CNC
technology yields. In this section we discuss the advantages and disadvantages of CNC
technology, along with the most appropriate situations for utilizing CNC.

3.5.1 Advantages
As with most types of automation, the reduced level of human participation in the

process, and thereby a reduction in labor costs, is one of the primary advantages.
However, with CNC technology the advantages go well beyond mere labor savings. A list
of six primary advantages with detailed explanations is given below. Note that in many
cases, advantages are mutually inclusive.

1. Increased productivity. To review, “productivity” is the amount of output (parts
produced)—i.e., obtained from a process—divided by the amount of input (labor, raw
materials, time). Typically, both output and input are expressed in monetary terms. Hence,
to improve productivity either more product needs to be produced (i.e., increased output)
or less labor used, as well as less raw material or time (i.e., decreased input). Typically,
with CNC technology the gain in productivity comes from a reduction in labor and/or raw
material usage and through time savings.

Reduced labor and time savings from CNC are realized due to a reduction in
nonproductive or noncutting time. Operations that were previously performed on separate
manual machines can be combined into a single program on one CNC machine. This
yields fewer setups, less time to setup for the simpler CNC fixturing, and reduced work
handling. Additionally, time is saved with the use of automatic tool changes. CNC
machines make use of tool turrets or tool belts. These turrets hold numerous cutting tools
that are automatically loaded and unloaded during program execution by the CNC
controller. A reduction in raw material usage is achieved with improved quality and a
corresponding scrap reduction.

2. Improved quality. Processes done with a CNC controller applied to a tool relative
to a workpiece are far more accurate and repeatable those that are done through manual
processes. Use of CNC drastically reduces and/or eliminates part-to-part and batch-to-
batch variation. The net result is typically reduced inspection requirements and lower
scrap rates. The lower scrap rates mean that less raw material is required, which improves
productivity.

108 Chapter 3

3. The ability to manufacture complex shapes. The advent of CNC technology was
the direct result of the great difficulty encountered in the manufacture of complex shapes.
In some cases the manufacture was impossible. Recall how John Parson’s first NC
machine was developed to machine more accurate helicopter blade templates. Hence, the
ability to manufacture complex shapes is still a primary advantage of CNC technology.

4. Manufacturing cost structure improvements. The reduction in the number of setups
and the time to perform the setups by utilizing CNC technology yields tangible
manufacturing cost improvements as well. Manufacturing cost improvements are also
made with the reduction in floor space from the replacement of multiple manual machines
with one or two CNC machines. Shorter manufacturing lead times, reduced part inventory,
reduced work in process, and less floor space greatly impact the cost structure of the
manufacturing firm.

5. Reduced operator skill level. As stated at the beginning of this chapter, in
traditional “manual” machining a machinist (or operator) decides and directs the motion of
the tool relative to the workpiece to create the desired shape of the finished part. The
machinist’s decisions were based on the part print and his or her experience and training.
Consequently, operators of manual machines had to have intimate knowledge of
machining processes, setup methods, and tooling. With CNC technology, the process
planning, fixture design, and tooling selection are made well in advance by the
programmer and/or manufacturing engineer. Additionally, the program directs the path of
the tool. Hence, all the operator is required to do is simply load the workpiece, start the
program, and unload the workpiece. An operator with less skill usually receives a lower
wage, which consequently yields manufacturing cost structure and productivity
improvements.

6. Easily accommodate product design changes. A high production manual
machining process often involves moving the workpiece across numerous manual
machines that use custom tooling specifically designed for that particular machine and
workpiece. Hence, if the design of the finished product were changed, the custom tooling
might have to be changed in addition to the manufacturing process. For significant design
changes this is a very costly and time-consuming process. CNC technology, on the other
hand, uses relatively simple fixturing and the program of instructions controls the
processing. Therefore, significant design changes might only impact the program, which
can be changed rapidly with little impact on the flow of the manufacturing process. With
today’s rapidly changing products and the impact of lean manufacturing concepts this is a
significant advantage.

3.5.2 Disadvantages
Although the advantages of CNC technology are great, there are still some significant

disadvantages that need to be considered. The most significant of these is how switching
to CNC technology impacts manufacturing cost structure and manufacturing productivity.
The three primary disadvantages of CNC technology are listed below.

Introduction to Computer Numerical Control (CNC) 109

1. Higher investment cost. CNC machines are quite expensive compared to manual
machines. This is due to the addition of the electrical and computer technology that
controls the position of the tool relative to the workpiece. This higher initial cost has a
dramatic impact on the cost structure of the manufacturing firm. Thus, machine use can
become an issue. Additionally, the higher purchase price impacts these machines’ hourly
operation rate, which can have a detrimental effect on machine productivity if not
compensated for with other productivity improvements. Refer to Chapter 2 for more
information on justifying automation.

2. Higher maintenance cost. The addition of electrical and computer technology
make repair and upkeep of CNC machines more involved and costly. Reliability and
mean-time-between-repair data should be carefully considered in the selection of a
machine. Also, maintenance department skill level requirements change with the addition
of a CNC machine and automated work cells. Stronger electrical and computer skills are
required. Personnel with these skills often demand a higher pay rate, which also impacts
maintenance costs.

3. Addition of specialized personnel. Adding one or more CNC machines to a
manufacturing facility requires the addition of specialized personnel to develop the
program of instructions. Although most programming can be performed at the machine
through the user interface, the machine is “down” or “offline” during this process—hence,
not producing. This situation essentially amounts to an extended setup. Thus, in most high
production manufacturing firms a specialist will be employed to develop the program of
instructions ahead of time. This specialist is called a “part programmer” or “CAM
programmer” or simply a “programmer.” Note that CAM stands for computer-aided
manufacturing. Programmers are typically skilled in the manufacturing process in
question, in its fixturing, tooling, blueprint reading, two- and three-dimensional CAD, G-
code language, and in various other programming and simulation software programs. The
addition of a programmer, or a whole department of programmers in larger firms, also
impacts the flow of work through the facility, which has a direct effect on the lead-time of
the product.

3.6 When to Use CNC Technology
For the addition of CNC equipment to be justified, the advantages of improved

productivity, quality, production capability, and other advantages discussed previously
have to exceed the disadvantages of higher initial investment, higher maintenance costs,
and addition of personnel. Performing a productivity analysis is a good way to determine
if CNC technology is justified, as discussed in Chapter 2. (This is true for most
automation.) However, there are several scenarios that often indicate a conversion to CNC
technology is warranted.

1. Batch production with small to medium lot sizes. The batch production in small to
medium lot sizes indicates that programmable automation, which CNC technology

110 Chapter 3

provides, is a good choice. Conversely, if very large batch sizes are required, fixed
automation may be a better choice.

Batch production also indicates that parts are produced periodically. With CNC
technology, once a program has been created and verified, conversion to a new batch (or
order) can be accomplished much faster than with manual machines.

2. Multiple separate machining operations. Multiple machining operations require
multiple setups. If these operations can be combined into one CNC operation only one
setup will be required. Additionally, multiple operations may also indicate multiple
machines. Thus, combining operations may also reduce the number of machines required.

3. Complex part geometry. As previously stated, in some situations CNC technology
may be the only viable option for manufacturing products with exceptionally complex
geometry.

3.7 Summary
Computer numerical control (CNC) technology is the automation of traditional

manual machining processes with electrical and computer technology. Through the use of
a program of instructions, a computer controller directs the motion of the tool relative to a
workpiece, removing material to create the desired shape of the finished part. The program
of instructions also contains commands to control all essential machine functions and is
written in a language that the CNC controller can understand and is typically called a “part
program” or simply a “program.”

The components of a CNC system include some type of processing equipment/
machine tool, a drive mechanism/positioning system, a CNC controller, and the program
of instructions.

CNC technology has been applied extensively to equipment used in the machining
industry. However, the technology can be applied to essentially any type of processing
equipment that needs to move a tool relative to a workpiece.

The directions in which the tool is moved relative to the workpiece are given in the
Cartesian coordinate system. Coordinate directions correspond to the machine axes.
Movement along the axes of the machine is accomplished with mechanically guided, high
precision linear bearings called slides or ways and a lead screw. A carriage or table is
moved along the slide (or axis) by the lead screw. The lead screw transforms rotational
motion from an electric motor into linear movement along an axis.

The CNC controller directs all machine functions, including simultaneous axis
motion, and acts as the operator interface for manual operations related to program and
machine setup. The controller provides auxiliary control over discrete functions and
simultaneous motion control of the machine axes. Two types of motion control are point-
to-point control and continuous path control. Point-to-point control involves motion in
which the choice of path that is taken to the desired location is of little importance;
continuous path control involves motion in which the path taken is of prime importance.

Introduction to Computer Numerical Control (CNC) 111

The controller generates a continuous path by generating a series of intermediate positions
along the path between the starting and ending positions. This is called interpolation.
Linear and circle interpolations are the two most commonly used types of interpolation.

The program of instructions is a sequential list of alphanumerically coded machine
instructions, that is, letters combined with numbers. The program of instructions can be
broken down into program setup, material removal, and system shutdown sections.

A CNC machine controls the tool’s position in three-dimensional space relative to the
workpiece. This is accomplished with the use of a machine coordinate system, which
defines the tool’s position, and a parallel workpiece coordinate system, whose origin is the
program reference point or program reference zero (PRZ), as specified in the machine
coordinate system. The location of the origin in the machine coordinate system is the
machine reference zero (MRZ). The MRZ varies from machine to machine. Standard
location of the PRZ on a milled workpiece is the lower left corner of the workpiece top.
The PRZ of a turned part is located along the spindle axis on the far right face of the
workpiece.

Positions along the tool path can be specified using either absolute or incremental
coordinates. Absolute coordinates define tool path points relative to the PRZ. Incremental
coordinates define tool path points relative to the previous point along the tool path.

The CNC programming process starts with an evaluation of the product drawing
followed by the selection of the machine, tooling, and fixturing required to produce the
part. This is followed by calculation of the cutting parameters and development of the tool
path. Once the tool path is determined the program coordinates can be calculated and the
program written. The program is then simulated, setup sheets and tool lists prepared, and
the program verified on the actual machine. Finally, the program will be run and released
from development.

CNC technology offers the advantages of increased productivity, improved quality,
capacity for machining complex shapes, reduction of required operator skill level, and the
easy accommodation of design changes. However, the technology generally carries a
higher investment and maintenance costs than traditional manual machines. Additionally,
specialized personnel are required to develop CNC programs.

Use of CNC technology is particularly beneficial in batch production systems. It can
also be used to combine multiple separate machining operations into one operation. In
some cases, CNC technology may provide the only viable method of economical
production.

112 Chapter 3

3.8 Key Words

3.9 Review Questions
 1. Define CNC technology.
 2. What types of processing equipment are candidates for CNC technology?
 3. What coordinate axes are used on a lathe?
 4. By convention, which axis is in line with the spindle axis?
 5. Which type of coordinate uses the last position as the reference point?

absolute coordinates machine coordinate system
auxiliary control material removal section
auxiliary functions machine reference zero (MRZ)

M-codes
CAM programming mechanical technology
Cartesian coordinate system mill table
circle interpolation motion control
closed loop control system motor drive unit
computer numerical control CNC
computer technology open loop control system
continuous control operator interface
continuous path control parabolic/cubic interpolation
contouring cut part program
cutting parameters point-to-point control
cutting speed preparatory functions
depth of cut program of instructions
discrete control program reference zero (PRZ)

program setup section
dovetail slides programmer
electrical technology
encoder servomotors
feed rate setup
fixturing setup sheets
G-code slides
G-code program stepper motor
helical interpolation straight cut
incremental coordinates system shutdown section
John Parsons tachometer
lead screw tool lists
lead-time
linear interpolation

tool path

machine axis ways
machine controller workpiece coordinate system

Introduction to Computer Numerical Control (CNC) 113

 6. Define the machine coordinate system and the location of its origin.
 7. Define the workpiece coordinate system and the location of its origin.
 8. Define the various functions of a CNC controller.
 9. What is the difference between discrete and continuous control?
10. Compare and contrast closed loop and open loop control systems.
11. Describe when use of point-to-point control is more appropriate than continuous

path control.
12. List and describe interpolation methods.
13. List and describe the purpose of the various sections of a CNC program. What

type of axis control is used in each section?
14. List the absolute coordinates of each of the points shown in Figure 3-33.
15. List the incremental coordinates of each of the points shown in Figure 3-33.
16. List and discuss the 10 steps of the CNC programming process.
17. List the advantages and disadvantages of CNC technology.
18. Discuss when the use of CNC technology might be warranted.

Figure 3-33

114 Chapter 3

3.10 Bibliography
1. Groover, M.P. (2001). Automation, Production Systems and Computer-Integrated

Manufacturing, 2nd ed. Prentice Hall, Upper Saddle River, New Jersey.
2. Nanfara, F., Uccello, T., and Murphy, D. (2002). The CNC Workshop. Schroff

Development Corporation, Mission, Kansas.
3. Gibbs, D. and Crandell, T.M. (1991). An Introduction to CNC Machining and

Programming. Industrial Press, Inc., New York.
4. Stenerson, J. and Curran, K. (2007). Computer Numerical Control, 3rd ed.

Prentice-Hall, Upper Saddle River, New Jersey.
5. Chang, T.C., Wysk, R.A., and Wang, H.P. (2005). Computer-Aided

Manufacturing, 3rd ed. Prentice-Hall, Upper Saddle River, New Jersey.
6. Valentino, J.V. and Goldberg, J. (2003). Introduction to Computer Numerical

Control (CNC), 3rd ed. Prentice-Hall, Upper Saddle River, New Jersey.

115

Chapter 4
CNC Programming

Contents

 4.1 Overview of CNC Programming

 4.2 Program Code

 4.3 Cutting Parameters

 4.4 Program Organization

 4.5 Programming Process

 4.6 Turning Programs

 4.7 Summary

 4.8 Key Words

 4.9 Review Questions

 4.10 Bibliography

Objective

The objective of this chapter is to describe in detail the CNC programming process, which
uses a programming language called “word address format,” or more typically, “G-code.”

116 Chapter 4

4.1 Overview of CNC Programming

As we discussed in the previous chapter, there are many advantages of CNC
technology over manual manufacturing processes. However, in order to realize these
benefits, manufacturers must use CNC technology efficiently and effectively. This can
only be accomplished with an accurate program of instructions. Over the years various
methods have been developed to convert the program of instructions into machine
instructions that the CNC controller can understand.

Developing the program of instructions and formatting them into the language of the
CNC machine—i.e., programming—is the sole responsibility of the CNC programmer. A
CNC programmer must be well-versed in the programming language of the various
machines and have intimate knowledge of manufacturing processes. There are a number
of ways a program of instructions is formatted so the CNC machine can understand and
input the instruction into the CNC controller. The simplest method is manual data input
(MDI), by which the machine operator inputs the program directly into the machine
control unit using some type of electronic interface, device such as pushbutton keypad
and/or a keyboard. For relatively simple operations this is a viable method; however, for a
more complex program of instructions this method is time-consuming and cumbersome.

Conversational programming is the more modern, automated form of MDI. With this
method the machine operator or programmer is prompted for specific information about
part geometry, part material, tooling information, and tool path. Controllers who use this
method typically have built-in cycles or “canned” routines to further simplify the
programming process. Additionally, the program can often be displayed graphically on the
controller’s interface, which facilitates easier program editing. However, with this kind of
programming, the operator cannot program and machine at the same time—a major
disadvantage if optimal machine utilization is a prime concern. Additionally,
conversational programming interface and methods vary among manufacturers and
machines. Hence, operators and/or programmers might need to be proficient with several
types of interfaces.

The disadvantages of conversational programming are overcome with manual part
programming. This is a standardized format in which the programmer places a program
into a form that the CNC controller can understand. Additionally, the programming can be
performed “offline,” away from the machine, so as not to interfere with production
operations. The most common manual part programming language is word address format
programming, which makes use of letters that define letter address commands, followed
by a sequence of numbers. The letter and number combination form a word, which
instructs the controller to perform a specific action. As mentioned in Chapter 3, this
method is typically called “G-code programming” because of the repeated appearance of
the G prefix in the word addresses, as evident in the program code shown in Figure 4-0

CNC Programming 117

.

Figure 4-0 Sample G-code program

As the reader will see, the task of developing a word address format program is an
intricate and taxing process. Consequently, helpful computer-assisted methods have been
developed. The main aids are either language-based or graphic-based computer programs.
They were developed to simplify and expedite the conversion of the tool path to the word
address format. The most advanced aids are in the form of computer-assisted
manufacturing (CAM) programs. With CAM the tool paths are generated directly from the
part geometry, typically in three-dimensional solid model form. The CAM tool path is
then converted to the word address format for a specific machine by another software
program called a postprocessor. Postprocessors are machine-specific, as most machines

118 Chapter 4

are not totally compliant with the ANSI/EIA RS-274-D standard. Hence, postprocessors
are designed to bridge the gap between the standard and the specific machine.

The objective of this chapter is to teach the word address format programming
language (G-code). In addition to learning how the code is assembled and formatted, the
reader will gain knowledge of typical milling and turning manufacturing operations.
Additionally, programming will be covered in great detail, and two program development
examples are given.

4.1.1 Review of the Ten CNC Programming Process Steps
Of the ten steps of the CNC programming introduced in Chapter 3, steps 1 through 6

are discussed here and step 7 is covered in Chapter 5. (Steps 8, 9, and 10 are self-
explanatory and not addressed further.) The steps, again, are:

1. Evaluate product drawing.
2. Select machine, required tooling, and fixturing to produce the desired features.
3. Determine and calculate appropriate cutting parameters.
4. Develop program tool path.
5. Determine program coordinates.
6. Write program of instructions.
7. Verify program using CNC simulation software.
8. Prepare setup sheets and tool lists.
9. Verify program on the actual machine.
10. Run program.

It is essential to the development of an efficient, effective program that a drawing be
evaluated properly. Consider the product drawing in Figure 4-1.

A sample of questions a programmer might ask when evaluating the drawing are:
• How many operations are needed for the production of the item?
• Which CNC machine(s) is (are) most suitable to production?
• How many separate programs are needed?
• How will the product be fixtured?
• Where should the program reference zero (PRZ) be located?
• If multiple programs are to be used, which data are critical?
• Which cutting tools should be used?
• How many tool changes are required?
• What cutting speeds, feeds, and depths of cut are appropriate for the material,

tool, and operation to be performed?
• Which features should be machined first? Second? etc.
• What path should the tool follow during actual material removal?
• What is path should the tool follow moving between features?

Through such inquiry a programmer delves deeper into a program’s contents and
requirements.

CNC Programming 119

4.1.2 Program Content
Recall from Chapter 3 that program code is organized into three sections: program

setup, material removal, and system shutdown. Program setup may include:
• Coordinate system information, such as type of coordinates and PRZ

information
• Type of units—inches or millimeters
• The plane that serves as default plane for circle interpolation operations; i.e.,

(x,y), (y,z), or (x,z)
• An instruction to change the tool and which tool to load
• Instructions to turn the part on the spindle; direction and speed of the spin
• Instructions to turn on powered clamping
• Instructions to turn on coolant flow
• Instructions for advanced programming functions.

Program setup functions (steps 1, 2, and 3) are coded as either preparatory or
auxiliary (alternately, miscellaneous), shown in Figure 4-0 as G-codes and M-codes,
respectively.

The vast majority of codes contained in the material removal section are of
preparatory functions that direct the tool along the tool path (steps 4 and 5 of the CNC

Figure 4-1 Sample product drawing

120 Chapter 4

programming process). Preparatory codes instruct the CNC controller to use either
continuous path control with interpolation or point-to-point control to move the tool
relative to the workpiece.

The system shutdown section of the program lists the instructions to complete the
program and prepare the finished workpiece for removal. Hence, this program section
contains auxiliary functions that turn off or disengage any function activated in the
program setup section, including coolant turnoff, spindle shutdown, and release of any
powered clamps. Additionally, point-to-point control preparatory codes may be listed that
move the tool away from the workpiece, and an auxiliary command to inform the CNC
controller that the program is complete must also be listed.

4.2 Program Code

The word address format, as dictated by ANSI/EIA RS-274-D and ISO 6983
standards, makes use of letter addresses combined with numbers to form word addresses.
Word addresses are commands that instruct the CNC controller to perform some action. In
some cases a word is a complete command.

Words are arranged into a block that represents one complete machine instruction. A
series of blocks are assembled into a program. This format was standardized in 1980 as
ANSI/EIA RS-274-D. Figure 4-2 shows how letter addresses are combined into words and
assembled with other words to form a block of instructions. This particular block instructs
the CNC controller to perform a linear interpolation move at a speed of 4 to position (1,
1.5) (assuming absolute coordinates) of the workpiece coordinate system.

Figure 4-2 Combining letter addresses into words and command blocks

CNC Programming 121

Consider the word M02. This word instructs the CNC controller to stop the machine.
It is used to indicate the end of a program. Often, several words are required to instruct the
CNC controller; when this is the case, multiple words are arranged into command blocks
to form a complete instruction. Consider the following command block:

N10 G00 X1.0 Y2.0 Z-0.75
This command block is made up of five word addresses, which are executed in a

specific order or sequence. The sequence number is always the first word in the command
block. It identifies the kind of command and indicates when it is to be executed. The
second word address here informs the CNC controller to move the tool relative to the
workpiece to a specific location, but does not specify its destination; the next three word
addresses do this. All five words are needed to provide a complete instruction. However,
command blocks are not limited to one command. Several commands may be issued in
one command block, as we will see.

To create the desired features in a workpiece, numerous CNC controller instructions
and, hence, numerous command blocks are required. The next several sections explore
letter addresses, words, and command blocks in detail.

4.2.1 Letter Addresses

Figure 4-3 is a listing and brief description of letter addresses as specified by the
ANSI/EIA RS-274-D and ISO 6983 standards. The type of word address formed by the
letter address is listed along with more specific information. Note that some letter
addresses have multiple definitions. The applicable definition depends on the CNC
controller and the type of machine it is controlling. The machine manual should always be
consulted regarding letter address or word address definitions. The more common letter
addresses in Figure 4-3 are shown in boldface.

4.2.2 Word Addresses

A word address is a combination of letter addresses with numeric values, such as
G01. There are two main types of word addresses: dimension words and non-dimension
words. Dimension words specify in either absolute or incremental coordinates the
destination of the tool center point. For example, X1.0 is a dimension word. Dimension
words can be given in linear or angular coordinates. Linear coordinates are expressed in
decimal inches or millimeters; angular coordinates are expressed in decimal degrees or
decimal parts of a revolution. Figure 4-3 includes letter addresses that form dimension
words.

Non-dimension words (also shown Figure 4-3) include tool functions, feed functions,
preparatory functions, interpolation parameters, miscellaneous functions, sequence
numbers, and the spindle speed function. For example, M01 is a non-dimension word.
Non-dimension words provide command instructions and other corresponding parameters

122 Chapter 4

Figure 4-3 Letter addresses

CNC Programming 123

necessary for the CNC controller to accomplish the given task. Additionally, some non-
dimension words are dependent on dimension words to complete an instruction.

For dimension words and most non-dimension words, numeric values are variable.
Consider the code in Figure 4-4. Command block N20 has an X word address of X1.0. In
command block N40, the new X word address is X2.0. Hence, numeric values depend on
the dimension that defines the tool center location in the x direction. The same is true for
the Y and Z words.

In fact, the only letter addresses that do not have variable numeric digits are the
preparatory and miscellaneous functions. For these, each digit combination has a distinct
meaning. The G letter in preparatory functions (or the M letter in miscellaneous functions)
precedes two digits to form part of an instruction. For example, G01 is the word for linear
interpolation, G00 is the word for a point-to-point or rapid move, and M03 indicates the
operator is to turn the spindle on. Necessarily, there is repetition of G- and M-codes in any
program.

4.2.3 Command Blocks

Command blocks contain, at a minimum, one complete instruction. However, as we
have seen, most modern CNC machines allow a command block to contain more than one
instruction. For example, Figure 4-0 shows a command block—N1—that has two
instructions. The first word address, G90, specifies absolute coordinates. The second word
address, G20, signifies that the units are inches. However, for the majority of the
command blocks in this figure, one complete instruction is provided. This is often done for
the sake of clarity and to simplify the debugging process. Note also in Figure 4-0 that
some word addresses always appear with other word addresses, because, like preparatory
codes, some word addresses depend on other word addresses to convey a complete an
instruction.

Figure 4-4 Sample of G-code

124 Chapter 4

The standard order of word addresses within a command block is as follows:

1. Sequence number: N word

2. Preparatory function: G word, more commonly, “G-code”

3. Dimension words (coordinates)

a) X, Y, Z (in this order) for movement direction of a typical machine.

b) X, Y, Z, U, V, W, P, Q, R, A, B, C, D, E (in this order) for machines with
multiple axes.

4. Interpolation parameters

a) I, J, K: These letter addresses can have multiple meanings, depending on the
preparatory function preceding their placement in the command block .

5. Feed function

a. F: The F word is used when the feed applies to the direction of the movement of
the tool involving one or more axes. In this common event the F word will
follow the last dimension word.

b. If the feed is to be specified by axis with the F, E, and D words, the feed function
will immediately follow the dimension word for that axis.

6. Spindle speed function: S word

7. Tool function: T word

a. Tool number: The tool number is used with machines that have automatic tool
changers.

b. When the D word is used with tool compensation preparatory functions, it will
immediately follow the T word.

8. Miscellaneous function: M word, more commonly “M-code.”

Figure 4-5 shows the order of words in a block in spreadsheet fashion. The code
listed is taken from Figure 4-0. The ANSI/EIA RS-274-D standard specifies that words
cannot be repeated within a block. Also, words may be omitted when they are not needed
in a command block. This indicates to the CNC controller that there is no change of state
of the omitted word.

Note that some CNC controllers allow some deviation from the standard. Compare the
code in Figure 4-0 with that of Figure 4-5. Notice that for command blocks N20 and N40 the
order of words in Figure 4-0 is the reverse of the order given above and in Figure 4-5. In both
cases the M word is first. Additionally, in command block N40 the S word appears before the F
word. This contradicts the order listed above. For most controllers this is permissible and

CNC Programming 125

understandable. Again consider command block N20. Code M06 calls for a tool change. Code
T22 specifies the tool. In the development of a program it is more natural to call for the tool
change first, followed by the tool to be loaded. The same is true of command block N40. Code
M03 turns on the spindle and code S2000 sets the speed. In the operation of a manual machine
it is conceivable that the operator would turn the spindle on first, then adjust the speed.
Consequently, some deviations from the standard order of words in a command block,
particularly those associated with M-codes, are often permissible. However, one should consult
the machine manual for allowable exceptions.

Figure 4-5 Order of words in a block

Another important command block and word address concept is that of modality.
Some word addresses are considered “modal”: A modal word address stays in effect until
a contradictory instruction is issued or until the first instruction is cancelled. Figure 4-6
contains two listings of program code. The code on the right executes commands identical
to the code on the left, but the code on the right is written with modal word addresses. For
example, in command blocks N100 and N110 of the code on the left, both blocks have
G00 following the sequence number. However, in the code on the right, the G00 is not
listed in command block N110. This is because G00, which instructs the CNC controller
to perform a rapid move under point-to-point control, is modal. Thus, if a rapid move is to
stay in effect in a successive command block, the only code that needs to be issued is that
for which the process will change. Consequently, only the (x,y) position change is listed in
command block N110. In the next command block, N120, a G01 is issued, which instructs
the CNC controller to perform linear interpolation (continuous path control) to Z-0.125.
Note that only the Z dimension is listed because the (x,y) position from the previous
command block does not change. The G01 code is also modal. Hence, it is not listed in the
following command block, N130. Modality of word addresses is further discussed in
subsequent sections.

126 Chapter 4

4.2.4 Preparatory Functions
G-codes prepare the controller to perform a move, and the subsequent word addresses

in the command block provide the parameters associated with the move. As already
explained, preparatory codes consist of the letter G followed by two digits indicating the
preparatory function to be executed. Figure 4-7 is a listing of G-codes. Refer to the five
column headings next to the Description column. An X in the Modal column indicates the
code is modal. The next two columns, Milling and Turning, indicate where the code is
used. Some codes are used only in milling applications, some in turning, and some in both.
The last two columns are used to designate the compliance with the ANSI/EIA RS-274-D
and/or the ISO 6983 standards.

CNC Programming 127

Figure 4-6 Demonstration of modal word addresses

128 Chapter 4

Figure 4-7 G-code list continued on next page

CNC Programming 129

130 Chapter 4

Not all CNC machine manufacturers adhere strictly to ANSI/EIA RS-274-D and ISO
6983 standards. Many manufacturers use the less common or unassigned G-codes for
commands that are not listed in the standard. Consequently, a program written for one
machine does not necessarily work on a similar machine made by a different
manufacturer. One should always consult a machine’s user manual, in particular, the
machine’s format classification sheet and format detail, to ensure that the G-codes used by
its CNC controller conform to the machine’s.

4.2.5 Common Preparatory Functions
Detailed explanations of some of the more important and basic preparatory codes are

listed in this section. These codes are termed “basic” because they apply to both milling
and turning operations. The codes that follow are explained as they relate to the three-axis
milling process. A turning example in Section 4.6.1 demonstrates application of the codes
to lathe operations.

G00 Rapid Move
Function
G00 moves the tool center rapidly to a position without regard to path taken.

Consequently it is a non-cutting move, used only to move the tool in air. The G00 code is
modal.

Input Format
N___ G00 X___ Y___ Z___

Terminology
N___Sequence number
G00 G Code for a rapid move
X___x-coordinate of the destination point of the tool
Y___y-coordinate of the destination point of the tool
Z___z-coordinate of the destination point of the tool.

Explanation
The G00 word address is called a rapid move because it moves the tool rapidly to a

new position. The CNC controller utilizes point-to-point control to execute this move.
With this type of control each axis is moved to the desired coordinate without
consideration of how other axes are moving. Consequently, the path taken by the tool
center point is not predictable. Additionally, the move is intended to occur as quickly as
possible, so it is executed by each axis at maximum motor speed (there are no parameters
in the code to control the speed of the move). However, there is typically some manual
maximum motor speed control available through the machine controller user interface.

Because of the unpredictability of the tool path associated with rapid moves, standard
practice with milling operations is to program rapid moves in the z direction separate from

CNC Programming 131

rapid moves in the (x,y)-plane. The same holds true for turning operations where rapid
moves in the z direction are programmed separate from moves in the x direction. Figure 4-
8 demonstrates a milling operation where the tool center point is moved from position A to
position B for the purpose of drilling a hole in the workpiece. If the rapid move is
programmed simultaneously in the (x,y)-plane and z-axis, the tool might crash into the
workpiece (Figure 4-8a). Separating the (x,y)-plane motion from the z-axis motion
controls the path of the tool, eliminating the crash (Figure 4-8b). Movement along all three
axes is often permissible when the movement is well away from the workpiece.

Figure 4-8a Rapid move tool crash

Figure 4-8b Rapid move without tool crash

132 Chapter 4

Example Program

We turn our attention to the milling operation G-code shown in Figure 4-9. The
actual code is listed in the left column and a description of what the code does is shown on
the right. The code listed is depicted graphically in Figure 4-10. This code mills a step into
the end of the workpiece as shown. Note how the rapid move G00 is used in command
blocks N30, N50, N60, and N100 to move the tool into position above the workpiece, but
it is not used to move into the workpiece. Recall that a move into the workpiece is always
identifiable because the z-coordinate will be negative, and that if a coordinate word
address is not repeated in subsequent command blocks, its value does not change. This is
why there is no z-coordinate listed in command blocks N60, N80, N100, and N120, and
why there is no x- or y-coordinate in command blocks N50, N70, N90, N110, and N130.
These command blocks also demonstrate the separation of (x,y)-plane rapid moves from z-
axis rapid moves. Rapid moves are also commonly used to move or pull the tool out of the
workpiece. Command blocks N90 and N130 are examples of this. Command blocks N30
and N1930 show how movement in all three axes can be used if the tool is moving away
from the workpiece.

Figure 4-9 G00 sample code

CNC Programming 133

Figure 4-10 Workpiece created with code from Figure 4-9

G01 − Linear Interpolation

Function
The G01 code is used to remove material from a workpiece along a linear or straight-

line path at a specified speed, controlled by the feed rate. Hence, it is a cutting move. The
tool path is not limited to a fixed plane. The destination of the move can be specified so
that all three axes move simultaneously. Therefore, three-dimensional angular cuts can be
created, as shown in Figure 4-11. The G01 code is modal.

Input Format
N___ G01 X___ Y___ Z___ F___

Terminology
N___Sequence number
G01 G Code for a linear interpolation move
X___x-coordinate of the destination point of the tool
Y___y-coordinate of the destination point of the tool
Z___z-coordinate of the destination point of the tool
F___Feed rate of the tool into the work in inches per minute (ipm).

Explanation
G01 is a cutting move because it allows one to control the speed at which the tool

moves into the workpiece. The controller utilizes continuous path control to maintain this
feed rate. Each axis is individually controlled to achieve the desired feed rate along the
path. Because of the added control, an additional parameter, the F word, is specified along

134 Chapter 4

with the coordinates of the destination point. The F word is modal. Thus, once specified it
remains in effect until changed. Since the F word is modal it can be specified prior to the
issuance of a G01 code in the program setup section of the code. Controlling the feed rate
in combination with control of the spindle rotational speed (S word) enables effective
material removal.

Figure 4-11 Three-dimensional linear cut

The G01 code is the code of choice to move the tool into the workpiece. Typically,
the tool is moved first in air, to directly above the desired cutting location with rapid
moves. The tool can then be plunged into the work (movement in the negative z direction)
with the G01 code. Then the G01 code, in combination with other cutting moves, is used
to produce the desired shape. A rapid move G00 then removes the tool from the work and
moves it to the next desired cutting location.

Example Program

Figure 4-12 lists the same program shown previously in Figure 4-9 except in this
figure the G01 moves are highlighted. Command blocks N70 through N100 specify one
cutting cycle. A typical cutting cycle includes a linear move into the material, cutting
moves in the material to produce the desired shape, a rapid move out of the material, and a
rapid move to the next cutting position. For this example, command block N70 moves the
cutting tool into the work with a G01 linear move. Note that the feed rate is specified only

CNC Programming 135

within this command block. Command block N80 performs a cutting move to position

(11.1562, 5.75, −0.0625). Only the x- and y- coordinates are specified because the z-

coordinate does not change from the prior block. Block N90 is a rapid move out of the

material to just above it, and N100 is a rapid move to the next cutting location. This

cutting cycle is depicted in Figure 4-13. Another cutting cycle begins in command block

N110 and concludes with command block N130.

Figure 4-12 G01 sample code

Most programs, as in this example, consist of a series of such cutting cycles, which

are necessary because only a specified amount of material may be removed at a time. This

amount is dictated by several factors, including the kind of material being cut, the size and

type of cutting tool, and desired speeds and feeds. Note also that cutting cycles may

contain other interpolation cutting moves, including circular, helical, and parabolic.

136 Chapter 4

Figure 4-13 Linear cutting cycle

G02 − Circle Interpolation: Clockwise Direction

Function
The G02 code is used to remove material from a workpiece in a circular path. Like

G01, G02 is a cutting move. It directs the tool along an arc at a specified feed rate in the
clockwise (CW) direction. The tool path is limited to a fixed plane such as (x,y)-, (y,z)-, or
(x,z)-plane. For milling, the default plane is the (x,y)-plane. For turning, circle
interpolation is limited to the (x,z)-plane. For milling operations the plane in which the cut
occurs can be changed by G-codes G17, G18, or G19. The G02 code is modal. There are
two input formats for arcs, which are dependent on the length of the arc.

Input Format
The following format can be used for any length of arc:

N___ G02 X___ Y___ Z___ I___ J___ K___ F___
The following format can only be used for arcs of 90 degrees or less:

N___ G02 X___ Y___ Z___ R___ F___
Terminology
N___Sequence number
G02 G Code for a circle interpolation move in the CW direction
X___x-coordinate of the destination point of the tool

CNC Programming 137

Y___y-coordinate of the destination point of the tool
Z___z-coordinate of the destination point of the tool
I___Relative distance in the x direction from the start point of the arc to the center

point of the radius
J___Relative distance in the y direction from the start point of the arc to the center

point of the radius
K___Relative distance in the z direction from the start point of the arc to the center

point of the radius
R___Radius of arc
F___Feed rate of the tool into the work in ipm.

Explanation
The first format from the above list can be used to move the cutter in an arc of any

length, including a complete circle. For this format one must specify the location of the
center point of the arc relative to the start point of the tool point center. This is
accomplished by specifying the relative distance in the x, y, and z direction using I, J, and
K words respectively. Figure 4-14 shows a CW circular tool path in the (x,y)-plane. The
start point, end point, and center are specified along with the corresponding I and J
directions. The I value is found by subtraction of the start point x-coordinate from the
center point x-coordinate:

 Center point X: 2

 minus start point X: −1

 I = 1

A similar operation is performed to determine the J value:

centerpoint Y: 1.25

 start point Y: −2.982

 J = −1.732

Input Format
The code for this cutting move would be:

N99 G02 X3.732 Y0.25 I1 J-1.732 F4

Since the cutting move is made in the (x,y)-plane, only the I and J parameters are
specified. If the cut were to be made in the (y,z)-plane, only J and K would be specified.
Correspondingly, for circle interpolation cuts made in the (x,z)-plane, as with turning
operations, only I and K are used.

138 Chapter 4

Figure 4-14 G02 CW arc format 1

For circle interpolation moves of less than 90 degrees, the second, much simpler
format can be used. The only extra dimension word that needs to be specified is the radius
of the arc. The code for the arc shown in Figure 4-15 would be:

N89 G02 X3.732 Y0.25 R2 F4

Recall that the feed word is modal. Therefore, if the F-word were specified in a prior
cutting move, it would not need to be specified again if the same feed rate were to be used.

Figure 4-15 G02 CW arc format 2

CNC Programming 139

Example Program
Figure 4-16 shows a portion of the program code to mill the circular pocket shown in

Figure 4-17. Command block N1320 uses the CW circle interpolation command G02 to
cut a 180-degree arc. Command blocks N1390 and N1440 cut the same arc at different
depths. This is necessary because only a certain amount of material can be removed by the
cutter with each cut. The depth of cut specification, which will be discussed in subsequent
sections, controls how much material is removed with each cutting cycle or pass. In this
case the cutter is removing 0.25 inch of material per cut. To reach a desired pocket depth
of 0.75 inch from a starting depth of –1 (that is, −1.75 inches in the z-direction from the
origin) requires three passes or three cutting cycles. The center of the arc is specified by
the I and J words in the command block. For command block N1340, the center of the arc
is located 2.32 inches above the start point of the arc.

140 Chapter 4

Figure 4-16 G02 sample code

Command blocks N3470 to N3560 of Figure 4-16 list a portion of the code to mill the
circular pocket shown in Figure 4-18. The circle interpolation codes in these command
blocks use the second formatting option, which is possible because these arcs are less than
90 degrees.

CNC Programming 141

Figure 4-17 G02 milled pocket format

Figure 4-18 G02 format 2 milled pocket

142 Chapter 4

G03 − Circle Interpolation: Counterclockwise Direction
Function
The G03 code is used to remove material from a workpiece in a circular path. Like

G01 and G02, G03 is a cutting move. It directs the tool along an arc at a specified feed rate
in the counterclockwise (CCW) direction. The tool path is limited to a fixed plane. For
milling, the default plane is the (x,y)-plane. For turning, circle interpolation is limited to
the (x,z)-plane. For milling operations, the plane in which the cut occurs can be changed
by G-codes G17, G18, or G19. The G03 code is modal. The two input formats for arcs
depend on the arc length specified.

Input Format
The following format can be used for any length of arc:

N___ G03 X___ Y___ Z___ I___ J___ K___ F___

The following format can be used only for arcs of 90 degrees or less:

N___ G03 X___ Y___ Z___ R___ F___

Terminology

N___Sequence number

G03 G Code for a circle interpolation move in the CCW direction

X___x-coordinate of the destination point of the tool

Y___y-coordinate of the destination point of the tool

Z___z-coordinate of the destination point of the tool

I___Relative distance in the x-direction from the start point of the arc to the center

point of the radius

J___Relative distance in the y-direction from the start point of the arc to the center

point of the radius

K___Relative distance in the z-direction from the start point of the arc to the center

point of the radius

R___Radius of arc

F___Feed rate of the tool into the work in ipm.

Explanation
See previous explanation. Figure 4-19 shows a CCW circular tool path in the (x,y)-

plane. The start point, end point, and center are specified along with their corresponding I
and J directions. The I value is found by subtraction of the start point x-coordinate (1)
from the center point x-coordinate (3.732):

center point X: 3.732
 start point X: −1
 I = 2.732

CNC Programming 143

A similar operation is performed to determine the J value:
 center point Y: 2.75

 start point Y: −2.982

 J = −0.232

Input Format
The code for this cutting move (Figure 4-19) would be:

N99 G03 X2.0 Y0.625 I2.732 J-0.232 F4

Figure 4-19 G03 CCW arc format 1

Since the cutting move is made in the (x,y)-plane, only the I and J parameters are
specified. If the cut were to be made in the (y,z)-plane, only J and K would be specified.
Correspondingly, for circle interpolation cuts in the (x,z)-plane, only I and K are used.

For circle interpolation moves of less than 90 degrees, the second, much simpler,
format can be used. The only extra word that needs to be specified is the radius of the arc.

144 Chapter 4

The code for the arc shown in Figure 4-20 would be:

N89 G03 X2.0 Y0.625 R2.742 F4

Recall that the feed word is modal. Therefore, if the F word were specified in a prior

cutting move, it would not have to be specified again if the same feed rate were to be used.

Figure 4-20 G03 CCW arc format 2

Example Program

Figure 4-21 shows a portion of the program code required to mill the circular pocket

shown in Figure 4-22. Command block N4990 uses the CCW circle interpolation

command G03 to cut a 180-degree arc. Command block N5040 cuts the same arc at a

different depth. In this case, the cutter is removing 0.25 inch of material per cut. Two

passes are needed to reach a desired pocket depth of 0.50 inch. The center of the arc is

specified by the I and J words in the command block. For command block N4990, the

center of the arc is located 2.00 inches above the start point of the arc.

CNC Programming 145

Figure 4-21 G03 sample code

146 Chapter 4

Figure 4-22 G03 milled pocket format 1

Figure 4-23 G03 milled pocket format 2

Next Page

CNC Programming 147

Command blocks N5920 to N6010 list a portion of the code to mill the circular
pocket shown in Figure 4-23. The circle interpolation codes in these command blocks use
the second formatting option. This is possible because these arcs are less than 90 degrees.

G04 − Dwell

Function

The G04 code is used to stop axis movement for a specified amount of time. It is most
often used after a cutting move to allow chips to be removed by the cutter. During a dwell
command all axis movement is stopped while the cutter continues to rotate at the
previously set spindle speed. The G04 code is nonmodal.

Input Format

N___ G04 P___

Terminology

N___Sequence number

G04 G Code for initiating a dwell

P___Time in seconds to delay before executing next command block.

Explanation

The dwell command stops cutter movement for a specific amount of time. It is
commonly used after a plunging cutter move to allow chips to clear the cutter prior to
initiation of a contouring cut. During the dwell the spindle continues to rotate. Caution
must be exercised when dwells are used because excessive use of dwell commands can
substantially prolong the machining cycle time.

Example Program

Figure 4-24 shows a portion of the program code required to mill two holes to a depth
of 2.875 inches. Command block N4940 demonstrates the dwell command. This
command block initiates a dwell for 2 seconds. This is to allow the chips created by
command block N4930 to clear the cutter. Command block N7100 issues a 1-second
delay.

Previous Page

148 Chapter 4

Figure 4-24 G04 sample code

G70 − Inch Units
Function
The G70 code informs the machine controller that tool path coordinates are in inch

units. Note that the G70 code is specified by the ANSI/EIA RS274-D standard. However,
the G20 code is often used by many controllers to indicate inch units. Both the G20 and
G70 codes are modal.

Input Format
N___ G70

Terminology
N___Sequence number

G70 G Code specifying inch units.

Explanation
Numerical control programs can be developed in units of either inches or millimeters.

Hence, when inch units are desired a G70 code is issued. This code is typically at the
beginning of the program, in the program setup section. However, if the operator desires,
both systems of units can be used within a program. Thus, a G70 code may be used

CNC Programming 149

elsewhere in the program if the units are to be switched from inches to millimeters, then
back to inches.

Example Program
All of the example programs presented thus far have a G70 code listed at the very

beginning of the program. Good programming practice dictates that the G70 code be one
of the first codes specified in the program setup section. Examples are shown in Figures 4-
21 and 4-24.

G71 − Metric Units
Function
The G71 code informs the machine controller that coordinates are in metric units.

Specifically, the unit of measure when the G71 code is issued is millimeters. Note that the
G71 code is specified by the ANSI/EIA RS274-D standard. However, the G21 code is
often used by many controllers to indicate metric units. Both the G21 and G71 codes are
modal.

Input Format
N___ G71
Terminology
N___Sequence number
G71 G Code specifying metric (millimeter) units.

Explanation
As in the previous explanation, numerical control programs may specify units of

either millimeters or inches. Millimeter units require a G71 code be issued, typically at the
beginning, in the program setup section. However, if desired, both systems of units can be
used within the same program. Thus, a G71 code may be used elsewhere in the program if
the units are to be switched from millimeters to inches and then back to millimeters.

Example Program

Refer to G70 program examples.

G90 − Absolute Coordinates
Function
The G90 code informs the machine controller that tool path coordinates are measured

relative to a fixed origin of the workpiece, the program reference zero (PRZ). The G90
code is modal.

Input Format
N___ G90

150 Chapter 4

Terminology
N___Sequence number
G90 G Code specifying tool path coordinates are measured relative to a fixed origin

point.

Explanation
Recall from Section 4.3.3 that tool path coordinates can be specified in either

absolute or incremental coordinates. Absolute coordinates specify the coordinates relative
to a fixed reference point on the workpiece, or the PRZ. Incremental coordinates, on the
other hand, specify the coordinates relative to the last point along the tool path. The G90
code dictates the use of absolute coordinates. The G90 code, along with the G70/G71
codes, is located at the very beginning of the program setup section. Note that most
machine controllers allow both absolute and relative coordinate use within a single
program. Thus, G90 may appear in the body of the program as well.

Example Program
Figure 4-25 shows the code to machine the part shown in Figure 4-26. The G90 is

issued at the beginning of the program in command block N10. This program utilizes
absolute coordinates exclusively. Command blocks N60 to N290 mill the slot in four
passes. This is necessary because the depth of cut for each pass is limited to 0.250 inch.

CNC Programming 151

Figure 4-25 G90 sample code

Figure 4-26 Part produced from Figure 4-25 code

152 Chapter 4

G91 − Relative Coordinates
Function
The G91 code informs the machine controller that tool path coordinates are measured

incrementally, relative to last point on the tool path. The G91 code is modal.

Input Format
N___ G91
Terminology
N___Sequence number

G91 G Code specifying tool path coordinates are measured incrementally, relative to
the last point on the tool path

Explanation
The explanation for the G91 code is the same as the G-90 code explanation.

Example Program
Figure 4-27 lists alternative code to machine the part shown in Figure 4-26. This is a

simplified example of how a combination of absolute and incremental coordinates can be
used in a program. The code accomplishes the same task as that in Figure 4-25. Again, a
G90 code is issued at the beginning of the program specifying absolute coordinates. The
first and second holes are created with absolute coordinates. However, milling of the slot
is accomplished with both absolute and incremental coordinates. Command block N110
locates the start of the slot and N120 cuts into the material using absolute coordinates.
Command block N130, however, uses incremental coordinates to mill the slot. Command
block N140 switches back to absolute coordinates to withdraw the tool and move to the
start of the block for the second pass. This procedure is repeated a total of four times to
mill the slot to the correct depth. This is a typical example of how incremental and
absolute coordinates can be used in combination to produce a part, with absolute
coordinates used to locate the feature to be created, and then incremental coordinates to
create the feature. This technique is often used to produce distinct bolt patterns distributed
over a workpiece.

CNC Programming 153

Figure 4-27 G91 sample code

4.2.6 Miscellaneous Functions

Miscellaneous functions (alternately, auxiliary functions) are specified as “M-codes.”
We have already seen them in many of the input formats. These codes are used to control
all machine functions not associated with an actual (continuous) tool move. Thus, turning
a spindle on, changing to a different tool, and unclamping a workpiece are all examples of
machine functions that can be controlled with M-codes. M-codes consist of the letter “M”
followed by a two-digit code. The digits indicate the specifics of the miscellaneous
function. Figure 4-28 is a listing of M-codes specified by the ANSI/EIA RS-274-D
standard. The figure provides a brief description of the code, its modality, and the point at
which the function is executed or started relative to any preparatory functions contained in
the same command block. If both boxes do not contain an X, then the point at which the
function starts is dependent on the particular machine.

M-codes are normally the last word address of the command block. Generally, some
controllers will allow variation from this standard. However, only one M-code is allowed
per command block.

154 Chapter 4

Figure 4-28 M-codes

CNC Programming 155

Detailed explanations of some of the basic miscellaneous codes follow. Many of the
other M-codes listed in Figure 4-28 will be discussed in subsequent chapters. The codes
that follow are explained as they relate to the three-axis milling process.

M03 − Spindle On: Clockwise
Function
The M03 code instructs the machine controller to turn the machine spindle on, in the

CW direction. The M03 code is modal.

Input Format
N___ S___ M03
Terminology
N___Sequence number
S___Spindle speed
M03 M Code turning spindle on in the CW direction.

Explanation
The M03 code turns the spindle on in the CW direction at the speed given by the S

word. This code is issued at the beginning of the program setup section. It is good practice
to move the tool to a “safe” or “home” position away from any obstacles prior to turning
the spindle on. If the command block in which the M03 is issued contains move
commands, the controller will execute the moves first, then turn on the spindle.

Example Program
All of the programs listed thus far have examples of the M03 code. Command block

N40 of Figure 4-27 is a typical example. Observe that prior to the issuing of the M03 code,
the instruction the cutter gives in command block N30 rapid moves the tool to a safe
position (0,0,1). Turning the spindle on in this position ensures that it will be fully up to
speed prior to beginning the material removal process.

M05 − Spindle Stop
Function
The M05 code instructs the machine controller to stop the machine spindle. The M05

code is modal.
Input Format
N___ M05
Terminology
N___Sequence number
M05 M Code turning off and stopping the spindle.

156 Chapter 4

Explanation
The M05 code turns the spindle off. This code normally appears at the end of the

program in the program shutdown section. If the command block in which the M05 is
issued contains move commands, the controller will execute the moves first, then stop the
spindle.

Example Program
All the programs listed thus far have examples of the M05 code. Command block

N310 of Figure 4-27 is a typical example.

M06 − Tool Change
Function
The M06 code instructs the machine controller to stop all machine operations and

change the tool. The M06 code is not modal.
Input Format
N___ T___ M06
Terminology
N___Sequence number
T___Tool number
M06 M-Code instruction requesting a tool change.

Explanation
When an M06 code is encountered in the program, the machine stops all machine

operations and changes the tool to the one specified by the T word. For example, in
milling, the controller will stop spindle rotation and table movement, move the spindle to
the tool changing position, change the tool and return to the state (location, spindle on,
feed rate, etc.) of the machine prior to the tool change. The code not only appears at the
beginning of the program in the program startup section, but can be issued anywhere
within the program.

Example Program
All of the programs listed thus far show examples of the M06 code. Command block

N20 of Figure 4-27 is a typical example. In this case the controller changes to tool number
22.

M30 - Program End, Reset Machine
Function
The M06 code instructs the machine controller that the program is completed and to

reset the machine to system defaults. The M30 code is not modal.
Input Format
N___ M30

CNC Programming 157

Terminology

N___Sequence number

M30 M-Code instruction telling the machine controller that the program is complete
and to reset the machine.

Explanation

The M30 command is always located in the program shutdown section and is
typically the last command issued. It is used to inform the controller that no other data are
coming and that the machine should reset programming parameters (feed rates, spindle
speeds, etc.) back to the system default.

Example Program

All the programs listed thus far show examples of the M30 code. Command block
N320 of Figure 4-27 is a typical example.

4.2.7 Format Classification Sheet

All of the code discussed thus far is in compliance with ANSI/EIA RS-274-D and
ISO 6983 standards. However, as mentioned, not all machine controllers follow the
standards exactly and may use codes in ways not discussed in the previous section.
Additionally, different machine controllers have various capabilities such as point-to-
point positioning control, contouring control, or a combination of both. Therefore, when
developing code for a specific machine it is important one know beforehand its control
capabilities, available codes, and code format for the program. The machine format
classification sheet was specifically developed as a quick reference for this information. It
provides all the format requirements of a control system for a specific machine. It
specifies type of machine, format classification shorthand, format detail, available G-
codes, available M-codes, a range of values for the codes available, any code not covered
in the standards, and any other unique aspect of the control system. It is typically found in
the machine’s user manual. Figure 4-29 is an abbreviated format classification sheet for a
Fadal vertical machining center.

Format classification shorthand, listed in the format classification sheet, is a 9- or
10-digit code established by the ANSI/EIA RS-274-D and ISO 6983 standards that
provides detailed information about a machine. Each character, with its location, has a
specific meaning as shown below, per the ANSI/EIA RS-274-D standard:

• First character: Designates the type of control system, as follows:

 P − variable block format positioning control system

 C − variable block format contouring control system

 D − variable block format positioning and contouring control system.

• Second character: A digit specifying the number of motion dimension words.

158 Chapter 4

• Third character(s): A single or double digit specifying the number of other

words available in addition to the motion dimension words. This character is

followed by a decimal point.

• Fourth character: A digit designating the type of dimensional data used by the

control system as follows:

1 − signifies absolute dimensions, no operational signs

2 − signifies absolute dimension using + and – signs

3 − signifies incremental dimensions using + and – signs

4 − signifies absolute or incremental dimensions using + or – signs with

 incremental dimensions only

5 − signifies absolute or incremental dimensions using + or – signs with both

types of coordinates.

• Fifth character: A digit specifying the number of digits to the left of the decimal

point in a dimension word for the longest axis of the machine.

• Sixth character: A digit specifying the number of digits to the right of the decimal

point in a dimension word for the longest axis of the machine. This character is

followed by a decimal point.

• Seventh character: A digit specifying the number of motion control channels.

• Eighth character: A digit specifying the number of numerically controlled machine

axes.

• Ninth character: A digit designating type of numerical data as follows:

1 − signifies decimal point programming only

2 − signifies full field programming (leading and trailing zeros)

3 − signifies leading zeros required

4 − signifies trailing zeros required

5 − signifies a combination of the above. Refer to the format classification sheet

for detailed information.

A good example of format classification shorthand is shown in Figure 4-29. The
shorthand is listed for the machine as D617.524.665. The interpretation of each shorthand
character is shown in the figure.

The format detail specifies the words, the length of the words, and the order in which
they appear in a block. The format detail shown in Figure 4-29 for the inch mode
increment system can be interpreted as follows:

N5.4 − This indicates the sequence number can have a total of 9 digits, 5 digits
immediately following the N character and 4 additional digits after a decimal point.

CNC Programming 159

G2.1 − This signifies that preparatory functions consist of 2 digits immediately
following the G character and 1 additional digit following a decimal point. Many machine
controllers allow this format to obtain more codes than the amount specified by the
standard.

Figure 4-29 Fadal format classification sheet

160 Chapter 4

Figure 4-29 continued

CNC Programming 161

Figure 4-29 continued

162 Chapter 4

X+3.4 Y+3.4 Z+3.4 I+3.4 J+3.4 K+3.4 B+3.4 R+3.4 Q+3.4 A+4.3 C+5.1 – The
details shown here specify the dimension word addresses used and the corresponding
numerical format. The + following many of the dimension words specifies that + (or –)
signs are used. The 3.4 signifies 3 digits to the right of the decimal point and 4 digits to the
left.

M2.1 H2 T2 D2 F4.2 S5.1 O4 L4 P4 – These details show the non-dimension words
and the corresponding numerical format.

Also shown in Figure 4-29 are the G-codes, M-codes, and additional information for
the F, S, T, and D function codes. All of this information is vital to have during the
development of the program code; one should always refer to the format classification
sheet and the user manual prior to developing any program code for an unfamiliar
machine.

4.3 Cutting Parameters
The rate at which the selected cutting tool can remove material from the workpiece is

determined by the cutting parameters of the process. The cutting parameters of milling and
turning operations include depth of cut, cutting speed, and cutting feed rate. These
parameters, in conjunction with the workpiece material, dictate the machine power
required and the life of the tool.

4.3.1 Depth of Cut
The depth of cut is the maximum amount of material the cutter can remove with each

pass. Its value depends on the machine power available, the rigidity of the workpiece
fixturing, and the rigidity of the cutting tool.

For a milling program, depth of cut is expressed as the z-coordinate of a linear move.
For example, again consider the G-code shown in Figure 4-25 that yields the product in
Figure 4-26. The slot is produced in four passes of the cutter with a depth of cut of 0.250
inch for each pass. This is shown in command blocks N110 to N290. Recall that the
surface of the workpiece has a z-coordinate value of zero. Thus, whenever a negative z-
coordinate appears, the cutter is below the surface of the workpiece. In command block
N120, the cutter is linearly moved into the workpiece to a depth of –0.25 inch. Command
block N130 then mills the first pass of the slot. Therefore, the depth of cut of the first pass
is 0.25 inch. This process is then repeated in the second pass listed in command blocks
N150 to N190. The depth of cut of this pass can be determined by subtracting the z-
coordinate of the prior pass (–0.25) from the z-coordinate of the current pass (–0.50). So,
the depth of cut for the second pass is:

 second pass z-coordinate: –0.50
 minus first pass z-coordinate: – (–0.25)

 –0.25

This process is repeated a four times until the desired 1-inch slot depth is reached.

CNC Programming 163

4.3.2 Cutting Speed

Cutting speed (V) is the velocity at which the tool moves past the workpiece,
expressed in feet per minute (fpm or ft/min) or meters/minute (m/min). However, the
cutting speed must be converted into rotational speed of the cutter for milling operations
or rotational speed of the workpiece in the case of turning operations. In either case the
formula used is

N = V / πD,

where, for inches, N = rotational speed (rev/min or rpm), V = cutting speed (ft/min or
m/min), and D = diameter of the tool for milling or diameter of the workpiece for turning
(ft or m). Caution: Milling cutter diameters D are conventionally listed in inch (or
millimeter) units, so they must be converted to feet (or meters) to keep units consistent
with those of cutting speed V.

The cutting speed is dependent on the workpiece material and hardness, the type of
operation, and the material of the cutter. Figure 4-30 shows cutting speeds and tooth feeds
for some common materials. For perhaps the most comprehensive tabulation available

refer to Machinery’s Handbook, 28th ed.

Figure 4-30 Cutting speeds and tooth feeds

164 Chapter 4

In the CNC program the cutting speed parameter is entered by the S word as the
spindle rotation as determined from the above equation. In the program code the letter S is
immediately followed by the desired spindle speed in units of revolutions per minute
(rpm). The S word is used in conjunction with miscellaneous function commands M03,
which turns the spindle on. The S word is modal. Examples of the S word in use are
evident in all program code figures listed in this chapter.

4.3.3 Feed Rate

Feed rate (fr) is the speed at which the cutter moves into the workpiece during the

material removal process. Many factors should be considered in determination of feed
rate; these include the type of cutting tool, cutting tool material, cutting tool rigidity, depth
of cut, hardness and material of the workpiece, rigidity of the workpiece, desired surface
finish, and available machine power. For milling operations and occasionally turning
operations, feed rate is expressed as inches per minute (ipm) or millimeters per minute.
However, turning operations most often express feed rate in inches per revolution (ipr). To
convert from ipm to ipr, use the equation:

fr(ipr) = fr(ipm) /N.

where N = rotational speed of the spindle (rpm).
To calculate the required feed rate for a particular milling operation, the following

formula is used:

fr = ft nt N

where, for inch units, fr = feed rate (ipm), ft = feed per tooth (in./tooth or ipt), nt = number

of teeth on the cutter, and N = rotational speed of the spindle (rpm). Values for feed per
tooth depend on workpiece material, workpiece hardness, type of operation, and cutting
tool material. These values are well-documented in table form in many texts. For perhaps

the most comprehensive tabulation available, refer to Machinery’s Handbook, 28th ed.
Figure 4-30 also provides a sample listing of feed per tooth values for high-speed steel
(HSS) tools and some common materials.

The feed rate, as determined by the above equation, is entered into the CNC program
with the F word. In the program code the letter F is immediately followed by the desired
feet rate in inches per minute. The F code is required whenever any type of interpolation
move is issued (G01, G02, G04, etc.). The F word is modal. If no value is issued, the
machine controller will utilize a system default value. Examples of the F word in use are
evident in all program code figures listed in this chapter.

CNC Programming 165

4.3.4 Cutting Parameter Calculations

The following examples demonstrate how spindle speeds and feed rates are
calculated.

Example 4.1
A 4-flute end mill made of high-speed steel is to be used to mill a slot into aluminum.

The end mill has a 0.25-in. diameter. Using the feed and speed data listed in Figure 4-30,
calculate the spindle speed and feed rate settings for the milling machine.

Solution
Since the feed rate calculation requires the spindle speed, we will calculate the

spindle rotational speed first.

From Figure 4-30, the cutting speed for aluminum is 200 to 300 feet per minute. For
this application we will use an average cutting speed of 250 feet/min as a starting point.
The diameter of the cutter is 0.25 inch. Note, for consistency of units the diameter of the
cutter will be converted into feet. Therefore:

V = 250 ft/min

D = (0.25 in)(1 ft/12 in) = 0.0208 ft

Once the cutting speed is known and the diameter of the cutter’s units are converted
into feet, the spindle RPM can be calculated from the formula given in Section 4.3.2:

N = V/πD = 250 ft/min / 0.0208π ft = 3826 rpm (revolutions per minute).

To find the feed rate, the feed per tooth for aluminum is used; it is given in Figure 4-
30 as 0.005 inches per tooth(ipt). For end mills the number of teeth on the cutter
corresponds to the number of flutes. Thus, for a 4-flute end mill the number of teeth is
four, and so

ft = 0.005 ipt, nt = 4 teeth, N = 3826 rpm

and

fr = ft nt N = (0.005 ipt)(4 teeth)(3826 rev/min) = 76.5 ipm

Example 4.2
A 4-flute end mill made of high-speed steel is to be used to mill a slot into plain

medium carbon steel. The end mill has a 0.25-in. diameter. Using the feed and speed data

166 Chapter 4

listed in Figure 4-30, calculate the spindle speed and feed rate settings for the milling
machine.

Solution
From Figure 4-30, the cutting speed for plain medium carbon steel is 70 to 100 fpm.

For this application we will again use an average cutting speed, 85 fpm as a starting point.
The diameter of the cutter is 0.25 inch. Using the same calculation method as the previous
example:

V = 85 ft/min
D = (0.25 in.)(1 ft/12 in.) = 0.0208 ft.

Once the cutting speed is known and the diameter of the cutter’s units are converted
into feet, the spindle speed (rpm) can be calculated from the formula given in Section
4.3.2

N = V / πD = 85 ft/min / 0.0208π ft = 1301 rpm.

For the feed rate, the feed per tooth for this steel is given in Figure 4-30 as 0.004 ipt.
For end mills the number of teeth on the cutter corresponds with the number of flutes.
Thus, for a 4-flute end mill the number of teeth is four, and so

ft = 0.004 ipt, nt = 4 teeth, N = 1301 rpm
and

fr = ft nt N = (0.004 ipt)(4 teeth)(1301 rpm) = 20.8 ipm.

In addition to demonstrating how to calculate speeds and feeds for a milling
operation, these two examples highlight how the material being cut significantly
influences the cutting parameters. Note how the aluminum material can be cut
significantly faster than the plain medium carbon steel, utilizing the same type of cutter.
Also, these calculations yield the starting point for speeds and feeds. The machine power,
rigidity of the system, and the desired tool life must also be considered. Adjustment during
the trial running of the program should be anticipated. Maximizing feed rate and depth of
cut to speed of material removal is always desirable.

4.4 Program Organization
In Section 4.2 the basic preparatory and miscellaneous function codes were discussed

in great detail. In this section, the way these codes are organized in the program is
addressed. Recall that the code is organized into three sections: program setup, material
removal, and system shutdown. Section 4.1.2 discussed the corresponding content of each
of the sections. With that section as a guide, we organize the preparatory and
miscellaneous codes into the appropriate program sections.

CNC Programming 167

4.4.1 Program Setup Codes
The preparatory codes that will typically be listed in this section of the program

include:
• G90/G91 − These codes are used to establish the type of coordinates to be used

in the program initially.
• G70/G71 − These codes specify the coordinate units (inches or millimeters) to

be used in the program.
• G00 − Rapid moves are used to position the tool and spindle at specific

locations prior to turning the spindle on or removing material.
• Other G-Codes − Examples of other G-codes that may appear in this section

are listed below.
• G17–G18, circle interpolation plane selection
• G32–G35, lead cutting information
• G40, cutter compensation cancel
• G54–G59, datum shifts
• G80, cancel fixed cycles
• G93–G96, feed rate unit information
• G97, spindle speed unit information

The miscellaneous and other non-dimension codes that will normally appear in this
section of the program include:

• M06 − Used to request a tool change so that the appropriate tool is loaded.
• T word − Used in conjunction with M06 to specify the location of the tool to be

used. The T word is a number that indicates the location of the tool in the
machine’s tool turret. Not all machines have tool turrets, thus, both M06 and the
T word may not be required. Note the T word is modal so it may appear before
an M06 is issued.

• M03/M04 − Used to turn the spindle to on position. The M03 and M04
commands usually follow a rapid move (G00), which will position the spindle at
a safe location to turn the spindle on.

• S word − Used in conjunction with M03/M04 to set the spindle rotational speed
in revolutions per minute. Note the S word is modal so it may appear before an
M03 is issued.

• F word − Specifies the feed rate for interpolation moves. Even though
interpolation moves (G01, G02, and G03) will not appear in this section of the
program, the initial feed rate can be listed. This is permissible because the F
word is modal.

• M07 and M08 − Codes used to turn coolant flow on.
• M10 – Code to initiate automatic clamping (when available).

168 Chapter 4

Other information that may appear in this section includes the program number and/
or some descriptive explanation of the program. For some controllers the O word is used
to identify the program number. Typical formatting is the letter O followed by a four-digit
number. An example would be “O0011.” This code would be listed on the first command
block and would indicate that the next program to come is program number 11. The
format classification sheet of the machine for which the program is being written should
be consulted for available options.

The program setup section is always the first section of the program. However, mini-
setup sections may appear in the body of the program. An example of when this would be
required is if a tool change is needed in the middle of the material removal section.

4.4.2 Material Removal Codes

Material removal codes consist primarily of rapid and interpolation moves along with
the corresponding dimension words. These codes instruct the machine controller to move
the tool along a specific tool path to make the product. The G-codes that appear in the
material removal section of the program include:

• G00 − Rapid moves to position the tool for the next cutting pass.

• G01 − Linear interpolation moves for straight line cuts.

• G02/G03 − Circle interpolation moves for cutting arcs and circles.

• Other interpolation moves such as helical and parabolic.

• G90/G91 – For switching between absolute and incremental coordinates as
needed.

These are the primary codes that will appear. Note that other more advanced G-codes
may also appear in this section of the program. In general, few if any M-codes will appear
in this section. Where they do appear they are usually part of another mini-program setup
section preparing the machine to execute the next material removal section.

4.4.3 System Shutdown Codes

The system shutdown section of the program is the smallest section. All that is
needed in this section are rapid moves to position the tool in a safe position to allow
convenient access to the workpiece and miscellaneous codes to turn off functions initiated
in the program setup section. Also, an M-code to reset the machine for the next program is
typically used. Therefore, the codes used in this section include:

• G00 − Rapid moves to position the tool in a safe position, out of the way of the
workpiece.

• M05, M09, and M11 − Miscellaneous codes to turn off the spindle, coolant
flow, and automatic clamping, respectively.

• M30 − End of program and reset the machine. This is the last command issued.

CNC Programming 169

These are the primary codes that appear in system shutdown. Different machines may
use slightly different code. The format detail sheet should always be consulted for detailed
information about a specific machine.

4.5 Programming Process
Section 4.1.1 reviewed the CNC programming process steps. The ten steps listed

encompass the tasks required to completely develop a CNC program. The following three
sections focus on steps 3, 4, and 5: developing the program tool path, determining
program coordinates, and writing the program of instructions. These are perhaps the three
most critical steps of the process. They involve interpreting product geometry listed on the
product drawing and translating that information into the program of instructions. As with
any translation of one language to another, accuracy of the translation is critically
important. Therefore, in the following sections, detailed instructions on how to perform
this translation accurately will be addressed.

4.5.1 Tool Path/Process Flow Development
Process flow can be defined as the sequence or flow of the process steps to produce a

product. For the CNC machining process this sequence is analogous to the path the tool
must follow to make the product. Hence, this step is often called tool path development.
The development of the tool path occurs after the initial evaluation of the product drawing,
after the machine tooling and fixturing has been determined, and after the cutting
parameters have been selected. It begins with a return to the product drawing.

Consider Figure 4-31. This figure shows a product with two holes and slot that will
be produced on a milling machine utilizing a 4-flute, 0.25-in. diameter end mill cutter.
Figure 4-32 shows how the part will be located in the machine and the layout of the
workpiece coordinate system. Note the location of the PRZ. Recall that this is the origin of
the workpiece coordinate system.

The first step in developing the tool path involves visualizing how the cutting tool
will move to produce each of the product features. For the workpiece shown in Figure 4-
31 the tool moves to the first hole, drills it, moves to the second hole, drills it, moves to the
beginning of the slot, moves into the work, and mills the slot. Finally, the tool can be
returned to its safe position, clear of the workpiece. This tool path can then be sketched on
the drawing as shown in Figure 4-33.

170 Chapter 4

Figure 4-31 Programming example drawing

Figure 4-32 Programming example PRZ and coordinate system

CNC Programming 171

The second step in developing the tool path is to label the location or starting and
ending point of each of the workpiece features along the tool path. Note that it is only
necessary to label the point on the top surface of the workpiece. Also, as is often the case,
a feature on the part may actually consist of multiple simpler features. For this example
the slot actually consists of two features, a straight slot and a curved slot. Hence, Figure 4-
34 shows the workpiece with the appropriate labeling. The completed, labeled tool path is
shown in Figure 4-35.

Figure 4-34 Programming example position labeling

Figure 4-33 Programming example

tool path sketch

172 Chapter 4

Figure 4-35 Programming example tool path

4.5.2 Developing Program Coordinates

Upon completion of the development of the tool path, the program coordinates can be
determined. Developing the program coordinates involves identifying the coordinates, in
the workpiece coordinate system, of each of labeled points on the tool path. These data go
into a program coordinate sheet. The program coordinate sheet for the tool path listed in
Figure 4-35 is shown in Figure 4-36. Note that the program coordinate sheet shows only
the x- and y-coordinates of the point. This is because the z-axis coordinate is a separate
tool move from the (x,y)-plane moves.

4.5.3 Program of Instructions Development

The development of the program of instructions is the point at which the actual
translation of the process flow to a G-code program occurs. The tool path/process flow is
broken down into the individual steps the CNC machine will make and written out in
English on a program sheet. The moves are then translated from English into the
appropriate word address format codes. A blank program sheet is shown in Figure 4-37.

CNC Programming 173

Figure 4-36 Programming example (Figure 4-35) program coordinate sheet

Figure 4-38 shows the completed program sheet for workpiece of Figure 4-31. Note
how the process flow/tool path description is listed on the left side of the program sheet.
Either immediately after each step of the process or once the flow is completely written
out, the English phrases can be translated into G-code. As noted in Figure 4-38, the
programming convention of separating the program into three sections was followed.

Note that all of the tool moves in the material removal section separate the x- and y-
axis moves from the z-axis moves. This is the preferred convention unless the feature
geometry dictates that all three axes be specified at the same time. An example of this
exception is the slot shown in Figure 4-11. Rapid moves in the program setup and system
shutdown section often occur in three dimensions, simultaneously. This is permissible as
long as there is no danger of striking clamps or fixturing that is used to locate and hold the
workpiece.

To provide clarity for beginning programmers, modality was not strictly followed.
For example, in command blocks N50 and N60, repeating the G00 codes is not necessary.
The G00 issued in command block N30 would stay active until the command block N70,
when a G01 is issued. (How else might the program code change if modality were strictly
adhered to?)

174 Chapter 4

Figure 4-37 Blank program sheet

CNC Programming 175

Figure 4-38 Completed program sheet

176 Chapter 4

 In the material removal section, command block N150 issues a circle interpolate
command to cut the curved slot. Since the arc is less than 90 degrees, the second
formatting option discussed in Section 4.2.5 is used where only the radius of the arc is
required. (What would the I and J coordinates be if the first formatting method were
used?)

4.6 Turning Programs

Thus far the discussion of word address format programming has focused on
developing code for the milling process. However, developing code for turning or lathe
processes is just as important. G-code in terms of milling processes was discussed initially
because it is the author’s experience that students often find it easier to develop G-code
programs for milling applications. It appears to be more intuitive. That being said, it is
now time to turn our attention to the turning process.

Developing G-code programs for turning applications is identical to developing the
code for milling applications. All the programming steps discussed in Section 4.1.1 are
executed in the same manner. However, the workpiece fixturing, the tooling, the
coordinate system and the PRZ are vastly different. Figure 4-39 highlights these
differences.

Figure 4-39 Comparison of milling and turning from a programming standpoint

Consider the first row of Figure 4-39, workpiece fixturing. The fact that the
workpiece rotates introduces some challenges with spindle speeds and feed rates. Recall
that, for turning, spindle speed is a function of the diameter of the workpiece. As the
outside diameter is machined, it gets smaller, thereby affecting the cutting speed. Hence,
spindle speed may need to be adjusted as more cuts are taken on the outside diameter.
Additionally, changes to spindle speeds affect feed rates, which may also have to be
adjusted.

CNC Programming 177

Row 2 of Figure 4-39 indicates that lathes use single point tools. There are many
different types of single point tools designed to perform specific operations on only certain
sides of the workpiece (facing versus profiling). Hence, in some aspects, tooling is slightly
more complicated than during milling.

The coordinate system and the PRZ are perhaps the most significant differences.
Since lathes use the x,z-coordinate system, circle interpolation codes are affected. Thus,
when one specifyies the arc center for a G02 or G03 code, word addresses I and K are
required. Additionally, the side from which the tool approaches the workpiece influences
whether CW or CCW code is used. This is demonstrated in Figures 4-40 and 4-41. In
Figure 4-40, the tool approaches from the bottom, thus, a CCW circle interpolation code
(G03) is used to produce the fillet. In Figure 4-41, the tool approaches from the top, thus a
CW circle interpolation code (GO2) is used to produce the same fillet. Both figures show
the x,z-coordinate system and the location of the PRZ on the turned workpiece. Note that
when the tool is cutting the workpiece, z will be negative. Also, when the tool approaches
from above as in Figure 4-41, x will be moving in the negative x direction, thus getting
smaller. Therefore, as is the convention, negative directional moves indicate the tool is
moving into the workpiece.

Figure 4-40 Turning example—tool approaching from bottom

Another important concept to grasp is that of roughing versus finishing cuts. Turning
programs typically require roughing cuts to remove the bulk of the material. This type of
cut is so named because the object of the cut is to remove as much material as possible
with minimal concern for the surface finish. Thus, after the cut, the surface will be in a
“rough” condition, hence the name. However, for the finished product, the surface texture

178 Chapter 4

needs to be in the state specified on the product drawing. Therefore, a finishing cut will
bring the workpiece to the desired profile and surface texture. The part will be “finished”
after this cut. The general procedure in turning is to take a series of roughing cuts to bring
the workpiece down to within approximately 0.010 in. of its finished size as quickly as
possible, after which a finishing cut is performed to bring the workpiece to its final size.

Now that some of the differences between turning programs and milling programs
have been discussed, a simple turning example can be presented.

Figure 4-41 Turning example—tool approaching from top

4.6.1 Turning Example

Figure 4-42 Turning example

CNC Programming 179

Consider the workpiece in Figure 4-42. It is a relatively simple turned part made of
aluminum. Note that the dimensions are in millimeters. The important features are the 30-
degree tapered face and a 25-mm fillet at the transition of the taper and the 50-mm
diameter. For this example it is assumed that:

• The product drawing has been thoroughly evaluated; the part will be turned
from a 100-mm diameter aluminum bar.

• The specific lathe on which the part is to be produced has been selected.

• A 3-jaw chuck will be used to hold the workpiece.

• The tool will be a right-hand tool approaching the workpiece from above.

The cutting parameters have been calculated and are as follows:

• Depth of cut

• Roughing ~ 3 mm

• Finishing ~ 1 mm

• Speed − 1520 rpm

• Feed − 180 mm/min.

The next step, step 4 of the CNC programming process, is to develop the tool path.
As already mentioned, for most machining operations the tool path can be broken down
into roughing and finishing cuts. Using the approach outlined in Section 4.5.1, the tool
path was developed and is shown in Figure 4-43.

Figure 4-43 Turning example tool path

180 Chapter 4

The dashed lines of Figure 4-43 show the starting size of the bar. The dashed arrows represent
rapid moves; the phantom arrows represent linear moves for the roughing passes; the solid arrows
represent linear moves for the finish pass. The roughing cuts consist of three passes with a depth of
cut of 3 mm each and one pass with a depth of cut of only 2.5 mm. The last pass is only 2.5 mm so
that 1 mm of stock is left for the finishing pass. The labeled points of the roughing passes, starting
with the letter R, represent tool point destinations. The points for the finishing pass are also shown
and are labeled with an F.

The next step, step 5 of the CNC programming process, is to determine the program
coordinates. Figure 4-44 lists the program coordinates of the tool destination points.

Figure 4-44 Turning example program coordinates

CNC Programming 181

Figure 4-45 Turning example program sheet

182 Chapter 4

Finally, the program of instructions can be created as discussed in Section 4.5.2. The
completed program sheet is shown in Figure 4-45. Note how the program code makes
good use of the modal aspect of many of the word addresses. For example, command
block N60 issues a G01 code for a linear move. Command blocks N70 and N80 do not list
a G-code. Therefore, the G01 code remains in effect. Additionally, command block N60
does not contain a z-coordinate, because there is no change from the previous command
block. (Can you identify other command blocks that take advantage of modality?)

4.7 Summary
In the simplest of terms, CNC programming develops a program of instructions to

produce a part and converts the instructions into a form the controller can understand.
There are various methods available to input the program of instructions into the CNC
machine, including manual data input (MDI), conversational programming, and manual
part programming. Manual part programming is accomplished using the word address
format standard. Word address format programming is typically called G-code
programming because of the repeated appearance of the letter G in the programs.

The word address format, as dictated by the ANSI/EIA RS-274-D and ISO 6983
standards, makes use of letter addresses combined with numbers to form word addresses.
Word addresses are commands that instruct the CNC controller to perform some action.
Word address format programs consist of series of sequential command blocks. The
command blocks are made up of ordered word addresses. Word addresses can be
classified as either dimensional or non-dimensional. Dimension word addresses provide
dimensional information about the tool path. Non-dimensional word addresses include
preparatory and miscellaneous codes. Preparatory codes involve actual tool moves.
Miscellaneous codes control machine functions not associated with tool moves. Some of
the more important preparatory and miscellaneous word addresses are discussed in great
detail throughout the chapter. To determine which word addresses are available for a
particular machine the machine’s format classification sheet should be consulted.

Cutting parameters determine the rate at which a cutting tool removes material from
the workpiece during the machining process. Cutting parameters consist of depth of cut,
cutting speed, and feed rate. These parameters are dependent on the workpiece material,
cutting tool, and other process-dependent considerations. Once determined, these
parameters are entered into the G-code program with the S, T, and F letter addresses.

There are ten steps to the programming process. Of them, developing the program
tool path, determining program coordinates, and writing the program of instructions are
often considered the three most critical. Developing the tool path involves envisioning the
path the tool will take to machine the features of the workpiece and label the positions
accordingly. From the labeled tool path positions, the program coordinates can be
developed. Finally, the program of instructions are written out in English words and then
translated into the word address format codes.

CNC Programming 183

4.8 Key Words

ANSI/EIA RS-274-D standard manual part programming

auxiliary functions material removal

CNC programmer miscellaneous function

command blocks modal

computer-assisted manufacturing
 (CAM)

modality

conversational programming non-cutting move

cutting cycle non-dimension words

cutting move postprocessor

cutting parameters preparatory functions

cutting speed program coordinate sheet

depth of cut program of instructions

dimension words program setup

feed function program sheet

feed rate roughing cuts

finishing cuts sequence number

format classification sheet spindle speed

format classification shorthand spindle speed function

format detail S word

F word system shutdown

G-code programming tool function

interpolation parameters tool path

letter addresses T word

M-code word address format

manual data input (MDI)

184 Chapter 4

4.9 Review Questions
 1. Define a program of instructions as it relates to CNC machining.
 2. Discuss the various methods available to format and input the program of

instructions into a CNC machine.

 3. What is the most common language used in manual part programming?

 4. What standard(s) govern(s) the word address format?

 5. What are the three sections of a word address format program?

 6. Describe the components of a command block in terms of addresses.

 7. How is a word address formed?

 8. Explain the difference between dimension words and non-dimension words.

 9. List the order of words in a block.

10. Describe the difference between a modal word address and a non-modal word

address.

11. Describe the function of the G00 code.

12. Describe the function of the G01 code.

13. Write out the G01 codes for the linear cuts shown in Figure 4-46a and Figure 4-
46b using absolute coordinates first and incremental coordinates second. Start at
position A and assume a constant z depth of –0.25 in.

14. Using all the necessary word addresses, write out the command blocks to move
the tool along the tool path shown in Figure 4-47. Note that rapid moves are
shown as dashed lines and linear moves are shown as solid lines. Also, the tool
path starts and ends at the same point.

15. Describe the function of the G02 and G03 codes.
16. Write out the word addresses to circle interpolate the arc shown in Figure 4-48 in

the following directions:
CCW (use format 1),
CW (use format 1).

CNC Programming 185

Figure 4-46 Question 13 linear cuts

186 Chapter 4

Figure 4-47 Question 14 tool path

Figure 4-48 Question 16 arc tool path

CNC Programming 187

17. Write out the word addresses to circle interpolate the arc shown in Figure 4-49 in
the following directions:

CCW (use format 2),

CW (use format 2).

Figure 4-49 Question 17 arc tool path

18. Explain the difference between the G70 and G71 codes.

19. Explain the difference between the G90 and G91 codes.

20. How do miscellaneous codes differ from preparatory codes?

21. List the function of the M03, M06, and M30 miscellaneous codes.

22.What is the purpose of a format classification sheet?

23. List and describe the three cutting parameters.

24. A 3-flute end mill, made of high-speed steel, is to be used to mill a slot into free
machining stainless steel. The end mill is 0.5-in. diameter. Using the feed and
speed data listed in Figure 4-30, calculate the spindle speed and feed rate
settings for the milling machine.

25. A single point tool, made of high-speed steel, is to be used to turn down a
workpiece made of bronze. The workpiece finished diameter is 1.5 in. Using the

188 Chapter 4

feed and speed data listed in Figure 4-30, calculate the spindle speed and feed
rate (ipm) settings for the lathe.

26. What G-codes are typically listed in the program setup section of a G-code
program? What M-codes are used?

27. What G-codes are typically listed in the material removal section of a G-code
program? What M-codes are used?

28. What G-codes are typically listed in the system shutdown section of a G-code
program? What M-codes are listed?

29. List and describe the three most critical steps of the programming process.
30. Create a coordinate sheet and fill out a program sheet to mill the two holes and

round slot of aluminum workpiece shown in Figure 4-50. The features will be
milled with an HSS, 3-flute, end mill, 0.25-in. diameter. Depth of cut is to be
0.25 in.

Figure 4-50 Question 30 drawing

4.10 Bibliography
1. Machinery’s Handbook, 28th ed. (2008). Industrial Press, Inc., New York, New

York.
2. Groover, M.P. (2001). Automation, Production Systems and Computer-Integrated

Manufacturing, 2nd ed., Prentice Hall, Upper Saddle River, New Jersey.

CNC Programming 189

3. Nanfara, F., Uccello, T., and Murphy, D. (2002) The CNC Workshop, Schroff
Development Corporation, Mission, Kansas.

4. Gibbs, D., and Crandell, T.M. , 1991 An Introduction to CNC Machining and
Programming, Industrial Press, Inc., New York, New York.

5. Stenerson, J., and Curran, 2007, K. Computer Numerical Control, 3rd ed., Prentice
Hall, Upper Saddle River, New Jersey.

6. Chang, T.C., Wysk, R.A., and Wang, H.P. 2005. Computer-Aided Manufacturing,
3rd ed., Prentice Hall, Upper Saddle River, New Jersey.

7. Valentino, J.V. and Goldberg, J. , 2003. Introduction to Computer Numerical

Control (CNC), 3rd ed., Prentice Hall, Upper Saddle River, New Jersey.

191

Chapter 5
CNC Simulation Software

Contents

5.1 Overview of CNC Simulation Software

5.2 Installation and Setup of CncSimulator

5.3 User Interface

5.4 Simulation Examples

5.5 Summary

5.6 Key Words

5.7 Review Questions

5.8 Bibliography

Objective
The objective of this chapter is to introduce a method of simulating or verifying CNC
programs. Also covered is a discussion of readily available simulation software package
(how to obtain, install, set up, and use it).

192 Chapter 5

5.1 Overview of CNC Simulation Software
As we saw in Chapter 4, developing a G-code program is a complex process.

Maintaining accuracy while generating tool path coordinates and writing out program
code can be a challenging task. Consequently, the writer of G-code is prone to making
code errors. Identifying errors prior to execution of the program in a production
environment is of paramount importance. A program released to production without prior
verification can lead to expensive and sometimes dangerous conditions. If the program has
errors, workpieces might be scrapped, tooling broken, and machinery damaged. Thus,
some method of program code verification is always performed.

When CNC technology was in its infancy the only method available for debugging
and verifying the program was to run it on the actual machine. This situation is sometimes
called manual prove-out. The machine the program was written for would be set up for a
trial run. The real workpiece material would be substituted with wood, wax, or plastic to
minimize finished material waste. The program would then be executed, edited, and rerun
until it was accurate and error-free. Then the real workpiece would be machined to
optimize speeds and feeds. Finally, the code would be released to production. However,
this process had a negative impact on machine productivity, manufacturing lead times, and
product costs. Consequently, CNC simulation software, also known as NC verification
software, was developed to counteract the drawbacks of the traditional manual prove-out
process.

CNC simulation software provides a means to test, simulate, or verify a G-code
program prior to running it on an actual machine. Simulating program code enables visual
confirmation that it is performing as intended. Simulation serves as the primary debugging
tool to catch programming, typing, and syntax errors. Additionally, the processing time
can be measured and optimized. Thus, when the program is finally sent to the machine to
be run, the programmer can have a high degree of confidence in the outcome.

A simulation program reads a G-code program from an electronic file and executes it
in the same manner that the CNC controller does on the actual machine. However, instead
of driving the axes of the machine, the software simulates the tool motion and material
removal in the virtual world of a computer. At a minimum, most packages provide
simulation of the workpiece, tooling, and tool path (Figure 5-0). Some higher-end
packages enable simulation of the complete machining, tooling, and fixturing (Figure 5-1).

CNC Simulation Software 193

Figure 5-0 Basic simulation example

Figure 5-1 Simulation showing fixturing and machine

194 Chapter 5

For the beginning programmer, CNC simulation software is an invaluable tool. It
enables the student to see, firsthand, how the machine interprets each of the word address
codes in a program. This leads to one’s deeper understanding of both the codes and
programming process. Additionally, verifications are performed in the safety of the virtual
world. Hence, when program collisions occur, which they inevitably do with beginning
programmers, risks to the student, tools, and machine are eliminated.

There are numerous CNC simulation software packages available for purchase. In
most situations the level of software sophistication is directly proportional to the required
investment. In some cases no investment is required. The focus of this chapter is to

introduce the reader to one such simulation program. It is called CncSimulator®,

published by Bulldog Digital Technologies. CncSimulator® is capable of simulating
milling, turning, and gas cutting CNC operations. A screen shot of the software in the
default milling configuration is shown in Figure 5-2. It has a continuous free renewable
license that the publisher calls “Returnware.” The publisher provides a free license for a
specific amount of time, after which you “return” to their website to renew or “refuel” the
license.

Figure 5-2 CncSimulator screenshot

Section 5.2 discusses how to acquire, install, and set up the software. Section 5.3
covers the user interface along with supported G- and M-codes. Simulation examples are
presented in Section 5.4.

CNC Simulation Software 195

5.2 Installation and Setup of CncSimulator®

CncSimulator® is available for download from the CncSimulator® website at
www.cncsimulator.com. The system recommendations listed on the website include:

• Windows 98® or Windows XP® operating system

• Intel Pentium® or 100% compatible microprocessor
• 32 MB of RAM minimum
• 20 MB minimum hard disk space
• 16 bit high color setting
• 800 x 600 screen resolution

It is important to note that the only operating system the author has used with this

software is Windows XP®. Its operability with the Windows Vista® operating system is
unknown by the author. The website can provide additional information.

5.2.1 Installation
Locate the CncSetup.exe file. The file is located on the included CD in the Chapter

5 CncSimulator® folder. It is also available for download from the CncSimulator® website
(www.cncsimulator.com), download page. Copy the file to a desired folder onto your
computer’s hard drive.

Execute the CncSetup.exe file by double clicking on it. This will start the

CncSimulator® setup process as shown in Figure 5-3. The first screen to appear is a
warning page to exit any Windows programs before you continue with the setup process.
Press Next when ready to continue.

The next screen to appear is the License Agreement (Figure 5-4). Review the
license agreement and select the appropriate radio button. Click Next when ready to
continue or cancel to terminate setup.

Figure 5-5 shows the next screen to appear. Specify the desired location to install

CncSimulator®. The default location is C:\Program Files\MicroTech\CncSimulator.
Click Next when ready to continue or cancel to terminate setup.

The next screen requests a folder name for shortcut icon placement. This is shown in
Figure 5-6. Click Next when ready to continue or cancel to terminate setup.

196 Chapter 5

Figure 5-3 CncSimulator® setup screen

Figure 5-4 License Agreement screen

CNC Simulation Software 197

Figure 5-5 Installation folder screen (File: Figure_6-5.eps)

Figure 5-6 Shortcut location screen

The last screen prior to commencement of installation is shown in Figure 5-7. It
summarizes all information entered up to this point. Press Back to make any adjustments.
When Next is pressed the software is installed. The screen will show installation progress.

The final screen of the setup process in shown in Figure 5-8. It confirms that

CncSimulator® has been successfully installed.

198 Chapter 5

Figure 5-7 Setup summary screen

Figure 5-8 Installation confirmation screen

CNC Simulation Software 199

5.2.2 Setup − Petrol File Concept

Because CncSimulator® is a type of Returnware software, it is free as long as the user
returns to the website every three months to renew the license. Its publishers view the
renewable license as analogous to gassing up one’s automobile. A car runs as long as it
has fuel. When it runs out, it must be refueled.

When CncSimulator® is first started, two events occur. A pop-up warning message is
issued (Figure 5-9), and then the help file opens to the instruction page for downloading a
“petrol” file. Refer to these help instructions for assistance on downloading and installing
the petrol file. The process is summarized below:

Click the OK button on the pop-up warning message, as is shown in Figure 5-9. This
will open the Out of fuel dialog box, shown in Figure 5-10.

Figure 5-9 Petrol file warning dialog box

Figure 5-10 Out of fuel dialog box

200 Chapter 5

The fuel code listed is needed to establish or renew the license. Click the Copy to
clipboard button to place this code on the clipboard. Later this code will be pasted into a
field on the website.

• Click the www.cncsimulator.com button. This will open the default Internet

browser and take it to the CncSimulator® web page.

• From the CncSimulator® home page, click the Petrol Station link on the left.
• A new page showing the gas pump image of Figure 5-11 will appear. Paste the

fuel code into the field shown. Right click and select the Paste option from
the pop-up menu.

Figure 5-11 Gas pump image

CNC Simulation Software 201

• Enter the appropriate email address in the email field. This is where the petrol
file will be sent.

• Click the Full tank button to download the petrol file sent to the email address
listed.

• At the bottom of this page is a link to download a new driver required for 2008.

Click on the ptldriver2008.zip file and download it to the CncSimulator®

folder (typically C:\Program Files\MicroTech\CncSimulator). Unzip the
file in this folder and replace the old file. Note that subsequent releases of the
software may not require this step.

• An email with a link to a site to download the petrol.bin file is sent almost
immediately. Retrieve it and click on the link listed. Save the petrol.bin file

to the CncSimulator® folder (typically C:\Program
Files\MicroTech\CncSimulator).

• Close the Out of Fuel dialog box by clicking the Done button.

• Restart CncSimulator®. It will open to the default milling screen (Figure 5-2).

5.3 User Interface
The default user interface is shown in Figure 5-12. A user interface provides a means

for the user to interact with the software. Note that this is the default-milling con-
figuration. It will appear different for turning and gas cutting simulations. The interface
has a menu and toolbar area across the top. The remainder of the screen is segmented into
five sections or panes. Three panes are dedicated to showing the simulation from various
viewpoints and display configurations. The other two panes of the interface are the status
pane and the code editor pane. A status bar stretches across the bottom of the screen.

For milling, the three simulation panes can be altered to show different views and
displays of the simulation. For milling and gas cutting there are six different
configurations possible for each pane. For turning, only three distinct displays are
possible. Figure 5-12 shows the view that is displayed in each simulation pane. Methods
of how to adjust the display in the pane will be addressed in the next section.

The status pane, located in the lower middle section of the screen, provides
information about the status of the machine. Speeds, feeds, tool number in use, tool
position, tool depth, spindle rotation direction, coolant status, and machining time are all
displayed. Additionally, simulation control is provided in this frame. The simulate button
shown starts the simulation. This is discussed in more detail in a later section.

The G-code program is displayed and edited in the code editor pane. Note that the
program can be loaded from a text file with an “.nc” file extension or typed directly into
the editor. The code editor pane has all the standard Windows editing capabilities along
with some additional simulation controls. These are accessed by right clicking in the pane
and/or from the pull down menus.

202 Chapter 5

Figure 5-12 CncSimulator® user interface

5.3.1 Screen Customization
The user can customize the interface in a number of ways. Toolbars can be moved;

panes can be resized—even into full screen size if desired, and simulation views changed.
Additionally, the status bar and standard toolbar can be removed to maximize the
simulation, status, and code editor panes.

The toolbars shown in Figure 5-12 are in the “docked” position. The user can move a
toolbar any place on the screen by right clicking on its border and dragging it to a new
position, holding the right mouse button (or touch pad button) down while dragging.
Releasing the button in the desired location drops the toolbar there. Figure 5-13 shows
each toolbar in its “floating” state.

The panes can be resized by dragging the borders vertically or horizontally. Figure 5-
14 identifies the borders, and Figure 5-15 shows the interface after the size of the panes

has been changed. Whenever CncSimulator® is restarted the panes will return to their
original size.

CNC Simulation Software 203

Figure 5-13 Floating toolbars

Figure 5-14 Pane borders

204 Chapter 5

Figure 5-15 Resized panes

For milling and gas cutting simulations, six different views can be displayed in the
simulation panes. There are three views possible for turning simulations. The views
available for each type of simulation, along with their corresponding icons, are listed in
Figure 5-16.

For milling, the three-dimensional wireframe view has some interesting capabilities.
Most notably, the view is adjustable. There are scrollbars located at the right and bottom
of the pane. By adjusting the scrollbars, the workpiece can be rotated about a horizontal
axis, a vertical axis, or about the center of pane. The axes pass through the center of the
workpieces. A fourth scrollbar adjusts the zoom or distance from the model. Note that the
rotation about the center of the screen is about an imaginary axis normal to the screen.
(Figure 5-17). The three-dimensional wireframe view also displays the tool and tool path.
Rapid moves are shown with dotted lines. Interpolation moves are shown with solid lines.
The solid lines are colored, corresponding with the depth of cut gradient shown in the
status pane. See Figure 5-18.

Adjusting the view of a simulation pane is a very simple process. Left click anywhere
in the simulation pane and select the icon of the desired view from the view toolbar. Note
that the view name in the upper left corner of the simulation pane will highlight red when
the pane has been properly selected. Figure 5-19 demonstrates the process of changing the
view of the simulation pane, which is located on the top right.

CNC Simulation Software 205

Figure 5-16 Simulation views

Figure 5-17 Three-dimensional view

206 Chapter 5

Figure 5-18 Display of rapid and interpolation moves in three-dimensional view

Figure 5-19 Changing view in pane

CNC Simulation Software 207

Another nice feature is that any simulation pane can be expanded to fit the screen.
Again, the user simply makes the pane active as described above and selects the Full
Screen icon on the view toolbar (labeled in Figure 5-19). To return to the multipane
default screen, the esc key is pressed. Note that when the Full Screen mode is in use, a
floating status pane is also displayed. Figure 5-20 shows full screen mode, which is
slightly different from the default view.

Figure 5-20 Full screen mode

5.3.2 Menus, Toolbars, and Dialog Boxes

The CncSimulator® is controlled through the following three interfaces:
• pull down menus
• toolbars
• simulation dialog box.

The pull down menus provide a means to open, close, and edit G-code programs,
enter workpiece sizes, tooling information, enter type of simulation (milling, turning, etc.),

control program settings, and access help. Additionally, CncSimulator® is an open source
type of program. Thus, plug-ins can be created by the user and accessed from the pull
down menu.

208 Chapter 5

Figure 5-21 Help dialog box

CNC Simulation Software 209

The standard toolbar and the code editor toolbar duplicate some of the functions
provided through the pull down menus. However, the view toolbar is the only interface
available for control of the simulation pane views.

The menus and toolbars are well-documented in the Help dialog box, which the user
accesses by selecting the Help pull down menu and clicking on Help. Figure 5-21 shows
the Help dialog box.

The simulation dialog box provides exclusive control over the actual simulation. To
activate the dialog, click on the Simulate button located in the status pane. Figure 5-22
displays how to open the simulation dialog box, which contains three buttons and a slider
control as shown in Figure 5-23. The Automatic Simulation button simulates the G-code
program from beginning to end at the speed set by the slider control. The Single Line
Simulation button simulates one line of code at a time, effectively allowing the user to
step through the simulation line by line. The Stop Simulation button cancels automatic
simulation and closes the simulation dialog box.

Figure 5-22 Opening the simulation dialog box

210 Chapter 5

Figure 5-23 Simulation dialog box

5.3.3 G- and M-Codes Supported by CncSimulator®

CncSimulator® utilizes an interpreter to convert the CNC program code into
movement data for display on the screen. The default interpreter recognizes only standard
ISO codes. The user can program customized interpreters for specific machines. The
website’s developer’s page gives detailed information on this subject. For the purposes of
this text the default interpreter suffices. The G-codes that the interpreter supports depend
on the particular machining operation—codes for milling differ from those for turning
operations. However, the M-codes are the same for both milling and turning; M-codes
supported are shown in Figure 5-24.

The G-codes shown in Figure 5-25 are supported by the default interpreter for
milling. Most of the common preparatory functions discussed in Chapter 4 are supported,
with the exception of G04, G70, and G71. G04, for initiating dwells, is of little
consequence in program simulation. However, G70 and G71 are of vital importance
because these codes provide the programmer with control over units (inch or millimeter).

Since CncSimulator® was designed specifically for metric applications, the program
developers may have been deemed these codes unnecessary for inclusion. Yet,

CncSimulator® can accommodate inch units, doing so through the pull down menus of the
user interface. Simulation examples in Section 5.4.2 explain this.

CNC Simulation Software 211

Figure 5-24 CncSimulator®-supported M-codes

212 Chapter 5

Figure 5-25 CncSimulator®-supported G-codes for milling

CNC Simulation Software 213

An important note: If a G-code not listed in Figure 5-25 is encountered in the
simulation of a program, the interpreter will ignore it. Ignoring it will not result in errors
or a crash in the program. Thus, if a program of instructions contains a G04 or G70, for
example, the interpreter takes no action. G70 or G71 to signify inch or millimeter units,

respectively, may still be used in programs simulated with CncSimulator®, but the
interpreter will ignore the code.

The other unfamiliar G-codes listed in Figure 5-25 are advanced codes. For the most
part advanced codes are shortcuts. They are designed to simplify the programming process
or provide additional control. They are typically process-specific, developed specifically
for milling or turning applications. Thus, the advanced G-codes supported by the
interpreter for turning operations are different than the milling G-codes.

In addition to knowing the G- and M-codes supported by the interpreter, it is
important that the user know the letter address formats supported as well. Figure 5-26
displays the letter addresses supported for milling operations.

Note that the standard interpreter can use an alternate format for arcs for G02 and
G03 instead of the formats defined in Chapter 4, and these formats will still function as
intended. Here the convention for circle interpolation defined in Chapter 4 is followed.

The alternate format is not listed in Figure 5-26. CncSimulator®’s Help dialog provides
additional information.

The interpreter-supported G-codes for turning are shown in Figure 5-27, and the
supported letter addresses are listed in Figure 5-28. Again, note the use of advanced codes
for threading and roughing.

5.3.4 Machine Code versus Simulator Code
CNC programs are written for production carried out on a specific machine, but not

for the simulator, which is just a tool to verify or prove out the program. Some simulators
come with interpreters that match the controller used on the actual machine. For other

simulators, the CncSimulator® being one, the user can develop or purchase an interpreter
to mimic the machine control. However, if the simulator does not fully support the exact
same codes used by the actual machine controller, the simulation may not be valid, or it
may provide misleading information. Therefore, it is important the user determine if the
simulator fully supports the machine code prior to simulating the program.

If the simulator does not fully support the machine, but simulation is of vital
importance, the simulation program can be tailored to function fully on both simulator and
actual machine. How? The programmer might write the program using mostly common
preparatory codes—those which the simulator can support—and a few advanced codes,
those that the simulator also supports. Tailoring such a program (one that runs on
simulator and actual machine) requires that differences between the codes be identified
and documented.

214 Chapter 5

Figure 5-26 CncSimulator®-supported letter addresses for milling

Figure 5-29 and Figure 5-30 show such documentation, between supported codes of

CncSimulator® and those of two mills located in the author’s laboratory. Figure 5-29 has a

listing and description of all M-codes available on CncSimulator®, Mill #1, and Mill #2.
An X in a cell of the table indicates that the code to the left is supported by the device
named at the top of the column. A blank cell means the particular device does not support
the code. Figure 5-30 is the listing for G-codes. (A similar table for all the letter addresses
should be developed as well.)

CNC Simulation Software 215

Figure 5-27 CncSimulator®-supported G-codes for turning

216 Chapter 5

Figure 5-28 CncSimulator®-supported letter addresses for turning

If a program is written for Mill #1 and is to be verified on CncSimulator®, only codes

that have an X in the CncSimulator® column and the Mill #1 column can be used. Thus,
the applicable M-codes are M02, M03, and M05. The usable G-codes are G00, G01, G02,
G03, G90, and G91. This is not an extensive set of codes, but is more than adequate for
machining parts of relatively high complexity. Additionally, if other codes are needed for
the program to function properly, but are not supported by both devices, they may still be
used. Most simulators and controllers ignore unsupported codes.

CNC Simulation Software 217

Figure 5-29 M-code comparison chart example

218 Chapter 5

Figure 5-30 G-code comparison chart example

Next Page

CNC Simulation Software 219

5.4 Simulation Examples
This section provides detailed instructions on how to load, edit, and simulate CNC

programs with CncSimulator®. To introduce general concepts of using CncSimulator®,
sample files, installed during installation, will be loaded and simulated. Additionally,
detailed instructions and examples on how one would load, edit, and simulate a custom
program are given.

The reader may follow the steps of the example after installing CncSimulator® onto a

Microsoft® Windows XP®-based computer and the program files placed in the default
location, as discussed in Section 5.2.1.

5.4.1 Simulating Sample Files

Simulation Sample File 1
Sample milling, gas cutting, and turning programs are loaded onto the computer’s

hard disk during installation of the program. These files are located in folders labeled Mill,
Turn, and Gas. The path to the folders for a typical installation is shown in Figure 5-31.

Figure 5-31 Typical path to sample folders

To open a sample file:
Start CncSimulator by clicking on the Start button and selecting Programs

>MicroTech CncSimulator>CncSimulator. When CncSimulator® is first started it will
appear as shown in Figure 5-32.

Previous Page

220 Chapter 5

Figure 5-32 Appearance at startup

From the Files pull down menu, select Open or select the Open icon from the
standard toolbar (see Figure 5-32). The Open dialog box will appear as shown in Figure
5-33. Double click on the Mill folder, followed by the MM folder and finally the ISO
folder.

Select the file _Sample2.nc and press the Open button as shown in Figure 5-34.

The file will open in CncSimulator®. The interface will now appear as shown in Figure 5-
35.

CNC Simulation Software 221

Figure 5-33 File open dialog box

Figure 5-34 Sample file selection

222 Chapter 5

Figure 5-35 CncSimulator® interface after opening sample file

Note the size of the workpiece changed since the _Sample2.nc file was opened. The
programmer specifies the workpiece size settings when the code is written or loaded for
the first time (if written in a text editor). When the code is saved the workpiece size gets
saved along with the program code. Thus, when the _Sample2.nc file was opened, so
was the workpiece.

To determine the size of the workpiece, select Simulate from the pull down menu
and click on the Detail Settings option, as is shown in Figure 5-36. This will open the
milling options dialog box shown in Figure 5-37. Observe that the workpiece is 200 mm
long by 150 mm wide by 20 mm thick. The workpiece will always be a rectangular prism

(box), unless the Choose drawing option is used. This will open a Windows® standard
file Open dialog box, enabling the user to select a .rit type CAD file. Since most CAD
systems do not use this file extension, there is a free converter program available for

download from the CncSimulator® website. The converter, called dxf2rit.exe, will

CNC Simulation Software 223

convert DXF R13 or R14 files into the .rit file extension. Complete instructions are
included with the download.

Figure 5-36 Opening milling options dialog box

Referring to the graphics window of the dialog box, observe the location of the PRZ.
Its location is set by the values specified in the NullpointX and NullpointY fields. The
Scale factor field scales the tool motion relative to the workpiece. Setting a scale less
than 1 will cause tool motion to decrease proportional to the scale factor. If the scale is set
to a value greater than 1, tool motion increases proportional to the scale factor.

At the very bottom of the Milling options dialog box is the Milling depth button. This
enables the user to set different colors to correspond to depth of cut. These colors will be
displayed on the workpiece as material is removed during the simulation.

Note that several options are grayed out in the dialog box. This indicates that the
options are not available with milling. These particular options are used for turning
operations. To close the dialog box, click the OK button.

Refer to Figure 5-38, which highlights the code editor pane. Notice that the code
consists of only rapid and linear interpolation moves. Recall that these codes are typically
found in the material removal section. Additionally, there are no G90, M03, or M06 codes.
Hence, it can be concluded that this particular program does not need a program setup
section. This is sometimes the case when the machine for which the program is written is
to be set up manually. Thus, the operator would load the correct tool, turn the spindle on,
and set the speed manually.

224 Chapter 5

Figure 5-37 Milling options dialog box

Scroll down to the bottom of the program by using the scroll bar on the right of the
pane. Observe that the System Shutdown section, not shown in Figure 5-38, has only
three lines: two rapid moves to reposition the tool and an M30 to end the program.

The sequence numbers (N10, N20, …) for the command blocks are also noticeably
absent. Again, this is because the machine for which the code was written does not require
sequence numbers. Note, however, the convention of the present text is to include
sequence numbers in examples.

CNC Simulation Software 225

Figure 5-38 Code editor pane

To simulate the program:
Open the simulation dialog box by pressing the Simulate button located in the status

pane. Refer to Figure 5-22.
Start the simulation by pressing the Automatic Simulation button. Control the speed

of the simulation by adjusting the slider control. Refer to Figure 5-23.
Figure 5-39 is a snapshot of the user interface during program simulation. Observe

that each command block is highlighted as it is being simulated. In the three-dimensional
simulation pane, note how rapid moves are distinguished from interpolation moves.
Notice in the status pane that the tool depth is identified by a variable length vertical bar.
The position of this bar relative to the milling depth color code sets the color displayed in
the workpiece during simulation. Recall that this color code can be set from the milling
options dialog box.

226 Chapter 5

Figure 5-39 Program simulation snapshot

Experiment with the simulation dialog box controls by stopping, restarting, and
slowing down the simulation. Also, try stepping through a few lines of code using the

single line simulation button. Do not exit CncSimulator®. Continue on to the next
example.

Simulation Sample File 2
In this example a much more complicated program is simulated to demonstrate

additional features of CncSimulator®. Using the procedure described in the last example,
open the file _Sample6.nc from the ISO folder. Note how the program text in the code
editor pane and the workpiece size change after the program is loaded.

Whenever a file is loaded it is stored in CncSimulator®’s text buffer. The text buffer
is capable of holding several CNC programs simultaneously. Controls for the text buffer
are located to the right of the code editor pane (Figure 5-40).

CNC Simulation Software 227

Figure 5-40 Code editor pane text buffer controls

Click on the Text buffer list button. This opens the Buffer list dialog box. Assuming
that this example is performed immediately following Simulation Sample File 1 the buffer
list will appear as shown in Figure 5-41. Note how the file used in Simulation Sample 1
(_Sample2.nc) and the _Sample6.nc file both appear in the list. The Nameless1 buffer
is an empty buffer available for entering a new program. It is possible to switch between
the buffers by simply clicking on the file name in the Buffer list dialog box and clicking
on the OK button.

A buffer can also be deleted (similar to closing a file in other programs) from the
buffer list by selecting it and then clicking on the Delete button. If the program in the

228 Chapter 5

buffer was not previously saved, the user is prompted to save the program before it is
deleted.

Figure 5-41 Buffer list dialog box

The other buffer control buttons, shown in Figure 5-40, provide additional means of
switching between and closing buffers. Experiment with these controls before continuing.
Be sure to make the _Sample6.nc buffer the current buffer before proceeding.

Verify that the size of the workpiece is 150 mm long by 150 mm wide and 50 mm
thick. Recall that this verification is accomplished by opening the milling options dialog
box. The dialog box is opened by selecting Detail settings from the Simulate pull down
menu.

Scroll through the program and note that this example program file uses five different
tools: T1, T2, T4, T5, and T8. For milling, tools are contained in a text file with a .tol file
extension. The user can alter this file and create additional separate tool files for each

milling machine available. When CncSimulator® is opened a default tooling file is loaded.
To see the content of the tooling file, select Edit tools from the Simulate pull down
menu. This will open the milling tool dialog box as shown in Figure 5-42. Observe the
sizes of the tools used in this program.

CNC Simulation Software 229

Figure 5-42 Milling tool dialog box

Figure 5-43 Completed simulation

230 Chapter 5

Figure 5-44 Selecting turning screen

The tools can be edited directly from this dialog box and then saved in the same or a
different file. Click OK to close the dialog box. To save changes to the tool file, select
Save tools from the Simulate pull down menu. To open another tooling file, select
Open tools from the Simulate pull down menu.

To simulate the program, select the Simulate button in the status pane followed by
the Automatic simulation button in the simulation dialog box. Adjust the simulation
speed as needed. Observe how the program makes good use of roughing passes followed
by finishing passes. Also, note how the coolant is turned on and off during the simulation.
The completed simulation is shown in Figure 5-43.

Simulation Sample File 3
In this example a turning program is simulated. Switch to the turning simulator by

selecting Turning from the Screen pull down menu as is shown in Figure 5-44. Open the
file _Sample4.nc from the Turn/MM folder. The screen should appear as indicated in
Figure 5-45.

Observe the use of the PLOT view in the lower left hand pane. Since turning tools
move in the two dimensional (x,y)-plane, the PLOT view provides essentially the same
information as the three-dimensional view. Hence, the three-dimensional view is not
available. Two other differences between a turning and milling simulation are seen in the
tool and detail setting dialogs.

CNC Simulation Software 231

Figure 5-45 Turning screen

Lathe or turning tools, aside from drills, are very different from milling tools.
Turning tools have a distinct shape corresponding to the operation to be performed.
Therefore the tooling dialog for turning simulations was adjusted accordingly. Instead of
one list of tools, as with milling, each tool is stored in an individual text file and displayed
separately in a dialog box. Open this dialog box by selecting Edit tools from the Simulate
pull down menu. The turning tool dialog box is shown in Figure 5-46.

The buttons along the bottom of the tool dialog box enable the user to:
• Navigate through the tool files contained in the t_tools folder
• Change the visible or current tool’s orientation (MirrorX and MirrorY buttons)
• Delete the current tool
• Copy and paste the current tool to another file.

Scroll through the tools listed to become familiar with all the tools available in the
“t_tools” folder.

232 Chapter 5

Figure 5-46 Turning tool dialog box

The detail settings dialog for the turning interface is only slightly different than the
milling dialog. Open this dialog box by selecting Detail settings from the Simulate pull
down menu. Note that the fields for inputting the workpiece size are relabeled to
accommodate round lathe workpieces. Additionally the NullpointX and NullpointY fields
are grayed out. Conversely, the options that were grayed out in the milling options dialog
box are now available in the lathe options dialog box. See Figure 5-47. The Origin at end
face check box enables the user to move the origin to the right face of the part. The radius
coordinates and diameter coordinates check boxes allow the user to indicate whether
moves in the x direction are radius or diameter moves. Make no changes to the default
settings and close the lathe options dialog box by clicking on the Cancel button.

Simulate the program by clicking on the Simulate button on the status pane followed
by the Automatic Simulation button on the simulation dialog box. Figure 5-48 is a
snapshot of the simulation in progress. Observe the appearance of the tool in the XZ view
simulation pane. Note how rapid moves are distinguished from interpolation moves in the
PLOT view simulation pane. Also, notice that the BLOCK view shows a three-
dimensional view with a segment cut away. This is intended to provide better visualization
of the finished workpiece.

CNC Simulation Software 233

Figure 5-47 Lathe option dialog box

5.4.2 CncSimulator® and Inch Units

As explained, CncSimulator® was developed specifically for millimeter units.
However, programs written in inches can still be simulated. Simulation of inch milling
programs requires only minor adjustments. Turning simulation programs require slightly

more effort, including downloading an inch tool file from the CncSimulator® website.
To perform simulations of milling programs written in inch units, perform the

following two tasks:

234 Chapter 5

Figure 5-48 Turning simulation snapshot

Create appropriate inch-sized tools.
Open the Milling Tool dialog box by selecting Edit tools from the Simulate pull

down menu. Scroll down to find unused fields. Enter a new tool number followed by the
appropriate tool size information. Refer to Figure 5-49. Recall that this tool list can be
saved by selecting Save tools from the Simulate pull down menu.

Specify the workpiece size in inch units.
• Select Detail settings from the Simulate pull down menu to open the Milling

options dialog box. Enter the size of the workpiece in inch units.
• Prior to simulating the program, be sure the program calls the correct tool from

the milling tool dialog box.
• Simulation of milling programs that are written in inch units is demonstrated in

the Section 5.4.3. Simulating turning programs is somewhat more involved. To
simulate turning programs written in inch units, complete the following steps:

CNC Simulation Software 235

Figure 5-49 Milling tool dialog box—creating an inch tool

• Download the Turn tool directory file from the CncSimulator® website.
• Go to the CncSimulator website by navigating to www.cncsimulator.com. At

the bottom of the home page, select the Using inch link. Click on the Turn tool
directory link to download the file t_tools_inch.zip. Download the file in a
new folder in the C:\Program Files\MicroTech\CncSimulator directory titled
t_tools_inch.

• Open the zipped file and extract the tool files to the new directory.
• Set the correct path to the inch lathe tools.
• Select Lathe tool path from the Simulate pull down menu as shown in Figure

5-50.

To verify that the inch tools are working correctly, simulate the inch.nc file located
in the t_tools_inch folder. Simulating turning programs that are written in inch units is
demonstrated in Section 5.4.4.

236 Chapter 5

Figure 5-50 Selecting the inch lathe tool path

5.4.3 Milling Simulation Example
In this section the process of simulating a previously written milling program in inch

units will be demonstrated. This process of simulating a milling program in

CncSimulator® can be broken down into the following steps:
• Set the workpiece size and PRZ location in the milling options dialog box.
• Select Detail settings from the Simulate pull down menu.
• Enter the size of the workpiece in the appropriate data fields.
• Relocate the PRZ, if necessary, by entering new values in the Nullpoint X and

Nullpoint Y fields.
• Click OK when complete.

CNC Simulation Software 237

• Locate or enter the appropriate tooling in the milling tool dialog box.
• Select Edit tools from the Simulate pull down menu.
• Edit existing tools or enter new tools as required.
• Click OK when complete.
• Type the program in the Code editor pane.

From the Edit pull down menu select Automatic line number. Enter the desired start
number and increase value in the Automatic line numbers dialog box. Refer to Figure 5-51.

Type the program into the code editor.
• Check the program code for syntax errors.
• Select Check code from the Edit pull down menu.
• Fix any code syntax errors accordingly.
• Simulate the program.
• Open the Simulation dialog box by pressing the Simulate button located in the

status pane. Refer to Figure 5-22.
• Start the simulation by pressing the Automatic Simulation button. Control the

speed of the simulation by adjusting the slider control. Refer to Figure 5-23.
• Note it is also possible to step through the program, command block-by-

command block, by selecting the Single Line Simulation button.
• Additional simulation options are available by right clicking in the Code editor

pane next to any line of code.
• Save the program code and workpiece options.
• Select Save from the Files pull down menu.
• When prompted, select Yes to save the workpiece options.

Figure 5-51 Setting automatic line numbering

238 Chapter 5

 In Section 4.5 of the previous chapter the CNC programming process was discussed
in detail and a milling program was developed. The product drawing is shown in Figure 5-
52 and the completed program sheet is shown in Figure 5-53. Figure 5-52 shows a product
with two holes and slot that will be produced on a milling machine utilizing a 4-flute,
0.25-inch diameter end mill cutter. Figure 5-54 shows how the part will be located in the
machine and the layout of the workpiece coordinate system. Using the simulation process
steps listed above, simulate this program.

Figure 5-52 Example product drawing

CNC Simulation Software 239

Figure 5-53 Example completed program sheet

240 Chapter 5

Figure 5-54 Example workpiece coordinate system

Note the following:
Figure 5-55 shows the settings for the milling options dialog box, which establishes

the size and PRZ of the workpiece. As the workpiece size is changed, the part shown
initially in the dialog box graphics area (the black part of the dialog box) disappears. This

is caused by the lack of automatic scaling in this graphics area. Because CncSimulator®

was developed for millimeter units, a workpiece with inch units is very small relative to
the default workpiece, and thus disappears from view. This only occurs in this dialog box
when the workpiece is small. Also, the PRZ does not change; therefore Nullpoint X and
Nullpoint Y remain zero. Click OK to close the dialog box. The workpiece shown in the
three simulation panes adjusts in size accordingly.

The default Milling tool dialog box does not contain a 0.25-inch diameter cutting
tool. Therefore, one will be created. Figure 5-56 displays the settings in the Mill tool
dialog box for the new tool to be created for this simulation. After entering the new tool
information and clicking the OK button, the user is prompted to save the revised tool file.
Click OK again to save it to the existing file or select the Other name button to save it to
a different name. For this example, save it to the existing file.

CNC Simulation Software 241

Figure 5-55 Milling options dialog box settings

242 Chapter 5

Figure 5-56 Milling tool dialog box settings

When entering program code in the Code editor pane, hit Enter at the end of each
command block to move to the next line. Be sure to enter the correct tool number in the
program code. If a different tool number (other than 17) identifies the ¼-inch endmill in
the user’s tool file, use the number so indicated.

If a syntax error is found during the code check, a warning dialog box will appear.
After clicking OK in the warning box, the error will be highlighted in the Code editor
pane. Figure 5-57 displays an example of a syntax error in which the letter O was
inadvertently used instead of the number zero. This is a fairly common occurrence among
students due to the close proximity of zero and letter O on the computer keyboard, or
because they may think the characters zero and uppercase letter O are interchangeable. Fix
any syntax errors and repeat the check code procedure until the warning dialog box no
longer appears.

When the simulation is complete the screen should look similar to Figure 5-58. Be
sure to save the program and workpiece options.

CNC Simulation Software 243

Figure 5-57 Syntax error demonstration

Figure 5-58 Completed simulation

244 Chapter 5

5.4.4 Turning Simulation Example
In this section, the process of simulating a previously written turning program will be

demonstrated. This process is very similar to simulation of a milling program, with a few
minor exceptions:

Start CncSimulator.

• Start CncSimulator® by clicking on the Start button and selecting
Programs>MicroTech CncSimulator>CncSimulator.

• If necessary, set the screen to Turning.
• Select Turning from the Screen pull down menu.
• Set the workpiece size, move the PRZ (origin) to the end of the workpiece face

and specify Radius or Diameter coordinates in the lathe options dialog box.
• Select Detail settings from the Simulate pull down menu.
• Enter the size of the workpiece in the appropriate data fields.
• Relocate the PRZ to the end face by checking the Origin at end face option.
• Specify radius coordinates or diameter coordinates by clicking on the

appropriate radio button. Note that this text uses only Radius coordinates.
• Click OK when complete.
• Specify the path to the correct lathe tools (inch or millimeter) to be used in the

simulation.
• Select Lathe tool path from the Simulate pull down menu.
• When you use the installation procedures listed in this chapter, the millimeter

lathe tools will have the path: C:\Program Files\Micro
Tech\CncSimulator\t_tools.

• When you use the installation procedures listed in this chapter, the inch lathe
tools will have the path: C:\Program Files\Micro Tech\CncSimulator\
t_tools_inch\ t_tools.

• Review the lathe tools and identify the tool number(s) of the appropriate tool(s)
for the program to be simulated.

• Select Edit tools from the Simulate pull down menu.
• Browse through the tools by selecting the arrow buttons (<<<) or (>>>) located

on the two bottom corners of the dialog box.
• When the desired tool is identified, make note of the tool number.
• Click OK when complete.
• Type the program in the Code editor pane.

CNC Simulation Software 245

From the Edit pull down menu select Automatic line number. Enter the desired start
number and increase value in the Automatic line numbers dialog box. Refer to
Figure 5-51.

• Type the program into the code editor.
• Check the program code for syntax errors.
• Select Check code from the Edit pull down menu.
• Fix any code syntax errors accordingly.
• Simulate the program.

Open the simulation dialog box by pressing the Simulate button located in the status
pane. Refer to Figure 5-22.

Start the simulation by pressing the Automatic Simulation button. Control the speed
of the simulation by adjusting the slider control. Refer to Figure 5-23.

Note it is also possible to step through the program, command block-by-command
block, by selecting the Single Line Simulation button.

Additional simulation options are available by right clicking in the Code editor pane
next to any line of code.

• Save the program code and workpiece options.
• Select Save from the Files pull down menu.
• When prompted, select Yes to save the workpiece options.

In Section 4.6.1 a CNC turning program was developed (in millimeter units) to
produce the workpiece shown in Figure 5-59. The completed program sheet is shown in
Figure 5-60. Note that the tool will be a right hand tool approaching the workpiece from
above. Using the simulation process steps listed above, simulate this program.

Figure 5-59 Turning example product drawing

246 Chapter 5

Figure 5-60 Turning example completed program sheet

CNC Simulation Software 247

Note the following:
If this simulation is performed immediately after the milling simulation performed in

the last section, the milling program will need to be closed. This is accomplished by
selecting the Close Buffer button located in the Code editor pane.

Figure 5-61 shows the settings for the lathe options dialog box. Make sure that the
Origin at end face option is selected. Note how this moves the PRZ symbol to the right
end of the workpiece in the graphics area. All examples in this text, by convention, place
the origin at the end face. Additionally, select the radius coordinates radio button.
Radius coordinates dictate that values specified in the x direction represent the radius of
the workpiece, whereas with diameter coordinates, values specified in the x direction
represent the diameter of the workpiece. Consider Figure 5-62. This figure shows the same
program simulated first with radius coordinates, Figure 5-62 (a), and then diameter
coordinates, Figure 5-62 (b). Note that the workpiece simulated with radius coordinates is
twice as large as the diameter coordinate workpiece. This is because the diameter is twice
the radius. Thus, when X30 is specified using radius coordinates, the actual diameter is 60,
whereas an X30 specification using diameter coordinates will yield an actual diameter of
30.

A right hand tool approaching from above is Tool 1.
When entering program code in the Code editor pane, hit Enter at the end of each

command block to move to the next line. Be sure to enter the correct tool number in the
program code.

Fix any syntax errors and repeat the check code procedure until the warning dialog
box no longer appears.

When the simulation is complete, the screen should look similar to Figure 5-63. Be
sure to save the program and workpiece options.

248 Chapter 5

Figure 5-61 Lathe options dialog box settings

CNC Simulation Software 249

Figure 5-62 (a) Radius coordinates (b) Diameter coordinates

5.5 Summary
The process of creating G-code programs is a complex, challenging process with

many opportunities for error. Error-ridden programs executed on production equipment
can cause damage to workpieces, tooling, and machinery, and they can jeopardize
operator safety. Consequently, CNC simulation software was developed to verify that G-
code programs function as intended prior to execution on an actual machine. This is the
modern method of program code verification.

CncSimulator® is a free, Returnware software program that provides very good
simulation of milling, turning, and gas cutting G-code programs. The user interface
consists of menus and toolbars for entering commands along with three user selectable
simulation windows or panes. Additionally there is a code editor pane for program
manipulation and a status pane for simulation process control.

CncSimulator® utilizes an interpreter to convert the CNC program code into
movement data for display on the screen. The default interpreter recognizes only standard
ISO codes. In general, program code not recognized by the interpreter is ignored. Thus,
programs written for a specific machine with codes not recognized by the interpreter may

have to be tailored to run in CncSimulator®. In order to tailor a program to run on both the
simulator and the actual machine, the user must identify and document differences
between the codes.

Simulation is easily accomplished if the user sets the screen to the appropriate
process, specifying workpiece and PRZ settings, setting up the appropriate tools, entering
the program into the simulator, checking for errors, and finally simulating the program.
Simulation and editing of the program are repeated until an error-free program is
produced, ready for execution on the actual machine.

250 Chapter 5

Figure 5-63 Completed turning simulation

5.6 Key Words
automatic simulation program code verification
CNC simulation software radius coordinates n

CncSimulator® Returnware
code editor pane simulation dialog box
diameter coordinates single line simulation
interpreter standard toolbar
lathe options dialog box status bar
manual prove-out status pane
milling options dialog box text buffer
milling tool dialog box user interface
nullpointX
nullpointY

CNC Simulation Software 251

5.7 Review Questions
1. Define program code verification as it relates to CNC machining.
2. List and describe the two methods available to verify a G-code program. Which

one is used most often and why?
3. What are the benefits of using CNC simulation software?

4. Which processes does CncSimulator® provide for program code verification?

5. Define user interface and describe the main elements of CncSimulator®’s user
interface.

6. List and describe the six different simulation views available for milling and gas
cutting simulations.

7. In which pane is the G-code displayed and edited?
8. Describe the difference between a docked and floating toolbar.
9. How many simulation pane views are available for turning simulations?
10. Which simulation view, available only for milling, is adjustable?

11. Define the function of CncSimulator®’s interpreter.
12. List the letter addresses, G- and M-codes, supported by the default interpreter for

the milling process.
13. List the letter addresses, G- and M-codes, supported by the default interpreter for

the turning process.
14. What action does the interpreter take when it encounters an unsupported G-code

during a simulation?
15. What information is provided about a G-code program when Program Statistics is

selected from the Edit pull down menu?
16. List the information contained in the milling options dialog box.
17. What is the purpose of the text buffer?
18. What simulation options are available from the simulation dialog box?
19. For milling simulations, how is the PRZ moved to different locations on the

workpiece?
20. Explain the difference between radius and diameter coordinates.
21. List the steps necessary to simulate and verify a CNC milling program in

CncSimulator.
22. List the steps necessary to simulate and verify a CNC turning program in

CncSimulator®.
23. Figure 5-64 is the program sheet for milling the part shown in Figure 5-65. The

tool to be used is a ¼-inch end mill. Enter the program into CncSimulator® as
listed in Figure 5-64 and simulate it.

252 Chapter 5

Figure 5-64 Question 23 program sheet

CNC Simulation Software 253

Figure 5-65 Question 23 product drawing

24. Figure 5-66 is the program sheet for turning the part shown in Figure 5-67. The
tool to be used is lathe tool number 4, which is a profiling tool. Enter the
program into CncSimulator® and simulate it. Be sure to specify radius
coordinates and move the PRZ to the end face.

254 Chapter 5

Figure 5-66 Question 24 program sheet

CNC Simulation Software 255

Figure 5-67 Question 24 product drawing

5.8 Bibliography
1. Cnc Simulator Software, Help Screens, release 4.44f, published by Bulldog Digital

Technologies.

257

Chapter 6
Introduction to Robotics Technology

Contents
6.1 Industrial Robotics

6.2 Robot Hardware

6.3 Robot Applications

6.4 Robot Safety

6.5 Robot Selection Considerations

6.6 Summary

6.7 Key Words

6.8 Review Questions

6.9 References

Objective
The objective of this chapter is to provide a thorough understanding of the terminology
and basic operating concepts of industrial robots.

258 Chapter 6

6.1 Industrial Robotics
The term “robot” has its origins in the Czech language. It first appeared in a play in

1921. It was used to describe artificial people produced in a factory to serve humans. It is
derived from the word robota which means “serf labor.” In eighteenth century Europe a
serf was a person bound to an estate and forced to work the land as so directed by the lord
of the estate. Serfs were viewed as the lowest social class, essentially slaves. As such, their
feelings toward the work they performed were of little concern to their overlords, who had
them perform the most undesirable and difficult work. Hence, “robot” came to mean a
machine with human characteristics, but the performed work unsuitable for the typical
human—essentially a machine in servitude. A standard dictionary definition of a robot
names it “a machine that resembles a human and does mechanical, routine tasks on
command” (www.dictionary.reference.com).

Figure 6-0 Human attributes of an industrial robot arm

Industrial robots are capable of performing a variety of tasks as directed by a
program. For industrial applications, the a robot’s humanlike characteristics include a
mechanical arm, as is shown in Figure 6-0, the ability to make decisions based on sensory
input, and the capability of communicating with its environment. Robots were first
introduced, and are still often used, to replace human workers in the performance of
mundane, difficult, or dangerous tasks. Initially, they were developed to perform at least
as well as a human laborer. However, as we shall see, their modern capabilities go far
beyond those of even the best laborer in terms of speed, accuracy, repeatability, and
reliability. Their programmability and reprogrammability place robots in category of

Elbow Joint

Wrist
Joints

Shoulder Joint

Waist Joint

Introduction to Robotics Technology 259

programmable automation. Accordingly, the International Standards Organization (ISO)
standard ISO/TR/8373-2.3 defines an industrial robot as:

 …an automatically controlled, reprogrammable, multipurpose, manipulative
machine with several reprogrammable axes, which may be either fixed in place or mobile
for use in industrial automation applications.

Although at first robots were used mainly in stand-alone applications to replace
human laborers in material handling applications, robot technology rapidly matured. Now
robots are cheaper, more reliable, and much more capable; they can be used in ways that
go far beyond stand-alone applications. In fact, the majority of new applications for robots
involve integration into automation cells, often working in conjunction with part feeders,
conveyors, CNC machines, and programmable logic controllers (PLCs). A typical
automation cell is shown in Figure 6-1.

Figure 6-1 Automation cell

260 Chapter 6

The robot in this cell quickly removes two different sizes of molded parts from the
shuttle plate and places them on the staging plate. As the shuttle moves back into the press
to mold the next heat of parts, the robot lifts the parts off of the staging plate, routes their
inside and outside diameters on the router, then places them on the scale for weighing.
Thus, the robot performs material handling, machining, decision-making, and com-
munication tasks. However, the robot does not coordinate the action of the cell; this is
accomplished through a PLC, with which the robot corresponds. Additionally, the robot
has to make many decisions, such as when to move a part to a specific position, when to
open or close the gripper, detecting the size of the part, when to unload the shuttle, and
when to route parts—to name a few. This example indicates the tremendous potential of
robots to aid in productivity improvement.

In this chapter we cover robot capability and the best use of industrial robots to
improve productivity in factories. What follows is a thorough discussion of robot
terminology, applications, hardware, configurations, and selection considerations. Robot
programming is covered in Chapter 7.

Figure 6-2 Robot hardware

Robot Controller
and

Power Supply

Mechanical
Arm

Teach Pendent

End
Effector

Introduction to Robotics Technology 261

6.2 Robot Hardware
Robot technology terminology is loosely divided into physical makeup, also known

as “robot hardware,” and performance capability. Figure 6-2 depicts the basic hardware of
any modern industrial robot; these include a mechanical arm, an end effector, a power
source, a robot controller, and a teach pendant.

6.2.1 Mechanical Robot Arm
The mechanical arm consists of rigid links connected via mechanical joints. The joint

allows relative movement between the input link and output link. There are five types of
joints, as shown in Figure 6-3. A linear joint allows translational motion between the input
and output links. Additionally, the axis of the input link is parallel to the axis of the output
link. An orthogonal joint also enables translational motion between the input and output
links; however, the axis of the input link is perpendicular to the output link. Rotational
motion between the input link and output link can be achieved with a rotational joint,
revolving joint, or twisting joint. The type of joint used to achieve the rotational motion is
dependent on the orientation of the rotational axis relative to the input and output link
axes. For instance, for a joint to be classified as a rotational joint, the axis of rotation must
be perpendicular to the axis of the links. For a revolving joint, the axis of the input link is
parallel to the axis of rotation, but the axis of the output link is perpendicular to the axis of
rotation. Finally, for a twisting joint the axis of rotation is parallel to the axes of both the
input and output links.

Each joint axis of the robot arm gives one degree of freedom of movement.
Combining multiple links and joints yields multiple degrees of freedom. The types of
joints that are combined dictate robot configuration and corresponding range of arm
motion. In the robot arm shown in Figure 6-4, each of the joints has been labeled and the
joint rotational axis identified. This information allows us to identify the type of joints
used in this particular robot configuration. It is an industry convention that joints be
identified starting at the base of the robot and proceeding through the links and joints to
the end effector. (“End effector” is a general term for the tooling connected to the end of
the robot arm.) The first joint we consider is the waist joint.

The waist joint connects the robot base with what can be considered the robot’s torso
link. The torso link is represented in Figure 6.4 by the structure and motors between the
waist joint and the shoulder joint. The torso link axis runs from the waist joint to the
shoulder joint or perpendicular to the waist joint. Thus, the axis of rotation is parallel to
the input link, but the output link axis is perpendicular to it. So, this would be considered a
revolving joint.

The next joint is the shoulder joint. It is a rotational joint because the axis of rotation
is perpendicular to both the input link (torso) and the output link. Note that the elbow joint
is also a rotation joint. The forearm link axis is parallel to the forearm rotational axis and
the wrist link. Accordingly, this joint is a twisting joint. Wrist joint 1 is considered a

262 Chapter 6

rotational joint and wrist joint 2 a twisting joint, an identification that is based on the input
and output link axes’ relationship to the joint rotation axes of the preceding two joints.

Figure 6-3 Robot arm joint types

Input
Link

Output Link

Output
Link

Output
Link Axis

Output
Link

Output
Link

Input
Link

Output
Link Axis of

Rotation

Input
Link
Axis

Linear Joint

Orthogonal Joint

Revolving Joint

Twisting Joint

Rotational Joint

Input
Link

Input Link

Input
Link

Output Link Axis

Input
Link Axis

Axis of
Rotation

Axis of
Rotation

Introduction to Robotics Technology 263

Figure 6-4 Robot joint example

The first three joints of the robot of Figure 6-4—the waist, shoulder, and elbow—are
considered position axes because they move the end effector into position to do work.
These axes make up the body and arm assembly of the robot. The next three joints—the
forearm, wrist 1, and wrist 2—make up the wrist assembly; they are orientation axes
because they orient the end effector to perform the desired task. The mechanical robot arm
of Figure 6-4 is an articulated robot arm with six degrees of freedom (six joints); each joint
has rotational motion between its input and output link. This is typical of this kind of
configuration. However, other types of rotational motion joints in various combinations
can also be used in a construction of an articulated arm robot.

Even more distinct configurations can be constructed with linear joints exclusively or
linear joints in combination with rotational motion joints. Such configurations include a
polar robot configuration, a cylindrical robot configuration, a Cartesian coordinate robot
configuration, and a special type of articulated robot arm called a selective compliant
assembly robot arm, or SCARA for short. These configurations are shown in Figure 6-5.

Mechanical Arm

End
Effector

Forearm Axis

Elbow Joint

Wrist
Axis 2

Wrist
Axis 1

Shoulder
Axis

Base
Link

Waist
Axis

Elbow
Axis

Waist
Joint

Shoulder
Joint

264 Chapter 6

Figure 6-5 Robot configurations

A summary of robot configurations follows:
• The polar robot consists of a twisting joint, a rotational joint, and a linear joint.
• The cylindrical robot has a twisting joint and a linear and orthogonal joint.
• The Cartesian coordinate robot is made up of two orthogonal joints and one linear

joint.

The SCARA robot has a twisting joint, a linear joint, a rotational joint, and another
twisting joint, where the end effector is attached. SCARA robots are typically used in high
speed assembly applications, where vertical stability is important.

Often, the defining feature of the different configurations is the work envelope. The
work envelope is the space within which the end effector can be moved without
limitations. It is essentially the distance within which the robot can reach and do work.
This is often the primary consideration in the selection of a robot for a specific application.

The different robot configurations shown in Figure 6-5 each have distinct work
envelopes. As can be seen in the figure and as the name implies, the polar robot has a
polar- or spherical-shaped work envelope. The cylindrical robot has a cylindrical work
envelope. Since the Cartesian coordinate robot has linear motion joints its work envelope
is a rectangular cube. The SCARA has a somewhat cylindrical work envelope. An

Cylindrical
Robot

Configuration

SCARA
Robot

Configuration

Cartesian Coordinate
Robot

Configuration

Work
Envelopes

Introduction to Robotics Technology 265

articulated arm robot has an irregular work envelope dependent on the joints used and
corresponding range of motion of each joint.

Note that the robot configurations seen in Figure 6-5 show only the joints that make
up the body and arm assembly. The wrist assembly is attached to the end of the body and
arm assembly and orients the end effector to the work. Wrist assemblies typically add two
to three additional degrees of freedom. In the parlance of aircraft terminology, these
additional axes are said to provide pitch, yaw, and roll capabilities to the end effector. Two
standard wrist joint configurations are shown in Figure 6-6.

Figure 6-6 Wrist assemblies

The robot arm configurations discussed thus far are called serial robots because the
joints and links are assembled in a serial fashion. As such, they are open loop mechanisms.
There is another type of configuration, a closed loop mechanism, which is gaining
popularity in some applications. This configuration has both passive and active (powered)
joints and links. This type of robot is called a parallel robot. These robots can have several
different configurations, a few of which are shown in Figure 6-7.

Figure 6-7 Parallel robot configurations

Roll 1 Yaw

Pitch

Roll

Roll 2

Pitch/Yaw

End
Effector

Mounting

End Effector
Mounting

Passive
Joint

Active
Link

Passive
Joint

Passive
Joints

Active
Joints

Base

Base

266 Chapter 6

The end effector in a parallel robot configuration is mounted to the parallel plate,
which is connected to the base through some combination of active and passive links and
joints. In the configuration on the figure’s left, the joints are all passive and the six links
are active. The configuration on the right has four active joints combined with passive
links and eight passive joints. Note that parallel configuration robots do not physically
resemble a human arm but still satisfy the ISO definition of a robot. A cylindrical/cone
shape defines the work envelope of parallel robots.

Although parallel robots offer some interesting capabilities in terms of position
accuracy and high speed, they have a limited work envelope. Consequently, the open loop
configurations remain the most popular, particularly for robots with articulated arm and
for Cartesian coordinate robots.

6.2.2 End Effectors
The end effector is also referred to as end-of-arm tooling. Recall that a robot is a

multipurpose machine. Thus, the application in which the robot is used dictates the type of
end effector. Consequently, a wide variety of end effectors are available.

The most commonly recognized end effector is the gripper. Grippers are used in
material handling applications to grasp and manipulate objects. The major types of
grippers include vacuum grippers, magnetic grippers, simple mechanical device grippers,
and mechanically actuated grippers.

Figure 6-8 Vacuum and magnetic grippers

Vacuum grippers are essentially vacuum-actuated suction cups. They are often used
to pick up smooth fragile objects, such as sheets of glass, plastic sheets or bags, and thin
metal sheets. Magnetic grippers use either electromagnets or permanent magnets with air
release to pick up magnetic objects. Scoops or hooks would be considered simple
mechanical devices. Examples of a vacuum and magnetic gripper are shown in Figure 6-8.

Magnetic
Gripper

Vacuum
Gripper

G

Introduction to Robotics Technology 267

Mechanically actuated grippers are by far the most common type of gripper. They
have fingers that are mechanically actuated to open or close to grasp objects. Gripper
fingers are typically custom-machined so they match the object to be manipulated and
then bolted to the gripper jaws. The gripper jaws are most often pneumatically actuated,
but electrically actuated grippers are also available. The gripper’s jaws can be actuated in
either an angular or linear fashion. The number of jaws/fingers depends on the shape of
the object to be manipulated. Two-, three-, and four-jaw grippers are common. Figure 6-9
shows a two-jaw gripper that is angularly actuated and a three-jaw linearly actuated
gripper. Many other configurations are available.

Figure 6-9 Two- and three-finger grippers

Some material handling applications call for multiple grippers to be simultaneously
mounted to the end of the robot arm. A dual gripper setup has two grippers on the end of
the robot arm. This enables the loading and unloading of objects in one arm motion,
thereby saving process cycle time. A dual gripper setup is shown in Figure 6-10.

Finger
Mounting

Holes

Linearly Actuated
Gripper Jaws

Angularly
Actuated

Gripper
Jaws

Air Parts Air
Ports

268 Chapter 6

Figure 6-10 Dual gripper setup

The robot manufacturer does not supply grippers; they are designed by the
automation engineer for integrating the robot into the process under consideration. Thus,
the engineer selects the appropriate gripper for the application from an independent
supplier and designs fingers for optimum location and maximum grip of the object
manipulated. The selection considerations include number of jaws, type of jaw actuation
(angular or linear), mode of actuation (pneumatic or electric), available grip force, type of
return, opening/closing speed, and, perhaps most important, gripper weight.

A gripper or any end effector’s weight is of critical importance in the integration of a
robot into a process because it lessens the robot arm’s available payload capacity. Payload
capacity is the maximum weight the robot arm can carry and still meet the robot’s
designed speed and acceleration/deceleration performance capabilities. Thus, if the
application is using a robot with a payload capacity of 2 kg and the object being
manipulated weighs 1 kg, the gripper assembly cannot weigh more than 1 kg.

Robots are often used in non-material handling applications. Thus, depending on the
application, the end effector may be some type of tool. In this case, instead of
manipulating an object, the robot manipulates the tool relative to a stationary or slowly
moving object. Additionally, it controls the tool in terms of starting, stopping, and
regulating its operation. Example end effector tools include welding guns, paint spray
guns, rotating spindles, heating torches, and laser cutting tools.

Robot Arm

Dual
Gripper

Introduction to Robotics Technology 269

6.2.3 Power Sources
A reliable and readily controllable power source is required to actuate a robot arm.

The three types of power sources used to power robots include hydraulic systems,
pneumatic systems, and electrical systems.

Hydraulic systems are closed loop systems in which electronically controlled valves
direct the flow of pressurized hydraulic fluid to the appropriate linear or rotary actuator to
achieve the desired robot arm motion. Figure 6-11 shows a typical closed loop hydraulic
system. The pump, driven by an electric motor, draws the hydraulic fluid from the tank,
pressurizes it, and forces it through the hydraulic lines. If the control valve is closed the
pressure relief valve is opened by the pump-generated pressure and the hydraulic fluid
flows back into the tank in a closed loop. If the control valve is open, as shown in the
figure, the pressurized fluid flows through the control valve and into the actuator, thereby
retracting the cylinder. As the cylinder retracts, the fluid to the left of the piston is forced
through the control valve back to the tank. The cylinder can be extended by changing the
position of the spool in the control valve. This is accomplished electronically through the
robot’s control system. For simplicity, the figure shows only one control valve and one
actuator. In an actual hydraulic robot there would be at least one actuator per degree of
freedom.

Figure 6-11 Hydraulic power source

Hydraulic fluid systems can be either oil over water or straight oil. In either case the
fluid is highly incompressible, enabling good speed and positional control of the actuator.

Valve Spool

Motion

Control Valve

Return
Line

Pressure
Relief
Valve

Pump

Tank

270 Chapter 6

Additionally, hydraulic systems provide a high power-to-size ratio with large payload
capacities. Thus, when a robot is needed to carry a large load, a hydraulically actuated
robot may be a wise choice. However, there are some serious limitations that need to be
considered.

The support system consisting of the tank, motor, lines, and control valves
substantially increases the cost and footprint of the robot. Also, hydraulic systems in
general tend to be noisy and to leak. Thus, they are messy and require regular
maintenance. Additionally, oil-based systems can be a fire hazard. Because of these
concerns, hydraulic robots are not used as often as pneumatic and electromotive robots.

Pneumatic robots use many of the same components as hydraulic robots in terms of
actuators and control valves. However, the two systems have very different performance
capabilities. This is primarily due to the compressibility of the air in the pneumatic
systems, which makes difficult the accurate control of position and speed—a major
disadvantage of pneumatic robots. Air systems generally use adjustable hard stops for
location control. Another difference between air and hydraulic systems is that air systems
are open loop, versus the closed loop of hydraulic systems. This is an advantage, as piping
is simpler in air systems because no return lines are needed.

Another—major—advantage of pneumatic robots is the readily available supply of
air. Most manufacturing facilities have compressed air systems already installed. Thus, a
separate support system is not required, resulting in substantial savings compared to what
is possible for a hydraulic system. Also, leaks in pneumatic systems do not contaminate
the surrounding environment.

Because they cannot achieve precise speed and position control, the use of pneumatic
robots is limited, primarily, to pick and place type operations. However, pneumatic
technology is well developed, yielding reliable and affordable robots. A typical pneumatic
robot is shown in Figure 6-12. Cartesian coordinate robot configurations with two or three
degrees of freedom are the most common. Pneumatic robots find many uses in the plastics
industry primarily for sprue pulling and molded part removal.

Electrically actuated robots are by far the most common type of robots in industry
today. They use electrical servomotors, enabling precise speed and position control. The
rotational position is proportional to an electrical command signal. These robots are
controlled by a closed loop control system allowing accurate and repeatable position
control.

Introduction to Robotics Technology 271

Figure 6-12 Pneumatic robot

The servomotors may be AC or DC. AC motors are more stable, light, and rugged.
Additionally, they require less maintenance than DC motors, which require regular brush
replacement. However, DC motors generate more torque, thereby justifying their use in
high strength applications.

To power a robot arm joint, servomotors generally require some type of rotational
motion speed reduction and corresponding torque amplification. This is accomplished
with a reduction drive. Common types of reduction drives for rotary motion include
pulleys and synchronous timing belts, gear trains—including spur, worm, and bevel, and
harmonic drives. Linear motion is accomplished with ball screw mechanisms. Figure 6-13
shows examples of each. Most engineers and technologists are familiar with the range of
speed reductions and torque increases possible with traditional synchronous timing belts,
various gear trains, and ball screw mechanisms. However, the harmonic drive is not as
common and offers some unique capabilities, which can be put to good use in robotic
applications. Next we consider the harmonic reduction drive.

272 Chapter 6

Figure 6-13 Reduction drives

Harmonic drives were invented in the 1950s. They provide high reduction ratios and
corresponding large torque amplification in a condensed package. This drive’s operating
principle is relatively simple but somewhat difficult to visualize. A harmonic drive, as
shown in Figure 6-14, consists of an elliptical wave generator, flexspline, ball bearings,
and circular spline. The elliptical wave generator serves as the input to the mechanism and
the flexspline is the output. The flexspline has gear teeth on its outside diameter that mesh
in two locations 180 degrees apart with gear teeth on the inside diameter of the circular
spline. Note that the circular spline is fixed and does not rotate. As the wave generator
rotates, the ball bearings cause the flexspline to deform, thereby moving the mesh point
around the inside of the circular spline. Because the flexspline has two less teeth than the
circular spline, the flexspline rotates in the opposite direction of the elliptical wave

Bevel Gears

Ball Screw
Mechanism

Worm Gears

Harmonic Drive

Synchronous Timing Belt

Spur Gears

Circular
Spline
(Fixed)

Flexspline
(Output)

Ball
Bearings

Elliptical Wave
Generator

(Input)

Introduction to Robotics Technology 273

generator. This unique construction enables the harmonic generator to have zero backlash
for very high positional accuracy. This, in turn, makes the drives ideally suited for electric
drive robotic joint applications.

In some robotic cases no reduction drive is used and the motor drive shaft can be
directly connected to the joint axis. This is called a direct drive. It yields a one-to-one
relationship in motor-to-joint speed and torque. Obviously, this can only be used in
rotational motion applications where speed is more important than torque.

Figure 6-14 Harmonic drive

The advantages of electric drive systems include the following: no danger of
contamination of the work environment; no separate power source (hydraulic)
requirement; and low noise level. Additionally, electric drive systems have the fastest arm
motion with the quickest response. The primary disadvantage of the electric drive system
is payload capacity, which is typically limited to 250 pounds.

6.2.4 Robot Controller and Teach Pendant
The robot controller is a special purpose computer that has three major functions:

First and foremost, it controls the actuators that direct arm motion; second, it provides the
means for the robot to interact with and control periphery equipment and end effectors;
third, it serves as the user interface from which the robot can be manually controlled and
programs can be entered, edited, and executed. These functions are depicted in Figure 6-
15.

Circular
Spline

Flexspline
Metal Cup

Elliptical
Wave

Generator

274 Chapter 6

Figure 6-15 Robot controller functions

The performance capabilities of any robot are solely dependent on the type of arm
motion control the robot controller executes. Consider a pneumatic robot used in a pick
and place application versus an arc-welding robot. Each case requires a very different
level of control over the robot arm. In a pick and place application the robot moves to a
position to grasp an object, then to another location to release the object. The pneumatic
robot controller sequences the actuation of each joint to achieve the desired motion.
However, the actual stopping position of each joint is set with limits or mechanical stops.
This type of control is called limited sequence control and is the most basic type of robot
motion control. On the other end of the spectrum is continuous path control. Robots using
continuous path control are capable of moving to precise locations, without the aid of
mechanical stops, while following a specified path. Continuous path control robots not
only simultaneously control the position of each robot axis but also the velocity and
acceleration of each joint to achieve the programmed path. This type of controller utilizes
interpolation routines similar to CNC control. Thus, the joint actuators are typically
electrical servomotors. An arc-welding robot tasked to create a weld on a curved path
would require continuous path control.

A limited sequence control robot controls the joint actuators with open loop control.
Thus, as discussed in Chapter 3 on CNC control, there is no feedback system to verify that

Introduction to Robotics Technology 275

the axis has reached the desired position. For pneumatic robots this necessitates the use of
mechanical hard stops. An open loop control system for a pneumatic robot is shown in
Figure 6-16. The signal to move the axis is sent to the actuator—in this case the control
valve—and the controller assumes the axis has achieved the desired position at the desired
speed. However, because of the lack of feedback this assumption cannot be verified.
Although the lack of a feedback system does limit the capabilities of this type of robot, it
also greatly simplifies the controller. That is why limited sequence control robots can
often be controlled with a standard programmable logic controller (PLC). The capabilities
of programmable logic controllers are discussed in more detail in Section 8.4.

Figure 6-16 Open loop controlled pneumatic robot axis

Continuous path control robots require closed loop feedback systems—one for each
robot axis. The feedback system for the shoulder axis is shown in Figure 6-17.

Assume the robot is to follow the path shown in Figure 6-18. The robot program,
which is stored in the controller memory, specifies these positions, along with the path and
speed that the robot arm is to follow. In order to achieve the desired path, robot axes must
move simultaneously in a coordinated fashion. Thus, an executive controller resolves the
program information into individual axis movements, as shown in Figure 6-19. Each
individual axis movement is then sent to the axis controller, which analyzes the signal and
turns on and rotates the servomotor to obtain the desired joint position at the desired
speed. The axis encoder informs, or feeds back, the position of the axis continuously to the
axis controller, while the tachometer reports the rotational speed. The axis controller

Adjustable
Mechanical
Hard-Stop

Robot
Controller

Axis
Controller

Control
Valve

Guide
Rods Air

C
yl
in

de
r

276 Chapter 6

continuously compares the desired position and speed to the actual position and speed,
adjusting the servomotor accordingly. This is shown schematically in Figure 6-17.

Figure 6-17 Closed loop axis controller for the shoulder axis

Figure 6-18 Six-axis robot movement

Executive
Controller

Axis
Controller

Joint
Servomotor

Feedback Sensors
Tachometer

Encoder

Program

B

A

Introduction to Robotics Technology 277

Figure 6-19 Executive axis controller

The majority of modern electromotive industrial robots exercise continuous path
control. Thus, they are capable of performing a wide variety of tasks requiring precise
control of an end effector or tool. Examples include material handling, in which objects
must be precisely grasped and placed, seam arc-welding, and even machining
applications. In any of the aforementioned examples, control of the end effector in terms
of opening and closing a gripper, or turning on or off a welding tool or spindle, also needs
precise execution. The robot controller performs this function as well.

Control of end effectors and interfacing with auxiliary equipment within a robot
manufacturing cell is called peripheral equipment control, which is a means for the robot
to communicate with the surrounding environment through electrical connections. The
robot controller monitors these connections and, depending on the status of the
connection, takes some appropriate action as dictated by the robot program. For example,
in the automation cell previously discussed and shown in Figure 6-1, the robot unloads
parts from a mold, places them on a staging plate, routes the inside and outside diameters,
and then places the parts on a scale for weighing. It could not perform these tasks unless it
was aware of the status of the surrounding equipment. It has to know when the mold is in
position for unloading, inform the press that the unloading is complete, and tell the scale
when to weigh a part. Additionally, the gripper has to be opened and closed at precisely
the right time. Such auxiliary equipment control is accomplished through digital input/
output (I/O) interface boards, located in the robot control cabinet, and also through an end
effector (EE) cable routed through the robot arm and terminating near the end effector.

The I/O boards in the robot controller are hardwired to comparable boards located on
the PLC, which coordinates all the action of the cell. Thus, when the mold is in position to
be unloaded, the PLC turns on an output, which will show up as an input to the robot. The
robot program is written in such a way that when the robot sees this input is on, it begins to
unload the parts from the mold. Correspondingly, as the robot begins to unload the mold,
it turns on an ouput, which is monitored by the PLC. The PLC programming is written so
that it does not move the mold as the parts are unloaded. When the robot completes the
unloading it turns off this output, which in turn informs the PLC that it is alright to move
the mold plate. This is depicted in Figure 6-20.

Executive
Controller

Waist
Axis

Shoulder
Axis

Elbow
Axis

Forearm
Axis

Wrist
Axis 1

Wrist
Axis 2

278 Chapter 6

Figure 6-20 Robot controller interfacing

The EE cable is terminated near the end effector in the form of a female connector. A
male connector, hardwired to the end effector, is then plugged into the female connector.
A typical connector setup is shown in Figure 6-21. The robot program contains
instructions specifying when the gripper should be opened or closed. The robot controller
turns these instructions into electrical signals, which are routed through the EE cable to
actuate the end effector.

 Figure 6-21 EE cable connectors

Introduction to Robotics Technology 279

Figure 6-22 shows a robot control cabinet interface for a Fanuc RJ controller. Also
visible in the figure is the teach pendant. A close-up view of the teach pendant can be seen
in Figure 6-23. The control cabinet and teach pendant represent the operator interface.
Through these devices the robot program is created, program files are manipulated and
edited, and the robot is manually controlled. Specifically, the control cabinet provides a
means to turn the robot on or off, to start or stop program execution, and/or to execute an
emergency stop. In modern robots the teach pendant is the primary means through which
programs are entered, edited, simulated, stored, and loaded for execution. Teach pendants
typically consist of an LCD screen and pushbuttons or toggle switches for entering and
executing commands. As will be explained in the next chapter, during the programming
process the robot is manually moved to the positions to be programmed. Once the robot is
in the desired position, the position information, often along with the means to achieve
that position, is stored for later use in the program. These tasks are typically accomplished
with the teach pendant. Specific programming techniques utilizing the teach pendant are
discussed in the next chapter.

Figure 6-22 Robot controller

280 Chapter 6

Figure 6-23 Robot teach pendant

6.3 Robot Applications
Robotic technology is highly valued in productivity improvement, as it is an

affordable, reliable, and extremely capable in this respect. It has proven itself countless
times in industry and is now finding applications in many nonindustrial applications,
including the pharmaceutical and health care fields. Robotic technology should be
considered whenever productivity improvements are sought. There are also specific work
environments in which robotic technology tends to thrive. They include work
environments that are hazardous or uncomfortable for workers, ones where tasks require a
high degree of accuracy, and/or those that entail highly repetitious processes.

Hazardous or uncomfortable work environments are those where human workers
may be exposed to high temperatures, dangerous atmospheric conditions, difficult work
positions, such as kneeling or crouching, or even the handling of awkward objects—that
is, any type of environment that causes significant stress on the worker. Specific examples
include work that is done around die casting presses, forging presses, heat treating
processes, and welding.

Work environments that require a high degree of accuracy or are highly repetitious
have been proven to be good venues for robots. Modern robots are much more accurate
and reliable than human workers. They do not become bored or distracted and are thus
ideal for mundane repetitious work. Their application in this type of environment
inevitably yields the added benefit of improved quality.

Introduction to Robotics Technology 281

Robotic applications are categorized into three main areas:
1. Material handling,
2. Processing operations,
3. Assembly and inspection.

In material handling applications the robot moves a part from one location to another.
In this type of application the end effector will be some type of gripper. In pick and place
or material transfer applications the robot picks up an object from one location and moves
or transfers it to another. In palletizing applications the robot places each subsequent part
in a different location from the previous part. Machine loading and unloading are common
material handling applications used for numerous types of processes, including die
casting, machining, injection molding, pressworking, forging, and heat treating. Figure 6-
24 shows some machine loading and unloading applications.

Figure 6-24 Robot machine loading and unloading

282 Chapter 6

The most common processing operation applications for robots include spot-welding,
arc-welding, and spray painting. In spot-welding processes the robot is typically a large
six-axis, high payload robot that can easily manipulate the heavy spot-welding gun into
tight spaces. Arc-welding processes are very appropriate for robotic technology because
they are hazardous and very repetitive. This is also true of spray painting processes,
another area in which robotic technology is heavily utilized. Machining is yet another
processing operation that uses robots; in machining the robot uses a spindle for its end-of-
arm tooling. Robots equipped in this manner can perform drilling, routing, and many other
types of machining operations. Examples are shown in Figure 6-25.

Fig-6-25 Robot machining application examples

Assembly and inspection process are yet another area in which robot technology is
often applied. SCARA and Cartesian coordinate robots are often used in these applications
because they lend themselves well to assembly of components and have high vertical
stability. Additionally, robots can be equipped with adhesive dispensers or soldering units
for assembly of circuit boards and other electrical assemblies. In inspection applications
the robot may transport either the part to the inspection device or the inspection device to
the part. Some examples are shown in Figure 6-26.

Introduction to Robotics Technology 283

Figure 6-26 Robot assembly application examples

6.4 Robot Safety
Worker safety is always of prime importance in an industrial setting, but perhaps

even more so in robot installations. As discussed in the last section, a prime application for
a robot is a work environment that is hazardous or uncomfortable for human workers. So,
it would be ironic if the robot installation were more hazardous than the original work
environment it replaced. Yet, this can easily occur if specific steps to ensure the safety of
the worker, robot programmer, and maintenance personnel are not made.

During normal operation, a robot arm follows the path specified in the robot program,
without regard for objects in its path. It is typically moving at a high rate of speed and
often carrying a substantial payload. This combination of high speed and large payload
results in considerable inertial loads. Additionally, the arm motion is often unpredictable
to the casual observer. Thus, if an object, human or otherwise, inadvertently moves into
the robot’s work envelope during normal operation, a collision is likely and could very
well be catastrophic. Even when not in normal operation, such as during programming or
maintenance, the robot poses a risk to personnel. These scenarios often require personnel
to enter the robot’s work envelope to perform tasks. Thus, if the robot arm accidentally
moves while the workers are within the work envelope, it is highly possible that the
worker may collide with or become trapped between the arm and other objects. Therefore,

284 Chapter 6

it is imperative that safeguards be in place to prevent personnel from entering a robot’s
work envelope during normal operation and that protect them while they are in the work
envelope, performing necessary maintenance and programming tasks. We next discuss
these measures.

6.4.1 Robot Safety Standards
The Occupational Safety and Health Administration (OSHA) is the federal agency

tasked with enforcing worker safety. The Occupational Safety and Health Act issued by
the federal government in 1970 is the most comprehensive U.S. law regarding worker
safety. It authorizes the federal government to establish and enforce occupational safety
standards for workers. Under this act employers are required to provide employees a safe
place to work, free from dangers that cause or are likely to cause serious or fatal injuries.

OSHA publishes guidelines to aid employers in providing a safe workplace. Chapter
4 of Section IV of the OSHA Technical Manual deals specifically with robot safety. The
chapter “Industrial Robots and Robot System Safety” provides a background on robots in
general and addresses hazards, investigation guidelines, and control and safeguarding of
personnel. The manual is available online at www.osha.gov.

The OSHA manual goes into considerable depth on the types of accidents that can
occur and the sources of hazards. Types of worker injuries that are largely preventable
through effective safeguarding can be summarized into three major categories:

1. Impact, collision, or blow from a robot arm.
2. Some body part being trapped or crushed between the robot arm and other

peripheral equipment.
3. Impact, collision, or blow from released parts or end effector components due to

mechanical failure.

It is important to note that these hazards exist not only for the production worker but
also for programmers and maintenance personnel. Thus, safeguarding needs to include
provisions for protecting everyone. In general, a combination of safeguarding measures is
encouraged with emphasis on redundancy.

Throughout the OSHA manual reference is made to another standard developed
jointly by the American National Standards Institute (ANSI) and the Robotics Industries
Association (RIA). The standard, ANSI/RIA R15.06 Industrial Robots and Robot Systems-
Safety Requirements is the de facto standard for robot safety. It is beyond the scope of this
text to include an extensive detailed review of these standards. However, the next section
addresses safeguarding considerations in a general sense. Thus, the reader is encouraged
to review both the OSHA manual and ANSI/RIA R15.06 for additional detailed
information on controlling and safeguarding personnel.

Introduction to Robotics Technology 285

6.4.2 Safeguarding Considerations
Section V, Chapter 4, Section 4 of the OSHA Technical Manual offers controlling

and safeguarding considerations. These considerations are summarized below.
1. A detailed review of the robot cell’s operating characteristics and associated

potential hazards should be performed and documented at each stage of robot cell
development. This review is called a risk assessment. Based on this assessment
the appropriate safeguarding to reduce or eliminate any risks can be applied.

2. Safeguarding devices should be used to restrict personnel access to the robot’s
work envelope. These devices include, but are not limited to, physical barriers,
presence-sensing devices, E-stop devices, interlock devices, and safety control
units.

3. Awareness devices can be used to make personnel aware that they are entering or
approaching a hazardous area. Such devices include rope barriers and stanchions,
flashing lights, signs, whistles, or horns. Awareness devices should be used,
where applicable, with other safeguarding devices.

4. The robot programmer or “teacher” should be protected by limiting maximum
robot arm speed to 250 mm/s or 10 in/s during programming.

5. When the robot is operating automatically all safeguarding should be in place with
no opportunity for any part of the operator’s body to enter the safeguarded
workspace.

6. If personnel are required to be in or near the safeguarded workspace, the robot
should be in teach mode, running at low speed, and said personnel should have
full control of the robot arm.

7. Safeguarding maintenance and repair personnel is complicated because the tasks
these workers perform are so varied. Thus, to ensure adequate protection refer to
ANSI/RIA15.06 standard, Section 6.8.

8. Regular maintenance and inspection is critical for robot systems. It is needed to
minimize hazards from component malfunctions and failures.

9. Extensive robot safety training is required for all personnel associated with the
robot system operation, including but not limited to programmers, operators, and
maintenance personnel.

10. The following sections of the ANSI/RIA R15.06 standard list additional
requirements to be considered:

• Section 6 – Safeguarding Personnel
• Section 7 – Maintenance of Robots and Robot Systems
• Section 8 – Testing and Start-up of Robots and Robot Systems
• Section 9 – Safety Training of Personnel

Additionally, the robot system must comply with OSHA regulations OSHA 29 CFR
1910.333, Selection and Use of Work Practices, and OSHA 29 CFR Part 1910.147, The
Control of Hazardous Energy (Lockout/Tagout).

286 Chapter 6

6.4.3 Safeguarding Example
Figure 6-27 shows a top view of the robot cell discussed previously, in Section 6.1.

Recall from that discussion that the robot removes parts from the mold shuttle, places
them on the staging plate, routes the inside and outside diameter, and places the finished
parts on the scale. Good parts are kicked out of cell and scrap parts are kicked into a scrap
bin.

Figure 6-27 Robot safeguarding example

Note the robot’s work envelope in the figure. As discussed in the last section, keeping
personnel out of the robot’s work envelope during normal operation is of prime
importance. In this example this is accomplished with physical barriers and a presence-
sensing device. Physical barriers can include almost any type of guarding or obstruction
that may prevent a person or a person’s body part from entering the robot’s work

Press

Robot Work
Envelope

Robot
Control
Panel

Staging
Plate

Robot
Routing

Part

Light
Curtain

Mold

Physical
Barriers

Physical Barrier

Worker
Awareness Zone

Scrap

Scale Finished
Parts

Introduction to Robotics Technology 287

envelope, including other equipment in the cell. Therefore, in the figure the robot’s control
panel and the press serve as effective physical barriers. They are used in conjunction with
other physical barriers such as wire mesh fencing.

The light curtain shown in the figure is a presence-sensing device. It is an electronic
device that casts synchronized, parallel light beams to a receiver unit. If an opaque object
interrupts the beam, the light curtain controller sends a stop signal to the robot cell
controller. Thus, it prevents access to the work area when the robot is in motion, but
allows easy access to the work area at other times. Other types of presence-sensing
devices include pressure-sensing pads and ultrasonic or laser proximity-sensing devices.

Note that the removable physical barriers should be interlocked with the cell’s
controller or power supply. Thus, if a physical barrier is removed the robot or other
equipment will not function.

Outside the physical barriers is a worker awareness zone. The intent of defining a
worker awareness zone is to make personnel aware that they are near a potential hazard.
The perimeter of this area could be marked with yellow caution paint in conjunction with
flashing lights, physical barriers such as stanchions and ropes, and warning signs. Access
to this area should be limited to cell operators, programmers, and maintenance personnel.

Note that this example is only intended to provide a cursory overview of
safeguarding a robot system. For detailed information and requirements, refer to the
OSHA manual and ANSI/RIA R15.06.

6.6 Robot Selection Considerations
Robots are incredibly capable machines. However, there is not one universal robot

suitable for all applications. Thus, selecting the right robot for a particular application is
critical to the success of a project.

The robot selection process starts with a thorough understanding of the application in
which it is to be used. The application itself may indicate the type of robot to be
considered. For example, an assembly application may suggest the use of a SCARA type
robot for its vertical stability and high downward force. On the other hand, a welding
application typically requires a robot with high dexterity and payload capacity to
maneuver a heavy welding gun. Thus, a large six-axis robot may be indicated. Once the
process requirements are fully understood, the following should be considered:

• robot arm geometry
• end effector requirements
• robot arm performance capabilities
• robot controller capabilities
• new versus used robot

Robot arm geometry is a prime consideration because it defines the robot’s work
envelope. The work envelope specifies the robot’s range of arm motion. Thus, one must

288 Chapter 6

ensure that the robot arm can reach all areas of the application’s work area. Additionally,
the robot geometry specifies the arm’s dexterity. The robot arm must also be capable to
maneuver the end effector through the range of motion specified by the application
requirements.

The end effector type, size, and weight are significant contributors to the robot
selection process. The type of end effector influences the robot controller requirements.
For example, a welding robot application would require a special control module that
would not be needed for a material handling application. The end effector size and weight
dictate the payload capacity of the robot. If the type of end effector is a gripper, the weight
of the part being manipulated must be added to the end effector weight to determine the
total payload capacity required. The required payload capacity also plays a role in the type
of power used for the robot. Extremely heavy payloads may require a hydraulically
powered robot.

Robot arm performance capabilities refer to robot speed, accuracy, and repeatability.
The robot selected must be able to satisfy the required application cycle times. If an
application does not require high accuracy, such as an injection molding sprue-pulling
application, an air-powered robot with mechanical hard stops may suffice.

Factors affecting robot controller capabilities include ease of programmability,
familiarity of the robot program language, and ability to control or interface with
peripheral equipment. The amount of equipment with which the robot must interface
dictates the type and amount of input and output boards the controller will require.

Robots, like most types of automated devices, are expensive pieces of equipment.
Some savings can be realized if a used robot is available that can meet the application
performance requirements. Due to the large amount of offshoring in recent years, there are
many used robots on the market that still have substantial life in them. Resellers often
refurbish the robots as well. These robots can typically be purchased at a fraction of the
cost of a new robot. Factors to consider when purchasing a used robot are age, hours of
use, and availability of spare parts. A good rule of thumb regarding ease of acquiring spare
parts for a used robot is to select a robot make and model that has been in widespread use.
With many models in service, the probability of finding spare parts or even a spare robot
arm greatly increases.

6.7 Summary
A modern robot is a machine that possesses humanlike characteristics and is capable

of performing a wide variety of tasks. The ISO standard ISO/TR/8373-2.3 defines an
industrial robot as an automatically controlled, reprogrammable, multipurpose,
manipulative machine with several reprogrammable axes, which may be either fixed in
place or mobile for use in industrial automation applications.

Initially, robots were used in stand-alone applications to replace human laborers in
material handling applications. However, the majority of new applications for robots

Introduction to Robotics Technology 289

involve integration into automation cells often working in conjunction with part feeders,
conveyors, CNC machines, and PLCs. As a result, modern robots have tremendous
potential to aid in productivity improvement.

Robot hardware includes a mechanical arm, end effector, power source, robot
controller, and teach pendant. The mechanical arm consists of rigid links connected via
mechanical joints. Different types of joints provide different types of motion. The five
types of joints are linear, orthogonal, rotational, revolving, and twisting. Combining
multiple links and joints yields a robot arm with multiple degrees of freedom. The
combination of joint types dictates the robot configuration and corresponding range of
motion possible by the arm. The five most common types of robot configurations include
the polar robot, the cylindrical robot, the Cartesian robot, the articulated arm robot, and the
SCARA robot. The defining feature of the different configurations is the work envelope.

“End effector” is the general term for describing the tooling connected to the end of
the robot arm. As such, it is also referred to as end-of-arm tooling. Grippers are the most
common type of end effector and are used in material handling applications to grasp and
manipulate objects. In many applications the end effector is a tool. In this case, instead of
manipulating an object, the robot manipulates the tool relative to a stationary or slowly
moving object. Example end effector tools include welding guns, paint spray guns,
rotating spindles, heating torches, and laser cutting tools.

The three types of power sources used to power robots include hydraulic systems,
pneumatic systems, and electrical systems. Hydraulic power sources are used when the
robot is required to carry a large payload. Pneumatically powered robots use a plant’s
readily available air supply to move the robot arm. However, because of the
compressibility of air, position control is limited to mechanical hard stops. Thus, these
robots have simpler control requirements. They are used primarily for simple pick and
place applications. Electrically actuated robots are, by far, the most common robot type
used in industry today. They use electrical servomotors whose rotational position is
proportional to an electrical command signal. These enable precise speed and position
control. Electrical servomotors are controlled by a closed loop control system, which
allows accurate and repeatable position control. Electrically actuated robots have the
fastest arm motion with the quickest response.

The robot controller is a special purpose computer that has three major functions: It
controls the actuators that direct arm motion; it provides the means to interact with and
control periphery equipment and end effectors; and it serves as the user interface from
which the robot can be manually controlled and programs can be entered, edited, and
executed.

The performance capabilities of a robot are solely dependent on the type of arm
motion control the robot controller executes. Robots using continuous path control are
capable of moving to precise locations, without the aid of mechanical stops. Limited
sequence control robots are the most basic type of robot motion control. A limited

290 Chapter 6

sequence control robot controls the joint actuators with open loop control. The majority of
modern electromotive industrial robots exercise continuous path control.

Peripheral equipment control provides a means for the robot to communicate with the
surrounding environment through electrical connections. The robot controller monitors
these connections and, depending on the status of the connection, takes some appropriate
action as dictated by the robot program.

The robot control cabinet and teach pendant represent the operator interface. Through
these devices the robot program is created, program files are manipulated and edited, and
the robot is manually controlled.

There are specific work environments in which robotic technology tends to thrive.
They include hazardous or uncomfortable work environments, work environments in
which a high degree of accuracy is required, and/or work environments that are venues of
highly repetitious processes. Application areas include material handling, processing, and
assembly and inspection.

Due to the high energy of a robot arm under normal operation, substantial
safeguarding is required to protect operators, programmers, and maintenance personnel.
Chapter 4 of Section IV of the OSHA Technical Manual titled “Industrial Robots and
Robot System Safety” provides a background on robots in general and addresses hazards,
investigation guidelines, and control and safeguarding of personnel. ANSI/RIA R15.06
Industrial Robots and Robot Systems-Safety Requirements is the de facto standard for
robot safety; it is referenced extensively in the OSHA manual.

The robot selection process starts with a thorough understanding of application. Once
the process requirements are fully understood then robot arm geometry, end effector
requirements, robot arm performance capabilities, controller capabilities, and the choice
of whether to use a new or used robot can be evaluated.

6.8 Key Words
continuous path control
degrees of freedom
digital input/output (I/O) interface boards
dual gripper
electrical power systems
encoder
end effector
end effector (EE) cable
end-of-arm tooling
executive processor
gripper
hydraulic power systems
limited sequence control

Introduction to Robotics Technology 291

linear joint
link
magnetic grippers
mechanical arm
mechanically actuated grippers
orthogonal joint
payload capacity
peripheral equipment control
power source
pneumatic power systems
reduction drive
revolving joint
risk assessment
robot controller
rotational joint
simple mechanical device grippers
tachometer
teach pendant
twisting joint
vacuum grippers
work envelope

6.9 Review Questions
 1. Discuss the origins of the term robot.
 2. What is the definition of robot?
 3. List and discuss the basic hardware of any modern robot system.
 4. Explain the difference between a robot link and a robot joint.
 5. List and describe the five types of robot joints.
 6. Define a robot’s work envelope.
 7. What are the five basic robot configurations? Define the work envelope for each.
 8. What are the major differences between a parallel robot configuration and the five

basic robot configurations?
 9. List and describe four types of robot grippers.
10. List and describe the three basic types of robot power sources. What are the

advantages and disadvantages of each?
11. Explain the role of a reduction drive in an electrically actuated robot arm.
12. What are the three major functions of the robot controller? Describe the role each

plays in an industrial robot.
13. Explain the difference between a limited sequence controller and a continuous

path controller. Which type would be required in a spray painting application?

292 Chapter 6

14. What role does the executive controller play in regard to controlling arm motion?
15. Define peripheral equipment control.
16. What device enables the creation, editing, and manipulation of the files of a robot

program?
17. What are the three main robot application areas? Give an example of each.
18. List and discuss the two robot safety standards reviewed in the chapter.
19. What are the three types of injuries that workers should be safeguarded against?
20. List and discuss the five major considerations for selecting a robot for a particular

application.

6.10 Bibliography
1. Groover, M.P.2001, Automation, Production Systems and Computer-Integrated

Manufacturing, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey.
2. Rehg, J.A.2003, Introduction to Robotics in CIM Systems, 5th edition Prentice-

Hall, Upper Saddle River, New Jersey.
3. Colesock, H.2005 Industrial Robotics, McGraw Hill, New York.
4. Chang, T.C., Wysk, R.A., and Wang, H.P. 2005 Computer-Aided Manufacturing,

3rd edition, Prentice-Hall, Upper Saddle River, New Jersey.
5. http://www.powertransmission.com/issues/0706/harmonic.htm
6. www.OSHA.gov, OSHA Technical Manual, Section IV: Chapter 4 Industrial

Robots and Robot System Safety.

293

Chapter 7
Robot Programming

Contents

 7.1 Robot Programming Concepts

 7.2 Programming Methods

 7.3 Programming Languages

 7.4 Program Organization

 7.5 Writing Robot Program of Instructions

 7.6 Robot Simulation

 7.7 Robot Program Simulation Example

 7.8 Summary

 7.9 Key Words

7.10 Review Questions

7.11 Bibliography

Objective
The objective of this chapter is to present a methodology to create, organize, program, and
implement a robot program for industrial application. Additionally, various programming
methods, languages, and instructions will be discussed, and simulation of the robot
program will be addressed.

294 Chapter 7

7.1 Robot Programming Concepts
Figure 7-0 shows a typical material handling application in which a robot is tasked to

move a part from the conveyor on the left to a processing station on the right.

Figure 7-0 Robotic material handling application

In order to execute this task the robot needs to know many things, some of which are:
• Point at which to pick up a part from the conveyor.
• Path the gripper should follow to get to the part.
• Points at which the gripper should open and close.
• Path the gripper should follow to get to the processing station.

The list is far from complete; the robot needs to answer numerous other questions if it
is to adequately support the work cycle. However, the list shows that the major issues
center around choice of path the arm should follow and when certain events should occur.
It is the job of the robot program to address these issues. A robot program is defined as a
set of program language instructions (or commands). These commands specify the path of
the end effector (e.g., gripper, end of arm tooling), make logic decisions, and execute
peripheral actions necessary to support a work cycle. In robot programming a robot
program is entered and stored in the robot controller’s memory.

The path that the robot arm needs to follow is specified in a robot program by a
combination of stored robot arm positions and program motion instructions. Stored robot
arm positions are named locations in space that the end effector must reach or pass near in
order to execute a work cycle. Motion instructions dictate the stored position to which the

Part in Position
Sensor

Conveyor

Robot Turntable
Turntable in

Position Sensor

Part

Processing Station

Robot Programming 295

arm must move, as well as how it is to move. An arm may move the end effector in a
straight line to the stored position or move each arm joint simultaneously to reach the
position as quickly as possible. The arm may pause at the position or just move through it.
It may have to achieve the position exactly or just pass near it. All information is conveyed
to the robot controller by the motion instructions.

Again referring to Figure 7-0, shown are examples of peripheral actions—the
opening and closing of the gripper and communication with the conveyor and processing
station. These activities are specified by the robot language input and output (I/O)
instructions, which examine the status of inputs to—and turn on outputs from—the robot
controller. The peripheral equipment, in turn, reads these outputs and takes appropriate
action.

Coordination of the execution of the motion instructions and execution peripheral
action is accomplished with logic instructions, which make decisions within the robot
program.

There is no truly universal robot programming language. Languages and robot
programming methods are dependent on the robot supplier. However, each language has,
at a minimum, logic instructions, methods of storing and recalling arm positions, motion
instructions, and I/O instructions.

7.2 Programming Methods
The choice of robot programming method is largely based on the type of robot being

processed. Simple robots, such as the pneumatic playback robot, will be set up with
mechanical stops and limit switches. Work cycle steps are executed through some type of
sequencing controller, such as a programmable logic controller. Servo robots, on the other
hand, will have some method of storing robot arm positions, which are then used in
conjunction with a higher level programming language. Regardless of robot type, two
tasks must be accomplished: (1) Arm motion must be programmed; (2) Sequencing of
work cycle program must be programmed. Because these two tasks are accomplished in
various ways, different programming methods are needed.

 Most modern industrial robots are servo driven with rather sophisticated controllers
and, accordingly, excellent performance capabilities. Thus, our programming focus will
be limited to these types of robots. The two programming methods available for robots of
this type are motion programming and robot language programming.

The first of these, motion programming, moves the robot arm through a work cycle;
appropriate instructions are entered at each step of the process. This is called teaching the
robot the work cycle program. In this type of programming the storing of robot arm
positions occurs simultaneously with the entering of program instructions. (Important:
“Program instructions” are not the same as “program of instructions”. The former is a list
of instructions for the process; the latter are instructions in the actual robot program.) The
general procedure for programming a robot using motion programming is as follows:

296 Chapter 7

1. Enter an instruction to move the end effector to the start location or home position
of the work cycle program. Store this location to the robot controller.

2. Enter the appropriate logic and/or I/O instructions to control the end effector and/
or peripheral equipment as required by the application.

3. Move the end effector to the next position along the robot’s path in the correct
orientation. Enter the appropriate motion command to reach this location. This
stores the location and sets the necessary parameters for the arm to reach the
location during execution of the work cycle program.

4. Enter necessary logic and/or I/O instructions to control the end effector and/or
peripheral equipment for this location.

5. Repeat steps 3 and 4 until the work cycle is fully programmed.

In this method the robot is dedicated to the programming task. It is not performing
any useful work during the programming process. Because it takes time to fully program a
robot, the time out of service can be significant. That is why some manufacturers go to the
extent of purchasing two identical robots for a given application. One robot will be
dedicated to doing the work and the other to developing new robot programs.

The second method, robot language programming, reduces some of the time the robot
is actually out of service for programming. It separates the programming of motion, logic,
and I/O instructions from teaching of robot arm positions and orientations. The only time
the robot is out of service is when the robot arm positions are taught, named, and stored to
the robot controller. The actual program is written on a separate computer terminal away
from the robot. Once developed, it is stored for later uploading to the robot controller for
verification. This is advantageous because the robot can be performing other production
tasks while a new program is written. The only production time lost is that needed for
programming arm path positions. Additionally, computer-based graphic simulation
programs are often used to further minimize robot downtime, which they do by verifying
the program through simulation before uploading it to the robot controller. This is
discussed in more detail in subsequent sections.

What both methods have in common is that the robot must be taught the required arm
positions to execute the work cycle program. This is discussed next.

7.2.1 Teaching Arm Positions
Teaching the robot the necessary arm positions to execute the work cycle program

involves moving the end effector to the desired position and orienting it correctly. This
phase of the programming is called the teaching positions step. Once correctly positioned
each joint position is stored as a named location to the robot controller and/or a motion
command is entered. In the past this was accomplished in a number of ways, including
manually moving the arm into position, an action called manual leadthrough. In this the
programmer would actually grasp the robot arm and physically move it into the desired
position. If the robot arm were particularly large and heavy, a separate programming

Robot Programming 297

device having the same arm configuration as the robot would be used. Now, modern servo
robots use a technique called powered leadthrough. With this technique the robot is
power-driven to the desired position with the use of a teach pendant. A teach pendant for a
Fanuc ArcMate robot is shown in Figure 7-1.

Teach pendants have buttons and switches that an operator pushes to move robot
joints to position the end effector in the correct location. This is called jogging the robot
arm into position. (The term “jogging” is only used during programming.) During
programming, robot positions are being taught. This is the time when, using the teach
pendant, the robot is jogged into the desired position. When the program is executed there
is no jogging; the robot just moves to the position. For robots that utilize motion
programming, the teach pendant also has the capability to enter all necessary
programming instructions. The teach pendant is the primary user interface for the robot.

In order to more efficiently move the arm into position, robots have multiple jogging
coordinate systems. These coordinate systems force the robot to move in a specified
manner. They are: joint coordinate system, world coordinate system, and tool coordinate
system.

 The joint coordinate system allows each joint to be moved individually, one at a
time. This is the freest form of jogging the robot because it gives the programmer
maximum control of the robot arm. The other jogging coordinate systems restrict the robot
arm’s jog motion. Thus, this is the coordinate system of choice for quick and easy jogging

Figure 7-1 Typical teach pendant

298 Chapter 7

of the end effector to any position within the work envelope. Typically, it is used to move
the arm over a large distance to approach the position of interest and to effectively orient
the end effector. Once near the position and oriented correctly, the other jogging
coordinate systems are used to more accurately jog the end effector into the final
programmed position. Prior to discussing these other jogging coordinate systems we need
to understand tool centerpoint.

All robot arms have a mounting plate on the robot’s wrist for end effector mounting.
This is the robot’s tool plate, or faceplate. In its center is the tool centerpoint, which is
the point of action for the end effector, as its position and orientation correspond with the
end effector’s position and orientation. The robot controller accurately controls the
position and orientation of the tool centerpoint. The mounting configuration, by extension,
controls the position and orientation of the end effector. Figure 7-2 shows a tooling plate
and corresponding tool centerpoint for a typical robot arm.

Figure 7-2 Tooling plate and tool centerpoint

The other two jogging coordinate systems, the world coordinate system and the tool
coordinate system, force the robot arm’s joints to move in a synchronized manner,
enabling the end effector to move relative to a specific coordinate system. Often these
coordinates systems are called reference frames. These two systems are shown in Figure
7-3.

Tool
Plate

Tool Center
Point

Robot Programming 299

Figure 7-3 World coordinate system and tool coordinate system

World coordinate system jogging enables the end effector to move parallel to one of
the coordinate axes (x, y, or z) of a world coordinate system located at the robot’s base. As
the end effector moves, the orientation of the tool centerpoint remains constant, enabling
the end effector to maintain its orientation to the work while it is positioned.

The tool coordinate system enables the robot arm to move relative to a coordinate
system located at the tool centerpoint. This is useful because it is often necessary to move
the end effector away from the workpiece along the end effector’s centerline. The tool
coordinate system also maintains orientation of the tool centerpoint while it is in motion.

In a typical application, each of the coordinate systems may be used at different
times. Consider Figure 7-4.

Tool Coordinate
System

z

y

x

World
Coordinate

System

Y

X

Z

300 Chapter 7

Figure 7-4 Teaching position example

Figure 7-4(a) shows an application in which a pyramid-shaped workpiece is sitting
on a worktable in front of a 6-axis robot. Assume here that the robot is tasked with
performing work on an inclined face of the workpiece. Initially the robot is jogged close to
the desired work position using the joint coordinate system. In Figure 7-4(b) we see each
joint moved individually to roughly position the end effector near the workpiece. The joint
coordinate system continues to be used to jog the appropriate joint to correctly orient the
end effector. In Figure 7-4(c) the world coordinate system is seen, used to jog the end
effector into proper position. Finally, the tool coordinate system jogs the end effector to
the final work position as shown in Figure 7-4 (d). Having achieved the final position with
the proper end effector orientation the position can be stored as a named location or a
motion instruction entered. Both of these actions are performed with the teach pendant.

7.2.2 Taught Positions and User Coordinate Systems
The user coordinate system is an important part of the step called “teaching robot

positions”. It is established by the user to aid in teaching positions and in programming
particular robot applications. Consider Figure 7-5. This figure shows an application where
a robot is tasked to engrave the word “ROBOT” on an inclined workpiece. Because the
orientation of the workpiece is not parallel to the robot’s world coordinate system, it
would be beneficial to create a custom or user coordinate system coincidental with the
workpiece. This is a common situation, so most robot suppliers provide a means for
creating custom user coordinate systems.

Robot Programming 301

Figure 7-5 User coordinate systems

For example, Fanuc robots call their user coordinate system a user frame. All
positions taught and stored to the controller are stored in reference to this user frame. By
default, the user frame is set to the robot’s world coordinate system. However, the
programmer can set the user frame to any orientation desired by following a simple
procedure. Once the user frame is established the robot can be jogged parallel to it and the
position stored accordingly. This often significantly reduces the effort required in teaching
positions. Additionally, the user frame can be manipulated within the program code during
program execution. Although manipulating user frames offers great programming
flexibility, it is robot specific and goes beyond the scope of this text. Individual robot
programming manuals should be consulted for additional information.

Now that we have addressed robot programming methods, including teaching arm
positions, and user coordinate systems, we look, in depth, at robot programming
languages.

7.3 Robot Programming Languages
Robot programming languages communicate to a robot controller which actions it

needs to perform in order to execute a work cycle. The language chosen in each case
instructs the manipulation of the robot arm, handles sensory data, provides intelligence in
the form of logic decision-making, and processes data. There is no standard robot
programming language (as there is in the other programmable automation technologies
discussed in this text, namely CNC and PLC). Rather, most modern languages are
typically higher-level, structured languages designed to simplify the amount of data the
programmer must input. Higher-level languages have instructions that resemble standard
English. These languages are termed “structured” because the resulting programs have a
hierarchical flow structure with conditional branching and nested loops. In fact, some

Inclined Workpiece
and Corresponding
User Coordinate
System

Engraving Tool

ROBOT
z

y

x

z

302 Chapter 7

robot programming language developers worked from an existing higher-level structured
programming language, like BASIC or PASCAL, and added the robot arm control
instructions. So, familiarity with languages of this sort allows one to transition to
developing complex robot programs with relative ease.

As we have noted, languages are solely dependent on robot brand. Therefore, we
must select a particular brand of robot in order to demonstrate the development of a robot
program. We will use the Fanuc robot brand. Note, however, that its programming
concepts are readily transferable to other robot programming languages. The author views
Fanuc Robots as one of the robotics industry leaders. Fanuc has a large portion of the
industrial robot market and a strong presence in the United States. One may commonly
observe a bright yellow, hard-working Fanuc robot in action in a domestic manufacturing
facility!

Fanuc Robots utilize a proprietary programming language called KAREL, which was
developed from PASCAL. KAREL was named for the Czech writer Karel Capek, who
supposedly derived the word “robot” from the Czech noun robota for “labor” or “serf
labor”; see Chapter 1 and 6). (In fact, Capek himself credited his brother Josef for first
coining the word).

A portion of a robot program written in KAREL is shown in Figure 7-6. Text on the
right that is preceded by two hyphens (- -) are comments. Other comments appear
sporadically throughout a robot program. All programs should be heavily commented so
that future reviewers of the program may quickly understand the program. One can see
that the instructions are given in plain English. Even a quick glance of the program allows
a reader to quickly translate many of the instructions.

Figure 7-6 Karel program

This particular program was written for an A510 Fanuc Robot utilizing an RH
controller in a material handling application. Robot controller type is important to

Robot Programming 303

programming languages and techniques. The RH controller is a 1990s era robot controller.
Programming was performed through a computer terminal built into the control cabinet or
through a PC emulating a VT220 terminal connected to the controller with an RS-232
cable. A teach pendant manually controlled the robot and stored named arm positions used
by the program. The robot was completely offline during the program process. With the
purchase of additional software, one could develop the program offline and upload it to
the robot when needed. There are still many RH controllers in use and available on the
used robot market.

The newer generations of Fanuc robot controllers use, primarily, teach pendant
programming (TPP) methods. TPP is motion programming that uses a specialized
language to simplify robot programming for specific applications such as material
handling, arc welding, and painting, to name a few. TPP methods are essentially built on
top of KAREL to enable an end user lacking much expertise in robot language
programming to quickly and easily develop robot programs. TPP is available only with the
latest Fanuc controllers such as the RJ and R-30 series controllers. Note, however, that
KAREL is still widely available and often used because it is very versatile, able to handle
virtually any type of robot application. Figure 7-7 shows a program in the TPP language
for a Fanuc ArcMate arc welding robot with an RJ controller. This particular program
does not contain any arc welding instructions. It is just a simple routine to move the end
effector out of the way so that the welding fixture can be reloaded with a new part. The
truncation of the instructions as compared to the KAREL program of Figure 7-6 is to
simplify programming through the teach pendant.

304 Chapter 7

Since teach pendant programming languages are directed at specific applications, the
KAREL language will be used exclusively in this text, in an effort to provide a generalized
approach to robot programming. Note, however, that the methods and techniques
presented with KAREL are readily adaptable to Fanuc TPP and, for that matter, to any
high-level robot programming language.

7.4 Robot Program Development, Organization, and Structure
In this section we discuss developing a robot program for a particular application.

The applications will be simple but will highlight the most important aspects of robot
programming, including steps involved in developing the program, program organization,
typical motion instructions, and logic and communication instructions. This approach
should equip the reader with the knowledge necessary to attack much more difficult robot
applications.

There are four major program development stages:
1. Writing the program of instructions
2. Robot programming
3. Program testing
4. Release to production.

Figure 7-7 ArcTool program example

Robot Programming 305

The key aspect of stage 1, writing the program of instructions, is program planning; a
well-planned program dramatically shortens the time it takes to develop a program,
specifically in regards to program testing and modification. This saves precious
production time. Conversely, a poorly planned program may require much iteration before
it is successful, accruing substantial development costs due to lost production time and
extra wages. This stage yields a program of instructions written in the appropriate robot
language. Additionally, during this stage a simulation of the program should be
performed. Program simulation will be discussed in more detail in a subsequent section.

Stage two is physically entering the program into the robot controller. As already
discussed, programming is accomplished through either motion programming or robot
language programming. In either case, arm positions have to be taught and stored (Section
7.2.1) and the program directly entered into the controller through the teach pendant or
uploaded from a separate computer. Once the program is entered and stored in the
controller it can be tested and modified as necessary.

In stage 3 the program is tested initially by a manual stepping through of the program
line by line at very low speed. (All robots have the capability to verify a program by
executing it line by line or step by step, in “slow motion.”) This enables the programmer to
verify that the program was entered correctly and that it functions as intended. Next, the
program is run continuously at low speed. If it passes this test, additional runs will be
performed in which the speed is gradually increased until the program is running at
production speeds.

The decision to release the program to production (stage 4) depends on company
procedures, but it generally involves short production runs intended to verify program
integrity and functionality. The time needed to complete stages 3 and 4 is largely
dependent on how well the program was planned, which we now turn to.

7.4.1 Writing the Program of Instructions
Writing a program of instructions entails four simple steps:

1. Create a sketch or drawing of the application
2. Develop the process flow of the application
3. Translate the process flow into the robots programming language
4. Simulate the program.

When sketching or drawing the application, be sure to include the relative positions,
sizes, and locations of the application’s robot(s), processing equipment, tooling, and end
effectors. Note that multiple sketches may be required, each depicting the process at
various stages of the work cycle. An example application sketch is shown in Figure 7-8.

306 Chapter 7

Figure 7-8 Example application sketch

The figure shows a top view of an application in which a 4-axis Fanuc A-510 robot
unloads two different sizes of wood disks from a mold, places them on a staging plate,
picks them up again, machines the inside and outside diameters, and, finally, releases the
parts in a specific location for other processing. Note that the sketch represents the relative
location of the application equipment, namely, the press, staging plate, mold, robot, and
machining stations (router). Also, observe how each of the robot arm positions are
identified, including the mold locations (1A, 2A, 3A,…), the staging plate locations (1B,
2B, 3B,…), routing positions, home position, repair position, and a drop zone position.
From this sketch we proceed to the next step of program planning: developing the
program’s process flow.

Developing the program’s process flow may involve making a rough flow chart of
the robot’s role in the work cycle. From this rough flow chart one can further break down
or isolate the robot’s action into individual motion routines. This is demonstrated in Figure
7-9 for the application shown in Figure 7-8.

4510
Robot

Press

Mold Shuttle Plate

Staging Plate

Drop Zone

Routing Positions

Repair Position

Home Position

2A

3A

1A

4A

5A

2B

1B
3B4B

5B

Robot Programming 307

From this rough process flow the logic and motion sections of the program can be
identified. The next step is to actually translate the process flow into instructions the robot
can understand. This involves writing the program in the robot’s programming language.
To aid in this process a programming sheet can be used. Figure 7-10 shows a completed
program sheet for a Fanuc ArcMate teach pendant program.

Figure 7-9 Rough process flow chart

Start

Unlead Parts From
Mold & Place on

Staging Plate

Go To Home Position
and Wait For Mold

To Move in Position

Release Mold

Route ID and OD

Pick Parts Up From
Staging Plate

Release Part in
Drop Zone

All Parts
Routed?

Yes

Yes

No

NoIs Mold
in Position

308 Chapter 7

Figure 7-10 Completed program sheeti

Robot Programming 309

 The robot program should be organized as shown in Figure 7-11. In the main logic
section the robot communicates with the outside world. This section could also be called
the setup section because it sets up the robot program. In this section the robot’s outputs
will be set to inform peripheral equipment and the work cell controller (typically a PLC)
of the robot’s status. Additionally, in this section of the program the robot will check the
status of its inputs and determine the appropriate action. This decision-making ability is
also called program logic. This section of the program is essentially the jumping off point
for execution of robot motion routines.

Figure 7-11 Example program organization

In any application the robot is required to repeatedly perform a series of tasks. Each
task typically involves moving the robot arm. Arm motion instructions associated with a
given task are located in the motion routines sections of the program. These organize and
group arm motion instructions that are routinely repeated. Typically there are many arm
motion routines for each program. For the application of Figures 7-8 and 7-9, there would
be several motion routines for the first block of the flow chart alone. One motion routine
picks up the part at location 1A and moves it to position 1B. Another routine picks up the
part at location 2A and moves it to position 2B, and so on. There would be even more
routines for moving parts from the staging plate to the router and then to the drop zone
position. Organizing the program with motion routines simplifies writing, makes the
program easier to follow, and aids in debugging.

Program simulation, the last step of writing the program of instructions, is execution
on a graphical computer program that simulates the robot arm motions. Program
simulation can be used to verify program integrity, evaluate robot arm trajectories, and
check for potential interferences. Additionally, simulation can aid in developing motion
routines that identify the minimum number required stored positions. Program simulation
is discussed further in Section 7.6.

310 Chapter 7

7.4.1 Arm Motion and Motion Instructions
Arm motion is defined as physical arm movement from the time the robot arm starts

moving until the time it stops. As the arm moves, it forces the tool centerpoint to follow a
specific path that is called the trajectory. During arm motion the robot arm accelerates to a
specified speed, maintains that speed along the trajectory, then decelerates to stop at the
desired destination. To program arm motion one must specify:

• trajectory
• acceleration/deceleration
• speed
• termination.

In KAREL, this information is communicated to the robot with a combination of
system variable settings, motion instructions and taught positions. The number of motion
instructions and taught positions needed to program arm motion depends on the
complexity of the motion. Consider Figure 7-12.

Figure 7-12 Robot arm motion

A

B

C

(a)

(b)

(c)

Robot Programming 311

The figure shows a 6-axis robot in three different positions. Assume each position
represents a taught position. We will consider several different scenarios of arm motion
related to points A, B, and C. Initially, assume arm motion should start at position A and
finish at position B (Figure 7-13).

Figure 7-13 Robot arm motion from A to B

This motion consists of one motion interval. A motion interval is motion generated
by a single motion instruction. Position A is the start point of the motion interval and
position B is the termination point. Termination means that the motion instruction used to
generate the motion interval is complete and the robot motion controller can move to the
next instruction.

In KAREL, as with most languages, there are numerous program motion instructions,
depending on the type of motion desired. For this example, a suitable motion instruction
would be the MOVE TO instruction. This instruction initiates motion of the tool centerpoint
to a specified position. In the program the instruction it would appear as follows:

MOVE TO B
Note that this instruction only causes the execution of the motion interval. The details

of the motion’s termination, trajectory, speed, and acceleration/deceleration have yet to be
specified. First consider the motion interval’s termination. Most programming languages
allow for multiple types of termination: It could be specified such that the arm stops
precisely at the taught position, close to the taught position, or merely passes through the
taught position. Here, the motion interval is to terminate precisely at position B.

In the KAREL language, the termination type is specified by the system variable
$TERMTYPE. The possible values for $TERMTYPE are:

1. FINE
2. COARSE

B
A

Motion
Trajectory

312 Chapter 7

3. NOSETTLE
4. NODECEL
5. VARDECEL

FINE termination causes the robot to move to the taught position and stop before
beginning the next motion interval. Likewise, COARSE termination causes the robot to
move to a position and stop. The difference between the two is the tolerance applied on
each of the axis encoders that determine if a desired position has been reached. For FINE
the tolerance is small, causing the controller to achieve the taught position precisely.
COARSE termination has a larger tolerance, allowing the arm to just move close to the
taught position. NOSETTLE, NODECEL, and VARDECEL do not apply to this example
(they are defined in the next section).

In order to stop arm motion precisely at position B, the FINE termination type is
required. Thus, the program instructions would appear as follows:

$TERMTYPE = FINE
MOVE TO B

The type of interpolation method specified by the motion instruction will determine
the trajectory of the motion. The three standard interpolation methods are:

• joint interpolation
• linear interpolation
• circular interpolation

Joint interpolation requires each axis (or joint) start and stop at the same time. The
resulting trajectory of motion depends on the relative speed of each axis. Using the arm
speed specified by the programmer (the programmed speed), the robot’s motion controller
calculates the time each axis needs to move from a current position to its final position.
The longest time becomes the interval time. Accordingly, the other axes will move at
lesser speeds so that each axis stops moving at the exact same moment. This means the
trajectory is unpredictable—not a simple geometric shape. However, axes follow the same
trajectory each time the motion interval is executed. Joint interpolation is demonstrated in
Figure 7-14. The perspective is from above, looking down on the robot.

Robot Programming 313

Figure 7-14 Joint interpolation

Linear interpolation (Figure 7-15) dictates that tool centerpoint move in a straight
line from the initial to final position at the specified program speed. Additionally, the
orientation of the tool is changed continuously.

Figure 7-15 Linear interpolation

Circular interpolation forces the tool centerpoint to follow a circular arc trajectory
from starting to final position. However, this type of interpolation generally requires an
additional intermediate taught position. This is demonstrated in Figure 7-16. The arm does

B

A

B
A

314 Chapter 7

not stop at the intermediate position but passes through it. So, to define circular motion,
three taught positions are required.

Figure 7-16 Circular interpolation

If “motion segment” is defined as arm motion between two taught positions, then a
circular interpolation motion interval consists of two motion segments. Figure 7-17 shows
this graphically.

Figure 7-17 Circular interpolation with motion segments identified

B

Intermediate Taught
Position

A

B

Intermediate Taught
Position

Motion Segment Motion Segment

A

Robot Programming 315

In KAREL, interpolation type is specified by the $MOTYPE (motion type) system
variable. Accordingly, the three possible values of $MOTYPE are JOINT, LINEAR, and
CIRCULAR. For circular interpolation the intermediate position used to define the
circular arc must be specified in the program instructions. This is accomplished by adding
the VIA clause to the MOVE TO instruction. Assume for the motion interval shown in
Figure 7-11 that circular interpolation is desired. An intermediate position as shown in
Figure 7-15 is taught and stored as position I. The program instructions would then be
written as follows:

$MOTYPE = CIRCULAR
$TERMTYPE = FINE
MOVE TO B VIA I

During arm motion the robot accelerates the tool centerpoint up to the program speed,
maintains that speed, and then decelerates to stop motion at the termination position. This
is shown as a graph of the velocity profiles shown in Figure 7-18. A velocity profile is a
plot of the tool centerpoint velocity versus time. Two profiles are shown in the figure.
Note that the average translational speed (or velocity) is less than the program speed
because of arm acceleration and deceleration.

The Fanuc robot motion controller holds constant the time the arm is allowed to
accelerate or decelerate. As the programmed speed is increased the average acceleration
will increase. This makes the average acceleration value proportional to the programmed
speed. As the programmed speed increases so will the average acceleration/deceleration.
Again, this is demonstrated by the two velocity profiles. So, through arm speed, the
acceleration and deceleration are automatically determined.

Figure 7-18 Arm motion velocity profile

Velocity Profile 2

Velocity Profile 1

Average
Acceleration 2

Average
Acceleration 1

Velocity

Programmed
Speed 2

Programmed
Speed 1

Average
Deceleration 1

Constant
Deceleration

Time

Time

Average
Deceleration 2

Constant
Deceleration

Time

316 Chapter 7

KAREL uses the system variable $SPEED to control the translational speed of all
programmed motions. This value is expressed in mm/sec. Its maximum and minimum
values are dependent on the particular robot model used. If it is desirable to run the robot
at maximum speed during linear or circular interpolation then the $SPEED system
variable is set as follows:

$SPEED = $SPEEDLIM

If this setting is specified for joint interpolation, the controller will convert this value
to a fraction of the maximum joint speed: If maximum speed is desired with joint
interpolation, then it is necessary to set the $SPEED variable to $SPEEDLIMJNT.

For the example shown in Figure 7-17 maximum speed was assumed to be the
desired speed. Since circular interpolation is specified, the program instructions would be:

$SPEED = $SPEEDLIM
$MOTYPE = CIRCULAR
$TERMTYPE = FINE
MOVE TO B VIA I

The instructions for this motion interval example are now complete. The arm will
move with precision to position B in a circular arc defined by intermediate position I at
maximum translational speed. Since the arm stops at position B, the velocity profiles
would be similar to one of the plots of Figure 7-16. The motion interval, defined by the
single motion instruction MOVE TO B VIA C, terminates also. So, for this example both
arm motion and motion interval finish at the same time. This is not always the case:
sometimes the motion interval terminates while the robot arm continues to move. This
often occurs because arm motion is complicated, requiring numerous taught positions and
many motion segments. Additionally, it is usually not necessary or efficient to decelerate
the arm to a stop at each taught position along the trajectory, but rather to let the robot arm
continue to move as it passes near or through the taught positions. This scenario is called
multiple segment motion.

7.4.2 Multiple Segment Motion and Program Motion Routines
Consider Figure 7-19, a simple robotic material handling application. A robot is

tasked with moving a dowel pin from position A to position C, which represent taught
positions of the robot’s arm motion. The robot arm comes from some safe position, moves
above position A, then to A, grasps the pin with a gripper, lifts it from the hole, moves
over the obstacle to above C, slides the pin into the hole, opens the gripper to release the
dowel, and moves out of the way back to the safe position. This task can be programmed
in, essentially, three arm motions:

1. Moving the gripper into position to grasp the dowel pin.

Robot Programming 317

2. Extracting the pin from the hole, moving it over the obstacle, inserting it into the
other hole.

3. Moving the arm out of the way back to a safe position.

Because these three arm motions address a specific task and are likely to be repeated
often within the context of a larger program, the program instructions for these three
individual arm motions will be organized as a program motion routine (see end of this
section).

Figure 7-19 Multiple motion segment example

The second arm motion is the most complex because it involves actually performing
the work of moving the pin. The arm motion should be as smooth as possible from A to C.
Figure 7-20 shows the proposed path or trajectory of the dowel pin, along with additional
taught positions B, D, and E necessary to complete the arm motion.

Figure 7-20 Multiple motion segment pin positions

Obstacle

CA

C

E

A

D

B

318 Chapter 7

The movement of the pin from A to C represents one arm motion because the arm
starts moving at A and does not stop until it gets to C. There are four motion segments: A
to D, D to B, B to E, and E to C, as shown graphically in Figure 7-21. Motion segments 1
and 4 require linearly interpolated trajectories in order to pull the pin straight out of the
hole and push it straight into the second hole. Motion segments 2 and 3 can utilize joint
interpolation because the path does not require a specific geometric shape.

Figure 7-21 Motion segments and required interpolations

With multiple segment motion it is often not necessary for the robot arm either to
stop at or to pass through each taught position; it may only need to pass near the position.
KAREL utilizes termination type to control the arm’s proximity to the taught positions.
Consider Figure 7-22, which shows multiple segment motion from position A to B, then B
to C. The lines drawn between the positions represent arm trajectory for different
termination type. The KAREL instructions for this motion, without termination type
specified, is written as follows:

$TERMTYPE = ?????
MOVE TO B
MOVE TO C

The motion controller processes motion instructions (or, more descriptively, motion
intervals) sequentially. For the code above, it will not process the move to C until it
completes or terminates the instruction to move to B. With FINE termination, the motion
instruction is not terminated until the arm is essentially at the taught position. So, the arm
will decelerate fully and slow to a stop as it reaches taught position B and then will
immediately accelerate again as the move to C is processed. To the casual observer the

CA

E

B

D

Motion Segment 4
- Linear Interpolation

Motion Segment 1
- Linear Interpolation

Motion Segment 3
- Joint Interpolation Motion Segment 2

- Joint Interpolation

Robot Programming 319

motion would appear somewhat jerky. COARSE termination yields a similar result
without settling exactly on taught position B. NOSETTLE, NODECEL, and VARDEL
termination types provide smoother motion segments.

NOSETTLE and NODECEL terminations enable the arm to keep moving without
stopping at the taught position. With NOSETTLE the arm decelerates, but does not stop
before starting the next motion interval. With NODECEL, on the other hand, the arm does
not even decelerate as it passes near the taught position. VARDECEL allows the user to
set the amount of rounding with another system variable called $DECELTOL. A value of
1 for $DECELTOL will yield rounding equivalent to NODECEL and a value of 99 yields
rounding equivalent to NOSETTLE.

Figure 7-22 Effect of termination type on trajectory

For the motion shown in Figure 7-21, the termination for positions D, B, E, and C
need to be specified. Consider motion segment 1. Since the pin should be pulled straight
up with linear interpolation, the arm must achieve position D precisely. Consequently,
FINE termination will be used for taught position D. For the next motion segment it is not
necessary to pass through position B. However, it is important that the obstacle be cleared.
Assuming that just passing near position B in Figure 7-21 would allow the pin to clear the
obstacle, a NOSETTLE termination command would suffice. The next position, E,
requires FINE termination to ensure the pin be located directly above the second hole.
Finally, position C will require FINE termination as well. Since FINE termination will
appear most often as the termination type, the $TERMTYPE system variable will be used
to specify this type of termination as the default termination type. Following this same

Fine

C

B
A

Coarse

Nodecel

Nosettle

320 Chapter 7

logic, the default motion type will be specified as JOINT with the $MOTYPE system
variable. The NOSETTLE termination type and the LINEAR motion type will then be
specified using the WITH clause when needed. The WITH clause is used in a move
statement to specify temporary values for system variables. Accordingly the KAREL
instruction for this motion would appear as follows:

$SPEED = $SPEEDLIM
$MOTYPE = JOINT
$TERMTYPE = FINE
WITH $MOTYPE = LINEAR MOVE TO D
WITH $TERMTYPE = NOSETTLE MOVE TO B
MOVE TO E
WITH $MOTYPE = LINEAR MOVE TO C

The resulting motion trajectory is shown in Figure 7-23.

Figure 7-23 Pin trajectory

Note how the NOSETTLE termination setting for position B causes the trajectory to
only move near to B. This completes one arm motion of the motion routine.

The other two arm motions necessary to complete this motion routine include moving
the gripper into position to grasp the pin and moving the gripper out of the way after the
pin has been moved to position C. These two motions are shown together in Figure 7-22.
Whenever it approaches or leaves a desired position the end effector must not collide with

CA

E

B

D

Robot Programming 321

any obstacles, including the part to be manipulated. For this reason, the gripper in Figure
7-24 approaches the pin from above to ensure the gripper fingers do not collide with the
pin. This can be programmed by taught positions, such as position D, or by a different type
of motion instruction. The latter will be used to program the approach trajectory and
departure trajectory.

Figure 7-24 Gripper approach and departure

Consider Figure 7-25. The figure shows the gripper above the pin (Figure 7-25(a))
and then just prior to grasping the pin (Figure 7-25(b)). Assume it is known, as shown in
the figure, that the gripper must be approximately 75 mm above the pin to avoid striking it
as it approaches.

CA

E

B

D

Approach
Trajectory

Departure
Trajectory

Safe Position
(SF)

Robot Gripper

322 Chapter 7

Figure 7-25 Gripper approach

Because this scenario is so common in robot programming, many languages provide
a specific instruction to minimize the need to teach additional positions. These can be
termed approach instructions because they deal with the approach to a desired position. In
KAREL the approach instruction is MOVE NEAR, which causes the tool centerpoint to
approach a desired position by an offset distance. The offset distance is along the negative
z-axis of the stored position. If the distance is specified as a positive value, the offset will
be in the negative z-direction. A negative distance, conversely, will cause the offset to
occur in the positive z-direction. Thus, for the example in Figure 7-25(a), the approach
instruction would appear as follows:

A
75 mm

A

(b)

(a)

Safe Position
(SF)

z

y
x

Robot Programming 323

MOVE NEAR A BY -75

It is very important one know the orientation of the coordinate system used to store
the designated position. A wrong sign for the direction may result in the gripper crashing
into the part. Recall from Section 7.2.2 that Fanuc stores positions relative to the user
frame (UFRAME) coordinate system. So, the programmer has to know the correct
orientation of the z-axis of the destination position when using the MOVE NEAR
instruction. The Fanuc documentation gives additional information on user frames.

The instructions that allow the arm to approach and grasp the pin are shown below:

$SPEED = $SPEEDLIM
$MOTYPE = JOINT
$TERMTYPE = FINE
MOVE NEAR A BY -75
DELAY 500
WITH $MOTYPE = LINEAR MOVE TO A
DELAY 500
CLOSE HAND 1
DELAY 500

Observe the addition of some new commands. The DELAY command causes the
program to pause for a specified number of milliseconds. In this example, the program
delays for 500 milliseconds. When high accuracy is required, a slight delay between arm
motions and gripper activation is usually desired. Accordingly, the CLOSE HAND 1
instruction is sandwiched between two DELAY statements. The CLOSE HAND 1
instruction causes the gripper to close and grasp the pin. The numeral 1 is needed in the
instruction because robots can have more than one gripper attached at the same time.

The last arm motion to program is that for moving the gripper back to the safe
position once the pin is moved to position C. The trajectory for this motion is shown in
Figure 7-26. Figure 7-26(a) shows the gripper and pin position immediately following
placement of the pin in position C. Figure 7-26(b) shows the arm trajectory after the pin
has been released. Position B pulls the gripper in that direction.

324 Chapter 7

Figure 7-26 Gripper departure trajectory

Using the same concept as in the approach trajectory, only in reverse order, the arm
motion instructions are as follows:

$SPEED = $SPEEDLIM
$MOTYPE = JOINT
$TERMTYPE = FINE

C

(b)

B Departure
Trajectory

Safe Position
(SF)

C

(a)

z

y
x

Robot Programming 325

OPEN HAND 1
DELAY 500
WITH $MOTYPE = LINEAR MOVE NEAR C BY -75
DELAY 500
WITH $TERMTYPE = NOSETTLE MOVE TO B
MOVE TO SF

The OPEN HAND 1 command causes the gripper to open. The MOVE NEAR
statement is used because, even though the gripper is already at position C, the MOVE
NEAR instruction will cause the gripper to move above C again. The NOSETTLE
termination type pulls the gripper near B without actually passing through it.

The three individual arm motions of the preceding example can now be organized
into a single motion routine, as illustrated in Figure 7-27.

Figure 7-27 Motion routine for three arm motions

An important point: A robot must be in the same state at beginning and end of a
motion routine. The arm must return to the start position and the gripper to the beginning

C

B
Arm Motion 3
- Departure

Arm Motion 2
- Moving Pin

Arm Motion 1
- Approach

Safe Position
(SF)

A

ED

326 Chapter 7

state (open or closed) of the routine. In fact, this starting position will be the same for all
motion routines within the program. That is why the starting position is called the safe
position: from this position it is safe to start and execute any motion routine. This is also
called the perch position because in it the robot is similar to a bird perched in a tree,
waiting to take off and execute a motion routine. The safe position should be an optimal
position that minimizes the distance the robot arm must travel for each routine.

In order to minimize the number of instructions within the motion routine and to
organize the routine in a standard logical manner, the format shown in Figure 7-28 is
recommended.

Figure 7-28 Motion routine organization

 The motion setup section will contain the instructions that set up or prepare the arm
for motion. These instructions typically contain the default values for speed, acceleration/
deceleration, trajectory interpolation method, and termination. The next group of
instructions provides actual arm motion commands. A motion routine concludes with
some type of return instruction. Recall that the motion routine is called from the main
logic section of the program, thus, controller focus must return to the main logic section.
These instructions are logic instructions and will be addressed in more detail in the next
section.

Using this format the motion routine instructions for the example shown in Figure 7-
27 are organized as in Figure 7-29. Note that lowercase phrases preceded by a hyphen (-)
are program comments. A well-commented program aids debugging.

Motion Setup
Instructions

Arm Motion
Instructions

Return
Instructions

Robot Programming 327

Figure 7-29 Motion routine instructions

Review the organization of the motion routine. The default speed, motion type and
termination type are listed in the setup section. Each arm motion discussed previously is
listed in the arm motion section. Note that a DELAY instruction was added after the
instruction to move the pin to position E, to allow the arm to settle before pressing the pin
in the hole. The routine concludes with a GO TO instruction. The GO TO instruction
causes the program focus to move to a portion of the program labeled MAIN. Program
focus refers to the part of the program code executed by the processor: The processor
encounters a GOTO statement, jumps to a different part of the program, and executes the
code located in that portion of the program. The processor thus shifts the program focus.
This instruction, along with other logic instructions, will be discussed in the next section.

7.4.3 Communication and Logic Instructions
Modern industrial robots can acquire knowledge from the surrounding environment

through electronic inputs. The robot program processes this information and directs the
robot to act accordingly. The ability to acquire and apply knowledge toward a purposeful

Motion Setup

Section

Arm Motion

Section

Return

Section

– Setup section

$SPEED $SPEEDLIM

$MOTYPE = JOINT

$TERMTYPE = FINE

– Approach and Grasp Pin

MOVE NEAR A BY -75

DELAY 500

WITH $MOTYPE = LINEAR MOVE TO A

DELAY 500

CLOSE HAND 1

DELAY 500

– Move Pin to C

WITH $MOTYPE = LINEAR MOVE TO D

WITH $STERMTYPE - NOSETTLE MOVE TO B

MOVE TO E

DELAY 500

WITH $MOTYPE = LINEAR MOVE TO C

– Release Pin and go to Safe Position

OPEN HAND 1

DELAY 500

WITH $MOTYPE - LINEAR MOVE NEAR C BY -75

DELAY 500

WITH $TERMTYPE = NOSETTLE MOVE TO B

MOVE TO SF

– Return to Main Logic Section of the Program

GO TO MAIN

328 Chapter 7

goal is commonly known as intelligence. Thus, one can say a robot’s intelligence is based
on its ability to communicate (acquire information) and make logical decisions (apply
knowledge). Accordingly, understanding how to gather information and make decisions
within the context of the robot program is vitally important.

Communication instructions enable the robot to gather information by checking the
status of equipment and sensors electronically connected to it. These electrical
connections are called inputs. Additionally, the robot communicates its state or status to its
surroundings through similar electronic connections called outputs. Communication
instructions provide the interface between this input/output (I/O) system and the robot
program. Based on the status of the inputs, the robot program will make decisions
according to the program logic. Logic instructions establish the decision-making protocol
of the program. The result of the decisions may be to execute a motion routine, turn on a
light on the operator panel, request input from the operator through the teach pendant, or
bring about any number of actions.

To see how communication instructions are used with the robot’s I/O system and
process sensors in robotic applications, consider Figure 7-30. This figure shows a robotic
application in which a robot is used to move and load a part onto a turntable of a
processing station. A sensor on the conveyor is activated or turned on when a part is in
position, ready to be moved to the processing station. Another sensor is activated when the
turntable is in position to be loaded.

Sensors measure process variables that provide information about the state of the
robot’s surroundings. They are electrical devices that are physically connected to the
inputs of the robot. The simplest type of sensor is the switch. Switches measure discrete
process variables. A discrete process variable has one of two values: on or off. There are
numerous types of switches available, including pushbuttons, toggle switches, and limit
switches. The two switches in Figure 7-30 are limit switches. (For a more detailed
discussion of switches, discrete process control, and process variables refer to Chapter 8.)

As seen at the bottom of Figure 7-30, the robot controller enclosure houses input and
output modules. For more detail the basic appearance of one module input module and one
output module are shown in a larger size. Note how the part in the position sensor and the
turntable in the position sensor are wired into the input module. Also, note the two lights
to the left of the controller enclosure. These lights are to inform the operator of the status
of the robot. They are outputs.

The application workflow is as follows. A part comes down the conveyor and is
moved into the pickup position. This activates (turns ON) the part in position sensor.
When the turntable in position sensor is also activated, the robot executes a motion routine
to move the part to the turntable. Assume that the motion routine developed in the last
section was developed for this application. While the robot is executing the motion
routine, it will turn ON the robot busy light and turn OFF the robot ready light. When the
motion routine is complete, the robot will turn OFF the robot busy light and turn ON the
robot ready light.

Robot Programming 329

Figure 7-30 Robot application example

Communication instructions enable one to control the I/O system of the robot. There
are two major categories of inputs and outputs available with any robot: peripheral
devices and end effector tooling.

The peripheral devices shown in Figure 7-30 include the part in position sensor, the
turntable in position sensor, the robot ready light and the robot busy light. These devices
will be hardwired by the end user into the I/O modules as is shown in the figure. The end
user defines peripheral I/O as is required by the application. Thus, in KAREL this
category is referred to as user-defined I/O signals.

Fanuc’s KAREL language accesses input signals with the communication instruction
DIN[n], where n is the signal number. This sort of instruction is called a proram logic
instruction. Assume for the application shown in Figure 7-30 that the part in position
sensor is connected to input terminal 1 and the turntable in position sensor is wired to

Part in Position
Sensor

Conveyor

Robot Turntable
Turntable in

Position Sensor

Part

Processing Station

Input
Module

Robot
Busy
Light

Robot
Ready
Light

Robot
Controller

Output
Module

330 Chapter 7

input terminal 5. Note that the program language treats I/O data as either ON or TRUE,
which means the switch is active or ON; or as OFF or FALSE, meaning the switch is
inactive or OFF. When the part-in-position switch detects a part, it is made active and
DIN[1] = ON. Correspondingly, if DIN[5] = ON, then the turntable is in position.

KAREL assigns output values to the output terminals using the DOUT[n] instruction,
where n is the signal number. Assume the robot ready light is wired to output terminal 1
and the robot busy light is wired to output terminal 3 for the application shown in Figure
7-30. Thus, to turn the robot ready light ON and the robot busy light OFF the following
communication instructions would be issued:

DOUT[1] = ON
DOUT[3] = OFF

Recall in the last section the use of the OPEN HAND 1 and CLOSE HAND 1 in the
KAREL motion routine for moving the pin. These instructions are communication
instructions for the end effector tooling. Because robots are so often used in material
handling applications, most—if not all—robot programming languages have dedicated
end effector or gripper instructions. The end effector is typically electronically connected
to the robot controller through the EE (end effector) cable. This cable passes through the
robot arm, terminating near the end effector. This enables a short wiring distance from the
end effector to the EE cable connection (Figure 7-31).

Figure 7-31 End effector electrical connection

In the case of an air actuated end effector, an air control valve would be connected to
the EE cable. Compressed air, piped through the robot arm (in similar fashion as the EE
cable) would also be connected to the valve and the end effector. The OPEN HAND or
CLOSE HAND signal would activate the valve allowing compressed air to pass and
thereby actuate the end effector.

Some end effectors, such as welding guns, engravers, and spindles may require
additional outputs in order to operate. Additionally, some may have sensors attached that
are important to program logic. Examples include gripper status (opened or closed) or

End Effector
Control Cable

EE Cable
Connector

Robot Programming 331

sensing, if a part is in the gripper. Accordingly, the EE cable is often a multiple pin
connector capable of providing numerous input/output signals. In KAREL this I/O is
called robot digital input and output signals. KAREL communication instructions for
robot digital I/O are RDI[n] and RDO[n], respectively. These instructions function the
same as the user-defined I/O signals discussed previously.

Some robot languages give the programmer access to operator panel I/O signals and/
or teach pendant I/O signals. These signals enable the operator to interface with the
program during program execution. This I/O is evaluated and manipulated much the same
way that user-defined and robot-defined I/O signals are evaluated and manipulated.
Specific programming language manuals provide additional information.

As has been mentioned, communication instructions gather knowledge and logic
instructions apply that knowledge to a purposeful end. The next several paragraphs
address how this is accomplished within the context of a robot program.

Recall from the section on robot motion routines how robot program instructions are
normally executed sequentially line by line from top to bottom. When one instruction
terminates or finishes, the controller executes the next instruction. When decision-making
is involved instructions cannot be executed sequentially. Depending on the decision, the
robot controller may need to move or jump to instructions elsewhere within the program.
Accordingly, logic instructions provide a means to make decisions, jump to specific
instructions (like motion routines), and repeat instructions until a condition is met (a
process called looping, which we will return to).

The typical logic decision-making instruction is the IF statement. An IF statement
evaluates a Boolean expression's truth value (i.e., if it is true or false). (A Boolean
expression evaluates the status of a variable; for example, DIN[1] = ON.) If the expression
is true the controller will execute one sequence of instructions; if it is false an alternative
sequence of instructions will be executed. In KAREL, the IF statement has the format:

IF (Boolean expression)
THEN (true statement)
ELSE (false statement)
ENDIF

Meaning, in standard English,

If the Boolean expression is true, then execute the true statement;
if it is false, then execute the false statement.

Following the execution of either the true statement or the false statement, the
controller will then execute the next instruction following the ENDIF. If ELSE is not used
in the IF statement format, and the Boolean expression is false, the controller will execute
the next instruction following the ENDIF.

332 Chapter 7

For example, the following KAREL Boolean expression would be used to determine
whether the digital input signal 1 is true, or ON:

DIN[1] = ON
The equal sign is called the Boolean operator. Other operators include greater than

(>), less than (<), and not equal (<>). Two or more variables can be evaluated within a
single Boolean expression by placing AND between the variables, as we will soon
demonstrate.

True and false statements can either be executable KAREL instructions or a multiple
instruction sequence. Often the true or false statements are jump instructions: They cause
the controller to move, or “jump out of,” the IF statement to another section of the
program. They can be used anywhere in the program, not just in an IF statement.

In KAREL, the jump instruction is the GO TO instruction. The format is:
GO TO (statement label)

 A statement label is a special identifier that designates the place in the program
where program control is transferred. Statement labels should be descriptive in nature.
Additionally, the controller identifies a label by two colons (::), which must immediately
follow the instruction. Figure 7-32 shows an example KAREL program using
communication instructions, an IF statement, and GO TO instructions identifying two
different statement labels.

Figure 7-32 Example KAREL program using IF and GO TO instructions

Note the location of the statement labels MAIN and UNLOAD in the above figure,
and that the two colons are absent when the label is listed in the GO TO instruction. The
arrows show where program control is transferred when the GO TO instructions are

MAIN: – Main Logic Section

– Set Outputs

DOUT[3] = OFF

DOUT[4] = ON

IF DIN[1] = ON THEN GO TO UNLOAD

ENDIF

. – Additional Program Instructions

.

.

.
GO TO MAIN

UNLOAD

. – Unloading Motion Routine Instructions

.

.

.
GO TO MAIN

Robot Programming 333

executed. The DOUT instructions set the devices wired to output terminal 3 and 4—OFF
and ON, respectively. The IF statement checks if the digital input signal 1 is ON. If it is,
program control is transferred to the UNLOAD motion routine. If it is not ON, additional
program instructions are executed and eventually program control is transferred back to
MAIN to repeat the main logic section. Note that after completion of the UNLOAD
motion routine program, control is transferred back to MAIN.

The last type of program logic instruction that will be discussed in this text is the
repetitive or looping instruction. Looping instructions cause the controller to repeat one or
more program instruction either a specified number of times or until some condition is
met. There are numerous ways to perform looping within a program, including through the
use of GO TO and IF statements. However, when it is desirable to repeat a set of
instructions a certain number of times in a KAREL program, the FOR instruction
simplifies the programming. The FOR instruction provides looping based on an integer
counter. The format of the FOR instruction is:

FOR count = initial TO final DO
(statements)
ENDFOR

Count is an integer variable that the program increments. “Initial” precedes the start
value of count and “final” is the maximum value of count. Statements are program
instructions that are repeated until the count equals “final.” Figure 7-33 demonstrates how
to use a FOR instruction to repeat a motion routine five times.

Figure 7-33 FOR looping instruction example

The FOR instruction sets the value of I to 1, then executes the motion instructions.
When program focus gets to the ENDFOR, it is returned to the beginning of the FOR
instruction. I is then incremented by 1. This continues until I attains the value of 6, which
causes the program focus to jump to the first instruction following the ENDFOR.

Note that even though the communication and logic instructions discussed here are
specific to Fanuc’ s KAREL language, all intelligent robots with a higher-level structured

FOR I = 1 TO 5 DO

. – Motion Instructions

.

. I = 1 I = 2 I = 3 I = 4 I = 5 I = 6

.
ENDFOR

. – More Instructions

.

.

334 Chapter 7

robot programming language containing similar if not identical instructions. The formats
may be different, but the function is the same. Consider Figure 7-34a. This is a robot
program for a Mitsubishi RV-E2 6-axis robot. Even though the formats for the instructions
are vastly different than those of KAREL, their function is the same as that of KAREL.

Figure 7-34a Mitsubishi RV-E2 robot program

In the OB –1 instruction on line 40, the “OB” stands for output bit in the Mitsubishi
robot programming language (called “movemaster”). The “1” indicates the output (bit)
number and the hyphen (-) indicates that it is to be turned OFF. The equivalent instruction
in KAREL would be:

DOUT[1] = OFF

Instead of label statements that designate the location to which a program should
jump, the Mitsubishi language uses line numbers. Line 90 in the figure is essentially an IF
statement. It checks whether input 7 is ON. If it is ON, the program focus jumps to line
330. Lines 150 and 160 are GO TO instructions. The reader is encouraged to attempt to
rewrite this program in KAREL.

35 SP 25, H

40 OB –1

50 OB –2

60 OB –3

70 TI 10

80 OB –4

90 TBD +7, 330

95 TI 10

100 TBD +6, 350

105 TI 10

110 TBD +0, 250

115 TI 10

120 TBD +2, 270

130 TBD +1, 290

140 TBD +3, 310

145 TI 5

150 GT 2000

160 GT 35

Program Line
Numbers

Time Delay

Sets Arm Speed and
Acceleration to High

And IF Statement Checking to See Input 7
is ON (+). If it is the Program Jumps to
Line 330 Which Unloads a Pallet.

GO TO Instructions Causing Programs
Focus to be Moved to Line 200 and 35
Respectively.

: Check for Unload Pallet Signal

: Check for Load Pallet Signal

: Check for Load Mill Signal

: Check for Load Laser Signal
: Check for Unload Mill Signal
: Check for Unload Laser Signal

: Go to Movement Routine

Turns Outputs 1
Through 4 OFF

Next Page

Robot Programming 335

Armed with knowledge of motion, communication, and logic instructions one is
prepared to program moderately complex robot applications. In the next section the
program of instructions for the application shown in Figure 7-30 is written.

7.5 Writing Robot Program of Instructions
In this section the program of instructions for the application introduced in Figures 7-

0 and 7-30 will be written. Recall from Section 7.4 that program of instruction writing is
the first of four major program development stages. All stages are important, of course,
but the first is critical because a correct and well-written program of instructions can
dramatically reduce time and effort spent on the other stages.

The first step of writing program of instructions is to create a sketch or drawing of the
application. This is shown in Figure 7-34b. The sketch represents the relative location of
the application equipment, namely the conveyor, part, robot, and processing station. Each
of the robot arm positions (A, D, B, E, C, and SF) is identified; the relative position and
labels are the same as those in the motion routine developed in Section 7.4.2. Since most
material handling application motions are very similar (for example, pick a part up from
one location and move it to another), the reader will find many uses for the routine
developed in this previous section.

Figure 7-34b Mitsubishi RV-E2 robot

Part in Position
Sensor (DIN[1])

Conveyor

Robot

Turntable
Turntable in
Position Sensor
(DIN[5})

C

E

B

Part

Safe Position
(SF)

D

A

Robot Busy
Light

(DOUT[3])

Robot Ready
Light

(DOUT[1])

Processing Station

Previous Page

336 Chapter 7

Identify the inputs and outputs in a sketch of the application. Referring to Figure 7-30
and using the same assumptions given in Section 7.4.3, the two inputs, part-in-position
and turntable-in-position sensors, are assumed to be wired into input terminals 1 and 5,
respectively. In KAREL they are identified as DIN[1] and DIN[5], respectively.
Correspondingly, the robot ready light is labeled DOUT[1] and the robot busy light is
labeled as DOUT[3].

The next step is to develop the process flow. The robot will execute a motion routine
to pick up the part and move it to the turntable when both part-in-position sensor and
turntable-in-position sensor are activated. When the robot is executing this motion routine,
the robot ready light will be off and the robot busy light will be on. At all other times the
robot ready light will be on and the robot busy light will be off. A flow chart of the process
flow is shown in Figure 7-36.

The first few steps involve setting the robot’s status. The robot ready light is turned
on and the robot busy light is turned off. Next the status of the part in position sensor is
checked. If it is off the program loops back and resets the outputs and checks again. This
loop continues until the part-in-position sensor detects a part. When a part is in part-in-
position, the turntable-in-position sensor is then checked. If it is not in position, the
program loops back through setting the output and checking the other input again. Finally,
when both the part-in-position and turntable-in-position sensors are both activated, the
robot’s status is set to “busy” and the “move part to turntable” motion routine is executed.
Once the robot has moved the part to the turntable, the program focus returns from the
motion routine and the program loops back to the beginning. The flow chart for the motion
routine is shown in Figure 7-35. The trajectories for each arm motion were shown
previously in Figure 7-27.

Figure 7-35 Motion routine flow chart

Motion Setup
Instructions

Arm Motion
Instructions

Return
Instructions

Robot Programming 337

Figure 7-36 Process flow chart

Following the robot program organization convention of Section 7.4 and as
demonstrated in Figure 7-11, one recognizes that the flow chart of Figure 7-35 obviously
shows the motion routine and Figure 7-36 represents the main logic section of the program

Turn ON Robot
Ready Light

Start

Turn OFF Robot
Busy Light

Turn OFF Robot
Ready Light

Turn ON Robot
Busy Light

Execute Move Part
to Turntable Motion

Routine

No

Is Turntable
in Position
Sensor ON

No

Yes

Yes

Yes

Is Part in
Position Sensor

ON

338 Chapter 7

 The next step in writing the program of instructions is to translate the process flow
into the robot’s programming language. A program sheet developed for the robot used in
the application is a good aid for this activity. The robot for this application is a Fanuc 6-
axis robot using an RH controller and KAREL programming language. Figure 7-37 shows
a blank program sheet for this application.

Figure 7-37 Blank programming sheet

Note that on the left side of the program sheet there is a column for writing out the
process flow in standard English. The process flow chart serves as a guide for this activity.
However, the process flow written on this sheet will typically have much more detail and
many more steps than the typical process flow chart. The next several columns are for
translating the process flow into robot instructions. The first column after the line numbers
is for logic and communication instructions. The next five columns are used to develop
motion instructions. These columns list the pertinent data necessary to specify a motion
instruction (motion type, termination type, speed, position, and instruction). The far right
column is a culmination of all the program instructions written in the other columns. The
complete program instructions or code appears in this column in the precisely the format
that will be entered into the robot controller. This sheet should be filled out top to bottom
and left to right.

Sheet 1 of the completed program sheet is shown in Figure 7-38. On it is listed the
logic portion of the program. Sheet 2, shown in Figure 7-39, shows the motion routine. In
Figure 7-38, observe the symbol “==>” in the logic and communication instruction
column when a motion instruction is required. This directs the reader’s attention to the
motion instruction columns. Also, recall that two dashes (--) indicate comments in a

Program Name:

Programmer:

Process Flow/Work Cycle
Description

Line
#

Motion
Type

Term.
Type

Speed Position Complete Program Code

KAREL RH Controller Program Sheet

Instruction

Date:Motion Instructions

Sheet No.:

Logic & Communication
Instructions

Robot Programming 339

KAREL program. A well-commented program is easier to follow and will aid with future
troubleshooting and debugging.

Figure 7-38 Sheet 1 of completed program sheet

Program Name: 1

Programmer:

Process Flow/Work Cycle
Description

Line
#

Motion
Type

Term.
Type

Speed Position

Specify program name 1

Program Comments 2

I/O Comments 3

" 4

" 5

" 6

" 7

Declare variables including
positions

8

" 9

" 10

" 11

" 12

" 13

" 14

Start program 15

Set default motion type 16 JOINT

Set default termination type 17 FINE

Set default speed to maximum 18 $SPEEDLIM
Extablish main logic section and

label
19

Turn robot ready light ON 20

Turn robot busy light OFF 21
Check status of part in position

sensor
22

If off, loop back to MAIN:: 23

End the If statement 24

IF ON, check turntable in
position sensor

25

If off, loop back to MAIN:: 26

End the If statement 27

If it is ON, go to Motion Routine 28

KAREL RH Controller Program Sheet

Instruction

Program 1

DEK Date:Motion Instructions

Sheet No.:

Logic & Communication
Instructions

MAIN::

DOUT[1] = ON

DOUT[3] = OFF

IF DIN[1] = OFF THEN

GO TO MAIN::

GO TO MOVE::

ENDIF

D: POSITION

E: POSITION

BEGIN

==>

==>

==>

SF: POSITION

A: POSITION

B: POSITION

C: POSITION

--DIN[5] - turntable in
position sensor

--DOUT[1] - robot ready
light

--DOUT[3] - robot busy
light

VAR

PROGRAM PROG1

-- This program moves a
part from a conveyor to

-- I/O Definition

--DIN[1] - part in position
sensor

DOUT[3] = OFF

E: POSITION

BEGIN

$SPEED=$SPEEDLIM

MAIN::

DOUT[1] = ON

$TERMTYPE=JOINT

$MOTYPE=JOINT

D: POSITION

--DOUT[3] - robot busy light

VAR

SF: POSITION

A: POSITION

B: POSITION

C: POSITION

--DOUT[1] - robot ready light

Complete Program Code

-- This program moves a part from a
conveyor to processing station

-- I/O Definition

PROGRAM PROG1

--DIN[1] - part in position sensor

--DIN[5] - turntable in position sensor

IF DIN[1] = OFF THEN

GO TO MAIN:: GO TO MAIN::

GO TO MAIN::

ENDIF ENDIF

GO TO MOVE::

ENDIF

IF DIN[5] = OFF THEN IF DIN[5] = OFF THEN

340 Chapter 7

Figure 7-39 Sheet 2 of completed program sheet

P
ro

g
ra

m
 N

am
e:

2

P
ro

g
ra

m
m

er
:

P
ro

ce
ss

 F
lo

w
/W

o
rk

 C
yc

le
D

es
cr

ip
ti

o
n

L
in

e
#

M
o

ti
o

n

T
yp

e
T

er
m

. T
yp

e
S

p
ee

d
P

o
si

ti
o

n

L
ab

el
 m

ot
io

n
ro

ut
in

e
29

C
om

m
en

t
30

M
ov

e
ne

ar
 p

os
it

io
n

A
 b

y
-7

5
31

Jo
in

t
Fi

ne
-

A

D
el

ay
 h

al
f

a
se

co
nd

32

M
ov

e
to

 g
ra

sp
 p

in
33

L
in

ea
r

Fi
ne

A

D
el

ay
 h

al
f

a
se

co
nd

34

C
lo

se
 th

e
gr

ip
pe

r
35

D
el

ay
 h

al
f

a
se

co
nd

36

Pe
rf

or
m

 a
rm

 m
ot

io
n

2
37

Pu
ll

 p
ar

t o
ut

38
L

in
ea

r
Fi

ne
D

M
ov

e
ne

ar
 B

 w
it

ho
ut

 s
to

pp
in

g
39

Jo
in

t
N

os
et

tl
e

B

M
ov

e
to

 E
40

Jo
in

t
Fi

ne
E

D
el

ay
 h

al
f

a
se

co
nd

41

P
ut

 p
ar

t i
n

tu
rn

ta
bl

e
42

L
in

ea
r

Fi
ne

C

R
el

ea
se

 p
ar

t a
nd

 g
o

to
 s

af
e

po
si

ti
on

43

D
el

ay
 h

al
f

a
se

co
nd

44

M
ov

e
ne

ar
 p

os
it

io
n

C
 b

y
-7

5
45

L
in

ea
r

Fi
ne

-
C

D
el

ay
 h

al
f

a
se

co
nd

46

M
ov

e
ne

ar
 B

 w
it

ho
ut

 s
to

pp
in

g
47

Jo
in

t
N

O
SE

T
T

L
E

B

M
ov

e
to

 th
e

sa
fe

 p
os

it
io

n
48

Jo
in

t
Fi

ne
S

F

C
om

m
en

t
49

G
o

to
 m

ai
n

50

E
nd

 th
e

pr
og

ra
m

51

G
O

 T
O

 M
A

IN
::

M
O

V
E

N
E

A
R

M
O

V
E

T
O

M
O

V
E

T
O

M
O

V
E

T
O

M
O

V
E

N
E

A
R

M
O

V
E

T
O

M
O

V
E

T
O

M
O

V
E

T

O

D
E

L
A

Y
 5

00C
o

m
p

le
te

 P
ro

g
ra

m
 C

o
d

e

M
O

V
E

T
O

--
 A

pp
ro

ac
h

an
d

gr
as

p
pi

n

M
O

V
E

 N
E

A
R

 A
 B

Y
 -

75

M
O

V
E

::

D
E

L
A

Y
 5

00

W
IT

H
 $

M
O

T
Y

PE
 =

 L
IN

E
A

R
 M

O
V

E
 T

O
 A

D
E

L
A

Y
 5

00

C
L

O
SE

 H
A

N
D

 1

D
E

L
A

Y
 5

00

--
 M

ov
e

pa
rt

 to
 C

W
IT

H
 $

M
O

T
Y

PE
 =

 L
IN

E
A

R
 M

O
V

E
 T

O
 D

W
IT

H
 $

T
E

R
M

T
Y

PE
 =

 N
O

SE
T

T
L

E
 M

O
V

E

T
O

 B

M
O

V
E

 T
O

 E

--
R

et
ur

n
to

 M
ai

n:
:

E
N

D
 P

R
O

G
1

W
IT

H
 $

M
O

T
Y

PE
 =

 L
IN

E
A

R
 M

O
V

E
 T

O
 C

O
PE

N
 H

A
N

D
 1

D
E

L
A

Y
 5

00

W
IT

H
 $

T
E

R
M

T
Y

PE
 =

 N
O

SE
T

T
L

E
 M

O
V

E

T
O

 B

M
O

V
E

 T
O

 S
F

W
IT

H
 $

M
O

T
Y

PE
 =

 L
IN

E
A

R
 M

O
V

E

N
E

A
R

 C
 B

Y
 -

75

D
E

L
A

Y
 5

00

M
O

V
E

::

--
 A

pp
ro

ac
h

an
d

gr
as

p
pi

n

=
=

>

D
E

L
A

Y
 5

00

=
=

>

D
E

L
A

Y
 5

00

C
L

O
SE

 H
A

N
D

 1

D
E

L
A

Y
 5

00

--
 M

ov
e

pa
rt

 to
 C

=
=

>

=
=

>

=
=

>

D
E

L
A

Y
 5

00

=
=

>

O
PE

N
 H

A
N

D
 1

D
E

L
A

Y
 5

00

=
=

>

D
E

L
A

Y
 5

00

=
=

>

=
=

>

--
R

et
ur

n
to

 M
ai

n:
:

E
N

D
 P

R
O

G
1

G
O

 T
O

 M
A

IN
::

K
A

R
E

L
 R

H
 C

o
n

tr
o

lle
r

P
ro

g
ra

m
 S

h
ee

t

In
st

ru
ct

io
n

P
ro

gr
am

 1

D
E

K
D

at
e:

M
o

ti
o

n
 In

st
ru

ct
io

n
s

S
h

ee
t

N
o

.:

L
o

g
ic

 &
 C

o
m

m
u

n
ic

at
io

n

In
st

ru
ct

io
n

s

Robot Programming 341

There are several logic and communication instructions in Figure 7-38 that have not
been discussed thus far. Each of these instructions is required in KAREL programs. In line
1 the PROGRAM instruction specifies the name of the program as PROG1. Lines 8
though 14 represent the variable declaration portion of the program. KAREL requires that
all variables, including positions, be declared at the beginning of the program. The VAR
instruction denotes the beginning of variable declaration. The variable name and type are
separated by a colon. Accordingly, each position used in the program is listed with the
type set as POSITION. Other types of variables include INTEGER and REAL for integer
and real number variables, respectively. Line 15 contains the BEGIN instruction. This
instruction denotes the beginning of the actual program code. Line 51 shown in Figure 7-
39 is also required in a KAREL program. The END instruction informs the robot
controller that it has reached the end of the program.

Figure 7-40 shows the completed program with each program section identified.
Although, different robot languages may have unique requirements, the general
organization convention shown in the figure should be followed. The first part of the
program should be heavily commented to describe the program, identify important
variables, and indicate the inputs and outputs. The next section, if required, should be used
for declaring variables. This is followed by the main logic portion of the program and then
the subsequent motion routines.

Recall from Section 7.4 that the last step of writing the program of instructions is to
simulate the program, which we next address.

342 Chapter 7

Figure 7-40 Completed program

Robot Programming 343

7.6 Robot Simulation
Robot simulation involves simulating the robot program and the program of

instructions in the virtual world of a computer graphics program. Program simulation is
typically accomplished by modeling the robot, tooling, and peripheral equipment in the
software and then executing the program of instructions for the application. The result is
an animation of the robot arm executing the program of instructions. The simulation
provides a means to test, simulate, and verify program logic and arm motions prior to
running the robot program on the actual robot. The animation gives visual confirmation
that the program is performing as intended, so when the program is finally sent to the
machine to be run, the programmer will have a high degree of confidence in the outcome.
Simulations are also beneficial for interference detection, arm motion planning, and
trajectory generation. Additionally, if a robot must be purchased for a new application, the
user can first easily run simulations of several different robots to determine the one that
best satisfies the application requirements.

For the beginning robot programmer, robot simulation software is an invaluable tool.
It enables the student to see, firsthand, how the robot arm will move in response to the
program of instructions. As it true for all simulation programs, robot simulation helps the
user to more deeply understand both arm motion instructions and programming process.
Additionally, simulations are performed in the safety of the virtual world, so when
program errors occur, which inevitably happens with beginning programmers, risks to the
student, tools, and machine are eliminated.

There are numerous robot simulation software packages available for purchase. Most
major robot manufacturers have developed and marketed simulation software for their
particular robots. In most situations the level of software sophistication is directly
proportional to the required investment. In this section we introduce the reader to an
inexpensive simulation program capable of simulating most types of robots. It is called

RobotAssistTM, published by New River Kinematics. RobotAssistTM is capable of
simulating robot configuration that the user builds and models. It is supplied with a library
of over 50 robot models. A screen shot of the software with a robot from the library is
shown in Figure 7-41. Because the publishers consider the software educational, they
make it available to students for a very low price. At time of publication, the cost of

RobotAssistTM to students was under $20. For non-students, a single user license was
available for only $69.95. For its low price and high capability, this software offers
excellent quality.

344 Chapter 7

Figure 7-41 RobotAssistTM screen shot

RobotAssistTM is available for download from the New River Kinematics at
www.kinematics.com/products/educational/robotassist/. The system requirements listed
for best performance are:

Windows 95®, 98®, ME®, NT®, 2000® or XP® operating system
Intel Pentium® microprocessor
32 megabytes of system RAM
40 megabytes hard drive storage space
1024 x 768 video driver with 64K color depth (4 meg VRAM preferred).

RobotAssistTM installation includes a comprehensive electronic user manual file.
The reader is strongly encouraged to review this information in detail. In the next several
sections we only highlight some key aspects of this software’s powerful capabilities,
including installation, the basics of the user interface, building a custom robot, and
simulating simple robot programs. For more detailed information the reader is encouraged
to consult the user manual.

7.6.1 RobotAssistTM Installation
Using a web browser, go to New River Kinematics website (www.kinematics.com/

products/educational/robotassist/) and purchase and download an individual student license.

Robot Programming 345

Locate and execute the robotassist_install.exe file. This starts RobotAssistTM setup
(Figure 7-42). This first screen shows the License Agreement. Review the license
agreement and select the appropriate button.

Figure 7-42 RobotAssistTM License Agreement screen

The next screen is the Choose Destination Location (Figure 7-43). The default
location is C:\Program Files\New River Kinematics\RobotAssist. Click Next when
ready to continue; cancel to terminate setup.

Figure 7-43 Destination location screen

The program will begin installing. When installation is complete the screen will
appear as shown in Figure 7-44. Select the desired options and click the close button.

346 Chapter 7

Figure 7-44 Installation Finished screen

7.6.2 User Interface

When RobotAssistTM is started the screen will momentarily appear as is shown in

Figure 7.45. After approximately three seconds the RobotAssistTM logo, or splash, in the
center of the screen will disappear and the user interface will look as is shown in Figure 7-
46.

Figure 7-45 Startup interface

Robot Programming 347

Figure 7-46 RobotAssistTM user interface at startup

The user interface consists of three main areas: A pulldown menu for selecting
commands, a toolbar containing icons of commands, and the graphics area where robot
models will be displayed. Many of the icons on the toolbar are grayed out and thus
inactive because no robot file is open.

Select a robot file to open from the pulldown menu. This causes the Open dialog box
to appear as shown in Figure 7-47. The Sample Files directory is the collection of sample
robot files supplied with the program. In a standard installation the directory is located at
C:/Program Files/New River Kinematics/RobotAssist/Sample Files. Additionally, this
directory serves as the default directory for newly created robot models. Select the
FANUC1.ROB as shown in the figure and click the Open button. The screen now appears
as is shown in Figure 7-48.

348 Chapter 7

Figure 7-47 Open dialog box

The object on the left is the 5-axis Fanuc 1 robot. Also shown is a conveyor with four
parts sitting on it. The software lets the user model peripheral equipment, tooling, and
parts for any given application. Opening the robot file activates the toolbar icons and also
adds additional pulldown menus. The File pulldown provides a means for manipulating
robot files. The Edit pulldown menu can be used to copy robot states and images to the

clipboard and start the creation of animation files. Additionally, the RobotAssistTM

System Options dialog box (called User options in the pulldown) is accessed through this
menu. As would be expected, the View pulldown provides options for manipulating the
view of the graphics area. The Object, New, and Group pulldown menus allow modeling
of robots and other objects. Control is for exercising manual control of the robot and
executing programs. The Kinematics pulldown is for setting the parameters for the robot’s
configuration.

The toolbar contains icons that serve as shortcuts to the more commonly used
commands. To determine what each icon does, simply place the cursor over an icon;
within a second the name of the icon will appear. For instance, to change to a front view,
simply select the Front icon as shown in Figure 7-49.

Robot Programming 349

Figure 7-48 FANUC1.ROB robot file

Figure 7-49 Front view

To create a custom view, select Point of View from the View pulldown. This opens
the Point of View dialog box as shown in Figure 7-50. From this dialog you can
manipulate the view by selecting the appropriate button manipulator, as shown in the

350 Chapter 7

figure. To close the Point of View dialog box click the X in upper right corner of the
dialog box.

RobotAssistTM also has three options for shading objects, including wireframe, flat
shading, and advanced shading. Advanced shading gives the smoothest and most realistic
appearance. These options can be accessed through the View pulldown menu or via icons
on the toolbar.

Figure 7-50 Point of View dialog box

Manual manipulation of the robot model is accomplished through a teach pendant
interface much the same way as it is with a real robot. To access the teach pendant for the
model simply select Teach Pendant from the Control pulldown menu. This causes the
Pendant dialog box to open (Figure 7-51). The top select box of the pendant is for
selecting the appropriate jog coordinate system: joint, world, or tool. The default jog
coordinate system is joint. It is listed as Joints (1−6) in the select box pulldown list. When
this coordinate system is selected, each joint of the robot model can be moved
individually. World causes the robot to move in the x-, y-, or z- axes of the world
coordinate system located at the robot’s base. Tool causes the robot to move relative to the
coordinate system of the tool. The appearance of the teach pendant in each of these cases
is shown in Figure 7-52. Once the jog coordinate system is selected the user can jog the
robot by selecting the appropriate button manipulator. The robot model will move
accordingly. The reader is encouraged to experiment with the teach pendant control to

Robot Programming 351

gain a thorough understanding of jogging coordinate systems. Additionally, it may be
beneficial to load other robot files and experiment with other types of robot
configurations. The user manual gives additional information on the user interface and

general operation of the RobotAssistTM.

Figure 7-51 Pendant dialog box)

Figure 7-52 Pendant jogging coordinate systems

352 Chapter 7

7.6.3 Building a Custom Robot

RobotAssistTM comes with over 50 standard robot models. However, if a robot of

interest is not included, RobotAssistTM provides the capability to build a custom or user-
defined robot. This will be demonstrated in the building of a robot model of the Fanuc
A510 robot. The completed robot model with an attached gripper is shown in Figure 7-53.
This model was built in essentially four steps, given below.

Figure 7-53 Fanuc A510 robot model

The first step in creating a custom robot model is to gather information about the
robot. For instance, the modeler needs to know the number of robot joints, type of joints,
and link lengths. This information can easily be obtained from the manufacturer’s
specifications for the robot to be modeled. For example, the Fanuc A-510 robot is a 4-axis
robot with three rotational joints and one linear joint. The joints along with the relative
link lengths are shown in Figure 7-54.

Robot Programming 353

Figure 7-54 Fanuc A510 joints and link lengths

The next step in modeling the robot is to use the Robot Generator in RobotAssistTM

to construct a skeletal starting model that contains the correct number of links and joints.
Prior to accessing the Robot Generator be sure to close any open robot files. Next, select
the “create a new robot” file by selecting New from the file pulldown menu and then
select Robot when prompted. The Robot Generator is accessed from the file pulldown
menu. This opens the Robot Generator dialog box (Figure 7-55). Set the Total Number
of DOF to 4 and Length of Typical Link to 400, as shown in the figure, and click OK.
The skeletal serial linkage along with the default Denavit−Hartenberg parameters are

354 Chapter 7

shown in Figure 7-56. Obviously, the skeletal linkage does not resemble, in the least, the
finished robot model shown in Figure 7-53. The following steps, beginning with the
editing of the Denavit−Hartenberg parameters, enable the modeler to change the skeletal
linkage to match the desired linkage configuration.

Figure 7-55 Robot Generator dialog box

Editing the parameters listed in the Denavit-Hartenberg Parameters dialog box
alters the skeletal model’s configuration. The parameters are based on the standard
Denavit−Hartenberg notation, which uses only two values to describe the link and two
values to describe the joint between adjacent links. Links are rigid members between
joints. Each link is associated with the joint at the end of the link. The naming convention

for links and joints in RobotAssistTM is shown in Figure 7-57. Note that link 1 is
considered the base of the robot.

Robot Programming 355

Figure 7-56 Skeletal linkage and Denavit-Hartenberg dialog box

Figure 7-57 RobotAssistTM link and joint naming convention

356 Chapter 7

The Denavit−Hartenberg parameters enable the development of a transformation
matrix such that any point on any of the links defined by the local link coordinate system
can be mapped to the world coordinate system. In this way the position and orientation of

the robot’s links and joints, called a pose, can be evaluated. Note that RobotAssistTM

documentation refers to coordinate systems as coordinate frames.
Links are defined by length (a) and twist angle (alpha) depicted graphically in Figure

7-58. Link length (a) is the distance between the two joint axes measured along a line that
is normal (i.e., perpendicular) to both joint axes. This normal line between both joint axes
is called the common normal. The twist angle (alpha) is the angle between the first and
second joint axis when viewed along the common normal. See figure 7-58 again to see this
for a single link between two joints. For this example a = 10 and alpha = −45 deg. Also,
note that in some industrial robot configurations both the link length (a) and twist angle
(alpha) can be zero.

Figure 7-58 Defining a and alpha for a single link

Consider Figure 7-59. Joints are described in terms of offset (d) and joint angle
(theta). Offset (d) is the distance between the common normal line between joint axes of
one link and the common normal line between joint axes of the next link measured along
the axis of the joint connecting the two links. Joint angle (theta) is the angle between the
common normal of one link and the common normal of the next measured about the joint
connecting the two links. Note that the joint angle (theta) will change as the robot changes
positions, whereas the other parameters will stay fixed once set in the dialog box. This
figure shows two arbitrarily named links, Link X and Link Y. Note that Link X has a
nonstandard shape. Verify that the offset (d) and joint angle (theta) are dimensioned
correctly in figure.

a

alpha

Joint Axis for
This Link

Intersection of
common normal
and Joint Axis

Common Normal -
Perpendicular Line
Between Joint Axes

Joint Axis of
Prior Links
Joint

Line Parallel to the Axis of the
First Joint Passing through the
Intersection of Common Normal
Line and Joint Axis for this Link

a = 10
alpha = - 45 deg.

Robot Programming 357

Figure 7-59 Defining d and theta for Link X

To determine the Denavit−Hartenberg parameters for the A510 robot refer to Figure
7-54 and prior definitions for link length (d), twist angle (alpha), offset (d), and joint angle
(theta). Accordingly, edit the parameters as shown in Figure 7-60. To edit a parameter
select the link number in the dialog box and enter the correct values in the boxes at the
bottom of the dialog box. Be sure to select the appropriate joint type in the bottom right of
the box. Note that Revolute indicates a rotating joint and Prismatic is a linear joint.

Notice the appearance of the skeletal model after editing the Denavit−Hartenberg
parameters. Even with a great imagination it may be difficult to correlate the skeletal
model to the actual A510 robot configuration. However, keep in mind that the dark slender
cylinders (which are blue on the computer screen) protruding from the side of the joints
represent the common normal of the link, not the actual link! Thus, the key to seeing the
skeletal model as the actual robot is to try ignoring the blue cylinders and to overlay the
actual shapes of the links over the skeletal model. This is shown in Figure 7-61, which is a
wireframe view of the finished robot. As one gains experience with the software, this
visualization becomes much easier.

Link 1
Common
Normal

Joint Axis of
Prior Links
Joint

Link X

Link Y Axis of Link X’s
Joint

Axis of Link Y’s
Joint

dx thetax

ax

ax = 10

alphax = 0

dx = 5

thetax = 25 deg.

358 Chapter 7

Figure 7-60 Denavit−Hartenberg parameters for a Fanuc A510 robot

Figure 7-61 Wireframe view of finished robot showing joints and common normals for

Fanuc A510 robot model

Robot Programming 359

The last step in modeling a robot is to create or import the robot structure. This will

give the robot a more realistic appearance. RobotAssistTM provides a means to create
realistic models of the robot’s links, called objects. Objects are made by creating and
combining primitives, user-defined extrusions, and user-defined rotations. Also, one can
create custom objects by importing either stl or iges files exported from commercially
available solid modeling software such as AutoCAD, SolidWorks, or Pro/Engineer.
Whichever method is used one must understand the concept of grouping to create realistic
robot models.

Grouping in RobotAssistTM enables the user to associate an object with other objects.
The first object created in the group is called the parent object. Other objects grouped to
parent objects are called child objects. Child objects are always positioned relative to and
move with the parent object. For our robot model, the joint object (the red cylinder) is the
parent object of each link group. The common normal object (the blue slender cylinder) is
a child of the group. Thus, in order for robot link objects to move realistically, they must
be grouped to the appropriate link. This is demonstrated below.

Within RobotAssistTM, double click on the first joint and select cylinder from the
pulldown menu, as shown in Figure 7-62. Double clicking on the joint causes it to change
color to black. Also, this action defines the joint as the parent of the new object created
and adds the new object to its group. Thus, when this joint moves the new object will
move with it.

Figure 7-62 Creating a new object that is grouped to the first joint

360 Chapter 7

Clicking on cylinder from the New pulldown menu causes the cylinder dialog box to
open. From within this dialog the size and number of facets for the new object can be
specified. See that the higher the number of facets, the smoother the object’s appearance
when shaded. Clicking on the Transform button opens the cylinder position dialog box.
This dialog box specifies the location of the new object’s coordinate frame relative to the
parent object’s coordinate frame. Clicking on the Material button opens the Material
dialog box, from which one can specify the color of the new object (Figure 7-63).

Figure 7-63 Cylinder, Cylinder Position, and Material dialog boxes

The reader is encouraged to experiment with creating objects, linking them to
different groups, and observing how they move when the robot joints move. Once created,
the objects can be modified from the Object pulldown menu. Simply double click on the
object to be edited and select modify from the Object pulldown menu. The contents of

this menu are shown in Figure 7-64. Refer to the RobotAssistTM user manual for
additional information on editing objects.

Robot Programming 361

Figure 7-64 Cylinder, cylinder position, and material dialog boxes

Since most engineers and technologists are already proficient with one of the many
commercially available solid modeling programs, it is typically easier and faster to use

that software to model the link geometry and then import the models into RobotAssistTM.
This is the method the author used to model the A510 robot. The link geometry was
modeled using Pro/Engineer, exported from Pro/Engineer as an ASCII stl file and then

imported into RobotAssistTM as a user-defined custom object. This was accomplished by
selection of User Defined from the New pulldown menu and then clicking on Custom,
as shown in Figure 7-65. This action opened the Custom dialog box (Figure 7-66). From
this dialog the type of file to import was selected. The author used the stl file type and
made sure to double click the parent of the import object prior to selecting Custom from
the pulldown menu. Once imported, the object was repositioned to the correct orientation

using the Transform button. See RobotAssistTM’s user manual for additional information.

362 Chapter 7

Figure 7-65 Importing stl files

The above method allows that the robot’s link geometry and gripper can be imported
to give a very realistic model, as is seen in Figure 7-54. Other objects also can be modeled,
including conveyors, parts, and other machines. If new objects are going to be immobile,
that is to say, not move as the robot moves, then they should be grouped to the world
coordinate system. To accomplish this, we do not double click on any objects prior to
creating the new object. Once the model and all peripheral equipment are created, robot
motion can be simulated.

Robot Programming 363

 Figure 7-66 Importing link geometry from stl files

7.6.4 Simulating Robot Motion

RobotAssistTM provides realistic simulation of industrial robots. A robot model can
be jogged into position using the teach pendant just like a real robot. Similarly robot
positions and orientations can be stored. The robot can then be driven to these positions at

a later time. Refer to RobotAssistTM’s user manual for additional information.
The robot model can also be programmed to simulate motion using one of two

methods. The first method is a form of motion programming using the Sequence Control
dialog box. This method is very similar to Fanuc’s teach pendant programming. Points are
stored and motion instructions are entered as the robot is jogged through the steps of the
work cycle. The second method is called Control Programming. It is robot language

programming method using RobotAssistTM’s control language. It is simple to use and is
effective in creating realistic animations of robot arm motions. Each method is discussed
below.

364 Chapter 7

To access the Sequence Control dialog box, select Sequence from the Control
pulldown menu as is shown in Figure 7-67. This opens the Sequence Control dialog box.
When using this method also open the Teach Pendant dialog box from the Control
pulldown menu. This enables the user to jog the robot through the work cycle steps.
Rearrange each dialog box such that they do not overlap and the robot model is visible, as
shown in Figure 7-68.

Figure 7-67 Opening the Sequence dialog box

Robot Programming 365

Figure 7-68 Creating a motion program dialog box

To create a motion program, select the New from the Sequence Control dialog box.
This clears any other programs. To enter a program step, perform the following:

Jog the robot to the desired location using the Teach Pendant.

Click on the Insert After button to insert a sequence step. The first step will be
labeled Step #0.

Select the appropriate command from the Motion Command select box.
Click on Update Using Current Values button to store the current robot position
Repeat.

These steps are also shown in Figure 7-69. When the program is complete, select the
Run button to execute the program animation. The program can then be saved by clicking
on the Save button. Accordingly, previously created programs can be loaded by using the
Load button.

366 Chapter 7

Figure 7-69 Steps to create a motion program

RobotAssistTM can create complex animations with its control language. As
mentioned, this method is analogous to using a robot programming language on a real
robot. First the robot is jogged to the desired location and orientation and that position, or

state, as it is referred to in RobotAssistTM, is identified and stored. These states then get
pasted into the control program. After all the states are stored, a control program written

using RobotAssistTM’s control language can be created. The control program is written
using a standard text editor. Each state is added to the beginning of the control program.
Once all the states for the program are stored, the program is written. The control language
commands then reference these states while specifying the appropriate arm motion. For a

complete command reference, refer to RobotAssistTM’s user manual.

7.7 Robot Program Simulation Example
In this section the program developed in Section 7.5 and shown in Figure 7-40 will be

simulated using RobotAssistTM simulation software. Although RobotAssistTM’s program-
ming language has logic and communication commands, robot programmers are typically

Robot Programming 367

most interested in simulating motion routines. So, only the motion routine of the program
will be simulated.

The first step in simulating the program is to model the necessary application
components. In this case, the application uses a Fanuc S12 robot, which conveniently is

included in RobotAssistTM’s library of robot models. Thus, a robot model does not need to
be created. However, the gripper, conveyor, obstacle, and turntable will be modeled. The
completed model is shown in Figure 7-70.

Figure 7-70 Model of robot application

 Once the model is complete, the control program can be written. Open a text editor

such as Microsoft NotepadTM and position the window next to the RobotAssistTM window
as shown in Figure 7-71. Any standard text editor can be used to create a control program.

368 Chapter 7

Figure 7-71 RobotAssistTM and a text editor

Next the robot is jogged into position using the teach pendant. To save the position
(state) of the robot, select Copy State to Clipboard as shown in Figure 7-72. This opens
the Copy State to Clipboard dialog box. Name the state in the box provided and hit OK.
Use the naming convention used in the actual program that is being simulated.
Accordingly, the first position is the safe position (SF). Next, paste the contents of the
clipboard into the text editor. The naming of the state and pasting it into the text editor is
shown in Figure 7-73. Continue this process until all the states are copied and pasted into
the text editor.

Figure 7-72 Saving the robot state

The next step is to write the motion routine using RobotAssistTM’s control language.
Although there is an extensive list of commands, most simulations can be written using
only two motion commands, warp and interp. The warp command moves the robot arm
directly to a state without animation. Interp moves the arm to a state by interpolating the

Robot Programming 369

motion in a specified series of steps, which provides smooth animation for the best
simulation experience. Thus, warp is only used to move the arm rapidly to the start
position, followed by interp for the animation. Treat interp as if it were a MOVE TO
instruction in the KAREL language. A portion of the resulting motion control program is
shown in Figure 7-74. A complete listing of the available commands is found in the user
manual.

Figure 7-73 Naming the robot state and pasting it into the text editor

Figure 7-74 Portion of RobotAssitTM control program

370 Chapter 7

In the format of the interp command, the command name is followed by the state
name to which it will move, and then by the number of interpolation steps it will take to
get there. States AA and AboveC are positions not included in the KAREL program. They

are necessary here, however, because RobotAssistTM does not have an equivalent
command for KAREL’s MOVE NEAR instruction. Also, some program logic is applied.
At the start of the program, a label is used called main. The jump command at the end of
the program causes the program to jump back to main and start over. When this program is
simulated it will run continuously until the user aborts it. A complete listing of the

available RobotAssistTM commands is given in the user manual.
When the control program is complete, save it, adding the .prg file extension to the

end of the name as you do. Also, if you are using Notepad, set Save as type to All Files
and the Encoding to ANSI as shown in Figure 7-75.

Figure 7-75 Saving the program

To run the program, select Execute Control Program from the Control pulldown
menu or select the Run Program icon, as shown in Figure 7-76. This will cause the
Control Program Observer dialog box to open, which enables the user to pause, resume,
or abort the control program. The reader is encouraged to write a control program using

one the standard robot models included with RobotAssistTM. Additionally, experiment
with different interpolation steps to adjust the smoothness of the animation.

Robot Programming 371

This example shows just some of the capabilities of RobotAssistTM. Refer to the user
manual for additional information. This program and others like it can be a great help to
the new programmer as he or she acquires the capability to program and operate industrial
robots.

7.8 Summary
A robot program consists of logic instructions that specify when actions are to occur,

named locations of where the robot arm is to move, motion instructions to specify how the
arm is to move, and I/O instructions to provide communication with peripheral equipment.

A robot program is a set of program language instructions that specify a robot’s end
effector path, makes logic decisions, and executes peripheral actions that are necessary to
support a work cycle. The end effector’s path is specified with a combination of stored
robot arm positions and program motion instructions. The stored positions are locations in
space that the end effector must achieve or pass near in order to execute the work cycle.
Motion instructions dictate the stored position the arm is to move to and the trajectory of
the path to reach it. I/O instructions provide a means to communicate with peripheral
equipment. Logic instructions specify when work cycle actions are to occur.

Robot programming occurs when the robot program is entered into the robot
controller’s memory. This is accomplished in one of two ways. Motion programming
involves moving the robot arm through the work cycle, storing arm positions and entering
instructions for each step of the cycle. In this method the robot is dedicated to the
programming task. Robot language programming, on the other hand, separates the
programming of the motion, logic, and I/O instructions from the teaching of the robot arm
positions. The only time the robot is unavailable is when positions are being taught.
Development of the actual program is performed offline away from the robot.

Robot positions are taught by jogging the robot to the desired position with a teach
pendant and then storing the robot’s joint positions to the robot controller. The three
jogging coordinate systems used to aid the programmer in orienting the robot arm in the
correct position include the joint, world, and tool coordinate systems.

There is no standard robot programming language. Each language is unique to the
robot brand under consideration. However, programming concepts are generally
transferable across robot platforms. Most languages are typically higher-level structured
languages designed to simplify the amount of data that the programmer needs to input.
The Fanuc brand of robots utilizes the KAREL programming language.

A robot program should be organized to have a main logic section wherein the robot
communicates with the outside world and makes logic decisions. This serves as the
jumping off point to the motion routines, which define where and how the robot arm will
move. Each motion routine may consist of several arm motions.

The required information that arm motion instruction must specify includes the
trajectory, acceleration/deceleration, speed, and termination. The trajectory of the motion

372 Chapter 7

is determined by the interpolation method specified. The three standard interpolation
methods are joint, linear, and circular.

Communication instructions enable the robot to gather information about its
environment by checking the status of equipment and sensors electronically connected to
it. Based on the status of the inputs to the controller, the robot program will make
decisions according to the decision-making protocol established by logic instructions.

Once the robot program of instructions is written it can be simulated in the virtual
world of a computer graphics program prior to loading it on the actual robot. Program
simulation is accomplished by modeling the robot, tooling, and peripheral equipment in
simulation software and then executing the program of instructions. This creates an
animation of the arm motion. Simulation provides a means to test, simulate, and verify
program logic and arm motions prior to running the program on the actual robot.

7.9 Key Words

7.10 Review Questions
 1. Define a robot program.
 2. How is a robot end effector’s path programmed?
 3. Discuss the role of logic instructions in a robot program.
 4. Explain the difference between motion programming and robot language

programming.

arm motions
circular interpolation
communication instructions
input and output instructions
joint coordinate system
joint interpolation
jump instructions
KAREL
linear interpolation
logic instructions
looping instructions
manual leadthrough
motion instructions
motion interval
motion programming
motion routines

multiple segment motion
powered leadthrough
robot arm positions
robot language programming
robot program
robot programming
robot simulation

RobotAssistTM

teach pendant
teach pendant programming
termination
tool coordinate system
trajectory
user coordinate system
velocity profile
world coordinate system

Robot Programming 373

 5. What is the role of the teach pendant in teaching robot arm positions?
 6. Explain the difference between the joint coordinate system and the tool

coordinate system with respect to jogging a robot’s end effector into position.
 7. Explain how a user coordinate system is used in robot programming.
 8. What is the name of the programming language used by the Fanuc brand of

robots?
 9. Define teach pendant programming.
10. Name the four major program development stages.
11. List and explain the four steps for writing a program of instructions.
12. Define termination in terms of a motion interval.
13. List and explain the three standard interpolation methods.
14. Define a robot’s perch position.
15. List and discuss four types of motion instruction termination possible in the

KAREL language.
16. Which KAREL motion instruction cases the tool centerpoint to approach a

desired position by an offset distance?
17. What is the KAREL instruction to close the robot gripper?
18. What is the KAREL instruction to turn on a digital output?
19. Write the program of instructions in the KAREL language to have a Fanuc S12 6-

axis robot pick up a pen from a pen holder and write your initials to fit in a 10-inch
wide by 5-inch high box. Have the robot return the pen to the pen holder when
complete.

20. Using RobotAssistTM, simulate the program written in review question 20.

7.11 Bibliography
1. Groover, M.P. 2001, Automation, Production Systems and Computer-Integrated

Man-ufacturing, 2nd edition, Prentice Hall, Upper Saddle River, New Jersey.
2. Rehg, J.A. 2003, Introduction to Robotics in CIM Systems, 5th edition Prentice-

Hall, Upper Saddle River, New Jersey.
3. KAREL Reference Manual, Version 3.06P, 3.06PA, 3.06 PB, MARSKKREF072

04E, 1992,FANUC Robotics North America, Inc.

4. Robot AssistTM User’s Manual, 2002, New River Kinematics, Inc., Pulaski,
Virginia.

375

Chapter 8
Introduction to Programmable Logic Controllers (PLCs)

Contents
 8.1 Programmable Logic Control Overview

 8.2 Industrial Process Control

 8.3 PLC Terminology

 8.4 PLC Hardware Components

 8.5 PLC Applications

 8.6 Sensors and Actuators

 8.7 Implementing Automation with PLCs

 8.8 Summary

 8.9 Key Words

8.10 Review Questions

8.11 References

Objective
The objective of this chapter is to provide a thorough explanation of the terminology and
basic operating concepts of programmable logic control (PLC) technology.

376 Chapter 8

8.1 Programmable Logic Control Overview
In discrete manual manufacturing processes the operator typically (1) does the

material handling of a workpiece, (2) processes it using tools and/or machines, and (3)
makes decisions regarding when each task will be performed. In Figure 8-0 a human
operator is is shown carrying out a hole-punching process using a piercing die with the aid
of a manually actuated press. The operator picks up a workpiece from the raw material
bin, accurately positions the workpiece in the die, and actuates the press with a foot
switch. After the workpiece is pierced, the operator removes it from the die, inspects it,
and places it in either the finished goods or scrap bin. These steps are repeated until the
raw material bin is empty. So, the operator handles material, moves it, processes it, and
perhaps most important, makes decisions for controlling the process (e.g., when to pick up
the workpiece and place it in the press, when to actuate the press, and when to place the
workpiece in the finished goods or scrap bins).

Figure 8-0 Manual piercing die process

Now, let us consider what would be involved in the automation of this process.
Automation of the same process shown in Figure 8-0 would require some form of material
handling equipment, which would move the workpiece from the raw material bin to the
press, then from the press to the finished goods or scrap bin—an ideal application for a
robot. The press and piercing die already perform the processing step effectively, when so
instructed by the operator (the foot switch). The challenge lies in the programming of the
automated decision-making and/or process control: The robot must be told when to load the
press, when to unload the press, when to place the workpiece in the finished goods bin, and
so on. Additionally, the press needs to be actuated when a part is correctly positioned in the
die. The standard device used in industry to provide this type of control over processes is

Piercing
Die

Raw
Material

Bin

Foot
Switch

Finished
Goods

Scoop

Operator

Punch Press

Introduction to Programmable Logic Controllers (PLCs) 377

called a programmable logic controller, more commonly known as a PLC, which is the
same acronym for programmable logic control. PLC technology imparts automatic control
over tasks or events through the use of electrical and computer technology. A PLC device is
essentially a standardized computer system specifically designed to interface with industrial
components and equipment. PLCs are made to be rugged withstand harsh industrial
environments. A standard industrial PLC is shown in Figure 8-1.

In order for a PLC to control the process depicted in Figure 8-0, for example, it would
have to collect information from the process and implement decisions based on this
information by interfacing with the process through sensors and actuators. Figure 8-2
shows how a controller, such as a PLC, interfaces with a process. Sensors collect
information from the process, and actuators execute decisions by acting on the process.

Figure 8-2 PLC–process interface

Figure 8-1 Picture of a PLC

 Actuators:

Motors

Solenoids

Control Valves

Sensors:

Push
 Buttons

Limit
Switch

Process
Variables

Process

Parameters

Process

Controller
Outputs Inputs

378 Chapter 8

As an example, consider what occurs when an operator places a workpiece in a
piercing die. The operator senses, through vision, that the part is located correctly in the
die, then presses the foot switch to execute the piercing operation; that is, the operator’s
eyes are the sensors and the footswitch is the actuator. So, for every instance in which a
human operator would collect data from a process, a PLC needs a sensor, and, when an
operator acts on the process, a PLC actuator is needed.

One possible way to automate our example is shown in Figure 8-3. The sensors in
this type of application are simply electrical switches; the actuators, robot, and press, are
by electrical switches or signals.

Figure 8-3 Sensors and actuators integrated into Figure 8-0

The PLC makes its decisions based on the type of control that is to be implemented,
which in turn depends on the tasks to be done and the process being controlled. We now
address this in detail.

8.2 Industrial Process Control
Process variables provide information about a process. They are used to evaluate

how a process is performing. They are measured by sensors and input to the controller.
Process parameters, on the other hand, are the set points or targets for the process. The
controller compares the process variables to the process parameters and reacts accordingly
by outputting instructions to the actuators.

Figure 8-4 is an example of a rudimentary oven that is used in a manufacturing
process. The oven has an internal electrical heating element and a thermocouple to
monitor oven temperature. An operator (the controller) adjusts oven temperature by
switching a heating element on or off. If oven temperature is less than desired temperature

Part Feeder

PLC

Control
Valve

Sensor

Finished
Goods

Robot

Sensor

Punch Press

Introduction to Programmable Logic Controllers (PLCs) 379

(referred to as the temperature set point) then the heating element is turned on. Once the
set point is reached the operator turns off the heating element. Hence, temperature set
point is the process parameter, the actual temperature is the process variable, and the
heater is the actuator.

Figure 8-4 Oven control

Figure 8-5 shows a plot of actual temperature and set point temperature of an oven
over time. The amount of variation between the two values is due to the nature of the
system under control. The response of the system (its actual temperature) lags behind the
heating element’s actuation. In other words, by the time the operator sees that the set point
temperature is reached and turns off the heating element, much energy has been pumped
into the oven and it continues to heat up. Thus, the actual temperature overshoots the set
point temperature. A similar scenario occurs as the oven cools. Therefore, the controller
must continually monitor the process and actuate the heating element accordingly to
minimize variation between target and actual temperatures. Because the actual
temperature can have numerous values it is considered a continuous process variable.
Since numerous temperature set points can also be specified, the set point temperature is

OFF

Heating Element
Switch

Heating
Element

Temperature
Read Out

Thermocouple

ON

380 Chapter 8

considered a continuous process parameter. Accordingly, this type of process control is
called continuous process control.

In contrast to continuous process control, consider a tank-filling process (Figure 8-6).
In this process an operator opens a valve to allow fluid to enter the tank. A light, actuated
by a float switch located in the tank, indicates when the desired fluid level (the process
parameter) is reached. When the light comes on, the operator closes the filling valve. The
on/off status of the light is the process variable. Note that the float switch does not
measure intermediate values of the fluid level. It only measures one position. Therefore
the light can only have one non-zero value: on. Variables of this type are called discrete
process variables. Correspondingly, since the fluid level in the tank can only have one
non-zero value, full it is considered a discrete process parameter. Since both variables and
parameters are discrete, controlling the level of fluid in the tank is a form of discrete
process control.

Figure 8-6 Tank-filling

The two main types of industrial process control are summarized below:

Figure 8-5 Actual vs. set point

temperature

Time

Actual
Temperature

Set Point
Temp.

Heating
Element

Inlet
Valve

Full
Light

Introduction to Programmable Logic Controllers (PLCs) 381

Continuous process control—Variables and parameters are continuous; they can take
on numerous values.

Discrete process control—Variables and parameters are discrete; they can have
binary values only: 0 (off) or 1 (on).

Whether a process is continuous or discrete, the controller may employ one of two
methods to control the process, either closed loop control or open loop control. Figure 8-7
shows schematic diagrams of both types of systems. In closed loop control the process
variable is continuously compared to the process parameter by way of a feedback loop. In
open loop control the process is controlled without monitoring any process variables. Both
the oven temperature control and the tank-filling process use closed loop control.

Figure 8-7 Closed loop and open loop control

However, in some process control applications open loop control is employed, in
which, as the name implies, there is no feedback loop. A process is controlled without
measuring a process variable. Open loop control should only be used when the following
criteria are met:

• The process being controlled is simple, well-defined, and clearly understood.
• The response of the process to actions of the actuators is predictable and highly

reliable.
• Reaction forces opposing actions of the actuators are minimal.

Figure 8-8 shows an open loop control example in a continuous process control
application. The figure shows control of a single axis of a CNC machine. In this case, a
stepper motor is used to position the table. Each electrical pulse from the controller causes
the stepper motor to rotate—a rotation that is converted into a small constant linear
movement of the table. Figure 8-9 shows the same application, but here it depicts closed
loop control. For most industrial process control applications closed loop control is
required.

Process

Closed Loop

Controller

Process
Parameters

Feedback
Loop

Progress
Variables

SensorsActuators

InputsOutputs Outputs

Process

Open Loop

Controller

Process
Parameters

Actuators

382 Chapter 8

Figure 8-8 Open loop control example

There are different levels of control. They are:
• basic device control,
• procedural machine control,
• coordinated system control.

The level used in turn influences which of the two types of process control are used:
• continuous or
• discrete.

Introduction to Programmable Logic Controllers (PLCs) 383

Figure 8-9 Closed loop control example

Figure 8-10 demonstrates the hierarchical nature of industrial control.

Figure 8-10 Control hierarchy

At the first level basic device control, devices or components of a larger process are
controlled. Sensors, actuators, and an individual controller execute the task performed by
a device. Additionally, the task is executed independent of the higher level controller.

Coordinated System Control

Procedural Machine Control

Basic Device Control

384 Chapter 8

Control of a single axis of a CNC machine (Figures 8-8 and 8-9) is a good example of
basic device control, as is the oven example.

Procedural machine control is typical of machine and workstation level control
applications. Tank-filling, which uses discrete process control, is more than likely part of a
larger process, so it belongs at procedural machine control. (It would be at the level of
basic device control, however, if it had its own controller dedicated to the performed task.)
Manufacturing processes, executed as they are by machines and workstations, are
inherently procedural and sequential: An operator completes step A before completing
step B and moving on to step C. A controller monitors, checks, and controls the status of
each step of a process before it proceeds to the next.

Consider the polymer compression molding process shown in Figure 8-11. Material
is loaded in the press; the operator presses the start button. Relying on input from the start
button sensor, the machine controller actuates press closing. The speed, acceleration, and
distance of the mold closure is controlled by a basic device controller similar to single axis
control shown in Figure 8-9, except the press uses hydraulic servo valves and a hydraulic
cylinder as actuators. Once the press is closed it must remain closed long enough for the
material to solidify or cure. When curing is complete the press will open, again at a
precisely controlled rate, and the part will be unloaded. To sum up, the machine controller
exercises procedural control over the process, uses sensors to collect data from the
process, and actuates devices and other actuators to execute the process steps. CNC
machines and robots are other great examples of procedural machine control.

Figure 8-11 Polymer compression molding process

In flow-line manufacturing or work cell processing, groups of machines and support
equipment work in conjunction to process a product. This requires that sensors, actuators,
devices, and individual machines be controlled and coordinated to perform the processing.
This level of control is called coordinated system control. Refer back to Figure 8-3, the
automated piercing operation. The individual devices, part feeder, press, and robot must
be coordinated to process the workpiece.

Mat’l

Mold

Load
Material

Close
Press

Curing Open
Press

Unload
Part

Introduction to Programmable Logic Controllers (PLCs) 385

As our focus is on PLCs, we will limit our discussion a higher level of control—the
coordinated system control level. This discussion could continue on to higher levels of
control, such as at the plant and corporate level, but this is beyond the scope of this text.
PLCs are used predominantly at the procedural machine and coordinated system levels. In
fact, PLCs were developed specifically for procedural machine and coordinated system
control. Hence, they exercise what is called discrete sequential process control. The
parameters and variables of the system are changed at discrete moments in time based on
the program of instructions (the sequential list of actions necessary to complete the
process). Changes to the process parameters and variables, as defined by the program of
instructions, are made when either the state of the system under control has changed
(event-driven change) or a certain amount of time has elapsed (time-driven change).

An event-driven change is pictured in Figure 8-11 (the polymer compression molding
process example). After the operator loads the raw material in the press, he or she presses
the start button, so the state of the system has changed, causing the PLC to execute the
action that closes the press. This is also an example of a time-driven change. After the
press is closed, it must remain closed for a given amount of time, to allow the material to
cure. Once the PLC has determined that the press is closed, it counts down the required
cure time and then executes the action of opening the press. The PLC has executed a
response at either a certain time in the process or after a specific time lapse has occurred.

This is the essence of discrete sequential process control executed by a PLC in an
industrial environment at the procedural machine and coordinated system levels: The PLC
changes or switches the status of the actuators in response to changes in events or time as
defined by the program of instructions.

8.3 PLC Terminology
8.3.1 Programmable Logic Controller

Now that we have a basic understanding of industrial control, we can provide a more
thorough definition of programmable logic controller: The PLC is a microprocessor-based
discrete process controller that uses stored instructions in programmable memory to
implement logic, sequencing, and math control functions for procedural machine and/or
coordinated system control of machines and processes.

8.3.2 Work Cycle Program
The stored instruction set that is programmed into a PLC is called the work cycle

program. The work cycle program is derived from the program of instructions and/or the
process flow for the application being controlled. It is an intermediate step in the actual
programming of the PLC. A work cycle program is created by dividing and subjugating
the sequential list of actions specified by the program of instructions into logic and
sequencing instructions. It can also be represented as a timing diagram. Examples of work
cycle programs and their development are discussed in subsequent sections.

386 Chapter 8

Consider Figure 8-12, which demonstrates how a PLC functions. The PLC compares
the status of the inputs, which are wired to the sensors of the process, against the work
cycle program logic and sequencing instructions. It then takes appropriate action by
switching on and off outputs that control the actuators acting on the process. The logic
instructions specify which outputs to turn on or off in response to event-driven changes.
The output values are determined solely by the value of the inputs. The PLC does not
consider the previous values of inputs—only the current state. The sequencing
instructions, on the other hand, specify output activity based on time-driven changes. In
this case the PLC uses an internal timing device to determine when to initiate changes to
outputs.

Figure 8-12 PLC operating cycle

8.3.3 Operating Cycle and Scan Time
The operating cycle of a PLC, as shown in Figure 8-12, appears to be instantaneous

and continuous. In other words, the PLC appears to instantly respond to process or system
changes. In fact, it does respond extremely rapidly, but not instantaneously. For each
operating cycle the PLC actually completes three scans. The first scan is called the input
scan. During this scan the PLC will read the status of the inputs and store them into
memory. The second scan is the program scan. During the program scan the PLC will take
the stored input values and conduct the logic control calculations specified by the work
cycle program. Lastly, the PLC will perform an output scan in which it will update status
of the outputs. The time it takes to perform these scans is called the PLC’s scan time. It is
important the PLC’s scan time be faster than the time between input changes; otherwise

Process

Logic Instructions Work
Cycle

Program Sequencing Instructions

Progress
Variables

SensorsActuators

InputsOutputs

Introduction to Programmable Logic Controllers (PLCs) 387

the PLC will not be able to respond quickly enough. Scan times for most PLCs range from
1 to 3 milliseconds.

8.4 PLC Hardware Components
A PLC consists of the following component hardware:

• Processor
• Memory unit
• Power supply
• Input/output (I/O) module
• Programming device.

The processor examines the status of the input signals, executes the logic and
sequencing functions, and operates on the outputs. It consists of one or more
microprocessors specifically designed for input and output (I/O) type operations.

The memory unit stores the work cycle program, I/O status information, and
controller system operation information. It is broken down into two areas: user memory
and system memory. The work cycle program is stored in the user memory and the
controller operational information is kept in the system memory. The combined processor
and memory unit is called the central processing unit, also known as the CPU.

The power supply provides the power to the unit. PLCs are specifically designed to
run off a standard 120-volt AC line, a design feature that was part of the specification for
the first PLC.

The controller physically connects with the sensors and actuators through the I/O
module. This is the interface to the process application being controlled. Like the power
supply, I/O modules were originally specified to accept 120-volt AC signals, intended to
enable the PLC to easily connect with standard push buttons and limit switch sensors.
However, since the early development of the PLC, I/O module capabilities have greatly
expanded. I/O modules are now available in a wide variety of configurations, including,
but not limited to:

• AC input/AC output
• AC input/DC output
• AC input/relay output
• DC input/DC output
• DC input/AC output
• DC input/relay output.

Many additional I/O module configurations are available, including analog I/O,
which enables the PLC to perform continuous process control, and advanced
communication/networking modules. The type and number of I/O modules selected is
strictly dependent on the application.

388 Chapter 8

The last hardware component of the PLC is the programming device. This device
provides a means of entering the work cycle program into the memory module of the PLC.
In the early days of PLCs this device was similar to the robotic teach pendant. It was
connected to the PLC with an interface cable as shown in Figure 8-13. The program was
entered into the memory module by pressing the required keys of the device. When
programming was completed the device could be used to edit, test, and debug the
program. After proving out the program, the device was disconnected and stored or used
for programming other PLCs. Although pendant-type programming devices can still be
found in industry, the modern programming device is a laptop personal computer, as
shown in Figure 8-14.

Figure 8-13 PLC pendant-type programming device

Figure 8-14 Laptop used as a programming device

The laptop PC has many advantages over the pendant-type device, including ease of
program entry and superior program editing and debugging capabilities, thanks to its large
LCD screen. Additionally, the program can be developed, edited, and tested offline away
from the PLC. Once the program is verified, the laptop can be connected to the PLC and

Introduction to Programmable Logic Controllers (PLCs) 389

downloaded to the memory unit of the PLC. Thus, the laptop also serves as an additional
storage device for the PLC.

The programming, editing, and debugging of PLC programs are discussed in great
detail in Chapter 9.

8.5 PLC Applications
All the processing examples discussed thus far have been simple by intention, in

order to demonstrate the concepts of industrial process control and the capabilities of
PLCs. These applications of these examples could be controlled by traditional electrical
hardwiring methods instead of with a PLC. Hardwiring implies physically connecting,
with wire, individual electrical components, such as relays, timers, counters, and other
electrical devices that perform the process control. Before the advent of the PLC,
hardwiring was the only method available to control industrial processes. In fact,
essentially all pre-1968 industrial control applications involved hardwiring.

Consider the control of the polymer compression press shown in Figure 8-11.
Controlling this process through hardwiring would require the use of numerous electrical
switches and relays to perform even the simplest of tasks, including turning on the
hydraulic pump, actuating the hydraulic valve to close the press, and turning on the
electric heaters to heat the mold. Additionally, at least one timer would be required to
control the cure time. The wiring necessary to connect these devices and perform the
control logic would be quite involved, requiring a rather large, complex control cabinet.

An additional complication is that, typically, in compression molding a press closes
at different speeds: first, quickly until it is almost closed, then at a slower pressing speed.
Dictating how this task would be accomplished with hardwiring would be somewhat
difficult in control logic and add even more complexity to the hardwired system. Because
of this complexity, maintenance and troubleshooting would be challenging. If a different
mold were placed in the press, many switches, timers, and temperature controllers would
have to be readjusted or reprogrammed for the new mold. A major change to the control
logic would require rewiring. Interfacing the press with other machines would be very
difficult if not nearly impossible. PLCs were specifically developed to overcome the
complications and limitations of hardwired control applications.

In the late 1960s the Hydramatic Division of General Motors, recognizing the
limitations of hardwired control systems, developed a set of specifications for a system
that would replace them (as outlined in M.P. Groover’s book) and put out a call for
proposals. The specifications included requirements that the device:

• be programmable and reprogrammable;
• be designed to operate in an industrial environment;
• accept 120-volt AC signals from standard pushbutton and limit switches;
• have outputs designed to switch and continuously operate loads such as motors

and relays.

390 Chapter 8

In 1968, Richard Morley, a partner in a research firm that specialized in control
systems for machine tool companies, presented the winning proposal, earning for himself
the title “Father of the PLC.” Morley and his partners formed a new company called
Modicon to produce the new PLC, and the era of the PLC was born.

Thus, since its inception the PLC has proven to possess many advantages over
hardwired control systems, including these attributes:

• PLC programming is much easier to effect than the hardwiring of relays, timers,
counters, and other devices. As explained in Chapter 9, a PLC program can be
developed, edited, and tested offline, away from the machine. Thus, proof of
concept can be determined and the process well understood before the actual
machine programming.

• PLCs can be reprogrammed quickly and easily. A new program can be developed
and written offline while the machine is still running. Once the program has been
verified it can be downloaded to the PLC and run.

• Electrical cabinets for PLC-controlled applications are much smaller than
hardwired electrical cabinets for the same application, so the PLC cabinet takes up
much less floor space.

• Maintenance and troubleshooting on PLC controllers is much easier than with
hardwired control systems. Hardwired systems have numerous components,
making maintenance and troubleshooting time-consuming and complicated.
Additionally, PLCs tend to be much more reliable than hardwired systems.

• PLC-controlled equipment can be easily interfaced with other PLCs and automated
equipment, allowing its integration with other PLCs and programmable automation
(robotics and CNC machines) to create automated work cells and systems.

• PLCs can perform a multitude of control functions, for example, analog control,
arithmetic functions, matrix functions, and data processing.

• Despite the numerous advantages of PLCs over hardwired control, the latter is still
a viable option for many simple control applications. However, as the required level
of control becomes more complicated and the specifications for the control system
come to match the original list proposed by GM decades ago, PLCs inevitably
prove to be the best solution.

8.6 Sensors and Actuators
One of the most important considerations in sizing and selecting the correct PLC for

an industrial control application is type and number of inputs and outputs required. This
choice is dictated solely by type and number of sensors and actuators necessary to control
the process. Additionally, the programmer’s understanding of how sensors and actuators
function, their variety, and their capabilities are critically important to effective PLC
programming.

Introduction to Programmable Logic Controllers (PLCs) 391

8.6.1 Sensors
Sensors provide a means by which the controller interfaces with the process. Sensors

are measurement devices that monitor and feed back information to the controller about the
status of the process variables. Whereas humans rely on their sensory perception to monitor
environment, a controller must rely on mechanical/electrical devices for feedback about the
process environment. Each measurement device is designed to measure a very specific
process variable and feed back the information to the controller in a distinct way. The type of
process variable measured and how the information is fed back to the controller determines
the classification of the sensor. For general automation purposes, sensors can be separated
into three major categories: (i) switches, (ii) transducers, and (iii) special purpose sensors. A
diagram of the major sensor categories is shown in Figure 8-15.

Figure 8-15 Sensor categories

Switches measure discrete process variables. They provide binary (on or off) data
back to the controller about the status of the discrete process variable. For discrete process
control at the procedural machine and coordinated system level of control, switches are
the primary sensors used. However, at the basic device level of control, transducers
dominate. Transducers convert a physical variable, temperature, force, or position, for
example, into an alternative electrical form that is fed back to the controller. Thus,
transducers measure continuous process variables. Finally, special purpose sensors consist
of self-contained devices with sensors and a controller specifically designed to interface
with PLCs and other programmable automation machines (robots and CNC equipment).
They are used at the coordinated system level of control. Examples include vision systems
and barcode reading devices.

We now look at these three sensor categories in detail.

8.6.1.1 Switches
The tree basic switch types available for control applications are mechanical,

electrical, and optical. Each type can be wired in a binary fashion, that is, to close or open
an electrical contact. The physical state of a switch can be either normally open (NO) or

Sensor
Categories

Switches

Special
Purpose

Transducers

392 Chapter 8

normally closed (NC). NO switches have contacts that close upon action, whereas NC
switches have contacts that open upon action. The three types of switches and
corresponding physical states are shown schematically in Figure 8-16.

Figure 8-16 Switch styles and physical states

A pushbutton is a spring-loaded switch, mechanically actuated by a person. For NO
switches the contacts remain closed only as long as the button is held down. Once the
button is released the spring returns the switch to its normal state.

A toggle switch is also mechanically actuated; however, once actuated, it does not
return to its normal state unless it is actuated again. A typical household light switch is a
good example of a toggle switch.

Figure 8-17 shows a typical control panel with pushbuttons and toggle switches. Note
that even though the emergency stop (E-stop) button looks like a pushbutton, it is actually
a toggle switch. This is necessary from a safety standpoint: Once a process is stopped in an
emergency situation it should remain stopped: the E-stop cannot return to its normal state
until the operator takes action.

NO Push Button

NC Push Button

NO Toggle Switch

NC Toggle Switch

NO Limit Switch

NC Limit Switch

Introduction to Programmable Logic Controllers (PLCs) 393

Figure 8-17 Control panel

Common places for pushbuttons and toggle switches are start/stop buttons (which
initiate/stop a process), motor start buttons, and mode (automatic or manual) selector
switches. They are typically placed in the control panel of the machine or workstation,
where an operator (top-level controller) gathers information about a process. It is the
primary interface between the human operator and the PLC. Besides having pushbuttons
and toggle switches, a control panel typically consists of lights, digital readouts, and
perhaps a CRT or LCD user interface.

 Another kind of switch is the limit switch. Limit switches provide the primary binary
interface between the PLC and the process. They are considered “presence” sensors
because they detect the presence of some object in the process, such as the product itself or
some linkage or part of the machine being controlled.

Both contact and non-contact methods exist for detecting the presence of objects. A
contact limit switch, as the name implies, must physically come into contact with the
object it is meant to detect. In this way it mechanically actuates the switch linkage. Figure
8-18 shows a schematic of a contact limit switch. Note that it may be wired normally open
(NO) or normally closed (NC). An NO switch causes the switch contacts to close; an NC
switch causes them to open.

Figure 8-18 Lever type contact limit switch

Digital
Read Out

CRT
User

Interface

E-Stop

Toggle Switches

Push Buttons

NC

NO

Common

Object Contacts
Lever

394 Chapter 8

Contact limit switches are simple and are available with a wide variety of linkages
and corresponding actuation forces. Some common linkage arrangements are shown in
Figure 8-19. These designs have been proven accurate and reliable.

Figure 8-19 Contact limit switch linkages

Contact limit switches must be rugged to withstand a harsh industrial environment.
However, the constant opening and closing of the contacts presents wear issues. These
issues, along with concerns about the speed of response, may dictate the use of non-
contact limit switches. Because of their capacity to sense the presence of an object only
when it is in close proximity, non-contact limit switches are traditionally termed proximity
or “prox” switches.

The three common non-contact limit switches are inductive proximity switches,
capacitive proximity switches, and optical proximity switches. These switches, according
to their type, use built-in transducers and electrical circuits to open or close internal
contacts. The inductive proximity switch utilizes a transducer that measures changes to a
magnetic field in order to detect the presence of electrically conductive materials. The
switch is activated when it detects these changes. Changes in the magnetic field occur
when an electrically conductive object is present. This is illustrated in Figure 8-20.
Inductive proximity switches are relatively small, rugged, and low cost. This makes them
the most widely used proximity switches. Their limitations include insurance of a
consistently repeatable sensing distance and ability to detect only those materials that are
electrically conductive.

The capacitive proximity switch solves some of the limitations of the inductive
proximity sensor. It can sense virtually any object: if an object can hold an electrical
charge, a capacitive proximity switch can sense it. The switch uses half a capacitor as its
transducer. Recall that capacitors are devices used to store electrical energy. They consist
of two plates separated by a dielectric (non-conducting material). Without these two plates
the capacitor could not store electricity. This is what enables a capacitive proximity switch

Plunger
Type

Rotary Layer

Rod
Actuated

Wobble

Introduction to Programmable Logic Controllers (PLCs) 395

to detect the presence of objects. When the object is in position to be sensed, it becomes
the other half of the capacitor of the switch, with the air separating the switch and object
serving as the dielectric. So, when an object gets close to the switch, the now completed
capacitor accepts a charge and its internal circuitry causes the switch to open or close,
depending on its state (NC or NO).

Figure 8-20 Inductive proximity switches

Capacitive proximity switches look very similar to inductive proximity switches,
though they are larger. They are typically more expensive than inductive proximity
switches. These switches require calibration for sensing different types of materials.
Additionally, the sensing distance can be adjusted. Limitations include a tendency for
errant readings when many different types of objects are in the field of view. In general,
capacitive proximity switches must be used with care because of their tendency to be
overly sensitive.

The optical proximity switch consists of a light source and a transducer, called a light
sensor, for the obvious purpose of detecting light. Optical proximity switches switch on or
off according to whether the light sensor can detect light from the light source. They are
also called “photoelectric sensors.” They come in two basic configurations: through-beam
or retroreflective. Through-beam optical proximity switches have the light source and
light sensor in separate housings. The switch signals the presence of an object that blocks
the light beam between the source and sensor. Some types can be calibrated finely enough
to detect changes in the quantity of the beam received. For example, such a type could be
used in bottle-filling workstations to determine if a bottle has been filled properly.
Retroreflective optical proximity switches have light source and receiver in the same
housing. This configuration requires that the object sensed be reflective. Figure 8-21
depicts a through-beam application.

Status Light
Lights Up

Magnetic
Field

Power
Light

Switch
“Made”

Part Within
Sensing Range

Switch
Status Light
Lights Up

Switch Not
“Made”

Part Within
Sensing Range

396 Chapter 8

Figure 8-21 Optical through-beam proximity switch application

8.6.1.2 Transducers
The second category of switches is transducers, which are used in applications where

monitoring of continuous process variables is required. Recall that transducers convert a
physical variable into an electrical signal that is fed back to a controller. The electrical
signal can be either analog or digital pulse. Transducers are most commonly used in basic
device level control.

Consider the oven control example discussed previously and shown in Figure 8-4. An
operator controlled oven temperature by turning a heating element on and off. A more
realistic example of how the oven would be controlled is shown in Figure 8-22. Here the
temperature readout and off/on switch (of Figure 8-4) is replaced with a temperature
controller. The temperature controller automatically regulates the oven temperature by
comparing the temperature set point (process parameter) against the actual temperature
(process variable) measured by the thermocouple transducer, then actuates the heating
element accordingly. It utilizes PID (proportional, integral, and differential) control loops
to adjust the power to the heating element, providing precise temperature control. Since
temperature control is of great importance in many manufacturing processes, temperature
controllers are readily available for purchase from numerous vendors. Note, however, that
most modern PLCs equipped with analog I/O can provide continuous process control at
the basic device level as well.

Light Beam
Blocked

Light Beam

Introduction to Programmable Logic Controllers (PLCs) 397

Figure 8-22 Oven control example

If the oven were to be used at the procedural machine or coordinated system control
levels, the device level controller would need to discretely interface with the main
controller. Thus, dedicated temperature controllers and other basic device level controllers
typically come with discrete event inputs and outputs.

Examples and descriptions of common analog transducers are listed in the table of
Figure 8-23. The analog transducers listed here could be further categorized by the type of
application to be controlled. For environmental control applications, RTDs, thermistors,
and thermocouples typically measure temperature, while strain gages can be configured to
measure pressure. LVDTs and potentiometers measure position, accelerometers measure
acceleration and velocity, and strain gages measure force. Clearly these variables are of
interest to one who designs a machine for controlling motion.

Heating
Element

Thermocouple

Temperature Controller

+–

398 Chapter 8

Figure 8-23 Common analog transducers

One of the more common devices used in motion control—the optical encoder—is
not shown in the Figure 8-3, as it is a digital device. It digitally emits a series of electric
pulses back to the controller as an indication of the value of the physical variable
measured.

An optical encoder uses a light source, light sensors, and a perforated rotating disk to
determine position, velocity, and acceleration of a rotating shaft. The basic configuration
is shown in Figure 8-24. The perforated disk separates the light source and light sensors.
The disk’s perforations or slotted holes are arranged in a precise pattern. As the disk
rotates the light sensors detect the light as a series of pulses. The number and frequency of
the pulses are proportional to the shaft position and speed. Hardware differentiation of the
velocity can be used to determine acceleration of the shaft.

There are two types of optical encoders: incremental and absolute. The output signals
of incremental encoders repeat with each revolution. Thus, the precise position of the disk
is not known when power is first applied to the encoder at startup; incremental encoders
require homing or initializing each time power is applied. Absolute encoders, on the other
hand, know exactly the mechanical position each time power is applied; thus, homing is
not required. Incremental encoders are simpler and less expensive than absolute encoders.

Introduction to Programmable Logic Controllers (PLCs) 399

Figure 8-24 Optical encoder

8.6.1.3 Special purpose category
Finally, we discuss the special purpose category. The main sensor of interest in this

group is the vision system. As automation applications continue to grow the ability of a
system to gather thoroughly the data from the process environment becomes ever more
important. Whereas individual sensors provide one small “bit” of information about the
process environment, a vision system can provide a complete “picture” of the same
environment. Although a comprehensive discussion of vision systems is beyond the scope
of this text, it is important we present an overview of the basic operating principles and
potential applications.

Figure 8-25 shows a typical application of a vision system. In this application a vision
system evaluates the acceptability of a molded part. If the part is acceptable the vision
system takes no action and the part proceeds down the conveyor. If, however, the molded
part is unacceptable, the vision system sends a signal to the process controller, which in
turn actuates a cylinder to knock the part into the scrap bin.

Light Sensors

Light
Source

400 Chapter 8

Figure 8-25 Vision system application

As shown in the figure the major components of a vision system are camera, light
source, image-capturing system (also called a “frame grabber”), and vision system
controller. The light source illuminates the scene to be captured. Proper lighting is
critically important to the quality of scene capture. The choice of tactic used from among
the numerous methods and techniques depends on the type of vision system desired and
the process environment. The camera captures the scene by converting the light levels to
electrical current; the current is passed as analog data to the image-capturing system. The
image-capturing system consists of electrical circuitry and programming that converts the
analog picture data to condensed, digital data that is passed to the vision system controller.
The vision system controller then compares the image to the one stored in memory. Based
on this comparison the vision system controller outputs the appropriate course of action to
the main process controller.

This example oversimplifies the workings of a vision system, but it is intended to
identify some key components and provide a simple example of a vision system’s
capabilities. Other more complex capabilities of vision systems are the capacity to:

• recognize parts presented in various positions or orientations
• recognize parts that are touching or piled on top each other
• measure part dimensions
• determine part orientation and distance
• determine part speed and direction of motion
• determine part position in three dimensions.

The last three items are typical of the type of information needed by a robot. In fact,
many of the applications for vision systems occur when a robot is involved. However,

Camera

Frame Grabber

Vision System
Controller

Good
Parts

Scrap

Analog
Data

Digital
Data

Light
Source

Scrap
Part

Good
Part

Process
Controller

Introduction to Programmable Logic Controllers (PLCs) 401

vision systems are used in many different applications and are an excellent method of
gathering a comprehensive amount of information about the process environment without
using an excessive amount of main controller inputs.

It is desirable for the person selecting sensors for a specific application to obtain ones
that are highly accurate, reliable, and precise. Equally important is that the sensors have a
wide operating range, a high speed of response, and be low in cost.

8.6.2 Actuators
Actuators in a process controller activate the program of instructions; simply put,

they perform work on the process. They allow process variables to come into agreement
with process parameters. In automation, actuators are hardware devices, machines, or
systems that convert a controller command signal into a change in a physical parameter.
Often the control signal must be amplified if it is to reach sufficient power for the work
that is involved. An actuator may be a simple electrical relay, a pneumatic logic circuit of
solenoid valves and cylinders, a robot, or even a CNC machine.

 The process and type of control signal amplification generally dictates actuator
type. Actuators are best classified according to control signal amplification type:
pneumatic actuators use compressed air to amplify the control signal; hydraulic actuators
use a pressured fluid, typically oil-based, for amplification; electrical actuators use
electricity.

8.6.2.1 Pneumatic actuators
Air cylinders are by far the most common type of pneumatic actuators. They consist

of a piston, rod, and cylinder housing for converting pressurized air into a corresponding
linear force. A cutaway of a typical air cylinder is shown in Figure 8-26. Cylinders are
specified by stroke length and inner diameter. The force exerted by a cylinder is equal to
the product of its piston area and air pressure applied. Air cylinder types include single-
acting (spring return), double-acting, and rodless. Single-acting cylinders use air pressure
to actuate the cylinder in one direction and a spring to actuate it in the other. Double-
acting cylinders use air pressure to move the cylinder in both directions. Rodless cylinders
have only a cylinder and piston. An outer carriage is coupled to the piston with a strong
magnet as shown in Figure 8-27. Air cylinders are available in a variety of standard inner
diameter sizes, stroke speeds, and numerous mounting configurations to suit almost any
application.

402 Chapter 8

Figure 8-26 Air cylinder cutaway view

Figure 8-27 Rodless air cylinder

Other types of pneumatic actuators include air motors and vacuum cups. Air motors
use either pistons or vanes to institute rotary motion. Piston air motors offer higher starting
torque while vane-type air motors are simpler and more compact. Vacuum cups use the
Venturi effect to form vacuum suction within flexible cups, enabling the cups to stick to
objects. (“Venturi effect” is simply air pressure reduction caused by constriction of
airflow through a tube or pipe.) Vacuum cups are often used as grippers in robot
applications.

Regardless of type of pneumatic actuator device in use, the process controller cannot
interface directly with the device. A control valve is needed to take the controller’s
electronic signal and convert it into an air signal, which goes into the actuator. A complete
pneumatic system is shown in Figure 8-28. The major components of a pneumatic system
typically consist of an air supply system, air conditioning system, various air control
valves, and actuator devices.

Piston

Rod

Stroke

Inner
Diameter

Cylinder
Housing

Magnetic
Following
Ring

Carriage

Cylinder

Rod-less
Piston

Introduction to Programmable Logic Controllers (PLCs) 403

Figure 8-28 Pneumatic system

The supply system is made up of an air compressor and either single or multiple
storage tanks. Most industrial facilities have an air supply system installed with a plentiful
supply of 90−100-psi compressed air. Whenever air is used it should be conditioned
before it enters the actuated devices. Conditioning systems consist of an air filter, which
cleans the air of debris, a pressure regulator, and a lubricator, to ensure proper lubrication
of the pneumatic components. A control valve consists of a housing and a movable
internal spool, which controls direction of airflow through the valve.

The directional control valve (Figure 8-28) is a 4-way, 2 position control valve. It
consists of five ports and has two spool positions. Figure 8-29 shows one valve with its
ports labeled in two ways. The “4-way” of its name refers to the four combinations of
flows possible between the ports: P to A; B to T; P to B; and A to T. “2-position” specifies
that the spool has two possible positions, as depicted in the figure. Each spool position
dictates the path the air flows between ports. Spool position can be changed manually with
pilot air or electronically with solenoids. The air control valves of interest in process
automation and control are solenoid-actuated directional control valves.

Air
Filter

Air Compressor

Air Supply
System

Pressure
Regulator Air Conditioning

System
Vent to
Atmosphere

Vent to
Atmosphere

Valve
Spools

Control
Value

Air Cylinder Actuator

404 Chapter 8

Figure 8-29 4-way, 2-position directional control valve

Solenoid-actuated control valves use a solenoid to change the position of the spool. A
spring is used to hold the spool in the non-energized position in a 2-position control valve.
The solenoid is used to change the spool to the other position. A solenoid works by
utilizing electrical current in a coil to generate a magnetic field, which pulls an armature
into the magnetic field. In a solenoid-actuated control valve the spool is connected to, or is
part of, the armature. Thus, as the armature moves, so does the spool. When the current is
removed, the spring causes the spool to return to the first position. This is demonstrated in
Figure 8-30. The schematic symbol for the valve is also shown in the figure.

Figure 8-30 Solenoid-actuated directional control valve

Solenoid-actuated directional control valves are available in a variety of
configurations, including 3-position spools with dual solenoids and spring centering. The
major benefit of a solenoid-actuated directional control valve in programmable
automation applications is that the solenoid easily interfaces with the controller. The air is
then used to amplify the control signal to perform the actual work.

Pneumatic actuation systems are readily available and have been in use in automation
for some time. The components are easy to implement and relatively inexpensive. Air
leakage causes only minor performance problems and no environmental concerns.
However, speed control is limited to flow control valves, and position control is limited to

Spool
Position 1

Spool
Position 2

P to A
B to T

“Ways”:

T P T

BA

P to B
A to T

“Ways”:

T P T

BA

T
Spring

P T

Armature

A B A B

P T P T

Housing

Coil
Electrical
Connections

Schematic Diagram BA

Introduction to Programmable Logic Controllers (PLCs) 405

employing hard stops. Hence, pneumatic systems cannot provide precise speed and
position control and have a tendency to be noisy. The banging of the pneumatic devices
off hard stops accounts for another name for them: “bang-bang systems.”

8.6.2.2 Hydraulic actuators
Hydraulic actuators work in much the same manner and have many of the same

components as pneumatic systems, including solenoid-actuated directional control valves.
However, there are some major differences, most important of which is that the system
uses an oil or oil-over-water liquid instead of air to amplify the control signal. This offers
some major advantages over pneumatic systems, including a much higher operating
pressure (3000 psi versus 90 psi) and, because of the incompressibility of the hydraulic
fluid, position control. Thus, position, speed, and acceleration can be accurately controlled
with proportional servo-valves. Thus, cylinders, for example, can be stopped in midstroke,
whereas in pneumatic systems the cylinder can only be fully extended or fully retracted.
There are many disadvantages to consider in the use of hydraulic actuators, including that
fluid must move in a complete circuit—i.e., returned to the tank and not vented to the
atmosphere, unlike what is done in pneumatics. This consideration requires much more
piping that used in pneumatics. Additionally the most modern facilities no longer use
centralized hydraulic supply systems. Thus, each machine or work cell need a self-
contained hydraulic system. These units are noisy and prone to leaks. The higher load
capacity of hydraulic systems also makes them more dangerous to the operator. Despite
these concerns, hydraulic systems are commonly used in programmable automation
systems primarily because of the higher load capacity and the ability to provide position,
speed, and acceleration control of the actuators.

8.6.2.1 Electrical actuators
There are numerous electrical actuators used in automation control. A very simple

and important type is the electrical relay. An electrical relay is nothing more than a switch
that is actuated electronically to engage a set of electrical contacts. It works similar to a
solenoid in that it uses a coil to magnetize a metallic core. The core then attracts a lever
causing electrical contacts to close. This is demonstrated schematically in Figure 8-31.
Relays are vital in control applications because electrical actuators typically use much
higher current than a controller can provide. Thus, the relay provides a means to amplify
the control signal. Relays are used in conjunction with other electrical actuators, including
electrical motors and electrical heaters.

406 Chapter 8

Figure 8-31 Relay

There are several types of electrical motors: induction, servo, and stepper. Induction
(alternating current (AC)) motors are rotational electromagnetic motors, which are
commonly seen in industrial applications, since they are low cost and simply constructed.
This makes them as quite reliable and they need only low maintenance. Induction motors
are commonly used in constant torque and fixed speed applications. However, a frequency
controller can be used in conjunction with the motor to control rotational speed and
acceleration. Induction motors can be brought to an abrupt stop with dynamic braking.

 If high starting torque, precise positioning, speed, and acceleration are required then
a servomotor should be considered. Servomotors are used in many automation
applications. These direct current (DC) motors can rotate to, and hold, a fixed angular
position. Speed and acceleration can be accurately controlled with a DC servo controller,
which is often necessary in control applications.

A stepper motor takes electrical pulses from the pulse generator of the stepper motor
controller and rotates the output shaft at rpm in direct proportion to the number of pulses
received. Stepper motors have very high accuracy and are commonly used in open-loop
control applications. Disadvantages as compared to DC servomotors include lower torque
and limited speed. Any type of motor can be and often is used with either a rack-and-
pinion or ball-screw system to provide linear motion.

Electrical heaters, another common type of electrical actuator, are resistors that
generate heat upon exposure to current. They generate heat in industrial applications and
come in various configurations, including cartridge and band. Cartridge heater resistance
wire is coiled in tubes; band heater resistance wire is wound in flat strips. Examples of
cartridge and band heaters are shown in Figure 8-32. Common applications have electrical
heaters used in conjunction with temperature sensors and temperature controllers.

AC Motor

nov

Electro Magnet

24V DC
Control Signal

AC

Introduction to Programmable Logic Controllers (PLCs) 407

Figure 8-32 Cartridge and band heaters

Other types of simple electrical actuators include solenoids and torque motors. As
mentioned previously, solenoids utilize an electromagnet to push or pull a ferrous plunger.
They generate only light loads, but when combined with springs and mechanical linkages
they are effective light duty actuators. Torque motors generate a rotational force without
continuous motion; their solenoids rotate an armature about an axis.

As has been demonstrated, in many cases the actuator used is not an individual
component but an actuation system consisting of many components. In some cases the
actuator is a nested control system, as in the case of a robot or CNC machine. By
themselves, they are independent entities with their own sensors, actuators, and control
system. However, at the coordinated system level of control these independent machines
are simply viewed as powerful nested discrete actuators to the top-level controller.

The type of actuator chosen for a given application depends on many factors,
including type of actuation needed, availability, accuracy, reliability, and cost. Figure 8-33
gives a comparison of the advantages and disadvantages of some common actuators used
in industrial automation applications.

Cartridge Heater Band Heater

408 Chapter 8

Figure 8-33 Comparison of actuators

The type and number of sensors and actuators used in a process dictate the type and
number of inputs and outputs that should dictate selection of a PLC. This idea is explored

in more detail in the next section, as are other PLC considerations.

8.7 Implementing Automation with PLCs
As discussed previously, PLCs were developed specifically for procedural machine

and coordinated system control. Thus, they employ discrete sequential process control of
machines, workstations, and work cells. The system is controlled per the program of
instructions, which is the sequential list of actions necessary to complete the process.
Recall the USA principle of automation implementation (see Chapter 2). USA is used in
PLC automation. It reminds the operator to understand, simplify, and automate a process.

Consider the typical washing machine process. The program of instructions or
process steps for such a process is:

• fill washtub with water
• agitate clothes to wash
• drain tub of dirty soapy water

Introduction to Programmable Logic Controllers (PLCs) 409

• refill tub to rinse residual dirt and soap from clothes
• agitate clothes to rinse thoroughly
• drain tub again
• spin tub to remove excess water.

 Following step 1 of the USA principle, we gain an understanding of the process.
Most people are familiar with washing machines from a user point of view. However, for
implementing automation, one must understand the process from the controller’s
perspective. To effectively control the machine, one must break the process steps down
into a work cycle program. When a designer develops a work cycle program, he or she
must put in place appropriate sensors to monitor the process variables (PLC inputs) and
select actuators (that act on the process) (PLC outputs). The work cycle program for the
washing machine process is shown in Figure 8-34. Clearly, it is a more detailed listing of
the process steps listed above. It can also be referred to as an I/O status table; in it, process
steps are linked to the corresponding status of PLC inputs and outputs.

Figure 8-34 Washing machine work cycle program (or I/O status table)

Notice that this work cycle program shows the status of the inputs and outputs at the
start of each process step. For example, in the “Fill tub to wash” step, the “Tub Empty
Sensor” is marked “ON.” Once the tub begins to fill the sensor is switched to “off.” The
work cycle diagram is a valuable aid in the PLC programming process because it defines
the relationship between the process step and I/O status.

A timing diagram may also be a beneficial aid when a process is particularly
complicated or confusing. In a timing diagram, the columns and rows of the work cycle
diagram are reversed, with process steps across the top and PLC inputs and outputs down
the left hand side. The duration of each step’s I/O status is visually represented in the
length of the bars running under each step of the program. The corresponding timing
diagram for the work cycle program listed in Figure 8-34 is shown in Figure 8-35.

410 Chapter 8

For some programmers the timing diagram provides a clearer picture of the status of
the inputs and outputs of the PLC as the process is executed. Typically, both work cycle
program and timing diagram are used to develop the control program, along with other
tools, such as process flow charts and state diagrams. All these are crucial to a
programmer’s clear understanding of the process and the corresponding logic necessary
for proper execution.

The next step in the USA principle is simplifying the process as much as possible. For
those familiar with a washing machine cycle, it is obvious that the above work cycle
program is already very simple. Options for selecting different wash cycles or water levels
are omitted. While these are important options, it is often desirable to oversimplify the
process at first by leaving out even necessary options, which can then be added after the
basic work cycle program is fully implemented. This makes the final step—automating
the process—even easier.

1. Automating the process involves:
2. Identifying and procuring an appropriate PLC for the application.
3. Designing and developing the control system hardware, including the control

panel, electrical cabinet(s), and sensor and actuator mounting brackets.
4. Procuring the sensors and actuators as necessary.
5. Installing the hardware, and wiring the sensors and actuators to the PLC.
6. Converting the work cycle program into the PLC program of instructions.
7. Simulating the program to verify program integrity.
8. Entering the program in the PLC and verifying the program on the machine or

workstation.

Item 1 above will be discussed in the next section. Items 2 through 4 are important.
They may be handled internally by a firm’s engineering and maintenance departments if
their level of expertise is adequate, or they may be subcontracted to other firms who
specialize in these types of activities. These items are outside the scope of this text, but
items 5 through 7 are covered in detail in Chapter 11.

Introduction to Programmable Logic Controllers (PLCs) 411

Figure 8-35 Washing machine timing diagram

412 Chapter 8

8.7.1 PLC Selection Considerations
It is vitally important to select the PLC correct to the application at hand. Many

brands of PLCs are available, and within each brand are many models with a wide range
of capabilities and prices. For optimum control of the process the PLC needs to be
properly sized. Most manufacturing facilities have a favorite brand of PLC and tend to
stick with that brand for new automation projects. This favoritism develops over time as
the maintenance and engineering departments become familiar and adept with the brand,
accumulating all the necessary programming software and hardware for the PLC of
choice. Personnel become well-acquainted with this PLC’s instruction set, so
opportunities to introduce a new brand may be limited. Regardless of the brand used, the
correct model within the brand must be specified. The four major categories to be
considered for PLC model selection include:

• I/O configuration
• CPU performance
• communications
• programming.

I/O configuration refers to the quantity and type of inputs and outputs an application
requires. The quantity of the inputs and outputs is critical as it is the primary
differentiating factor between PLC model types. For example, an inexpensive PLC model
may only have 14 I/O (8 inputs and 6 outputs) whereas a more expensive model may have
36 I/O (20 inputs and 16 outputs). Note, however, that many models have expandable I/O
where both inputs and outputs can be added with the addition of expansion boards. This is
an important consideration if the control requirements of a certain process have the
potential to increase over time.

The other very important I/O consideration is the type of inputs and output required.
Recall from Section 8.4 there are many different ways in which the inputs and outputs can
be configured, including discrete 120-volt AC, 24-volt DC, relay type, or even continuous
analog I/O. Additionally, I/O boards can be mounted locally with the PLC or placed in a
remote location closer to the actual process. The configuration selected must match the
application requirements as outlined in the work cycle program with some room for
expansion. Often during the actual installation and startup of the application, the need for
additional inputs and/or outputs is identified. Therefore, it is good that one select a PLC
capable of expansion or with slightly more I/O than is initially needed to support future
process requirements.

CPU performance refers to the capabilities of the central processing unit of the PLC.
The amount of memory, contact execution time, scan time, and the size of the instruction
set all fall into this category. Size of the instruction set refers to the number of
programming commands available. As will be seen in the next chapter there is a basic set
of programming instructions that all PLCs have. However, different PLC brands and
models have expanded instruction sets to provide more capabilities. Executing

Introduction to Programmable Logic Controllers (PLCs) 413

subroutines—for/next loops, table functions, or even trigonometric calculations—are
available. The number of these capabilities is directly proportional to the price of the unit.
In general, greater memory, speed, and program instructions all increase the cost of the
PLC.

With the ever-increasing need for an integrated facility, individual machines and
workstations need communications capability occurring in real time so they may share
data and information. Thus, the application may dictate that the selected PLC needs to
communicate with other PLCs, computers, or I/O devices. Types of communications
available include ASCII, point-to-point communications between two PLCs, and Ethernet
communications.

Finally, PLC programming is a prime consideration. The most widely used
programming method for PLCs is a graphical language called ladder logic programming,
accomplished by inserting program instructions into a rung of a ladder diagram. Ladder
diagrams were originally used to specify the logic and wiring of older, hardwired relay-
type control systems. Ladder diagrams were widely used when PLCs were first introduced
into production, so programming of PLCs was modeled after ladder logic to ease the
transition from hardwiring to PLC. Other graphical methods of programming PLCs are
available, as are some text-based methods. Ladder logic programming is addressed in
detail in Chapter 9.

Another programming consideration is the programming device. Most modern PLCs
are programmed with a laptop or personal computer. Each PLC brand typically requires
proprietary software for programming. This software can be expensive to purchase and
license. However, once obtained it can be used to program any number of PLCs that it
supports. Thus, when one considers different PLC brands, the cost and availability of the
programming software is often a major consideration.

The overall goal is to select a PLC that adequately meets the application requirements
with some room for expansion. If the process to be controlled is simple and
straightforward, a low-end model should be adequate. If an application’s future growth is
unpredictable, a scalable higher end model may be required.

Once the appropriate PLC is selected, control system hardware can be designed.
Then, the sensors and actuators can be procured and all hardware installed. After the work
cycle program and/or timing diagram is prepared, the system will be ready for simulation
and actual programming. This is covered in great detail in the next chapter.

8.8 Summary
Programmable logic control (PLC) technology is used to impart automatic control

over tasks or events through the use of electrical and computer technology. It is a
standardized computer system specifically designed for interfacing with industrial
components and equipment. In order to provide control over the process it must collect
information from a process, upon which it bases its decisions, and then implement those

414 Chapter 8

decisions by acting on the process. This is accomplished by interfacing with the process
through sensors and actuators.

The sensors measure process variables that provide information about the state of the
process. Actuators receive information from the controller to act on the process to achieve
the set points or targets for the process. These targets are called process parameters. Thus,
control of the process is achieved by comparing the process variables against the process
parameters and acting on the process accordingly.

Process variables can be continuous or discrete. Continuous process variables can
have more than one value, whereas discrete variables can only have one non-zero value.
When process variables are discrete the controller exercises discrete process control; when
continuous, continuous process control is exercised.

 Whether a process is continuous or discrete, the controller may employ one of two
methods to control it: closed loop control or open loop control. In closed loop control the
process variable is continuously compared to the process parameter by way of a feedback
loop. In open loop control the process is controlled without monitoring any process
variables. Level of control influences the type of control utilized. Basic device level
control is used to control devices or components of a larger process. Procedural machine
control is typical of machine and workstation level control applications. Coordinated
system control is the highest level and occurs when sensors, actuators, devices, and
individual machines are controlled and coordinated to perform processing.

PLCs were developed specifically for procedural machine and coordinated system
control. Thus, they exercise what is called discrete sequential process control in which the
parameters and variables of the system are changed at discrete moments in time. An event-
driven change occurs when the PLC executes a response to some event that has caused the
state of the system being controlled to change. A time-driven change occurs when the PLC
executes a response at either a certain time in the process or after a specific time lapse has
occurred.

A PLC is a microprocessor-based discrete process controller that uses stored
instructions in programmable memory to implement logic, sequencing, and math control
functions for procedural machine and/or coordinated system control of machines and
processes. The stored instruction set that is programmed into a PLC is called the work
cycle program.

PLC hardware includes processor, memory unit, power supply, I/O module, and
programming device. The processor examines the status of the input signals, executes the
logic and sequencing functions, and operates on the outputs. The memory unit stores the
work cycle program, I/O status information, and controller system operation information.
The power supply provides the power to the unit. The controller physically connects with
the sensors and actuators through the I/O module. The programming device provides a
means of entering the work cycle program into the memory module of the PLC.

PLCs have many advantages over hardwired control systems including easier
programmability, reprogrammability, small electrical control cabinets, easier

Introduction to Programmable Logic Controllers (PLCs) 415

maintenance, more convenient interfacing with other equipment, and the capacity to
perform many different control functions.

Sensors provide a means by which the controller interfaces with the process. Sensors
can be separated into three major categories; switches, transducers, and special purpose
sensors. Switches measure discrete process variables; numerous types are available
including pushbuttons, toggle switches, and limit switches. Transducers measure
continuous process variables and can be either analog or digital. Special purpose sensors
consist of self-contained devices having sensors and a controller specifically designed to
interface with the PLC. (A vision system is an example of a special purpose sensor.)

Actuators act on a process so that process variables are brought into agreement with
process parameters. They are classified according to the type of control signal
amplification used; these classifications include pneumatic, hydraulic, and electrical.
Pneumatic actuators include cylinders, air motors, and vacuum cups. Hydraulic actuators
work in much the same manner and have many of the same components as pneumatic
systems, including solenoid-actuated directional control valves. However, hydraulic
systems can generate much greater operating pressure and better positional control.
Electrical actuators include relays, electric motors, electric heaters, solenoids, and torque
motors.

The USA principle of “understand, simplify, and automate” is the preferred way to
approach automating processes. Conversion of a program of instructions to a work cycle
program helps give an operator a thorough understanding of the process and enables
simplification. A program of instructions lists the steps necessary to complete the process.
The work cycle program is a more detailed listing of the process steps linked to the
corresponding status of PLC inputs and outputs. A timing diagram also links the process
steps to the status of the PLC inputs and outputs; with it, the status of each of the inputs
and outputs can be tracked as a process moves through each step of the work cycle
program. The first task of the automating step of the USA principle is selection of
appropriate PLC for the process at hand.

The four major items for PLC model selection are I/O configuration, CPU
performance, communications, and programming. Once the appropriate PLC is selected,
the control system hardware can be designed and the sensors and actuators procured and
installed. At this point the system is ready for programming. PLC programming is the
topic of the next chapter.

416 Chapter 8

8.9 Key Words

8.10 Review Questions
 1. Discuss how a controller interfaces with a process.
 2. Define process variables and process parameters.
 3. Explain the difference between discrete and continuous process control.
 4. List the three levels of process control and discuss each.
 5. Explain the difference between event-driven and time-driven change.
 6. Define a work cycle program and discuss how it is created.
 7. Is the operating cycle of a PLC instantaneous? Explain.
 8. List and discuss each of the hardware components of a PLC.
 9. Discuss the three major types of sensors.
10. Explain the differences between contact and non-contact sensors. Give examples

of each.

basic device control
capacitive proximity switches
closed loop control
contact limit switches
continuous process control
continuous process parameter
continuous process variable
control panel
coordinated system control
discrete process control
discrete process parameter
discrete process variables
discrete sequential process control
electrical actuators
electrical relay
event-driven change
hardwiring
hydraulic actuators
inductive proximity switches
input scan
limit switch

non-contact limit switches
open loop control
operating cycle
optical encoder
optical proximity switches
output scan
pneumatic actuators
procedural machine control
process parameters
process variables
program scan
programmable logic control(ler) (PLC)
pushbuttons
scan time
solenoid actuated directional control valves
special purpose sensors
switches
time-driven change
timing diagram
toggle switches
transducers
USA principle
work cycle program

Introduction to Programmable Logic Controllers (PLCs) 417

11. Discuss the different classifications of actuators. Which classification is best for
high load and precise position control applications? Explain.

12. Explain the USA principle’s role in automating processes.
13. Explain the differences and similarities between a work cycle program and a

timing diagram.
14. List and discuss the seven steps required to automate a process.
15. List and discuss the four major considerations for selecting a PLC.

8.11 Bibliography
1. Groover, M.P., 2001, Automation, Production Systems and Computer-Integrated

Manufacturing, Second Edition, Prentice Hall, Upper Saddle River, New Jersey.
2. Derby, D., Design of Automatic Machinery, Marcel-Dekker, New York, NY 2005.

Morriss, S.B.,1995, Automated Manufacturing Systems, Glencoe/McGraw-Hill,
Columbus, Ohio.

419

Chapter 9
Programming PLCs

Contents
 9.1 Programming Concepts

 9.2 Ladder Logic Terminology

 9.3 Typical PLC Instruction Set

 9.4 PLC Programming Process

 9.5 PLC Program Simulation

 9.6 PLC Programming Example

 9.7 Summary

 9.8 Key Words

 9.9 Review Questions

9.10 Bibliography

Objective
The objective of this chapter is to explain ladder logic programming and demonstrate the
programming process for PLCs.

420 Chapter 9

9.1 Programming Concepts
The intent of this chapter is to instruct the reader on the programming of a PLC. By

“programming” we mean the act of issuing the PLC instructions or commands that will
execute the manufacturing tasks or steps of a process. If we assume we use the USA
principle, programming a PLC happens during the “automate” step. Consequently, the
following assumptions apply:

(i) A firm understanding of the process exists.
(ii) The process is as simplified as possible.
(iii) The process steps have been broken down into a work cycle program and timing

diagram (Chapter 8).
(iv) The PLC along with all sensors and actuators have been selected, installed, and

wired.

For example, consider the washing machine process of Chapter 8 and depicted in
Figure 9-0. The figure is a cutaway view of a typical washing machine with process steps
labeled. The figure is anatomically correct, but slightly modified for readability. For
instance, the fill solenoid is shown outside the machine. Figures 9-1 and 9-2 are replicated
from Chapter 8, showing the work cycle program and timing diagram, respectively.

Figure 9-0 Cutaway view of washing machine

Agitator Motor

Agitator

Tub Empty
Sensor

Tub

Stop
Button

Drain Pump

Spin Motor

Start
Button

Spin
Basket

Tub Full
Sensor

Fill
Solenoid

Water In

PLC Programming 421

Figure 9-1 Washing machine work cycle program

422 Chapter 9

Figure 9-2 Washing machine timing diagram

PLC Programming 423

Armed with the information in these two diagrams (I/O status and process steps) it is
now possible for us to transform the work cycle program and timing diagram into the
language of the PLC. The industry standard language of the PLC is a graphical language
called ladder logic. It uses graphically represented instructions to convert the work cycle
program into a logic control program that the PLC can use to control the process. This
chapter is dedicated to instructing the reader how to convert the work cycle program and
timing diagram into a ladder logic program. In order to accomplish this, we must
understand the basics of logic control and sequencing and a have a firm grasp of the basic
input and output PLC ladder logic instructions.

9.1.1 Logic Control, Sequencing, and Ladder Logic Diagrams
Logic control is a means to set the status of PLC outputs solely on the status of its

inputs. In logic control there is no memory of the historic values of the inputs; the values
assigned to the outputs are based on the input’s current state. Consider the work cycle
program shown in Figure 9-1. The first process step is to press the start button. When the
start button is pressed and the empty tank sensor is on, the solenoid valve opens, allowing
water to enter the tub, an event that depends exclusively on the status of the start button
and empty tank sensor inputs. The history of the state of these inputs is not retained by the
PLC or referred to when a decision is made about whether the solenoid valve should be
open. Only the current state of the inputs determines if the valve is opened.

In sequencing control, time-driven changes drive the status of the outputs. In many
processes certain tasks are executed after a period of time. For instance, in the washing
machine work cycle program the agitator motor is started by an event-driven change, the
tub being filled, but is stopped after a period of time. The majority of processes require
logic and sequencing control for proper task performance. PLC ladder logic programs
execute both logic and sequencing control.

Older washing machines used hardwired relay logic (and sequencing) control to
execute the work cycle program, so the logic control program consisted of electrical
sensors wired directly to relays and timers, which in turn were wired to the electrical
actuators. The drawing that indicated how to physically wire the sensors, actuators, relays,
and timers was called a ladder logic diagram, named this way because it resembles a
ladder, with the logic elements (the sensors and actuators) making up the (horizontal)
rungs and the power to the elements making up the (vertical) rails of the ladder (Figure 9-
3). Figure 9-3(a) shows the physical wiring of two switches and two lights. The lights are
used to represent any type of actuator, such as a relay, motor, or solenoid. The first rung
light L1 is off because switch S1 is open. Conversely the second rung light L2 is on

because switch S2 is closed. Figure 9-3(b) shows the same switch and light connections as

in a PLC ladder logic diagram. Note the ladder nomenclature. With the addition of more
logic elements (rungs), the resemblance to a ladder becomes even more apparent.

424 Chapter 9

Figure 9-3 Ladder logic diagram

For Figure 9-3(a), light L2 of rung 2 is on because electrical continuity exists. Thus,

for rung 1, light L1 will only light when switch S1 is closed, achieving electrical

continuity. In the PLC ladder diagram, rather than being concerned about electrical
continuity we care about logic continuity. For the first rung to be true (i.e., output L1 is lit)

there must be logic continuity. If switch S1 is true (equivalent to on) then L1 is true (on)

and the rung will be true (on). This is the essence of logic programming.
When there is only one input and one output per rung the logic is straightforward.

However, when multiple inputs for a single output exist, the logic becomes slightly more
complicated. This dictates the use of logic gates and corresponding truth tables to clarify
the logic. Logic gates provide a specific output based on the status of the inputs of that
rung. The gates are the switches of the rung. The truth tables shown here list all the I/O
scenarios of gates (or switches); output is designated, per the truth table nomenclature, as
TRUE (ON). Indeed, from this point, all words that are all capitalized refer to truth table
values or operators. Three basic logic gates commonly used in PLC programming are the
AND, OR, and NOT gates. The electrical circuits for each of the gates are shown in Figure
9-4. Figure 9-5 shows the truth table for each gate.

Figure 9-4 Logic gates

(a)

120V

S2

L2

L1

S1

(b)

S2 Ladder
Rails

Ladder
Rungs

S1

Y

X1 Y2

AND
Gate

Y

Y
X1

X1X2

OR
Gate

NOT
Gate

PLC Programming 425

Figure 9-5 Logic gate truth tables

Since we are exercising discrete process control with discrete inputs and outputs, the
only possible I/O values are ON or OFF. These are binary states in which 0 represents
FALSE (equivalent to OFF) and 1 represents TRUE (ON). Accordingly, truth tables
typically list the I/O status in terms of 0 or 1.

In Figure 9-5 the AND gate is TRUE when both inputs are TRUE. The OR gate is
TRUE if either or both inputs are TRUE. The NOT gate has only one input, and outputs
are the opposite state of the input. The NOT gate (Figure 9-4, far right), is able to output
the opposite of the input through the principle of least resistance. When switch X1 is open,

electrical continuity through the light is achieved and the light is lit. However, when X1 is

closed, the electricity has two paths to follow—either through the light or
the switch. Since the switch will have lower resistance than the light, the electricity
follows the path of least resistance and flows through the switch instead of the light.
Therefore, the light is NOT lit when switch X1 is closed.

The PLC ladder logic diagram for the AND and OR gates are very similar to Figure
9-5. The NOT gate, however, is shown very differently in a PLC ladder logic diagram.
This is because there is an alternative and perhaps more conventional way to represent the
NOT gate than is shown in Figure 9-4. The alternative method makes use of a normally
closed (NC) contact. Recall from Chapter 8 that normally closed contacts are closed until
the switch is “made” or pushed. The pushing of the switch causes the contacts to open.
This is illustrated in Figure 9-6.

Output Output Input Output
X1 X2 Y X1 X2 Y X1 Y
0 0 0 0 0 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 1
1 1 1 1 1 1

NOT Gate
Inputs

AND Gate OR Gate
Inputs

426 Chapter 9

Figure 9-6 Alternative circuit for the NOT gate

If it is specified that the normally closed switch is OFF when it is not pushed and ON
when it is pushed, the truth table will be as shown in Figure 9-5. Accordingly, the PLC
ladder logic diagram for the AND, OR, and NOT gates is shown in Figure 9-7. Note how,
for the NOT gate, the X1 input is represented with a normally closed symbol. All other

inputs are shown with the normally open symbol.

Figure 9-7 PLC ladder logic diagram for the AND, OR and NOT gates

Note the branching in the OR gate rung. This is how multiple inputs are combined in
one rung. In general, there can be multiple inputs per rung, but only one output per rung.
Additionally, an output (Y) can be represented on the same rung and/or on a different rung
as an input.

Light
(OFF)

Button Pushed
(Input ON)

X1

Button Not Pushed
(Input OFF)

X1

Normally Closed
Push Button

Branch

Y

Y

Y

X1

X1 X2

X1

X2

AND

OR

NOT

PLC Programming 427

Figure 9-8 Truth tables for the NAND and NOR gates

Two additional logic gates, the NAND and the NOR, can be created by combining
the three basic gates shown in Figure 9-7. The NAND gate is created by combining the
AND gate and the NOT gate in sequence. Similarly, the NOR gate is created by pairing
the OR gate and NOT gate in sequence. The truth tables are shown in Figure 9-8.

We can easily discern when we compare these tables to the truth tables of Figure 9-5
that the NAND gate is opposite the AND gate, and the NOR gate is opposite the OR gate.
In order to represent the NAND and NOR gates in a PLC ladder logic diagram it is
necessary we use two sequential rungs. This is shown in Figure 9-9.

Figure 9-9 PLC ladder logic for the NAND and NOR gates

The NAND gate has one rung for the AND gate followed by a NOT gate rung. The
output from the AND rung (Y1) serves as the input in the NOT rung. Note that the output

of interest is the output from the NOT rung (Y). The NOR gate uses the same approach.
This methodology (i.e., combining the basic logic gates within and among multiple

rungs of a ladder logic diagram) is the essence of how the work cycle program gets
translated, converted, or programmed into the final ladder logic diagram program that
directs the PLC in control of the process. For complicated control applications, this task
may appear monumental. However, with some effective programming aids, the

Output Output
X1 X2 Y X1 X2 Y
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0

Inputs
NAND Gate NOR Gate

Inputs

Y1

Y

X1 X2

Y1

YY1

Y1
X1

X2

NAND
Gate

NOR
Gate

428 Chapter 9

programming process can be greatly simplified. Accordingly, the remainder of this
chapter will be devoted to instructing the reader on PLC ladder logic programming.

The next two sections address ladder logic terminology and the basic ladder logic
instruction set. Subsequent sections provide a detailed programming procedure,
simulation information, and programming examples.

9.2 Ladder Logic Terminology
Figure 9-10 again shows the PLC ladder logic for the NAND gate. The logic

instructions on the rungs of the ladder are separated into condition instructions and output
instructions. Condition instructions examine the status of the inputs; output instructions
energize the outputs.

Figure 9-10 PLC ladder logic for the NAND gate

The variable listed under the instruction is the instruction address. For the first
condition instruction on rung 1, the X1 variable is the address of the instruction.

Depending on the PLC brand, these addresses may be numbers, letters, or some
combination. The instruction address typically has three functions: It provides a name for
the instruction, specifies the location of the status bit of the instruction in the data table,
and specifies the function of the instruction.

The instruction may reference either a real external physical sensor or an actuator
wired to the PLC or an “artificial” internal logic element of the PLC. External sensors and
actuators are wired to the PLC input and output terminals, respectively. An example of the
external sensor and actuator wiring is shown in Figure 9-11. Note that actual wiring is
dependent on type of sensor or actuator and PLC terminal available. PLC documentation
must always be consulted for specific wiring information so dangerous and damaging
wiring mistakes are avoided. Input terminals correspond with address of the condition
instructions listed in the PLC ladder logic diagram.

Y1

Y

X1 X2

Y1

Output
InstructionCondition

Instructions

Examine ON
Instructions

Output
Energize

Instructions

Examine OFF
Instructions

PLC Programming 429

Internal logic elements act the same way as real sensors and actuators; however, they
exist only in the ladder logic program. They are used to create the appropriate conditions
to complete the work cycle program logic. For example, the Y1 output instruction in rung

1 top rung of Figure 9-10 is an internal logic element. Correspondingly, it is an internal
condition instruction in rung 2. It only exists in the ladder logic program as a means to
complete the logic of the NAND gate.

Figure 9-11 External input and output wiring example

The data table mentioned above is the portion of the PLC’s memory wherein the
status of all the inputs and outputs is stored. This status is stored as a bit. This “status bit”
has value 0 for OFF (FALSE) and 1 for ON (TRUE).

The memory storage unit for an instruction is called a word. Typically, one
instruction takes up one word of memory. Thus, PLC manufacturers often specify the
amount of PLC memory available in terms of words.

There are only two types of condition instructions: Examine_ON and Examine_OFF.
An Examine_ON condition instruction causes the PLC to examine the status bit at the
address specified for an ON condition. Thus, when the bit is 1 or ON, the condition
instruction is TRUE. The condition instructions of rung 1 of Figure 9-10 are Examine_ON
instructions. When the status bit of the other type of condition instruction—
Examine_OFF—is 0 or OFF, the condition instruction is TRUE.

Supply
Voltage

External Input Device

Supply
Voltage

External
Output

PLC Input
Terminal

PLC Output
Terminal

11

11

12

12

13

13

14

14

15

15

16

16

X1

Y

COM

1

2

3

4

5

COM

6

7

8

9

10

COM

430 Chapter 9

As we show in the next section, there are many types of functions an output
instruction can perform. Some are just relays that close electrical contacts to energize an
actuator; others act as timers, counters, or perform some other advanced function.
However, in order for a function to be executed the preceding condition instructions must
be TRUE. If we have this logic continuity the PLC will set the output instruction’s status
bit for the address specified to 1, thereby turning it ON or making it TRUE. When the
output instruction is TRUE it will perform its function.

The output instructions shown in Figure 9-10 are called Output Energize instructions.
Output Energize instructions are the simplest output instructions. They function as relays,
thus they close their contacts when energized. Additional output instructions will be
discussed in the next section.

Now let us consider the PLC ladder logic program of Figure 9-10 in terms of how the
PLC will evaluate it. Recall from Chapter 8 that a PLC’s operating cycle consists of three
scans. The PLC first performs an input scan, in which it reads and stores the status of the
inputs (0 or 1). The next scan is the program scan, in which it evaluates the logic of the
program. The final scan is an output scan, in which the outputs are updated. Thus, during
the input scan of the NAND gate, the PLC will examine X1, X2, and Y1 and store the

status in the appropriately addressed status bit in the data table. During the subsequent
program scan, the PLC will examine the status bits according to the ladder logic program
and determine the corresponding status of the outputs and place that data in the status bits
of the data table. During the last scan, the output scan, the PLC will transfer the status bit
information to the corresponding output terminal. Older PLCs could complete this cycle
about 67 times per second. Modern PLCs have operating cycles in the range of 1.5
milliseconds to 3.0 milliseconds (300+ times per second). The three scans are depicted
graphically in Figure 9-12.

Figure 9-12 PLC operating cycle

O
u
tp

ut
Sca

n

Read Input
Terminals

Evaluate Program Logic

Read Status Bits of
Data Table

Store Status in Status
Bit of Water Table

Update, Output
Terminals

Read Status
Bits of Data Table

Stove Output Data
To Status Bits of
Data Table

PLC
Operating

Cycle

Program Scan

Input S
ca

n

PLC Programming 431

Armed with the information presented in this section, the reader is encouraged to
review the truth tables of each of the logic gates presented and verify the results therein.

9.3 Typical PLC Instruction Set
All of the condition and output instructions offered by the PLC and available to the

programmer for converting the work cycle program into the PLC ladder logic program are
collectively called the PLC’s instruction set. Most modern PLCs have a rather extensive
instruction set. In addition to five basic instructions they include instructions for
subroutines, for/next loops, table functions, and analog PID functions, to name a few.
Additionally, the number and type of advanced instructions available is dependent on the
PLC brand and model. However, for most discrete process control applications an
effective conversion of the work cycle program into a PLC ladder logic program can be
achieved with a thorough understanding of just five basic instructions. All other
instructions in the PLC’s instruction set are derived from the operating concepts of these
five. Thus, the ability to use the more advanced instructions will be much easier once an
understanding of the basic five instructions is achieved. Therefore, the focus of this
section is to provide the reader with a solid grasp of these five basic instructions. These
instructions are referred to as the basic PLC instruction set because, at a minimum, all
PLCs have these instructions available.

The basic PLC instruction set is shown in Figure 9-13. It contains the relay type
instructions, Examine_ON, Examine_OFF, and Output Energize discussed in the last
section. These instructions are for the event-driven changes that occur in the process being
controlled. The last two output instructions, timer and counter, provide the PLC with
sequencing control. The symbols and programming formats of these two instructions may
vary among different PLC brands. However, the use and operation of the instructions will
be essentially the same as we present them here.

The timer instruction provides a means for the PLC to issue a time delay before
proceeding to the next operation of the work cycle program. Again consider the washing
machine work cycle program of Figure 9-1. A timer would be used to control the time
delay between the start and stop “Wash (agitate tub)” steps. Once the “Wash (agitate tub)”
step is started, the timer would control the length of time the agitator motor runs. Timers
start functioning, that is to say, timing, at the point where preceding condition instructions
on the rung are TRUE. Once the set time is reached the instruction becomes TRUE.
Timers are reset either by the preceding condition instructions becoming FALSE or by a
separate instruction. How one is reset depends on the PLC brand. For the purposes of this
text, our timer instruction will be reset when the preceding condition instruction becomes
FALSE.

432 Chapter 9

Figure 9-13 Basic PLC instruction set

PLC Programming 433

Counters provide the PLC with a means of counting the number of times the
preceding condition instructions change state from FALSE to TRUE. This is called a logic
pulse train. When the count reaches a preset value, the instruction becomes TRUE.
Counters require a separate instruction for resetting. For our washing machine cycle
example, a counter could be used to control the number of rinse cycles. Assume that one
rinse cycle does not adequately remove all the soapy water from the clothes. So, two rinse
cycles would be desired. Instead of rewriting the work cycle program shown in Figure 9-1,
a counter could be added to the logic so that two rinse cycles occur. Thus, the steps from
the start of “Fill tub for rinse” to the stop for “Drain” would be repeated two times.

9.3.1 Relay Output Instruction Example
The Output Energize relay instruction is used whenever it is desirable to turn on an

output in response to certain conditions being met. This type of instruction is, necessarily,
used extensively in PLC ladder logic programming. Recall that the output can be an actual
external device such as a light, motor, solenoid, or an internal logic device. Consider the
following example.

Figure 9-14 Motor-starting example

Example 9.1
A PLC is used to control the starting of a motor (Figure 9-14). Note that the PLC is

inside the control panel and already wired to the pushbutton inputs and the motor and light
outputs. The motor is started when the START pushbutton is pressed. The motor will
continue to run once the START button is released. The motor will not stop running until
the STOP pushbutton is pressed. The motor will then remain off until the START
pushbutton is pressed again. A light on the control panel will go on whenever the motor is
running. Develop the work cycle program and corresponding PLC ladder logic program of
instructions to control this process.

Motor ON
Light

Motor

START

STOP

434 Chapter 9

Solution
The process steps can be summarized as:

• Press the START button to turn ON the motor and light.
• Press the STOP button to turn OFF the motor and light.

An important first step is: identify and document the inputs and outputs for the
process. The inputs are the START button (labeled S1) and the STOP button (labeled S2).

The motor is an output labeled M and the light an output labeled L. Accordingly, the work
cycle program is shown below in Figure 9-15:

Figure 9-15 Example 9-1 work cycle program

For relatively simple processes a good method for one to use in developing the PLC
ladder logic is to write out the input conditions and output status statement for the process
in terms of the AND, OR, and NOT logic elements discussed previously. The ladder logic
can be taken directly from each statement:

• The motor (M) and light (L) are ON when S1 is ON AND S2 is NOT ON OR if

they were previously turned ON AND S2 is NOT ON.

•
Based on the first half of the above statement, there is an AND logic gate between S1

and S2. S1 will use an Examine_ON condition statement; S2 will be an Examine_OFF

condition statement (because of the NOT logic gate in the statement). Since there can be
only one output per rung, we will put the motor relay output instruction (M) on the first
rung. Since the status of the light is based solely on the status of the motor, we will use the
motor status (M) as an internal logic element to turn on the light.

PLC Programming 435

Figure 9-16 Example 9.1 preliminary ladder logic

The preliminary ladder logic is shown in Figure 9-16 is incomplete because it does
not include the OR logic mentioned in the condition and output status statement. A branch
in rung 1 is required to achieve an OR logic gate and essentially “latch” the motor on once
it has started AND S2 is NOT on. The AND after the OR in the second half of the status

statement indicates that you must place the branch prior to the ANDed switch S2. The

branch will use an Examine_ON condition of the motor (M) status. The completed ladder
logic program of instructions is shown in Figure 9-17.

Figure 9-17 Completed ladder logic program of instructions for Example 9.1

The first rung of the ladder logic program shown in Figure 9-17 is commonly used in
industry to control a motor starter circuit. The reader is encouraged to verify that the logic
of this diagram satisfies the process steps and the work cycle program.

9.3.2 Timer Output Instruction Example
The timer output instruction provides a method of executing a time-driven change in

the process being controlled. It creates a time delay in the sequence of process steps of the
work cycle program. “Timing” begins when condition instruction(s) of the rung are

M

M

S1 S2

L

M

M
M

S1 S2

L

436 Chapter 9

TRUE. The timer output instruction, however, does not become TRUE until it has reached
the preset time delay. It is reset to OFF (FALSE) (for the purposes the PLCs discussed in
this text) when the condition instructions change to OFF (FALSE). The use of a timer in a
ladder logic program is demonstrated in the following example.

Example 9.2
The ladder logic program in Example 9.1 is to be modified. In addition to turning the

motor and light on, the PLC is to automatically shut the motor and light off after 2 minutes
(120 seconds). All other logic conditions listed in Example 9.1 still apply. Develop the
work cycle program and corresponding PLC ladder logic program to control this process.

Solution
The process steps are listed in the problem description and can be summarized as:

• Press the START button to turn ON the motor and light.
• Let the motor run for 120 seconds and then turn OFF the motor and light.
• Press the STOP button to turn OFF the motor and light.

Again, the inputs are the START button, labeled S1, and the STOP button, labeled S2.

The motor is an output, labeled M, as is the light, labeled L. A timer output instruction,
labeled T, will be added to turn the motor and light off after 120 seconds. The work cycle
program is shown below in Figure 9-18:

Figure 9-18 Example 9.2 work cycle program

The input condition and output status statement developed in Example 9.1 is
modified according to what is shown in italics below.

PLC Programming 437

The motor (M) and light (L) are ON when S1 is ON AND S2 is NOT ON, AND the

timer (T) is NOT ON, OR if they were previously turned ON AND S2 is NOT ON AND the

timer (T) is NOT ON.
The motor (M) and light (L) will turn OFF after being ON for 120 seconds.
Refer to Figure 9-17: The first statement above indicates that an Examine_OFF

condition instruction for the timer (T) should be ANDed with the S1 and S2 switches.

Additionally, another rung will be needed in order to start the timer. This rung will consist
of an Examine_ON condition instruction of the motor (M) status. The modified ladder
logic program is shown in Figure 9-19.

Figure 9-19 Example 9.2 completed ladder logic diagram

Explanation of the logic shown in Figure 9-19: Assume an initial starting state in
which both the motor and light are off. When the operator presses the START switch the
Examine_ON input condition S1 becomes TRUE. Since the STOP button has not been

pressed, the Examine_OFF input condition S2 is TRUE. Additionally, since the timer (T)

has not “timed out,” the Examine_OFF input condition T is TRUE. Thus, logic continuity
exists and the motor (M) will be switched on. When the START button is released, logic
continuity still exists because of the OR branch containing the Examine_ON input
condition statement (M). The moment the motor is started this input condition becomes
TRUE, establishing an alternative logic continuity path, which keeps the motor running.
For the next rung, when the motor (M) is switched on in the first rung, the Examine_ON
input condition of rung 2 will be TRUE, which establishes logic continuity and turns on
the light (L). As soon as the motor is turned on, logic continuity also exists in rung 3
because the Examine_ON condition (M) becomes TRUE. This activates the timer to begin
“timing” the 120 seconds. When the timer reaches the 120-second preset value, the timer
output condition turns ON or becomes TRUE. This causes the Examine_OFF input
condition of rung 1 to change to FALSE, breaking the logic continuity of the rung. This
then turns OFF the motor, causing the following chain of events:

M

M M

S1 S2 T

L
120s

M

T

TMR

438 Chapter 9

• The Examine_ON input condition of the OR branch of rung 1 turns OFF or goes
FALSE, thereby losing an alternative logic continuity path.

• Rung 2 loses logic continuity and the light goes off.
• Rung 3 loses logic continuity and the timer is reset to off.
• After this sequence, everything is turned off. The only way to restart the motor is to

press the START button and repeat the chain of events.

9.3.3 Counter and Reset Output Instruction Example
As the name implies, the counter output instruction allows a count of the number of

times a preceding condition instruction changes from FALSE to TRUE. The counter
output instruction becomes TRUE, or ON, once the accumulated count value reaches a
preset value. This gives the PLC the ability to count the number of times an event-driven
change occurs. Since the counting is accomplished on one rung, a separate rung and
instruction is needed to reset the counter back to zero. This additional output instruction is
called the reset output instruction.

The reset output instruction, along with a counter output instruction, is shown in
Figure 9-20. Its function is to reset the counter by changing the counter output instruction
to FALSE and resetting the count to the start value (typically 0). This reset occurs when
the reset output instruction goes TRUE.

The ladder logic program in Figure 9-20 counts the number of times the
Examine_ON condition instruction with the address of X changes from FALSE to TRUE.
Once the address X has changed 10 times, the counter output instruction C turns ON, or
becomes TRUE. Once the counter output instruction becomes TRUE, it stays TRUE until
reset by the reset output instruction. To make the counter output instruction FALSE the
Examine_ON condition instruction Y must become TRUE, which, because of logic
continuity, makes the reset output instruction TRUE, thereby turning OFF, or making
FALSE, the counter output instruction C. For the counter to begin counting again, the Y
Examine_ON condition instruction must be turned OFF or made FALSE.

The reset output instruction must have the same address as the counter instruction.
This is necessary because there may be more than one counter in a program; it is important

Figure 9-20 Counter and reset output instruc-
tions ladder diagram

X

C

10

Y

C

RST

CNT

PLC Programming 439

the intended counter be reset. The use of a counter and reset output instruction is
illustrated in the next example.

Example 9.3
Consider the application shown in Figure 9-21. An electric motor is being used to

drive a conveyor that moves and dumps a product into a bin. When 100 products are
dumped into the bin, the conveyor automatically shuts off. An optical proximity switch
(O1) is used to count the product. A PLC located inside the control panel controls the

process. Develop the work cycle program and corresponding PLC ladder logic program to
control this process.

Figure 9-21 Example 9.3

Solution
The process steps are listed in the problem description; they can be summarized as:
• Press the START button to turn ON the conveyor motor and control panel light.
• The conveyor runs until 100 parts are dumped in the bin, after which the conveyor

and light are turned OFF.
• The STOP button can be pressed at any time to turn OFF the conveyor and light.
• The PLC inputs and corresponding addresses are as follows:
• START button – S1

• STOP button – S2

• optical proximity switch – O1.

• The PLC outputs and corresponding addresses are:
• conveyor motor – M
• control panel light – L
• counter output instruction – C
• reset output instruction − C.

Motor

Conveyor

BIN

Optical Proximity
Switch (O1)

START STOP

440 Chapter 9

Based on this information the work cycle program can be developed as shown in
Figure 9-22 on page 436.

Figure 9-22 Example 9.3

PLC Programming 441

The input condition and output status statements are similar to the previous examples,
but with some added verbiage for resetting the counter. The statements are shown below:

The conveyor motor (M) and light (L) are on when S1 is ON AND the optical prox.

switch (O1) is NOT ON AND S2 is NOT ON AND the counter (C) is NOT ON, OR if the

conveyor motor and light were previously turned ON AND S2 is NOT ON AND the

counter (C) is NOT ON.
The conveyor motor (M) and light (L) will turn OFF after the optical prox. switch

(O1) cycles off and on 100 times.

The counter (C) will be RESET each time S1 is pressed.

The completed ladder logic program is shown in Figure 9-23. It is assumed that the
optical prox. switch is wired such that it is “made” ON (TRUE) when a product has
broken the light beam. Thus, the Examine_OFF condition instruction for the optical prox.
switch in rung 1 is necessary to prevent the operator from starting the conveyor when a
product is blocking the beam. This is done to prevent a miscount of the product. The
START switch S1 is the logical choice to reset the counter. Each time the conveyor is
started the counter will turn OFF and the count will be reset to zero. The reader is
encouraged to verify that the ladder logic program of instructions shown in Figure 9-23
satisfies the process flow.

Figure 9-23 Ladder logic program for Example 9.3

9.4 PLC Programming Process
The PLC programming process involves converting the work cycle program and/or

timing diagram of the machine, workstation, or system being controlled into the language
of the PLC. As we saw, it is effective for a programmer to write input condition and output
status statements in terms of the basic logic gates when developing ladder logic programs.

O1

M M

S1 S2 CO2

C

100

S1

C

RST

CNT

M

L

442 Chapter 9

However, as applications become more complex this method alone can become
complicated and cumbersome. Thus, additional programming aids are often needed to
simplify the complex logic into basic logic gate terminology. One such programming
method found to be effective is that of basing the ladder logic program on the different
states or modes of operation of the system being controlled. A thorough discussion of this
method is given next.

9.4.1 Using State Diagrams to Develop Ladder Logic Programs
As previously stated, logic control provides a means to set the status of the outputs of

the PLC solely on the status of its inputs. When a PLC-controlled machine is performing
its intended function(s), the status of its outputs will define its mode, or state, of operation.
States are modes of operation for which the machine is performing an identifiable activity
that has to be initiated and then stopped.

Input status facilitates the transition from one state to another. Thus, viewing
machine operation in terms of states as defined by the outputs and transitions as defined by
the inputs can greatly aid the development of the PLC’s ladder logic program. An
effective tool for visualizing the process in these terms is a state diagram.

A state diagram graphically displays the various states and corresponding transitions
between those states of the machine or system. Consider the chemical treatment system
shown in Figure 9-24. This system consists of a large tank, a start button, an inlet valve, an
outlet valve, a tank empty float switch, and a tank full float switch.

Figure 9-24 Chemical treatment system

Full Float
Switch

Empty
Float

Switch

Timer

Outlet
Valve

Start
Button

Inlet
Valve

PLC Programming 443

The basic process is this: A start button is pressed to fill the tank with chemicals; the
chemicals time are allowed to react; the reacted chemicals drain from the tank.
Accordingly, the work cycle program is shown in Figure 9-25.

Figure 9-25 Chemical treatment system work cycle program

The first step in developing a state diagram is identification of the different states of
the machine or system. For this example the states are fairly obvious and include an idle
state, a fill tank state, a chemical reaction state, and a drain tank state. Most systems will
have an idle state. “Idle” is typically the initial state of a system when a process has not
started—the waiting period for input to switch, or transition, to another state.

When the different states of the system are not readily discernable, one should look at
the work cycle program. By definition each state’s output status will be unique. The work
cycle program confirms there are four identifiable states, as shown in Figure 9-26.

Figure 9-26 Identifying states of the chemical treatment system

444 Chapter 9

The next step involves identifying the transitions between the states. The transitions
can also be identified from the work cycle program as shown in Figure 9-27. Note that
transitions occur when inputs change from off (0) to on (1).

Figure 9-27 Identifying state transitions of the chemical treatment system

Once the states and transitions are identified, the state diagram for the system can be
constructed (Figure 9-28). States are shown within the bubbles and transitions are shown
as lines between states. Arrows indicate the direction of the transition. For instance,
pressing the START button causes the empty state to transition to the fill state. An
engaged full float switch causes the fill state to transition to the chemical reaction state.
When the chemical reaction timer times-out, the transition from chemical reaction state to
drain state occurs. Finally, the tank empty float switch causes the drain state to transition
to the tank empty state. The status of the outputs for each of the states is shown in table
form in Figure 9-29, which is the state table for the system.

Figure 9-28 State diagram for the chemical treatment system

ST = 1
FFS = 1

RT = 1 EFS = 1

Fill
Tank

Drain
Tank

Chemical
Reaction

Idle

PLC Programming 445

Figure 9-29 State table for the chemical treatment system

The PLC ladder logic program is developed when the state diagram and
corresponding state table are completed. First the state logic is written per the state table.
Then the transition logic is written, again as defined by the state diagram.

State logic is written through the use of internal logic elements to set the output status
of each state as follows:

• Define each active state as an Examine_ON input condition with a unique
“internal” address.

• Create a rung for each output.
• Use the appropriate state Examine_ON input condition to activate the appropriate

output. If more than one state activates an output they are to be “ORed” together
on that rung.

• For the chemical treatment system four states are defined; however, only three are
considered active states. The idle state is not an active one because none of the
outputs is ON (TRUE). The three remaining states are assigned the following
unique addresses for their Examine_ON input conditions:

• Fl_T; Fill tank state
• Chm_R; Chemical reaction state
• Dr_T; Tank draining state.

These Examine_ON input conditions turn on the appropriate output for each state as
defined by the state table (Figure 9-30). Note that for this example only one rung is needed
for each state. However, in many applications more than one output will be in the ON
condition for each state; hence, often each state has more than one rung in the state logic
section.

446 Chapter 9

Figure 9-30 State logic for the chemical treatment system

Now let us confirm that the state logic matches the state table. When the system is in
the fill state the Fl_T Examine_ON input condition will be TRUE, which, in turn, turns on
the inlet valve. When the system is in the chemical reaction state, the Chm_R
Examine_ON input condition is TRUE, activating the timer. Finally, when the system is in
the drain state, the Dr_T Examine_ON input condition is TRUE, activating the outlet
valve.

In writing state logic it is important that a programmer focus only on turning on or
setting the correct outputs for each state. The way each state gets activated or deactivated
is determined by the transition logic, which will be addressed next.

The role of the transition logic is to provide instruction for a system’s movement
between each state. In so doing, the transition logic turns on, or activates, the desired state
and deactivates all others. Turning on is accomplished through activation of an internal
relay with the same address as the Examine_ON input condition of the state logic. The
transition ladder logic is created with reference to the state diagram, following the simple
rules below:

• Transition lines into the state bubble of the state diagram are Examine_ON input
conditions.

• Transition lines out of the state bubble of the state diagram are Examine_OFF input
conditions, which are ANDed with the lines into the bubble.

• Multiple transition lines into the state bubble should be ORed.
• Multiple transition lines out of the state bubble that lead to another state require a

counter to differentiate the logic paths.

Referring to Figure 9-28 and following these rules, we develop the transition logic for
the chemical treatment system. We start with the fill tank state. It has one line into it and
one out. So, the transition logic for this state can be written as shown in Figure 9-31.

Chm_R

Dr_T

IV

FLT _

BT

OV

TMR

PLC Programming 447

Figure 9-31 Transition logic for the fill tank state of the chemical treatment system

 Notice the use of the Fl_T Examine_ON input condition on the ORed rung. Because
the start button is a pushbutton switch, the ORed rung is necessary to latch on the fill tank
state. This ORed line is not shown on the state diagram as a general rule. However, if the
programmer deems it necessary, it could be shown as a latch loop on the state diagram, as
indicated in Figure 9-32.

Figure 9-32 Modified state diagram

The transition logic for the chemical reaction state is shown in Figure 9-33.
Reference the state diagram showing the full float switch was ANDed with an
Examine_OFF reaction time complete relay input condition (RT). The RT is activated
when the chemical reaction timer (BT) has timed out. Recall that the chemical reaction
timer (BT) begins its countdown when the chemical reaction state is activated (refer back
to Figure 9-30). When the countdown is complete, BT becomes TRUE, which makes RT
TRUE, which, in turn, deactivates the chemical reaction state.

ST = 1

Latch
Loop

Latch
Loop

FFS = 1

FLT

Dr_T

RT = 1 EFS = 1

Fill
Tank

Drain
Tank

Chemical
Reaction

Idle

448 Chapter 9

Figure 9-33 Transition logic for the chemical reaction state of the chemical treatment system

Accordingly, the transition logic for the drain tank state can be written as shown in
Figure 9-34.

Figure 9-34 Transition logic for the drain tank state of the chemical treatment system

Once the transition logic is complete, it is combined with the state logic to form the
ladder logic program shown in Figure 9-35. The reader is encouraged to verify both the
state logic and transition logic in relation to the work cycle program, state diagram, and
state table.

Figure 9-35 Ladder logic program for the chemical treatment system

PLC Programming 449

State diagrams are not the only method for developing ladder logic programs. A more
common method is to write the program based solely on prior programming experience
and then debug it until it works adequately. The author terms this approach the trial and
error programming method. It can be effective for relatively simple programs, and with
great effort it can work with more complex programs. However, the time necessary to get
the program to function properly is often substantial. Additionally, the lack of program
organization will make future debugging and modifications difficult. Programming from
state diagrams, on the other hand, yields significantly better organized programs. The
programs are simple to follow, enabling much easier troubleshooting and future
modification. The disadvantage is that programs written using state diagrams tend to be
larger, requiring more PLC memory. However, this is a small price to pay for an effective,
well-organized program. For this reason the state diagrams method will be used
exclusively in this text.

9.4.2 PLC Programming Process Steps
In this section we take the method just outlined and define it in terms of basic

programming steps necessary to convert a work cycle program into a ladder logic program
and load it on the actual machine. Before attempting this we recall the assumptions of
Section 9.1: (i) a firm understanding of the process exists; (ii) the process is as simplified
as possible; (iii) process steps have been broken down into a work cycle program and
timing diagram (Important: At this point the work cycle diagram/timing diagram typically
only shows real physical or external I/O); (iv) the PLC along with all sensors and actuators
have been selected, installed, and wired.

Even if these assumptions hold, the PLC programming process is a dynamic,
complicated process. However, eight basic programming steps can greatly simplify the
process and yield effective programs:

1. Identify and document the system states on a state diagram.
System states are modes of operation in which the machine is performing an

identifiable activity that has to be initiated, and then stopped. The work cycle program
details the process steps necessary to execute the process. From this list of process steps
one can identify system states from the status of the outputs. Each state will have a unique
set of output values. Unlike the example in the previous section, the work cycle program
may show a given state more than once. Once the states are identified, document them by
assigning a label for each state and drawing them on the state diagram.

2. Identify and document the system transitions on a state diagram.
From the work cycle diagram identify that which causes each state to start execution

and to cease execution. Identify both types of transition—either event-driven or time-
driven—and which input or output initiates the change. It is important to note that at this
point the work cycle diagram/timing diagram typically only shows real physical or

450 Chapter 9

external I/O. In other words, there may not be a physical external input or output that can
initiate the transition. Thus, an internal relay output, timer, or counter may be necessary to
institute the event- or time-driven change. It is during this step of the programming
process that the internal I/Os are identified.

Once the transitions are identified, add them as lines between the states documented
in the previous step. Note that it is possible for a state to have more than one transition
away from the state or more than one transition to it.

3. Create the state table.
• From the information gathered in creating the state diagram, create the state table.

The state table documents the status of the outputs for each of the states, as was
demonstrated in the previous section.

4. Write the program state ladder logic per the state table.
• State logic is written through internal logic elements that set the output status of

each state as follows:
• Define each active state as an Examine_ON input condition with a unique

“internal” address.
• Create a rung for each output.
• Use the appropriate state Examine_ON input condition to activate the appropriate

output. If more than one state activates an output, they are to be ORed together on
that rung.

5. Write the program transition ladder logic per the state diagram.
• Transition logic turns on the desired state by activating an internal relay with the

same address as the Examine_ON input condition of the state logic. The transition
ladder logic is created in reference to the state diagram according to the following
rules:
• Transition lines into the state bubble of the state diagram are Examine_ON

input conditions.
• Transition lines out of the state bubble of the state diagram are Examine_OFF

input conditions that are ANDed with the lines into the bubble.
• Multiple transition lines into the state bubble should be ORed.
• Multiple transition lines out of the state bubble that lead to another state require

a counter to differentiate the logic paths.

6. Add process interrupt logic to the program.
The example programs developed thus far provide control of the process only under

normal circumstances. However, often a process will need to be stopped or interrupted if
something occurs unexpectedly. This scenario is defined as a process interrupt. Some
design features that are used to handle process interrupts include emergency stop switches

PLC Programming 451

or other sensors that are added in case something goes wrong with the process. By
definition such an interrupt does not occur frequently enough to be considered a state of
the process. Thus, process interrupt logic is generally added after the state and transition
logic has been developed. Typically, process interrupt logic is added to the state logic.
However, if process interrupts are expected to occur regularly then they may be included
on the state diagram. When this is the case a process interrupt is probably more of a typical
system state. The addition of process interrupts to the state logic is explained in the
program example of Section 9.6.

7. Simulate the ladder logic program of instructions to verify logic continuity.
The PLC program can be developed, edited, and tested offline, away from the

machine. Thus, proof of concept can be determined and the process well understood
before programming at the machine occurs. For most PLCs the programming software has
simulation capabilities built directly into the software package. Thus, the programmer can
test and verify the program logic before loading or, more appropriately, downloading it on
the PLC.

If simulation is not included in the programming software, or the programmer would
like to verify a program concept prior to incurring the expense of purchasing and installing
the PLC and software, one can look to the Internet for free downloadable simulators.
These simulators are also great aids to learning the concepts of PLC programming. Their
use is explained in the next section.

8. Input and verify the program on the actual machine, workstation, or system being
controlled.

This final step loads the PLC program into the PLC and tests it. If the PLC
manufacturer’s software was used to simulate the program, loading it on the PLC involves
a simple downloading process from the programming device (typically a laptop PC)
directly to the PLC. If, however, the program was simulated on separate software, the
program has to be entered into the PLC through the programming device. Once the
program is loaded on the PLC, thorough testing of the logic should ensue. Program editing
may be necessary to ensure optimum machine performance.

9.4.3 Ladder Logic Program Organization
Organizing the program in a specific fashion with appropriate documentation is

important for program performance verification and future debugging and
troubleshooting. Thus, when you use the state diagram programming technique, place the
ladder rungs in the following order:

1. Process interrupt logic. Although process interrupt logic is actually written after
the state logic and transition logic are developed, it should appear as the first section of the
ladder logic program. It is placed first because it provides master control of the process
cycle—starting, stopping, and restarting the process.

452 Chapter 9

2. State logic. Listing the state logic next enables the programmer to clearly define
the states of the system. This proves to be very beneficial during program debugging and
program modification.

3. Counter and timer logic. The rungs that are placed in this section should include
any rungs developed from the transition logic that increment or decrement a counter or
activate a timer. Placing these rungs in a separate section ensures they are scanned and
acted upon prior to execution of the transition logic.

4. Transition logic. All rungs that represent actual transitions from one state to
another should be placed in this section. This simplifies and aids in program
troubleshooting and future modifications.

9.5 PLC Program Simulation
PLC simulation software provides a means to test, simulate, or verify a PLC program

prior to running it on the actual PLC. Simulating the program enables visual confirmation
that the program is performing as intended and serves as the primary debugging tool to
catch logic errors. Thus, when the program is finally loaded on the PLC the programmer
will have a high degree of confidence in the outcome.

A simulation program will execute a ladder logic program in the same manner that a
PLC controls an actual machine. However, instead of using physical inputs and outputs to
evaluate the logic, the software will simulate the I/O operation in the virtual world of a
computer.

For the beginning programmer PLC simulation software is an invaluable tool. It
enables the student to see, firsthand, how the PLC will interpret each rung of the ladder
logic program. This gives the inexperienced programmer an understanding of both the I/O
instructions and programming process. Additionally, verifications are performed in the
safety of the virtual world, so when program errors occur, which they inevitably do for
beginning programmers, there are no risks to student and machines.

PLC program simulation can be accomplished with either PLC manufacturer
software or with free software available for download on the Internet. Software from the
PLC manufacturer typically has to be purchased separately and appropriately licensed.
The software is often proprietary and unique to the specific PLC brand. A discussion of all
licensed simulators available is not practical. Instead, we focus on introducing the reader
to a readily available free simulation software program, i-TriLogi®, or “TriLogi” for
short, developed and published by Triangle Research International, Inc. TriLogi is capable
of simulating any PLC program that uses the basic instruction set. Additionally, it can
simulate programs that utilize advanced instructions that go far beyond the basic
instruction set. We do not discuss this advanced capability, but rather focus on how
TriLogi is used for the simulation of basic ladder logic programs. A screen shot of the
program displaying the ladder logic from Example 9-3 is shown in Figure 9-36.

PLC Programming 453

Figure 9-36 TriLogi software displaying ladder logic program for Example 9.3

The next section explains how to acquire, install and set up the software.
Additionally, the section explains the user interface along with the supported instruction
set. Simulation examples are also presented.

 9.5.1 TriLogi Simulation Software
The Windows® version of TriLogo is available for download from Triangle

Research International’s website www.tri-plc.com, which lists any of the following as
compatible (required) operating systems:

Windows 98®, Windows ME®, NT®, Windows 2000®, Windows XP®, or Vista®
operating systems Java Runtime Environment® (JRE) 1.4.2 or newer version.

The website www.tri-plc.com gives instructions on how to determine which version
(if any) is installed on your computer. If JRE® is not installed or you have an older
version, follow the website instruction for obtaining and installing a new version of JRE.

It is important to note that the only operating system the author has used with this
software is Windows XP®. Its compatibility with the Windows Vista® operating system
was unknown by the author at the time of publication. The website www.tri-plc.com gives
additional information.

To download the educational version of the software you must first register on the
download page. The company’s autoresponder will then email a password-protected
download link. The password is required to install the software.

454 Chapter 9

9.5.2 Installation
1. Locate the “SetupTL65du.exe” file. It is available for download from Triangle

Research International’s website (www.tri-plc.com) download page. Copy the file to a
desired folder on your computer’s hard drive.

2. Execute the “SetupTL65du.exe” file by double clicking on it. This will start the
TriLogi setup process. The first screen to appear is a dialog box (Figure 9-37). Click on
the “Yes” button to proceed with the installation.

Figure 9-37 TriLogi’s first screen

3. The next screen to appear (Figure 9-38) is a warning page to exit any Windows
programs before continuing with the setup process. Click on the “Next” button when
ready to continue.

Figure 9-38 Warning screen

4. The next screen requires you to enter the password that was included in the email
with the download link. Enter the password as shown in Figure 9-39.

PLC Programming 455

Figure 9-39 Password screen

5. The next screen to appear is the License Agreement (Figure 9-40). Review the
license agreement and click “Yes” when ready to continue or “No” to terminate setup.

Figure 9-40 License Agreement screen

6. Figure 9-41 shows the next screen to appear. This is another warning screen
specifying that JR 1.4.2 or newer version must be installed prior to installing TriLogi.

456 Chapter 9

Follow the instructions on the screen to determine which version is installed or if it is
necessary and where to obtain it. Click “Next” when ready to continue or cancel to
terminate setup.

Figure 9-41 Java warning screen

7. Figure 9-42 shows the next screen. Specify the desired location to install TriLogi.
Click “Next” when ready to continue or cancel to terminate setup.

PLC Programming 457

Figure 9-42 Select Destination Directory screen

8. The next screen requests the name of the group in which to place the program’s
shortcut icons (Figure 9-43). Click “Next” when ready to continue or cancel to terminate
setup.

Figure 9-43 Shortcut location screen

458 Chapter 9

9. The last screen prior to installation (Figure 9-44) summarizes all information
entered up to this point. Press “Back” to make any adjustments. When “Install” is pressed
the software is installed. Another dialog box to track installation progress will then appear.

Figure 9-44 Ready to Install screen

10. (Figure 9-45) is an information screen, which comes up next.

Figure 9-45 Information screen

PLC Programming 459

11. The final screen of the setup process (Figure 9-46) confirms that TriLogi has been
successfully installed.

Figure 9-46 Setup Completed screen

9.5.3 User Interface
The user interface (Figure 9-47), as the name implies, gives a means for the user to

interact with the software. The interface has a pulldown menu area across the top and a
ladder logic editor window, which essentially takes up the rest of the screen. The ladder
logic editor utilizes two modes:

1. browse mode
2. circuit editing mode

Figure 9-47 TriLogi user interface

460 Chapter 9

The browse mode is the default mode at the start of the program. This mode
manipulates a ladder logic circuit rung as a single entity. The browse mode can do the
following:

1. view circuits 3. move a circuit
2. copy a circuit 4. delete a circuit.

When the user interface is in browse mode, circuit navigation keys appear across the
top of the editor (Figure 9-48). The circuit number button appears on the left. The circuit
number is the number of the circuit or rung on which the circuit cursor is resting. The
editing commands act on the circuit to which the cursor is pointing. To move the cursor to
a different circuit or rung, simply use the vertical scroll bar or press the up or down arrow
keys on the keyboard or press the circuit number button. This action will cause a “Goto
Circuit” dialog box to open. Enter the number of the circuit that you wish to view in this
box and hit “Enter.” The cursor will then move to the corresponding rung.

Figure 9-48 Browse mode

For larger ladder logic programs, there are five “Quick Tags” located among the
circuit navigation keys. These tags provide a means for one to quickly jump from one
circuit to another. Each tag corresponds to a user-defined circuit number. To link a circuit
number to a tag, press the “Define Quick Tags” button and enter the desired circuit
number (Figure 9-49). This enables the user to quickly move among circuit rungs.

PLC Programming 461

Figure 9-49 Define Quick Tags dialog box

Once the desired circuit rung is selected, choose “Edit” from the pulldown menu to
access the circuit editing functions (Figure 9-50). Any one of the tasks of adding
comments, inserting, moving, appending, or deleting circuits is accomplished from the
“circuit” pulldown menu (Figure 9-51).

Figure 9-50 Edit pulldown menu

Individual circuit rungs are created and edited in circuit editing mode. This mode is
accessed from the browser mode by either hitting the spacebar or double-clicking on an
existing rung. Figure 9-52 shows TriLogi in circuit editing mode.

462 Chapter 9

Figure 9-51 Circuit pulldown menu

Figure 9-52 Circuit editing mode

Note the ladder logic icons across the top of the editor window and the yellow color
highlight bar. This bar is used to select a circuit element or to specify the location where
elements should be inserted. The bar can be moved with mouse clicks or keyboard arrow keys.

The next section covers how to enter and simulate a ladder logic program in TriLogi.

9.5.4 Entering and Simulating a Ladder Logic Program
The TriLogi educational version enables the user to enter and simulate a ladder logic

program without being connected to an actual PLC. This feature provides an excellent
environment for learning ladder logic programming. The process of entering and
simulating a ladder logic program into TriLogi is described below. In this example the

PLC Programming 463

ladder logic program developed in Example 9.3 is entered into and simulated with
TriLogi.

Example 9.4
Enter the ladder logic program developed in Example 9.3 and shown in Figure 9-23

into TriLogi and verify its functionality through simulation.

Solution
Entering and simulating a program into TriLogi involves three steps.

1. Set up the I/O table. Setting up the I/O table involves listing the addresses or labels
for each input condition, output, timer, and counter instruction used in the program. To
access the I/O table, right click on the “I/O Table” button at the top right of the logic editor
window (Figure 9-53).

Figure 9-53 Accessing I/O tables

The red buttons on the side of the I/O table are for scrolling to the different
instruction tables (Figure 9-54). Note how the timer and counter instructions each have an
extra column (“Set Value”) for setting the time or count, respectively. Also, observe that
TriLogi has both output instructions and relay instructions. In the past we considered only
output instructions. TriLogi uses output instructions for outputs physically wired to the
PLC and relay instructions as internal logic instructions not physically connected to an
output. Since we are only simulating our program and want to remain true to our original
discussion on outputs, we will use only the output instruction in examples.

464 Chapter 9

Figure 9-54 Available I/O tables

To enter a label, simply click in a box and type in the name followed by hitting the
enter key. The completed I/O tables for this example are shown in Figure 9-55.

Figure 9-55 Completed I/O tables

2. Create logic circuits with individual rung instructions. To create logic circuits and
rung instructions first enter into circuit editing mode, creating a circuit, and then add
individual instructions to the circuit rung.

PLC Programming 465

• To enter into circuit editing mode, either press the spacebar or double click on the red
circuit pointer. This will change the screen, as shown previously in Figure 9-52, and
create the first circuit. To exit circuit editing mode, simply press Esc (escape key).

• Logic instructions are placed in the rung by left clicking on the desired logic instruction.
For example, to add the S1 normally open input condition, left click on the normally
open switch symbol. This will cause the input I/O table to pop open, as shown in Figure
9-56. Left click on the S1 label to place the condition instruction.

Figure 9-56 Inputting S1 condition instruction

• A general rule: Do not add branching instructions until all other instructions on the rung
are added. This simplifies placing the branching circuits.

• Adding a normally closed condition instruction is very similar to adding a normally
open instruction with one minor caveat: Instead of left clicking on the normally open
instruction one must right click on it. This is shown in Figure 9-57.

466 Chapter 9

Figure 9-57 Inputting S2 normally closed condition instruction

• The rest of the instructions, including the output instruction, are added to the circuit in a
similar manner. The partially completed circuit, minus only the branch instruction, is
shown in Figure 9-58.

•

Figure 9-58 Partially completed first circuit

• To add the normally open branching instruction that will span the S1 and O1 inputs, use
keyboard arrow keys or left click to move the yellow highlight bar to the S1 normally
open instruction. Click on the normally open multibranch icon to enclose one or more
instructions. Then, using the arrow keys or mouse, move the yellow cursor to the O1
instruction and press the same icon once more to close the branch. Finally, select the M
label from the output table. This series of steps is shown in Figure 9-59.

PLC Programming 467

Figure 9-59 Adding a branch instruction

• To input the next circuit, move the yellow highlight bar to the output instruction at the
right end of the circuit and press “Enter.” This will move the highlight bar down to the
next rung. Add the appropriate instructions for the next two rungs.

• To add the counter reset instruction, select the output function icon (Figure 9-60). This
causes the “Select a Function” dialog box to open. Select the “Reset Counter” function.
The ladder logic diagram is now complete and ready for simulation. To exit circuit
editing mode hit the escape key.

Figure 9-60 Inputting the counter reset function

468 Chapter 9

• Before proceeding to simulation, be sure to save the program. Since the program is
being used only for simulation and not for actually programming an attached PLC, the
ladder logic program file will be saved to a local drive. Select “File” from the pulldown
menu and click on “Save as (Local Drive).”

• Note: For additional TriLogi circuit and supported instruction set information, refer to
the TriLogi Reference Manual that is available for download from the www.tri-plc.com.

3. Simulate the program. With the program entered and saved to disk, it is time to
simulate the program in real-time to verify the program logic. To simplify the amount of
time it takes to perform the simulation, change the count from 100 to 5 for counter C in the
I/O table, so you will not have to click on switch O1 100 times to verify the program logic!

To start the simulation, go to the “Simulate” pulldown menu and select “Run (All I/O
reset).” This will open the “Programmable Logic Simulator” dialog box (Figure 9-61).
Prior to opening the dialog box, TriLogi will compile the program to check for coding
errors. If no errors are detected the dialog box will open.

Figure 9-61 Programmable Logic Simulator dialog box

Observe how the dialog box has a column for inputs, timers, counters, relays, and
outputs. Listed in the columns are labels for each of the instructions used in the program.
Next to the labels are numbers in grayed out blocks. These numbered blocks represent
LED lamps that light up when the logic instruction is TRUE. The timer and counter
columns have an additional subcolumn. For the timer this extra column will display the
time counting down. For the counter it will display the count counting down. The inputs
are turned on with the mouse. Left click on the label to operate the input as a pushbutton
switch or right click to latch the switch on like a light switch.

PLC Programming 469

• To simulate the program logic, left click on the start switch S1. Observe what
occurs in both the Programmable Logic Simulator dialog box and the ladder
logic diagram. The S1 switch will light momentarily; then the motor and light
outputs will turn on. This is shown in Figure 9-62.

Figure 9-62 Simulation after S1 is pressed

Experiment with the program by performing the following tasks:
• Left click on S2. Do the motor and light turn off?
• Latch O1 on by right clicking on it. Left click on S1. Will the motor and light turn

on? If not, why not? Unlatch O1 by left clicking on it.

• Right click on S1 to turn the motor and light on. Right click on O1. Observe the
count displayed next to the C in the counter column. Note that the counters in
TriLogi are countdown timers. They start at the value listed in the I/O table and
decrement by 1 each time the circuit goes TRUE. This is shown in Figure 9-63.
When the count reaches zero the counter instruction will be TRUE. Continue to
press O1 until C goes true. Does this turn the motor and light off?

• Continue to experiment with the simulation until satisfied that the program
functions as intended. To exit the simulation simply reset the I/O by pressing the
“Reset” button and left click on the “x” in the upper right corner of the
Programmable Logic Simulator dialog box.

Refer to TiLogi’s reference manual for additional information on the program’s
simulation capabilities.

470 Chapter 9

Figure 9-63 Counter counting down

9.6 PLC Programming Example
At the beginning of this chapter, the washing machine cycle was introduced and used

to define logic control and sequencing. In this section we will develop a basic PLC Ladder
Logic program for the washing machine cycle as outlined by the PLC programming
process of Section 9.4. After the program is developed it will be simulated with TriLogi.

To start the programming process we will take the work cycle program shown
previously in Figure 9-2 and modify it slightly as shown in Figure 9-64. Note that the
modifications include adding step numbers to the left of the process step description,
adding I/O addresses or labels below the I/O name, and changing off and on to 0 and 1,
respectively. Each of these modifications simplifies the program development.

Figure 9-64 Washing machine work cycle program with I/O labels

PLC Programming 471

9.6.1 Identifying the System States
The first step in the PLC programming process as listed in Section 9.4.1 is identification

and documentation of the system states. The work cycle diagram will be used to identify the
states of the process. Recall each state will have a unique set of output values. Accordingly,
there are five unique states as shown in Figure 9-65. Note that three of the states are repeated
in the work cycle program. This is typical in sequential type processes.

Figure 9-65 Identifying system states on the work cycle program

To document the states, write the state titles around an imaginary circle in a
counterclockwise fashion. Place a circle around each state title as shown in Figure 9-66.

Figure 9-66 Preliminary state diagram

Fill
Tub

Spin
Tub

Idle

Drain
Tub

Agitate
Tub

472 Chapter 9

9.6.2 Identifying System Transitions and Completing the State Diagram
Transitions cause the system to change states. Transitions may be either event-driven

changes or time-driven. Also, states may have multiple transitions. The work cycle
program will aid in identifying both event-driven and time-driven transitions. Event-
driven will be clearly shown on the work cycle program as a change in an input status
from 0 to 1. Note that a transition may appear more than once in the work cycle program.
When no event-driven transition is identifiable on the work cycle program, a time-driven
change is typically indicated. Thus, for the washing machine work cycle program, six
unique transitions are identified as shown in Figure 9-67.

Figure 9-67 Identifying transitions on the work cycle program

Note that transitions 2 and 3 are called repeat transitions. Repeat transitions occur
when a transition between two identical states occurs in the work cycle program. For a
given washing cycle, the tub will fill, be agitated, and be drained twice. Thus, the
transition between the fill tub and agitate tub states will occur two times, as will the
transition between the agitate tub and drain tub states. Note that transitions 4 and 7 are
unique because they transition between different states. The semi-complete state diagram
is shown in Figure 9-68.

PLC Programming 473

Figure 9-68 Semi-complete washing machine state diagram

The state diagram shown in Figure 9-68 displays much more information than the
state diagrams shown in Figures 9-29 and 9-32. This is mainly because the washing
machine system is much more complicated than the chemical treatment system examined
in Section 9.4.1. The additional information added to the state diagram of Figure 9-68 is
intended to add clarity for programming purposes. The circled numbers next to the
transition lines are the transition numbers listed in Figure 9-67. The work cycle program
step numbers are listed near the state bubbles. Addition of the step numbers is particularly
helpful for programming sequential systems.

Figure 9-68 is described as a semi-complete state diagram, because additional
transition conditions are needed. Note that transitions 4 and 7 have the identical condition
Tub_emp = 1. Thus, as the system is shown in the state diagram, the controller cannot see
which path to follow. Recall that rule (d) from programming step 5 of Section 9.4.2 stated:
“Multiple transition lines out of the state bubble that lead to another state require a counter
to differentiate the logic paths.”

 This is precisely the situation and a common occurrence in sequential-type systems.
Thus, a countdown timer with address “Spin_C” will be added to transition 7 to
differentiate the logic paths. Each time the drain tub state goes from OFF to ON the counter
Spin_C will be decremented. The completed state diagram is shown in Figure 9-69.

Fill
Tub

Spin
Tub

Idle

Drain
Tub

Agitate
Tub

Start = 1

Sp_tmr = 1

Tub_emp = 1
= 0 Ag_tmr = 1

Tub_ful = 1

2 2

1

0

8

8

5
7

4
4

7

6

6

3

3

5

5

Tub_emp = 1

Stop
Number

Transition
Number

6

12

3

4

474 Chapter 9

 Spin_C=1

Figure 9-69 Completed washing machine state diagram

9.6.3 Creating the State Table
The state table documents the status of the outputs for each of the system states. The

state table is created in reference to Figure 9-65 and is shown in Figure 9-70.

Figure 9-70 Washing machine state table

Fill
Tub

Spin
Tub

Idle

Drain
Tub

Agitate
Tub

Start = 1

Sp_tmr = 1

Tub_emp = 1
= 0 Ag_tmr = 1

Tub_ful = 1

2 2

1

0

8

8

5
7

4
4

7

6

6

3

3

5

5

Tub_emp = 1

Stop
Number

Transition
Number

6

12

3

4

PLC Programming 475

9.6.4 Writing the State Logic
Following the procedure outlined in Section 9.4.2, step 4, the state logic is written as

shown in Figure 9-71.

Figure 9-71 Washing machine state logic

Note that there is a rung for each output. Also, notice from the state table that the
drain tub state and the spin tub state both require the pump to be ON. Thus, the last rung of
the state logic has the drain tub state ORed with the spin tub state.

9.6.5 Writing the Transition Logic
Begin writing the transition logic by starting with the first state and proceeding to the

next in a counterclockwise fashion around the state diagram. Referencing Figure 9-69, note
that the “Fill tub state” has two transition lines (transitions 1 and 4) into it and one
transition line exiting it (transition 2). Following the procedure outlined in step 4 of Section
9.4.2, step 5, the transition logic into the fill tub state is written as shown in Figure 9-72.

Figure 9-72 Fill tub state transition logic

This rung turns on the Fill_tub state. As Section 9.4.2 specifies, the transition line
into the state bubble, Start = 1, is represented as an Examine_ON input condition and is
ANDed with an Examine_OFF input condition of the transition line exiting the state
bubble (Tub_ful=1). Also per the rules of Section 9.4.2, transition 4 is ORed with
transition 1, as is shown in Figure 9-72. Note that an Examine_OFF input condition of the
spin counter must be included on this rung to differentiate transition 4 from transition 5.
Finally, since the start button is assumed to be a pushbutton, the Fill_tub state is latched on
by the third ORed rung. When the tub is full, the fill tub state will terminate and transition
to the agitate tub state.

476 Chapter 9

The transition logic for the agitate tub state is shown in Figure 9-73. As shown in
Figure 9-69, the agitate tub state has one transition into it and one out. Thus, the Tub_ful
Examine_ON input condition is ANDed with the Ag_tmr Examine_OFF input condition.
Since a timer is used to control the duration of the agitate tub state, another rung is
required as shown in the figure. The Tub_ful Examine_ON input condition will be used to
activate the countdown timer. As defined in Section 9.4.3, this rung will be placed in the
counter and timer section of the program. When the timer “times out” and comes on, the
agitate tub state ends.

Figure 9-73 Agitate tub state transition logic

The transition logic for the drain tub state is shown in Figure 9-74. Recall that a
countdown counter was added to the system to differentiate the logic paths exiting the
drain tub state. The first rung in Figure 9-74 is the actual state transition logic. Following
the rules of Section 9.4.2, the Ag_tmr Examine_ON input condition is ANDed with
Examine_OFF input conditions exiting the state bubble. For this case there are two
transition lines exiting the state. Thus, there are two Examine_OFF input conditions
ANDed on the rung. The Drain_tub latch is needed because the Ag_tmr will be reset to
OFF as soon as the Tub_ful switch goes off (Figure 9-73). When the tub is empty, the
drain tub state will be terminated. The second rung provides a means to decrement the
counter. Each time the tub is drained (tub_emp = 1) the counter will be decreased by 1.
When it reaches zero the counter will turn on (Spin_C = 1). Note that the second rung is
not connected to the first rung in the figure. This is because in the final program this rung
will actually be located in the counter and timer section of the program. This is necessary
to decrement the counter before reaching the transition logic for the fill tub state. As
discussed in Section 9.4.3, this is standard procedure when counters and timers are used
because of the way the PLC scans the program from top to bottom. Thus, organizing the
program in this fashion will guarantee the counter is decremented before the transition
logic is reached.

PLC Programming 477

Figure 9-74 Drain tub state transition logic

The transition logic for the spin tub state is shown in Figure 9-75. Again following
the rules of Section 9.4.2, the transition logic can be written as shown on the first rung.
Since a timer is used to control the duration of the spin tub state, another rung is required
as shown in the figure. The Spin_C Examine_ON input condition will be used to activate
the countdown timer. This rung will be located in the counter and timer section of the
program. When the timer “times out” and comes on, the spin tub state ends and the
washing machine cycle is complete.

Figure 9-75 Spin tub state transition logic

Utilizing the program format defined in Section 9.4.3, one can now combine the state
logic with the transition logic to form the completed program, as shown in Figure 9-76.
Note the addition of the last rung. As it was discussed in Section 9.3.3, counters require
the use of a reset output instruction. The TriLogi software instruction set includes a master
reset output instruction, which resets all counters used in the program. So, the last rung of
the program issues a master reset when the spin timer times out.

478 Chapter 9

Figure 9-76 Washing machine ladder logic program

The program listed in Figure 9-76 contains all the necessary state and transition logic
to repeatedly and successfully execute the washing machine cycle as specified by the work
cycle program. However, it is not yet a program that could be used in practice because

PLC Programming 479

there is no contingency to interrupt the program if a situation needs to be addressed. Thus,
the next section discusses adding process interrupts.

9.6.6 Adding Process Interrupts
Process interrupts essentially pause the work cycle program midstream. In other

words, issuing a process interrupt to a system is, in effect, the same as saying, “Stop,
something is wrong.” When the process is restarted it is typically desirable to start the
process exactly where it was paused. This is the situation with the washing machine cycle.
For example, if the process is paused during the tub filling state, say, to add detergent, it
would be desirable to restart the process exactly where it was paused. Another example
would be if the tub was unbalanced during the spin state. One would like to stop the spin
state and reposition clothes. Once repositioning is complete it would be desirable to just
restart the spin state. One would not want to go through the whole washing machine cycle
again.

Utilizing the state diagram approach to programming makes adding process
interrupts relatively easy. Since interrupts involve only pausing a particular state, the
simplest approach is to add an “in process” or “in cycle” rung in the process interrupt
section of the program. The output of this rung would be an internal logic relay that must
be TRUE or ON to activate the outputs of any state. This relay will then be added to the
state logic to enable the states to be paused if the “in cycle” relay is not active.

For the washing machine cycle program the process interrupt rung will use the start
and stop buttons as the input conditions. The relay output of the rung is addressed
“In_Cycle.” This is shown in Figure 9-77. The start button turns on the In_Cycle relay and
the stop button turns off the relay. Since both the start and stop buttons are assumed to be
pushbuttons, an ORed rung is provided to latch the relay on.

Figure 9-77 Washing machine ladder logic process interrupt rung

The next step is to add the “In_Cycle” relay and an input condition to the state logic.
This is shown in Figure 9-78. Thus, the only means in which a state can be active is if the
“In_Cycle” is turned on.

480 Chapter 9

Figure 9-78 Washing machine state logic with process interrupt relay

The final step to adding the process interrupt is to add the “In_Cycle” relay to the
counter and timer section of the program, as shown in Figure 9-79. This is important
because one would not want the timers to time out or the counter to count if the cycle is
paused.

Figure 9-79 Washing machine counter and timer logic with process interrupt relay

Note that it is undesirable to add process interrupt logic to the transition logic. The
reason for this is that process interrupts should only pause the system’s current state, not
the logic to reach said state. Thus, process interrupt logic is added to only the state logic
and the counter and timer logic sections of the program.

The completed ladder logic program for the washing machine cycle is shown in
Figure 9-80. The program is now ready for simulation.

PLC Programming 481

Figure 9-80 Continued on next page

482 Chapter 9

Figure 9-80 Complete washing machine ladder logic program

9.6.7 Program Simulation
The reader is encouraged to simulate the program listed in Figure 9-80 per the

TriLogi simulation instructions specified previously in Section 9.5.4. Set the Spin_C to 3.
The time settings for the agitation timer and spin timer can be arbitrary. However, set them
to be short enough so that the simulation can be accomplished in a reasonable amount of
time, but not so short that the process steps can’t be easily verified.

When performing the actual simulation, be sure to manipulate the inputs realistically.
In other words, prior to starting the process, the Tub_emp input will be ON (left click to
latch on). Once the start button is pressed and the fill valve opens, the Tub_emp input will
go off. When the tub is full, the Tub_ful input will go on. Note that unrealistic
manipulation of the process inputs may result in misleading simulation results. Figure 9-

PLC Programming 483

81 shows a screen shot of the program simulation prior to the start button being pressed to
initiate the process.

Figure 9-81 Washing machine ladder logic program simulation

9.7 Summary
Programming a PLC involves issuing instructions or commands for the PLC to

follow in order to execute the manufacturing tasks or steps of the process being controlled.
The industry standard language of the PLC is a graphical language called ladder logic. It
uses graphically represented instructions to convert the work cycle program into a logic
control program that the PLC can use to control the process.

484 Chapter 9

Logic control provides a means to set the status of the outputs of the PLC solely on
the status of its inputs. The status of the inputs is altered by event-driven changes. The
program logic then sets the status of the outputs. In sequencing control, time-driven
changes drive the status of the outputs. PLC ladder logic programs execute both logic and
sequencing control.

Ladder logic diagrams came to their name because the drawing resembles a ladder
with the logic elements (the sensors and actuators) making up the horizontal rungs and the
vertical rails representing the power to the elements. When logic continuity is achieved
across a rung the output for that rung will be activated, or turned ON. To aid in sorting out
the logic of the ladder diagrams, logic gates and truth tables are often used. The three basic
logic gates are the AND, OR, and NOT gates. Combining of basic logic gates within and
among multiple rungs of a ladder logic diagram is the essence of how the work cycle
program gets translated, converted, or programmed into the final ladder logic diagram
program that directs the PLC in control of the process.

The logic instructions on the rungs of the ladder diagram are separated into condition
instructions and output instructions. Condition instructions examine the status of the
inputs. There are only two types: the Examine_ON and Examine_OFF conditions. Output
instructions energize the outputs. The three basic types of output instructions include an
output energize instruction, a timer instruction, and a counter instruction. These
instructions collectively make up the basic PLC instruction set. Instructions may reference
either a real external physical sensor or actuator wired to the PLC or an “artificial” internal
logic element of the PLC. Internal logic elements are used to create the appropriate logic
conditions to complete the work cycle program logic.

PLC programming involves converting the work cycle program and/or timing
diagram of the machine, workstation, or system being controlled into the language of the
PLC. For relatively simple processes a good method to use to develop the PLC ladder
logic is to write out the input conditions and output status statement for the process in
terms of the AND, OR, and NOT logic gates. As processes become more complicated,
thinking of the process’s operations in terms of states, as defined by the outputs and
transitions as defined by the inputs can greatly aid in the development of the PLC’s ladder
logic program. An effective tool for visualizing the process in these terms is a state
diagram. A state diagram graphically displays the various states and corresponding
transitions between those states of the machine or system being controlled.

State diagrams are created through, first, identification of the states of the process. By
definition, each state’s output status will be unique. The next step involves identifying the
transitions between the states. Transitions occur when inputs change from OFF (0) to ON
(1), so, they are easily identified from the work cycle program. Once the states and
transitions are identified, the state diagram for the system is constructed and a state table
constructed.

Upon completion of the state diagram and corresponding state table, the PLC ladder
logic program can be directly developed. This is accomplished by writing the state logic

PLC Programming 485

per the state table, then writing the transition logic. State logic is written using internal
logic elements to set the output status of each state. The transition logic will turn on, or
activate, the desired state and deactivate all others. The transition ladder logic is created in
reference to the state diagram and follows the simple rules outlined in the chapter. State
diagrams program results into much better organized programs than would be created
without such as diagram. State diagrams that are simple to follow and enable easy
troubleshooting and future program modification.

Programs should be organized for easy debugging and troubleshooting. The first
section of a program contains the process interrupt logic, followed by the state logic,
counter and timer logic, and finally the transition logic.

The basic steps to follow when programming a PLC are (i) identifying and
documenting the system states and transitions on a state diagram, (ii) creating a state table,
(iii) writing the program state logic, (iv) writing the transition logic, (v) adding process
interrupt logic, (vi) simulating the program for logic continuity, and finally (vii) inputting
and verifying the program on the actual system.

PLC simulation software provides a means to test, simulate, or verify a PLC program
prior to running it on the actual PLC. Simulating the program enables visual confirmation
that the program is performing as intended. It serves as the primary debugging tool to
catch logic errors. PLC program simulation can be accomplished with either the PLC
manufacturer’s software or with free software available for download on the Internet. Free
simulation software called TriLogi, as extensively reviewed in the chapter, is

recommended.

9.8 Key Words
AND gate
basic PLC instruction set
condition instructions
counter instruction
data table
Examine_OFF
Examine_ON
instruction address
ladder logic
ladder logic diagram
latch loop
logic control
logic gates
logic pulse train
NOT gate
OR gate

486 Chapter 9

Output Energize
output instructions
process interrupts
reset output instruction
state diagrams
state table
status bit
timer instruction
transition
truth tables
user interface

9.9 Review Questions
 1. Define programming from a PLC perspective.
 2. Discuss the differences between logic control and sequencing control. Which

type(s) is (are) utilized by PLCs?
 3. Draw the ladder diagram and list the truth tables for the AND, OR , NOT, NAND,

and NOR logic gates.
 4. Explain the difference between condition instructions and output instructions.
 5. Describe the functions of an instruction address.
 6. How are internal logic elements used in PLC programs?
 7. List and discuss the two types of condition instructions.
 8. List and discuss the function of each of the instructions in a basic PLC instruction

set.
 9. Name and explain the three scans of a PLC’s operating cycle.
10. Using the TriLogi simulation program, simulate and verify the ladder logic

program developed in Example 9.2.
11. Using the TriLogi simulation program, simulate and verify the ladder logic

program developed in Example 9.3.
12. Develop a state diagram and state table for Example 9.3.
13. List and discuss the four rules for writing transition logic.
14. List and discuss the eight basic programming steps.
15. Explain how a PLC ladder logic program should be organized, assuming the state

diagram programming method is used.
16. Using the TriLogi simulation program, simulate and verify the ladder logic

program developed for the chemical treatment system discussed in Section
9.4.1. Add a process interrupt to the program assuming a stop button is added to
interrupt the process and cause an immediate dump of the tank. Modify the state
diagram and state table accordingly.

PLC Programming 487

17. Using the TriLogi simulation program, simulate and verify the ladder logic
program developed for the washing machine cycle developed in Section 9-6 and
shown in Figure 9-80. Modify the program to enable two rinse cycles, assuming
a pushbutton input is added to indicate when two rinse cycles are desired.
Modify the state diagram and state table accordingly.

9.10 Bibliography
1.Groover, M.P., 2001, Automation, Production Systems and Computer-Integrated

Manufacturing, Second Edition, Prentice Hall, Upper Saddle River, New Jersey.
2. Derby, D., 2005, Design of Automatic Machinery, Marcel Dekker, New York,

New York.
3. Morriss, S.B., 1995, Automated Manufacturing Systems, Glencoe/McGraw-Hill,

Columbus, Ohio.
4. www.automationdirect.com
5. Jack, H.,2008, Automating Manufacturing Systems with PLCs, Version 5.0, May,

2008, jackh@gvsu.edu, accessed.

489

Chapter 10
Automated Workstations and Work Cells

Contents
10.1 Automated Workstations and Work Cells

10.2 Workstation and Work Cell Components

10.3 Workstation and Work Cell Examples

10.4 Summary

10.5 Key Words

10.6 Review Questions

10.7 Bibliography

Objective
The objective of this chapter is to explain how programmable automation, with other com-
ponents and devices, is used in automated workstations and work cells.

490 Chapter 10

10.1 Automated Workstations and Work Cells
A workstation performs a specific task, process, or job during the manufacture of a

product. A manual workstation groups resources—physical or otherwise (devices,
equipment, tools, and labor)-in a logical way so that a well-defined activity may take
place. The manual piercing die process discussed in Chapter 8 and shown in Figure 8-0 is
an example of a manual workstation. This manual workstation was transformed into an
automated workstation through automation of the piercing die process—a robot replacing
a person to do the material handling and a PLC-coordinated system to control the process.
So, much like a manual workstation, an automated workstation is a logical grouping of
devices, equipment, components, and tools that execute a processing work cycle—but
does so in an automated way.

To be deemed “automated” a system must be able to function unattended for more
than a single cycle: An operator is required only to periodically tend to it. Figures 10-0 and
10-1 show examples; each workstation performs an assembly operation.

Figure 10-0 Example of an automated workstation

Automated Workstations and Work Cells 491

Figure 10-1 Example of an automated workstation

The workstations shown in the figures have material handling and storage devices,
automatic assembly devices, and PLCs. The material handling and storage devices
facilitate unattended operation, so an operator need only periodically load and unload the
workstation. The PLC imparts machine procedural control of the assembly process.

Note that in some of the literature, the automated workstation as we define it here is
called a single station automated cell. In fact, the terms “workstation” and “work cell” are
often used interchangeably. However, we will use the term “workstation” so as not to
confuse the reader that it is related to a manufacturing cell. (Recall from Chapter 1 that we
defined “manufacturing cell” as an interconnected group of manufacturing processes
tended by a material handling system. A manufacturing cell typically contains individual
workstations.) One could replace the phrase “interconnected group of manufacturing
processes” with “interconnected group of workstations.” Like workstations, manufactu-
ring cells can be manual or fully automated. Figures 10-2 and 10-3 show typical
automated work cells.

492 Chapter 10

Figure 10-2 Automated work cell

Figure 10-3 Automated work cell

Another distinction between workstations and work cells is this: Workstations are
self-contained entities that perform one type of operation (more like a machine), whereas
work cells contain multiple workstations that perform multiple operations. For instance,
the workstations shown in Figures 10-0 and 10-1 perform only one operation: the

Automated Workstations and Work Cells 493

assembly of two components. The work cell of Figure 10-2 performs two operations—the
molding of a pressed wood disk and the routing of the inside and outside diameters of each
disk. It is left to the reader to identify the number of operations performed in the work cell
of Figure 10-3.

Programmable automation is evident in either an automated workstation or work cell:
CNC equipment often provides specific machining operations within both; robots are
often the system of choice for material handling; and PLCs impart either procedural
machine control or coordinated system control.

The next section discusses some other common components used in workstations and
work cells.

10.2 Workstation and Work Cell Components
Besides extensive use of programmable automation, other workstation and work cell

components include sensors and individual actuators, as discussed in Chapter 8, and the
following:

• structural members
• part feeders and storage devices
• drive mechanisms
• material handling system

10.2.1 Structural Members
The structural members of workstations or work cells support, hold, and accurately

locate the individual components. This is typically accomplished with a frame and tooling
plate. Many different types and configurations of structural members have been used over
the years. The relative location of the components in a workstation or work cell is very
important.

Consider the workstation shown in Figure 10-1. The vibratory hoppers, bowl feeders,
and assembly tooling are bolted to 1/2-inch steel tooling plate. A welded steel frame
(Figure 10-4) supports the tooling plate. Dowel pin holes are drilled in both component
mounting bracket and tooling plate to provide accurate location. Bolts can be used to hold
the components together.

Welded steel frames may be used when strength and rigidity is important. Frames
that are built up or bolted together may lose their rigidity over time as bolts become loose.
In many applications, 2-inch square steel tubing with wall thickness of 3/16 inch provides
a very rigid frame. Built-up extruded aluminum frames are popular when lightweight
framing is essential. These frames can be purchased cut to length, with a wide assortment
of accessories. There are many suppliers of this type of frame. One can essentially design
a frame and purchase all necessary components and accessories as a kit for later assembly.
A built-up extruded aluminum frame was used as the enclosure for the automated

494 Chapter 10

workstation shown in Figure 10-0. A typical extruded aluminum frame member is shown
in Figure 10-5.

Figure 10-4 Welded steel frame and tooling plate

Figure 10-5 Typical extruded aluminum frame member

Automated Workstations and Work Cells 495

10.2.2 Part Feeders and Storage Devices
The general role of part feeders is to place a part in the correct orientation at the right

time and not let this orientation change throughout processing. The three standard types of
feeders are:

• escapement feeder
• vibratory bowl feeder
• centripetal feeder

Escapement feeders release parts one at a time or multiple parts at one time. They can
be used with rigid parts that have adequate part tolerances. Figure 10-6 shows one of the
many different design concepts, a simple slide-type escapement. Here, the parts are
stacked vertically in a tube. A plunger slides forward, pushing one part out while
supporting the rest of the stack. As the plunger retracts the parts drop down, preparing the
next part for feeding.

Figure 10-6 Slide escapement

A rotary-type escapement feeder was used in the assembly workstation shown in
Figure 10-0. A detailed view of this type of escapement feeder is shown in Figure 10-7. In
this case, instead of a plunger, a dial rotates clockwise to move the insert into alignment
with the grommet for assembly.

Vibratory bowl feeders are perhaps the most common type of part feeders in
automated workstations and work cells. They feed parts by alternating vibrations to move
parts up a spiral ramp on the inside of a curved surface bowl. Fiducials, built into the
bowl, allow only those parts in correct orientation to make it to the top and exit the bowl.
They knock parts in the wrong orientation back into the bowl. Part motion results from the
combined effects of friction coefficient, bowl incline angle, angle of bowl vibratory
motion, vibration frequency, and vibration amplitude. Vibratory bowls are custom-made,
and, though expensive, they are highly reliable and dependable. Figure 10-8 is a sketch of
a vibratory bowl feeder.

Plunger Moves
Forward Feeding
Part

496 Chapter 10

Figure 10-7 Rotary escapement

Figure 10-8 Vibratory bowl feeder

Parts Travel Up Ramps Out
Of Bowl Then Around The
Outside To The Exit Shoot

Exit Shoot

Automated Workstations and Work Cells 497

Centripetal feeders use centripetal force to move parts in a spinning bowl to the outer
edge of the bowl, where they eventually exit the bowl. They can generally feed parts faster
than vibratory bowl feeders. Fiducials are built into the side of the bowl to prevent parts in
the wrong orientation from exiting the bowl. The automated workstation shown in Figure
10-1 used a centripetal feeder for the part 2 bowl feeder. Its centripetal feeder is shown in
Figure 10-9. Figure 10-10 is a top view of the feeder, showing detailed information on the
fiducials used in the bowl.

Figure 10-9 Centripetal feeder

Figure 10-10 Centripetal feeder (detail)

498 Chapter 10

Storage devices are used to store large quantities of parts at the workstation. They are
necessary, because part feeders typically handle only a relatively small volume of parts at
a time. Storage devices replenish part feeders on demand as the feeders run low on parts,
and they typically consist of a hopper and some kind of device to extract the product from
hopper. Figure 10-11 shows the storage device for the centripetal feeder previously
discussed in the workstation shown in Figure 10-1. This particular storage device uses a
vibratory feeder to refill the centripetal bowl feeder.

Figure 10-11 Storage device with vibratory feeder

10.2.3 Drive Mechanisms
Drive mechanisms often transform actuator motion into some other form. For

instance, a rotary actuator such as an electrical motor can provide linear motion with a
ball-screw drive mechanism. Drive mechanisms may also move actuator motion from one
location to another, such as happens with a chain and sprocket. Displacement, speed, and
torque are transferred from the drive sprocket to the driven sprocket, located some
distance away, by the chain. Drive mechanisms may also alter the speed and torque of the
actuator to values more appropriate for a particular workstation or work cell. A worm gear
speed reducer is an example of this type of drive mechanism.

Automated Workstations and Work Cells 499

In general, drive mechanisms fall into five major categories:
• V-belts and pulleys
• chain and sprockets
• timing belts and sprockets
• gears and gearboxes
• cams

V-belts and pulleys are generally quiet but have slippage issues, which can be of
concern when accurate transfer of rotary motion is required. Chains and sprockets are
more accurate than V-belts but have their drawbacks. They are noisy, dirty, and require
regular maintenance.

Timing belts and sprockets capture the benefits of both V-belts and chains, without
the drawbacks. Timing belts and sprockets are quiet, low maintenance, and very accurate.
A timing belt and sprocket is shown in Figure 10-12.

Figure 10-12 Timing belt and sprocket

Gearboxes are also effective drive mechanisms for altering speed and torque. Speed
reducers are commercially available gearboxes that come in a wide variety of
configurations with many different gear ratios possible. Figure 10-13 shows a cutaway
view of a worm gear speed reducer. Worm gear speed reducers can produce the greatest
speed reduction and corresponding torque increase. Other types of speed reducers include
helical gear and bevel gear speed reducers. Custom-designed spur gear trains are often
used, as well.

500 Chapter 10

Figure 10-13 Worm gear speed reducer

Cams offer some very interesting capabilities. Cams can be designed to provide
essentially any motion profile desired. They can transform rotary motion into linear
motion, rotary motion into oscillatory motion, or they can even produce intermittent
motion. Figure 10-14 shows some examples of cam mechanisms. Note that a barrel cam,
similar to the one shown in Figure 10-14(c) was used to produce a linear pressing stroke in
the assembly workstation shown in Figure 10-0.

Figure 10-14 Cam examples

Pick-and-place units are cam-driven devices that provide intermittent motion and
lift. For instance, a linear pick-and-place unit can provide two-dimensional linear motion,
as shown in Figure 10-15(a). Mechanical indexers provide intermittent motion as “dwell –
index – dwell – index.” This is shown in Figure 10-15(b). Indexing drives can be used to
provide rotary material handling when a turntable is attached to an output shaft. They can

Worm

Gear

Input

Output

(a) (b) (c)

Automated Workstations and Work Cells 501

also be used to drive conveyors and provide intermittent motion. Typical motion is
“stopping – lifting – indexing – lowering – stopping.” Examples of pick-and-place units
and mechanical indexers are given in the next section.

Figure 10-15 (a) Pick-and-place motion; (b) indexer motion

10.3 Automated Workstation and Work Cell Examples
In this section we show how, through examples, programmable automation in

conjunction with many of the components and devices discussed previously are utilized in
automated workstations and work cells. The role of programmable automation will be
highlighted as the function of the other major components is identified.

Example 10.1
Consider again Figure 10-0, and recall that it shows an automated workstation that

assembles two components: a metal insert with a rubber grommet. The inner workings of
the workstation are shown in Figure 10-16. An electric motor drives a worm gear speed
reducer, which is connected to the shaft on the left through a torque-limiting device. The
shaft on the left rotates continuously to drive the Geneva mechanism and the barrel cam. A
Geneva mechanism is a mechanism that gives intermittent motion. Thus, the shaft on the
right rotates intermittently to feed parts into the assembly position (i.e., dwell – rotate –
dwell). When this shaft dwells, the barrel cam pushes the slide forward, assembling the
two components. The cam then retracts the slide and dwells as the Geneva mechanism
indexes two new parts into position for assembly. The assembled parts get knocked out the
back of the assembly mechanism.

A PLC provides procedural machine control of the process. Although CNC
technology is not an integral part of the workstation, many of the components, including

502 Chapter 10

the barrel cam, were produced with CNC machines. Robotics plays no role in the
workstation.

This workstation is an example of fixed automation because the assembly processing
station is linked with the material handling. Therefore, the processing sequence is fixed.
Additionally, the workstation can process only one type of insert and grommet. Note the
use of a tooling plate for mounting of components and the extruded aluminum frame for
enclosing the workstation.

Figure 10-16 Automated assembly workstation.

Example 10.2
Figure 10-17 shows a workstation for routing small round pressed wood disks. The

workstation makes use of a rotary pick-and-place unit for material handling to pick the
parts up from the conveyor, move the parts to the routing stations, and release the parts to
the exit shoot. Note the motion of the pick-and-place unit. The first routing station routes
the inside diameter and the second station the outside diameter. The unit is driven by an
electric motor and worm gear speed reducer. A welded steel frame and tooling plate is
used for mounting the components.

Automated Workstations and Work Cells 503

 A PLC provides procedural machine control over the workstation. Again, CNC
technology was used to produce many of the components of the workstation. This
workstation also is an example of fixed automation.

Example 10.3
Figure 10-18 shows two photos of another automated workstation, which routes the

outside and inside diameters of a large pressed wood disk. The workstation makes use of a
mechanical indexer to index and dwell a turntable. While dwelling, a cam lifts the part into
a mechanism, which spins and routes the disk.

Figure 10-17Automated routing workstation

504 Chapter 10

Figure 10-18 Automated routing workstation for large disks

Figure 10-19 shows the inner workings of the workstation. An electric motor with a
worm gear speed reducer (not shown) drives the indexer. The cam drive shaft is connected
to the drive shaft of the indexer with a timing belt. This enables exact timing of the lifting
during the dwell of the turntable. Again, a PLC provides procedural machine control over
the workstation. CNC technology was used to produce many of the components of the
workstation, and the workstation is an example of fixed automation.

Figure 10-19 Automated routing workstation

Automated Workstations and Work Cells 505

 Example 3.4
Figure 10-20 shows two photos of the automated work cell shown previously in

Figure 10-2. Recall that this work cell performs two operations: molding of a pressed
wood disk and routing of the inside and outside diameter of two different-sized disks. A 4-
axis robot serves as the material handler and performs the routing operations by holding a
part in the gripper and then lowering it onto the router, as shown in the lower picture. The
part is not shown because the photographs were taken during a dry run. Once the part’s
inside diameter is in contact with the routing tool, the robot rotates the part slightly more
than 360 degrees. The robot then lifts the part and moves to engage the outside diameter
with the routing tool. Again, it rotates the part slightly more than 360 degrees. Once the
routing is complete, the robot then drops the part on the scale for weighing. If the weight is
within tolerance, an air cylinder extends to push the part into the finished goods bin. If the
part is underweight, a separate air cylinder pushes the part into a scrap bin. This is
repeated until all parts are routed.

Figure 10-20 Automated work cell

 A PLC provides coordinated system control of the work cell. It coordinates the
action of the press, shuttle system, robot, scale, and air cylinders. Recall that this cell
processes two different-sized parts. Per molding cycle, three of the parts are 10-inch
diameter and two are 8-inch diameter. Consequently, this is an example of flexible
automation. The robot recognizes the size of the part it has in its gripper and processes it

506 Chapter 10

accordingly. Such cell flexibility is only achievable with programmable automation as
performed with a robot.

10.4 Summary
An automated workstation is defined as a logical grouping of devices, equipment,

components, and tools that automatically execute a processing work cycle. It can function
unattended for more than one cycle and requires an operator to only periodically tend to it.
Manufacturing cells are defined as an interconnected group of manufacturing processes
(workstations) tended by a material handling system. To understand the distinction
between workstation and work cell keep in mind that workstations are self-contained
entities performing one type of operation (similar to a machine) whereas work cells
contain multiple workstations performing multiple operations.

Regardless of whether one is referring to an automated workstation or work cell the
presence of programmable automation is evident. CNC equipment is often utilized to
provide specific machining operations within the cell or workstation. Robots are often the
system of choice for material handling. PLCs are used to impart either procedural machine
control or coordinated system control.

In addition to programmable automation technologies, workstations and work cells
have many other components, including structural members, material handling, part
feeders, storage devices, and various drive mechanisms.

10.5 Key Words
automated workstation
centripetal feeder
escapement feeder
fiducials
manufacturing cell
vibratory bowl feeders
workstation

10.6 Review Questions
1. Explain the difference between an automated workstation and an automated work

cell.
2. How is an automated workstation different than a manual one?
3. Name four major components of workstations and work cells.
4. Explain the difference between an escapement feeder, vibratory bowl feeder, and

centripetal feeder.
5. Referring to question 4, which type of feeder is fastest?

Automated Workstations and Work Cells 507

6. List and describe three types of drive mechanisms.
7. Which type of drive mechanism is quiet, low maintenance, and very accurate?
8. Explain the difference between a mechanical pick-and-place unit and a mechanical

indexer.
9. Discuss the operation of a Geneva mechanism.
10. In Example 10.4, what is the technology that makes the cell an example of

flexible automation?

10.7 Bibliography
1. Groover, M.P. 2001, Automation, Production Systems and Computer-Integrated

Manufacturing, Second Edition, Prentice Hall, Upper Saddle River, New Jersey
2. Derby, Stephen J. 2005, Design of Automatic Machinery, Marcel Dekker,

New York.
3. Morriss, S. Brian. 1995, Automated Manufacturing Systems, Glencoe/McGraw-

Hill, Columbus, Ohio.
4. Rehg, James A. 2003, Introduction to Robotics in CIM Systems, Fifth Edition,

Prentice Hall, Upper Saddle River, New Jersey.

Acknowledgements

This book would not have been possible without the incredible patience, support
and guidance of both John Carleo of Industrial Press and Kathy McKenzie of
Radical X Editing Services. I also thank Janet Romano of Industrial Press for her
craft and care in designing the book’s layout. Special thanks to Dr. Raj Chowdhury
who first suggested and made me believe that I could and should write a text.
Without his encouragement, I would not have considered undertaking such a
project. I finally express my deepest appreciation to my wife Tammie for her
patience and understanding during the long and often arduous preparation of this
manuscript.

Dedication

For my wife, Tammie and my children—Dan, Ian, and Sydney;
to my father Bill, and to my mother Evelyn, in loving memory

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

actual processing time 37 42 70

AND gate 425 427 485

ANSI/EIA RS-274-D standard 118 124 153 157 183

arm motions 309 316 320 323 325

 343 363 371

assembly line manufacturing system 8 28

automated workstation 490 493 497 501 503

 506

automatic simulation 209 225 230 232 237

 245 250

automation 1 4 11 20 31

 35 44 46 48 55

 59 62 67 72 76

 107 109 114 188 259

 268 277 288 292 301

 373 375 390 399 401

 403 409 412 417 487

 489 493 501

auxiliary functions 112 120 153 183

availability 44 46 68 70 72

 288 407 413

average production time 39 70

B

basic device control 382 416

basic PLC instruction set 431 484

batch processing time 39 70

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

batches 6 28 39

bottleneck station 42 70

C

capacitive proximity switches 394 416

capital expenditure 32 50 70

centripetal feeder 495 497 506

circular interpolation 312 372

closed loop control 112 270 289 381 383

 414 416

CNC programmer 93 116 183

CNC simulation software 106 118 191 194 249

CncSimulator 191 194 199 207 210

 216 219 222 226 228

 233 235 240 244 249

 253

combined productivity 33 54 58 62 68

 70 72

command blocks 120 123 132 134 139

 140 147 150 162 173

 182 224

communication instructions 304 328 338 341 372

computer numerical control (CNC) technology 2 15 26 76 110

computer-assisted manufacturing (CAM) 117

condition instructions 428 433 436 484

contact limit switches 394 416

continuous path control 89 91 110 112 120

 125 133 274 277 289

continuous process control 380 387 396 414 416

continuous process parameter 380 416

continuous process variable 379 416

continuous products 28

control panel 287 392 416 433 439

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

conversational programming 116 182

conversion process 2 11 25 28

coordinated system control 382 384 397 408 414

 416 493 505

counter instruction 438 463 469 484

cutting cycle 134 139 183

cutting move 130 133 135 142 147

 183

cutting parameters 105 111 115 118 162

 166 169 179 182 187

cutting speed 105 112 162 176 182

D

data table 428 485

degrees of freedom 261 263 265 270 289

depth of cut 78 105 112 139 150

 162 164 166 179 182

 188 204 223

diameter coordinates 232 244 247 249

digital input/output (I/O) interface boards 277 290

dimension words 121 123 157 162 168

 183

discrete control 86 112

discrete process control 18 28 328 380 384

 391 414 416 425 431

discrete process control system 18 28

discrete process parameter 380 416

discrete process variables 328 380 391 415

discrete products 4 28 32

discrete sequential process control 385 408 414 416

dovetail slides 78 112

dual gripper 267 290

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

E

electrical actuators 401 405 407 415 423

electrical power systems 290

electrical relay 401 405 416

encoder 87 112 275 290 398

 416

end effector 261 263 268 277 281

 284 287 294 303 320

 329 371

end effector (EE) cable 277 290

end-of-arm tooling 266 282 289

escapement feeder 495 506

event-driven change 385 414 416 423 438

Examine_OFF 429 431 434 437 441

 446 450 475 484

Examine_ON 429 431 434 437 445

 447 450 475 484

executive processor 290

F

F word 124 133 144 164 167

 183

feed function 124 183

feed rate 76 78 84 94 105

 112 133 136 142 144

 156 162 164 182 187

 188

fiducials 495 497 506

finishing cuts 177 179 183

fixed automation 13 27 73 110 502

fixed costs 62 69

fixed position manufacturing system 28

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

fixturing 78 83 85 105 111

 118 162 169 173 176

 192

flexible automation 13 25 27 73 505

 507

flow-line manufacturing system 8 15 27 42 71

format classification sheet 130 157 162 168 182

 187

format classification shorthand 157 183

format detail 130 157 169 183

G

G-code 76 93 95 109 112

 115 123 128 132 162

 172 176 182 188 192

 201 207 209 213 218

 249 251

G-code program 76 93 95 112 117

 172 182 188 192 201

 209 251

G-code programming 116 182

gripper 20 260 266 277 281

 288 290 294 316 320

 330 352 362 367 373

 505

H

hard product variety 5 8 14 27

hardwiring 389 413 416

helical interpolation 91 112

hydraulic actuators 401 405 415

hydraulic power systems 290

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

I

incremental coordinates 100 111 121 150 152

 168 184

inductive proximity switches 394 416

input and output instructions 372

input scan 386 416 430

instruction address 428 485

interpolation parameters 121 124 183

interpreter 210 213 249

J

job shop manufacturing system 28

joint coordinate system 297 300 372

joint interpolation 312 316 318 372

jump instructions 332 372

K

KAREL 302 310 315 318 320

 322 329 336 338 341

 369

L

ladder logic 413 419 423 433 441

 445 448 459 462 467

 478 482

ladder logic diagram 423 437 467 469 484

latch loop 447 485

lead screw 78 83 87 110 112

lead-time 8 44 47 69 72

 109 112

letter addresses 120 182 213 216 251

limit switch 387 393 416

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

limited sequence control 274 289

linear interpolation 89 91 112 120 123

 125 133 168 223 312

 319 372

linear joint 261 264 291 352 357

link 22 200 235 261 291

 352 359 361 453 460

logic 2 15 18 26 28

 259 275 294 301 304

 307 309 320 326 333

 335 337 341 343 366

 370 375 385 389 401

 410 413 416 419 423

 433 441 445 459 462

 467 473 475 482

logic control 2 15 18 26 28

 375 386 413 416 423

 442 470 483

logic gates 424 427 431 441 484

logic instructions 295 326 331 333 335

 371 386 423 428 463

 465 484

logic pulse train 433 485

looping instructions 333 372

lot size 6 8 28

M

machine axis 112

machine controller 78 80 112 130 148

 155 164 168 213 384

magnetic grippers 266 291

manual data input (MDI) 116 182

manual leadthrough 296 372

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

manual part programming 116 182

manual prove-out 192 250

manufacturing 1 13 18 31 37

 41 52 54 62 67

 108 116 183 188 192

 270 277 302 376 378

 384 396 412 417 420

 487 491 506

manufacturing cell 18 28 44 277 491

 506

manufacturing lead time 21 23 25 27

manufacturing operations 3 26 28 118

manufacturing setup 28

manufacturing support systems 9 11 13 27

manufacturing systems 2 4 11 13 27

 41 47 417 487 507

M-code 94 124 153 156 168

 183 217

mechanical arm 258 261 289 291

mechanically actuated grippers 266 291

milling options dialog box 222 228 232 234 236

 240 250

milling tool dialog box 228 234 237 242 250

miscellaneous function 124 153 164 166 183

modal 125 130 133 136 138

 142 148 152 155 164

 167 182

modality 125 153 173 182

motion instructions 294 304 309 318 324

 333 338 343 363 371

motion interval 311 314 319 372

motion programming 295 297 303 305 363

 371 372

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

motion routines 306 309 316 326 331

 341 367 371

multiple segment motion 316 318 372

N

non-contact limit switches 394 416

non-cutting move 130 183

non-dimension words 121 123 162 183

NOT gate 425 485

nullpointX 223 232 250

nullpointY 223 232 250

O

open loop control 87 112 274 290 381

 414 416

operating cycle 386 416 430 486

operational cycle time 36 47 68 70

optical encoder 398 416

optical proximity switches 394 416

OR gate 425 485

orthogonal joint 261 264 291

output energize 430 433 484 486

output instructions 372 428 430 438 463

 484 486

output scan 386 416 430

P

partial productivity 32 49 54 60 68

 70

payload capacity 268 273 287 291

peripheral equipment control 277 290

pneumatic actuators 401 415

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

pneumatic power systems 291

postprocessor 117 183

power source 261 269 273 289 291

powered leadthrough 297 372

preparatory functions 112 119 121 123 126

 130 153 159 183 210

procedural machine control 382 384 414 416 493

 501 503 506

process interrupts 450 479 486

process manufacturing system 6 14 27 39 47

process parameters 378 385 401 414

process variables 328 378 380 391 396

 401 409 414

product complexity 4 8 14 26

product definition 4 6 8 26 28

product quantity 4 6 28

product variety 4 8 14 25

product volume 6 28 62

production capacity 20 28 44 68 70

production rate 20 28 33 35 39

 48 54 59 63 65

 68 70

productivity 2 11 15 21 31

 44 48 53 58 65

 72 107 111 192 260

 280 289

productivity index 55 69

program code verification 192 249

program coordinate sheet 172 183

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

program of instructions 3 26 28 76 82

 84 86 92 106 108

 116 118 169 172 182

 213 293 295 304 309

 335 338 341 343 372

 385 401 408 410 415

 433 435 441 451

program reference zero (PRZ) 85 99 111 118 149

program scan 386 416 430

program setup 93 111 119 134 148

 155 166 173 183 188

 223

program setup section 93 112 120 134 148

 155 168 188 223

program sheet 172 181 188 238 245

 251 307 338

programmable automation 1 4 13 20 24

 32 55 72 109 259

 301 390 404 489 493

 501 506

programmable logic control 2 15 18 26 28

 375 413 416

programmable logic control (PLC) technology 15 18 26 28 375

 413

programmer 92 96 99 105 108

 112 116 118 183 192

 194 210 213 222 283

 285 296 301 305 312

 323 331 343 371 390

 410 431 441 446 451

pushbuttons 279 328 392 415 479

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

Q

quantify 20 35 48 53 68

 70

quantity breakeven point 64 69 73

quantity manufacturing system 6 8 27 47

R

radius coordinates 232 244 247 249 253

reduction drive 271 273 291

reset output instruction 438 477 486

revolving joint 261 291

risk assessment 285 291

robot arm positions 294 306 335 371

robot controller 261 273 277 287 294

 298 301 305 328 330

 338 341 371

robot language programming 295 303 305 363 371

robot program 275 277 283 288 290

 292 302 304 309 327

 331 334 337 343 366

 371

robot programming 260 293 301 322 330

 334 366 371

robot simulation 293 343 372

RobotAssistTM 343 350 359 363 366

 370

robotic technology 15 27 280 282 290

rotational joint 261 264 291

roughing cuts 177 180 183

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

S

S word 124 134 155 164 167

 183

scan time 386 412 416

sequence number 121 124 130 133 136

 142 147 152 155 183

servomotors 83 112 270 274 289

 406

setup 8 14 20 25 27

 39 41 47 72 84

 93 96 106 118 134

 148 155 166 173 183

 188 191 195 223 267

 278 309 326 345 454

 459

setup sheets 106 111 118

simple mechanical device grippers 266 291

simulation dialog box 207 209 225 230 232

 237 245 250

single line simulation 209 226 237 245 250

slides 77 83 110 112 316

 495

soft product variety 5 8 14 26

solenoid actuated directional control valves 416

special purpose sensors 391 415

spindle speed 121 124 147 155 164

 176 183 187

spindle speed function 121 124 183

standard toolbar 202 209 220 250

state diagrams 410 442 449 473 484

state table 444 448 450 474 484

status bar 201 250

status bit 428 486

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

status pane 201 204 207 209 225

 230 232 237 245 249

stepper motor 87 112 381 406

straight cut 92 112

switches 152 279 295 297 328

 378 385 389 391 415

 423 437 450

system shutdown 93 111 119 166 168

 173 183 188 224

system shutdown section 112 120 168 173 188

 224

T

T word 124 156 167 183

tachometer 87 112 275 291

teach pendant 261 273 279 289 297

 300 303 307 328 331

 350 363 368 371 388

teach pendant programming 303 363 372

termination 310 315 318 325 338

 371

text buffer 226 250

time-driven change 385 414 416 435 450

 472

timer instruction 431 484 486

timing diagram 385 409 413 415 420

 422 441 449 484

toggle switches 279 328 392 415

tool coordinate system 297 372

tool function 124 183

tool handling time 37 70

tool lists 106 111 118

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

tool path 84 89 100 111 116

 130 133 136 142 148

 152 168 171 179 182

 186 192 204 235 244

trajectory 310 316 323 326 343

 371

transducers 391 394 396 415

transition 179 302 413 442 472

 475 480 485

truth tables 424 427 431 484 486

twisting joint 261 264 291

U

USA principle 31 67 70 408 415

 420

user coordinate system 300 372

user interface 109 130 191 194 201

 210 225 249 273 289

 297 344 346 351 393

 453 459 486

utilization 2 21 23 25 28

 44 68 70 116

V

vacuum grippers 266 291

variable costs 62 69

velocity profile 315 372

vibratory bowl feeders 495 497 506

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

W

ways 2 68 78 83 110

 112 116 157 202 259

 295 333 371 403 412

word address format 115 120 172 176 182

work cycle program 295 385 409 412 420

 423 427 429 431 433

 439 443 448 470 478

 483

work envelope 264 283 289 291 298

workpiece coordinate system 96 99 102 105 111

 120 169 172 238 240

workpiece handling time 37 70

workstation 42 384 393 410 414

 441 451 484 489 493

 497 500 506

world coordinate system 297 350 356 362 372

	Front Matter
	Preface
	Table of Contents
	1. Introduction to Programmable Automation
	1.1 Introduction to Programmable Automation
	1.2 The Manufacturing Process
	1.2.1 Manufacturing Overview
	1.2.2 Defining the Product
	1.2.3 Manufacturing System
	1.2.4 Manufacturing Support Systems

	1.3 Automation
	1.3.1 Types of Automation
	1.3.2 Programmable Automation

	1.4 Manufacturing Performance Measures
	1.4.1 Productivity

	1.5 Benefits of Automation
	1.6 Automation Strategies
	1.7 Summary
	1.8 Key Words
	1.9 Review Questions
	1.10 Bibliography

	2. Automation Justification and Productivity Concepts
	2.1 Automation Justification and Productivity
	2.2 Productivity Calculations
	2.3 Process Outputs and Mathematical Concepts for Quantifying Production
	2.3.1 Production Rate
	2.3.2 Other Mathematical Quantifying Concepts

	2.4 Process Inputs and Manufacturing Costs
	2.5 Comparing Alternatives with Productivity Calculations
	2.6 The Impact of Production Volume on Alternatives
	2.7 Productivity and the USA Principle
	2.8 Summary
	2.9 Key Words
	2.10 Review Questions
	2.11 Bibliography

	3. Introduction to Computer Numerical Control �䌀一䌀
	3.1 Introduction to CNC Technology
	3.1.1 Manual Machining and Numerical Control Technology

	3.2 CNC System Components
	3.2.1 Processing Equipment/Machine Tool
	3.2.2 Drive Mechanism/Positioning System
	3.2.3 CNC Controller
	3.2.4 Program of Instructions

	3.3 Coordinate Systems and Reference Points
	3.3.1 Machine Coordinate System
	3.3.2 Program Reference Zero �倀刀娀
	3.3.3 Absolute and Incremental Coordinates

	3.4 The Ten Steps of CNC Programming
	3.5 Advantages and Disadvantages of CNC Technology
	3.5.1 Advantages
	3.5.2 Disadvantages

	3.6 When to Use CNC Technology
	3.7 Summary
	3.8 Key Words
	3.9 Review Questions
	3.10 Bibliography

	4. CNC Programming
	4.1 Overview of CNC Programming
	4.1.1 Review of the Ten CNC Programming Process Steps
	4.1.2 Program Content

	4.2 Program Code
	4.2.1 Letter Addresses
	4.2.2 Word Addresses
	4.2.3 Command Blocks
	4.2.4 Preparatory Functions
	4.2.5 Common Preparatory Functions
	4.2.5.1 G00 Rapid Move
	4.2.5.2 G01 - Linear Interpolation
	4.2.5.3 G02 - Circle Interpolation: Clockwise Direction
	4.2.5.4 G03 - Circle Interpolation: Counterclockwise Direction

	4.2.5.5 G04 - Dwell
	4.2.5.6 G70 - Inch Units
	4.2.5.7 G71 - Metric Units
	4.2.5.8 G90 - Absolute Coordinates
	4.2.5.9 G91 - Relative Coordinates
	4.2.6 Miscellaneous Functions
	4.2.6.1 M03 - Spindle on: Clockwise
	4.2.6.2 M05 - Spindle Stop
	4.2.6.3 M06 - Tool Change
	4.2.6.4 M30 - Program End, Reset Machine

	4.2.7 Format Classification Sheet
	4.3 Cutting Parameters
	4.3.1 Depth of Cut
	4.3.2 Cutting Speed
	4.3.3 Feed Rate
	4.3.4 Cutting Parameter Calculations

	4.4 Program Organization
	4.4.1 Program Setup Codes
	4.4.2 Material Removal Codes
	4.4.3 System Shutdown Codes

	4.5 Programming Process
	4.5.1 Tool Path/Process Flow Development
	4.5.2 Developing Program Coordinates
	4.5.3 Program of Instructions Development

	4.6 Turning Programs
	4.6.1 Turning Example

	4.7 Summary
	4.8 Key Words
	4.9 Review Questions
	4.10 Bibliography
	5. CNC Simulation Software
	5.1 Overview of CNC Simulation Software
	5.2 Installation and Setup of CncSimulator®
	5.2.1 Installation
	5.2.2 Setup - Petrol File Concept

	5.3 User Interface
	5.3.1 Screen Customization
	5.3.2 Menus, Toolbars, and Dialog Boxes
	5.3.3 G- and M-Codes Supported by CncSimulator®
	5.3.4 Machine Code versus Simulator Code

	5.4 Simulation Examples
	5.4.1 Simulating Sample Files
	5.4.2 CncSimulator® and Inch Units
	5.4.3 Milling Simulation Example
	5.4.4 Turning Simulation Example

	5.5 Summary
	5.6 Key Words
	5.7 Review Questions
	5.8 Bibliography
	6. Introduction to Robotics Technology
	6.1 Industrial Robotics
	6.2 Robot Hardware
	6.2.1 Mechanical Robot Arm
	6.2.2 End Effectors
	6.2.3 Power Sources
	6.2.4 Robot Controller and Teach Pendant

	6.3 Robot Applications
	6.4 Robot Safety
	6.4.1 Robot Safety Standards
	6.4.2 Safeguarding Considerations
	6.4.3 Safeguarding Example

	6.6 Robot Selection Considerations
	6.7 Summary
	6.8 Key Words
	6.9 Review Questions
	6.10 Bibliography

	7. Robot Programming
	7.1 Robot Programming Concepts
	7.2 Programming Methods
	7.2.1 Teaching Arm Positions
	7.2.2 Taught Positions and User Coordinate Systems

	7.3 Robot Programming Languages
	7.4 Robot Program Development, Organization, and Structure
	7.4.1 Writing the Program of Instructions
	7.4.2 Arm Motion and Motion Instructions
	7.4.3 Multiple Segment Motion and Program Motion Routines
	7.4.4 Communication and Logic Instructions

	7.5 Writing Robot Program of Instructions
	7.6 Robot Simulation
	7.6.1 RobotAssist^TM Installation
	7.6.2 User Interface
	7.6.3 Building a Custom Robot
	7.6.4 Simulating Robot Motion

	7.7 Robot Program Simulation Example
	7.8 Summary
	7.9 Key Words
	7.10 Review Questions
	7.11 Bibliography
	8. Introduction to Programmable Logic Controllers �倀䰀䌀猀
	8.1 Programmable Logic Control Overview
	8.2 Industrial Process Control
	8.3 PLC Terminology
	8.3.1 Programmable Logic Controller
	8.3.2 Work Cycle Program
	8.3.3 Operating Cycle and Scan Time

	8.4 PLC Hardware Components
	8.5 PLC Applications
	8.6 Sensors and Actuators
	8.6.1 Sensors
	8.6.1.1 Switches
	8.6.1.2 Transducers
	8.6.1.3 Special Purpose Category

	8.6.2 Actuators
	8.6.2.1 Pneumatic Actuators
	8.6.2.2 Hydraulic Actuators
	8.6.2.3 Electrical Actuators

	8.7 Implementing Automation with PLCs
	8.7.1 PLC Selection Considerations

	8.8 Summary
	8.9 Key Words
	8.10 Review Questions
	8.11 Bibliography

	9. Programming PLCs
	9.1 Programming Concepts
	9.1.1 Logic Control, Sequencing, and Ladder Logic Diagrams

	9.2 Ladder Logic Terminology
	9.3 Typical PLC Instruction Set
	9.3.1 Relay Output Instruction Example
	9.3.2 Timer Output Instruction Example
	9.3.3 Counter and Reset Output Instruction Example

	9.4 PLC Programming Process
	9.4.1 Using State Diagrams to Develop Ladder Logic Programs
	9.4.2 PLC Programming Process Steps
	9.4.3 Ladder Logic Program Organization

	9.5 PLC Program Simulation
	9.5.1 TriLogi Simulation Software
	9.5.2 Installation
	9.5.3 User Interface
	9.5.4 Entering and Simulating a Ladder Logic Program

	9.6 PLC Programming Example
	9.6.1 Identifying the System States
	9.6.2 Identifying System Transitions and Completing the State Diagram
	9.6.3 Creating the State Table
	9.6.4 Writing the State Logic
	9.6.5 Writing the Transition Logic
	9.6.6 Adding Process Interrupts
	9.6.7 Program Simulation

	9.7 Summary
	9.8 Key Words
	9.9 Review Questions
	9.10 Bibliography

	10. Automated Workstations and Work Cells
	10.1 Automated Workstations and Work Cells
	10.2 Workstation and Work Cell Components
	10.2.1 Structural Members
	10.2.2 Part Feeders and Storage Devices
	10.2.3 Drive Mechanisms

	10.3 Automated Workstation and Work Cell Examples
	10.4 Summary
	10.5 Key Words
	10.6 Review Questions
	10.7 Bibliography

	Acknowledgements
	Dedication
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

